Science.gov

Sample records for effective mass approximation

  1. Beyond the effective mass approximation: A predictive theory of the nonlinear optical response of conduction electrons

    NASA Astrophysics Data System (ADS)

    Yu, Shukai; Heffernan, Kate H.; Talbayev, Diyar

    2017-03-01

    We present an experimental and computational study of the nonlinear optical response of conduction electrons to intense terahertz (THz) electric field. Our observations (saturable absorption and an amplitude-dependent group refractive index) can be understood on the qualitative level as the breakdown of the effective mass approximation. However, a predictive theoretical description of the nonlinear THz propagation has been missing. We propose a model based on the semiclassical electron dynamics, a realistic band structure, and the free electron Drude parameters to accurately calculate the experimental observables in InSb. Our results open a path to modeling of the conduction-electron optical nonlinearity that governs the THz propagation in semiconductors.

  2. Two-loop QCD corrections to the MSSM Higgs masses beyond the effective-potential approximation.

    PubMed

    Degrassi, G; Di Vita, S; Slavich, P

    We compute the two-loop QCD corrections to the neutral Higgs-boson masses in the Minimal Supersymmetric Standard Model, including the effect of non-vanishing external momenta in the self-energies. We obtain corrections of [Formula: see text] and [Formula: see text], i.e., all two-loop corrections that involve the strong gauge coupling when the only non-vanishing Yukawa coupling is the top one. We adopt either the [Formula: see text] renormalization scheme or a mixed on-shell (OS)-[Formula: see text] scheme where the top/stop parameters are renormalized on-shell. We compare our results with those of earlier calculations, pointing out an inconsistency in a recent result obtained in the mixed OS-[Formula: see text] scheme. The numerical impact of the new corrections on the prediction for the lightest-scalar mass is moderate, but already comparable to the accuracy of the Higgs-mass measurement at the Large Hadron Collider.

  3. Study of Odor Approximation by Using Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Ohno, Masashi; Nihei, Yasunori; Nakamoto, Takamichi

    2011-09-01

    Since a set of odor components to cover wide range of smells has not been revealed yet, we studied the selection of odor components using essential-oil mass spectrum database. Basis vectors were extracted using non-negative matrix factorization method1 and then non-negative least squares method was used to determine the recipe. The odor approximations of three typical essential oils were confirmed by the sensory test. It was found that the mass spectrum data were correlated with the sensory test result. Moreover, this correlation was remarkable in the high m/z region.

  4. Projected BCS-Tamm-Dancoff approximation with blocking effect

    NASA Astrophysics Data System (ADS)

    Dias, H.; Krmpotić, F.

    1982-05-01

    The blocking effect is introduced through a canonical transformation in the projected BCS-Tamm-Dancoff approximation. It is suggested that the blocking effect may play an important role in the description of the low-lying states in odd-mass nuclei. Present address: Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Argentina. Member of Carrera de Investigador Científico, CONICET, Argentina. Sponsored by Financiadora de Estudos e Projetos (FINEP), Brasil.

  5. Analytic approximate radiation effects due to Bremsstrahlung

    SciTech Connect

    Ben-Zvi I.

    2012-02-01

    The purpose of this note is to provide analytic approximate expressions that can provide quick estimates of the various effects of the Bremsstrahlung radiation produced relatively low energy electrons, such as the dumping of the beam into the beam stop at the ERL or field emission in superconducting cavities. The purpose of this work is not to replace a dependable calculation or, better yet, a measurement under real conditions, but to provide a quick but approximate estimate for guidance purposes only. These effects include dose to personnel, ozone generation in the air volume exposed to the radiation, hydrogen generation in the beam dump water cooling system and radiation damage to near-by magnets. These expressions can be used for other purposes, but one should note that the electron beam energy range is limited. In these calculations the good range is from about 0.5 MeV to 10 MeV. To help in the application of this note, calculations are presented as a worked out example for the beam dump of the R&D Energy Recovery Linac.

  6. Simulation of mass transfer during osmotic dehydration of apple: a power law approximation method

    NASA Astrophysics Data System (ADS)

    Abbasi Souraki, B.; Tondro, H.; Ghavami, M.

    2014-10-01

    In this study, unsteady one-dimensional mass transfer during osmotic dehydration of apple was modeled using an approximate mathematical model. The mathematical model has been developed based on a power law profile approximation for moisture and solute concentrations in the spatial direction. The proposed model was validated by the experimental water loss and solute gain data, obtained from osmotic dehydration of infinite slab and cylindrical shape samples of apple in sucrose solutions (30, 40 and 50 % w/w), at different temperatures (30, 40 and 50 °C). The proposed model's predictions were also compared with the exact analytical and also a parabolic approximation model's predictions. The values of mean relative errors respect to the experimental data were estimated between 4.5 and 8.1 %, 6.5 and 10.2 %, and 15.0 and 19.1 %, for exact analytical, power law and parabolic approximation methods, respectively. Although the parabolic approximation leads to simpler relations, the power law approximation method results in higher accuracy of average concentrations over the whole domain of dehydration time. Considering both simplicity and precision of the mathematical models, the power law model for short dehydration times and the simplified exact analytical model for long dehydration times could be used for explanation of the variations of the average water loss and solute gain in the whole domain of dimensionless times.

  7. Missing mass approximations for the partition function of stimulus driven Ising models.

    PubMed

    Haslinger, Robert; Ba, Demba; Galuske, Ralf; Williams, Ziv; Pipa, Gordon

    2013-01-01

    Ising models are routinely used to quantify the second order, functional structure of neural populations. With some recent exceptions, they generally do not include the influence of time varying stimulus drive. Yet if the dynamics of network function are to be understood, time varying stimuli must be taken into account. Inclusion of stimulus drive carries a heavy computational burden because the partition function becomes stimulus dependent and must be separately calculated for all unique stimuli observed. This potentially increases computation time by the length of the data set. Here we present an extremely fast, yet simply implemented, method for approximating the stimulus dependent partition function in minutes or seconds. Noting that the most probable spike patterns (which are few) occur in the training data, we sum partition function terms corresponding to those patterns explicitly. We then approximate the sum over the remaining patterns (which are improbable, but many) by casting it in terms of the stimulus modulated missing mass (total stimulus dependent probability of all patterns not observed in the training data). We use a product of conditioned logistic regression models to approximate the stimulus modulated missing mass. This method has complexity of roughly O(LNNpat) where is L the data length, N the number of neurons and N pat the number of unique patterns in the data, contrasting with the O(L2 (N) ) complexity of alternate methods. Using multiple unit recordings from rat hippocampus, macaque DLPFC and cat Area 18 we demonstrate our method requires orders of magnitude less computation time than Monte Carlo methods and can approximate the stimulus driven partition function more accurately than either Monte Carlo methods or deterministic approximations. This advance allows stimuli to be easily included in Ising models making them suitable for studying population based stimulus encoding.

  8. Inertia and Compressibility Effects in the Boussinesq Approximation

    NASA Astrophysics Data System (ADS)

    Shirgaonkar, Anup; Lele, Sanjiva

    2006-11-01

    The Boussinesq approximation is typically applied to flows where buoyancy is the dominant driving force. To extend its applicability to flows with substantial inertial perturbations, we examine the flow equations using perturbation analysis about the hydrostatic state. The physical effects corresponding to stratification, compressibility, small initial entropy perturbations, and inertia are characterized in terms of nondimensional parameters derived from the analysis. A simple and computationally efficient extension to the traditional Boussinesq approximation is proposed to include the interaction of buoyancy and inertia. The role of fluid compressibility in stratified low Mach number flows is highlighted and distinguished from the flow compressibility which is caused by motion. A nondimensional parameter is derived to demarcate compressible and nearly-incompressible hydrostatic states. The significance of the extended Boussinesq approximation is illustrated with numerical solutions to model problems. Application to the problem of aircraft vortex wake-exhaust jet interaction is discussed.

  9. Approximations for column effect in airplane wing spars

    NASA Technical Reports Server (NTRS)

    Warner, Edward P; Short, Mac

    1927-01-01

    The significance attaching to "column effect" in airplane wing spars has been increasingly realized with the passage of time, but exact computations of the corrections to bending moment curves resulting from the existence of end loads are frequently omitted because of the additional labor involved in an analysis by rigorously correct methods. The present report represents an attempt to provide for approximate column effect corrections that can be graphically or otherwise expressed so as to be applied with a minimum of labor. Curves are plotted giving approximate values of the correction factors for single and two bay trusses of varying proportions and with various relationships between axial and lateral loads. It is further shown from an analysis of those curves that rough but useful approximations can be obtained from Perry's formula for corrected bending moment, with the assumed distance between points of inflection arbitrarily modified in accordance with rules given in the report. The discussion of general rules of variation of bending stress with axial load is accompanied by a study of the best distribution of the points of support along a spar for various conditions of loading.

  10. Damping effects in doped graphene: The relaxation-time approximation

    NASA Astrophysics Data System (ADS)

    Kupčić, I.

    2014-11-01

    The dynamical conductivity of interacting multiband electronic systems derived by Kupčić et al. [J. Phys.: Condens. Matter 90, 145602 (2013), 10.1088/0953-8984/25/14/145602] is shown to be consistent with the general form of the Ward identity. Using the semiphenomenological form of this conductivity formula, we have demonstrated that the relaxation-time approximation can be used to describe the damping effects in weakly interacting multiband systems only if local charge conservation in the system and gauge invariance of the response theory are properly treated. Such a gauge-invariant response theory is illustrated on the common tight-binding model for conduction electrons in doped graphene. The model predicts two distinctly resolved maxima in the energy-loss-function spectra. The first one corresponds to the intraband plasmons (usually called the Dirac plasmons). On the other hand, the second maximum (π plasmon structure) is simply a consequence of the Van Hove singularity in the single-electron density of states. The dc resistivity and the real part of the dynamical conductivity are found to be well described by the relaxation-time approximation, but only in the parametric space in which the damping is dominated by the direct scattering processes. The ballistic transport and the damping of Dirac plasmons are thus the problems that require abandoning the relaxation-time approximation.

  11. Approximate Solution to the Angular Speeds of a Nearly-Symmetric Mass-Varying Cylindrical Body

    NASA Astrophysics Data System (ADS)

    Nanjangud, Angadh; Eke, Fidelis

    2016-11-01

    This paper examines the rotational motion of a nearly axisymmetric rocket type system with uniform burn of its propellant. The asymmetry comes from a slight difference in the transverse principal moments of inertia of the system, which then results in a set of nonlinear equations of motion even when no external torque is applied to the system. It is often difficult, or even impossible, to generate analytic solutions for such equations; closed form solutions are even more difficult to obtain. In this paper, a perturbation-based approach is employed to linearize the equations of motion and generate analytic solutions. The solutions for the variables of transverse motion are analytic and a closed-form solution to the spin rate is suggested. The solutions are presented in a compact form that permits rapid computation. The approximate solutions are then applied to the torque-free motion of a typical solid rocket system and the results are found to agree with those obtained from the numerical solution of the full non-linear equations of motion of the mass varying system.

  12. Nuclear energy surfaces at high-spin in the A{approximately}180 mass region

    SciTech Connect

    Chasman, R.R.; Egido, J.L.; Robledo, L.M.

    1995-08-01

    We are studying nuclear energy surfaces at high spin, with an emphasis on very deformed shapes using two complementary methods: (1) the Strutinsky method for making surveys of mass regions and (2) Hartree-Fock calculations using a Gogny interaction to study specific nuclei that appear to be particularly interesting from the Strutinsky method calculations. The great advantage of the Strutinsky method is that one can study the energy surfaces of many nuclides ({approximately}300) with a single set of calculations. Although the Hartree-Fock calculations are quite time-consuming relative to the Strutinsky calculations, they determine the shape at a minimum without being limited to a few deformation modes. We completed a study of {sup 182}Os using both approaches. In our cranked Strutinsky calculations, which incorporate a necking mode deformation in addition to quadrupole and hexadecapole deformations, we found three well-separated, deep, strongly deformed minima. The first is characterized by nuclear shapes with axis ratios of 1.5:1; the second by axis ratios of 2.2:1 and the third by axis ratios of 2.9:1. We also studied this nuclide with the density-dependent Gogny interaction at I = 60 using the Hartree-Fock method and found minima characterized by shapes with axis ratios of 1.5:1 and 2.2:1. A comparison of the shapes at these minima, generated in the two calculations, shows that the necking mode of deformation is extremely useful for generating nuclear shapes at large deformation that minimize the energy. The Hartree-Fock calculations are being extended to larger deformations in order to further explore the energy surface in the region of the 2.9:1 minimum.

  13. Local approximations for effective scalar field equations of motion

    NASA Astrophysics Data System (ADS)

    Berera, Arjun; Moss, Ian G.; Ramos, Rudnei O.

    2007-10-01

    Fluctuation and dissipation dynamics is examined at all temperature ranges for the general case of a background time evolving scalar field coupled to heavy intermediate quantum fields which in turn are coupled to light quantum fields. The evolution of the background field induces particle production from the light fields through the action of the intermediate catalyzing heavy fields. Such field configurations are generically present in most particle physics models, including grand unified and supersymmetry theories, with application of this mechanism possible in inflation, heavy ion collision, and phase transition dynamics. The effective evolution equation for the background field is obtained and a fluctuation-dissipation theorem is derived for this system. The effective evolution, in general, is nonlocal in time. Appropriate conditions are found for when these time nonlocal effects can be approximated by local terms. Here careful distinction is made between a local expansion and the special case of a derivative expansion to all orders, which requires analytic behavior of the evolution equation in Fourier space.

  14. Stiff Spring Approximation Revisited: Inertial Effects in Nonequilibrium Trajectories.

    PubMed

    Nategholeslam, Mostafa; Gray, C G; Tomberli, Bruno

    2017-01-19

    Use of harmonic guiding potentials is the most commonly adopted method for implementing steered molecular dynamics (SMD) simulations, performed to obtain potentials of mean force (PMFs) using Jarzynski's equality and other nonequilibrium work (NEW) theorems. The stiff spring approximation (SSA) of Schulten and co-workers enables calculation of the PMF by using the work performed along many SMD trajectories in NEW theorems. We discuss and demonstrate how a high spring constant, k, required for the validity of the SSA can violate another requirement of SSA, the validity of Brownian dynamics in the system under study. These result in skewed work distributions with their width increasing with k. The skew and broadening of work distributions result in biased estimation (through invoking NEW theorems) of the PMF. Remarkably, the skewness and the broadening of work distributions are independent of the average drift velocity and physical asymmetries and can only be attributed to using too-stiff springs. We discuss the proper upper limit for k such that the inertial effects are minimized. In the presence of inertial effects, using the peak value (rather than the statistical mean) of the work distributions vastly reduces the bias in the calculated PMFs and improves the accuracy.

  15. Analytical approximations for effective relative permeability in the capillary limit

    NASA Astrophysics Data System (ADS)

    Rabinovich, Avinoam; Li, Boxiao; Durlofsky, Louis J.

    2016-10-01

    We present an analytical method for calculating two-phase effective relative permeability, krjeff, where j designates phase (here CO2 and water), under steady state and capillary-limit assumptions. These effective relative permeabilities may be applied in experimental settings and for upscaling in the context of numerical flow simulations, e.g., for CO2 storage. An exact solution for effective absolute permeability, keff, in two-dimensional log-normally distributed isotropic permeability (k) fields is the geometric mean. We show that this does not hold for krjeff since log normality is not maintained in the capillary-limit phase permeability field (Kj=k·krj) when capillary pressure, and thus the saturation field, is varied. Nevertheless, the geometric mean is still shown to be suitable for approximating krjeff when the variance of ln⁡k is low. For high-variance cases, we apply a correction to the geometric average gas effective relative permeability using a Winsorized mean, which neglects large and small Kj values symmetrically. The analytical method is extended to anisotropically correlated log-normal permeability fields using power law averaging. In these cases, the Winsorized mean treatment is applied to the gas curves for cases described by negative power law exponents (flow across incomplete layers). The accuracy of our analytical expressions for krjeff is demonstrated through extensive numerical tests, using low-variance and high-variance permeability realizations with a range of correlation structures. We also present integral expressions for geometric-mean and power law average krjeff for the systems considered, which enable derivation of closed-form series solutions for krjeff without generating permeability realizations.

  16. Quantitative microwave impedance microscopy with effective medium approximations

    NASA Astrophysics Data System (ADS)

    Jones, T. S.; Pérez, C. R.; Santiago-Avilés, J. J.

    2017-02-01

    Microwave impedance microscopy (MIM) is a scanning probe technique to measure local changes in tip-sample admittance. The imaginary part of the reported change is calibrated with finite element simulations and physical measurements of a standard capacitive sample, and thereafter the output Δ Y is given a reference value in siemens. Simulations also provide a means of extracting sample conductivity and permittivity from admittance, a procedure verified by comparing the estimated permittivity of polytetrafluoroethlyene (PTFE) to the accepted value. Simulations published by others have investigated the tip-sample system for permittivity at a given conductivity, or conversely conductivity and a given permittivity; here we supply the full behavior for multiple values of both parameters. Finally, the well-known effective medium approximation of Bruggeman is considered as a means of estimating the volume fractions of the constituents in inhomogeneous two-phase systems. Specifically, we consider the estimation of porosity in carbide-derived carbon, a nanostructured material known for its use in energy storage devices.

  17. Mass-independent isotope effects.

    PubMed

    Buchachenko, Anatoly L

    2013-02-28

    Three fundamental properties of atomic nuclei-mass, spin (and related magnetic moment), and volume-are the source of isotope effects. The mostly deserved and popular, with almost hundred-year history, is the mass-dependent isotope effect. The first mass-independent isotope effect which chemically discriminates isotopes by their nuclear spins and nuclear magnetic moments rather than by their masses was detected in 1976. It was named as the magnetic isotope effect because it is controlled by magnetic interaction, i.e., electron-nuclear hyperfine coupling in the paramagnetic species, the reaction intermediates. The effect follows from the universal physical property of chemical reactions to conserve angular momentum (spin) of electrons and nuclei. It is now detected for oxygen, silicon, sulfur, germanium, tin, mercury, magnesium, calcium, zinc, and uranium in a great variety of chemical and biochemical reactions including those of medical and ecological importance. Another mass-independent isotope effect was detected in 1983 as a deviation of isotopic distribution in reaction products from that which would be expected from the mass-dependent isotope effect. On the physical basis, it is in fact a mass-dependent effect, but it surprisingly results in isotope fractionation which is incompatible with that predicted by traditional mass-dependent effects. It is supposed to be a function of dynamic parameters of reaction and energy relaxation in excited states of products. The third, nuclear volume mass-independent isotope effect is detected in the high-resolution atomic and molecular spectra and in the extraction processes, but there are no unambiguous indications of its importance as an isotope fractionation factor in chemical reactions.

  18. Disorder and size effects in the envelope-function approximation

    NASA Astrophysics Data System (ADS)

    Dargam, T. G.; Capaz, R. B.; Koiller, Belita

    1997-10-01

    We investigate the validity and limitations of the envelope-function approximation (EFA), widely accepted for the description of the electronic states of semiconductor heterostructures. We consider narrow quantum wells of GaAs confined by AlxGa1-xAs barriers. Calculations performed within the tight-binding approximation using ensembles of supercells are compared to the EFA results. Results for miniband widths in superlattices obtained in different approximations are also discussed. The main source of discrepancy for narrow wells is the treatment of alloy disorder within the virtual crystal approximation. We also test the two key assumptions of the EFA: (a) that the electronic wave functions have Bloch symmetry with well-defined k--> in the alloy region; (b) that the periodic parts of the Bloch functions are the same throughout the heterostructure. We show that inaccuracies are mainly due to the former assumption.

  19. Accuracy of the Michaelis-Menten approximation when analysing effects of molecular noise.

    PubMed

    Lawson, Michael J; Petzold, Linda; Hellander, Andreas

    2015-05-06

    Quantitative biology relies on the construction of accurate mathematical models, yet the effectiveness of these models is often predicated on making simplifying approximations that allow for direct comparisons with available experimental data. The Michaelis-Menten (MM) approximation is widely used in both deterministic and discrete stochastic models of intracellular reaction networks, owing to the ubiquity of enzymatic activity in cellular processes and the clear biochemical interpretation of its parameters. However, it is not well understood how the approximation applies to the discrete stochastic case or how it extends to spatially inhomogeneous systems. We study the behaviour of the discrete stochastic MM approximation as a function of system size and show that significant errors can occur for small volumes, in comparison with a corresponding mass-action system. We then explore some consequences of these results for quantitative modelling. One consequence is that fluctuation-induced sensitivity, or stochastic focusing, can become highly exaggerated in models that make use of MM kinetics even if the approximations are excellent in a deterministic model. Another consequence is that spatial stochastic simulations based on the reaction-diffusion master equation can become highly inaccurate if the model contains MM terms.

  20. Analytical mass formula and nuclear surface properties in the ETF approximation. Part II: asymmetric nuclei

    NASA Astrophysics Data System (ADS)

    Aymard, François; Gulminelli, Francesca; Margueron, Jérôme

    2016-08-01

    We have recently addressed the problem of the determination of the nuclear surface energy for symmetric nuclei in the framework of the extended Thomas-Fermi (ETF) approximation using Skyrme functionals. We presently extend this formalism to the case of asymmetric nuclei and the question of the surface symmetry energy. We propose an approximate expression for the diffuseness and the surface energy. These quantities are analytically related to the parameters of the energy functional. In particular, the influence of the different equation of state parameters can be explicitly quantified. Detailed analyses of the different energy components (local/non-local, isoscalar/isovector, surface/curvature and higher order) are also performed. Our analytical solution of the ETF integral improves previous models and leads to a precision of better than 200 keV per nucleon in the determination of the nuclear binding energy for dripline nuclei.

  1. Diffusive approximation for unsteady mud flows with backwater effect

    NASA Astrophysics Data System (ADS)

    Di Cristo, Cristiana; Iervolino, Michele; Vacca, Andrea

    2015-07-01

    The adoption of the Diffusive Wave (DW) instead of the Full Dynamic (FD) model in the analysis of mud flood routing within the shallow-water framework may provide a significant reduction of the computational effort, and the knowledge of the conditions in which this approximation may be employed is therefore important. In this paper, the applicability of the DW approximation of a depth-integrated Herschel-Bulkley model is investigated through linear analysis. Assuming as the initial condition a steady hypocritical decelerated flow, induced by downstream backwater, the propagation characteristics of a small perturbation predicted by the DW and FD models are compared. The results show that the spatial variation on the initial profile may preclude the application of DW model with a prescribed accuracy. Whenever the method is applicable, the rising time of the mud flood must satisfy additional constraints, whose dependence on the flow depth, along with the Froude number and the rheological parameters, is deeply analyzed and discussed.

  2. Superdeformation in the a Approximately 190 Mass Region and Shape Coexistence in LEAD-194

    NASA Astrophysics Data System (ADS)

    Brinkman, Matthew James

    Near-yrast states in ^{194 }Pb have been identified up to a spin of {~}35hbar following the ^{176}Yb(^ {24}Mg,6n)^{194} Pb^{*} reaction at a beam energy of 134 MeV, measured with the High Energy -Resolution Array located at the Lawrence Berkeley Laboratory 88-Inch Cyclotron facility. Eighteen new transitions were placed. Examples of non-collective prolate and oblate and collective oblate excitations are seen. In addition a rotational band consisting of twelve transitions, with energy spacings characteristic of superdeformed shapes, were also seen. These results have been interpreted using both Nilsson model calculations and previously published potential energy surface calculations. The superdeformed bands in the A ~ 190 mass region are discussed with primary emphasis on ten superdeformed bands in ^{192,193,194 }Hg and ^{192,194,196,198 }Pb discovered or codiscovered by our collaboration. The discussion of superdeformation in these nuclei have been broken into three portions, focusing on the population of, the physics associated with, and the depopulation of these bands, respectively. The population behavior of the superdeformed structures is presented, and discussed with respect to theoretical predictions for nuclei near A ~ 190 expected to support superdeformation. A detailed analysis of the population of the ^{193} Hg^{rm 1a} band is provided, and the results are compared with statistical model calculations predictions. Significant differences were found between the population of the superdeformed bands in the A ~ 150 and 190 mass regions. The systematics of the intraband region are presented. Nilsson model calculations are carried out, with nucleon configurations for the primary superdeformed bands proposed. A discussion of possible mechanisms for reproducing the smooth increase in dynamic moments of inertia observed in all superdeformed bands in this mass region is provided. A number of superdeformed bands in the A ~ 190 mass region have transition energies

  3. Approximations in seismic interferometry and their effects on surface waves

    NASA Astrophysics Data System (ADS)

    Kimman, W. P.; Trampert, J.

    2010-07-01

    We investigate common approximations and assumptions in seismic interferometry. The interferometric equation, valid for the full elastic wavefield, gives the Green's function between two arbitrary points by cross-correlating signals recorded at each point. The relation is exact, even for complicated lossless media, provided the signals are generated on a closed surface surrounding the two points and are from both unidirectional point-forces and deformation-rate-tensor sources. A necessary approximation to the exact interferometric equation is the use of signals from point-force sources only. Even in simple layered media, the Green's function retrieval can then be imperfect, especially for waves other than fundamental mode surface waves. We show that this is due to cross terms between different modes that occur even if a full source boundary is present. When sources are located at the free surface only, a realistic scenario for ambient noise, the cross terms can overwhelm the higher mode surface waves. Sources then need to be very far away, or organized in a band rather than a surrounding surface to overcome this cross-term problem. If sources are correlated, convergence of higher modes is very hard to achieve. In our examples of simultaneously acting sources, the phase of the higher modes only converges correctly towards the true solution if sources are acting in the stationary phase regions. This offers an explanation for some recent body wave observations, where only interstation paths in-line with the prevailing source direction were considered. The phase error resulting from incomplete distributions around the stationary phase region generally leads to an error smaller than 1 per cent for realistic applications.

  4. Effective moduli of particulate solids: Lubrication approximation method

    NASA Astrophysics Data System (ADS)

    Qi, F.; Phan-Thien, N.; X. J. Fan

    To efficiently calculate the effective properties of a composite, which consists of rigid spherical inclusions not necessarily of the same sizes in a homogeneous isotropic elastic matrix, a method based on the lubrication forces between neighbouring particles has been developed. The method is used to evaluate the effective Lamé moduli and the Poisson's ratio of the composite, for the particles in random configurations and in cubic lattices. A good agreement with experimental results given by Smith (1975) for particles in random configurations is observed, and also the numerical results on the effective moduli agree well with the results given by Nunan & Keller (1984) for particles in cubic lattices.

  5. Accuracy of the post-Newtonian approximation for extreme mass ratio inspirals from a black-hole perturbation approach

    NASA Astrophysics Data System (ADS)

    Sago, Norichika; Fujita, Ryuichi; Nakano, Hiroyuki

    2016-05-01

    We revisit the accuracy of the post-Newtonian (PN) approximation and its region of validity for quasicircular orbits of a point particle in the Kerr spacetime, by using an analytically known highest post-Newtonian order gravitational energy flux and accurate numerical results in the black hole perturbation approach. It is found that regions of validity become larger for higher PN order results although there are several local maximums in regions of validity for relatively low-PN order results. This might imply that higher PN order calculations are also encouraged for comparable-mass binaries.

  6. Effective medium approximation for effective propagation constant calculation in a dense random medium. [electromagnetic wave scattering

    NASA Technical Reports Server (NTRS)

    Zhu, P. Y.; Fung, A. K.

    1986-01-01

    The effective medium approximation (EMA) formalism developed for scalar wave calculations in solid state physics is generalized to electromagnetic wave scattering in a dense random medium. Results are applied to compute the effective propagation constant in a dense medium involving discrete spherical scatterers. When compared with a common quasicrystalline approximation (QCA), it is found that EMA accounts for backward scattering and the effect of correlation among three scatterers which are not available in QCA. It is also found that there is not much difference in the calculated normalized phase velocity between the use of these two approximations. However, there is a significant difference in the computed effective loss tangent in a nonabsorptive random medium. The computed effective loss tangent using EMA and measurements from a snow medium are compared, showing good agreement.

  7. Approximate formulas for rotational effects in earthquake engineering

    NASA Astrophysics Data System (ADS)

    Falamarz-Sheikhabadi, Mohammad Reza; Ghafory-Ashtiany, Mohsen

    2012-10-01

    The paper addresses the issue of researching into the engineering characteristics of rotational strong ground motion components and rotational effects in structural response. In this regard, at first, the acceleration response spectra of rotational components are estimated in terms of translational ones. Next, new methods in order to consider the effects of rotational components in seismic design codes are presented by determining the effective structural parameters in the rotational loading of structures due only to the earthquake rotational components. Numerical results show that according to the frequency content of rotational components, the contribution of the rocking components to the seismic excitation of short period structures can never be ignored. During strong earthquakes, these rotational motions may lead to the unexpected overturning or local structural damages for the low-rise multi-story buildings located on soft soil. The arrangement of lateral-load resisting system in the plan, period, and aspect ratio of the system can severely change the seismic loading of wide symmetric buildings under the earthquake torsional component.

  8. On exact and approximated formulations for scaling-mode shapes in operational modal analysis by mass and stiffness change

    NASA Astrophysics Data System (ADS)

    López-Aenlle, M.; Brincker, R.; Pelayo, F.; Canteli, A. F.

    2012-01-01

    When operational modal analysis (OMA) is used to estimate modal parameters, mode shapes cannot be mass normalized. In the past few years, some equations have been proposed to scale mode shapes using the mass-change method, which consists of repeating modal testing after changing the mass at different points of the structure where the mode shapes are known. In this paper, the structural-dynamic-modification theory is used to derive a set of equations, from which all the existing formulations can be derived. It is shown that the known equations can be divided into two types, the exact and the approximated equations, where the former type does in fact fulfill the equations derived from the theory of structural modification, whereas the remaining equations do not, mainly because the change of the mode shapes of the modified structure is not properly taken into account. By simulations, the paper illustrates the large difference in accuracy between the approximate and the exact formulations. The paper provides two new exact formulations for the scaling factors, one for the non-modified structure and - for the first time in the literature - one for the modified structure. The simulations indicate the influence of errors from the measured natural frequencies and mode shapes on the estimation of the scaling factors using the two exact formulations from the literature and the new exact formulation proposed in this paper. In addition, the paper illustrates statistics of the errors on mode-shape scaling. All simulations were carried out using a plate with closely spaced modes.

  9. Sub-luminous type Ia supernovae from the mergers of equal-mass white dwarfs with mass approximately 0.9M[symbol: see text].

    PubMed

    Pakmor, Rüdiger; Kromer, Markus; Röpke, Friedrich K; Sim, Stuart A; Ruiter, Ashley J; Hillebrandt, Wolfgang

    2010-01-07

    Type Ia supernovae are thought to result from thermonuclear explosions of carbon-oxygen white dwarf stars. Existing models generally explain the observed properties, with the exception of the sub-luminous 1991bg-like supernovae. It has long been suspected that the merger of two white dwarfs could give rise to a type Ia event, but hitherto simulations have failed to produce an explosion. Here we report a simulation of the merger of two equal-mass white dwarfs that leads to a sub-luminous explosion, although at the expense of requiring a single common-envelope phase, and component masses of approximately 0.9M[symbol: see text]. The light curve is too broad, but the synthesized spectra, red colour and low expansion velocities are all close to what is observed for sub-luminous 1991bg-like events. Although the mass ratios can be slightly less than one and still produce a sub-luminous event, the masses have to be in the range 0.83M[symbol: see text] to 0.9M[symbol: see text].

  10. Model of neutrino effective masses

    SciTech Connect

    Dinh Nguyen Dinh; Nguyen Thi Hong Van; Nguyen Anh Ky; Phi Quang Van

    2006-10-01

    It is shown that an effective (nonrenormalizable) coupling of lepton multiplets to scalar triplets in the 331 model with sterile/exotic neutrinos, can be a good way for generating neutrino masses of different types. The method is simple and avoids radiative/loop calculations which, sometimes, are long and complicated. Basing on some astrophysical arguments it is also stated that the scale of SU(3){sub L} symmetry breaking is at TeV scale, in agreement with earlier investigations. Or equivalently, starting from this symmetry breaking scale we could have sterile/exotic neutrinos with mass of a few keV's which could be used to explain several astrophysical and cosmological puzzles, such as the dark matter, the fast motion of the observed pulsars, the re-ionization of the Universe, etc.

  11. Analytical Method of Approximating the Motion of a Spinning Vehicle with Variable Mass and Inertia Properties Acted Upon by Several Disturbing Parameters

    NASA Technical Reports Server (NTRS)

    Buglia, James J.; Young, George R.; Timmons, Jesse D.; Brinkworth, Helen S.

    1961-01-01

    An analytical method has been developed which approximates the dispersion of a spinning symmetrical body in a vacuum, with time-varying mass and inertia characteristics, under the action of several external disturbances-initial pitching rate, thrust misalignment, and dynamic unbalance. The ratio of the roll inertia to the pitch or yaw inertia is assumed constant. Spin was found to be very effective in reducing the dispersion due to an initial pitch rate or thrust misalignment, but was completely Ineffective in reducing the dispersion of a dynamically unbalanced body.

  12. Dynamic effective mass of granular media

    NASA Astrophysics Data System (ADS)

    Johnson, David; Ingale, Rohit; Valenza, John; Hsu, Chaur-Jian; Gland, Nicolas; Makse, Hernan

    2009-03-01

    We report an experimental and theoretical investigation of the frequency-dependent effective mass, M(φ), of loose granular particles which occupy a rigid cavity to a filling fraction of 48%, the remaining volume being air of differing humidities. We demonstrate that this is a sensitive and direct way to measure those properties of the granular medium that are the cause of the changes in acoustic properties of structures containing grain-filled cavities. Specifically, we apply this understanding to the case of the flexural resonances of a rectangular bar with a grain-filled cavity within it. The dominant features of M(φ) are a sharp resonance and a broad background, which we analyze within the context of simple models. We find that: a) These systems may be understood in terms of a height-dependent and diameter-dependent effective sound speed (˜130 m/s) and an effective viscosity (˜2x10^4 Poise). b) There is a dynamic Janssen effect in the sense that, at any frequency, and depending on the method of sample preparation, approximately one-half of the effective mass is borne by the side walls of the cavity and one-half by the bottom. c) On a fundamental level, dissipation is dominated by adsorbed films of water at grain-grain contacts in our experiments.

  13. Gravitational self-force meets the post-Newtonian approximation in extreme-mass ratio inspiral of binary black holes

    NASA Astrophysics Data System (ADS)

    Detweiler, Steven

    2010-02-01

    Post-Newtonian analysis, numerical relativity and, now, perturbation-based gravitational self-force analysis are all being used to describe various aspects of black hole binary systems. Recent comparisons between self-force analysis, with m1m2, and post-Newtonian analysis, with v/c 1 show excellent agreement in their common domain of validity. This lends credence to the two very different regularization procedures which are invoked in these approximations. When self-force analysis is able to create gravitational waveforms from extreme mass-ratio inspiral, then unprecedented cross cultural comparisons of these three distinct approaches to understanding gravitational waves will reveal the strengths and weaknesses of each. )

  14. Gravitational scattering, post-Minkowskian approximation, and effective-one-body theory

    NASA Astrophysics Data System (ADS)

    Damour, Thibault

    2016-11-01

    A novel approach to the effective-one-body description of gravitationally interacting two-body systems is introduced. This approach is based on the post-Minkowskian approximation scheme (perturbation theory in G , without assuming small velocities) and employs a new dictionary focussing on the functional dependence of the scattering angle on the total energy and the total angular momentum of the system. Using this approach, we prove to all orders in v /c two results that were previously known to hold only to a limited post-Newtonian accuracy: (i) the relativistic gravitational dynamics of a two-body system is equivalent, at first post-Minkowskian order, to the relativistic dynamics of an effective test particle moving in a Schwarzschild metric, and (ii) this equivalence requires the existence of an exactly quadratic map between the real (relativistic) two-body energy and the (relativistic) energy of the effective particle. The same energy map is also shown to apply to the effective-one-body description of two masses interacting via tensor-scalar gravity.

  15. Virtual mass effect in dynamic micromechanical mass sensing in liquids

    NASA Astrophysics Data System (ADS)

    Peiker, P.; Oesterschulze, E.

    2016-06-01

    Weighing individual micro- or nanoscale particles in solution using dynamic micromechanical sensors is quite challenging: viscous losses dramatically degrade the sensor's performance by both broadening the resonance peak and increasing the effective total mass of the resonator by the dragged liquid. While the virtual mass of the resonator was discussed frequently, little attention has been paid to the virtual mass of particles attached to the resonator's surface and its impact on the accuracy of mass sensing. By means of the in situ detection of a polystyrene microbead in water using a bridge-based microresonator, we demonstrate that the virtual mass of the bead significantly affects the observed frequency shift. In fact, 55 % of the frequency shift was caused by the virtual mass of the adsorbed bead, predicted by Stoke's theory. Based on the observed shift in the resonator's quality factor during particle adsorption, we confirm this significant effect of the virtual mass. Thus, a quantitative analysis of the mass of a single adsorbed particle is strongly diminished if dynamic micromechanical sensors are operated in a liquid environment.

  16. Association of evaluation methods of the effective permittivity of heterogeneous media on the basis of a generalized singular approximation

    NASA Astrophysics Data System (ADS)

    Kolesnikov, V. I.; Yakovlev, V. B.; Bardushkin, V. V.; Lavrov, I. V.; Sychev, A. P.; Yakovleva, E. N.

    2013-09-01

    Various methods for evaluation of the effective permittivity of heterogeneous media, namely, the effective medium approximation (Bruggeman's approximation), the Maxwell-Garnett approximation, Wiener's bounds, and the Hashin-Shtrikman variational bounds (for effective static characteristics) are combined on the basis of a generalized singular approximation.

  17. Approximate Coulomb distortion effects in (e,e{sup {prime}}p) reactions

    SciTech Connect

    Kim, K.S.; Wright, L.E.

    1997-07-01

    In this paper we apply a well-tested approximation of electron Coulomb distortion effects to the exclusive reaction (e,e{sup {prime}}p) in the quasielastic region. We compare the approximate treatment of Coulomb distortion effects to the exact distorted wave Born approximation evaluated by means of partial wave analysis to gauge the quality of our approximate treatment. We show that the approximate Mo/ller potential has a plane-wave-like structure and hence permits the separation of the cross section into five terms which depend on bilinear products of transforms of the transition four current elements. These transforms reduce to Fourier transforms when Coulomb distortion is not present, but become modified with the inclusion of Coulomb distortion. We investigate the application of the approximate formalism to a model of {sup 208}Pb(e,e{sup {prime}}p) using Dirac-Hartree single particle wave functions for the ground state and relativistic optical model wave functions for the continuum proton. We show that it is still possible to extract, albeit with some approximation, the various structure functions from the experimentally measured data even for heavy nuclei. {copyright} {ital 1997} {ital The American Physical Society}

  18. Mass Fractionation Laws, Mass-Independent Effects, and Isotopic Anomalies

    NASA Astrophysics Data System (ADS)

    Dauphas, Nicolas; Schauble, Edwin A.

    2016-06-01

    Isotopic variations usually follow mass-dependent fractionation, meaning that the relative variations in isotopic ratios scale with the difference in mass of the isotopes involved (e.g., δ17O ≈ 0.5×δ18O). In detail, however, the mass dependence of isotopic variations is not always the same, and different natural processes can define distinct slopes in three-isotope diagrams. These variations are subtle, but improvements in analytical capabilities now allow precise measurement of these effects and make it possible to draw inferences about the natural processes that caused them (e.g., reaction kinetics versus equilibrium isotope exchange). Some elements, in some sample types, do not conform to the regularities of mass-dependent fractionation. Oxygen and sulfur display a rich phenomenology of mass-independent fractionation, documented in the laboratory, in the rock record, and in the modern atmosphere. Oxygen in meteorites shows isotopic variations that follow a slope-one line (δ17O ≈ δ18O) whose origin may be associated with CO photodissociation. Sulfur mass-independent fractionation in ancient sediments provides the tightest constraint on the oxygen partial pressure in the Archean and the timing of Earth's surface oxygenation. Heavier elements also show departures from mass fractionation that can be ascribed to exotic effects associated with chemical reactions such as magnetic effects (e.g., Hg) or the nuclear field shift effect (e.g., U or Tl). Some isotopic variations in meteorites and their constituents cannot be related to the terrestrial composition by any known process, including radiogenic, nucleogenic, and cosmogenic effects. Those variations have a nucleosynthetic origin, reflecting the fact that the products of stellar nucleosynthesis were not fully homogenized when the Solar System formed. Those anomalies are found at all scales, from nanometer-sized presolar grains to bulk terrestrial planets. They can be used to learn about stellar

  19. The effects of body mass on cremation weight.

    PubMed

    May, Shannon E

    2011-01-01

    Cremains have become increasingly frequent in forensic contexts, while higher body mass in the general population has simultaneously made cremation a more cost-effective mortuary practice. This study analyzed the relationship between body mass and bone mass, as reflected through cremation weight. Antemortem data were recorded for samples used in the multi-regional data set. Each was rendered through commercial crematoriums and reweighed postincineration. Pearson's correlation demonstrates clear association between body mass and cremation weight (r=0.56; p<0.0001). However, multiple linear regression revealed sex and age variables also have a significant relationship (t=7.198; t=-2.5, respectively). Regressed in conjunction, body mass, sex, and age contribute approximately 67% of all variation observed in cremation weight (r=0.668). Analysis of covariance indicates significant regional variation in body and cremation weight. Explanations include bone modification resulting from increased loading stress, as well as glucose intolerance and altered metabolic pathways related to obesity.

  20. Derivative expansion at small mass for the spinor effective action

    SciTech Connect

    Dunne, Gerald V.; Huet, Adolfo; Hur, Jin; Min, Hyunsoo

    2011-05-15

    We study the small-mass limit of the one-loop spinor effective action, comparing the derivative expansion approximation with exact numerical results that are obtained from an extension to spinor theories of the partial-wave cutoff method. In this approach, one can compute numerically the renormalized one-loop effective action for radially separable gauge field background fields in spinor QED. We highlight an important difference between the small-mass limit of the derivative expansion for spinor and scalar theories.

  1. Optical properties of solids within the independent-quasiparticle approximation: Dynamical effects

    NASA Astrophysics Data System (ADS)

    del Sole, R.; Girlanda, Raffaello

    1996-11-01

    The independent-quasiparticle approximation to calculating the optical properties of solids is extended to account for dynamical effects, namely, the energy dependence of the GW self-energy. We use a simple but realistic model of such energy dependence. We find that the inclusion of dynamical effects reduces considerably the calculated absorption spectrum and makes the agreement with experiment worse.

  2. Effective Mass of an Oscillating Spring

    ERIC Educational Resources Information Center

    Rodriguez, Eduardo E.; Gesnouin, Gabriel A.

    2007-01-01

    We present an experimental method to obtain the effective mass of an unloaded oscillating spring. We measure the period "T"("n") of the partial springs that result when hanging "n" of the total "N" coils of a given spring. Data are correlated with the expectation of a simple model for "T"("n") that takes into account the effective mass of the…

  3. Measuring the Mass Distribution in Z is Approximately 0.2 Cluster Lenses with XMM, HST and CFHT

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Being the most massive gravitationally bound objects in the Universe, clusters of galaxies are prime targets for studies of structure formation and evolution. Specifically the comoving space density of virialized clusters of a given mass (or X-ray temperature), but also the frequency and degree of substructure, as well as the shape of the cluster mass profile are quantities whose current values and evolution as a function of lookback time can provide important constraints on the cosmological and physical parameters of structure formation theories. The project funded by NASA grant NAG 5-10041 intended to take such studies to a new level by combining observations of a well-selected cluster sample by three state-of-the-art telescopes: HST, to accurately measure the mass distribution in the cluster core (approx. 0.5 h(sup -1)(sub 50) Mpc) via strong gravitational lensing; CFHT, to measure the large scale mass distribution out to approx. 3 Mpc via weak lensing; and XMM, to measure the gas density and temperature distribution accurately on intermediate scales < 1.5 Mpc. XMM plays a pivotal role in this context as the calibration of X-ray mass measurements through accurate, spatially resolved X-ray temperature measurements (particularly in the cosmologically most sensitive range of kT> 5 keV) is central to the questions outlined above. This set of observations promised to yield the best cluster mass measurements obtained so far for a representative sample, thus allowing us to: 1) Measure the high-mass end of the local cluster mass function; 2) Test predictions of a universal cluster mass profile; 3) calibrate the mass-temperature and temperature-luminosity relations for clusters and the scatter around these relations, which is vital for studies of cluster evolution using the X-ray temperature and X-ray luminosity functions.

  4. Comparisons of interacting-boson-fermion approximation and triaxial calculations for odd-mass N =80 nuclei

    SciTech Connect

    Aryaeinejad, R.; Chou, W.; McHarris, W.C. )

    1989-09-01

    The interacting-boson-fermion-approximation and triaxial models were used to calculate excitation energies and mixing ratios for the {ital N}=80 nuclei, {sup 139}Pr, {sup 141}Pm, and {sup 143}Eu. For low-lying negative- and positive-parity states both models yield roughly the same numbers, in good agreement with experimental results. For high-lying states we find that the interacting-boson-fermion-approximation model describes the level structure considerably better than the triaxial model. On the other hand, the triaxial model gives more satisfactory results in predicting the mixing ratios.

  5. An Extension of the Krieger-Li-Iafrate Approximation to the Optimized-Effective-Potential Method

    SciTech Connect

    Wilson, B.G.

    1999-11-11

    The Krieger-Li-Iafrate approximation can be expressed as the zeroth order result of an unstable iterative method for solving the integral equation form of the optimized-effective-potential method. By pre-conditioning the iterate a first order correction can be obtained which recovers the bulk of quantal oscillations missing in the zeroth order approximation. A comparison of calculated total energies are given with Krieger-Li-Iafrate, Local Density Functional, and Hyper-Hartree-Fock results for non-relativistic atoms and ions.

  6. Effects of the Mass Media of Communication.

    ERIC Educational Resources Information Center

    Weiss, Walter

    The mass media are considered to be television, radio, movies, and newspapers. They may generate changes in cognition and comprehension. They do effect emotional arousal, sex and behavior identification, and changes in allocation of time, consumer purchase, and voting behavior. The only data which show a clear relationship between the mass media…

  7. Comparative Analysis and Approximations of Space -Charge Formation in Langmuir Electrodes Including Temperature Effects.

    NASA Astrophysics Data System (ADS)

    Valdeblànquez, Eder

    2001-10-01

    Eder Valdeblànquez,Universidad del Zulia,Apartado 4011-A 526,Maracaibo,Venezuela. ABSTRACT: In this paper by space charge effect in Langmuir probes are compared for different kind of symmetries; plane, cylindrical and spherical. A detailed analysis is performed here including temperature effects, and therefore kinetic theory is used instead of fluid equations as other authors. The strongly non-linear equations obtained here have been solved first by numerical analysis and later by approximations using Bessel functions. The accuracy of each approximaton is also discussed. Space Charge effects are important in plane geometries than in the case of cylindrical or spherical symmetries.

  8. Approximating the near-edge mass absorption coefficients for Ni using an ultra-thin bimetal foil

    DOE PAGES

    Alkire, Randall W.

    2016-11-01

    In an effort to improve the characteristics of a fluorescing metal-foil-based beam position monitor, a new bimetal ultra-thin (0.98/0.67 µm) Ti–Ni foil was introduced to replace an existing single-element ultra-thin 0.5 µm thick Cr foil. During characterization it was determined that absorption measurements on the bimetal foil could be used to fit the Ni mass absorption coefficients accurately in the vicinity of the NiKedge. Comparison with experimental results from the literature demonstrated that the fitting procedure produced coefficients with uncertainties of the order of ±1%. Once determined, these fit coefficients allowed the thickness of an independently mounted 8 µm thickmore » Ni foil to be computed from absorption measurements instead of relying on a tool-based measurement of the foil thickness. Using the 8 µm thick foil, a continuous map of Ni mass absorption coefficients was produced at 1 eV resolution throughout the near-edge region. Lastly, this high-resolution map marks a significant improvement over the existing NIST XCOM or FFAST database mass absorption coefficients, which have estimated errors of 10–20% for the near-edge region.« less

  9. Approximating the near-edge mass absorption coefficients for Ni using an ultra-thin bimetal foil

    SciTech Connect

    Alkire, Randall W.

    2016-11-01

    In an effort to improve the characteristics of a fluorescing metal-foil-based beam position monitor, a new bimetal ultra-thin (0.98/0.67 µm) Ti–Ni foil was introduced to replace an existing single-element ultra-thin 0.5 µm thick Cr foil. During characterization it was determined that absorption measurements on the bimetal foil could be used to fit the Ni mass absorption coefficients accurately in the vicinity of the NiKedge. Comparison with experimental results from the literature demonstrated that the fitting procedure produced coefficients with uncertainties of the order of ±1%. Once determined, these fit coefficients allowed the thickness of an independently mounted 8 µm thick Ni foil to be computed from absorption measurements instead of relying on a tool-based measurement of the foil thickness. Using the 8 µm thick foil, a continuous map of Ni mass absorption coefficients was produced at 1 eV resolution throughout the near-edge region. Lastly, this high-resolution map marks a significant improvement over the existing NIST XCOM or FFAST database mass absorption coefficients, which have estimated errors of 10–20% for the near-edge region.

  10. The generalized effective liquid approximation for the freezing of hard spheres

    NASA Astrophysics Data System (ADS)

    Baus, M.

    1990-12-01

    The generalized effective liquid approximation (GELA) to the density functional theory of classical nonuniform systems reproduces all the formal properties of the free energy and requires only the direct correlation function of the uniform system as input. In the case of the freezing of hard spheres very accurate free energies, pressures and fluid-solid coexistence data can be obtained from the GELA. The theory predicts, besides the equilibrium FCC solid, metastable BCC and SC phases also.

  11. The Zeeman effect in the Sobolev approximation: applications to spherical stellar winds

    NASA Astrophysics Data System (ADS)

    Ignace, R.; Gayley, K. G.

    2003-05-01

    Modern spectropolarimeters are capable of detecting subkilogauss field strengths using the Zeeman effect in line profiles from the static photosphere, but supersonic Doppler broadening makes it more difficult to detect the Zeeman effect in the wind lines of hot stars. Nevertheless, the recent advances in observational capability motivate an assessment of the potential for detecting the magnetic fields threading such winds. We incorporate the weak-field longitudinal Zeeman effect in the Sobolev approximation to yield integral expressions for the flux of circularly polarized emission. To illustrate the results, two specific wind flows are considered: (i) spherical constant expansion with v(r) =v∞ and (ii) homologous expansion with v(r) ~r. Axial and split monopole magnetic fields are used to schematically illustrate the polarized profiles. For constant expansion, optically thin lines yield the well-known `flat-topped' total intensity emission profiles and an antisymmetric circularly polarized profile. For homologous expansion, we include occultation and wind absorption to provide a more realistic observational comparison. Occultation severely reduces the circularly polarized flux in the redshifted component, and in the blueshifted component, the polarization is reduced by partially offsetting emission and absorption contributions. We find that for a surface field of approximately 100 G, the largest polarizations result for thin but strong recombination emission lines. Peak polarizations are approximately 0.05 per cent, which presents a substantial although not inconceivable sensitivity challenge for modern instrumentation.

  12. Effective vortex mass from microscopic theory

    NASA Astrophysics Data System (ADS)

    Han, Jung Hoon; Kim, June Seo; Kim, Min Jae; Ao, Ping

    2005-03-01

    We calculate the effective mass of a single quantized vortex in the Bardeen-Cooper-Schrieffer superconductor at finite temperature. Based on effective action approach, we arrive at the effective mass of a vortex as integral of the spectral function J(ω) divided by ω3 over frequency. The spectral function is given in terms of the quantum-mechanical transition elements of the gradient of the Hamiltonian between two Bogoliubov-deGennes (BdG) eigenstates. Based on self-consistent numerical diagonalization of the BdG equation we find that the effective mass per unit length of vortex at zero temperature is of order m(kfξ0)2 ( kf=Fermi momentum, ξ0=coherence length), essentially equaling the electron mass displaced within the coherence length from the vortex core. Transitions between the core states are responsible for most of the mass. The mass reaches a maximum value at T≈0.5Tc and decreases continuously to zero at Tc .

  13. Spatial averaging effects of hydrophone on field characterization of planar transducer using Fresnel approximation.

    PubMed

    Xing, Guangzhen; Yang, Ping; He, Longbiao; Feng, Xiujuan

    2016-09-01

    The purpose of this work was to improve the existing models that allow spatial averaging effects of piezoelectric hydrophones to be accounted for. The model derived in the present study is valid for a planar source and was verified using transducers operating at 5 and 20MHz. It is based on Fresnel approximation and enables corrections for both on-axis and off-axis measurements. A single-integral approximate formula for the axial acoustic pressure was derived, and the validity of the Fresnel approximation in the near field of the planar transducer was examined. The numerical results obtained using 5 and 20MHz planar transmitters with an effective diameter of 12.7mm showed that the derived model could account for spatial averaging effects to within 0.2% with Beissner's exact integral (Beissner, 1981), for k(a+b)2≫π (where k is the circular wavenumber, and a and b are the effective radii of the transmitter and hydrophone, respectively). The field distributions along the acoustic axis and the beam directivity patterns are also included in the model. The spatial averaging effects of the hydrophone were generally observed to cause underestimation of the absolute pressure amplitudes of the acoustic beam, and overestimation of the cross-sectional size of the beam directivity pattern. However, the cross-sectional size of the directivity pattern was also found to be underestimated in the "far zone" (beyond Y0=a(2)/λ) of the transmitter. The results of this study indicate that the spatial averaging effect on the beam directivity pattern is negligible for π(γ(2)+4γ)s≪1 (where γ=b/a, and s is the normalized distance to the planar transducer).

  14. Validity of approximate methods in molecular scattering. III - Effective potential and coupled states approximations for differential and gas kinetic cross sections

    NASA Technical Reports Server (NTRS)

    Monchick, L.; Green, S.

    1977-01-01

    Two dimensionality-reducing approximations, the j sub z-conserving coupled states (sometimes called the centrifugal decoupling) method and the effective potential method, were applied to collision calculations of He with CO and with HCl. The coupled states method was found to be sensitive to the interpretation of the centrifugal angular momentum quantum number in the body-fixed frame, but the choice leading to the original McGuire-Kouri expression for the scattering amplitude - and to the simplest formulas - proved to be quite successful in reproducing differential and gas kinetic cross sections. The computationally cheaper effective potential method was much less accurate.

  15. Experimental test for approximately dispersionless forces in the Aharonov-Bohm effect

    NASA Astrophysics Data System (ADS)

    Becker, Maria; Batelaan, Herman

    2016-07-01

    A new class of forces, approximately dispersionless forces, were recently predicted as part of a semiclassical description of the Aharonov-Bohm effect. Electron time-of-flight measurements have been performed that test for such forces. Magnetized iron cores used in the previous time-of-flight experiment may affect potential back-action forces and have, therefore, been eliminated. We report that no forces were detected. This finding supports the local and nonlocal, quantum descriptions of the AB effect and rules out local, semiclassical descriptions.

  16. Dielectric Matrix Formulation of Correlation Energies in the Random Phase Approximation: Inclusion of Exchange Effects.

    PubMed

    Mussard, Bastien; Rocca, Dario; Jansen, Georg; Ángyán, János G

    2016-05-10

    Starting from the general expression for the ground state correlation energy in the adiabatic-connection fluctuation-dissipation theorem (ACFDT) framework, it is shown that the dielectric matrix formulation, which is usually applied to calculate the direct random phase approximation (dRPA) correlation energy, can be used for alternative RPA expressions including exchange effects. Within this famework, the ACFDT analog of the second order screened exchange (SOSEX) approximation leads to a logarithmic formula for the correlation energy similar to the direct RPA expression. Alternatively, the contribution of the exchange can be included in the kernel used to evaluate the response functions. In this case, the use of an approximate kernel is crucial to simplify the formalism and to obtain a correlation energy in logarithmic form. Technical details of the implementation of these methods are discussed, and it is shown that one can take advantage of density fitting or Cholesky decomposition techniques to improve the computational efficiency; a discussion on the numerical quadrature made on the frequency variable is also provided. A series of test calculations on atomic correlation energies and molecular reaction energies shows that exchange effects are instrumental for improvement over direct RPA results.

  17. The Effect of Increasing Mass upon Locomotion

    NASA Technical Reports Server (NTRS)

    DeWitt, John; Hagan, Donald

    2007-01-01

    The purpose of this investigation was to determine if increasing body mass while maintaining bodyweight would affect ground reaction forces and joint kinetics during walking and running. It was hypothesized that performing gait with increased mass while maintaining body weight would result in greater ground reaction forces, and would affect the net joint torques and work at the ankle, knee and hip when compared to gait with normal mass and bodyweight. Vertical ground reaction force was measured for ten subjects (5M/5F) during walking (1.34 m/s) and running (3.13 m/s) on a treadmill. Subjects completed one minute of locomotion at normal mass and bodyweight and at four added mass (AM) conditions (10%, 20%, 30% and 40% of body mass) in random order. Three-dimensional joint position data were collected via videography. Walking and running were analyzed separately. The addition of mass resulted in several effects. Peak impact forces and loading rates increased during walking, but decreased during running. Peak propulsive forces decreased during walking and did not change during running. Stride time increased and hip extensor angular impulse and positive work increased as mass was added for both styles of locomotion. Work increased at a greater rate during running than walking. The adaptations to additional mass that occur during walking are different than during running. Increasing mass during exercise in microgravity may be beneficial to increasing ground reaction forces during walking and strengthening hip musculature during both walking and running. Future study in true microgravity is required to determine if the adaptations found would be similar in a weightless environment.

  18. Hamiltonian theory of the fractional quantum Hall effect: Conserving approximation for incompressible fractions

    NASA Astrophysics Data System (ADS)

    Murthy, Ganpathy

    2001-11-01

    A microscopic Hamiltonian theory of the fractional quantum Hall effect developed by Shankar and the present author based on the fermionic Chern-Simons approach has recently been quite successful in calculating gaps and finite-tempertature properties in fractional quantum Hall states. Initially proposed as a small-q theory, it was subsequently extended by Shankar to form an algebraically consistent theory for all q in the lowest Landau level. Such a theory is amenable to a conserving approximation in which the constraints have vanishing correlators and decouple from physical response functions. Properties of the incompressible fractions are explored in this conserving approximation, including the magnetoexciton dispersions and the evolution of the small-q structure factor as ν-->12. Finally, a formalism capable of dealing with a nonuniform ground-state charge density is developed and used to show how the correct fractional value of the quasiparticle charge emerges from the theory.

  19. The effects of hyper-spherical approximation of Yukawa potential to diffusion properties

    NASA Astrophysics Data System (ADS)

    Kim, In Gee; Murillo, Michael S.

    2015-11-01

    The effects of Yukawa potential to the diffusion properties of binary ionic mixtures are investigated in terms of both the classical molecular dynamics and the kinetic theory. The Yukawa interatomic potential is treated by means of the hyper-spherical approximation, which replaces the Ewald summation by a multiple of the hyperbolic trigonometric functions and the lattice summation of screening. The influence of the hyper-spherical approximation of the Yukawa potential is able to be understood through the calculations of transport coefficients with the relationship to Coulomb logarithm. Numerical studies over a various range of the Debye-Hückel screening parameter and of the plasma coupling parameter to binary ionic mixtures will be provided. We consider primarily the interdiffusion coefficients and then discuss about the mixing properties of self-diffusion coefficients.

  20. Pressure effects on hole-burning spectra in glasses: Calculation beyond the Gaussian approximation

    NASA Astrophysics Data System (ADS)

    Kador, L.

    1991-07-01

    In a recent publication, Laird and Skinner [J. Chem. Phys. 90, 3274 (1990)] proposed a microscopic statistical theory describing the effects of external hydrostatic pressure on hole-burning spectra of impurity molecules in amorphous solids. Using the so-called Gaussian approximation, which is valid in the limit that the density of the solvent molecules is high, the theory predicts the pressure kernel of a hole spectrum as well as the shape of the inhomogeneous band to be characterized by Gaussian profiles. Whereas the maximum position of the kernel increases from lower to higher solvent shift values in the inhomogeneous distribution, its width is constant. Numerical calculations performed without this approximation, however, show that for the data of poly(ethylene) and poly(styrene) doped with free-base phthalocyanine, not only the pressure shift but also the pressure broadening of hole-burning spectra increases from the blue to the red edge of the absorption band. Moreover, the hole spectra are predicted to become asymmetric when the sample is exposed to hydrostatic pressure. These deviations from the results of the Gaussian approximation are distinctly more pronounced than the deviations of the inhomogeneous band shapes from Gaussian profiles.

  1. [Approximate entropy of the placebo effect in clinical trials of newer antidepressants].

    PubMed

    Cuestas, Maria Eloisa; Cuestas, Eduardo

    2010-01-01

    Recent research concluded that antidepressant drugs are ineffective in treating moderate or severe depression. Statistically, there are no differences between the results with active drugs or placebo. Some authors have attributed this fail to variability or irregularity of the placebo effect in depressed patients or artifacts induced by meta-analysis. This fact highlights the difficulties faced by the research of psychoactive drugs in depression and revives the debate about the usefulness of the employ of placebo in these studies. This study aimed to determine the variability of the placebo effect in antidepressant clinical trials in simple linear and non-linear complex models. We performed a secondary analysis of data from 35 trials presented as evidence to the Food and Drug Administration (FDA) for approval of new generation antidepressants, all double-blind controlled with placebo in patients with unipolar mild or moderate depressive disorder, according to the criteria of "Diagnostic and Statistical Manual of Mental Disorders (DSM).Articles reviewed included 5133 patients . We have calculated the coefficient of variability, autocorrelation and approximate entropy of the placebo and treatment effects to determine whether the variability or regularity between different studies should be attributed to meta-analytical methods, placebo effect or ineffective treatment itself. The coefficient of variability in the placebo group was 26.49% and 18.81% in the treatment group. The placebo effect autocorrelation was within the confidential limits while the treatment group was outside showed cyclical variation. The approximate entropy value (ApEn N=35,m=2,R=2) in the placebo group was 0.5579 and 0.5744 in treatment group, leading to the conclusion that placebo effect is highly consistent and regular in complex non-linear models. The apparent variability of the placebo effect in depressed patients should be due to artifacts induced by simple linear models analysis.

  2. p-barp-Annihilation processes in the tree approximation of SU(3) chiral effective theory

    SciTech Connect

    Tarasov, V. E.; Kudryavtsev, A. E. Romanov, A. I.; Weinberg, V. M.

    2012-12-15

    The p-barp-annihilation reactions p-barp {yields} {eta}{eta} {eta} and p-barp {yields} {eta}KK-bar at rest are considered in the tree approximation in the framework of SU(3) chiral effective theory at leading order. The calculated branchings are compared with the data. The results for neutral ({eta}{eta}{eta}, K{sup 0}K-bar{sup 0}{sub {eta}}) and charged (K{sup +}K{sup -}{sub {eta}}) channels are essentially different.

  3. Structure of plasmonic aerogel and the breakdown of the effective medium approximation.

    PubMed

    Grogan, Michael D W; Heck, Susannah C; Hood, Katie M; Maier, Stefan A; Birks, Tim A

    2011-02-01

    A method for making aerogel doped with gold nanoparticles (GNPs) produces a composite material with a well-defined localized surface plasmon resonance peak at 520 nm. The width of the extinction feature indicates the GNPs are well dispersed in the aerogel, making it suited to optical study. A simple effective medium approximation cannot explain the peak extinction wavelengths. The plasmonic field extends on a scale where aerogel cannot be considered isotropic, so a new model is required: a 5 nm glass coating on the GNPs models the extinction spectrum of the composite material, with air (aerogel), methanol (alcogel), or toluene filling the pores.

  4. Improving the In-Medium Similarity Renormalization Group via approximate inclusion of three-body effects

    NASA Astrophysics Data System (ADS)

    Morris, Titus; Bogner, Scott

    2016-09-01

    The In-Medium Similarity Renormalization Group (IM-SRG) has been applied successfully to the ground state of closed shell finite nuclei. Recent work has extended its ability to target excited states of these closed shell systems via equation of motion methods, and also complete spectra of the whole SD shell via effective shell model interactions. A recent alternative method for solving of the IM-SRG equations, based on the Magnus expansion, not only provides a computationally feasible route to producing observables, but also allows for approximate handling of induced three-body forces. Promising results for several systems, including finite nuclei, will be presented and discussed.

  5. Improving the In-Medium Similarity Renormalization Group via approximate inclusion of three-body effects

    NASA Astrophysics Data System (ADS)

    Morris, Titus; Bogner, Scott

    2015-10-01

    The In-Medium Similarity Renormalization Group (IM-SRG) has been applied successfully not only to several closed shell finite nuclei, but has recently been used to produce effective shell model interactions that are competitive with phenomenological interactions in the SD shell. A recent alternative method for solving of the IM-SRG equations, called the Magnus expansion, not only provides a computationally feasible route to producing observables, but also allows for approximate handling of induced three-body forces. Promising results for several systems, including finite nuclei, will be presented and discussed.

  6. From Mie to Fresnel through effective medium approximation with multipole contributions

    NASA Astrophysics Data System (ADS)

    Malasi, Abhinav; Kalyanaraman, Ramki; Garcia, Hernando

    2014-06-01

    The Mie theory gives the exact solution to scattering from spherical particles while the Fresnel theory provides the solution to optical behavior of multilayer thin film structures. Often, the bridge between the two theories to explain the behavior of materials such as nanoparticles in a host dielectric matrix, is done by effective medium approximation (EMA) models which exclusively rely on the dipolar response of the scattering objects. Here, we present a way to capture multipole effects using EMA. The effective complex dielectric function of the composite is derived using the Clausius-Mossotti relation and the multipole coefficients of the approximate Mie theory. The optical density (OD) of the dielectric slab is then calculated using the Fresnel approach. We have applied the resulting equation to predict the particle size dependent dipole and quadrupole behavior for spherical Ag nanoparticles embedded in glass matrix. This dielectric function contains the relevant properties of EMA and at the same time predicts the multipole contributions present in the single particle Mie model.

  7. Effective-medium approximation for lattice random walks with long-range jumps

    NASA Astrophysics Data System (ADS)

    Thiel, Felix; Sokolov, Igor M.

    2016-07-01

    We consider the random walk on a lattice with random transition rates and arbitrarily long-range jumps. We employ Bruggeman's effective-medium approximation (EMA) to find the disorder-averaged (coarse-grained) dynamics. The EMA procedure replaces the disordered system with a cleverly guessed reference system in a self-consistent manner. We give necessary conditions on the reference system and discuss possible physical mechanisms of anomalous diffusion. In the case of a power-law scaling between transition rates and distance, lattice variants of Lévy-flights emerge as the effective medium, and the problem is solved analytically, bearing the effective anomalous diffusivity. Finally, we discuss several example distributions and demonstrate very good agreement with numerical simulations.

  8. Effects of Non-Symbolic Approximate Number Practice on Symbolic Numerical Abilities in Pakistani Children

    PubMed Central

    Khanum, Saeeda; Hanif, Rubina; Spelke, Elizabeth S.; Berteletti, Ilaria; Hyde, Daniel C.

    2016-01-01

    Current theories of numerical cognition posit that uniquely human symbolic number abilities connect to an early developing cognitive system for representing approximate numerical magnitudes, the approximate number system (ANS). In support of this proposal, recent laboratory-based training experiments with U.S. children show enhanced performance on symbolic addition after brief practice comparing or adding arrays of dots without counting: tasks that engage the ANS. Here we explore the nature and generality of this effect through two brief training experiments. In Experiment 1, elementary school children in Pakistan practiced either a non-symbolic numerical addition task or a line-length addition task with no numerical content, and then were tested on symbolic addition. After training, children in the numerical training group completed the symbolic addition test faster than children in the line length training group, suggesting a causal role of brief, non-symbolic numerical training on exact, symbolic addition. These findings replicate and extend the core findings of a recent U.S. laboratory-based study to non-Western children tested in a school setting, attesting to the robustness and generalizability of the observed training effects. Experiment 2 tested whether ANS training would also enhance the consistency of performance on a symbolic number line task. Over several analyses of the data there was some evidence that approximate number training enhanced symbolic number line placements relative to control conditions. Together, the findings suggest that engagement of the ANS through brief training procedures enhances children's immediate attention to number and engagement with symbolic number tasks. PMID:27764117

  9. Degeneracy effects of neutrino mass ejection in supernovae

    NASA Technical Reports Server (NTRS)

    Mazurek, T. J.

    1974-01-01

    A neutrino mechanism is discussed in order to explain supernovae in massive stars. An argument is presented for supernova mass ejection through leptonic neutrino transport characteristics suppressed by the arbitrary zero chemical potential condition. Results show that lepton conservation effects may be important in supernova neutrino transport. At low temperature and density the diffusion approximation becomes less precise because of the long mean free paths of low energy neutrinos. The amount of equilibrium neutrino spectrum affected here is small over most of the collapsing supernova structure.

  10. On the unreasonable effectiveness of the post-Newtonian approximation in gravitational physics

    PubMed Central

    Will, Clifford M.

    2011-01-01

    The post-Newtonian approximation is a method for solving Einstein’s field equations for physical systems in which motions are slow compared to the speed of light and where gravitational fields are weak. Yet it has proven to be remarkably effective in describing certain strong-field, fast-motion systems, including binary pulsars containing dense neutron stars and binary black hole systems inspiraling toward a final merger. The reasons for this effectiveness are largely unknown. When carried to high orders in the post-Newtonian sequence, predictions for the gravitational-wave signal from inspiraling compact binaries will play a key role in gravitational-wave detection by laser-interferometric observatories. PMID:21447714

  11. Gravitational and mass distribution effects on stationary superwinds

    NASA Astrophysics Data System (ADS)

    Añorve-Zeferino, G. A.

    2016-11-01

    Here, we model the effect of non-uniform dynamical mass distributions and their associated gravitational fields on the stationary galactic superwind solution. We do this by considering an analogue injection of mass and energy from stellar winds and SNe. We consider both compact dark-matter and baryonic haloes that does not extend further from the galaxies optical radii Ropt as well as extended gravitationally interacting ones. We consider halo profiles that emulate the results of recent cosmological simulations and coincide also with observational estimations from galaxy surveys. This allows us to compare the analytical superwind solution with outflows from different kinds of galaxies. We give analytical formulae that establish when an outflow is possible and also characterize distinct flow regimes and enrichment scenarios. We also constraint the parameter space by giving approximate limits above which gravitation, self-gravitation and radiative cooling can inhibit the stationary flow. We obtain analytical expressions for the free superwind hydrodynamical profiles. We find that the existence or inhibition of the superwind solution highly depends on the steepness and concentration of the dynamical mass and the mass and energy injection rates. We compare our results with observational data and a recent numerical work. We put our results in the context of the mass-metallicity relationship to discuss observational evidence related to the selective loss of metals from the least massive galaxies and also discuss the case of massive galaxies.

  12. Thermal conductivity in porous media: Percolation-based effective-medium approximation

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Behzad; Daigle, Hugh

    2016-01-01

    Knowledge of porosity and saturation-dependent thermal conductivities is necessary to investigate heat and water transfer in natural porous media such as rocks and soils. Thermal conductivity in a porous medium is affected by the complicated relationship between the topology and geometry of the pore space and the solid matrix. However, as water content increases from completely dry to fully saturated, the effect of the liquid phase on thermal conductivity may increase substantially. Although various methods have been proposed to model the porosity and saturation dependence of thermal conductivity, most are empirical or quasiphysical. In this study, we present a theoretical upscaling framework from percolation theory and the effective-medium approximation, which is called percolation-based effective-medium approximation (P-EMA). The proposed model predicts the thermal conductivity in porous media from endmember properties (e.g., air, solid matrix, and saturating fluid thermal conductivities), a scaling exponent, and a percolation threshold. In order to evaluate our porosity and saturation-dependent models, we compare our theory with 193 porosity-dependent thermal conductivity measurements and 25 saturation-dependent thermal conductivity data sets and find excellent match. We also find values for the scaling exponent different than the universal value of 2, in insulator-conductor systems, and also different from 0.76, the exponent in conductor-superconductor mixtures, in three dimensions. These results indicate that the thermal conductivity under fully and partially saturated conditions conforms to nonuniversal behavior. This means the value of the scaling exponent changes from medium to medium and depends not only on structural and geometrical properties of the medium but also characteristics (e.g., wetting or nonwetting) of the saturating fluid.

  13. Parametric effects of CFL number and artificial smoothing on numerical solutions using implicit approximate factorization algorithm

    NASA Technical Reports Server (NTRS)

    Daso, E. O.

    1986-01-01

    An implicit approximate factorization algorithm is employed to quantify the parametric effects of Courant number and artificial smoothing on numerical solutions of the unsteady 3-D Euler equations for a windmilling propeller (low speed) flow field. The results show that propeller global or performance chracteristics vary strongly with Courant number and artificial dissipation parameters, though the variation is such less severe at high Courant numbers. Candidate sets of Courant number and dissipation parameters could result in parameter-dependent solutions. Parameter-independent numerical solutions can be obtained if low values of the dissipation parameter-time step ratio are used in the computations. Furthermore, it is realized that too much artificial damping can degrade numerical stability. Finally, it is demonstrated that highly resolved meshes may, in some cases, delay convergence, thereby suggesting some optimum cell size for a given flow solution. It is suspected that improper boundary treatment may account for the cell size constraint.

  14. Two-effective-center approximation for proton-impact single ionization of hydrogen molecules

    NASA Astrophysics Data System (ADS)

    Ghanbari-Adivi, Ebrahim

    2015-10-01

    Some closed-form expressions are derived for the partial direct and indirect transition amplitudes for proton-impact single ionization of the hydrogen molecules using a first-order two-effective center continuum-wave approximation. The method satisfies the correct boundary conditions in the entrance channel. The basic assumption in this model is that when the active electron is ionized from one of the atomic centers in the molecule, the other scattering center is completely screened by the passive electron. Consequently, the transition amplitude can be expressed as a superposition of the partial ionization amplitudes from two independent scattering centers located at a constant distance from each other. The superposition of the partial amplitudes leads to different interference patterns for various orientations of the molecular target. The calculated cross sections are compared with the experiments and also with other theories. The comparison shows that the present results are reliable.

  15. Applicability of the Effective-Medium Approximation to Heterogeneous Aerosol Particles.

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Liu, Li

    2016-01-01

    The effective-medium approximation (EMA) is based on the assumption that a heterogeneous particle can have a homogeneous counterpart possessing similar scattering and absorption properties. We analyze the numerical accuracy of the EMA by comparing superposition T-matrix computations for spherical aerosol particles filled with numerous randomly distributed small inclusions and Lorenz-Mie computations based on the Maxwell-Garnett mixing rule. We verify numerically that the EMA can indeed be realized for inclusion size parameters smaller than a threshold value. The threshold size parameter depends on the refractive-index contrast between the host and inclusion materials and quite often does not exceed several tenths, especially in calculations of the scattering matrix and the absorption cross section. As the inclusion size parameter approaches the threshold value, the scattering-matrix errors of the EMA start to grow with increasing the host size parameter and or the number of inclusions. We confirm, in particular, the existence of the effective-medium regime in the important case of dust aerosols with hematite or air-bubble inclusions, but then the large refractive-index contrast necessitates inclusion size parameters of the order of a few tenths. Irrespective of the highly restricted conditions of applicability of the EMA, our results provide further evidence that the effective-medium regime must be a direct corollary of the macroscopic Maxwell equations under specific assumptions.

  16. Applicability of the effective-medium approximation to heterogeneous aerosol particles

    NASA Astrophysics Data System (ADS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Liu, Li

    2016-07-01

    The effective-medium approximation (EMA) is based on the assumption that a heterogeneous particle can have a homogeneous counterpart possessing similar scattering and absorption properties. We analyze the numerical accuracy of the EMA by comparing superposition T-matrix computations for spherical aerosol particles filled with numerous randomly distributed small inclusions and Lorenz-Mie computations based on the Maxwell-Garnett mixing rule. We verify numerically that the EMA can indeed be realized for inclusion size parameters smaller than a threshold value. The threshold size parameter depends on the refractive-index contrast between the host and inclusion materials and quite often does not exceed several tenths, especially in calculations of the scattering matrix and the absorption cross section. As the inclusion size parameter approaches the threshold value, the scattering-matrix errors of the EMA start to grow with increasing the host size parameter and/or the number of inclusions. We confirm, in particular, the existence of the effective-medium regime in the important case of dust aerosols with hematite or air-bubble inclusions, but then the large refractive-index contrast necessitates inclusion size parameters of the order of a few tenths. Irrespective of the highly restricted conditions of applicability of the EMA, our results provide further evidence that the effective-medium regime must be a direct corollary of the macroscopic Maxwell equations under specific assumptions.

  17. Effects of model approximations for electron, hole, and photon transport in swift heavy ion tracks

    NASA Astrophysics Data System (ADS)

    Rymzhanov, R. A.; Medvedev, N. A.; Volkov, A. E.

    2016-12-01

    The event-by-event Monte Carlo code, TREKIS, was recently developed to describe excitation of the electron subsystems of solids in the nanometric vicinity of a trajectory of a nonrelativistic swift heavy ion (SHI) decelerated in the electronic stopping regime. The complex dielectric function (CDF) formalism was applied in the used cross sections to account for collective response of a matter to excitation. Using this model we investigate effects of the basic assumptions on the modeled kinetics of the electronic subsystem which ultimately determine parameters of an excited material in an SHI track. In particular, (a) effects of different momentum dependencies of the CDF on scattering of projectiles on the electron subsystem are investigated. The 'effective one-band' approximation for target electrons produces good coincidence of the calculated electron mean free paths with those obtained in experiments in metals. (b) Effects of collective response of a lattice appeared to dominate in randomization of electron motion. We study how sensitive these effects are to the target temperature. We also compare results of applications of different model forms of (quasi-) elastic cross sections in simulations of the ion track kinetics, e.g. those calculated taking into account optical phonons in the CDF form vs. Mott's atomic cross sections. (c) It is demonstrated that the kinetics of valence holes significantly affects redistribution of the excess electronic energy in the vicinity of an SHI trajectory as well as its conversion into lattice excitation in dielectrics and semiconductors. (d) It is also shown that induced transport of photons originated from radiative decay of core holes brings the excess energy faster and farther away from the track core, however, the amount of this energy is relatively small.

  18. Solving effective field theory of interacting QCD pomerons in the semiclassical approximation

    SciTech Connect

    Bondarenko, S.; Motyka, L.

    2007-06-01

    Effective field theory of Balitsky, Fadin, Kuraev, and Lipatov (BFKL) pomerons interacting by QCD triple pomeron vertices is investigated. Classical equations of motion for the effective pomeron fields are presented being a minimal extension of the Balitsky-Kovchegov equation that incorporates both merging and splitting of the pomerons and that is self-dual. The equations are solved for symmetric boundary conditions. The solutions provide the dominant contribution to the scattering amplitudes in the semiclassical approximation. We find that for rapidities of the scattering larger than a critical value Y{sub c} at least two classical solutions exist. Curiously, for each of the two classical solutions with the lowest action the symmetry between the projectile and the target is found to be spontaneously broken, being however preserved for the complete set of classical solutions. The solving configurations at rapidities Y>Y{sub c} consist of a Gribov field being strongly suppressed even at very large gluon momenta and the complementary Gribov field that converges at high Y to a solution of the Balitsky-Kovchegov equation. Interpretation of the results is given and possible consequences are shortly discussed.

  19. Perturbative approximation to hybrid equation of motion coupled cluster/effective fragment potential method

    SciTech Connect

    Ghosh, Debashree

    2014-03-07

    Hybrid quantum mechanics/molecular mechanics (QM/MM) methods provide an attractive way to closely retain the accuracy of the QM method with the favorable computational scaling of the MM method. Therefore, it is not surprising that QM/MM methods are being increasingly used for large chemical/biological systems. Hybrid equation of motion coupled cluster singles doubles/effective fragment potential (EOM-CCSD/EFP) methods have been developed over the last few years to understand the effect of solvents and other condensed phases on the electronic spectra of chromophores. However, the computational cost of this approach is still dominated by the steep scaling of the EOM-CCSD method. In this work, we propose and implement perturbative approximations to the EOM-CCSD method in this hybrid scheme to reduce the cost of EOM-CCSD/EFP. The timings and accuracy of this hybrid approach is tested for calculation of ionization energies, excitation energies, and electron affinities of microsolvated nucleic acid bases (thymine and cytosine), phenol, and phenolate.

  20. Two-particle irreducible effective action approach to nonlinear current-conserving approximations in driven systems.

    PubMed

    Peralta-Ramos, J; Calzetta, E

    2009-05-27

    Using closed-time-path two-particle irreducible coarse-grained effective action (CTP 2PI CGEA) techniques, we study the response of an open interacting electronic system to time-dependent external electromagnetic fields. We show that the CTP 2PI CGEA is invariant under a simultaneous gauge transformation of the external field and the full Schwinger-Keldysh propagator, and that this property holds even when the loop expansion of the CTP 2PI CGEA is truncated at arbitrary order. The effective action approach provides a systematic way of calculating the propagator and response functions of the system, via the Schwinger-Dyson equation and the Bethe-Salpeter equations, respectively. We show that, due to the invariance of the CTP 2PI CGEA under external gauge transformations, the response functions calculated from it satisfy the Ward-Takahashi hierarchy, thus warranting the conservation of the electronic current beyond the expectation value level. We also clarify the connection between nonlinear response theory and the WT hierarchy, and discuss an example of an ad hoc approximation that violates it. These findings may be useful in the study of current fluctuations in correlated electronic pumping devices.

  1. Asymmetry distributions and mass effects in dijet events at a polarized HERA

    NASA Astrophysics Data System (ADS)

    Maul, M.; Schäfer, A.; Mirkes, E.; Rädel, G.

    1998-09-01

    The asymmetry distributions for several kinematic variables are considered for finding a systematic way to maximize the signal for the extraction of the polarized gluon density. The relevance of mass effects for the corresponding dijet cross section is discussed and the different approximations for including mass effects are compared. We also compare via the programs Pepsi and Mepjet two different Monte Carlo (MC) approaches for simulating the expected signal in the dijet asymmetry at a polarized HERA.

  2. Extension of the KLI approximation toward the exact optimized effective potential.

    PubMed

    Iafrate, G J; Krieger, J B

    2013-03-07

    The integral equation for the optimized effective potential (OEP) is utilized in a compact form from which an accurate OEP solution for the spin-unrestricted exchange-correlation potential, Vxcσ, is obtained for any assumed orbital-dependent exchange-correlation energy functional. The method extends beyond the Krieger-Li-Iafrate (KLI) approximation toward the exact OEP result. The compact nature of the OEP equation arises by replacing the integrals involving the Green's function terms in the traditional OEP equation by an equivalent first-order perturbation theory wavefunction often referred to as the "orbital shift" function. Significant progress is then obtained by solving the equation for the first order perturbation theory wavefunction by use of Dalgarno functions which are determined from well known methods of partial differential equations. The use of Dalgarno functions circumvents the need to explicitly address the Green's functions and the associated problems with "sum over states" numerics; as well, the Dalgarno functions provide ease in dealing with inherent singularities arising from the origin and the zeros of the occupied orbital wavefunctions. The Dalgarno approach for finding a solution to the OEP equation is described herein, and a detailed illustrative example is presented for the special case of a spherically symmetric exchange-correlation potential. For the case of spherical symmetry, the relevant Dalgarno function is derived by direct integration of the appropriate radial equation while utilizing a user friendly method which explicitly treats the singular behavior at the origin and at the nodal singularities arising from the zeros of the occupied states. The derived Dalgarno function is shown to be an explicit integral functional of the exact OEP Vxcσ, thus allowing for the reduction of the OEP equation to a self-consistent integral equation for the exact exchange-correlation potential; the exact solution to this integral equation can be

  3. Effective restoration of dipole sum rules within the renormalized random-phase approximation

    NASA Astrophysics Data System (ADS)

    Hung, N. Quang; Dang, N. Dinh; Hao, T. V. Nhan; Phuc, L. Tan

    2016-12-01

    The dipole excitations for calcium and zirconium isotopes are studied within the fully self-consistent Hartree-Fock mean field incorporated with the renormalized random-phase approximation (RRPA) using the Skyrme interaction SLy5. The RRPA takes into account the effect of ground-state correlations beyond RPA owing to the Pauli principle between the particle-hole pairs that form the RPA excitations as well as the correlations due to the particle-particle and hole-hole transitions, whose effects are treated here in an effective way. By comparing the RPA results with the RRPA ones, which are obtained for isoscalar (IS) and isovector (IV) dipole excitations in 48,52,58Ca and 90,96,110Zr, it is shown that ground-state correlations beyond the RPA reduce the IS transition strengths. They also shift up the energy of the lowest IV dipole state and slightly push down the peak energy of the IV giant dipole resonance. As the result, the energy-weighted sums of strengths of both IS and IV modes decrease, causing the violation of the corresponding energy-weighted sum rules (EWSR). It is shown that this sum rule violation can be eliminated by taking into account the contribution of the particle-particle and hole-hole excitations together with the particle-hole ones in a simple and perturbative way. Consequently, the ratio of the energy-weighted sum of strengths of the pygmy dipole resonance to that of the giant dipole resonance increases.

  4. Electrical transport anisotropy of uniaxial polycrystalline samples and the effective medium approximation: An application to HTS

    NASA Astrophysics Data System (ADS)

    Cruz-García, A.; Muné, P.

    2016-08-01

    In this paper we have applied the effective medium approximation (EMA) to a polycrystalline sample made up of uniaxial crystallites with similar behavior to the high critical temperature superconductors (HTS) at the normal state (σab ≫ σc). As a result the dependence of the anisotropy parameter at the level of the sample, μ =σx /σz , on orientation probability of the grains' a-axes along a certain preferential direction, γxa is obtained. The intrinsic and shape anisotropy parameters of the crystallites constitute input data. In addition, the dependence of the orientation factor, f, which has been introduced in current models on the transport properties of HTS, is calculated as a function of γxa. These results offer a tool to interpret electrical transport measurements at normal state in granular uniaxial superconducting materials with certain texture degree, by means of the correlation between microstructure and electrical transport properties. Moreover, the comparison between the model and some experimental data suggests the presence of intragranular planar defects in the polycrystalline superconductors. They may affect the measurement of paracoherent resistivity and consequently the determination of f mainly in Bi based samples.

  5. X-ray Reflectivity Measurements of Nanoscale Structures: Limits of the Effective Medium Approximation

    SciTech Connect

    Lee, Hae-Jeong; Soles, Christopher L.; Kang, Shuhui; Wook Ro, Hyun; Lin, Eric K.; Wu, Wen-li

    2007-09-26

    Specular X-ray reflectivity (SXR) can be used, in the limit of the effective medium approximation (EMA), as a high-resolution shape metrology for periodic patterns on a smooth substrate. The EMA means that the density of the solid patterns and the spaces separating the periodic patterns are averaged together. In this limit the density profile as a function of pattern height obtained by SXR can be used to extract quantitative pattern profile information. Here we explore the limitations of SXR as a pattern shape metrology by studying a series of linear grating structures with periodicities ranging from 300 nm to 16 {mu}m and determining at which length scales the EMA breaks down. We also study the angular dependence of the grating orientation with respect to the incident X-ray beam. The gratings systematically are rotated through a series of azimuthal angles with the incident X-ray beams ranging from 0 deg. to 90 deg. . The applicability of the EMA is related to the coherence length of the X-ray source. When the coherence length of beam is larger than the physical dimension of grating periodicities, EMA can be applied for characterizing nanostructures. For our slit-collimated X-ray source, the coherence length in the direction parallel to the long axis of the slit is on the order of 900 nm while the coherence length along the main axis of the beam appears to be in the range of (22 to 26) {mu}m.

  6. Beyond the born approximation: Measuring the two-photon exchange effect at CLAS

    SciTech Connect

    Bennett, Robert Paul

    2012-04-01

    Recent results from experiments at Jefferson Laboratory, Newport News VA, which measured the ratio of the electric to magnetic form factors of the proton, G{sub E}/G{sub M}, have forced us to reexamine the single photon exchange approximation in lepton-proton elastic scattering. Discrepancies between the ratio obtained via the time-tested Rosenbluth separation method and newer polarization transfer measurements, which differ by as much as a factor of three, may be resolved by considering the effect of two photon exchange (TPE) processes. The CLAS TPE experiment at Jefferson Laboratory, will determine the effect of two-photon exchange in elastic lepton-proton scattering by precisely measuring the ratio of positron-proton to electron-proton elastic cross sections over a large kinematic range (0.1 < {xi} < 0.96, 0.2 {ge} Q{sup 2} {le} 2.0 GeV{sup 2}). We accomplish this by directing the 5.5 GeV primary electron beam, provided by the Continuous Electron Beam Accelerator Facility (CEBAF), onto a set of radiators and converters to produce simultaneous and identical beams of electron and positrons which collide with our proton target. Acceptance and efficiency concerns are minimized by only considering the ratios of the elastic cross sections and by switching polarity of magnets in the beamline and the spectrometer. Guided by the results of a short 2006 test run and extensive GEANT based modeling, new shielding and beamline components were designed to maximize luminosity. We took data from November 2010 - February 2011. The unique experimental design and challenges of the TPE experiment and the current analysis status will be presented.

  7. Dynamic Effective Mass of Granular Media

    NASA Astrophysics Data System (ADS)

    Hsu, Chaur-Jian; Johnson, David L.; Ingale, Rohit A.; Valenza, John J.; Gland, Nicolas; Makse, Hernán A.

    2009-02-01

    We develop the concept of frequency dependent effective mass, Mtilde (ω), of jammed granular materials which occupy a rigid cavity to a filling fraction of 48%, the remaining volume being air of normal room condition or controlled humidity. The dominant features of Mtilde (ω) provide signatures of the dissipation of acoustic modes, elasticity, and aging effects in the granular medium. We perform humidity controlled experiments and interpret the data in terms of a continuum model and a “trap” model of thermally activated capillary bridges at the contact points. The results suggest that attenuation of acoustic waves in granular materials can be influenced significantly by the kinetics of capillary condensation between the asperities at the contacts.

  8. Effective Approximation of Molecular Volume Using Atom-Centered Dielectric Functions in Generalized Born Models.

    PubMed

    Chen, Jianhan

    2010-09-14

    The generalized Born (GB) theory is a prime choice for implicit treatment of solvent that provides a favorable balance between efficiency and accuracy for reliable simulation of protein conformational equilibria. In GB, the dielectric boundary is a key physical property that needs to be properly described. While it is widely accepted that the molecular surface (MS) should provide the most physical description, most existing GB models are based on van der Waals (vdW)-like surfaces for computational simplicity and efficiency. A simple and effective approximation to molecular volume is explored here using atom-centered dielectric functions within the context of a generalized Born model with simple switching (GBSW). The new model, termed GBSW/MS2, is as efficient as the original vdW-like-surface-based GBSW model, but is able to reproduce the Born radii calculated from the "exact" Poisson-Boltzmann theory with a correlation of 0.95. More importantly, examination of the potentials of mean force of hydrogen-bonding and charge-charge interactions demonstrates that GBSW/MS2 correctly captures the first desolvation peaks, a key signature of true MS. Physical parameters including atomic input radii and peptide backbone torsion were subsequently optimized on the basis of solvation free energies of model compounds, potentials of mean force of their interactions, and conformational equilibria of a set of helical and β-hairpin model peptides. The resulting GBSW/MS2 protein force field reasonably recapitulates the structures and stabilities of these model peptides. Several remaining limitations and possible future developments are also discussed.

  9. Modeling relative permeability of water in soil: Application of effective-medium approximation and percolation theory

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Behzad; Sahimi, Muhammad; Daigle, Hugh

    2016-07-01

    Accurate prediction of the relative permeability to water under partially saturated condition has broad applications and has been studied intensively since the 1940s by petroleum, chemical, and civil engineers, as well as hydrologists and soil scientists. Many models have been developed for this purpose, ranging from those that represent the pore space as a bundle of capillary tubes, to those that utilize complex networks of interconnected pore bodies and pore throats with various cross-section shapes. In this paper, we propose an approach based on the effective-medium approximation (EMA) and percolation theory in order to predict the water relative permeability. The approach is general and applicable to any type of porous media. We use the method to compute the water relative permeability in porous media whose pore-size distribution follows a power law. The EMA is invoked to predict the relative permeability from the fully saturated pore space to some intermediate water saturation that represents a crossover from the EMA to what we refer to as the "critical region." In the critical region below the crossover water saturation Swx, but still above the critical water saturation Swc (the residual saturation or the percolation threshold of the water phase), the universal power law predicted by percolation theory is used to compute the relative permeability. To evaluate the accuracy of the approach, data for 21 sets of undisturbed laboratory samples were selected from the UNSODA database. For 14 cases, the predicted relative permeabilities are in good agreement with the data. For the remaining seven samples, however, the theory underestimates the relative permeabilities. Some plausible sources of the discrepancy are discussed.

  10. Restricted mass transport effects on free radical reactions

    NASA Astrophysics Data System (ADS)

    Buchanan, A. C., III; Britt, P. F.; Thomas, K. B.

    Coal possesses a complex chemical and physical structure. The cross-linked, network structure can lead to alterations in normal thermally-induced, free-radical decay pathways as a consequence of restrictions on mass transport. Moreover, in coal liquefaction, access of an external hydrogen donor to a reactive radical site can be hindered by the substantial domains of microporosity present in coals. However, previous work indicates that diffusion effects do not appear to be playing an important role in this coal conversion chemistry. Several possible explanations for this phenomenon were advanced including the potential involvement of a hydrogen hopping/radical relay mechanism recently discovered model systems in the authors' laboratories. The authors have employed silica-anchored compounds to explore the effects of restricted mass transport on the pyrolysis mechanisms of coal model compounds. In studies of two-component systems, cases have been discovered where radical centers can be rapidly relocated in the diffusionally constrained environment as a consequence of rapid serial hydrogen atom transfers. This chemistry can have substantial effects on thermal decomposition rates and on product selectivities. In this study, the authors examine additional surfaces to systematically investigate the impact of molecular structure on the hydrogen atom transfer promoted radical relay mechanism. Silica-attached 1,3-diphenylpropane (approximately Ph(CH2)3Ph, or approximately DPP) was chosen as the thermally reactive component, since it can be considered prototypical of linkages in coal that do not contain weak bonds easily cleaved at coal liquefaction temperatures (ca. 4000 C), but which crack at reasonable rates if benzylic radicals can be generated by hydrogen abstraction. The rate of such hydrogen transfers under restricted diffusion will be highly dependent on the structure and proximity of neighboring molecules.

  11. The effect of Fisher information matrix approximation methods in population optimal design calculations.

    PubMed

    Strömberg, Eric A; Nyberg, Joakim; Hooker, Andrew C

    2016-12-01

    With the increasing popularity of optimal design in drug development it is important to understand how the approximations and implementations of the Fisher information matrix (FIM) affect the resulting optimal designs. The aim of this work was to investigate the impact on design performance when using two common approximations to the population model and the full or block-diagonal FIM implementations for optimization of sampling points. Sampling schedules for two example experiments based on population models were optimized using the FO and FOCE approximations and the full and block-diagonal FIM implementations. The number of support points was compared between the designs for each example experiment. The performance of these designs based on simulation/estimations was investigated by computing bias of the parameters as well as through the use of an empirical D-criterion confidence interval. Simulations were performed when the design was computed with the true parameter values as well as with misspecified parameter values. The FOCE approximation and the Full FIM implementation yielded designs with more support points and less clustering of sample points than designs optimized with the FO approximation and the block-diagonal implementation. The D-criterion confidence intervals showed no performance differences between the full and block diagonal FIM optimal designs when assuming true parameter values. However, the FO approximated block-reduced FIM designs had higher bias than the other designs. When assuming parameter misspecification in the design evaluation, the FO Full FIM optimal design was superior to the FO block-diagonal FIM design in both of the examples.

  12. The lens effect of a big spherical inhomogeneity in the linear approximation

    SciTech Connect

    Moreno, J.; Portilla, M. )

    1990-04-01

    The paper addresses a large gravitational lens, of dimensions comparable with observer-lens-source distances, for arbitrary lens-observer-source angles. The lens is approximated by a small, pressureless, spsherically symmetric perturbation in a Einstein-de Sitter universe. The deflection angle contains essential terms which do not appear when the lens is approximated by an isolated body in a Minkowskian space. These terms should be considered to study the optical appearance of the inhomogeneity. The lens equation explicitly conserves brightness over the whole celestial sphere of the observer. 8 refs.

  13. Molecular effects in the neutrino mass determination from beta-decay of the tritium molecule

    SciTech Connect

    Fackler, O.; Jeziorski, B.; Kolos, W.; Szalewicz, K.; Monkhorst, H.J.; Mugge, M.

    1986-03-01

    Molecular final state energies and transition probabilities have been computed for beta-decay of the tritium molecule. The results are of sufficient accuracy to make a determination of the electron neutrino rest mass with an error not exceeding a few tenths of an electron volt. Effects of approximate models of tritium beta-decay on the neutrino mass determination are discussed. 14 refs., 3 figs., 1 tab.

  14. Systematic effects of the quenched approximation on the strong penguin contribution to epsilon-prime / epsilon

    SciTech Connect

    Aubin, C.; Christ, N.H.; Dawson, C.; Laiho, J.W.; Noaki, J.; Li, S.; Soni, A.; /Brookhaven

    2006-03-01

    We discuss the implementation and properties of the quenched approximation in the calculation of the left-right, strong penguin contributions (i.e. Q{sub 6}) to {epsilon}{prime}/{epsilon}. The coefficient of the new chiral logarithm, discovered by Golterman and Pallante, which appears at leading order in quenched chiral perturbation theory is evaluated using both the method proposed by those authors and by an improved approach which is free of power divergent corrections. The result implies a large quenching artifact in the contribution of Q{sub 6} to {epsilon}{prime}/{epsilon}. This failure of the quenched approximation affects only the strong penguin operators and so does not affect the Q8 contribution to {epsilon}{prime}/{epsilon} nor ReA{sub 0}, ReAP{sub 2} and thus, the {Delta}I = 1/2 rule at tree level in chiral perturbation theory.

  15. Systematic effects of the quenched approximation on the strong penguin contribution to {epsilon}{sup '}/{epsilon}

    SciTech Connect

    Aubin, C.; Christ, N. H.; Li, S.; Dawson, C.; Noaki, J.; Laiho, J. W.; Soni, A.

    2006-08-01

    We discuss the implementation and properties of the quenched approximation in the calculation of the left-right, strong penguin contributions (i.e. Q{sub 6}) to {epsilon}{sup '}/{epsilon}. The coefficient of the new chiral logarithm, discovered by Golterman and Pallante, which appears at leading order in quenched chiral perturbation theory is evaluated using both the method proposed by those authors and by an improved approach which is free of power divergent corrections. The result implies a large quenching artifact in the contribution of Q{sub 6} to {epsilon}{sup '}/{epsilon}. This failure of the quenched approximation affects only the strong penguin operators and so does not affect the Q{sub 8} contribution to {epsilon}{sup '}/{epsilon} nor ReA{sub 0}, ReA{sub 2} and thus, the {delta}I=1/2 rule at tree level in chiral perturbation theory.

  16. Calculation of indirect nuclear spin-spin coupling constants within the regular approximation for relativistic effects.

    PubMed

    Filatov, Michael; Cremer, Dieter

    2004-06-22

    A new method for calculating the indirect nuclear spin-spin coupling constant within the regular approximation to the exact relativistic Hamiltonian is presented. The method is completely analytic in the sense that it does not employ numeric integration for the evaluation of relativistic corrections to the molecular Hamiltonian. It can be applied at the level of conventional wave function theory or density functional theory. In the latter case, both pure and hybrid density functionals can be used for the calculation of the quasirelativistic spin-spin coupling constants. The new method is used in connection with the infinite-order regular approximation with modified metric (IORAmm) to calculate the spin-spin coupling constants for molecules containing heavy elements. The importance of including exact exchange into the density functional calculations is demonstrated.

  17. Challenges within the linear response approximation when studying enzyme catalysis and effects of mutations.

    PubMed

    Sharir-Ivry, Avital; Varatharaj, Rajapandian; Shurki, Avital

    2015-01-13

    Various aspects of the linear response approximation (LRA) approach were examined when calculating reaction barriers within an enzyme and its different mutants. Scaling the electrostatic interactions is shown to slightly affect the absolute values of the barriers but not the overall trend when comparing wild-type and mutants. Convergence of the overall energetics was shown to depend on the sampling. Finally, the contribution of particular residues was shown to be significant, despite its small value.

  18. Approximation algorithms

    PubMed Central

    Schulz, Andreas S.; Shmoys, David B.; Williamson, David P.

    1997-01-01

    Increasing global competition, rapidly changing markets, and greater consumer awareness have altered the way in which corporations do business. To become more efficient, many industries have sought to model some operational aspects by gigantic optimization problems. It is not atypical to encounter models that capture 106 separate “yes” or “no” decisions to be made. Although one could, in principle, try all 2106 possible solutions to find the optimal one, such a method would be impractically slow. Unfortunately, for most of these models, no algorithms are known that find optimal solutions with reasonable computation times. Typically, industry must rely on solutions of unguaranteed quality that are constructed in an ad hoc manner. Fortunately, for some of these models there are good approximation algorithms: algorithms that produce solutions quickly that are provably close to optimal. Over the past 6 years, there has been a sequence of major breakthroughs in our understanding of the design of approximation algorithms and of limits to obtaining such performance guarantees; this area has been one of the most flourishing areas of discrete mathematics and theoretical computer science. PMID:9370525

  19. Multiscale computations of mass accumulation effect on mass transfer in bubbly flow

    NASA Astrophysics Data System (ADS)

    Aboulhasanzadeh, Bahman; Tryggvason, Gretar

    2014-11-01

    Mass transfer in bubbly flow generally takes place on a much smaller length and time scale than the length and time scale of the momentum flow, resulting in a thin mass boundary layer around the bubbles. We developed a multiscale model to solve a boundary layer equation for the mass boundary layer next to the bubble interface, assuming zero mass concentration in the far field, which couples with the rest of domain using a source/sink term. Here, we extend our model to account for non-zero concentration next to the mass boundary layer. Comparison of simple case studies in 1D and 2D problems show good agreement between the fully resolved solution and the solution on a much coarser grid using our model. We study the effect of mass accumulation in a domain and also the effect of bubble moving into the wake of another bubble on the mass transfer. This study was funded by NSF Grant CBET-1132410.

  20. An isotopic mass effect on the intermolecular potential

    SciTech Connect

    Herman, Michael F.; Currier, Robert Patrick; Clegg, Samuel M.

    2015-09-28

    The impact of isotopic variation on the electronic energy and intermolecular potentials is often suppressed when calculating isotopologue thermodynamics. Intramolecular potential energy surfaces for distinct isotopologues are in fact equivalent under the Born–Oppenheimer approximation, which is sometimes used to imply that the intermolecular interactions are independent of isotopic mass. In this paper, the intermolecular dipole–dipole interaction between hetero-nuclear diatomic molecules is considered. It is shown that the intermolecular potential contains mass-dependent terms even though each nucleus moves on a Born–Oppenheimer surface. Finally, the analysis suggests that mass dependent variations in intermolecular potentials should be included in comprehensive descriptions of isotopologue thermodynamics.

  1. Space inhomogeneity and detuning effects in a laser with a saturable absorber: a first-order approximation

    SciTech Connect

    Garcia-Fernandez, P.; Velarde, M.G.

    1988-05-01

    To a first approximation the effects of detuning and/or space inhomogeneity on the stability domain of a model for a laser with a saturable absorber are presented. It appears that the space dependence increases the domain of the emissionless state, thus delaying the laser action.

  2. Charts and approximate formulas for the estimation of aeroelastic effects on the loading of swept and unswept wings

    NASA Technical Reports Server (NTRS)

    Diederich, Franklin W; Foss, Kenneth A

    1953-01-01

    Charts and approximate formulas are presented for the estimation of aeroelastic effects on the spanwise lift distribution, lift-curve slope, aerodynamic center, and damping in roll of swept and unswept wings at subsonic and supersonic speeds. Some design considerations brought out by the results of this report are discussed.

  3. Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model

    NASA Astrophysics Data System (ADS)

    Scarnato, B.; Vahidinia, S.; Richard, D. T.; Kirchstetter, T. W.

    2012-10-01

    According to recent studies, internal mixing of black carbon (BC) with other aerosol materials in the atmosphere alters its aggregate shape, absorption of solar radiation, and radiative forcing. These mixing state effects are not yet fully understood. In this study, we characterize the morphology and mixing state of bare BC and BC internally mixed with sodium chloride (NaCl) using electron microscopy and examine the sensitivity of optical properties to BC mixing state and aggregate morphology using a discrete dipole approximation model (DDSCAT). DDSCAT predicts a higher mass absorption coefficient, lower single scattering albedo (SSA), and higher absorption Angstrom exponent (AAE) for bare BC aggregates that are lacy rather than compact. Predicted values of SSA at 550 nm range between 0.18 and 0.27 for lacy and compact aggregates, respectively, in agreement with reported experimental values of 0.25 ± 0.05. The variation in absorption with wavelength does not adhere precisely to a power law relationship over the 200 to 1000 nm range. Consequently, AAE values depend on the wavelength region over which they are computed. In the 300 to 550 nm range, AAE values ranged in this study from 0.70 for compact to 0.95 for lacy aggregates. The SSA of BC internally mixed with NaCl (100-300 nm in radius) is higher than for bare BC and increases with the embedding in the NaCl. Internally mixed BC SSA values decrease in the 200-400 nm wavelength range, a feature also common to the optical properties of dust and organics. Linear polarization features are also predicted in DDSCAT and are dependent on particle morphology. The bare BC (with a radius of 80 nm) presents in the linear polarization a bell shape feature, which is a characteristic of the Rayleigh regime (for particles smaller than the wavelength of incident radiation). When BC is internally mixed with NaCl (100-300 nm in radius), strong depolarization features for near-VIS incident radiation are evident, such as a decrease

  4. The thermodynamic effect of atmospheric mass on early Earth's temperature

    NASA Astrophysics Data System (ADS)

    Chemke, R.; Kaspi, Y.; Halevy, I.

    2016-11-01

    Observations suggest that Earth's early atmospheric mass differed from the present day. The effects of a different atmospheric mass on radiative forcing have been investigated in climate models of variable sophistication, but a mechanistic understanding of the thermodynamic component of the effect of atmospheric mass on early climate is missing. Using a 3-D idealized global circulation model (GCM), we systematically examine the thermodynamic effect of atmospheric mass on near-surface temperature. We find that higher atmospheric mass tends to increase the near-surface temperature mostly due to an increase in the heat capacity of the atmosphere, which decreases the net radiative cooling effect in the lower layers of the atmosphere. Additionally, the vertical advection of heat by eddies decreases with increasing atmospheric mass, resulting in further near-surface warming. As both net radiative cooling and vertical eddy heat fluxes are extratropical phenomena, higher atmospheric mass tends to flatten the meridional temperature gradient.

  5. Mass loss from warm giants: Magnetic effects

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1980-01-01

    Among warm giant stars, rapid mass loss sets in along a well defined velocity dividing line (VDL). Hot corona also disappear close to the VDL and thermal pressure cannot drive the observed rapid mass loss in these stars. The VDL may be associated with magnetic fields changing from closed to open. Such a change is consistent with the lack of X-rays from late-type giants. A magnetic transition locus based on Pneuman's work on helmet streamer stability agrees well with the empirical VDL. The change from closed to open fields not only makes rapid mass loss possible, but also contributes to energizing the mass loss in the form of discrete bubbles.

  6. The effect of Livermore OPAL opacities on the evolutionary masses of RR Lyrae stars

    NASA Technical Reports Server (NTRS)

    Yi, Sukyoung; Lee, Young-Wook; Demarque, Pierre

    1993-01-01

    We have investigated the effect of the new Livermore OPAL opacities on the evolution of horizontal-branch (HB) stars. This work was motivated by the recent stellar pulsation calculations using the new Livermore opacities, which suggest that the masses of double-mode RR Lyrae stars are 0.1-0.2 solar mass larger than those based on earlier opacities. Unlike the pulsation calculations, we find that the effect of opacity change on the evolution of HB stars is not significant. In particular, the effect of the mean masses of RR Lyrae stars is very small, showing a decrease of only 0.01-0.02 solar mass compared to the models based on old Cox-Stewart opacities. Consequently, with the new Livermore OPAL opacities, both the stellar pulsation and evolution models now predict approximately the same masses for the RR Lyrae stars. Our evolutionary models suggest that the mean masses of the RR Lyrae stars are about 0.76 and about 0.71 solar mass for M15 (Oosterhoff group II) and M3 (group I), respectively. If (alpha/Fe) = 0.4, these values are decreased by about 0.03 solar mass. Variations of the mean masses of RR Lyrae stars with HB morphology and metallicity are also presented.

  7. Effect of initial phase on error in electron energy obtained using paraxial approximation for a focused laser pulse in vacuum

    SciTech Connect

    Singh, Kunwar Pal; Arya, Rashmi; Malik, Anil K.

    2015-09-14

    We have investigated the effect of initial phase on error in electron energy obtained using paraxial approximation to study electron acceleration by a focused laser pulse in vacuum using a three dimensional test-particle simulation code. The error is obtained by comparing the energy of the electron for paraxial approximation and seventh-order correction description of the fields of Gaussian laser. The paraxial approximation predicts wrong laser divergence and wrong electron escape time from the pulse which leads to prediction of higher energy. The error shows strong phase dependence for the electrons lying along the axis of the laser for linearly polarized laser pulse. The relative error may be significant for some specific values of initial phase even at moderate values of laser spot sizes. The error does not show initial phase dependence for a circularly laser pulse.

  8. Influence of the superposition approximation on calculated effective dose rates from galactic cosmic rays at aerospace-related altitudes

    NASA Astrophysics Data System (ADS)

    Copeland, Kyle

    2015-07-01

    The superposition approximation was commonly employed in atmospheric nuclear transport modeling until recent years and is incorporated into flight dose calculation codes such as CARI-6 and EPCARD. The useful altitude range for this approximation is investigated using Monte Carlo transport techniques. CARI-7A simulates atmospheric radiation transport of elements H-Fe using a database of precalculated galactic cosmic radiation showers calculated with MCNPX 2.7.0 and is employed here to investigate the influence of the superposition approximation on effective dose rates, relative to full nuclear transport of galactic cosmic ray primary ions. Superposition is found to produce results less than 10% different from nuclear transport at current commercial and business aviation altitudes while underestimating dose rates at higher altitudes. The underestimate sometimes exceeds 20% at approximately 23 km and exceeds 40% at 50 km. Thus, programs employing this approximation should not be used to estimate doses or dose rates for high-altitude portions of the commercial space and near-space manned flights that are expected to begin soon.

  9. Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model

    NASA Astrophysics Data System (ADS)

    Scarnato, B. V.; Vahidinia, S.; Richard, D. T.; Kirchstetter, T. W.

    2013-05-01

    According to recent studies, internal mixing of black carbon (BC) with other aerosol materials in the atmosphere alters its aggregate shape, absorption of solar radiation, and radiative forcing. These mixing state effects are not yet fully understood. In this study, we characterize the morphology and mixing state of bare BC and BC internally mixed with sodium chloride (NaCl) using electron microscopy and examine the sensitivity of optical properties to BC mixing state and aggregate morphology using a discrete dipole approximation model (DDSCAT). DDSCAT is flexible in simulating the geometry and refractive index of particle aggregates. DDSCAT predicts a higher mass absorption coefficient (MAC), lower single scattering albedo (SSA), and higher absorption Angstrom exponent (AAE) for bare BC aggregates that are lacy rather than compact. Predicted values of SSA at 550 nm range between 0.16 and 0.27 for lacy and compact aggregates, respectively, in agreement with reported experimental values of 0.25 ± 0.05. The variation in absorption with wavelength does not adhere precisely to a power law relationship over the 200 to 1000 nm range. Consequently, AAE values depend on the wavelength region over which they are computed. The MAC of BC (averaged over the 200-1000 nm range) is amplified when internally mixed with NaCl (100-300 nm in radius) by factors ranging from 1.0 for lacy BC aggregates partially immersed in NaCl to 2.2 for compact BC aggregates fully immersed in NaCl. The SSA of BC internally mixed with NaCl is higher than for bare BC and increases with the embedding in the NaCl. Internally mixed BC SSA values decrease in the 200-400 nm wavelength range, a feature also common to the optical properties of dust and organics. Linear polarization features are also predicted in DDSCAT and are dependent on particle size and morphology. This study shows that DDSCAT predicts complex morphology and mixing state dependent aerosol optical properties that have been reported

  10. Theoretical re-evaluations of the black hole mass-bulge mass relation - I. Effect of seed black hole mass

    NASA Astrophysics Data System (ADS)

    Shirakata, Hikari; Kawaguchi, Toshihiro; Okamoto, Takashi; Makiya, Ryu; Ishiyama, Tomoaki; Matsuoka, Yoshiki; Nagashima, Masahiro; Enoki, Motohiro; Oogi, Taira; Kobayashi, Masakazu A. R.

    2016-10-01

    We explore the effect of varying the mass of a seed black hole on the resulting black hole mass-bulge mass relation at z ˜ 0, using a semi-analytic model of galaxy formation combined with large cosmological N-body simulations. We constrain our model by requiring that the observed properties of galaxies at z ˜ 0 are reproduced. In keeping with previous semi-analytic models, we place a seed black hole immediately after a galaxy forms. When the mass of the seed is set at 105 M⊙, we find that the model results become inconsistent with recent observational results of the black hole mass-bulge mass relation for dwarf galaxies. In particular, the model predicts that bulges with ˜109 M⊙ harbour larger black holes than observed. On the other hand, when we employ seed black holes of 103 M⊙ or select their mass randomly within a 103-5 M⊙ range, the resulting relation is consistent with observation estimates, including the observed dispersion. We find that, to obtain stronger constraints on the mass of seed black holes, observations of less massive bulges at z ˜ 0 are a more powerful comparison than the relations at higher redshifts.

  11. Analytical approximations for matter effects on CP violation in the accelerator-based neutrino oscillations with E ≲ 1 GeV

    NASA Astrophysics Data System (ADS)

    Xing, Zhi-zhong; Zhu, Jing-yu

    2016-07-01

    Given an accelerator-based neutrino experiment with the beam energy E ≲ 1 GeV, we expand the probabilities of ν μ → ν e and {overline{ν}}_{μ}to {overline{ν}}_e oscillations in matter in terms of two small quantities Δ21 /Δ31 and A/Δ31, where Δ 21≡ m 2 2 - m 1 2 and Δ 31≡ m 3 2 - m 1 2 are the neutrino mass-squared differences, and A measures the strength of terrestrial matter effects. Our analytical approximations are numerically more accurate than those made by Freund in this energy region, and thus they are particularly applicable for the study of leptonic CP violation in the low-energy MOMENT, ESS νSM and T2K oscillation experiments. As a by-product, the new analytical approximations help us to easily understand why the matter-corrected Jarlskog parameter tilde{J} peaks at the resonance energy E ∗ ≃ 0 .14GeV (or 0 .12 GeV) for the normal (or inverted) neutrino mass hierarchy, and how the three Dirac unitarity triangles are deformed due to the terrestrial matter contamination. We also affirm that a medium-baseline neutrino oscillation experiment with the beam energy E lying in the E ∗ ≲ E ≲ 2 E ∗ range is capable of exploring leptonic CP violation with little matter-induced suppression.

  12. Intrinsic Carrier Concentration and Electron Effective Mass in Hg(1-x) Zn(x) Te

    NASA Technical Reports Server (NTRS)

    Sha, Yi-Gao; Su, Ching-Hua; Lehoczky, S. L.

    1997-01-01

    In this work, the intrinsic carrier concentration and electron effective mass in Hg(l-x)Zn(x)Te were numerically calculated. We adopt the procedures similar to those used by Su et. al. for calculating intrinsic carrier concentrations in Hg(1-x)Cd(x)Te which solve the exact dispersion relation in Kane model for the calculation of the conduction band electron concentrations and the corresponding electron effective masses. No approximation beyond those inherent in the k centered dot p model was used here.

  13. Effect of mass gain on stellar evolution

    NASA Astrophysics Data System (ADS)

    Ebert, R.; Zinnecker, H.

    A fully hydrodynamical treatment is given of the stationary isothermal accretion problem onto a moving gravitating point mass. It is noted that the derivation is purely analytical. It is found that the accretion rate is more than a factor of 50 higher than the accretion rate derived from the partially nonhydrodynamical treatment by Hoyle and Lyttleton (1939) or Bondi and Hoyle (1944). It is thought that his result may have some bearing on the evolutionary tracks of young pre-Main Sequence stars still embedded in their parent protocluster cloud. Also discussed is the work of Federova (1979), who investigated the pre-Main Sequence evolution of degenerate low mass 'stars' with strong accretion of protocluster cloud material. It is suggested that the stars that lie below the Main Sequence in young clusters could strongly accrete matter at the pre-Main Sequence stage. It is also suggested that the observed lack of low mass stars in open galactic clusters (van den Bergh, 1961) compared to the field may derive from the accretion of residual gas preferentially by low mass stars.

  14. Statistical analysis of β decays and the effective value of gA in the proton-neutron quasiparticle random-phase approximation framework

    NASA Astrophysics Data System (ADS)

    Deppisch, Frank F.; Suhonen, Jouni

    2016-11-01

    We perform a Markov chain Monte Carlo (MCMC) statistical analysis of a number of measured ground-state-to-ground-state single β+/electron-capture and β- decays in the nuclear mass range of A =62 -142 . The corresponding experimental comparative half-lives (logf t values) are compared with the theoretical ones obtained by the use of the proton-neutron quasiparticle random-phase approximation (p n QRPA ) with G -matrix-based effective interactions. The MCMC analysis is performed separately for 47 isobaric triplets and 28 more extended isobaric chains of nuclei to extract values and uncertainties for the effective axial-vector coupling constant gA in nuclear-structure calculations performed in the p n QRPA framework. As far as available, measured half-lives for two-neutrino β β- decays occurring in the studied isobaric chains are analyzed as well.

  15. An approximate method for treating spin-orbit effects in platinum

    NASA Astrophysics Data System (ADS)

    Heinemann, Christoph; Koch, Wolfram; Schwarz, Helmut

    1995-11-01

    Spin-orbit coupling in platinum-containing species can be treated via a one-electron spin-orbit operator and a single scaling parameter Z eff(Pt) in conjunction with an effective core potential for the description of scalar relativistic effects. Our calibration calculations cover the five low-lying electronic states of platinum hydride PtH and the lowest fourteen levels in the atomic spectrum of the platinum atom Pt. Here, qualitative and semi-quantitative agreement between the presented semi-empirical approach and four-component Dirac-Fock calculations is found if Z eff(Pt) is chosen between 950 and 1200. Further applications concern the low-lying levels of the platinum cation Pt +, the theoretical determination of ground states for the diatomic oxides PtO and PtO + as well as spin-orbit effects in the cationic carbene complex PtCH 2+.

  16. Free vibrations of a cantilevered SWCNT with distributed mass in the presence of nonlocal effect.

    PubMed

    De Rosa, M A; Lippiello, M; Martin, H D

    2015-01-01

    The Hamilton principle is applied to deduce the free vibration frequencies of a cantilever single-walled carbon nanotube (SWCNT) in the presence of an added mass, which can be distributed along an arbitrary part of the span. The nonlocal elasticity theory by Eringen has been employed, in order to take into account the nanoscale effects. An exact formulation leads to the equations of motion, which can be solved to give the frequencies and the corresponding vibration modes. Moreover, two approximate semianalytical methods are also illustrated, which can provide quick parametric relationships. From a more practical point of view, the problem of detecting the mass of the attached particle has been solved by calculating the relative frequency shift due to the presence of the added mass: from it, the mass value can be easily deduced. The paper ends with some numerical examples, in which the nonlocal effects are thoroughly investigated.

  17. Effects of {beta}-{gamma} coupling in transitional nuclei and the validity of the approximate separation of variables

    SciTech Connect

    Caprio, M.A.

    2005-11-01

    Exact numerical diagonalization is carried out for the Bohr Hamiltonian with a {beta}-soft, axially stabilized potential. Wave function and observable properties are found to be dominated by strong {beta}-{gamma} coupling effects. The validity of the approximate separation of variables introduced with the X(5) model, extensively applied in recent analyses of axially stabilized transitional nuclei, is examined, and the reasons for its breakdown are analyzed.

  18. Direct Demonstration of the Concept of Unrestricted Effective-Medium Approximation

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Zhanna M.; Zakharova, Nadezhda T.

    2014-01-01

    The modified unrestricted effective-medium refractive index is defined as one that yields accurate values of a representative set of far-field scattering characteristics (including the scattering matrix) for an object made of randomly heterogeneous materials. We validate the concept of the modified unrestricted effective-medium refractive index by comparing numerically exact superposition T-matrix results for a spherical host randomly filled with a large number of identical small inclusions and Lorenz-Mie results for a homogeneous spherical counterpart. A remarkable quantitative agreement between the superposition T-matrix and Lorenz-Mie scattering matrices over the entire range of scattering angles demonstrates unequivocally that the modified unrestricted effective-medium refractive index is a sound (albeit still phenomenological) concept provided that the size parameter of the inclusions is sufficiently small and their number is sufficiently large. Furthermore, it appears that in cases when the concept of the modified unrestricted effective-medium refractive index works, its actual value is close to that predicted by the Maxwell-Garnett mixing rule.

  19. Computational criterion for application of the characteristic effective medium approximation to ultrathin Co Au multi-bilayer structures

    NASA Astrophysics Data System (ADS)

    Haija, A. J.; Larry Freeman, W.; DeNinno, Matthew

    2008-11-01

    The basic optical properties, reflectivity and transmissivity, of three sets of Co-Au bilayer structures are calculated for normal incidence in the wavelength range 300-700 nm. Each set consists of a total number of bilayer identity periods m=1, 2, 3, 4, 5, 6. The thickness of the bilayer in each set is 5, 7, and 9 nm. The composition of the bilayer is kept fixed: 40% Co and 60% Au. The calculations are done for ideal layered Co-Au stacks using the characteristic matrix technique. Calculations for each stack based on the thicknesses of the two composite layers and their optical constants are contrasted against calculations using the characteristic effective medium approximation, CEMA. A third calculation of the optical properties for each stack is performed, again using the CEMA, but when the whole stack, called the effective stack, ES, is treated as one uniform medium of effective optical constants. The comparison of the three sets of calculations for all sets is intended to shed more light onto the validity of the CEMA approximation that has been established for thin bilayer structures whose constituents have thicknesses much less than the wavelength of the incident radiation. The study establishes a limit based on the product of the number of layers m and the identity period of the stack h, beyond which the CEMA approximation cannot be applied. This limit is consistent with a previous study carried out on Ag-SiO ultrathin stacks.

  20. A non-resonant mass sensor to eliminate the "missing mass" effect during mass measurement of biological materials

    NASA Astrophysics Data System (ADS)

    Shrikanth, V.; Bobji, M. S.

    2014-10-01

    Resonant sensors and crystal oscillators for mass detection need to be excited at very high natural frequencies (MHz). Use of such systems to measure mass of biological materials affects the accuracy of mass measurement due to their viscous and/or viscoelastic properties. The measurement limitation of such sensor system is the difficulty in accounting for the "missing mass" of the biological specimen in question. A sensor system has been developed in this work, to be operated in the stiffness controlled region at very low frequencies as compared to its fundamental natural frequency. The resulting reduction in the sensitivity due to non-resonant mode of operation of this sensor is compensated by the high resolution of the sensor. The mass of different aged drosophila melanogaster (fruit fly) is measured. The difference in its mass measurement during resonant mode of operation is also presented. That, viscosity effects do not affect the working of this non-resonant mass sensor is clearly established by direct comparison.

  1. A non-resonant mass sensor to eliminate the "missing mass" effect during mass measurement of biological materials.

    PubMed

    Shrikanth, V; Bobji, M S

    2014-10-01

    Resonant sensors and crystal oscillators for mass detection need to be excited at very high natural frequencies (MHz). Use of such systems to measure mass of biological materials affects the accuracy of mass measurement due to their viscous and/or viscoelastic properties. The measurement limitation of such sensor system is the difficulty in accounting for the "missing mass" of the biological specimen in question. A sensor system has been developed in this work, to be operated in the stiffness controlled region at very low frequencies as compared to its fundamental natural frequency. The resulting reduction in the sensitivity due to non-resonant mode of operation of this sensor is compensated by the high resolution of the sensor. The mass of different aged drosophila melanogaster (fruit fly) is measured. The difference in its mass measurement during resonant mode of operation is also presented. That, viscosity effects do not affect the working of this non-resonant mass sensor is clearly established by direct comparison.

  2. Assessment of density-functional approximations: Long-range correlations and self-interaction effects

    SciTech Connect

    Jung, J.; Alvarellos, J.E.; Garcia-Gonzalez, P.; Godby, R.W.

    2004-05-01

    The complex nature of electron-electron correlations is made manifest in the very simple but nontrivial problem of two electrons confined within a sphere. The description of highly nonlocal correlation and self-interaction effects by widely used local and semilocal exchange-correlation energy density functionals is shown to be unsatisfactory in most cases. Even the best such functionals exhibit significant errors in the Kohn-Sham potentials and density profiles.

  3. Alternative approximation concepts for space frame synthesis

    NASA Technical Reports Server (NTRS)

    Lust, R. V.; Schmit, L. A.

    1985-01-01

    A method for space frame synthesis based on the application of a full gamut of approximation concepts is presented. It is found that with the thoughtful selection of design space, objective function approximation, constraint approximation and mathematical programming problem formulation options it is possible to obtain near minimum mass designs for a significant class of space frame structural systems while requiring fewer than 10 structural analyses. Example problems are presented which demonstrate the effectiveness of the method for frame structures subjected to multiple static loading conditions with limits on structural stiffness and strength.

  4. Mass

    SciTech Connect

    Quigg, Chris

    2007-12-05

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  5. Effect of various approximations on predicted progressive failure in plain weave composites

    NASA Technical Reports Server (NTRS)

    Whitcomb, John; Srirengan, Kanthikannan

    1995-01-01

    Three-dimensional finite element analysis was used to simulate progressive failure of a plain weave composite subjected to in-plane extension. The loading was parallel to one of the tow directions. The effects of various characteristics of the finite element model on predicted behavior were examined. The predicted behavior was found to be sensitive to quadrature order, mesh refinement, and the material degradation model. Also the sensitivity of the predictions to the tow waviness was studied. The predicted strength decreased considerably with increased waviness. More numerical studies and comparisons with experimental data are needed to establish reliable guidelines for accurate progressive failure prediction.

  6. Approximate light cone effects in a nonrelativistic quantum field theory after a local quench

    NASA Astrophysics Data System (ADS)

    Bertini, Bruno

    2017-02-01

    We study the spreading of correlations after a local quench in a nonrelativistic quantum field theory. We focus on noninteracting nonrelativistic fermions and study the time evolution after two identical systems in their ground states are suddenly joined together with a localized impurity at the junction. We find that, even if the quasiparticles of the system have unbounded dispersion, the correlations show light cone effects. We carry out a detailed study of these effects by developing an accurate asymptotic expansion of the two-point function and determining exactly the density of particles at any time after the quench. In particular, we find that the width of the light cone region is ∝t1 /2 . The structure of correlations, however, does not show a pure light cone form: "superluminal corrections" are much larger than in the bounded-dispersion case. These findings can be explained by inspecting the structure of excitations generated by the initial state. We show that a similar picture also emerges in the presence of a harmonic trapping potential and when more than two systems are suddenly joined at a single point.

  7. Many-Body Effects in Iron Pnictides and Chalcogenides: Nonlocal Versus Dynamic Origin of Effective Masses

    NASA Astrophysics Data System (ADS)

    Tomczak, Jan M.; van Schilfgaarde, M.; Kotliar, G.

    2012-12-01

    We apply the quasiparticle self-consistent GW approximation (QSGW) to some of the iron pnictide and chalcogenide superconductors. We compute Fermi surfaces and density of states, and find excellent agreement with experiment, substantially improving over standard band-structure methods. Analyzing the QSGW self-energy we discuss nonlocal and dynamic contributions to effective masses. We present evidence that the two contributions are mostly separable, since the quasiparticle weight is found to be essentially independent of momentum. The main effect of nonlocality is captured by the static but nonlocal QSGW effective potential. Moreover, these nonlocal self-energy corrections, absent in, e.g., dynamical mean field theory, can be relatively large. We show, on the other hand, that QSGW only partially accounts for dynamic renormalizations at low energies. These findings suggest that QSGW combined with dynamical mean field theory will capture most of the many-body physics in the iron pnictides and chalcogenides.

  8. Investigating the Effectiveness of Wavelet Approximations in Resizing Images for Ultrasound Image Classification.

    PubMed

    Manzoor, Umar; Nefti, Samia; Ferdinando, Milella

    2016-10-01

    Images are difficult to classify and annotate but the availability of digital image databases creates a constant demand for tools that automatically analyze image content and describe it with either a category or a set of variables. Ultrasound Imaging is very popular and is widely used to see the internal organ(s) condition of the patient. The main target of this research is to develop a robust image processing techniques for a better and more accurate medical image retrieval and categorization. This paper looks at an alternative to feature extraction for image classification such as image resizing technique. A new mean for image resizing using wavelet transform is proposed. Results, using real medical images, have shown the effectiveness of the proposed technique for classification task comparing to bi-cubic interpolation and feature extraction.

  9. Effective three-wave-mixing picture and first Born approximation for femtosecond supercontinua from microstructured fibers

    SciTech Connect

    Kolesik, M.; Moloney, J. V.; Tartara, L.

    2010-10-15

    The theory of supercontinuum generation in microstructured fibers is based on notions of soliton fission and subsequent dispersive wave radiation. In bulk media, in contrast, the paradigm of effective three-wave mixing (ETWM) proves useful for understanding the supercontinuum spectral properties and revealing the dynamics within the high-intensity core of the collapsing filament. Previously, it has been shown that the bulk theory applies accurately even to so-called glass-membrane fibers in which the guided light is free to diffract in one dimension. In the same spirit, this work extends that result and brings the fiber and bulk supercontinuum approaches closer together. Specifically, we demonstrate that the ETWM paradigm can be modified for fibers, where it provides an accurate analytic description of the supercontinuum component due to dispersive waves.

  10. Total Ionizing Dose Effects in 12-Bit Successive-Approximation Analog-To-Digital Converters

    NASA Technical Reports Server (NTRS)

    Lee, C. I.; Rax, B. G.; Johnston, A. H.

    1993-01-01

    Analog-to-digital (A/D) converters are critical components in many space and military systems, and there have been numerous advances in A/D converter technology that have increased the resolution and conversion time. The increased performance is due to two factors: (1) advances in circuit design and complexity, which have increased the number of components and the integration density; and (2) new process technologies, such as BiCMOS, which provide better performance, cost, and smaller size in mixed-signal circuits. High-speed A/D converters, with conversion rates above 1 MHz, present a challenge to circuit designers and test engineers. Their complex architectures and high-performance specifications result in numerous possible failure modes when they are subjected to ionizing radiation. The dominant failure mode may depend on the specific application because the fundamental effects on MOS and bipolar transistors are strongly affected by bias conditions.

  11. Effective Stress Approximation using Geomechanical Formulation of Fracturing Technology (GFFT) in Petroleum Reservoirs

    NASA Astrophysics Data System (ADS)

    Haghi, A.; Asef, M.; Kharrat, R.

    2010-12-01

    Recently, rock mechanics and geophysics contribution in petroleum industry has been significantly increased. Wellbore stability analysis in horizontal wells, sand production problem while extracting hydrocarbon from sandstone reservoirs, land subsidence due to production induced reservoir compaction, reservoir management, casing shearing are samples of these contributions. In this context, determination of the magnitude and orientation of the in-situ stresses is an essential parameter. This paper is presenting new method to estimate the magnitude of in-situ stresses based on fracturing technology data. Accordingly, kirsch equations for the circular cavities and fracturing technology models in permeable formations have been used to develop an innovative Geomechanical Formulation (GFFT). GFFT introduces a direct reasonable relation between the reservoir stresses and the breakdown pressure of fracture, while the concept of effective stress was employed. Thus, this complex formula contains functions of some rock mechanic parameters such as poison ratio, Biot’s coefficient, Young’s modulus, rock tensile strength, depth of reservoir and breakdown/reservoir pressure difference. Hence, this approach yields a direct method to estimate maximum and minimum effective/insitu stresses in an oil field and improves minimum in-situ stress estimation compared to previous studies. In case of hydraulic fracturing; a new stress analysis method is developed based on well known Darcy equations for fluid flow in porous media which improves in-situ stress estimation using reservoir parameters such as permeability, and injection flow rate. The accuracy of the method would be verified using reservoir data of a case history. The concepts discussed in this research would eventually suggest an alternative methodology with sufficient accuracy to derive in-situ stresses in hydrocarbon reservoirs, while no extra experimental work is accomplished for this purpose.

  12. Determination of effective mass density and modulus for resonant metamaterials.

    PubMed

    Park, Jeongwon; Park, Buhm; Kim, Deokman; Park, Junhong

    2012-10-01

    This work presents a method to determine the effective dynamic properties of resonant metamaterials. The longitudinal vibration of a rod with periodically attached oscillators was predicted using wave propagation analysis. The effective mass density and modulus were determined from the transfer function of vibration responses. Predictions of these effective properties compared favorably with laboratory measurements. While the effective mass density showed significant frequency dependent variation near the natural frequency of the oscillators, the elastic modulus was largely unchanged for the setup considered in this study. The effective mass density became complex-numbered when the spring element of the oscillator was viscoelastic. As the real part of the effective mass density became negative, the propagating wavenumber components disappeared, and vibration transmission through the metamaterial was prohibited. The proposed method provides a consistent approach for evaluating the effective parameters of resonant metamaterials using a small number of vibration measurements.

  13. Effective shear modulus reconstruction obtained with approximate mean normal stress remaining unknown.

    PubMed

    Sumi, Chikayoshi

    2007-11-01

    We previously reported Methods A and B for reconstructing tissue shear modulus and density using mean normal stress as an unknown. The use of Method A enables us to obtain such reconstructions with the mean normal stress remaining unknown by using an iterative method to solve algebraic equations. However, Method A results in a low convergence speed and a low reconstruction accuracy compared with Method B that enables a reconstruction of mean normal stress together. Thus, in this report, we describe a new, rapid and accurate method, Method C, that enables the reconstructions of shear modulus and density in real time with a higher accuracy than Method A. In Method A, no reference mean normal stress is used. In Method C, an arbitrary finite value is used as a quasireference mean normal stress at an arbitrary point (i.e., a quasireference point) or an arbitrary region (i.e., a quasireference region) in the region of interest on the basis of the fact that the gradient operator implemented on the mean normal stress becomes positive-definite. When a quasireference region can be realized, Method C enables such reconstructions with a high accuracy and a high convergence speed similar to Method B. The effectiveness of Method C was verified using simulated phantom deformation data. Method C must be used instead of Method A as a practical method, in combination with Method B.

  14. Effective medium approximation of the optical properties of electrochromic cerium-titanium oxide compounds

    SciTech Connect

    Rottkay, K. von; Richardson, T.; Rubin, M.; Slack, J.

    1997-07-01

    Cerium titanium oxide samples derived from a solution have been compared against sputtered films over a wide range of different compositions. X-ray diffraction was used to investigate the structural properties of the compound material existing in a two-phase mixture M{sub A}O{sub 2}-M{sub B}O{sub 2}. The optical properties were evaluated over the whole solar spectrum by variable angle spectroscopic ellipsometry combined with spectrophotometry. The spectral complex refractive index was determined for CeO{sub 2} and TiO{sub 2}, as well as for their compounds. To reduce the large number of permutations in composition of multi-component oxides it would be useful to be able to predict the properties of the mixtures from the pure oxide components. Therefore these results were compared to those obtained by effective medium theory utilizing the optical constants of CeO{sub 2} and TiO{sub 2}. In order to investigate the performance as passive counter-electrode in Li{sup +} based electrochromic devices the films were tested by cyclic voltammetry with in-situ transmission control. Chemical composition was measured by Rutherford backscattering spectrometry. Surface morphology was analyzed by atomic force microscopy.

  15. Gravitational waves and mass ejecta from binary neutron star mergers: Effect of the mass ratio

    NASA Astrophysics Data System (ADS)

    Dietrich, Tim; Ujevic, Maximiliano; Tichy, Wolfgang; Bernuzzi, Sebastiano; Brügmann, Bernd

    2017-01-01

    We present new (3 +1 )D numerical relativity simulations of the binary neutron star (BNS) merger and postmerger phase. We focus on a previously inaccessible region of the binary parameter space spanning the binary's mass ratio q ˜1.00 - 1.75 for different total masses and equations of state, and up to q ˜2 for a stiff BNS system. We study the mass ratio effect on the gravitational waves (GWs) and on the possible electromagnetic (EM) emission associated with dynamical mass ejecta. We compute waveforms, spectra, and spectrograms of the GW strain including all the multipoles up to l =4 . The mass ratio has a specific imprint on the GW multipoles in the late-inspiral-merger signal, and it affects qualitatively the spectra of the merger remnant. The multipole effect is also studied by considering the dependency of the GW spectrograms on the source's sky location. Unequal mass BNSs produce more ejecta than equal mass systems with ejecta masses and kinetic energies depending almost linearly on q . We estimate luminosity peaks and light curves of macronova events associated with the mergers using a simple approach. For q ˜2 the luminosity peak is delayed for several days and can be up to 4 times larger than for the q =1 cases. The macronova emission associated with the q ˜2 BNS is more persistent in time and could be observed for weeks instead of a few days (q =1 ) in the near infrared. Finally, we estimate the flux of possible radio flares produced by the interaction of relativistic outflows with the surrounding medium. Also in this case a large q can significantly enhance the emission and delay the peak luminosity. Overall, our results indicate that the BNS merger with a large mass ratio has EM signatures distinct from the equal mass case and more similar to black hole-neutron star binaries.

  16. On top quark mass effects to gg → ZH at NLO

    NASA Astrophysics Data System (ADS)

    Hasselhuhn, Alexander; Luthe, Thomas; Steinhauser, Matthias

    2017-01-01

    We compute next-to-leading order QCD corrections to the process gg → ZH. In the effective-theory approach we confirm the results in the literature. We consider top quark mass corrections via an asymptotic expansion and show that there is a good convergence below the top quark threshold which describes approximately a quarter of the total cross section. Our corrections are implemented in the publicly available C++ program ggzh.

  17. Gluon transport equation with effective mass and dynamical onset of Bose–Einstein condensation

    DOE PAGES

    Blaizot, Jean-Paul; Jiang, Yin; Liao, Jinfeng

    2016-05-01

    In this paper we study the transport equation describing a dense system of gluons, in the small scattering angle approximation, taking into account medium-generated effective masses of the gluons. We focus on the case of overpopulated systems that are driven to Bose–Einstein condensation on their way to thermalization. Lastly, the presence of a mass modifies the dispersion relation of the gluon, as compared to the massless case, but it is shown that this does not change qualitatively the scaling behavior in the vicinity of the onset.

  18. The effect of flow and mass transport in thrombogenesis.

    PubMed

    Basmadjian, D

    1990-01-01

    The paper presents a mathematical analysis of the contributions of flow and mass transport to a single reactive event at a blood vessel wall. The intent is to prepare the ground for a comprehensive study of the intertwining of these contributions with the reaction network of the coagulation cascade. We show that in all vessels with local mural activity, or in "large" vessels (d greater than 0.1 mm) with global reactivity, events at the tubular wall can be rigorously described by algebraic equations under steady conditions, or by ordinary differential forms (ODEs) during transient conditions. This opens up important ways for analyzing the combined roles of flow, transport, and coagulation reactions in thrombosis, a task hitherto considered to be completely intractable. We report extensively on the dependence of transport coefficient kL and mural coagulant concentration Cw on flow, vessel geometry, and reaction kinetics. It is shown that for protein transport, kL varies only weakly with shear rate gamma in large vessels, and not at all in the smaller tubes (d less than 10(-2) mm). For a typical protein, kL approximately 10(-3) cm s-1 within a factor of 3 in most geometries, irrespective of the mural reaction kinetics. Significant reductions in kL (1/10-1/1,000) leading to high-coagulant accumulation are seen mainly in stagnant zones vicinal to abrupt expansions and in small elliptical tubules. This is in accord with known physical observations. More unexpected are the dramatic increases in accumulation which can come about through the intervention of an autocatalytic reaction step, with Cw rising sharply toward infinity as the ratio of reaction to transport coefficient approaches unity. Such self-catalyzed reactions have the ability to act as powerful amplifiers of an otherwise modest influence of flow and transport on coagulant concentration. The paper considers as well the effect on mass transport of transient conditions occasioned by coagulation initiation or

  19. Approximate confidence intervals for moment-based estimators of the between-study variance in random effects meta-analysis.

    PubMed

    Jackson, Dan; Bowden, Jack; Baker, Rose

    2015-12-01

    Moment-based estimators of the between-study variance are very popular when performing random effects meta-analyses. This type of estimation has many advantages including computational and conceptual simplicity. Furthermore, by using these estimators in large samples, valid meta-analyses can be performed without the assumption that the treatment effects follow a normal distribution. Recently proposed moment-based confidence intervals for the between-study variance are exact under the random effects model but are quite elaborate. Here, we present a much simpler method for calculating approximate confidence intervals of this type. This method uses variance-stabilising transformations as its basis and can be used for a very wide variety of moment-based estimators in both the random effects meta-analysis and meta-regression models.

  20. An Approximation of the Smoothing Effect on the Output Variation of Photovoltaic Generation Systems Installed Densely in a Bounded Area

    NASA Astrophysics Data System (ADS)

    Murata, Akinobu; Yamaguchi, Hiroshi; Otani, Kenji

    The purpose of this study is to propose a method to evaluate approximately a geographical smoothing effect on the output fluctuation of photovoltaic generation systems installed densely in a bounded area. This paper comprises two parts. The first part shows the result of analysis about output fluctuation, which is observed during four months in summer at ten groups of photovoltaic generation systems, located in AIST Tsukuba Central and totaling 844kW, and presents findings about a geographical smoothing effect on output fluctuation in the light of statistical characteristics such as the standard deviation of output variation and correlation factors between the output variations of different systems. The second part contains a mathematical modeling of a geographical smoothing effect in a bounded area based on the findings presented in the previous part and proposes a set of formulas to evaluate approximately a geographical smoothing effect on the output fluctuation of photovoltaic generation systems installed densely in a bounded area only using geometrical information about the area.

  1. Search for effects beyond the Born approximation in polarization transfer observables in $\\vec{e}p$ elastic scattering

    SciTech Connect

    Meziane, M; Brash, E J; Jones, M K; Luo, W; Pentchev, L; Perdrisat, C F; Puckett, A J.R.; Punjabi, V; Wesselmann, F R; Ahmidouch, A; Albayrak, I; Aniol, K A; Arrington, J; Asaturyan, A; Ates, O; Baghdasaryan, H; Benmokhtar, F; Bertozzi, W; Bimbot, L; Bosted, P; Boeglin, W; Butuceanu, C; Carter, P; Chernenko, S; Christy, E; Commisso, M; Cornejo, J C; Covrig, S; Danagoulian, S; Daniel, A; Davidenko, A; Day, D; Dhamija, S; Dutta, D; Ent, R; Frullani, S; Fenker, H; Frlez, E; Garibaldi, F; Gaskell, D; Gilad, S; Goncharenko, Y; Hafidi, K; Hamilton, D; Higinbothan, D W; Hinton, W; Horn, T; Hu, B; Huang, J; Huber, G M; Jensen, E; Kang, H; Keppel, C; Khandaker, M; King, P; Kirillov, D; Kohl, M; Kravtsov, V; Kumbartzki, G; Li, Y; Mamyan, V; Margaziotis, D J; Markowitz, P; Marsh, A; Matulenko, Y; Maxwell, J; Mbianda, G; Meekins, D; Melnick, Y; Miller, J; Mkrtchyan, A; Mkrtchyan, H; Moffit, B; Moreno, O; Mulholland, J; Narayan, A; Nuruzzaman,; Nedev, S; Piasetzky, E; Pierce, W; Piskunov, N M; Prok, Y; Ransome, R D; Razin, D S; Reimer, P E; Reinhold, J; Rondon, O; Shabestari, M; Shahinyan, A; Shestermanov, K; Sirca, S; Sitnik, I; Smykov, L; Smith, G; Solovyev, L; Solvignon, P; Subedi, R; Suleiman, R; Tomasi-Gustafsson, E; Vasiliev, A; Vanderhaeghen, M; Veilleux, M; Wojtsekhowski, B B; Wood, S; Ye, Z; Zanevsky, Y; Zhang, X; Zhang, Y; Zheng, X; Zhu, L

    2011-04-01

    Intensive theoretical and experimental efforts over the past decade have aimed at explaining the discrepancy between data for the proton electric to magnetic form factor ratio, $G_{E}/G_{M}$, obtained separately from cross section and polarization transfer measurements. One possible explanation for this difference is a two-photon-exchange (TPEX) contribution. In an effort to search for effects beyond the one-photon-exchange or Born approximation, we report measurements of polarization transfer observables in the elastic $H(\\vec{e},e'\\vec{p})$ reaction for three different beam energies at a fixed squared momentum transfer $Q^2 = 2.5$ GeV$^2$, spanning a wide range of the virtual photon polarization parameter, $\\epsilon$. From these measured polarization observables, we have obtained separately the ratio $R$, which equals $\\mu_p G_{E}/G_{M}$ in the Born approximation, and the longitudinal polarization transfer component $P_\\ell$, with statistical and systematic uncertainties of $\\Delta R \\approx \\pm 0.01 \\mbox{(stat)} \\pm 0.013 \\mbox{(syst)}$ and $\\Delta P_\\ell/P^{Born}_{\\ell} \\approx \\pm 0.006 \\mbox{(stat)}\\pm 0.01 \\mbox{(syst)}$. The ratio $R$ is found to be independent of $\\epsilon$ at the 1.5% level, while the $\\epsilon$ dependence of $P_\\ell$ shows an enhancement of $(2.3 \\pm 0.6) %$ relative to the Born approximation at large $\\epsilon$.

  2. Search for Effects Beyond the Born Approximation in Polarization Transfer Observables in e-vectorp Elastic Scattering

    SciTech Connect

    Meziane, M.; Pentchev, L.; Perdrisat, C. F.; Brash, E. J.; Gilman, R.; Jones, M. K.; Bosted, P.; Covrig, S.; Ent, R.; Fenker, H.; Gaskell, D.; Higinbotham, D. W.; Horn, T.; Meekins, D.; Smith, G.; Suleiman, R.; Wojtsekhowski, B. B.; Wood, S.; Luo, W.; Hu, B.

    2011-04-01

    Intensive theoretical and experimental efforts over the past decade have aimed at explaining the discrepancy between data for the proton electric to magnetic form factor ratio, G{sub E}/G{sub M}, obtained separately from cross section and polarization transfer measurements. One possible explanation for this difference is a two-photon-exchange contribution. In an effort to search for effects beyond the one-photon-exchange or Born approximation, we report measurements of polarization transfer observables in the elastic H(e-vector,e{sup '}p-vector) reaction for three different beam energies at a Q{sup 2}=2.5 GeV{sup 2}, spanning a wide range of the kinematic parameter {epsilon}. The ratio R, which equals {mu}{sub p}G{sub E}/G{sub M} in the Born approximation, is found to be independent of {epsilon} at the 1.5% level. The {epsilon} dependence of the longitudinal polarization transfer component P{sub l} shows an enhancement of (2.3{+-}0.6)% relative to the Born approximation at large {epsilon}.

  3. The Effect of Approximating Some Molecular Integrals in Coupled-Cluster Calculations: Fundamental Frequencies and Rovibrational Spectroscopic Constants of Cyclopropenylidene

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Dateo, Christopher E.

    2005-01-01

    The singles and doubles coupled-cluster method that includes a perturbational estimate of connected triple excitations, denoted CCSD(T), has been used, in conjunction with approximate integral techniques, to compute highly accurate rovibrational spectroscopic constants of cyclopropenylidene, C3H2. The approximate integral technique was proposed in 1994 by Rendell and Lee in order to avoid disk storage and input/output bottlenecks, and today it will also significantly aid in the development of algorithms for distributed memory, massively parallel computer architectures. It is shown in this study that use of approximate integrals does not impact the accuracy of CCSD(T) calculations. In addition, the most accurate spectroscopic data yet for C3H2 is presented based on a CCSD(T)/cc-pVQZ quartic force field that is modified to include the effects of core-valence electron correlation. Cyclopropenylidene is of great astronomical and astrobiological interest because it is the smallest aromatic ringed compound to be positively identified in the interstellar medium, and is thus involved in the prebiotic processing of carbon and hydrogen. The singles and doubles coupled-cluster method that includes a perturbational estimate of

  4. An isotopic mass effect on the intermolecular potential

    DOE PAGES

    Herman, Michael F.; Currier, Robert Patrick; Clegg, Samuel M.

    2015-09-28

    The impact of isotopic variation on the electronic energy and intermolecular potentials is often suppressed when calculating isotopologue thermodynamics. Intramolecular potential energy surfaces for distinct isotopologues are in fact equivalent under the Born–Oppenheimer approximation, which is sometimes used to imply that the intermolecular interactions are independent of isotopic mass. In this paper, the intermolecular dipole–dipole interaction between hetero-nuclear diatomic molecules is considered. It is shown that the intermolecular potential contains mass-dependent terms even though each nucleus moves on a Born–Oppenheimer surface. Finally, the analysis suggests that mass dependent variations in intermolecular potentials should be included in comprehensive descriptions of isotopologuemore » thermodynamics.« less

  5. Excited-State Effective Masses in Lattice QCD

    SciTech Connect

    George Fleming, Saul Cohen, Huey-Wen Lin

    2009-10-01

    We apply black-box methods, i.e. where the performance of the method does not depend upon initial guesses, to extract excited-state energies from Euclidean-time hadron correlation functions. In particular, we extend the widely used effective-mass method to incorporate multiple correlation functions and produce effective mass estimates for multiple excited states. In general, these excited-state effective masses will be determined by finding the roots of some polynomial. We demonstrate the method using sample lattice data to determine excited-state energies of the nucleon and compare the results to other energy-level finding techniques.

  6. Excited-State Effective Masses in Lattice QCD

    SciTech Connect

    Fleming, George; Cohen, Saul; Lin, Huey-Wen

    2009-01-01

    We apply black-box methods, i.e. where the performance of the method does not depend upon initial guesses, to extract excited-state energies from Euclidean-time hadron correlation functions. In particular, we extend the widely used effective-mass method to incorporate multiple correlation functions and produce effective mass estimates for multiple excited states. In general, these excited-state effective masses will be determined by finding the roots of some polynomial. We demonstrate the method using sample lattice data to determine excited-state energies of the nucleon and compare the results to other energy-level finding techniques.

  7. Charts and approximate formulas for the estimation of aeroelastic effects of the lateral control of swept and unswept wings

    NASA Technical Reports Server (NTRS)

    Foss, Kenneth A; Diederich, Franklin W

    1953-01-01

    Charts and approximate formulas are presented for the estimation of static aeroelastic effects on the spanwise lift distribution, rolling-moment coefficient, and rate of roll due to the deflection of ailerons on swept and unswept wings at subsonic and supersonic speeds. Some design considerations brought out by the results of this report are discussed. This report treats the lateral-control case in a manner similar to that employed in NACA Report 1140 for the symmetric-flight case, and is intended to be used in conjunction with NACA Report 1140 and the charts and formulas presented therein.

  8. Study of bottleneck effect at an emergency evacuation exit using cellular automata model, mean field approximation analysis, and game theory

    NASA Astrophysics Data System (ADS)

    Tanimoto, Jun; Hagishima, Aya; Tanaka, Yasukaka

    2010-12-01

    An improved cellular automaton model for pedestrian dynamics was established, where both static floor field and collision effect derived from game theory were considered. Several model parameters were carefully determined by previous studies. Results obtained through model-based simulation and analytical approach (derived from mean field approximation) proved that outflow rate from an evacuation exit, which is usually estimated using outflow coefficient in building codes in Japan, can be improved by placing an appropriate obstacle in front of the exit. This can reduce collision probability at the exit by increasing collisions around the obstacles ahead of the exit.

  9. Gas and solute diffusion in partially saturated porous media: Percolation theory and Effective Medium Approximation compared with lattice Boltzmann simulations

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Behzad; Daigle, Hugh; Hunt, Allen G.; Ewing, Robert P.; Sahimi, Muhammad

    2015-01-01

    Understanding and accurate prediction of gas or liquid phase (solute) diffusion are essential to accurate prediction of contaminant transport in partially saturated porous media. In this study, we propose analytical equations, using concepts from percolation theory and the Effective Medium Approximation (EMA) to model the saturation dependence of both gas and solute diffusion in porous media. The predictions of our theoretical approach agree well with the results of nine lattice Boltzmann simulations. We find that the universal quadratic scaling predicted by percolation theory, combined with the universal linear scaling predicted by the EMA, describes diffusion in porous media with both relatively broad and extremely narrow pore size distributions.

  10. Spin-current Seebeck effect in an interacting quantum dot: Atomic approximation for the Anderson impurity model

    NASA Astrophysics Data System (ADS)

    Ramos, E.; Silva-Valencia, J.; Franco, R.; Siqueira, E. C.; Figueira, M. S.

    2015-11-01

    We study the spin-current Seebeck effect through an immersed gate defined quantum dot, employing the U-finite atomic method for the single impurity Anderson model. Our description qualitatively confirms some of the results obtained by an earlier Hartree-Fock work, but as our calculation includes the Kondo effect, some new features will appear in the spin-current Seebeck effect S, which as a function of the gate voltage present an oscillatory shape. At intermediate temperatures, our results show a three zero structure and at low temperatures, our results are governed by the emergence of the Kondo peak in the transmittance, which defines the behavior of the shape of the S coefficient as a function of the parameters of the model. The oscillatory behavior obtained by the Hartree-Fock approximation reproduces the shape obtained by us in a non-interacting system (U=0). The S sign is sensitive to different polarization of the quantum dot, and as a consequence the device could be employed to experimentally detect the polarization states of the system. Our results also confirm that the large increase of S upon increasing U, obtained by the mean field approximation, is correct only for low temperatures. We also discuss the role of the Kondo peak in defining the behavior of the spin thermopower at low temperatures.

  11. Seasonality and the effectiveness of mass vaccination.

    PubMed

    Chao, Dennis L; Dimitrov, Dobromir T

    2016-04-01

    Many infectious diseases have seasonal outbreaks, which may be driven by cyclical environmental conditions (e.g., an annual rainy season) or human behavior (e.g., school calendars or seasonal migration). If a pathogen is only transmissible for a limited period of time each year, then seasonal outbreaks could infect fewer individuals than expected given the pathogen's in-season transmissibility. Influenza, with its short serial interval and long season, probably spreads throughout a population until a substantial fraction of susceptible individuals are infected. Dengue, with a long serial interval and shorter season, may be constrained by its short transmission season rather than the depletion of susceptibles. Using mathematical modeling, we show that mass vaccination is most efficient, in terms of infections prevented per vaccine administered, at high levels of coverage for pathogens that have relatively long epidemic seasons, like influenza, and at low levels of coverage for pathogens with short epidemic seasons, like dengue. Therefore, the length of a pathogen's epidemic season may need to be considered when evaluating the costs and benefits of vaccination programs.

  12. Differential equation based method for accurate approximations in optimization

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1990-01-01

    A method to efficiently and accurately approximate the effect of design changes on structural response is described. The key to this method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in most cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacements are used to approximate bending stresses.

  13. Effects of BMI, Fat Mass, and Lean Mass on Asthma in Childhood: A Mendelian Randomization Study

    PubMed Central

    Granell, Raquel; Henderson, A. John; Evans, David M.; Smith, George Davey; Ness, Andrew R.; Lewis, Sarah; Palmer, Tom M.; Sterne, Jonathan A. C.

    2014-01-01

    Background Observational studies have reported associations between body mass index (BMI) and asthma, but confounding and reverse causality remain plausible explanations. We aim to investigate evidence for a causal effect of BMI on asthma using a Mendelian randomization approach. Methods and Findings We used Mendelian randomization to investigate causal effects of BMI, fat mass, and lean mass on current asthma at age 7½ y in the Avon Longitudinal Study of Parents and Children (ALSPAC). A weighted allele score based on 32 independent BMI-related single nucleotide polymorphisms (SNPs) was derived from external data, and associations with BMI, fat mass, lean mass, and asthma were estimated. We derived instrumental variable (IV) estimates of causal risk ratios (RRs). 4,835 children had available data on BMI-associated SNPs, asthma, and BMI. The weighted allele score was strongly associated with BMI, fat mass, and lean mass (all p-values<0.001) and with childhood asthma (RR 2.56, 95% CI 1.38–4.76 per unit score, p = 0.003). The estimated causal RR for the effect of BMI on asthma was 1.55 (95% CI 1.16–2.07) per kg/m2, p = 0.003. This effect appeared stronger for non-atopic (1.90, 95% CI 1.19–3.03) than for atopic asthma (1.37, 95% CI 0.89–2.11) though there was little evidence of heterogeneity (p = 0.31). The estimated causal RRs for the effects of fat mass and lean mass on asthma were 1.41 (95% CI 1.11–1.79) per 0.5 kg and 2.25 (95% CI 1.23–4.11) per kg, respectively. The possibility of genetic pleiotropy could not be discounted completely; however, additional IV analyses using FTO variant rs1558902 and the other BMI-related SNPs separately provided similar causal effects with wider confidence intervals. Loss of follow-up was unlikely to bias the estimated effects. Conclusions Higher BMI increases the risk of asthma in mid-childhood. Higher BMI may have contributed to the increase in asthma risk toward the end of the 20th century. Please see

  14. Mass-Imbalanced Superconductivity in Effective Two-Channel Kondo Lattice

    NASA Astrophysics Data System (ADS)

    Kusunose, Hiroaki

    2016-11-01

    We propose that mass-imbalanced superconductivity is realized in an effective two-channel Kondo lattice, and its characteristic property appears in electromagnetic responses such as the Meissner effect. Starting from an effective two-channel Kondo lattice model as a low-energy effective theory, and approximating it with two mean-field order parameter components in a self-consistent fashion, it is shown that the balance of the two components is sensitively reflected in the magnitude of the Meissner kernel, while thermodynamic properties are little affected by the balance. This remarkable behavior is understood by the localized character of one partner in the Cooper pair, namely, the effect of the mass imbalance. We briefly mention the relevance to the huge enhancement of the upper critical field under pressure observed in Pr 1-2-20 systems.

  15. Thermal /Soret/ diffusion effects on interfacial mass transport rates

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.

    1980-01-01

    It is shown that thermal (Soret) diffusion significantly alters convective mass transport rates and important transition temperatures in highly nonisothermal flow systems involving the transport of 'heavy' species (vapors or particles). Introduction of the Soret transport term is shown to result in mass transfer effects similar to those of 'suction' and a homogeneous chemical 'sink'. It is pointed out that this analogy provides a simple method of correlating and predicting thermal diffusion effects in the abovementioned systems.

  16. Effective mass measurement: the influence of hole band nonparabolicity in SiGe/Ge quantum wells

    NASA Astrophysics Data System (ADS)

    Rössner, Benjamin; von Känel, Hans; Chrastina, Daniel; Isella, Giovanni; Batlogg, Bertram

    2007-01-01

    We show that the common practice of identifying effective masses derived from Shubnikov-de Haas (SdH) and cyclotron resonance measurements with zero-field effective density of states (DOS) masses must be scrutinized when nonparabolicity effects come into play. To this end, the temperature dependence of theoretical SdH oscillations expected for strained-Ge quantum wells is explicitly simulated from calculations of the Landau level structure, giving rise to theoretical masses in exact analogy to a SdH measurement. The calculations are performed within a 6 × 6 envelope function approximation (EFA). The same method is used to calculate the zero-field DOS mass. Our analysis shows that the pronounced nonparabolicity of the heavy hole band leads to a nonlinear magnetic field dependence of Landau level energies invalidating the assumption of equal cyclotron and DOS masses. In particular, we show that at high carrier density the DOS mass is significantly underestimated in a SdH measurement.

  17. Effective pion mass term and the trace anomaly

    NASA Astrophysics Data System (ADS)

    Golterman, Maarten; Shamir, Yigal

    2017-01-01

    Recently, we developed an effective theory of pions and a light dilatonic meson for gauge theories with spontaneously broken chiral symmetry that are close to the conformal window. The pion mass term in this effective theory depends on an exponent y . We derive the transformation properties under dilatations of the renormalized fermion mass and use this to rederive y =3 -γm* , where γm* is the fixed-point value of the mass anomalous dimension at the sill of the conformal window. This value for y is consistent with the trace anomaly of the underlying near-conformal gauge theory.

  18. Terrestrial Planet Formation around Low-Mass Stars: Effect of the Mass of Central Stars

    NASA Astrophysics Data System (ADS)

    Oshino, Shoichi; Matsumoto, Yuji; Kokubo, Eiichiro

    2015-12-01

    The Kepler space telescope has detected several thousand planets and candidates.Their central stars are mainly FGK-type stars.It is difficult to observe M-stars by using visible light since M-stars have their peak radiation in the infrared region.However, recently there are several survey projects for planets around M-stars such as the InfraRed Doppler (IRD) survey of the Subaru telescope.Therefore it is expected that the number of planets around M-stars will increase in the near future.The habitable zone of M-stars is closer to the stars than that of G-stars.For this reason, the possibility of finding habitable planets is expected to be higher.Here we study the formation of close-in terrestrial planets by giant impacts of protoplanets around low-mass stars by using N-body simulations.An important parameter that controls formation processes is the ratio between the physical radius of a planet and its Hill radius, which decreases with the stellar mass.We systematically change the mass of the central stars and investigate its effects on terrestrial planet formation.We find that the mass of the maximum planet decreases with the mass of central stars, while the number of planets in the system increases.We also find that the orbital separation of adjacent planets normalized by their Hill radius increases with the stellar mass.

  19. The effect of rheological approximations on the dynamics and topography in 3D subduction-collision models

    NASA Astrophysics Data System (ADS)

    Pusok, Adina E.; Kaus, Boris J. P.; Popov, Anton A.

    2016-04-01

    Most of the major mountain belts and orogenic plateaus are found within the overlying plate of active or fossil subduction and/or collision zones. Moreover, they evolve differently from one another as the result of specific combinations of surface and mantle processes. These differences arise for several reasons, such as different rheological properties, different amounts of regional isostatic compensation, and different mechanisms by which forces are applied to the convergent plates. Previous 3D geodynamic models of subduction/collision processes have used various rheological approximations, making numerical results difficult to compare, since there is no clear image on the extent of these approximations on the dynamics. Here, we employ the code LaMEM to perform high-resolution long-term 3D simulations of subduction/continental collision in an integrated lithospheric and upper-mantle scale model. We test the effect of rheological approximations on mantle and lithosphere dynamics in a geometrically simplified model setup that resembles a tectonic map of the India-Asia collision zone. We use the "sticky-air" approach to allow for the development of topography and the dynamics of subduction and collision is entirely driven by slab-pull (i.e. "free subduction"). The models exhibit a wide range of behaviours depending on the rheological law employed: from linear to temperature-dependent visco-elasto-plastic rheology that takes into account both diffusion and dislocation creep. For example, we find that slab dynamics varies drastically between end member models: in viscous approximations, slab detachment is slow following a viscous thinning, while for a non-linear visco-elasto-plastic rheology, slab detachment is relatively fast, inducing strong mantle flow in the slab window. We also examine the stress states in the subducting and overriding plates and topography evolution in the upper plate, and we discuss the implications on lithosphere dynamics at convergent margins

  20. Quantum-gravitational effects on gauge-invariant scalar and tensor perturbations during inflation: The slow-roll approximation

    NASA Astrophysics Data System (ADS)

    Brizuela, David; Kiefer, Claus; Krämer, Manuel

    2016-12-01

    We continue our study on corrections from canonical quantum gravity to the power spectra of gauge-invariant inflationary scalar and tensor perturbations. A direct canonical quantization of a perturbed inflationary universe model is implemented, which leads to a Wheeler-DeWitt equation. For this equation, a semiclassical approximation is applied in order to obtain a Schrödinger equation with quantum-gravitational correction terms, from which we calculate the corrections to the power spectra. We go beyond the de Sitter case discussed earlier and analyze our model in the first slow-roll approximation, considering terms linear in the slow-roll parameters. We find that the dominant correction term from the de Sitter case, which leads to an enhancement of power on the largest scales, gets modified by terms proportional to the slow-roll parameters. A correction to the tensor-to-scalar ratio is also found at second order in the slow-roll parameters. Making use of the available experimental data, the magnitude of these quantum-gravitational corrections is estimated. Finally, the effects for the temperature anisotropies in the cosmic microwave background are qualitatively obtained.

  1. A Derivation of Aharonov-Casher Phase and Another Adiabatic Approximation for Pure Gauge Under General Rashba Effects

    NASA Astrophysics Data System (ADS)

    Kondo, Kenji

    2016-09-01

    Spin filters using spin-orbit interaction (SOI) are very important in the field of spintronics. Therefore, a theory of devices using SOI is necessary for designing the spin filters. The spin-filtering devices can be used to generate and detect spin polarized currents. Many researchers have reported on the spin-filters using linear Rashba SOI. However, the spin-filters using square and cubic Rashba SOIs are not yet reported. This is surely because the Aharonov-Casher (AC) phases acquired under square and cubic Rashba SOIs are ambiguous. In this paper, we try to derive the AC phases acquired under nth order Rashba SOIs, which we call general Rashba SOIs, using non-Abelian SU (2) gauge theory. As a result, we have successfully derived these AC phases without completing the square methods which is useless except for linear Rashba SOI. In the process of derivation of AC phases, we have also found another expression of adiabatic approximation for a pure gauge. This finding will lead to the starting point for deeply understanding the adiabatic approximation. Using the above AC phases under general Rashba SOIs, we investigate the spin filter effect in Aharonov-Bohm (AB) ring with double quantum dots (QDs) under general Rashba SOIs. The spin transport is investigated from left nanowire to right nanowire in this structure within tight binding approximation. Especially, we focus on the difference of spin filter effects among general Rashba SOIs. We have obtained the penetrating magnetic flux dependence of spin polarization for the AB ring subject to general Rashba SOIs. It is found that the perfect spin filtering is achieved for all the Rashba SOIs. This result indicates that this AB ring under general Rashba SOIs can be a promising device for spin current generation without ferromagnetic metals. Moreover, this device under different order Rashba SOI behaves in totally different ways in response to penetrating magnetic flux, which is attributed to n times rotation of

  2. Observables of a test mass along an inclined orbit in a post-Newtonian-approximated Kerr spacetime including the linear and quadratic spin terms.

    PubMed

    Hergt, Steven; Shah, Abhay; Schäfer, Gerhard

    2013-07-12

    The orbital motion is derived for a nonspinning test mass in the relativistic, gravitational field of a rotationally deformed body not restricted to the equatorial plane or spherical orbit. The gravitational field of the central body is represented by the Kerr metric, expanded to second post-Newtonian order including the linear and quadratic spin terms. The orbital period, the intrinsic periastron advance, and the precession of the orbital plane are derived with the aid of novel canonical variables and action-based methods.

  3. Femtolensing: Beyond the semiclassical approximation

    NASA Technical Reports Server (NTRS)

    Ulmer, Andrew; Goodman, Jeremy

    1995-01-01

    Femtolensoing is a gravitational lensing effect in which the magnification is a function not only of the position and sizes of the source and lens, but also of the wavelength of light. Femtolensing is the only known effect of 10(exp -13) - 10(exp -16) solar mass) dark-matter objects and may possibly be detectable in cosmological gamma-ray burst spectra. We present a new and efficient algorithm for femtolensing calculation in general potentials. The physical optics results presented here differ at low frequencies from the semiclassical approximation, in which the flux is attributed to a finite number of mutually coherent images. At higher frequencies, our results agree well with the semicalssical predictions. Applying our method to a point-mass lens with external shear, we find complex events that have structure at both large and small spectral resolution. In this way, we show that femtolensing may be observable for lenses up to 10(exp -11) solar mass, much larger than previously believed. Additionally, we discuss the possibility of a search femtolensing of white dwarfs in the Large Magellanic Cloud at optical wavelengths.

  4. Approximate kernel competitive learning.

    PubMed

    Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang

    2015-03-01

    Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches.

  5. Is effective mass in combat sports punching above its weight?

    PubMed

    Lenetsky, Seth; Nates, Roy J; Brughelli, Matt; Harris, Nigel K

    2015-04-01

    The segmental and muscular complexity of the human body can result in challenges when examining the kinetics of impacts. To better understand this complexity, combat sports literature has selected effective mass as a measure of an athlete's inertial contribution to the momentum transfer during the impact of strikes. This measure helps to clarify the analysis of striking kinetics in combat sports. This paper will review: (1) effective mass as a concept and its usage as a measure of impact intensity in combat sports, (2) the neuromuscular pattern known as "double peak muscle activation" which has been theorized to help enhance initial hand velocity upon impact and joint stiffening during impact, (3) the methods and equations used to calculate effective mass, and (4) practitioner recommendations based on the literature. We will argue in this manuscript that the act of punching presents unique challenges to the current understanding of effective mass due to additional force application during impact. This review will improve the understanding of effective mass and its roles in effective striking serving to underpin future research into performance enhancement in striking based combat sports.

  6. Effective kaon masses in dense nuclear and neutron matter

    NASA Astrophysics Data System (ADS)

    Waas, T.; Kaiser, N.; Weise, W.

    1996-02-01

    The effective mass and decay width of kaonic modes in baryonic matter are studied within a coupled-channel approach based on the Chiral SU(3) Effective Lagrangian which describes all available low energy data of the coupled overlineKN, π∑, πΛ system. Including Pauli blocking and Fermi motion in the kaon dispersion relation, we find a strong non-linear density dependence of the K - effective mass and decay width in symmetric nuclear matter at densities around 0.1 times normal nuclear matter density ϱ0 due to the in-medium dynamics of the Λ(1405) resonance. At higher densities the K - effective mass decreases slowly but stays above 0.5 mK at least up to densities below 3 ϱ0. In neutron matter the K - effective mass decreases almost linearly with increasing density but remains relatively large ( m K∗ > 0.65 m K) for ϱn ≲ 3 ϱ0. The K + effective mass turns out to increase very slowly with rising density.

  7. Spin-orbit coupling induced by effective mass gradient

    NASA Astrophysics Data System (ADS)

    Matos-Abiague, A.

    2010-04-01

    The existence of a spin-orbit coupling (SOC) induced by the gradient of the effective mass in low-dimensional heterostructures is revealed. In structurally asymmetric quasi-two-dimensional semiconductor heterostructures the presence of a mass gradient across the interfaces results in a SOC which competes with the SOC created by the electric field in the valence band. However, in graded quantum wells subjected to an external electric field, the mass-gradient-induced SOC can be finite even when the electric field in the valence band vanishes.

  8. Fitting-determined formulation of effective medium approximation for 3D trench structures in model-based infrared reflectrometry.

    PubMed

    Zhang, Chuanwei; Liu, Shiyuan; Shi, Tielin; Tang, Zirong

    2011-02-01

    The success of the model-based infrared reflectrometry (MBIR) technique relies heavily on accurate modeling and fast calculation of the infrared metrology process, which continues to be a challenge, especially for three-dimensional (3D) trench structures. In this paper, we present a simplified formulation for effective medium approximation (EMA), determined by a fitting-based method for the modeling of 3D trench structures. Intensive investigations have been performed with an emphasis on the generality of the fitting-determined (FD)-EMA formulation in terms of trench depth, trench pitch, and incidence angle so that its application is not limited to a particular configuration. Simulations conducted on a taper trench structure have further verified the proposed FD-EMA and demonstrated that the MBIR metrology with the FD-EMA-based model achieves an accuracy one order higher than that of the conventional zeroth-order EMA-based model.

  9. Models, figures and gravitational moments of Jupiter’s satellite Io: Effects of the second order approximation

    NASA Astrophysics Data System (ADS)

    Zharkov, V. N.; Gudkova, T. V.

    2010-08-01

    The effects of the equilibrium figure theory to within terms of the second order in a small parameter α on figure parameters and gravitational moments of the Galilean satellite Io have been considered. Integro-differential equations of the theory of figure to second order have been first solved numerically. Relations between the low-order coefficients of the gravitational field for satellites in hydrostatic equilibrium are generalized according to the second order theory. To show the effects of the second approximation, two three-layer trial models of Io are used. The considered models of the Io's interiors differ by the size and density of the core, while having the same thickness and density of the crust, and the mantle density difference is only 20 kg/m 3. The corrections of second order in smallness to the gravitational moments J2 and C22 decrease the third decimal digit of model gravitational moments by two units. As the effects of third and forth harmonics are determined mostly by outer layers of Io, to distinguish between model mantle density, the gravitational moments J4, C42 and C44 should be determined to accuracy with three or four decimal digits. The second order corrections mostly effect the semi-axis a, and less the semi-axes b and c.

  10. Effective Schrödinger equation with general ordering ambiguity position-dependent mass Morse potential

    NASA Astrophysics Data System (ADS)

    Ikhdair, Sameer M.

    2012-07-01

    We solve the parametric generalized effective Schrödinger equation with a specific choice of position-dependent mass function and Morse oscillator potential by means of the Nikiforov-Uvarov method combined with the Pekeris approximation scheme. All bound-state energies are found explicitly and all corresponding radial wave functions are built analytically. We choose the Weyl or Li and Kuhn ordering for the ambiguity parameters in our numerical work to calculate the energy spectrum for a few (H2, LiH, HCl and CO) diatomic molecules with arbitrary vibration n and rotation l quantum numbers and different position-dependent mass functions. Two special cases including the constant mass and the vibration s-wave (l = 0) are also investigated.

  11. Defining the effective impact mass of elbow and shoulder strikes in ice hockey.

    PubMed

    Rousseau, Philippe; Hoshizaki, Thomas B

    2015-03-01

    Reconstruction of real-life events can be used to investigate the relationship between the mechanical parameters of the impact and concussion risk. Striking mass has typically been approximated as being the mass of the body part coming into contact with the head without accounting for the force applied by the striking athlete. Thus, the purpose of this study was to measure the effective impact mass of three common striking techniques in ice hockey. Fifteen participants were instructed to strike a suspended 50th percentile Hybrid III headform at least three times with their elbow or shoulder. Effective impact mass was calculated by measuring the change in velocity of the player and the headform. Mean effective impact mass for the extended elbow, tucked-in elbow, and shoulder check conditions were 4.8, 3.0, and 12.9 kg, respectively. Peak linear accelerations were lower than the values associated with concussion in American football which could be a reflection of the methodology used in this study as well as inherent differences between both sports.

  12. Effective mass discontinuity and current oscillations in stratified systems

    NASA Astrophysics Data System (ADS)

    Halilov, S.; Mil'shtein, S.

    2015-11-01

    Tunnelling transport in modulated film, which occurs either stoichiometrically or due to a stress field, is analysed in terms of the variable carrier effective mass tensor. It is shown that the mass tensor discontinuity alone, i.e. with no actual potential barrier present, may lead to current oscillations versus the size of the modulated region. While both effects of mass discontinuity and the band offset upon the carrier flow are formally described in terms of wave mechanics, their mechanisms are quite distinct: the magnitude of the current oscillations due to mass disruption is determined by the differential mass across the interface, i.e. by change in the covalency due to structural modulation, whereas the band offset is generally an effect of the affinity change across the interface. Both effects are superimposed by the 3D kinematic coupling of the orthogonal transport, either constructively or destructively, leading to an oscillatory dependence of the current magnitude on the film dimension. As an illustration, the analysis is applied to a Si1-x Ge x /Si stratified structure to demonstrate the effect of quasi-bound states on the transport. The modelling is corroborated by a device simulation of a SiGe system in a heterojunction bipolar transistor setting. The findings can be used as a general method to control anisotropic tunnelling transport in stratified structures.

  13. The effects of injury and illness on haemoglobin mass.

    PubMed

    Gough, C E; Sharpe, K; Garvican, L A; Anson, J M; Saunders, P U; Gore, C J

    2013-09-01

    This study sought to quantify the effects of reduced training, surgery and changes in body mass on haemoglobin mass (Hbmass) in athletes. Hbmass of 15 athletes (6 males, 9 females) was measured 9±6 (mean±SD) times over 162±198 days, during reduced training following injury or illness. Additionally, body mass (n=15 athletes) and episodes of altitude training (n=2), iron supplementation (n=5), or surgery (n=3) were documented. Training was recorded and compared with pre-injury levels. Analysis used linear mixed models for ln(Hbmass), with Sex, Altitude, Surgery, Iron, Training and log(Body Mass) as fixed effects, and Athlete as a fixed and random effect. Reduced training and surgery led to 2.3% (p=0.02) and 2.7% (p=0.04) decreases in Hbmass, respectively. Altitude and iron increased Hbmass by 2.4% (p=0.03) and 4.2% (p=0.05), respectively. The effect of changes in body mass on Hbmass was not statistically significant (p=0.435).The estimates for the effects of surgery and altitude on Hbmass should be confirmed by future research using a larger sample of athletes. These estimates could be used to inform the judgements of experts examining athlete biological passports, improving their interpretation of Hbmass perturbations, which athletes claim are related to injury, thereby protecting innocent athletes from unfair sanctioning.

  14. Anisotropy of effective electron masses in highly doped nonpolar GaN

    SciTech Connect

    Feneberg, Martin Lange, Karsten; Lidig, Christian; Wieneke, Matthias; Witte, Hartmut; Bläsing, Jürgen; Dadgar, Armin; Krost, Alois; Goldhahn, Rüdiger

    2013-12-02

    The anisotropic effective electron masses in wurtzite GaN are determined by generalized infrared spectroscopic ellipsometry. Nonpolar (112{sup ¯}0) oriented thin films allow accessing both effective masses, m{sub ⊥}{sup *} and m{sub ∥}{sup *}, by determining the screened plasma frequencies. A n-type doping range up to 1.7 × 10{sup 20} cm{sup −3} is investigated. The effective mass ratio m{sub ⊥}{sup *}/m{sub ∥}{sup *} is obtained with highest accuracy and is found to be 1.11 independent on electron concentration up to 1.2 × 10{sup 20} cm{sup −3}. For higher electron concentrations, the conduction band non-parabolicity is mirrored in changes. Absolute values for effective electron masses depend on additional input of carrier concentrations determined by Hall effect measurements. We obtain m{sub ⊥}{sup *}=(0.239±0.004)m{sub 0} and m{sub ∥}{sup *}=(0.216±0.003)m{sub 0} for the parabolic range of the GaN conduction band. Our data are indication of a parabolic GaN conduction band up to an energy of approximately 400 meV above the conduction band minimum.

  15. Batch uptake of lysozyme: effect of solution viscosity and mass transfer on adsorption.

    PubMed

    Wright, P R; Muzzio, F J; Glasser, B J

    1998-01-01

    In this study, solid-phase adsorption by macroporous and hyper-diffusive resins was investigated in a batch uptake adsorption system to quantify solid-phase diffusion rates as a function of bulk phase viscosity. The performance of chromatographic resins used for adsorption of proteins is dependent on several factors including solid and liquid-phase diffusivity, boundary layer mass transfer, and intraparticle mass transfer effects. Understanding these effects is critical to process development and optimization of both packed and fluidized bed adsorption systems. The macroporous resin used here was Streamline SP, and the hyper-diffusive resin was S-HyperD LS. Both have been frequently used in fluidized bed adsorption of proteins; however, factors that affect uptake rates of these media are not well quantified. Adsorption isotherms were well represented by an empirical fit of a Langmuir isotherm. Solid-phase diffusion coefficients obtained from simulations were in agreement with other models for macroporous and hyper-diffusive particles. S-HyperD LS in the buffer system had the highest uptake rate, but increased bulk phase viscosity decreased the rate by approximately 50%. Increases in bulk phase viscosity increased film mass transfer effects, and uptake was observed to be a strong function of the film mass transfer coefficient. Uptake by Streamline SP particles was slower than S-HyperD in buffer, due to a greater degree of intraparticle mass transfer resistance. The effect of increased film mass transfer resistance coupled with intraparticle mass transfer resistances at an increased bulk phase viscosity resulted in a decrease of 80% in the uptake rate by Streamline SP relative to S-HyperD.

  16. Quark mass correction to chiral separation effect and pseudoscalar condensate

    NASA Astrophysics Data System (ADS)

    Guo, Er-dong; Lin, Shu

    2017-01-01

    We derived an analytic structure of the quark mass correction to chiral separation effect (CSE) in small mass regime. We confirmed this structure by a D3/D7 holographic model study in a finite density, finite magnetic field background. The quark mass correction to CSE can be related to correlators of pseudo-scalar condensate, quark number density and quark condensate in static limit. We found scaling relations of these correlators with spatial momentum in the small momentum regime. They characterize medium responses to electric field, inhomogeneous quark mass and chiral shift. Beyond the small momentum regime, we found existence of normalizable mode, which possibly leads to formation of spiral phase. The normalizable mode exists beyond a critical magnetic field, whose magnitude decreases with quark chemical potential.

  17. Higgs mechanism and the added-mass effect.

    PubMed

    Krishnaswami, Govind S; Phatak, Sachin S

    2015-04-08

    In the Higgs mechanism, mediators of the weak force acquire masses by interacting with the Higgs condensate, leading to a vector boson mass matrix. On the other hand, a rigid body accelerated through an inviscid, incompressible and irrotational fluid feels an opposing force linearly related to its acceleration, via an added-mass tensor. We uncover a striking physical analogy between the two effects and propose a dictionary relating them. The correspondence turns the gauge Lie algebra into the space of directions in which the body can move, encodes the pattern of gauge symmetry breaking in the shape of an associated body and relates symmetries of the body to those of the scalar vacuum manifold. The new viewpoint is illustrated with numerous examples, and raises interesting questions, notably on the fluid analogues of the broken symmetry and Higgs particle, and the field-theoretic analogue of the added mass of a composite body.

  18. Higgs mechanism and the added-mass effect

    PubMed Central

    Krishnaswami, Govind S.; Phatak, Sachin S.

    2015-01-01

    In the Higgs mechanism, mediators of the weak force acquire masses by interacting with the Higgs condensate, leading to a vector boson mass matrix. On the other hand, a rigid body accelerated through an inviscid, incompressible and irrotational fluid feels an opposing force linearly related to its acceleration, via an added-mass tensor. We uncover a striking physical analogy between the two effects and propose a dictionary relating them. The correspondence turns the gauge Lie algebra into the space of directions in which the body can move, encodes the pattern of gauge symmetry breaking in the shape of an associated body and relates symmetries of the body to those of the scalar vacuum manifold. The new viewpoint is illustrated with numerous examples, and raises interesting questions, notably on the fluid analogues of the broken symmetry and Higgs particle, and the field-theoretic analogue of the added mass of a composite body. PMID:27547077

  19. Active and sterile neutrino mass effects on beta decay spectra

    SciTech Connect

    Boillos, Juan Manuel; Moya de Guerra, Elvira

    2013-06-10

    We study the spectra of the emitted charged leptons in charge current weak nuclear processes to analyze the effect of neutrino masses. Standard active neutrinos are studied here, with masses of the order of 1 eV or lower, as well as sterile neutrinos with masses of a few keV. The latter are warm dark matter (WDM) candidates hypothetically produced or captured as small mixtures with the active neutrinos. We compute differential decay or capture rates spectra in weak charged processes of different nuclei ({sup 3}H, {sup 187}Re, {sup 107}Pd, {sup 163}Ho, etc) using different masses of both active and sterile neutrinos and different values of the mixing parameter.

  20. A special case of the Poisson PDE formulated for Earth's surface and its capability to approximate the terrain mass density employing land-based gravity data, a case study in the south of Iran

    NASA Astrophysics Data System (ADS)

    AllahTavakoli, Yahya; Safari, Abdolreza; Vaníček, Petr

    2016-12-01

    This paper resurrects a version of Poisson's Partial Differential Equation (PDE) associated with the gravitational field at the Earth's surface and illustrates how the PDE possesses a capability to extract the mass density of Earth's topography from land-based gravity data. Herein, first we propound a theorem which mathematically introduces this version of Poisson's PDE adapted for the Earth's surface and then we use this PDE to develop a method of approximating the terrain mass density. Also, we carry out a real case study showing how the proposed approach is able to be applied to a set of land-based gravity data. In the case study, the method is summarized by an algorithm and applied to a set of gravity stations located along a part of the north coast of the Persian Gulf in the south of Iran. The results were numerically validated via rock-samplings as well as a geological map. Also, the method was compared with two conventional methods of mass density reduction. The numerical experiments indicate that the Poisson PDE at the Earth's surface has the capability to extract the mass density from land-based gravity data and is able to provide an alternative and somewhat more precise method of estimating the terrain mass density.

  1. Estimation of a 2p2h effect on Gamow-Teller transitions within the second Tamm-Dancoff approximation

    NASA Astrophysics Data System (ADS)

    Minato, F.

    2016-04-01

    Two-particle two-hole (2p2h) effect on the Gamow-Teller (GT) transition for neutron-rich nuclei is studied by the second Tamm-Dancoff approximation (STDA) with the Skyrme interaction. Unstable 24O and 34Si and stable 48Ca nuclei are chosen to study the quenching and fragmentation of the GT strengths. Correlation of the 2p2h configurations causes about 20 % quenching and downward shift of GT giant resonances (GTGRs). The residual interaction changing relative angular momentum that appeared in the tensor force part gives a meaningful effect to the GT strength distributions. In this work, 17 - 26 % of the total GT strengths are brought to high-energy region above GTGRs. In particular, the tensor force brings strengths to high energy more than 50 MeV. STDA calculation within a small model space for 2p2h configuration is also performed and experimental data of 48Ca is reproduced reasonably.

  2. Relation between meteor head echo mass-velocity selection effects, shower mass distribution indices, and mass threshold of the MU radar

    NASA Astrophysics Data System (ADS)

    Kero, Johan

    2014-01-01

    Observations are described that led to a study of the relationship between the head echo mass-velocity selection effect, the mass distribution indices of the Geminid and Orionid meteor showers, and the mass threshold of the MU radar, published by Kero et al. (2013).

  3. Effects of mass loss for highly-irradiated giant planets

    NASA Astrophysics Data System (ADS)

    Hubbard, W. B.; Hattori, M. F.; Burrows, A.; Hubeny, I.; Sudarsky, D.

    2007-04-01

    We present calculations for the evolution and surviving mass of highly-irradiated extrasolar giant planets (EGPs) at orbital semimajor axes ranging from 0.023 to 0.057 AU using a generalized scaled theory for mass loss, together with new surface-condition grids for hot EGPs and a consistent treatment of tidal truncation. Theoretical estimates for the rate of energy-limited hydrogen escape from giant-planet atmospheres differ by two orders of magnitude, when one holds planetary mass, composition, and irradiation constant. Baraffe et al. [Baraffe, I., Selsis, F., Chabrier, G., Barman, T.S., Allard, F., Hauschildt, P.H., Lammer, H., 2004. Astron. Astrophys. 419, L13-L16] predict the highest rate, based on the theory of Lammer et al. [Lammer, H., Selsis, F., Ribas, I., Guinan, E.F., Bauer, S.J., Weiss, W.W., 2003. Astrophys. J. 598, L121-L124]. Scaling the theory of Watson et al. [Watson, A.J., Donahue, T.M., Walker, J.C.G., 1981. Icarus 48, 150-166] to parameters for a highly-irradiated exoplanet, we find an escape rate ˜10 lower than Baraffe's. With the scaled Watson theory we find modest mass loss, occurring early in the history of a hot EGP. In this theory, mass loss including the effect of Roche-lobe overflow becomes significant primarily for masses below a Saturn mass, for semimajor axes ⩾0.023 AU. This contrasts with the Baraffe model, where hot EGPs are claimed to be remnants of much more massive bodies, originally several times Jupiter and still losing substantial mass fractions at present.

  4. The effect of gas physics on the halo mass function

    NASA Astrophysics Data System (ADS)

    Stanek, R.; Rudd, D.; Evrard, A. E.

    2009-03-01

    Cosmological tests based on cluster counts require accurate calibration of the space density of massive haloes, but most calibrations to date have ignored complex gas physics associated with halo baryons. We explore the sensitivity of the halo mass function to baryon physics using two pairs of gas-dynamic simulations that are likely to bracket the true behaviour. Each pair consists of a baseline model involving only gravity and shock heating, and a refined physics model aimed at reproducing the observed scaling of the hot, intracluster gas phase. One pair consists of billion-particle resimulations of the original 500h-1Mpc Millennium Simulation of Springel et al., run with the smoothed particle hydrodynamics (SPH) code GADGET-2 and using a refined physics treatment approximated by pre-heating (PH) at high redshift. The other pair are high-resolution simulations from the adaptive-mesh refinement code ART, for which the refined treatment includes cooling, star formation and supernova feedback (CSF). We find that, although the mass functions of the gravity-only (GO) treatments are consistent with the recent calibration of Tinker et al. (2008), both pairs of simulations with refined baryon physics show significant deviations. Relative to the GO case, the masses of ~1014h-1Msolar haloes in the PH and CSF treatments are shifted by the averages of -15 +/- 1 and +16 +/- 2 per cent, respectively. These mass shifts cause ~30 per cent deviations in number density relative to the Tinker function, significantly larger than the 5 per cent statistical uncertainty of that calibration.

  5. Resonance Effects in Magnetically Driven Mass-Spring Oscillations

    ERIC Educational Resources Information Center

    Taylor, Ken

    2011-01-01

    Resonance effects are among the most intriguing phenomena in physics and engineering. The classical case of a mass-spring oscillator driven at its resonant frequency is one of the earliest examples that students encounter. Perhaps the most commonly depicted method of driving the vibrating system is mechanical. An alternative approach presented in…

  6. Effects of the tidal mass redistribution on the Earth rotation

    NASA Astrophysics Data System (ADS)

    Baenas, T.; Ferrándiz, J.; Escapa, A.; Getino, J.

    2015-08-01

    The effects of the tidal mass redistributions on the Earth precession and nutations are revisited, under various hypothesis on the elastic response of the Earth and using the Hamiltonian approach. New non-negligible secular and periodic contributions have been found.

  7. Evaluating the Effectiveness of a Mass Media Ethics Course.

    ERIC Educational Resources Information Center

    Lee, Byung; Padgett, George

    2000-01-01

    Examines the effectiveness of an ethics education component in a media law and ethics course. Suggests that a short-term mass media ethics study could not develop values considered essential for ethical behavior. Argues that students developed more complexity in their reasoning not measurable by the scale. Suggests a course or module on ethics…

  8. Intracranial hypertension secondary to a skull lesion without mass effect.

    PubMed

    Serlin, Yonatan; Benifla, Mony; Kesler, Anat; Cohen, Avi; Shelef, Ilan

    2016-09-01

    We report and discuss five patients with intracranial hypertension due to a skull lesion reducing cerebral sinus patency with a compressive, non-thrombotic mechanism. We illustrate the importance of a high level of suspicion for this condition in patients presenting with headache, papilledema and increased intracranial pressure in the absence of focal signs or radiological evidence of mass effect.

  9. Negative ion photodetachment and the electron effective mass in liquids

    SciTech Connect

    Baird, J.K.

    1983-07-01

    The electron photodetachment cross section for a negative ion in the gas phase is compared with the photodetachment cross section for the same ion when it is dissolved in a liquid supporting ''free'' electron propagation. The ratio of the amplitudes of these two cross sections near threshold is found to depend upon the effective mass m* of an electron in the conduction band of the liquid. We apply this result to electron photodetachment from O/sub 2//sup -/. In terms of the electron's free mass m, we find for liquid argon at 87 K (m* = 0.26 m), 2,2-dimethylbutane at 296 K (m* = 0.27 m), 2,2,4-trimethylpentane at 296 K (m* = 0.27 m), and tetramethylsilane at 296 K (m* = 0.27 m). At 200 K, the effective mass in tetramethylsilane decreases to m* = 0.21 m. In the case of liquid argon, the effective mass calculated herein agrees qualitatively with values which can be estimated from measurements of the electron mobility and exciton spectrum.

  10. Effective field theory for vibrations in odd-mass nuclei

    NASA Astrophysics Data System (ADS)

    Coello Pérez, E. A.; Papenbrock, T.

    2016-11-01

    Heavy even-even nuclei exhibit low-energy collective excitations that are separated in scale from the microscopic (fermion) degrees of freedom. This separation of scale allows us to approach nuclear vibrations within an effective field theory (EFT). In odd-mass nuclei collective and single-particle properties compete at low energies, and this makes their description more challenging. In this article we describe spherical odd-mass nuclei with ground-state spin I =1/2 by means of an EFT that couples a fermion to the collective degrees of freedom of an even-even core. The EFT relates observables such as energy levels, electric quadrupole transition strengths, and magnetic dipole moments of the odd-mass nucleus to those of its even-even neighbor and allows us to quantify theoretical uncertainties. For isotopes of rhodium and silver the theoretical description is consistent with data within experimental and theoretical uncertainties. Several testable predictions are made.

  11. Gravity effects on neutrino masses in split supersymmetry

    SciTech Connect

    Diaz, Marco Aurelio; Koch, Benjamin; Panes, Boris

    2009-06-01

    The mass differences and mixing angles of neutrinos can neither be explained by R-parity violating split supersymmetry nor by flavor blind quantum gravity alone. It is shown that combining both effects leads, within the allowed parameter range, to good agreement with the experimental results. The atmospheric mass is generated by supersymmetry through mixing between neutrinos and neutralinos, while the solar mass is generated by gravity through flavor blind dimension five operators. Maximal atmospheric mixing forces the tangent squared of the solar angle to be equal to 1/2. The scale of the quantum gravity operator is predicted within a 5% error, implying that the reduced Planck scale should lie around the grand unified theory scale. In this way, the model is very predictive and can be tested at future experiments.

  12. Torsion effects on a relativistic position-dependent mass system

    NASA Astrophysics Data System (ADS)

    Vitória, R. L. L.; Bakke, K.

    2016-12-01

    We analyse a relativistic scalar particle with a position-dependent mass in a spacetime with a space-like dislocation by showing that relativistic bound states solutions can be achieved. Further, we consider the presence of the Coulomb potential and analyse the relativistic position-dependent mass system subject to the Coulomb potential in the spacetime with a space-like dislocation. We also show that a new set of relativistic bound states solutions can be obtained, where there also exists the influence of torsion of the relativistic energy levels. Finally, we investigate an analogue of the Aharonov-Bohm effect for bound states in this position-dependent mass in a spacetime with a space-like dislocation.

  13. The Effect of Body Mass on Outdoor Adult Human Decomposition.

    PubMed

    Roberts, Lindsey G; Spencer, Jessica R; Dabbs, Gretchen R

    2017-02-23

    Forensic taphonomy explores factors impacting human decomposition. This study investigated the effect of body mass on the rate and pattern of adult human decomposition. Nine males and three females aged 49-95 years ranging in mass from 73 to 159 kg who were donated to the Complex for Forensic Anthropology Research between December 2012 and September 2015 were included in this study. Kelvin accumulated degree days (KADD) were used to assess the thermal energy required for subjects to reach several total body score (TBS) thresholds: early decomposition (TBS ≥6.0), TBS ≥12.5, advanced decomposition (TBS ≥19.0), TBS ≥23.0, and skeletonization (TBS ≥27.0). Results indicate no significant correlation between body mass and KADD at any TBS threshold. Body mass accounted for up to 24.0% of variation in decomposition rate depending on stage, and minor differences in decomposition pattern were observed. Body mass likely has a minimal impact on postmortem interval estimation.

  14. Effect of body mass and clothing on carrion entomofauna.

    PubMed

    Matuszewski, Szymon; Frątczak, Katarzyna; Konwerski, Szymon; Bajerlein, Daria; Szpila, Krzysztof; Jarmusz, Mateusz; Szafałowicz, Michał; Grzywacz, Andrzej; Mądra, Anna

    2016-01-01

    Carcass mass largely affects pattern and rate of carrion decomposition. Supposedly, it is similarly important for carrion entomofauna; however, most of its likely effects have not been tested experimentally. Here, simultaneous effects of carcass mass and clothing are analyzed. A factorial block experiment with four levels of carcass mass (small carcasses 5-15 kg, medium carcasses 15.1-30 kg, medium/large carcasses 35-50 kg, large carcasses 55-70 kg) and two levels of carcass clothing (clothed and unclothed) was made in a grassland habitat of Western Poland. Pig carcasses (N = 24) were grouped into spring, early summer, and late summer blocks. Insects were sampled manually and with pitfall traps. Results demonstrate that insect assemblages are more complex, abundant, and long-lasting on larger carcasses, whereas clothing is of minor importance in this respect. Only large or medium/large carcasses were colonized by all guilds of carrion insects, while small or medium carcasses revealed high underrepresentation of late-colonizing insects (e.g., Cleridae or Nitidulidae). This finding indicates that carcasses weighing about 23 kg-a standard in forensic decomposition studies-give an incomplete picture of carrion entomofauna. Residencies of all forensically relevant insects were distinctly prolonged on larger carcasses, indicating that cadaver mass is a factor of great importance in this respect. The pre-appearance interval of most taxa was found to be unrelated to mass or clothing of a carcass. Moreover, current results suggest that rate of larval development is higher on smaller carcasses. In conclusion, this study demonstrates that carcass mass is a factor of crucial importance for carrion entomofauna, whereas the importance of clothing is small.

  15. Homogenization limit for a multiband effective mass model in heterostructures

    SciTech Connect

    Morandi, O.

    2014-06-15

    We study the homogenization limit of a multiband model that describes the quantum mechanical motion of an electron in a quasi-periodic crystal. In this approach, the distance among the atoms that constitute the material (lattice parameter) is considered a small quantity. Our model include the description of materials with variable chemical composition, intergrowth compounds, and heterostructures. We derive the effective multiband evolution system in the framework of the kp approach. We study the well posedness of the mathematical problem. We compare the effective mass model with the standard kp models for uniform and non-uniforms crystals. We show that in the limit of vanishing lattice parameter, the particle density obtained by the effective mass model, converges to the exact probability density of the particle.

  16. Lepton mass effects in elastic lepton-proton scattering beyond the leading order of QED

    NASA Astrophysics Data System (ADS)

    Koshchii, Oleksandr; Afanasev, Andrei

    2017-01-01

    The future MUSE experiment is devised to solve the ``Proton Radius Puzzle'' by considering simultaneously elastic e+/- p and μ+/- p scattering. This experiment requires a per cent level accuracy in comparison of electron-proton and muon-proton scattering. Our goal is to provide all the relevant radiative corrections calculations for MUSE without using ultrarelativistic (ml -> 0) approximation. This approximation is not applicable for the scattering of muons in kinematics of MUSE. In this talk, we will present our up-to-date results on radiative corrections calculations obtained by using a Monte Carlo generator ELRADGEN modified to treat the lepton mass effects with no ultra-relativistic approximation. Next, we will discuss our estimations of the important helicity-flip contribution represented by a scalar σ meson exchange in the t-channel. This term vanishes in the ultra-relativistic and/or one-photon exchange approximation, and makes a difference in comparison of electron vs muon scattering in MUSE. This work was supported by the NSF under Grants Nos. PHY-1404342, PHY-1309130 and by The George Washington University through the Gus Weiss endowment.

  17. Energy spectrum and effective mass of carriers in the InSe/GaSe superlattice

    NASA Astrophysics Data System (ADS)

    Gashimzade, F. M.; Mustafaev, N. B.

    1995-03-01

    Within an effective mass approximation the energy spectrum and mass of carriers in the InSe/GaSe superlattice have been calculated. The superlattice belongs to type II: electrons are primarily confined to the InSe layers whereas the holes are mosfly confined to the GaSe layers. The characteristic feature of electronic structure of the superlattice is the existence of minibands of light carriers at the θ point of the Brillouin zone and minibands of heavy carriers at the M point. The dependence of the miniband structure on thickness of layers has been computed. It is shown that the minibands of light and heavy carriers compete with one another in energy. A general conclusion is made concerning the influence of the competition between the minibands on optic and kinetic properties of the superlattice.

  18. Mass Limited Target Effects on Proton Acceleration with Femtosecond Laser Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Zulick, Calvin; Raymond, A.; McKelvey, A.; Willingale, L.; Chvykov, V.; Maksimchuk, A.; Thomas, A. G. R.; Yanovsky, V.; Krushelnick, K.

    2014-10-01

    Experiments at the HERCULES laser facility have been performed to measure the effect of reduced mass targets on proton acceleration through the use of foil, grid, and wire targets in femtosecond laser plasma interactions. The target thickness was held approximately constant at 12 . 5 μm, while the lateral extent of the target was varied. The electron current density was measured with an imaging Cu Kα crystal. Higher current densities were observed as the target mass was reduced which corresponded to an increase in the temperature of the accelerated proton beam. Additionally, a line focusing feature was observed in the spatial distribution of protons accelerated to from the wire target, believed to be a result of azimuthal magnetic fields generated by electron currents in the wire. Particle-in-cell and Vlasov-Fokker-Plank simulations were performed in order to investigate the focusing magnetic field as well as the complex sheath formation dynamics on the mesh target.

  19. Convective heat and mass transfer on MHD peristaltic flow of Williamson fluid with the effect of inclined magnetic field

    NASA Astrophysics Data System (ADS)

    Veera Krishna, M.; Swarnalathamma, B. V.

    2016-05-01

    In this paper, we discussed the peristaltic MHD flow of an incompressible and electrically conducting Williamson fluid in a symmetric planar channel with heat and mass transfer under the effect of inclined magnetic field. Viscous dissipation and Joule heating are also taken into consideration. Mathematical model is presented by using the long wavelength and low Reynolds number approximations. The differential equations governing the flow are highly nonlinear and thus perturbation solution for small Weissenberg number (We < 1) is presented. Effects of the heat and mass transfer on the longitudinal velocity, temperature and concentration are studied in detail. Main observations are presented in the concluding section. The streamlines pattern is also given due attention.

  20. Galaxy Cluster Gas Mass Fractions From Sunyaev-Zeldovich Effect Measurements: Constraints on Omega(M)

    NASA Technical Reports Server (NTRS)

    Grego, Laura; Carlstrom, John E.; Reese, Erik D.; Holder, Gilbert P.; Holzapfel, William L.; Joy, Marshall K.; Mohr, Joseph J.; Patel, Sandeep

    2001-01-01

    Using sensitive centimeter-wave receivers mounted on the Owens Valley Radio Observatory and Berkeley-Illinois-Maryland-Association millimeter arrays, we have obtained interferometric measurements of the Sunyaev-Zeldovich(SZ) effect toward massive galaxy clusters. We use the SZ data to determine the pressure distribution of the cluster gas and, in combination with published X-ray temperatures, to infer the gas mass and total gravitational mass of 18 clusters. The gas mass fraction, f(g), is calculated for each cluster and is extrapolated to the fiducial radius r(500) using the results of numerical simulations. The mean f(g) within r(500) is 0.081(+ 0.009 / - 0.011) per h(100) (statistical uncertainty at 68% confidence level, assuming Omega(M) = 0.3, Omega(Lambda) = 0.7). We discuss possible sources of systematic errors in the mean f(sub g) measurement. We derive an upper limit for Omega(M) from this sample under the assumption that the mass composition of clusters within r(500) reflects the universal mass composition: Omega(M)h is less than or equal to Omega(B)/f(g). The gas mass fractions depend on cosmology through the angular diameter distance and the r(500) correction factors. For a flat universe (Omega(Lambda) is identical with 1 - Omega(M)) and h = 0.7, we find the measured gas mass fractions are consistent with Omega(M) is less than 0.40, at 68% confidence. Including estimates of the baryons contained in galaxies and the baryons which failed to become bound during the cluster formation process, we find Omega(M) is approximately equal to 0.25.

  1. Effective Power-Law Dependence of Lyapunov Exponents on the Central Mass in Galaxies

    NASA Technical Reports Server (NTRS)

    Delis, N.; Efthymiopoulos, C.; Kalapotharakos, C.

    2015-01-01

    Using both numerical and analytical approaches, we demonstrate the existence of an effective power-law relation L alpha m(sup p) between themean Lyapunov exponent L of stellar orbits chaotically scattered by a supermassive black hole (BH) in the centre of a galaxy and the mass parameter m, i.e. ratio of the mass of the BH over the mass of the galaxy. The exponent p is found numerically to obtain values in the range p approximately equals 0.3-0.5. We propose a theoretical interpretation of these exponents, based on estimates of local 'stretching numbers', i.e. local Lyapunov exponents at successive transits of the orbits through the BH's sphere of influence. We thus predict p = 2/3 - q with q approximately equaling 0.1-0.2. Our basic model refers to elliptical galaxy models with a central core. However, we find numerically that an effective power-law scaling of L with m holds also in models with central cusp, beyond a mass scale up to which chaos is dominated by the influence of the cusp itself. We finally show numerically that an analogous law exists also in disc galaxies with rotating bars. In the latter case, chaotic scattering by the BH affects mainly populations of thick tube-like orbits surrounding some low-order branches of the x(sub 1) family of periodic orbits, as well as its bifurcations at low-order resonances, mainly the inner Lindblad resonance and the 4/1 resonance. Implications of the correlations between L and m to determining the rate of secular evolution of galaxies are discussed.

  2. Interpolation and Approximation Theory.

    ERIC Educational Resources Information Center

    Kaijser, Sten

    1991-01-01

    Introduced are the basic ideas of interpolation and approximation theory through a combination of theory and exercises written for extramural education at the university level. Topics treated are spline methods, Lagrange interpolation, trigonometric approximation, Fourier series, and polynomial approximation. (MDH)

  3. Multiple scattering effects in quasifree scattering from halo nuclei: A test of the distorted-wave impulse approximation

    SciTech Connect

    Crespo, R.; Deltuva, A.; Cravo, E.; Rodriguez-Gallardo, M.; Fonseca, A. C.

    2008-02-15

    Full Faddeev-type calculations are performed for {sup 11}Be breakup on a proton target at 38.4, 100, and 200 MeV/u incident energies. The convergence of the multiple scattering expansion is investigated. The results are compared with those of other frameworks like distorted-wave impulse approximation that are based on an incomplete and truncated multiple scattering expansion.

  4. Fractionated Mercury Isotopes in Fish: The Effects of Nuclear Mass, Spin, and Volume

    NASA Astrophysics Data System (ADS)

    Das, R.; Odom, A. L.

    2007-12-01

    Mercury is long known as a common environmental contaminant. In methylated form it is even more toxic and the methylation process is facilitated by microbial activities. Methyl mercury easily crosses cell membrane and accumulates in soft tissues of fishes and finally biomagnifies with increasing trophic levels. Natural variations in the isotopic composition of mercury have been reported and such variations have emphasized mass dependent fractionations, while theory and laboratory experiments indicate that mass-independent isotopic fractionation (MIF) effects are likely to be found as well. This study focuses on the MIF of mercury isotopes in the soft tissues of fishes. Samples include both fresh water and marine fish, from different continents and oceans. Approximately 1 gm of fish soft tissue was dissolved in 5 ml of conc. aqua regia for 24 hrs and filtered through a ¬¬¬100 μm filter paper and diluted with DI water. Hg is measured as a gaseous phase generated by reduction of the sample with SnCl2 in a continuous- flow cold-vapor generator connected to a Thermo-Finnigan Neptune MC-ICPMS. To minimize instrumental fractionation isotope ratios were measured by sample standard bracketing and reported as δ‰ relative to NIST SRM 3133 Hg standard where δAHg = [(A Hg/202Hg)sample/(A Hg/202Hg)NIST313] -1 ×1000‰. In this study we have measured the isotope ratios 198Hg/202Hg, 199Hg/202Hg, 200Hg/202Hg, 201Hg/202Hg and 204Hg/202Hg. In all the fish samples δ198Hg, δ200Hg, δ202Hg, δ204Hg define a mass- dependent fractionation sequence, where as the δ199Hg and δ201Hg depart from the mass- dependent fractionation line and indicate an excess of the odd-N isotopes. The magnitude of the deviation (ΔAHg where A=199 or 201) as obtained by difference between the measured δ199Hg and δ201Hg of the samples and the value obtained by linear scaling defined by the even-N isotopes ranges from approximately 0.2 ‰ to 3‰. The ratios of Δ199Hg /Δ201Hg range from 0.8 to 1

  5. Improved approximations for control augmented structural synthesis

    NASA Technical Reports Server (NTRS)

    Thomas, H. L.; Schmit, L. A.

    1990-01-01

    A methodology for control-augmented structural synthesis is presented for structure-control systems which can be modeled as an assemblage of beam, truss, and nonstructural mass elements augmented by a noncollocated direct output feedback control system. Truss areas, beam cross sectional dimensions, nonstructural masses and rotary inertias, and controller position and velocity gains are treated simultaneously as design variables. The structural mass and a control-system performance index can be minimized simultaneously, with design constraints placed on static stresses and displacements, dynamic harmonic displacements and forces, structural frequencies, and closed-loop eigenvalues and damping ratios. Intermediate design-variable and response-quantity concepts are used to generate new approximations for displacements and actuator forces under harmonic dynamic loads and for system complex eigenvalues. This improves the overall efficiency of the procedure by reducing the number of complete analyses required for convergence. Numerical results which illustrate the effectiveness of the method are given.

  6. Strong washout approximation to resonant leptogenesis

    NASA Astrophysics Data System (ADS)

    Garbrecht, Björn; Gautier, Florian; Klaric, Juraj

    2014-09-01

    We show that the effective decay asymmetry for resonant Leptogenesis in the strong washout regime with two sterile neutrinos and a single active flavour can in wide regions of parameter space be approximated by its late-time limit ɛ=Xsin(2varphi)/(X2+sin2varphi), where X=8πΔ/(|Y1|2+|Y2|2), Δ=4(M1-M2)/(M1+M2), varphi=arg(Y2/Y1), and M1,2, Y1,2 are the masses and Yukawa couplings of the sterile neutrinos. This approximation in particular extends to parametric regions where |Y1,2|2gg Δ, i.e. where the width dominates the mass splitting. We generalise the formula for the effective decay asymmetry to the case of several flavours of active leptons and demonstrate how this quantity can be used to calculate the lepton asymmetry for phenomenological scenarios that are in agreement with the observed neutrino oscillations. We establish analytic criteria for the validity of the late-time approximation for the decay asymmetry and compare these with numerical results that are obtained by solving for the mixing and the oscillations of the sterile neutrinos. For phenomenologically viable models with two sterile neutrinos, we find that the flavoured effective late-time decay asymmetry can be applied throughout parameter space.

  7. Topics in Metric Approximation

    NASA Astrophysics Data System (ADS)

    Leeb, William Edward

    This thesis develops effective approximations of certain metrics that occur frequently in pure and applied mathematics. We show that distances that often arise in applications, such as the Earth Mover's Distance between two probability measures, can be approximated by easily computed formulas for a wide variety of ground distances. We develop simple and easily computed characterizations both of norms measuring a function's regularity -- such as the Lipschitz norm -- and of their duals. We are particularly concerned with the tensor product of metric spaces, where the natural notion of regularity is not the Lipschitz condition but the mixed Lipschitz condition. A theme that runs throughout this thesis is that snowflake metrics (metrics raised to a power less than 1) are often better-behaved than ordinary metrics. For example, we show that snowflake metrics on finite spaces can be approximated by the average of tree metrics with a distortion bounded by intrinsic geometric characteristics of the space and not the number of points. Many of the metrics for which we characterize the Lipschitz space and its dual are snowflake metrics. We also present applications of the characterization of certain regularity norms to the problem of recovering a matrix that has been corrupted by noise. We are able to achieve an optimal rate of recovery for certain families of matrices by exploiting the relationship between mixed-variable regularity conditions and the decay of a function's coefficients in a certain orthonormal basis.

  8. The Effect of Protein Mass Modulation on Human Dihydrofolate Reductase

    PubMed Central

    Francis, Kevin; Sapienza, Paul J.; Lee, Andrew L.; Kohen, Amnon

    2016-01-01

    Dihydrofolate reductase (DHFR) from Escherichia coli has long served as a model enzyme with which to elucidate possible links between protein dynamics and the catalyzed reaction. Such physical properties of its human counterpart have not been rigorously studied so far, but recent computer-based simulations suggest that these two DHFRs differ significantly in how closely coupled the protein dynamics and the catalyzed C-H→C hydride transfer step are. To test this prediction, two contemporary probes for studying the effect of protein dynamics on catalysis were combined here: temperature dependence of intrinsic kinetic isotope effects (KIEs) that are sensitive to the physical nature of the chemical step, and protein mass-modulation that slows down fast dynamics (femto- to picosecond timescale) throughout the protein. The intrinsic H/T KIEs of human DHFR, like those of E. coli DHFR, are shown to be temperature-independent in the range from 5–45 °C, indicating fast sampling of donor and acceptor distances (DADs) at the reaction’s transition state (or tunneling ready state – TRS). Mass modulation of these enzymes through isotopic labeling with 13C, 15N, and 2H at nonexchangeable hydrogens yield an 11% heavier enzyme. The additional mass has no effect on the intrinsic KIEs of the human enzyme. This finding indicates that the mass-modulation of the human DHFR affects neither DAD distribution nor the DAD’s conformational sampling dynamics. Furthermore, reduction in the enzymatic turnover number and the dissociation rate constant for the product indicate that the isotopic substitution affects kinetic steps that are not the catalyzed C-H→C hydride transfer. The findings are discussed in terms of fast dynamics and their role in catalysis, the comparison of calculations and experiments, and the interpretation of isotopically-modulated heavy enzymes in general. PMID:26813442

  9. Effects of Distortion on Mass Flow Plug Calibration

    NASA Technical Reports Server (NTRS)

    Sasson, Jonathan; Davis, David O.; Barnhart, Paul J.

    2015-01-01

    A numerical, and experimental investigation to study the effects of flow distortion on a Mass Flow Plug (MFP) used to control and measure mass-flow during an inlet test has been conducted. The MFP was first calibrated using the WIND-US flow solver for uniform (undistorted) inflow conditions. These results are shown to compare favorably with an experimental calibration under similar conditions. The effects of distortion were investigated by imposing distorted flow conditions taken from an actual inlet test to the inflow plane of the numerical simulation. The computational fluid dynamic (CFD) based distortion study only showed the general trend in mass flow rate. The study used only total pressure as the upstream boundary condition, which was not enough to define the flow. A better simulation requires knowledge of the turbulence structure and a specific distortion pattern over a range of plug positions. It is recommended that future distortion studies utilize a rake with at least the same amount of pitot tubes as the AIP rake.

  10. Quantum confinement in nonadditive space with a spatially dependent effective mass for Si and Ge quantum wells

    NASA Astrophysics Data System (ADS)

    Barbagiovanni, E. G.; Filho, R. N. Costa

    2014-09-01

    We calculate the effect of a spatially dependent effective mass (SPDEM) [adapted from Costa Filho et al. (2011)] on an electron and a hole confined in a quantum well (QW). In the work of Costa Filho et al., the translation operator is modified to include an inverse character length scale, γ, which defines the SPDEM. The introduction of γ means that translations are no longer additive. In nonadditive space, we choose a 'skewed' Gaussian confinement potential defined by the replacement x →γ-1 ln(1 + γx) in the usual Gaussian potential. Within the parabolic approximation γ is inversely related to the QW thickness and we obtain analytic solutions to our confinement Hamiltonian. Our calculation yields a reduced dispersion relation for the gap energy (EG) as a function of QW thickness, D :EG D-1, compared to the effective mass approximation: EG D-2. Additionally, nonadditive space contracts the position space metric thus increasing the occupied momentum space and reducing the effective mass, in agreement with the relation: mo*-1 ∝∂2 E / ∂k2. The change in the effective mass is shown to be a function of the confinement potential via a point canonical transformation. Our calculation agrees with experimental measurements of EG for Si and Ge QWs.

  11. Identifying neutrino mass hierarchy at extremely small theta13 through earth matter effects in a supernova signal.

    PubMed

    Dasgupta, Basudeb; Dighe, Amol; Mirizzi, Alessandro

    2008-10-24

    Collective neutrino flavor transformations deep inside a supernova are sensitive to the neutrino mass hierarchy even at extremely small values of theta_(13). Exploiting this effect, we show that comparison of the antineutrino signals from a galactic supernova in two megaton class water Cherenkov detectors, one of which is shadowed by Earth, will enable us to distinguish between the hierarchies if sin(2)theta_(13) < or approximately 10(-5), where long baseline neutrino experiments would be ineffectual.

  12. Mass discharge assessment at a brominated DNAPL site: Effects of known DNAPL source mass removal

    NASA Astrophysics Data System (ADS)

    Johnston, C. D.; Davis, G. B.; Bastow, T. P.; Woodbury, R. J.; Rao, P. S. C.; Annable, M. D.; Rhodes, S.

    2014-08-01

    Management and closure of contaminated sites is increasingly being proposed on the basis of mass flux of dissolved contaminants in groundwater. Better understanding of the links between source mass removal and contaminant mass fluxes in groundwater would allow greater acceptance of this metric in dealing with contaminated sites. Our objectives here were to show how measurements of the distribution of contaminant mass flux and the overall mass discharge emanating from the source under undisturbed groundwater conditions could be related to the processes and extent of source mass depletion. In addition, these estimates of mass discharge were sought in the application of agreed remediation targets set in terms of pumped groundwater quality from offsite wells. Results are reported from field studies conducted over a 5-year period at a brominated DNAPL (tetrabromoethane, TBA; and tribromoethene, TriBE) site located in suburban Perth, Western Australia. Groundwater fluxes (qw; L3/L2/T) and mass fluxes (Jc; M/L2/T) of dissolved brominated compounds were simultaneously estimated by deploying Passive Flux Meters (PFMs) in wells in a heterogeneous layered aquifer. PFMs were deployed in control plane (CP) wells immediately down-gradient of the source zone, before (2006) and after (2011) 69-85% of the source mass was removed, mainly by groundwater pumping from the source zone. The high-resolution (26-cm depth interval) measures of qw and Jc along the source CP allowed investigation of the DNAPL source-zone architecture and impacts of source mass removal. Comparable estimates of total mass discharge (MD; M/T) across the source zone CP reduced from 104 g day- 1 to 24-31 g day- 1 (70-77% reductions). Importantly, this mass discharge reduction was consistent with the estimated proportion of source mass remaining at the site (15-31%). That is, a linear relationship between mass discharge and source mass is suggested. The spatial detail of groundwater and mass flux distributions also

  13. TRIMS: Validating T2 Molecular Effects for Neutrino Mass Experiments

    NASA Astrophysics Data System (ADS)

    Lin, Ying-Ting; Bodine, Laura; Enomoto, Sanshiro; Kallander, Matthew; Machado, Eric; Parno, Diana; Robertson, Hamish; Trims Collaboration

    2017-01-01

    The upcoming KATRIN and Project 8 experiments will measure the model-independent effective neutrino mass through the kinematics near the endpoint of tritium beta-decay. A critical systematic, however, is the understanding of the molecular final-state distribution populated by tritium decay. In fact, the current theory incorporated in the KATRIN analysis framework predicts an observable that disagrees with an experimental result from the 1950s. The Tritium Recoil-Ion Mass Spectrometer (TRIMS) experiment will reexamine branching ratio of the molecular tritium (T2) beta decay to the bound state (3HeT+). TRIMS consists of a magnet-guided time-of-flight mass spectrometer with a detector located on each end. By measuring the kinetic energy and time-of-flight difference of the ions and beta particles reaching the detectors, we will be able to distinguish molecular ions from atomic ones and hence derive the ratio in question.We will give an update on simulation software, analysis tools, and the apparatus, including early commissioning results. U.S. Department of Energy Office of Science, Office of Nuclear Physics, Award Number DE-FG02-97ER41020.

  14. Effective Mass of an Electron Bubble in Superfluid Helium-4

    NASA Astrophysics Data System (ADS)

    Huang, Yunhu; Maris, Humphrey J.

    2017-02-01

    We present the results of computer simulations of the motion of an electron bubble through superfluid helium-4 when acted upon by an electric field. The simulations are based on an extended version of the Gross-Pitaevskii equation. The temperature is assumed to be sufficiently low for the drag exerted on the bubble by thermal excitations to be negligible, and the calculations are made for velocities below the critical velocitie for nucleation of vortices and roton production. We calculate the effective mass m* of the bubble and obtain results in excellent agreement with the measurements of Poitrenaud and Williams, and Ellis, McClintock, and Bowley.

  15. Radial Dependence of the Nucleon Effective Mass in

    SciTech Connect

    L.J. de Bever; Henk Blok; Ross Hicks; Kees de Jager; N. Kalantar-Nayestanaki; James Kelly; L. Lapikas; Rory Miskimen; D. Van Neck; Gerald Peterson; G. van der Steenhoven; H. de Vries

    1998-05-04

    The dynamic properties of the atomic nucleus depend strongly on correlations between the nucleons. We present a combined analysis of inelastic electron-scattering data and electron-induced proton knockout measurements in an effort to obtain phenomenological information on nucleon-nucleon correlations. Our results indicate that the ration of radial wave functions extracted from precise B(e,e') and B(e, e'p) measurements evolve from an interior depression for small Em, characteristic of short-range correlations, to a surface-peaked enhancement for larger Em, characteristic of long-range correlations. This observation can be interpreted in terms of the nucleon effective mass.

  16. Violence and mass media: are laws and regulations effective?

    PubMed

    Wulff, Christian

    2007-10-01

    In Germany, there are several laws and legal and administrative regulations restricting presentation and propagation of violence in mass media. They have proven to be partly effective. Whilst control and supervision of public media is feasible, the containment of what is distributed over the internet proves to be very difficult. It is well recognized that laws and regulations can be only one part of protection for children and youngsters; school, kindergarten and above all the parents must be educated and held responsible for creating media competence in children and adolescents.

  17. The Effect of Feedback and Reionization on Star Formation in Low-mass Dwarf Galaxy Halos

    NASA Astrophysics Data System (ADS)

    Simpson, Christine M.; Bryan, G.; Johnston, K. V.; Smith, B. D.; Mac Low, M.; Sharma, S.; Tumlinson, J.

    2013-01-01

    I will present a set of high resolution simulations of a 109 M⊙ dark matter halo in a cosmological setting done with an adaptive-mesh refinement code as a mass analogue to local low-luminosity dwarf spheroidal galaxies. The primary goal of our simulations is to investigate the roles of reionization and supernova feedback in determining the star formation histories of low mass dwarf galaxies. We include a wide range of physical effects, including metal cooling, molecular hydrogen formation and cooling, photoionization and photodissociation from a metagalactic (but not local) background, a simple prescription for self-shielding, star formation, and a simple model for supernova driven energetic feedback. We find that reionization is primarily responsible for expelling most of the gas in our simulations, but that supernova feedback is required to disperse the dense, cold gas in the core of the halo. Moreover, we show that the timing of reionization can produce an order of magnitude difference in the final stellar mass of the system. For our full physics run with reionization at z=9, we find a stellar mass of about 105 M⊙ at z=0, and a mass-to-light ratio within the half-light radius of approximately 130 M⊙/L⊙, consistent with observed low-luminosity dwarfs. However, the resulting median stellar metallicity is 0.06 Z⊙, considerably larger than observed systems. In addition, we find star formation is truncated between redshifts 4 and 7, at odds with the observed late time star formation in isolated dwarf systems but in agreement with Milky Way ultrafaint dwarf spheroidals. We investigate the efficacy of energetic feedback in our simple thermal-energy driven feedback scheme, and suggest that it may still suffer from excessive radiative losses, despite reaching stellar particle masses of about 100 M⊙, and a comoving spatial resolution of 11 pc. This has led us to pursue improvements in our supernova feedback model to include kinetic as well as thermal energy in

  18. Stellar evolution at high mass including the effect of a stellar wind

    NASA Technical Reports Server (NTRS)

    Stothers, R.; Chin, C.-W.

    1979-01-01

    The effect of a stellar wind on the evolution of stars in the mass range from 15 to 120 solar masses is investigated. All the stellar models are constructed with the use of Cox-Stewart opacities. Four possible cases of mass loss are considered: (1) no mass loss at all; (2) substantial mass loss from stars in all stages of evolution; (3) heavy mass loss from red supergiants only; and (4) sudden and very heavy mass loss from luminous yellow supergiants. The assumption of mass loss during the main-sequence phase of evolution is found to lead to a lowering of the luminosity and, unless the mass loss is extremely heavy, of the effective temperature as well. A comparison of the adopted mass-loss rates with observed rates suggests that stellar winds are probably not an important factor in the evolution of main-sequence stars and supergiants unless the initial masses are greater than about 30 solar masses.

  19. Approximate flavor symmetries

    SciTech Connect

    Rasin, A.

    1994-04-01

    We discuss the idea of approximate flavor symmetries. Relations between approximate flavor symmetries and natural flavor conservation and democracy models is explored. Implications for neutrino physics are also discussed.

  20. The Effects of Partial Ionization on Prominence Mass Formation

    NASA Astrophysics Data System (ADS)

    Karpen, J. T.; Olson, K.; DeVore, C. R.; Martinez Gomez, D.; Sokolov, I.

    2015-12-01

    The origin of the prominence mass has been an open question since this cool plasma suspended in the hot corona was first discovered. We have known for a long time that the mass must come from the chromosphere, but it is unclear whether this mass is lifted bodily through magnetic levitation, injected by reconnection-driven upflows, or driven from the chromosphere by evaporation and then condensed. One evaporation-condensation scenario, the thermal nonequilibrium (TNE) model, is the most fully developed, quantitative model for the prominence plasma to date. In the TNE scenario, localized heating concentrated at the coronal loop footpoints produces chromospheric evaporation, filling the flux tube with hot, dense plasma that subsequently collapses radiatively to form cool condensations. Thus far this model has been successful in explaining the key properties of the long, persistent threads and small, highly dynamic, transient blobs in prominences, the damping of large-amplitude field-aligned prominence oscillations, the appearance of horn-shaped features above the cool prominence in EUV images of coronal cavities, and coronal rain in the ambient corona. To date, all studies of TNE have assumed that the plasma is fully ionized, which is appropriate for the hot coronal gas but unrealistic for the cool plasma below ~30,000 K. The energetics, dynamics, and evolutionary time scales of the TNE process are expected to be altered when the effects of ionization and recombination are considered. We have modified ARGOS, our 1D hydrodynamic code with adaptive mesh refinement, to include an equation of state that accounts for the effects of partial ionization of the plasma over a wide range of temperatures and densities. We will discuss the results of these simulations and their comparison with our previous studies of TNE in typical filament-supporting flux tubes. This work was partially supported by NASA's LWS Strategic Capability program.

  1. Tunable band structure and effective mass of disordered chalcopyrite

    NASA Astrophysics Data System (ADS)

    Wang, Ze-Lian; Xie, Wen-Hui; Zhao, Yong-Hong

    2017-02-01

    The band structure and effective mass of disordered chalcopyrite photovoltaic materials Cu1- x Ag x Ga X 2 ( X = S, Se) are investigated by density functional theory. Special quasirandom structures are used to mimic local atomic disorders at Cu/Ag sites. A local density plus correction method is adopted to obtain correct semiconductor band gaps for all compounds. The bandgap anomaly can be seen for both sulfides and selenides, where the gap values of Ag compounds are larger than those of Cu compounds. Band gaps can be modulated from 1.63 to 1.78 eV for Cu1- x Ag x Ga Se 2, and from 2.33 to 2.64 eV for Cu1- x Ag x Ga S 2. The band gap minima and maxima occur at around x = 0:5 and x = 1, respectively, for both sulfides and selenides. In order to show the transport properties of Cu1- x Ag x Ga X 2, the effective mass is shown as a function of disordered Ag concentration. Finally, detailed band structures are shown to clarify the phonon momentum needed by the fundamental indirect-gap transitions. These results should be helpful in designing high-efficiency photovoltaic devices, with both better absorption and high mobility, by Ag-doping in CuGa X 2.

  2. Analysis of the spin Hall effect in CuIr alloys: Combined approach of density functional theory and Hartree-Fock approximation

    SciTech Connect

    Xu, Zhuo Gu, Bo; Mori, Michiyasu; Maekawa, Sadamichi; Ziman, Timothy

    2015-05-07

    We analyze the spin Hall effect in CuIr alloys in theory by the combined approach of the density functional theory (DFT) and Hartree-Fock (HF) approximation. The spin Hall angle (SHA) is obtained to be negative without the local correlation effects. After including the local correlation effects of the 5d orbitals of Ir impurities, the SHA becomes positive with realistic correlation parameters and consistent with experiment [Niimi et al., Phys. Rev. Lett. 106, 126601 (2011)]. Moreover, our analysis shows that the DFT + HF approach is a convenient and general method to study the influence of local correlation effects on the spin Hall effect.

  3. Multivariate causal attribution and cost-effectiveness of a national mass media campaign in the Philippines.

    PubMed

    Kincaid, D Lawrence; Do, Mai Phuong

    2006-01-01

    Cost-effectiveness analysis is based on a simple formula. A dollar estimate of the total cost to conduct a program is divided by the number of people estimated to have been affected by it in terms of some intended outcome. The direct, total costs of most communication campaigns are usually available. Estimating the amount of effect that can be attributed to the communication alone, however is problematical in full-coverage, mass media campaigns where the randomized control group design is not feasible. Single-equation, multiple regression analysis controls for confounding variables but does not adequately address the issue of causal attribution. In this article, multivariate causal attribution (MCA) methods are applied to data from a sample survey of 1,516 married women in the Philippines to obtain a valid measure of the number of new adopters of modern contraceptives that can be causally attributed to a national mass media campaign and to calculate its cost-effectiveness. The MCA analysis uses structural equation modeling to test the causal pathways and to test for endogeneity, biprobit analysis to test for direct effects of the campaign and endogeneity, and propensity score matching to create a statistically equivalent, matched control group that approximates the results that would have been obtained from a randomized control group design. The MCA results support the conclusion that the observed, 6.4 percentage point increase in modern contraceptive use can be attributed to the national mass media campaign and to its indirect effects on attitudes toward contraceptives. This net increase represented 348,695 new adopters in the population of married women at a cost of U.S. $1.57 per new adopter.

  4. Hydromagnetic free convection flow with Hall effect and mass transfer

    NASA Astrophysics Data System (ADS)

    Sahoo, Prasan Kumar

    2016-02-01

    The study of magnetohydrodynamics (MHD) deals with the flow of an electrically conducting fluid in the presence of an electromagnetic field, which has many applications in astrophysics, geophysics and engineering. Objective of the present study in this paper is to consider the effect of dissipation and Hall current on the MHD free convection flow with mass transfer in a porous vertical channel. An exact solution of the governing equations is obtained by solving the complex variables. The effect of Hall parameter (m), Hartmann number (M), and Concentration parameter (Sc) on the velocity and temperature of the fluid is studied. Simulation results show that the shear stress of primary and secondary velocity for the lower plate increases with increase in the strength of Hall parameter (m) and decreases with increase in Hartmann number (M) and concentration parameter (Sc).

  5. The Effect of QBO on the Total Mass Density

    NASA Astrophysics Data System (ADS)

    Saǧır, Selçuk; Atıcı, Ramazan

    2016-07-01

    The relationship between Quasi-Biennial Oscillation (QBO) measured at 10 hPa altitude and total mass density (TMD) values obtained from NRLMSIS-00 model for 90 km altitude of ionosphere known as Mesosphere-Lower Thermosphere (MLT) region is statistically investigated. For this study, multiple-regression model is used. To see the effect on TMD of QBO directions, Dummy variables are also added to model. In the result of calculations, it is observed that QBO is effected on TMD. It is determined that 69% of variations at TMD can be explainable by QBO. It is determined that the explainable ratio is at the rate of 5%. Also, it is seen that an increase/a decrease of 1 meter per second at QBO give rise to an increase/a decrease of 7,2x10-4 g/cm3 at TMD.

  6. Professional sport activity and micronutrients: effects on bone mass.

    PubMed

    Nuti, R; Martini, G; Merlotti, D; Valleggi, F; De Paola, V; Gennari, L

    2005-01-01

    Osteoporosis is the most prevalent metabolic bone disease among developed countries. Although bone mass and density are certainly determined by various concurrent factors such as genetics, hormones, life-style and the environment, and although the genetic program has a critical role in growth and in bone peak development, for their realization an adequate nutritional intake of nutrients and regular exercise are always necessary and may represent a way to prevent osteoporosis and fractures. Exercise and especially high-impact sport activity during growth and adolescence increases bone mineral density (BMD) in weight-loaded skeletal regions. Aerobics, weight bearing and resistance exercises may also be effective in increasing BMD in post-menopausal women. Even though most of the research on nutritional components has focused almost exclusively on calcium and vitamin D, there is now considerable interest in the effects of a variety of other nutrients on bone status.

  7. The effect of geographic range on extinction risk during background and mass extinction.

    PubMed

    Payne, Jonathan L; Finnegan, Seth

    2007-06-19

    Wide geographic range is generally thought to buffer taxa against extinction, but the strength of this effect has not been investigated for the great majority of the fossil record. Although the majority of genus extinctions have occurred between major mass extinctions, little is known about extinction selectivity regimes during these "background" intervals. Consequently, the question of whether selectivity regimes differ between background and mass extinctions is largely unresolved. Using logistic regression, we evaluated the selectivity of genus survivorship with respect to geographic range by using a global database of fossil benthic marine invertebrates spanning the Cambrian through the Neogene periods, an interval of approximately 500 My. Our results show that wide geographic range has been significantly and positively associated with survivorship for the great majority of Phanerozoic time. Moreover, the significant association between geographic range and survivorship remains after controlling for differences in species richness and abundance among genera. However, mass extinctions and several second-order extinction events exhibit less geographic range selectivity than predicted by range alone. Widespread environmental disturbance can explain the reduced association between geographic range and extinction risk by simultaneously affecting genera with similar ecological and physiological characteristics on global scales. Although factors other than geographic range have certainly affected extinction risk during many intervals, geographic range is likely the most consistently significant predictor of extinction risk in the marine fossil record.

  8. Approximation of Laws

    NASA Astrophysics Data System (ADS)

    Niiniluoto, Ilkka

    2014-03-01

    Approximation of laws is an important theme in the philosophy of science. If we can make sense of the idea that two scientific laws are "close" to each other, then we can also analyze such methodological notions as approximate explanation of laws, approximate reduction of theories, approximate empirical success of theories, and approximate truth of laws. Proposals for measuring the distance between quantitative scientific laws were given in Niiniluoto (1982, 1987). In this paper, these definitions are reconsidered as a response to the interesting critical remarks by Liu (1999).

  9. Diffuse supernova neutrinos: oscillation effects, stellar cooling and progenitor mass dependence

    SciTech Connect

    Lunardini, Cecilia; Tamborra, Irene E-mail: tamborra@mpp.mpg.de

    2012-07-01

    We estimate the diffuse supernova neutrino background (DSNB) using the recent progenitor-dependent, long-term supernova simulations from the Basel group and including neutrino oscillations at several post-bounce times. Assuming multi-angle matter suppression of collective effects during the accretion phase, we find that oscillation effects are dominated by the matter-driven MSW resonances, while neutrino-neutrino collective effects contribute at the 5–10% level. The impact of the neutrino mass hierarchy, of the time-dependent neutrino spectra and of the diverse progenitor star population is 10% or less, small compared to the uncertainty of at least 25% of the normalization of the supernova rate. Therefore, assuming that the sign of the neutrino mass hierarchy will be determined within the next decade, the future detection of the DSNB will deliver approximate information on the MSW-oscillated neutrino spectra. With a reliable model for neutrino emission, its detection will be a powerful instrument to provide complementary information on the star formation rate and for learning about stellar physics.

  10. Drying temperature effects on fish dry mass measurements

    USGS Publications Warehouse

    Lantry, B.F.; O'Gorman, R.

    2007-01-01

    Analysis of tissue composition in fish often requires dry samples. Time needed to dry fish decreases as temperature is increased, but additional volatile material may be lost. Effects of 10??C temperature increases on percentage dry mass (%DM) were tested against 60??C controls for groups of lake trout Salvelinus namaycush, rainbow smelt Osmerus mordax, slimy sculpin Cottus cognatus, and alewife Alosa pseudoharengus. Lake trout %DMs were lower at greater temperatures, but not significantly different from 60??C controls. Rainbow smelt and slimy sculpin %DMs were lower at greater temperatures and differences were significant when test temperatures reached 90??C. Significant differences were not found in tests using alewives because variability in %DM was high between fish. To avoid inter-fish variability, 30 alewives were each dried successively at 60, 70, 80, and then 90??C and for all fish %DM declined at each higher temperature. In general, %DMs were lower at greater temperatures and after reaching a stable dry weight, fish did not lose additional mass if temperature remained constant. Results indicate that caution should be used when comparing dry mass related indices from fish dried at different temperatures because %DM was negatively related to temperature. The differences in %DM observed with rising temperature could account for substantial portions of the variability in reported energy values for the species tested. Differences in %DM means for the 60 vs. 80??C and 60 vs. 90??C tests for rainbow smelt and alewife could represent of from 8 to 38% of observed annual energy cycles for Lakes Ontario and Michigan.

  11. Restricted mass transport effects on free radical reactions

    SciTech Connect

    Buchanan, A.C. III; Britt, P.F.; Thomas, K.B.

    1994-09-01

    Coal possesses a complex chemical and physical structure. The cross-linked, network structure can lead to alterations in normal thermally-induced, free-radical decay pathways as a consequence of restrictions on mass transport. Moreover, in coal liquefaction, access of an external hydrogen donor to a reactive radical site can be hindered by the substantial domains of microporosity present in coals. However, previous work indicates that diffusion effects do not appear to be playing an important role in this coal conversion chemistry. Several possible explanations for this phenomenon were advanced including the potential involvement of a hydrogen hopping/radical relay mechanism recently discovered model systems in the authors laboratories. The authors have employed silica-anchored compounds to explore the effects of restricted mass transport on the pyrolysis mechanisms of coal model compounds. In studies of two-component systems, cases have been discovered where radical centers can be rapidly relocated in the diffusionally constrained environment as a consequence of rapid serial hydrogen atom transfers. This chemistry can have substantial effects on thermal decomposition rates and on product selectivities. In this study, the authors examine additional surfaces to systematically investigate the impact of molecular structure on the hydrogen atom transfer promoted radical relay mechanism. Silica-attached 1,3-diphenylpropane ({approx}Ph(CH{sub 2}){sub 3}Ph, or {approx}DPP) was chosen as the thermally reactive component, since it can be considered prototypical of linkages in coal that do not contain weak bonds easily cleaved at coal liquefaction temperatures (ca. 4000 {degrees}C), but which crack at reasonable rates if benzylic radicals can be generated by hydrogen abstraction. The rate of such hydrogen transfers under restricted diffusion will be highly dependent on the structure and proximity of neighboring molecules.

  12. Effective photon mass by Super and Lorentz symmetry breaking

    NASA Astrophysics Data System (ADS)

    Bonetti, Luca; dos Santos Filho, Luís R.; Helayël-Neto, José A.; Spallicci, Alessandro D. A. M.

    2017-01-01

    In the context of Standard Model Extensions (SMEs), we analyse four general classes of Super Symmetry (SuSy) and Lorentz Symmetry (LoSy) breaking, leading to observable imprints at our energy scales. The photon dispersion relations show a non-Maxwellian behaviour for the CPT (Charge-Parity-Time reversal symmetry) odd and even sectors. The group velocities exhibit also a directional dependence with respect to the breaking background vector (odd CPT) or tensor (even CPT). In the former sector, the group velocity may decay following an inverse squared frequency behaviour. Thus, we extract a massive Carroll-Field-Jackiw photon term in the Lagrangian and show that the effective mass is proportional to the breaking vector and moderately dependent on the direction of observation. The breaking vector absolute value is estimated by ground measurements and leads to a photon mass upper limit of 10-19 eV or 2 ×10-55 kg, and thereby to a potentially measurable delay at low radio frequencies.

  13. Effect of Body Mass Index on Left Ventricular Mass in Career Male Firefighters

    PubMed Central

    Korre, Maria; Porto, Luiz Guilherme G.; Farioli, Andrea; Yang, Justin; Christiani, David C.; Christophi, Costas A.; Lombardi, David A.; Kovacs, Richard J.; Mastouri, Ronald; Abbasi, Siddique; Steigner, Michael; Moffatt, Steven; Smith, Denise; Kales, Stefanos N.

    2017-01-01

    Left ventricular (LV) mass is a strong predictor of cardiovascular disease (CVD) events; increased LV mass is common among US firefighters and plays a major role in firefighter sudden cardiac death. We aim to identify significant predictors of LV mass among firefighters. Cross-sectional study of 400 career male firefighters selected by an enriched randomization strategy. Weighted analyses were performed based on the total number of risk factors per subject with inverse probability weighting. LV mass was assessed by echocardiography (ECHO) and cardiac magnetic resonance, and normalized (indexed) for height. CVD risk parameters included vital signs at rest, body mass index (BMI)–defined obesity, obstructive sleep apnea risk, low cardiorespiratory fitness, and physical activity. Linear regression models were performed. In multivariate analyses, BMI was the only consistent significant independent predictor of LV mass indexes (all, p <0.001). A 1-unit decrease in BMI was associated with 1-unit (g/m1.7) reduction of LV mass/height1.7 after adjustment for age, obstructive sleep apnea risk, and cardiorespiratory fitness. In conclusion, after height-indexing ECHO-measured and cardiac magnetic resonance–measured LV mass, BMI was found to be a major driver of LV mass among firefighters. Our findings taken together with previous research suggest that reducing obesity will improve CVD risk profiles and decrease on-duty CVD and sudden cardiac death events in the fire service. Our results may also support targeted noninvasive screening for LV hypertrophy with ECHO among obese firefighters. PMID:27687051

  14. Matrix Effects in Biological Mass Spectrometry Imaging: Identification and Compensation

    SciTech Connect

    Lanekoff, Ingela T.; Stevens, Susan; Stenzel-Poore, Mary; Laskin, Julia

    2014-07-21

    Matrix effects in mass spectrometry imaging (MSI) may affect the observed molecular distribution in chemical and biological systems. In this study, we introduce an experimental approach that efficiently compensates for matrix effects in nanospray desorption electrospray ionization (nano-DESI) MSI without introducing any complexity into the experimental protocol. We demonstrate compensation for matrix effects in nano-DESI MSI of phosphatidylcholine (PC) in normal and ischemic mouse brain tissue by doping the nano-DESI solvent with PC standards. Specifically, we use mouse brain tissue of a middle cerebral artery occlusion (MCAO) stroke model with an ischemic region localized to one hemisphere of the brain. Due to similar suppression in ionization of endogenous PC molecules extracted from the tissue and PC standards added to the solvent, matrix effects are eliminated by normalizing the intensity of the sodium and potassium adducts of endogenous PC to the intensity of the corresponding adduct of the PC standard. This approach efficiently compensates for signal variations resulting from differences in the local concentrations of sodium and potassium in tissue sections and from the complexity of the extracted analyte mixture derived from local variations in molecular composition.

  15. Approximate Confidence Intervals for Standardized Effect Sizes in the Two-Independent and Two-Dependent Samples Design

    ERIC Educational Resources Information Center

    Viechtbauer, Wolfgang

    2007-01-01

    Standardized effect sizes and confidence intervals thereof are extremely useful devices for comparing results across different studies using scales with incommensurable units. However, exact confidence intervals for standardized effect sizes can usually be obtained only via iterative estimation procedures. The present article summarizes several…

  16. Mass-dependent and non-mass-dependent isotope effects in ozone photolysis: Resolving theory and experiments

    SciTech Connect

    Cole, Amanda S.; Boering, Kristie A.

    2006-11-14

    In addition to the anomalous {sup 17}O and {sup 18}O isotope effects in the three-body ozone formation reaction O+O{sub 2}+M, isotope effects in the destruction of ozone by photolysis may also play a role in determining the isotopic composition of ozone and other trace gases in the atmosphere. While previous experiments on ozone photolysis at 254 nm were interpreted as evidence for preferential loss of light ozone that is anomalous (or 'non-mass-dependent'), recent semiempirical theoretical calculations predicted a preferential loss of heavy ozone at that wavelength that is mass dependent. Through photochemical modeling results presented here, we resolve this apparent contradiction between experiment and theory. Specifically, we show that the formation of ozone during the UV photolysis experiments is not negligible, as had been assumed, and that the well-known non-mass-dependent isotope effects in ozone formation can account for the non-mass-dependent enrichment of the heavy isotopologs of ozone observed in the experiment. Thus, no unusual non-mass-dependent fractionation in ozone photolysis must be invoked to explain the experimental results. Furthermore, we show that theoretical predictions of a mass-dependent preferential loss of the heavy isotopologs of ozone during UV photolysis are not inconsistent with the experimental data, particularly if mass-dependent isotope effects in the chemical loss reactions of ozone during the photolysis experiments or experimental artifacts enrich the remaining ozone in {sup 17}O and {sup 18}O. Before the calculated fractionation factors can be quantitatively evaluated, however, further investigation of possible mass-dependent isotope effects in the reactions of ozone with O({sup 1}D), O({sup 3}P), O{sub 2}({sup 1}{delta}), and O{sub 2}({sup 1}{sigma}) is needed through experiments we suggest here.

  17. The effective medium and the average field approximations vis-à-vis the Hashin-Shtrikman bounds. I. The self-consistent scheme in matrix-based composites

    NASA Astrophysics Data System (ADS)

    Benveniste, Y.; Milton, G. W.

    2010-07-01

    The effective medium approximation (EMA) and the average field approximation (AFA) are two classical micromechanics models for the determination of effective properties of heterogeneous media. They are also known in the literature as 'self-consistent' approximations. In the AFA, the basic idea is to estimate the actual average field existing in a phase through a configuration in which a typical particle of that phase is embedded in the homogenized medium. In the EMA, on the other hand, one or more representative microstructural elements of the composite is embedded in the homogenized effective medium subjected to a uniform field, and the demand is made that the dominant part of the far-field disturbance vanishes. Both parts of this study are concerned with two-phase, matrix-based, effectively isotropic composites with an inclusion phase consisting of randomly oriented particles of arbitrary shape in general, and ellipsoidal shape in particular. The constituent phases are assumed to be isotropic. It is shown that in those systems the AFA and EMA give different predictions, with the distinction between them becoming especially striking regarding their standing vis-à-vis the Hashin-Shtrikman (HS-bounds). While due to its realizability property the EMA will always obey the bounds, we show that there are circumstances in which the AFA may violate the bounds. In the AFA for two-phase matrix-based composites, the embedded inclusion is a particle of the inclusion phase. If the particle is directly embedded in the effective medium, the method is called here the self-consistent scheme-average field approximation (SCS-AFA), and will obey the HS-bounds for an inclusion shape that is simply connected. If the embedded entity is a matrix-coated particle, then the method is called the generalized self-consistent scheme-average field approximation (GSCS-AFA), and may violate the HS-bounds. On the other hand, in the EMA for matrix-based composites with well-separated inclusions, we

  18. The Effective Mass of a Ball in the Air

    ERIC Educational Resources Information Center

    Messer, J.; Pantaleone, J.

    2010-01-01

    The air surrounding a projectile affects the projectile's motion in three very different ways: the drag force, the buoyant force, and the added mass. The added mass is an increase in the projectile's inertia from the motion of the air around it. Here we experimentally measure the added mass of a spherical projectile in air. The results agree well…

  19. Mass transfer effects on the transmission of bubble screens

    NASA Astrophysics Data System (ADS)

    Fuster, Daniel; Bergamasco, Luca

    2016-11-01

    In this work we investigate, theoretically and numerically, the reflection and transmission properties of bubble screens excited by pressure wave pulses. We use modified expressions for the bubble resonance frequency and the damping factor in order to capture the influence of mass transfer on the reflection-transmission coefficients. In addition to the influence of variables such as the bubble radius and the averaged inter-bubble distance, the analysis reveals that in conditions close to the saturation line there exists a regime where the heat transport surrounding the bubble plays an important role on the bubble's response also influencing the reflection properties of the bubble screen. The linear analysis allows us to predict the critical vapor content beyond which liquid heat's transport controls the dynamic response of the bubbles. Numerical simulations show that these effects become especially relevant in the nonlinear regime. ANR Cachmap.

  20. Dynamic effective mass of granular media and the attenuation of structure-borne sound

    NASA Astrophysics Data System (ADS)

    Valenza, John; Hsu, Chaur-Jian; Ingale, Rohit; Gland, Nicolas; Makse, Hernán A.; Johnson, David Linton

    2009-11-01

    We report a theoretical and experimental investigation into the fundamental physics of why loose granular media are effective deadeners of structure-borne sound. Here, we demonstrate that a measurement of the effective mass, M˜(ω) , of the granular medium is a sensitive and direct way to answer the question: what is the specific mechanism whereby acoustic energy is transformed into heat? Specifically, we apply this understanding to the case of the flexural resonances of a rectangular bar with a grain-filled cavity within it. The pore space in the granular medium is air of varying humidity. The dominant features of M˜(ω) are a sharp resonance and a broad background, which we analyze within the context of simple models. We find that: (a) on a fundamental level, dampening of acoustic modes is dominated by adsorbed films of water at grain-grain contacts, not by global viscous dampening or by attenuation within the grains. (b) These systems may be understood, qualitatively, in terms of a height-dependent and diameter-dependent effective sound speed [˜100-300(mṡs-1)] and an effective viscosity [˜5×104Poise] . (c) There is an acoustic Janssen effect in the sense that, at any frequency, and depending on the method of sample preparation, approximately one-half of the effective mass is borne by the side walls of the cavity and one-half by the bottom. (d) There is a monotonically increasing effect of humidity on the dampening of the fundamental resonance within the granular medium which translates to a nonmonotonic, but predictable, variation in dampening within the grain-loaded bar.

  1. Mass transfer effects on the unsteady mhd radiative- convective flow of a micropolar fluid past a vertical porous plate with variable heat and mass fluxes

    NASA Astrophysics Data System (ADS)

    Reddy, M. Gnaneswara

    2013-03-01

    The problem of unsteady two-dimensional laminar flow of a viscous incompressible micropolar fluid past a vertical porous plate in the presence of a transverse magnetic field and thermal radiation with variable heat and mass fluxes is considered. The free stream velocity is subjected to exponentially increasing or decreasing small perturbations. A uniform magnetic field acts perpendicularly to a porous surface where a micropolar fluid is absorbed with a suction velocity varying with time. The Rosseland approximation is used to describe radiative heat transfer in the limit of optically thick fluids. The effects of the flow parameters and thermophysical properties on the velocity and temperature fields across the boundary layer are investigated. The effects of various parameters on the velocity, microrotation velocity, temperature, and concentration profiles are given graphically, and the values of the skin friction and couple stress coefficients are presented.

  2. Differential equation based method for accurate approximations in optimization

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1990-01-01

    This paper describes a method to efficiently and accurately approximate the effect of design changes on structural response. The key to this new method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in msot cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacement are used to approximate bending stresses.

  3. Exponential approximations in optimal design

    NASA Technical Reports Server (NTRS)

    Belegundu, A. D.; Rajan, S. D.; Rajgopal, J.

    1990-01-01

    One-point and two-point exponential functions have been developed and proved to be very effective approximations of structural response. The exponential has been compared to the linear, reciprocal and quadratic fit methods. Four test problems in structural analysis have been selected. The use of such approximations is attractive in structural optimization to reduce the numbers of exact analyses which involve computationally expensive finite element analysis.

  4. Modeling multi-layer effects in passive microwave remote sensing of dry snow using Dense Media Radiative Transfer Theory (DMRT) based on quasicrystalline approximation

    USGS Publications Warehouse

    Liang, D.; Xu, X.; Tsang, L.; Andreadis, K.M.; Josberger, E.G.

    2008-01-01

    The Dense Media Radiative Transfer theory (DMRT) of Quasicrystalline Approximation of Mie scattering by sticky particles is used to study the multiple scattering effects in layered snow in microwave remote sensing. Results are illustrated for various snow profile characteristics. Polarization differences and frequency dependences of multilayer snow model are significantly different from that of the single-layer snow model. Comparisons are also made with CLPX data using snow parameters as given by the VIC model. ?? 2007 IEEE.

  5. Negative muon chemistry: the quantum muon effect and the finite nuclear mass effect.

    PubMed

    Posada, Edwin; Moncada, Félix; Reyes, Andrés

    2014-10-09

    The any-particle molecular orbital method at the full configuration interaction level has been employed to study atoms in which one electron has been replaced by a negative muon. In this approach electrons and muons are described as quantum waves. A scheme has been proposed to discriminate nuclear mass and quantum muon effects on chemical properties of muonic and regular atoms. This study reveals that the differences in the ionization potentials of isoelectronic muonic atoms and regular atoms are of the order of millielectronvolts. For the valence ionizations of muonic helium and muonic lithium the nuclear mass effects are more important. On the other hand, for 1s ionizations of muonic atoms heavier than beryllium, the quantum muon effects are more important. In addition, this study presents an assessment of the nuclear mass and quantum muon effects on the barrier of Heμ + H2 reaction.

  6. Approximate Confidence Intervals for Moment-Based Estimators of the Between-Study Variance in Random Effects Meta-Analysis

    ERIC Educational Resources Information Center

    Jackson, Dan; Bowden, Jack; Baker, Rose

    2015-01-01

    Moment-based estimators of the between-study variance are very popular when performing random effects meta-analyses. This type of estimation has many advantages including computational and conceptual simplicity. Furthermore, by using these estimators in large samples, valid meta-analyses can be performed without the assumption that the treatment…

  7. Understanding ligand effects in gold clusters using mass spectrometry

    SciTech Connect

    Johnson, Grant E.; Laskin, Julia

    2016-01-01

    This review summarizes recent research on the influence of phosphine ligands on the size, stability, and reactivity of gold clusters synthesized in solution. Sub-nanometer clusters exhibit size- and composition-dependent properties that are unique from those of larger nanoparticles. The highly tunable properties of clusters and their high surface-to-volume ratio make them promising candidates for a variety of technological applications. However, because “each-atom-counts” toward defining cluster properties it is critically important to develop robust synthesis methods to efficiently prepare clusters of predetermined size. For decades phosphines have been known to direct the size-selected synthesis of gold clusters. Despite the preparation of numerous species it is still not understood how different functional groups at phosphine centers affect the size and properties of gold clusters. Using electrospray ionization mass spectrometry (ESI-MS) it is possible to characterize the effect of ligand substitution on the distribution of clusters formed in solution at defined reaction conditions. In addition, ligand exchange reactions on preformed clusters may be monitored using ESI-MS. Collision induced dissociation (CID) may also be employed to obtain qualitative insight into the fragmentation of mixed ligand clusters and the relative binding energies of differently substituted phosphines. Quantitative ligand binding energies and cluster stability may be determined employing surface induced dissociation (SID) in a custom-built Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). Rice-Ramsperger-Kassel-Marcus (RRKM) based modeling of the SID data allows dissociation energies and entropy values to be extracted that may be compared with the results of high-level theoretical calculations. The charge reduction and reactivity of atomically precise gold clusters, including partially ligated species generated in the gas-phase by in source CID, on well

  8. Approximate spatial reasoning

    NASA Technical Reports Server (NTRS)

    Dutta, Soumitra

    1988-01-01

    A model for approximate spatial reasoning using fuzzy logic to represent the uncertainty in the environment is presented. Algorithms are developed which can be used to reason about spatial information expressed in the form of approximate linguistic descriptions similar to the kind of spatial information processed by humans. Particular attention is given to static spatial reasoning.

  9. Changes in Kicking Pattern: Effect of Experience, Speed, Accuracy, and Effective Striking Mass

    ERIC Educational Resources Information Center

    Southard, Dan L.

    2014-01-01

    Purpose: The purposes of this study were to: (a) examine the effect of experience and goal constraints (speed, accuracy) on kicking patterns; (b) determine if effective striking mass was independent of ankle velocity at impact; and (c) determine the accuracy of kicks relative to independent factors. Method: Twenty participants were recruited to…

  10. Strong washout approximation to resonant leptogenesis

    SciTech Connect

    Garbrecht, Björn; Gautier, Florian; Klaric, Juraj E-mail: florian.gautier@tum.de

    2014-09-01

    We show that the effective decay asymmetry for resonant Leptogenesis in the strong washout regime with two sterile neutrinos and a single active flavour can in wide regions of parameter space be approximated by its late-time limit ε=Xsin(2φ)/(X{sup 2}+sin{sup 2}φ), where X=8πΔ/(|Y{sub 1}|{sup 2}+|Y{sub 2}|{sup 2}), Δ=4(M{sub 1}-M{sub 2})/(M{sub 1}+M{sub 2}), φ=arg(Y{sub 2}/Y{sub 1}), and M{sub 1,2}, Y{sub 1,2} are the masses and Yukawa couplings of the sterile neutrinos. This approximation in particular extends to parametric regions where |Y{sub 1,2}|{sup 2}>> Δ, i.e. where the width dominates the mass splitting. We generalise the formula for the effective decay asymmetry to the case of several flavours of active leptons and demonstrate how this quantity can be used to calculate the lepton asymmetry for phenomenological scenarios that are in agreement with the observed neutrino oscillations. We establish analytic criteria for the validity of the late-time approximation for the decay asymmetry and compare these with numerical results that are obtained by solving for the mixing and the oscillations of the sterile neutrinos. For phenomenologically viable models with two sterile neutrinos, we find that the flavoured effective late-time decay asymmetry can be applied throughout parameter space.

  11. The mass media alone are not effective change agents.

    PubMed

    Ruijter, J M

    1991-01-01

    Social mobilization programs for immunization have been used by African leaders, however, coverage from 20% to 70% in capitals like Mogadishu, Maputo, and Dakar were the result of short campaigns rather than the consequence of knowledge, attitudes, and practices (KAP) improvement. One-party states relied on their network of cadres issuing decrees from the top down to enforce completion of these immunization campaigns. Sometimes resistance developed against these programs, as the military mobilized people (e.g., Somalia). These efforts became rather superficial once the temporary pressure evaporated. In Mogadishu coverage increased from 22% to 70% in 1985, and within a year it dropped back to 8% above the original level. Nigeria, Senegal, and Togo where they used regular mini campaigns had better results. Research data from Botswana, Kenya, Lesotho, Malawi, Mozambique, and Zambia were analyzed. In 1983 in Kenya 73% of health workers never advised their clients, and 82% were incompetent to do so. Data also showed that clinics provided the bulk of information to women aged 15-45 in lower income groups, but they rarely consulted village health workers. Radio and TV programs were not reaching people because radio ownership was not universal (47% in Zambia and 30% in Zimbabwe), and batteries were often not available. In addition, most people turned to the radio for entertainment. In 1989, vaccination coverage was 19% in Luanda, Angola, but only 5% of 232 respondents to an evaluation could name the immunizable diseases. An identical percentage was familiar with these diseases in a Zambian study in 1986. Media experts proposed dramas to raise interest, but innovative mass media programs of dissemination of the message advocated in the 1960s did not prove effective to bring about KAP changes. Training of health and paramedical personnel by mass organizations as initiated in Ethiopia may prove to be worthwhile.

  12. Green Ampt approximations

    NASA Astrophysics Data System (ADS)

    Barry, D. A.; Parlange, J.-Y.; Li, L.; Jeng, D.-S.; Crapper, M.

    2005-10-01

    The solution to the Green and Ampt infiltration equation is expressible in terms of the Lambert W-1 function. Approximations for Green and Ampt infiltration are thus derivable from approximations for the W-1 function and vice versa. An infinite family of asymptotic expansions to W-1 is presented. Although these expansions do not converge near the branch point of the W function (corresponds to Green-Ampt infiltration with immediate ponding), a method is presented for approximating W-1 that is exact at the branch point and asymptotically, with interpolation between these limits. Some existing and several new simple and compact yet robust approximations applicable to Green-Ampt infiltration and flux are presented, the most accurate of which has a maximum relative error of 5 × 10 -5%. This error is orders of magnitude lower than any existing analytical approximations.

  13. Tunneling effects in electromagnetic wave scattering by nonspherical particles: A comparison of the Debye series and physical-geometric optics approximations

    NASA Astrophysics Data System (ADS)

    Bi, Lei; Yang, Ping

    2016-07-01

    The accuracy of the physical-geometric optics (PG-O) approximation is examined for the simulation of electromagnetic scattering by nonspherical dielectric particles. This study seeks a better understanding of the tunneling effect on the phase matrix by employing the invariant imbedding method to rigorously compute the zeroth-order Debye series, from which the tunneling efficiency and the phase matrix corresponding to the diffraction and external reflection are obtained. The tunneling efficiency is shown to be a factor quantifying the relative importance of the tunneling effect over the Fraunhofer diffraction near the forward scattering direction. Due to the tunneling effect, different geometries with the same projected cross section might have different diffraction patterns, which are traditionally assumed to be identical according to the Babinet principle. For particles with a fixed orientation, the PG-O approximation yields the external reflection pattern with reasonable accuracy, but ordinarily fails to predict the locations of peaks and minima in the diffraction pattern. The larger the tunneling efficiency, the worse the PG-O accuracy is at scattering angles less than 90°. If the particles are assumed to be randomly oriented, the PG-O approximation yields the phase matrix close to the rigorous counterpart, primarily due to error cancellations in the orientation-average process. Furthermore, the PG-O approximation based on an electric field volume-integral equation is shown to usually be much more accurate than the Kirchhoff surface integral equation at side-scattering angles, particularly when the modulus of the complex refractive index is close to unity. Finally, tunneling efficiencies are tabulated for representative faceted particles.

  14. The effects of analyte mass and collision gases on ion beam formation in an inductively coupled plasma mass spectrometer

    NASA Astrophysics Data System (ADS)

    Larsen, Jessica J.; Edmund, Alisa J.; Farnsworth, Paul B.

    2016-11-01

    Planar laser induced fluorescence (PLIF) was used to evaluate the effect of matrix components on the formation and focusing of a Ba ion beam in a commercial inductively coupled plasma mass spectrometer. Cross sections of the ion beams were taken in the second vacuum stage, in front of the entrance to the mass analyzer. Under normal operating conditions, the addition of Pb shifted the position of the Ba ion beam to the right. PLIF was also used to evaluate the effect of a collision reaction interface (CRI) on Ca and Ba ion beams. A wider velocity distribution of ions and a decrease in overall intensity were observed for the CRI images. The fluorescence and mass spectrometer signals decreased with increased CRI flow rates. These effects were most obvious for Ca ions with He gas.

  15. Effects of mass on aircraft sidearm controller characteristics

    NASA Technical Reports Server (NTRS)

    Wagner, Charles A.

    1994-01-01

    When designing a flight simulator, providing a set of low mass variable-characteristic pilot controls can be very difficult. Thus, a strong incentive exists to identify the highest possible mass that will not degrade the validity of a simulation. The NASA Dryden Flight Research Center has conducted a brief flight program to determine the maximum acceptable mass (system inertia) of an aircraft sidearm controller as a function of force gradient. This information is useful for control system design in aircraft as well as development of suitable flight simulator controls. A modified Learjet with a variable-characteristic sidearm controller was used to obtain data. A boundary was defined between mass considered acceptable and mass considered unacceptable to the pilot. This boundary is defined as a function of force gradient over a range of natural frequencies. This investigation is limited to a study of mass-frequency characteristics only. Results of this investigation are presented in this paper.

  16. Effect of a 3-year professional flossing program with chlorhexidine gel on approximal caries and cost of treatment in preschool children.

    PubMed

    Gisselsson, H; Birkhed, D; Björn, A L

    1994-01-01

    The aim was to evaluate the effect of chlorhexidine gel treatment on the incidence of approximal caries in preschool children. One hundred and seventeen 4-year-olds, divided into two groups, participated: (1) chlorhexidine gel group (n = 59), and (2) placebo gel group (n = 58). Group 1 was treated 4 times a year with a 1% chlorhexdine gel and group 2 with a placebo gel. Approximately 0.7 ml of gel was applied interdentally by means of a flat dental floss. A control group (group 3), which did not receive any flossing or gel treatment, was also included in the study (n = 116). After 3 years, i.e. when the children were 7 years old, the mean incidence of caries on approximal surfaces (defs), including both enamel and dentin lesions, was 2.59 in the chlorhexidine gel, 4.53 in the placebo gel and 4.20 in the control group (group 1 vs. 2 and group 1 vs. 3: p < 0.01). Mean number of approximal fillings at the end of the study, i.e. when the children were 7 years old, was 0.33 in the chlorhexidine gel, 1.04 in the placebo gel and 0.80 in the control group (group 1 vs. 2: p < 0.01; group 1 vs. 3: p < 0.05). The progression of approximal caries lesions, diagnosed on bitewing radiographs from the age of 5 to 7, was slower in the chlorhexidine than in the placebo gel group (the control group was not evaluated in this respect). A cost analysis, based on the total treatment time in minutes, showed a small gain for the flossing program.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. The Effects of Mass Transfer and Angle of Attack on Hypersonic Turbulent Boundary Layer Characteristics

    DTIC Science & Technology

    1975-04-01

    temperature was measured with a singly shielded thermocouple (tip height approximately 0.050"). This probe was calibrated in the free stream for several...thickness, (P u 9/ ) e e e r - radius measured from axis of symmetry; recovery factor s - wetted length along surface of body St - Stanton number, w /(Pu) e...experiment considered mass addition rates which cover the ablation gas range for current heat shield materials (simulated ablation via gaseous mass

  18. Binding Energies, Effective Masses and Screenings Effects of Fröhlich Bipolarons

    NASA Astrophysics Data System (ADS)

    Cataudella, V.; Iadonisi, G.; Ninno, D.

    1991-01-01

    The bipolaron ground state binding energy and the effective masses are calculated self-consistently in a scheme where the electron-phonon interaction is described by the Fröhlich interaction. We explicitly use the total linear momentum conservation and both two-and three-dimensional systems are considered. We review results for binding energies and show that the bipolaron effective mass increases with the electron-phonon coupling constant α more rapidly than two free polaron masses. As expected, the increase is greater in two than in three dimensions. We estimate the screening effects due to an electronic or hole density n in a range of values such that nR2b ll 1 (here Rb is the bipolaron radius). We find that the bipolaron binding energy decreases with n and eventually becomes positive indicating the existence of a metastable bipolaron state. Finally we discuss the possible connections between our results and high Tc superconductivity.

  19. Effective mass of a charged carrier in a nonpolar liquid: Snowball effect in superfluid helium

    NASA Astrophysics Data System (ADS)

    Chikina, I.; Shikin, V.; Varlamov, A. A.

    2007-05-01

    The problem of a correct definition of the charged carrier effective mass in superfluid helium is revised. It is shown that the effective mass of such a quasiparticle can be introduced without Atkins’s idea about the solidification of liquid He4 in the close vicinity of an ion (the so-called “snowball” model). Moreover, in addition to the generalization of Atkins’s model, the charged carrier effective mass formation is considered within the framework of the two-fluid scenario. The physical reasons of the normal-fluid contribution divergency and the way of the corresponding regularization procedure are discussed. Agreement between the theory and the available experimental data is found in a wide range of temperatures.

  20. Effective mass of a charged carrier in a nonpolar liquid: Snowball effect in superfluid helium

    SciTech Connect

    Chikina, I.; Varlamov, A. A.

    2007-05-01

    The problem of a correct definition of the charged carrier effective mass in superfluid helium is revised. It is shown that the effective mass of such a quasiparticle can be introduced without Atkins's idea about the solidification of liquid He{sup 4} in the close vicinity of an ion (the so-called ''snowball'' model). Moreover, in addition to the generalization of Atkins's model, the charged carrier effective mass formation is considered within the framework of the two-fluid scenario. The physical reasons of the normal-fluid contribution divergency and the way of the corresponding regularization procedure are discussed. Agreement between the theory and the available experimental data is found in a wide range of temperatures.

  1. Correlation effects of π electrons on the band structures of conjugated polymers using the self-consistent GW approximation with vertex corrections.

    PubMed

    Chang, Yao-Wen; Jin, Bih-Yaw

    2012-01-14

    Many-body perturbation theory is used to investigate the effect of π-electron correlations on the quasi-particle band structures of conjugated polymers at the level of the Pariser-Parr-Pople model. The self-consistent GW approximation with vertex corrections to both the self-energy and the polarization in Hedin's equations is employed in order to eliminate self-interaction errors and include the effects of electron-hole attraction in screening processes. The dynamic inverse dielectric function is constructed from the generalized plasmon-pole approximation with the static dressed polarization given by the coupled-perturbed Hartree-Fock equation. The bandgaps of trans-polyacetylene, trans-polyphenylenevinylene and poly(para)phenylene are calculated by both the Hartree-Fock and GW approximation, and a lowering of bandgaps due to electron correlations is found. We conclude that both dielectric screening and vertex corrections are important for calculating the quasi-particle bandgaps of conjugated polymers.

  2. Simulating the ballistic effects of ion irradiation in the binary collision approximation: A first step toward the ion mixing framework

    NASA Astrophysics Data System (ADS)

    Demange, G.; Antoshchenkova, E.; Hayoun, M.; Lunéville, L.; Simeone, D.

    2017-04-01

    Understanding ballistic effects induced by ion beam irradiation can be a key point for controlling and predicting the microstructure of irradiated materials. Meanwhile, the ion mixing framework suggests an average description of displacement cascades may be sufficient to estimate the influence of ballistic relocations on the microstructure. In this work, the BCA code MARLOWE was chosen for its ability to account for the crystal structure of irradiated materials. A first set of simulations was performed on pure copper for energies ranging from 0.5 keV to 20 keV. These simulations were validated using molecular dynamics (MD). A second set of simulations on AgCu irradiated by 1 MeV krypton ions was then carried out using MARLOWE only, as such energy is beyond reach for molecular dynamics. MARLOWE simulations are found to be in good agreement with experimental results, which suggests the predictive potential of the method.

  3. The effects of damping on the approximate teleportation and nonclassical properties in the atom-field interaction

    NASA Astrophysics Data System (ADS)

    Daneshmand, R.; Tavassoly, M. K.

    2016-04-01

    Based on the Jaynes-Cummings interaction model of a Ξ-type three-level atom with a single-mode quantized field, the effect of damping on teleportation is studied. To achieve this purpose, we have taken into account the decay rates of the two upper atomic levels. The influences of such atomic damping on the teleportation of atomic as well as field states are evaluated. It is shown that, by increasing the damping parameter the fidelity and success probability is decreased. Finally, beside our main motivation of the paper, we end it with some marginal, however, of interest purposes like the analyzing the dynamics of a few interesting physical properties such as entanglement, Mandel parameter and quadrature squeezing in the presence of damping.

  4. A self-consistent, microenvironment modulated screened coulomb potential approximation to calculate pH-dependent electrostatic effects in proteins.

    PubMed Central

    Mehler, E L; Guarnieri, F

    1999-01-01

    An improved approach is presented for calculating pH-dependent electrostatic effects in proteins using sigmoidally screened Coulomb potentials (SCP). It is hypothesized that a key determinant of seemingly aberrant behavior in pKa shifts is due to the properties of the unique microenvironment around each residue. To help demonstrate this proposal, an approach is developed to characterize the microenvironments using the local hydrophobicity/hydrophilicity around each residue of the protein. The quantitative characterization of the microenvironments shows that the protein is a complex mosaic of differing dielectric regions that provides a physical basis for modifying the dielectric screening functions: in more hydrophobic microenvironments the screening decreases whereas the converse applies to more hydrophilic regions. The approach was applied to seven proteins providing more than 100 measured pKa values and yielded a root mean square deviation of 0.5 between calculated and experimental values. The incorporation of the local hydrophobicity characteristics into the algorithm allowed the resolution of some of the more intractable problems in the calculation of pKa. Thus, the divergent shifts of the pKa of Glu-35 and Asp-66 in hen egg white lysozyme, which are both about 90% buried, was correctly predicted. Mechanistically, the divergence occurs because Glu-35 is in a hydrophobic microenvironment, while Asp-66 is in a hydrophilic microenvironment. Furthermore, because the calculation of the microenvironmental effects takes very little CPU time, the computational speed of the SCP formulation is conserved. Finally, results from different crystal structures of a given protein were compared, and it is shown that the reliability of the calculated pKa values is sufficient to allow identification of conformations that may be more relevant for the solution structure. PMID:10388736

  5. Matrix effects in inductively coupled plasma mass spectrometry

    SciTech Connect

    Chen, Xiaoshan

    1995-07-07

    The inductively coupled plasma is an electrodeless discharge in a gas (usually Ar) at atmospheric pressure. Radio frequency energy generated by a RF power source is inductively coupled to the plasma gas through a water cooled load coil. In ICP-MS the "Fassel" TAX quartz torch commonly used in emission is mounted horizontally. The sample aerosol is introduced into the central flow, where the gas kinetic temperature is about 5000 K. The aerosol is vaporized, atomized, excited and ionized in the plasma, and the ions are subsequently extracted through two metal apertures (sampler and skimmer) into the mass spectrometer. In ICP-MS, the matrix effects, or non-spectroscopic interferences, can be defined as the type of interferences caused by dissolved concomitant salt ions in the solution. Matrix effects can be divided into two categories: (1) signal drift due to the deposition of solids on the sampling apertures; and/or (2) signal suppression or enhancement by the presence of the dissolved salts. The first category is now reasonably understood. The dissolved salts, especially refractory oxides, tend to deposit on the cool tip of the sampling cone. The clogging of the orifices reduces the ion flow into the ICP-MS, lowers the pressure in the first stage of ICP-MS, and enhances the level of metal oxide ions. Because the extent of the clogging increases with the time, the signal drifts down. Even at the very early stage of the development of ICP-MS, matrix effects had been observed. Houk et al. found out that the ICP-MS was not tolerant to solutions containing significant amounts of dissolved solids.

  6. Effect of the Pauli principle on the deformed quasiparticle random-phase approximation calculations and its consequence for β -decay calculations of deformed even-even nuclei

    NASA Astrophysics Data System (ADS)

    Fang, Dong-Liang

    2016-03-01

    In this work, I take into consideration the Pauli exclusion principle (PEP) in the quasiparticle random-phase approximation (QRPA) calculations for the deformed systems by replacing the traditional quasiboson approximation (QBA) with the renormalized one. With this new formalism, the parametrization of QRPA calculations has been changed and the collapse of QRPA solutions could be avoid for realistic gp p values. I further find that the necessity of the renormalization parameter of particle-particle residual interaction gp p in QRPA calculations is due to the exclusion of PEP. So with the inclusion of PEP, I could easily extend the deformed QRPA calculations to the less-explored region where lack of experimental data prevent effective parametrization of gp p for QRPA methods. With this theoretical improvement, I give predictions of weak decay rates for even-even isotopes in the rare-earth region and compare the results with existing calculations.

  7. Schottky effect in the i -Zn-Ag-Sc-Tm icosahedral quasicrystal and its 1/1 Zn-Sc-Tm approximant

    NASA Astrophysics Data System (ADS)

    Jazbec, S.; Kashimoto, S.; Koželj, P.; Vrtnik, S.; Jagodič, M.; Jagličić, Z.; Dolinšek, J.

    2016-02-01

    The analysis of low-temperature specific heat of rare-earth (RE)-containing quasicrystals and periodic approximants and consequent interpretation of their electronic properties in the T →0 limit is frequently hampered by the Schottky effect, where crystalline electric fields lift the degeneracy of the RE-ion Hund's rule ground state and introduce additional contribution to the specific heat. In this paper we study the low-temperature specific heat of a thulium-containing i -Zn-Ag-Sc-Tm icosahedral quasicrystal and its 1/1 Zn-Sc-Tm approximant, both being classified as "Schottky" systems. We have derived the crystal-field Hamiltonian for pentagonal symmetry of the crystalline electric field, pertinent to the class of Tsai-type icosahedral quasicrystals and their approximants, where the RE ions are located on fivefold axes of the icosahedral atomic cluster. Using the leading term of this Hamiltonian, we have calculated analytically the Schottky specific heat in the presence of an external magnetic field and made comparison to the experimental specific heat of the investigated quasicrystal and approximant. When the low-temperature specific heat C is analyzed in a C /T versus T2 scale (as it is customarily done for metallic specimens), the Schottky specific heat yields an upturn in the T →0 limit that cannot be easily distinguished from a similar upturn produced by the electron-electron interactions in exchange-enhanced systems and strongly correlated systems. Our results show that extraction of the electronic properties of RE-containing quasicrystals from their low-temperature specific heat may be uncertain in the presence of the Schottky effect.

  8. Vibrational quenching of excitonic splittings in H-bonded molecular dimers: adiabatic description and effective mode approximation.

    PubMed

    Kopec, Sabine; Ottiger, Philipp; Leutwyler, Samuel; Köppel, Horst

    2012-11-14

    The quenching of the excitonic splitting in hydrogen-bonded molecular dimers has been explained recently in terms of exciton coupling theory, involving Förster's degenerate perturbation theoretical approach [P. Ottiger, S. Leutwyler, and H. Köppel, J. Chem. Phys. 136, 174308 (2012)]. Here we provide an alternative explanation based on the properties of the adiabatic potential energy surfaces. In the proper limit, the lower of these surfaces exhibits a double-minimum shape, with an asymmetric distortion that destroys the geometric equivalence of the excitonically coupled monomers. An effective mode is introduced that exactly reproduces the energy gain and amount of distortion that occurs in a multi-dimensional normal coordinate space. This allows to describe the quenched exciton splitting as the energy difference of the two (S(1) and S(2)) vibronic band origins in a one-dimensional (rather than multi-dimensional) vibronic calculation. The agreement with the earlier result (based on Förster theory) is excellent for all five relevant cases studied. A simple rationale for the quenched exciton splitting as nonadiabatic tunneling splitting on the lower double-minimum potential energy surface is given.

  9. Self-force on extreme mass ratio inspirals via curved spacetime effective field theory

    SciTech Connect

    Galley, Chad R.; Hu, B. L.

    2009-03-15

    In this series we construct an effective field theory (EFT) in curved spacetime to study gravitational radiation and backreaction effects. We begin in this paper with a derivation of the self-force on a compact object moving in the background spacetime of a supermassive black hole. The EFT approach utilizes the disparity between two length scales, which in this problem are the size of the compact object r{sub m} and the radius of curvature of the background spacetime R such that {epsilon}{identical_to}r{sub m}/R<<1, to treat the orbital dynamics of the compact object, described as an effective point particle, separately from its tidal deformations. The equation of motion of an effective relativistic point particle coupled to the gravitational waves generated by its motion in a curved background spacetime can be derived without making a slow motion or weak field approximation, as was assumed in earlier EFT treatment of post-Newtonian binaries. Ultraviolet divergences are regularized using Hadamard's partie finie to isolate the nonlocal finite part from the quasilocal divergent part. The latter is constructed from a momentum space representation for the graviton retarded propagator and is evaluated using dimensional regularization in which only logarithmic divergences are relevant for renormalizing the parameters of the theory. As a first important application of this framework we explicitly derive the first-order self-force given by Mino, Sasaki, Tanaka, Quinn, and Wald. Going beyond the point particle approximation, to account for the finite size of the object, we demonstrate that for extreme mass ratio inspirals the motion of a compact object is affected by tidally induced moments at O({epsilon}{sup 4}), in the form of an effacement principle. The relatively large radius-to-mass ratio of a white dwarf star allows for these effects to be enhanced until the white dwarf becomes tidally disrupted, a potentially O({epsilon}{sup 2}) process, or plunges into the

  10. Estimate the effective connectivity in multi-coupled neural mass model using particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Shan, Bonan; Wang, Jiang; Deng, Bin; Zhang, Zhen; Wei, Xile

    2017-03-01

    Assessment of the effective connectivity among different brain regions during seizure is a crucial problem in neuroscience today. As a consequence, a new model inversion framework of brain function imaging is introduced in this manuscript. This framework is based on approximating brain networks using a multi-coupled neural mass model (NMM). NMM describes the excitatory and inhibitory neural interactions, capturing the mechanisms involved in seizure initiation, evolution and termination. Particle swarm optimization method is used to estimate the effective connectivity variation (the parameters of NMM) and the epileptiform dynamics (the states of NMM) that cannot be directly measured using electrophysiological measurement alone. The estimated effective connectivity includes both the local connectivity parameters within a single region NMM and the remote connectivity parameters between multi-coupled NMMs. When the epileptiform activities are estimated, a proportional-integral controller outputs control signal so that the epileptiform spikes can be inhibited immediately. Numerical simulations are carried out to illustrate the effectiveness of the proposed framework. The framework and the results have a profound impact on the way we detect and treat epilepsy.

  11. Thermodynamic constraints on effective energy and mass transfer and catchment function

    NASA Astrophysics Data System (ADS)

    Rasmussen, C.

    2012-03-01

    Understanding how water, energy and carbon are partitioned to primary production and effective precipitation is central to quantifying the limits on critical zone evolution. Recent work suggests quantifying energetic transfers to the critical zone in the form of effective precipitation and primary production provides a first order approximation of critical zone process and structural organization. However, explicit linkage of this effective energy and mass transfer (EEMT; W m-2) to critical zone state variables and well defined physical limits remains to be developed. The objective of this work was to place EEMT in the context of thermodynamic state variables of temperature and vapor pressure deficit, with explicit definition of EEMT physical limits using a global climate dataset. The relation of EEMT to empirical measures of catchment function was also examined using a subset of the Model Parameter Estimation Experiment (MOPEX) catchments. The data demonstrated three physical limits for EEMT: (i) an absolute vapor pressure deficit threshold of 1200 Pa above which EEMT is zero; (ii) a temperature dependent vapor pressure deficit limit following the saturated vapor pressure function up to a temperature of 292 K; and (iii) a minimum precipitation threshold required from EEMT production at temperatures greater than 292 K. Within these limits, EEMT scales directly with precipitation, with increasing conversion of the precipitation to EEMT with increasing temperature. The state-space framework derived here presents a simplified framework with well-defined physical limits that has the potential for directly integrating regional to pedon scale heterogeneity in effective energy and mass transfer relative to critical zone structure and function within a common thermodynamic framework.

  12. Thermodynamic constraints on effective energy and mass transfer and catchment function

    NASA Astrophysics Data System (ADS)

    Rasmussen, C.

    2011-07-01

    Understanding how water, energy and carbon are partitioned to primary production and effective precipitation is central to quantifying the limits on critical zone evolution. Recent work suggests quantifying energetic transfers to the critical zone in the form of effective precipitation and primary production provides a first order approximation of critical zone process and structural organization. However, explicit linkage of this effective energy and mass transfer (EEMT; W m-2) to critical zone state variables and well defined physical limits remains to be developed. The objective of this work was to place EEMT in the context of thermodynamic state variables of temperature and vapor pressure deficit, with explicit definition of EEMT physical limits using a global climate dataset. The relation of EEMT to empirical measures of catchment function was also examined using a subset of the Model Parameter Estimation Experiment (MOPEX) catchments. The data demonstrated three physical limits for EEMT: (i) an absolute vapor pressure deficit threshold of 1200 Pa above which EEMT is zero; (ii) a temperature dependent vapor pressure deficit limit following the saturated vapor pressure function up to a temperature of 292 K; and (iii) a minimum precipitation threshold required from EEMT production at temperatures greater than 292 K. Within these limits, EEMT scales directly with precipitation, with increasing conversion of the precipitation to EEMT with increasing temperature. The state-space framework derived here presents a simplified framework with well-defined physical limits that has the potential for directly integrating regional to pedon scale heterogeneity in effective energy and mass transfer relative to critical zone structure and function within a common thermodynamic framework.

  13. Diffusion approximation with polarization and resonance effects for the modelling of seismic waves in strongly scattering small-scale media

    NASA Astrophysics Data System (ADS)

    Margerin, Ludovic

    2013-01-01

    This paper presents an analytical study of the multiple scattering of seismic waves by a collection of randomly distributed point scatterers. The theory assumes that the energy envelopes are smooth, but does not require perturbations to be small, thereby allowing the modelling of strong, resonant scattering. The correlation tensor of seismic coda waves recorded at a three-component sensor is decomposed into a sum of eigenmodes of the elastodynamic multiple scattering (Bethe-Salpeter) equation. For a general moment tensor excitation, a total number of four modes is necessary to describe the transport of seismic waves polarization. Their spatio-temporal dependence is given in closed analytical form. Two additional modes transporting exclusively shear polarizations may be excited by antisymmetric moment tensor sources only. The general solution converges towards an equipartition mixture of diffusing P and S waves which allows the retrieval of the local Green's function from coda waves. The equipartition time is obtained analytically and the impact of absorption on Green's function reconstruction is discussed. The process of depolarization of multiply scattered waves and the resulting loss of information is illustrated for various seismic sources. It is shown that coda waves may be used to characterize the source mechanism up to lapse times of the order of a few mean free times only. In the case of resonant scatterers, a formula for the diffusivity of seismic waves incorporating the effect of energy entrapment inside the scatterers is obtained. Application of the theory to high-contrast media demonstrates that coda waves are more sensitive to slow rather than fast velocity anomalies by several orders of magnitude. Resonant scattering appears as an attractive physical phenomenon to explain the small values of the diffusion constant of seismic waves reported in volcanic areas.

  14. Effect of vapor-phase mass transfer on aquifer restoration

    SciTech Connect

    Miller, C.T.; Staes, E.G.

    1992-02-01

    Volatile organic chemicals (VOC) are a frequent source of groundwater contamination in North Carolina and throughout the United States and other developed countries. The work is considered a subset of the general multiphase flow and transport problem: fluid flow and contaminant transport in the gas phase of the unsaturated zone. The specific purpose of the work was to investigate gas-phase (VOC) transport phenomena at the field scale to assess the relative importance of operative transport phenomena. A field research site was established at an active fire training area on Pope Air Force Base. Monitoring of groundwater flow and gas-phase contaminant distributions was accomplished as a function of three spatial dimensions and time. These distributions are reported and interpreted with respect to the current level of understanding of gas-phase transport phenomena. Consideration is given to advective transport, diffusive transport, interphase mass transfer, and multicomponent effects. Numerical modeling is used to evaluate expected steady-state contaminant distributions in the unsaturated zone and to assess relative time scales of operative transport processes. Reasonable agreement is achieved between model simulations and observed concentration distributions in the field, with a dominant vertical transport component shown in both predicted and observed contaminant distributions.

  15. Device-Level Models Using Multi-Valley Effective Mass

    NASA Astrophysics Data System (ADS)

    Baczewski, Andrew D.; Frees, Adam; Gamble, John King; Gao, Xujiao; Jacobson, N. Tobias; Mitchell, John A.; Montaño, Inès; Muller, Richard P.; Nielsen, Erik

    2015-03-01

    Continued progress in quantum electronics depends critically on the availability of robust device-level modeling tools that capture a wide range of physics and effective mass theory (EMT) is one means of building such models. Recent developments in multi-valley EMT show quantitative agreement with more detailed atomistic tight-binding calculations of phosphorus donors in silicon (Gamble, et. al., arXiv:1408.3159). Leveraging existing PDE solvers, we are developing a framework in which this multi-valley EMT is coupled to an integrated device-level description of several experimentally active qubit technologies. Device-level simulations of quantum operations will be discussed, as well as the extraction of process matrices at this level of theory. The authors gratefully acknowledge support from the Sandia National Laboratories Truman Fellowship Program, which is funded by the Laboratory Directed Research and Development (LDRD) Program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94AL85000.

  16. Effects of intermediate mass black holes on nuclear star clusters

    SciTech Connect

    Mastrobuono-Battisti, Alessandra; Perets, Hagai B.; Loeb, Abraham

    2014-11-20

    Nuclear star clusters (NSCs) are dense stellar clusters observed in galactic nuclei, typically hosting a central massive black hole. Here we study the possible formation and evolution of NSCs through the inspiral of multiple star clusters hosting intermediate mass black holes (IMBHs). Using an N-body code, we examine the dynamics of the IMBHs and their effects on the NSC. We find that IMBHs inspiral to the core of the newly formed NSC and segregate there. Although the IMBHs scatter each other and the stars, none of them is ejected from the NSC. The IMBHs are excited to high eccentricities and their radial density profile develops a steep power-law cusp. The stars also develop a power-law cusp (instead of the central core that forms in their absence), but with a shallower slope. The relaxation rate of the NSC is accelerated due to the presence of IMBHs, which act as massive perturbers. This in turn fills the loss cone and boosts the tidal disruption rate of stars both by the MBH and the IMBHs to a value excluded by rate estimates based on current observations. Rate estimates of tidal disruptions can therefore provide a cumulative constraint on the existence of IMBHs in NSCs.

  17. Does Taste Perception Effect Body Mass Index in Preschool Children?

    PubMed Central

    Markam, Vandana; Singh, Garima; Chakravarthy, Kalyan; Gupta, Manoj

    2015-01-01

    Introduction Eating trends established early in life leads to chronic life style disorders such as obesity, which is hard to overcome as child comes of age. Energy expenditure is less but caloric intake is high leading to disparity of energy balance in turn leading to obesity. Obesity is the outcome of a disparity between energy expenditure and caloric intake. Genes play a role in establishing eating habits, which is termed as genetic sensitivity to taste. Aim To determine taste perception effect on body mass index (BMI) in preschool central Indian urban children. Materials and Methods A total of 500 children of 3-6 years were selected and genetic taste perception was assessed using PROP sensitivity test. Anthropometric measurements were recorded to obtain BMI value. Categorical variables were analysed using Pearson’s Chi square test. Results Non tasters were mostly in overweight category i.e. 73.30% where as more number of tasters i.e. 59.70% were in underweight category. A significant correlation is seen between BMI and taste perception. No statistically significant correlation was seen between oral hygiene and taste perception. Females were predominant in both the tasters and non tasters categories. Conclusion Taste perception showed significant relationship with BMI of children between 3-6-year-old children. PMID:26816983

  18. Testing the frozen flow approximation

    NASA Technical Reports Server (NTRS)

    Lucchin, Francesco; Matarrese, Sabino; Melott, Adrian L.; Moscardini, Lauro

    1993-01-01

    We investigate the accuracy of the frozen-flow approximation (FFA), recently proposed by Matarrese, et al. (1992), for following the nonlinear evolution of cosmological density fluctuations under gravitational instability. We compare a number of statistics between results of the FFA and n-body simulations, including those used by Melott, Pellman & Shandarin (1993) to test the Zel'dovich approximation. The FFA performs reasonably well in a statistical sense, e.g. in reproducing the counts-in-cell distribution, at small scales, but it does poorly in the crosscorrelation with n-body which means it is generally not moving mass to the right place, especially in models with high small-scale power.

  19. Intrinsic Nilpotent Approximation.

    DTIC Science & Technology

    1985-06-01

    RD-A1II58 265 INTRINSIC NILPOTENT APPROXIMATION(U) MASSACHUSETTS INST 1/2 OF TECH CAMBRIDGE LAB FOR INFORMATION AND, DECISION UMCLRSSI SYSTEMS C...TYPE OF REPORT & PERIOD COVERED Intrinsic Nilpotent Approximation Technical Report 6. PERFORMING ORG. REPORT NUMBER LIDS-R-1482 7. AUTHOR(.) S...certain infinite-dimensional filtered Lie algebras L by (finite-dimensional) graded nilpotent Lie algebras or g . where x E M, (x,,Z) E T*M/O. It

  20. Anomalous diffraction approximation limits

    NASA Astrophysics Data System (ADS)

    Videen, Gorden; Chýlek, Petr

    It has been reported in a recent article [Liu, C., Jonas, P.R., Saunders, C.P.R., 1996. Accuracy of the anomalous diffraction approximation to light scattering by column-like ice crystals. Atmos. Res., 41, pp. 63-69] that the anomalous diffraction approximation (ADA) accuracy does not depend on particle refractive index, but instead is dependent on the particle size parameter. Since this is at odds with previous research, we thought these results warranted further discussion.

  1. Approximate spatial reasoning

    NASA Technical Reports Server (NTRS)

    Dutta, Soumitra

    1988-01-01

    Much of human reasoning is approximate in nature. Formal models of reasoning traditionally try to be precise and reject the fuzziness of concepts in natural use and replace them with non-fuzzy scientific explicata by a process of precisiation. As an alternate to this approach, it has been suggested that rather than regard human reasoning processes as themselves approximating to some more refined and exact logical process that can be carried out with mathematical precision, the essence and power of human reasoning is in its capability to grasp and use inexact concepts directly. This view is supported by the widespread fuzziness of simple everyday terms (e.g., near tall) and the complexity of ordinary tasks (e.g., cleaning a room). Spatial reasoning is an area where humans consistently reason approximately with demonstrably good results. Consider the case of crossing a traffic intersection. We have only an approximate idea of the locations and speeds of various obstacles (e.g., persons and vehicles), but we nevertheless manage to cross such traffic intersections without any harm. The details of our mental processes which enable us to carry out such intricate tasks in such apparently simple manner are not well understood. However, it is that we try to incorporate such approximate reasoning techniques in our computer systems. Approximate spatial reasoning is very important for intelligent mobile agents (e.g., robots), specially for those operating in uncertain or unknown or dynamic domains.

  2. The effect of body mass index on perioperative thermoregulation

    PubMed Central

    Özer, Ayşe Belin; Yildiz Altun, Aysun; Erhan, Ömer Lütfi; Çatak, Tuba; Karatepe, Ümit; Demirel, İsmail; Çağlar Toprak, Gonca

    2016-01-01

    Purpose We evaluated the effects of body mass index (BMI) on thermoregulation in obese patients scheduled to undergo laparoscopic abdominal surgery. Methods Sixty patients scheduled to undergo laparoscopic abdominal surgery with no pre-medication were included in the study. The patients were classified into 4 groups according to BMI <24.9, 25–39.9, 40–49.9, and >50. Anesthesia was provided with routine techniques. Tympanic and peripheral temperatures were recorded every 5 minutes starting with the induction of anesthesia. The mean skin temperature (MST), mean body temperature (MBT), vasoconstriction time, and vasoconstriction threshold that triggers core warming were calculated with the following formulas: MST = 0.3 (Tchest + Tarm) + 0.2 (Tthigh + Tcalf). MBT was calculated using the equation 0.64Tcore+0.36Tskin, and vasoconstriction was determined by calculating Tforearm−Tfinger. Results There was no significant difference between the groups in terms of age, gender, duration of operation, and room temperature. Compared to those with BMI <24.9, the tympanic temperature was significantly higher in those with BMI =25–39.9 in the 10th, 15th, 20th, and 50th minutes. In addition, BMI =40–49.9 in the 5th, 10th, 15th, 20th, 25th, 30th, 40th, 45th, 50th, and 55th minutes and BMI >50 in the 5th, 10th, 15th, 20th, 25th, 30th, 50th, and 55th minutes were less than those with BMI <24.9 (P<0.05). There was no significant difference in terms of MST and MBT. Vasoconstriction occurred later, and that vasoconstriction threshold was significantly higher in patients with higher BMIs. Conclusion Under anesthesia, the core temperature was protected more easily in obese patients as compared to nonobese patients. Therefore, obesity decreases the negative effects of anesthesia on thermoregulation. PMID:27920541

  3. Effect of professional flossing with NaF or SnF2 gel on approximal caries in 13-16-year-old schoolchildren.

    PubMed

    Gisselsson, H; Birkhed, D; Emilson, C G

    1999-04-01

    The aim of this study was to evaluate the effect of professional flossing with NaF and SnF2 gels on caries development on approximal tooth surfaces. Two-hundred-and-eighty 13-year-old schoolchildren were divided into 3 groups: (1) NaF (n = 97), (2) SnF2 (n = 85), and (3) placebo gel group (n = 98). The investigation was carried out double-blind. The children were treated 4 times a year for 3 years with 1% NaF gel, 1% SnF2 gel, or placebo gel. The treatment was carried out by dental nurses and the time required per visit was approximately 10 min. After 3 years, the mean approximal caries increment, including initial caries lesions, was 2.8 in the NaF, 2.4 in the SnF2, and 4.0 in the placebo gel group (P< 0.05 for SnF2 vs placebo); a reduction compared to the placebo of 30% and 39% in the NaF and SnF2 groups, respectively. Thus, professional flossing with NaF or SnF2 gel carried out 4 times a year may be considered as an interesting caries-preventing method for large-scale application in schoolchildren.

  4. Bose polaron problem: Effect of mass imbalance on binding energy

    NASA Astrophysics Data System (ADS)

    Ardila, L. A. Peña; Giorgini, S.

    2016-12-01

    By means of quantum Monte Carlo methods we calculate the binding energy of an impurity immersed in a Bose-Einstein condensate at T =0 . The focus is on the attractive branch of the Bose polaron and on the role played by the mass imbalance between the impurity and the surrounding particles. For an impurity resonantly coupled to the bath, we investigate the dependence of the binding energy on the mass ratio and on the interaction strength within the medium. In particular, we determine the equation of state in the case of a static (infinite mass) impurity, where three-body correlations are irrelevant and the result is expected to be a universal function of the gas parameter. For the mass ratio corresponding to 40K impurities in a gas of 87Rb atoms, we provide an explicit comparison with the experimental findings of a recent study carried out at JILA.

  5. Mass drivers. 3: Engineering

    NASA Technical Reports Server (NTRS)

    Arnold, W.; Bowen, S.; Cohen, S.; Fine, K.; Kaplan, D.; Kolm, M.; Kolm, H.; Newman, J.; Oneill, G. K.; Snow, W.

    1979-01-01

    The last of a series of three papers by the Mass-Driver Group of the 1977 Ames Summer Study is presented. It develops the engineering principles required to implement the basic mass-driver. Optimum component mass trade-offs are derived from a set of four input parameters, and the program used to design a lunar launcher. The mass optimization procedures is then incorporated into a more comprehensive mission optimization program called OPT-4, which evaluates an optimized mass-driver reaction engine and its performance in a range of specified missions. Finally, this paper discusses, to the extent that time permitted, certain peripheral problems: heating effects in buckets due to magnetic field ripple; an approximate derivation of guide force profiles; the mechanics of inserting and releasing payloads; the reaction mass orbits; and a proposed research and development plan for implementing mass drivers.

  6. Combined effect of couple stresses and heat and mass transfer on peristaltic flow with slip conditions in a tube.

    PubMed

    Sobh, Ayman M

    2013-10-01

    In this article, the influence of heat and mass transfer on peristaltic transport of a couple stress fluid in a uniform tube with slip conditions on the wall is studied. The problem can model the blood flow in living creatures. Under long wavelength approximation and zero Reynolds number, exact solutions for the axial velocity component, pressure gradient, and both temperature and concentration fields are derived. The pressure rise is computed numerically and explained graphically. Moreover, effects of various physical parameters of the problem on temperature distribution, concentration field, and trapping are studied and discussed graphically.

  7. Real-time optical monitoring of thin film growth by in situ pyrometry through multiple layers and effective media approximation modeling

    SciTech Connect

    Benedic, F.; Bruno, P.; Pigeat, Ph.

    2007-03-26

    A model combining multiple layer description and effective media approximation is developed for pyrometry in the case of thin film synthesis, in order to estimate the film property evolution along its thickness during the growth process in real time. The model is used to investigate optical properties of polycrystalline diamond film prepared by H{sub 2}/CH{sub 4}/N{sub 2} microwave plasma. It is shown that in the presence of nitrogen, the growth is strongly nonhomogeneous. The deposit, initially composed of large amounts of void and nondiamond phases, evolves rapidly towards highest quality dense film where the diamond phase is predominant.

  8. Review of rigorous coupled-wave analysis and of homogeneous effective medium approximations for high spatial-frequency surface-relief gratings

    NASA Technical Reports Server (NTRS)

    Glytsis, Elias N.; Brundrett, David L.; Gaylord, Thomas K.

    1993-01-01

    A review of the rigorous coupled-wave analysis as applied to the diffraction of electro-magnetic waves by gratings is presented. The analysis is valid for any polarization, angle of incidence, and conical diffraction. Cascaded and/or multiplexed gratings as well as material anisotropy can be incorporated under the same formalism. Small period rectangular groove gratings can also be modeled using approximately equivalent uniaxial homogeneous layers (effective media). The ordinary and extraordinary refractive indices of these layers depend on the gratings filling factor, the refractive indices of the substrate and superstrate, and the ratio of the freespace wavelength to grating period. Comparisons of the homogeneous effective medium approximations with the rigorous coupled-wave analysis are presented. Antireflection designs (single-layer or multilayer) using the effective medium models are presented and compared. These ultra-short period antireflection gratings can also be used to produce soft x-rays. Comparisons of the rigorous coupled-wave analysis with experimental results on soft x-ray generation by gratings are also included.

  9. An approximate projection method for incompressible flow

    NASA Astrophysics Data System (ADS)

    Stevens, David E.; Chan, Stevens T.; Gresho, Phil

    2002-12-01

    This paper presents an approximate projection method for incompressible flows. This method is derived from Galerkin orthogonality conditions using equal-order piecewise linear elements for both velocity and pressure, hereafter Q1Q1. By combining an approximate projection for the velocities with a variational discretization of the continuum pressure Poisson equation, one eliminates the need to filter either the velocity or pressure fields as is often needed with equal-order element formulations. This variational approach extends to multiple types of elements; examples and results for triangular and quadrilateral elements are provided. This method is related to the method of Almgren et al. (SIAM J. Sci. Comput. 2000; 22: 1139-1159) and the PISO method of Issa (J. Comput. Phys. 1985; 62: 40-65). These methods use a combination of two elliptic solves, one to reduce the divergence of the velocities and another to approximate the pressure Poisson equation. Both Q1Q1 and the method of Almgren et al. solve the second Poisson equation with a weak error tolerance to achieve more computational efficiency.A Fourier analysis of Q1Q1 shows that a consistent mass matrix has a positive effect on both accuracy and mass conservation. A numerical comparison with the widely used Q1Q0 (piecewise linear velocities, piecewise constant pressures) on a periodic test case with an analytic solution verifies this analysis. Q1Q1 is shown to have comparable accuracy as Q1Q0 and good agreement with experiment for flow over an isolated cubic obstacle and dispersion of a point source in its wake.

  10. Cost-effective binomial sequential sampling of western bean cutworm, Striacosta albicosta (Lepidoptera: Noctuidae), egg masses in corn.

    PubMed

    Paula-Moraes, S; Burkness, E C; Hunt, T E; Wright, R J; Hein, G L; Hutchison, W D

    2011-12-01

    Striacosta albicosta (Smith) (Lepidoptera: Noctuidae), is a native pest of dry beans (Phaseolus vulgaris L.) and corn (Zea mays L.). As a result of larval feeding damage on corn ears, S. albicosta has a narrow treatment window; thus, early detection of the pest in the field is essential, and egg mass sampling has become a popular monitoring tool. Three action thresholds for field and sweet corn currently are used by crop consultants, including 4% of plants infested with egg masses on sweet corn in the silking-tasseling stage, 8% of plants infested with egg masses on field corn with approximately 95% tasseled, and 20% of plants infested with egg masses on field corn during mid-milk-stage corn. The current monitoring recommendation is to sample 20 plants at each of five locations per field (100 plants total). In an effort to develop a more cost-effective sampling plan for S. albicosta egg masses, several alternative binomial sampling plans were developed using Wald's sequential probability ratio test, and validated using Resampling for Validation of Sampling Plans (RVSP) software. The benefit-cost ratio also was calculated and used to determine the final selection of sampling plans. Based on final sampling plans selected for each action threshold, the average sample number required to reach a treat or no-treat decision ranged from 38 to 41 plants per field. This represents a significant savings in sampling cost over the current recommendation of 100 plants.

  11. The Effects of Post-Main-Sequence Solar Mass Loss on the Stability of Our Planetary System

    NASA Astrophysics Data System (ADS)

    Duncan, Martin J.; Lissauer, Jack J.

    1998-08-01

    We present the results of extensive long-term integrations of systems of planets with orbits initially identical to subsets of the planets within our Solar System, but with the Sun's mass decreased relative to the masses of the planets. For systems based on the giant planets, we find an approximate power-law correlation between the time elapsed until a pair of planetary orbits cross and the solar-to-planetary-mass ratio, provided that this ratio is ≲0.4 times its current value. However, deviations from this relationship at larger ratios suggest that this correlation may not be useful in predicting the lifetime of the current system. Detailed simulations of the evolution of planetary orbits through the solar mass loss phase at the end of the Sun's main-sequence lifetime suggest that the orbits of those terrestrial planets that survive the Sun's red giant phase are likely to remain stable for (possibly much) longer than a billion years and those of the giant planets are likely to remain stable for (possibly much) more than ten billion years. Pluto is likely to escape from its current 2:3 mean-motion resonance with Neptune within a few billion years beyond the Sun's main sequence lifetime if subject only to gravitational forces; its prognosis is likely to be even poorer when nongravitational forces are included. Implications for the effects of stellar mass loss on the stability of other planetary systems are discussed.

  12. Effects of mass density enhancements on VLF transmitter signals

    NASA Astrophysics Data System (ADS)

    Boudjada, Mohammed Y.; Lammer, Helmut; Al-Haddad, Eimad; Leitzinger, Martin; Krauss, Sandro

    2015-04-01

    We study the variation of the electric field measurements recorded by DEMETER micro-satellite above specific very low frequency (VLF) transmitters. The investigated period starts from August 2004 to December 2010. The VLF signals are combined with the mass density measurements recorded, in the same time interval, by GRACE and CHAMP satellites. Particular enhancements of the mass densities were observed at polar and sub-polar regions by both satellites. Those mass density enhancements are found to propagate from the northern or southern hemisphere to the equator region. We attempt in this study to analyse the VLF signal variations in the time interval where the mass density enhancements are recorded. Such disturbances of the atmosphere can probably affect the Earth's ionosphere. The VLF signal may be attenuated and then not detected by DEMETER. We find that it is the case at some specific occasions. Nevertheless we show that several parameters have to be taken into consideration: (a) the origin of the mass density enhancement in the polar region (e.g. solar particles), (b) its phase speed from the pole to the equator and (c) the satellite (CHAMP, DEMETER, GRACE) local time.

  13. Co-Seismic Mass Dislocation and its Effect on Earth's Rotation and Gravity

    NASA Technical Reports Server (NTRS)

    Chao, B. F.; Gross, R. S.

    2002-01-01

    Mantle processes often involve large-scale mass transport, ranging from mantle convection, tectonic motions, glacial isostatic adjustment, to tides, atmospheric and oceanic loadings, volcanism and seismicity. On very short time scale of less than an hour, co-seismic event, apart from the shaking that is the earthquake, leaves behind permanent (step-function-like) dislocations in the crust and mantle. This redistribution of mass changes the Earth's inertia tensor (and hence Earth's rotation in both length-of-day and polar motion), and the gravity field (in terms of spherical harmonic Stokes coefficients). The question is whether these effects are large enough to be of any significance. In this paper we report updated calculation results based on Chao & Gross (1987). The calculation uses the normal mode summation scheme, applied to nearly twenty thousand major earthquakes that occurred during 1976-2002, according to source mechanism solutions given by the Harvard Central Moment Tensor catalog. Compared to the truly large ones earlier in the century, the earthquakes we study are individually all too small to have left any discernible signature in geodetic records of Earth rotation or global gravity field. However, their collective effects continue to exhibit an extremely strong statistical tendencies. For example, earthquakes conspire to decrease J2 and J22 while shortening LOD, resulting in a rounder and more compact Earth. Strong tendency is also seen in the earthquakes trying to nudge the Earth rotation pole towards approximately 140 degrees E, roughly opposite to the observed polar drift direction. The geophysical significance and implications will be further studied.

  14. Multicriteria approximation through decomposition

    SciTech Connect

    Burch, C.; Krumke, S.; Marathe, M.; Phillips, C.; Sundberg, E.

    1998-06-01

    The authors propose a general technique called solution decomposition to devise approximation algorithms with provable performance guarantees. The technique is applicable to a large class of combinatorial optimization problems that can be formulated as integer linear programs. Two key ingredients of their technique involve finding a decomposition of a fractional solution into a convex combination of feasible integral solutions and devising generic approximation algorithms based on calls to such decompositions as oracles. The technique is closely related to randomized rounding. Their method yields as corollaries unified solutions to a number of well studied problems and it provides the first approximation algorithms with provable guarantees for a number of new problems. The particular results obtained in this paper include the following: (1) the authors demonstrate how the technique can be used to provide more understanding of previous results and new algorithms for classical problems such as Multicriteria Spanning Trees, and Suitcase Packing; (2) they also show how the ideas can be extended to apply to multicriteria optimization problems, in which they wish to minimize a certain objective function subject to one or more budget constraints. As corollaries they obtain first non-trivial multicriteria approximation algorithms for problems including the k-Hurdle and the Network Inhibition problems.

  15. Multicriteria approximation through decomposition

    SciTech Connect

    Burch, C. |; Krumke, S.; Marathe, M.; Phillips, C.; Sundberg, E. |

    1997-12-01

    The authors propose a general technique called solution decomposition to devise approximation algorithms with provable performance guarantees. The technique is applicable to a large class of combinatorial optimization problems that can be formulated as integer linear programs. Two key ingredients of the technique involve finding a decomposition of a fractional solution into a convex combination of feasible integral solutions and devising generic approximation algorithms based on calls to such decompositions as oracles. The technique is closely related to randomized rounding. The method yields as corollaries unified solutions to a number of well studied problems and it provides the first approximation algorithms with provable guarantees for a number of new problems. The particular results obtained in this paper include the following: (1) The authors demonstrate how the technique can be used to provide more understanding of previous results and new algorithms for classical problems such as Multicriteria Spanning Trees, and Suitcase Packing. (2) They show how the ideas can be extended to apply to multicriteria optimization problems, in which they wish to minimize a certain objective function subject to one or more budget constraints. As corollaries they obtain first non-trivial multicriteria approximation algorithms for problems including the k-Hurdle and the Network Inhibition problems.

  16. On Stochastic Approximation.

    ERIC Educational Resources Information Center

    Wolff, Hans

    This paper deals with a stochastic process for the approximation of the root of a regression equation. This process was first suggested by Robbins and Monro. The main result here is a necessary and sufficient condition on the iteration coefficients for convergence of the process (convergence with probability one and convergence in the quadratic…

  17. Approximating Integrals Using Probability

    ERIC Educational Resources Information Center

    Maruszewski, Richard F., Jr.; Caudle, Kyle A.

    2005-01-01

    As part of a discussion on Monte Carlo methods, which outlines how to use probability expectations to approximate the value of a definite integral. The purpose of this paper is to elaborate on this technique and then to show several examples using visual basic as a programming tool. It is an interesting method because it combines two branches of…

  18. Effect of wall mass on the peak sensible heating and cooling loads of a single-family residence

    SciTech Connect

    Burch, D.M.; Walton, G.N.; Licitra, B.A.; Cavanaugh, K.; Klein, M.D.

    1986-10-01

    The effect of wall mass on the peak sensible heating and cooling loads of a single-family residence was investigated using a sophisticated computer program called the Thermal Analysis Research Program (TARP). The computer simulation accuracy was verified by comparing its predicted sensible heating and cooling loads to measured values for six test buildings each having different wall constructions at the National Bureau of Standards. Good agreement was obtained for the load comparisons. The computer program subsequently was used to simulate the performance of identical houses each having the following three insulated-wall constructions: wood frame, conventional masonry (outside wall mass), and innovative masonry (inside wall mass). When the house was operated with fixed thermostat settings, the effect of wall mass on the peak sensible heating and cooling loads was found to be less than 11% for the climatic regions analyzed. Operating the typical house with a 10/sup 0/F (5.6/sup 0/C) night temperature setback during an 8-hour night period caused the daily peak sensible heating loads to be approximately twice those without setback.

  19. Short-range ordering effects on the electronic Bloch spectral function of real materials in the nonlocal coherent-potential approximation

    NASA Astrophysics Data System (ADS)

    Marmodoro, Alberto; Ernst, Arthur; Ostanin, Sergei; Sandratskii, Leonid; Trevisanutto, Paolo E.; Lathiotakis, Nektarios N.; Staunton, Julie B.

    2016-12-01

    The nonlocal coherent-potential approximation provides a systematic technique for the study of short-range ordering effects in a variety of disordered systems. In its original formulation the technique, however, shows an unwanted dependence on details in the coarse-grained effective medium construction. This is particularly evident in the study of k ⃗-resolved quantities, such as the Bloch spectral function and other non-site-diagonal observables. We remove the issue and recover fully physical results in first principles studies of real materials, by means of a resampling procedure first proposed for model tight-binding Hamiltonians. The prescription is further generalized to the case of complex unit cell compounds, with more than a single sublattice, and illustrated through examples from metallic alloys and disordered local moment simulations of paramagnetism in the prototype iron-based superconductor FeSe.

  20. Kaluza's kinetic theory description of the classical Hall effect in a single component dilute gas within the Chapman-Enskog approximation

    NASA Astrophysics Data System (ADS)

    Sandoval-Villalbazo, A.; Garcia-Perciante, A. L.; Sagaceta-Mejia, A. R.

    2015-11-01

    Kinetic theory is used to establish the explicit form of the particle flux associated to the Hall effect for the case of a dilute single component charged gas, using the Chapman-Enskog method and the BGK approximation for the collision Kernel. It is shown that when the system evolves towards mechanical equilibrium, the standard treatment using the concept of external force fails to describe the Hall effect. It is also shown that the use of a five-dimensional curved space-time in the description of the dynamics of the charged particle in the kinetic treatment (Kaluza's theory) formally solves the problem. The implications of this result are briefly discussed. The authors acknowledge support from CONACyT (Mexico) through grant CB2011/167563.

  1. Neutron-proton effective mass splitting in terms of symmetry energy and its density slope

    SciTech Connect

    Chakraborty, S.; Sahoo, B.; Sahoo, S.

    2015-01-15

    Using a simple density-dependent finite-range effective interaction having Yukawa form, the density dependence of isoscalar and isovector effective masses is studied. The isovector effective mass is found to be different for different pairs of like and unlike nucleons. Using HVH theorem, the neutron-proton effective mass splitting is represented in terms of symmetry energy and its density slope. It is again observed that the neutron-proton effective mass splitting has got a positive value when isoscalar effective mass is greater than the isovector effective mass and has a negative value for the opposite case. Furthermore, the neutron-proton effective mass splitting is found to have a linear dependence on asymmetry β. The second-order symmetry potential has a vital role in the determination of density slope of symmetry energy but it does not have any contribution on neutron-proton effective mass splitting. The finite-range effective interaction is compared with the SLy2, SKM, f{sub −}, f{sub 0}, and f{sub +} forms of interactions.

  2. Effects of deformation and neutron-proton pairing on the Gamow-Teller transitions for Mg,2624 in a deformed quasiparticle random-phase approximation

    NASA Astrophysics Data System (ADS)

    Ha, Eunja; Cheoun, Myung-Ki

    2016-11-01

    We investigate effects of neutron-proton (n p ) pairing correlations on the Gamow-Teller (GT) transition of Mg,2624 by explicitly taking into account deformation effects. Our calculation is performed by a deformed quasiparticle random phase approximation (DQRPA) which includes the deformation at the Bardeen-Cooper-Schrieffer and RPA stage. In this paper, we include the n p pairing as well as neutron-neutron (n n ) and proton-proton (p p ) paring correlations to the DQRPA. Our new formalism is applied to the GT transition of well-known deformed Mg isotopes. The n p pairing effect is found to affect more or less the GT distribution of 24Mg and 26Mg. But the deformation effect turns out to be much larger than the n p paring effect because the Fermi surfaces smear more widely by the deformation rather than the n p pairing correlations. Correlations between the deformation and the n p pairing effects and their ambiguities are also discussed with the comparison to experimental GT strength data by triton and 3He beams.

  3. Numerical modelling of the effect of changing surface geometry on mountain glacier mass balance

    NASA Astrophysics Data System (ADS)

    Williams, Chris; Carrivick, Jonathan; Evans, Andrew; Carver, Steve

    2013-04-01

    Mountain glaciers and ice caps are extremely useful indicators of environmental change. Due to their small size, they have much faster response times to climate changes than the large ice masses of Greenland and Antarctica. Mountain glaciers are important for society as sources of water for energy production and irrigation and the meltwater cycles significantly impact local ecology. We have applied a spatially distributed surface energy balance model to a glacier record spanning 100 years. Our study encompasses (i) the creation of a GIS enabling quantitative analysis of changing glacier geometry; absolute length, area, surface lowering and volume change, over the 20th and early 21st Centuries and (ii) the development and testing of a novel user-friendly distributed-surface energy balance model that is designed specifically to consider the effect that these geometrical changes have on mountain glacier mass balance. Our study site is Kårsaglaciären in Arctic Sweden for which there is a variety of data for the past 100 years, sourced from historical surveys, satellite imagery and recent field work. This contrasts with other Arctic mountain glaciers where long-term records are rare, making model development and evaluation very difficult. Kårsaglaciären has been in a state of negative balance throughout the 20th century. Disintegration of the glacier occurred during the 1920s, breaking the glacier into two separate bodies. Between 1926 and 2008, the glacier retreated 1.3 km and reduced in area by 3.41km2. In 2008 the glacier had an estimated surface area of 0.89km2 and a length of approximately 1.0km. Firstly, we present the GIS based construction of robust three-dimensional glacier surface reconstructions for Kårsaglaciären from 1926 to 2010 using a decadal interval. We highlight the kriging interpolation methods used for surface development and the importance of inter-model sensitivity analyses as well as the use of Monte Carlo simulations used to assess the

  4. Galaxy Cluster Gas Mass Fractions From Sunyaev-Zel'dovich Effect Measurement: Constraints on Omega_M

    NASA Technical Reports Server (NTRS)

    Grego, Laura; Carlstrom, John E.; Reese, Erik D.; Holder, Gilbert P.; Holzapfel, William L.; Joy, Marshall K.; Mohr, Joseph J.; Patel, Sandeep; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Using sensitive centimeter-wave receivers mounted on the Owens Valley Radio Observatory and Berkeley-Illinois-Maryland-Association millimeter arrays, we have obtained interferometric measurements of the Sunyaev-Zei'dovich (SZ) effect toward massive galaxy clusters. We use the SZ data to determine the pressure distribution of the cluster gas and, in combination with published X-ray temperatures, to infer the gas mass and total gravitational mass of 18 clusters. The gas mass fraction, fg, is calculated for each cluster, and is extrapolated to the fiducial radius r_{500} using the results of numerical simulations. The mean f_g within r_{500} is 0.081 + 0.009 - 0.011/(h_{100} (statistical uncertainty at 68% confidence level, assuming OmegaM=0.3, OmegaL=0.7). We discuss possible sources of systematic errors in the mean f 9 measurement. We derive an upper limit for OmegaM from this sample under the assumption that the mass composition of clusters within r_{500} reflects the universal mass composition: Omega_M h mass f on cosmology through the angular diameter distance and the r_{500} correction factors. For a flat universe (Omegal, = 1 - OmegaM) and h=0.7, we find the measured gas mass fractions are consistent with OmegaM less than 0.40, at 68% confidence. Including estimates of the baryons contained in galaxies and the baryons which failed to become bound during the cluster formation process, we find OmegaM\\approximately 0.25.

  5. Optimizing the Zeldovich approximation

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Pellman, Todd F.; Shandarin, Sergei F.

    1994-01-01

    We have recently learned that the Zeldovich approximation can be successfully used for a far wider range of gravitational instability scenarios than formerly proposed; we study here how to extend this range. In previous work (Coles, Melott and Shandarin 1993, hereafter CMS) we studied the accuracy of several analytic approximations to gravitational clustering in the mildly nonlinear regime. We found that what we called the 'truncated Zeldovich approximation' (TZA) was better than any other (except in one case the ordinary Zeldovich approximation) over a wide range from linear to mildly nonlinear (sigma approximately 3) regimes. TZA was specified by setting Fourier amplitudes equal to zero for all wavenumbers greater than k(sub nl), where k(sub nl) marks the transition to the nonlinear regime. Here, we study the cross correlation of generalized TZA with a group of n-body simulations for three shapes of window function: sharp k-truncation (as in CMS), a tophat in coordinate space, or a Gaussian. We also study the variation in the crosscorrelation as a function of initial truncation scale within each type. We find that k-truncation, which was so much better than other things tried in CMS, is the worst of these three window shapes. We find that a Gaussian window e(exp(-k(exp 2)/2k(exp 2, sub G))) applied to the initial Fourier amplitudes is the best choice. It produces a greatly improved crosscorrelation in those cases which most needed improvement, e.g. those with more small-scale power in the initial conditions. The optimum choice of kG for the Gaussian window is (a somewhat spectrum-dependent) 1 to 1.5 times k(sub nl). Although all three windows produce similar power spectra and density distribution functions after application of the Zeldovich approximation, the agreement of the phases of the Fourier components with the n-body simulation is better for the Gaussian window. We therefore ascribe the success of the best-choice Gaussian window to its superior treatment

  6. The effectiveness of mass communication to change public behavior.

    PubMed

    Abroms, Lorien C; Maibach, Edward W

    2008-01-01

    This article provides an overview of the ways in which mass communication has been used -- or can be used -- to promote beneficial changes in behavior among members of populations. We use an ecological perspective to examine the ways in which mass media interventions can be used to influence public behavior both directly and indirectly. Mass media interventions that seek to influence people directly -- by directly targeting the people burdened by the public health problem of concern and/or the people who influence them -- have a long basis in public health history, and recent reviews have clarified our expectations about what can be expected from such approaches. Mass media interventions that seek to influence people indirectly -- by creating beneficial changes in the places (or environments) in which people live and work -- have equal if not greater potential to promote beneficial changes in population health behaviors, but these are currently less explored options. To have the greatest possible beneficial influence on public behavior with the public health resources available, we recommend that public health program planners assess their opportunities to use media to target both people and places in a manner that complements and extends other investments being made in population health enhancement.

  7. Intergenerational Educational Effects of Mass Imprisonment in America

    ERIC Educational Resources Information Center

    Hagan, John; Foster, Holly

    2012-01-01

    In some American schools, about a fifth of the fathers have spent time in prison during their child's primary education. We examine how variation across schools in the aggregation and concentration of the mass imprisonment of fathers is associated with their own children's intergenerational educational outcomes and "spills over" into the…

  8. Finite volume effects in the chiral extrapolation of baryon masses

    NASA Astrophysics Data System (ADS)

    Lutz, M. F. M.; Bavontaweepanya, R.; Kobdaj, C.; Schwarz, K.

    2014-09-01

    We perform an analysis of the QCD lattice data on the baryon octet and decuplet masses based on the relativistic chiral Lagrangian. The baryon self-energies are computed in a finite volume at next-to-next-to-next-to-leading order (N3LO), where the dependence on the physical meson and baryon masses is kept. The number of free parameters is reduced significantly down to 12 by relying on large-Nc sum rules. Altogether we describe accurately more than 220 data points from six different lattice groups, BMW, PACS-CS, HSC, LHPC, QCDSF-UKQCD and NPLQCD. Values for all counterterms relevant at N3LO are predicted. In particular we extract a pion-nucleon sigma term of 39-1+2 MeV and a strangeness sigma term of the nucleon of σsN=84-4+28 MeV. The flavor SU(3) chiral limit of the baryon octet and decuplet masses is determined with (802±4) and (1103±6) MeV. Detailed predictions for the baryon masses as currently evaluated by the ETM lattice QCD group are made.

  9. Effects of mass transfer between Martian satellites on surface geology

    NASA Astrophysics Data System (ADS)

    Nayak, Michael; Nimmo, Francis; Udrea, Bogdan

    2016-03-01

    Impacts on planetary bodies can lead to both prompt secondary craters and projectiles that reimpact the target body or nearby companions after an extended period, producing so-called "sesquinary" craters. Here we examine sesquinary cratering on the moons of Mars. We model the impact that formed Voltaire, the largest crater on the surface of Deimos, and explore the orbital evolution of resulting high-velocity ejecta across 500 years using four-body physics and particle tracking. The bulk of mass transfer to Phobos occurs in the first 102 years after impact, while reaccretion of ejecta to Deimos is predicted to continue out to a 104 year timescale (cf. Soter, S. [1971]. Studies of the Terrestrial Planets. Cornell University). Relative orbital geometry between Phobos and Deimos plays a significant role; depending on the relative true longitude, mass transfer between the moons can change by a factor of five. Of the ejecta with a velocity range capable of reaching Phobos, 25-42% by mass reaccretes to Deimos and 12-21% impacts Phobos. Ejecta mass transferred to Mars is <10%. We find that the characteristic impact velocity of sesquinaries on Deimos is an order of magnitude smaller than those of background (heliocentric) hypervelocity impactors and will likely result in different crater morphologies. The time-averaged flux of Deimos material to Phobos can be as high as 11% of the background (heliocentric) direct-to-Phobos impactor flux. This relatively minor contribution suggests that spectrally red terrain on Phobos (Murchie, S., Erard, S. [1996]. Icarus 123, 63-86) is not caused by Deimos material. However the high-velocity ejecta mass reaccreted to Deimos from a Voltaire-sized impact is comparable to the expected background mass accumulated on Deimos between Voltaire-size events. Considering that the high-velocity ejecta contains only 0.5% of the total mass sent into orbit, sesquinary ejecta from a Voltaire-sized impact could feasibly resurface large parts of the Moon

  10. Uncertainties and Systematic Effects on the estimate of stellar masses in high z galaxies

    NASA Astrophysics Data System (ADS)

    Salimbeni, S.; Fontana, A.; Giallongo, E.; Grazian, A.; Menci, N.; Pentericci, L.; Santini, P.

    2009-05-01

    We discuss the uncertainties and the systematic effects that exist in the estimates of the stellar masses of high redshift galaxies, using broad band photometry, and how they affect the deduced galaxy stellar mass function. We use at this purpose the latest version of the GOODS-MUSIC catalog. In particular, we discuss the impact of different synthetic models, of the assumed initial mass function and of the selection band. Using Chariot & Bruzual 2007 and Maraston 2005 models we find masses lower than those obtained from Bruzual & Chariot 2003 models. In addition, we find a slight trend as a function of the mass itself comparing these two mass determinations with that from Bruzual & Chariot 2003 models. As consequence, the derived galaxy stellar mass functions show diverse shapes, and their slope depends on the assumed models. Despite these differences, the overall results and scenario is observed in all these cases. The masses obtained with the assumption of the Chabrier initial mass function are in average 0.24 dex lower than those from the Salpeter assumption, at all redshifts, causing a shift of galaxy stellar mass function of the same amount. Finally, using a 4.5 μm-selected sample instead of a Ks-selected one, we add a new population of highly absorbed, dusty galaxies at z~=2-3 of relatively low masses, yielding stronger constraints on the slope of the galaxy stellar mass function at lower masses.

  11. Quantum systems with effective and time-dependent masses: form-preserving transformations and reality conditions

    NASA Astrophysics Data System (ADS)

    Schulze-Halberg, Axel

    2005-12-01

    We study the time-dependent Schrödinger equation (TDSE) with an effective (position-dependent) mass, relevant in the context of transport phenomena in semiconductors. The most general form-preserving transformation between two TDSEs with different effective masses is derived. A condition guaranteeing the reality of the potential in the transformed TDSE is obtained. To ensure maximal generality, the mass in the TDSE is allowed to depend on time also.

  12. Applied Routh approximation

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.

    1978-01-01

    The Routh approximation technique for reducing the complexity of system models was applied in the frequency domain to a 16th order, state variable model of the F100 engine and to a 43d order, transfer function model of a launch vehicle boost pump pressure regulator. The results motivate extending the frequency domain formulation of the Routh method to the time domain in order to handle the state variable formulation directly. The time domain formulation was derived and a characterization that specifies all possible Routh similarity transformations was given. The characterization was computed by solving two eigenvalue-eigenvector problems. The application of the time domain Routh technique to the state variable engine model is described, and some results are given. Additional computational problems are discussed, including an optimization procedure that can improve the approximation accuracy by taking advantage of the transformation characterization.

  13. Effective-mass analysis of Bose-Einstein condensates in optical lattices: Stabilization and levitation

    SciTech Connect

    Pu, H.; Zhang, W.; Meystre, P.; Baksmaty, L.O.; Bigelow, N.P.

    2003-04-01

    We investigate the time evolution of a Bose-Einstein condensate in a periodic optical potential. Using an effective mass formalism, we study the equation of motion for the envelope function modulating the Bloch states of the lattice potential. In particular, we show how the negative effective-mass affects the dynamics of the condensate.

  14. Magnetic Field Modulated Photoreflectance Study of the Electron Effective Mass in Dilute Nitride Semiconductors

    SciTech Connect

    Mori, N.; Hiejima, K.; Kubo, H.; Patane, A.; Eaves, L.

    2011-12-23

    Magnetic field modulated photoreflectance measurements are performed on the dilute nitride semiconductor Ga(AsN) in quantizing magnetic fields. From the measured cyclotron energies, the conduction band effective mass and its dependence on the nitrogen content are determined. The effective mass is found to become significantly heavier in samples with high nitrogen composition (>0.1%).

  15. Concentrated mass effects on the flutter of a composite advanced turboprop model

    NASA Technical Reports Server (NTRS)

    Ramsey, J. K.; Kaza, K. R. V.

    1986-01-01

    The effects on bending-torsion flutter due to the addition of a concentrated mass to an advanced turboprop model blade with rigid hub are studied. Specifically the effects of the magnitude and location of added mass on the natural frequencies, mode shapes, critical interblade phase angle, and flutter Mach number are analytically investigated. The flutter of a propfan model is shown to be sensitive to the change in mass distribution. Static unbalance effects, like those for fixed wings, were shown to occur as the concentrated mass was moved from the leading edge to the trailing edge with the exception of one mass location. Mass balancing is also inferred to be a feasible method for increasing the flutter speed.

  16. A highly cost effective method of mass screening for thalassaemia.

    PubMed Central

    Silvestroni, E; Bianco, I

    1983-01-01

    A simple, fast, and reliable two step procedure for the detection of non-alpha-thalassaemias in mass screening programmes is presented. Step 1 consists of a study of red cell morphology and a one tube red cell osmotic fragility tests. This step eliminates the non-thalassaemic samples; the rest are processed through step 2, consisting of determination of red cell indices and haemoglobin studies. Over the past seven years this procedure has been used at this centre in mass screening secondary school students in Latium. Blood samples from 289 763 students were examined, and 6838 cases of thalassaemia detected. It is estimated that 0.35 +/- 0.25% of subjects with thalassaemia escaped detection by this procedure. PMID:6403170

  17. Effective Planck mass and the scale of inflation

    SciTech Connect

    Kleban, Matthew; Porrati, Massimo; Mirbabayi, Mehrdad E-mail: mehrdadm@ias.edu

    2016-01-01

    A recent paper argued that it is not possible to infer the energy scale of inflation from the amplitude of tensor fluctuations in the Cosmic Microwave Background, because the usual connection is substantially altered if there are a large number of universally coupled fields present during inflation, with mass less than the inflationary Hubble scale. We give a simple argument demonstrating that this is incorrect.

  18. OMI tropospheric NO2 air mass factors over South America: effects of biomass burning aerosols

    NASA Astrophysics Data System (ADS)

    Castellanos, P.; Boersma, K. F.; Torres, O.; de Haan, J. F.

    2015-03-01

    Biomass burning is an important and uncertain source of aerosols and NOx (NO + NO2) to the atmosphere. OMI observations of tropospheric NO2 are essential for characterizing this emissions source, but inaccuracies in the retrieval of NO2 tropospheric columns due to the radiative effects of aerosols, especially light-absorbing carbonaceous aerosols, are not well understood. It has been shown that the O2-O2 effective cloud fraction and pressure retrieval is sensitive to aerosol optical and physical properties, including aerosol optical depth (AOD). Aerosols implicitly influence the tropospheric air mass factor (AMF) calculations used in the NO2 retrieval through the effective cloud parameters used in the independent pixel approximation. In this work, we explicitly account for the effects of biomass burning aerosols in the tropospheric NO2 AMF calculation by including collocated aerosol extinction vertical profile observations from the CALIOP instrument, and aerosol optical depth (AOD) and single scattering albedo (SSA) retrieved by the OMI near-UV aerosol algorithm (OMAERUV) in the DISAMAR radiative transfer model for cloud-free scenes. Tropospheric AMFs calculated with DISAMAR were benchmarked against AMFs reported in the Dutch OMI NO2 (DOMINO) retrieval; the mean and standard deviation (SD) of the difference was 0.6 ± 8%. Averaged over three successive South American biomass burning seasons (2006-2008), the spatial correlation in the 500 nm AOD retrieved by OMI and the 532 nm AOD retrieved by CALIOP was 0.6, and 72% of the daily OMAERUV AOD observations were within 0.3 of the CALIOP observations. Overall, tropospheric AMFs calculated with observed aerosol parameters were on average 10% higher than AMFs calculated with effective cloud parameters. For effective cloud radiance fractions less than 30%, or effective cloud pressures greater than 800 hPa, the difference between tropospheric AMFs based on implicit and explicit aerosol parameters is on average 6 and 3

  19. The Relative Effectiveness of Massed Versus Spaced Film Presentation. Rapid Mass Learning. Technical Report.

    ERIC Educational Resources Information Center

    Ash, Philip

    In presenting material to be learned in a film, is a single, long session, dealing with the subject in depth, as effective as the same content divided into several short sessions? In other words, is a long presentation more tiring than a short one? Groups of psychology students and Navy recruits were given equivalent amounts of instruction time,…

  20. FITTING NONLINEAR ORDINARY DIFFERENTIAL EQUATION MODELS WITH RANDOM EFFECTS AND UNKNOWN INITIAL CONDITIONS USING THE STOCHASTIC APPROXIMATION EXPECTATION–MAXIMIZATION (SAEM) ALGORITHM

    PubMed Central

    Chow, Sy- Miin; Lu, Zhaohua; Zhu, Hongtu; Sherwood, Andrew

    2014-01-01

    The past decade has evidenced the increased prevalence of irregularly spaced longitudinal data in social sciences. Clearly lacking, however, are modeling tools that allow researchers to fit dynamic models to irregularly spaced data, particularly data that show nonlinearity and heterogeneity in dynamical structures. We consider the issue of fitting multivariate nonlinear differential equation models with random effects and unknown initial conditions to irregularly spaced data. A stochastic approximation expectation–maximization algorithm is proposed and its performance is evaluated using a benchmark nonlinear dynamical systems model, namely, the Van der Pol oscillator equations. The empirical utility of the proposed technique is illustrated using a set of 24-h ambulatory cardiovascular data from 168 men and women. Pertinent methodological challenges and unresolved issues are discussed. PMID:25416456

  1. Fitting Nonlinear Ordinary Differential Equation Models with Random Effects and Unknown Initial Conditions Using the Stochastic Approximation Expectation-Maximization (SAEM) Algorithm.

    PubMed

    Chow, Sy-Miin; Lu, Zhaohua; Sherwood, Andrew; Zhu, Hongtu

    2016-03-01

    The past decade has evidenced the increased prevalence of irregularly spaced longitudinal data in social sciences. Clearly lacking, however, are modeling tools that allow researchers to fit dynamic models to irregularly spaced data, particularly data that show nonlinearity and heterogeneity in dynamical structures. We consider the issue of fitting multivariate nonlinear differential equation models with random effects and unknown initial conditions to irregularly spaced data. A stochastic approximation expectation-maximization algorithm is proposed and its performance is evaluated using a benchmark nonlinear dynamical systems model, namely, the Van der Pol oscillator equations. The empirical utility of the proposed technique is illustrated using a set of 24-h ambulatory cardiovascular data from 168 men and women. Pertinent methodological challenges and unresolved issues are discussed.

  2. Increasing the Thermal Conductivity of Graphene-Polyamide-6,6 Nanocomposites by Surface-Grafted Polymer Chains: Calculation with Molecular Dynamics and Effective-Medium Approximation.

    PubMed

    Gao, Yangyang; Müller-Plathe, Florian

    2016-02-25

    By employing reverse nonequilibrium molecular dynamics simulations in a full atomistic resolution, the effect of surface-grafted chains on the thermal conductivity of graphene-polyamide-6.6 (PA) nanocomposites has been investigated. The interfacial thermal conductivity perpendicular to the graphene plane is proportional to the grafting density, while it first increases and then saturates with the grafting length. Meanwhile, the intrinsic in-plane thermal conductivity of graphene drops sharply as the grafting density increases. The maximum overall thermal conductivity of nanocomposites appears at an intermediate grafting density because of these two competing effects. The thermal conductivity of the composite parallel to the graphene plane increases with the grafting density and grafting length which is attributed to better interfacial coupling between graphene and PA. There exists an optimal balance between grafting density and grafting length to obtain the highest interfacial and parallel thermal conductivity. Two empirical formulas are suggested, which quantitatively account for the effects of grafting length and density on the interfacial and parallel thermal conductivity. Combined with effective medium approximation, for ungrafted graphene in random orientation, the model overestimates the thermal conductivity at low graphene volume fraction (f < 10%) compared with experiments, while it underestimates it at high graphene volume fraction (f > 10%). For unoriented grafted graphene, the model matches the experimental results well. In short, this work provides some valuable guides to obtain the nanocomposites with high thermal conductivity by grafting chain on the surface of graphene.

  3. THE EFFECTS OF VIEWING ANGLE ON THE MASS DISTRIBUTION OF EXOPLANETS

    SciTech Connect

    Lopez, S.; Jenkins, J. S.

    2012-09-10

    We present a mathematical method to statistically decouple the effects of unknown inclination angles on the mass distribution of exoplanets that have been discovered using radial-velocity (RV) techniques. The method is based on the distribution of the product of two random variables. Thus, if one assumes a true mass distribution, the method makes it possible to recover the observed distribution. We compare our prediction with available RV data. Assuming that the true mass function is described by a power law, the minimum mass function that we recover proves a good fit to the observed distribution at both mass ends. In particular, it provides an alternative explanation for the observed low-mass decline, usually explained as sample incompleteness. In addition, the peak observed near the low-mass end arises naturally in the predicted distribution as a consequence of imposing a low-mass cutoff in the true distribution. If the low-mass bins below 0.02 M{sub J} are complete, then the mass distribution in this regime is heavily affected by the small fraction of lowly inclined interlopers that are actually more massive companions. Finally, we also present evidence that the exoplanet mass distribution changes form toward low mass, implying that a single power law may not adequately describe the sample population.

  4. Scale effects and morphological diversification in hindlimb segment mass proportions in neognath birds

    PubMed Central

    2014-01-01

    Introduction In spite of considerable work on the linear proportions of limbs in amniotes, it remains unknown whether differences in scale effects between proximal and distal limb segments has the potential to influence locomotor costs in amniote lineages and how changes in the mass proportions of limbs have factored into amniote diversification. To broaden our understanding of how the mass proportions of limbs vary within amniote lineages, I collected data on hindlimb segment masses – thigh, shank, pes, tarsometatarsal segment, and digits – from 38 species of neognath birds, one of the most speciose amniote clades. I scaled each of these traits against measures of body size (body mass) and hindlimb size (hindlimb length) to test for departures from isometry. Additionally, I applied two parameters of trait evolution (Pagel’s λ and δ) to understand patterns of diversification in hindlimb segment mass in neognaths. Results All segment masses are positively allometric with body mass. Segment masses are isometric with hindlimb length. When examining scale effects in the neognath subclade Land Birds, segment masses were again positively allometric with body mass; however, shank, pedal, and tarsometatarsal segment masses were also positively allometric with hindlimb length. Methods of branch length scaling to detect phylogenetic signal (i.e., Pagel’s λ) and increasing or decreasing rates of trait change over time (i.e., Pagel’s δ) suffer from wide confidence intervals, likely due to small sample size and deep divergence times. Conclusions The scaling of segment masses appears to be more strongly related to the scaling of limb bone mass as opposed to length, and the scaling of hindlimb mass distribution is more a function of scale effects in limb posture than proximo-distal differences in the scaling of limb segment mass. Though negative allometry of segment masses appears to be precluded by the need for mechanically sound limbs, the positive allometry of

  5. Multi-valley effective mass treatment of donor-dot tunneling in silicon

    NASA Astrophysics Data System (ADS)

    Frees, Adam; Baczewski, Andrew D.; Gamble, John King; Jacobson, N. Tobias; Muller, Richard P.; Nielsen, Erik

    2015-03-01

    Many cutting-edge experiments in silicon-based devices for quantum information processing involve the tunneling of an individual electron from a donor atom within the material to the interface of the heterostructure. Understanding how this tunneling process varies among different realistic devices is therefore of great interest. Using a multi-valley effective mass approximation method, we find the tunnel coupling, adiabatic min-gap, and ionizing electric field strength between a phosphorous donor in silicon and a nearby quantum dot at a Si/SiO2 interface. Additionally, we calculate these quantities for a phosphorous donor in strained silicon and a Si/SiGe interface. We consider how these properties change as a function of relative position between the donor and the dot. The authors gratefully acknowledge support from the Sandia National Laboratories Truman Fellowship Program, which is funded by the Laboratory Directed Research and Development (LDRD) Program. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  6. Effect of 120 keV proton irradiation on mass loss and chemical structure of AG-80 epoxy resin

    NASA Astrophysics Data System (ADS)

    Gao, Yu; Jiang, Sheng-Ling; Dong, Shang-Li; Yang, De-Zhuang

    2010-11-01

    The AG-80 resin is a new type of thermosetting matrix for advanced carbon/epoxy composites. Mass loss effect and the related outgassing are major concerns for its application in space. The changes in mass loss, outgassing and chemical structure under 120 keV proton exposure were investigated for the AG-80 epoxy resin. The variation in chemistry was characterised by X-ray photoelectron spectroscopy. Experimental results show that by increasing the proton fluence, the surface colour of specimens becomes darker. Mass loss ratios ascend remarkably until the fluence of approximately 6.3×1015 cm-2 and then tend to level off. The surface roughness of specimens exhibits an increasing trend followed by a decreasing trend as a function of proton fluence. Under the exposure, the C‒C, C‒H, C‒N and C‒O bonds are broken, a variety of molecule ions with smaller molecular weight are formed and carbon is enriched in the surface layer of the specimens. The changes in mass loss and surface roughness of the AG-80 epoxy resin could be attributed to the formation of the molecule ions and the enrichment of carbon content in the surface layer due to proton radiation.

  7. Approximate option pricing

    SciTech Connect

    Chalasani, P.; Saias, I.; Jha, S.

    1996-04-08

    As increasingly large volumes of sophisticated options (called derivative securities) are traded in world financial markets, determining a fair price for these options has become an important and difficult computational problem. Many valuation codes use the binomial pricing model, in which the stock price is driven by a random walk. In this model, the value of an n-period option on a stock is the expected time-discounted value of the future cash flow on an n-period stock price path. Path-dependent options are particularly difficult to value since the future cash flow depends on the entire stock price path rather than on just the final stock price. Currently such options are approximately priced by Monte carlo methods with error bounds that hold only with high probability and which are reduced by increasing the number of simulation runs. In this paper the authors show that pricing an arbitrary path-dependent option is {number_sign}-P hard. They show that certain types f path-dependent options can be valued exactly in polynomial time. Asian options are path-dependent options that are particularly hard to price, and for these they design deterministic polynomial-time approximate algorithms. They show that the value of a perpetual American put option (which can be computed in constant time) is in many cases a good approximation to the value of an otherwise identical n-period American put option. In contrast to Monte Carlo methods, the algorithms have guaranteed error bounds that are polynormally small (and in some cases exponentially small) in the maturity n. For the error analysis they derive large-deviation results for random walks that may be of independent interest.

  8. Well Ordered Melts from Low Molar Mass Pluronic Copolymers Blended with Poly (acrylic acid): Effect of Homopolymer Molar Mass

    NASA Astrophysics Data System (ADS)

    Daga, Vikram; Tirumala, Vijay; Romang, Alvin; Lin, Eric; Watkins, James

    2008-03-01

    The use of short chain block copolymer melts as nanostructured templates is often limited by their low segregation strength (χN). Since increasing molar mass to strengthen segregation also increases the interdomain spacing, it is more desirable to increase the segment-segment interaction parameter, χ to produce strong segregation. We have recently shown that block copolymer melts with a molar mass less than 15 kg/mol undergo disorder-to-order transition without a significant increase in interdomain spacing when blended with a selectively associating homopolymer, due to an apparent increase in effective χ. Here, we study the effect of homopolymer molar mass on the segregation of a disordered poly (oxyethylene-oxypropylene-oxyethylene) copolymer melt that forms lamellar microstructure in the ordered phase. Based on small-angle scattering measurements, we find that the melts remain ordered over a broad range of homopolymer chain lengths, ranging up to ten times that of the copolymer. This approach has many implications for the use of commodity block copolymer surfactants as inexpensive nanostructured templates for commercial applications.

  9. Effects of main-sequence mass loss on the turnoff ages of globular clusters

    SciTech Connect

    Guzik, J.A.

    1989-01-01

    Willson, Bowen, and Struck-Marcell have proposed that globular cluster main-sequence turnoff ages can be reconciled with the lower ages of the Galaxy and universe deduced from other methods by incorporating an epoch of early main-sequence mass-loss by stars of spectral types A through early-F. The proposed mass loss is pulsation-driven, and facilitated by rapid rotation. This paper presents stellar evolution calculations of Pop. II (Z = 0.001) mass-losing stars of initial mass 0.8 to 1.6 M/sub /circle dot//, with exponentially-decreasing mass loss rates of e-folding times 0.5 to 2.0 Gyr, evolving to a final mass of 0.7 M/sub /circle dot//. The calculations indicate that a globular cluster with apparent turnoff age 18 Gyr could have an actual age as low as /approximately/12 Gyr. Observational implications that may help to verify the hypothesis, e.g. low C/N abundance ratios among red giants following first dredge-up, blue stragglers, red giant deficiencies, and signatures in cluster mass/luminosity functions, are also discussed.25 refs., 4 figs., 3 tabs.

  10. Massive nitrogen loss in critical surgical illness: effect on cardiac mass and function.

    PubMed Central

    Hill, A A; Plank, L D; Finn, P J; Whalley, G A; Sharpe, N; Clark, M A; Hill, G L

    1997-01-01

    OBJECTIVE: The authors measured cardiac mass and function to determine whether these changed in patients who were critically ill who were losing large amounts of nitrogen from the body. SUMMARY BACKGROUND DATA: The large losses of body nitrogen that occur in patients with protein-energy malnutrition are associated with a loss of cardiac mass and function. It is not known if this also occurs in patients who were critically ill who are losing massive amounts of nitrogen. METHODS: Once hemodynamically stable, 13 patients who were critically ill underwent sequential measurements of left ventricular mass (LVM) and function, total body nitrogen (TBN), total body potassium, body weight, fat-free mass, and limb muscle mass. RESULTS: Over a 21-day study period, there was no change in LVM or function despite falls of 14% and 21% in TBN and total body potassium, respectively, a 21% fall in limb muscle mass, and a deterioration in skeletal muscle function by approximately 40%. CONCLUSIONS: In patients who were critically ill, cardiac mass does not decrease and function does not deteriorate after hemodynamic stability has been achieved despite massive losses of protein from the body. PMID:9296513

  11. Effect of neutrino rest mass on ionization equilibrium freeze-out

    NASA Astrophysics Data System (ADS)

    Grohs, E.; Fuller, G. M.; Kishimoto, C. T.; Paris, M. W.

    2015-12-01

    We show how small neutrino rest masses can increase the expansion rate near the photon decoupling epoch in the early Universe, causing an earlier, higher temperature freeze-out for ionization equilibrium compared to the massless neutrino case. This yields a larger free-electron fraction, thereby affecting the photon diffusion length differently than the sound horizon at photon decoupling. This neutrino-mass and recombination effect depends strongly on the neutrino rest masses. Though below current sensitivity, this effect could be probed by next-generation cosmic microwave background experiments, giving another observational handle on neutrino rest mass.

  12. Effect of neutrino rest mass on ionization equilibrium freeze-out

    SciTech Connect

    Grohs, Evan Bradley; Fuller, George M.; Kishimoto, Chad T.; Paris, Mark W.

    2015-12-23

    We show how small neutrino rest masses can increase the expansion rate near the photon decoupling epoch in the early Universe, causing an earlier, higher temperature freeze-out for ionization equilibrium compared to the massless neutrino case. This yields a larger free-electron fraction, thereby affecting the photon diffusion length differently than the sound horizon at photon decoupling. This neutrino-mass and recombination effect depends strongly on the neutrino rest masses. Ultimately, though below current sensitivity, this effect could be probed by next-generation cosmic microwave background experiments, giving another observational handle on neutrino rest mass.

  13. Approximate Qualitative Temporal Reasoning

    DTIC Science & Technology

    2001-01-01

    i.e., their boundaries can be placed in such a way that they coincide with the cell boundaries of the appropriate partition of the time-line. (Think of...respect to some appropriate partition of the time-line. For example, I felt well on Saturday. When I measured my temperature I had a fever on Monday and on...Bittner / Approximate Qualitative Temporal Reasoning 49 [27] I. A. Goralwalla, Y. Leontiev , M. T. Özsu, D. Szafron, and C. Combi. Temporal granularity for

  14. Dirac particles interacting with the improved Frost-Musulin potential within the effective mass formalism

    NASA Astrophysics Data System (ADS)

    Tas, Ahmet; Aydogdu, Oktay; Salti, Mustafa

    2017-04-01

    We mainly investigate the dynamics of spin-1/2 particles with position-dependent mass for the improved Frost-Musulin potential under spin-pseudospin symmetry. First, we find an approximate analytical solution of the Dirac equation both for bound and scattering states under spin-pseudospin symmetry and then we see that the normalized solutions are given in terms of the Gauss hypergeometric functions. In further steps, we analyze our results numerically.

  15. An Approximate Approach to Automatic Kernel Selection.

    PubMed

    Ding, Lizhong; Liao, Shizhong

    2016-02-02

    Kernel selection is a fundamental problem of kernel-based learning algorithms. In this paper, we propose an approximate approach to automatic kernel selection for regression from the perspective of kernel matrix approximation. We first introduce multilevel circulant matrices into automatic kernel selection, and develop two approximate kernel selection algorithms by exploiting the computational virtues of multilevel circulant matrices. The complexity of the proposed algorithms is quasi-linear in the number of data points. Then, we prove an approximation error bound to measure the effect of the approximation in kernel matrices by multilevel circulant matrices on the hypothesis and further show that the approximate hypothesis produced with multilevel circulant matrices converges to the accurate hypothesis produced with kernel matrices. Experimental evaluations on benchmark datasets demonstrate the effectiveness of approximate kernel selection.

  16. EFFECTS OF ROTATION ON THE MINIMUM MASS OF PRIMORDIAL PROGENITORS OF PAIR-INSTABILITY SUPERNOVAE

    SciTech Connect

    Chatzopoulos, E.; Craig Wheeler, J.

    2012-03-20

    The issue of which stars may reach the conditions of electron/positron pair-formation instability is of importance to understand the final evolution both of the first stars and of contemporary stars. The criterion to enter the pair-instability regime in density and temperature is basically controlled by the mass of the oxygen core. The main-sequence masses that produce a given oxygen core mass are, in turn, dependent on metallicity, mass loss, and convective and rotationally induced mixing. We examine the evolution of massive stars to determine the minimum main-sequence mass that can encounter pair-instability effects, either a pulsational pair-instability supernova (PPISN) or a full-fledged pair-instability supernova (PISN). We concentrate on zero-metallicity stars with no mass-loss subject to the Schwarzschild criterion for convective instability, but also explore solar metallicity and mass loss and the Ledoux criterion. As expected, for sufficiently strong rotationally induced mixing, the minimum main-sequence mass is encountered for conditions that induce effectively homogeneous evolution such that the original mass is converted almost entirely to helium and then to oxygen. For this case, we find that the minimum main-sequence mass is about 40 M{sub Sun} to encounter PPISN and about 65 M{sub Sun} to encounter a PISN. The implications of these results for the first stars and for contemporary supernovae are discussed.

  17. Effect of chlorhexidine gel on approximal caries increment in adolescents with high caries risk using professional flossing compared to individual trays.

    PubMed

    Lindquist, Birgitta; Gisselsson, Hans; Wennerholm, Kerstin

    2010-01-01

    The aim of this study was to evaluate the effect of chlorhexidine gel treatment on approximal caries development during a three year-study in children with expected high risk of caries. New caries of this group was compared to the caries development in two groups with assumed moderate or low caries risk. One hundred and sixty-nine of 201 twelve-year-old children fulfilled the trial. A group of 77 children showed no caries experience and was expected to be a low caries risk group (R1). Ninety-two children had at least one approximal lesion and their salivary numbers of mutans streptococci (ms) were quantified. Forty-six of those showed less than 3 x 10(5) ms per ml saliva and were supposed to have a moderate caries risk (R2). Forty-six children, with high levels of ms, were expected to have a high caries risk (R3). Both R1 and R3 were treated with fluoride varnish every 18th month and R2 every 6th month. The R3 group was supplementary treated with 1% chlorhexidine gel (Corsodyl) by using either flossing combined with polishing (Flossing group), or gel in individual trays (Tray group) every third month, in two subsequent days. The mean caries development during three years was for R1 and R2, 1.5 and 3.0, respectively. For R3, the corresponding caries incidence was 2.9 in the Tray group and 2.8 in the Flossing group. Significantly less new caries was found in the R1 compared to R2 and R3, but no significant difference was found between R2 and R3 or between the two groups of R3. In conclusion both methods of professional chlorhexidine gel treatments showed a caries development corresponding to the group with moderate caries risk and could both be used for caries prevention.

  18. Coupled effects of temperature and mass transport on the isotope fractionation of zinc during electroplating

    NASA Astrophysics Data System (ADS)

    Black, Jay R.; John, Seth G.; Kavner, Abby

    2014-01-01

    The isotopic composition of zinc metal electrodeposited on a rotating disc electrode from a Zn-citrate aqueous solution was investigated as a function of overpotential (electrochemical driving force), temperature, and rotation rate. Zn metal was measured to be isotopically light with respect to Zn+2 in solution, with observed fractionations varying from Δ66/64Znmetal-aqueous = -1.0‰ to -3.9‰. Fractionation varies continuously as a function of a dimensionless parameter described by the ratio of observed deposition rate to calculated mass-transport limiting rate, where larger fractionations are observed at lower deposition rates, lower temperature, and at faster electrode rotation rates. Thus, the large fractionation and its rate dependence is interpreted as a competition between the two kinetic processes with different effective activation energies: mass-transport-limited (diffusion limited) kinetics with a large activation energy, which creates small fractionations close to the predicted diffusive fractionation; and electrochemical deposition kinetics, with a smaller effective activation energy, which creates large fractionations at low deposition rates and high hydrodynamic fluxes of solute to the electrode. The results provide a framework for predicting isotope fractionation in processes controlled by two competing reactions with different kinetic isotope effects. Light isotopes are electroplated. In all cases light stable isotopes of the metals are preferentially electroplated, with mass-dependent behavior evident where three or more isotopes are measured. Fractionation is time-independent, meaning that the fractionation factor does not vary with the extent of reaction. In most of our experiments, we have controlled the extent of reaction such that only a small amount of metal is deposited from the stock solution, thus avoiding significant evolution of the reservoir composition. In such experiments, the observed isotope fractionation is constant as a

  19. Effective mass in bilayer graphene at low carrier densities: The role of potential disorder and electron-electron interaction

    NASA Astrophysics Data System (ADS)

    Li, J.; Tan, L. Z.; Zou, K.; Stabile, A. A.; Seiwell, D. J.; Watanabe, K.; Taniguchi, T.; Louie, Steven G.; Zhu, J.

    2016-10-01

    In a two-dimensional electron gas, the electron-electron interaction generally becomes stronger at lower carrier densities and renormalizes the Fermi-liquid parameters, such as the effective mass of carriers. We combine experiment and theory to study the effective masses of electrons and holes me* and mh* in bilayer graphene in the low carrier density regime on the order of 1 ×1011c m-2 . Measurements use temperature-dependent low-field Shubnikov-de Haas oscillations observed in high-mobility hexagonal boron nitride supported samples. We find that while me* follows a tight-binding description in the whole density range, mh* starts to drop rapidly below the tight-binding description at a carrier density of n =6 ×1011c m-2 and exhibits a strong suppression of 30% when n reaches 2 ×1011c m-2 . Contributions from the electron-electron interaction alone, evaluated using several different approximations, cannot explain the experimental trend. Instead, the effect of the potential fluctuation and the resulting electron-hole puddles play a crucial role. Calculations including both the electron-electron interaction and disorder effects explain the experimental data qualitatively and quantitatively. This Rapid Communication reveals an unusual disorder effect unique to two-dimensional semimetallic systems.

  20. Hierarchical Approximate Bayesian Computation

    PubMed Central

    Turner, Brandon M.; Van Zandt, Trisha

    2013-01-01

    Approximate Bayesian computation (ABC) is a powerful technique for estimating the posterior distribution of a model’s parameters. It is especially important when the model to be fit has no explicit likelihood function, which happens for computational (or simulation-based) models such as those that are popular in cognitive neuroscience and other areas in psychology. However, ABC is usually applied only to models with few parameters. Extending ABC to hierarchical models has been difficult because high-dimensional hierarchical models add computational complexity that conventional ABC cannot accommodate. In this paper we summarize some current approaches for performing hierarchical ABC and introduce a new algorithm called Gibbs ABC. This new algorithm incorporates well-known Bayesian techniques to improve the accuracy and efficiency of the ABC approach for estimation of hierarchical models. We then use the Gibbs ABC algorithm to estimate the parameters of two models of signal detection, one with and one without a tractable likelihood function. PMID:24297436

  1. Rack Distribution Effects on MPLM Center of Mass

    NASA Technical Reports Server (NTRS)

    Tester, John T.

    2005-01-01

    This research was in support of exploring the need for more flexible "center of gravity (CG) specifications than those currently established by NASA for the Multi-Purpose Logistics Module (MPLM). The MPLM is the cargo carrier for International Space Station (ISS) missions. The MPLM provides locations for 16 standard racks, as shown in Figure 1; not all positions need to be filled in any given flight. The MPLM coordinate system (X(sub M), Y(sub M), Z(sub M)) is illustrated as well. For this project, the primary missions of interest were those which supply the ISS and remove excess materials on the return flights. These flights use a predominate number of "Resupply Stowage Racks" (RSR) and "Resupply Stowage Platforms" (RSP). In these two types of racks, various smaller items are stowed. Hence, these racks will exhibit a considerable range of mass values as well as a range as to where their individual CG are located.

  2. Mass Transfer and Light Time Effect Studies for AU Serpentis

    NASA Astrophysics Data System (ADS)

    Amin, S. M.

    2015-02-01

    The orbital period changes of theWUMa eclipsing binary AU Ser are studied using the (O-C) method. We conclude that the period variation is due to mass transfer from the primary star to the secondary one at a very low and decreasing rate dP/dt = -8.872 × 10-8, superimposed on the sinusoidal variation due to a third body orbiting the binary with period 42.87 ± 3.16 years, orbital eccentricity e = 0.52±0.12 and a longitude of periastron passage ! = 133.7±15. On studying the magnetic activity, we have concluded that the Applegate mechanism failed to describe the cycling variation of the (O-C) diagram of AU Ser.

  3. Effect of interfaces and the spin-orbit band on the band gaps of InAs/GaSb superlattices beyond the standard envelope-function approximation

    NASA Astrophysics Data System (ADS)

    Szmulowicz, Frank; Haugan, Heather; Brown, Gail; Mahalingam, Krishnamurthy

    2004-03-01

    We develop a modified 8x8 envelope-function approximation (EFA) formalism for the noncommon-atom (NCA) superlattices (SLs), incorporating the effect of anisotropic and other interface (IF) interactions that go beyond the standard EFA. The boundary conditions in the presence of IF interactions are used to set up a novel secular equation (including a transfer matrix derivation) whose physical transparency makes possible a number of valuable insights (possibility of IF bound states, analytic solutions, indirect gaps, etc.). We show that the heavy hole - spin-orbit IF coupling is very important due to the IF localization of the SO wave function components and the ability of the IF potential to potentially bind a hole at the IFs. With two adjustable parameter for the two possible IFs, we find a very good agreement between experiment and theory for the band gaps of several sets of very long- and mid-infrared InAs/GaSb SLs grown at several laboratories and by us. The band gaps as a function of GaSb and InAs widths are explained in terms of variations of the HH and conduction (C) band bandwidths. We show that the cut-off wavelengths can be reduced by increasing the GaSb layer width. Thus, a consistent application of the EFA method with the inclusion of well established IF effects can provide useful physical insights and possesses good predictive capacity in the design of NCA SLs.

  4. THE EFFECT OF MASS LOSS ON THE TIDAL EVOLUTION OF EXTRASOLAR PLANET

    SciTech Connect

    Guo, J. H.

    2010-04-01

    By combining mass loss and tidal evolution of close-in planets, we present a qualitative study on their tidal migrations. We incorporate mass loss in tidal evolution for planets with different masses and find that mass loss could interfere with tidal evolution. In an upper limit case (beta = 3), a significant portion of mass may be evaporated in a long evolution timescale. Evidence of greater modification of the planets with an initial separation of about 0.1 AU than those with a = 0.15 AU can be found in this model. With the assumption of a large initial eccentricity, the planets with initial mass <=1 M{sub J} and initial distance of about 0.1 AU could not survive. With the supposition of beta = 1.1, we find that the loss process has an effect on the planets with low mass at a {approx} 0.05 AU. In both cases, the effect of evaporation on massive planets can be neglected. Also, heating efficiency and initial eccentricity have significant influence on tidal evolution. We find that even low heating efficiency and initial eccentricity have a significant effect on tidal evolution. Our analysis shows that evaporation on planets with different initial masses can accelerate (decelerate) the tidal evolution due to the increase (decrease) in tide of the planet (star). Consequently, the effect of evaporation cannot be neglected in evolutionary calculations of close-in planets. The physical parameters of HD 209458b can be fitted by our model.

  5. Introduction to Chemistry and Applications in Nature of Mass Independent Isotope Effects Special Feature

    PubMed Central

    Thiemens, Mark H.

    2013-01-01

    Stable isotope ratio variations are regulated by physical and chemical laws. These rules depend on a relation with mass differences between isotopes. New classes of isotope variation effects that deviate from mass dependent laws, termed mass independent isotope effects, were discovered in 1983 and have a wide range of applications in basic chemistry and nature. In this special edition, new applications of these effects to physical chemistry, solar system origin models, terrestrial atmospheric and biogenic evolution, polar paleo climatology, snowball earth geology, and present day atmospheric sciences are presented. PMID:24167299

  6. Introduction to chemistry and applications in nature of mass independent isotope effects special feature.

    PubMed

    Thiemens, Mark H

    2013-10-29

    Stable isotope ratio variations are regulated by physical and chemical laws. These rules depend on a relation with mass differences between isotopes. New classes of isotope variation effects that deviate from mass dependent laws, termed mass independent isotope effects, were discovered in 1983 and have a wide range of applications in basic chemistry and nature. In this special edition, new applications of these effects to physical chemistry, solar system origin models, terrestrial atmospheric and biogenic evolution, polar paleo climatology, snowball earth geology, and present day atmospheric sciences are presented.

  7. Extracting the effective mass of electrons in transparent conductive oxide thin films using Seebeck coefficient

    SciTech Connect

    Wang, Yaqin; Zhu, Junhao; Tang, Wu

    2014-05-26

    A method is proposed that combines Seebeck coefficient and carrier concentration to determine the electron effective mass of transparent conductive oxide (TCO) thin films. Experiments were conducted to test the validity of this approach on the transparent conductive Ga-doped ZnO thin films deposited by magnetron sputtering. An evident agreement of the calculated electron effective mass of the films is observed between the proposed approach and the previous studies. Besides, the optical carrier concentration and mobility derived from the calculated electron effective mass and spectroscopic ellipsometry using a complex dielectric function are consistent with those from direct Hall-effect measurement. The agreements suggest that Seebeck coefficient can serve as an alternative tool for extracting the effective mass of electrons in TCO films.

  8. Countably QC-Approximating Posets

    PubMed Central

    Mao, Xuxin; Xu, Luoshan

    2014-01-01

    As a generalization of countably C-approximating posets, the concept of countably QC-approximating posets is introduced. With the countably QC-approximating property, some characterizations of generalized completely distributive lattices and generalized countably approximating posets are given. The main results are as follows: (1) a complete lattice is generalized completely distributive if and only if it is countably QC-approximating and weakly generalized countably approximating; (2) a poset L having countably directed joins is generalized countably approximating if and only if the lattice σc(L)op of all σ-Scott-closed subsets of L is weakly generalized countably approximating. PMID:25165730

  9. Effects of maternal characteristics and climatic variation on birth masses of Alaskan caribou

    USGS Publications Warehouse

    Adams, L.G.

    2005-01-01

    Understanding factors that influence birth mass of mammals provides insights to nutritional trade-offs made by females to optimize their reproduction, growth, and survival. I evaluated variation in birth mass of caribou (Rangifer tarandus) in central Alaska relative to maternal characteristics (age, body mass, cohort, and nutritional condition as influenced by winter severity) during 11 years with substantial variation in winter snowfall. Snowfall during gestation was the predominant factor explaining variation in birth masses, influencing birth mass inversely and through interactions with maternal age and lactation status. Maternal age effects were noted for females ??? 5 years old, declining in magnitude with each successive age class. Birth mass as a proportion of autumn maternal mass was inversely related to winter snowfall, even though there was no decrease in masses of adult females in late winter associated with severe winters. I found no evidence of a hypothesized intergenerational effect of lower birth masses for offspring of females born after severe winters. Caribou produce relatively small offspring but provide exceptional lactation support for those that survive. Conservative maternal investment before parturition may represent an optimal reproductive strategy given that caribou experience stochastic variation in winter severity during gestation, uncertainty of environmental conditions surrounding the birth season, and intense predation on neonates. ?? 2005 American Society of Mammalogists.

  10. Adverse effects of smoking on peak bone mass may be attenuated by higher body mass index in young female smokers.

    PubMed

    Callréus, Mattias; McGuigan, Fiona; Akesson, Kristina

    2013-12-01

    Smoking is associated with postmenopausal bone loss and fracture, but the effect of smoking on bone in younger women is unclear. Peak bone mass is an important determinant for fracture risk; therefore, our aim was to evaluate the association between smoking and bone mass in 25-year-old women, specifically the influence of daily cigarette consumption and total exposure, duration, age at starting smoking, and time since smoking cessation on bone density and fracture risk. Smoking and bone mineral density (BMD) data were available for 1,054 women from the PEAK-25 cohort. Analyses comparing current smokers with women who never smoked were performed using number of cigarettes per day, pack-years, smoking duration, age smoking started, and, for former smokers, age at quitting. BMD did not differ between never, former, and current smokers; and the relative fracture risk in smokers was not significant (relative risk [RR] = 1.2, 95 % confidence interval 0.8-1.9). Among current smokers, BMD decreased with a dose response as cigarette consumption increased (femoral neck p = 0.037). BMD was not significantly lower in young women who had smoked for long duration or started smoking early (p = 0.07-0.64); long duration and early start were associated with higher body mass index (BMI; p = 0.038). Lower BMD persisted up to 24 months after smoking cessation (p = 0.027-0.050), becoming comparable to never-smokers after 24 months. Hip BMD was negatively associated with smoking and dose-dependent on cigarette consumption. Smoking duration was not associated with BMD, although young women with a long smoking history had higher BMI, which might attenuate the adverse effects from smoking.

  11. High-fat Diet Decreases Cancellous Bone Mass But Has No Effect on Cortical Bone Mass in the Tibia in Mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Body mass has a positive effect on bone mineral density and the strength. Whether mass derived from an obesity condition is beneficial to bone has not been established; neither have the mechanism by which obesity affects bone metabolism. The aim of this study was to examine the effects...

  12. The effective elastic properties of human trabecular bone may be approximated using micro-finite element analyses of embedded volume elements.

    PubMed

    Daszkiewicz, Karol; Maquer, Ghislain; Zysset, Philippe K

    2016-10-26

    Boundary conditions (BCs) and sample size affect the measured elastic properties of cancellous bone. Samples too small to be representative appear stiffer under kinematic uniform BCs (KUBCs) than under periodicity-compatible mixed uniform BCs (PMUBCs). To avoid those effects, we propose to determine the effective properties of trabecular bone using an embedded configuration. Cubic samples of various sizes (2.63, 5.29, 7.96, 10.58 and 15.87 mm) were cropped from [Formula: see text] scans of femoral heads and vertebral bodies. They were converted into [Formula: see text] models and their stiffness tensor was established via six uniaxial and shear load cases. PMUBCs- and KUBCs-based tensors were determined for each sample. "In situ" stiffness tensors were also evaluated for the embedded configuration, i.e. when the loads were transmitted to the samples via a layer of trabecular bone. The Zysset-Curnier model accounting for bone volume fraction and fabric anisotropy was fitted to those stiffness tensors, and model parameters [Formula: see text] (Poisson's ratio) [Formula: see text] and [Formula: see text] (elastic and shear moduli) were compared between sizes. BCs and sample size had little impact on [Formula: see text]. However, KUBCs- and PMUBCs-based [Formula: see text] and [Formula: see text], respectively, decreased and increased with growing size, though convergence was not reached even for our largest samples. Both BCs produced upper and lower bounds for the in situ values that were almost constant across samples dimensions, thus appearing as an approximation of the effective properties. PMUBCs seem also appropriate for mimicking the trabecular core, but they still underestimate its elastic properties (especially in shear) even for nearly orthotropic samples.

  13. Effects of body mass index on plantar pressure and balance

    PubMed Central

    Yoon, Se-Won; Park, Woong-Sik; Lee, Jeong-Woo

    2016-01-01

    [Purpose] To suggest physiotherapy programs and to determine foot stability based on the results of plantar pressure and spontaneity balance in the normal group and in the obesity group according to the body mass index (BMI). [Subjects and Methods] The plantar pressure and balance of 20 females college students in their 20s were measured according to their BMI. BMI was measured by using BMS 330. The peak plantar pressure was measured in a static position in the forefoot and hind-foot areas. To study balance, the spontaneity balance of each foot was measured on both stable and unstable surfaces. [Results] In terms of plantar pressure, no significant change was observed in the forefoot and hind-foot peak pressure. In terms of spontaneity balance, no significant difference in foot position interaction was observed on both stable and unstable surfaces, while a significant difference was observed in the foot position between the groups. [Conclusion] The index of hind-foot spontaneity balance was low, particularly in the obesity group. This meant significant hind-foot swaying. The forefoot body weight support percentage increased to reinforce the reduced spontaneity balance index. PMID:27942127

  14. Effects of body mass index on plantar pressure and balance.

    PubMed

    Yoon, Se-Won; Park, Woong-Sik; Lee, Jeong-Woo

    2016-11-01

    [Purpose] To suggest physiotherapy programs and to determine foot stability based on the results of plantar pressure and spontaneity balance in the normal group and in the obesity group according to the body mass index (BMI). [Subjects and Methods] The plantar pressure and balance of 20 females college students in their 20s were measured according to their BMI. BMI was measured by using BMS 330. The peak plantar pressure was measured in a static position in the forefoot and hind-foot areas. To study balance, the spontaneity balance of each foot was measured on both stable and unstable surfaces. [Results] In terms of plantar pressure, no significant change was observed in the forefoot and hind-foot peak pressure. In terms of spontaneity balance, no significant difference in foot position interaction was observed on both stable and unstable surfaces, while a significant difference was observed in the foot position between the groups. [Conclusion] The index of hind-foot spontaneity balance was low, particularly in the obesity group. This meant significant hind-foot swaying. The forefoot body weight support percentage increased to reinforce the reduced spontaneity balance index.

  15. The effect of pair-instability mass loss on black-hole mergers

    NASA Astrophysics Data System (ADS)

    Belczynski, K.; Heger, A.; Gladysz, W.; Ruiter, A. J.; Woosley, S.; Wiktorowicz, G.; Chen, H.-Y.; Bulik, T.; O'Shaughnessy, R.; Holz, D. E.; Fryer, C. L.; Berti, E.

    2016-10-01

    Context. Mergers of two stellar-origin black holes are a prime source of gravitational waves and are under intensive investigation. One crucial ingredient in their modeling has been neglected: pair-instability pulsation supernovae with associated severe mass loss may suppress the formation of massive black holes, decreasing black-hole-merger rates for the highest black-hole masses. Aims: We demonstrate the effects of pair-instability pulsation supernovae on merger rate and mass using populations of double black-hole binaries formed through the isolated binary classical evolution channel. Methods: The mass loss from pair-instability pulsation supernova is estimated based on existing hydrodynamical calculations. This mass loss is incorporated into the StarTrack population synthesis code. StarTrack is used to generate double black-hole populations with and without pair-instability pulsation supernova mass loss. Results: The mass loss associated with pair-instability pulsation supernovae limits the Population I/II stellar-origin black-hole mass to 50 M⊙, in tension with earlier predictions that the maximum black-hole mass could be as high as 100 M⊙. In our model, neutron stars form with mass 1-2 M⊙. We then encounter the first mass gap at 2-5 M⊙ with the compact object absence due to rapid supernova explosions, followed by the formation of black holes with mass 5-50 M⊙, with a second mass gap at 50-135 M⊙ created by pair-instability pulsation supernovae and by pair-instability supernovae. Finally, black holes with masses above 135 M⊙ may potentially form to arbitrarily high mass limited only by the extent of the initial mass function and the strength of stellar winds. Suppression of double black-hole-merger rates by pair-instability pulsation supernovae is negligible for our evolutionary channel. Our standard evolutionary model, with the inclusion of pair-instability pulsation supernovae and pair-instability supernovae, is fully consistent with the Laser

  16. Computer Experiments for Function Approximations

    SciTech Connect

    Chang, A; Izmailov, I; Rizzo, S; Wynter, S; Alexandrov, O; Tong, C

    2007-10-15

    This research project falls in the domain of response surface methodology, which seeks cost-effective ways to accurately fit an approximate function to experimental data. Modeling and computer simulation are essential tools in modern science and engineering. A computer simulation can be viewed as a function that receives input from a given parameter space and produces an output. Running the simulation repeatedly amounts to an equivalent number of function evaluations, and for complex models, such function evaluations can be very time-consuming. It is then of paramount importance to intelligently choose a relatively small set of sample points in the parameter space at which to evaluate the given function, and then use this information to construct a surrogate function that is close to the original function and takes little time to evaluate. This study was divided into two parts. The first part consisted of comparing four sampling methods and two function approximation methods in terms of efficiency and accuracy for simple test functions. The sampling methods used were Monte Carlo, Quasi-Random LP{sub {tau}}, Maximin Latin Hypercubes, and Orthogonal-Array-Based Latin Hypercubes. The function approximation methods utilized were Multivariate Adaptive Regression Splines (MARS) and Support Vector Machines (SVM). The second part of the study concerned adaptive sampling methods with a focus on creating useful sets of sample points specifically for monotonic functions, functions with a single minimum and functions with a bounded first derivative.

  17. Enhancing the mass sensitivity of graphene nanoresonators via nonlinear oscillations: the effective strain mechanism.

    PubMed

    Jiang, Jin-Wu; Park, Harold S; Rabczuk, Timon

    2012-11-30

    We perform classical molecular dynamics simulations to investigate the enhancement of the mass sensitivity and resonant frequency of graphene nanomechanical resonators that is achieved by driving them into the nonlinear oscillation regime. The mass sensitivity as measured by the resonant frequency shift is found to triple if the actuation energy is about 2.5 times the initial kinetic energy of the nanoresonator. The mechanism underlying the enhanced mass sensitivity is found to be the effective strain that is induced in the nanoresonator due to the nonlinear oscillations, where we obtain an analytic relationship between the induced effective strain and the actuation energy that is applied to the graphene nanoresonator. An important implication of this work is that there is no need for experimentalists to apply tensile strain to the resonators before actuation in order to enhance the mass sensitivity. Instead, enhanced mass sensitivity can be obtained by the far simpler technique of actuating nonlinear oscillations of an existing graphene nanoresonator.

  18. Hole effective masses and subband splitting in type-II superlattice infrared detectors

    NASA Astrophysics Data System (ADS)

    Ting, David Z.; Soibel, Alexander; Gunapala, Sarath D.

    2016-05-01

    We explore band structure effects to help determine the suitability of n-type type-II superlattice (T2SL) absorbers for infrared detectors. It is often assumed that the exceedingly large growth-direction band-edge curvature hole effective mass in n-type long wavelength infrared (LWIR) T2SL would lead to low hole mobility and therefore low detector collection quantum efficiency. We computed the thermally averaged conductivity effective mass and show that the LWIR T2SL hole conductivity effective mass along the growth direction can be orders of magnitude smaller than the corresponding band-edge effective mass. LWIR InAs/GaSb T2SL can have significantly smaller growth-direction hole conductivity effective mass than its InAs/InAsSb counterpart. For the InAs/InAsSb T2SL, higher Sb fraction is more favorable for hole transport. Achieving long hole diffusion length becomes progressively more difficult for the InAs/InAsSb T2SL as the cutoff wavelength increases, since its growth-direction hole conductivity effective mass increases significantly with decreasing band gap. However, this is mitigated by the fact that the splitting between the top valence subbands also increases with the cutoff wavelength, leading to reduced inter-subband scattering and increased relaxation time.

  19. Progressive multifocal leukoencephalopathy: a rare cause of cerebellar edema and atypical mass effect. A case report.

    PubMed

    Ojeda, Chris; Assina, Rachid; Barry, Maureen; Baisre, Ada; Gandhi, Chirag

    2014-06-01

    Progressive multifocal leukoencephalopathy (PML) is an opportunistic demyelinating disease of the CNS caused by the JC papovavirus (JCV). Demyelination due to oligodendrocyte death leads to multifocal, asymmetric lesions. MRI is a valuable tool for detecting and differentiating PML from other neuropathies. Radiographically, PML classically presents as bilateral, subcortical white matter lesions with a lack of brain atrophy. As the disease progresses, lesions become larger and coalesce to become confluent. Minor edema and mass effect are infrequently described and the presence of significant mass effect suggests an alternative diagnosis. In our case, a patient demonstrated atypical marked infratentorial mass effect. Bilaterally, cerebellar lesions with associated mass effect were observed, as well as effacement of cerebellar folia and partial effacement of the fourth ventricle. The diagnosis of PML was confirmed with a biopsy of the right cerebellar lesion showing classic PML histology, with JCV DNA detection by polymerase chain reaction in the biopsy material.

  20. Maternal influences on seed mass effect and initial seedling growth in four Quercus species

    NASA Astrophysics Data System (ADS)

    González-Rodríguez, Victoria; Villar, Rafael; Navarro-Cerrillo, Rafael M.

    2011-01-01

    Seed mass represents the reserves available for growth in the first stages of plant establishment. Variation in seed mass is an important trait which may have consequences for growth and survival of seedlings. Three mechanisms have been proposed to explain how seed mass influences seedling development: the reserve use effect, the metabolic effect and the seedling-size effect. Few studies have evaluated at the same time the three hypotheses within species and none have evaluated the effect of the mother trees. We studied four Quercus species by selecting five mother trees per species. Seeds were sown in a glasshouse and the use of seed reserves, seedling growth and morphology were measured. Considering all mothers of the same species together, we did not find the reserve effect for any species, the metabolic effect was observed in all species except for Quercus suber, and the seedling-size effect was matched for all the species. Within species, maternal origin modified the studied relationships and thus the studied mechanisms as we did not observe seed mass effects on all mothers from each species. Moreover, the metabolic effect was not found in any mother of Quercus ilex and Quercus faginea. We concluded that a maternal effect can change seed mass relationships with traits related to seedling establishment. The conservation of this high intra-specific variability must be considered to guarantee species performance in heterogeneous environments and in particular in the current context of climate change.

  1. Determination of PM mass emissions from an aircraft turbine engine using particle effective density

    NASA Astrophysics Data System (ADS)

    Durdina, L.; Brem, B. T.; Abegglen, M.; Lobo, P.; Rindlisbacher, T.; Thomson, K. A.; Smallwood, G. J.; Hagen, D. E.; Sierau, B.; Wang, J.

    2014-12-01

    Inventories of particulate matter (PM) emissions from civil aviation and air quality models need to be validated using up-to-date measurement data corrected for sampling artifacts. We compared the measured black carbon (BC) mass and the total PM mass determined from particle size distributions (PSD) and effective density for a commercial turbofan engine CFM56-7B26/3. The effective density was then used to calculate the PM mass losses in the sampling system. The effective density was determined using a differential mobility analyzer and a centrifugal particle mass analyzer, and increased from engine idle to take-off by up to 60%. The determined mass-mobility exponents ranged from 2.37 to 2.64. The mean effective density determined by weighting the effective density distributions by PM volume was within 10% of the unit density (1000 kg/m3) that is widely assumed in aircraft PM studies. We found ratios close to unity between the PM mass determined by the integrated PSD method and the real-time BC mass measurements. The integrated PSD method achieved higher precision at ultra-low PM concentrations at which current mass instruments reach their detection limit. The line loss model predicted ∼60% PM mass loss at engine idle, decreasing to ∼27% at high thrust. Replacing the effective density distributions with unit density lead to comparable estimates that were within 20% and 5% at engine idle and high thrust, respectively. These results could be used for the development of a robust method for sampling loss correction of the future PM emissions database from commercial aircraft engines.

  2. Hepatitis A outbreaks: the effect of a mass vaccination programme.

    PubMed

    Torner, N; Broner, S; Martinez, A; Godoy, P; Batalla, J; Dominguez, A

    2011-04-01

    A Hepatitis A vaccination programme of people belonging to risk groups begun in Catalonia in 1995 and a universal vaccination programme of pre-adolescents 12 years of age with the hepatitis A + B vaccine was added in 1998. The aim of the study was to investigate the characteristics of hepatitis A outbreaks occurring in Catalonia between 1991 and 2007 to determine the associated risk factors and optimize the use of vaccination. Incidence rates of outbreaks, cases and hospitalizations associated with outbreaks and the rate ratios (RR) of person-to-person transmission outbreaks between the periods before and after mass vaccination and their 95% confidence intervals (CI) were calculated. A rate of 2.45 outbreaks per million persons per year was found. The rate of cases affected in these outbreaks was 1.28 per 10(5) persons per year and the rate of hospitalizations was 0.45 per million persons per year. In person-to-person outbreaks, the highest incidence rate (5.26 and 6.33 per million persons per year) of outbreaks according to the age of the index case was in the 5 to 14 year age group in both periods (RR:0.83; 95% CI:0.48-1.43). A significant increase was observed in the 25 to 44 year age group (RR: 0.35; 95% CI 0.14-0.77). Hepatitis A vaccination has made an important impact on burden and characteristics of outbreaks and could provide greater benefits to the community if the vaccine was administrated to children during their first years of life.

  3. Effects of reservoir heterogeneity on scaling of effective mass transfer coefficient for solute transport.

    PubMed

    Leung, Juliana Y; Srinivasan, Sanjay

    2016-09-01

    Modeling transport process at large scale requires proper scale-up of subsurface heterogeneity and an understanding of its interaction with the underlying transport mechanisms. A technique based on volume averaging is applied to quantitatively assess the scaling characteristics of effective mass transfer coefficient in heterogeneous reservoir models. The effective mass transfer coefficient represents the combined contribution from diffusion and dispersion to the transport of non-reactive solute particles within a fluid phase. Although treatment of transport problems with the volume averaging technique has been published in the past, application to geological systems exhibiting realistic spatial variability remains a challenge. Previously, the authors developed a new procedure where results from a fine-scale numerical flow simulation reflecting the full physics of the transport process albeit over a sub-volume of the reservoir are integrated with the volume averaging technique to provide effective description of transport properties. The procedure is extended such that spatial averaging is performed at the local-heterogeneity scale. In this paper, the transport of a passive (non-reactive) solute is simulated on multiple reservoir models exhibiting different patterns of heterogeneities, and the scaling behavior of effective mass transfer coefficient (Keff) is examined and compared. One such set of models exhibit power-law (fractal) characteristics, and the variability of dispersion and Keff with scale is in good agreement with analytical expressions described in the literature. This work offers an insight into the impacts of heterogeneity on the scaling of effective transport parameters. A key finding is that spatial heterogeneity models with similar univariate and bivariate statistics may exhibit different scaling characteristics because of the influence of higher order statistics. More mixing is observed in the channelized models with higher-order continuity. It

  4. Effects of reservoir heterogeneity on scaling of effective mass transfer coefficient for solute transport

    NASA Astrophysics Data System (ADS)

    Leung, Juliana Y.; Srinivasan, Sanjay

    2016-09-01

    Modeling transport process at large scale requires proper scale-up of subsurface heterogeneity and an understanding of its interaction with the underlying transport mechanisms. A technique based on volume averaging is applied to quantitatively assess the scaling characteristics of effective mass transfer coefficient in heterogeneous reservoir models. The effective mass transfer coefficient represents the combined contribution from diffusion and dispersion to the transport of non-reactive solute particles within a fluid phase. Although treatment of transport problems with the volume averaging technique has been published in the past, application to geological systems exhibiting realistic spatial variability remains a challenge. Previously, the authors developed a new procedure where results from a fine-scale numerical flow simulation reflecting the full physics of the transport process albeit over a sub-volume of the reservoir are integrated with the volume averaging technique to provide effective description of transport properties. The procedure is extended such that spatial averaging is performed at the local-heterogeneity scale. In this paper, the transport of a passive (non-reactive) solute is simulated on multiple reservoir models exhibiting different patterns of heterogeneities, and the scaling behavior of effective mass transfer coefficient (Keff) is examined and compared. One such set of models exhibit power-law (fractal) characteristics, and the variability of dispersion and Keff with scale is in good agreement with analytical expressions described in the literature. This work offers an insight into the impacts of heterogeneity on the scaling of effective transport parameters. A key finding is that spatial heterogeneity models with similar univariate and bivariate statistics may exhibit different scaling characteristics because of the influence of higher order statistics. More mixing is observed in the channelized models with higher-order continuity. It

  5. Phonon-particle coupling effects in odd-even double mass differences of semi-magic nuclei

    NASA Astrophysics Data System (ADS)

    Saperstein, E. E.; Baldo, M.; Pankratov, S. S.; Tolokonnikov, S. V.

    2016-12-01

    A method is developed to consider the particle-phonon coupling (PC) effects in the calculation of the odd-even double mass differences (DMD) in semi-magic nuclei starting from the free NN potential. The PC correction δΣPC to the mass operator Σ is found in g L 2-approximation, g L being the vertex of creating the L-phonon. The tadpole term of the operator δΣPC is taken into account. The method is based on a direct, without any use of the perturbation theory, solution of the Dyson equation with the mass operator Σ(ɛ) = Σ0 + δΣPC(ɛ) for finding the single-particle energies and Z-factors. In its turn, they are used as an input for finding different PC corrections to the DMD values. Results for a chain of even semi-magic nuclei 200-206Pb show that the inclusion of the PC corrections makes agreement with the experimental data significantly better.

  6. Nonequilibrium Green's function formulation of intersubband absorption for nonparabolic single-band effective mass Hamiltonian

    SciTech Connect

    Kolek, Andrzej

    2015-05-04

    The formulas are derived that enable calculations of intersubband absorption coefficient within nonequilibrium Green's function method applied to a single-band effective-mass Hamiltonian with the energy dependent effective mass. The derivation provides also the formulas for the virtual valence band components of the two-band Green's functions which can be used for more exact estimation of the density of states and electrons and more reliable treatment of electronic transport in unipolar n-type heterostructure semiconductor devices.

  7. Characterization of effective masses in InGaAsN quantum well structures by computer simulations

    NASA Astrophysics Data System (ADS)

    Wartak, M. S.; Weetman, P.

    2005-12-01

    Effective masses of holes in In0.36Ga0.64As1-xNx/GaAs quantum well structures were determined and analyzed. A ten-band k •p Hamiltonian matrix was used in the calculations. Systematic numerical results have been presented for a large range of material and structural parameters. Our results show that significant variation in the effective masses is possible by adjusting the relevant parameters.

  8. The JWKB approximation in loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Craig, David; Singh, Parampreet

    2017-01-01

    We explore the JWKB approximation in loop quantum cosmology in a flat universe with a scalar matter source. Exact solutions of the quantum constraint are studied at small volume in the JWKB approximation in order to assess the probability of tunneling to small or zero volume. Novel features of the approximation are discussed which appear due to the fact that the model is effectively a two-dimensional dynamical system. Based on collaborative work with Parampreet Singh.

  9. Independent and combined effect of nutrition and exercise on bone mass development.

    PubMed

    Vicente-Rodríguez, Germán; Ezquerra, Juan; Mesana, María Isabel; Fernández-Alvira, Juan Miguel; Rey-López, Juan Pablo; Casajus, José Antonio; Moreno, Luis Alberto

    2008-01-01

    Food intake provides the necessary components for adequate metabolic functions in bone. Calcium, phosphorus, vitamin D, magnesium, proteins, and fluoride are some of the most important nutrients in this regard. These have different effects on bone mass. Additionally, exercise has been shown to elicit osteogenic responses in bone development; indeed, it seems to potentiate, for example, the effect of calcium supplementation on bone mass. However, the nutrition-exercise-bone mass relationship is complex and needs further in-depth investigation. As a first step, therefore, we reviewed current knowledge about the role of nutrition on the development of bone tissue and how physical activity affects the nutrient-bone relationship.

  10. Effect of interfaces and the spin-orbit band on the band gaps of InAs/GaSb superlattices beyond the standard envelope-function approximation

    NASA Astrophysics Data System (ADS)

    Szmulowicz, F.; Haugan, H.; Brown, G. J.

    2004-04-01

    We develop a modified 8×8 envelope-function approximation (EFA) formalism for the noncommon-atom (NCA) superlattices (SL’s), incorporating the effect of anisotropic and other interface (IF) interactions that go beyond the standard EFA. The boundary conditions in the presence of IF interactions are used to set up a secular equation (including a transfer matrix derivation) whose physical transparency makes possible a number of valuable insights (possibility of IF bound states, analytic solutions, indirect gaps, etc.). We show that the heavy-hole spin-orbit IF coupling is very important due to the IF localization of the SO wave function components and the ability of the IF potential to potentially bind a hole at the IF’s, all of which pose convergence problems for perturbative solutions. With two adjustable parameter for the two possible IF’s, we find a very good agreement between experiment and theory for the band gaps of several sets of very long-infrared and midinfrared InAs/GaSb SL’s grown at several laboratories and by us. The band gaps as a function of GaSb and InAs widths are explained in terms of variations of the HH and conduction (C) band bandwidths. We show that the cut-off wavelengths can be reduced by increasing the GaSb layer width. Thus, a consistent application of the EFA method with the inclusion of well established IF effects can provide useful physical insights and possesses good predictive capacity in the design of NCA SL’s.

  11. W2X and W3X-L: Cost-Effective Approximations to W2 and W4 with kJ mol(-1) Accuracy.

    PubMed

    Chan, Bun; Radom, Leo

    2015-05-12

    We have formulated the W2X and W3X-L protocols as cost-effective alternatives to W2 and W3/W4, respectively, and to supplement our previously developed set of W1X and W3X procedures. The W2X procedure provides an accurate approximation to the all-electron scalar-relativistic CCSD(T)/CBS energy, with a mean absolute deviation (MAD) of 0.6 kJ mol(-1) from benchmark energies provided by the CCSD(T) component in the W4 protocol. Such a performance is comparable to that of W2w (0.5 kJ mol(-1)) but comes at a significantly lower cost. Comparison of computational requirements shows that W2X should be applicable to systems that can be treated by the W1w method. Thus, W2X provides an accurate means for the treatment of medium-sized systems such as naphthalene. For the calculation of post-CCSD(T) effects, we propose a slight modification to the method used in our previously devised W3X procedure. Our new W3-type protocol (W3X-L) combines this new post-CCSD(T) treatment with our new W2X procedure. It has an MAD from benchmark values of 0.8 kJ mol(-1) for the W4-11 set, which is comparable to that for the computationally more demanding W3.2 method (0.6 kJ mol(-1)). However, the use of the even relatively modest post-CCSD(T) calculations in W3X-L still represents a computational bottleneck, and this currently restricts its application to systems up to the size of benzene with our current computing resources.

  12. Approximate transferability in conjugated polyalkenes

    NASA Astrophysics Data System (ADS)

    Eskandari, Keiamars; Mandado, Marcos; Mosquera, Ricardo A.

    2007-03-01

    QTAIM computed atomic and bond properties, as well as delocalization indices (obtained from electron densities computed at HF, MP2 and B3LYP levels) of several linear and branched conjugated polyalkenes and O- and N-containing conjugated polyenes have been employed to assess approximate transferable CH groups. The values of these properties indicate the effects of the functional group extend to four CH groups, whereas those of the terminal carbon affect up to three carbons. Ternary carbons also modify significantly the properties of atoms in α, β and γ.

  13. Modelling non-adiabatic effects in H{sub 3}{sup +}: Solution of the rovibrational Schrödinger equation with motion-dependent masses and mass surfaces

    SciTech Connect

    Mátyus, Edit; Szidarovszky, Tamás

    2014-10-21

    Introducing different rotational and vibrational masses in the nuclear-motion Hamiltonian is a simple phenomenological way to model rovibrational non-adiabaticity. It is shown on the example of the molecular ion H{sub 3}{sup +}, for which a global adiabatic potential energy surface accurate to better than 0.1 cm{sup −1} exists [M. Pavanello, L. Adamowicz, A. Alijah, N. F. Zobov, I. I. Mizus, O. L. Polyansky, J. Tennyson, T. Szidarovszky, A. G. Császár, M. Berg et al., Phys. Rev. Lett. 108, 023002 (2012)], that the motion-dependent mass concept yields much more accurate rovibrational energy levels but, unusually, the results are dependent upon the choice of the embedding of the molecule-fixed frame. Correct degeneracies and an improved agreement with experimental data are obtained if an Eckart embedding corresponding to a reference structure of D{sub 3h} point-group symmetry is employed. The vibrational mass of the proton in H{sub 3}{sup +} is optimized by minimizing the root-mean-square (rms) deviation between the computed and recent high-accuracy experimental transitions. The best vibrational mass obtained is larger than the nuclear mass of the proton by approximately one third of an electron mass, m{sub opt,p}{sup (v)}=m{sub nuc,p}+0.31224 m{sub e}. This optimized vibrational mass, along with a nuclear rotational mass, reduces the rms deviation of the experimental and computed rovibrational transitions by an order of magnitude. Finally, it is shown that an extension of the algorithm allowing the use of motion-dependent masses can deal with coordinate-dependent mass surfaces in the rovibrational Hamiltonian, as well.

  14. The Brown Dwarf Eclipsing Binary 2M0535-05: A Case Study for Activity Effects on Physical Properties of Low-Mass Stars and Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Stassun, K. G.

    2013-02-01

    2M0535-05 is a one-of-a-kind eclipsing binary (EB) comprising two brown dwarfs (BDs), and is an important benchmark for understanding the fundamental properties of BDs and low-mass stars. Because 2M0535-05 presents a peculiar reversal of temperatures with mass (the higher mass, magnetically active BD in the system is cooler than the lower mass companion BD), 2M0535-05 is particularly important as a case study for the effects of magnetic activity on the properties of low-mass objects. Using a large number of low-mass M-dwarfs and EBs in the field, we have developed empirical relations for determining the amount by which the temperatures and radii-and therefore the estimated masses-of low-mass stars and BDs are altered due to chromospheric activity. The relations link the amount by which an active object's temperature is suppressed, and its radius inflated, to the strength of its Hα emission. These relations are found to approximately preserve bolometric luminosity. Applying these relations to 2M0535-05 brings the activity-corrected radii and temperatures of 2M0535-05 into precise agreement with theoretical isochrones for inactive stars. The relations that we present are applicable to BDs and low-mass stars with masses below 0.8 M⊙ and for which the activity, as measured by Hα, is in the range - 4.6 < log LHα/Lbol < -3.3. We discuss implications of this work for determinations of young cluster IMFs, and discuss competing ideas for the physical mechanism by which magnetic fields alter the temperatures and radii of low-mass stars.

  15. RETIRED A STARS: THE EFFECT OF STELLAR EVOLUTION ON THE MASS ESTIMATES OF SUBGIANTS

    SciTech Connect

    Johnson, John Asher; Morton, Timothy D.; Wright, Jason T.

    2013-01-20

    Doppler surveys have shown that the occurrence rate of Jupiter-mass planets appears to increase as a function of stellar mass. However, this result depends on the ability to accurately measure the masses of evolved stars. Recently, Lloyd called into question the masses of subgiant stars targeted by Doppler surveys. Lloyd argues that very few observable subgiants have masses greater than 1.5 M {sub Sun }, and that most of them have masses in the range 1.0-1.2 M {sub Sun }. To investigate this claim, we use Galactic stellar population models to generate an all-sky distribution of stars. We incorporate the effects that make massive subgiants less numerous, such as the initial mass function and differences in stellar evolution timescales. We find that these effects lead to negligibly small systematic errors in stellar mass estimates, in contrast to the Almost-Equal-To 50% errors predicted by Lloyd. Additionally, our simulated target sample does in fact include a significant fraction of stars with masses greater than 1.5 M {sub Sun }, primarily because the inclusion of an apparent magnitude limit results in a Malmquist-like bias toward more massive stars, in contrast to the volume-limited simulations of Lloyd. The magnitude limit shifts the mean of our simulated distribution toward higher masses and results in a relatively smaller number of evolved stars with masses in the range 1.0-1.2 M {sub Sun }. We conclude that, within the context of our present-day understanding of stellar structure and evolution, many of the subgiants observed in Doppler surveys are indeed as massive as main-sequence A stars.

  16. A discussion of Cepheid masses

    NASA Technical Reports Server (NTRS)

    Cox, A. N.

    1980-01-01

    Masses and compositions of Cepheids are essential to map the places in the Hertzsprung-Russell diagram where various radial pulsation modes occur. Luminosity observations and stellar evolution theory give masses for Cepheids which range from 10 percent to a factor of four more than those given by pulsation theory. Combining the evolution and pulsation theories, a theoretical mass was determined using only the period and an approximate surface effective temperature. The ratio of the theoretical to evolutionary masses averaged 0.99 + or - 0.07 for 16 Cepheids.

  17. Binary black hole evolutions of approximate puncture initial data

    SciTech Connect

    Bode, Tanja; Laguna, Pablo; Shoemaker, Deirdre M.; Hinder, Ian; Herrmann, Frank; Vaishnav, Birjoo

    2009-07-15

    Approximate solutions to the Einstein field equations are valuable tools to investigate gravitational phenomena. An important aspect of any approximation is to investigate and quantify its regime of validity. We present a study that evaluates the effects that approximate puncture initial data, based on skeleton solutions to the Einstein constraints as proposed by [G. Faye, P. Jaranowski, and G. Schaefer, Phys. Rev. D 69, 124029 (2004).], have on numerical evolutions. Using data analysis tools, we assess the effectiveness of these constraint-violating initial data for both initial and advanced LIGO and show that the matches of waveforms from skeleton data with the corresponding waveforms from constraint-satisfying initial data are > or approx. 0.97 when the total mass of the binary is > or approx. 40M{sub {center_dot}}. In addition, we demonstrate that the differences between the skeleton and the constraint-satisfying initial data evolutions, and thus waveforms, are due to negative Hamiltonian constraint violations present in the skeleton initial data located in the vicinity of the punctures. During the evolution, the skeleton data develops both Hamiltonian and momentum constraint violations that decay with time, with the binary system relaxing to a constraint-satisfying solution with black holes of smaller mass and thus different dynamics.

  18. Testable two-loop radiative neutrino mass model based on an LLQd c Qd c effective operator

    NASA Astrophysics Data System (ADS)

    Angel, Paul W.; Cai, Yi; Rodd, Nicholas L.; Schmidt, Michael A.; Volkas, Raymond R.

    2013-10-01

    A new two-loop radiative Majorana neutrino mass model is constructed from the gauge-invariant effective operator L i L j Q k d c Q l d c ɛ ik ɛ jl that violates lepton number conservation by two units. The ultraviolet completion features two scalar leptoquark flavors and a color-octet Majorana fermion. We show that there exists a region of parameter space where the neutrino oscillation data can be fitted while simultaneously meeting flavor-violation and collider bounds. The model is testable through lepton flavor-violating processes such as μ → eγ, μ → eee, and μN → eN conversion, as well as collider searches for the scalar leptoquarks and color-octet fermion. We computed and compiled a list of necessary Passarino-Veltman integrals up to boxes in the approximation of vanishing external momenta and made them available as a Mathematica package, denoted as ANT.

  19. OMI tropospheric NO2 air mass factors over South America: effects of biomass burning aerosols

    NASA Astrophysics Data System (ADS)

    Castellanos, P.; Boersma, K. F.; Torres, O.; de Haan, J. F.

    2015-09-01

    Biomass burning is an important and uncertain source of aerosols and NOx (NO + NO2) to the atmosphere. Satellite observations of tropospheric NO2 are essential for characterizing this emissions source, but inaccuracies in the retrieval of NO2 tropospheric columns due to the radiative effects of aerosols, especially light-absorbing carbonaceous aerosols, are not well understood. It has been shown that the O2-O2 effective cloud fraction and pressure retrieval is sensitive to aerosol optical and physical properties, including aerosol optical depth (AOD). Aerosols implicitly influence the tropospheric air mass factor (AMF) calculations used in the NO2 retrieval through the effective cloud parameters used in the independent pixel approximation. In this work, we explicitly account for the effects of biomass burning aerosols in the Ozone Monitoring Instrument (OMI) tropospheric NO2 AMF calculation for cloud-free scenes. We do so by including collocated aerosol extinction vertical profile observations from the CALIOP instrument, and aerosol optical depth (AOD) and single scattering albedo (SSA) retrieved by the OMI near-UV aerosol algorithm (OMAERUV) in the DISAMAR radiative transfer model. Tropospheric AMFs calculated with DISAMAR were benchmarked against AMFs reported in the Dutch OMI NO2 (DOMINO) retrieval; the mean and standard deviation of the difference was 0.6 ± 8 %. Averaged over three successive South American biomass burning seasons (2006-2008), the spatial correlation in the 500 nm AOD retrieved by OMI and the 532 nm AOD retrieved by CALIOP was 0.6, and 68 % of the daily OMAERUV AOD observations were within 30 % of the CALIOP observations. Overall, tropospheric AMFs calculated with observed aerosol parameters were on average 10 % higher than AMFs calculated with effective cloud parameters. For effective cloud radiance fractions less than 30 %, or effective cloud pressures greater than 800 hPa, the difference between tropospheric AMFs based on implicit and

  20. ASEP/MD: A program for the calculation of solvent effects combining QM/MM methods and the mean field approximation

    NASA Astrophysics Data System (ADS)

    Galván, I. Fdez; Sánchez, M. L.; Martín, M. E.; Olivares del Valle, F. J.; Aguilar, M. A.

    2003-11-01

    ASEP/MD is a computer program designed to implement the Averaged Solvent Electrostatic Potential/Molecular Dynamics (ASEP/MD) method developed by our group. It can be used for the study of solvent effects and properties of molecules in their liquid state or in solution. It is written in the FORTRAN90 programming language, and should be easy to follow, understand, maintain and modify. Given the nature of the ASEP/MD method, external programs are needed for the quantum calculations and molecular dynamics simulations. The present version of ASEP/MD includes interface routines for the GAUSSIAN package, HONDO, and MOLDY, but adding support for other programs is straightforward. This article describes the program and its usage. Program summaryTitle of program: ASEP/MD Catalogue identifier:ADSF Program Summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSF Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed: it has been tested on Intel-based PC and Sun Operating systems under which the program has been tested: Red Hat Linux 7.2 and SunOS 5.6 Programming language used: FORTRAN90 Memory required to execute with typical data: greatly depends on the system No. of processors used: 1 Has the code been vectorized or parallelized?: no No. of bytes in distributed program, including test data, etc.: 44 544 Distribution format: tar gzip file Keywords: Solvent effects, QM/MM methods, mean field approximation, geometry optimization Nature of physical problem: The study of molecules in solution with quantum methods is a difficult task because of the large number of molecules and configurations that must be taken into account. The quantum mechanics/molecular mechanics methods proposed to date either require massive computational power or oversimplify the solute quantum description. Method of solution: A non-traditional QM/MM method based on the mean field approximation was developed where a classical molecular

  1. Effects of solution mass transport on the ECC ozonesonde background current. [Electrochemical Concentration Cell

    NASA Technical Reports Server (NTRS)

    Thornton, D. C.; Niazy, N.

    1983-01-01

    A technique is developed to measure the effective mass transport parameter for the electrochemical concentration cell (ECC) ozonesonde in order to determine the mass transport rate constant for the ECC as a function of pressure. It is shown that a pressure dependent factor in the background current originates in a convective mass transport parameter. It is determined that for atmospheric pressures greater than 100 mb the mass transport parameter is a constant, while at pressures less than 100 mb it decreases logarithmically with pressure. It is suggested that the background current correction is directly correlated to the mass transport parameter pressure dependence. The presently used background current correction, which is based on the partial pressure of oxygen, is found to lead to an overestimation of the integrated ozone value in the troposphere for the ECC ozonesonde data.

  2. Stochastic and compensatory effects limit persistence of variation in body mass of young caribou

    USGS Publications Warehouse

    Dale, B.W.; Adams, L.G.; Collins, W.B.; Joly, Kyle; Valkenburg, P.; Tobey, R.

    2008-01-01

    Nutritional restriction during growth can have short- and long-term effects on fitness; however, animals inhabiting uncertain environments may exhibit adaptations to cope with variation in food availability. We examined changes in body mass in free-ranging female caribou (Rangifer tarandus) by measuring mass at birth and at 4, 11, and 16 months of age to evaluate the relative importance of seasonal nutrition to growth, the persistence of cohort-specific variation in body mass through time, and compensatory growth of individuals. Relative mean body mass of cohorts did not persist through time. Compensatory growth of smaller individuals was not observed in summer; however, small calves exhibited more positive change in body mass than did large calves. Compensation occurred during periods of nutritional restriction (winter) rather than during periods of rapid growth (summer) thus differing from the conventional view of compensatory growth. ?? 2008 American Society of Mammalogists.

  3. The effects of layers in dry snow on its passive microwave emissions using dense media radiative transfer theory based on the quasicrystalline approximation (QCA/DMRT)

    USGS Publications Warehouse

    Liang, D.; Xu, X.; Tsang, L.; Andreadis, K.M.; Josberger, E.G.

    2008-01-01

    A model for the microwave emissions of multilayer dry snowpacks, based on dense media radiative transfer (DMRT) theory with the quasicrystalline approximation (QCA), provides more accurate results when compared to emissions determined by a homogeneous snowpack and other scattering models. The DMRT model accounts for adhesive aggregate effects, which leads to dense media Mie scattering by using a sticky particle model. With the multilayer model, we examined both the frequency and polarization dependence of brightness temperatures (Tb's) from representative snowpacks and compared them to results from a single-layer model and found that the multilayer model predicts higher polarization differences, twice as much, and weaker frequency dependence. We also studied the temporal evolution of Tb from multilayer snowpacks. The difference between Tb's at 18.7 and 36.5 GHz can be S K lower than the single-layer model prediction in this paper. By using the snowpack observations from the Cold Land Processes Field Experiment as input for both multi- and single-layer models, it shows that the multilayer Tb's are in better agreement with the data than the single-layer model. With one set of physical parameters, the multilayer QCA/DMRT model matched all four channels of Tb observations simultaneously, whereas the single-layer model could only reproduce vertically polarized Tb's. Also, the polarization difference and frequency dependence were accurately matched by the multilayer model using the same set of physical parameters. Hence, algorithms for the retrieval of snowpack depth or water equivalent should be based on multilayer scattering models to achieve greater accuracy. ?? 2008 IEEE.

  4. An approximate treatment of gravitational collapse

    NASA Astrophysics Data System (ADS)

    Ascasibar, Yago; Granero-Belinchón, Rafael; Moreno, José Manuel

    2013-11-01

    This work studies a simplified model of the gravitational instability of an initially homogeneous infinite medium, represented by Td, based on the approximation that the mean fluid velocity is always proportional to the local acceleration. It is shown that, mathematically, this assumption leads to the restricted Patlak-Keller-Segel model considered by Jäger and Luckhaus or, equivalently, the Smoluchowski equation describing the motion of self-gravitating Brownian particles, coupled to the modified Newtonian potential that is appropriate for an infinite mass distribution. We discuss some of the fundamental properties of a non-local generalization of this model where the effective pressure force is given by a fractional Laplacian with 0<α<2 and illustrate them by means of numerical simulations. Local well-posedness in Sobolev spaces is proven, and we show the smoothing effect of our equation, as well as a Beale-Kato-Majda-type criterion in terms of ‖. It is also shown that the problem is ill-posed in Sobolev spaces when it is considered backward in time. Finally, we prove that, in the critical case (one conservative and one dissipative derivative), ‖(t) is uniformly bounded in terms of the initial data for sufficiently large pressure forces.

  5. Joint effects of tobacco use and body mass on all-cause mortality in Mumbai, India: results from a population-based cohort study.

    PubMed

    Pednekar, Mangesh S; Gupta, Prakash C; Hebert, James R; Hakama, Matti

    2008-02-01

    The joint effects of tobacco use and body mass on mortality have not been well characterized, although evidence regarding the effect of smoking on the association between body mass and mortality is accumulating. To study the joint effects of these important risk factors, the authors conducted a prospective cohort study of 148,173 men and women aged > or =35 years in Mumbai, India. Subjects were recruited during 1991-1997 and then followed for approximately 5-6 years (1997-2003). During 774,129 person-years of follow-up, 13,261 deaths were observed. Tobacco use increased the risk of death across different categories of body mass, with particularly high risks being observed in extreme body mass categories. Among men, obese smokers and obese never users of tobacco were at 56% and 34% increased risks of death, respectively, compared with overweight never users of tobacco. Similarly, at highest risk were extremely thin males who smoked bidis (relative risk = 3.45) or cigarettes (relative risk = 3.32). Body mass and all forms of tobacco use had independent as well as multiplicative joint effects on mortality risk. Tobacco use and undernutrition are serious problems in India. The current study indicates that obesity may emerge as a serious public health problem with which tobacco use may interact.

  6. The effects of classic altitude training on hemoglobin mass in swimmers.

    PubMed

    Wachsmuth, N B; Völzke, C; Prommer, N; Schmidt-Trucksäss, A; Frese, F; Spahl, O; Eastwood, A; Stray-Gundersen, J; Schmidt, W

    2013-05-01

    Aim of the study was to determine the influence of classic altitude training on hemoglobin mass (Hb-mass) in elite swimmers under the following aspects: (1) normal oscillation of Hb-mass at sea level; (2) time course of adaptation and de-adaptation; (3) sex influences; (4) influences of illness and injury; (5) interaction of Hb-mass and competition performance. Hb-mass of 45 top swimmers (male 24; female 21) was repeatedly measured (~6 times) over the course of 2 years using the optimized CO-rebreathing method. Twenty-five athletes trained between one and three times for 3-4 weeks at altitude training camps (ATCs) at 2,320 m (3 ATCs) and 1,360 m (1 ATC). Performance was determined by analyzing 726 competitions according to the German point system. The variation of Hb-mass without hypoxic influence was 3.0 % (m) and 2.7 % (f). At altitude, Hb-mass increased by 7.2 ± 3.3 % (p < 0.001; 2,320 m) and by 3.8 ± 3.4 % (p < 0.05; 1,360 m). The response at 2,320 m was not sex-related, and no increase was found in ill and injured athletes (n = 8). Hb-mass was found increased on day 13 and was still elevated 24 days after return (4.0 ± 2.7 %, p < 0.05). Hb-mass had only a small positive effect on swimming performance; an increase in performance was only observed 25-35 days after return from altitude. In conclusion, the altitude (2,320 m) effect on Hb-mass is still present 3 weeks after return, it decisively depends on the health status, but is not influenced by sex. In healthy subjects it exceeds by far the oscillation occurring at sea level. After return from altitude performance increases after a delay of 3 weeks.

  7. Study on Mass Discrimination Effect of Resonance Ionization Mass Spectrometry Using an Inductively Coupled Plasma as an Atomic Source (ICP-RIMS)

    SciTech Connect

    Higuchi, Y.; Watanabe, K.; Tomita, H.; Kawarabayashi, J.; Iguchi, T.

    2009-03-17

    We have proposed a novel concept of Resonance Ionization Mass Spectrometry using an Inductively Coupled Plasma as an Atomic Source (ICP-RIMS). Isotope ratio analysis using ICP-RIMS is expected to be a convenient and precise technique with high throughput. However, the mass discrimination effect caused from difference in kinetic energy of neutral atoms in ICP-RIMS is crucial for precise isotope analysis. We, therefore, investigated the atom kinetic energy distribution introduced into the laser ionization region. The mass-dependent kinetic energy was confirmed in the initial kinetic energy distributions. We preliminary estimated a mass discrimination effect caused by mass-dependent kinetic energy in ICP-RIMS for various detector sizes. We proposed that this effect can be suppressed by selecting the appropriate detector size and adopting the scanning mode of the deflecting voltage.

  8. Effect of wheelchair mass, tire type and tire pressure on physical strain and wheelchair propulsion technique.

    PubMed

    de Groot, Sonja; Vegter, Riemer J K; van der Woude, Lucas H V

    2013-10-01

    The purpose of this study was to evaluate the effect of wheelchair mass, solid vs. pneumatic tires and tire pressure on physical strain and wheelchair propulsion technique. 11 Able-bodied participants performed 14 submaximal exercise blocks on a treadmill with a fixed speed (1.11 m/s) within 3 weeks to determine the effect of tire pressure (100%, 75%, 50%, 25% of the recommended value), wheelchair mass (0 kg, 5 kg, or 10 kg extra) and tire type (pneumatic vs. solid). All test conditions (except pneumatic vs. solid) were performed with and without instrumented measurement wheels. Outcome measures were power output (PO), physical strain (heart rate (HR), oxygen uptake (VO2), gross mechanical efficiency (ME)) and propulsion technique (timing, force application). At 25% tire pressure PO and subsequently VO2 were higher compared to 100% tire pressure. Furthermore, a higher tire pressure led to a longer cycle time and contact angle and subsequently lower push frequency. Extra mass did not lead to an increase in PO, physical strain or propulsion technique. Solid tires led to a higher PO and physical strain. The solid tire effect was amplified by increased mass (tire × mass interaction). In contrast to extra mass, tire pressure and tire type have an effect on PO, physical strain or propulsion technique of steady-state wheelchair propulsion. As expected, it is important to optimize tire pressure and tire type.

  9. Indexing the approximate number system.

    PubMed

    Inglis, Matthew; Gilmore, Camilla

    2014-01-01

    Much recent research attention has focused on understanding individual differences in the approximate number system, a cognitive system believed to underlie human mathematical competence. To date researchers have used four main indices of ANS acuity, and have typically assumed that they measure similar properties. Here we report a study which questions this assumption. We demonstrate that the numerical ratio effect has poor test-retest reliability and that it does not relate to either Weber fractions or accuracy on nonsymbolic comparison tasks. Furthermore, we show that Weber fractions follow a strongly skewed distribution and that they have lower test-retest reliability than a simple accuracy measure. We conclude by arguing that in the future researchers interested in indexing individual differences in ANS acuity should use accuracy figures, not Weber fractions or numerical ratio effects.

  10. Effect of hammer mass on upper extremity joint moments.

    PubMed

    Balendra, Nilanthy; Langenderfer, Joseph E

    2017-04-01

    This study used an OpenSim inverse-dynamics musculoskeletal model scaled to subject-specific anthropometrics to calculate three-dimensional intersegmental moments at the shoulder, elbow and wrist while 10 subjects used 1 and 2 lb hammers to drive nails. Motion data were collected via an optoelectronic system and the interaction of the hammer with nails was recorded with a force plate. The larger hammer caused substantial increases (50-150%) in moments, although increases differed by joint, anatomical component, and significance of the effect. Moment increases were greater in cocking and strike/follow-through phases as opposed to swinging and may indicate greater potential for injury. Compared to shoulder, absolute increases in peak moments were smaller for elbow and wrist, but there was a trend toward larger relative increases for distal joints. Shoulder rotation, elbow varus-valgus and pronation-supination, and wrist radial-ulnar deviation and rotation demonstrated large relative moment increases. Trial and phase durations were greater for the larger hammer. Changes in moments and timing indicate greater loads on musculoskeletal tissues for an extended period with the larger hammer. Additionally, greater variability in timing with the larger hammer, particularly for cocking phase, suggests differences in control of the motion. Increased relative moments for distal joints may be particularly important for understanding disorders of the elbow and wrist associated with hammer use.

  11. Light attenuation - a more effective basis for the management of fine suspended sediment than mass concentration?

    PubMed

    Davies-Colley, Robert J; Ballantine, Deborah J; Elliott, Sandy H; Swales, Andrew; Hughes, Andrew O; Gall, Mark P

    2014-01-01

    Fine sediment continues to be a major diffuse pollution concern with its multiple effects on aquatic ecosystems. Mass concentrations (and loads) of fine sediment are usually measured and modelled, apparently with the assumption that environmental effects of sediment are predictable from mass concentrations. However, some severe impacts of fine sediment may not correlate well with mass concentration, notably those related to light attenuation by suspended particles. Light attenuation per unit mass concentration of suspended particulate matter in waters varies widely with particle size, shape and composition. Data for suspended sediment concentration, turbidity and visual clarity (which is inversely proportional to light beam attenuation) from 77 diverse New Zealand rivers provide valuable insights into the mutual relationships of these quantities. Our analysis of these relationships, both across multiple rivers and within individual rivers, supports the proposition that light attenuation by fine sediment is a more generally meaningful basis for environmental management than sediment mass. Furthermore, optical measurements are considerably more practical, being much cheaper (by about four-fold) to measure than mass concentrations, and amenable to continuous measurement. Mass concentration can be estimated with sufficient precision for many purposes from optical surrogates locally calibrated for particular rivers.

  12. Effect of Star Formation and Feedback on the Mass of galaxies

    NASA Astrophysics Data System (ADS)

    Kawata, D.; Yokosawa, M.; Yoshida, T.

    We investigate the effect of star formation and feedback on the mass of galaxies. Thoul and Weinberg (1995,1996)(hereafter TW) have investigated the mass that can cool within Hubble time, using one dimensional, spherically symmetric, hydrodynamics / gravity code. Their calculations include radiative cooling and photo-ionization. TW indicate that the photo-ionization can explain the minimum mass of galaxies. On the other hand, they conclude that the maximum mass of galaxies cannot be explained due to the effect of radiative cooling only. They have shown that the larger mass collapse, the larger mass can cool. Since the virial temperature is high, the cooling is dominated by free-free transitions. However, in this model the star formation and the feedback are ignored. If the star formation is efficient, the supernovae input energy to the surrounding gas. This energy may prevent more accretion of gas. We simulate the radiative cooling in the gas and feedback on the same initial condition with TW to study the mass that can cool within Hubble time.

  13. EFFECT OF UNCERTAINTIES IN STELLAR MODEL PARAMETERS ON ESTIMATED MASSES AND RADII OF SINGLE STARS

    SciTech Connect

    Basu, Sarbani; Verner, Graham A.; Chaplin, William J.; Elsworth, Yvonne E-mail: gav@bison.ph.bham.ac.uk E-mail: y.p.elsworth@bham.ac.uk

    2012-02-10

    Accurate and precise values of radii and masses of stars are needed to correctly estimate properties of extrasolar planets. We examine the effect of uncertainties in stellar model parameters on estimates of the masses, radii, and average densities of solar-type stars. We find that in the absence of seismic data on solar-like oscillations, stellar masses can be determined to a greater accuracy than either stellar radii or densities; but to get reasonably accurate results the effective temperature, log g, and metallicity must be measured to high precision. When seismic data are available, stellar density is the most well-determined property, followed by radius, with mass the least well-determined property. Uncertainties in stellar convection, quantified in terms of uncertainties in the value of the mixing length parameter, cause the most significant errors in the estimates of stellar properties.

  14. Relativistic scattering with a spatially dependent effective mass in the Dirac equation

    SciTech Connect

    Alhaidari, A. D.; Bahlouli, H.; Abdelmonem, M. S.; Al-Hasan, A.

    2007-06-15

    We formulate a relativistic algebraic method of scattering for systems with spatially dependent mass based on the J-matrix method. The reference Hamiltonian is the three-dimensional Dirac Hamiltonian but with a mass that is position-dependent with a constant asymptotic limit. Additionally, this effective mass distribution is locally represented in a finite dimensional function subspace. The spinor couples to spherically symmetric vector and pseudo scalar potentials that are short-range such that they are accurately represented by their matrix elements in the same finite dimensional subspace. We calculate the relativistic phase shift as a function of energy for a given configuration and study the effect of spatial variation of the mass on the energy resonance structure.

  15. How effective and cost-effective was the national mass media smoking cessation campaign ‘Stoptober’?☆

    PubMed Central

    Brown, Jamie; Kotz, Daniel; Michie, Susan; Stapleton, John; Walmsley, Matthew; West, Robert

    2014-01-01

    Background A national smoking cessation campaign based on behaviour change theory and operating through both traditional and new media was launched across England during late 2012 (‘Stoptober’). In addition to attempting to start a movement in which smokers would quit at the same time in response to a positive mass quitting trigger, the campaign set smokers the goal of being smoke-free for October and embodied other psychological principles in a range of tools and communications. Methods Data on quit attempts were obtained from 31,566 past-year smokers during nationally representative household surveys conducted monthly between 2007 and 2012. The effectiveness of the campaign was assessed by the increase in national quit attempt rate in October relative to other months in 2012 vs. 2007–2011. Results Relative to other months in the year, more people tried to quit in October in 2012 compared with 2007–2011 (OR = 1.79, 95%CI = 1.20–2.68). In 2012 there was an approximately 50% increase in quitting during October compared with other months of the same year (9.6% vs. 6.6%; OR = 1.50, 95%CI = 1.05–2.15), whereas in 2007–2011 the rate in October was non-significantly less than in other months of the same period (6.4% vs. 7.5%; OR = 0.84, 95%CI = 0.70–1.00). Stoptober is estimated to have generated an additional 350,000 quit attempts and saved 10,400 discounted life years (DLY) at less than £415 per DLY in the modal age group. Conclusions Designing a national public health campaign with a clear behavioural target (making a serious quit attempt) using key psychological principles can yield substantial behaviour change and public health impact. PMID:24322004

  16. Semiphenomenological approximation of the sums of experimental radiative strength functions for dipole gamma transitions of energy E γ below the neutron binding energy B n for mass numbers in the range 40 ≤ A ≤ 200

    NASA Astrophysics Data System (ADS)

    Sukhovoj, A. M.; Furman, W. I.; Khitrov, V. A.

    2008-06-01

    The sums of radiative strength functions for primary dipole gamma transitions, k( E1) + k( M1), are approximated to a high precision by a superposition of two functional dependences in the energy range 0.5 < E 1 < B n - 0.5 MeV for the 40K, 60Co, 71,74Ge, 80Br, 114Cd, 118Sn, 124,125Te, 128I, 137,138,139Ba, 140La, 150Sm, 156,158Gd, 160Tb, 163,164,165Dy, 166Ho, 168Er, 170Tm, 174Yb, 176,177Lu, 181Hf, 182Ta, 183,184,185,187W, 188,190,191,193Os, 192Ir, 196Pt, 198Au, and 200Hg nuclei. It is shown that, in any nuclei, radiative strength functions are a dynamical quantity and that the values of k( E1) + k( M1) for specific energies of gamma transitions and specific nuclei are determined by the structure of decaying and excited levels, at least up to the neutron binding energy B n .

  17. Semiphenomenological approximation of the sums of experimental radiative strength functions for dipole gamma transitions of energy E{sub {gamma}}below the neutron binding energy B{sub n} for mass numbers in the range 40 {<=} A {<=} 200

    SciTech Connect

    Sukhovoj, A. M. Furman, W. I. Khitrov, V. A.

    2008-06-15

    The sums of radiative strength functions for primary dipole gamma transitions, k(E1) + k(M1), are approximated to a high precision by a superposition of two functional dependences in the energy range 0.5 < E{sub 1} < B{sub n} - 0.5 MeV for the {sup 40}K, {sup 60}Co, {sup 71,74}Ge, {sup 80}Br, {sup 114}Cd, {sup 118}Sn, {sup 124,125}Te, {sup 128}I, {sup 137,138,139}Ba, {sup 140}La, {sup 150}Sm, {sup 156,158}Gd, {sup 160}Tb, {sup 163,164,165}Dy, {sup 166}Ho, {sup 168}Er, {sup 170}Tm, {sup 174}Yb, {sup 176,177}Lu, {sup 181}Hf, {sup 182}Ta, {sup 183,184,185,187}W, {sup 188,190,191,193}Os, {sup 192}Ir, {sup 196}Pt, {sup 198}Au, and {sup 200}Hg nuclei. It is shown that, in any nuclei, radiative strength functions are a dynamical quantity and that the values of k(E1) + k(M1) for specific energies of gamma transitions and specific nuclei are determined by the structure of decaying and excited levels, at least up to the neutron binding energy B{sub n}.

  18. DALI: Derivative Approximation for LIkelihoods

    NASA Astrophysics Data System (ADS)

    Sellentin, Elena

    2015-07-01

    DALI (Derivative Approximation for LIkelihoods) is a fast approximation of non-Gaussian likelihoods. It extends the Fisher Matrix in a straightforward way and allows for a wider range of posterior shapes. The code is written in C/C++.

  19. Electrodynamics of interacting point charges: Excellence of the 1865 clausius approximation

    NASA Astrophysics Data System (ADS)

    Costa de Beauregard, O.

    1996-04-01

    Clausius force as equivalent to a time-instant Lorentz force. Action-reaction opposition expressed with the help of potential momenta QA. Conservation of a system's total mass, linear, angular and barycentric momenta. Automatic rendering of the 1967 “hidden momentum in magnets” effect. Clausius formalism as the low velocity approximation to the Wheeler-Feynman electrodyanmics.

  20. Effects of independently altering body weight and body mass on the metabolic cost of running.

    PubMed

    Teunissen, Lennart P J; Grabowski, Alena; Kram, Rodger

    2007-12-01

    The metabolic cost of running is substantial, despite the savings from elastic energy storage and return. Previous studies suggest that generating vertical force to support body weight and horizontal forces to brake and propel body mass are the major determinants of the metabolic cost of running. In the present study, we investigated how independently altering body weight and body mass affects the metabolic cost of running. Based on previous studies, we hypothesized that reducing body weight would decrease metabolic rate proportionally, and adding mass and weight would increase metabolic rate proportionally. Further, because previous studies show that adding mass alone does not affect the forces generated on the ground, we hypothesized that adding mass alone would have no substantial effect on metabolic rate. We manipulated the body weight and body mass of 10 recreational human runners and measured their metabolic rates while they ran at 3 m s(-1). We reduced weight using a harness system, increased mass and weight using lead worn about the waist, and increased mass alone using a combination of weight support and added load. We found that net metabolic rate decreased in less than direct proportion to reduced body weight, increased in slightly more than direct proportion to added load (added mass and weight), and was not substantially different from normal running with added mass alone. Adding mass alone was not an effective method for determining the metabolic cost attributable to braking/propelling body mass. Runners loaded with mass alone did not generate greater vertical or horizontal impulses and their metabolic costs did not substantially differ from those of normal running. Our results show that generating force to support body weight is the primary determinant of the metabolic cost of running. Extrapolating our reduced weight data to zero weight suggests that supporting body weight comprises at most 74% of the net cost of running. However, 74% is probably an

  1. Birthdate, mass and survival in mountain goat kids: effects of maternal characteristics and forage quality.

    PubMed

    Côté, S D; Festa-Bianchet, M

    2001-04-01

    In temperate environments, early-born ungulates may enjoy a longer growth period before winter, and so attain a higher body mass and an increased probability of survival compared to late-born ones. We assessed the effects of maternal characteristics, forage quality and population density on kid birthdate, mass and survival in a population of marked mountain goats (Oreamnos americanus) in Alberta. The duration and timing of the birth season were similar in all years. Births were highly synchronised: 80% of kids were born within 2 weeks of the first birth. Maternal age, maternal social rank and density did not affect kid birthdate or mass. Previous breeding experience was not related to kid birthdate, but kids born to pluriparous mothers were heavier during summer than kids born to primiparous mothers. Male and female kids had similar mass and accumulated mass linearly during summer. Early-born kids were heavier than late-born kids. Faecal crude protein (FCP) in late spring and maternal mass were positively related to kid mass. Survival to weaning appeared higher for males (90%) than for females (78%), but survival to 1 year was 65% for both sexes. FCP in late spring, density, birthdate and mass did not affect kid survival to weaning in either sex. Survival to 1 year increased with FCP in late spring for females, but not for males. Survival to 1 year was independent of birthdate for both sexes, but heavy females survived better than light ones. Multiple logistic regression revealed a positive effect of mass on survival to 1 year when the sexes were pooled. Our results suggest that mountain goats are constrained to give birth in a short birth season synchronised with forage productivity.

  2. Taylor Approximations and Definite Integrals

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.

    2007-01-01

    We investigate the possibility of approximating the value of a definite integral by approximating the integrand rather than using numerical methods to approximate the value of the definite integral. Particular cases considered include examples where the integral is improper, such as an elliptic integral. (Contains 4 tables and 2 figures.)

  3. Effect of Coolant Temperature and Mass Flow on Film Cooling of Turbine Blades

    NASA Technical Reports Server (NTRS)

    Garg, Vijay K.; Gaugler, Raymond E.

    1997-01-01

    A three-dimensional Navier Stokes code has been used to study the effect of coolant temperature, and coolant to mainstream mass flow ratio on the adiabatic effectiveness of a film-cooled turbine blade. The blade chosen is the VKI rotor with six rows of cooling holes including three rows on the shower head. The mainstream is akin to that under real engine conditions with stagnation temperature = 1900 K and stagnation pressure = 3 MPa. Generally, the adiabatic effectiveness is lower for a higher coolant temperature due to nonlinear effects via the compressibility of air. However, over the suction side of shower-head holes, the effectiveness is higher for a higher coolant temperature than that for a lower coolant temperature when the coolant to mainstream mass flow ratio is 5% or more. For a fixed coolant temperature, the effectiveness passes through a minima on the suction side of shower-head holes as the coolant to mainstream mass flow, ratio increases, while on the pressure side of shower-head holes, the effectiveness decreases with increase in coolant mass flow due to coolant jet lift-off. In all cases, the adiabatic effectiveness is highly three-dimensional.

  4. The effect of experience and training on the diagnosis of approximal coronal caries from bitewing radiographs. A Swiss-American comparison.

    PubMed

    Firestone, A R; Lussi, A; Weems, R A; Heaven, T J

    1994-01-01

    The purpose of the present study was to compare the development of skills in the radiographic diagnosis of approximal coronal caries. Swiss (Bern) and American (Alabama) dental students with and without clinical experience, Swiss general practitioners, and Swiss and American dental school faculty viewed bitewing radiographic films of 13 teeth. The observers examined the 26 approximal surfaces on the radiographic films and responded, on a five point certainty scale, whether approximal caries was present. Mean sensitivity ranged from a low of 0.59 for American faculty to a high of 0.80 for Swiss students with clinical experience, mean specificity ranged from 0.84 for Swiss pre-clinical students to 0.95 for American faculty. For a summary measure of accuracy, i.e., area under the receiver operating characteristic (ROC) curve, the scores for student observers tended to increase with experience. The scores for Swiss and American students with clinical experience and faculty did not differ significantly. Inter-examiner agreement (Kappa) could only be characterized as moderate at best. Formal didactic instruction and clinical experience produced dental students with skills in the diagnosis of approximal caries from bitewing radiographs similar to that of faculty dentists.

  5. The Effects of Body Mass on Dung Removal Efficiency in Dung Beetles

    PubMed Central

    Nervo, Beatrice; Tocco, Claudia; Caprio, Enrico; Palestrini, Claudia; Rolando, Antonio

    2014-01-01

    Understanding of the role of body mass in structural-functional relationships is pressing, particularly because species losses often occur non-randomly with respect to body size. Our study examined the effects of dung beetle body mass on dung removal at two levels. First, we used the lab experiment to evaluate the efficiency of eight dung beetle species belonging to two functional groups (tunnelers, dwellers) on dung removal. Second, the same species employed in the lab were used in field mesocosms to examine the effects of the two functional groups on dung removal maintaining realistic differences in the total body mass between tunneler and dweller assemblages. Furthermore, the experimental assemblages contained one and four species within each functional group, so the effect of body mass heterogeneity was examined. We used a statistical approach (offset method) which took into account a priori constraints due to the study design allowing us to analyse the effect of larger species in mesocosm style experiments. Body size played a crucial role in dung removal: large beetles were more efficient than small ones and the percentage of removed dung increased with higher body mass heterogeneity. Tunnelers were more efficient than dwellers over both short and long time periods (one month and one year). Significant effects of dwellers were found only after one year. Moreover, our study showed that not including the body mass as an offset in the model resulted in sometimes different results, as the offset expresses dung removal independently of the body mass. This approach confirmed that body size is likely a pivotal factor controlling dung removal efficiency at multiple levels, from single species to overall dung beetle assemblages. Even though other specific traits should be examined, this study has begun to address the consequences of losing individuals with specific traits that are especially sensitive to perturbations. PMID:25229237

  6. The effects of body mass on dung removal efficiency in dung beetles.

    PubMed

    Nervo, Beatrice; Tocco, Claudia; Caprio, Enrico; Palestrini, Claudia; Rolando, Antonio

    2014-01-01

    Understanding of the role of body mass in structural-functional relationships is pressing, particularly because species losses often occur non-randomly with respect to body size. Our study examined the effects of dung beetle body mass on dung removal at two levels. First, we used the lab experiment to evaluate the efficiency of eight dung beetle species belonging to two functional groups (tunnelers, dwellers) on dung removal. Second, the same species employed in the lab were used in field mesocosms to examine the effects of the two functional groups on dung removal maintaining realistic differences in the total body mass between tunneler and dweller assemblages. Furthermore, the experimental assemblages contained one and four species within each functional group, so the effect of body mass heterogeneity was examined. We used a statistical approach (offset method) which took into account a priori constraints due to the study design allowing us to analyse the effect of larger species in mesocosm style experiments. Body size played a crucial role in dung removal: large beetles were more efficient than small ones and the percentage of removed dung increased with higher body mass heterogeneity. Tunnelers were more efficient than dwellers over both short and long time periods (one month and one year). Significant effects of dwellers were found only after one year. Moreover, our study showed that not including the body mass as an offset in the model resulted in sometimes different results, as the offset expresses dung removal independently of the body mass. This approach confirmed that body size is likely a pivotal factor controlling dung removal efficiency at multiple levels, from single species to overall dung beetle assemblages. Even though other specific traits should be examined, this study has begun to address the consequences of losing individuals with specific traits that are especially sensitive to perturbations.

  7. On the Effects of Gaps and Uses of Approximation Functions on the Time-Scale Signal Analysis: A Case Study Based on Space Geophysical Events

    NASA Astrophysics Data System (ADS)

    Magrini, Luciano A.; Domingues, Margarete O.; Mendes, Odim

    2017-02-01

    The presence of gaps is quite common in signals related to space science phenomena. Usually, this presence prevents the direct use of standard time-scale analysis because this analysis needs equally spaced data; it is affected by the time series borders (boundaries), and gaps can cause an increase of internal borders. Numerical approximations can be used to estimate the records whose entries are gaps. However, their use has limitations. In many practical cases, these approximations cannot faithfully reproduce the original signal behaviour. Alternatively, in this work, we compare an adapted wavelet technique (gaped wavelet transform), based on the continuous wavelet transform with Morlet wavelet analysing function, with two other standard approximation methods, namely, spline and Hermite cubic polynomials. This wavelet method does not require an approximation of the data on the gap positions, but it adapts the analysing wavelet function to deal with the gaps. To perform our comparisons, we use 120 magnetic field time series from a well-known space geophysical phenomena and we select and classify their gaps. Then, we analyse the influence of these methods in two time-scale tools. As conclusions, we observe that when the gaps are small (very few points sequentially missing), all the methods work well. However, with large gaps, the adapted wavelet method presents a better performance in the time-scale representation. Nevertheless, the cubic Hermite polynomial approximation is also an option when a reconstruction of the data is also needed, with the price of having a worse time-scale representation than the adapted wavelet method.

  8. On the Effects of Gaps and Uses of Approximation Functions on the Time-Scale Signal Analysis: A Case Study Based on Space Geophysical Events

    NASA Astrophysics Data System (ADS)

    Magrini, Luciano A.; Domingues, Margarete O.; Mendes, Odim

    2017-04-01

    The presence of gaps is quite common in signals related to space science phenomena. Usually, this presence prevents the direct use of standard time-scale analysis because this analysis needs equally spaced data; it is affected by the time series borders (boundaries), and gaps can cause an increase of internal borders. Numerical approximations can be used to estimate the records whose entries are gaps. However, their use has limitations. In many practical cases, these approximations cannot faithfully reproduce the original signal behaviour. Alternatively, in this work, we compare an adapted wavelet technique (gaped wavelet transform), based on the continuous wavelet transform with Morlet wavelet analysing function, with two other standard approximation methods, namely, spline and Hermite cubic polynomials. This wavelet method does not require an approximation of the data on the gap positions, but it adapts the analysing wavelet function to deal with the gaps. To perform our comparisons, we use 120 magnetic field time series from a well-known space geophysical phenomena and we select and classify their gaps. Then, we analyse the influence of these methods in two time-scale tools. As conclusions, we observe that when the gaps are small (very few points sequentially missing), all the methods work well. However, with large gaps, the adapted wavelet method presents a better performance in the time-scale representation. Nevertheless, the cubic Hermite polynomial approximation is also an option when a reconstruction of the data is also needed, with the price of having a worse time-scale representation than the adapted wavelet method.

  9. Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance

    USGS Publications Warehouse

    Harvey, J.W.; Fuller, C.C.

    1998-01-01

    cumulative effect of hyporheic exchange in Pinal Creek basin was to remove approximately 20% of the dissolved manganese flowing out of the drainage basin. Our results illustrate that the cumulative significance of reactive uptake in the hyporheic zone depends on the balance between chemical reaction rates, hyporheic porewater residence time, and turnover of streamflow through hyporheic flow paths. The similarity between the hyporheic reaction timescale (1??(s) ??? 1.3 hours), and the hyporheic porewater residence timescale (t(s) ??? 8 min) ensured that there was adequate time for the reaction to progress. Furthermore, it was the similarity between the turnover length for stream water flow through hyporheic flow paths (L(s) = stream velocity/storage-zone exchange coefficient ??? 1.3 km) and the length of Pinal Creek (L ??? 7 km), which ensured that all stream water passed through hyporheic flow paths several times. As a means to generalize our findings to other sites where similar types of hydrologic and chemical information are available, we suggest a cumulative significance index for hyporheic reactions, R(s) = ??(s)t(s)L/L(s) (dimensionless); higher values indicate a greater potential for hyporheic reactions to influence geochemical mass balance. Our experience in Pinal Creek basin suggests that values of R(s) > 0.2 characterize systems where hyporheic reactions are likely to influence geochemical mass balance at the drainage-basin scale.

  10. Effects of Rapid or Slow Body Mass Reduction on Body Composition in Adult Rats

    PubMed Central

    Tai, Shinji; Tsurumi, Yasukimi; Yokota, Yukari; Masuhara, Mitsuhiko; Okamura, Koji

    2009-01-01

    Whether the speed of body mass (BM) reduction influences the body composition is uncertain. To investigate the effects of rapid vs slow body mass reduction on body composition, rats were divided into three groups; fed ad libitum for 16-day (Control, C); received restricted food intake during 16-day to decrease BM slowly (Slow, S); or fed ad libitum for 13-days and fasted for the last 3 days to rapidly reach a BM comparable to that of S (Rapid, R). Drinking water was restricted for R on day 16 to rapidly decrease their BM. All rats trained during the study. Final BM and adipose tissues mass were similar for R and S, and both were lesser than C. The skeletal muscle mass did not decrease in R and S. The liver mass was lower in R and S than C, and the decrease tended to be greater in R than S. Both the stomach and small intestine masses were significantly lower in R than C, but did not differ between S and C. In conclusion, differences of the speed of BM reduction affect the splanchnic tissues, and the decrease in splanchnic tissue mass was greater with rapid than slow BM reduction. PMID:19794927

  11. Artistic versus rhythmic gymnastics: effects on bone and muscle mass in young girls.

    PubMed

    Vicente-Rodriguez, G; Dorado, C; Ara, I; Perez-Gomez, J; Olmedillas, H; Delgado-Guerra, S; Calbet, J A L

    2007-05-01

    We compared 35 prepubertal girls, 9 artistic gymnasts and 13 rhythmic gymnasts with 13 nonphysically active controls to study the effect of gymnastics on bone and muscle mass. Lean mass, bone mineral content and areal density were measured by dual energy X-ray absorptiometry, and physical fitness was also assessed. The artistic gymnasts showed a delay in pubertal development compared to the other groups (p<0.05). The artistic gymnasts had a 16 and 17 % higher aerobic power and anaerobic capacity, while the rhythmic group had a 14 % higher anaerobic capacity than the controls, respectively (all p<0.05). The artistic gymnasts had higher lean mass (p<0.05) in the whole body and the extremities than both the rhythmic gymnasts and the controls. Body fat mass was 87.5 and 61.5 % higher in the controls than in the artistic and the rhythmic gymnasts (p<0.05). The upper extremity BMD was higher (p<0.05) in the artistic group compared to the other groups. Lean mass strongly correlated with bone mineral content (r=0.84, p<0.001), and multiple regression analysis showed that total lean mass explained 64 % of the variability in whole body bone mineral content, but only 20 % in whole body bone mineral density. Therefore, recreational artistic gymnastic participation is associated with delayed pubertal development, enhanced physical fitness, muscle mass, and bone density in prepubertal girls, eliciting a higher osteogenic stimulus than rhythmic gymnastic.

  12. Effects of Varying Gravity Levels in Parabolic Flight on the Size-Mass Illusion

    PubMed Central

    Clément, Gilles

    2014-01-01

    When an observer lifts two objects with the same weight but different sizes, the smaller object is consistently reported to feel heavier than the larger object even after repeated trials. Here we explored the effect of reduced and increased gravity on this perceptual size-mass illusion. Experiments were performed on board the CNES Airbus A300 Zero-G during parabolic flights eliciting repeated exposures to short periods of zero g, 0.16 g, 0.38 g, one g, and 1.8 g. Subjects were asked to assess perceived heaviness by actively oscillating objects with various sizes and masses. The results showed that a perceptual size-mass illusion was clearly present at all gravity levels. During the oscillations, the peak arm acceleration varied as a function of the gravity level, irrespective of the mass and size of the objects. In other words we did not observe a sensorimotor size-mass illusion. These findings confirm dissociation between the sensorimotor and perceptual systems for determining object mass. In addition, they suggest that astronauts on the Moon or Mars with the eyes closed will be able to accurately determine the relative difference in mass between objects. PMID:24901519

  13. Effects of varying gravity levels in parabolic flight on the size-mass illusion.

    PubMed

    Clément, Gilles

    2014-01-01

    When an observer lifts two objects with the same weight but different sizes, the smaller object is consistently reported to feel heavier than the larger object even after repeated trials. Here we explored the effect of reduced and increased gravity on this perceptual size-mass illusion. Experiments were performed on board the CNES Airbus A300 Zero-G during parabolic flights eliciting repeated exposures to short periods of zero g, 0.16 g, 0.38 g, one g, and 1.8 g. Subjects were asked to assess perceived heaviness by actively oscillating objects with various sizes and masses. The results showed that a perceptual size-mass illusion was clearly present at all gravity levels. During the oscillations, the peak arm acceleration varied as a function of the gravity level, irrespective of the mass and size of the objects. In other words we did not observe a sensorimotor size-mass illusion. These findings confirm dissociation between the sensorimotor and perceptual systems for determining object mass. In addition, they suggest that astronauts on the Moon or Mars with the eyes closed will be able to accurately determine the relative difference in mass between objects.

  14. Mass flow meter using the triboelectric effect for measurement in cryogenics

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Henry; Cunningham, Jock; Wolff, Steve

    1987-01-01

    The use of triboelectric charge to measure the mass flow rate of cryogens for the Space Shuttle Main Engine was investigated. Cross correlation of the triboelectric charge signals was used to determine the transit time of the cryogen between two sensor locations in a .75-in tube. The ring electrode sensors were mounted in a removable spool piece. Three spool pieces were constructed for delivery, each with a different design. One set of electronics for implementation of the cross correlation and flow calculation was constructed for delivery. Tests were made using a laboratory flow loop using liquid freon and transformer oil. The measured flow precision was 1 percent and the response was linear. The natural frequency distribution of the triboelectric signal was approximately 1/f. The sensor electrodes should have an axial length less than approximately one/tenth pipe diameter. The electrode spacing should be less than approximately one pipe diameter. Tests using liquid nitrogen demonstrated poor tribo-signal to noise ratio. Most of the noise was microphonic and common to both electrode systems. The common noise rejection facility of the correlator was successful in compensating for this noise but the signal was too small to enable reliable demonstration of the technique in liquid nitrogen.

  15. Multiple vantage points on the mental health effects of mass shootings.

    PubMed

    Shultz, James M; Thoresen, Siri; Flynn, Brian W; Muschert, Glenn W; Shaw, Jon A; Espinel, Zelde; Walter, Frank G; Gaither, Joshua B; Garcia-Barcena, Yanira; O'Keefe, Kaitlin; Cohen, Alyssa M

    2014-09-01

    The phenomenon of mass shootings has emerged over the past 50 years. A high proportion of rampage shootings have occurred in the United States, and secondarily, in European nations with otherwise low firearm homicide rates; yet, paradoxically, shooting massacres are not prominent in the Latin American nations with the highest firearm homicide rates in the world. A review of the scientific literature from 2010 to early 2014 reveals that, at the individual level, mental health effects include psychological distress and clinically significant elevations in posttraumatic stress, depression, and anxiety symptoms in relation to the degree of physical exposure and social proximity to the shooting incident. Psychological repercussions extend to the surrounding affected community. In the aftermath of the deadliest mass shooting on record, Norway has been in the vanguard of intervention research focusing on rapid delivery of psychological support and services to survivors of the "Oslo Terror." Grounded on a detailed review of the clinical literature on the mental health effects of mass shootings, this paper also incorporates wide-ranging co-author expertise to delineate: 1) the patterning of mass shootings within the international context of firearm homicides, 2) the effects of shooting rampages on children and adolescents, 3) the psychological effects for wounded victims and the emergency healthcare personnel who care for them, 4) the disaster behavioral health considerations for preparedness and response, and 5) the media "framing" of mass shooting incidents in relation to the portrayal of mental health themes.

  16. A mass-independent sulfur isotope effect in the nonthermal formation

    NASA Technical Reports Server (NTRS)

    Bains-Sahota, Swroop K.; Thiemens, Mark H.

    1989-01-01

    A nonmass-dependent sulfur isotope effect is present in the rotationally symmetric S2F10 molecule, produced in an electrical discharge through sulfur tetrafluoride. A similar isotopic fractionation was observed in the product S2F10 from the electrodissociation of SF5Cl and in the reaction between fluorine atoms produced by F2 photolysis and SF2, collectively ruling out the SF5 formation process as the source of the mass-independent fractionation. The secondary dissociation of S2F10 as a source of the mass-independent fractionation is ruled out by control S2F10 dissociation experiments which are shown to produce small mass-dependent fractionations. Mass-dependent effects such as sulfur isotopic exchange and secondary dissociation reactions are significant processes for the system under study, and have been quantitatively accounted for. The role of symmetry in nonmass-dependent isotope effects is strengthened by the present experiments, and the search and characterization of mass-independent effects is extended to sulfur-containing molecules.

  17. Electron effective mass enhancement in Ga(AsBi) alloys probed by cyclotron resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Pettinari, G.; Drachenko, O.; Lewis, R. B.; Tiedje, T.

    2016-12-01

    The effect of Bi incorporation on the conduction band structure of Ga(AsBi) alloys is revealed by a direct estimation of the electron effective mass via cyclotron resonance absorption spectroscopy at THz frequencies in pulsed magnetic fields up to 65 T. A strong enhancement in the electron effective mass with increasing Bi content is reported, with a value of mass ˜40 % higher than that in GaAs for ˜1.7 % of Bi. This experimental evidence unambiguously indicates a Bi-induced perturbation of the host conduction band states and calls for a deep revision of the theoretical models describing dilute bismides currently proposed in the literature, the majority of which neglect or exclude that the incorporation of a small percentage of Bi may affect the conduction band states of the host material.

  18. Geometry of the effective Majorana neutrino mass in the 0νββ decay

    NASA Astrophysics Data System (ADS)

    Xing, Zhi-zhong; Zhou, Ye-Ling

    2015-01-01

    The neutrinoless double-beta (0νββ) decay is a unique process used to identify the Majorana nature of massive neutrinos, and its rate depends on the size of the effective Majorana neutrino mass ee. We put forward a novel ‘coupling-rod’ diagram to describe ee in the complex plane, by which the effects of the neutrino mass ordering and CP-violating phases on ee are intuitively understood. We show that this geometric language allows us to easily obtain the maximum and minimum of |ee|. It remains usable even if there is a kind of new physics contributing to ee, and it can also be extended to describe the effective Majorana masses eμ, eτ, μτ and ττ which may appear in some other lepton-number violating processes.

  19. The Effective Mass of a Charged Carrier in a Nonpolar Liquid:. Applications to Superfluid Helium

    NASA Astrophysics Data System (ADS)

    Varlamov, Andrei; Chikina, Ioulia; Shikin, Valeriy

    The problem of a correct definition of the charged carrier effective mass in superfluid helium is revised. It is shown that the effective mass of such a quasi-particle can be introduced without Atkins's idea about the solidification of liquid He4 in the close vicinity of an ion (the so-called “snowball” model). Moreover, in addition to generalization of the Atkins's model, the charged carrier effective mass formation is considered within the framework of the two-fluid scenario. The physical reasons of the normal fluid contribution divergency and the way of corresponding regularization procedure are discussed. Agreement between the theory and the available experimental data is found in a wide range of temperatures.

  20. The Effective Mass of a Charged Carrier in a Nonpolar Liquid:. Applications to Superfluid Helium

    NASA Astrophysics Data System (ADS)

    Varlamov, Andrei; Chikina, Ioulia; Shikin, Valeriy

    2009-12-01

    The problem of a correct definition of the charged carrier effective mass in superfluid helium is revised. It is shown that the effective mass of such a quasi-particle can be introduced without Atkins's idea about the solidification of liquid He4 in the close vicinity of an ion (the so-called "snowball" model). Moreover, in addition to generalization of the Atkins's model, the charged carrier effective mass formation is considered within the framework of the two-fluid scenario. The physical reasons of the normal fluid contribution divergency and the way of corresponding regularization procedure are discussed. Agreement between the theory and the available experimental data is found in a wide range of temperatures.

  1. Effects of functional group mass variance on vibrational properties and thermal transport in graphene

    NASA Astrophysics Data System (ADS)

    Lindsay, L.; Kuang, Y.

    2017-03-01

    Intrinsic thermal resistivity critically depends on features of phonon dispersions dictated by harmonic interatomic forces and masses. Here we present the effects of functional group mass variance on vibrational properties and thermal conductivity (κ ) of functionalized graphene from first-principles calculations. We use graphane, a buckled graphene backbone with covalently bonded hydrogen atoms on both sides, as the base material and vary the mass of the hydrogen atoms to simulate the effect of mass variance from other functional groups. We find nonmonotonic behavior of κ with increasing mass of the functional group and an unusual crossover from acoustic-dominated to optic-dominated thermal transport behavior. We connect this crossover to changes in the phonon dispersion with varying mass which suppress acoustic phonon velocities, but also give unusually high velocity optic modes. Further, we show that out-of-plane acoustic vibrations contribute significantly more to thermal transport than in-plane acoustic modes despite breaking of a reflection-symmetry-based scattering selection rule responsible for their large contributions in graphene. This work demonstrates the potential for manipulation and engineering of thermal transport properties in two-dimensional materials toward targeted applications.

  2. Effects of functional group mass variance on vibrational properties and thermal transport in graphene

    DOE PAGES

    Lindsay, L.; Kuang, Y.

    2017-03-13

    Intrinsic thermal resistivity critically depends on features of phonon dispersions dictated by harmonic interatomic forces and masses. We present the effects of functional group mass variance on vibrational properties and thermal conductivity (κ ) of functionalized graphene from first principles calculations. We also use graphane, a buckled graphene backbone with covalently bonded Hydrogen atoms on both sides, as the base material and vary the mass of the Hydrogen atoms to simulate the effect of mass variance from other functional groups. We find non-monotonic behavior of κ with increasing mass of the functional group and an unusual cross-over from acoustic-dominated tomore » optic-dominated thermal transport behavior. We connect this cross-over to changes in the phonon dispersion with varying mass which suppress acoustic phonon velocities, but also give unusually high velocity optic modes. Further, we show that out-of-plane acoustic vibrations contribute significantly more to thermal transport than in-plane acoustic modes despite breaking of a reflection symmetry based scattering selection rule responsible for their large contributions in graphene. Our work demonstrates the potential for manipulation and engineering of thermal transport properties in two dimensional materials toward targeted applications.« less

  3. Effect of laminar and turbulent fluid flow on mass transfer in some electrochemical systems

    NASA Astrophysics Data System (ADS)

    Chen, Qian

    2000-10-01

    The influence of fluid flow on electrode-shape change that results from electrodeposition in the presence of a model leveling agent is simulated and discussed. The treatment is more rigorous than past studies in that flow and concentration fields are recalculated as the electrode shape changes. It is shown that uncertainties due to approximate treatments of fluid flow may be as significant as existing discrepancies between experiment and theory. The mass transfer characteristics of a turbulent slot jet impinging normally on a target wall are examined using numerical simulations. Fluid flow is modeled using the k-turbulence model of Wilcox [1]. The computations are validated against existing experimental fluid flow, heat transfer and mass transfer data. The range of Reynolds numbers examined is from 450 to 20,000 with Prandtl or Schmidt numbers from 1 to 2,400. The distance of the target plate from the slot jet varies between 2 to 8 times the slot jet width. The study reveals computational aspects that are unique to the solution of flow and mass transfer problems with the combination of high Schmidt numbers and turbulent flows. A low order "coherent structure" near-wall flow model first proposed by Chapman and Kuhn [2] is used to obtain the near-wall fluid flow field. This flow field is then used to compute high Schmidt number mass transfer for a turbulent boundary layer flow. It is shown that useful insight can be obtained into high Schmidt number mass transfer for a turbulent fluid flow using this model. The boundary conditions for this near-wall field for more complicated flow or geometries may be obtained either from experimental turbulent velocity and frequency data or from a k-o type of turbulence model.

  4. Effects of luminal glucose versus nonnutritive infusates on jejunal mass and absorption in the rat.

    PubMed

    Richter, G C; Levine, G M; Shiau, Y F

    1983-11-01

    These studies were designed to better understand the effects of luminal nutrition on intestinal mass and function. Parenterally nourished rats received a midjejunal infusion of either 0.9% saline, 10% glucose, 10% 3-O-methyl glucose, or 30% glucose. A fifth group underwent sham operation. After 7 days, intestinal mass and in vitro glucose and leucine uptake were measured in the intestine just distal to the infusion site. Luminal infusion led to greater intestinal mass in all groups compared to controls, but only the 10% and 30% glucose groups had significantly greater overall glucose uptake. Kinetic analysis revealed a greater apparent maximal transport rate in both glucose groups. The 30% glucose group had a greater apparent maximal transport rate for leucine and permeability for glucose and leucine. These data confirmed that "work load," in addition to luminal nutrition, maintains intestinal mass. However, adaptation of intestinal transport is more specific and appears to be regulated both by substrate metabolism and caloric density.

  5. Cost-effective recovery and purification of polyhydroxyalkanoates by selective dissolution of cell mass.

    PubMed

    Yu, Jian; Chen, Lilian X L

    2006-01-01

    Highly efficient separation and purification of polyhydroxyalkanoates (PHAs) from PHA-containing cell mass is essential to production of the bioplastics from renewable resources in a cost-effective, environmentally friendly way. Based on selective dissolution of non-PHA cell mass (NPCM) by protons in aqueous solution and crystallization kinetics of PHA biopolymers, a simple process is developed and demonstrated to recover PHAs from cell mass to high purity (>97 wt %) with high yield (>95 wt %). The average molecular weight of biopolyesters is controlled, which follows an exponential function of process severity, a combined factor of processing conditions. Compared with conventional chemical treatment such as sequential surfactant and hypochlorite treatment, this new technology substantially reduces the chemical cost for PHA recovery and purification from PHA-containing cell mass.

  6. Effect of planetary mass on the orbit of star-planet systems

    NASA Astrophysics Data System (ADS)

    Öztürk, O.; Erdem, A.

    2017-02-01

    Two main parameters, which determine the radial velocity semi-amplitude of the host star in a star-planet system, are the planet mass and the orbital period. In order to examine the effect of planet mass on the radial velocity semi-amplitude, we firstly select sensitive data of spectroscopic orbital solutions of 737 systems, given in the database of exoplanet.org. The selected systems are then categorized into 31 groups according to their orbital periods. For each group, an empirical relation between the radial velocity semi amplitude and the planet mass is obtained. In order to check the accuracy of these empirical relations, the measured and expected values of planet masses are compared.

  7. Eight-moment approximation solar wind models

    NASA Technical Reports Server (NTRS)

    Olsen, Espen Lyngdal; Leer, Egil

    1995-01-01

    Heat conduction from the corona is important in the solar wind energy budget. Until now all hydrodynamic solar wind models have been using the collisionally dominated gas approximation for the heat conductive flux. Observations of the solar wind show particle distribution functions which deviate significantly from a Maxwellian, and it is clear that the solar wind plasma is far from collisionally dominated. We have developed a numerical model for the solar wind which solves the full equation for the heat conductive flux together with the conservation equations for mass, momentum, and energy. The equations are obtained by taking moments of the Boltzmann equation, using an 8-moment approximation for the distribution function. For low-density solar winds the 8-moment approximation models give results which differ significantly from the results obtained in models assuming the gas to be collisionally dominated. The two models give more or less the same results in high density solar winds.

  8. Approximate model for laser ablation of carbon

    NASA Astrophysics Data System (ADS)

    Shusser, Michael

    2010-08-01

    The paper presents an approximate kinetic theory model of ablation of carbon by a nanosecond laser pulse. The model approximates the process as sublimation and combines conduction heat transfer in the target with the gas dynamics of the ablated plume which are coupled through the boundary conditions at the interface. The ablated mass flux and the temperature of the ablating material are obtained from the assumption that the ablation rate is restricted by the kinetic theory limitation on the maximum mass flux that can be attained in a phase-change process. To account for non-uniform distribution of the laser intensity while keeping the calculation simple the quasi-one-dimensional approximation is used in both gas and solid phases. The results are compared with the predictions of the exact axisymmetric model that uses the conservation relations at the interface derived from the momentum solution of the Boltzmann equation for arbitrary strong evaporation. It is seen that the simpler approximate model provides good accuracy.

  9. CIRCUMSTELLAR ENVIRONMENT AND EFFECTIVE TEMPERATURE OF THE YOUNG SUBSTELLAR ECLIPSING BINARY 2MASS J05352184-0546085

    SciTech Connect

    Mohanty, Subhanjoy; Stassun, Keivan G.; Mathieu, Robert D.

    2009-05-20

    We present new Spitzer IRAC/PU/MIPS photometry from 3.6 to 24 {mu}m, and new Gemini GMOS photometry at 0.48 {mu}m, of the young brown dwarf eclipsing binary 2MASS J05352184-0546085, located in the Orion Nebula Cluster. No excess disk emission is detected. The measured fluxes at {lambda} {<=} 8 {mu}m are within 1{sigma} ({approx}<0.1 mJy) of a bare photosphere, and the 3{sigma} upper limit at 16 {mu}m is a mere 0.04 mJy above the bare photospheric level. Together with the known properties of the system, this implies the absence of optically thick disks around the individual components. It also implies that if any circumbinary disk is present, it must either be optically thin and extremely tenuous (10{sup -10} M {sub sun}) if it extends in to within {approx}0.1 AU of the binary (the approximate tidal truncation radius), or it must be optically thick with a large inner hole, >0.6-10 AU in radius depending on degree of flaring. The consequence in all cases is that disk accretion is likely to be negligible or absent. This supports the recent proposal that the strong H{alpha} emission in the primary (more massive) brown dwarf results from chromospheric activity, and thereby bolsters the hypothesis that the surprising T {sub eff} inversion observed between the components is due to strong magnetic fields on the primary. Our data also set constraints on the T {sub eff} of the components independent of spectral type, and thereby on models of the aforementioned magnetic field effects. We discuss the consequences for the derived fundamental properties of young brown dwarfs and very low mass stars in general. Specifically, if very active isolated young brown dwarfs and very low mass stars suffer the same activity/field related effects as the 2M0535-05 primary, the low-mass stellar/substellar initial mass function currently derived from standard evolutionary tracks may be substantially in error.

  10. Effects of mass flow rate and droplet velocity on surface heat flux during cryogen spray cooling.

    PubMed

    Karapetian, Emil; Aguilar, Guillermo; Kimel, Sol; Lavernia, Enrique J; Nelson, J Stuart

    2003-01-07

    Cryogen spray cooling (CSC) is used to protect the epidermis during dermatologic laser surgery. To date, the relative influence of the fundamental spray parameters on surface cooling remains incompletely understood. This study explores the effects of mass flow rate and average droplet velocity on the surface heat flux during CSC. It is shown that the effect of mass flow rate on the surface heat flux is much more important compared to that of droplet velocity. However, for fully atomized sprays with small flow rates, droplet velocity can make a substantial difference in the surface heat flux.

  11. The effect of center-of-mass motion on photon statistics

    SciTech Connect

    Zhang, Yang; Zhang, Jun; Wu, Shao-xiong; Yu, Chang-shui

    2015-10-15

    We analyze the photon statistics of a weakly driven cavity quantum electrodynamics system and discuss the effects of photon blockade and photon-induced tunneling by effectively utilizing instead of avoiding the center-of-mass motion of a two-level atom trapped in the cavity. With the resonant interaction between atom, photon and phonon, it is shown that the bunching and anti-bunching of photons can occur with properly driving frequency. Our study shows the influence of the imperfect cooling of atom on the blockade and provides an attempt to take advantage of the center-of-mass motion.

  12. Fluid-Structure Interaction Effects on Mass Flow Rates in Solid Rocket Motors

    DTIC Science & Technology

    2015-09-02

    Thesis 3. DATES COVERED (From - To) 12 August 2015 – 02 September 2015 4. TITLE AND SUBTITLE Fluid- Structure Interaction Effects on Mass Flow Rates... structure interaction (FSI) effects between the combusting gases and propellant alter the motor chamber pressure and mass flow rate. To account for the...Rev. 8-98) Prescribed by ANSI Std. 239.18 Approved for public release; distribution is unlimited. PA#    FLUID‐ STRUCTURE  INTERACTION EFFECTS ON

  13. The effect of centre of mass location on sagittal plane moments around the centre of mass in trotting horses.

    PubMed

    Hobbs, Sarah Jane; Richards, Jim; Clayton, Hilary M

    2014-04-11

    The diagonal limb support pattern at trot provides pitch and roll stability, but little is known about the control of moments about the centre of mass (COM) in horses. Correct COM location is critical in the calculation of pitching moments. The objectives were to determine the effect of COM location on pitching moments in trotting horses and explore how COM location could influence balance. Kinematic (120 Hz) and GRF (4 force plates, 960 Hz) data were collected at trot from three trials of eight horses. The position of the COM was determined from the weighted summation of the segmental COMs and this was then manipulated cranially and caudally to test the model. Sagittal-plane moments around the COM were calculated for each manipulation of the model and their relationship determined using reduced major axis regression. Over the stride, the moments must sum to zero to prevent accumulation of rotational motion. This was found when the weight on the forelimbs in standing was 58.7% ± 3% (mean ± 95% C.I.), which corresponded closely to the COP ratio in standing. Moments were typically nose-up at foot strike changing to nose-down prior to midstance, and then reversing to nose-up in late stance. Mean moments were larger in the hindlimbs and more sensitive to COM location changes. Divergence of the COM from the COP creating a vertical force moment arm prior to midstance may assist the hindlimb in relation to propulsive effort. A similar effect is seen in the forelimb during single limb support.

  14. Structural, mechanical, electronic, optical properties and effective masses of CuMO2 (M = Sc, Y, La) compounds: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Liu, Qi-Jun; Zhang, Ning-Chao; Sun, Yan-Yun; Liu, Fu-Sheng; Liu, Zheng-Tang

    2014-05-01

    The structural, elastic, mechanical, electronic, optical properties and effective masses of CuMIIIBO2 (MIIIB = Sc, Y, La) compounds have been investigated by the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory under local density approximation. The equilibrium structural parameters are in good agreement with previous experimental and theoretical data. To our knowledge, there are no available data of elastic constants for comparison. The bulk, shear and Young's modulus, ratio of B/G, Poisson's ratio and Lamé's constants of CuMIIIBO2 have been studied. The electronic structures of CuMIIIBO2 are consistent with other calculations. The population analysis, charge densities and effective masses have been shown and analyzed. The imaginary and real parts of the dielectric function, refractive index and extinction coefficient of CuMIIIBO2 are calculated. The interband transitions to absorption of CuMIIIBO2 have been analyzed.

  15. Sensitivity of β -decay rates to the radial dependence of the nucleon effective mass

    NASA Astrophysics Data System (ADS)

    Severyukhin, A. P.; Margueron, J.; Borzov, I. N.; Van Giai, N.

    2015-03-01

    We analyze the sensitivity of β -decay rates in 78Ni and Sn,132100 to a correction term in Skyrme energy-density functionals (EDFs) which modifies the radial shape of the nucleon effective mass. This correction is added on top of several Skyrme parametrizations which are selected from their effective mass properties and predictions about the stability properties of 132Sn . The impact of the correction on high-energy collective modes is shown to be moderate. From the comparison of the effects induced by the surface-peaked effective mass in the three doubly magic nuclei, it is found that 132Sn is largely impacted by the correction, while 78Ni and 100Sn are only moderately affected. We conclude that β -decay rates in these nuclei can be used as a test of different parts of the nuclear EDF: 78Ni and 100Sn are mostly sensitive to the particle-hole interaction through the B (GT) values, while 132Sn is sensitive to the radial shape of the effective mass. Possible improvements of these different parts could therefore be better constrained in the future.

  16. Influence of Coulomb effects on the resolving power of multireflection mass-spectrometer systems

    SciTech Connect

    Skoblin, M G; Kopaev, I A; Monastyrskiy, M A; Alimpiev, S S; Greenfield, D E; Makarov, A A

    2015-12-31

    General theoretical approaches to the modelling of Coulomb effects in short ion bunches, developed previously by the authors, are applied in this paper to the calculation of multireflection mass-spectrometer systems. A separate module of the MASIM 3D applied software package is designed. An adaptive computational procedure for calculating the 'mirror potential' induced by an ion bunch on the surface of field-forming electrodes is proposed. The dynamics of ion bunches in a time-of-flight reflectron-type mass analyser is calculated and the limitations on the resolving power, caused by resonant Coulomb effects of self-bunching and coalescence in the groups of particles with close masses, are revealed on the basis of numerical experiments. (laser applications and other topics in quantum electronics)

  17. Effect of mass transfer resistance on the Lineweaver-Burk plots for flocculating microorganisms.

    PubMed

    Ngian, K F; Lin, S H; Martin, W R

    1977-12-01

    It is shown that the mass transfer resistance can significantly distort the linearity of the Lineweaver-Burk plot of the kinetic data for a microbial culture which forms aggregates. For small flocs, the linearity of the Lineweaver-Burk plot is largely retained, but a different slope and intercept will be obtained compared with flocs free from mass transfer resistance. For large flocs, the Lineweaver-Burk plot shows pronounced curvature at high limiting substrate concentrations. Hence, if the true intrinsic kinetic parameters are to be extracted from a highly flocculating microbial culture, sufficient agitation has to be provided to remove the effect of mass transfer resistance. If the behavior of the flocculating microbial culture is to be explored, additional values for some physical parameters, such as the effective diffusion coefficient of the substrate in floc, the floc density, and the mean floc radius, are needed.

  18. Wall mass transfer and pressure gradient effects on turbulent skin friction

    NASA Technical Reports Server (NTRS)

    Watson, R. D.; Balasubramanian, R.

    1984-01-01

    The effects of mass injection and pressure gradients on the drag of surfaces were studied theoretically with the aid of boundary-layer and Navier-Stokes codes. The present investigation is concerned with the effects of spatially varying the injection in the case of flat-plate drag. Effects of suction and injection on wavy wall surfaces are also explored. Calculations were performed for 1.2 m long surfaces, one flat and the other sinusoidal with a wavelength of 30.5 cm. Attention is given to the study of the effect of various spatial blowing variations on flat-plate skin friction reduction, local skin friction coefficient calculated by finite difference boundary-layer code and Navier-Stokes code, and the effect of phase-shifting sinusoidal mass transfer on the drag of a sinusoidal surface.

  19. Biological Matrix Effects in Quantitative Tandem Mass Spectrometry-Based Analytical Methods: Advancing Biomonitoring

    PubMed Central

    Panuwet, Parinya; Hunter, Ronald E.; D’Souza, Priya E.; Chen, Xianyu; Radford, Samantha A.; Cohen, Jordan R.; Marder, M. Elizabeth; Kartavenka, Kostya; Ryan, P. Barry; Barr, Dana Boyd

    2015-01-01

    The ability to quantify levels of target analytes in biological samples accurately and precisely, in biomonitoring, involves the use of highly sensitive and selective instrumentation such as tandem mass spectrometers and a thorough understanding of highly variable matrix effects. Typically, matrix effects are caused by co-eluting matrix components that alter the ionization of target analytes as well as the chromatographic response of target analytes, leading to reduced or increased sensitivity of the analysis. Thus, before the desired accuracy and precision standards of laboratory data are achieved, these effects must be characterized and controlled. Here we present our review and observations of matrix effects encountered during the validation and implementation of tandem mass spectrometry-based analytical methods. We also provide systematic, comprehensive laboratory strategies needed to control challenges posed by matrix effects in order to ensure delivery of the most accurate data for biomonitoring studies assessing exposure to environmental toxicants. PMID:25562585

  20. Combining global and local approximations

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.

    1991-01-01

    A method based on a linear approximation to a scaling factor, designated the 'global-local approximation' (GLA) method, is presented and shown capable of extending the range of usefulness of derivative-based approximations to a more refined model. The GLA approach refines the conventional scaling factor by means of a linearly varying, rather than constant, scaling factor. The capabilities of the method are demonstrated for a simple beam example with a crude and more refined FEM model.

  1. Combining global and local approximations

    SciTech Connect

    Haftka, R.T. )

    1991-09-01

    A method based on a linear approximation to a scaling factor, designated the 'global-local approximation' (GLA) method, is presented and shown capable of extending the range of usefulness of derivative-based approximations to a more refined model. The GLA approach refines the conventional scaling factor by means of a linearly varying, rather than constant, scaling factor. The capabilities of the method are demonstrated for a simple beam example with a crude and more refined FEM model. 6 refs.

  2. Effect of pixel resolution on texture features of breast masses in mammograms.

    PubMed

    Rangayyan, Rangaraj M; Nguyen, Thanh M; Ayres, Fábio J; Nandi, Asoke K

    2010-10-01

    The effect of pixel resolution on texture features computed using the gray-level co-occurrence matrix (GLCM) was analyzed in the task of discriminating mammographic breast lesions as benign masses or malignant tumors. Regions in mammograms related to 111 breast masses, including 65 benign masses and 46 malignant tumors, were analyzed at pixel sizes of 50, 100, 200, 400, 600, 800, and 1,000 μm. Classification experiments using each texture feature individually provided accuracy, in terms of the area under the receiver operating characteristics curve (AUC), of up to 0.72. Using the Bayesian classifier and the leave-one-out method, the AUC obtained was in the range 0.73 to 0.75 for the pixel resolutions of 200 to 800 μm, with 14 GLCM-based texture features using adaptive ribbons of pixels around the boundaries of the masses. Texture features computed using the ribbons resulted in higher classification accuracy than the same features computed using the corresponding regions within the mass boundaries. The t test was applied to AUC values obtained using 100 repetitions of random splitting of the texture features from the ribbons of masses into the training and testing sets. The texture features computed with the pixel size of 200 μm provided the highest average AUC with statistically highly significant differences as compared to all of the other pixel sizes tested, except 100 μm.

  3. COMPARISON OF HECTOSPEC VIRIAL MASSES WITH SUNYAEV-ZEL'DOVICH EFFECT MEASUREMENTS

    SciTech Connect

    Rines, Kenneth; Geller, Margaret J.; Diaferio, Antonaldo

    2010-06-01

    We present the first comparison of virial masses of galaxy clusters with their Sunyaev-Zel'dovich Effect (SZE) signals. We study 15 clusters from the Hectospec Cluster Survey (HeCS) with MMT/Hectospec spectroscopy and published SZE signals. We measure virial masses of these clusters from an average of 90 member redshifts inside the radius r {sub 100}. The virial masses of the clusters are strongly correlated with their SZE signals (at the 99% confidence level using a Spearman rank-sum test). This correlation suggests that Y {sub SZ} can be used as a measure of virial mass. Simulations predict a power-law scaling of Y {sub SZ} {proportional_to} M {sup {alpha}} {sub 200} with {alpha} {approx} 1.6. Observationally, we find {alpha} = 1.11 {+-} 0.16, significantly shallower (given the formal uncertainty) than the theoretical prediction. However, the selection function of our sample is unknown and a bias against less massive clusters cannot be excluded (such a selection bias could artificially flatten the slope). Moreover, our sample indicates that the relation between velocity dispersion (or virial mass estimate) and SZE signal has significant intrinsic scatter, comparable to the range of our current sample. More detailed studies of scaling relations are therefore needed to derive a robust determination of the relation between cluster mass and SZE.

  4. Body mass index effects sperm quality: a retrospective study in Northern China.

    PubMed

    Wang, En-Yin; Huang, Yan; Du, Qing-Yun; Yao, Gui-Dong; Sun, Ying-Pu

    2017-01-01

    Excess weight and obesity have become a serious problem in adult men of reproductive age throughout the world. The purpose of this retrospective study was to assess the relationships between body mass index and sperm quality in subfertile couples in a Chinese Han population. Sperm analyses were performed and demographic data collected from 2384 male partners in subfertile couples who visited a reproductive medical center for treatment and preconception counseling. The subjects were classified into four groups according to their body mass index: underweight, normal, overweight, and obese. Of these subjects, 918 (38.3%) had a body mass index of >25.0 kg m-0 2 . No significant differences were found between the four groups with respect to age, occupation, level of education, smoking status, alcohol use, duration of sexual abstinence, or the collection time of year for sperm. The results clearly indicated lower sperm quality (total sperm count, sperm concentration, motile sperm, relative amounts of type A motility, and progressive motility sperm [A + B]) in overweight and obese participants than in those with normal body mass index. Normal sperm morphology and sperm volume showed no clear difference between the four groups. This study indicates that body mass index has a negative effect on sperm quality in men of subfertile couples in a Northern Chinese population. Further study should be performed to investigate the relationship between body mass index and sperm quality in a larger population.

  5. The effects of polaronic mass and conduction band non-parabolicity on a donor binding energy under the simultaneous effect of pressure and temperature basing on the numerical FEM in a spherical quantum dot

    NASA Astrophysics Data System (ADS)

    Sali, A.; Kharbach, J.; Rezzouk, A.; Ouazzani Jamil, M.

    2017-04-01

    Basing on the numerical Finite Element Method (FEM), we have investigated the influences of polaronic mass and conduction band non-parabolicity on the binding energy of the ground state of an on-center hydrogenic donor impurity in a spherical GaAs / Ga1 - x AlxAs quantum dot structure. The calculations have been made with a realistic potential barrier height in the framework of the effective mass approximation including the combined effect of hydrostatic pressure and temperature. The donor binding energy is computed as a function of dot size, Al concentration x , hydrostatic pressure and temperature both in the absence and presence of polaronic mass and conduction band non-parabolicity effects. We have taken into account the electronic effective mass, dielectric constant, and conduction band offset between the dot and barriers varying with pressure and temperature. It has been found that the binding energy is strongly affected by the effect of polaronic mass and conduction band non-parabolicity for narrow quantum dot and large Al concentration x. The results show again that the donor binding energy increases linearly with the pressure in direct gap regime and its variation is larger for narrower dots only and drops slightly with the temperature. A good agreement is obtained with the existing literature values.

  6. Phenomenological applications of rational approximants

    NASA Astrophysics Data System (ADS)

    Gonzàlez-Solís, Sergi; Masjuan, Pere

    2016-08-01

    We illustrate the powerfulness of Padé approximants (PAs) as a summation method and explore one of their extensions, the so-called quadratic approximant (QAs), to access both space- and (low-energy) time-like (TL) regions. As an introductory and pedagogical exercise, the function 1 zln(1 + z) is approximated by both kind of approximants. Then, PAs are applied to predict pseudoscalar meson Dalitz decays and to extract Vub from the semileptonic B → πℓνℓ decays. Finally, the π vector form factor in the TL region is explored using QAs.

  7. APPROXIMATING LIGHT RAYS IN THE SCHWARZSCHILD FIELD

    SciTech Connect

    Semerák, O.

    2015-02-10

    A short formula is suggested that approximates photon trajectories in the Schwarzschild field better than other simple prescriptions from the literature. We compare it with various ''low-order competitors'', namely, with those following from exact formulas for small M, with one of the results based on pseudo-Newtonian potentials, with a suitably adjusted hyperbola, and with the effective and often employed approximation by Beloborodov. Our main concern is the shape of the photon trajectories at finite radii, yet asymptotic behavior is also discussed, important for lensing. An example is attached indicating that the newly suggested approximation is usable—and very accurate—for practically solving the ray-deflection exercise.

  8. Mass effect on the lithium abundance evolution of open clusters: Hyades, NGC 752, and M 67

    NASA Astrophysics Data System (ADS)

    Castro, M.; Duarte, T.; Pace, G.; do Nascimento, J.-D.

    2016-05-01

    Lithium abundances in open clusters provide an effective way of probing mixing processes in the interior of solar-type stars and convection is not the only mixing mechanism at work. To understand which mixing mechanisms are occurring in low-mass stars, we test non-standard models, which were calibrated using the Sun, with observations of three open clusters of different ages, the Hyades, NGC 752, and M 67. We collected all available data, and for the open cluster NGC 752, we redetermine the equivalent widths and the lithium abundances. Two sets of evolutionary models were computed, one grid of only standard models with microscopic diffusion and one grid with rotation-induced mixing, at metallicity [Fe/H] = 0.13, 0.0, and 0.01 dex, respectively, using the Toulouse-Geneva evolution code. We compare observations with models in a color-magnitude diagram for each cluster to infer a cluster age and a stellar mass for each cluster member. Then, for each cluster we analyze the lithium abundance of each star as a function of mass. The data for the open clusters Hyades, NGC 752, and M 67, are compatible with lithium abundance being a function of both age and mass for stars in these clusters. Our models with meridional circulation qualitatively reproduce the general trend of lithium abundance evolution as a function of stellar mass in all three clusters. This study points out the importance of mass dependence in the evolution of lithium abundance as a function of age. Comparison between models with and without rotation-induced mixing shows that the inclusion of meridional circulation is essential to account for lithium depletion in low-mass stars. However, our results suggest that other mechanisms should be included to explain the Li-dip and the lithium dispersion in low-mass stars.

  9. Effects of Parental Status on Male Body Mass in the Monogamous, Biparental California Mouse

    PubMed Central

    Saltzman, Wendy; Harris, Breanna N.; de Jong, Trynke R.; Nguyen, Pauline P.; Cho, Julia T.; Hernandez, Mindy; Perea-Rodriguez, Juan P.

    2014-01-01

    Studies of biparental mammals demonstrate that males may undergo systematic changes in body mass as a consequence of changes in reproductive status; however, these studies typically have not teased apart effects of specific social and reproductive factors, such as cohabitation with a female per se, cohabitation with a breeding female specifically, and engagement in paternal care. We aimed to determine whether California mouse (Peromyscus californicus) fathers undergo systematic changes in body mass and if so, which specific social/reproductive factor(s) might contribute to these changes. We compared mean weekly body masses over a 5-week period in 1) males housed with another male vs. males housed with a non-reproductive (tubally ligated) female; 2) males housed with a tubally ligated female vs. males housed with a female that was undergoing her first pregnancy; and 3) experienced fathers housed with vs. without pups during their mate’s subsequent pregnancy. Body mass did not differ between males housed with another male and those housed with a non-reproductive female; however, males housed with a non-reproductive female were significantly heavier than those housed with a primiparous female. Among experienced fathers, those housed with pups from their previous litter underwent significant increases in body mass across their mates’ pregnancy, whereas fathers housed without pups did not. These results suggest that male body mass is reduced by cohabitation with a breeding (pregnant) female, but not by cohabitation with a non-reproductive female, and that increases in body mass across the mate’s pregnancy are associated with concurrent care of offspring rather than cohabitation with a pregnant female. Additional work is needed to determine the mechanisms and functional significance, if any, of these changes in male body mass with reproductive condition. PMID:26005292

  10. Investigating the effect of mixing ratio on molar mass distributions of synthetic polymers determined by MALDI-TOF mass spectrometry using design of experiments.

    PubMed

    Brandt, Heike; Ehmann, Thomas; Otto, Matthias

    2010-11-01

    It is well known that the mixing ratio affects the molar mass distribution of synthetic polymers determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Surely, the molar mixing ratio determines whether a mass spectrum will be obtained or not. However, depending on the mass range, several effects such as multimer formation occur, which might be a source of errors in molar mass distribution calculations. In this study, the effect of mixing ratio was investigated for several synthetic polymers, including polystyrene (PS), poly(dimethylsiloxane) (PDMS), poly(ethylene glycol) (PEG), and poly(methyl methacrylate) (PMMA) using statistical designs of experiments. The 2(3) full factorial design was found to be suitable in the study of more than 1000 samples. The obtained MALDI mass spectra as well as the ANOVA statistics show that the mixing ratio affects the molar mass distribution. The optimal mixing ratio for a defined synthetic polymer depends on the studied combination (matrix, cationization reagent, solvent).

  11. Effects of body mass-based squat training in adolescent boys.

    PubMed

    Takai, Yohei; Fukunaga, Yuko; Fujita, Eiji; Mori, Hisashi; Yoshimoto, Takaya; Yamamoto, Masayoshi; Kanehisa, Hiroaki

    2013-01-01

    The purpose of this study was to determine the effects of body mass-based squat training on body composition, muscular strength and motor fitness in adolescent boys. Ninety-four boys (13.7 ± 0.6 yrs, 1.60 ± 0.09 m, 50.2 ± 9.6 kg) participated in this study and were randomly assigned to training (n = 36) or control (n = 58) groups. The training group completed body mass-based squat exercise training (100 reps/day, 45 sessions) for 8 weeks. Body composition and muscle thickness at the thigh anterior were determined by a bioelectrical impedance analyzer and ultrasound apparatus, respectively. Maximal voluntary knee extension strength and sprint velocity were measured using static myometer and non-motorized treadmill, respectively. Jump height was calculated using flight time during jumping, which was measured by a matswitch system. The 8-wk body mass-based squat training significantly decreased percent body fat (4.2%) and significantly increased the lean body mass (2.7%), muscle thickness (3.2%) and strength of the knee extensors (16.0%), compared to control group. The vertical jump height was also significantly improved by 3.4% through the intervention. The current results indicate that body mass-based squat training for 8 weeks is a feasible and effective method for improving body composition and muscular strength of the knee extensors, and jump performance in adolescent boys. Key pointsAn 8-wk body mass-based squat exercise training decreased percent body fat in adolescent boys.The body mass-based squat exercise training increased muscle size and strength capability of the knee extensors in adolescent boys.The squat exercise training improves vertical jump height in adolescent boys.

  12. Effects of Body Mass-Based Squat Training in Adolescent Boys

    PubMed Central

    Takai, Yohei; Fukunaga, Yuko; Fujita, Eiji; Mori, Hisashi; Yoshimoto, Takaya; Yamamoto, Masayoshi; Kanehisa, Hiroaki

    2013-01-01

    The purpose of this study was to determine the effects of body mass-based squat training on body composition, muscular strength and motor fitness in adolescent boys. Ninety-four boys (13.7 ± 0.6 yrs, 1.60 ± 0.09 m, 50.2 ± 9.6 kg) participated in this study and were randomly assigned to training (n = 36) or control (n = 58) groups. The training group completed body mass-based squat exercise training (100 reps/day, 45 sessions) for 8 weeks. Body composition and muscle thickness at the thigh anterior were determined by a bioelectrical impedance analyzer and ultrasound apparatus, respectively. Maximal voluntary knee extension strength and sprint velocity were measured using static myometer and non-motorized treadmill, respectively. Jump height was calculated using flight time during jumping, which was measured by a matswitch system. The 8-wk body mass-based squat training significantly decreased percent body fat (4.2%) and significantly increased the lean body mass (2.7%), muscle thickness (3.2%) and strength of the knee extensors (16.0%), compared to control group. The vertical jump height was also significantly improved by 3.4% through the intervention. The current results indicate that body mass-based squat training for 8 weeks is a feasible and effective method for improving body composition and muscular strength of the knee extensors, and jump performance in adolescent boys. Key points An 8-wk body mass-based squat exercise training decreased percent body fat in adolescent boys. The body mass-based squat exercise training increased muscle size and strength capability of the knee extensors in adolescent boys. The squat exercise training improves vertical jump height in adolescent boys. PMID:24149726

  13. Communication: An effective linear-scaling atomic-orbital reformulation of the random-phase approximation using a contracted double-Laplace transformation

    SciTech Connect

    Schurkus, Henry F.; Ochsenfeld, Christian

    2016-01-21

    An atomic-orbital (AO) reformulation of the random-phase approximation (RPA) correlation energy is presented allowing to reduce the steep computational scaling to linear, so that large systems can be studied on simple desktop computers with fully numerically controlled accuracy. Our AO-RPA formulation introduces a contracted double-Laplace transform and employs the overlap-metric resolution-of-the-identity. First timings of our pilot code illustrate the reduced scaling with systems comprising up to 1262 atoms and 10 090 basis functions. .

  14. Gastrointestinal absorption of neptunium in primates: effect of ingested mass, diet, and fasting

    SciTech Connect

    Metivier, H.; Bourges, J.; Fritsch, P.; Nolibe, D.; Masse, R.

    1986-05-01

    Absorption and retention of neptunium were determined in baboons after intragastric administration of neptunium nitrate solutions at pH 1. The effects of mass, diet, and fasting on absorption were studied. At higher mass levels (400-800 micrograms Np/kg), absorption was about 1%; at lower mass intakes (0.0009-0.005 micrograms Np/kg), absorption was reduced by 10- to 20-fold. The addition of an oxidizing agent (Fe3+) increased gastrointestinal absorption and supported the hypothesis of a reduction of Np (V) when loss masses were ingested. Diets depleted of or enriched with hydroxy acids did not modify retention of neptunium but increased urinary excretion with increasing hydroxy acid content. The diet enriched with milk components reduced absorption by a factor of 5. Potatoes increased absorption and retention by a factor 5, not necessarily due to the effect of phytate. Fasting for 12 or 24 h increased retention and absorption by factors of about 3 and 10, respectively. Data obtained in baboons when low masses of neptunium were administered suggest that the f1 factor used by ICRP should be decreased. However, fasting as encountered in certain nutritional habits is a factor to be taken into consideration.

  15. Structural design of a double-layered porous hydrogel for effective mass transport.

    PubMed

    Kim, Hyejeong; Kim, Hyeon Jeong; Huh, Hyung Kyu; Hwang, Hyung Ju; Lee, Sang Joon

    2015-03-01

    Mass transport in porous materials is universal in nature, and its worth attracts great attention in many engineering applications. Plant leaves, which work as natural hydraulic pumps for water uptake, have evolved to have the morphological structure for fast water transport to compensate large water loss by leaf transpiration. In this study, we tried to deduce the advantageous structural features of plant leaves for practical applications. Inspired by the tissue organization of the hydraulic pathways in plant leaves, analogous double-layered porous models were fabricated using agarose hydrogel. Solute transport through the hydrogel models with different thickness ratios of the two layers was experimentally observed. In addition, numerical simulation and theoretical analysis were carried out with varying porosity and thickness ratio to investigate the effect of structural factors on mass transport ability. A simple parametric study was also conducted to examine unveiled relations between structural factors. As a result, the porosity and thickness ratio of the two layers are found to govern the mass transport ability in double-layered porous materials. The hydrogel models with widely dispersed pores at a fixed porosity, i.e., close to a homogeneously porous structure, are mostly turned out to exhibit fast mass transport. The present results would provide a new framework for fundamental design of various porous structures for effective mass transport.

  16. Effect of electric fields on mass transfer to droplets. Final report

    SciTech Connect

    Carleson, T.E.; Budwig, R.

    1994-02-01

    During the six year funding period, the effects of a direct and alternating field upon single drop hydrodynamics and mass transfer were evaluated both experimentally and theoretically. Direct current field effects upon drop size, velocity and mass transfer rates were also observed for multiple drops formed in a three stage sieve tray column. Drop size, velocity, and mass transfer rates were measured experimentally and compared to simple models for direct current electric fields. Agreement between theory and experiment was found for drop charge, size, and velocity. Drop mass transfer coefficients were substantially larger than theoretical predictions while extraction efficiencies were moderately higher. Drop distortion and oscillation were observed and are thought to result in the experimentally observed higher values. For alternating current fields, drop flow streamlines and oscillations were measured and found to compare well with predictions from a solved mathematical model. In addition, equipment was constructed to determine mass transfer rates to oscillating drops. Concentration profiles in still and oscillating drops were measured and qualitatively compared to theoretical predictions.

  17. Assessment of molecular effects on neutrino mass measurements from tritium β decay

    NASA Astrophysics Data System (ADS)

    Bodine, L. I.; Parno, D. Â. S.; Robertson, R. Â. G. Â. H.

    2015-03-01

    The β decay of molecular tritium currently provides the highest sensitivity in laboratory-based neutrino mass measurements. The upcoming Karlsruhe Tritium Neutrino (KATRIN) experiment will improve the sensitivity to 0.2 eV, making a percent-level quantitative understanding of molecular effects essential. The modern theoretical calculations available for neutrino mass experiments agree with spectroscopic data. Moreover, when neutrino mass experiments performed in the 1980s with gaseous tritium are reevaluated using these modern calculations, the extracted neutrino mass squared values are consistent with zero instead of being significantly negative. However, the calculated molecular final-state branching ratios are in conflict with dissociation experiments performed in the 1950s. We reexamine the theory of the final-state spectrum of molecular-tritium decay and its effect on the determination of the neutrino mass, with an emphasis on the role of the vibrational- and rotational-state distribution in the ground electronic state. General features can be reproduced quantitatively from considerations of kinematics and zero-point motion. We summarize the status of validation efforts and suggest means for resolving the apparent discrepancy in dissociation rates.

  18. Effect of endurance and resistance training on regional fat mass and lipid profile.

    PubMed

    Perez-Gomez, Jorge; Vicente-Rodríguez, Germán; Ara Royo, Ignacio; Martínez-Redondo, Diana; Puzo Foncillas, José; Moreno, Luis A; Díez-Sánchez, Carmen; Casajús, José A

    2013-01-01

    The purpose of this study was to investigate the effect of 10-week of endurance training or resistance training on regional and abdominal fat, and in the lipid profile, examining the associations among the changes in body composition, weight, waist circumference and lipid profile. Body composition, waist circumference and lipid profile were analyzed in 26 volunteers healthy young men (age 22.5 ± 1.9 yr), randomly assigned to: endurance group (EG), resistance group (RG) or control group (CG). The EG significantly decreased after training the body weight, body mass index, total body fat and percentage of fat, fat and percentage of fat at the trunk and at the abdominal region and High-Density Lipoprotein. The RG significantly increased total lean mass and decreased total cholesterol, High-Density and Low- Density Lipoprotein. Close relationship were found among changes in weight, total lean mass, regional fat mass, waist circumference and changes in lipid profile (all p < 0.05). We concluded that 10-week of endurance training decreased abdominal and body fat in young men, while 10-week of resistance training increased total lean mass. These types of training had also effects on lipid profile that seem to be to some extent associated to changes in body composition; however it requires additional investigation.

  19. PM CONSTITUENT ROLES IN MASS ASSOCIATIONS WITH HEALTH EFFECTS IN PHILADELPHIA, PA

    EPA Science Inventory

    An environmental and health database was constructed for Philadelphia, PA for the period 1992-1995 in order to assess the importance of PM components in mass associations with adverse health effects. PM data were collected by Harvard University for the U.S. EPA. Daily measureme...

  20. Application of Berry's Phase to the Effective Mass of Bloch Electrons

    ERIC Educational Resources Information Center

    Rave, M. J.; Kerr, W. C.

    2010-01-01

    Berry's phase, although well known since 1984, has received little attention among textbook authors of solid state physics. We attempt to address this lack by showing how the presence of the Berry's phase significantly changes a standard concept (effective mass) found in most solid state texts. Specifically, we show that the presence of a non-zero…

  1. Barcelona-Catania-Paris-Madrid functional with a realistic effective mass

    NASA Astrophysics Data System (ADS)

    Baldo, M.; Robledo, L. M.; Schuck, P.; Viñas, X.

    2017-01-01

    The Barcelona-Catania-Paris-Madrid functional recently proposed to describe nuclear structure properties of finite nuclei is generalized as to include a realistic effective mass. The resulting functional is as good as the previous one in describing binding energies, radii, deformation properties, etc. In addition, the description of giant quadrupole resonance energies is greatly improved.

  2. Gravitational waves and mass ejecta from binary neutron star mergers: Effect of the stars' rotation

    NASA Astrophysics Data System (ADS)

    Dietrich, Tim; Bernuzzi, Sebastiano; Ujevic, Maximiliano; Tichy, Wolfgang

    2017-02-01

    We present new (3 +1 )-dimensional numerical relativity simulations of the binary neutron star (BNS) mergers that take into account the NS spins. We consider different spin configurations, aligned or antialigned to the orbital angular momentum, for equal- and unequal-mass BNSs and for two equations of state. All the simulations employ quasiequilibrium circular initial data in the constant rotational velocity approach, i.e. they are consistent with the Einstein equations and in hydrodynamical equilibrium. We study the NS rotation effect on the energetics, the gravitational waves (GWs) and on the possible electromagnetic (EM) emission associated to dynamical mass ejecta. For dimensionless spin magnitudes of χ ˜0.1 we find that both spin-orbit interactions and spin-induced quadrupole deformations affect the late-inspiral merger dynamics. The latter is, however, dominated by finite-size effects. Spin (tidal) effects contribute to GW phase differences up to ˜5 (20) radians accumulated during the last eight orbits to merger. Similarly, after merger the collapse time of the remnant and the GW spectrogram are affected by the NSs rotation. Spin effects in dynamical ejecta are clearly observed in unequal-mass systems in which mass ejection originates from the tidal tail of the companion. Consequently kilonovae and other EM counterparts are affected by spins. We find that spin aligned to the orbital angular momentum leads to brighter EM counterparts than antialigned spin with luminosities up to a factor of 2 higher.

  3. Introducing the Notion of Bare and Effective Mass via Newton's Second Law of Motion

    ERIC Educational Resources Information Center

    Pinto, Marcus Benghi

    2007-01-01

    The concepts of bare and effective mass are widely used within modern physics. Their meaning is discussed in advanced undergraduate and graduate courses such as solid state physics, nuclear physics and quantum field theory. Here I discuss how these concepts may be introduced together with the discussion of Newton's second law of motion. The…

  4. Supersymmetry and coherent states for the displacement-operator-derived effective mass system

    NASA Astrophysics Data System (ADS)

    Vubangsi, M.; Tchoffo, M.; Fai, L. C.; Pis'mak, Yu. M.

    2015-01-01

    Applying the supersymmetric quantum mechanics approach, we derive shape-invariant trigonometric potentials for the displacement-operator-derived effective mass Hamiltonian. By linearizing the algebra resulting from SUSY-QM factorization of the constructed systems, their coherent states are defined and shown to be exponentially dependent on a function of the quantum numbers.

  5. A Bioecological Model of Mass Trauma: Individual, Community, and Societal Effects

    ERIC Educational Resources Information Center

    Hoffman, Mary Ann; Kruczek, Theresa

    2011-01-01

    Biopsychosocial consequences of catastrophic events create an ongoing need for research that examines the effects of mass traumas, developing psychosocial interventions, and advocacy to address the needs of affected individuals, systems, and communities. Because it is neither possible nor necessarily desirable to intervene with all touched by…

  6. Simulation of brain mass effect with an arbitrary Lagrangian and Eulerian FEM.

    PubMed

    Chen, Yasheng; Ji, Songbai; Wu, Xunlei; An, Hongyu; Zhu, Hongtu; Shen, Dinggang; Lin, Weili

    2010-01-01

    Estimation of intracranial stress distribution caused by mass effect is critical to the management of hemorrhagic stroke or brain tumor patients, who may suffer severe secondary brain injury from brain tissue compression. Coupling with physiological parameters that are readily available using MRI, eg, tissue perfusion, a non-invasive, quantitative and regional estimation of intracranial stress distribution could offer a better understanding of brain tissue's reaction under mass effect. A quantitative and sound measurement serving this particular purpose remains elusive due to multiple challenges associated with biomechanical modeling of the brain. One such challenge for the conventional Lagrangian frame based finite element method (LFEM) is that the mesh distortion resulted from the expansion of the mass effects can terminate the simulation prematurely before the desired pressure loading is achieved. In this work, we adopted an arbitrary Lagrangian and Eulerian FEM method (ALEF) with explicit dynamic solutions to simulate the expansion of brain mass effects caused by a pressure loading. This approach consists of three phases: 1) a Lagrangian phase to deform mesh like LFEM, 2) a mesh smoothing phase to reduce mesh distortion, and 3) an Eulerian phase to map the state variables from the old mesh to the smoothed one. In 2D simulations with simulated geometries, this approach is able to model substantially larger deformations compared to LFEM. We further applied this approach to a simulation with 3D real brain geometry to quantify the distribution of von Mises stress within the brain.

  7. Waggle dance effect: dancing in autumn reduces the mass loss of a honeybee colony.

    PubMed

    Okada, Ryuichi; Akamatsu, Tadaaki; Iwata, Kanako; Ikeno, Hidetoshi; Kimura, Toshifumi; Ohashi, Mizue; Aonuma, Hitoshi; Ito, Etsuro

    2012-05-15

    A honeybee informs her nestmates about the location of a profitable food source that she has visited by means of a waggle dance: a round dance and a figure-of-eight dance for a short- and long-distance food source, respectively. Consequently, the colony achieves an effective collection of food. However, it is still not fully understood how much effect the dance behavior has on the food collection, because most of the relevant experiments have been performed only in limited locations under limited experimental conditions. Here, we examined the efficacy of the waggle dances by physically preventing bees from dancing and then analyzing the changes in daily mass of the hive as an index of daily food collection. To eliminate place- and year-specific effects, the experiments were performed under fully natural conditions in three different cities in Japan from mid September to early October in three different years. Because the experiments were performed in autumn, all six of the tested colonies lost mass on most of the experimental days. When the dance was prevented, the daily reduction in mass change was greater than when the dance was allowed, i.e. the dance inhibited the reduction of the hive mass. This indicates that dance is effective for food collection. Furthermore, clear inhibition was observed on the first two days of the experiments; after that, inhibition was no longer evident. This result suggests that the bee colony adapted to the new environment.

  8. Influence of interface potential on the effective mass in Ge nanostructures

    SciTech Connect

    Barbagiovanni, E. G. Cosentino, S.; Terrasi, A.; Mirabella, S.; Lockwood, D. J.; Costa Filho, R. N.

    2015-04-21

    The role of the interface potential on the effective mass of charge carriers is elucidated in this work. We develop a new theoretical formalism using a spatially dependent effective mass that is related to the magnitude of the interface potential. Using this formalism, we studied Ge quantum dots (QDs) formed by plasma enhanced chemical vapour deposition (PECVD) and co-sputtering (sputter). These samples allowed us to isolate important consequences arising from differences in the interface potential. We found that for a higher interface potential, as in the case of PECVD QDs, there is a larger reduction in the effective mass, which increases the confinement energy with respect to the sputter sample. We further understood the action of O interface states by comparing our results with Ge QDs grown by molecular beam epitaxy. It is found that the O states can suppress the influence of the interface potential. From our theoretical formalism, we determine the length scale over which the interface potential influences the effective mass.

  9. Effect of body mass and clothing on decomposition of pig carcasses.

    PubMed

    Matuszewski, Szymon; Konwerski, Szymon; Frątczak, Katarzyna; Szafałowicz, Michał

    2014-11-01

    Carcass mass and carcass clothing are factors of potential high forensic importance. In casework, corpses differ in mass and kind or extent of clothing; hence, a question arises whether methods for post-mortem interval estimation should take these differences into account. Unfortunately, effects of carcass mass and clothing on specific processes in decomposition and related entomological phenomena are unclear. In this article, simultaneous effects of these factors are analysed. The experiment followed a complete factorial block design with four levels of carcass mass (small carcasses 5-15 kg, medium carcasses 15.1-30 kg, medium/large carcasses 35-50 kg, large carcasses 55-70 kg) and two levels of carcass clothing (clothed and unclothed). Pig carcasses (N = 24) were grouped into three blocks, which were separated in time. Generally, carcass mass revealed significant and frequently large effects in almost all analyses, whereas carcass clothing had only minor influence on some phenomena related to the advanced decay. Carcass mass differently affected particular gross processes in decomposition. Putrefaction was more efficient in larger carcasses, which manifested itself through earlier onset and longer duration of bloating. On the other hand, active decay was less efficient in these carcasses, with relatively low average rate, resulting in slower mass loss and later onset of advanced decay. The average rate of active decay showed a significant, logarithmic increase with an increase in carcass mass, but only in these carcasses on which active decay was driven solely by larval blowflies. If a blowfly-driven active decay was followed by active decay driven by larval Necrodes littoralis (Coleoptera: Silphidae), which was regularly found in medium/large and large carcasses, the average rate showed only a slight and insignificant increase with an increase in carcass mass. These results indicate that lower efficiency of active decay in larger carcasses is a consequence

  10. Approximate analytic solutions to the NPDD: Short exposure approximations

    NASA Astrophysics Data System (ADS)

    Close, Ciara E.; Sheridan, John T.

    2014-04-01

    There have been many attempts to accurately describe the photochemical processes that take places in photopolymer materials. As the models have become more accurate, solving them has become more numerically intensive and more 'opaque'. Recent models incorporate the major photochemical reactions taking place as well as the diffusion effects resulting from the photo-polymerisation process, and have accurately described these processes in a number of different materials. It is our aim to develop accessible mathematical expressions which provide physical insights and simple quantitative predictions of practical value to material designers and users. In this paper, starting with the Non-Local Photo-Polymerisation Driven Diffusion (NPDD) model coupled integro-differential equations, we first simplify these equations and validate the accuracy of the resulting approximate model. This new set of governing equations are then used to produce accurate analytic solutions (polynomials) describing the evolution of the monomer and polymer concentrations, and the grating refractive index modulation, in the case of short low intensity sinusoidal exposures. The physical significance of the results and their consequences for holographic data storage (HDS) are then discussed.

  11. Seed-mass effects in four Mediterranean Quercus species (Fagaceae) growing in contrasting light environments.

    PubMed

    Quero, José Luis; Villar, Rafael; Marañón, Teodoro; Zamora, Regino; Poorter, Lourens

    2007-11-01

    Three hypotheses have been proposed to explain the functional relationship between seed mass and seedling performance: the reserve effect (larger seeds retain a larger proportion of reserves after germinating), the metabolic effect (seedlings from larger seeds have slower relative growth rates), and the seedling-size effect (larger seeds produce larger seedlings). We tested these hypotheses by growing four Mediterranean Quercus species under different light conditions (3, 27, and 100% of available radiation). We found evidence for two of the three hypotheses, but none of the four species complied with all three hypotheses at the same time. The reserve effect was not found in any species, the metabolic effect was found in three species (Q. ilex, Q. pyrenaica, and Q. suber), and the seedling-size effect in all species. Light availability significantly affected the relationships between seed size and seedling traits. For Q. ilex and Q. canariensis, a seedling-size effect was found under all three light conditions, but only under the lowest light (3%) for Q. suber and Q. pyrenaica. In all species, the correlation between seed mass and seedling mass increased with a decrease in light, suggesting that seedlings growing in low light depend more upon their seed reserves. A causal model integrates the three hypotheses, suggesting that larger seeds generally produced larger seedlings.

  12. Mass spectrometer with electron source for reducing space charge effects in sample beam

    DOEpatents

    Houk, Robert S.; Praphairaksit, Narong

    2003-10-14

    A mass spectrometer includes an ion source which generates a beam including positive ions, a sampling interface which extracts a portion of the beam from the ion source to form a sample beam that travels along a path and has an excess of positive ions over at least part of the path, thereby causing space charge effects to occur in the sample beam due to the excess of positive ions in the sample beam, an electron source which adds electrons to the sample beam to reduce space charge repulsion between the positive ions in the sample beam, thereby reducing the space charge effects in the sample beam and producing a sample beam having reduced space charge effects, and a mass analyzer which analyzes the sample beam having reduced space charge effects.

  13. Compressibility, zero sound, and effective mass of a fermionic dipolar gas at finite temperature

    SciTech Connect

    Kestner, J. P.; Das Sarma, S.

    2010-09-15

    The compressibility, zero-sound dispersion, and effective mass of a gas of fermionic dipolar molecules is calculated at finite temperature for one-, two-, and three-dimensional uniform systems, and in a multilayer quasi-two-dimensional system. The compressibility is nonmonotonic in the reduced temperature, T/T{sub F}, exhibiting a maximum at finite temperature. This effect might be visible in a quasi-low-dimensional experiment, providing a clear signature of the onset of many-body quantum degeneracy effects. The collective mode dispersion and effective mass show similar nontrivial temperature and density dependence. In a quasi-low-dimensional system, the zero-sound mode may propagate at experimentally attainable temperatures.

  14. Approximating Functions with Exponential Functions

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.

    2005-01-01

    The possibility of approximating a function with a linear combination of exponential functions of the form e[superscript x], e[superscript 2x], ... is considered as a parallel development to the notion of Taylor polynomials which approximate a function with a linear combination of power function terms. The sinusoidal functions sin "x" and cos "x"…

  15. THE EFFECTS ON SUPERNOVA SHOCK BREAKOUT AND SWIFT LIGHT CURVES DUE TO THE MASS OF THE HYDROGEN-RICH ENVELOPE

    SciTech Connect

    Bayless, Amanda J.; Roming, Peter W. A.; Even, Wesley; Frey, Lucille H.; Fryer, Chris L.; Young, Patrick A.

    2015-06-01

    Mass loss remains one of the primary uncertainties in stellar evolution. In the most massive stars, mass loss dictates the circumstellar medium and can significantly alter the fate of the star. Mass loss is caused by a variety of wind mechanisms and also through binary interactions. Supernovae (SNe) are excellent probes of this mass loss, both the circumstellar material and the reduced mass of the hydrogen-rich envelope. In this paper, we focus on the effects of reducing the hydrogen-envelope mass on the SN light curve, studying both the shock breakout and peak light-curve emission for a wide variety of mass-loss scenarios. Even though the trends of this mass loss will be masked somewhat by variations caused by different progenitors, explosion energies, and circumstellar media, these trends have significant effects on the SN light curves that should be seen in SN surveys. We conclude with a comparison of our results to a few key observations.

  16. Color-magnitude relations within globular cluster systems of giant elliptical galaxies: The effects of globular cluster mass loss and the stellar initial mass function

    SciTech Connect

    Goudfrooij, Paul; Kruijssen, J. M. Diederik E-mail: kruijssen@mpa-garching.mpg.de

    2014-01-01

    Several recent studies have provided evidence for a 'bottom-heavy' stellar initial mass function (IMF) in massive elliptical galaxies. Here we investigate the influence of the IMF shape on the recently discovered color-magnitude relation (CMR) among globular clusters (GCs) in such galaxies. To this end we use calculations of GC mass loss due to stellar and dynamical evolution to evaluate (1) the shapes of stellar mass functions in GCs after 12 Gyr of evolution as a function of current GC mass along with their effects on integrated-light colors and mass-to-light ratios, and (2) their impact on the effects of GC self-enrichment using the 2009 'reference' model of Bailin and Harris. As to the class of metal-poor GCs, we find the observed shape of the CMR (often referred to as the 'blue tilt') to be very well reproduced by Bailin and Harris's reference self-enrichment model once 12 Gyr of GC mass loss is taken into account. The influence of the IMF on this result is found to be insignificant. However, we find that the observed CMR among the class of metal-rich GCs (the 'red tilt') can only be adequately reproduced if the IMF was bottom-heavy (–3.0 ≲ α ≲ –2.3 in dN/dM∝M{sup α}), which causes the stellar mass function at subsolar masses to depend relatively strongly on GC mass. This constitutes additional evidence that the metal-rich stellar populations in giant elliptical galaxies were formed with a bottom-heavy IMF.

  17. Approximate circuits for increased reliability

    DOEpatents

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-12-22

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  18. Approximate circuits for increased reliability

    SciTech Connect

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-08-18

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  19. Effects of first-order correction to eikonal approximation in the analysis of {sup 9}Be({sup 15}C,{sup 14}C + n){sup 9}Be stripping reaction

    SciTech Connect

    Singh, M.; Kharab, R.; Singh, R. M.

    2015-09-15

    We have studied the effects of the first-order correction to the eikonal approximation for {sup 9}Be({sup 15}C,{sup 14}C + n){sup 9}Be stripping reactions at 54A MeV incident energy and have found that the correction term slightly changes the tail of the longitudinal momentum distribution of the core fragment.

  20. Evolution of Low-mass X-Ray Binaries: The Effect of Donor Evaporation

    NASA Astrophysics Data System (ADS)

    Jia, Kun; Li, Xiang-Dong

    2016-10-01

    Millisecond pulsars (MSPs) are thought to originate from low-mass X-ray binaries (LMXBs). The discovery of eclipsing radio MSPs, including redbacks and black widows, indicates that evaporation of the donor star by the MSP’s irradiation takes place during the LMXB evolution. In this work, we investigate the effect of donor evaporation on the secular evolution of LMXBs, considering different evaporation efficiencies and related angular momentum loss. We find that for widening LMXBs, the donor star leaves a less massive white dwarf than without evaporation; for contracting systems, evaporation can speed up the evolution, resulting in dynamically unstable mass transfer and possibly the formation of isolated MSPs.

  1. Effective Mass and g Factor of Four-Flux-Quanta Composite Fermions

    SciTech Connect

    Yeh, A.S.; Tsui, D.C.; Stormer, H.L.; Pfeiffer, L.N.; Baldwin, K.W.; West, K.W.; Stormer, H.L.; Tsui, D.C.

    1999-01-01

    We investigate the properties of composite fermions with four attached flux quanta through tilted-field experiments near Landau level filling factor {nu}=3/4 . The observed collapse of fractional quantum Hall gaps in the vicinity of this quarter-filling state can be comprehensively understood in terms of composite fermions with mass and spin. Remarkably, the effective mass and g factor of these four-flux-quanta composite fermions around {nu}=3/4 are very similar to those of two-flux-quanta composite fermions around {nu}=3/2 . {copyright} {ital 1999} {ital The American Physical Society }

  2. Cost-effectiveness of trachoma control measures: comparing targeted household treatment and mass treatment of children.

    PubMed Central

    Frick, K. D.; Lietman, T. M.; Holm, S. O.; Jha, H. C.; Chaudhary, J. S.; Bhatta, R. C.

    2001-01-01

    OBJECTIVE: The present study compares the cost-effectiveness of targeted household treatment and mass treatment of children in the most westerly part of Nepal. METHODS: Effectiveness was measured as the percentage point change in the prevalence of trachoma. Resource measures included personnel time required for treatment, transportation, the time that study subjects had to wait to receive treatment, and the quantity of azithromycin used. The costs of the programme were calculated from the perspectives of the public health programme sponsor, the study subjects, and the society as a whole. FINDINGS: Previous studies have indicated no statistically significant differences in effectiveness, and the present work showed no significant differences in total personnel and transportation costs per child aged 1-10 years, the total time that adults spent waiting, or the quantity of azithromycin per child. However, the mass treatment of children was slightly more effective and used less of each resource per child aged 1-10 years than the targeted treatment of households. CONCLUSION: From all perspectives, the mass treatment of children is at least as effective and no more expensive than targeted household treatment, notwithstanding the absence of statistically significant differences. Less expensive targeting methods are required in order to make targeted household treatment more cost-effective. PMID:11285663

  3. Effect of probiotics supplementation on bone mineral content and bone mass density.

    PubMed

    Parvaneh, Kolsoom; Jamaluddin, Rosita; Karimi, Golgis; Erfani, Reza

    2014-01-01

    A few studies in animals and a study in humans showed a positive effect of probiotic on bone metabolism and bone mass density. Most of the investigated bacteria were Lactobacillus and Bifidobacterium. The positive results of the probiotics were supported by the high content of dietary calcium and the high amounts of supplemented probiotics. Some of the principal mechanisms include (1) increasing mineral solubility due to production of short chain fatty acids; (2) producing phytase enzyme by bacteria to overcome the effect of mineral depressed by phytate; (3) reducing intestinal inflammation followed by increasing bone mass density; (4) hydrolysing glycoside bond food in the intestines by Lactobacillus and Bifidobacteria. These mechanisms lead to increase bioavailability of the minerals. In conclusion, probiotics showed potential effects on bone metabolism through different mechanisms with outstanding results in the animal model. The results also showed that postmenopausal women who suffered from low bone mass density are potential targets to consume probiotics for increasing mineral bioavailability including calcium and consequently increasing bone mass density.

  4. Conditions for circumstellar disc formation - II. Effects of initial cloud stability and mass accretion rate

    NASA Astrophysics Data System (ADS)

    Machida, Masahiro N.; Matsumoto, Tomoaki; Inutsuka, Shu-ichiro

    2016-12-01

    Disc formation in strongly magnetized cloud cores is investigated using a three-dimensional magnetohydrodynamic simulation with a focus on the effects of the initial cloud stability and the mass accretion rate. The initial cloud stability greatly alters the disc formation process even for prestellar clouds with the same mass-to-flux ratio. A high mass accretion rate on to the disc-forming region is realized in initially unstable clouds, and a large angular momentum is introduced into the circumstellar region in a short time. The region around the protostar has both a thin infalling envelope and a weak magnetic field, which both weaken the effect of magnetic braking. The growth of the rotation-supported disc is promoted in such unstable clouds. Conversely, clouds in an initially near-equilibrium state show lower accretion rates of mass and angular momentum. The angular momentum is transported to the outer envelope before protostar formation. After protostar formation, the circumstellar region has a thick infalling envelope and a strong magnetic field that effectively brakes the disc. As a result, disc formation is suppressed when the initial cloud is in a nearly stable state. The density distribution of the initial cloud also affects the disc formation process. Disc growth strongly depends on the initial conditions when the prestellar cloud has a uniform density, whereas there is no significant difference in the disc formation process in prestellar clouds with non-uniform densities.

  5. Effect of Probiotics Supplementation on Bone Mineral Content and Bone Mass Density

    PubMed Central

    Parvaneh, Kolsoom; Jamaluddin, Rosita; Karimi, Golgis; Erfani, Reza

    2014-01-01

    A few studies in animals and a study in humans showed a positive effect of probiotic on bone metabolism and bone mass density. Most of the investigated bacteria were Lactobacillus and Bifidobacterium . The positive results of the probiotics were supported by the high content of dietary calcium and the high amounts of supplemented probiotics. Some of the principal mechanisms include (1) increasing mineral solubility due to production of short chain fatty acids; (2) producing phytase enzyme by bacteria to overcome the effect of mineral depressed by phytate; (3) reducing intestinal inflammation followed by increasing bone mass density; (4) hydrolysing glycoside bond food in the intestines by Lactobacillus and Bifidobacteria. These mechanisms lead to increase bioavailability of the minerals. In conclusion, probiotics showed potential effects on bone metabolism through different mechanisms with outstanding results in the animal model. The results also showed that postmenopausal women who suffered from low bone mass density are potential targets to consume probiotics for increasing mineral bioavailability including calcium and consequently increasing bone mass density. PMID:24587733

  6. Effects of internal mass distribution and its isolation on the acoustic characteristics of a submerged hull

    NASA Astrophysics Data System (ADS)

    Peters, Herwig; Kinns, Roger; Kessissoglou, Nicole

    2014-03-01

    The primary aim of machinery isolation in marine vessels is to isolate structural vibration of the onboard machinery from the hull and to reduce far-field radiation of underwater noise. A substantial proportion of the total submarine mass is on flexible mounts that isolate supported masses from the hull at frequencies above the mounting system resonant frequency. This reduces the dynamically effective mass of the hull and affects the signature of the marine vessel due to propeller excitation. A fully coupled finite element/boundary element (FE/BE) model has been developed to investigate the effect of mass distribution and isolation in a submerged hull. The finite element model of the structure includes internal structures to represent the machinery and other flexibly mounted components. Changes in the radiated sound power demonstrate the effect of machinery isolation on the acoustic signature of the submerged hull due to the external propeller forces. Results are also presented to show how the arrangement of flexible mounts for a large internal structure can influence the radiation due to machinery forces.

  7. Limiting the effective mass and new physics parameters from 0 ν β β

    NASA Astrophysics Data System (ADS)

    Awasthi, Ram Lal; Dasgupta, Arnab; Mitra, Manimala

    2016-10-01

    In the light of the recent result from KamLAND-Zen (KLZ) and GERDA Phase-II, we update the bounds on the effective mass and the new physics parameters, relevant for neutrinoless double beta decay (0 ν β β ). In addition to the light Majorana neutrino exchange, we analyze beyond standard model contributions that arise in left-right symmetry and R-parity violating supersymmetry. The improved limit from KLZ constrains the effective mass of light neutrino exchange down to sub-eV mass regime 0.06 eV. Using the correlation between the 136Xe and 76 half-lives, we show that the KLZ limit individually rules out the positive claim of observation of 0 ν β β for all nuclear matrix element compilation. For the left-right symmetry and R-parity violating supersymmetry, the KLZ bound implies a factor of 2 improvement of the effective mass and the new physics parameters. The future ton scale experiments such as, nEXO will further constrain these models, in particular, will rule out standard as well as Type-II dominating LRSM inverted hierarchy scenario.

  8. Photon mass and quantum effects of the Aharonov-Bohm type

    SciTech Connect

    Spavieri, G.; Rodriguez, M.

    2007-05-15

    The magnetic field due to the photon rest mass m{sub ph} modifies the standard results of the Aharonov-Bohm effect for electrons, and of other recent quantum effects. For the effect involving a coherent superposition of beams of particles with opposite electromagnetic properties, by means of a tabletop experiment, the limit m{sub ph}{approx_equal}10{sup -51} g is achievable, improving by 6 orders of magnitude that derived by Boulware and Deser for the Aharonov-Bohm effect.

  9. The Effect of Mission Location on Mission Costs and Equivalent System Mass

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Levri, Julie A.; Jones, Harry W.

    2003-01-01

    Equivalent System Mass (ESM) is used by the Advanced Life Support (ALS) community to quantify mission costs of technologies for space applications (Drysdale et al, 1999, Levri et al, 2000). Mass is used as a cost measure because the mass of an object determines propulsion (acceleration) cost (i.e. amount of fuel needed), and costs relating to propulsion dominate mission cost. Mission location drives mission cost because acceleration is typically required to initiate and complete a change in location. Total mission costs may be reduced by minimizing the mass of materials that must be propelled to each distinct location. In order to minimize fuel requirements for missions beyond low-Earth orbit (LEO), the hardware and astronauts may not all go to the same location. For example, on a Lunar or Mars mission, some of the hardware or astronauts may stay in orbit while the rest of the hardware and astronauts descend to the planetary surface. In addition, there may be disposal of waste or used hardware at various mission locations to avoid propulsion of mass that is no longer needed in the mission. This paper demonstrates how using location factors in the calculation of ESM can account for the effects of various acceleration events and can improve the accuracy and value of the ESM metric to mission planners. Even a mission with one location can benefit from location factor analysis if the alternative technologies under consideration consume resources at different rates. For example, a mission that regenerates resources will have a relatively constant mass compared to one that uses consumables and vents/discards mass along the way. This paper shows examples of how location factors can affect ESM calculations and how the inclusion of location factors can change the relative value of technologies being considered for development.

  10. A simple modelling of mass diffusion effects on condensation with noncondensable gases for the CATHARE Code

    SciTech Connect

    Coste, P.; Bestion, D.

    1995-09-01

    This paper presents a simple modelling of mass diffusion effects on condensation. In presence of noncondensable gases, the mass diffusion near the interface is modelled using the heat and mass transfer analogy and requires normally an iterative procedure to calculate the interface temperature. Simplifications of the model and of the solution procedure are used without important degradation of the predictions. The model is assessed on experimental data for both film condensation in vertical tubes and direct contact condensation in horizontal tubes, including air-steam, Nitrogen-steam and Helium-steam data. It is implemented in the Cathare code, a french system code for nuclear reactor thermal hydraulics developed by CEA, EDF, and FRAMATOME.

  11. The Effect of Manipulating Subject Mass on Lower Extremity Torque Patterns During Locomotion

    NASA Technical Reports Server (NTRS)

    DeWitt, John K.; Cromwell, Ronita L.; Hagan, R. Donald

    2007-01-01

    During locomotion, humans adapt their motor patterns to maintain coordination despite changing conditions (Reisman et al., 2005). Bernstein (1967) proposed that in addition to the present state of a given joint, other factors, including limb inertia and velocity, must be taken into account to allow proper motion to occur. During locomotion with added mass counterbalanced using vertical suspension to maintain body weight, vertical ground reaction forces (GRF's) increase during walking but decrease during running, suggesting that adaptation may be velocity-specific (De Witt et al., 2006). It is not known, however, how lower extremity joint torques adapt to changes in inertial forces. The purpose of this investigation was to examine the effects of increasing body mass while maintaining body weight upon lower-limb joint torque during walking and running. We hypothesized that adaptations in joint torque patterns would occur with the addition of body mass.

  12. Studies on effective atomic numbers, electron densities and mass attenuation coefficients in Au alloys.

    PubMed

    Han, I; Demir, L

    2010-01-01

    The total mass attenuation coefficients (mu/rho) for pure Au and Au99Be1, Au88Ge12, Au95Zn5 alloys were measured at 59.5 and 88.0 keV photon energies. The samples were irradiated with 241Am and 109Cd radioactive point source using transmission arrangement. The gamma- rays were counted by a Si(Li) detector with resolution of 160 eV at 5.9 keV. Total atomic and electronic cross-sections (sigmat and sigmae), effective atomic and electron densities (Zeff and Nel) were determined using the obtained mass attenuation coefficients for investigated Au alloys. The theoretical mass attenuation coefficients of each alloy were estimated using mixture rule.

  13. 3D viscosity maps for Greenland and effect on GRACE mass balance estimates

    NASA Astrophysics Data System (ADS)

    van der Wal, Wouter; Xu, Zheng

    2016-04-01

    The GRACE satellite mission measures mass loss of the Greenland ice sheet. To correct for glacial isostatic adjustment numerical models are used. Although generally found to be a small signal, the full range of possible GIA models has not been explored yet. In particular, low viscosities due to a wet mantle and high temperatures due to the nearby Iceland hotspot could have a significant effect on GIA gravity rates. The goal of this study is to present a range of possible viscosity maps, and investigate the effect on GRACE mass balance estimates. Viscosity is derived using flow laws for olivine. Mantle temperature is computed from global seismology models, based on temperature derivatives for different mantle compositions. An indication for grain sizes is obtained by xenolith findings at a few locations. We also investigate the weakening effect of the presence of melt. To calculate gravity rates, we use a finite-element GIA model with the 3D viscosity maps and the ICE-5G loading history. GRACE mass balances for mascons in Greenland are derived with a least-squares inversion, using separate constraints for the inland and coastal areas in Greenland. Biases in the least-squares inversion are corrected using scale factors estimated from a simulation based on a surface mass balance model (Xu et al., submitted to The Cryosphere). Model results show enhanced gravity rates in the west and south of Greenland with 3D viscosity maps, compared to GIA models with 1D viscosity. The effect on regional mass balance is up to 5 Gt/year. Regional low viscosity can make present-day gravity rates sensitivity to ice thickness changes in the last decades. Therefore, an improved ice loading history for these time scales is needed.

  14. Successful endovascular management of brain aneurysms presenting with mass effect and cranial nerve palsy.

    PubMed

    Hassan, Tamer; Hamimi, Ahmed

    2013-01-01

    Aneurysms presented with mass effect are traditionally treated by surgical clipping to decompress their mass effect. The aim of this work is to discuss the efficiency of endovascular techniques in treating 47 patients with variable sizes of intracranial aneurysms presented with mass effect and/or cranial nerve palsy. There were 47 patients with 47 unruptured aneurysms. Group I includes 28 giant aneurysms; all are treated by parent vessel occlusion with or without intra-aneurysmal occlusion depending on anatomical locations. Group II includes 19 small and large aneurysms; all are treated by selective endosaccular occlusion with coils. Clinical presentations were ocular cranial nerve dysfunction (82.9%), optic nerve or chiasmatic dysfunction (21.2%), brain stem compression (8.5%), embolic (6%), epistaksis (4%), proptosis (2%), and bleeding per ear (2%). Out of 47 patients, symptoms were resolved in 31 cases (66%), improved in 10 cases (21%), and unchanged in six cases (13%). Out of 28 giant aneurysms, symptoms were resolved in 19 (68%), improved in four (14%), and unchanged in five (18%). Only four (14%) patients out of the 19 giant aneurysms with complete symptoms resolution showed significant mass reduction in MRI. Out of 19 non-giant aneurysm cases treated by selective endovascular occlusion with coils, symptoms were resolved in 12 cases (63%), improved in six (32%), and unchanged in one (5%). No complications from the treatment were observed. The longer the duration of symptoms before endovascular treatment is, the longer the duration till improvement or resolution postoperative in both groups. Recovery of aneurysm-induced mass effect occurs in most patients both after parent vessel occlusion and after selective coiling, and is comparable to results after surgical clipping. The improvement starts independent of aneurysmal shrinkage in postoperative MRI follow-ups. The arrest of pulsations and partial shrinkage within the aneurysms after endovascular treatment may

  15. Contrasting the Effects of Maternal and Behavioral Characteristics on Fawn Birth Mass in White-Tailed Deer

    PubMed Central

    2015-01-01

    Maternal care influences offspring quality and can improve a mother’s inclusive fitness. However, improved fitness may only occur when offspring quality (i.e., offspring birth mass) persists throughout life and enhances survival and/or reproductive success. Although maternal body mass, age, and social rank have been shown to influence offspring birth mass, the inter-dependence among these variables makes identifying causation problematic. We established that fawn birth mass was related to adult body mass for captive male and female white-tailed deer (Odocoileus virginianus), thus maternal care should improve offspring fitness. We then used path analysis to identify which maternal characteristic(s) most influenced fawn birth mass of captive female white-tailed deer. Maternal age, body mass and social rank had varying effects on fawn birth mass. Maternal body mass displayed the strongest direct effect on fawn birth mass, followed by maternal age and social rank. Maternal body mass had a greater effect on social rank than age. The direct path between social rank and fawn birth mass may indicate dominance as an underlying mechanism. Our results suggest that heavier mothers could use dominance to improve access to resources, resulting in increased fitness through production of heavier offspring. PMID:26288141

  16. Contrasting the Effects of Maternal and Behavioral Characteristics on Fawn Birth Mass in White-Tailed Deer.

    PubMed

    Michel, Eric S; Demarais, Stephen; Strickland, Bronson K; Belant, Jerrold L

    2015-01-01

    Maternal care influences offspring quality and can improve a mother's inclusive fitness. However, improved fitness may only occur when offspring quality (i.e., offspring birth mass) persists throughout life and enhances survival and/or reproductive success. Although maternal body mass, age, and social rank have been shown to influence offspring birth mass, the inter-dependence among these variables makes identifying causation problematic. We established that fawn birth mass was related to adult body mass for captive male and female white-tailed deer (Odocoileus virginianus), thus maternal care should improve offspring fitness. We then used path analysis to identify which maternal characteristic(s) most influenced fawn birth mass of captive female white-tailed deer. Maternal age, body mass and social rank had varying effects on fawn birth mass. Maternal body mass displayed the strongest direct effect on fawn birth mass, followed by maternal age and social rank. Maternal body mass had a greater effect on social rank than age. The direct path between social rank and fawn birth mass may indicate dominance as an underlying mechanism. Our results suggest that heavier mothers could use dominance to improve access to resources, resulting in increased fitness through production of heavier offspring.

  17. Mass transport in a porous microchannel for non-Newtonian fluid with electrokinetic effects.

    PubMed

    Mondal, Sourav; De, Sirshendu

    2013-03-01

    Quantification of mass transfer in porous microchannel is of paramount importance in several applications. Transport of neutral solute in presence of convective-diffusive EOF having non-Newtonian rheology, in a porous microchannel was presented in this article. The governing mass transfer equation coupled with velocity field was solved along with associated boundary conditions using a similarity solution method. An analytical solution of mass transfer coefficient and hence, Sherwood number were derived from first principles. The corresponding effects of assisting and opposing pressure-driven flow and EOF were also analyzed. The influence of wall permeation, double-layer thickness, rheology, etc. on the mass transfer was also investigated. Permeation at the wall enhanced the mass transfer coefficient more than five times compared to impervious conduit in case of pressure-driven flow assisting the EOF at higher values of κh. Shear thinning fluid exhibited more enhancement of Sherwood number in presence of permeation compared to shear thickening one. The phenomenon of stagnation was observed at a particular κh (∼2.5) in case of EOF opposing the pressure-driven flow. This study provided a direct quantification of transport of a neutral solute in case of transdermal drug delivery, transport of drugs from blood to target region, etc.

  18. Effect of the equation of state on the maximum mass of differentially rotating neutron stars

    NASA Astrophysics Data System (ADS)

    Studzińska, A. M.; Kucaba, M.; Gondek-Rosińska, D.; Villain, L.; Ansorg, M.

    2016-12-01

    Knowing the value of the maximum mass of a differentially rotating relativistic star is a key step towards the understanding of the signals to be expected from the merger of binary neutron stars, one of the most awaited alternative sources of gravitational waves after binary black holes. In this paper, we study the effects of differential rotation and of the equation of state on the maximum mass of rotating neutron stars modelled as relativistic polytropes with various adiabatic indices. Calculations are performed using a highly accurate numerical code, based on a multidomain spectral method. We thoroughly explore the parameter space and determine how the maximum mass depends on the stiffness, on the degree of differential rotation and on the maximal density, taking into account all the types of solutions that were proven to exist in a preceding paper. The highest increase with respect to the maximum mass for non-rotating stars with the same equation of state is reached for a moderate stiffness. With differential rotation, the maximum mass can even be 3-4 times higher than it is for static stars. This result may have important consequences for the gravitational wave signal from coalescing neutron star binaries or for some supernovae events.

  19. The effect of galaxy mass ratio on merger-driven starbursts

    NASA Astrophysics Data System (ADS)

    Cox, T. J.; Jonsson, Patrik; Somerville, Rachel S.; Primack, Joel R.; Dekel, Avishai

    2008-02-01

    We employ numerical simulations of galaxy mergers to explore the effect of galaxy mass ratio on merger-driven starbursts. Our numerical simulations include radiative cooling of gas, star formation, and stellar feedback to follow the interaction and merger of four disc galaxies. The galaxy models span a factor of 23 in total mass and are designed to be representative of typical galaxies in the local universe. We find that the merger-driven star formation is a strong function of merger mass ratio, with very little, if any, induced star formation for large mass ratio mergers. We define a burst efficiency that is useful to characterize the merger-driven star formation and test that it is insensitive to uncertainties in the feedback parametrization. In accord with previous work we find that the burst efficiency depends on the structure of the primary galaxy. In particular, the presence of a massive stellar bulge stabilizes the disc and suppresses merger-driven star formation for large mass ratio mergers. Direct, coplanar merging orbits produce the largest tidal disturbance and yield the most intense burst of star formation. Contrary to naive expectations, a more compact distribution of gas or an increased gas fraction both decrease the burst efficiency. Owing to the efficient feedback model and the newer version of smoothed particle hydrodynamics employed here, the burst efficiencies of the mergers presented here are smaller than in previous studies.

  20. How to Constrain Your M Dwarf: Measuring Effective Temperature, Bolometric Luminosity, Mass, and Radius

    NASA Astrophysics Data System (ADS)

    Mann, Andrew W.; Feiden, Gregory A.; Gaidos, Eric; Boyajian, Tabetha; von Braun, Kaspar

    2015-05-01

    Precise and accurate parameters for late-type (late K and M) dwarf stars are important for characterization of any orbiting planets, but such determinations have been hampered by these stars’ complex spectra and dissimilarity to the Sun. We exploit an empirically calibrated method to estimate spectroscopic effective temperature (Teff) and the Stefan-Boltzmann law to determine radii of 183 nearby K7-M7 single stars with a precision of 2%-5%. Our improved stellar parameters enable us to develop model-independent relations between Teff or absolute magnitude and radius, as well as between color and Teff. The derived Teff-radius relation depends strongly on [Fe/H], as predicted by theory. The relation between absolute KS magnitude and radius can predict radii accurate to ≃ 3%. We derive bolometric corrections to the V{{R}C}{{I}C}grizJH{{K}S} and Gaia passbands as a function of color, accurate to 1%-3%. We confront the reliability of predictions from Dartmouth stellar evolution models using a Markov chain Monte Carlo to find the values of unobservable model parameters (mass, age) that best reproduce the observed effective temperature and bolometric flux while satisfying constraints on distance and metallicity as Bayesian priors. With the inferred masses we derive a semi-empirical mass-absolute magnitude relation with a scatter of 2% in mass. The best-agreement models overpredict stellar Teff values by an average of 2.2% and underpredict stellar radii by 4.6%, similar to differences with values from low-mass eclipsing binaries. These differences are not correlated with metallicity, mass, or indicators of activity, suggesting issues with the underlying model assumptions, e.g., opacities or convective mixing length.