Sample records for effective matrix diffusion

  1. Evidence for Enhanced Matrix Diffusion in Geological Environment

    NASA Astrophysics Data System (ADS)

    Sato, Kiminori; Fujimoto, Koichiro; Nakata, Masataka; Shikazono, Naotatsu

    2013-01-01

    Molecular diffusion in rock matrix, called as matrix diffusion, has been appreciated as a static process for elemental migration in geological environment that has been acknowledged in the context of geological disposal of radioactive waste. However, incomprehensible enhancement of matrix diffusion has been reported at a number of field test sites. Here, the matrix diffusion of saline water at Horonobe, Hokkaido, Japan is highlighted directly probing angstrom-scale pores on a field scale up to 1 km by positron--positronium annihilation spectroscopy. The first application of positron--positronium annihilation spectroscopy to field-scale geophysical research reveals the slight variation of angstrom-scale pores influenced by saline water diffusion with complete accuracy. We found widely interconnected 3 Å pores, which offer the pathway of saline water diffusion with the highly enhanced effective matrix diffusion coefficient of 4× 10-6 cm2 s-1. The present findings provide unambiguous evidence that the angstrom-scale pores enhance effective matrix diffusion on a field scale in geological environment.

  2. Comparison of experimental methods for estimating matrix diffusion coefficients for contaminant transport modeling

    NASA Astrophysics Data System (ADS)

    Telfeyan, Katherine; Ware, S. Doug; Reimus, Paul W.; Birdsell, Kay H.

    2018-02-01

    Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating effective matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of effective matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than effective matrix diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields effective matrix diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.

  3. Comparison of experimental methods for estimating matrix diffusion coefficients for contaminant transport modeling

    DOE PAGES

    Telfeyan, Katherine Christina; Ware, Stuart Doug; Reimus, Paul William; ...

    2018-01-31

    Here, diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating effective matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of effective matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged frommore » 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than effective matrix diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields effective matrix diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.« less

  4. Comparison of experimental methods for estimating matrix diffusion coefficients for contaminant transport modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Telfeyan, Katherine Christina; Ware, Stuart Doug; Reimus, Paul William

    Here, diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating effective matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of effective matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged frommore » 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than effective matrix diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields effective matrix diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.« less

  5. Field-scale effective matrix diffusion coefficient for fractured rock: results from literature survey.

    PubMed

    Zhou, Quanlin; Liu, Hui-Hai; Molz, Fred J; Zhang, Yingqi; Bodvarsson, Gudmundur S

    2007-08-15

    Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D(m)(e), a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale D(m)(e) values were calculated, either directly using data reported in the literature, or by reanalyzing the corresponding field tracer tests. The reanalysis was conducted for the selected tracer tests using analytic or semi-analytic solutions for tracer transport in linear, radial, or interwell flow fields. Surveyed data show that the scale factor of the effective matrix diffusion coefficient (defined as the ratio of D(m)(e) to the lab-scale matrix diffusion coefficient, D(m), of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate, on average trend toward systematic increase in the scale factor with observation scale. This trend suggests that the effective matrix diffusion coefficient is likely to be statistically scale-dependent. The scale-factor value ranges from 0.5 to 884 for observation scales from 5 to 2000 m. At a given scale, the scale factor varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different geologic sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity) may have significant implications for assessing long-term, large-scale radionuclide and contaminant transport events in fractured rock, both for nuclear waste disposal and contaminant remediation.

  6. A finite element formulation preserving symmetric and banded diffusion stiffness matrix characteristics for fractional differential equations

    NASA Astrophysics Data System (ADS)

    Lin, Zeng; Wang, Dongdong

    2017-10-01

    Due to the nonlocal property of the fractional derivative, the finite element analysis of fractional diffusion equation often leads to a dense and non-symmetric stiffness matrix, in contrast to the conventional finite element formulation with a particularly desirable symmetric and banded stiffness matrix structure for the typical diffusion equation. This work first proposes a finite element formulation that preserves the symmetry and banded stiffness matrix characteristics for the fractional diffusion equation. The key point of the proposed formulation is the symmetric weak form construction through introducing a fractional weight function. It turns out that the stiffness part of the present formulation is identical to its counterpart of the finite element method for the conventional diffusion equation and thus the stiffness matrix formulation becomes trivial. Meanwhile, the fractional derivative effect in the discrete formulation is completely transferred to the force vector, which is obviously much easier and efficient to compute than the dense fractional derivative stiffness matrix. Subsequently, it is further shown that for the general fractional advection-diffusion-reaction equation, the symmetric and banded structure can also be maintained for the diffusion stiffness matrix, although the total stiffness matrix is not symmetric in this case. More importantly, it is demonstrated that under certain conditions this symmetric diffusion stiffness matrix formulation is capable of producing very favorable numerical solutions in comparison with the conventional non-symmetric diffusion stiffness matrix finite element formulation. The effectiveness of the proposed methodology is illustrated through a series of numerical examples.

  7. Matrix diffusion coefficients in volcanic rocks at the Nevada test site: influence of matrix porosity, matrix permeability, and fracture coating minerals.

    PubMed

    Reimus, Paul W; Callahan, Timothy J; Ware, S Doug; Haga, Marc J; Counce, Dale A

    2007-08-15

    Diffusion cell experiments were conducted to measure nonsorbing solute matrix diffusion coefficients in forty-seven different volcanic rock matrix samples from eight different locations (with multiple depth intervals represented at several locations) at the Nevada Test Site. The solutes used in the experiments included bromide, iodide, pentafluorobenzoate (PFBA), and tritiated water ((3)HHO). The porosity and saturated permeability of most of the diffusion cell samples were measured to evaluate the correlation of these two variables with tracer matrix diffusion coefficients divided by the free-water diffusion coefficient (D(m)/D*). To investigate the influence of fracture coating minerals on matrix diffusion, ten of the diffusion cells represented paired samples from the same depth interval in which one sample contained a fracture surface with mineral coatings and the other sample consisted of only pure matrix. The log of (D(m)/D*) was found to be positively correlated with both the matrix porosity and the log of matrix permeability. A multiple linear regression analysis indicated that both parameters contributed significantly to the regression at the 95% confidence level. However, the log of the matrix diffusion coefficient was more highly-correlated with the log of matrix permeability than with matrix porosity, which suggests that matrix diffusion coefficients, like matrix permeabilities, have a greater dependence on the interconnectedness of matrix porosity than on the matrix porosity itself. The regression equation for the volcanic rocks was found to provide satisfactory predictions of log(D(m)/D*) for other types of rocks with similar ranges of matrix porosity and permeability as the volcanic rocks, but it did a poorer job predicting log(D(m)/D*) for rocks with lower porosities and/or permeabilities. The presence of mineral coatings on fracture walls did not appear to have a significant effect on matrix diffusion in the ten paired diffusion cell experiments.

  8. Matrix diffusion coefficients in volcanic rocks at the Nevada test site: Influence of matrix porosity, matrix permeability, and fracture coating minerals

    NASA Astrophysics Data System (ADS)

    Reimus, Paul W.; Callahan, Timothy J.; Ware, S. Doug; Haga, Marc J.; Counce, Dale A.

    2007-08-01

    Diffusion cell experiments were conducted to measure nonsorbing solute matrix diffusion coefficients in forty-seven different volcanic rock matrix samples from eight different locations (with multiple depth intervals represented at several locations) at the Nevada Test Site. The solutes used in the experiments included bromide, iodide, pentafluorobenzoate (PFBA), and tritiated water ( 3HHO). The porosity and saturated permeability of most of the diffusion cell samples were measured to evaluate the correlation of these two variables with tracer matrix diffusion coefficients divided by the free-water diffusion coefficient ( Dm/ D*). To investigate the influence of fracture coating minerals on matrix diffusion, ten of the diffusion cells represented paired samples from the same depth interval in which one sample contained a fracture surface with mineral coatings and the other sample consisted of only pure matrix. The log of ( Dm/ D*) was found to be positively correlated with both the matrix porosity and the log of matrix permeability. A multiple linear regression analysis indicated that both parameters contributed significantly to the regression at the 95% confidence level. However, the log of the matrix diffusion coefficient was more highly-correlated with the log of matrix permeability than with matrix porosity, which suggests that matrix diffusion coefficients, like matrix permeabilities, have a greater dependence on the interconnectedness of matrix porosity than on the matrix porosity itself. The regression equation for the volcanic rocks was found to provide satisfactory predictions of log( Dm/ D*) for other types of rocks with similar ranges of matrix porosity and permeability as the volcanic rocks, but it did a poorer job predicting log( Dm/ D*) for rocks with lower porosities and/or permeabilities. The presence of mineral coatings on fracture walls did not appear to have a significant effect on matrix diffusion in the ten paired diffusion cell experiments.

  9. Effects of motion and b-matrix correction for high resolution DTI with short-axis PROPELLER-EPI

    PubMed Central

    Aksoy, Murat; Skare, Stefan; Holdsworth, Samantha; Bammer, Roland

    2010-01-01

    Short-axis PROPELLER-EPI (SAP-EPI) has been proven to be very effective in providing high-resolution diffusion-weighted and diffusion tensor data. The self-navigation capabilities of SAP-EPI allow one to correct for motion, phase errors, and geometric distortion. However, in the presence of patient motion, the change in the effective diffusion-encoding direction (i.e. the b-matrix) between successive PROPELLER ‘blades’ can decrease the accuracy of the estimated diffusion tensors, which might result in erroneous reconstruction of white matter tracts in the brain. In this study, we investigate the effects of alterations in the b-matrix as a result of patient motion on the example of SAP-EPI DTI and eliminate these effects by incorporating our novel single-step non-linear diffusion tensor estimation scheme into the SAP-EPI post-processing procedure. Our simulations and in-vivo studies showed that, in the presence of patient motion, correcting the b-matrix is necessary in order to get more accurate diffusion tensor and white matter pathway reconstructions. PMID:20222149

  10. Efficient and precise calculation of the b-matrix elements in diffusion-weighted imaging pulse sequences.

    PubMed

    Zubkov, Mikhail; Stait-Gardner, Timothy; Price, William S

    2014-06-01

    Precise NMR diffusion measurements require detailed knowledge of the cumulative dephasing effect caused by the numerous gradient pulses present in most NMR pulse sequences. This effect, which ultimately manifests itself as the diffusion-related NMR signal attenuation, is usually described by the b-value or the b-matrix in the case of multidirectional diffusion weighting, the latter being common in diffusion-weighted NMR imaging. Neglecting some of the gradient pulses introduces an error in the calculated diffusion coefficient reaching in some cases 100% of the expected value. Therefore, ensuring the b-matrix calculation includes all the known gradient pulses leads to significant error reduction. Calculation of the b-matrix for simple gradient waveforms is rather straightforward, yet it grows cumbersome when complexly shaped and/or numerous gradient pulses are introduced. Making three broad assumptions about the gradient pulse arrangement in a sequence results in an efficient framework for calculation of b-matrices as well providing some insight into optimal gradient pulse placement. The framework allows accounting for the diffusion-sensitising effect of complexly shaped gradient waveforms with modest computational time and power. This is achieved by using the b-matrix elements of the simple unmodified pulse sequence and minimising the integration of the complexly shaped gradient waveform in the modified sequence. Such re-evaluation of the b-matrix elements retains all the analytical relevance of the straightforward approach, yet at least halves the amount of symbolic integration required. The application of the framework is demonstrated with the evaluation of the expression describing the diffusion-sensitizing effect, caused by different bipolar gradient pulse modules. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. In situ estimation of the effective chemical diffusion coefficient of a rock matrix in a fractured aquifer

    USGS Publications Warehouse

    Gebrekristos, R.A.; Shapiro, A.M.; Usher, B.H.

    2008-01-01

    An in situ method of estimating the effective diffusion coefficient for a chemical constituent that diffuses into the primary porosity of a rock is developed by abruptly changing the concentration of the dissolved constituent in a borehole in contact with the rock matrix and monitoring the time-varying concentration. The experiment was conducted in a borehole completed in mudstone on the campus of the University of the Free State in Bloemfontein, South Africa. Numerous tracer tests were conducted at this site, which left a residual concentration of sodium chloride in boreholes that diffused into the rock matrix over a period of years. Fresh water was introduced into a borehole in contact with the mudstone, and the time-varying increase of chloride was observed by monitoring the electrical conductivity (EC) at various depths in the borehole. Estimates of the effective diffusion coefficient were obtained by interpreting measurements of EC over 34 d. The effective diffusion coefficient at a depth of 36 m was approximately 7.8??10-6 m2/d, but was sensitive to the assumed matrix porosity. The formation factor and mass flux for the mudstone were also estimated from the experiment. ?? Springer-Verlag 2007.

  12. Theory of activated penetrant diffusion in viscous fluids and colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Schweizer, Kenneth S.

    2015-10-01

    We heuristically formulate a microscopic, force level, self-consistent nonlinear Langevin equation theory for activated barrier hopping and non-hydrodynamic diffusion of a hard sphere penetrant in very dense hard sphere fluid matrices. Penetrant dynamics is controlled by a rich competition between force relaxation due to penetrant self-motion and collective matrix structural (alpha) relaxation. In the absence of penetrant-matrix attraction, three activated dynamical regimes are predicted as a function of penetrant-matrix size ratio which are physically distinguished by penetrant jump distance and the nature of matrix motion required to facilitate its hopping. The penetrant diffusion constant decreases the fastest with size ratio for relatively small penetrants where the matrix effectively acts as a vibrating amorphous solid. Increasing penetrant-matrix attraction strength reduces penetrant diffusivity due to physical bonding. For size ratios approaching unity, a distinct dynamical regime emerges associated with strong slaving of penetrant hopping to matrix structural relaxation. A crossover regime at intermediate penetrant-matrix size ratio connects the two limiting behaviors for hard penetrants, but essentially disappears if there are strong attractions with the matrix. Activated penetrant diffusivity decreases strongly with matrix volume fraction in a manner that intensifies as the size ratio increases. We propose and implement a quasi-universal approach for activated diffusion of a rigid atomic/molecular penetrant in a supercooled liquid based on a mapping between the hard sphere system and thermal liquids. Calculations for specific systems agree reasonably well with experiments over a wide range of temperature, covering more than 10 orders of magnitude of variation of the penetrant diffusion constant.

  13. Theory of activated penetrant diffusion in viscous fluids and colloidal suspensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Rui; Schweizer, Kenneth S., E-mail: kschweiz@illinois.edu

    2015-10-14

    We heuristically formulate a microscopic, force level, self-consistent nonlinear Langevin equation theory for activated barrier hopping and non-hydrodynamic diffusion of a hard sphere penetrant in very dense hard sphere fluid matrices. Penetrant dynamics is controlled by a rich competition between force relaxation due to penetrant self-motion and collective matrix structural (alpha) relaxation. In the absence of penetrant-matrix attraction, three activated dynamical regimes are predicted as a function of penetrant-matrix size ratio which are physically distinguished by penetrant jump distance and the nature of matrix motion required to facilitate its hopping. The penetrant diffusion constant decreases the fastest with size ratiomore » for relatively small penetrants where the matrix effectively acts as a vibrating amorphous solid. Increasing penetrant-matrix attraction strength reduces penetrant diffusivity due to physical bonding. For size ratios approaching unity, a distinct dynamical regime emerges associated with strong slaving of penetrant hopping to matrix structural relaxation. A crossover regime at intermediate penetrant-matrix size ratio connects the two limiting behaviors for hard penetrants, but essentially disappears if there are strong attractions with the matrix. Activated penetrant diffusivity decreases strongly with matrix volume fraction in a manner that intensifies as the size ratio increases. We propose and implement a quasi-universal approach for activated diffusion of a rigid atomic/molecular penetrant in a supercooled liquid based on a mapping between the hard sphere system and thermal liquids. Calculations for specific systems agree reasonably well with experiments over a wide range of temperature, covering more than 10 orders of magnitude of variation of the penetrant diffusion constant.« less

  14. Scale-Dependent Fracture-Matrix Interactions And Their Impact on Radionuclide Transport - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detwiler, Russell

    Matrix diffusion and adsorption within a rock matrix are widely regarded as important mechanisms for retarding the transport of radionuclides and other solutes in fractured rock (e.g., Neretnieks, 1980; Tang et al., 1981; Maloszewski and Zuber, 1985; Novakowski and Lapcevic, 1994; Jardine et al., 1999; Zhou and Xie, 2003; Reimus et al., 2003a,b). When remediation options are being evaluated for old sources of contamination, where a large fraction of contaminants reside within the rock matrix, slow diffusion out of the matrix greatly increases the difficulty and timeframe of remediation. Estimating the rates of solute exchange between fractures and the adjacentmore » rock matrix is a critical factor in quantifying immobilization and/or remobilization of DOE-relevant contaminants within the subsurface. In principle, the most rigorous approach to modeling solute transport with fracture-matrix interaction would be based on local-scale coupled advection-diffusion/dispersion equations for the rock matrix and in discrete fractures that comprise the fracture network (Discrete Fracture Network and Matrix approach, hereinafter referred to as DFNM approach), fully resolving aperture variability in fractures and matrix property heterogeneity. However, such approaches are computationally demanding, and thus, many predictive models rely upon simplified models. These models typically idealize fracture rock masses as a single fracture or system of parallel fractures interacting with slabs of porous matrix or as a mobile-immobile or multi-rate mass transfer system. These idealizations provide tractable approaches for interpreting tracer tests and predicting contaminant mobility, but rely upon a fitted effective matrix diffusivity or mass-transfer coefficients. However, because these fitted parameters are based upon simplified conceptual models, their effectiveness at predicting long-term transport processes remains uncertain. Evidence of scale dependence of effective matrix diffusion coefficients obtained from tracer tests highlights this point and suggests that the underlying mechanisms and relationship between rock and fracture properties are not fully understood in large complex fracture networks. In this project, we developed a high-resolution DFN model of solute transport in fracture networks to explore and quantify the mechanisms that control transport in complex fracture networks and how these may give rise to observed scale-dependent matrix diffusion coefficients. Results demonstrate that small scale heterogeneity in the flow field caused by local aperture variability within individual fractures can lead to long-tailed breakthrough curves indicative of matrix diffusion, even in the absence of interactions with the fracture matrix. Furthermore, the temporal and spatial scale dependence of these processes highlights the inability of short-term tracer tests to estimate transport parameters that will control long-term fate and transport of contaminants in fractured aquifers.« less

  15. Improving nanoparticle diffusion through tumor collagen matrix by photo-thermal gold nanorods

    NASA Astrophysics Data System (ADS)

    Raeesi, Vahid; Chan, Warren C. W.

    2016-06-01

    Collagen (I) impairs the targeting of nanoparticles to tumor cells by obstructing their diffusion inside dense tumor interstitial matrix. This potentially makes large nanoparticles (>50 nm) reside near the tumor vessels and thereby compromises their functionality. Here we propose a strategy to locally improve nanoparticle transport inside collagen (I) component of the tumor tissue. We first used heat generating gold nanorods to alter collagen (I) matrix by local temperature elevation. We then explored this impact on the transport of 50 nm and 120 nm inorganic nanoparticles inside collagen (I). We demonstrated an increase in average diffusivity of 50 nm and 120 nm in the denatured collagen (I) by ~14 and ~21 fold, respectively, compared to intact untreated collagen (I) matrix. This study shows how nanoparticle-mediated hyperthermia inside tumor tissue can improve the transport of large nanoparticles through collagen (I) matrix. The ability to increase nanoparticles diffusion inside tumor stroma allows their targeting or other functionalities to take effect, thereby significantly improving cancer therapeutic or diagnostic outcome.Collagen (I) impairs the targeting of nanoparticles to tumor cells by obstructing their diffusion inside dense tumor interstitial matrix. This potentially makes large nanoparticles (>50 nm) reside near the tumor vessels and thereby compromises their functionality. Here we propose a strategy to locally improve nanoparticle transport inside collagen (I) component of the tumor tissue. We first used heat generating gold nanorods to alter collagen (I) matrix by local temperature elevation. We then explored this impact on the transport of 50 nm and 120 nm inorganic nanoparticles inside collagen (I). We demonstrated an increase in average diffusivity of 50 nm and 120 nm in the denatured collagen (I) by ~14 and ~21 fold, respectively, compared to intact untreated collagen (I) matrix. This study shows how nanoparticle-mediated hyperthermia inside tumor tissue can improve the transport of large nanoparticles through collagen (I) matrix. The ability to increase nanoparticles diffusion inside tumor stroma allows their targeting or other functionalities to take effect, thereby significantly improving cancer therapeutic or diagnostic outcome. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08463f

  16. Retardation of mobile radionuclides in granitic rock fractures by matrix diffusion

    NASA Astrophysics Data System (ADS)

    Hölttä, P.; Poteri, A.; Siitari-Kauppi, M.; Huittinen, N.

    Transport of iodide and sodium has been studied by means of block fracture and core column experiments to evaluate the simplified radionuclide transport concept. The objectives were to examine the processes causing retention in solute transport, especially matrix diffusion, and to estimate their importance during transport in different scales and flow conditions. Block experiments were performed using a Kuru Grey granite block having a horizontally planar natural fracture. Core columns were constructed from cores drilled orthogonal to the fracture of the granite block. Several tracer tests were performed using uranine, 131I and 22Na as tracers at water flow rates 0.7-50 μL min -1. Transport of tracers was modelled by applying the advection-dispersion model based on the generalized Taylor dispersion added with matrix diffusion. Scoping calculations were combined with experiments to test the model concepts. Two different experimental configurations could be modelled applying consistent transport processes and parameters. The processes, advection-dispersion and matrix diffusion, were conceptualized with sufficient accuracy to replicate the experimental results. The effects of matrix diffusion were demonstrated on the slightly sorbing sodium and mobile iodine breakthrough curves.

  17. Characteristics of Matrix Metals in Which Fast Diffusion of Foreign Metallic Elements Occurs

    NASA Astrophysics Data System (ADS)

    Mae, Yoshiharu

    2018-04-01

    A few foreign elements are known to diffuse faster than the self-diffusion of the matrix metal. However, the characteristics of the matrix metal, which contribute to such fast diffusion remain unknown. In this study, the diffusion coefficients of various elements were plotted on a TC-YM diagram. The matrix metals that show fast diffusion are located in the low thermal conductivity range of the TC-YM diagram, while diffuser elements that undergo fast diffusion are mainly gulf elements such as Fe, Ni, Co, Cr, and Cu. The gulf elements are those that show the largest combination of thermal conductivity and Young's modulus. The great difference in the electron mobility between the matrix metal and diffuser elements generates a repulsive force between them, and the repulsive force—acting between the soft and large atoms of the matrix metal and the hard and small atoms of the diffuser elements—deforms the atoms of the matrix metal to open passageways for fast diffusion of diffuser elements.

  18. The awareness and want matrix with adoption gap ratio analysis for e-service diffusion effect.

    PubMed

    Liang, Te-Hsin

    2011-03-01

    Since the hierarchical stages of a customer purchasing decision or innovation adoption process are interrelated, an analysis of all their stages, including awareness, want, and adoption, in relation to product or service diffusion, is urgently needed. Therefore, this study proposes the use of an awareness and want matrix, together with an adoption gap ratio analysis, to assess the effectiveness of innovation and technology diffusion for e-services. This study also conducts an empirical test on the promotion performance evaluation of 12 e-services promoted by the Taiwanese government.

  19. Diffusion of multi-isotopic chemical species in molten silicates

    NASA Astrophysics Data System (ADS)

    Watkins, James M.; Liang, Yan; Richter, Frank; Ryerson, Frederick J.; DePaolo, Donald J.

    2014-08-01

    Diffusion experiments in a simplified Na2O-CaO-SiO2 liquid system are used to develop a general formulation for the fractionation of Ca isotopes during liquid-phase diffusion. Although chemical diffusion is a well-studied process, the mathematical description of the effects of diffusion on the separate isotopes of a chemical element is surprisingly underdeveloped and uncertain. Kinetic theory predicts a mass dependence on isotopic mobility, but it is unknown how this translates into a mass dependence on effective binary diffusion coefficients, or more generally, the chemical diffusion coefficients that are housed in a multicomponent diffusion matrix. Our experiments are designed to measure Ca mobility, effective binary diffusion coefficients, the multicomponent diffusion matrix, and the effects of chemical diffusion on Ca isotopes in a liquid of single composition. We carried out two chemical diffusion experiments and one self-diffusion experiment, all at 1250 °C and 0.7 GPa and using a bulk composition for which other information is available from the literature. The self-diffusion experiment is used to determine the mobility of Ca in the absence of diffusive fluxes of other liquid components. The chemical diffusion experiments are designed to determine the effect on Ca isotope fractionation of changing the counter-diffusing component from fast-diffusing Na2O to slow-diffusing SiO2. When Na2O is the main counter-diffusing species, CaO diffusion is fast and larger Ca isotopic effects are generated. When SiO2 is the main counter-diffusing species, CaO diffusion is slow and smaller Ca isotopic effects are observed. In both experiments, the liquid is initially isotopically homogeneous, and during the experiment Ca isotopes become fractionated by diffusion. The results are used as a test of a new general expression for the diffusion of isotopes in a multicomponent liquid system that accounts for both self diffusion and the effects of counter-diffusing species. Our results show that (1) diffusive isotopic fractionations depend on the direction of diffusion in composition space, (2) diffusive isotopic fractionations scale with effective binary diffusion coefficient, as previously noted by Watkins et al. (2011), (3) self-diffusion is not decoupled from chemical diffusion, (4) self diffusion can be faster than or slower than chemical diffusion and (5) off-diagonal terms in the chemical diffusion matrix have isotopic mass-dependence. The results imply that relatively large isotopic fractionations can be generated by multicomponent diffusion even in the absence of large concentration gradients of the diffusing element. The new formulations for isotope diffusion can be tested with further experimentation and provide an improved framework for interpreting mass-dependent isotopic variations in natural liquids.

  20. Analytical Solution for Transport with Bimolecular Reactions in Fracture-Matrix Systems with Application to In-Situ Chemical Oxidation

    NASA Astrophysics Data System (ADS)

    Rajaram, H.; Arshadi, M.

    2016-12-01

    In-situ chemical oxidation (ISCO) is an effective strategy for remediation of DNAPL contamination in fractured rock. During ISCO, an oxidant (e.g. permanganate) is typically injected through fractures and is consumed by bimolecular reactions with DNAPLs such as TCE and natural organic matter in the fracture and the adjacent rock matrix. Under these conditions, moving reaction fronts form and propagate along the fracture and into the rock matrix. The propagation of these reaction fronts is strongly influenced by the heterogeneity/discontinuity across the fracture-matrix interface (advective transport dominates in the fractures, while diffusive transport dominates in the rock matrix). We present analytical solutions for the concentrations of the oxidant, TCE and natural organic matter; and the propagation of the reaction fronts in a fracture-matrix system. Our approximate analytical solutions assume advection and reaction dominate over diffusion/dispersion in the fracture and neglect the latter. Diffusion and reaction with both TCE and immobile natural organic matter in the rock matrix are considered. The behavior of the reaction-diffusion equations in the rock matrix is posed as a Stefan problem where the diffusing oxidant reacts with both diffusing (TCE) and immobile (natural organic matter) reductants. Our analytical solutions establish that the reaction fronts propagate diffusively (i.e. as the square root of time) in both the matrix and the fracture. Our analytical solutions agree very well with numerical simulations for the case of uniform advection in the fracture. We also present extensions of our analytical solutions to non-uniform flows in the fracture by invoking a travel-time transformation. The non-uniform flow solutions are relevant to field applications of ISCO. The approximate analytical solutions are relevant to a broad class of reactive transport problems in fracture-matrix systems where moving reaction fronts occur.

  1. Effect of advective flow in fractures and matrix diffusion on natural gas production

    DOE PAGES

    Karra, Satish; Makedonska, Nataliia; Viswanathan, Hari S.; ...

    2015-10-12

    Although hydraulic fracturing has been used for natural gas production for the past couple of decades, there are significant uncertainties about the underlying mechanisms behind the production curves that are seen in the field. A discrete fracture network based reservoir-scale work flow is used to identify the relative effect of flow of gas in fractures and matrix diffusion on the production curve. With realistic three dimensional representations of fracture network geometry and aperture variability, simulated production decline curves qualitatively resemble observed production decline curves. The high initial peak of the production curve is controlled by advective fracture flow of freemore » gas within the network and is sensitive to the fracture aperture variability. Matrix diffusion does not significantly affect the production decline curve in the first few years, but contributes to production after approximately 10 years. These results suggest that the initial flushing of gas-filled background fractures combined with highly heterogeneous flow paths to the production well are sufficient to explain observed initial production decline. Lastly, these results also suggest that matrix diffusion may support reduced production over longer time frames.« less

  2. Diffusive parameters of tritiated water and uranium in chalk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Descostes, M.; UMR 8587 CEA, Universite d'Evry, CNRS,; Pili, E.

    2012-07-15

    The Cretaceous Chalk of North-western Europe exhibits a double porosity (matrix and fracture) providing pathways for both slow and rapid flow of water. The present study aims at understanding and predicting the contaminant transfer properties through a significant section of this formation, with a particular emphasis on diffusion. This requires to study the nature of porosity and to perform diffusion experiments in representative samples using uranium and tritiated water (HTO), respectively taken as a reactive tracer and an inert one. The diffusive parameters, i.e. the accessible porosity and the effective diffusion coefficient were determined. Additional information was obtained with mercurymore » porosimetry, gravimetric water content, textural and mineralogical characterization. The diffusion tests performed with HTO appear to be the best method to measure the total accessible porosity in any type of porous media, especially those having large pore size distributions. Our study demonstrates that classical gravimetric water content measurements are not sensitive to the reduction in pore size as opposed to HTO diffusion tests because capillary water is not extracted by conventional gravimetric method but can still be probed by diffusion experiments. We found effective diffusion coefficients D{sub e}(U(VI)) near 4 x 10{sup -10} m{sup 2}s{sup -1}). The slower migration of U(VI) compared to HTO indicates sorption, with R{sub d}(U(VI)) from 100 to 360 mL g{sup -1}. These values are one order of magnitude larger than other determinations of the U(VI) sorption coefficient because only the matrix porosity is concerned here. The migration of U(VI) in chalk is only limited by sorption on ancillary Fe-Pb-bearing minerals. Transport of HTO and U(VI) is independent of the porosity distribution. Uranium diffusion in the chalk matrix porosity is fast enough to allow the total invasion of the pore space within characteristic time scales of the order of 1000 years. This results in a partitioning of uranium velocities in fracture flow and matrix flow proportionally to the respective fracture and matrix porosities. (authors)« less

  3. Determination of the effective diffusivity of water in a poly (methyl methacrylate) membrane containing carbon nanotubes using kinetic Monte Carlo simulations.

    PubMed

    Mermigkis, Panagiotis G; Tsalikis, Dimitrios G; Mavrantzas, Vlasis G

    2015-10-28

    A kinetic Monte Carlo (kMC) simulation algorithm is developed for computing the effective diffusivity of water molecules in a poly(methyl methacrylate) (PMMA) matrix containing carbon nanotubes (CNTs) at several loadings. The simulations are conducted on a cubic lattice to the bonds of which rate constants are assigned governing the elementary jump events of water molecules from one lattice site to another. Lattice sites belonging to PMMA domains of the membrane are assigned different rates than lattice sites belonging to CNT domains. Values of these two rate constants are extracted from available numerical data for water diffusivity within a PMMA matrix and a CNT pre-computed on the basis of independent atomistic molecular dynamics simulations, which show that water diffusivity in CNTs is 3 orders of magnitude faster than in PMMA. Our discrete-space, continuum-time kMC simulation results for several PMMA-CNT nanocomposite membranes (characterized by different values of CNT length L and diameter D and by different loadings of the matrix in CNTs) demonstrate that the overall or effective diffusivity, D(eff), of water in the entire polymeric membrane is of the same order of magnitude as its diffusivity in PMMA domains and increases only linearly with the concentration C (vol. %) in nanotubes. For a constant value of the concentration C, D(eff) is found to vary practically linearly also with the CNT aspect ratio L/D. The kMC data allow us to propose a simple bilinear expression for D(eff) as a function of C and L/D that can describe the numerical data for water mobility in the membrane extremely accurately. Additional simulations with two different CNT configurations (completely random versus aligned) show that CNT orientation in the polymeric matrix has only a minor effect on D(eff) (as long as CNTs do not fully penetrate the membrane). We have also extensively analyzed and quantified sublinear (anomalous) diffusive phenomena over small to moderate times and correlated them with the time needed for penetrant water molecules to explore the available large, fast-diffusing CNT pores before Fickian diffusion is reached.

  4. Determination of the effective diffusivity of water in a poly (methyl methacrylate) membrane containing carbon nanotubes using kinetic Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Mermigkis, Panagiotis G.; Tsalikis, Dimitrios G.; Mavrantzas, Vlasis G.

    2015-10-01

    A kinetic Monte Carlo (kMC) simulation algorithm is developed for computing the effective diffusivity of water molecules in a poly(methyl methacrylate) (PMMA) matrix containing carbon nanotubes (CNTs) at several loadings. The simulations are conducted on a cubic lattice to the bonds of which rate constants are assigned governing the elementary jump events of water molecules from one lattice site to another. Lattice sites belonging to PMMA domains of the membrane are assigned different rates than lattice sites belonging to CNT domains. Values of these two rate constants are extracted from available numerical data for water diffusivity within a PMMA matrix and a CNT pre-computed on the basis of independent atomistic molecular dynamics simulations, which show that water diffusivity in CNTs is 3 orders of magnitude faster than in PMMA. Our discrete-space, continuum-time kMC simulation results for several PMMA-CNT nanocomposite membranes (characterized by different values of CNT length L and diameter D and by different loadings of the matrix in CNTs) demonstrate that the overall or effective diffusivity, Deff, of water in the entire polymeric membrane is of the same order of magnitude as its diffusivity in PMMA domains and increases only linearly with the concentration C (vol. %) in nanotubes. For a constant value of the concentration C, Deff is found to vary practically linearly also with the CNT aspect ratio L/D. The kMC data allow us to propose a simple bilinear expression for Deff as a function of C and L/D that can describe the numerical data for water mobility in the membrane extremely accurately. Additional simulations with two different CNT configurations (completely random versus aligned) show that CNT orientation in the polymeric matrix has only a minor effect on Deff (as long as CNTs do not fully penetrate the membrane). We have also extensively analyzed and quantified sublinear (anomalous) diffusive phenomena over small to moderate times and correlated them with the time needed for penetrant water molecules to explore the available large, fast-diffusing CNT pores before Fickian diffusion is reached.

  5. Laboratory Experiments to Evaluate Matrix Diffusion of Dissolved Organic Carbon Carbon-14 in Southern Nevada Fractured-rock Aquifers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hershey, Ronald L.; Fereday, Wyatt

    Dissolved inorganic carbon (DIC) carbon-14 ( 14C) is used to estimate groundwater ages by comparing the DIC 14C content in groundwater in the recharge area to the DIC 14C content in the downgradient sampling point. However, because of chemical reactions and physical processes between groundwater and aquifer rocks, the amount of DIC 14C in groundwater can change and result in 14C loss that is not because of radioactive decay. This loss of DIC 14C results in groundwater ages that are older than the actual groundwater ages. Alternatively, dissolved organic carbon (DOC) 14C in groundwater does not react chemically with aquifermore » rocks, so DOC 14C ages are generally younger than DIC 14C ages. In addition to chemical reactions, 14C ages may also be altered by the physical process of matrix diffusion. The net effect of a continuous loss of 14C to the aquifer matrix by matrix diffusion and then radioactive decay is that groundwater appears to be older than it actually is. Laboratory experiments were conducted to measure matrix diffusion coefficients for DOC 14C in volcanic and carbonate aquifer rocks from southern Nevada. Experiments were conducted using bromide (Br-) as a conservative tracer and 14C-labeled trimesic acid (TMA) as a surrogate for groundwater DOC. Outcrop samples from six volcanic aquifers and five carbonate aquifers in southern Nevada were used. The average DOC 14C matrix diffusion coefficient for volcanic rocks was 2.9 x 10 -7 cm 2/s, whereas the average for carbonate rocks was approximately the same at 1.7 x 10 -7 cm 2/s. The average Br- matrix diffusion coefficient for volcanic rocks was 10.4 x 10 -7 cm 2/s, whereas the average for carbonate rocks was less at 6.5 x 10 -7 cm 2/s. Carbonate rocks exhibited greater variability in DOC 14C and Br- matrix diffusion coefficients than volcanic rocks. These results confirmed, at the laboratory scale, that the diffusion of DOC 14C into southern Nevada volcanic and carbonate aquifers is slower than DIC 14C. Because of the apparent sorption of 14C-labeled TMA in the experiments, matrix diffusion coefficients are likely even lower. The reasons for the higher than expected Br-/ 14C-labeled TMA are unknown. Because the molecular size of TMA is on the low end of the range in molecular size for typical humic substances, the matrix diffusion coefficients for the 14C-labeled TMA likely represent close to the maximum diffusion rates for DOC 14C in the volcanic and carbonate aquifers in southern Nevada.« less

  6. Evidence of rock matrix back-diffusion and abiotic dechlorination using a field testing approach

    NASA Astrophysics Data System (ADS)

    Schaefer, Charles E.; Lippincott, David R.; Klammler, Harald; Hatfield, Kirk

    2018-02-01

    An in situ field demonstration was performed in fractured rock impacted with trichloroethene (TCE) and cis-1,2-dichloroethene (DCE) to assess the impacts of contaminant rebound after removing dissolved contaminants within hydraulically conductive fractures. Using a bedrock well pair spaced 2.4 m apart, TCE and DCE were first flushed with water to create a decrease in dissolved contaminant concentrations. While hydraulically isolating the well pair from upgradient contaminant impacts, contaminant rebound then was observed between the well pair over 151 days. The magnitude, but not trend, of TCE rebound was reasonably described by a matrix back-diffusion screening model that employed an effective diffusion coefficient and first-order abiotic TCE dechlorination rate constant that was based on bench-scale testing. Furthermore, a shift in the TCE:DCE ratio and carbon isotopic enrichment was observed during the rebound, suggesting that both biotic and abiotic dechlorination were occurring within the rock matrix. The isotopic data and back-diffusion model together served as a convincing argument that matrix back-diffusion was the mechanism responsible for the observed contaminant rebound. Results of this field demonstration highlight the importance and applicability of rock matrix parameters determined at the bench-scale, and suggest that carbon isotopic enrichment can be used as a line of evidence for abiotic dechlorination within rock matrices.

  7. The prospects for composites based on boron fibers

    NASA Technical Reports Server (NTRS)

    Naslain, R.

    1978-01-01

    The fabrication of boron filaments and the production of composite materials consisting of boron filaments and organic or metallic matrices are discussed. Problem involving the use of tungsten substrates in the filament fabrication process, the protection of boron fibers with diffusion barrier cladings, and the application of alloy additives in the matrix to lessen the effects of diffusion are considered. Data on the kinetics of the boron fiber/matrix interaction at high temperatures, and the influence of the fiber/matrix interaction on the mechanical properties of the composite are presented.

  8. Predictive model to describe water migration in cellular solid foods during storage.

    PubMed

    Voogt, Juliën A; Hirte, Anita; Meinders, Marcel B J

    2011-11-01

    Water migration in cellular solid foods during storage causes loss of crispness. To improve crispness retention, physical understanding of this process is needed. Mathematical models are suitable tools to gain this physical knowledge. Water migration in cellular solid foods involves migration through both the air cells and the solid matrix. For systems in which the water migration distance is large compared with the cell wall thickness of the solid matrix, the overall water flux through the system is dominated by the flux through the air. For these systems, water migration can be approximated well by a Fickian diffusion model. The effective diffusion coefficient can be expressed in terms of the material properties of the solid matrix (i.e. the density, sorption isotherm and diffusion coefficient of water in the solid matrix) and the morphological properties of the cellular structure (i.e. water vapour permeability and volume fraction of the solid matrix). The water vapour permeability is estimated from finite element method modelling using a simplified model for the cellular structure. It is shown that experimentally observed dynamical water profiles of bread rolls that differ in crust permeability are predicted well by the Fickian diffusion model. Copyright © 2011 Society of Chemical Industry.

  9. Two-dimensional enzyme diffusion in laterally confined DNA monolayers.

    PubMed

    Castronovo, Matteo; Lucesoli, Agnese; Parisse, Pietro; Kurnikova, Anastasia; Malhotra, Aseem; Grassi, Mario; Grassi, Gabriele; Scaggiante, Bruna; Casalis, Loredana; Scoles, Giacinto

    2011-01-01

    Addressing the effects of confinement and crowding on biomolecular function may provide insight into molecular mechanisms within living organisms, and may promote the development of novel biotechnology tools. Here, using molecular manipulation methods, we investigate restriction enzyme reactions with double-stranded (ds)DNA oligomers confined in relatively large (and flat) brushy matrices of monolayer patches of controlled, variable density. We show that enzymes from the contacting solution cannot access the dsDNAs from the top-matrix interface, and instead enter at the matrix sides to diffuse two-dimensionally in the gap between top- and bottom-matrix interfaces. This is achieved by limiting lateral access with a barrier made of high-density molecules that arrest enzyme diffusion. We put forward, as a possible explanation, a simple and general model that relates these data to the steric hindrance in the matrix, and we briefly discuss the implications and applications of this strikingly new phenomenon.

  10. Ambiguity in measuring matrix diffusion with single-well injection/recovery tracer tests

    USGS Publications Warehouse

    Lessoff, S.C.; Konikow, Leonard F.

    1997-01-01

    Single-well injection/recovery tracer tests are considered for use in characterizing and quantifying matrix diffusion in dual-porosity aquifers. Numerical modeling indicates that neither regional drift in homogeneous aquifers, nor heterogeneity in aquifers having no regional drift, nor hydrodynamic dispersion significantly affects these tests. However, when drift is coupled simultaneously with heterogeneity, they can have significant confounding effects on tracer return. This synergistic effect of drift and heterogeneity may help explain irreversible flow and inconsistent results sometimes encountered in previous single-well injection/recovery tracer tests. Numerical results indicate that in a hypothetical single-well injection/recovery tracer test designed to demonstrate and measure dual-porosity characteristics in a fractured dolomite, the simultaneous effects of drift and heterogeneity sometimes yields responses similar to those anticipated in a homogeneous dual-porosity formation. In these cases, tracer recovery could provide a false indication of the occurrence of matrix diffusion. Shortening the shut-in period between injection and recovery periods may make the test less sensitive to drift. Using multiple tracers having different diffusion characteristics, multiple tests having different pumping schedules, and testing the formation at more than one location would decrease the ambiguity in the interpretation of test data.

  11. A novel image encryption algorithm based on the chaotic system and DNA computing

    NASA Astrophysics Data System (ADS)

    Chai, Xiuli; Gan, Zhihua; Lu, Yang; Chen, Yiran; Han, Daojun

    A novel image encryption algorithm using the chaotic system and deoxyribonucleic acid (DNA) computing is presented. Different from the traditional encryption methods, the permutation and diffusion of our method are manipulated on the 3D DNA matrix. Firstly, a 3D DNA matrix is obtained through bit plane splitting, bit plane recombination, DNA encoding of the plain image. Secondly, 3D DNA level permutation based on position sequence group (3DDNALPBPSG) is introduced, and chaotic sequences generated from the chaotic system are employed to permutate the positions of the elements of the 3D DNA matrix. Thirdly, 3D DNA level diffusion (3DDNALD) is given, the confused 3D DNA matrix is split into sub-blocks, and XOR operation by block is manipulated to the sub-DNA matrix and the key DNA matrix from the chaotic system. At last, by decoding the diffused DNA matrix, we get the cipher image. SHA 256 hash of the plain image is employed to calculate the initial values of the chaotic system to avoid chosen plaintext attack. Experimental results and security analyses show that our scheme is secure against several known attacks, and it can effectively protect the security of the images.

  12. Solute Transport of Negatively Charged Contrast Agents Across Articular Surface of Injured Cartilage.

    PubMed

    Kokkonen, H T; Chin, H C; Töyräs, J; Jurvelin, J S; Quinn, T M

    2017-04-01

    Solute transport through the extracellular matrix (ECM) is crucial to chondrocyte metabolism. Cartilage injury affects solute transport in cartilage due to alterations in ECM structure and solute-matrix interactions. Therefore, cartilage injury may be detected by using contrast agent-based clinical imaging. In the present study, effects of mechanical injury on transport of negatively charged contrast agents in cartilage were characterized. Using cartilage plugs injured by mechanical compression protocol, effective partition coefficients and diffusion fluxes of iodine- and gadolinium-based contrast agents were measured using high resolution microCT imaging. For all contrast agents studied, effective diffusion fluxes increased significantly, particularly at early times during the diffusion process (38 and 33% increase after 4 min, P < 0.05 for iodine and Gd-DTPA; and 76% increase after 10 min for diatrizoate, P < 0.05). Effective partition coefficients were unaffected in mechanically injured cartilage. Mechanical injury reduced PG content and collagen integrity in cartilage superficial zone. This study suggests that alterations in contrast agent diffusion flux, a non-equilibrium transport parameter, provides a more sensitive indicator for assessment of cartilage matrix integrity than partition coefficient and the equilibrium distribution of solute. These findings may help in developing clinical methods of contrast agent-based imaging to detect cartilage injury.

  13. A novel mathematical model considering change of diffusion coefficient for predicting dissolution behavior of acetaminophen from wax matrix dosage form.

    PubMed

    Nitanai, Yuta; Agata, Yasuyoshi; Iwao, Yasunori; Itai, Shigeru

    2012-05-30

    From wax matrix dosage forms, drug and water-soluble polymer are released into the external solvent over time. As a consequence, the pore volume inside the wax matrix particles is increased and the diffusion coefficient of the drug is altered. In the present study, we attempted to derive a novel empirical mathematical model, namely, a time-dependent diffusivity (TDD) model, that assumes the change in the drug's diffusion coefficient can be used to predict the drug release from spherical wax matrix particles. Wax matrix particles were prepared by using acetaminophen (APAP), a model drug; glyceryl monostearate (GM), a wax base; and aminoalkyl methacrylate copolymer E (AMCE), a functional polymer that dissolves below pH 5.0 and swells over pH 5.0. A three-factor, three-level (3(3)) Box-Behnken design was used to evaluate the effects of several of the variables in the model formulation, and the release of APAP from wax matrix particles was evaluated by the paddle method at pH 4.0 and pH 6.5. When comparing the goodness of fit to the experimental data between the proposed TDD model and the conventional pure diffusion model, a better correspondence was observed for the TDD model in all cases. Multiple regression analysis revealed that an increase in AMCE loading enhanced the diffusion coefficient with time, and that this increase also had a significant effect on drug release behavior. Furthermore, from the results of the multiple regression analysis, a formulation with desired drug release behavior was found to satisfy the criteria of the bitter taste masking of APAP without lowering the bioavailability. That is to say, the amount of APAP released remains below 15% for 10 min at pH 6.5 and exceeds 90% within 30 min at pH 4.0. The predicted formulation was 15% APAP loading, 8.25% AMCE loading, and 400 μm mean particle diameter. When wax matrix dosage forms were prepared accordingly, the predicted drug release behavior agreed well with experimental values at each pH level. Therefore, the proposed model is feasible as a useful tool for predicting drug release behavior, as well as for designing the formulation of wax matrix dosage forms. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. An improved model of fission gas atom transport in irradiated uranium dioxide

    NASA Astrophysics Data System (ADS)

    Shea, J. H.

    2018-04-01

    The hitherto standard approach to predicting fission gas release has been a pure diffusion gas atom transport model based upon Fick's law. An additional mechanism has subsequently been identified from experimental data at high burnup and has been summarised in an empirical model that is considered to embody a so-called fuel matrix 'saturation' phenomenon whereby the fuel matrix has become saturated with fission gas so that the continued addition of extra fission gas atoms results in their expulsion from the fuel matrix into the fuel rod plenum. The present paper proposes a different approach by constructing an enhanced fission gas transport law consisting of two components: 1) Fick's law and 2) a so-called drift term. The new transport law can be shown to be effectively identical in its predictions to the 'saturation' approach and is more readily physically justifiable. The method introduces a generalisation of the standard diffusion equation which is dubbed the Drift Diffusion Equation. According to the magnitude of a dimensionless Péclet number, P, the new equation can vary from pure diffusion to pure drift, which latter represents a collective motion of the fission gas atoms through the fuel matrix at a translational velocity. Comparison is made between the saturation and enhanced transport approaches. Because of its dependence on P, the Drift Diffusion Equation is shown to be more effective at managing the transition from one type of limiting transport phenomenon to the other. Thus it can adapt appropriately according to the reactor operation.

  15. Lattice Boltzmann simulation of dissolution-induced changes in permeability and porosity in 3D CO2 reactive transport

    NASA Astrophysics Data System (ADS)

    Tian, Zhiwei; Wang, Junye

    2018-02-01

    Dissolution and precipitation of rock matrix are one of the most important processes of geological CO2 sequestration in reservoirs. They change connections of pore channels and properties of matrix, such as bulk density, microporosity and hydraulic conductivity. This study builds on a recently developed multi-layer model to account for dynamic changes of microporous matrix that can accurately predict variations in hydraulic properties and reaction rates due to dynamic changes in matrix porosity and pore connectivity. We apply the model to simulate the dissolution and precipitation processes of rock matrix in heterogeneous porous media to quantify (1) the effect of the reaction rate on dissolution and matrix porosity, (2) the effect of microporous matrix diffusion on the overall effective diffusion and (3) the effect of heterogeneity on hydraulic conductivity. The results show the CO2 storage influenced by factors including the matrix porosity change, reaction front movement, velocity and initial properties. We also simulated dissolution-induced permeability enhancement as well as effects of initial porosity heterogeneity. The matrix with very low permeability, which can be unresolved on X-ray CT, do contribute to flow patterns and dispersion. The concentration of reactant H+ increases along the main fracture paths where the flow velocity increases. The product Ca++ shows the inversed distribution pattern against the H+ concentration. This demonstrates the capability of this model to investigate the complex CO2 reactive transport in real 3D heterogeneous porous media.

  16. Rapid Diffusion of Green Fluorescent Protein in the Mitochondrial Matrix

    PubMed Central

    Partikian, Arthur; Ölveczky, Bence; Swaminathan, R.; Li, Yuxin; Verkman, A.S.

    1998-01-01

    Abstract. It is thought that the high protein density in the mitochondrial matrix results in severely restricted solute diffusion and metabolite channeling from one enzyme to another without free aqueous-phase diffusion. To test this hypothesis, we measured the diffusion of green fluorescent protein (GFP) expressed in the mitochondrial matrix of fibroblast, liver, skeletal muscle, and epithelial cell lines. Spot photobleaching of GFP with a 100× objective (0.8-μm spot diam) gave half-times for fluorescence recovery of 15–19 ms with >90% of the GFP mobile. As predicted for aqueous-phase diffusion in a confined compartment, fluorescence recovery was slowed or abolished by increased laser spot size or bleach time, and by paraformaldehyde fixation. Quantitative analysis of bleach data using a mathematical model of matrix diffusion gave GFP diffusion coefficients of 2–3 × 10−7 cm2/s, only three to fourfold less than that for GFP diffusion in water. In contrast, little recovery was found for bleaching of GFP in fusion with subunits of the fatty acid β-oxidation multienzyme complex that are normally present in the matrix. Measurement of the rotation of unconjugated GFP by time-resolved anisotropy gave a rotational correlation time of 23.3 ± 1 ns, similar to that of 20 ns for GFP rotation in water. A rapid rotational correlation time of 325 ps was also found for a small fluorescent probe (BCECF, ∼0.5 kD) in the matrix of isolated liver mitochondria. The rapid and unrestricted diffusion of solutes in the mitochondrial matrix suggests that metabolite channeling may not be required to overcome diffusive barriers. We propose that the clustering of matrix enzymes in membrane-associated complexes might serve to establish a relatively uncrowded aqueous space in which solutes can freely diffuse. PMID:9472034

  17. Effect of Polydispersity on Diffusion in Random Obstacle Matrices

    NASA Astrophysics Data System (ADS)

    Cho, Hyun Woo; Kwon, Gyemin; Sung, Bong June; Yethiraj, Arun

    2012-10-01

    The dynamics of tracers in disordered matrices is of interest in a number of diverse areas of physics such as the biophysics of crowding in cells and cell membranes, and the diffusion of fluids in porous media. To a good approximation the matrices can be modeled as a collection of spatially frozen particles. In this Letter, we consider the effect of polydispersity (in size) of the matrix particles on the dynamics of tracers. We study a two dimensional system of hard disks diffusing in a sea of hard disk obstacles, for different values of the polydispersity of the matrix. We find that for a given average size and area fraction, the diffusion of tracers is very sensitive to the polydispersity. We calculate the pore percolation threshold using Apollonius diagrams. The diffusion constant, D, follows a scaling relation D˜(ϕc-ϕm)μ-β for all values of the polydispersity, where ϕm is the area fraction and ϕc is the value of ϕm at the percolation threshold.

  18. Effect of polydispersity on diffusion in random obstacle matrices.

    PubMed

    Cho, Hyun Woo; Kwon, Gyemin; Sung, Bong June; Yethiraj, Arun

    2012-10-12

    The dynamics of tracers in disordered matrices is of interest in a number of diverse areas of physics such as the biophysics of crowding in cells and cell membranes, and the diffusion of fluids in porous media. To a good approximation the matrices can be modeled as a collection of spatially frozen particles. In this Letter, we consider the effect of polydispersity (in size) of the matrix particles on the dynamics of tracers. We study a two dimensional system of hard disks diffusing in a sea of hard disk obstacles, for different values of the polydispersity of the matrix. We find that for a given average size and area fraction, the diffusion of tracers is very sensitive to the polydispersity. We calculate the pore percolation threshold using Apollonius diagrams. The diffusion constant, D, follows a scaling relation D~(φ(c)-φ(m))(μ-β) for all values of the polydispersity, where φ(m) is the area fraction and φ(c) is the value of φ(m) at the percolation threshold.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duranty, Edward R.; Baschnagel, Jörg; Dadmun, Mark

    Copolymers are commonly used as interface modifiers that allow for the compatibilization of polymer components in a blend. For copolymers to function as a compatibilizer, they must diffuse through the matrix of the blend to the interface between the two blend components. The diffusivity of a copolymer in a blend matrix therefore becomes important in determining good candidates for use as compatibilizers. In this paper, coarse-grained Monte Carlo simulations using the bond fluctuation model modified with an overlap penalty have been developed to study the diffusive behavior of PS/PMMA random copolymers in a PMMA homopolymer blend. The simulations vary themore » connectivity between different monomers, the thermodynamic interactions between the monomers which manifest within a chain, and between copolymer and homopolymer matrix and define the monomer friction coefficient of each component independently, allowing for the determination of the combined effect of these parameters on copolymer chain diffusion. Finally, the results of this work indicate that PS-r-PMMA copolymer diffusion is not linearly dependent on the copolymer composition on a logarithmic scale, but its diffusion is a balance of the kinetics governed by the dominant motion of the faster styrene monomers and thermodynamics, which are governed by the concentration of styrene monomer within a given monomer’s local volume.« less

  20. Role of tumor–host interactions in interstitial diffusion of macromolecules: Cranial vs. subcutaneous tumors

    PubMed Central

    Pluen, Alain; Boucher, Yves; Ramanujan, Saroja; McKee, Trevor D.; Gohongi, Takeshi; di Tomaso, Emmanuelle; Brown, Edward B.; Izumi, Yotaro; Campbell, Robert B.; Berk, David A.; Jain, Rakesh K.

    2001-01-01

    The large size of many novel therapeutics impairs their transport through the tumor extracellular matrix and thus limits their therapeutic effectiveness. We propose that extracellular matrix composition, structure, and distribution determine the transport properties in tumors. Furthermore, because the characteristics of the extracellular matrix largely depend on the tumor–host interactions, we postulate that diffusion of macromolecules will vary with tumor type as well as anatomical location. Diffusion coefficients of macromolecules and liposomes in tumors growing in cranial windows (CWs) and dorsal chambers (DCs) were measured by fluorescence recovery after photobleaching. For the same tumor types, diffusion of large molecules was significantly faster in CW than in DC tumors. The greater diffusional hindrance in DC tumors was correlated with higher levels of collagen type I and its organization into fibrils. For molecules with diameters comparable to the interfibrillar space the diffusion was 5- to 10-fold slower in DC than in CW tumors. The slower diffusion in DC tumors was associated with a higher density of host stromal cells that synthesize and organize collagen type I. Our results point to the necessity of developing site-specific drug carriers to improve the delivery of molecular medicine to solid tumors. PMID:11274375

  1. Evaluation of the applicability of the dual‐domain mass transfer model in porous media containing connected high‐conductivity channels

    USGS Publications Warehouse

    Liu, Gaisheng; Zheng, Chunmiao; Gorelick, Steven M.

    2007-01-01

    This paper evaluates the dual‐domain mass transfer (DDMT) model to represent transport processes when small‐scale high‐conductivity (K) preferential flow paths (PFPs) are present in a homogenous porous media matrix. The effects of PFPs upon solute transport were examined through detailed numerical experiments involving different realizations of PFP networks, PFP/matrix conductivity contrasts varying from 10:1 to 200:1, different magnitudes of effective conductivities, and a range of molecular diffusion coefficients. Results suggest that the DDMT model can reproduce both the near‐source peak and the downstream low‐concentration spreading observed in the embedded dendritic network when there are large conductivity contrasts between high‐K PFPs and the low‐K matrix. The accuracy of the DDMT model is also affected by the geometry of PFP networks and by the relative significance of the diffusion process in the network‐matrix system.

  2. Analytical prediction of moisture absorption/desorption in resin matrix composites exposed to aircraft environments

    NASA Technical Reports Server (NTRS)

    Unnam, J.; Tenney, D. R.

    1977-01-01

    The moisture absorption/desorption behavior of resin matrix composites was mathematically modeled by classical diffusion theory using an effective diffusion coefficient. Good agreement was found between calculated moisture content and published data for T300/5208 graphite fiber reinforced epoxy matrix composite. Weather Bureau data for Langley Air Force Base and Norfolk, Va., were used to calculate the amount of moisture a T300/5208 composite panel would contain if exposed outdoors. Results obtained by using average monthly weather data for several high aircraft usage locations around the world suggest that, except for desert areas, geographical locations should have only minimal effect on the moisture absorption level reached in composites. Solar radiation data together with cloud and wind information were included in the analysis to estimate an effective temperature of the composite panel during ground exposure.

  3. Diffusion of copolymers composed of monomers with drastically different friction factors in copolymer/homopolymer blends

    DOE PAGES

    Duranty, Edward R.; Baschnagel, Jörg; Dadmun, Mark

    2017-02-07

    Copolymers are commonly used as interface modifiers that allow for the compatibilization of polymer components in a blend. For copolymers to function as a compatibilizer, they must diffuse through the matrix of the blend to the interface between the two blend components. The diffusivity of a copolymer in a blend matrix therefore becomes important in determining good candidates for use as compatibilizers. In this paper, coarse-grained Monte Carlo simulations using the bond fluctuation model modified with an overlap penalty have been developed to study the diffusive behavior of PS/PMMA random copolymers in a PMMA homopolymer blend. The simulations vary themore » connectivity between different monomers, the thermodynamic interactions between the monomers which manifest within a chain, and between copolymer and homopolymer matrix and define the monomer friction coefficient of each component independently, allowing for the determination of the combined effect of these parameters on copolymer chain diffusion. Finally, the results of this work indicate that PS-r-PMMA copolymer diffusion is not linearly dependent on the copolymer composition on a logarithmic scale, but its diffusion is a balance of the kinetics governed by the dominant motion of the faster styrene monomers and thermodynamics, which are governed by the concentration of styrene monomer within a given monomer’s local volume.« less

  4. Helium measurements of pore fluids obtained from the San Andreas Fault Observatory at Depth (SAFOD, USA) drill cores

    NASA Astrophysics Data System (ADS)

    Ali, S.; Stute, M.; Torgersen, T.; Winckler, G.; Kennedy, B. M.

    2011-02-01

    4He accumulated in fluids is a well established geochemical tracer used to study crustal fluid dynamics. Direct fluid samples are not always collectable; therefore, a method to extract rare gases from matrix fluids of whole rocks by diffusion has been adapted. Helium was measured on matrix fluids extracted from sandstones and mudstones recovered during the San Andreas Fault Observatory at Depth (SAFOD) drilling in California, USA. Samples were typically collected as subcores or from drillcore fragments. Helium concentration and isotope ratios were measured 4-6 times on each sample, and indicate a bulk 4He diffusion coefficient of 3.5 ± 1.3 × 10-8 cm2 s-1 at 21°C, compared to previously published diffusion coefficients of 1.2 × 10-18 cm2 s-1 (21°C) to 3.0 × 10-15 cm2 s-1 (150°C) in the sands and clays. Correcting the diffusion coefficient of 4Hewater for matrix porosity (˜3%) and tortuosity (˜6-13) produces effective diffusion coefficients of 1 × 10-8 cm2 s-1 (21°C) and 1 × 10-7 (120°C), effectively isolating pore fluid 4He from the 4He contained in the rock matrix. Model calculations indicate that <6% of helium initially dissolved in pore fluids was lost during the sampling process. Complete and quantitative extraction of the pore fluids provide minimum in situ porosity values for sandstones 2.8 ± 0.4% (SD, n = 4) and mudstones 3.1 ± 0.8% (SD, n = 4).

  5. Reaction-diffusion basis of retroviral infectivity

    NASA Astrophysics Data System (ADS)

    Sadiq, S. Kashif

    2016-11-01

    Retrovirus particle (virion) infectivity requires diffusion and clustering of multiple transmembrane envelope proteins (Env3) on the virion exterior, yet is triggered by protease-dependent degradation of a partially occluding, membrane-bound Gag polyprotein lattice on the virion interior. The physical mechanism underlying such coupling is unclear and only indirectly accessible via experiment. Modelling stands to provide insight but the required spatio-temporal range far exceeds current accessibility by all-atom or even coarse-grained molecular dynamics simulations. Nor do such approaches account for chemical reactions, while conversely, reaction kinetics approaches handle neither diffusion nor clustering. Here, a recently developed multiscale approach is considered that applies an ultra-coarse-graining scheme to treat entire proteins at near-single particle resolution, but which also couples chemical reactions with diffusion and interactions. A model is developed of Env3 molecules embedded in a truncated Gag lattice composed of membrane-bound matrix proteins linked to capsid subunits, with freely diffusing protease molecules. Simulations suggest that in the presence of Gag but in the absence of lateral lattice-forming interactions, Env3 diffuses comparably to Gag-absent Env3. Initial immobility of Env3 is conferred through lateral caging by matrix trimers vertically coupled to the underlying hexameric capsid layer. Gag cleavage by protease vertically decouples the matrix and capsid layers, induces both matrix and Env3 diffusion, and permits Env3 clustering. Spreading across the entire membrane surface reduces crowding, in turn, enhancing the effect and promoting infectivity. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  6. Effective matrix diffusion in kilometer‐scale transport in fractured crystalline rock

    USGS Publications Warehouse

    Shapiro, Allen M.

    2001-01-01

    Concentrations of tritium (3H) and dichlorodifluoromethane (CFC‐12) in water samples taken from glacial drift and fractured crystalline rock over 4 km2 in central New Hampshire are interpreted to identify a conceptual model of matrix diffusion and the magnitude of the diffusion coefficient. Dispersion and mass transfer to and from fractures has affected the 3H concentration to the extent that the peak 3H concentration of the 1960s is no longer distinguishable. Because of heterogeneity in the bedrock the sparsely distributed chemical data do not warrant a three‐dimensional transport model. Instead, a one‐dimensional model of CFC‐12 and 3H migration along flow lines in the glacial drift and bedrock is used to place bounds on the processes affecting kilometer‐scale transport, arid model parameters are varied to reproduce the measured relation between 3H and CFC‐12, rather than their spatial distributions. A model of mass exchange to and from fractures that is dependent on the time‐varying concentration gradient at fracture surfaces qualitatively reproduces the measured relation between 3H and CFC‐12 with an upper bound for the fracture dispersivity approximately equal to 250 m and a lower bound for the effective matrix diffusion coefficient equal to 1 m2 yr−1. The diffusion coefficient at the kilometer scale is at least 3 orders of magnitude greater than laboratory estimates of diffusion in crystalline rock. The large diffusion coefficient indicates that diffusion into an immobile fluid phase (rock matrix) is masked at the kilometer scale by advective mass exchange between fractures with large contrasts in trarismissivity. The measured transmissivity of fractures in the study area varies over more than 6 orders of magnitude. Advective mass exchange from high‐permeability fractures to low‐permeability fractures results in short migration distances of a chemical constituent in low‐permeability fractures over an extended period of time before reentering high‐permeability fractures; viewed at the kilometer scale, this process is analogous to the chemical constituent diffusing into and out of an immobile fluid phase.

  7. Multi-Dimensional Asymptotically Stable 4th Order Accurate Schemes for the Diffusion Equation

    NASA Technical Reports Server (NTRS)

    Abarbanel, Saul; Ditkowski, Adi

    1996-01-01

    An algorithm is presented which solves the multi-dimensional diffusion equation on co mplex shapes to 4th-order accuracy and is asymptotically stable in time. This bounded-error result is achieved by constructing, on a rectangular grid, a differentiation matrix whose symmetric part is negative definite. The differentiation matrix accounts for the Dirichlet boundary condition by imposing penalty like terms. Numerical examples in 2-D show that the method is effective even where standard schemes, stable by traditional definitions fail.

  8. Comparison of Experimental Methods for Estimating Matrix Diffusion Coefficients for Contaminant Transport Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Telfeyan, Katherine Christina; Ware, Stuart Douglas; Reimus, Paul William

    Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%,more » and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.« less

  9. Numerical examination of the factors controlling DNAPL migration through a single fracture.

    PubMed

    Reynolds, D A; Kueper, B H

    2002-01-01

    The migration of five dense nonaqueous phase liquids (DNAPLs) through a single fracture in a clay aquitard was numerically simulated with the use of a compositional simulator. The effects of fracture aperture, fracture dip, matrix porosity, and matrix organic carbon content on the migration of chlorobenzene, 1,2-dichloroethylene, trichloroethylene, tetra-chloroethylene, and 1,2-dibromoethane were examined. Boundary conditions were chosen such that DNAPL entry into the system was allowed to vary according to the stresses applied. The aperture is the most important factor of those studied controlling the migration rate of DNAPL through a single fracture embedded in a clay matrix. Loss of mass to the matrix through diffusion does not significantly retard the migration rate of the DNAPL, particularly in larger aperture fractures (e.g., 50 microm). With time, the ratio of diffusive loss to the matrix to DNAPL flux into the fracture approaches an asymptotic value lower than unity. The implication is that matrix diffusion cannot arrest the migration of DNAPL in a single fracture. The complex relationships between density, viscosity, and solubility that, to some extent, govern the migration of DNAPL through these systems prevent accurate predictions without the use of numerical models. The contamination potential of the migrating DNAPL is significantly increased through the transfer of mass to the matrix. The occurrence of opposite concentration gradients within the matrix can cause dissolved phase contamination to exist in the system for more than 1000 years after the DNAPL has been completely removed from the fracture.

  10. Tracer Movement in a Single Fissure in Granitic Rock: Some Experimental Results and Their Interpretation

    NASA Astrophysics Data System (ADS)

    Neretnieks, Ivars; Eriksen, Tryggve; TäHtinen, PäIvi

    1982-08-01

    Radionuclide migration was studied in a natural fissure in a granite core. The fissure was oriented parallel to the axis in a cylindrical core 30 cm long and 20 cm in diameter. The traced solution was injected at one end of the core and collected at the other. Breakthrough curves were obtained for the nonsorbing tracers, tritiated water, and a large-molecular-weight lignosulphonate molecule and for the sorbing tracers, cesium and strontium. From the breakthrough curves for the nonsorbing tracers it could be concluded that channeling occurs in the single fissure. A `dispersion' model based on channeling is presented. The results from the sorbing tracers indicate that there is substantial diffusion into and sorption in the rock matrix. Sorption on the surface of the fissure also accounts for a part of the retardation effect of the sorbing species. A model which includes the mechanisms of channeling, surface sorption, matrix diffusion, and matrix sorption is presented. The experimental breakthrough curves can be fitted fairly well by this model by use of independently obtained data on diffusivities and matrix sorption.

  11. Improved Dot Diffusion For Image Halftoning

    DTIC Science & Technology

    1999-01-01

    The dot diffusion method for digital halftoning has the advantage of parallelism unlike the error diffusion method. The method was recently improved...by optimization of the so-called class matrix so that the resulting halftones are comparable to the error diffused halftones . In this paper we will...first review the dot diffusion method. Previously, 82 class matrices were used for dot diffusion method. A problem with this size of class matrix is

  12. Diffusion of rod-like nanoparticles in non-adhesive and adhesive porous polymeric gels

    NASA Astrophysics Data System (ADS)

    Wang, Jiuling; Yang, Yiwei; Yu, Miaorong; Hu, Guoqing; Gan, Yong; Gao, Huajian; Shi, Xinghua

    2018-03-01

    It is known that rod-like nanoparticles (NPs) can achieve higher diffusivity than their spherical counterparts in biological porous media such as mucus and tumor interstitial matrix, but the underlying mechanisms still remain elusive. Here, we present a joint experimental and theoretical study to show that the aspect ratio (AR) of NPs and their adhesive interactions with the host medium play key roles in such anomalous diffusion behaviors of nanorods. In an adhesive polymer solution/gel (e.g., mucus), hopping diffusion enables nanorods to achieve higher diffusivity than spherical NPs with diameters equal to the minor axis of the rods, and there exists an optimal AR that leads to maximum diffusivity. In contrast, the diffusivity of nanorods decreases monotonically with increasing AR in a non-adhesive polymer solution/gel (e.g., hydroxyethyl cellulose, HEC). Our theoretical model, which captures all the experimental observations, generalizes the so-called obstruction-scaling model by incorporating the effects of the NPs/matrix interaction via the mean first passage time (MFPT) theory. This work reveals the physical origin of the anomalous diffusion behaviors of rod-like NPs in biological gels and may provide guidelines for a range of applications that involve NPs diffusion in complex porous media.

  13. Notch sensitivity and stress redistribution in three ceramic-matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackin, T.J.; He, M.Y.; Evans, A.G.

    Fiber-reinforced ceramic-matrix composites (CMCs) depend upon inelastic mechanisms to diffuse stress concentrations associated with holes, notches, and cracks. These mechanisms consist of fiber debonding and pullout, multiple matrix cracking, and shear band formation. In order to understand these effects, experiments have bee conducted on several double-edge-notched CMCs that exhibit different stress redistribution mechanisms. Stresses have been measured an d mechanisms identified by using a combination of methods including X0-ray imaging, edge replication, and thermoelastic analysis. Multiple matrix cracking was found to be the most effective stress redistribution mechanism.

  14. Effects of added surfactant on swelling and molecular transport in drug-loaded tablets based on hydrophobically modified poly(acrylic acid).

    PubMed

    Knöös, Patrik; Wahlgren, Marie; Topgaard, Daniel; Ulvenlund, Stefan; Piculell, Lennart

    2014-08-14

    A combination of NMR chemical shift imaging and self-diffusion experiments is shown to give a detailed molecular picture of the events that occur when tablets of hydrophobically modified poly(acrylic acid) loaded with a drug (griseofulvin) swell in water in the presence or absence of surfactant (sodium octylbenzenesulfonate). The hydrophobic substituents on the polymer bind and trap the surfactant molecules in mixed micelles, leading to a slow effective surfactant transport that occurs via a small fraction of individually dissolved surfactant molecules in the water domain. Because of the efficient binding of surfactant, the penetrating water is found to diffuse past the penetrating surfactant into the polymer matrix, pushing the surfactant front outward as the matrix swells. The added surfactant has little effect on the transport of drug because both undissolved solid drug and surfactant-solubilized drug function as reservoirs that essentially follow the polymer as it swells. However, the added surfactant nevertheless has a strong indirect effect on the release of griseofulvin, through the effect of the surfactant on the solubility and erosion of the polymer matrix. The surfactant effectively solubilizes the hydrophobically modified polymer, making it fully miscible with water, leading to a more pronounced swelling and a slower erosion of the polymer matrix.

  15. Modeling Single Well Injection-Withdrawal (SWIW) Tests for Characterization of Complex Fracture-Matrix Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cotte, F.P.; Doughty, C.; Birkholzer, J.

    2010-11-01

    The ability to reliably predict flow and transport in fractured porous rock is an essential condition for performance evaluation of geologic (underground) nuclear waste repositories. In this report, a suite of programs (TRIPOLY code) for calculating and analyzing flow and transport in two-dimensional fracture-matrix systems is used to model single-well injection-withdrawal (SWIW) tracer tests. The SWIW test, a tracer test using one well, is proposed as a useful means of collecting data for site characterization, as well as estimating parameters relevant to tracer diffusion and sorption. After some specific code adaptations, we numerically generated a complex fracture-matrix system for computationmore » of steady-state flow and tracer advection and dispersion in the fracture network, along with solute exchange processes between the fractures and the porous matrix. We then conducted simulations for a hypothetical but workable SWIW test design and completed parameter sensitivity studies on three physical parameters of the rock matrix - namely porosity, diffusion coefficient, and retardation coefficient - in order to investigate their impact on the fracture-matrix solute exchange process. Hydraulic fracturing, or hydrofracking, is also modeled in this study, in two different ways: (1) by increasing the hydraulic aperture for flow in existing fractures and (2) by adding a new set of fractures to the field. The results of all these different tests are analyzed by studying the population of matrix blocks, the tracer spatial distribution, and the breakthrough curves (BTCs) obtained, while performing mass-balance checks and being careful to avoid some numerical mistakes that could occur. This study clearly demonstrates the importance of matrix effects in the solute transport process, with the sensitivity studies illustrating the increased importance of the matrix in providing a retardation mechanism for radionuclides as matrix porosity, diffusion coefficient, or retardation coefficient increase. Interestingly, model results before and after hydrofracking are insensitive to adding more fractures, while slightly more sensitive to aperture increase, making SWIW tests a possible means of discriminating between these two potential hydrofracking effects. Finally, we investigate the possibility of inferring relevant information regarding the fracture-matrix system physical parameters from the BTCs obtained during SWIW testing.« less

  16. Measurement of Diffusion in Entangled Rod-Coil Triblock Copolymers

    NASA Astrophysics Data System (ADS)

    Olsen, B. D.; Wang, M.

    2012-02-01

    Although rod-coil block copolymers have attracted increasing attention for functional nanomaterials, their dynamics relevant to self-assembly and processing have not been widely investigated. Because the rod and coil blocks have different reptation behavior and persistence lengths, the mechanism by which block copolymers will diffuse is unclear. In order to understand the effect of the rigid block on reptation, tracer diffusion of a coil-rod-coil block copolymer through an entangled coil polymer matrix was experimentally measured. A monodisperse, high molecular weight coil-rod-coil triblock was synthesized using artificial protein engineering to prepare the helical rod and bioconjugaiton of poly(ethylene glycol) coils to produce the final triblock. Diffusion measurements were performed using Forced Rayleigh scattering (FRS), at varying ratios of the rod length to entanglement length, where genetic engineering is used to control the protein rod length and the polymer matrix concentration controls the entanglement length. As compared to PEO homopolymer tracers, the coil-rod-coil triblocks show markedly slower diffusion, suggesting that the mismatch between rod and coil reptation mechanisms results in hindered diffusion of these molecules in the entangled state.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mermigkis, Panagiotis G.; Tsalikis, Dimitrios G.; Institute of Chemical Engineering and High Temperature Chemical Processes, GR 26500 Patras

    A kinetic Monte Carlo (kMC) simulation algorithm is developed for computing the effective diffusivity of water molecules in a poly(methyl methacrylate) (PMMA) matrix containing carbon nanotubes (CNTs) at several loadings. The simulations are conducted on a cubic lattice to the bonds of which rate constants are assigned governing the elementary jump events of water molecules from one lattice site to another. Lattice sites belonging to PMMA domains of the membrane are assigned different rates than lattice sites belonging to CNT domains. Values of these two rate constants are extracted from available numerical data for water diffusivity within a PMMA matrixmore » and a CNT pre-computed on the basis of independent atomistic molecular dynamics simulations, which show that water diffusivity in CNTs is 3 orders of magnitude faster than in PMMA. Our discrete-space, continuum-time kMC simulation results for several PMMA-CNT nanocomposite membranes (characterized by different values of CNT length L and diameter D and by different loadings of the matrix in CNTs) demonstrate that the overall or effective diffusivity, D{sub eff}, of water in the entire polymeric membrane is of the same order of magnitude as its diffusivity in PMMA domains and increases only linearly with the concentration C (vol. %) in nanotubes. For a constant value of the concentration C, D{sub eff} is found to vary practically linearly also with the CNT aspect ratio L/D. The kMC data allow us to propose a simple bilinear expression for D{sub eff} as a function of C and L/D that can describe the numerical data for water mobility in the membrane extremely accurately. Additional simulations with two different CNT configurations (completely random versus aligned) show that CNT orientation in the polymeric matrix has only a minor effect on D{sub eff} (as long as CNTs do not fully penetrate the membrane). We have also extensively analyzed and quantified sublinear (anomalous) diffusive phenomena over small to moderate times and correlated them with the time needed for penetrant water molecules to explore the available large, fast-diffusing CNT pores before Fickian diffusion is reached.« less

  18. Multicomponent diffusion in basaltic melts at 1350 °C

    NASA Astrophysics Data System (ADS)

    Guo, Chenghuan; Zhang, Youxue

    2018-05-01

    Nine successful diffusion couple experiments were conducted in an 8-component SiO2-TiO2-Al2O3-FeO-MgO-CaO-Na2O-K2O system at ∼1350 °C and at 1 GPa, to study multicomponent diffusion in basaltic melts. At least 3 traverses were measured to obtain diffusion profiles for each experiment. Multicomponent diffusion matrix at 1350 °C was obtained by simultaneously fitting diffusion profiles of diffusion couple experiments. Furthermore, in order to better constrain the diffusion matrix and reconcile mineral dissolution data, mineral dissolution experiments in the literature and diffusion couple experiments from this study, were fit together. All features of diffusion profiles in both diffusion couple and mineral dissolution experiments were well reproduced by the diffusion matrix. Diffusion mechanism is inferred from eigenvectors of the diffusion matrix, and it shows that the diffusive exchange between network-formers SiO2 and Al2O3 is the slowest, the exchange of SiO2 with other oxide components is the second slowest with an eigenvalue that is only ∼10% larger, then the exchange between divalent oxide components and all the other oxide components is the third slowest with an eigenvalue that is twice the smallest eigenvalue, then the exchange of FeO + K2O with all the other oxide components is the fourth slowest with an eigenvalue that is 5 times the smallest eigenvalue, then the exchange of MgO with FeO + CaO is the third fastest with an eigenvalue that is 6.3 times the smallest eigenvalue, then the exchange of CaO + K2O with all the other oxide components is the second fastest with an eigenvalue that is 7.5 times the smallest eigenvalue, and the exchange of Na2O with all other oxide components is the fastest with an eigenvalue that is 31 times the smallest eigenvalue. The slowest and fastest eigenvectors are consistent with those for simpler systems in most literature. The obtained diffusion matrix was successfully applied to predict diffusion profiles during mineral dissolution in basaltic melts.

  19. Molecular dynamics simulation of diffusion of gases in a carbon-nanotube-polymer composite

    NASA Astrophysics Data System (ADS)

    Lim, Seong Y.; Sahimi, Muhammad; Tsotsis, Theodore T.; Kim, Nayong

    2007-07-01

    Extensive molecular dynamics (MD) simulations were carried out to compute the solubilities and self-diffusivities of CO2 and CH4 in amorphous polyetherimide (PEI) and mixed-matrix PEI generated by inserting single-walled carbon nanotubes into the polymer. Atomistic models of PEI and its composites were generated using energy minimizations, MD simulations, and the polymer-consistent force field. Two types of polymer composite were generated by inserting (7,0) and (12,0) zigzag carbon nanotubes into the PEI structure. The morphologies of PEI and its composites were characterized by their densities, radial distribution functions, and the accessible free volumes, which were computed with probe molecules of different sizes. The distributions of the cavity volumes were computed using the Voronoi tessellation method. The computed self-diffusivities of the gases in the polymer composites are much larger than those in pure PEI. We find, however, that the increase is not due to diffusion of the gases through the nanotubes which have smooth energy surfaces and, therefore, provide fast transport paths. Instead, the MD simulations indicate a squeezing effect of the nanotubes on the polymer matrix that changes the composite polymers’ free-volume distributions and makes them more sharply peaked. The presence of nanotubes also creates several cavities with large volumes that give rise to larger diffusivities in the polymer composites. This effect is due to the repulsive interactions between the polymer and the nanotubes. The solubilities of the gases in the polymer composites are also larger than those in pure PEI, hence indicating larger gas permeabilities for mixed-matrix PEI than PEI itself.

  20. Diffusion in Brain Extracellular Space

    PubMed Central

    Syková, Eva; Nicholson, Charles

    2009-01-01

    Diffusion in the extracellular space (ECS) of the brain is constrained by the volume fraction and the tortuosity and a modified diffusion equation represents the transport behavior of many molecules in the brain. Deviations from the equation reveal loss of molecules across the blood-brain barrier, through cellular uptake, binding or other mechanisms. Early diffusion measurements used radiolabeled sucrose and other tracers. Presently, the real-time iontophoresis (RTI) method is employed for small ions and the integrative optical imaging (IOI) method for fluorescent macromolecules, including dextrans or proteins. Theoretical models and simulations of the ECS have explored the influence of ECS geometry, effects of dead-space microdomains, extracellular matrix and interaction of macromolecules with ECS channels. Extensive experimental studies with the RTI method employing the cation tetramethylammonium (TMA) in normal brain tissue show that the volume fraction of the ECS typically is about 20% and the tortuosity about 1.6 (i.e. free diffusion coefficient of TMA is reduced by 2.6), although there are regional variations. These parameters change during development and aging. Diffusion properties have been characterized in several interventions, including brain stimulation, osmotic challenge and knockout of extracellular matrix components. Measurements have also been made during ischemia, in models of Alzheimer's and Parkinson's diseases and in human gliomas. Overall, these studies improve our conception of ECS structure and the roles of glia and extracellular matrix in modulating the ECS microenvironment. Knowledge of ECS diffusion properties are valuable in contexts ranging from understanding extrasynaptic volume transmission to the development of paradigms for drug delivery to the brain. PMID:18923183

  1. Modeling and experiments for the time-dependent diffusion coefficient during methane desorption from coal

    NASA Astrophysics Data System (ADS)

    Cheng-Wu, Li; Hong-Lai, Xue; Cheng, Guan; Wen-biao, Liu

    2018-04-01

    Statistical analysis shows that in the coal matrix, the diffusion coefficient for methane is time-varying, and its integral satisfies the formula μt κ /(1 + β κ ). Therefore, a so-called dynamic diffusion coefficient model (DDC model) is developed. To verify the suitability and accuracy of the DDC model, a series of gas diffusion experiments were conducted using coal particles of different sizes. The results show that the experimental data can be accurately described by the DDC and bidisperse models, but the fit to the DDC model is slightly better. For all coal samples, as time increases, the effective diffusion coefficient first shows a sudden drop, followed by a gradual decrease before stabilizing at longer times. The effective diffusion coefficient has a negative relationship with the size of the coal particle. Finally, the relationship between the constants of the DDC model and the effective diffusion coefficient is discussed. The constant α (μ/R 2 ) denotes the effective coefficient at the initial time, and the constants κ and β control the attenuation characteristic of the effective diffusion coefficient.

  2. Diffusion of tricarboxylic acid cycle enzymes in the mitochondrial matrix in vivo. Evidence for restricted mobility of a multienzyme complex.

    PubMed

    Haggie, Peter M; Verkman, A S

    2002-10-25

    It has been proposed that enzymes in many metabolic pathways, including the tricarboxylic acid cycle in the mitochondrial matrix, are physically associated to facilitate substrate channeling and overcome diffusive barriers. We have used fluorescence recovery after photobleaching to measure the diffusional mobilities of chimeras consisting of green fluorescent protein (GFP) fused to the C terminus of four tricarboxylic acid cycle enzymes: malate dehydrogenase, citrate synthase, isocitrate dehydrogenase, and succinyl-CoA synthetase. The GFP-enzyme chimeras were localized selectively in the mitochondrial matrix in transfected Chinese hamster ovary (CHO) and COS7 cells. Laser photobleaching using a 0.7-microm diameter spot demonstrated restricted diffusion of the GFP-enzyme chimeras. Interestingly, all four chimeras had similar diffusional characteristics, approximately 45% of each chimera was mobile and had a diffusion coefficient of 4 x 10(-8) cm(2)/s. In contrast, unconjugated GFP in the mitochondrial matrix (targeted using COX8 leader sequence) diffused freely (nearly 100% mobility) with a greater diffusion coefficient of 20 x 10(-8) cm(2)/s. The mobility of the GFP-enzyme chimeras was insensitive to substrate source, ATP depletion, or inhibition of the adenine nucleotide translocase. These results indicate similar mobility characteristics of unrelated tricarboxylic acid cycle enzymes having different sizes and physical properties, providing biophysical evidence for a diffusible multienzyme complex in the mitochondrial matrix.

  3. Transfer matrix method for four-flux radiative transfer.

    PubMed

    Slovick, Brian; Flom, Zachary; Zipp, Lucas; Krishnamurthy, Srini

    2017-07-20

    We develop a transfer matrix method for four-flux radiative transfer, which is ideally suited for studying transport through multiple scattering layers. The model predicts the specular and diffuse reflection and transmission of multilayer composite films, including interface reflections, for diffuse or collimated incidence. For spherical particles in the diffusion approximation, we derive closed-form expressions for the matrix coefficients and show remarkable agreement with numerical Monte Carlo simulations for a range of absorption values and film thicknesses, and for an example multilayer slab.

  4. Nonlinear optical susceptibilities in the diffusion modified AlxGa1-xN/GaN single quantum well

    NASA Astrophysics Data System (ADS)

    Das, T.; Panda, S.; Panda, B. K.

    2018-05-01

    Under thermal treatment of the post growth AlGaN/GaN single quantum well, the diffusion of Al and Ga atoms across the interface is expected to form the diffusion modified quantum well with diffusion length as a quantitative parameter for diffusion. The modification of confining potential and position-dependent effective mass in the quantum well due to diffusion is calculated taking the Fick's law. The built-in electric field which arises from spontaneous and piezoelectric polarizations in the wurtzite structure is included in the effective mass equation. The electronic states are calculated from the effective mass equation using the finite difference method for several diffusion lengths. Since the effective well width decreases with increasing diffusion length, the energy levels increase with it. The intersubband energy spacing in the conduction band decreases with diffusion length due to built-in electric field and reduction of effective well width. The linear susceptibility for first-order and the nonlinear second-order and third-order susceptibilities are calculated using the compact density matrix approach taking only two levels. The calculated susceptibilities are red shifted with increase in diffusion lengths due to decrease in intersubband energy spacing.

  5. Method of making carbon fiber-carbon matrix reinforced ceramic composites

    NASA Technical Reports Server (NTRS)

    Williams, Brian (Inventor); Benander, Robert (Inventor)

    2007-01-01

    A method of making a carbon fiber-carbon matrix reinforced ceramic composite wherein the result is a carbon fiber-carbon matrix reinforcement is embedded within a ceramic matrix. The ceramic matrix does not penetrate into the carbon fiber-carbon matrix reinforcement to any significant degree. The carbide matrix is a formed in situ solid carbide of at least one metal having a melting point above about 1850 degrees centigrade. At least when the composite is intended to operate between approximately 1500 and 2000 degrees centigrade for extended periods of time the solid carbide with the embedded reinforcement is formed first by reaction infiltration. Molten silicon is then diffused into the carbide. The molten silicon diffuses preferentially into the carbide matrix but not to any significant degree into the carbon-carbon reinforcement. Where the composite is intended to operate between approximately 2000 and 2700 degrees centigrade for extended periods of time such diffusion of molten silicon into the carbide is optional and generally preferred, but not essential.

  6. Heterogeneous alternation of fractured rock driven by preferential carbonate dissolution

    NASA Astrophysics Data System (ADS)

    Wen, H.; Zhi, W.; Li, L.

    2016-12-01

    Understanding the alternation of fractured rock induced by geochemical reactions is critical for predicting the flow, solute transport and energy production in geosystems. Most existing studies on fracture alterations focus on rocks with single minerals where reactions occur at the fracture wall resulting in fracture aperture alteration while ignoring rock matrix properties (e.g. the formation and development of altered zones). In this work, we aimed to mechanistically understand the role of preferential calcite dissolution in the long-term evolution of fracture and rock matrix. We use direct simulation of physics-based reactive transport processes in an image of fractured rock at the resolution of tens of micrometers. Three numerical experiments were carried out with the same initial physical properties however different calcite content. Simulation results show that the formation and development of altered zones in the rock matrix is highly related to the abundance of fast-dissolving calcite. Abundant calcite (50% (v/v), calcite50) leads to a localized, thick zone of large porosity increase while low calcite content (10% (v/v), calcite10) creates an extended and narrow zone of small porosity increase resulting in surprisingly larger change in effective transport property. After 300 days of dissolution, although with relatively similar dissolved calcite mass and matrix porosity increase, effective matrix diffusion coefficients increase by 9.9 and 19.6 times in calcite50 and calcite10, respectively. In turn, calcite dissolution rates are directly limited by diffusive transport in the altered matrix and the shape of the altered zone. This work sheds light on the unique characteristics of reactive transport in fractured, mineralogically complex rocks that are different from those with single minerals (Wen et al., 2016). Reference: Wen, H., Li, L., Crandall, D. and Hakala, J.A. (2016) Where Lower Calcite Abundance Creates More Alteration: Enhanced Rock Matrix Diffusivity Induced by Preferential Carbonate Dissolution. Energy & Fuels.

  7. A novel physical eco-hydrological model concept for preferential flow based on experimental applications.

    NASA Astrophysics Data System (ADS)

    Jackisch, Conrad; van Schaik, Loes; Graeff, Thomas; Zehe, Erwin

    2014-05-01

    Preferential flow through macropores often determines hydrological characteristics - especially regarding runoff generation and fast transport of solutes. Macropore settings may yet be very different in nature and dynamics, depending on their origin. While biogenic structures follow activity cycles (e.g. earth worms) and population conditions (e.g. roots), pedogenic and geogenic structures may depend on water stress (e.g. cracks) or large events (e.g. flushed voids between skeleton and soil pipes) or simply persist (e.g. bedrock interface). On the one hand, such dynamic site characteristics can be observed in seasonal changes in its reaction to precipitation. On the other hand, sprinkling experiments accompanied by tracers or time-lapse 3D Ground-Penetrating-Radar are suitable tools to determine infiltration patterns and macropore configuration. However, model representation of the macropore-matrix system is still problematic, because models either rely on effective parameters (assuming well-mixed state) or on explicit advection strongly simplifying or neglecting interaction with the diffusive flow domain. Motivated by the dynamic nature of macropores, we present a novel model approach for interacting diffusive and advective water, solutes and energy transport in structured soils. It solely relies on scale- and process-aware observables. A representative set of macropores (data from sprinkling experiments) determines the process model scale through 1D advective domains. These are connected to a 2D matrix domain which is defined by pedo-physical retention properties. Water is represented as particles. Diffusive flow is governed by a 2D random walk of these particles while advection may take place in the macropore domain. Macropore-matrix interaction is computed as dissipation of the advective momentum of a particle by its experienced drag from the matrix domain. Through a representation of matrix and macropores as connected diffusive and advective domains for water transport we open up double domain concepts linking porescale physics to preferential macroscale fingerprints without effective parameterisation or mixing assumptions. Moreover, solute transport, energy balance aspects and lateral heterogeneity in soil moisture distribution are intrinsically captured. In addition, macropore and matrix domain settings may change over time based on physical and stochastic observations. The representativity concept allows scaleability from plotscale to the lower mesoscale.

  8. Energetics of multicomponent diffusion in molten CaO-Al 2O 3-SiO 2

    NASA Astrophysics Data System (ADS)

    Liang, Yan; Davis, Andrew M.

    2002-02-01

    The energetics of multicomponent diffusion in molten CaO-Al2O3-SiO2 (CAS) were examined experimentally at 1440 to 1650°C and 0.5 to 2 GPa. Two melt compositions were investigated: a haplodacitic melt (25 wt.% CaO, 15% Al2O3, and 60% SiO2) and a haplobasaltic melt (35% CaO, 20% Al2O3, and 45% SiO2). Diffusion matrices were measured in a mass-fixed frame of reference with simple oxides as end-member components and Al2O3 as a dependent variable. Chemical diffusion in molten CAS shows clear evidence of diffusive coupling among the components. The diffusive flux of SiO2 is significantly enhanced whenever there is a large CaO gradient that is oriented in a direction opposite to the SiO2 gradient. This coupling effect is more pronounced in the haplodacitic melt and is likely to be significant in natural magmas of rhyolitic to andesitic compositions. The relative magnitude of coupled chemical diffusion is not very sensitive to changes in temperature and pressure. To a good approximation, the measured diffusion matrices follow well-defined Arrhenius relationships with pressure and reciprocal temperature. Typically, a change in temperature of 100°C results in a relative change in the elements of diffusion matrix of 50 to 100%, whereas a change in pressure of 1 GPa introduces a relative change in elements of diffusion matrix of 4 to 6% for the haplobasalt, and less than 5% for the haplodacite. At a pressure of 1 GPa, the ratios between the major and minor eigenvalues of the diffusion matrix λ1/λ2 are not very sensitive to temperature variations, with an average of 5.5 ± 0.2 for the haplobasalt and 3.7 ± 0.6 for the haplodacite. The activation energies for the major and minor eigenvalues of the diffusion matrix are 215 ± 12 and 240 ± 21 kJ mol-1, respectively, for the haplodacite and 192 ± 8 and 217 ± 14 kJ mol-1 for the haplobasalt. These values are comparable to the activation energies for self-diffusion of calcium and silicon at the same melt compositions and pressure. At a fixed temperature of 1500°C, the ratios λ1/λ2 increase with the increase of pressure, with λ1/λ2 varying from 2.5 to 4.1 (0.5 to 1.3 GPa) for the haplodacite and 4 to 6.5 (0.5 to 2.0 GPa) for the haplobasalt. The activation volumes for the major and minor eigenvalues of the diffusion matrix are 0.31 ± 0.44 and 2.3 ± 0.8 cm3 mol-1, respectively, for the haplodacite and -1.48 ± 0.18 and -0.42 ± 0.24 cm3 mol-1 for the haplobasalt. These values are quite different from the activation volumes for self-diffusion of calcium and silicon at the same melt compositions and temperature. These differences in activation volumes between the two melts likely result from a difference in the structure and thermodynamic properties of the melt between the two compositions (e.g., partial molar volume). Applications of the measured diffusion matrices to quartz crystal dissolution in molten CAS reveal that the activation energy and activation volume for quartz dissolution are almost identical to the activation energy and activation volume for diffusion of the minor or slower eigencomponent of the diffusion matrix. This suggests that the diffusion rate of slow eigencomponent is the rate-limiting factor in isothermal crystal dissolution, a conclusion that is likely to be valid for crystal growth and dissolution in natural magmas when diffusion in liquid is the rate-limiting factor.

  9. Oxygen Diffusion and Reaction Kinetics in Continuous Fiber Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Eckel, Andrew J.; Cawley, James D.

    1999-01-01

    Previous stressed oxidation tests of C/SiC composites at elevated temperatures (350 C to 1500 C) and sustained stresses (69 MPa and 172 MPa) have led to the development of a finite difference cracked matrix model. The times to failure in the samples suggest oxidation occurred in two kinetic regimes defined by the rate controlling mechanisms (i.e. diffusion controlled and reaction controlled kinetics). Microstructural analysis revealed preferential oxidation along as-fabricated, matrix microcracks and also suggested two regimes of oxidation kinetics dependent on the oxidation temperature. Based on experimental results, observation, and theory, a finite difference model was developed. The model simulates the diffusion of oxygen into a matrix crack bridged by carbon fibers. The model facilitates the study of the relative importance of temperature, the reaction rate constant, and the diffusion coefficient on the overall oxidation kinetics.

  10. A spectrophotometer-based diffusivity assay reveals that diffusion hindrance of small molecules in extracellular matrix gels used in 3D cultures is dominated by viscous effects.

    PubMed

    Galgoczy, Roland; Pastor, Isabel; Colom, Adai; Giménez, Alicia; Mas, Francesc; Alcaraz, Jordi

    2014-08-01

    The design of 3D culture studies remains challenging due to the limited understanding of extracellular matrix (ECM)-dependent hindered diffusion and the lack of simple diffusivity assays. To address these limitations, we set up a cost-effective diffusivity assay based on a Transwell plate and the spectrophotometer of a Microplate Reader, which are readily accessible to cell biology groups. The spectrophotometer-based assay was used to assess the apparent diffusivity D of FITC-dextrans with molecular weight (4-70kDa) spanning the physiological range of signaling factors in a panel of acellular ECM gels including Matrigel, fibrin and type I collagen. Despite their technical differences, D data exhibited ∼15% relative difference with respect to FRAP measurements. Our results revealed that diffusion hindrance of small particles is controlled by the enhanced viscosity of the ECM gel in conformance with the Stokes-Einstein equation rather than by geometrical factors. Moreover, we provided a strong rationale that the enhanced ECM viscosity is largely contributed to by unassembled ECM macromolecules. We also reported that gels with the lowest D exhibited diffusion hindrance closest to the large physiologic hindrance of brain tissue, which has a typical pore size much smaller than ECM gels. Conversely, sparse gels (≤1mg/ml), which are extensively used in 3D cultures, failed to reproduce the hindered diffusion of tissues, thereby supporting that dense (but not sparse) ECM gels are suitable tissue surrogates in terms of macromolecular transport. Finally, the consequences of reduced diffusivity in terms of optimizing the design of 3D culture experiments were addressed in detail. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Multi-Shot Sensitivity-Encoded Diffusion Data Recovery Using Structured Low-Rank Matrix Completion (MUSSELS)

    PubMed Central

    Mani, Merry; Jacob, Mathews; Kelley, Douglas; Magnotta, Vincent

    2017-01-01

    Purpose To introduce a novel method for the recovery of multi-shot diffusion weighted (MS-DW) images from echo-planar imaging (EPI) acquisitions. Methods Current EPI-based MS-DW reconstruction methods rely on the explicit estimation of the motion-induced phase maps to recover artifact-free images. In the new formulation, the k-space data of the artifact-free DWI is recovered using a structured low-rank matrix completion scheme, which does not require explicit estimation of the phase maps. The structured matrix is obtained as the lifting of the multi-shot data. The smooth phase-modulations between shots manifest as null-space vectors of this matrix, which implies that the structured matrix is low-rank. The missing entries of the structured matrix are filled in using a nuclear-norm minimization algorithm subject to the data-consistency. The formulation enables the natural introduction of smoothness regularization, thus enabling implicit motion-compensated recovery of the MS-DW data. Results Our experiments on in-vivo data show effective removal of artifacts arising from inter-shot motion using the proposed method. The method is shown to achieve better reconstruction than the conventional phase-based methods. Conclusion We demonstrate the utility of the proposed method to effectively recover artifact-free images from Cartesian fully/under-sampled and partial Fourier acquired data without the use of explicit phase estimates. PMID:27550212

  12. Stochastic theory of photon flow in homogeneous and heterogeneous anisotropic biological and artificial material

    NASA Astrophysics Data System (ADS)

    Miller, Steven D.

    1995-05-01

    Standard Monte Carlo methods used in photon diffusion score absorbed photons or statistical weight deposited within voxels comprising a mesh. An alternative approach to a stochastic description is considered for rapid surface flux calculations and finite medias. Matrix elements are assigned to a spatial lattice whose function is to score vector intersections of scattered photons making transitions into either the forward or back solid angle half spaces. These complete matrix elements can be related to the directional fluxes within the lattice space. This model differentiates between ballistic, quasi-ballistic, and highly diffuse photon contributions, and effectively models the subsurface generation of a scattered light flux from a ballistic source. The connection between a path integral and diffusion is illustrated. Flux perturbations can be effectively illustrated for tissue-tumor-tissue and for 3 layer systems with strong absorption in one or more layers. For conditions where the diffusion theory has difficulties such as strong absorption, highly collimated sources, small finite volumes, and subsurface regions, the computation time of the algorithm is rapid with good accuracy and compliments other description of photon diffusion. The model has the potential to do computations relevant to photodynamic therapy (PDT) and analysis of laser beam interaction with tissues.

  13. The role of nanoparticle rigidity on the diffusion of linear polystyrene in a polymer nanocomposite

    DOE PAGES

    Miller, Brad; Imel, Adam E.; Holley, Wade; ...

    2015-11-12

    The impact of the inclusion of a nanoparticle in a polymer matrix on the dynamics of the polymer chains is an area of recent interest. In this article, we describe the role of nanoparticle rigidity or softness on the impact of the presence of that nanoparticle on the diffusive behavior of linear polymer chains. The neutron reflectivity results clearly show that the inclusion of 10 nm soft nanoparticles in a polymer matrix (R g ~ 20 nm) increases the diffusion coefficient of the linear polymer chain. Surprisingly, thermal analysis shows that these nanocomposites exhibit an increase in their glass transitionmore » temperature, which is incommensurate with an increase in free volume. Therefore, it appears that this effect is more complex than a simple plasticizing effect. Results from small-angle neutron scattering of the nanoparticles in solution show a structure that consists of a gel like core with a corona of free chain ends and loops. Furthermore, the increase in linear polymer diffusion may be related to an increase in constraint release mechanisms in the reptation of the polymer chain, in a similar manner to that which has been reported for the diffusion of linear polymer chains in the presence of star polymers.« less

  14. The role of nanoparticle rigidity on the diffusion of linear polystyrene in a polymer nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Brad; Imel, Adam E.; Holley, Wade

    The impact of the inclusion of a nanoparticle in a polymer matrix on the dynamics of the polymer chains is an area of recent interest. In this article, we describe the role of nanoparticle rigidity or softness on the impact of the presence of that nanoparticle on the diffusive behavior of linear polymer chains. The neutron reflectivity results clearly show that the inclusion of 10 nm soft nanoparticles in a polymer matrix (R g ~ 20 nm) increases the diffusion coefficient of the linear polymer chain. Surprisingly, thermal analysis shows that these nanocomposites exhibit an increase in their glass transitionmore » temperature, which is incommensurate with an increase in free volume. Therefore, it appears that this effect is more complex than a simple plasticizing effect. Results from small-angle neutron scattering of the nanoparticles in solution show a structure that consists of a gel like core with a corona of free chain ends and loops. Furthermore, the increase in linear polymer diffusion may be related to an increase in constraint release mechanisms in the reptation of the polymer chain, in a similar manner to that which has been reported for the diffusion of linear polymer chains in the presence of star polymers.« less

  15. A study of the diffusional behavior of a two-phase metal matrix composite exposed to a high temperature environment

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.

    1974-01-01

    The progress of diffusion-controlled filament-matrix interaction in a metal matrix composite where the filaments and matrix comprise a two-phase binary alloy system was studied by mathematically modeling compositional changes resulting from prolonged elevated temperature exposure. The analysis treats a finite, diffusion-controlled, two-phase moving-interface problem by means of a variable-grid finite-difference technique. The Ni-W system was selected as an example system. Modeling was carried out for the 1000 to 1200 C temperature range for unidirectional composites containing from 6 to 40 volume percent tungsten filaments in a Ni matrix. The results are displayed to show both the change in filament diameter and matrix composition as a function of exposure time. Compositional profiles produced between first and second nearest neighbor filaments were calculated by superposition of finite-difference solutions of the diffusion equations.

  16. Soy matrix drug delivery systems obtained by melt-processing techniques.

    PubMed

    Vaz, Cláudia M; van Doeveren, Patrick F N M; Reis, Rui L; Cunha, António M

    2003-01-01

    The aim of this study was to develop new soy protein drug delivery matrix systems by melt-processing techniques, namely, extrusion and injection moulding. The soy matrix systems with an encapsulated drug (theophylline, TH) were previously compounded by extrusion performed at two different pH values, (i) pH 4 (SIpDtp) and (ii) pH 7 (SIDtp), and further injection-moulded into a desired shape. During the extrusion process the matrixes SIDtp were also cross-linked with glyoxal (0.6X-SIDtp) and reinforced with a bioactive filler, hydroxylapatite (SI-HADtp). The obtained mouldings were used to study the drug-release mechanisms from the plastic soy-TH matrixes. In an isotonic saline solution (ISS) buffered at pH 5.0 (200 mM acetate buffer), the resulting release kinetics could be described using the Fick's second law of diffusion. Because the diffusion coefficients were found to be constant and the boundary conditions to be stationary, these systems are drug-diffusion controlled. Conversely, the dominant phenomena in an isotonic saline solution buffered at pH 7.4 (200 mM Tris/HCl buffer) are more complex. In fact, because of the higher polymer solubility, the resulting matrix is time-variant. So, the drug release is affected by swelling, drug diffusion, and polymer dissolution, being faster when compared to ISS-200 mM acetate buffer, pH 5.0. The changes in the formulation composition affecting the correspondent release rates were also investigated. At pH 7.4, increasing the cross-linking degree of the polymer matrix (via reaction with glyoxal or heat treatment) or decreasing the net charge (extruding at pH near its isoelectric point) led to lower release rates. The incorporation of ceramic filler caused the opposite effect. Because of the low solubility of the matrix at pH 5.0, no significant variations were detected with variations in the selected formulations. These systems, based on a nonstandard protein-based material, seem to be very promising to be used as carriers for drug delivery.

  17. Molecular surface area based predictive models for the adsorption and diffusion of disperse dyes in polylactic acid matrix.

    PubMed

    Xu, Suxin; Chen, Jiangang; Wang, Bijia; Yang, Yiqi

    2015-11-15

    Two predictive models were presented for the adsorption affinities and diffusion coefficients of disperse dyes in polylactic acid matrix. Quantitative structure-sorption behavior relationship would not only provide insights into sorption process, but also enable rational engineering for desired properties. The thermodynamic and kinetic parameters for three disperse dyes were measured. The predictive model for adsorption affinity was based on two linear relationships derived by interpreting the experimental measurements with molecular structural parameters and compensation effect: ΔH° vs. dye size and ΔS° vs. ΔH°. Similarly, the predictive model for diffusion coefficient was based on two derived linear relationships: activation energy of diffusion vs. dye size and logarithm of pre-exponential factor vs. activation energy of diffusion. The only required parameters for both models are temperature and solvent accessible surface area of the dye molecule. These two predictive models were validated by testing the adsorption and diffusion properties of new disperse dyes. The models offer fairly good predictive ability. The linkage between structural parameter of disperse dyes and sorption behaviors might be generalized and extended to other similar polymer-penetrant systems. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Numerical modeling of coupled variably saturated fluid flow and reactive transport with fast and slow chemical reactions

    NASA Astrophysics Data System (ADS)

    Yeh, Gour-Tsyh (George); Siegel, Malcolm D.; Li, Ming-Hsu

    2001-02-01

    The couplings among chemical reaction rates, advective and diffusive transport in fractured media or soils, and changes in hydraulic properties due to precipitation and dissolution within fractures and in rock matrix are important for both nuclear waste disposal and remediation of contaminated sites. This paper describes the development and application of LEHGC2.0, a mechanistically based numerical model for simulation of coupled fluid flow and reactive chemical transport, including both fast and slow reactions in variably saturated media. Theoretical bases and numerical implementations are summarized, and two example problems are demonstrated. The first example deals with the effect of precipitation/dissolution on fluid flow and matrix diffusion in a two-dimensional fractured media. Because of the precipitation and decreased diffusion of solute from the fracture into the matrix, retardation in the fractured medium is not as large as the case wherein interactions between chemical reactions and transport are not considered. The second example focuses on a complicated but realistic advective-dispersive-reactive transport problem. This example exemplifies the need for innovative numerical algorithms to solve problems involving stiff geochemical reactions.

  19. The Oxidation Kinetics of Continuous Carbon Fibers in a Cracked Ceramic Matrix Composite. Degree awarded by Case Western Reserve Univ., May 2000

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.

    2001-01-01

    Experimental observations and results suggest two primary regimes as a function of temperature, i.e., diffusion and reaction controlled kinetics. Thermogravimetric analysis of carbon fiber in flowing oxygen gave an activation energy of 64.1 kJ/mol in the temperature range of 500 to 600 C and an apparent activation energy of 7.6 kJ/mol for temperatures from 600 to 1400 C. When C/SiC composite material was unstressed, matrix effects at temperatures from 900 to 1400 C protected the internal fibers. When under stress, self-protection was not observed. Increasing the stress from 10 to 25 ksi caused a 67 to 82 percent reduction in times to failure at temperatures from 750 to 1500 C. Based on experimental results, observation, and theory, a finite difference model was developed, which simulates the diffusion of oxygen into a matrix crack that is bridged by carbon fibers. The model allows the influence of important variables on oxidation kinetics to be studied systematically, i.e., temperature, reaction rate constant, diffusion coefficient, environment, and sample geometry.

  20. Relationship between diffusivity of water molecules inside hydrating tablets and their drug release behavior elucidated by magnetic resonance imaging.

    PubMed

    Kikuchi, Shingo; Onuki, Yoshinori; Kuribayashi, Hideto; Takayama, Kozo

    2012-01-01

    We reported previously that sustained release matrix tablets showed zero-order drug release without being affected by pH change. To understand drug release mechanisms more fully, we monitored the swelling and erosion of hydrating tablets using magnetic resonance imaging (MRI). Three different types of tablets comprised of polyion complex-forming materials and a hydroxypropyl methylcellulose (HPMC) were used. Proton density- and diffusion-weighted images of the hydrating tablets were acquired at intervals. Furthermore, apparent self-diffusion coefficient maps were generated from diffusion-weighted imaging to evaluate the state of hydrating tablets. Our findings indicated that water penetration into polyion complex tablets was faster than that into HPMC matrix tablets. In polyion complex tablets, water molecules were dispersed homogeneously and their diffusivity was relatively high, whereas in HPMC matrix tablets, water molecule movement was tightly restricted within the gel. An optimal tablet formulation determined in a previous study had water molecule penetration and diffusivity properties that appeared intermediate to those of polyion complex and HPMC matrix tablets; water molecules were capable of penetrating throughout the tablets and relatively high diffusivity was similar to that in the polyion complex tablet, whereas like the HPMC matrix tablet, it was well swollen. This study succeeded in characterizing the tablet hydration process. MRI provides profound insight into the state of water molecules in hydrating tablets; thus, it is a useful tool for understanding drug release mechanisms at a molecular level.

  1. Atomistic Simulation of High-Density Uranium Fuels

    DOE PAGES

    Garcés, Jorge Eduardo; Bozzolo, Guillermo

    2011-01-01

    We apply an atomistic modeling approach to deal with interfacial phenomena in high-density uranium fuels. The effects of Si, as additive to Al or as U-Mo-particles coating, on the behavior of the Al/U-Mo interface is modeled by using the Bozzolo-Ferrante-Smith (BFS) method for alloys. The basic experimental features characterizing the real system are identified, via simulations and atom-by-atom analysis. These include (1) the trend indicating formation of interfacial compounds, (2) much reduced diffusion of Al into U-Mo solid solution due to the high Si concentration, (3) Si depletion in the Al matrix, (4) an unexpected interaction between Mo and Simore » which inhibits Si diffusion to deeper layers in the U-Mo solid solution, and (5) the minimum amount of Si needed to perform as an effective diffusion barrier. Simulation results related to alternatives to Si dispersed in the Al matrix, such as the use of C coating of U-Mo particles or Zr instead of the Al matrix, are also shown. Recent experimental results confirmed early theoretical proposals, along the lines of the results reported in this work, showing that atomistic computational modeling could become a valuable tool to aid the experimental work in the development of nuclear fuels.« less

  2. Permanganate diffusion and reaction in sedimentary rocks.

    PubMed

    Huang, Qiuyuan; Dong, Hailiang; Towne, Rachael M; Fischer, Timothy B; Schaefer, Charles E

    2014-04-01

    In situ chemical oxidation using permanganate has frequently been used to treat chlorinated solvents in fractured bedrock aquifers. However, in systems where matrix back-diffusion is an important process, the ability of the oxidant to migrate and treat target contaminants within the rock matrix will likely determine the overall effectiveness of this remedial approach. In this study, a series of diffusion experiments were performed to measure the permanganate diffusion and reaction in four different types of sedimentary rocks (dark gray mudstone, light gray mudstone, red sandstone, and tan sandstone). Results showed that, within the experimental time frame (~2 months), oxidant migration into the rock was limited to distances less than 500 μm. The observed diffusivities for permanganate into the rock matrices ranged from 5.3 × 10(-13) to 1.3 × 10(-11) cm(2)/s. These values were reasonably predicted by accounting for both the rock oxidant demand and the effective diffusivity of the rock. Various Mn minerals formed as surface coatings from reduction of permanganate coupled with oxidation of total organic carbon (TOC), and the nature of the formed Mn minerals was dependent upon the rock type. Post-treatment tracer testing showed that these Mn mineral coatings had a negligible impact on diffusion through the rock. Overall, our results showed that the extent of permanganate diffusion and reaction depended on rock properties, including porosity, mineralogy, and organic carbon. These results have important implications for our understanding of long-term organic contaminant remediation in sedimentary rocks using permanganate. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Advanced Ceramic Matrix Composites with Multifunctional and Hybrid Structures

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Morscher, Gregory N.

    2004-01-01

    Ceramic matrix composites are leading candidate materials for a number of applications in aeronautics, space, energy, and nuclear industries. Potential composite applications differ in their requirements for thickness. For example, many space applications such as "nozzle ramps" or "heat exchangers" require very thin (< 1 mm) structures whereas turbine blades would require very thick parts (> or = 1 cm). Little is known about the effect of thickness on stress-strain behavior or the elevated temperature tensile properties controlled by oxidation diffusion. In this study, composites consisting of woven Hi-Nicalon (trademark) fibers a carbon interphase and CVI SiC matrix were fabricated with different numbers of plies and thicknesses. The effect of thickness on matrix crack formation, matrix crack growth and diffusion kinetics will be discussed. In another approach, hybrid fiber-lay up concepts have been utilized to "alloy" desirable properties of different fiber types for mechanical properties, thermal stress management, and oxidation resistance. Such an approach has potential for the C(sub I)-SiC and SiC(sub f)-SiC composite systems. CVI SiC matrix composites with different stacking sequences of woven C fiber (T300) layers and woven SiC fiber (Hi-Nicalon (trademark)) layers were fabricated. The results will be compared to standard C fiber reinforced CVI SiC matrix and Hi-Nicalon reinforced CVI SiC matrix composites. In addition, shear properties of these composites at different temperatures will also be presented. Other design and implementation issues will be discussed along with advantages and benefits of using these materials for various components in high temperature applications.

  4. b matrix errors in echo planar diffusion tensor imaging

    PubMed Central

    Boujraf, Saïd; Luypaert, Robert; Osteaux, Michel

    2001-01-01

    Diffusion‐weighted magnetic resonance imaging (DW‐MRI) is a recognized tool for early detection of infarction of the human brain. DW‐MRI uses the signal loss associated with the random thermal motion of water molecules in the presence of magnetic field gradients to derive parameters that reflect the translational mobility of the water molecules in tissues. If diffusion‐weighted images with different values of b matrix are acquired during one individual investigation, it is possible to calculate apparent diffusion coefficient maps that are the elements of the diffusion tensor. The diffusion tensor elements represent the apparent diffusion coefficient of protons of water molecules in each pixel in the corresponding sample. The relation between signal intensity in the diffusion‐weighted images, diffusion tensor, and b matrix is derived from the Bloch equations. Our goal is to establish the magnitude of the error made in the calculation of the elements of the diffusion tensor when the imaging gradients are ignored. PACS number(s): 87.57. –s, 87.61.–c PMID:11602015

  5. Determination of In-situ Porosity and Investigation of Diffusion Processes at the Grimsel Test Site, Switzerland.

    NASA Astrophysics Data System (ADS)

    Biggin, C.; Ota, K.; Siittari-Kauppi, M.; Moeri, A.

    2004-12-01

    In the context of a repository for radioactive waste, 'matrix diffusion' is used to describe the process by which solute, flowing in distinct flow paths, penetrates the surrounding rock matrix. Diffusion into the matrix occurs in a connected system of pores or microfractures. Matrix diffusion provides a mechanism for greatly enlarging the area of rock surface in contact with advecting radionuclides, from that of the flow path surfaces (and infills), to a much larger portion of the bulk rock and increases the global pore volume which can retard radionuclides. In terms of a repository safety assessment, demonstration of a significant depth of diffusion-accessible pore space may result in a significant delay in the calculated release of any escaping radionuclides to the environment and a dramatic reduction in the resulting concentration released into the biosphere. For the last decade, Nagra has investigated in situ matrix diffusion at the Grimsel Test Site (GTS) in the Swiss Alps. The in situ investigations offer two distinct advantages to those performed in the lab, namely: 1. Lab-based determination of porosity and diffusivity can lead to an overestimation of matrix diffusion due to stress relief when the rock is sampled (which would overestimate the retardation in the geosphere) 2. Lab-based analysis usually examines small (cm scale) samples and cannot therefore account for any matrix heterogeneity over the hundreds or thousands of metres a typical flow path The in situ investigations described began with the Connected Porosity project, wherein a specially developed acrylic resin was injected into the rock matrix to fill the pore space and determine the depth of connected porosity. The resin was polymerised in situ and the entire rock mass removed by overcoring. The results indicated that lab-based porosity measurements may be two to three times higher than those obtained in situ. While the depth of accessible matrix from a water-conducting feature assumed in repository performance assessments is generally 1 to 10 cm, the results from the GTS in situ experiment suggested depths of several metres could be more appropriate. More recently, the Pore Space Geometry (PSG) experiment at the GTS has used a C-14 doped acrylic resin, combined with state-of-the-art digital beta autoradiography and fluorescence detection to examine a larger area of rock for determination of porosity and the degree of connected pore space. Analysis is currently ongoing and the key findings will be reported in this paper. Starting at the GTS in 2005, the Long-term Diffusion (LTD) project will investigate such processes over spatial and temporal scales more relevant to a repository than traditional lab-based experiments. In the framework of this experiment, long-term (10 to 50 years) in situ diffusion experiments and resin injection experiments are planned to verify current models for matrix diffusion as a radionuclide retardation process. This paper will discuss the findings of the first two experiments and their significance to repository safety assessments before discussing the strategy for the future in relation to the LTD project.

  6. A Green's function method for two-dimensional reactive solute transport in a parallel fracture-matrix system

    NASA Astrophysics Data System (ADS)

    Chen, Kewei; Zhan, Hongbin

    2018-06-01

    The reactive solute transport in a single fracture bounded by upper and lower matrixes is a classical problem that captures the dominant factors affecting transport behavior beyond pore scale. A parallel fracture-matrix system which considers the interaction among multiple paralleled fractures is an extension to a single fracture-matrix system. The existing analytical or semi-analytical solution for solute transport in a parallel fracture-matrix simplifies the problem to various degrees, such as neglecting the transverse dispersion in the fracture and/or the longitudinal diffusion in the matrix. The difficulty of solving the full two-dimensional (2-D) problem lies in the calculation of the mass exchange between the fracture and matrix. In this study, we propose an innovative Green's function approach to address the 2-D reactive solute transport in a parallel fracture-matrix system. The flux at the interface is calculated numerically. It is found that the transverse dispersion in the fracture can be safely neglected due to the small scale of fracture aperture. However, neglecting the longitudinal matrix diffusion would overestimate the concentration profile near the solute entrance face and underestimate the concentration profile at the far side. The error caused by neglecting the longitudinal matrix diffusion decreases with increasing Peclet number. The longitudinal matrix diffusion does not have obvious influence on the concentration profile in long-term. The developed model is applied to a non-aqueous-phase-liquid (DNAPL) contamination field case in New Haven Arkose of Connecticut in USA to estimate the Trichloroethylene (TCE) behavior over 40 years. The ratio of TCE mass stored in the matrix and the injected TCE mass increases above 90% in less than 10 years.

  7. Effects of thermal cycling on graphie-fiber-reinforced 6061 aluminum

    NASA Technical Reports Server (NTRS)

    Dries, G. A.; Tompkins, S. S.

    1986-01-01

    Graphite-reinforced aluminum alloy metal-matrix composites are among materials being considered for structural components in dimensionally stable space structures. This application requires materials with low values of thermal expansions and high specific stiffnesses. They must remain stable during exposures to the space environment for periods extending to 20 years. The effects of thermal cycling on the thermal expansion behavior and mechanical properties of Thornel P100 graphite 6061 aluminum composites, as fabricated and after thermal processing to eliminate thermal strain hysteresis, have been investigated. Two groups of composites were studied: one was fabricated by hot roll bonding and the other by diffusion bonding. Processing significantly reduced strain hysteresis during thermal cycling in both groups and improved the ultimate tensile strength and modulus in the diffusion-bonded composites. Thermal cycling stabilized the as-fabricated composites by reducing the residual fabrication stress and increased the matrix strength by metallurgical aging. Thermal expansion behavior of both groups after processing was insensitive to thermal cycling. Data scatter was too large to determine effects of thermal cycling on the mechanical properties. The primary effects of processing and thermal cycling can be attributed to changes in the metallurgical condition and stress state of the matrix.

  8. Translational and rotational diffusion of flexible PEG and rigid dendrimer probes in sodium caseinate dispersions and acid gels.

    PubMed

    Salami, Souad; Rondeau-Mouro, Corinne; Barhoum, Myriam; van Duynhoven, John; Mariette, François

    2014-09-01

    The dynamics of rigid dendrimer and flexible PEG probes in sodium caseinate dispersions and acid gels, including both translational diffusion and rotational diffusion, were studied by NMR. Above the onset of the close-packing limit (C ∼ 10 g/100 g H2 O), translational diffusion of the probe depended on its flexibility and on the fluctuations of the matrix chains. The PEG probe diffused more rapidly than the spherical dendrimer probe of corresponding hydrodynamic radius. The greater conformational flexibility of PEG facilitated its motion through the crowded casein matrix. Rotational diffusion was, however, substantially less hindered than the translational diffusion and depended on the local protein-probe friction which became high when the casein concentration increased. The coagulation of the matrix led to the formation of large voids, which resulted in an increase in the translational diffusion of the probes, whereas the rotational diffusion of the probes was retarded in the gel, which could be attributed to the immobilized environment surrounding the probe. Quantitative information from PFG-NMR and SEM micrographs have been combined for characterizing microstructural details in SC acid gels. © 2014 Wiley Periodicals, Inc.

  9. Exact representation of the asymptotic drift speed and diffusion matrix for a class of velocity-jump processes

    NASA Astrophysics Data System (ADS)

    Mascia, Corrado

    2016-01-01

    This paper examines a class of linear hyperbolic systems which generalizes the Goldstein-Kac model to an arbitrary finite number of speeds vi with transition rates μij. Under the basic assumptions that the transition matrix is symmetric and irreducible, and the differences vi -vj generate all the space, the system exhibits a large-time behavior described by a parabolic advection-diffusion equation. The main contribution is to determine explicit formulas for the asymptotic drift speed and diffusion matrix in term of the kinetic parameters vi and μij, establishing a complete connection between microscopic and macroscopic coefficients. It is shown that the drift speed is the arithmetic mean of the velocities vi. The diffusion matrix has a more complicate representation, based on the graph with vertices the velocities vi and arcs weighted by the transition rates μij. The approach is based on an exhaustive analysis of the dispersion relation and on the application of a variant of the Kirchoff's matrix tree Theorem from graph theory.

  10. Bromelain Surface Modification Increases the Diffusion of Silica Nanoparticles in the Tumor Extracellular Matrix

    PubMed Central

    2015-01-01

    Tumor extracellular matrix (ECM) represents a major obstacle to the diffusion of therapeutics and drug delivery systems in cancer parenchyma. This biological barrier limits the efficacy of promising therapeutic approaches including the delivery of siRNA or agents intended for thermoablation. After extravasation due to the enhanced penetration and retention effect of tumor vasculature, typical nanotherapeutics are unable to reach the nonvascularized and anoxic regions deep within cancer parenchyma. Here, we developed a simple method to provide mesoporous silica nanoparticles (MSN) with a proteolytic surface. To this extent, we chose to conjugate MSN to Bromelain (Br–MSN), a crude enzymatic complex, purified from pineapple stems, that belongs to the peptidase papain family. This surface modification increased particle uptake in endothelial, macrophage, and cancer cell lines with minimal impact on cellular viability. Most importantly Br–MSN showed an increased ability to digest and diffuse in tumor ECM in vitro and in vivo. PMID:25119793

  11. Bromelain surface modification increases the diffusion of silica nanoparticles in the tumor extracellular matrix.

    PubMed

    Parodi, Alessandro; Haddix, Seth G; Taghipour, Nima; Scaria, Shilpa; Taraballi, Francesca; Cevenini, Armando; Yazdi, Iman K; Corbo, Claudia; Palomba, Roberto; Khaled, Sm Z; Martinez, Jonathan O; Brown, Brandon S; Isenhart, Lucas; Tasciotti, Ennio

    2014-10-28

    Tumor extracellular matrix (ECM) represents a major obstacle to the diffusion of therapeutics and drug delivery systems in cancer parenchyma. This biological barrier limits the efficacy of promising therapeutic approaches including the delivery of siRNA or agents intended for thermoablation. After extravasation due to the enhanced penetration and retention effect of tumor vasculature, typical nanotherapeutics are unable to reach the nonvascularized and anoxic regions deep within cancer parenchyma. Here, we developed a simple method to provide mesoporous silica nanoparticles (MSN) with a proteolytic surface. To this extent, we chose to conjugate MSN to Bromelain (Br-MSN), a crude enzymatic complex, purified from pineapple stems, that belongs to the peptidase papain family. This surface modification increased particle uptake in endothelial, macrophage, and cancer cell lines with minimal impact on cellular viability. Most importantly Br-MSN showed an increased ability to digest and diffuse in tumor ECM in vitro and in vivo.

  12. Application of diffusion barriers to the refractory fibers of tungsten, columbium, carbon and aluminum oxide

    NASA Technical Reports Server (NTRS)

    Douglas, F. C.; Paradis, E. L.; Veltri, R. D.

    1973-01-01

    A radio frequency powered ion-plating system was used to plate protective layers of refractory oxides and carbide onto high strength fiber substrates. Subsequent overplating of these combinations with nickel and titanium was made to determine the effectiveness of such barrier layers in preventing diffusion of the overcoat metal into the fibers with consequent loss of fiber strength. Four substrates, five coatings, and two metal matrix materials were employed for a total of forty material combinations. The substrates were tungsten, niobium, NASA-Hough carbon, and Tyco sapphire. The diffusion-barrier coatings were aluminum oxide, yttrium oxide, titanium carbide, tungsten carbide with 14% cobalt addition, and zirconium carbide. The metal matrix materials were IN 600 nickel and Ti 6/4 titanium. Adhesion of the coatings to all substrates was good except for the NASA-Hough carbon, where flaking off of the oxide coatings in particular was observed.

  13. Translucent Radiosity: Efficiently Combining Diffuse Inter-Reflection and Subsurface Scattering.

    PubMed

    Sheng, Yu; Shi, Yulong; Wang, Lili; Narasimhan, Srinivasa G

    2014-07-01

    It is hard to efficiently model the light transport in scenes with translucent objects for interactive applications. The inter-reflection between objects and their environments and the subsurface scattering through the materials intertwine to produce visual effects like color bleeding, light glows, and soft shading. Monte-Carlo based approaches have demonstrated impressive results but are computationally expensive, and faster approaches model either only inter-reflection or only subsurface scattering. In this paper, we present a simple analytic model that combines diffuse inter-reflection and isotropic subsurface scattering. Our approach extends the classical work in radiosity by including a subsurface scattering matrix that operates in conjunction with the traditional form factor matrix. This subsurface scattering matrix can be constructed using analytic, measurement-based or simulation-based models and can capture both homogeneous and heterogeneous translucencies. Using a fast iterative solution to radiosity, we demonstrate scene relighting and dynamically varying object translucencies at near interactive rates.

  14. A double medium model for diffusion in fluid-bearing rock

    NASA Astrophysics Data System (ADS)

    Wang, H. F.

    1993-09-01

    The concept of a double porosity medium to model fluid flow in fractured rock has been applied to model diffusion in rock containing a small amount of a continuous fluid phase that surrounds small volume elements of the solid matrix. The model quantifies the relative role of diffusion in the fluid and solid phases of the rock. The fluid is the fast diffusion path, but the solid contains the volumetrically significant amount of the diffusing species. The double medium model consists of two coupled differential equations. One equation is the diffusion equation for the fluid concentration; it contains a source term for change in the average concentration of the diffusing species in the solid matrix. The second equation represents the assumption that the change in average concentration in a solid element is proportional to the difference between the average concentration in the solid and the concentration in the fluid times the solid-fluid partition coefficient. The double medium model is shown to apply to laboratory data on iron diffusion in fluid-bearing dunite and to measured oxygen isotope ratios at marble-metagranite contacts. In both examples, concentration profiles are calculated for diffusion taking place at constant temperature, where a boundary value changes suddenly and is subsequently held constant. Knowledge of solid diffusivities can set a lower bound to the length of time over which diffusion occurs, but only the product of effective fluid diffusivity and time is constrained for times longer than the characteristic solid diffusion time. The double medium results approach a local, grain-scale equilibrium model for times that are large relative to the time constant for solid diffusion.

  15. Extracting Hydrocarbon from Shale: An Investigation of the Factors That Influence the Decline and the Tail of the Production Curve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovell, A. E.; Srinivasan, S.; Karra, S.

    Understanding physical processes that control the long-term production of hydrocarbon from shale formations is important for both predicting the yield and increasing it. In this work, we explore the processes that could control the tail of the production curve by using a discrete fracture network method to calculate the total travel time from the rock matrix to small-scale fractures to the primary hydraulic fracture network. The factors investigated include matrix diffusion, extent of the small-scale fracture zone (or tributary fracture zone/TFZ) consisting of natural, reactivated and induced fractures, and the percentage of free hydrocarbon in the primary fracture network. Individualmore » and combined parameter spaces are explored for each of these to understand the limits of these parameters as well as any systematic correlations between pairs of parameters. Although recent studies have shown that the matrix diffusion in virgin shale influences the production tail only after nearly 20 years, we demonstrate that matrix diffusion in the region of the TFZ significantly impacts production within the first year itself. Additionally, we found that the depth of TFZ fracturing region had no effect on the shape of the production curves although the total mass of the hydrocarbon produced increases with the depth. We also show that one can fit the production data using a site-specific set of parameters representing the diffusion in the TFZ, depth of the TFZ and the free hydrocarbon in the large-scale fractures.« less

  16. Extracting Hydrocarbon from Shale: An Investigation of the Factors That Influence the Decline and the Tail of the Production Curve

    DOE PAGES

    Lovell, A. E.; Srinivasan, S.; Karra, S.; ...

    2018-04-24

    Understanding physical processes that control the long-term production of hydrocarbon from shale formations is important for both predicting the yield and increasing it. In this work, we explore the processes that could control the tail of the production curve by using a discrete fracture network method to calculate the total travel time from the rock matrix to small-scale fractures to the primary hydraulic fracture network. The factors investigated include matrix diffusion, extent of the small-scale fracture zone (or tributary fracture zone/TFZ) consisting of natural, reactivated and induced fractures, and the percentage of free hydrocarbon in the primary fracture network. Individualmore » and combined parameter spaces are explored for each of these to understand the limits of these parameters as well as any systematic correlations between pairs of parameters. Although recent studies have shown that the matrix diffusion in virgin shale influences the production tail only after nearly 20 years, we demonstrate that matrix diffusion in the region of the TFZ significantly impacts production within the first year itself. Additionally, we found that the depth of TFZ fracturing region had no effect on the shape of the production curves although the total mass of the hydrocarbon produced increases with the depth. We also show that one can fit the production data using a site-specific set of parameters representing the diffusion in the TFZ, depth of the TFZ and the free hydrocarbon in the large-scale fractures.« less

  17. Validation of a numerical method for interface-resolving simulation of multicomponent gas-liquid mass transfer and evaluation of multicomponent diffusion models

    NASA Astrophysics Data System (ADS)

    Woo, Mino; Wörner, Martin; Tischer, Steffen; Deutschmann, Olaf

    2018-03-01

    The multicomponent model and the effective diffusivity model are well established diffusion models for numerical simulation of single-phase flows consisting of several components but are seldom used for two-phase flows so far. In this paper, a specific numerical model for interfacial mass transfer by means of a continuous single-field concentration formulation is combined with the multicomponent model and effective diffusivity model and is validated for multicomponent mass transfer. For this purpose, several test cases for one-dimensional physical or reactive mass transfer of ternary mixtures are considered. The numerical results are compared with analytical or numerical solutions of the Maxell-Stefan equations and/or experimental data. The composition-dependent elements of the diffusivity matrix of the multicomponent and effective diffusivity model are found to substantially differ for non-dilute conditions. The species mole fraction or concentration profiles computed with both diffusion models are, however, for all test cases very similar and in good agreement with the analytical/numerical solutions or measurements. For practical computations, the effective diffusivity model is recommended due to its simplicity and lower computational costs.

  18. Modulated error diffusion CGHs for neural nets

    NASA Astrophysics Data System (ADS)

    Vermeulen, Pieter J. E.; Casasent, David P.

    1990-05-01

    New modulated error diffusion CGHs (computer generated holograms) for optical computing are considered. Specific attention is given to their use in optical matrix-vector, associative processor, neural net and optical interconnection architectures. We consider lensless CGH systems (many CGHs use an external Fourier transform (FT) lens), the Fresnel sampling requirements, the effects of finite CGH apertures (sample and hold inputs), dot size correction (for laser recorders), and new applications for this novel encoding method (that devotes attention to quantization noise effects).

  19. Long-term Behavior of Hydrocarbon Production Curves

    NASA Astrophysics Data System (ADS)

    Lovell, A.; Karra, S.; O'Malley, D.; Viswanathan, H. S.; Srinivasan, G.

    2017-12-01

    Recovering hydrocarbons (such as natural gas) from naturally-occurring formations with low permeability has had a huge impact on the energy sector, however, recovery rates are low due to poor understanding of recovery and transport mechanisms [1]. The physical mechanisms that control the production of hydrocarbon are only partially understood. Calculations have shown that the short-term behavior in the peak of the production curve is understood to come from the free hydrocarbons in the fracture networks, but the long-term behavior of these curves is often underpredicted [2]. This behavior is thought to be due to small scale processes - such as matrix diffusion, desorption, and connectivity in the damage region around the large fracture network. In this work, we explore some of these small-scale processes using discrete fracture networks (DFN) and the toolkit dfnWorks [3], the matrix diffusion, size of the damage region, and distribution of free gas between the fracture networks and rock matrix. Individual and combined parameter spaces are explored, and comparisons of the resulting production curves are made to experimental site data from the Haynesville formation [4]. We find that matrix diffusion significantly controls the shape of the tail of the production curve, while the distribution of free gas impacts the relative magnitude of the peak to the tail. The height of the damage region has no effect on the shape of the tail. Understanding the constrains of the parameter space based on site data is the first step in rigorously quantifying the uncertainties coming from these types of systems, which can in turn optimize and improve hydrocarbon recovery. [1] C. McGlade, et. al., (2013) Methods of estimating shale gas resources - comparison, evaluation, and implications, Energy, 59, 116-125 [2] S. Karra, et. al., (2015) Effect of advective flow in fractures and matrix diffusion on natural gas production, Water Resources Research, 51(10), 8646-8657 [3] J.D. Hyman, et. al., (2015) dfnworks: A discrete fracture network framework for modeling subsurface flow and transport, Computers & Geosciences, 84, 10-19 [4] E.J. Moniz, et. al., (2011) The future of natural gas, Cambridge, MA, Massachusetts Institute of Technology

  20. Investigation of the abnormal Zn diffusion phenomenon in III-V compound semiconductors induced by the surface self-diffusion of matrix atoms

    NASA Astrophysics Data System (ADS)

    Tang, Liangliang; Xu, Chang; Liu, Zhuming

    2017-01-01

    Zn diffusion in III-V compound semiconductorsare commonly processed under group V-atoms rich conditions because the vapor pressure of group V-atoms is relatively high. In this paper, we found that group V-atoms in the diffusion sources would not change the shaped of Zn profiles, while the Zn diffusion would change dramatically undergroup III-atoms rich conditions. The Zn diffusions were investigated in typical III-V semiconductors: GaAs, GaSb and InAs. We found that under group V-atoms rich or pure Zn conditions, the double-hump Zn profiles would be formed in all materials except InAs. While under group III-atoms rich conditions, single-hump Zn profiles would be formed in all materials. Detailed diffusion models were established to explain the Zn diffusion process; the surface self-diffusion of matrix atoms is the origin of the abnormal Zn diffusion phenomenon.

  1. Diffusivity Measurements of Volatile Organics in Levitated Viscous Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Bastelberger, Sandra; Krieger, Ulrich; Luo, Beiping; Peter, Thomas

    2017-04-01

    Field measurements indicating that atmospheric secondary aerosol (SOA) particles can be present in a highly viscous, glassy state have spurred numerous studies addressing low water diffusivities in glassy aerosols, focusing on kinetic limitations to hygroscopic growth and the plasticizing effect of water. Less is known about diffusion limitations of organic molecules and oxidants in viscous matrices and how these might affect atmospheric chemistry and gas-particle phase partitioning of complex mixtures with constituents of different volatility. Often viscosity data has been used to infer diffusivity via the Stokes- Einstein relationship even though strong deviations from this relationship have been observed for matrices of high viscosity. In this study, we provide a quantitative estimate for the diffusivity of a volatile organic in a viscous matrix. Evaporation of single particles generated from an aqueous solution of sucrose and a small quantity of volatile tetraethylene glycol (PEG-4) is investigated in an electrodynamic balance at controlled relative humidity (RH) and temperature conditions, thereby varying the viscosity of the sucrose matrix. The evaporative loss of tetraethylene glycol as determined by Mie resonance spectroscopy is used in conjunction with a diffusion model to retrieve translational diffusion coefficients of tetraethylene glycol. The evaporation of PEG-4 shows a pronounced RH and temperature dependence and is severely depressed for RH 30% corresponding to diffusivities < 10-14 cm2/s at temperatures as high as 15 °C, implying that atmospheric volatile organic compounds (VOC) can be subject to severe diffusion limitations in glassy SOA. Comparison of the experimentally derived diffusivities with viscosity estimates for the ternary system reveals a breakdown of the Stokes-Einstein relationship.

  2. Convergence in High Probability of the Quantum Diffusion in a Random Band Matrix Model

    NASA Astrophysics Data System (ADS)

    Margarint, Vlad

    2018-06-01

    We consider Hermitian random band matrices H in d ≥slant 1 dimensions. The matrix elements H_{xy}, indexed by x, y \\in Λ \\subset Z^d, are independent, uniformly distributed random variable if |x-y| is less than the band width W, and zero otherwise. We update the previous results of the converge of quantum diffusion in a random band matrix model from convergence of the expectation to convergence in high probability. The result is uniformly in the size |Λ| of the matrix.

  3. The tracer diffusion coefficient of soft nanoparticles in a linear polymer matrix

    DOE PAGES

    Imel, Adam E.; Rostom, Sahar; Holley, Wade; ...

    2017-03-09

    The diffusion properties of nanoparticles in polymer nanocomposites are largely unknown and are often difficult to determine experimentally. To address this shortcoming, we have developed a novel method to determine the tracer diffusion coefficient of soft polystyrene nanoparticles in a linear polystyrene matrix. Monitoring the interdiffusion of soft nanoparticles into a linear polystyrene matrix provides the mutual diffusion coefficient of this system, from which the tracer diffusion coefficient of the soft nanoparticle can be determined using the slow mode theory. Utilizing this protocol, the role of nanoparticle molecular weight and rigidity on its tracer diffusion coefficient is provided. These resultsmore » demonstrate that the diffusive behavior of these soft nanoparticles differ from that of star polymers, which is surprising since our recent studies suggest that the nanoparticle interacts with a linear polymer similarly to that of a star polymer. It appears that these deformable nanoparticles mostly closely mimic the diffusive behavior of fractal macromolecular architectures or microgels, where the transport of the nanoparticle relies on the cooperative motion of neighboring linear chains. Finally, the less cross-linked, and thus more deformable, nanoparticles diffuse faster than the more highly crosslinked nanoparticles, presumably because the increased deformability allows the nanoparticle to distort and fit into available space.« less

  4. Diffusion coefficients of rare earth elements in fcc Fe: A first-principles study

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Gao, Xueyun; Ren, Huiping; Chen, Shuming; Yao, Zhaofeng

    2018-01-01

    The diffusion data and corresponding detailed insights are particularly important for the understanding of the related kinetic processes in Fe based alloys, e.g. solute strengthening, phase transition, solution treatment etc. We present a density function theory study of the diffusivity of self and solutes (La, Ce, Y and Nb) in fcc Fe. The five-frequency model was employed to calculate the microscopic parameters in the correlation factors of the solute diffusion. The interactions of the solutes with the first nearest-neighbor vacancy (1nn) are all attractive, and can be well understood on the basis of the combination of the strain-relief effects and the electronic effects. It is found that among the investigated species, Ce is the fastest diffusing solute in fcc Fe matrix followed by Nb, and the diffusion coefficients of these two solutes are about an order of magnitude higher than that of Fe self-diffusion. And the results show that the diffusion coefficient of La is slightly higher than that of Y, and both species are comparable to that of Fe self-diffusion.

  5. A Kronecker product splitting preconditioner for two-dimensional space-fractional diffusion equations

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Lv, Wen; Zhang, Tongtong

    2018-05-01

    We study preconditioned iterative methods for the linear system arising in the numerical discretization of a two-dimensional space-fractional diffusion equation. Our approach is based on a formulation of the discrete problem that is shown to be the sum of two Kronecker products. By making use of an alternating Kronecker product splitting iteration technique we establish a class of fixed-point iteration methods. Theoretical analysis shows that the new method converges to the unique solution of the linear system. Moreover, the optimal choice of the involved iteration parameters and the corresponding asymptotic convergence rate are computed exactly when the eigenvalues of the system matrix are all real. The basic iteration is accelerated by a Krylov subspace method like GMRES. The corresponding preconditioner is in a form of a Kronecker product structure and requires at each iteration the solution of a set of discrete one-dimensional fractional diffusion equations. We use structure preserving approximations to the discrete one-dimensional fractional diffusion operators in the action of the preconditioning matrix. Numerical examples are presented to illustrate the effectiveness of this approach.

  6. Unconfined lateral diffusion and an estimate of pericellular matrix viscosity revealed by measuring the mobility of gold-tagged lipids

    PubMed Central

    1993-01-01

    Nanovid (video-enhanced) microscopy was used to determine whether lateral diffusion in the plasma membrane of colloidal gold-tagged lipid molecules is confined or is unrestricted. Confinement could be produced by domains within the plane of the plasma membrane or by filamentous barriers within the pericellular matrix. Fluorescein- phosphatidylethanolamine (F1-PE), incorporated into the plasma membranes of cultured fibroblasts, epithelial cells and keratocytes, was labeled with 30-nm colloidal gold conjugated to anti-fluorescein (anti-F1). The trajectories of the gold-labeled lipids were used to compute diffusion coefficients (DG) and to test for restricted motion. On the cell lamella, the gold-labeled lipids diffused freely in the plasma membrane. Since the gold must move through the pericellular matrix as the attached lipid diffuses in the plasma membrane, this result suggests that any extensive filamentous barriers in the pericellular matrix are at least 40 nm from the plasma membrane surface. The average diffusion coefficients ranged from 1.1 to 1.7 x 10(-9) cm2/s. These values were lower than the average diffusion coefficients (DF) (5.4 to 9.5 x 10(-9) cm2/s) obtained by FRAP. The lower DG is partially due to the pericellular matrix as demonstrated by the result that heparinase treatment of keratocytes significantly increased DG to 2.8 x 10(-9) cm2/s, but did not affect DF. Pericellular matrix viscosity was estimated from the frictional coefficients computed from DG and DF and ranged from 0.5 to 0.9 poise for untreated cells. Heparinase treatment of keratocytes decreased the apparent viscosity to approximately 0.1 poise. To evaluate the presence of domains or barriers, the trajectories and corresponding mean square displacement (MSD) plots of gold-labeled lipids were compared to the trajectories and MSD plots resulting from computer simulations of random walks within corrals. Based on these comparisons, we conclude that, if there are domains limiting the diffusion of F1-PE, most are larger than 5 microns in diameter. PMID:8416991

  7. Finite-time robust passive control for a class of switched reaction-diffusion stochastic complex dynamical networks with coupling delays and impulsive control

    NASA Astrophysics Data System (ADS)

    Syed Ali, M.; Yogambigai, J.; Kwon, O. M.

    2018-03-01

    Finite-time boundedness and finite-time passivity for a class of switched stochastic complex dynamical networks (CDNs) with coupling delays, parameter uncertainties, reaction-diffusion term and impulsive control are studied. Novel finite-time synchronisation criteria are derived based on passivity theory. This paper proposes a CDN consisting of N linearly and diffusively coupled identical reaction- diffusion neural networks. By constructing of a suitable Lyapunov-Krasovskii's functional and utilisation of Jensen's inequality and Wirtinger's inequality, new finite-time passivity criteria for the networks are established in terms of linear matrix inequalities (LMIs), which can be checked numerically using the effective LMI toolbox in MATLAB. Finally, two interesting numerical examples are given to show the effectiveness of the theoretical results.

  8. Kinematic matrix theory and universalities in self-propellers and active swimmers.

    PubMed

    Nourhani, Amir; Lammert, Paul E; Borhan, Ali; Crespi, Vincent H

    2014-06-01

    We describe an efficient and parsimonious matrix-based theory for studying the ensemble behavior of self-propellers and active swimmers, such as nanomotors or motile bacteria, that are typically studied by differential-equation-based Langevin or Fokker-Planck formalisms. The kinematic effects for elementary processes of motion are incorporated into a matrix, called the "kinematrix," from which we immediately obtain correlators and the mean and variance of angular and position variables (and thus effective diffusivity) by simple matrix algebra. The kinematrix formalism enables us recast the behaviors of a diverse range of self-propellers into a unified form, revealing universalities in their ensemble behavior in terms of new emergent time scales. Active fluctuations and hydrodynamic interactions can be expressed as an additive composition of separate self-propellers.

  9. Sintering behavior and thermal conductivity of nickel-coated graphite flake/copper composites fabricated by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Chen, Jian-hao; Ren, Shu-bin; He, Xin-bo; Qu, Xuan-hui

    2018-04-01

    Nickel-coated graphite flakes/copper (GN/Cu) composites were fabricated by spark plasma sintering with the surface of graphite flakes (GFs) being modified by Ni-P electroless plating. The effects of the phase transition of the amorphous Ni-P plating and of Ni diffusion into the Cu matrix on the densification behavior, interfacial microstructure, and thermal conductivity (TC) of the GN/Cu composites were systematically investigated. The introduction of Ni-P electroless plating efficiently reduced the densification temperature of uncoated GF/Cu composites from 850 to 650°C and slightly increased the TC of the X-Y basal plane of the GF/Cu composites with 20vol%-30vol% graphite flakes. However, when the graphite flake content was greater than 30vol%, the TC of the GF/Cu composites decreased with the introduction of Ni-P plating as a result of the combined effect of the improved heat-transfer interface with the transition layer, P generated at the interface, and the diffusion of Ni into the matrix. Given the effect of the Ni content on the TC of the Cu matrix and on the interface thermal resistance, a modified effective medium approximation model was used to predict the TC of the prepared GF/Cu composites.

  10. Correlated matrix-fluctuation-mediated activated transport of dilute penetrants in glass-forming liquids and suspensions

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Schweizer, Kenneth S.

    2017-05-01

    We formulate a microscopic, force-level statistical mechanical theory for the activated diffusion of dilute penetrants in dense liquids, colloidal suspensions, and glasses. The approach explicitly and self-consistently accounts for coupling between penetrant hopping and matrix dynamic displacements that actively facilitate the hopping event. The key new ideas involve two mechanistically (at a stochastic trajectory level) coupled dynamic free energy functions for the matrix and spherical penetrant particles. A single dynamic coupling parameter quantifies how much the matrix displaces relative to the penetrant when the latter reaches its transition state which is determined via the enforcement of a temporal causality or coincidence condition. The theory is implemented for dilute penetrants smaller than the matrix particles, with or without penetrant-matrix attractive forces. Model calculations reveal a rich dependence of the penetrant diffusion constant and degree of dynamic coupling on size ratio, volume fraction, and attraction strength. In the absence of attractions, a near exponential decrease of penetrant diffusivity with size ratio over an intermediate range is predicted, in contrast to the much steeper, non-exponential variation if one assumes local matrix dynamical fluctuations are not correlated with penetrant motion. For sticky penetrants, the relative and absolute influence of caging versus physical bond formation is studied. The conditions for a dynamic crossover from the case where a time scale separation between penetrant and matrix activated hopping exists to a "slaved" or "constraint release" fully coupled regime are determined. The particle mixture model is mapped to treat experimental thermal systems and applied to make predictions for the diffusivity of water, toluene, methanol, and oxygen in polyvinylacetate liquids and glasses. The theory agrees well with experiment with values of the penetrant-matrix size ratio close to their chemically intuitive values.

  11. Correlated matrix-fluctuation-mediated activated transport of dilute penetrants in glass-forming liquids and suspensions

    PubMed Central

    Schweizer, Kenneth S.

    2017-01-01

    We formulate a microscopic, force-level statistical mechanical theory for the activated diffusion of dilute penetrants in dense liquids, colloidal suspensions, and glasses. The approach explicitly and self-consistently accounts for coupling between penetrant hopping and matrix dynamic displacements that actively facilitate the hopping event. The key new ideas involve two mechanistically (at a stochastic trajectory level) coupled dynamic free energy functions for the matrix and spherical penetrant particles. A single dynamic coupling parameter quantifies how much the matrix displaces relative to the penetrant when the latter reaches its transition state which is determined via the enforcement of a temporal causality or coincidence condition. The theory is implemented for dilute penetrants smaller than the matrix particles, with or without penetrant-matrix attractive forces. Model calculations reveal a rich dependence of the penetrant diffusion constant and degree of dynamic coupling on size ratio, volume fraction, and attraction strength. In the absence of attractions, a near exponential decrease of penetrant diffusivity with size ratio over an intermediate range is predicted, in contrast to the much steeper, non-exponential variation if one assumes local matrix dynamical fluctuations are not correlated with penetrant motion. For sticky penetrants, the relative and absolute influence of caging versus physical bond formation is studied. The conditions for a dynamic crossover from the case where a time scale separation between penetrant and matrix activated hopping exists to a “slaved” or “constraint release” fully coupled regime are determined. The particle mixture model is mapped to treat experimental thermal systems and applied to make predictions for the diffusivity of water, toluene, methanol, and oxygen in polyvinylacetate liquids and glasses. The theory agrees well with experiment with values of the penetrant-matrix size ratio close to their chemically intuitive values. PMID:28527449

  12. Interdiffusion in the Ni/TD-NiCr and Cr/TD-NiCr systems

    NASA Technical Reports Server (NTRS)

    Pawar, A. V.; Tenney, D. R.

    1974-01-01

    The diffusion of Ni and Cr into TD-NiCr has been studied over the 900 to 1100 C temperature range. The diffusion couples were prepared by electroplating Cr and Ni on polished TD-NiCr wafers. Concentration profiles produced as a result of isothermal diffusion at 905, 1000, and 1100 C were determined by electron microprobe analysis. The Boltzmann-Matano analysis was used to determine concentration-dependent diffusion coefficients which were found to compare favorably with previously reported values. These data suggest that 2 vol % ThO2 distribution has no appreciable effect on the rates of diffusion in TD-NiCr with a large grain size. This supports the view that an inert dispersoid in an alloy matrix will not in itself lead to enhanced diffusion unless a short-circuit diffusion structure is stabilized.

  13. Predicting drug-target interactions by dual-network integrated logistic matrix factorization

    NASA Astrophysics Data System (ADS)

    Hao, Ming; Bryant, Stephen H.; Wang, Yanli

    2017-01-01

    In this work, we propose a dual-network integrated logistic matrix factorization (DNILMF) algorithm to predict potential drug-target interactions (DTI). The prediction procedure consists of four steps: (1) inferring new drug/target profiles and constructing profile kernel matrix; (2) diffusing drug profile kernel matrix with drug structure kernel matrix; (3) diffusing target profile kernel matrix with target sequence kernel matrix; and (4) building DNILMF model and smoothing new drug/target predictions based on their neighbors. We compare our algorithm with the state-of-the-art method based on the benchmark dataset. Results indicate that the DNILMF algorithm outperforms the previously reported approaches in terms of AUPR (area under precision-recall curve) and AUC (area under curve of receiver operating characteristic) based on the 5 trials of 10-fold cross-validation. We conclude that the performance improvement depends on not only the proposed objective function, but also the used nonlinear diffusion technique which is important but under studied in the DTI prediction field. In addition, we also compile a new DTI dataset for increasing the diversity of currently available benchmark datasets. The top prediction results for the new dataset are confirmed by experimental studies or supported by other computational research.

  14. Representation of the crystalline rock matrix as a micro-Discrete Fracture Network: concepts and application

    NASA Astrophysics Data System (ADS)

    Trinchero, P.; Löfgren, M.; Bosbach, D.; Deissmann, G.; Ebrahimi, H.; Gylling, B.; Molinero, J.; Puigdomenech, I.; Selroos, J. O.; Sidborn, M.; Svensson, U.

    2017-12-01

    The matrix of crystalline rocks is typically constituted by mineral grains with characteristic sizes that vary from mm-scale (or less) up to cm-scale. These mineral grains are separated and intersected by micro-fractures, which build the so-called inter-granular space. Here, we present a generic model of the crystalline rock matrix, which is built upon a micro-Discrete Fracture Network (micro-DFN). To mimic the multiscale nature of grains and inter-granular space, different sets of micro-fractures are employed, each having a different length interval and intensity. The occurrence of these fracture sets is described by Poisson distributions, while the fracture aperture in these sets defines the porosity of the rock matrix. The proposed micro-DFN model is tested and calibrated against experimental observations from Forsmark (Sweden) and the resulting system is used to carry out numerical experiments aimed at assessing the redox buffering capacity of the heterogeneous crystalline rock matrix against the infiltration of glacial oxygenated melt-water. The chemically reactive mineral considered in this study is biotite, whose distribution is simulated with a single stochastic realization that honors the average abundance and grain size observed in mineralogical studies of Forsmark. The exposed surface area of biotite grains, which provide a source of ferrous ions that are in turn oxidized by the dissolved oxygen, is related to the underlying micro-DFN. The results of the mechanistic reactive transport simulations are compared to an existing analytical solution based on the assumption of homogeneity. This evaluation shows that the matrix indeed behaves as a composite system, with most of the oxygen being consumed in "highly reactive pathways" and a non negligible part of the oxygen diffuses deeper into the matrix. Sensitivity analyses to diffusivity show that this effect is more pronounced at high Damköhler numbers (diffusion limited regime) while at lower Damköhler numbers the solution approaches that predicted by the homogeneous model.

  15. Microstructural characterization of a thin film ZrN diffusion barrier in an As-fabricated U-7Mo/Al matrix dispersion fuel plate

    NASA Astrophysics Data System (ADS)

    Keiser, Dennis D.; Perez, Emmanuel; Wiencek, Tom; Leenaers, Ann; Van den Berghe, Sven

    2015-03-01

    The United States High Performance Research Reactor Fuel Development program is developing low enriched uranium fuels for application in research and test reactors. One concept utilizes U-7 wt.% Mo (U-7Mo) fuel particles dispersed in Al matrix, where the fuel particles are coated with a 1 μm-thick ZrN coating. The ZrN serves as a diffusion barrier to eliminate a deleterious reaction that can occur between U-7Mo and Al when a dispersion fuel is irradiated under aggressive reactor conditions. To investigate the final microstructure of a physically-vapor-deposited ZrN coating in a dispersion fuel plate after it was fabricated using a rolling process, characterization samples were taken from a fuel plate that was fabricated at 500 °C using ZrN-coated U-7Mo particles, Al matrix and AA6061 cladding. Scanning electron and transmission electron microscopy analysis were performed. Data from these analyses will be used to support future microstructural examinations of irradiated fuel plates, in terms of understanding the effects of irradiation on the ZrN microstructure, and to determine the role of diffusion barrier microstructure in eliminating fuel/matrix interactions during irradiation. The as-fabricated coating was determined to be cubic-ZrN (cF8) phase. It exhibited a columnar microstructure comprised of nanometer-sized grains and a region of relatively high porosity, mainly near the Al matrix. Small impurity-containing phases were observed at the U-7Mo/ZrN interface, and no interaction zone was observed at the ZrN/Al interface. The bonding between the U-7Mo and ZrN appeared to be mechanical in nature. A relatively high level of oxygen was observed in the ZrN coating, extending from the Al matrix in the ZrN coating in decreasing concentration. The above microstructural characteristics are discussed in terms of what may be most optimal for a diffusion barrier in a dispersion fuel plate application.

  16. Modeling High-Pressure Gas-Polymer Sorpion Behavior Using the Sanchez-Lacombe Equation of State.

    DTIC Science & Technology

    1987-06-01

    The solubility of a gas in an amorphous or molten polymer is an important consideration in membrane and polymer processes . For instance, the efficacy...to a supercritical fluid during the impregnation process . Swelling the polymer effectively increases the diffusion coefficient of the heavy dopant by...dissolve the impurity, and then diffuse out of the swollen matrix thus removing the impurity. This supercritical fluid extraction process is somewhat

  17. Effects of Mineral Compositions on Matrix Diffusion and Sorption of 75Se(IV) in Granite.

    PubMed

    Yang, Xiaoyu; Ge, Xiangkun; He, Jiangang; Wang, Chunli; Qi, Liye; Wang, Xiangyun; Liu, Chunli

    2018-02-06

    Exploring the migration behaviors of selenium in granite is critical for the safe disposal of radioactive waste. The matrix diffusion and sorption of 75 Se(IV) (analogue for 79 Se) in granite were systematically studied to set reliable parameters in this work. Through-diffusion and batch sorption experiments were conduct with four types of Beishan granite. The magnitudes of the obtained apparent diffusion coefficient (D a ) values are of the following order: monzogranite > granodiorite-2 > granodiorite-1, which is opposite to the sequence of the K d values obtained from both the diffusion model and batch sorption experiments. The EPMA results of the granitic flakes showed that there was no obvious enrichment of Se(IV) on quartz, microcline and albite. Only biotite showed a weak affinity for Se(IV). Macroscopic sorption behaviors of Se(IV) on the four types of granite were identical with the sequence of the granitic biotite contents. Quantitative fitting results were also provided. XPS and XANES spectroscopy data revealed that bidentate inner-sphere complexes were formed between Se(IV) and Fe(III). Our results indicate that biotite can be representative of the Se(IV) sorption in complex mineral assemblages such as granite, and the biotite contents are critically important to evaluate Se(IV) transport in granite.

  18. Creep and stress relaxation induced by interface diffusion in metal matrix composites

    NASA Astrophysics Data System (ADS)

    Li, Yinfeng; Li, Zhonghua

    2013-03-01

    An analytical solution is developed to predict the creep rate induced by interface diffusion in unidirectional fiber-reinforced and particle reinforced composites. The driving force for the interface diffusion is the normal stress acting on the interface, which is obtained from rigorous Eshelby inclusion theory. The closed-form solution is an explicit function of the applied stress, volume fraction and radius of the fiber, as well as the modulus ratio between the fiber and the matrix. It is interesting that the solution is formally similar to that of Coble creep in polycrystalline materials. For the application of the present solution in the realistic composites, the scale effect is taken into account by finite element analysis based on a unit cell. Based on the solution, a closed-form solution is also given as a description of stress relaxation induced by interfacial diffusion under constant strain. In addition, the analytical solution for the interface stress presented in this study gives some insight into the relationship between the interface diffusion and interface slip. This work was supported by the financial support from the Nature Science Foundation of China (No. 10932007), the National Basic Research Program of China (No. 2010CB631003/5), and the Doctoral Program of Higher Education of China (No. 20100073110006).

  19. Fractal Model of Fission Product Release in Nuclear Fuel

    NASA Astrophysics Data System (ADS)

    Stankunas, Gediminas

    2012-09-01

    A model of fission gas migration in nuclear fuel pellet is proposed. Diffusion process of fission gas in granular structure of nuclear fuel with presence of inter-granular bubbles in the fuel matrix is simulated by fractional diffusion model. The Grunwald-Letnikov derivative parameter characterizes the influence of porous fuel matrix on the diffusion process of fission gas. A finite-difference method for solving fractional diffusion equations is considered. Numerical solution of diffusion equation shows correlation of fission gas release and Grunwald-Letnikov derivative parameter. Calculated profile of fission gas concentration distribution is similar to that obtained in the experimental studies. Diffusion of fission gas is modeled for real RBMK-1500 fuel operation conditions. A functional dependence of Grunwald-Letnikov derivative parameter with fuel burn-up is established.

  20. Radionuclide Transport in Fracture-Granite Interface Zones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Q; Mori, A

    In situ radionuclide migration experiments, followed by excavation and sample characterization, were conducted in a water-conducting shear zone at the Grimsel Test Site (GTS) in Switzerland to study diffusion paths of radionuclides in fractured granite. In this work, we employed a micro-scale mapping technique that interfaces laser ablation sampling with inductively coupled plasma-mass spectrometry (LA/ICP-MS) to measure the fine-scale (micron-range) distribution of actinides ({sup 234}U, {sup 235}U, and {sup 237}Np) in the fracture-granite interface zones. Long-lived {sup 234}U, {sup 235}U, and {sup 237}Np were detected in flow channels, as well as in the adjacent rock matrix, using the sensitive, feature-basedmore » mapping of the LA/ICP-MS technique. The injected sorbing actinides are mainly located within the advective flowing fractures and the immediately adjacent regions. The water-conducting fracture studied in this work is bounded on one side by mylonite and the other by granitic matrix regions. These actinides did not penetrate into the mylonite side as much as the relatively higher-porosity granite matrix, most likely due to the low porosity, hydraulic conductivity, and diffusivity of the fracture wall (a thickness of about 0.4 mm separates the mylonite region from the fracture) and the mylonite region itself. Overall, the maximum penetration depth detected with this technique for the more diffusive {sup 237}Np over the field experimental time scale of about 60 days was about 10 mm in the granitic matrix, illustrating the importance of matrix diffusion in retarding radionuclide transport from the advective fractures. Laboratory tests and numerical modeling of radionuclide diffusion into granitic matrix was conducted to complement and help interpret the field results. Measured apparent diffusivity of multiple tracers in granite provided consistent predictions for radionuclide transport in the fractured granitic rock.« less

  1. Note on coefficient matrices from stochastic Galerkin methods for random diffusion equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Tao, E-mail: tzhou@lsec.cc.ac.c; Tang Tao, E-mail: ttang@hkbu.edu.h

    2010-11-01

    In a recent work by Xiu and Shen [D. Xiu, J. Shen, Efficient stochastic Galerkin methods for random diffusion equations, J. Comput. Phys. 228 (2009) 266-281], the Galerkin methods are used to solve stochastic diffusion equations in random media, where some properties for the coefficient matrix of the resulting system are provided. They also posed an open question on the properties of the coefficient matrix. In this work, we will provide some results related to the open question.

  2. Selectivity in glycosaminoglycan binding dictates the distribution and diffusion of fibroblast growth factors in the pericellular matrix

    PubMed Central

    Marcello, Marco

    2016-01-01

    The range of biological outcomes generated by many signalling proteins in development and homeostasis is increased by their interactions with glycosaminoglycans, particularly heparan sulfate (HS). This interaction controls the localization and movement of these signalling proteins, but whether such control depends on the specificity of the interactions is not known. We used five fibroblast growth factors with an N-terminal HaloTag (Halo-FGFs) for fluorescent labelling, with well-characterized and distinct HS-binding properties, and measured their binding and diffusion in pericellular matrix of fixed rat mammary 27 fibroblasts. Halo-FGF1, Halo-FGF2 and Halo-FGF6 bound to HS, whereas Halo-FGF10 also interacted with chondroitin sulfate/dermatan sulfate, and FGF20 did not bind detectably. The distribution of bound FGFs in the pericellular matrix was not homogeneous, and for FGF10 exhibited striking clusters. Fluorescence recovery after photobleaching showed that FGF2 and FGF6 diffused faster, whereas FGF1 diffused more slowly, and FGF10 was immobile. The results demonstrate that the specificity of the interactions of proteins with glycosaminoglycans controls their binding and diffusion. Moreover, cells regulate the spatial distribution of different protein-binding sites in glycosaminoglycans independently of each other, implying that the extracellular matrix has long-range structure. PMID:27009190

  3. Isolated effects of external bath osmolality, solute concentration, and electrical charge on solute transport across articular cartilage.

    PubMed

    Pouran, Behdad; Arbabi, Vahid; Zadpoor, Amir A; Weinans, Harrie

    2016-12-01

    The metabolic function of cartilage primarily depends on transport of solutes through diffusion mechanism. In the current study, we use contrast enhanced micro-computed tomography to determine equilibrium concentration of solutes through different cartilage zones and solute flux in the cartilage, using osteochondral plugs from equine femoral condyles. Diffusion experiments were performed with two solutes of different charge and approximately equal molecular weight, namely iodixanol (neutral) and ioxaglate (charge=-1) in order to isolate the effects of solute's charge on diffusion. Furthermore, solute concentrations as well as bath osmolality were changed to isolate the effects of steric hindrance on diffusion. Bath concentration and bath osmolality only had minor effects on the diffusion of the neutral solute through cartilage at the surface, middle and deep zones, indicating that the diffusion of the neutral solute was mainly Fickian. The negatively charged solute diffused considerably slower through cartilage than the neutral solute, indicating a large non-Fickian contribution in the diffusion of charged molecules. The numerical models determined maximum solute flux in the superficial zone up to a factor of 2.5 lower for the negatively charged solutes (charge=-1) as compared to the neutral solutes confirming the importance of charge-matrix interaction in diffusion of molecules across cartilage. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  4. The arbitrary order mimetic finite difference method for a diffusion equation with a non-symmetric diffusion tensor

    NASA Astrophysics Data System (ADS)

    Gyrya, V.; Lipnikov, K.

    2017-11-01

    We present the arbitrary order mimetic finite difference (MFD) discretization for the diffusion equation with non-symmetric tensorial diffusion coefficient in a mixed formulation on general polygonal meshes. The diffusion tensor is assumed to be positive definite. The asymmetry of the diffusion tensor requires changes to the standard MFD construction. We present new approach for the construction that guarantees positive definiteness of the non-symmetric mass matrix in the space of discrete velocities. The numerically observed convergence rate for the scalar quantity matches the predicted one in the case of the lowest order mimetic scheme. For higher orders schemes, we observed super-convergence by one order for the scalar variable which is consistent with the previously published result for a symmetric diffusion tensor. The new scheme was also tested on a time-dependent problem modeling the Hall effect in the resistive magnetohydrodynamics.

  5. The arbitrary order mimetic finite difference method for a diffusion equation with a non-symmetric diffusion tensor

    DOE PAGES

    Gyrya, V.; Lipnikov, K.

    2017-07-18

    Here, we present the arbitrary order mimetic finite difference (MFD) discretization for the diffusion equation with non-symmetric tensorial diffusion coefficient in a mixed formulation on general polygonal meshes. The diffusion tensor is assumed to be positive definite. The asymmetry of the diffusion tensor requires changes to the standard MFD construction. We also present new approach for the construction that guarantees positive definiteness of the non-symmetric mass matrix in the space of discrete velocities. The numerically observed convergence rate for the scalar quantity matches the predicted one in the case of the lowest order mimetic scheme. For higher orders schemes, wemore » observed super-convergence by one order for the scalar variable which is consistent with the previously published result for a symmetric diffusion tensor. The new scheme was also tested on a time-dependent problem modeling the Hall effect in the resistive magnetohydrodynamics.« less

  6. The arbitrary order mimetic finite difference method for a diffusion equation with a non-symmetric diffusion tensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyrya, V.; Lipnikov, K.

    Here, we present the arbitrary order mimetic finite difference (MFD) discretization for the diffusion equation with non-symmetric tensorial diffusion coefficient in a mixed formulation on general polygonal meshes. The diffusion tensor is assumed to be positive definite. The asymmetry of the diffusion tensor requires changes to the standard MFD construction. We also present new approach for the construction that guarantees positive definiteness of the non-symmetric mass matrix in the space of discrete velocities. The numerically observed convergence rate for the scalar quantity matches the predicted one in the case of the lowest order mimetic scheme. For higher orders schemes, wemore » observed super-convergence by one order for the scalar variable which is consistent with the previously published result for a symmetric diffusion tensor. The new scheme was also tested on a time-dependent problem modeling the Hall effect in the resistive magnetohydrodynamics.« less

  7. The influence of different diffusion pattern to the sub- and super-critical fluid flow in brown coal

    NASA Astrophysics Data System (ADS)

    Peng, Peihuo

    2018-03-01

    Sub- and super-critical CO2 flowing in nanoscale pores are recently becoming of great interest due to that it is closely related to many engineering applications, such as geological burial and sequestration of carbon dioxide, Enhanced Coal Bed Methane recovery ( ECBM), super-critical CO2 fracturing and so on. Gas flow in nanopores cannot be described simply by the Darcy equation. Different diffusion pattern such as Fick diffusion, Knudsen diffusion, transitional diffusion and slip flow at the solid matrix separate the seepage behaviour from Darcy-type flow. According to the principle of different diffusion pattern, the flow of sub- and super-critical CO2 in brown coal was simulated by numerical method, and the results were compared with the experimental results to explore the contribution of different diffusion pattern and swelling effect in sub- and super-critical CO2 flow in nanoscale pores.

  8. A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations

    NASA Astrophysics Data System (ADS)

    Bhrawy, A. H.; Doha, E. H.; Baleanu, D.; Ezz-Eldien, S. S.

    2015-07-01

    In this paper, an efficient and accurate spectral numerical method is presented for solving second-, fourth-order fractional diffusion-wave equations and fractional wave equations with damping. The proposed method is based on Jacobi tau spectral procedure together with the Jacobi operational matrix for fractional integrals, described in the Riemann-Liouville sense. The main characteristic behind this approach is to reduce such problems to those of solving systems of algebraic equations in the unknown expansion coefficients of the sought-for spectral approximations. The validity and effectiveness of the method are demonstrated by solving five numerical examples. Numerical examples are presented in the form of tables and graphs to make comparisons with the results obtained by other methods and with the exact solutions more easier.

  9. Effects of formulation variables and post-compression curing on drug release from a new sustained-release matrix material: polyvinylacetate-povidone.

    PubMed

    Shao, Z J; Farooqi, M I; Diaz, S; Krishna, A K; Muhammad, N A

    2001-01-01

    A new commercially available sustained-release matrix material, Kollidon SR, composed of polyvinylacetate and povidone, was evaluated with respect to its ability to modulate the in vitro release of a highly water-soluble model compound, diphenhydramine HCl. Kollidon SR was found to provide a sustained-release effect for the model compound, with certain formulation and processing variables playing an important role in controlling its release kinetics. Formulation variables affecting the release include the level of the polymeric material in the matrix, excipient level, as well as the nature of the excipients (water soluble vs. water insoluble). Increasing the ratio of a water-insoluble excipient, Emcompress, to Kollidon SR enhanced drug release. The incorporation of a water-soluble excipient, lactose, accelerated its release rate in a more pronounced manner. Stability studies conducted at 40 degrees C/75% RH revealed a slow-down in dissolution rate for the drug-Kollidon SR formulation, as a result of polyvinylacetate relaxation. Further studies demonstrated that a post-compression curing step effectively stabilized the release pattern of formulations containing > or = 47% Kollidon SR. The release mechanism of Kollidon-drug and drug-Kollidon-Emcompress formulations appears to be diffusion controlled, while that of the drug-Kollidon-lactose formulation appears to be controlled predominantly by diffusion along with erosion.

  10. Transient swelling behavior and drug delivery from a dissolving film deploying anti-HIV microbicide

    NASA Astrophysics Data System (ADS)

    Tasoglu, Savas; Katz, David F.; Szeri, Andrew J.

    2010-11-01

    Despite more than two decades of HIV vaccine research, there is still no efficacious HIV vaccine. Very recently, a research group has shown that a microbicide gel formulation of antiretroviral drug Tenofovir, significantly inhibits HIV transmission to women [1]. However, there is a widespread agreement that more effective and diverse drug delivery vehicles must be developed. In this setting, there is now great interest in developing different delivery vehicles such as vaginal rings, gels, and films. Here, we develop a model for transient fluid uptake and swelling behavior, and subsequent dissolution and drug deployment from a film containing anti-HIV microbicide. In the model, the polymer structural relaxation via water uptake is assumed to follow first order kinetics. In the case of a film loaded with an osmotically active solute, the kinetic equation is modified to account for the osmotic effect. The transport rate of solvent and solute within the matrix is characterized by a diffusion equation. After the matrix is relaxed to a specified concentration of solvent, lubrication theory and convective-diffusive transport are employed for flow of the liquefied matrix and drug dispersion respectively. [1] Karim, et al., Science, 2010.

  11. Matrix models for size-structured populations: unrealistic fast growth or simply diffusion?

    PubMed

    Picard, Nicolas; Liang, Jingjing

    2014-01-01

    Matrix population models are widely used to study population dynamics but have been criticized because their outputs are sensitive to the dimension of the matrix (or, equivalently, to the class width). This sensitivity is concerning for the population growth rate (λ) because this is an intrinsic characteristic of the population that should not depend on the model specification. It has been suggested that the sensitivity of λ to matrix dimension was linked to the existence of fast pathways (i.e. the fraction of individuals that systematically move up a class), whose proportion increases when class width increases. We showed that for matrix population models with growth transition only from class i to class i + 1, λ was independent of the class width when the mortality and the recruitment rates were constant, irrespective of the growth rate. We also showed that if there were indeed fast pathways, there were also in about the same proportion slow pathways (i.e. the fraction of individuals that systematically remained in the same class), and that they jointly act as a diffusion process (where diffusion here is the movement in size of an individual whose size increments are random according to a normal distribution with mean zero). For 53 tree species from a tropical rain forest in the Central African Republic, the diffusion resulting from common matrix dimensions was much stronger than would be realistic. Yet, the sensitivity of λ to matrix dimension for a class width in the range 1-10 cm was small, much smaller than the sampling uncertainty on the value of λ. Moreover, λ could either increase or decrease when class width increased depending on the species. Overall, even if the class width should be kept small enough to limit diffusion, it had little impact on the estimate of λ for tree species.

  12. A finite volume method for trace element diffusion and partitioning during crystal growth

    NASA Astrophysics Data System (ADS)

    Hesse, Marc A.

    2012-09-01

    A finite volume method on a uniform grid is presented to compute the polythermal diffusion and partitioning of a trace element during the growth of a porphyroblast crystal in a uniform matrix and in linear, cylindrical and spherical geometry. The motion of the crystal-matrix interface and the thermal evolution are prescribed functions of time. The motion of the interface is discretized and it advances from one cell boundary to next as the prescribed interface position passes the cell center. The appropriate conditions for the flux across the crystal-matrix interface are derived from discrete mass conservation. Numerical results are benchmarked against steady and transient analytic solutions for isothermal diffusion with partitioning and growth. Two applications illustrate the ability of the model to reproduce observed rare-earth element patterns in garnets (Skora et al., 2006) and water concentration profiles around spherulites in obsidian (Watkins et al., 2009). Simulations with diffusion inside the growing crystal show complex concentration evolutions for trace elements with high diffusion coefficients, such as argon or hydrogen, but demonstrate that rare-earth element concentrations in typical metamorphic garnets are not affected by intracrystalline diffusion.

  13. Determination of the hydrodynamic friction matrix for various anisotropic particles

    NASA Astrophysics Data System (ADS)

    Kraft, Daniela; Wittkowksi, Raphael; Löwen, Hartmut; Pine, David

    2013-03-01

    The relationship between the shape of a colloidal particle and its Brownian motion can be captured by the hydrodynamic friction matrix. It fully describes the translational and rotational diffusion along the particle's main axes as well as the coupling between rotational and translational diffusion. We observed a wide variety of anisotropic colloidal particles with confocal microscopy and calculated the hydrodynamic friction matrix from the particle trajectories. We find that symmetries in the particle shape are reflected in the entries of the friction matrix. We compare our experimentally obtained results with numerical simulations and theoretical predictions. Financial support through a Rubicon grant by the Netherlands Organisation for Scientific Research.

  14. Dynamics of water in strawberry and red onion as studied by dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Jansson, H.; Huldt, C.; Bergman, R.; Swenson, J.

    2005-01-01

    We have investigated the microscopic dynamics of strawberry and red onion by means of broadband dielectric spectroscopy. In contrast to most of the previous experiments on carbohydrate-rich biological materials, which have mainly considered the more global dynamics of the “biological matrix,” we are here focusing on the microscopic dynamics of mainly the associated water. The results for both strawberry and red onion show that the imaginary part of the permittivity contains one conductivity term and a clear dielectric loss peak, which was found to be similar to the strongest relaxation process of water in carbohydrate solutions. The temperature dependence of the relaxation process was analyzed for different water content. The relaxation process slows down, and its temperature dependence becomes more non-Arrhenius, with decreasing water content. The reason for this is most likely that, on average, the water molecules interact more strongly with carbohydrates and other biological materials at low water content, and the dynamical properties of this biological matrix changes substantially with increasing temperature (from an almost rigid matrix where the water is basically unable to perform long-range diffusion due to confinement effects, to a dynamic matrix with no static confinement effects), which also changes (i.e., reduces) the activation energy of the relaxation process with increasing temperature (i.e., causes a non-Arrhenius temperature dependence). This further changes the conductivity from mainly polarization effects at low temperatures, due to hindered ionic motions, to long-range diffusivity at T>250K . Thus, around this temperature ions in the carbohydrate solution no longer get stuck in confined cavities, since the motion of the biological matrix “opens up” the cavities and the ions are then able to perform long-range migration.

  15. Method of thermal strain hysteresis reduction in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Dries, Gregory A. (Inventor); Tompkins, Stephen S. (Inventor)

    1987-01-01

    A method is disclosed for treating graphite reinforced metal matrix composites so as to eliminate thermal strain hysteresis and impart dimensional stability through a large thermal cycle. The method is applied to the composite post fabrication and is effective on metal matrix materials using graphite fibers manufactured by both the hot roll bonding and diffusion bonding techniques. The method consists of first heat treating the material in a solution anneal oven followed by a water quench and then subjecting the material to a cryogenic treatment in a cryogenic oven. This heat treatment and cryogenic stress reflief is effective in imparting a dimensional stability and reduced thermal strain hysteresis in the material over a -250.degree. F. to +250.degree. F. thermal cycle.

  16. Reversible Redox Effect on Gas Permeation of Cobalt Doped Ethoxy Polysiloxane (ES40) Membranes

    PubMed Central

    Miller, Christopher R.; Wang, David K.; Smart, Simon; Diniz da Costa, João C.

    2013-01-01

    This work reports the remarkable effect of reversible gas molecular sieving for high temperature gas separation from cobalt doped ethoxy polysiloxane (CoES40) membranes. This effect stemmed from alternating the reducing and oxidising (redox) state of the cobalt particles embedded in the ES40 matrix. The reduced membranes gave the best H2 permeances of 1 × 10−6 mol m−2 s−1 Pa−1 and H2/N2 permselectivities of 65. The reduction process tailored a molecular gap attributed to changes in the specific volume between the reduced cobalt (Co(OH)2 and CoO) particles in the ES40 structure, thus allowing for the increased diffusion of gases. Upon re-oxidation, the tailored molecular gap became constricted as the particles reversed to Co3O4 resulting a lower gas diffusion, particularly for the larger gases ie. CO2 and N2. The ES40 matrix proved to be structurally rigid enough to withstand the reversible redox effect of cobalt particles across multiple cycles. PMID:23571730

  17. Effect of stress on the diffusion kinetics of methane during gas desorption in coal matrix under different equilibrium pressures

    NASA Astrophysics Data System (ADS)

    Li, Chengwu; Xue, Honglai; Hu, Po; Guan, Cheng; Liu, Wenbiao

    2018-06-01

    Stress has a significant influence on gas diffusion, which is a key factor for methane recovery in coal mines. In this study, a series of experiments were performed to investigate effect of stress on the gas diffusivity during desorption in tectonic coal. Additionally, the desorbed data were modeled using the unipore and bidisperse models. The results show that the bidisperse model better describes the diffusion kinetics than the unipore model in this study. Additionally, the modeling results using the bidisperse approach suggest that the stress impact on the macropore diffusivity is greater than the stress on the micropore diffusivity. Under the same equilibrium pressure, the diffusivity varies with stress according to a four-stage function, which shows an ‘M-shape’. As the equilibrium gas pressure increased from 0.6 to 1.7 MPa, the critical point between stage 2 and stage 3 and between stage 3 and stage 4 transferred to a low stress. This difference is attributed to the gas pressure effects on the physical and mechanical properties of coal. These observations indicate that both the stress and gas pressure can significantly impact gas diffusion and may have significant implications on methane recovery in coal mines.

  18. Diffusion of Conserved Charges in Relativistic Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Greif, Moritz; Fotakis, Jan. A.; Denicol, Gabriel S.; Greiner, Carsten

    2018-06-01

    We demonstrate that the diffusion currents do not depend only on gradients of their corresponding charge density, but that the different diffusion charge currents are coupled. This happens in such a way that it is possible for density gradients of a given charge to generate dissipative currents of another charge. Within this scheme, the charge diffusion coefficient is best viewed as a matrix, in which the diagonal terms correspond to the usual charge diffusion coefficients, while the off-diagonal terms describe the coupling between the different currents. In this Letter, we calculate for the first time the complete diffusion matrix for hot and dense nuclear matter, including baryon, electric, and strangeness charges. We find that the baryon diffusion current is strongly affected by baryon charge gradients but also by its coupling to gradients in strangeness. The electric charge diffusion current is found to be strongly affected by electric and strangeness gradients, whereas strangeness currents depend mostly on strange and baryon gradients.

  19. Thermal Diffusivity and Conductivity in Ceramic Matrix Fiber Composite Materials - Literature Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.G. Quinn

    A technical literature review was conducted to gain an understanding of the state of the art method, problems, results, and future of thermal diffusivity/conductivity of matrix-fiber composites for high temperature applications. This paper summarizes the results of test method development and theory. Results from testing on various sample types are discussed with concentration on the anisotropic characteristics of matrix-fiber composites, barriers to heat flow, and notable microstructure observations. The conclusion presents some observations from the technical literature, drawbacks of current information and discusses potential needs for future testing.

  20. Determination of the thermodynamic correction factor of fluids confined in nano-metric slit pores from molecular simulation

    NASA Astrophysics Data System (ADS)

    Collell, Julien; Galliero, Guillaume

    2014-05-01

    The multi-component diffusive mass transport is generally quantified by means of the Maxwell-Stefan diffusion coefficients when using molecular simulations. These coefficients can be related to the Fick diffusion coefficients using the thermodynamic correction factor matrix, which requires to run several simulations to estimate all the elements of the matrix. In a recent work, Schnell et al. ["Thermodynamics of small systems embedded in a reservoir: A detailed analysis of finite size effects," Mol. Phys. 110, 1069-1079 (2012)] developed an approach to determine the full matrix of thermodynamic factors from a single simulation in bulk. This approach relies on finite size effects of small systems on the density fluctuations. We present here an extension of their work for inhomogeneous Lennard Jones fluids confined in slit pores. We first verified this extension by cross validating the results obtained from this approach with the results obtained from the simulated adsorption isotherms, which allows to determine the thermodynamic factor in porous medium. We then studied the effects of the pore width (from 1 to 15 molecular sizes), of the solid-fluid interaction potential (Lennard Jones 9-3, hard wall potential) and of the reduced fluid density (from 0.1 to 0.7 at a reduced temperature T* = 2) on the thermodynamic factor. The deviation of the thermodynamic factor compared to its equivalent bulk value decreases when increasing the pore width and becomes insignificant for reduced pore width above 15. We also found that the thermodynamic factor is sensitive to the magnitude of the fluid-fluid and solid-fluid interactions, which softens or exacerbates the density fluctuations.

  1. Lyophilic matrix method for dissolution and release studies of nanoscale particles.

    PubMed

    Pessi, Jenni; Svanbäck, Sami; Lassila, Ilkka; Hæggström, Edward; Yliruusi, Jouko

    2017-10-25

    We introduce a system with a lyophilic matrix to aid dissolution studies of powders and particulate systems. This lyophilic matrix method (LM method) is based on the ability to discriminate between non-dissolved particles and the dissolved species. In the LM method the test substance is embedded in a thin lyophilic core-shell matrix. This permits rapid contact with the dissolution medium while minimizing dispersion of non-dissolved particles without presenting a substantial diffusion barrier. The method produces realistic dissolution and release results for particulate systems, especially those featuring nanoscale particles. By minimizing method-induced effects on the dissolution profile of nanopowders, the LM method overcomes shortcomings associated with current dissolution tests. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Passivity analysis for uncertain BAM neural networks with time delays and reaction-diffusions

    NASA Astrophysics Data System (ADS)

    Zhou, Jianping; Xu, Shengyuan; Shen, Hao; Zhang, Baoyong

    2013-08-01

    This article deals with the problem of passivity analysis for delayed reaction-diffusion bidirectional associative memory (BAM) neural networks with weight uncertainties. By using a new integral inequality, we first present a passivity condition for the nominal networks, and then extend the result to the case with linear fractional weight uncertainties. The proposed conditions are expressed in terms of linear matrix inequalities, and thus can be checked easily. Examples are provided to demonstrate the effectiveness of the proposed results.

  3. Heterogeneous continuous-time random walks

    NASA Astrophysics Data System (ADS)

    Grebenkov, Denis S.; Tupikina, Liubov

    2018-01-01

    We introduce a heterogeneous continuous-time random walk (HCTRW) model as a versatile analytical formalism for studying and modeling diffusion processes in heterogeneous structures, such as porous or disordered media, multiscale or crowded environments, weighted graphs or networks. We derive the exact form of the propagator and investigate the effects of spatiotemporal heterogeneities onto the diffusive dynamics via the spectral properties of the generalized transition matrix. In particular, we show how the distribution of first-passage times changes due to local and global heterogeneities of the medium. The HCTRW formalism offers a unified mathematical language to address various diffusion-reaction problems, with numerous applications in material sciences, physics, chemistry, biology, and social sciences.

  4. The influence of hyaluronic acid hydrogel crosslinking density and macromolecular diffusivity on human MSC chondrogenesis and hypertrophy.

    PubMed

    Bian, Liming; Hou, Chieh; Tous, Elena; Rai, Reena; Mauck, Robert L; Burdick, Jason A

    2013-01-01

    Hyaluronic acid (HA) hydrogels formed via photocrosslinking provide stable 3D hydrogel environments that support the chondrogenesis of mesenchymal stem cells (MSCs). Crosslinking density has a significant impact on the physical properties of hydrogels, including their mechanical stiffness and macromolecular diffusivity. Variations in the HA hydrogel crosslinking density can be obtained by either changes in the HA macromer concentration (1, 3, or 5% w/v at 15 min exposure) or the extent of reaction through light exposure time (5% w/v at 5, 10, or 15 min). In this work, increased crosslinking by either method resulted in an overall decrease in cartilage matrix content and more restricted matrix distribution. Increased crosslinking also promoted hypertrophic differentiation of the chondrogenically induced MSCs, resulting in more matrix calcification in vitro. For example, type X collagen expression in the high crosslinking density 5% 15 min group was ~156 and 285% higher when compared to the low crosslinking density 1% 15 min and 5% 5 min groups on day 42, respectively. Supplementation with inhibitors of the small GTPase pathway involved in cytoskeletal tension or myosin II had no effect on hypertrophic differentiation and matrix calcification, indicating that the differential response is unlikely to be related to force-sensing mechanotransduction mechanisms. When implanted subcutaneously in nude mice, higher crosslinking density again resulted in reduced cartilage matrix content, restricted matrix distribution, and increased matrix calcification. This study demonstrates that hydrogel properties mediated through alterations in crosslinking density must be considered in the context of the hypertrophic differentiation of chondrogenically induced MSCs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Radiance and polarization in the diffusion region with an arbitrary scattering phase matrix

    NASA Astrophysics Data System (ADS)

    Sun, Bingqiang; Kattawar, George W.; Yang, Ping

    2016-11-01

    Radiance and polarization patterns in an optically deep region, the so-called diffusion region or asymptotic region, of a homogeneous atmosphere or ocean, depend mainly on the scattering phase matrix and the single-scattering albedo of the medium. The radiance and polarization properties in the diffusion region for an arbitrary scattering phase matrix can be obtained in terms of a series of the generalized spherical functions. The number of terms is closely related to the single-scattering albedo of the medium. If the medium is conservative, the radiance is isotropic in conjunction with no polarization. If the single-scattering albedo is close to 1, several terms are sufficient to obtain the patterns, in which the degree of polarization feature is less than 1%. If the medium is highly absorptive, more expansion terms are required to obtain the diffusion patterns. The examples of simulated radiance and polarization patterns for Rayleigh scattering, Henyey-Greenstein-Rayleigh scattering, and haze L and cloud C1 scattering, defined by Deirmendjian, are calculated.

  6. Brain Extracellular Space: The Final Frontier of Neuroscience.

    PubMed

    Nicholson, Charles; Hrabětová, Sabina

    2017-11-21

    Brain extracellular space is the narrow microenvironment that surrounds every cell of the central nervous system. It contains a solution that closely resembles cerebrospinal fluid with the addition of extracellular matrix molecules. The space provides a reservoir for ions essential to the electrical activity of neurons and forms an intercellular chemical communication channel. Attempts to reveal the size and structure of the extracellular space using electron microscopy have had limited success; however, a biophysical approach based on diffusion of selected probe molecules has proved useful. A point-source paradigm, realized in the real-time iontophoresis method using tetramethylammonium, as well as earlier radiotracer methods, have shown that the extracellular space occupies ∼20% of brain tissue and small molecules have an effective diffusion coefficient that is two-fifths that in a free solution. Monte Carlo modeling indicates that geometrical constraints, including dead-space microdomains, contribute to the hindrance to diffusion. Imaging the spread of macromolecules shows them increasingly hindered as a function of size and suggests that the gaps between cells are predominantly ∼40 nm with wider local expansions that may represent dead-spaces. Diffusion measurements also characterize interactions of ions and proteins with the chondroitin and heparan sulfate components of the extracellular matrix; however, the many roles of the matrix are only starting to become apparent. The existence and magnitude of bulk flow and the so-called glymphatic system are topics of current interest and controversy. The extracellular space is an exciting area for research that will be propelled by emerging technologies. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Isotope fractionation by multicomponent diffusion (Invited)

    NASA Astrophysics Data System (ADS)

    Watkins, J. M.; Liang, Y.; Richter, F. M.; Ryerson, F. J.; DePaolo, D. J.

    2013-12-01

    Isotope fractionation by multicomponent diffusion The isotopic composition of mineral phases can be used to probe the temperatures and rates of mineral formation as well as the degree of post-mineralization alteration. The ability to interpret stable isotope variations is limited by our knowledge of three key parameters and their relative importance in determining the composition of a mineral grain and its surroundings: (1) thermodynamic (equilibrium) partitioning, (2) mass-dependent diffusivities, and (3) mass-dependent reaction rate coefficients. Understanding the mechanisms of diffusion and reaction in geological liquids, and how these mass transport processes discriminate between isotopes, represents an important problem that is receiving considerable attention in the geosciences. Our focus in this presentation will be isotope fractionation by chemical diffusion. Previous studies have documented that diffusive isotope effects vary depending on the cation as well as the liquid composition, but the ability to predict diffusive isotope effects from theory is limited; for example, it is unclear whether the magnitude of diffusive isotopic fractionations might also vary with the direction of diffusion in composition space. To test this hypothesis and to further guide the theoretical treatment of isotope diffusion, two chemical diffusion experiments and one self diffusion experiment were conducted at 1250°C and 0.7 GPa. In one experiment (A-B), CaO and Na2O counter-diffuse rapidly in the presence of a small SiO2 gradient. In the other experiment (D-E), CaO and SiO2 counter-diffuse more slowly in a small Na2O gradient. In both chemical diffusion experiments, Ca isotopes become fractionated by chemical diffusion but by different amounts, documenting for the first time that the magnitude of isotope fractionation by diffusion depends on the direction of diffusion in composition space. The magnitude of Ca isotope fractionation that develops is positively correlated with the rate of CaO diffusion; in A-B, the total variation is 2.5‰ whereas in D-E it is only 1.3‰. The diffusion of isotopes in a multicomponent system is modeled using a new expression for the isotope-specific diffusive flux that includes self diffusion terms in addition to the multicomponent chemical diffusion matrix. Kinetic theory predicts a mass dependence on isotopic mobility, i.e., self diffusivity, but it is unknown whether or how the mass dependence on self diffusivity translates into a mass dependence on chemical diffusion coefficients. The new experimental results allow us to assess several empirical expressions relating the self diffusivity and its mass dependence to the elements of the diffusion matrix and their mass dependence. Several plausible theoretical treatments can fit the data equally well. We are currently at the stage where experiments are guiding the theoretical treatment of the isotope fractionation by diffusion problem, underscoring the importance of experiments for aiding interpretations of isotopic variations in nature.

  8. The Impact of Biofilms on the Process of Back Diffusion From a Contaminated Rock Matrix

    NASA Astrophysics Data System (ADS)

    Yungwirth, G. A.; Novakowski, K. S.; Ross, N.

    2005-12-01

    Groundwater remediation in fractured rock settings is complicated by the diffusion of contaminants into the rock matrix and the subsequent back diffusion into the fractures. The process of back diffusion, in particular, leads to extended periods of low-level contamination in the fracture network that persists long after the source area is hydraulically or otherwise removed. In such a case, we hypothesize that back diffusion could be limited by growing a biofilm which coats the rock fracture surface and potentially invades the rock micropores. This would effectively sequester the contamination potentially in perpetuity. To explore the viability of this concept, diffusion experiments were conducted in which the effect of biofilm growth on diffusion through thin (0.8 to 1.2 cm) slices of dolostone core obtained from the Lockport Formation, Southern Ontario, was investigated. The experiments were conducted using a double-cell method, in which the core slices were encapsulated inside Teflon coated hydraulic hose, fitted with ultra high molecular weight polyethylene endcaps having stainless steel sample ports. Diffusion was established across the core slice by spiking one reservoir with a conservative tracer and monitoring the tracer arrival in the reservoir located on the other side of the coupon. The experiments were conducted both in the presence and absence of a biofilm. Biofilm was grown on the rock coupons in a separate bath before the coupons were transferred to the apparatus for the diffusion experiments. Microbial populations indigenous to the groundwater used in the bath were stimulated to form the biofilm with the addition of a beef extract and peptone nutrient broth in 1g/L concentration. The extent of biofilm growth was monitored using a modified Dubois et al (1956) colorimetric method for sugar determination. Results were simulated using an analytical model that was developed for the geometry of the diffusion experiments. Governing equations for the model are based on a cylindrical coordinate system where one equation was developed for the rock and another for the biofilm. The solution was found using the Laplace Transform method. Preliminary results show substantial biofilm growth, confirming that the method of biofilm stimulation is viable. Preliminary analysis of data from the diffusion experiments shows the impact of biofilm presence on back diffusion to be profound.

  9. The effect of thermal cycling to 1100 C on the alpha /Mo/ phase in directionally solidified gamma/gamma-prime-alpha alloys

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1981-01-01

    Specimens of gamma/gamma-prime-alpha (Mo) eutectic alloy were thermally cycled or isothermally exposed at temperatures of 1075 to 1100 C. Transmission electron microscopy examination of cycled specimens indicated that even an exposure of 10 minutes effected noticeable changes in the shape of the alpha phase, and that the changes were cumulative as more cycles were added. The cross sections of fine, smooth fibers changed from rectangles to octagons, while lamellae and irregular shapes spheroidized. These effects are attributed to the differences in thermal expansion coefficients between the alpha phase and the gamma/gamma-prime matrix, and to the higher diffusion rates prevailing at elevated temperatures. Where the configuration of the alpha phase is a simple shape, such as a fiber, increasing the temperature eventually brings about a stress free interface between the alpha phase and the matrix by differential thermal expansion. Where the shape of the alpha phase is more complex, a stressed interface persists to higher temperatures where diffusion produces the more drastic morphological changes.

  10. Diffusive transfer to membranes as an effective interface between gel electrophoresis and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ogorzalek Loo, Rachel R.; Mitchell, Charles; Stevenson, Tracy I.; Loo, Joseph A.; Andrews, Philip C.

    1997-12-01

    Diffusive transfer was examined as a blotting method to transfer proteins from polyacrylamide gels to membranes for ultraviolet matrix-assisted laser desorption ionization (MALDI) mass spectrometry. The method is well-suited for transfers from isoelectric focusing (IEF) gels. Spectra have been obtained for 11 pmol of 66 kDa albumin loaded onto an IEF gel and subsequently blotted to polyethylene. Similarly, masses of intact carbonic anhydrase and hemoglobin were obtained from 14 and 20 pmol loadings. This methodology is also compatible with blotting high molecular weight proteins, as seen for 6 pmol of the 150 kDa monoclonal antibody anti-[beta]-galactosidase transferred to Goretex. Polypropylene, Teflon, Nafion and polyvinylidene difluoride (PVDF) also produced good spectra following diffusive transfer. Only analysis from PVDF required that the membrane be kept wet prior to application of matrix. Considerations in mass accuracy for analysis from large-area membranes with continuous extraction and delayed extraction were explored, as were remedies for surface charging. Vapor phase CNBr cleavage was applied to membrane-bound samples for peptide mapping.

  11. Non-moving Hadamard matrix diffusers for speckle reduction in laser pico-projectors

    NASA Astrophysics Data System (ADS)

    Thomas, Weston; Middlebrook, Christopher

    2014-12-01

    Personal electronic devices such as cell phones and tablets continue to decrease in size while the number of features and add-ons keep increasing. One particular feature of great interest is an integrated projector system. Laser pico-projectors have been considered, but the technology has not been developed enough to warrant integration. With new advancements in diode technology and MEMS devices, laser-based projection is currently being advanced for pico-projectors. A primary problem encountered when using a pico-projector is coherent interference known as speckle. Laser speckle can lead to eye irritation and headaches after prolonged viewing. Diffractive optical elements known as diffusers have been examined as a means to lower speckle contrast. This paper presents a binary diffuser known as a Hadamard matrix diffuser. Using two static in-line Hadamard diffusers eliminates the need for rotation or vibration of the diffuser for temporal averaging. Two Hadamard diffusers were fabricated and contrast values measured showing good agreement with theory and simulated values.

  12. Multi-Scale Multi-Physics Modeling of Matrix Transport Properties in Fractured Shale Reservoirs

    NASA Astrophysics Data System (ADS)

    Mehmani, A.; Prodanovic, M.

    2014-12-01

    Understanding the shale matrix flow behavior is imperative in successful reservoir development for hydrocarbon production and carbon storage. Without a predictive model, significant uncertainties in flowback from the formation, the communication between the fracture and matrix as well as proper fracturing practice will ensue. Informed by SEM images, we develop deterministic network models that couple pores from multiple scales and their respective fluid physics. The models are used to investigate sorption hysteresis as an affordable way of inferring the nanoscale pore structure in core scale. In addition, restricted diffusion as a function of pore shape, pore-throat size ratios and network connectivity is computed to make correct interpretation of the 2D NMR maps possible. Our novel pore network models have the ability to match sorption hysteresis measurements without any tuning parameters. The results clarify a common misconception of linking type 3 nitrogen hysteresis curves to only the shale pore shape and show promising sensitivty for nanopore structre inference in core scale. The results on restricted diffusion shed light on the importance of including shape factors in 2D NMR interpretations. A priori "weighting factors" as a function of pore-throat and throat-length ratio are presented and the effect of network connectivity on diffusion is quantitatively assessed. We are currently working on verifying our models with experimental data gathered from the Eagleford formation.

  13. High Temperature Degradation Mechanisms in Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Cunningham, Ronan A.

    1996-01-01

    Polymer matrix composites are increasingly used in demanding structural applications in which they may be exposed to harsh environments. The durability of such materials is a major concern, potentially limiting both the integrity of the structures and their useful lifetimes. The goal of the current investigation is to develop a mechanism-based model of the chemical degradation which occurs, such that given the external chemical environment and temperatures throughout the laminate, laminate geometry, and ply and/or constituent material properties, we can calculate the concentration of diffusing substances and extent of chemical degradation as functions of time and position throughout the laminate. This objective is met through the development and use of analytical models, coupled to an analysis-driven experimental program which offers both quantitative and qualitative information on the degradation mechanism. Preliminary analyses using a coupled diffusion/reaction model are used to gain insight into the physics of the degradation mechanisms and to identify crucial material parameters. An experimental program is defined based on the results of the preliminary analysis which allows the determination of the necessary material coefficients. Thermogravimetric analyses are carried out in nitrogen, air, and oxygen to provide quantitative information on thermal and oxidative reactions. Powdered samples are used to eliminate diffusion effects. Tests in both inert and oxidative environments allow the separation of thermal and oxidative contributions to specimen mass loss. The concentration dependency of the oxidative reactions is determined from the tests in pure oxygen. Short term isothermal tests at different temperatures are carried out on neat resin and unidirectional macroscopic specimens to identify diffusion effects. Mass loss, specimen shrinkage, the formation of degraded surface layers and surface cracking are recorded as functions of exposure time. Geometry effects in the neat resin, and anisotropic diffusion effects in the composites, are identified through the use of specimens with different aspect ratios. The data is used with the model to determine reaction coefficients and effective diffusion coefficients. The empirical and analytical correlations confirm the preliminary model results which suggest that mass loss at lower temperatures is dominated by oxidative reactions and that these reaction are limited by diffusion of oxygen from the surface. The mechanism-based model is able to successfully capture the basic physics of the degradation phenomena under a wide range of test conditions. The analysis-based test design is successful in separating out oxidative, thermal, and diffusion effects to allow the determination of material coefficients. This success confirms the basic picture of the process; however, a more complete understanding of some aspects of the physics are required before truly predictive capability can be achieved.

  14. Diffusion of Helium in the mantle: an explanation for MORB-OIB patterns of 3He/4He ratios

    NASA Astrophysics Data System (ADS)

    Morgan, W. J.; Morgan, J. P.

    2011-12-01

    OIBs have a wide range of 3He/4He ratios, MORBs have a much narrower range peaked at 3He/4He ≈ 8 Ra. In addition, the ratio of 3He/20Ne (both stable isotopes) is significantly higher in MORB than in OIB, likewise the ratio of 4He/21Ne (both daughter isotopes produced by U and Th decay) are similarly higher in MORB than OIB. (Stable 3He/36Ar and radiogenic 4He/40Ar have the same pattern as the He/Ne plots, only with more scatter.) [See Honda and Patterson, GCA 63, 1999.] We assume the rising mantle plumes are 'lumpy'; a mixture that includes lumps of primordial mantle (which will be rich in 3He, 20Ne, 22Ne, 36Ar, etc.) as well as lumps containing the EM1, EM2, HIMU components, all in a general matrix of relatively-barren, previously-melted 'harzburgite'. When the rising lumps (plums) melt, the He, Ne, Ar, and most of the other incompatible elements will go into the melts that are known as OIB. But not all of the lumps melt (near the edge, some don't rise shallow enough to pressure-release melt); those that don't melt go into the asthenosphere, flowing horizontally away from the rising column. At a spreading center, this asthenosphere contributes the 'plums' it has left but also some of the more barren matrix that the plums are embedded in becomes part of the melt because of the higher extents of partial melting that occur when making MORB. What is the effect of diffusion? If the helium, because of its small size, can diffuse a distance of 100 m or 1000 m in a billion-plus years (the 'age' of a lump) whereas neon or argon diffuse only decimeters or centimeters in this time because of their larger radii (i.e., not much more than non-noble incompatible elements like K, Rb, or U can diffuse), then the 3He and 4He (and H) can diffuse far out into the 'barren harzburgite' matrix. Thus when the lumps in a plume melt there will be a shortage of 3He and 4He relative to the 20Ne, 21Ne, or argon. With the extensive melting that occurs to make MORB, fluxing causes some of the barren matrix to contribute its 3He and 4He to the MORB melt which results in an excess of helium relative to neon and argon. This extraction of helium from the longtime-diffused-into barren matrix also can explain the uniformity of the 3/4 ratio in MORB as opposed to the variability of 3/4 in OIB where the individual lumps each contribute their own variable contents. What is lacking in this explanation are data on diffusion rates of the noble gases under deep mantle conditions. What experimental data exists suggest helium diffuses sufficiently fast, but published data only go up to ≈1300 °C, and at only uppermost mantle pressures. Can experiments in diamond anvils or calculations that include 'helium atoms' in molecular dynamics models give diffusion constants to test this hypothesis?

  15. Effect of Aging and Surface Interactions on the Diffusion of Endogenous Compounds in Latent Fingerprints Studied by Mass Spectrometry Imaging.

    PubMed

    O'Neill, Kelly C; Lee, Young Jin

    2018-05-01

    The ability to determine the age of fingerprints would be immeasurably beneficial in criminal investigations. We explore the possibility of determining the age of fingerprints by analyzing various compounds as they diffuse from the ridges to the valleys of fingerprints using matrix-assisted laser desorption/ionization mass spectrometry imaging. The diffusion of two classes of endogenous fingerprint compounds, fatty acids and triacylglycerols (TGs), was studied in fresh and aged fingerprints on four surfaces. We expected higher molecular weight TGs would diffuse slower than fatty acids and allow us to determine the age of older fingerprints. However, we found interactions between endogenous compounds and the surface have a much stronger impact on diffusion than molecular weight. For example, diffusion of TGs is faster on hydrophilic plain glass or partially hydrophilic stainless steel surfaces, than on a hydrophobic Rain-x treated surface. This result further complicates utilizing a diffusion model to age fingerprints. © 2017 American Academy of Forensic Sciences.

  16. Soil matrix tracer contamination and canopy recycling did not impair ¹³CO₂ plant-soil pulse labelling experiments.

    PubMed

    Barthel, Matthias; Sturm, Patrick; Knohl, Alexander

    2011-09-01

    When conducting (13)CO(2) plant-soil pulse labelling experiments, tracer material might cause unwanted side effects which potentially affect δ(13)C measurements of soil respiration (δ(13)C(SR)) and the subsequent data interpretation. First, when the soil matrix is not isolated from the atmosphere, contamination of the soil matrix with tracer material occurs leading to a physical back-diffusion from soil pores. Second, when using canopy chambers continuously, (13)CO(2) is permanently re-introduced into the atmosphere due to leaf respiration which then aids re-assimilation of tracer material by the canopy. Accordingly, two climate chamber experiments on European beech saplings (Fagus sylvatica L.) were conducted to evaluate the influence of soil matrix (13)CO(2) contamination and canopy recycling on soil (13)CO(2) efflux during (13)CO(2) plant-soil pulse labelling experiments. For this purpose, a combined soil/canopy chamber system was developed which separates soil and canopy compartments in order to (a) prevent diffusion of (13)C tracer into the soil chamber during a (13)CO(2) canopy pulse labelling and (b) study stable isotope processes in soil and canopy individually and independently. In combination with laser spectrometry measuring CO(2) isotopologue mixing ratios at a rate of 1 Hz, we were able to measure δ(13)C in canopy and soil at very high temporal resolution. For the soil matrix contamination experiment, (13)CO(2) was applied to bare soil, canopy only or, simultaneously, to soil and canopy of the beech trees. The obtained δ(13)C(SR) fluxes from the different treatments were then compared with respect to label re-appearance, first peak time and magnitude. By determining the δ(13)C(SR) decay of physical (13)CO(2) back-diffusion from bare soils (contamination), it was possible to separate biological and physical components in δ(13)C(SR) of a combined flux of both. A second pulse labelling experiment, with chambers permanently enclosing the canopy, revealed that (13)CO(2) recycling at canopy level had no effect on δ(13)C(SR) dynamics.

  17. Reactive solute transport in an asymmetrical fracture-rock matrix system

    NASA Astrophysics Data System (ADS)

    Zhou, Renjie; Zhan, Hongbin

    2018-02-01

    The understanding of reactive solute transport in a single fracture-rock matrix system is the foundation of studying transport behavior in the complex fractured porous media. When transport properties are asymmetrically distributed in the adjacent rock matrixes, reactive solute transport has to be considered as a coupled three-domain problem, which is more complex than the symmetric case with identical transport properties in the adjacent rock matrixes. This study deals with the transport problem in a single fracture-rock matrix system with asymmetrical distribution of transport properties in the rock matrixes. Mathematical models are developed for such a problem under the first-type and the third-type boundary conditions to analyze the spatio-temporal concentration and mass distribution in the fracture and rock matrix with the help of Laplace transform technique and de Hoog numerical inverse Laplace algorithm. The newly acquired solutions are then tested extensively against previous analytical and numerical solutions and are proven to be robust and accurate. Furthermore, a water flushing phase is imposed on the left boundary of system after a certain time. The diffusive mass exchange along the fracture/rock matrixes interfaces and the relative masses stored in each of three domains (fracture, upper rock matrix, and lower rock matrix) after the water flushing provide great insights of transport with asymmetric distribution of transport properties. This study has the following findings: 1) Asymmetric distribution of transport properties imposes greater controls on solute transport in the rock matrixes. However, transport in the fracture is mildly influenced. 2) The mass stored in the fracture responses quickly to water flushing, while the mass stored in the rock matrix is much less sensitive to the water flushing. 3) The diffusive mass exchange during the water flushing phase has similar patterns under symmetric and asymmetric cases. 4) The characteristic distance which refers to the zero diffusion between the fracture and the rock matrix during the water flushing phase is closely associated with dispersive process in the fracture.

  18. Uranium migration in spark plasma sintered W/UO2 CERMETS

    NASA Astrophysics Data System (ADS)

    Tucker, Dennis S.; Wu, Yaqiao; Burns, Jatuporn

    2018-03-01

    W/UO2 CERMET samples were sintered in a Spark Plasma Sintering (SPS) furnace at various temperature under vacuum and pressure. High Resolution Transmission Electron Microscopy (HRTEM) with Energy Dispersive Spectroscopy (EDS) was performed on the samples to determine interface structures and uranium diffusion from the UO2 particles into the tungsten matrix. Local Electrode Atom Probe (LEAP) was also performed to determine stoichiometry of the UO2 particles. It was seen that uranium diffused approximately 10-15 nm into the tungsten matrix. This is explained in terms of production of oxygen vacancies and Fick's law of diffusion.

  19. Nanosize effect of clay mineral nanoparticles on the drug diffusion processes in polyurethane nanocomposite hydrogels

    NASA Astrophysics Data System (ADS)

    Miotke, M.; Strankowska, J.; Kwela, J.; Strankowski, M.; Piszczyk, Ł.; Józefowicz, M.; Gazda, M.

    2017-09-01

    Studies of swelling and release of naproxen sodium (NAP) solution by polyurethane nanocomposite hydrogels containing Cloisite® 30B (organically modified montmorillonite (OMMT)) have been performed. Polyurethane nanocomposite hydrogels are hybrid, nontoxic biomaterials with unique swelling and release properties in comparison with unmodified hydrogels. These features enable to use nanocomposite hydrogels as a modern wound dressing. The presence of nanoparticles significantly improves the swelling. On the other hand, their presence hinders drug diffusion from polymer matrix and consequently causes delay of the drug release. The kinetics of swelling and release were carefully analyzed using the Korsmeyer-Peppas and the modified Hopfenberg models. The models were fitted to precise experimental data allowing accurate quantitative and qualitative analysis. We observed that 0.5% admixture of nanoparticles (Cloisite® 30B) is the best concentration for hydrogel swelling properties. The release process was studied using fluorescence excitation spectra of NAP. Furthermore, we studied swelling hysteresis; polymer chains have not been destroyed after the swelling and part of swelled solution with active substances which remained absorbed in the polymer matrix after the drying process. We have found that the amount of solution with NAP remained in the nanocomposite matrix is greater than in pure hydrogel, as a consequence of NAP-OMMT interactions (nanosize effect).

  20. Enhanced Diffusion of Chlorinated Organic Compounds into Aquitards due to Cracking

    NASA Astrophysics Data System (ADS)

    Ayral, D.; Otero, M.; Chung, S.; Goltz, M. N.; Huang, J.; Demond, A. H.

    2012-12-01

    Despite great efforts, remediation of sites contaminated with dense non-aqueous phase liquids (DNAPLs) is very challenging because, even at residual saturations, DNAPLs can act as a long-term source for a dissolved phase contaminant plume. Current models consider the possibility of diffusion and storage of these compounds in unfractured low permeability layers. However, there is a need to consider the impact of cracks, whether naturally occurring or induced by the interaction between low permeable layers and DNAPLs. To evaluate the impact on diffusive fluxes, diffusion coefficients were measured in low permeability materials representative of aquitards at steady-state using the time-lag method. The experimental setup comprised silty soil, packed into a retaining ring, sandwiched in between two reservoirs. The analytical solution for the time-lag method requires constant conditions in the upper and lower reservoirs. The lower reservoir contained pure trichloroethylene (TCE), while the upper reservoir was maintained at a concentration of zero by bubbling air through it, sweeping TCE into toluene trap. In order to predict the flux, the experimental effective diffusion coefficients were used to calculate the flux through uncracked matrix whereas bulk diffusion coefficient was used to calculate flux through the cracks. By using the experimentally-obtained diffusion coefficients and experimentally-measured crack intensity factors (the ratio of the area of cracks to the uncracked area), the total flux was estimated over extended time periods. These calculations, based on experimental data, were used to evaluate if diffusive-based fluxes in the presence of cracks were significantly greater than in the case of diffusion into an uncracked matrix. The enhanced diffusive fluxes were evaluated to determine whether there is the potential for significantly greater storage in the low permeable layers in the case of cracks, or whether the possibility of advective fluxes into the cracks needs to be considered as well.

  1. A new necessary condition for Turing instabilities.

    PubMed

    Elragig, Aiman; Townley, Stuart

    2012-09-01

    Reactivity (a.k.a initial growth) is necessary for diffusion driven instability (Turing instability). Using a notion of common Lyapunov function we show that this necessary condition is a special case of a more powerful (i.e. tighter) necessary condition. Specifically, we show that if the linearised reaction matrix and the diffusion matrix share a common Lyapunov function, then Turing instability is not possible. The existence of common Lyapunov functions is readily checked using semi-definite programming. We apply this result to the Gierer-Meinhardt system modelling regenerative properties of Hydra, the Oregonator, to a host-parasite-hyperparasite system with diffusion and to a reaction-diffusion-chemotaxis model for a multi-species host-parasitoid community. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. The temperature-dependent diffusion coefficient of helium in zirconium carbide studied with first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiao-Yong; Lu, Yong; Zhang, Ping, E-mail: zhang-ping@iapcm.ac.cn

    2015-04-28

    The temperature-dependent diffusion coefficient of interstitial helium in zirconium carbide (ZrC) matrix is calculated based on the transition state theory. The microscopic parameters in the activation energy and prefactor are obtained from first-principles total energy and phonon frequency calculations including the all atoms. The obtained activation energy is 0.78 eV, consistent with experimental value. Besides, we evaluated the influence of C and Zr vacancies as the perturbation on helium diffusion, and found the C vacancy seems to confine the mobility of helium and the Zr vacancy promotes helium diffusion in some extent. These results provide a good reference to understand themore » behavior of helium in ZrC matrix.« less

  3. Diffusion behavior of lipid vesicles in entangled polymer solutions.

    PubMed Central

    Cao, X; Bansil, R; Gantz, D; Moore, E W; Niu, N; Afdhal, N H

    1997-01-01

    Dynamic light scattering was used to follow the tracer diffusion of phospholipid/cholesterol vesicles in aqueous polyacrylamide solutions and compared with the diffusive behavior of polystyrene (PS) latex spheres of comparable diameters. Over the range of the matrix concentration examined (Cp = 0.1-10 mg/ml), the diffusivities of the PS spheres and the large multilamellar vesicles exhibited the Stokes-Einstein (SE) relation, while the diffusivity of the unilamellar vesicles did not follow the increase of the solution's viscosity caused by the presence of the matrix molecules. The difference between the diffusion behaviors of unilamellar vesicles and hard PS spheres of similar size is possibly due to the flexibility of the lipid bilayer of the vesicles. The unilamellar vesicles are capable of changing their shape to move through the entangled polymer solution so that the hindrance to their diffusion due to the presence of the polymer chains is reduced, while the rigid PS spheres have little flexibility and they encounter greater resistance. The multilamellar vesicles are less flexible, thus their diffusion is similar to the hard PS spheres of similar diameter. Images FIGURE 2 PMID:9336189

  4. Effect of barium on diffusion of sodium in borosilicate glass.

    PubMed

    Mishra, R K; Kumar, Sumit; Tomar, B S; Tyagi, A K; Kaushik, C P; Raj, Kanwar; Manchanda, V K

    2008-08-15

    Diffusion coefficients of sodium in barium borosilicate glasses having varying concentration of barium were determined by heterogeneous isotopic exchange method using (24)Na as the radiotracer for sodium. The measurements were carried out at various temperatures (748-798 K) to obtain the activation energy (E(a)) of diffusion. The E(a) values were found to increase with increasing barium content of the glass, indicating that introduction of barium in the borosilicate glass hinders the diffusion of alkali metal ions from the glass matrix. The results have been explained in terms of the electrostatic and structural factors, with the increasing barium concentration resulting in population of low energy sites by Na(+) ions and, plausibly, formation of more tight glass network. The leach rate measurements on the glass samples show similar trend.

  5. Predictability of drug release from water-insoluble polymeric matrix tablets.

    PubMed

    Grund, Julia; Körber, Martin; Bodmeier, Roland

    2013-11-01

    The purpose of this study was to extend the predictability of an established solution of Fick's second law of diffusion with formulation-relevant parameters and including percolation theory. Kollidon SR (polyvinyl acetate/polyvinylpyrrolidone, 80/20 w/w) matrix tablets with various porosities (10-30% v/v) containing model drugs with different solubilities (Cs=10-170 mg/ml) and in different amounts (A=10-90% w/w) were prepared by direct compression and characterized by drug release and mass loss studies. Drug release was fitted to Fick's second law to obtain the apparent diffusion coefficient. Its changes were correlated with the total porosity of the matrix and the solubility of the drug. The apparent diffusion coefficient was best described by a cumulative normal distribution over the range of total porosities. The mean of the distribution coincided with the polymer percolation threshold, and the minimum and maximum of the distribution were represented by the diffusion coefficient in pore-free polymer and in aqueous medium, respectively. The derived model was verified, and the applicability further extended to a drug solubility range of 10-1000 mg/ml. The developed mathematical model accurately describes and predicts drug release from Kollidon SR matrix tablets. It can efficiently reduce experimental trials during formulation development. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Universal shocks in the Wishart random-matrix ensemble.

    PubMed

    Blaizot, Jean-Paul; Nowak, Maciej A; Warchoł, Piotr

    2013-05-01

    We show that the derivative of the logarithm of the average characteristic polynomial of a diffusing Wishart matrix obeys an exact partial differential equation valid for an arbitrary value of N, the size of the matrix. In the large N limit, this equation generalizes the simple inviscid Burgers equation that has been obtained earlier for Hermitian or unitary matrices. The solution, through the method of characteristics, presents singularities that we relate to the precursors of shock formation in the Burgers equation. The finite N effects appear as a viscosity term in the Burgers equation. Using a scaling analysis of the complete equation for the characteristic polynomial, in the vicinity of the shocks, we recover in a simple way the universal Bessel oscillations (so-called hard-edge singularities) familiar in random-matrix theory.

  7. USE OF A CONVECTION-DIFFUSION MODEL TO UNDERSTAND GASTROINTESTINAL ABSORPTION OF ENVIRONMENTALLY-RELEVANT CHEMICALS

    EPA Science Inventory

    Understanding the factors that affect the gastrointestinal absorption of chemicals is important to predicting the delivered systemic dose of chemicals following exposure in food, water, and other media. Two factors of particular interest are the effects of a matrix to which th...

  8. Li diffusion and the effect of local structure on Li mobility in Li2O-SiO2 glasses.

    PubMed

    Bauer, Ute; Welsch, Anna-Maria; Behrens, Harald; Rahn, Johanna; Schmidt, Harald; Horn, Ingo

    2013-12-05

    Aimed to improve the understanding of lithium migration mechanisms in ion conductors, this study focuses on Li dynamics in binary Li silicate glasses. Isotope exchange experiments and conductivity measurements were carried out to determine self-diffusion coefficients and activation energies for Li migration in Li2Si3O7 and Li2Si6O13 glasses. Samples of identical composition but different isotope content were combined for diffusion experiments in couples or triples. Diffusion profiles developed between 511 and 664 K were analyzed by femtosecond laser ablation combined with multiple collector inductively coupled plasma mass spectrometry (fs LA-MC-ICP-MS) and secondary ion mass spectrometry (SIMS). Analyses of diffusion profiles and comparison of diffusion data reveal that the isotope effect of lithium diffusion in silicate glasses is rather small, consistent with classical diffusion behavior. Ionic conductivity of glasses was measured between 312 and 675 K. The experimentally obtained self-diffusion coefficient, D(IE), and ionic diffusion coefficient, D(σ), derived from specific DC conductivity provided information about correlation effects during Li diffusion. The D(IE)/D(σ) is higher for the trisilicate (0.27 ± 0.05) than that for the hexasilicate (0.17 ± 0.02), implying that increasing silica content reduces the efficiency of Li jumps in terms of long-range movement. This trend can be rationalized by structural concepts based on nuclear magnetic resonance (NMR) and Raman spectroscopy as well as molecular dynamic simulations, that is, lithium is percolating in low-dimensional, alkali-rich regions separated by a silica-rich matrix.

  9. Isothermal and hygrothermal agings of hybrid glass fiber/carbon fiber composite

    NASA Astrophysics Data System (ADS)

    Barjasteh, Ehsan

    New applications of fiber-reinforced polymer composites (FRPCs) are arising in non-traditional sectors of industry, such as civil infrastructure, automotive, and power distribution. For example, composites are being used in place of steel to support high-voltage overhead conductors. In this application, conductive strands of aluminum are wrapped around a solid composite rod comprised of unidirectional carbon and glass fibers in an epoxy matrix, which is commercially called ACCC conductor. Composite-core conductors such as these are expected to eventually replace conventional steel-reinforced conductors because of the reduced sag at high temperatures, lower weight, higher ampacity, and reduced line losses. Despite the considerable advantages in mechanical performance, long-term durability of composite conductors is a major concern, as overhead conductors are expected to retain properties (with minimal maintenance) over a service life that spans multiple decades. These concerns stem from the uncertain effects of long-term environmental exposure, which includes temperature, moisture, radiation, and aggressive chemicals, all of which can be exacerbated by cyclic loads. In general, the mechanical and physical properties of polymer composites are adversely affected by such environmental factors. Consequently, the ability to forecast changes in material properties as a function of environmental exposure, particularly bulk mechanical properties, which are affected by the integrity of fiber-matrix interfaces, is required to design for extended service lives. Polymer composites are susceptible to oxidative degradation at high temperatures approaching but not quite reaching the glass transition temperature ( Tg). Although the fibers are stable at such temperatures, the matrix and especially the fiber-matrix interface can undergo degradation that affects the physical and mechanical properties of the structure over time. Therefore, as a first step, the thermal aging of an anhydride/epoxy network used in composite-reinforced conductor cables was investigated to determine the extent of thermal oxidative (surface effect) and non-oxidative (bulk effect) degradation. Thermal oxidation tests were performed in air-circulating and vacuum ovens at 180°C and 200ºC (the maximum emergency temperature for ACCC conductors). The extent of oxidation during aging was determined by monitoring the thickness of the oxidized layer. Results showed that the oxidized layer thickness did not increase monotonically as a function of exposure time, and even decreased for a limited period of time. A phenomenological reaction-diffusion model was implemented to predict the thickness of oxidized layer, and the calculated results were compared with measurements for aging times up to 10,000 hours. The accuracy of the reaction-diffusion-based thickness values for the isothermally aged epoxy specimen was affected by the permeability properties of the oxidized material, and to a lesser extent by the degree of oxidation. The diffusivity varied because of changes in the density of the oxidized layer, the macro-void content, crack formation, and the molecular structures. To investigate the effects on diffusivity, the morphology of the oxidized layer and the void content was monitored over time. In addition, the density of the oxidized specimens was calculated by direct measurements of volume and weight during exposure. An empirically based volume-loss model was developed to predict the changes in volume of the specimen as a function of aging times and hence to predict the effects on the oxidized layer thickness. Volume-loss measurements provide an indication of material degradation by demonstrating a direct measurement of shrinkage rates and insight into crack initiation, as opposed to typical weight-loss measurements that provide no insight into material failure. Thermal oxidation of a unidirectional carbon-fiber/glass-fiber hybrid composite was also investigated in this study. The aim was to determine oxidation kinetics, degradation mechanisms, oxidation thickness growth (a damage indicator), and oxidation effects on mechanical property. The epoxy composite rods were comprised of a carbon-fiber core and a glass-fiber shell. The thickness of the oxidized layer (TOL) was measured experimentally for samples exposed to 180ºC and 200ºC for up to 8,736 hours. A reaction-diffusion model was developed for each of the two hybrid sections to obtain the oxygen-concentration profile and the TOL within the composite rods. The TOL values measured experimentally were similar to the modeling predictions. The glass-fiber shell functioned as a protective layer, limiting the oxidation of the carbon-fiber core. The domain validity for the reaction-diffusion model was determined from gravimetric experiments by measuring the weight-loss of hybrid composite samples exposed isothermally in air and in vacuum at 200°C for up to 13,104 hours (1.5 years). The results showed that after prolonged thermal exposure, the degradation mechanism changed from thermal oxidation to thermal degradation. Thermogravimetric analysis (TGA) was performed to determine the thermal degradation and stability of the aged composite. The results indicated that the onset temperature of matrix degradation increased by increasing exposure time. Inorganic fillers are widely used in pultruded parts to facilitate pultrusion, especially for long production runs. Therefore, another scope of this study was to investigate the effects of filler on oxidation kinetics and degradation mechanisms during thermal aging of prultruded composite rods. Similar aging tests and oxidation modeling to those for the unfilled composites were performed. The predicted and measured TOL values for filled composites were slightly less than those for unfilled composites. The addition of kaolin fillers did not affect the oxidation mechanism or the reaction rate of the epoxy matrix, although it did cause a slight decrease in the oxygen-transport properties (diffusivity and solubility of oxygen). The effect of thermal aging on mechanical properties of the aged composites was investigated. A relationship was derived relating TOL to tensile strength of the hybrid composite. The tensile strength remained essentially unchanged by thermal oxidation after 52 weeks of exposure. On the contrary, the oxidation resulted in a decrease in short-beam-shear (SBS) strength (a matrix-dominated property) due to degradation of matrix and fiber/matrix interface strength. However, the filled composites showed a lower reduction in SBS strength than that of the unfilled one for an identical duration of exposure. In addition, the effect of thermal aging on glass transition temperature (T g) was determined for isothermal exposures at 180ºC and 200ºC. The simultaneous effects of post-curing and thermal degradation resulted in the change in Tg during exposure. Another study on the composite rod was performed to investigate the sorption kinetics and the effects of moisture on mechanical and physical properties. Sorption curves were obtained for both hybrid and non-hybrid composite rods to determine characteristic parameters, including the diffusion coefficient (D) and the maximum moisture uptake (Minfinity ). The moisture uptake for the hybrid composites generally exhibited Fickian behavior (no hybridization effects), behaving much like non-hybrid composites. A two-dimensional diffusion model was employed to calculate moisture diffusivities in the longitudinal direction. Interfaces and thermally-induced residual stresses affected the moisture diffusion. In addition, the effect of hygrothermal aging on glass transition temperature (Tg), short beam shear strength (SBS), and tensile strength was determined for hygrothermal exposure at 60°C and 85% relative humidity (RH). Property retention and reversibility of property degradation was also measured. Microscopic inspection revealed no evidence of damage. Prediction of the lifetime of carbon-fiber/fiberglass (GF/CF) hybrid composites under various loads and service life conditions requires fundamental knowledge about the degradation mechanisms associated with overhead conductors with the hybrid GF/CF composite cores. This study provides adequate information on mechanical and thermal behaviors of the composite core under prolong isothermal and hygrothermal exposure, which is necessary for defining a lifetime model.

  10. Effects of irradiation on the microstructure of U-7Mo dispersion fuel with Al-2Si matrix

    NASA Astrophysics Data System (ADS)

    Keiser, Dennis D.; Jue, Jan-Fong; Robinson, Adam B.; Medvedev, Pavel; Gan, Jian; Miller, Brandon D.; Wachs, Daniel M.; Moore, Glenn A.; Clark, Curtis R.; Meyer, Mitchell K.; Ross Finlay, M.

    2012-06-01

    The Reduced Enrichment for Research and Test Reactor (RERTR) program is developing low-enriched uranium U-Mo dispersion fuels for application in research and test reactors around the world. As part of this development, fuel plates have been irradiated in the Advanced Test Reactor and then characterized using optical metallography (OM) and scanning electron microscopy (SEM) to determine the as-irradiated microstructure. To demonstrate the irradiation performance of U-7Mo dispersion fuel plates with 2 wt.% Si added to the matrix, fuel plates were tested to moderate burnups at intermediate fission rates as part of the RERTR-6 experiment. Further testing was performed to higher fission rates as part of the RERTR-7A experiment, and very aggressive testing (high temperature, high fission density, and high fission rate) was performed in the RERTR-9A, RERTR-9B, and AFIP-1 experiments. As-irradiated microstructures were compared to those observed after fabrication to determine the effects of irradiation on the microstructure. Based on comparison of the microstructural characterization results for each irradiated sample, some general conclusions can be drawn about how the microstructure evolves during irradiation: there is growth during irradiation of the fuel/matrix interaction (FMI) layer created during fabrication; Si diffuses from the FMI layer to deeper depths in the U-7Mo particles as the irradiation conditions are made more aggressive; lowering of the Si content in the FMI layer results in an increase in the size of the fission gas bubbles; as the FMI layer grows during irradiation, more Si diffuses from the matrix to the FMI layer/matrix interface; and interlinking of fission gas bubbles in the fuel plate microstructure that may indicate breakaway swelling is not observed.

  11. Effects of material parameters on the diffusion and sorption properties of wood-flour/polypropylene composites

    Treesearch

    Vera Steckel; Craig Merrill Clemons; Heiko Thoemen

    2007-01-01

    Composites of wood in a thermoplastic matrix (wood–plastic composites) are considered a low maintenance solution to using wood in outdoor applications. Knowledge of moisture uptake and transport properties would be useful in estimating moisture-related effects such as fungal attack and loss of mechanical strength. Our objectives were to determine how material...

  12. Frequency-Domain Analysis of Diffusion-Cooled Hot-Electron Bolometer Mixers

    NASA Technical Reports Server (NTRS)

    Skalare, A.; McGrath, W. R.; Bumble, B.; LeDuc, H. G.

    1998-01-01

    A new theoretical model is introduced to describe heterodyne mixer conversion efficiency and noise (from thermal fluctuation effects) in diffusion-cooled superconducting hot-electron bolometers. The model takes into account the non-uniform internal electron temperature distribution generated by Wiedemann-Franz heat conduction, and accepts for input an arbitrary (analytical or experimental) superconducting resistance-versus- temperature curve. A non-linear large-signal solution is solved iteratively to calculate the temperature distribution, and a linear frequency-domain small-signal formulation is used to calculate conversion efficiency and noise. In the small-signal solution the device is discretized into segments, and matrix algebra is used to relate the heating modulation in the segments to temperature and resistance modulations. Matrix expressions are derived that allow single-sideband mixer conversion efficiency and coupled noise power to be directly calculated. The model accounts for self-heating and electrothermal feedback from the surrounding bias circuit.

  13. Modeling packed bed sorbent systems with the Pore Surface Diffusion Model: Evidence of facilitated surface diffusion of arsenate in nano-metal (hydr)oxide hybrid ion exchange media.

    PubMed

    Dale, Sachie; Markovski, Jasmina; Hristovski, Kiril D

    2016-09-01

    This study explores the possibility of employing the Pore Surface Diffusion Model (PSDM) to predict the arsenic breakthrough curve of a packed bed system operated under continuous flow conditions with realistic groundwater, and consequently minimize the need to conduct pilot scale tests. To provide the nano-metal (hydr)oxide hybrid ion exchange media's performance in realistic water matrices without engaging in taxing pilot scale testing, the multi-point equilibrium batch sorption tests under pseudo-equilibrium conditions were performed; arsenate breakthrough curve of short bed column (SBC) was predicted by the PSDM in the continuous flow experiments; SBC tests were conducted under the same conditions to validate the model. The overlapping Freundlich isotherms suggested that the water matrix and competing ions did not have any denoting effect on sorption capacity of the media when the matrix was changed from arsenic-only model water to real groundwater. As expected, the PSDM provided a relatively good prediction of the breakthrough profile for arsenic-only model water limited by intraparticle mass transports. In contrast, the groundwater breakthrough curve demonstrated significantly faster intraparticle mass transport suggesting to a surface diffusion process, which occurs in parallel to the pore diffusion. A simple selection of DS=1/2 DP appears to be sufficient when describing the facilitated surface diffusion of arsenate inside metal (hydr)oxide nano-enabled hybrid ion-exchange media in presence of sulfate, however, quantification of the factors determining the surface diffusion coefficient's magnitude under different treatment scenarios remained unexplored. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. NOTE The effect of 13C enrichment in the glassing matrix on dynamic nuclear polarization of [1-13C]pyruvate

    NASA Astrophysics Data System (ADS)

    Lumata, Lloyd; Kovacs, Zoltan; Malloy, Craig; Sherry, A. Dean; Merritt, Matthew

    2011-03-01

    Dimethyl sulfoxide (DMSO) can effectively form a glassy matrix necessary for dynamic nuclear polarization (DNP) experiments. We tested the effects of 13C enrichment in DMSO on DNP of [1-13C]pyruvate doped with trityl radical OX063Me. We found that the polarization build-up time τ of pyruvate in 13C-labeled DMSO glassing solution is twice as fast as the unenriched DMSO while the nuclear magnetic resonance enhancement was unchanged. This indicates that 13C-13C spin diffusion is a limiting factor in the kinetics of DNP in this system, but it has a minimal effect on the absolute value of polarization achievable for the target.

  15. The effect of 13C enrichment in the glassing matrix on dynamic nuclear polarization of [1-13C]pyruvate

    NASA Astrophysics Data System (ADS)

    Lumata, Lloyd; Kovacs, Zoltan; Malloy, Craig; Sherry, A. Dean; Merritt, Matthew

    2011-03-01

    Dimethyl sulfoxide (DMSO) can effectively form a glassy matrix necessary for dynamic nuclear polarization (DNP) experiments. We tested the effects of 13C enrichment in DMSO on DNP of [1-13C]pyruvate doped with trityl radical OX063Me. We found that the polarization build-up time τ of pyruvate in 13C-labeled DMSO glassing solution is twice as fast as the unenriched DMSO while the nuclear magnetic resonance enhancement was unchanged. This indicates that 13C-13C spin diffusion is a limiting factor in the kinetics of DNP in this system, but it has a minimal effect on the absolute value of polarization achievable for the target.

  16. Diffusion Forecasting Model with Basis Functions from QR-Decomposition

    NASA Astrophysics Data System (ADS)

    Harlim, John; Yang, Haizhao

    2018-06-01

    The diffusion forecasting is a nonparametric approach that provably solves the Fokker-Planck PDE corresponding to Itô diffusion without knowing the underlying equation. The key idea of this method is to approximate the solution of the Fokker-Planck equation with a discrete representation of the shift (Koopman) operator on a set of basis functions generated via the diffusion maps algorithm. While the choice of these basis functions is provably optimal under appropriate conditions, computing these basis functions is quite expensive since it requires the eigendecomposition of an N× N diffusion matrix, where N denotes the data size and could be very large. For large-scale forecasting problems, only a few leading eigenvectors are computationally achievable. To overcome this computational bottleneck, a new set of basis functions constructed by orthonormalizing selected columns of the diffusion matrix and its leading eigenvectors is proposed. This computation can be carried out efficiently via the unpivoted Householder QR factorization. The efficiency and effectiveness of the proposed algorithm will be shown in both deterministically chaotic and stochastic dynamical systems; in the former case, the superiority of the proposed basis functions over purely eigenvectors is significant, while in the latter case forecasting accuracy is improved relative to using a purely small number of eigenvectors. Supporting arguments will be provided on three- and six-dimensional chaotic ODEs, a three-dimensional SDE that mimics turbulent systems, and also on the two spatial modes associated with the boreal winter Madden-Julian Oscillation obtained from applying the Nonlinear Laplacian Spectral Analysis on the measured Outgoing Longwave Radiation.

  17. Diffusion Forecasting Model with Basis Functions from QR-Decomposition

    NASA Astrophysics Data System (ADS)

    Harlim, John; Yang, Haizhao

    2017-12-01

    The diffusion forecasting is a nonparametric approach that provably solves the Fokker-Planck PDE corresponding to Itô diffusion without knowing the underlying equation. The key idea of this method is to approximate the solution of the Fokker-Planck equation with a discrete representation of the shift (Koopman) operator on a set of basis functions generated via the diffusion maps algorithm. While the choice of these basis functions is provably optimal under appropriate conditions, computing these basis functions is quite expensive since it requires the eigendecomposition of an N× N diffusion matrix, where N denotes the data size and could be very large. For large-scale forecasting problems, only a few leading eigenvectors are computationally achievable. To overcome this computational bottleneck, a new set of basis functions constructed by orthonormalizing selected columns of the diffusion matrix and its leading eigenvectors is proposed. This computation can be carried out efficiently via the unpivoted Householder QR factorization. The efficiency and effectiveness of the proposed algorithm will be shown in both deterministically chaotic and stochastic dynamical systems; in the former case, the superiority of the proposed basis functions over purely eigenvectors is significant, while in the latter case forecasting accuracy is improved relative to using a purely small number of eigenvectors. Supporting arguments will be provided on three- and six-dimensional chaotic ODEs, a three-dimensional SDE that mimics turbulent systems, and also on the two spatial modes associated with the boreal winter Madden-Julian Oscillation obtained from applying the Nonlinear Laplacian Spectral Analysis on the measured Outgoing Longwave Radiation.

  18. Molecular dynamics insights into the structural and diffusive properties of ZIF-8/PDMS mixed matrix membranes in the n-butanol/water pervaporation process

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Fang, Manquan; Wu, Zhen; Yu, Lixin; Li, Jiding

    2017-04-01

    Molecular dynamics (MD) simulation was used to study the structural and diffusive properties of zeolitic imidazolate framework-8 (ZIF-8)/polydimethylsiloxane (PDMS), a novel alcohol-permselective mixed matrix membrane (MMM). Simulation models of one pure PDMS membrane and three ZIF-8/PDMS MMMs with increasing loadings were successfully constructed. Non-bond energy turned out to be a strong attractive interaction between the PDMS matrix and ZIF-8 cells. The morphology and mobility of PDMS chains were characterized by mean square displacement (MSD). The fraction of free volume (FFV) of the pure membrane and MMMs was calculated and showed declining trends with increasing ZIF-8 loadings. The diffusion coefficients of n-butanol and water molecules were calculated by the Einstein relation. {D}n-\\text{butanol} first increased then decreased, while {D}{{water}} decreased with the increasing loadings. The mechanism of selective diffusion behaviour was investigated and it was found that the inner channels of ZIF-8 provided selective pathways for n-butanol. Diffusion coefficients were correlated with FFV and the results showed that the logarithm of {D}{{water}} demonstrated a good linear relation with the inverse FFV and was in agreement with the free volume theory, while {D}n-\\text{butanol} showed a significant deviation in the case of MMM-1 due to the selective diffusion channels provided by ZIF-8.

  19. Ultem ®/ZIF-8 mixed matrix membranes for gas separation: Transport and physical properties

    DOE PAGES

    Eiras, Daniel; Labreche, Ying; Pessan, Luiz Antonio

    2016-02-19

    Mixed matrix membranes are promising options for improving gas separation processes. Zeolitic imidazolate frameworks (ZIFs) have a porous structure similar to conventional zeolites, being capable in principle of separating gases based on their differences in kinetic diameter while offering the advantage of having a partial organic character. This partial organic nature improves the compatibility between the sieve and the polymer, and a combination of the mentioned characteristics makes these hybrid materials interesting for the preparation of mixed matrix gas separation membranes. In this context the present work reports the preparation of Ultem ®/ZIF-8 mixed matrix membranes and their permeabilities tomore » pure CO 2, N 2 and CH 4 gases. A significant increase in permeability with increase in CO 2/N 2 selectivity was observed for the mixed matrix systems as compared to the properties of the neat Ultem ®. Sorption results allowed to speculate that the ZIF-8 framework is not completely stable dimensionally, what influences the separation process by allowing gases with higher kinetic diameter than its nominal aperture to be sorbed and to diffuse through the crystal. Lastly, sorption and diffusion selectivities indicate that the higher separation performance of the mixed matrix membranes is governed by the diffusion process associated with the influence of gas molecule´s geometry.« less

  20. Determination of the thermodynamic correction factor of fluids confined in nano-metric slit pores from molecular simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collell, Julien; Galliero, Guillaume, E-mail: guillaume.galliero@univ-pau.fr

    2014-05-21

    The multi-component diffusive mass transport is generally quantified by means of the Maxwell-Stefan diffusion coefficients when using molecular simulations. These coefficients can be related to the Fick diffusion coefficients using the thermodynamic correction factor matrix, which requires to run several simulations to estimate all the elements of the matrix. In a recent work, Schnell et al. [“Thermodynamics of small systems embedded in a reservoir: A detailed analysis of finite size effects,” Mol. Phys. 110, 1069–1079 (2012)] developed an approach to determine the full matrix of thermodynamic factors from a single simulation in bulk. This approach relies on finite size effectsmore » of small systems on the density fluctuations. We present here an extension of their work for inhomogeneous Lennard Jones fluids confined in slit pores. We first verified this extension by cross validating the results obtained from this approach with the results obtained from the simulated adsorption isotherms, which allows to determine the thermodynamic factor in porous medium. We then studied the effects of the pore width (from 1 to 15 molecular sizes), of the solid-fluid interaction potential (Lennard Jones 9-3, hard wall potential) and of the reduced fluid density (from 0.1 to 0.7 at a reduced temperature T* = 2) on the thermodynamic factor. The deviation of the thermodynamic factor compared to its equivalent bulk value decreases when increasing the pore width and becomes insignificant for reduced pore width above 15. We also found that the thermodynamic factor is sensitive to the magnitude of the fluid-fluid and solid-fluid interactions, which softens or exacerbates the density fluctuations.« less

  1. Field investigation into unsaturated flow and transport in a fault: Model analyses

    USGS Publications Warehouse

    Liu, H.-H.; Salve, R.; Wang, J.-S.; Bodvarsson, G.S.; Hudson, D.

    2004-01-01

    Results of a fault test performed in the unsaturated zone of Yucca Mountain, Nevada, were analyzed using a three-dimensional numerical model. The fault was explicitly represented as a discrete feature and the surrounding rock was treated as a dual-continuum (fracture-matrix) system. Model calibration against seepage and water-travel-velocity data suggests that lithophysal cavities connected to fractures can considerably enhance the effective fracture porosity and therefore retard water flow in fractures. Comparisons between simulation results and tracer concentration data also indicate that matrix diffusion is an important mechanism for solute transport in unsaturated fractured rock. We found that an increased fault-matrix and fracture-matrix interface areas were needed to match the observed tracer data, which is consistent with previous studies. The study results suggest that the current site-scale model for the unsaturated zone of Yucca Mountain may underestimate radionuclide transport time within the unsaturated zone, because an increased fracture-matrix interface area and the increased effective fracture porosity arising from lithophysal cavities are not considered in the current site-scale model. ?? 2004 Published by Elsevier B.V.

  2. Fabrication process development of SiC/superalloy composite sheet for exhaust system components

    NASA Technical Reports Server (NTRS)

    Cornie, J. A.; Cook, C. S.; Anderson, C. A.

    1976-01-01

    A chemical compatibility study was conducted between SiC filament and the following P/M matrix alloys: Waspaloy, Hastelloy-X, NiCrAlY, Ha-188, S-57, FeCrAlY, and Incoloy 800. None of the couples demonstrated sufficient chemical compatibility to withstand the minimum HIP consolidation temperatures (996 C) or intended application temperature of the composite (982 C). However, Waspaloy, Haynes 188, and Hastelloy-X were the least reactive with SiC of the candidate alloys. Chemical vapor deposited tungsten was shown to be an effective diffusion barrier between the superalloy matrix and SiC filament providing a defect-free coating of sufficient thickness. However, the coating breaks down when the tungsten is converted into intermetallic compounds by interdiffusion with matrix constituents. Waspaloy was demonstrated to be the most effective matrix alloy candidate in contact with the CVD tungsten barrier because of its relatively low growth rate constant of the intermediate compound and the lack of formation of Kirkendall voids at the matrix-barrier interface. Fabrication methods were developed for producing panels of uniaxial and angle ply composites utilizing CVD tungsten coated filament.

  3. Orthotropic and time-dependent moisture diffusion measurements in polymer matrix composites using nuclear reaction analysis

    NASA Astrophysics Data System (ADS)

    Pilli, Siva P.

    Moisture plays a significant role in influencing the mechanical behavior and long-term durability of composites. The objective of this dissertation was to understand the basic concepts of moisture transport in polymeric composites. Humidity test chambers were used in combination with D2O water to characterize the diffusion of D2O using Nuclear Reaction Analysis (NRA). Moisture content was measured as a function of through-thickness depth using NRA. In this study a novel method to measure the orthotropic diffusivities of polymer matrix composites has been demonstrated. This was achieved by soaking the samples in D2O vapor and subsequently characterizing the diffusion of D2O at all edges of the coupon using NRA. The diffusivity through the surface was 3½ times higher than the diffusivity through the edges. A direct comparison of experimental data with models using orthotropic diffusivities was in relatively good agreement. Surface moisture content was also measured as a function of time using NRA. It was shown that the surface concentration reaches an intermediate value of 79% Mm very rapidly and is followed by a slow linear increase to the saturation level (Mm). This research also interrogates the effect of pressure on diffusion. Test chambers were built to maintain a constant relative humidity of 80% at 60°C at three different pressures (0.101 MPa, 0.517 MPa and 1.034 MPa) including a liquid water immersion test chamber at 60°C. In this study it was observed that the time to saturation increased with increasing chamber pressure. This was primarily due to the increased maximum moisture content at higher pressures. Liquid immersion of the test samples provided the upper bound for maximum moisture content and a lower bound for time to saturation. The effects of material systems and layups on humidity measurements were also studied using two different polymer composite material systems, Cycom and Toray. Diffusivity results were identical for different layups whereas differences were observed for different material systems. Finally three-dimensional numeric models were developed, using ANSYS, to compare with the measured moisture content. Models incorporating the time-dependent and 3-D diffusion have shown an improved correlation with experiments.

  4. Assessment of using ultrasound images as prior for diffuse optical tomography regularization matrix

    NASA Astrophysics Data System (ADS)

    Althobaiti, Murad; Vavadi, Hamed; Zhu, Quing

    2017-02-01

    Imaging of tissue with Ultrasound-guided diffuse optical tomography (DOT) is a rising imaging technique to map hemoglobin concentrations within tissue for breast cancer detection and diagnosis. Near-infrared optical imaging received a lot of attention in research as a possible technique to be used for such purpose especially for breast tumors. Since DOT images contrast is closely related to oxygenation and deoxygenating of the hemoglobin, which is an important factor in differentiating malignant and benign tumors. One of the optical imaging modalities used is the diffused optical tomography (DOT); which probes deep scattering tissue (1-5cm) by NIR optical source-detector probe and detects NIR photons in the diffusive regime. The photons in the diffusive regime usually reach the detector without significant information about their source direction and the propagation path. Because of that, the optical reconstruction problem of the medium characteristics is ill-posed even with the tomography and Back-projection techniques. The accurate recovery of images requires an effective image reconstruction method. Here, we illustrate a method in which ultrasound images are encoded as prior for regularization of the inversion matrix. Results were evaluated using phantom experiments of low and high absorption contrasts. This method improves differentiation between the low and the high contrasts targets. Ultimately, this method could improve malignant and benign cases by increasing reconstructed absorption ratio of malignant to benign. Besides that, the phantom results show improvements in target shape as well as the spatial resolution of the DOT reconstructed images.

  5. Temperature affects transport of polysaccharides and proteins in articular cartilage explants.

    PubMed

    Moeini, Mohammad; Lee, Kwan-Bong; Quinn, Thomas M

    2012-07-26

    Solute transport phenomena mediate many aspects of the physiology and contrast agent-based clinical imaging of articular cartilage. Temperatures up to 10°C below standard body temperature (37°C) are common in articulating joints during normal activities and clinically (e.g. cold treatment of injuries). Therefore it is of interest to characterize the effects of temperature changes on solute transport parameters in cartilage. A range of fluorescent solutes including fluorescein isothiocyanate, 4 and 40kDa dextrans, myoglobin, insulin and chondroitin sulfate were prepared and used in assays of solute effective partition coefficient and effective diffusivity in bovine intermediate zone articular cartilage explants maintained at 10, 22 or 37°C. Trends for increasing partition coefficient with increasing temperature were evident for all solutes except chondroitin sulfate, with significant changes between 22 and 37°C for 4kDa dextran, insulin and myoglobin. Diffusivities of most solutes tested also tended to increase with increasing temperature, with significant changes between 10 and 22°C for FITC, 40kDa dextran and myoglobin. Oddly, insulin diffusivity decreased significantly as temperature increased from 22 to 37°C while chondroitin sulfate diffusivity exhibited no clear temperature dependence. These results highlight solute-specific temperature dependences of transport phenomena which may depend upon molecular weight, chemical structure, molecular conformation, and solute-matrix and solute-solute interactions. The articular cartilage explants themselves exhibited small but significant changes in water and glycosaminoglycan contents during experiments, underscoring the importance of solute-matrix interactions. Solute transport parameters in cartilage and their temperature dependences are therefore not easily predicted, and case-by-case experimental determination may be essential. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Spatiotemporal study of elderly suicide in Korea by age cohort.

    PubMed

    Joo, Y

    2017-01-01

    This study analyzed the spatiotemporal pattern and spatial diffusion of elderly suicide by age cohort, in Korea. The research investigated the elderly suicide rates of the 232 municipal units in South Korea between 2001 and 2011. The Gi* score, which is a spatially weighted indicator of area attributes, was used to identify hot spots and the spatiotemporal pattern of elderly suicide in the nation during the last 10 years. The spatial Markov matrix and spatial dynamic panel data model were employed to identify and estimate the diffusion effect. The suicide rate among elderly individuals 75 years and older was substantially higher than the rate for those between 65 and 74 years of age; however, the spatial patterns of the suicide clusters were similar between the two groups. From 2001 to 2011, the spatial distribution of elderly suicide hot spots differed each year. For both age cohorts, elderly suicide hot spots developed around the north area of South Korea in 2001 and moved to the mid-east area and the mid-western coastal area over 10 years. The spatial Markov matrix indicates that the change in the suicide rate of one area was affected by the suicide rates of neighbouring areas from the previous year, which suggests that suicide increase in one area inflates a neighbouring area's suicide rate over time. Using a spatial dynamic panel data model, elderly suicide diffusion effects were found to be statistically significant for both age cohorts even after economic and demographic indicators and a time variable are included. For individuals 75 years and older, the diffusion effect appeared to be larger. This study demonstrates that elderly suicide can spread spatially over time in both age cohorts. Thus, it is necessary to design a place-based and age-differentiated intervention policy that precisely considers the spatial diffusion of elderly suicide. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  7. Silicone adhesive matrix of verapamil hydrochloride to provide pH-independent sustained release.

    PubMed

    Tolia, Gaurav; Li, S Kevin

    2014-02-01

    Providing pH-independent oral release of weakly basic drugs with conventional matrix tablets can be challenging because of the pH-dependent solubility characteristics of the drugs and the changing pH environment along the gastrointestinal tract. The aim of the present study was to use a hydrophobic polymer to overcome the issue of pH-dependent release of weakly basic model drug verapamil hydrochloride from matrix tablets without the use of organic buffers in the matrix formulations. Silicone pressure-sensitive adhesive (PSA) polymer was evaluated because of its unique properties of low surface energy, hydrophobicity, low glass transition temperature, high electrical resistance, and barrier to hydrogen ion diffusion. Drug release, hydrogen ion diffusion, tablet contact angle, and internal tablet microenvironment pH with matrix tablets prepared using PSA were compared with those using water-insoluble ethyl cellulose (EC). Silicone PSA films showed higher resistance to hydrogen ion diffusion compared with EC films. Verapamil hydrochloride tablets prepared using silicone PSA showed higher hydrophobicity and lower water uptake than EC tablets. Silicone PSA tablets also showed pH-independent release of verapamil and decreased in dimensions during drug dissolution. By contrast, verapamil hydrochloride tablets prepared using EC did not achieve pH-independent release.

  8. Effect of Specimen Thickness on Mechanical Behavior of SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Singh, Mrityunjay; Freedman, Marc

    2004-01-01

    Potential composite applications in aerospace and transportation application systems have different thickness requirements. For example, space applications such as nozzle ramps or heat exchangers use very thin (less than 1 mm) structures whereas turbine blades need very thick parts greater than or equal to cm). There has been little investigation into the effect of thickness on stress-strain behavior or elevated temperature tensile properties controlled by oxidation. In this study, composites consisting of woven Hi-NicalonTM fibers, a carbon interphase, and CVI Sic matrix were fabricated with different numbers of plies to provide variable thickness. The composites ranged from a single ply (approximately 0.4 mm) to thirty-six plies (approximately 1 cm). Tensile tests were performed at room temperature with acoustic emission used to monitor matrix crack behavior. Elevated temperature tensile stress-rupture tests were performed in air. Considerably different room and elevated temperature tensile behavior was observed that will be discussed with respect to the effect of thickness on matrix crack formation, matrix crack growth and oxidation diffusion kinetics.

  9. The diffusivity and solubility of deuterium in a high chromium martensitic steel

    NASA Astrophysics Data System (ADS)

    Forcey, K. S.; Iordanova, I.; Yaneva, M.

    1997-01-01

    The permeability, diffusivity and solubility of deuterium in the martensitic stainless steel MANET II have been studied in the temperature range 194-465°C by applying a time dependent gas-phase permeation technique. It was found that the temperature dependence of diffusivity and solubility could not be described by a simple Arrhenius expression over the entire temperature range investigated. At lower temperatures (below about 330°C) the diffusivity was found to be greatly reduced by the effects of trapping. Oriani's model has been applied to obtain the trapping energy and number density of the traps as well as the relative amounts of deuterium dissolved at lattice and trap sites. It is suggested that the most likely sites for trapping are at interfaces between the martensitic laths and between second phase particles and the surrounding metal matrix.

  10. Modeling CO2 Storage in Fractured Reservoirs: Fracture-Matrix Interactions of Free-Phase and Dissolved CO2

    NASA Astrophysics Data System (ADS)

    Oldenburg, C. M.; Zhou, Q.; Birkholzer, J. T.

    2017-12-01

    The injection of supercritical CO2 (scCO2) in fractured reservoirs has been conducted at several storage sites. However, no site-specific dual-continuum modeling for fractured reservoirs has been reported and modeling studies have generally underestimated the fracture-matrix interactions. We developed a conceptual model for enhanced CO2 storage to take into account global scCO2 migration in the fracture continuum, local storage of scCO2 and dissolved CO2 (dsCO2) in the matrix continuum, and driving forces for scCO2 invasion and dsCO2 diffusion from fractures. High-resolution discrete fracture-matrix models were developed for a column of idealized matrix blocks bounded by vertical and horizontal fractures and for a km-scale fractured reservoir. The column-scale simulation results show that equilibrium storage efficiency strongly depends on matrix entry capillary pressure and matrix-matrix connectivity while the time scale to reach equilibrium is sensitive to fracture spacing and matrix flow properties. The reservoir-scale modeling results shows that the preferential migration of scCO2 through fractures is coupled with bulk storage in the rock matrix that in turn retards the fracture scCO2 plume. We also developed unified-form diffusive flux equations to account for dsCO2 storage in brine-filled matrix blocks and found solubility trapping is significant in fractured reservoirs with low-permeability matrix.

  11. Contaminant sequestration in karstic aquifers: Experiments and quantification

    NASA Astrophysics Data System (ADS)

    Li, Guangquan; Loper, David E.; Kung, Robin

    2008-02-01

    A karstic aquifer typically has significant secondary porosity consisting of an interconnected system of caves or conduits. Conduit-borne contaminants can enter the contiguous limestone matrix, remain inside for a longer time than in the conduit, and subsequently be flushed out. This retention or sequestration can significantly influence the fate of contaminants within the aquifer and alter the shape of the breakthrough curve. The mechanisms involved in sequestration have been identified and quantified by analysis of the breakthrough curves generated by a set of laboratory experiments in which a conduit, porous limestone matrix, and conservative contaminant were simulated by a porous-walled pipe, chamber of closely packed glass beads, and salt, respectively. Experiments were conducted with both active and passive transfer of water between conduit and matrix, simulating differing hydrogeologic regimes. In active transfer the primary control parameter is the volume of water transferred; sequestration is primarily due to advection with the effects of diffusion and dispersion being minimal. In passive transfer the control parameters are the conduit Reynolds number and the duration that contaminant resides in the conduit; sequestration is caused by the combined effects of the conduit pressure drop, pressure variation due to bedform, and diffusion. Active and passive transfer can be unified by analyzing the ratio of the scale of pressure variation to the conduit length. In accordance with the resolved mechanisms a variety of models have been constructed to recover solute distributions in the matrix and to regenerate breakthrough curves. These analyses and models provide a potential approach to investigate contaminant migration in karstic aquifers.

  12. Controlled Transdermal Iontophoresis by Polypyrrole/Poly(Acrylic Acid) Hydrogel

    NASA Astrophysics Data System (ADS)

    Chansai, Phithupha; Sirivat, Anuvat

    2008-03-01

    Transdermal drug delivery system delivers a drug into a body at desired site and rate. The conductive polymer-hydrogel blend between polypyrrole (PPy) doped with anionic drug and poly(acrylic acid) (PAA) were developed as a matrix/carrier of drug for the transdermal drug delivery in which the characteristic releases depend on the electrical field applied. The PAA films and their blend films were prepared by solution casting using ethylene glycol dimethacrylate (EGDMA) as a crosslinking agent. A mechanical blending of PPy particles and PAA matrix was then carried out. Drug diffusions in the blended PPy/PAA hydrogel and the non-blended one were investigated and determined by using a modified Franz-diffusion cell with an acetate buffer, pH 5.5, at 37 0C, for a period of 48 hours to determine the effects of crosslinking ratio and electric field strength. Amounts of the released drug were measured by UV-Visible spectrophotometry. The diffusion coefficient of drug was determined through the Higuchi equation via different conditions, with and without an electric field. Moreover, thermal properties and electrical conductivity of the polypyrrole and drug-loaded polypyrrole were investigated by means of the thermogravimetric analysis and by using a two-point probe meter, respectively.

  13. Development of FRP composite structural biomaterials: ultimate strength of the fiber/matrix interfacial bond in in vivo simulated environments.

    PubMed

    Latour, R A; Black, J

    1992-05-01

    Fiber reinforced polymer (FRP) composites are being developed as alternatives to metals for structural orthopedic implant applications. FRP composite fracture behavior and environmental interactions are distinctly different from those which occur in metals. These differences must be accounted for in the design and evaluation of implant performance. Fiber/matrix interfacial bond strength in a FRP composite is known to strongly influence fracture behavior. The interfacial bond strength of four candidate fiber/matrix combinations (carbon fiber/polycarbonate, carbon fiber/polysulfone, polyaramid fiber/polycarbonate, polyaramid fiber/polysulfone) were investigated at 37 degrees C in dry and in vivo simulated (saline, exudate) environments. Ultimate bond strength was measured by a single fiber-microdroplet pull-out test. Dry bond strengths were significantly decreased following exposure to either saline or exudate with bond strength loss being approximately equal in both the saline and exudate. Bond strength loss is attributed to the diffusion of water and/or salt ions into the sample and their interaction with interfacial bonding. Because bond degradation is dependent upon diffusion, diffusional equilibrium must be obtained in composite test samples before the full effect of the test environment upon composite mechanical behavior can be determined.

  14. High angular resolution diffusion imaging with stimulated echoes: compensation and correction in experiment design and analysis.

    PubMed

    Lundell, Henrik; Alexander, Daniel C; Dyrby, Tim B

    2014-08-01

    Stimulated echo acquisition mode (STEAM) diffusion MRI can be advantageous over pulsed-gradient spin-echo (PGSE) for diffusion times that are long compared with T2 . It therefore has potential for biomedical diffusion imaging applications at 7T and above where T2 is short. However, gradient pulses other than the diffusion gradients in the STEAM sequence contribute much greater diffusion weighting than in PGSE and lead to a disrupted experimental design. Here, we introduce a simple compensation to the STEAM acquisition that avoids the orientational bias and disrupted experiment design that these gradient pulses can otherwise produce. The compensation is simple to implement by adjusting the gradient vectors in the diffusion pulses of the STEAM sequence, so that the net effective gradient vector including contributions from diffusion and other gradient pulses is as the experiment intends. High angular resolution diffusion imaging (HARDI) data were acquired with and without the proposed compensation. The data were processed to derive standard diffusion tensor imaging (DTI) maps, which highlight the need for the compensation. Ignoring the other gradient pulses, a bias in DTI parameters from STEAM acquisition is found, due both to confounds in the analysis and the experiment design. Retrospectively correcting the analysis with a calculation of the full B matrix can partly correct for these confounds, but an acquisition that is compensated as proposed is needed to remove the effect entirely. © 2014 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd.

  15. Oxygen diffusion and consumption in extracellular matrix gels: implications for designing three-dimensional cultures.

    PubMed

    Colom, Adai; Galgoczy, Roland; Almendros, Isaac; Xaubet, Antonio; Farré, Ramon; Alcaraz, Jordi

    2014-08-01

    Three-dimensional (3D) cultures are increasingly used as tissue surrogates to study many physiopathological processes. However, to what extent current 3D culture protocols provide physiologic oxygen tension conditions remains ill defined. To address this limitation, oxygen tension was measured in a panel of acellular or cellularized extracellular matrix (ECM) gels with A549 cells, and analyzed in terms of oxygen diffusion and consumption. Gels included reconstituted basement membrane, fibrin and collagen. Oxygen diffusivity in acellular gels was up to 40% smaller than that of water, and the lower values were observed in the denser gels. In 3D cultures, physiologic oxygen tension was achieved after 2 days in dense (≥3 mg/mL) but not sparse gels, revealing that the latter gels are not suitable tissue surrogates in terms of oxygen distribution. In dense gels, we observed a dominant effect of ECM composition over density in oxygen consumption. All diffusion and consumption data were used in a simple model to estimate ranges for gel thickness, seeding density and time-window that may support physiologic oxygen tension. Thus, we identified critical variables for oxygen tension in ECM gels, and introduced a model to assess initial values of these variables, which may short-cut the optimization step of 3D culture studies. © 2013 Wiley Periodicals, Inc.

  16. The spin-temperature theory of dynamic nuclear polarization and nuclear spin-lattice relaxation

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Wollan, D. S.

    1974-01-01

    A detailed derivation of the equations governing dynamic nuclear polarization (DNP) and nuclear spin lattice relaxation by use of the spin temperature theory has been carried to second order in a perturbation expansion of the density matrix. Nuclear spin diffusion in the rapid diffusion limit and the effects of the coupling of the electron dipole-dipole reservoir (EDDR) with the nuclear spins are incorporated. The complete expression for the dynamic nuclear polarization has been derived and then examined in detail for the limit of well resolved solid effect transitions. Exactly at the solid effect transition peaks, the conventional solid-effect DNP results are obtained, but with EDDR effects on the nuclear relaxation and DNP leakage factor included. Explicit EDDR contributions to DNP are discussed, and a new DNP effect is predicted.

  17. Vertical cross contamination of trichloroethylene in a borehole in fractured sandstone

    USGS Publications Warehouse

    Sterling, S.N.; Parker, B.L.; Cherry, J.A.; Williams, J.H.; Lane, J.W.; Haeni, F.P.

    2005-01-01

    Boreholes drilled through contaminated zones in fractured rock create the potential for vertical movement of contaminated ground water between fractures. The usual assumption is that purging eliminates cross contamination; however, the results of a field study conducted in a trichloroethylene (TCE) plume in fractured sandstone with a mean matrix porosity of 13% demonstrates that matrix-diffusion effects can be strong and persistent. A deep borehole was drilled to 110 m below ground surface (mbgs) near a shallow bedrock well containing high TCE concentrations. The borehole was cored continuously to collect closely spaced samples of rock for analysis of TCE concentrations. Geophysical logging and flowmetering were conducted in the open borehole, and a removable multilevel monitoring system was installed to provide hydraulic-head and ground water samples from discrete fracture zones. The borehole was later reamed to complete a well screened from 89 to 100 mbgs; persistent TCE concentrations at this depth ranged from 2100 to 33,000 ??g/L. Rock-core analyses, combined with the other types of borehole information, show that nearly all of this deep contamination was due to the lingering effects of the downward flow of dissolved TCE from shallower depths during the few days of open-hole conditions that existed prior to installation of the multilevel system. This study demonstrates that transfer of contaminant mass to the matrix by diffusion can cause severe cross contamination effects in sedimentary rocks, but these effects generally are not identified from information normally obtained in fractured-rock investigations, resulting in potential misinterpretation of site conditions. Copyright ?? 2005 National Ground Water Association.

  18. Atomistic modeling of water diffusion in hydrolytic biomaterials.

    PubMed

    Gautieri, Alfonso; Mezzanzanica, Andrea; Motta, Alberto; Redealli, Alberto; Vesentini, Simone

    2012-04-01

    One of the most promising applications of hydrolytically degrading biomaterials is their use as drug release carriers. These uses, however, require that the degradation and diffusion of drug are reliably predicted, which is complex to achieve through present experimental methods. Atomistic modeling can help in the knowledge-based design of degrading biomaterials with tuned drug delivery properties, giving insights on the small molecules diffusivity at intermediate states of the degradation process. We present here an atomistic-based approach to investigate the diffusion of water (through which hydrolytic degradation occurs) in degrading bulk models of poly(lactic acid) or PLA. We determine the water diffusion coefficient for different swelling states of the polymeric matrix (from almost dry to pure water) and for different degrees of degradation. We show that water diffusivity is highly influenced by the swelling degree, while little or not influenced by the degradation state. This approach, giving water diffusivity for different states of the matrix, can be combined with diffusion-reaction analytical methods in order to predict the degradation path on longer time scales. Furthermore, atomistic approach can be used to investigate diffusion of other relevant small molecules, eventually leading to the a priori knowledge of degradable biomaterials transport properties, helping the design of the drug delivery systems.

  19. Development of advanced methods for analysis of experimental data in diffusion

    NASA Astrophysics Data System (ADS)

    Jaques, Alonso V.

    There are numerous experimental configurations and data analysis techniques for the characterization of diffusion phenomena. However, the mathematical methods for estimating diffusivities traditionally do not take into account the effects of experimental errors in the data, and often require smooth, noiseless data sets to perform the necessary analysis steps. The current methods used for data smoothing require strong assumptions which can introduce numerical "artifacts" into the data, affecting confidence in the estimated parameters. The Boltzmann-Matano method is used extensively in the determination of concentration - dependent diffusivities, D(C), in alloys. In the course of analyzing experimental data, numerical integrations and differentiations of the concentration profile are performed. These methods require smoothing of the data prior to analysis. We present here an approach to the Boltzmann-Matano method that is based on a regularization method to estimate a differentiation operation on the data, i.e., estimate the concentration gradient term, which is important in the analysis process for determining the diffusivity. This approach, therefore, has the potential to be less subjective, and in numerical simulations shows an increased accuracy in the estimated diffusion coefficients. We present a regression approach to estimate linear multicomponent diffusion coefficients that eliminates the need pre-treat or pre-condition the concentration profile. This approach fits the data to a functional form of the mathematical expression for the concentration profile, and allows us to determine the diffusivity matrix directly from the fitted parameters. Reformulation of the equation for the analytical solution is done in order to reduce the size of the problem and accelerate the convergence. The objective function for the regression can incorporate point estimations for error in the concentration, improving the statistical confidence in the estimated diffusivity matrix. Case studies are presented to demonstrate the reliability and the stability of the method. To the best of our knowledge there is no published analysis of the effects of experimental errors on the reliability of the estimates for the diffusivities. For the case of linear multicomponent diffusion, we analyze the effects of the instrument analytical spot size, positioning uncertainty, and concentration uncertainty on the resulting values of the diffusivities. These effects are studied using Monte Carlo method on simulated experimental data. Several useful scaling relationships were identified which allow more rigorous and quantitative estimates of the errors in the measured data, and are valuable for experimental design. To further analyze anomalous diffusion processes, where traditional diffusional transport equations do not hold, we explore the use of fractional calculus in analytically representing these processes is proposed. We use the fractional calculus approach for anomalous diffusion processes occurring through a finite plane sheet with one face held at a fixed concentration, the other held at zero, and the initial concentration within the sheet equal to zero. This problem is related to cases in nature where diffusion is enhanced relative to the classical process, and the order of differentiation is not necessarily a second--order differential equation. That is, differentiation is of fractional order alpha, where 1 ≤ alpha < 2. For alpha = 2, the presented solutions reduce to the classical second-order diffusion solution for the conditions studied. The solution obtained allows the analysis of permeation experiments. Frequently, hydrogen diffusion is analyzed using electrochemical permeation methods using the traditional, Fickian-based theory. Experimental evidence shows the latter analytical approach is not always appropiate, because reported data shows qualitative (and quantitative) deviation from its theoretical scaling predictions. Preliminary analysis of data shows better agreement with fractional diffusion analysis when compared to traditional square-root scaling. Although there is a large amount of work in the estimation of the diffusivity from experimental data, reported studies typically present only the analytical description for the diffusivity, without scattering. However, because these studies do not consider effects produced by instrument analysis, their direct applicability is limited. We propose alternatives to address these, and to evaluate their influence on the final resulting diffusivity values.

  20. Room-Temperature Micron-Scale Exciton Migration in a Stabilized Emissive Molecular Aggregate.

    PubMed

    Caram, Justin R; Doria, Sandra; Eisele, Dörthe M; Freyria, Francesca S; Sinclair, Timothy S; Rebentrost, Patrick; Lloyd, Seth; Bawendi, Moungi G

    2016-11-09

    We report 1.6 ± 1 μm exciton transport in self-assembled supramolecular light-harvesting nanotubes (LHNs) assembled from amphiphillic cyanine dyes. We stabilize LHNs in a sucrose glass matrix, greatly reducing light and oxidative damage and allowing the observation of exciton-exciton annihilation signatures under weak excitation flux. Fitting to a one-dimensional diffusion model, we find an average exciton diffusion constant of 55 ± 20 cm 2 /s, among the highest measured for an organic system. We develop a simple model that uses cryogenic measurements of static and dynamic energetic disorder to estimate a diffusion constant of 32 cm 2 /s, in agreement with experiment. We ascribe large exciton diffusion lengths to low static and dynamic energetic disorder in LHNs. We argue that matrix-stabilized LHNS represent an excellent model system to study coherent excitonic transport.

  1. Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes.

    PubMed

    Li, Xueqin; Cheng, Youdong; Zhang, Haiyang; Wang, Shaofei; Jiang, Zhongyi; Guo, Ruili; Wu, Hong

    2015-03-11

    A novel multi-permselective mixed matrix membrane (MP-MMM) is developed by incorporating versatile fillers functionalized with ethylene oxide (EO) groups and an amine carrier into a polymer matrix. The as-prepared MP-MMMs can separate CO2 efficiently because of the simultaneous enhancement of diffusivity selectivity, solubility selectivity, and reactivity selectivity. To be specific, MP-MMMs were fabricated by incorporating polyethylene glycol- and polyethylenimine-functionalized graphene oxide nanosheets (PEG-PEI-GO) into a commercial low-cost Pebax matrix. The PEG-PEI-GO plays multiple roles in enhancing membrane performance. First, the high-aspect ratio GO nanosheets in a polymer matrix increase the length of the tortuous path of gas diffusion and generate a rigidified interface between the polymer matrix and fillers, enhancing the diffusivity selectivity. Second, PEG consisting of EO groups has excellent affinity for CO2 to enhance the solubility selectivity. Third, PEI with abundant primary, secondary, and tertiary amine groups reacts reversibly with CO2 to enhance reactivity selectivity. Thus, the as-prepared MP-MMMs exhibit excellent CO2 permeability and CO2/gas selectivity. The MP-MMM doped with 10 wt % PEG-PEI-GO displays optimal gas separation performance with a CO2 permeability of 1330 Barrer, a CO2/CH4 selectivity of 45, and a CO2/N2 selectivity of 120, surpassing the upper bound lines of the Robeson study of 2008 (1 Barrer = 10(-10) cm(3) (STP) cm(-2) s(-1) cm(-1) Hg).

  2. Very-high thermal and electrical conductivity in overpressure-processed Bi2Sr2CaCu2O8+x wires

    NASA Astrophysics Data System (ADS)

    Bonura, M.; Avitabile, F.; Barth, C.; Jiang, J.; Larbalestier, D.; Fête, A.; Leo, A.; Bottura, L.; Senatore, C.

    2018-05-01

    The residual-resistivity ratio (RRR) of the normal-metal matrix is a key parameter for the electrical and thermal stability of technical superconductors. In Bi2Sr2CaCu2 {{{O}}}8+x (Bi-2212) round wires, the precursor powders are embedded in a Ag matrix without any diffusion barrier, and elemental diffusion from the superconducting filaments into the Ag might be expected to contaminate the matrix during the melt processing required for high critical current density development. This work shows that the overpressure processing, which is adopted to enhance the critical current performance, improves the thermal and electrical conductivities of the conductor, too. In the case of wires reacted with a standard processing performed in 1 bar O2, the RRR of the Ag matrix is about 90, in spite of the simple conductor design that does not include diffusion barriers. Increasing the total reaction pressure to 100 bar improves the RRR to about 200. The differences in RRR reflect on the thermal conductivity of the whole conductor, which has been investigated in magnetic fields up to 19 T.

  3. Determination of plate wave velocities and diffuse field decay rates with braod-band acousto-ultrasonic signals

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    1993-01-01

    Lowest symmetric and lowest antisymmetric plate wave modes were excited and identified in broad-band acousto-ultrasonic (AU) signals collected from various high temperature composite materials. Group velocities have been determined for these nearly nondispersive modes. An algorithm has been developed and applied to determine phase velocities and hence dispersion curves for the frequency ranges of the broad-band pulses. It is demonstrated that these data are sensitive to changes in the various stiffness moduli of the materials, in agreement by analogy, with the theoretical and experimental results of Tang and Henneke on fiber reinforced polymers. Diffuse field decay rates have been determined in the same specimen geometries and AU configuration as for the plate wave measurements. These decay rates are of value in assessing degradation such as matrix cracking in ceramic matrix composites. In addition, we verify that diffuse field decay rates respond to fiber/matrix interfacial shear strength and density in ceramic matrix composites. This work shows that velocity/stiffness and decay rate measurements can be obtained in the same set of AU experiments for characterizing materials and in specimens with geometries useful for mechanical measurements.

  4. Fully Anisotropic Rotational Diffusion Tensor from Molecular Dynamics Simulations.

    PubMed

    Linke, Max; Köfinger, Jürgen; Hummer, Gerhard

    2018-05-31

    We present a method to calculate the fully anisotropic rotational diffusion tensor from molecular dynamics simulations. Our approach is based on fitting the time-dependent covariance matrix of the quaternions that describe the rigid-body rotational dynamics. Explicit analytical expressions have been derived for the covariances by Favro, which are valid irrespective of the degree of anisotropy. We use these expressions to determine an optimal rotational diffusion tensor from trajectory data. The molecular structures are aligned against a reference by optimal rigid-body superposition. The quaternion covariances can then be obtained directly from the rotation matrices used in the alignment. The rotational diffusion tensor is determined by a fit to the time-dependent quaternion covariances, or directly by Laplace transformation and matrix diagonalization. To quantify uncertainties in the fit, we derive analytical expressions and compare them with the results of Brownian dynamics simulations of anisotropic rotational diffusion. We apply the method to microsecond long trajectories of the Dickerson-Drew B-DNA dodecamer and of horse heart myoglobin. The anisotropic rotational diffusion tensors calculated from simulations agree well with predictions from hydrodynamics.

  5. Mathematical model of water transport in Bacon and alkaline matrix-type hydrogen-oxygen fuel cells

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.; Easter, R. W.

    1972-01-01

    Based on general mass continuity and diffusive transport equations, a mathematical model was developed that simulates the transport of water in Bacon and alkaline-matrix fuel cells. The derived model was validated by using it to analytically reproduce various Bacon and matrix-cell experimental water transport transients.

  6. Cooperative Activated Transport of Dilute Penetrants in Viscous Molecular and Polymer Liquids

    NASA Astrophysics Data System (ADS)

    Schweizer, Kenneth; Zhang, Rui

    We generalize the force-level Elastically Collective Nonlinear Langevin Equation theory of activated relaxation in one-component supercooled liquids to treat the hopping transport of a dilute penetrant in a dense hard sphere fluid. The new idea is to explicitly account for the coupling between penetrant displacement and a local matrix cage re-arrangement which facilitates its hopping. A temporal casuality condition is employed to self-consistently determine a dimensionless degree of matrix distortion relative to the penetrant jump distance using the dynamic free energy concept. Penetrant diffusion becomes increasingly coupled to the correlated matrix displacements for larger penetrant to matrix particle size ratio (R) and/or attraction strength (physical bonds), but depends weakly on matrix packing fraction. In the absence of attractions, a nearly exponential dependence of penetrant diffusivity on R is predicted in the intermediate range of 0.2

  7. Characterization of cesium diffusion behavior into granite matrix using Rutherford backscattering spectrometry

    NASA Astrophysics Data System (ADS)

    Tsai, Shih-Chin; Lee, Chuan-Pin; Tsai, Tsuey-Lin; Yu, Yueh-Chung

    2017-10-01

    The characterization of radionuclide diffusion behavior is necessary for performance assessment of granite as a geological barrier for high-level radioactive waste disposal. Rutherford backscattering spectrometry (RBS), a novel nuclear ion-beam technique, was selected in this study because it is suitable for analyzing the concentration gradients of heavy elements in a well-defined matrix and allows measuring diffusion coefficients on a micrometer scale. In this study Cs was selected to represent Cs-135 (a key radionuclide in high-level waste) diffusion in granite. The Cs energy spectrum and concentration deep profile were analyzed and the diffusion coefficient of Cs in granite for three different locations were determined, which were 2.06 × 10-19m2 s-1, 3.58 × 10-19m2 s-1, and 7.19 × 10-19m2 s-1-19m2 s-19m2 s-1, respectively, which were of a similiar order of magnitude. Results from other studies are also compared and discussed in this paper.

  8. On matrix diffusion: formulations, solution methods and qualitative effects

    NASA Astrophysics Data System (ADS)

    Carrera, Jesús; Sánchez-Vila, Xavier; Benet, Inmaculada; Medina, Agustín; Galarza, Germán; Guimerà, Jordi

    Matrix diffusion has become widely recognized as an important transport mechanism. Unfortunately, accounting for matrix diffusion complicates solute-transport simulations. This problem has led to simplified formulations, partly motivated by the solution method. As a result, some confusion has been generated about how to properly pose the problem. One of the objectives of this work is to find some unity among existing formulations and solution methods. In doing so, some asymptotic properties of matrix diffusion are derived. Specifically, early-time behavior (short tests) depends only on φm2RmDm / Lm2, whereas late-time behavior (long tracer tests) depends only on φmRm, and not on matrix diffusion coefficient or block size and shape. The latter is always true for mean arrival time. These properties help in: (a) analyzing the qualitative behavior of matrix diffusion; (b) explaining one paradox of solute transport through fractured rocks (the apparent dependence of porosity on travel time); (c) discriminating between matrix diffusion and other problems (such as kinetic sorption or heterogeneity); and (d) describing identifiability problems and ways to overcome them. RésuméLa diffusion matricielle est un phénomène reconnu maintenant comme un mécanisme de transport important. Malheureusement, la prise en compte de la diffusion matricielle complique la simulation du transport de soluté. Ce problème a conduit à des formulations simplifiées, en partie à cause de la méthode de résolution. Il s'en est suivi une certaine confusion sur la façon de poser correctement le problème. L'un des objectifs de ce travail est de trouver une certaine unité parmi les formulations et les méthodes de résolution. C'est ainsi que certaines propriétés asymptotiques de la diffusion matricielle ont été dérivées. En particulier, le comportement à l'origine (expériences de traçage courtes) dépend uniquement du terme φm2RmDm / Lm2, alors que le comportement à long terme (traçages de longue durée) ne dépend que de φmRm, et non pas du coefficient de diffusion matricielle ou de la forme et de la taille des blocs. Ceci est toujours vrai pour le temps moyen d'arrivée. Ces propriétés permettent: (a) d'analyser le comportement de la diffusion matricielle; (b) d'expliquer un paradoxe du transport de soluté dans les roches fracturées (la dépendance apparente entre la porosité et le temps de transit); (c) de faire la distinction entre la diffusion matricielle et d'autres problèmes, tels que la sorption cinétique ou l'hétérogénéité et (d) de décrire les problèmes d'identification et les façons de les résoudre. Resumen La difusión en la matriz está reconocida en la actualidad como un importante mecanismo de transporte de solutos. Desgraciadamente, tener en cuenta este proceso complica las simulaciones de transporte. Esto ha llevado a una serie de formulaciones simplificadas, motivadas en parte por el propio método de solución. Como resultado, se ha producido cierta confusión respecto a cuál es la manera adecuada de formular el problema. Uno de los objetivos de este trabajo es encontrar una cierta unidad entre las formulaciones existentes y los métodos de solución, lo que conduce a algunas propiedades asintóticas de la difusión en la matriz; específicamente, se comprueba que el comportamiento para tiempos cortos depende únicamente del parámetro φm2RmDm / Lm2, mientras que el de tiempos largos depende sólo de φmRm, y no del coeficiente de difusión en la matriz o del tamaño o forma del bloque. Esto último también es cierto, en todos los casos, respecto al tiempo medio de llegada (definido como el valor esperado de la distribución de tiempos de llegada). Estas propiedades son útiles para: (a) analizar el comportamiento cualitativo de la difusión en la matriz; (b) explicar una de las paradojas del transporte de solutos en medios fracturados, la aparente dependencia entre porosidad y tiempo de llegada; (c) discriminar entre difusión en la matriz y otros problemas, como las reacciones con cinética química o la heterogeneidad; y (d) describir problemas de identificabilidad y posibles modos de resolverlos.

  9. Moisture effect on mechanical properties of polymeric composite materials

    NASA Astrophysics Data System (ADS)

    Airale, A. G.; Carello, M.; Ferraris, A.; Sisca, L.

    2016-05-01

    The influence of moisture on the mechanical properties of fibre-reinforced polymer matrix composites (PMCs) was investigated. Four materials had been take into account considering: both 2×2-Twill woven carbon fibre or glass fibre, thermosetting matrix (Epoxy Resin) or thermoplastic matrix (Polyphenylene Sulfide). The specimens were submitted for 1800 hours to a hygrothermic test to evaluate moisture absorption on the basis of the Fick's law and finally tested to verify the mechanical properties (ultimate tensile strength). The results showed that the absorbed moisture decreases those properties of composites which were dominated by the matrix or the interface, while was not detectable the influence of water on the considered fibre. An important result is that the diffusion coefficient is highest for glass/PPS and lowest for carbon/epoxy composite material. The results give useful suggestions for the design of vehicle components that are exposed to environmental conditions (rain, snow and humidity).

  10. Application of mixture experimental design in the formulation and optimization of matrix tablets containing carbomer and hydroxy-propylmethylcellulose.

    PubMed

    Petrovic, Aleksandra; Cvetkovic, Nebojsa; Ibric, Svetlana; Trajkovic, Svetlana; Djuric, Zorica; Popadic, Dragica; Popovic, Radmila

    2009-12-01

    Using mixture experimental design, the effect of carbomer (Carbopol((R)) 971P NF) and hydroxypropylmethylcellulose (Methocel((R)) K100M or Methocel((R)) K4M) combination on the release profile and on the mechanism of drug liberation from matrix tablet was investigated. The numerical optimization procedure was also applied to establish and obtain formulation with desired drug release. The amount of TP released, release rate and mechanism varied with carbomer ratio in total matrix and HPMC viscosity. Increasing carbomer fractions led to a decrease in drug release. Anomalous diffusion was found in all matrices containing carbomer, while Case - II transport was predominant for tablet based on HPMC only. The predicted and obtained profiles for optimized formulations showed similarity. Those results indicate that Simplex Lattice Mixture experimental design and numerical optimization procedure can be applied during development to obtain sustained release matrix formulation with desired release profile.

  11. Fundamental Flux Equations for Fracture-Matrix Interactions with Linear Diffusion

    NASA Astrophysics Data System (ADS)

    Oldenburg, C. M.; Zhou, Q.; Rutqvist, J.; Birkholzer, J. T.

    2017-12-01

    The conventional dual-continuum models are only applicable for late-time behavior of pressure propagation in fractured rock, while discrete-fracture-network models may explicitly deal with matrix blocks at high computational expense. To address these issues, we developed a unified-form diffusive flux equation for 1D isotropic (spheres, cylinders, slabs) and 2D/3D rectangular matrix blocks (squares, cubes, rectangles, and rectangular parallelepipeds) by partitioning the entire dimensionless-time domain (Zhou et al., 2017a, b). For each matrix block, this flux equation consists of the early-time solution up until a switch-over time after which the late-time solution is applied to create continuity from early to late time. The early-time solutions are based on three-term polynomial functions in terms of square root of dimensionless time, with the coefficients dependent on dimensionless area-to-volume ratio and aspect ratios for rectangular blocks. For the late-time solutions, one exponential term is needed for isotropic blocks, while a few additional exponential terms are needed for highly anisotropic blocks. The time-partitioning method was also used for calculating pressure/concentration/temperature distribution within a matrix block. The approximate solution contains an error-function solution for early times and an exponential solution for late times, with relative errors less than 0.003. These solutions form the kernel of multirate and multidimensional hydraulic, solute and thermal diffusion in fractured reservoirs.

  12. The use of solid-state reactions with volume loss to engineer stress and porosity into the fiber-matrix interface of a ceramic composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, R.S.

    The effect of the 11 vol% losing during reaction of yttrium-aluminas garnet (YAG) and zirconia was observed in zirconia coated single-crystal alumina fiber-YAG matrix composites. The reaction caused plastic deformation in the alumina fibers, and possibly a minor amount of porosity at fiber-matrix interfaces that was usually indistinguishable from matrix porosity. The results were analyzed by models for diffusive cavitation modified to use reaction self-stress. Crack-healing, tensile stress states along the reaction front that approach plane stress, and the small volume of self-stressed material make crack-like pores unlikely at the high temperatures required for reaction. Smaller matrix grains might promotemore » formation of smaller cavities but are also incompatible with high temperature. Both modeling and experiment suggest that sufficient porosity for crack deflection and fiber pullout cannot form unless processing methods that form dense composites at lower temperatures are used.« less

  13. What can be learned from optical two-color diffusion and thermodiffusion experiments on ternary fluid mixtures?

    NASA Astrophysics Data System (ADS)

    Gebhardt, M.; Köhler, W.

    2015-02-01

    A number of optical techniques have been developed during the recent years for the investigation of diffusion and thermodiffusion in ternary fluid mixtures, both on ground and on-board the International Space Station. All these methods are based on the simultaneous measurement of refractive index changes at two different wavelengths. Here, we discuss and compare different techniques with the emphasis on optical beam deflection (OBD), optical digital interferometry, and thermal diffusion forced Rayleigh scattering (TDFRS). We suggest to formally split the data evaluation into a phenomenological parameterization of the measured transients and a subsequent transformation from the refractive index into the concentration space. In all experiments, the transients measured at two different detection wavelengths can be described by four amplitudes and two eigenvalues of the diffusion coefficient matrix. It turns out that these six parameters are subjected to large errors and cannot be determined reliably. Five good quantities, which can be determined with a high accuracy, are the stationary amplitudes, the initial slopes as defined in TDFRS experiments and by application of a heuristic criterion for similar curves, a certain mean diffusion coefficient. These amplitudes and slopes are directly linked to the Soret and thermodiffusion coefficients after transformation with the inverse contrast factor matrix, which is frequently ill-conditioned. Since only five out of six free parameters are reliably determined, including the single mean diffusion coefficient, the determination of the four entries of the diffusion matrix is not possible. We apply our results to new OBD measurements of the symmetric (mass fractions 0.33/0.33/0.33) ternary benchmark mixture n-dodecane/isobutylbenzene/1,2,3,4-tetrahydronaphthalene and existing literature data for the same system.

  14. Multiparameter Analysis of Gas Transport Phenomena in Shale Gas Reservoirs: Apparent Permeability Characterization.

    PubMed

    Shen, Yinghao; Pang, Yu; Shen, Ziqi; Tian, Yuanyuan; Ge, Hongkui

    2018-02-08

    The large amount of nanoscale pores in shale results in the inability to apply Darcy's law. Moreover, the gas adsorption of shale increases the complexity of pore size characterization and thus decreases the accuracy of flow regime estimation. In this study, an apparent permeability model, which describes the adsorptive gas flow behavior in shale by considering the effects of gas adsorption, stress dependence, and non-Darcy flow, is proposed. The pore size distribution, methane adsorption capacity, pore compressibility, and matrix permeability of the Barnett and Eagle Ford shales are measured in the laboratory to determine the critical parameters of gas transport phenomena. The slip coefficients, tortuosity, and surface diffusivity are predicted via the regression analysis of the permeability data. The results indicate that the apparent permeability model, which considers second-order gas slippage, Knudsen diffusion, and surface diffusion, could describe the gas flow behavior in the transition flow regime for nanoporous shale. Second-order gas slippage and surface diffusion play key roles in the gas flow in nanopores for Knudsen numbers ranging from 0.18 to 0.5. Therefore, the gas adsorption and non-Darcy flow effects, which involve gas slippage, Knudsen diffusion, and surface diffusion, are indispensable parameters of the permeability model for shale.

  15. Mesoscale Polymer Dissolution Probed by Raman Spectroscopy and Molecular Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Tsun-Mei; Xantheas, Sotiris S.; Vasdekis, Andreas E.

    2016-10-13

    The diffusion of various solvents into a polystyrene (PS) matrix was probed experimentally by monitoring the temporal profiles of the Raman spectra and theoretically from molecular dynamics (MD) simulations of the binary system. The simulation results assist in providing a fundamental, molecular level connection between the mixing/dissolution processes and the difference = solvent – PS in the values of the Hildebrand parameter () between the two components of the binary systems: solvents having similar values of with PS (small ) exhibit fast diffusion into the polymer matrix, whereas the diffusion slows down considerably when the ’s are different (large ).more » To this end, the Hildebrand parameter was identified as a useful descriptor that governs the process of mixing in polymer – solvent binary systems. The experiments also provide insight into further refinements of the models specific to non-Fickian diffusion phenomena that need to be used in the simulations.« less

  16. Floating matrix tablets based on low density foam powder: effects of formulation and processing parameters on drug release.

    PubMed

    Streubel, A; Siepmann, J; Bodmeier, R

    2003-01-01

    The aim of this study was to develop and physicochemically characterize single unit, floating controlled drug delivery systems consisting of (i). polypropylene foam powder, (ii). matrix-forming polymer(s), (iii). drug, and (iv). filler (optional). The highly porous foam powder provided low density and, thus, excellent in vitro floating behavior of the tablets. All foam powder-containing tablets remained floating for at least 8 h in 0.1 N HCl at 37 degrees C. Different types of matrix-forming polymers were studied: hydroxypropyl methylcellulose (HPMC), polyacrylates, sodium alginate, corn starch, carrageenan, gum guar and gum arabic. The tablets eroded upon contact with the release medium, and the relative importance of drug diffusion, polymer swelling and tablet erosion for the resulting release patterns varied significantly with the type of matrix former. The release rate could effectively be modified by varying the "matrix-forming polymer/foam powder" ratio, the initial drug loading, the tablet geometry (radius and height), the type of matrix-forming polymer, the use of polymer blends and the addition of water-soluble or water-insoluble fillers (such as lactose or microcrystalline cellulose). The floating behavior of the low density drug delivery systems could successfully be combined with accurate control of the drug release patterns.

  17. Xenon adsorption on geological media and implications for radionuclide signatures

    DOE PAGES

    Paul, M. J.; Biegalski, S. R.; Haas, D. A.; ...

    2018-02-13

    Here, the detection of radioactive noble gases is a primary technology for verifying compliance with the pending Comprehensive Nuclear-Test-Ban Treaty. A fundamental challenge in applying this technology for detecting underground nuclear explosions is estimating the timing and magnitude of the radionuclide signatures. While the primary mechanism for transport is advective transport, either through barometric pumping or thermally driven advection, diffusive transport in the surrounding matrix also plays a secondary role. From the study of primordial noble gas signatures, it is known that xenon has a strong physical adsorption affinity in shale formations. Given the unselective nature of physical adsorption, isothermmore » measurements reported here show that non-trivial amounts of xenon adsorb on a variety of media, in addition to shale. A dual-porosity model is then discussed demonstrating that sorption amplifies the diffusive uptake of an adsorbing matrix from a fracture. This effect may reduce the radioxenon signature down to approximately one-tenth, similar to primordial xenon isotopic signatures.« less

  18. Xenon adsorption on geological media and implications for radionuclide signatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, M. J.; Biegalski, S. R.; Haas, D. A.

    Here, the detection of radioactive noble gases is a primary technology for verifying compliance with the pending Comprehensive Nuclear-Test-Ban Treaty. A fundamental challenge in applying this technology for detecting underground nuclear explosions is estimating the timing and magnitude of the radionuclide signatures. While the primary mechanism for transport is advective transport, either through barometric pumping or thermally driven advection, diffusive transport in the surrounding matrix also plays a secondary role. From the study of primordial noble gas signatures, it is known that xenon has a strong physical adsorption affinity in shale formations. Given the unselective nature of physical adsorption, isothermmore » measurements reported here show that non-trivial amounts of xenon adsorb on a variety of media, in addition to shale. A dual-porosity model is then discussed demonstrating that sorption amplifies the diffusive uptake of an adsorbing matrix from a fracture. This effect may reduce the radioxenon signature down to approximately one-tenth, similar to primordial xenon isotopic signatures.« less

  19. Xenon adsorption on geological media and implications for radionuclide signatures.

    PubMed

    Paul, M J; Biegalski, S R; Haas, D A; Jiang, H; Daigle, H; Lowrey, J D

    2018-07-01

    The detection of radioactive noble gases is a primary technology for verifying compliance with the pending Comprehensive Nuclear-Test-Ban Treaty. A fundamental challenge in applying this technology for detecting underground nuclear explosions is estimating the timing and magnitude of the radionuclide signatures. While the primary mechanism for transport is advective transport, either through barometric pumping or thermally driven advection, diffusive transport in the surrounding matrix also plays a secondary role. From the study of primordial noble gas signatures, it is known that xenon has a strong physical adsorption affinity in shale formations. Given the unselective nature of physical adsorption, isotherm measurements reported here show that non-trivial amounts of xenon adsorb on a variety of media, in addition to shale. A dual-porosity model is then discussed demonstrating that sorption amplifies the diffusive uptake of an adsorbing matrix from a fracture. This effect may reduce the radioxenon signature down to approximately one-tenth, similar to primordial xenon isotopic signatures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Persistence of aldicarb residues in the sandstone aquifer of Prince Edward Island, Canada

    NASA Astrophysics Data System (ADS)

    Jackson, R. E.; Mutch, J. P.; Priddle, M. W.

    1990-07-01

    Aldicarb residues were found in theshallow groundwaters of the fractured, aquifer of Prince Edward Island, Canada more than two years after the last application of this pesticide. Furthermore, the concentrations of aldicarb measured were relatively constant with time. The chemical and hydrogeological mechanisms by which such persistence occurs are discussed. It is deduced that the detoxifying abiotic transformation (hydrolysis) of aldicarb is inhibited by the low pH and temperature of the soil and groundwater, the former being partly due to the pH-buffering effects of ammonium fertilizer oxidation. Aldicarb residues remain constant and relatively high because of their storage within the sandstone matrix subsequent diffusion back into the fractures of this dual porosity system. Attempts to stimulate the observed persistence of aldicarb in this hydrogeologic environment using a one-dimensional, solute transport simulation code were unsuccessful, probably because of the three-dimensional nature of the matrix diffusion process. The simulations suggested that the overall half-life for aldicarb in the till-sandstone system approaches 150 days.

  1. Diffusion relaxation times of nonequilibrium isolated small bodies and their solid phase ensembles to equilibrium states

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2017-08-01

    The possibility of obtaining analytical estimates in a diffusion approximation of the times needed by nonequilibrium small bodies to relax to their equilibrium states based on knowledge of the mass transfer coefficient is considered. This coefficient is expressed as the product of the self-diffusion coefficient and the thermodynamic factor. A set of equations for the diffusion transport of mixture components is formulated, characteristic scales of the size of microheterogeneous phases are identified, and effective mass transfer coefficients are constructed for them. Allowing for the developed interface of coexisting and immiscible phases along with the porosity of solid phases is discussed. This approach can be applied to the diffusion equalization of concentrations of solid mixture components in many physicochemical systems: the mutual diffusion of components in multicomponent systems (alloys, semiconductors, solid mixtures of inert gases) and the mass transfer of an absorbed mobile component in the voids of a matrix consisting of slow components or a mixed composition of mobile and slow components (e.g., hydrogen in metals, oxygen in oxides, and the transfer of molecules through membranes of different natures, including polymeric).

  2. Transport of Organic Compounds Through Porous Systems Containing Humic Acids.

    PubMed

    Smilek, Jiri; Sedlacek, Petr; Lastuvkova, Marcela; Kalina, Michal; Klucakova, Martina

    2017-03-01

    Soil pollution by the presence of different contaminants (e.g. heavy metal ions or pesticides) is one of the biggest problems worldwide. The positive affinity of natural humic acids towards these contaminants might contribute to the soil and ground water protection; therefore it is necessary to study the reactivity and barrier properties of humic acids. An original reactivity-mapping tool based on diffusion techniques designed to study the reactivity and barrier properties of polyelectrolytes was developed and tested on humic acids. The results of diffusion experiments demonstrate that the electrostatic interactions between humic acids functioning as a polyelectrolyte interpenetrated in a supporting hydrogel matrix (agarose) and cationic dye (methylene blue) as a model solute have a crucial impact on the rate of diffusion processes and on the barrier properties of hydrogels. The intensity of interactions was evaluated by fundamental diffusion parameters (effective diffusion coefficients and breakthrough time). The impact of modification of humic acids was also studied by means of diffusion experiments conducted on two types of standard humic acids (Leonardite 1S104H) and humic acids with selectively methylated carboxylic groups.

  3. The interface in tungsten fiber reinforced niobium metal-matrix composites. Final Report Ph.D. Thesis - Case Western Reserve Univ., Cleveland, OH

    NASA Technical Reports Server (NTRS)

    Grobstein, Toni L.

    1989-01-01

    The creep resistance of tungsten fiber reinforced niobium metal-matrix composites was evaluated. The interface region between the fiber and matrix was characterized by microhardness and electron probe microanalysis measurements which indicated that its properties were between those of fiber and matrix. However, the measured properties of the composite exceeded those calculated by the rule of mixtures even when the interface zone was assumed to retain all the strength of the fiber. The composite structure appeared to enhance the strengths of both the fibers and the matrix above what they exhibited in stand-alone tests. The effect of fiber orientation and matrix alloy composition on the fiber/matrix interface were also evaluated. Small alloying additions of zirconium and tungsten to the niobium matrix affected the creep resistance of the composites only slightly. A decrease in the creep resistance of the composite with increasing zirconium content in the matrix was ascribed to an increase in the diffusion rate of the fiber/matrix interdiffusion reaction, and a slight increase in the creep resistance of the composite was observed with an addition of 9 w percent tungsten to the matrix. In addition, Kirkendall void formation was observed at the fiber/matrix interface; the void distribution differed depending on the fiber orientation relative to the stress axis.

  4. Shifts in bryophyte carbon isotope ratio across an elevation × soil age matrix on Mauna Loa, Hawaii: do bryophytes behave like vascular plants?

    PubMed

    Waite, Mashuri; Sack, Lawren

    2011-05-01

    The carbon isotope ratio (δ(13)C) of vascular plant leaf tissue is determined by isotope discrimination, primarily mediated by stomatal and mesophyll diffusion resistances and by photosynthetic rate. These effects lead to predictable trends in leaf δ(13)C across natural gradients of elevation, irradiance and nutrient supply. Less is known about shifts in δ(13)C for bryophytes at landscape scale, as bryophytes lack stomata in the dominant gametophyte phase, and thus lack active control over CO(2) diffusion. Twelve bryophyte species were sampled across a matrix of elevation and soil ages on Mauna Loa, Hawaii Island. We tested hypotheses based on previous findings for vascular plants, which tend to have less negative δ(13)C at higher elevations or irradiances, and for leaves with higher leaf mass per area (LMA). Across the matrix, bryophytes spanned the range of δ(13)C values typical of C(3) vascular plants. Bryophytes were remarkably similar to vascular plants in exhibiting less negative δ(13)C with increasing elevation, and with lower overstory cover; additionally δ(13)C was related to bryophyte canopy projected mass per area, a trait analogous to LMA in vascular plants, also correlated negatively with overstory cover. The similarity of responses of δ(13)C in bryophytes and vascular plants to environmental factors, despite differing morphologies and diffusion pathways, points to a strong direct role of photosynthetic rate in determining δ(13)C variation at the landscape scale.

  5. A fast collocation method for a variable-coefficient nonlocal diffusion model

    NASA Astrophysics Data System (ADS)

    Wang, Che; Wang, Hong

    2017-02-01

    We develop a fast collocation scheme for a variable-coefficient nonlocal diffusion model, for which a numerical discretization would yield a dense stiffness matrix. The development of the fast method is achieved by carefully handling the variable coefficients appearing inside the singular integral operator and exploiting the structure of the dense stiffness matrix. The resulting fast method reduces the computational work from O (N3) required by a commonly used direct solver to O (Nlog ⁡ N) per iteration and the memory requirement from O (N2) to O (N). Furthermore, the fast method reduces the computational work of assembling the stiffness matrix from O (N2) to O (N). Numerical results are presented to show the utility of the fast method.

  6. Phase-field study on geometry-dependent migration behavior of voids under temperature gradient in UO2 crystal matrix

    NASA Astrophysics Data System (ADS)

    Chen, Weijin; Peng, Yuyi; Li, Xu'an; Chen, Kelang; Ma, Jun; Wei, Lingfeng; Wang, Biao; Zheng, Yue

    2017-10-01

    In this work, a phase-field model is established to capture the void migration behavior under a temperature gradient within a crystal matrix, with an appropriate consideration of the surface diffusion mechanism and the vapor transport mechanism. The interfacial energy and the coupling between the vacancy concentration field and the crystal order parameter field are carefully modeled. Simulations are performed on UO2. The result shows that for small voids (with an area ≤ πμm2), the well-known characteristics of void migration, in consistence with the analytical model, can be recovered. The migration is manifested by a constant velocity and a minor change of the void shape. In contrast, for large voids (with an area of ˜10 μm2) initially in circular shapes, significant deformation of the void from a circular to cashew-like shape is observed. After long-time migration, the deformed void would split into smaller voids. The size-dependent behavior of void migration is due to the combined effect of the interfacial energy (which tends to keep the void in circular shape) and the surface diffusion flow (which tends to deform the void due to the nonuniform diffusion along the surface). Moreover, the initial shape of the void modifies the migration velocity and the time point when splitting occurs (for large voids) at the beginning of migration due to the shape relaxation of the void. However, it has a minor effect on the long-time migration. Our work reveals novel void migration behaviors in conditions where the surface-diffusion mechanism is dominant over the vapor transport mechanism; meanwhile, the size of the void lies at a mediate size range.

  7. A novel intravaginal ring to prevent HIV-1, HSV-2, HPV, and unintended pregnancy.

    PubMed

    Ugaonkar, Shweta R; Wesenberg, Asa; Wilk, Jolanta; Seidor, Samantha; Mizenina, Olga; Kizima, Larisa; Rodriguez, Aixa; Zhang, Shimin; Levendosky, Keith; Kenney, Jessica; Aravantinou, Meropi; Derby, Nina; Grasperge, Brooke; Gettie, Agegnehu; Blanchard, James; Kumar, Narender; Roberts, Kevin; Robbiani, Melissa; Fernández-Romero, José A; Zydowsky, Thomas M

    2015-09-10

    Women urgently need a self-initiated, multipurpose prevention technology (MPT) that simultaneously reduces their risk of acquiring HIV-1, HSV-2, and HPV (latter two associated with increased risk of HIV-1 acquisition) and prevents unintended pregnancy. Here, we describe a novel core-matrix intravaginal ring (IVR), the MZCL IVR, which effectively delivered the MZC combination microbicide and a contraceptive. The MZCL IVR contains four active pharmaceutical ingredients (APIs): MIV-150 (targets HIV-1), zinc acetate (ZA; targets HIV-1 and HSV-2), carrageenan (CG; targets HPV and HSV-2), and levonorgestrel (LNG; targets unintended pregnancy). The elastomeric IVR body (matrix) was produced by hot melt extrusion of the non-water swellable elastomer, ethylene vinyl acetate (EVA-28), containing the hydrophobic small molecules, MIV-150 and LNG. The solid hydrophilic core, embedded within the IVR by compression, contained the small molecule ZA and the macromolecule CG. Hydrated ZA/CG from the core was released by diffusion via a pore on the IVR while the MIV-150/LNG diffused from the matrix continuously for 94 days (d) in vitro and up to 28 d (study period) in macaques. The APIs released in vitro and in vivo were active against HIV-1ADA-M, HSV-2, and HPV16 PsV in cell-based assays. Serum LNG was at levels associated with local contraceptive effects. The results demonstrate proof-of-concept of a novel core-matrix IVR for sustained and simultaneous delivery of diverse molecules for the prevention of HIV, HSV-2 and HPV acquisition, as well as unintended pregnancy. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  8. The effect of silicon on the interaction between metallic uranium and aluminum: A 50 year long diffusion experiment

    NASA Astrophysics Data System (ADS)

    Leenaers, A.; Detavernier, C.; Van den Berghe, S.

    2008-11-01

    The core of the BR1 research reactor at SCK•CEN, Mol (Belgium) has a graphite matrix loaded with fuel rods consisting of a natural uranium slug in aluminum cladding. The BR1 reactor has been in operation since 1956 and still contains its original fuel rods. After more than 50 years irradiation at low temperature, some of the fuel rods have been examined. Fabrication reports indicate that a so-called AlSi bonding layer and an U(Al,Si) 3 anti-diffusion layer on the natural uranium fuel slug were applied to limit the interaction between the uranium fuel and aluminum cladding. The microstructure of the fuel, bonding and anti-diffusion layer and cladding were analysed using optical microscopy, scanning electron microscopy and electron microprobe analysis. It was found that the AlSi bonding layer does provide a tight bond between fuel and cladding but that it is a thin USi layer that acts as effective anti-diffusion layer and not the intended U(Al,Si) 3 layer.

  9. Light-Cone and Diffusive Propagation of Correlations in a Many-Body Dissipative System.

    PubMed

    Bernier, Jean-Sébastien; Tan, Ryan; Bonnes, Lars; Guo, Chu; Poletti, Dario; Kollath, Corinna

    2018-01-12

    We analyze the propagation of correlations after a sudden interaction change in a strongly interacting quantum system in contact with an environment. In particular, we consider an interaction quench in the Bose-Hubbard model, deep within the Mott-insulating phase, under the effect of dephasing. We observe that dissipation effectively speeds up the propagation of single-particle correlations while reducing their coherence. In contrast, for two-point density correlations, the initial ballistic propagation regime gives way to diffusion at intermediate times. Numerical simulations, based on a time-dependent matrix product state algorithm, are supplemented by a quantitatively accurate fermionic quasiparticle approach providing an intuitive description of the initial dynamics in terms of holon and doublon excitations.

  10. Effects of Irradiation on the Microstructure of U-7Mo Dispersion Fuel with Al-2Si Matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis D. Keiser, Jr.; Jan-Fong Jue; Adam B. Robinson

    2012-06-01

    The Reduced Enrichment for Research and Test Reactor program is developing low-enriched uranium U-Mo dispersion fuels for application in research and test reactors around the world. As part of this development, fuel plates have been irradiated in the Advanced Test Reactor and then characterized using optical metallography (OM) and scanning electron microscopy (SEM) to determine the as-irradiated microstructure. To demonstrate the irradiation performance of U-7Mo dispersion fuel plates with 2 wt% Si added to the matrix, fuel plates were tested to medium burnups at intermediate fission rates as part of the RERTR-6 experiment. Further testing was performed to higher fissionmore » rates as part of the RERTR-7A experiment, and very aggressive testing (high temperature, high fission density, high fission rate) was performed in the RERTR-9A, RERTR-9B and AFIP-1 experiments. As-irradiated microstructures were compared to those observed after fabrication to determine the effects of irradiation on the microstructure. Based on comparison of the microstructural characterization results for each irradiated sample, some general conclusions can be drawn about how the microstructure evolves during irradiation: there is growth of the fuel/matrix interaction layer (FMI), which was present in the samples to some degree after fabrication, during irradiation; Si diffuses from the FMI layer to deeper depths in the U-7Mo particles as the irradiation conditions are made more aggressive; lowering of the Si content in the FMI layer results in an increase in the size of the fission gas bubbles; as the FMI layer grows during irradiation more Si diffuses from the matrix to the FMI layer/matrix interface, and interlinking of fission gas bubbles in the fuel plate microstructure that may indicate breakaway swelling is not observed.« less

  11. Computational Analyses of Complex Flows with Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Bae, Kang-Sik

    The heat and mass transfer phenomena in micro-scale for the mass transfer phenomena on drug in cylindrical matrix system, the simulation of oxygen/drug diffusion in a three dimensional capillary network, and a reduced chemical kinetic modeling of gas turbine combustion for Jet propellant-10 have been studied numerically. For the numerical analysis of the mass transfer phenomena on drug in cylindrical matrix system, the governing equations are derived from the cylindrical matrix systems, Krogh cylinder model, which modeling system is comprised of a capillary to a surrounding cylinder tissue along with the arterial distance to veins. ADI (Alternative Direction Implicit) scheme and Thomas algorithm are applied to solve the nonlinear partial differential equations (PDEs). This study shows that the important factors which have an effect on the drug penetration depth to the tissue are the mass diffusivity and the consumption of relevant species during the time allowed for diffusion to the brain tissue. Also, a computational fluid dynamics (CFD) model has been developed to simulate the blood flow and oxygen/drug diffusion in a three dimensional capillary network, which are satisfied in the physiological range of a typical capillary. A three dimensional geometry has been constructed to replicate the one studied by Secomb et al. (2000), and the computational framework features a non-Newtonian viscosity model for blood, the oxygen transport model including in oxygen-hemoglobin dissociation and wall flux due to tissue absorption, as well as an ability to study the diffusion of drugs and other materials in the capillary streams. Finally, a chemical kinetic mechanism of JP-10 has been compiled and validated for a wide range of combustion regimes, covering pressures of 1atm to 40atm with temperature ranges of 1,200 K--1,700 K, which is being studied as a possible Jet propellant for the Pulse Detonation Engine (PDE) and other high-speed flight applications such as hypersonic missiles. The comprehensive skeletal mechanism consists of 58 species and 315 reactions including in CPD, Benzene formation process by the theory for polycyclic aromatic hydrocarbons (PAH) and soot formation process on the constant volume combustor, premixed flame characteristics.

  12. Reflection Matrix Method for Controlling Light After Reflection From a Diffuse Scattering Surface

    DTIC Science & Technology

    2016-12-22

    reflective inverse diffusion, which was a proof-of-concept experiment that used phase modulation to shape the wavefront of a laser causing it to refocus...after reflection from a rough surface. By refocusing the light, reflective inverse diffusion has the potential to eliminate the complex radiometric model...photography. However, the initial reflective inverse diffusion experiments provided no mathematical background and were conducted under the premise that the

  13. An exact and efficient first passage time algorithm for reaction-diffusion processes on a 2D-lattice

    NASA Astrophysics Data System (ADS)

    Bezzola, Andri; Bales, Benjamin B.; Alkire, Richard C.; Petzold, Linda R.

    2014-01-01

    We present an exact and efficient algorithm for reaction-diffusion-nucleation processes on a 2D-lattice. The algorithm makes use of first passage time (FPT) to replace the computationally intensive simulation of diffusion hops in KMC by larger jumps when particles are far away from step-edges or other particles. Our approach computes exact probability distributions of jump times and target locations in a closed-form formula, based on the eigenvectors and eigenvalues of the corresponding 1D transition matrix, maintaining atomic-scale resolution of resulting shapes of deposit islands. We have applied our method to three different test cases of electrodeposition: pure diffusional aggregation for large ranges of diffusivity rates and for simulation domain sizes of up to 4096×4096 sites, the effect of diffusivity on island shapes and sizes in combination with a KMC edge diffusion, and the calculation of an exclusion zone in front of a step-edge, confirming statistical equivalence to standard KMC simulations. The algorithm achieves significant speedup compared to standard KMC for cases where particles diffuse over long distances before nucleating with other particles or being captured by larger islands.

  14. Development of a poly(dimethylacrylamide) based matrix material for solid phase high density peptide array synthesis employing a laser based material transfer

    NASA Astrophysics Data System (ADS)

    Ridder, Barbara; Foertsch, Tobias C.; Welle, Alexander; Mattes, Daniela S.; von Bojnicic-Kninski, Clemens M.; Loeffler, Felix F.; Nesterov-Mueller, Alexander; Meier, Michael A. R.; Breitling, Frank

    2016-12-01

    Poly(dimethylacrylamide) (PDMA) based matrix materials were developed for laser-based in situ solid phase peptide synthesis to produce high density arrays. In this specific array synthesis approach, amino acid derivatives are embedded into a matrix material, serving as a ;solid; solvent material at room temperature. Then, a laser pulse transfers this mixture to the target position on a synthesis slide, where the peptide array is synthesized. Upon heating above the glass transition temperature of the matrix material, it softens, allowing diffusion of the amino acid derivatives to the synthesis surface and serving as a solvent for peptide bond formation. Here, we synthesized PDMA six-arm star polymers, offering the desired matrix material properties, using atom transfer radical polymerization. With the synthesized polymers as matrix material, we structured and synthesized arrays with combinatorial laser transfer. With densities of up to 20,000 peptide spots per cm2, the resolution could be increased compared to the commercially available standard matrix material. Time-of-Flight Secondary Ion Mass Spectrometry experiments revealed the penetration behavior of an amino acid derivative into the prepared acceptor synthesis surface and the effectiveness of the washing protocols.

  15. Condition Number as a Measure of Noise Performance of Diffusion Tensor Data Acquisition Schemes with MRI

    NASA Astrophysics Data System (ADS)

    Skare, Stefan; Hedehus, Maj; Moseley, Michael E.; Li, Tie-Qiang

    2000-12-01

    Diffusion tensor mapping with MRI can noninvasively track neural connectivity and has great potential for neural scientific research and clinical applications. For each diffusion tensor imaging (DTI) data acquisition scheme, the diffusion tensor is related to the measured apparent diffusion coefficients (ADC) by a transformation matrix. With theoretical analysis we demonstrate that the noise performance of a DTI scheme is dependent on the condition number of the transformation matrix. To test the theoretical framework, we compared the noise performances of different DTI schemes using Monte-Carlo computer simulations and experimental DTI measurements. Both the simulation and the experimental results confirmed that the noise performances of different DTI schemes are significantly correlated with the condition number of the associated transformation matrices. We therefore applied numerical algorithms to optimize a DTI scheme by minimizing the condition number, hence improving the robustness to experimental noise. In the determination of anisotropic diffusion tensors with different orientations, MRI data acquisitions using a single optimum b value based on the mean diffusivity can produce ADC maps with regional differences in noise level. This will give rise to rotational variances of eigenvalues and anisotropy when diffusion tensor mapping is performed using a DTI scheme with a limited number of diffusion-weighting gradient directions. To reduce this type of artifact, a DTI scheme with not only a small condition number but also a large number of evenly distributed diffusion-weighting gradients in 3D is preferable.

  16. Thermal Characterization of Carbon Fiber-Reinforced Carbon Composites

    NASA Astrophysics Data System (ADS)

    Macias, J. D.; Bante-Guerra, J.; Cervantes-Alvarez, F.; Rodrìguez-Gattorno, G.; Arés-Muzio, O.; Romero-Paredes, H.; Arancibia-Bulnes, C. A.; Ramos-Sánchez, V.; Villafán-Vidales, H. I.; Ordonez-Miranda, J.; Li Voti, R.; Alvarado-Gil, J. J.

    2018-04-01

    Carbon fiber-reinforced carbon (C/C) composites consist in a carbon matrix holding carbon or graphite fibers together, whose physical properties are determined not only by those of their individual components, but also by the layer buildup and the material preparation and processing. The complex structure of C/C composites along with the fiber orientation provide an effective means for tailoring their mechanical, electrical, and thermal properties. In this work, we use the Laser Flash Technique to measure the thermal diffusivity and thermal conductivity of C/C composites made up of laminates of weaved bundles of carbon fibers, forming a regular and repeated orthogonal pattern, embedded in a graphite matrix. Our experimental data show that: i) the cross-plane thermal conductivity remains practically constant around (5.3 ± 0.4) W·m-1 K-1, within the temperature range from 370 K to 1700 K. ii) The thermal diffusivity and thermal conductivity along the cross-plane direction to the fibers axis is about five times smaller than the corresponding ones in the laminates plane. iii) The measured cross-plane thermal conductivity is well described by a theoretical model that considers both the conductive and radiative thermal contributions of the effective thermal conductivity.

  17. The acellular matrix (ACM) for bladder tissue engineering: A quantitative magnetic resonance imaging study.

    PubMed

    Cheng, Hai-Ling Margaret; Loai, Yasir; Beaumont, Marine; Farhat, Walid A

    2010-08-01

    Bladder acellular matrices (ACMs) derived from natural tissue are gaining increasing attention for their role in tissue engineering and regeneration. Unlike conventional scaffolds based on biodegradable polymers or gels, ACMs possess native biomechanical and many acquired biologic properties. Efforts to optimize ACM-based scaffolds are ongoing and would be greatly assisted by a noninvasive means to characterize scaffold properties and monitor interaction with cells. MRI is well suited to this role, but research with MRI for scaffold characterization has been limited. This study presents initial results from quantitative MRI measurements for bladder ACM characterization and investigates the effects of incorporating hyaluronic acid, a natural biomaterial useful in tissue-engineering and regeneration. Measured MR relaxation times (T(1), T(2)) and diffusion coefficient were consistent with increased water uptake and glycosaminoglycan content observed on biochemistry in hyaluronic acid ACMs. Multicomponent MRI provided greater specificity, with diffusion data showing an acellular environment and T(2) components distinguishing the separate effects of increased glycosaminoglycans and hydration. These results suggest that quantitative MRI may provide useful information on matrix composition and structure, which is valuable in guiding further development using bladder ACMs for organ regeneration and in strategies involving the use of hyaluronic acid.

  18. Characterization of the collagen component of cartilage repair tissue of the talus with quantitative MRI: comparison of T2 relaxation time measurements with a diffusion-weighted double-echo steady-state sequence (dwDESS).

    PubMed

    Kretzschmar, M; Bieri, O; Miska, M; Wiewiorski, M; Hainc, N; Valderrabano, V; Studler, U

    2015-04-01

    The purpose of this study was to characterize the collagen component of repair tissue (RT) of the talus after autologous matrix-induced chondrogenesis (AMIC) using quantitative T2 and diffusion-weighted imaging. Mean T2 values and diffusion coefficients of AMIC-RT and normal cartilage of the talus of 25 patients with posttraumatic osteochondral lesions and AMIC repair were compared in a cross-sectional design using partially spoiled steady-state free precession (pSSFP) for T2 quantification, and diffusion-weighted double-echo steady-state (dwDESS) for diffusion measurement. RT and cartilage were graded with modified Noyes and MOCART scores on morphological sequences. An association between follow-up interval and quantitative MRI measures was assessed using multivariate regression, after stratifying the cohort according to time interval between surgery and MRI. Mean T2 of the AMIC-RT and cartilage were 43.1 ms and 39.1 ms, respectively (p = 0.26). Mean diffusivity of the RT (1.76 μm(2)/ms) was significantly higher compared to normal cartilage (1.46 μm(2)/ms) (p = 0.0092). No correlation was found between morphological and quantitative parameters. RT diffusivity was lowest in the subgroup with follow-up >28 months (p = 0.027). Compared to T2-mapping, dwDESS demonstrated greater sensitivity in detecting differences in the collagen matrix between AMIC-RT and cartilage. Decreased diffusivity in patients with longer follow-up times may indicate an increased matrix organization of RT. • MRI is used to assess morphology of the repair tissue during follow-up. • Quantitative MRI allows an estimation of biochemical properties of the repair tissue. • Differences between repair tissue and cartilage were more significant with dwDESS than T2 mapping.

  19. Structural analysis of reactionary dentin formed in response to polymicrobial invasion

    PubMed Central

    Charadram, Nattida; Austin, Christine; Trimby, Patrick; Simonian, Mary; Swain, Michael V.; Hunter, Neil

    2013-01-01

    In response to microbial invasion of dentin odontoblasts secrete an altered calcified matrix termed reactionary dentin (Rd). 3D reconstruction of focused-ion-beam scanning electron microscopy (FIB-SEM) image slices revealed helical tubular structures in Rd that contrasted with regular cylindrical tubules characteristic of dentin from healthy teeth and affected so-called physiological dentin (Pd) lying exterior to Rd. This helical structure in Rd provided effective constriction of tubule lumen diameter that formed a barrier to bacterial advance towards the dental pulp. SEM of resin cast preparations revealed altered extension of odontoblast processes through Rd. The distribution of key mineral elements was studied by combination of 3D reconstruction of focused-ion-beam based X-ray microanalysis (FIB-EDS), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). There was a marked redistribution of calcium and phosphorous in Rd together with an increase of diffusely deposited magnesium compatible with the mineral deposition phase of synthesis of this altered matrix. Changes in tubule structure and mineral content characteristic of Rd are consistent with reduced hardness and lower elastic modulus reported for this matrix. Findings provide insight into the unique structure of Rd synthesised as a primary response to infection. PMID:23261402

  20. Transient Liquid-Phase Diffusion Bonding of Aluminum Metal Matrix Composite Using a Mixed Cu-Ni Powder Interlayer

    NASA Astrophysics Data System (ADS)

    Maity, Joydeep; Pal, Tapan Kumar

    2012-07-01

    In the present study, the transient liquid-phase diffusion bonding of an aluminum metal matrix composite (6061-15 wt.% SiCp) has been investigated for the first time using a mixed Cu-Ni powder interlayer at 560 °C, 0.2 MPa, for different holding times up to 6 h. The microstructure of the isothermally solidified zone contains equilibrium precipitate CuAl2, metastable precipitate Al9Ni2 in the matrix of α-solid solution along with the reinforcement particles (SiC). On the other hand, the microstructure of the central bond zone consists of equilibrium phases such as NiAl3, Al7Cu4Ni and α-solid solution along with SiC particles (without any segregation) and the presence of microporosities. During shear test, the crack originates from microporosities and propagates along the interphase interfaces resulting in poor bond strength for lower holding times. As the bonding time increases, with continual diffusion, the structural heterogeneity is diminished, and the microporosities are eliminated at the central bond zone. Accordingly, after 6-h holding, the microstructure of the central bond zone mainly consists of NiAl3 without any visible microporosity. This provides a joint efficiency of 84% with failure primarily occurring through decohesion at the SiC particle/matrix interface.

  1. Trends in Effective Diffusion Coefficients for Ion-exchange Strengthening of Soda Lime Silicate Glasses

    NASA Astrophysics Data System (ADS)

    Karlsson, Stefan; Wondraczek, Lothar; Ali, Sharafat; Jonson, Bo

    2017-04-01

    Monovalent cations enable efficient ion exchange processes due to their high mobility in silicate glasses. Numerous properties can be modified in this way, e.g., mechanical, optical, electrical or chemical performance. In particular, alkali cation exchange has received significant attention, primarily with respect to introducing compressive stress into the surface region of a glass, which increases mechanical durability. However, most of the present applications rely on specifically tailored matrix compositions in which the cation mobility is enhanced. This largely excludes the major area of soda lime silicates (SLS) such as are commodity in almost all large-scale applications of glasses. Basic understanding of the relations between structural parameters and the effective diffusion coefficients may help to improve ion-exchanged SLS glass products, on the one hand in terms of obtainable strength and on the other in terms of cost. In the present paper, we discuss the trends in the effective diffusion coefficients when exchanging Na+ for various monovalent cations (K+, Cu+, Ag+, Rb+ and Cs+) by drawing relations to physico-chemical properties. Correlations of effective diffusion coefficients were found for the bond dissociation energy and the electronic cation polarizability, indicating that localization and rupture of bonds are of importance for the ion exchange rate.

  2. Astrocytes and extracellular matrix in extrasynaptic volume transmission.

    PubMed

    Vargová, Lýdia; Syková, Eva

    2014-10-19

    Volume transmission is a form of intercellular communication that does not require synapses; it is based on the diffusion of neuroactive substances across the brain extracellular space (ECS) and their binding to extrasynaptic high-affinity receptors on neurons or glia. Extracellular diffusion is restricted by the limited volume of the ECS, which is described by the ECS volume fraction α, and the presence of diffusion barriers, reflected by tortuosity λ, that are created, for example, by fine astrocytic processes or extracellular matrix (ECM) molecules. Organized astrocytic processes, ECM scaffolds or myelin sheets channel the extracellular diffusion so that it is facilitated in a certain direction, i.e. anisotropic. The diffusion properties of the ECS are profoundly influenced by various processes such as the swelling and morphological rebuilding of astrocytes during either transient or persisting physiological or pathological states, or the remodelling of the ECM in tumorous or epileptogenic tissue, during Alzheimer's disease, after enzymatic treatment or in transgenic animals. The changing diffusion properties of the ECM influence neuron-glia interaction, learning abilities, the extent of neuronal damage and even cell migration. From a clinical point of view, diffusion parameter changes occurring during pathological states could be important for diagnosis, drug delivery and treatment. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. Microtomography-based Inter-Granular Network for the simulation of radionuclide diffusion and sorption in a granitic rock

    NASA Astrophysics Data System (ADS)

    Iraola, Aitor; Trinchero, Paolo; Voutilainen, Mikko; Gylling, Björn; Selroos, Jan-Olof; Molinero, Jorge; Svensson, Urban; Bosbach, Dirk; Deissmann, Guido

    2017-12-01

    Field investigation studies, conducted in the context of safety analyses of deep geological repositories for nuclear waste, have pointed out that in fractured crystalline rocks sorbing radionuclides can diffuse surprisingly long distances deep into the intact rock matrix; i.e. much longer distances than those predicted by reactive transport models based on a homogeneous description of the properties of the rock matrix. Here, we focus on cesium diffusion and use detailed micro characterisation data, based on micro computed tomography, along with a grain-scale Inter-Granular Network model, to offer a plausible explanation for the anomalously long cesium penetration profiles observed in these in-situ experiments. The sparse distribution of chemically reactive grains (i.e. grains belonging to sorbing mineral phases) is shown to have a strong control on the diffusive patterns of sorbing radionuclides. The computed penetration profiles of cesium agree well with an analytical model based on two parallel diffusive pathways. This agreement, along with visual inspection of the spatial distribution of cesium concentration, indicates that for sorbing radionuclides the medium indeed behaves as a composite system, with most of the mass being retained close to the injection boundary and a non-negligible part diffusing faster along preferential diffusive pathways.

  4. Hierarchical damage mechanisms in composite materials subjected to fatigue loadings

    NASA Astrophysics Data System (ADS)

    D'Amore, Alberto; Grassia, Luigi

    2018-02-01

    The strength degradation of fiber reinforced composites subjected to constant amplitude (CA) fatigue loadings can be described by a two-parameter residual strength model. From the analytical approach it results that under moderate loadings the multiple damage mechanisms develop with different kinetics and manifest their effectiveness at different time scales highlighting the three-Stage hierarchical nature of damage accumulation in composites. The model captures the sequence of damage accumulation mechanisms from diffuse matrix cracking (I), to fiber/matrix interface failure (II) to fiber and ply rupture and delamination (III). Further, by increasing the loading severity it appears that the different mechanisms superpose witnessing their simultaneous co-existence.

  5. Dynamics of a poly(ethylene oxide) tracer in a poly(methyl methacrylate) matrix: remarkable decoupling of local and global motions.

    PubMed

    Haley, Jeffrey C; Lodge, Timothy P

    2005-06-15

    The tracer diffusion coefficient of unentangled poly(ethylene oxide) (PEO, M=1000 gmol) in a matrix of poly(methyl methacrylate) (PMMA, M=10 000 gmol) has been measured over a temperature range from 125 to 220 degrees C with forced Rayleigh scattering. The dynamic viscosities of blends of two different high molecular weight PEO tracers (M=440 000 and 900 000 gmol) in the same PMMA matrix were also measured at temperatures ranging from 160 to 220 degrees C; failure of time-temperature superposition was observed for these systems. The monomeric friction factors for the PEO tracers were extracted from the diffusion coefficients and the rheological relaxation times using the Rouse model. The friction factors determined by diffusion and rheology were in good agreement, even though the molecular weights of the tracers differed by about three orders of magnitude. The PEO monomeric friction factors were compared with literature data for PEO segmental relaxation times measured directly with NMR. The monomeric friction factors of the PEO tracer in the PMMA matrix were found to be from two to six orders of magnitude greater than anticipated based on direct measurements of segmental dynamics. Additionally, the PEO tracer terminal dynamics are a much stronger function of temperature than the corresponding PEO segmental dynamics. These results indicate that the fastest PEO Rouse mode, inferred from diffusion and rheology, is completely separated from the bond reorientation of PEO detected by NMR. This result is unlike other blend systems in which global and local motions have been compared.

  6. Self-learning kinetic Monte Carlo simulations of diffusion in ferromagnetic α -Fe–Si alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandipati, Giridhar; Jiang, Xiujuan; Vemuri, Rama S.

    Diffusion in α-Fe-Si alloys is studied using AKSOME, an on-lattice self-learning KMC code, in the ferromagnetic state. Si diffusivity in the α-Fe matrix were obtained with and without the magnetic disorder in various temperature ranges. In addition we studied vacancy diffusivity in ferromagnetic α-Fe at various Si concentrations up to 12.5at.% in the temperature range of 350–550 K. The results were compared with available experimental and theoretical values in the literature. Local Si-atom dependent activation energies for vacancy hops were calculated using a broken-model and were stored in a database. The migration barrier and prefactors for Si-diffusivity were found tomore » be in reasonable agreement with available modeling results in the literature. Magnetic disorder has a larger effect on the prefactor than on the migration barrier. Prefactor was approximately an order of magnitude and the migration barrier a tenth of an electron-volt higher with magnetic disorder when compared to a fully ferromagnetic ordered state. In addition, the correlation between various have a larger effect on the Si-diffusivity extracted in various temperature range than the magnetic disorder. In the case of vacancy diffusivity, the migration barrier more or less remained constant while the prefactor decreased with increasing Si concentration in the disordered or A2-phase of Fe-Si alloy. Important vacancy-Si/Fe atom exchange processes and their activation barriers were also identified and discuss the effect of energetics on the formation of ordered phases in Fe-Si alloys.« less

  7. A network of discrete events for the representation and analysis of diffusion dynamics.

    PubMed

    Pintus, Alberto M; Pazzona, Federico G; Demontis, Pierfranco; Suffritti, Giuseppe B

    2015-11-14

    We developed a coarse-grained description of the phenomenology of diffusive processes, in terms of a space of discrete events and its representation as a network. Once a proper classification of the discrete events underlying the diffusive process is carried out, their transition matrix is calculated on the basis of molecular dynamics data. This matrix can be represented as a directed, weighted network where nodes represent discrete events, and the weight of edges is given by the probability that one follows the other. The structure of this network reflects dynamical properties of the process of interest in such features as its modularity and the entropy rate of nodes. As an example of the applicability of this conceptual framework, we discuss here the physics of diffusion of small non-polar molecules in a microporous material, in terms of the structure of the corresponding network of events, and explain on this basis the diffusivity trends observed. A quantitative account of these trends is obtained by considering the contribution of the various events to the displacement autocorrelation function.

  8. Attempt to model laboratory-scale diffusion and retardation data.

    PubMed

    Hölttä, P; Siitari-Kauppi, M; Hakanen, M; Tukiainen, V

    2001-02-01

    Different approaches for measuring the interaction between radionuclides and rock matrix are needed to test the compatibility of experimental retardation parameters and transport models used in assessing the safety of the underground repositories for the spent nuclear fuel. In this work, the retardation of sodium, calcium and strontium was studied on mica gneiss, unaltered, moderately altered and strongly altered tonalite using dynamic fracture column method. In-diffusion of calcium into rock cubes was determined to predict retardation in columns. In-diffusion of calcium into moderately and strongly altered tonalite was interpreted using a numerical code FTRANS. The code was able to interprete in-diffusion of weakly sorbing calcium into the saturated porous matrix. Elution curves of calcium for the moderately and strongly altered tonalite fracture columns were explained adequately using FTRANS code and parameters obtained from in-diffusion calculations. In this paper, mass distribution ratio values of sodium, calcium and strontium for intact rock are compared to values, previously obtained for crushed rock from batch and crushed rock column experiments. Kd values obtained from fracture column experiments were one order of magnitude lower than Kd values from batch experiments.

  9. Helium isotopes in matrix pore fluids from SAFOD drill core samples suggest mantle fluids cannot be responsible for fault weakening

    NASA Astrophysics Data System (ADS)

    Ali, S.; Stute, M.; Torgersen, T.; Winckler, G.

    2008-12-01

    To quantify fluid flow in the San Andreas Fault (SAF) (and since direct fracture fluid sampling of the fault zone was not available), we have adapted a method to extract rare gases from matrix fluids of whole rocks by diffusion. Helium was measured on drill core samples obtained from 3054 m (Pacific Plate) to 3990 m (North American Plate) through the San Andreas Fault Zone (SAFZ) ~3300 m during SAFOD Phases I (2004), II (2005), III (2007). Samples were typically collected as 2.54 cm diameter subcores drilled into the ends of the cores, or from the core catcher and drillcore fragments within <2hr after core recovery. The samples were placed into ultra high vacuum stainless steel containers, flushed with ultra high purity nitrogen and immediately evacuated. Helium isotopes of the extracted matrix pore fluids and the solid matrix were determined by mass spectrometery at LDEO. Matrix porefluid 3He/4He ratios are ~0.4 - 0.5xRa (Ra: atmospheric 3He/4He = 1.384 x 10-6) in the Pacific Plate, increasing toward the SAFZ, while pore fluids in the North American Plate have a 3He/4He range of 0.7-0.9Ra, increasing away from the SAFZ (consistent with results from mud gas samples (Wiersberg and Erzinger, 2007) and direct fluid samples (Kennedy et al., 2007)). Helium isotope ratios of the solid matrix are less than 0.06Ra across the SAF in samples from both the North American and the Pacific plates, thereby excluding the host matrix as source for the enhanced isotopic signature. If the system is assumed to be in steady state, then the flux of mantle helium must be from the North American Plate to the Pacific plate. The steeper gradient in the Pacific Plate relative to the North American plate is consistent with a porosity corrected effective diffusivity. The source for this mantle helium in the North American Plate is likely related to a low crustal conductivity zone identified by magnetotelluric signals (Becken et al., 2008) that provides a channel for transport of mantle helium within brittle crust under high strain rates (Kennedy et al., 2007). The helium isotope gradients suggest that fault weakening by mantle-derived fluid pressure is unlikely. More likely, mantle fluids "bleed" into the North American plate below seismogenic depths and are transported across the fault by nonseismic, diffusive processes.

  10. The rate constant of a quantum-diffusion-controlled bimolecular reaction

    NASA Astrophysics Data System (ADS)

    Bondarev, B. V.

    1986-04-01

    A quantum-mechanical equation is derived in the tight-bond approximation which describes the motion and chemical interaction of a pair of species A and B when their displacement in the matrix is caused by tunnelling. Within the framework of the discrete model of random walks, definitions are given of the probability and rate constant of a reaction A + B → P (products) proceeding in a condensed medium. A method is suggested for calculating the rate constant of a quantum-diffusion-controlled bimolecular reaction. By this method, an expression is obtained for the rate constant in the stationary spherically symmetrical case. An equation for the density matrix is also proposed which describes the motion and chemical interaction of a pair of species when the quantum and classical diffusion are competitive.

  11. A fast reconstruction algorithm for fluorescence optical diffusion tomography based on preiteration.

    PubMed

    Song, Xiaolei; Xiong, Xiaoyun; Bai, Jing

    2007-01-01

    Fluorescence optical diffusion tomography in the near-infrared (NIR) bandwidth is considered to be one of the most promising ways for noninvasive molecular-based imaging. Many reconstructive approaches to it utilize iterative methods for data inversion. However, they are time-consuming and they are far from meeting the real-time imaging demands. In this work, a fast preiteration algorithm based on the generalized inverse matrix is proposed. This method needs only one step of matrix-vector multiplication online, by pushing the iteration process to be executed offline. In the preiteration process, the second-order iterative format is employed to exponentially accelerate the convergence. Simulations based on an analytical diffusion model show that the distribution of fluorescent yield can be well estimated by this algorithm and the reconstructed speed is remarkably increased.

  12. A novel in vitro three-dimensional retinoblastoma model for evaluating chemotherapeutic drugs

    PubMed Central

    Mitra, Moutushy; Mohanty, Chandana; Harilal, Anju; Maheswari, Uma K.; Sahoo, Sanjeeb Kumar

    2012-01-01

    Purpose Novel strategies are being applied for creating better in vitro models that simulate in vivo conditions for testing the efficacy of anticancer drugs. In the present study we developed surface-engineered, large and porous, biodegradable, polymeric microparticles as a scaffold for three dimensional (3-D) growth of a Y79 retinoblastoma (RB) cell line. We evaluated the effect of three anticancer drugs in naïve and nanoparticle-loaded forms on a 3-D versus a two-dimensional (2-D) model. We also studied the influence of microparticles on extracellular matrix (ECM) synthesis and whole genome miRNA-gene expression profiling to identify 3D-responsive genes that are implicated in oncogenesis in RB cells. Methods Poly(D,L)-lactide-co-glycolide (PLGA) microparticles were prepared by the solvent evaporation method. RB cell line Y79 was grown alone or with PLGA–gelatin microparticles. Antiproliferative activity, drug diffusion, and cellular uptake were studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a yellow tetrazole (MTT) assay, fluorescent microscope, and flow cytometry. Extra cellular matrix (ECM) synthesis was observed by collagenase assay and whole genome miRNA-microarray profiling by using an Agilent chip. Results With optimized composition of microparticles and cell culture conditions, an eightfold increase from the seeding density was achieved in 5 days of culture. The antiproliferative effect of the drugs in the 3-D model was significantly lower than in the 2-D suspension, which was evident from the 4.5 to 21.8 fold differences in their IC50 values. Using doxorubicin, the flow cytometry data demonstrated a 4.4 fold lower drug accumulation in the cells grown in the 3-D model at 4 h. The collagen content of the cells grown in the 3-D model was 2.3 fold greater than that of the cells grown in the 2-D model, suggesting greater synthesis of the extracellular matrix in the 3-D model as the extracellular matrix acted as a barrier to drug diffusion. The microarray and miRNA analysis showed changes in several genes and miRNA expression in cells grown in the 3-D model, which could also influence the environment and drug effects. Conclusions Our 3-D retinoblastoma model could be used in developing effective drugs based on a better understanding of the role of chemical, biologic, and physical parameters in the process of drug diffusion through the tumor mass, drug retention, and therapeutic outcome. PMID:22690114

  13. A theoretical approach to evaluate the release rate of acetaminophen from erosive wax matrix dosage forms.

    PubMed

    Agata, Yasuyoshi; Iwao, Yasunori; Shiino, Kai; Miyagishima, Atsuo; Itai, Shigeru

    2011-07-29

    To predict drug dissolution and understand the mechanisms of drug release from wax matrix dosage forms containing glyceryl monostearate (GM; a wax base), aminoalkyl methacrylate copolymer E (AMCE; a pH-dependent functional polymer), and acetaminophen (APAP; a model drug), we tried to derive a novel mathematical model with respect to erosion and diffusion theory. Our model exhibited good agreement with the whole set of experimentally obtained values pertaining to APAP release at pH 4.0 and pH 6.5. In addition, this model revealed that the eroding speed of wax matrices was strongly influenced by the loading content of AMCE, but not that of APAP, and that the diffusion coefficient increased as APAP loading decreased and AMCE loading increased, thus directly defining the physicochemical properties of erosion and diffusion. Therefore, this model might prove a useful equation for the precise prediction of dissolution and for understanding the mechanisms of drug release from wax matrix dosage forms. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Depolymerization of starch and pectin using superporous matrix supported enzymes.

    PubMed

    Lali, Arvind; Manudhane, Kushal; Motlekar, Nuzhat; Karandikar, Priti

    2002-08-01

    Immobilized enzyme catalyzed biotransformations involving macromolecular substrates and/or products are greatly retarded due to slow diffusion of large substrate molecules in and out of the typical enzyme supports. Slow diffusion of macromolecules into the matrix pores can be speeded up by use of macroporous supports as enzyme carriers. Depolymerization reactions of polysaccharides like starch, pectin, and dextran to their respective low molecular weight products are some of the reactions that can benefit from use of such superporous matrices. In the present work, an indigenously prepared rigid cross-linked cellulose matrix (called CELBEADS) has been used as support for immobilizing alpha amylase (1,4-alpha-D-glucan glucanohydrolase, EC 3.2.1.1.) and pectinase (endo-PG: poly(1,4-alpha-galactouronide) glycanohydrolase, EC 3.2.1.15). The immobilized enzymes were used for starch and pectin hydrolysis respectively, in batch, packed bed and expanded bed modes. The macroporosity of CELBEADS was found to permit through-flow and easy diffusion of substrates pectin and starch to enzyme sites in the porous supports and gave reaction rates comparable to the rates obtained using soluble enzymes.

  15. Global sensitivity analysis of multiscale properties of porous materials

    NASA Astrophysics Data System (ADS)

    Um, Kimoon; Zhang, Xuan; Katsoulakis, Markos; Plechac, Petr; Tartakovsky, Daniel M.

    2018-02-01

    Ubiquitous uncertainty about pore geometry inevitably undermines the veracity of pore- and multi-scale simulations of transport phenomena in porous media. It raises two fundamental issues: sensitivity of effective material properties to pore-scale parameters and statistical parameterization of Darcy-scale models that accounts for pore-scale uncertainty. Homogenization-based maps of pore-scale parameters onto their Darcy-scale counterparts facilitate both sensitivity analysis (SA) and uncertainty quantification. We treat uncertain geometric characteristics of a hierarchical porous medium as random variables to conduct global SA and to derive probabilistic descriptors of effective diffusion coefficients and effective sorption rate. Our analysis is formulated in terms of solute transport diffusing through a fluid-filled pore space, while sorbing to the solid matrix. Yet it is sufficiently general to be applied to other multiscale porous media phenomena that are amenable to homogenization.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gebhardt, M.; Köhler, W., E-mail: werner.koehler@uni-bayreuth.de

    A number of optical techniques have been developed during the recent years for the investigation of diffusion and thermodiffusion in ternary fluid mixtures, both on ground and on-board the International Space Station. All these methods are based on the simultaneous measurement of refractive index changes at two different wavelengths. Here, we discuss and compare different techniques with the emphasis on optical beam deflection (OBD), optical digital interferometry, and thermal diffusion forced Rayleigh scattering (TDFRS). We suggest to formally split the data evaluation into a phenomenological parameterization of the measured transients and a subsequent transformation from the refractive index into themore » concentration space. In all experiments, the transients measured at two different detection wavelengths can be described by four amplitudes and two eigenvalues of the diffusion coefficient matrix. It turns out that these six parameters are subjected to large errors and cannot be determined reliably. Five good quantities, which can be determined with a high accuracy, are the stationary amplitudes, the initial slopes as defined in TDFRS experiments and by application of a heuristic criterion for similar curves, a certain mean diffusion coefficient. These amplitudes and slopes are directly linked to the Soret and thermodiffusion coefficients after transformation with the inverse contrast factor matrix, which is frequently ill-conditioned. Since only five out of six free parameters are reliably determined, including the single mean diffusion coefficient, the determination of the four entries of the diffusion matrix is not possible. We apply our results to new OBD measurements of the symmetric (mass fractions 0.33/0.33/0.33) ternary benchmark mixture n-dodecane/isobutylbenzene/1,2,3,4-tetrahydronaphthalene and existing literature data for the same system.« less

  17. Release from or through a wax matrix system. IV. Generalized expression of the release process for a reservoir device tablet.

    PubMed

    Yonezawa, Yorinobu; Ishida, Sumio; Suzuki, Shinobu; Sunada, Hisakazu

    2002-09-01

    Generalization of the release process through the wax matrix layer was examined by use of a reservoir device tablet. The wax matrix layer of the reservoir device tablet was prepared from a physical mixture of lactose and hydrogenated castor oil to simplify the release properties. Release through the wax matrix layer showed zero-order kinetics in a steady state after a given lag time, and could be divided into two stages. The first stage was the formation process of water channel by dissolving the soluble component in the wax matrix layer. The lag time obtained by applying the square root law equation was well connected with the amount of the matrix layer and mixed weight ratio of components in this layer. The second stage was the zero-order release process of drug in the reservoir through the wax matrix layer, because the effective surface area was fixed. The release rate constants were connected with thickness of the matrix layer and permeability coefficient, and the permeability coefficients were connected with the diffusion coefficient of drug and porosity. Hence the release rate constant could be connected with the amount of matrix layer and the mixed weight ratio of components in the matrix layer. It was therefore suggested that the release process could be generalized using the amount of matrix layer and the mixed weight ratio of components in the matrix layer.

  18. Antifungal Effect of a Dental Tissue Conditioner Containing Nystatin-Loaded Alginate Microparticles.

    PubMed

    Kim, Hyun-Jin; Son, Jun Sik; Kwon, Tae-Yub

    2018-02-01

    In this in vitro study, nystatin-alginate microparticles were successfully fabricated to control the release of nystatin from a commercial dental tissue conditioner. These nystatin-alginate microparticles were spherical and had a slightly rough surface. The microparticles incorporated into the tissue conditioner were distributed homogeneously throughout the tissue conditioner matrix. The incorporation of the microparticles did not deteriorate the mechanical properties of the original material. The agar diffusion test results showed that the tissue conditioner containing the microparticles had a good antifungal effect against Candida albicans. The nystatin-alginate microparticles efficiently controlled the release of nystatin from the tissue conditioner matrix over the experimental period of 14 days. Moreover, the nystatin-alginate microparticles incorporated in the tissue conditioner showed effective antifungal function even at lower concentrations of nystatin. The current study suggests that the tissue conditioner containing the nystatin-alginate microparticle carrier system has potential as an effective antifungal material.

  19. A radial basis function Galerkin method for inhomogeneous nonlocal diffusion

    DOE PAGES

    Lehoucq, Richard B.; Rowe, Stephen T.

    2016-02-01

    We introduce a discretization for a nonlocal diffusion problem using a localized basis of radial basis functions. The stiffness matrix entries are assembled by a special quadrature routine unique to the localized basis. Combining the quadrature method with the localized basis produces a well-conditioned, sparse, symmetric positive definite stiffness matrix. We demonstrate that both the continuum and discrete problems are well-posed and present numerical results for the convergence behavior of the radial basis function method. As a result, we explore approximating the solution to anisotropic differential equations by solving anisotropic nonlocal integral equations using the radial basis function method.

  20. Statistical Mechanical Theory of Penetrant Diffusion in Polymer Melts and Glasses

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Schweizer, Kenneth

    We generalize our force-level, self-consistent nonlinear Langevin equation theory of activated diffusion of a dilute spherical penetrant in hard sphere fluids to predict the long-time diffusivity of molecular penetrants in supercooled polymer liquids and non-aging glasses. Chemical complexity is treated using an a priori mapping to a temperature-dependent hard sphere mixture model where polymers are disconnected into effective spheres based on the Kuhn length as the relevant coarse graining scale. A key parameter for mobility is the penetrant to polymer segment diameter ratio, R. Our calculations agree well with experimental measurements for a wide range of temperatures, penetrant sizes (from gas molecules with R ~0.3 to aromatic molecules with R ~1) and diverse amorphous polymers, over 10 decades variation of penetrant diffusivity. Structural parameter transferability is good. We have also formulated a theory at finite penetrant loading for the coupled penetrant-polymer dynamics in chemically (nearly) matched mixtures (e.g., toluene-polystyrene) which captures well the increase of penetrant diffusivity and decrease of polymer matrix vitrification temperature with increasing loading.

  1. In Situ Gold Nanoparticle Gradient Formation in a 3D Meso- and Macroporous Polymer Matrix.

    PubMed

    Penders, Jelle; Rajasekharan, Anand K; Hulander, Mats; Andersson, Martin

    2017-08-01

    Herein, the development and characterization of a 3D gradient structure of gold nanoparticles is described. The gradient of gold nanoparticles is made in situ in a macroporous nonionic block copolymer hydrogel matrix, through gold ion diffusion control. The polymer provides a matrix for diffusion of gold ions, acts as a template for controlling nanoparticle growth, and facilitates the in situ reduction of gold ions to gold nanoparticles. A clear gradient in gold nanoparticles is observed across the 3D space of the polymer matrix using scanning electron microscopy, fluorescence microscopy, atomic force microscopy, and thermogravimetric analysis. The particle gradient is further functionalized with both hydrophobic and hydrophilic groups via thiol-gold linkage to demonstrate the ability to form gradients with different chemical functionalities. Using additive manufacturing, the polymer can also be printed as a porous network with possible applications for 3D cell culturing in, e.g., biomaterials research. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effective Thermal Conductivity of Graphite Materials with Cracks

    NASA Astrophysics Data System (ADS)

    Pestchaanyi, S. E.; Landman, I. S.

    The dependence of effective thermal diffusivity on temperature caused by volumetric cracks is modelled for macroscopic graphite samples using the three-dimensional thermomechanics code Pegasus-3D. At high off-normal heat loads typical of the divertor armour, thermostress due to the anisotropy of graphite grains is much larger than that due to the temperature gradient. Numerical simulation demonstrated that the volumetric crack density both in fine grain graphites and in the CFC matrix depends mainly on the local sample temperature, not on the temperature gradient. This allows to define an effective thermal diffusivity for graphite with cracks. The results obtained are used to explain intense cracking and particle release from carbon based materials under electron beam heat load. Decrease of graphite thermal diffusivity with increase of the crack density explains particle release mechanism in the experiments with CFC where a clear energy threshold for the onset of particle release has been observed in J. Linke et al. Fusion Eng. Design, in press, Bazyler et al., these proceedings. Surface temperature measurement is necessary to calibrate the Pegasus-3D code for simulation of ITER divertor armour brittle destruction.

  3. Improved full analytical polygon-based method using Fourier analysis of the three-dimensional affine transformation.

    PubMed

    Pan, Yijie; Wang, Yongtian; Liu, Juan; Li, Xin; Jia, Jia

    2014-03-01

    Previous research [Appl. Opt.52, A290 (2013)] has revealed that Fourier analysis of three-dimensional affine transformation theory can be used to improve the computation speed of the traditional polygon-based method. In this paper, we continue our research and propose an improved full analytical polygon-based method developed upon this theory. Vertex vectors of primitive and arbitrary triangles and the pseudo-inverse matrix were used to obtain an affine transformation matrix representing the spatial relationship between the two triangles. With this relationship and the primitive spectrum, we analytically obtained the spectrum of the arbitrary triangle. This algorithm discards low-level angular dependent computations. In order to add diffusive reflection to each arbitrary surface, we also propose a whole matrix computation approach that takes advantage of the affine transformation matrix and uses matrix multiplication to calculate shifting parameters of similar sub-polygons. The proposed method improves hologram computation speed for the conventional full analytical approach. Optical experimental results are demonstrated which prove that the proposed method can effectively reconstruct three-dimensional scenes.

  4. A General Fluctuation-Response Relation for Noise Variations and its Application to Driven Hydrodynamic Experiments

    NASA Astrophysics Data System (ADS)

    Yolcu, Cem; Bérut, Antoine; Falasco, Gianmaria; Petrosyan, Artyom; Ciliberto, Sergio; Baiesi, Marco

    2017-04-01

    The effect of a change of noise amplitudes in overdamped diffusive systems is linked to their unperturbed behavior by means of a nonequilibrium fluctuation-response relation. This formula holds also for systems with state-independent nontrivial diffusivity matrices, as we show with an application to an experiment of two trapped and hydrodynamically coupled colloids, one of which is subject to an external random forcing that mimics an effective temperature. The nonequilibrium susceptibility of the energy to a variation of this driving is an example of our formulation, which improves an earlier version, as it does not depend on the time-discretization of the stochastic dynamics. This scheme holds for generic systems with additive noise and can be easily implemented numerically, thanks to matrix operations.

  5. FOKKER-PLANCK ANALYSIS OF TRANSVERSE COLLECTIVE INSTABILITIES IN ELECTRON STORAGE RINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindberg, R. R.

    We analyze single bunch transverse instabilities due to wakefields using a Fokker-Planck model. We expand on the work of Suzuki [1], writing out the linear matrix equation including chromaticity, both dipolar and quadrupolar transverse wakefields, and the effects of damping and diffusion due to the synchrotron radiation. The eigenvalues and eigenvectors determine the collective stability of the beam, and we show that the predicted threshold current for transverse instability and the profile of the unstable agree well with tracking simulations. In particular, we find that predicting collective stability for high energy electron beams at moderate to large values of chromaticitymore » requires the full Fokker-Planck analysis to properly account for the effects of damping and diffusion due to synchrotron radiation.« less

  6. Release of Water Soluble Drugs from Dynamically Swelling POLY(2-HYDROXYETHYL Methacrylate - CO - Methacrylic Acid) Hydrogels.

    NASA Astrophysics Data System (ADS)

    Kou, Jim Hwai-Cher

    In this study, ionizable copolymers of HEMA and methacrylic acid (MA) are investigated for their potential use in developing pH dependent oral delivery systems. Because of the MA units, these gels swell extensively at high pH. Since solute diffusion in the hydrophilic polymers depends highly on the water content of the matrix, it is anticipated that the release rate will be modulated by this pH induced swelling. From a practical point of view, the advantage of the present system is that one can minimize drug loss in the stomach and achieve a programmed release in intestine. This approach is expected to improve delivery of acid labile drugs or drugs that cause severe gastrointestinal side effects. This work mainly focuses on the basic understanding of the mechanism involved in drug release from the poly(HEMA -co- MA) gels, especially under dynamic swelling conditions. Equilibrium swelling is first characterized since water content is the major determinant of transport properties in these gels. Phenylpropanolamine (PPA) is chosen as the model drug for the release study and its diffusion characteristics in the gel matrix determined. The data obtained show that the PPA diffusivity follows the free volume theory of Yasuda, which explains the accelerating effect of swelling on drug release. A mathematical model based on a diffusion mechanism has been developed to describe PPA release from the swelling gels. Based on this model, several significant conclusions can be drawn. First, the release rate can be modulated by the aspect ratio of the cylindrical geometry, and this has a practical implication in dosage form design. Second, the release rate can be lowered quite considerably if the dimensional increase due to swelling is significant. Consequently, it is the balance between the drug diffusivity increase and the gel dimensional growth that determines the release rate from the swelling matrix. Third, quasi-steady release kinetics, which are characteristic of swelling release systems, can also be predicted by this model. PPA release from initially dry poly(HEMA -co- MA) gels has also been studied. The data show that the release rate is mainly controlled by the PPA loading level and quite insensitive to the methacrylic acid composition of the gels. These phenomena can be adequately explained by analyzing the transport resistances in the gels. The overall time scale of release from these gels were shown to be in the range which was suitable for oral controlled release applications. (Abstract shortened with permission of author.).

  7. Interfacial characterization in carbon nanotube reinforced aluminum matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Housaer, F., E-mail: francois.housaer@ed.univ-lille1.fr; Beclin, F., E-mail: franck.beclin@univ-lille1.fr; Touzin, M., E-mail: matthieu.touzin@univ-lille1.fr

    2015-12-15

    In this work, the effects of the sintering parameters, such as temperature and the techniques used (HP and SPS), on CNT/Al composite interfaces are studied. The major role of the native aluminum oxide (Al{sub 2}O{sub 3}) layer covering the aluminum grains is highlighted. It is shown that, for a sintering temperature below 620 °C, the amorphous Al{sub 2}O{sub 3} layer prevents the reaction between aluminum and carbon. For greater sintering temperatures, the breaking of the oxide layer due to its crystallization leads to the formation of aluminum carbide (Al{sub 4}C{sub 3}) by reaction between aluminum and the CNT. The Al{submore » 4}C{sub 3} crystals grow perpendicularly to the matrix grain boundaries by thermally activated diffusion of the carbon atoms coming from the CNT. It is also demonstrated that, by limiting the sintering time, which is the case in SPS, it is possible to limit the growth of the Al{sub 4}C{sub 3} crystals and thus to preserve the CNT. - Highlights: • The high reactivity between CNT and Al matrix, resulting Al{sub 4}C{sub 3} formation during the sintering process is highlighted. • We demonstrate, thanks to in-situ TEM observations, that Al{sub 4}C{sub 3} crystals grow into aluminum grains by carbon diffusion. • The native aluminum oxide around the aluminum particles prevents the diffusion of carbon into the aluminum grains. • We show that the protective layer can be broken because of its crystallization, leading to the formation of Al{sub 4}C{sub 3}. • SPS, by limiting the sintering duration, is an interesting way for preparing CNT/Al composites without carbide formation.« less

  8. Radionuclide migration: laboratory experiments with isolated fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rundberg, R.S.; Thompson, J.L.; Maestas, S.

    Laboratory experiments examining flow and element migration in rocks containing isolated fractures have been initiated at the Los Alamos National Laboratory. Techniques are being developed to establish simple fracture flow systems which are appropriate to models using analytical solutions to the matrix diffusion-flow equations, such as those of I. Neretnieks [I. Neretnieks, Diffusion in the Rock Matrix: An Important Factor in Radionuclide Retardation? J. Geophys. Res. 85, 4379 (1980).] These experiments are intended to be intermediate steps toward larger scale field experiments where it may become more difficult to establish and control the parameters important to nuclide migration in fracturedmore » media. Laboratory experiments have been run on fractures ranging in size from 1 to 20 cm in length. The hydraulic flow in these fractures was studied to provide the effective apertures. The flows established in these fracture systems are similar to those in the granite fracture flow experiments of Witherspoon et al. [P.A. Witherspoon, J.S.Y. Wang, K. Iwai, and J.E. Gale, Validity of Cubic Law for Fluid Flow in a Deformable Rock Fracture, Lawrence Berkeley Laboratory report LBL-9557 (October 1979).] Traced solutions containing {sup 85}Sr and {sup 137}Cs were flowed through fractures in Climax Stock granite and welded tuff (Bullfrog and Tram members, Yucca Mountain, Nevada Test Site). The results of the elutions through granite agree with the matrix diffusion calculations based on independent measurements of K/sub d/. The results of the elutions through tuff, however, agree only if the K/sub d/ values used in the calculations are lower than the K/sub d/ values measured using a batch technique. This trend has been previously observed in chromatographic column experiments with tuff. 5 figures, 3 tables.« less

  9. Design requirements for ERD in diffusion-dominated media: how do injection interval, bioactive zones and reaction kinetics affect remediation performance?

    NASA Astrophysics Data System (ADS)

    Chambon, J.; Lemming, G.; Manoli, G.; Broholm, M. M.; Bjerg, P.; Binning, P. J.

    2011-12-01

    Enhanced Reductive Dechlorination (ERD) has been successfully used in high permeability media, such as sand aquifers, and is considered to be a promising technology for low permeability settings. Pilot and full-scale applications of ERD at several sites in Denmark have shown that the main challenge is to get contact between the injected bacteria and electron donor and the contaminants trapped in the low-permeability matrix. Sampling of intact cores from the low-permeability matrix has shown that the bioactive zones (where degradation occurs) are limited in the matrix, due to the slow diffusion transport processes, and this affects the timeframes for the remediation. Due to the limited ERD applications and the complex transport and reactive processes occurring in low-permeability media, design guidelines are currently not available for ERD in such settings, and remediation performance assessments are limited. The objective of this study is to combine existing knowledge from several sites with numerical modeling to assess the effect of the injection interval, development of bioactive zones and reaction kinetics on the remediation efficiency for ERD in diffusion-dominated media. A numerical model is developed to simulate ERD at a contaminated site, where the source area (mainly TCE) is located in a clayey till with fractures and interbedded sand lenses. Such contaminated sites are common in North America and Europe. Hydro-geological characterization provided information on geological heterogeneities and hydraulic parameters, which are relevant for clay till sites in general. The numerical model couples flow and transport in the fracture network and low-permeability matrix. Sequential degradation of TCE to ethene is modeled using Monod kinetics, and the kinetic parameters are obtained from laboratory experiments. The influence of the reaction kinetics on remediation efficiency is assessed by varying the biomass concentration of the specific degraders. The injected reactants (donor and bacteria) are assumed to spread in horizontal injection zones of various widths, depending on the development of bioactive zones. These injection zones are spaced at various intervals over depth, corresponding to the injection interval chosen. The results from the numerical model show that remediation timeframes can be reduced significantly by using closely spaced injection intervals and by ensuring the efficient spreading of the reactants into the clay till matrix. In contrast the reaction kinetics affect mass removal only up to a point where diffusive transport becomes limiting. Based on these results, guidelines on when ERD can be an effective remediation strategy in practice are provided. These take the form of dimensionless groupings (such as the Damkohler number), which combine site specific (physical and biogeochemical) and design parameters, and graphs showing how the main parameters affect remediation timeframes. Finally it is shown how model results can be used as input to other decision making tools such as life cycle assessment to guide remedial choices.

  10. A new diffusion matrix for whistler mode chorus waves

    NASA Astrophysics Data System (ADS)

    Horne, Richard B.; Kersten, Tobias; Glauert, Sarah A.; Meredith, Nigel P.; Boscher, Daniel; Sicard-Piet, Angelica; Thorne, Richard M.; Li, Wen

    2013-10-01

    Global models of the Van Allen radiation belts usually include resonant wave-particle interactions as a diffusion process, but there is a large uncertainty over the diffusion rates. Here we present a new diffusion matrix for whistler mode chorus waves that can be used in such models. Data from seven satellites are used to construct 3536 power spectra for upper and lower band chorus for 1.5≤L∗≤10 MLT, magnetic latitude 0°≤|λm|≤60° and five levels of Kp. Five density models are also constructed from the data. Gaussian functions are fitted to the spectra and capture typically 90% of the wave power. The frequency maxima of the power spectra vary with L∗ and are typically lower than that used previously. Lower band chorus diffusion increases with geomagnetic activity and is largest between 21:00 and 12:00 MLT. Energy diffusion extends to a few megaelectron volts at large pitch angles >60° and at high energies exceeds pitch angle diffusion at the loss cone. Most electron diffusion occurs close to the geomagnetic equator (<12°). Pitch angle diffusion rates for lower band chorus increase with L∗ and are significant at L∗=8 even for low levels of geomagnetic activity, while upper band chorus is restricted to mainly L∗<6. The combined drift and bounce averaged diffusion rates for upper and lower band chorus extend from a few kiloelectron volts near the loss cone up to several megaelectron volts at large pitch angles indicating loss at low energies and net acceleration at high energies.

  11. An exact and efficient first passage time algorithm for reaction–diffusion processes on a 2D-lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezzola, Andri, E-mail: andri.bezzola@gmail.com; Bales, Benjamin B., E-mail: bbbales2@gmail.com; Alkire, Richard C., E-mail: r-alkire@uiuc.edu

    2014-01-01

    We present an exact and efficient algorithm for reaction–diffusion–nucleation processes on a 2D-lattice. The algorithm makes use of first passage time (FPT) to replace the computationally intensive simulation of diffusion hops in KMC by larger jumps when particles are far away from step-edges or other particles. Our approach computes exact probability distributions of jump times and target locations in a closed-form formula, based on the eigenvectors and eigenvalues of the corresponding 1D transition matrix, maintaining atomic-scale resolution of resulting shapes of deposit islands. We have applied our method to three different test cases of electrodeposition: pure diffusional aggregation for largemore » ranges of diffusivity rates and for simulation domain sizes of up to 4096×4096 sites, the effect of diffusivity on island shapes and sizes in combination with a KMC edge diffusion, and the calculation of an exclusion zone in front of a step-edge, confirming statistical equivalence to standard KMC simulations. The algorithm achieves significant speedup compared to standard KMC for cases where particles diffuse over long distances before nucleating with other particles or being captured by larger islands.« less

  12. Analysis and correction of gradient nonlinearity bias in apparent diffusion coefficient measurements.

    PubMed

    Malyarenko, Dariya I; Ross, Brian D; Chenevert, Thomas L

    2014-03-01

    Gradient nonlinearity of MRI systems leads to spatially dependent b-values and consequently high non-uniformity errors (10-20%) in apparent diffusion coefficient (ADC) measurements over clinically relevant field-of-views. This work seeks practical correction procedure that effectively reduces observed ADC bias for media of arbitrary anisotropy in the fewest measurements. All-inclusive bias analysis considers spatial and time-domain cross-terms for diffusion and imaging gradients. The proposed correction is based on rotation of the gradient nonlinearity tensor into the diffusion gradient frame where spatial bias of b-matrix can be approximated by its Euclidean norm. Correction efficiency of the proposed procedure is numerically evaluated for a range of model diffusion tensor anisotropies and orientations. Spatial dependence of nonlinearity correction terms accounts for the bulk (75-95%) of ADC bias for FA = 0.3-0.9. Residual ADC non-uniformity errors are amplified for anisotropic diffusion. This approximation obviates need for full diffusion tensor measurement and diagonalization to derive a corrected ADC. Practical scenarios are outlined for implementation of the correction on clinical MRI systems. The proposed simplified correction algorithm appears sufficient to control ADC non-uniformity errors in clinical studies using three orthogonal diffusion measurements. The most efficient reduction of ADC bias for anisotropic medium is achieved with non-lab-based diffusion gradients. Copyright © 2013 Wiley Periodicals, Inc.

  13. Modulation of drug release kinetics of shellac-based matrix tablets by in-situ polymerization through annealing process.

    PubMed

    Limmatvapirat, Sontaya; Limmatvapirat, Chutima; Puttipipatkhachorn, Satit; Nunthanid, Jurairat; Luangtana-anan, Manee; Sriamornsak, Pornsak

    2008-08-01

    A new oral-controlled release matrix tablet based on shellac polymer was designed and developed, using metronidazole (MZ) as a model drug. The shellac-based matrix tablets were prepared by wet granulation using different amounts of shellac and lactose. The effect of annealing temperature and pH of medium on drug release from matrix tablets was investigated. The increased amount of shellac and increased annealing temperature significantly affected the physical properties (i.e., tablet hardness and tablet disintegration) and MZ release from the matrix tablets. The in-situ polymerization played a major role on the changes in shellac properties during annealing process. Though the shellac did not dissolve in acid medium, the MZ release in 0.1N HCl was faster than in pH 7.3 buffer, resulting from a higher solubility of MZ in acid medium. The modulation of MZ release kinetics from shellac-based matrix tablets could be accomplished by varying the amount of shellac or annealing temperature. The release kinetics was shifted from relaxation-controlled release to diffusion-controlled release when the amount of shellac or the annealing temperature was increased.

  14. Disruption of Ankyrin B and Caveolin-1 Interaction Sites Alters Na+,K+-ATPase Membrane Diffusion.

    PubMed

    Junghans, Cornelia; Vukojević, Vladana; Tavraz, Neslihan N; Maksimov, Eugene G; Zuschratter, Werner; Schmitt, Franz-Josef; Friedrich, Thomas

    2017-11-21

    The Na + ,K + -ATPase is a plasma membrane ion transporter of high physiological importance for ion homeostasis and cellular excitability in electrically active tissues. Mutations in the genes coding for Na + ,K + -ATPase α-subunit isoforms lead to severe human pathologies including Familial Hemiplegic Migraine type 2, Alternating Hemiplegia of Childhood, Rapid-onset Dystonia Parkinsonism, or epilepsy. Many of the reported mutations lead to change- or loss-of-function effects, whereas others do not alter the functional properties, but lead to, e.g., reduced protein stability, reduced protein expression, or defective plasma membrane targeting. Na + ,K + -ATPase frequently assembles with other membrane transporters or cellular matrix proteins in specialized plasma membrane microdomains, but the effects of these interactions on targeting or protein mobility are elusive so far. Mutation of established interaction motifs of the Na + ,K + -ATPase with ankyrin B and caveolin-1 are expected to result in changes in plasma membrane targeting, changes of the localization pattern, and of the diffusion behavior of the enzyme. We studied the consequences of mutations in these binding sites by monitoring diffusion of eGFP-labeled Na + ,K + -ATPase constructs in the plasma membrane of HEK293T cells by fluorescence correlation spectroscopy as well as fluorescence recovery after photobleaching or photoswitching, and observed significant differences compared to the wild-type enzyme, with synergistic effects for combinations of interaction site mutations. These measurements expand the possibilities to study the consequences of Na + ,K + -ATPase mutations and provide information about the interaction of Na + ,K + -ATPase α-isoforms with cellular matrix proteins, the cytoskeleton, or other membrane protein complexes. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Attenuation of Chemical Reactivity of Shale Matrixes following Scale Precipitation

    NASA Astrophysics Data System (ADS)

    Li, Q.; Jew, A. D.; Kohli, A. H.; Alalli, G.; Kiss, A. M.; Kovscek, A. R.; Zoback, M. D.; Brown, G. E.; Maher, K.; Bargar, J.

    2017-12-01

    Introduction of fracture fluids into shales initiates a myriad of fluid-rock reactions that can strongly influence migration of fluid and hydrocarbon through shale/fracture interfaces. Due to the extremely low permeability of shale matrixes, studies on chemical reactivity of shales have mostly focused on shale surfaces. Shale-fluid interactions inside within shale matrixes have not been examined, yet the matrix is the primary conduit through which hydrocarbons and potential contaminants are transmitted. To characterize changes in matrix mineralogy, porosity, diffusivity, and permeability during hydraulic stimulation, we reacted Marcellus (high clay and low carbonate) and Eagle Ford (low clay and high carbonate) shale cores with fracture fluids for 3 weeks at elevated pressure and temperature (80 oC, and 77 bars). In the carbonate-poor Marcellus system, fluid pH increased from 2 to 4, and secondary Fe(OH)3 precipitates were observed in the fluid. Sulfur X-ray fluorescence maps show that fluids had saturated and reacted with the entire 1-cm-diameter core. In the carbonate-rich Eagle Ford system, pH increased from 2 to 6 due to calcite dissolution. When additional Ba2+ and SO42- were present (log10(Q/K)=1.3), extensive barite precipitation was observed in the matrix of the Eagle Ford core (and on the surface). Barite precipitation was also observed on the surface of the Marcellus core, although to a lesser extent. In the Marcellus system, the presence of barite scale attenuated diffusivity in the matrix, as demonstrated by sharply reduced Fe leaching and much less sulfide oxidation. Systematic studies in homogeneous solution show that barite scale precipitation rates are highly sensitive to pH, salinity, and the presence of organic compounds. These findings imply that chemical reactions are not confined to shale/fluid interfaces but can penetrate into shale matrices, and that barite scale formation can clog diffusion pathways for both fluid and hydrocarbon.

  16. Effects of dilute substitutional solutes on interstitial carbon in α-Fe: Interactions and associated carbon diffusion from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Liu, Peitao; Xing, Weiwei; Cheng, Xiyue; Li, Dianzhong; Li, Yiyi; Chen, Xing-Qiu

    2014-07-01

    By means of first-principles calculations coupled with the kinetic Monte Carlo simulations, we have systematically investigated the effects of dilute substitutional solutes on the behaviors of carbon in α-Fe. Our results uncover the following. (i) Without the Fe vacancy the interactions between most solutes and carbon are repulsive due to the strain relief, whereas Mn has a weak attractive interaction with its nearest-neighbor carbon due to the local ferromagnetic coupling effect. (ii) The presence of the Fe vacancy results in attractive interactions of all the solutes with carbon. In particular, the Mn-vacancy pair shows an exceptionally large binding energy of -0.81 eV with carbon. (iii) The alloying addition significantly impacts the atomic-scale concentration distributions and chemical potential of carbon in the Fe matrix. Among them, Mn and Cr increase the carbon chemical potential, whereas Al and Si reduce it. (iv) Within the dilute scale of the alloying solution, the solute concentration- and temperature-dependent carbon diffusivities demonstrate that Mn has a little impact on the carbon diffusion, whereas Cr (Al or Si) remarkably retards the carbon diffusion. Our results provide a certain implication for better understanding the experimental observations related with the carbon solubility limit, carbon microsegregation, and carbide precipitations in the ferritic steels.

  17. Prepreg cure monitoring using diffuse reflectance-FTIR. [Fourier Transform Infrared Technique

    NASA Technical Reports Server (NTRS)

    Young, P. R.; Chang, A. C.

    1984-01-01

    An in situ diffuse reflectance-Fourier transform infrared technique was developed to determine infrared spectra of graphite fiber prepregs as they were being cured. A bismaleimide, an epoxy, and addition polyimide matrix resin prepregs were studied. An experimental polyimide adhesive was also examined. Samples were positioned on a small heater at the focal point of diffuse reflectance optics and programmed at 15 F/min while FTIR spectra were being scanned, averaged, and stored. An analysis of the resulting spectra provided basic insights into changes in matrix resin molecular structure which accompanied reactions such as imidization and crosslinking. An endo-exothermal isomerization involving reactive end-caps was confirmed for the addition polyimide prepregs. The results of this study contribute to a fundamental understanding of the processing of composites and adhesives. Such understanding will promote the development of more efficient cure cycles.

  18. A novel color image encryption scheme using alternate chaotic mapping structure

    NASA Astrophysics Data System (ADS)

    Wang, Xingyuan; Zhao, Yuanyuan; Zhang, Huili; Guo, Kang

    2016-07-01

    This paper proposes an color image encryption algorithm using alternate chaotic mapping structure. Initially, we use the R, G and B components to form a matrix. Then one-dimension logistic and two-dimension logistic mapping is used to generate a chaotic matrix, then iterate two chaotic mappings alternately to permute the matrix. For every iteration, XOR operation is adopted to encrypt plain-image matrix, then make further transformation to diffuse the matrix. At last, the encrypted color image is obtained from the confused matrix. Theoretical analysis and experimental results has proved the cryptosystem is secure and practical, and it is suitable for encrypting color images.

  19. On the role of hydrogel structure and degradation in controlling the transport of cell-secreted matrix molecules for engineered cartilage.

    PubMed

    Dhote, Valentin; Skaalure, Stacey; Akalp, Umut; Roberts, Justine; Bryant, Stephanie J; Vernerey, Franck J

    2013-03-01

    Damage to cartilage caused by injury or disease can lead to pain and loss of mobility, diminishing one's quality of life. Because cartilage has a limited capacity for self-repair, tissue engineering strategies, such as cells encapsulated in synthetic hydrogels, are being investigated as a means to restore the damaged cartilage. However, strategies to date are suboptimal in part because designing degradable hydrogels is complicated by structural and temporal complexities of the gel and evolving tissue along multiple length scales. To address this problem, this study proposes a multi-scale mechanical model using a triphasic formulation (solid, fluid, unbound matrix molecules) based on a single chondrocyte releasing extracellular matrix molecules within a degrading hydrogel. This model describes the key players (cells, proteoglycans, collagen) of the biological system within the hydrogel encompassing different length scales. Two mechanisms are included: temporal changes of bulk properties due to hydrogel degradation, and matrix transport. Numerical results demonstrate that the temporal change of bulk properties is a decisive factor in the diffusion of unbound matrix molecules through the hydrogel. Transport of matrix molecules in the hydrogel contributes both to the development of the pericellular matrix and the extracellular matrix and is dependent on the relative size of matrix molecules and the hydrogel mesh. The numerical results also demonstrate that osmotic pressure, which leads to changes in mesh size, is a key parameter for achieving a larger diffusivity for matrix molecules in the hydrogel. The numerical model is confirmed with experimental results of matrix synthesis by chondrocytes in biodegradable poly(ethylene glycol)-based hydrogels. This model may ultimately be used to predict key hydrogel design parameters towards achieving optimal cartilage growth. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. On the role of hydrogel structure and degradation in controlling the transport of cell-secreted matrix molecules for engineered cartilage

    PubMed Central

    Dhote, Valentin; Skaalure, Stacey; Akalp, Umut; Roberts, Justine; Bryant, Stephanie J.; Vernerey, Franck J.

    2012-01-01

    Damage to cartilage caused by injury or disease can lead to pain and loss of mobility, diminishing one’s quality of life. Because cartilage has a limited capacity for self-repair, tissue engineering strategies, such as cells encapsulated in synthetic hydrogels, are being investigated as a means to restore the damaged cartilage. However, strategies to date are suboptimal in part because designing degradable hydrogels is complicated by structural and temporal complexities of the gel and evolving tissue along multiple length scales. To address this problem, this study proposes a multi-scale mechanical model using a triphasic formulation (solid, fluid, unbound matrix molecules) based on a single chondrocyte releasing extracellular matrix molecules within a degrading hydrogel. This model describes the key players (cells, proteoglycans, collagen) of the biological system within the hydrogel encompassing different length scales. Two mechanisms are included: temporal changes of bulk properties due to hydrogel degradation, and matrix transport. Numerical results demonstrate that the temporal change of bulk properties is a decisive factor in the diffusion of unbound matrix molecules through the hydrogel. Transport of matrix molecules in the hydrogel contributes both to the development of the pericellular matrix and the extracellular matrix and is dependent on the relative size of matrix molecules and the hydrogel mesh. The numerical results also demonstrate that osmotic pressure, which leads to changes in mesh size, is a key parameter for achieving a larger diffusivity for matrix molecules in the hydrogel. The numerical model is confirmed with experimental results of matrix synthesis by chondrocytes in biodegradable poly(ethylene glycol)-based hydrogels. This model may ultimately be used to predict key hydrogel design parameters towards achieving optimal cartilage growth. PMID:23276516

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Min Ho; Rhyee, Jong-Soo, E-mail: jsrhyee@khu.ac.kr

    We investigated the thermoelectric properties of PbTe/Ag{sub 2}Te bulk composites, synthesized by hand milling, mixing, and hot press sintering. From x-ray diffraction and energy dispersive x-ray spectroscopy measurements, we observed Ag{sub 2}Te phase separation in the PbTe matrix without Ag atom diffusion. In comparison with previously reported pseudo-binary (PbTe){sub 1−x}(Ag{sub 2}Te){sub x} composites, synthesized by high temperature phase separation, the PbTe/Ag{sub 2}Te bulk composites fabricated with a low temperature phase mixing process give rise to p-type conduction of carriers with significantly decreased electrical conductivity. This indicates that Ag atom diffusion in the PbTe matrix changes the sign of the Seebeckmore » coefficient to n-type and also increases the carrier concentration. Effective p-type doping with low temperature phase separation by mixing and hot press sintering can enhance the thermoelectric performance of PbTe/Ag{sub 2}Te bulk composites, which can be used as a p-type counterpart of n-type (PbTe){sub 1−x}(Ag{sub 2}Te){sub x} bulk composites.« less

  2. The Effect of Thermal Convection on Earth-Atmosphere CO2 Gas Exchange in Aggregated Soil

    NASA Astrophysics Data System (ADS)

    Ganot, Y.; Weisbrod, N.; Dragila, M. I.

    2011-12-01

    Gas transport in soils and surface-atmosphere gas exchange are important processes that affect different aspects of soil science such as soil aeration, nutrient bio-availability, sorption kinetics, soil and groundwater pollution and soil remediation. Diffusion and convection are the two main mechanisms that affect gas transport, fate and emissions in the soils and in the upper vadose zone. In this work we studied CO2 soil-atmosphere gas exchange under both day-time and night-time conditions, focusing on the impact of thermal convection (TCV) during the night. Experiments were performed in a climate-controlled laboratory. One meter long columns were packed with matrix of different grain size (sand, gravel and soil aggregates). Air with 2000 ppm CO2 was injected into the bottom of the columns and CO2 concentration within the columns was continuously monitored by an Infra Red Gas Analyzer. Two scenarios were compared for each soil: (1) isothermal conditions, representing day time conditions; and (2) thermal gradient conditions, i.e., atmosphere colder than the soil, representing night time conditions. Our results show that under isothermal conditions, diffusion is the major mechanism for surface-atmosphere gas exchange for all grain sizes; while under night time conditions the prevailing mechanism is dependent on the air permeability of the matrix: for sand and gravel it is diffusion, and for soil aggregates it is TCV. Calculated CO2 flux for the soil aggregates column shows that the TCV flux was three orders of magnitude higher than the diffusive flux.

  3. The Influence of Preferential Flow on Pressure Propagation and Landslide Triggering of the Rocca Pitigliana Landslide

    NASA Astrophysics Data System (ADS)

    Shao, W.; Bogaard, T.; Bakker, M.; Berti, M.; Savenije, H. H. G.

    2016-12-01

    The fast pore water pressure response to rain events is an important triggering factor for slope instability. The fast pressure response may be caused by preferential flow that bypasses the soil matrix. Currently, most of the hydro-mechanical models simulate pore water pressure using a single-permeability model, which cannot quantify the effects of preferential flow on pressure propagation and landslide triggering. Previous studies showed that a model based on the linear-diffusion equation can simulate the fast pressure propagation in near-saturated landslides such as the Rocca Pitigliana landslide. In such a model, the diffusion coefficient depends on the degree of saturation, which makes it difficult to use the model for predictions. In this study, the influence of preferential flow on pressure propagation and slope stability is investigated with a 1D dual-permeability model coupled with an infinite-slope stability approach. The dual-permeability model uses two modified Darcy-Richards equations to simultaneously simulate the matrix flow and preferential flow in hillslopes. The simulated pressure head is used in an infinite-slope stability analysis to identify the influence of preferential flow on the fast pressure response and landslide triggering. The dual-permeability model simulates the height and arrival of the pressure peak reasonably well. Performance of the dual-permeability model is as good as or better than the linear-diffusion model even though the dual-permeability model is calibrated for two single pulse rain events only, while the linear-diffusion model is calibrated for each rain event separately.

  4. Effect of matrix composition and process conditions on casein-gelatin beads floating properties.

    PubMed

    Bulgarelli, E; Forni, F; Bernabei, M T

    2000-04-05

    Casein-gelatin beads have been prepared by emulsification extraction method and cross-linked with D,L-glyceraldehyde in an acetone-water mixture 3:1 (v/v). Casein emulsifying properties cause air bubble incorporation and the formation of large holes in the beads. The high porosity of the matrix influences the bead properties such as drug loading, drug release and floatation. These effects have been stressed by comparison with low porous beads, artificially prepared without cavities. The percentage of casein in the matrix increases the drug loading of both low and high porous matrices, although the loading of high porous matrices is lower than that of low porous matrices. As a matter of fact, the drug should be more easily removed during washing and recovery because of the higher superficial pore area of the beads. This can explain the drug release rate increase, observed in high porous matrix, in comparison with beads without cavities. This is due to the rapid diffusion of the drug through water filled pores. The study shows that cavities act as an air reservoir and enable beads to float. Therefore, casein seems to be a material suitable to the inexpensive formation of an air reservoir for floating systems.

  5. Friction Stir Processing of Copper-Coated SiC Particulate-Reinforced Aluminum Matrix Composite

    PubMed Central

    Huang, Chih-Wei; Aoh, Jong-Ning

    2018-01-01

    In the present work, we proposed a novel friction stir processing (FSP) to produce a locally reinforced aluminum matrix composite (AMC) by stirring copper-coated SiC particulate reinforcement into Al6061 alloy matrix. Electroless-plating process was applied to deposit the copper surface coating on the SiC particulate reinforcement for the purpose of improving the interfacial adhesion between SiC particles and Al matrix. The core-shell SiC structure provides a layer for the atomic diffusion between aluminum and copper to enhance the cohesion between reinforcing particles and matrix on one hand, the dispersion of fine copper in the Al matrix during FSP provides further dispersive strengthening and solid solution strengthening, on the other hand. Hardness distribution and tensile results across the stir zone validated the novel concept in improving the mechanical properties of AMC that was realized via FSP. Optical microscope (OM) and Transmission Electron Microscopy (TEM) investigations were conducted to investigate the microstructure. Energy dispersive spectrometer (EDS), electron probe micro-analyzer (EPMA), and X-ray diffraction (XRD) were explored to analyze the atomic inter-diffusion and the formation of intermetallic at interface. The possible strengthening mechanisms of the AMC containing Cu-coated SiC particulate reinforcement were interpreted. The concept of strengthening developed in this work may open a new way of fabricating of particulate reinforced metal matrix composites. PMID:29652846

  6. Correction of spin diffusion during iterative automated NOE assignment

    NASA Astrophysics Data System (ADS)

    Linge, Jens P.; Habeck, Michael; Rieping, Wolfgang; Nilges, Michael

    2004-04-01

    Indirect magnetization transfer increases the observed nuclear Overhauser enhancement (NOE) between two protons in many cases, leading to an underestimation of target distances. Wider distance bounds are necessary to account for this error. However, this leads to a loss of information and may reduce the quality of the structures generated from the inter-proton distances. Although several methods for spin diffusion correction have been published, they are often not employed to derive distance restraints. This prompted us to write a user-friendly and CPU-efficient method to correct for spin diffusion that is fully integrated in our program ambiguous restraints for iterative assignment (ARIA). ARIA thus allows automated iterative NOE assignment and structure calculation with spin diffusion corrected distances. The method relies on numerical integration of the coupled differential equations which govern relaxation by matrix squaring and sparse matrix techniques. We derive a correction factor for the distance restraints from calculated NOE volumes and inter-proton distances. To evaluate the impact of our spin diffusion correction, we tested the new calibration process extensively with data from the Pleckstrin homology (PH) domain of Mus musculus β-spectrin. By comparing structures refined with and without spin diffusion correction, we show that spin diffusion corrected distance restraints give rise to structures of higher quality (notably fewer NOE violations and a more regular Ramachandran map). Furthermore, spin diffusion correction permits the use of tighter error bounds which improves the distinction between signal and noise in an automated NOE assignment scheme.

  7. Subsurface Xenon Migration by Atmospheric Pumping Using an Implicit Non-Iterative Algorithm for a Locally 1D Dual-Porosity Model

    NASA Astrophysics Data System (ADS)

    Annewandter, R.; Kalinowksi, M. B.

    2009-04-01

    An underground nuclear explosion injects radionuclids in the surrounding host rock creating an initial radionuclid distribution. In the case of fractured permeable media, cyclical changes in atmospheric pressure can draw gaseous species upwards to the surface, establishing a ratcheting pump effect. The resulting advective transport is orders of magnitude more significant than transport by molecular diffusion. In the 1990s the US Department of Energy funded the socalled Non-Proliferation Experiment conducted by the Lawrence Livermore National Laboratory to investigate this barometric pumping effect for verifying compliance with respect to the Comprehensive Nuclear Test Ban Treaty. A chemical explosive of approximately 1 kt TNT-equivalent has been detonated in a cavity located 390 m deep in the Rainier Mesa (Nevada Test Site) in which two tracer gases were emplaced. Within this experiment SF6 was first detected in soil gas samples taken near fault zones after 50 days and 3He after 325 days. For this paper a locally one-dimensional dual-porosity model for flow along the fracture and within the permeable matrix was used after Nilson and Lie (1990). Seepage of gases and diffusion of tracers between fracture and matrix are accounted. The advective flow along the fracture and within the matrix block is based on the FRAM filtering remedy and methodology of Chapman. The resulting system of equations is solved by an implicit non-iterative algorithm. Results on time of arrival and subsurface concentration levels for the CTBT-relevant xenons will be presented.

  8. Solute transport across the articular surface of injured cartilage.

    PubMed

    Chin, Hooi Chuan; Moeini, Mohammad; Quinn, Thomas M

    2013-07-15

    Solute transport through extracellular matrix (ECM) is important to physiology and contrast agent-based clinical imaging of articular cartilage. Mechanical injury is likely to have important effects on solute transport since it involves alteration of ECM structure. Therefore it is of interest to characterize effects of mechanical injury on solute transport in cartilage. Using cartilage explants injured by an established mechanical compression protocol, effective partition coefficients and diffusivities of solutes for transport across the articular surface were measured. A range of fluorescent solutes (fluorescein isothiocyanate, 4 and 40kDa dextrans, insulin, and chondroitin sulfate) and an X-ray contrast agent (sodium iodide) were used. Mechanical injury was associated with a significant increase in effective diffusivity versus uninjured explants for all solutes studied. On the other hand, mechanical injury had no effects on effective partition coefficients for most solutes tested, except for 40kDa dextran and chondroitin sulfate where small but significant changes in effective partition coefficient were observed in injured explants. Findings highlight enhanced diffusive transport across the articular surface of injured cartilage, which may have important implications for injury and repair situations. Results also support development of non-equilibrium methods for identification of focal cartilage lesions by contrast agent-based clinical imaging. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Modeling anomalous radial transport in kinetic transport codes

    NASA Astrophysics Data System (ADS)

    Bodi, K.; Krasheninnikov, S. I.; Cohen, R. H.; Rognlien, T. D.

    2009-11-01

    Anomalous transport is typically the dominant component of the radial transport in magnetically confined plasmas, where the physical origin of this transport is believed to be plasma turbulence. A model is presented for anomalous transport that can be used in continuum kinetic edge codes like TEMPEST, NEO and the next-generation code being developed by the Edge Simulation Laboratory. The model can also be adapted to particle-based codes. It is demonstrated that the model with a velocity-dependent diffusion and convection terms can match a diagonal gradient-driven transport matrix as found in contemporary fluid codes, but can also include off-diagonal effects. The anomalous transport model is also combined with particle drifts and a particle/energy-conserving Krook collision operator to study possible synergistic effects with neoclassical transport. For the latter study, a velocity-independent anomalous diffusion coefficient is used to mimic the effect of long-wavelength ExB turbulence.

  10. A multiscale MD-FE model of diffusion in composite media with internal surface interaction based on numerical homogenization procedure.

    PubMed

    Kojic, M; Milosevic, M; Kojic, N; Kim, K; Ferrari, M; Ziemys, A

    2014-02-01

    Mass transport by diffusion within composite materials may depend not only on internal microstructural geometry, but also on the chemical interactions between the transported substance and the material of the microstructure. Retrospectively, there is a gap in methods and theory to connect material microstructure properties with macroscale continuum diffusion characteristics. Here we present a new hierarchical multiscale model for diffusion within composite materials that couples material microstructural geometry and interactions between diffusing particles and the material matrix. This model, which bridges molecular dynamics (MD) and the finite element (FE) method, is employed to construct a continuum diffusion model based on a novel numerical homogenization procedure. The procedure is general and robust for evaluating constitutive material parameters of the continuum model. These parameters include the traditional bulk diffusion coefficients and, additionally, the distances from the solid surface accounting for surface interaction effects. We implemented our models to glucose diffusion through the following two geometrical/material configurations: tightly packed silica nanospheres, and a complex fibrous structure surrounding nanospheres. Then, rhodamine 6G diffusion analysis through an aga-rose gel network was performed, followed by a model validation using our experimental results. The microstructural model, numerical homogenization and continuum model offer a new platform for modeling and predicting mass diffusion through complex biological environment and within composite materials that are used in a wide range of applications, like drug delivery and nanoporous catalysts.

  11. A multiscale MD–FE model of diffusion in composite media with internal surface interaction based on numerical homogenization procedure

    PubMed Central

    Kojic, M.; Milosevic, M.; Kojic, N.; Kim, K.; Ferrari, M.; Ziemys, A.

    2014-01-01

    Mass transport by diffusion within composite materials may depend not only on internal microstructural geometry, but also on the chemical interactions between the transported substance and the material of the microstructure. Retrospectively, there is a gap in methods and theory to connect material microstructure properties with macroscale continuum diffusion characteristics. Here we present a new hierarchical multiscale model for diffusion within composite materials that couples material microstructural geometry and interactions between diffusing particles and the material matrix. This model, which bridges molecular dynamics (MD) and the finite element (FE) method, is employed to construct a continuum diffusion model based on a novel numerical homogenization procedure. The procedure is general and robust for evaluating constitutive material parameters of the continuum model. These parameters include the traditional bulk diffusion coefficients and, additionally, the distances from the solid surface accounting for surface interaction effects. We implemented our models to glucose diffusion through the following two geometrical/material configurations: tightly packed silica nanospheres, and a complex fibrous structure surrounding nanospheres. Then, rhodamine 6G diffusion analysis through an aga-rose gel network was performed, followed by a model validation using our experimental results. The microstructural model, numerical homogenization and continuum model offer a new platform for modeling and predicting mass diffusion through complex biological environment and within composite materials that are used in a wide range of applications, like drug delivery and nanoporous catalysts. PMID:24578582

  12. Evaluation of the availability of bound analyte for passive sampling in the presence of mobile binding matrix.

    PubMed

    Xu, Jianqiao; Huang, Shuyao; Jiang, Ruifen; Cui, Shufen; Luan, Tiangang; Chen, Guosheng; Qiu, Junlang; Cao, Chenyang; Zhu, Fang; Ouyang, Gangfeng

    2016-04-21

    Elucidating the availability of the bound analytes for the mass transfer through the diffusion boundary layers (DBLs) adjacent to passive samplers is important for understanding the passive sampling kinetics in complex samples, in which the lability factor of the bound analyte in the DBL is an important parameter. In this study, the mathematical expression of lability factor was deduced by assuming a pseudo-steady state during passive sampling, and the equation indicated that the lability factor was equal to the ratio of normalized concentration gradients between the bound and free analytes. Through the introduction of the mathematical expression of lability factor, the modified effective average diffusion coefficient was proven to be more suitable for describing the passive sampling kinetics in the presence of mobile binding matrixes. Thereafter, the lability factors of the bound polycyclic aromatic hydrocarbons (PAHs) with sodium dodecylsulphate (SDS) micelles as the binding matrixes were figured out according to the improved theory. The lability factors were observed to decrease with larger binding ratios and smaller micelle sizes, and were successfully used to predict the mass transfer efficiencies of PAHs through DBLs. This study would promote the understanding of the availability of bound analytes for passive sampling based on the theoretical improvements and experimental assessments. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. A novel chaos-based image encryption algorithm using DNA sequence operations

    NASA Astrophysics Data System (ADS)

    Chai, Xiuli; Chen, Yiran; Broyde, Lucie

    2017-01-01

    An image encryption algorithm based on chaotic system and deoxyribonucleic acid (DNA) sequence operations is proposed in this paper. First, the plain image is encoded into a DNA matrix, and then a new wave-based permutation scheme is performed on it. The chaotic sequences produced by 2D Logistic chaotic map are employed for row circular permutation (RCP) and column circular permutation (CCP). Initial values and parameters of the chaotic system are calculated by the SHA 256 hash of the plain image and the given values. Then, a row-by-row image diffusion method at DNA level is applied. A key matrix generated from the chaotic map is used to fuse the confused DNA matrix; also the initial values and system parameters of the chaotic system are renewed by the hamming distance of the plain image. Finally, after decoding the diffused DNA matrix, we obtain the cipher image. The DNA encoding/decoding rules of the plain image and the key matrix are determined by the plain image. Experimental results and security analyses both confirm that the proposed algorithm has not only an excellent encryption result but also resists various typical attacks.

  14. Chemical Plume Detection with an Iterative Background Estimation Technique

    DTIC Science & Technology

    2016-05-17

    schemes because of contamination of background statistics by the plume. To mitigate the effects of plume contamination , a first pass of the detector...can be used to create a background mask. However, large diffuse plumes are typically not removed by a single pass. Instead, contamination can be...is estimated using plume-pixels, the covariance matrix is contaminated and detection performance may be significantly reduced. To avoid Further author

  15. Extracellular diffusion quantified by magnetic resonance imaging during rat C6 glioma cell progression.

    PubMed

    Song, G; Luo, T; Dong, L; Liu, Q

    2017-07-03

    Solution reflux and edema hamper the convection-enhanced delivery of the standard treatment for glioma. Therefore, a real-time magnetic resonance imaging (MRI) method was developed to monitor the dosing process, but a quantitative analysis of local diffusion and clearance parameters has not been assessed. The objective of this study was to compare diffusion into the extracellular space (ECS) at different stages of rat C6 gliomas, and analyze the effects of the extracellular matrix (ECM) on the diffusion process. At 10 and 20 days, after successful glioma modeling, gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) was introduced into the ECS of rat C6 gliomas. Diffusion parameters and half-life of the reagent were then detected using MRI, and quantified according to the mathematical model of diffusion. The main ECM components [chondroitin sulfate proteoglycans (CSPGs), collagen IV, and tenascin C] were detected by immunohistochemical and immunoblot analyses. In 20-day gliomas, Gd-DTPA diffused more slowly and derived higher tortuosity, with lower clearance rate and longer half-life compared to 10-day gliomas. The increased glioma ECM was associated with different diffusion and clearance parameters in 20-day rat gliomas compared to 10-day gliomas. ECS parameters were altered with C6 glioma progression from increased ECM content. Our study might help better understand the glioma microenvironment and provide benefits for interstitial drug delivery to treat brain gliomas.

  16. A novel method for imitating nacre by utilizing magnetic graphene oxide and its magnetic field alignment in polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Liu, Zhenxiang; Jiao, Weicheng; Yan, Meiling; Li, Jun; Ding, Guomin; Wang, Rongguo

    2018-02-01

    The way gas molecules penetrate the resin matrix composites are generally divided into diffusion penetration and destruction penetration. Through theoretical analysis, the larger the nanoscale layers, the smaller the penetration effect in the directional nanosheets reinforced resin matrix composites. To control destruction penetration, the cracks should be reduced by toughening resin matrix composites. In order to solve these two kinds of leakage, the magnetic graphene oxide is connected to mimic nacre while L- glutamic acid is used as binder and the directional solidification is also utilized. Compared with pure resin, only 0.13 wt% monolithic magnetic graphene oxide and its interbed reinforced composites can reduce the leakage of He by 36.4% and 52.0% respectively, and the toughness of composites is validated to increase 4.0% and 20.3% respectively. This toughening mechanism is similar to that of nacre.

  17. Mechanistic characterization of chloride interferences in electrothermal atomization systems

    USGS Publications Warehouse

    Shekiro, J.M.; Skogerboe, R.K.; Taylor, Howard E.

    1988-01-01

    A computer-controlled spectrometer with a photodiode array detector has been used for wavelength and temperature resolved characterization of the vapor produced by an electrothermal atomizer. The system has been used to study the chloride matrix interference on the atomic absorption spectrometric determination of manganese and copper. The suppression of manganese and copper atom populations by matrix chlorides such as those of calcium and magnesium is due to the gas-phase formation of an analyte chloride species followed by the diffusion of significant fractions of these species from the atom cell prior to completion of the atomization process. The analyte chloride species cannot be formed when matrix chlorides with metal-chloride bond dissociation energies above those of the analyte chlorides are the principal entitles present. The results indicate that multiple wavelength spectrometry used to obtain temperature-resolved spectra is a viable tool in the mechanistic characterization of interference effects observed with electrothermal atomization systems. ?? 1988 American Chemical Society.

  18. Microbial response to environmental gradients in a ceramic-based diffusion system.

    PubMed

    Wolfaardt, G M; Hendry, M J; Birkham, T; Bressel, A; Gardner, M N; Sousa, A J; Korber, D R; Pilaski, M

    2008-05-01

    A solid, porous matrix was used to establish steady-state concentration profiles upon which microbial responses to concentration gradients of nutrients or antimicrobial agents could be quantified. This technique relies on the development of spatially defined concentration gradients across a ceramic plate resulting from the diffusion of solutes through the porous ceramic matrix. A two-dimensional, finite-element numerical transport model was used to predict the establishment of concentration profiles, after which concentration profiles of conservative tracers were quantified fluorometrically and chemically at the solid-liquid interface to verify the simulated profiles. Microbial growth responses to nutrient, hypochloride, and antimicrobial concentration gradients were then quantified using epifluorescent or scanning confocal laser microscopy. The observed microbial response verified the establishment and maintenance of stable concentration gradients along the solid-liquid interface. These results indicate the ceramic diffusion system has potential for the isolation of heterogeneous microbial communities as well as for testing the efficacy of antimicrobial agents. In addition, the durability of the solid matrix allowed long-term investigations, making this approach preferable to conventional gel-stabilized systems that are impeded by erosion as well as expansion or shrinkage of the gel. Copyright 2008 Wiley Periodicals, Inc.

  19. Molecular dimensions and surface diffusion assisted mechanically robust slippery perfluoropolyether impregnated mesoporous alumina interfaces

    NASA Astrophysics Data System (ADS)

    Rowthu, Sriharitha; Balic, Edin E.; Hoffmann, Patrik

    2017-12-01

    Accomplishing mechanically robust omniphobic surfaces is a long-existing challenge, and can potentially find applications in bioengineering, tribology and paint industries. Slippery liquid impregnated mesoporous α-Al2O3 interfaces are achieved with water, alkanes, water based and oil based high viscosity acrylic paints. Incredibly high abrasion-resistance (wear coefficients ≤10-8 mm3 N-1 m-1) and ultra-low friction coefficients (≥0.025) are attained, attributing to the hard alumina matrix and continuous replenishment of perfluoropolyether aided by capillarity and surface diffusion processes. A variety of impregnating liquids employed suggest that large molecules, faster surface diffusion and lowest evaporation rate generate the rare combination of high wear-resistance and omniphobicity. It is noteworthy that these novel liquid impregnated Al2O3 composites exhibit outstanding load bearing capacity up to 350 MPa; three orders of magnitude higher than achievable by the state of the art omniphobic surfaces. Further, our developed thermodynamic calculations suggest that the relative thermodynamic stability of liquid impregnated composites is linearly proportional to the spreading coefficient (S) of the impregnating liquid with the matrix material and is an important tool for the selection of an appropriate matrix material for a given liquid.

  20. In Situ Ramp Anneal X-ray Diffraction Study of Atomic Layer Deposited Ultrathin TaN and Ta 1-x Al x N y Films for Cu Diffusion Barrier Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Consiglio, S.; Dey, S.; Yu, K.

    2016-01-01

    Ultrathin TaN and Ta 1-xAl xN y films with x = 0.21 to 0.88 were deposited by atomic layer deposition (ALD) and evaluated for Cu diffusion barrier effectiveness compared to physical vapor deposition (PVD) grown TaN. Cu diffusion barrier effectiveness was investigated using in-situ ramp anneal synchrotron X-ray diffraction (XRD) on Cu/1.8 nm barrier/Si stacks. A Kissinger-like analysis was used to assess the kinetics of Cu 3Si formation and determine the effective activation energy (E a) for Cu silicidation. Compared to the stack with a PVD TaN barrier, the stacks with the ALD films exhibited a higher crystallization temperature (Tmore » c) for Cu silicidation. The Ea values of Cu 3Si formation for stacks with the ALD films were close to the reported value for grain boundary diffusion of Cu whereas the Ea of Cu 3Si formation for the stack with PVD TaN is closer to the reported value for lattice diffusion. For 3 nm films, grazing incidence in-plane XRD showed evidence of nanocrystallites in an amorphous matrix with broad peaks corresponding to high density cubic phase for the ALD grown films and lower density hexagonal phase for the PVD grown film further elucidating the difference in initial failure mechanisms due to differences in barrier crystallinity and associated phase.« less

  1. Real-time optical laboratory solution of parabolic differential equations

    NASA Technical Reports Server (NTRS)

    Casasent, David; Jackson, James

    1988-01-01

    An optical laboratory matrix-vector processor is used to solve parabolic differential equations (the transient diffusion equation with two space variables and time) by an explicit algorithm. This includes optical matrix-vector nonbase-2 encoded laboratory data, the combination of nonbase-2 and frequency-multiplexed data on such processors, a high-accuracy optical laboratory solution of a partial differential equation, new data partitioning techniques, and a discussion of a multiprocessor optical matrix-vector architecture.

  2. Microstructure of arc brazed and diffusion bonded joints of stainless steel and SiC reinforced aluminum matrix composite

    NASA Astrophysics Data System (ADS)

    Elßner, M.; Weis, S.; Grund, T.; Wagner, G.; Habisch, S.; Mayr, P.

    2016-03-01

    Joint interfaces of aluminum and stainless steel often exhibit intermetallics of Al-Fe, which limit the joint strength. In order to reduce these brittle phases in joints of aluminum matrix composites (AMC) and stainless steel, diffusion bonding and arc brazing are used. Due to the absence of a liquid phase, diffusion welding can reduce the formation of these critical in- termetallics. For this joining technique, the influence of surface treatments and adjusted time- temperature-surface-pressure-regimes is investigated. On the other hand, arc brazing offers the advantage to combine a localized heat input with the application of a low melting filler and was conducted using the system Al-Ag-Cu. Results of the joining tests using both approaches are described and discussed with regard to the microstructure of the joints and the interfaces.

  3. Characterization of poly(vinyl acetate) based floating matrix tablets.

    PubMed

    Strübing, Sandra; Metz, Hendrik; Mäder, Karsten

    2008-03-03

    Floating Kollidon SR matrix tablets containing Propranolol HCl were developed and characterized with respect to drug release characteristics and floating strength. Kollidon SR was able to delay Propranolol HCl release efficiently. Drug release kinetics was evaluated using the Korsmeyer-Peppas model and found to be governed by Fickian diffusion. Tablet floating started immediately and continued for 24 h. It was possible to monitor the floating strength of the matrix devices using a simple experimental setup. Floating strength was related to Kollidon SR level with improved floating characteristics for samples with a high polymer/drug ratio. Swelling characteristics of the tablets were analyzed by applying the equation according to Therien-Aubin et al. The influence of the polymer content on swelling characteristics was found to be only marginal. Furthermore, the new method of benchtop MRI was introduced to study the water diffusion and swelling behaviour non-invasively and continuously.

  4. Extrapolation techniques applied to matrix methods in neutron diffusion problems

    NASA Technical Reports Server (NTRS)

    Mccready, Robert R

    1956-01-01

    A general matrix method is developed for the solution of characteristic-value problems of the type arising in many physical applications. The scheme employed is essentially that of Gauss and Seidel with appropriate modifications needed to make it applicable to characteristic-value problems. An iterative procedure produces a sequence of estimates to the answer; and extrapolation techniques, based upon previous behavior of iterants, are utilized in speeding convergence. Theoretically sound limits are placed on the magnitude of the extrapolation that may be tolerated. This matrix method is applied to the problem of finding criticality and neutron fluxes in a nuclear reactor with control rods. The two-dimensional finite-difference approximation to the two-group neutron fluxes in a nuclear reactor with control rods. The two-dimensional finite-difference approximation to the two-group neutron-diffusion equations is treated. Results for this example are indicated.

  5. On The Molecular Mechanism Of Positive Novolac Resists

    NASA Astrophysics Data System (ADS)

    Huang, Jian-Ping; Kwei, T. K.; Reiser, Arnost

    1989-08-01

    A molecular mechanism for the dissolution of novolac is proposed, based on the idea of a critical degree of deprotonation as being the condition for the transfer of polymer into solution. The rate at which the critical deprotonation condition is achieved is controlled by the supply of developer into a thin penetration zone, and depends in particular on the rate of diffusion of the base cations which are the developer component with the lowest mobility. The penetration zone contains phenolate ions and ion-bound water, but it retains the structure of a rigid polymer membrane, as evidenced by the diffusion coefficient of cations in the pene;tration zone which is several orders of magnitude slower than in an open gel of the same material. When the critical degree of deprotonation is reached, the membrane structure unravels and all subsequent events, chain rearrangement and transfer into solution, occur rapidly. The supralinear dependence of dissolution rate on base concentration and the effect of the size of the base cation are plausibly interpreted by the model. The diffusion of developer components is assumed to occur preferentially via hydrophilic sites in the polymer matrix. These sites define a diffusion path which acts like a hydrophilic diffusion channel. Suitably designed hydrophobic molecules can block some of the channels and in this way alter the dissolution rate. They reduce in effect the diffusion crossect ion of the material. Hydrophilic additives, on the other hand, introduce additional channels into the system and promote dissolution. The concept of diffusion channels appears to provide a unified interpretation for a number of common observations.

  6. Confocal microscopy imaging of the biofilm matrix.

    PubMed

    Schlafer, Sebastian; Meyer, Rikke L

    2017-07-01

    The extracellular matrix is an integral part of microbial biofilms and an important field of research. Confocal laser scanning microscopy is a valuable tool for the study of biofilms, and in particular of the biofilm matrix, as it allows real-time visualization of fully hydrated, living specimens. Confocal microscopes are held by many research groups, and a number of methods for qualitative and quantitative imaging of the matrix have emerged in recent years. This review provides an overview and a critical discussion of techniques used to visualize different matrix compounds, to determine the concentration of solutes and the diffusive properties of the biofilm matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. From conservative to reactive transport under diffusion-controlled conditions

    NASA Astrophysics Data System (ADS)

    Babey, Tristan; de Dreuzy, Jean-Raynald; Ginn, Timothy R.

    2016-05-01

    We assess the possibility to use conservative transport information, such as that contained in transit time distributions, breakthrough curves and tracer tests, to predict nonlinear fluid-rock interactions in fracture/matrix or mobile/immobile conditions. Reference simulated data are given by conservative and reactive transport simulations in several diffusive porosity structures differing by their topological organization. Reactions includes nonlinear kinetically controlled dissolution and desorption. Effective Multi-Rate Mass Transfer models (MRMT) are calibrated solely on conservative transport information without pore topology information and provide concentration distributions on which effective reaction rates are estimated. Reference simulated reaction rates and effective reaction rates evaluated by MRMT are compared, as well as characteristic desorption and dissolution times. Although not exactly equal, these indicators remain very close whatever the porous structure, differing at most by 0.6% and 10% for desorption and dissolution. At early times, this close agreement arises from the fine characterization of the diffusive porosity close to the mobile zone that controls fast mobile-diffusive exchanges. At intermediate to late times, concentration gradients are strongly reduced by diffusion, and reactivity can be captured by a very limited number of rates. We conclude that effective models calibrated solely on conservative transport information like MRMT can accurately estimate monocomponent kinetically controlled nonlinear fluid-rock interactions. Their relevance might extend to more advanced biogeochemical reactions because of the good characterization of conservative concentration distributions, even by parsimonious models (e.g., MRMT with 3-5 rates). We propose a methodology to estimate reactive transport from conservative transport in mobile-immobile conditions.

  8. Use of ultrasound in leather processing industry: effect of sonication on substrate and substances--new insights.

    PubMed

    Sivakumar, Venkatasubramanian; Swaminathan, Gopalaraman; Rao, Paruchuri Gangadhar; Muralidharan, Chellappa; Mandal, Asit Baran; Ramasami, Thirumalachari

    2010-08-01

    Influence of ultrasound (US) on various unit operations in leather processing has been studied with the aim to improve the process efficiency, quality, reduce process time and achieve near-zero discharge levels in effluent streams as a cleaner option. Effect of US on substrate (skin/leather) matrix as well as substances used in different unit operations have been studied and found to be useful in the processing. Absorption of US energy by leather in process vessel at different distances from US source has been measured and found to be significant. Effect of particle-size of different substances due to sonication indicates positive influence on the diffusion through the matrix. Our experimental results suggest that US effect is better realized for the cases with pronounced diffusion hindrance. Influence of US on bioprocessing of leather has been studied and found beneficial. Attempts have also been made to improve the US aided processing using external aids. Operating US in pulse mode operation could be useful in order to reduce the electrical energy consumption. Use of US has also been studied in the preparation of leather auxiliaries involving mass-transfer resistance. Preliminary cost analysis carried out for ultrasound-assisted leather-dyeing process indicates scale-up possibility. Therefore, US application provide improvement in process efficiency as well as making cleaner production methods feasible. Hence, overall results suggest that use of US in leather industry is imminent and potential viable option in near future. Copyright 2009 Elsevier B.V. All rights reserved.

  9. Diffusion in silicate melts: III. Empirical models for multicomponent diffusion

    NASA Astrophysics Data System (ADS)

    Yan, Liang; Richter, Frank M.; Chamberlin, Laurinda

    1997-12-01

    Empirical models for multicomponent diffusion in an isotropic fluid were derived by splitting the component's dispersion velocity into two parts: (a) an intrinsic velocity which is proportional to each component's electrochemical potential gradient and independent of reference frame and (b) a net interaction velocity which is both model and reference frame dependent. Simple molecules (e.g., M pO q) were chosen as endmember components. The interaction velocity is assumed to be either the same for each component (leading to a common relaxation velocity U) or proportional to a common interaction force ( F). U or F is constrained by requiring no local buildup in either volume or charge. The most general form of the model-derived diffusion matrix [ D] can be written as a product of a model-dependent kinetic matrix [ L] and a model independent thermodynamic matrix [ G], [ D] = [ L] · [ G]. The elements of [ G] are functions of derivatives of chemical potential with respect to concentration. The elements of [ L] are functions of concentration and partial molar volume of the endmember components, Cio and Vio, and self diffusivity Di, and charge number zi of individual diffusing species. When component n is taken as the dependent variable they can be written in a common form L ij = D jδ ij + C io[V noD n - V joD j)A i + (p nz nD n - p jz jD j)B i] where the functional forms of the scaling factors Ai and Bi depend on the model considered. The off-diagonal element Lij ( i ≠ j) is directly proportional to the concentration of component i, and thus negligible when i is a dilute component. The salient feature of kinetic interaction or relaxation is to slow down larger (volume or charge) and faster diffusing components and to speed up smaller (volume or charge) and slower moving species, in order to prevent local volume or charge buildup. Empirical models for multicomponent diffusion were tested in the ternary system CaOAl 2O 3SiO 2 at 1500°C and 1 GPa over a large range of melt compositions. Model-derived diffusion matrices calculated using measured self diffusivities (Ca, Al, Si, and O), partial molar volumes, and activities were compared with experimentally derived diffusion matrices at two melt compositions. Chemical diffusion profiles computed using the model-derived diffusion matrices, accounting for the compositional dependency of self diffusivities and activity coefficients, were also compared with the experimentally measured ones. Good agreement was found between the ionic common-force model derived diffusion profiles and the experimentally measured ones. Secondary misfits could result from either inadequacies of the model or inaccuracies in activity-composition relationship. The results show that both kinetic interactions and thermodynamic nonideality contribute significantly to the observed diffusive coupling in the molten CaOAl 2O 3SiO 2.

  10. Comparison of gene-expression profiles between diffuse- and intestinal-type gastric cancers using a genome-wide cDNA microarray.

    PubMed

    Jinawath, Natini; Furukawa, Yoichi; Hasegawa, Suguru; Li, Meihua; Tsunoda, Tatsuhiko; Satoh, Seiji; Yamaguchi, Toshiharu; Imamura, Hiroshi; Inoue, Masatomo; Shiozaki, Hitoshi; Nakamura, Yusuke

    2004-09-02

    Gastric cancer is the fourth leading cause of cancer-related death in the world. Two histologically distinct types of gastric carcinoma, 'intestinal' and 'diffuse', have different epidemiological and pathophysiological features that suggest different mechanisms of carcinogenesis. A number of studies have investigated intestinal-type gastric cancers at the molecular level, but little is known about mechanisms involved in the diffuse type, which has a more invasive phenotype and poorer prognosis. To clarify the mechanisms that underlie its development and/or progression, we compared the expression profiles of 20 laser-microbeam-microdissected diffuse-type gastric-cancer tissues with corresponding noncancerous mucosae by means of a cDNA microarray containing 23,040 genes. We identified 153 genes that were commonly upregulated and more than 1500 that were commonly downregulated in the tumors. We also identified a number of genes related to tumor progression. Furthermore, comparison of the expression profiles of diffuse-type with those of intestinal-type gastric cancers identified 46 genes that may represent distinct molecular signatures of each histological type. The putative signature of diffuse-type cancer exhibited altered expression of genes related to cell-matrix interaction and extracellular-matrix (ECM) components, whereas that of intestinal-type cancer represented enhancement of cell growth. These data provide insight into different mechanisms underlying gastric carcinogenesis and may also serve as a starting point for identifying novel diagnostic markers and/or therapeutic targets for diffuse-type gastric cancers.

  11. Laser induced Te diffusion in amorphous As50Se50 thin films probed by FTIR and XPS

    NASA Astrophysics Data System (ADS)

    Behera, Mukta; Panda, Rozalin; Naik, Ramakanta

    2017-05-01

    In the present report, we have demonstrated the combine effect of deposition and photo diffusion of Te into As50Se50 chalcogenide thin films. The influence of Te deposition onto As50Se50 layer has modified the optical parameters. The thermally evaporated Te/As50Se50 bilayer film is irradiated with near bandgap laser light. The optical and structural property of Te/As50Se50 bilayer film under the influence of laser irradiation has been investigated by X-ray photo electron spectroscopy and Fourier transform infrared spectroscopy. The As3d, Se3d and Te4d core level peaks of the photo diffused film show significant changes in shape and position in comparisons with those obtained for non irradiated films. The extensive analysis by deconvoluting the spectra shows the Te diffusion into As50Se50 matrix by forming Te-As-Se layer. The optical band gap of the diffused region is found to be decreased with the increase of density of states in the band edge. The change in transmissivity and absorption coefficient modified the optical constants which is discussed in the light of the present result.

  12. Design, Development and Optimization of S (-) Atenolol Floating Sustained Release Matrix Tablets Using Surface Response Methodology

    PubMed Central

    Gunjal, P. T.; Shinde, M. B.; Gharge, V. S.; Pimple, S. V.; Gurjar, M. K.; Shah, M. N.

    2015-01-01

    The objective of this present investigation was to develop and formulate floating sustained release matrix tablets of s (-) atenolol, by using different polymer combinations and filler, to optimize by using surface response methodology for different drug release variables and to evaluate the drug release pattern of the optimized product. Floating sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: Hydroxypropyl methylcellulose, sodium bicarbonate as a gas generating agent, polyvinyl pyrrolidone as a binder and lactose monohydrate as filler. The 32 full factorial design was employed to investigate the effect of formulation variables on different properties of tablets applicable to floating lag time, buoyancy time, % drug release in 1 and 6 h (D1 h,D6 h) and time required to 90% drug release (t90%). Significance of result was analyzed using analysis of non variance and P < 0.05 was considered statistically significant. S (-) atenolol floating sustained release matrix tablets followed the Higuchi drug release kinetics that indicates the release of drug follows anomalous (non-Fickian) diffusion mechanism. The developed floating sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet. PMID:26798171

  13. Design, Development and Optimization of S (-) Atenolol Floating Sustained Release Matrix Tablets Using Surface Response Methodology.

    PubMed

    Gunjal, P T; Shinde, M B; Gharge, V S; Pimple, S V; Gurjar, M K; Shah, M N

    2015-01-01

    The objective of this present investigation was to develop and formulate floating sustained release matrix tablets of s (-) atenolol, by using different polymer combinations and filler, to optimize by using surface response methodology for different drug release variables and to evaluate the drug release pattern of the optimized product. Floating sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: Hydroxypropyl methylcellulose, sodium bicarbonate as a gas generating agent, polyvinyl pyrrolidone as a binder and lactose monohydrate as filler. The 3(2) full factorial design was employed to investigate the effect of formulation variables on different properties of tablets applicable to floating lag time, buoyancy time, % drug release in 1 and 6 h (D1 h,D6 h) and time required to 90% drug release (t90%). Significance of result was analyzed using analysis of non variance and P < 0.05 was considered statistically significant. S (-) atenolol floating sustained release matrix tablets followed the Higuchi drug release kinetics that indicates the release of drug follows anomalous (non-Fickian) diffusion mechanism. The developed floating sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet.

  14. A unified multicomponent stress-diffusion model of drug release from non-biodegradable polymeric matrix tablets.

    PubMed

    Salehi, Ali; Zhao, Jin; Cabelka, Tim D; Larson, Ronald G

    2016-02-28

    We propose a new transport model of drug release from hydrophilic polymeric matrices, based on Stefan-Maxwell flux laws for multicomponent transport. Polymer stress is incorporated in the total mixing free energy, which contributes directly to the diffusion driving force while leading to time-dependent boundary conditions at the tablet interface. Given that hydrated matrix tablets are dense multicomponent systems, extended Stefan-Maxwell (ESM) flux laws are adopted to ensure consistency with the Onsager reciprocity principle and the Gibbs-Duhem thermodynamic constraint. The ESM flux law for any given component takes into account the friction exerted by all other species and is invariant with respect to reference velocity, thus satisfying Galilean translational invariance. Our model demonstrates that penetrant-induced plasticization of polymer chains partially or even entirely offsets the steady decline of chemical potential gradients at the tablet-medium interface that drive drug release. Utilizing a Flory-Huggins thermodynamic model, a modified form of the upper convected Maxwell constitutive equation for polymer stress and a Fujita-type dependence of mutual diffusivities on composition, depending on parameters, Fickian, anomalous or case II drug transport arises naturally from the model, which are characterized by quasi-power-law release profiles with exponents ranging from 0.5 to 1, respectively. A necessary requirement for non-Fickian release in our model is that the matrix stress relaxation time is comparable to the time scale for water diffusion. Mutual diffusivities and their composition dependence are the most decisive factors in controlling drug release characteristics in our model. Regression of the experimental polymer dissolution and drug release profiles in a system of Theophylline/cellulose (K15M) demonstrate that API-water mutual diffusivity in the presence of excipient cannot generally be taken as a constant. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A Transition in the Cumulative Reaction Rate of Two Species Diffusion with Bimolecular Reaction

    NASA Astrophysics Data System (ADS)

    Rajaram, Harihar; Arshadi, Masoud

    2015-04-01

    Diffusion and bimolecular reaction between two initially separated reacting species is a prototypical small-scale description of reaction induced by transverse mixing. It is also relevant to diffusion controlled transport regimes as encountered in low-permeability matrix blocks in fractured media. In previous work, the reaction-diffusion problem has been analyzed as a Stefan problem involving a distinct moving boundary (reaction front), which predicts that front motion scales as √t, and the cumulative reaction rate scales as 1/√t-. We present a general non-dimensionalization of the problem and a perturbation analysis to show that there is an early time regime where the cumulative reaction rate scales as √t- rather than 1/√t. The duration of this early time regime (where the cumulative rate is kinetically rather than diffusion controlled) depends on the rate parameter, in a manner that is consistently predicted by our non-dimensionalization. We also present results on the scaling of the reaction front width. We present numerical simulations in homogeneous and heterogeneous porous media to demonstrate the limited influence of heterogeneity on the behavior of the reaction-diffusion system. We illustrate applications to the practical problem of in-situ chemical oxidation of TCE and PCE by permanganate, which is employed to remediate contaminated sites where the DNAPLs are largely dissolved in the rock matrix.

  16. Specification of matrix cleanup goals in fractured porous media.

    PubMed

    Rodríguez, David J; Kueper, Bernard H

    2013-01-01

    Semianalytical transient solutions have been developed to evaluate what level of fractured porous media (e.g., bedrock or clay) matrix cleanup must be achieved in order to achieve compliance of fracture pore water concentrations within a specified time at specified locations of interest. The developed mathematical solutions account for forward and backward diffusion in a fractured porous medium where the initial condition comprises a spatially uniform, nonzero matrix concentration throughout the domain. Illustrative simulations incorporating the properties of mudstone fractured bedrock demonstrate that the time required to reach a desired fracture pore water concentration is a function of the distance between the point of compliance and the upgradient face of the domain where clean groundwater is inflowing. Shorter distances correspond to reduced times required to reach compliance, implying that shorter treatment zones will respond more favorably to remediation than longer treatment zones in which back-diffusion dominates the fracture pore water response. For a specified matrix cleanup goal, compliance of fracture pore water concentrations will be reached sooner for decreased fracture spacing, increased fracture aperture, higher matrix fraction organic carbon, lower matrix porosity, shorter aqueous phase decay half-life, and a higher hydraulic gradient. The parameters dominating the response of the system can be measured using standard field and laboratory techniques. © 2012, The Author(s). Ground Water © 2012, National Ground Water Association.

  17. [Study on the characteristics of radiance calibration using nonuniformity extended source].

    PubMed

    Wang, Jian-Wei; Huang, Min; Xiangli, Bin; Tu, Xiao-Long

    2013-07-01

    Integrating sphere and diffuser are always used as extended source, and they have different effects on radiance calibration of imaging spectrometer with parameter difference. In the present paper, a mathematical model based on the theory of radiative transfer and calibration principle is founded to calculate the irradiance and calibration coefficients on CCD, taking relatively poor uniformity lights-board calibration system for example. The effects of the nonuniformity on the calibration was analyzed, which makes up the correlation of calibration coefficient matrix under ideal and unideal situation. The results show that the nonuniformity makes the viewing angle and the position of the point of intersection of the optical axis and the diffuse reflection plate have relatively large effects on calibration, while the observing distance's effect is small; under different viewing angles, a deviation value can be found that makes the calibration results closest to the desired results. So, the calibration error can be reduced by choosing appropriate deviation value.

  18. Analysis and correction of gradient nonlinearity bias in ADC measurements

    PubMed Central

    Malyarenko, Dariya I.; Ross, Brian D.; Chenevert, Thomas L.

    2013-01-01

    Purpose Gradient nonlinearity of MRI systems leads to spatially-dependent b-values and consequently high non-uniformity errors (10–20%) in ADC measurements over clinically relevant field-of-views. This work seeks practical correction procedure that effectively reduces observed ADC bias for media of arbitrary anisotropy in the fewest measurements. Methods All-inclusive bias analysis considers spatial and time-domain cross-terms for diffusion and imaging gradients. The proposed correction is based on rotation of the gradient nonlinearity tensor into the diffusion gradient frame where spatial bias of b-matrix can be approximated by its Euclidean norm. Correction efficiency of the proposed procedure is numerically evaluated for a range of model diffusion tensor anisotropies and orientations. Results Spatial dependence of nonlinearity correction terms accounts for the bulk (75–95%) of ADC bias for FA = 0.3–0.9. Residual ADC non-uniformity errors are amplified for anisotropic diffusion. This approximation obviates need for full diffusion tensor measurement and diagonalization to derive a corrected ADC. Practical scenarios are outlined for implementation of the correction on clinical MRI systems. Conclusions The proposed simplified correction algorithm appears sufficient to control ADC non-uniformity errors in clinical studies using three orthogonal diffusion measurements. The most efficient reduction of ADC bias for anisotropic medium is achieved with non-lab-based diffusion gradients. PMID:23794533

  19. Radiation-Induced Chemical Reactions in Hydrogel of Hydroxypropyl Cellulose (HPC): A Pulse Radiolysis Study.

    PubMed

    Yamashita, Shinichi; Ma, Jun; Marignier, Jean-Louis; Hiroki, Akihiro; Taguchi, Mitsumasa; Mostafavi, Mehran; Katsumura, Yosuke

    2016-12-01

    We performed studies on pulse radiolysis of highly transparent and shape-stable hydrogels of hydroxypropyl cellulose (HPC) that were prepared using a radiation-crosslinking technique. Several fundamental aspects of radiation-induced chemical reactions in the hydrogels were investigated. With radiation doses less than 1 kGy, degradation of the HPC matrix was not observed. The rate constants of the HPC composing the matrix, with two water decomposition radicals [hydroxyl radical ( • OH) and hydrated electron ([Formula: see text])] in the gels, were determined to be 4.5 × 10 9 and 1.8 × 10 7 M -1 s -1 , respectively. Direct ionization of HPC in the matrix slightly increased the initial yield of [Formula: see text], but the additionally produced amount of [Formula: see text] disappeared immediately within 200 ps, indicating fast recombination of [Formula: see text] with hole radicals on HPC or on surrounding hydration water molecules. Reactions of [Formula: see text] with nitrous oxide (N 2 O) and nitromethane (CH 3 NO 2 ) were also examined. Decay of [Formula: see text] due to scavenging by N 2 O and CH 3 NO 2 were both slower in hydrogels than in aqueous solutions, showing slower diffusions of the reactants in the gel matrix. The degree of decrease in the decay rate was more effective for N 2 O than for CH 3 NO 2 , revealing lower solubility of N 2 O in gel than in water. It is known that in viscous solvents, such as ethylene glycol, CH 3 NO 2 exhibits a transient effect, which is a fast reaction over the contact distance of reactants and occurs without diffusions of reactants. However, such an effect was not observed in the hydrogel used in the current study. In addition, the initial yield of [Formula: see text], which is affected by the amount of the scavenged precursor of [Formula: see text], in hydrogel containing N 2 O was slightly higher than that in water containing N 2 O, and the same tendency was found for CH 3 NO 2 .

  20. The influence of preferential flow on pressure propagation and landslide triggering of the Rocca Pitigliana landslide

    NASA Astrophysics Data System (ADS)

    Shao, Wei; Bogaard, Thom; Bakker, Mark; Berti, Matteo

    2016-12-01

    The fast pore water pressure response to rain events is an important triggering factor for slope instability. The fast pressure response may be caused by preferential flow that bypasses the soil matrix. Currently, most of the hydro-mechanical models simulate pore water pressure using a single-permeability model, which cannot quantify the effects of preferential flow on pressure propagation and landslide triggering. Previous studies showed that a model based on the linear-diffusion equation can simulate the fast pressure propagation in near-saturated landslides such as the Rocca Pitigliana landslide. In such a model, the diffusion coefficient depends on the degree of saturation, which makes it difficult to use the model for predictions. In this study, the influence of preferential flow on pressure propagation and slope stability is investigated with a 1D dual-permeability model coupled with an infinite-slope stability approach. The dual-permeability model uses two modified Darcy-Richards equations to simultaneously simulate the matrix flow and preferential flow in hillslopes. The simulated pressure head is used in an infinite-slope stability analysis to identify the influence of preferential flow on the fast pressure response and landslide triggering. The dual-permeability model simulates the height and arrival of the pressure peak reasonably well. Performance of the dual-permeability model is as good as or better than the linear-diffusion model even though the dual-permeability model is calibrated for two single pulse rain events only, while the linear-diffusion model is calibrated for each rain event separately. In conclusion, the 1D dual-permeability model is a promising tool for landslides under similar conditions.

  1. Non-fragile consensus algorithms for a network of diffusion PDEs with boundary local interaction

    NASA Astrophysics Data System (ADS)

    Xiong, Jun; Li, Junmin

    2017-07-01

    In this study, non-fragile consensus algorithm is proposed to solve the average consensus problem of a network of diffusion PDEs, modelled by boundary controlled heat equations. The problem deals with the case where the Neumann-type boundary controllers are corrupted by additive persistent disturbances. To achieve consensus between agents, a linear local interaction rule addressing this requirement is given. The proposed local interaction rules are analysed by applying a Lyapunov-based approach. The multiplicative and additive non-fragile feedback control algorithms are designed and sufficient conditions for the consensus of the multi-agent systems are presented in terms of linear matrix inequalities, respectively. Simulation results are presented to support the effectiveness of the proposed algorithms.

  2. Broadband diffuse optical characterization of elastin for biomedical applications.

    PubMed

    Konugolu Venkata Sekar, Sanathana; Beh, Joo Sin; Farina, Andrea; Dalla Mora, Alberto; Pifferi, Antonio; Taroni, Paola

    2017-10-01

    Elastin is a key structural protein of dynamic connective tissues widely found in the extracellular matrix of skin, arteries, lungs and ligaments. It is responsible for a range of diseases related to aging of biological tissues. The optical characterization of elastin can open new opportunities for its investigation in biomedical studies. In this work, we present the absorption spectra of elastin using a broadband (550-1350nm) diffuse optical spectrometer. Distortions caused by fluorescence and finite bandwidth of the laser source on estimated absorption were effectively accounted for in measurements and data analysis and compensated. A comprehensive summary and comparison between collagen and elastin is presented, highlighting distinct features for its accurate quantification in biological applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. On linearization and preconditioning for radiation diffusion coupled to material thermal conduction equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Tao, E-mail: fengtao2@mail.ustc.edu.cn; Graduate School of China Academy Engineering Physics, Beijing 100083; An, Hengbin, E-mail: an_hengbin@iapcm.ac.cn

    2013-03-01

    Jacobian-free Newton–Krylov (JFNK) method is an effective algorithm for solving large scale nonlinear equations. One of the most important advantages of JFNK method is that there is no necessity to form and store the Jacobian matrix of the nonlinear system when JFNK method is employed. However, an approximation of the Jacobian is needed for the purpose of preconditioning. In this paper, JFNK method is employed to solve a class of non-equilibrium radiation diffusion coupled to material thermal conduction equations, and two preconditioners are designed by linearizing the equations in two methods. Numerical results show that the two preconditioning methods canmore » improve the convergence behavior and efficiency of JFNK method.« less

  4. Development of impact resistant boron/aluminum composites for turbojet engine fan blades

    NASA Technical Reports Server (NTRS)

    Melnyk, P.; Toth, I. J.

    1975-01-01

    Composite fabrication was performed by vacuum press diffusion bonding by both the foil-filament array and preconsolidated monotape methods. The effect of matrix material, fiber diameter, matrix enhancement, fiber volume reinforcement, test temperature, angle-plying, notch, impact orientation, processing variables and fabrication methods on tensile strength and Charpy impact resistance are evaluated. Root attachment concepts, were evaluated by room and elevated temperature tensile testing, as well as by pendulum-Izod and ballistic impact testing. Composite resistance to foreign object damage was also evaluated by ballistic impacting of panels using projectiles of gelatin, RTV rubber and steel at various velocities, and impingement angles. A significant improvement in the pendulum impact resistance of B-Al composites was achieved.

  5. Thermally Induced Depolarization of the Photoluminescence of Carbon Nanodots in a Colloidal Matrix

    NASA Astrophysics Data System (ADS)

    Starukhin, A. N.; Nelson, D. K.; Kurdyukov, D. A.; Eurov, D. A.; Stovpiaga, E. Yu.; Golubev, V. G.

    2018-02-01

    The effect of temperature on fluorescence polarization in a colloidal system of carbon nanodots in glycerol under linearly polarized excitation is investigated for the first time. It is found that the experimentally obtained temperature dependence of the degree of linear polarization of fluorescence can be described by the Levshin-Perrin equation, taking into account the rotational diffusion of luminescent particles (fluorophores) in the liquid matrix. The fluorophore size determined in the context of the Levshin-Perrin model is significantly smaller than the size of carbon nanodots. This discrepancy gives evidence that small atomic groups responsible for nanodot luminescence are characterized by high segmental mobility with a large amplitude of motion with respect to the nanodot core.

  6. Water Diffusion through a Titanium Dioxide/Poly(Carbonate Urethane) Nanocomposite for Protecting Cultural Heritage: Interactions and Viscoelastic Behavior

    PubMed Central

    Abbate, Mario; D’Orazio, Loredana

    2017-01-01

    Water diffusion through a TiO2/poly (carbonate urethane) nanocomposite designed for the eco-sustainable protection of outdoor cultural heritage stonework was investigated. Water is recognized as a threat to heritage, hence the aim was to gather information on the amount of water uptake, as well as of species of water molecules absorbed within the polymer matrix. Gravimetric and vibrational spectroscopy measurements demonstrated that diffusion behavior of the nanocomposite/water system is Fickian, i.e., diffusivity is independent of concentration. The addition of only 1% of TiO2 nanoparticles strongly betters PU barrier properties and water-repellency requirement is imparted. Defensive action against penetration of water free from, and bonded through, H-bonding association arises from balance among TiO2 hydrophilicity, tortuosity effects and quality of nanoparticle dispersion and interfacial interactions. Further beneficial to antisoiling/antigraffiti action is that water-free fraction was found to be desorbed at a constant rate. In environmental conditions, under which weathering processes are most likely to occur, nanocomposite Tg values remain suitable for heritage treatments. PMID:28902179

  7. Diffusion, Dispersion, and Uncertainty in Anisotropic Fractal Porous Media

    NASA Astrophysics Data System (ADS)

    Monnig, N. D.; Benson, D. A.

    2007-12-01

    Motivated by field measurements of aquifer hydraulic conductivity (K), recent techniques were developed to construct anisotropic fractal random fields, in which the scaling, or self-similarity parameter, varies with direction and is defined by a matrix. Ensemble numerical results are analyzed for solute transport through these 2-D "operator-scaling" fractional Brownian motion (fBm) ln(K) fields. Contrary to some analytic stochastic theories for monofractal K fields, the plume growth rates never exceed Mercado's (1967) purely stratified aquifer growth rate of plume apparent dispersivity proportional to mean distance. Apparent super-stratified growth must be the result of other demonstrable factors, such as initial plume size. The addition of large local dispersion and diffusion does not significantly change the effective longitudinal dispersivity of the plumes. In the presence of significant local dispersion or diffusion, the concentration coefficient of variation CV={σc}/{\\langle c \\rangle} remains large at the leading edge of the plumes. This indicates that even with considerable mixing due to dispersion or diffusion, there is still substantial uncertainty in the leading edge of a plume moving in fractal porous media.

  8. Surface ordering of (In,Ga)As quantum dots controlled by GaAs substrate indexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zh.M.; Seydmohamadi, Sh.; Lee, J.H.

    Self-organized surface ordering of (In,Ga)As quantum dots in a GaAs matrix was investigated using stacked multiple quantum dot layers prepared by molecular-beam epitaxy. While one-dimensional chain-like ordering is formed on singular and slightly misorientated GaAs(100) surfaces, we report on two-dimensional square-like ordering that appears on GaAs(n11)B, where n is 7, 5, 4, and 3. Using a technique to control surface diffusion, the different ordering patterns are found to result from the competition between anisotropic surface diffusion and anisotropic elastic matrix, a similar mechanism suggested before by Solomon [Appl. Phys. Lett. 84, 2073 (2004)].

  9. Composition and method for polymer moderated catalytic water formation

    DOEpatents

    Shepodd, Timothy Jon

    1999-01-01

    A composition suitable for safely removing hydrogen from gaseous mixtures containing hydrogen and oxygen, particularly those mixtures wherein the hydrogen concentration is within the explosive range. The composition comprises a hydrogenation catalyst, preferably Pd dispersed on carbon, wherein the concentration of Pd is from about 1-10 wt %, dispersed in a polymeric material matrix. As well as serving as a matrix to contain the hydrogenation catalyst, the polymeric material, which is substantially unreactive to hydrogen, provides both a diffusion restriction to hydrogen and oxygen, thereby limiting the rate at which the reactants (hydrogen and oxygen) can diffuse to the catalyst surface and thus, the production of heat from the recombination reaction and as a heat sink.

  10. Modeling of outgassing and matrix decomposition in carbon-phenolic composites

    NASA Technical Reports Server (NTRS)

    Mcmanus, Hugh L.

    1993-01-01

    A new release rate equation to model the phase change of water to steam in composite materials was derived from the theory of molecular diffusion and equilibrium moisture concentration. The new model is dependent on internal pressure, the microstructure of the voids and channels in the composite materials, and the diffusion properties of the matrix material. Hence, it is more fundamental and accurate than the empirical Arrhenius rate equation currently in use. The model was mathematically formalized and integrated into the thermostructural analysis code CHAR. Parametric studies on variation of several parameters have been done. Comparisons to Arrhenius and straight-line models show that the new model produces physically realistic results under all conditions.

  11. Dynamics in Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Clarke, Nigel

    2015-03-01

    Since nanoparticles are increasingly being added to polymers to impart mechanical and functional properties, we are exploring how nanoparticles impact polymer dynamics with a focus on the diffusion coefficients. In high molecular weight polymer melts, chain diffusion is well described by the reptation model. Motion proceeds as a snake-like diffusion of the chain as a whole, along the contour of a tube that mimics the role of physical entanglements, or topological constraints, with other chains. In polymer nanocomposites there are additional constraints due to the dispersed nanoparticles in the polymer matrix. Chain motion can be altered by nanoparticle size, shape , aspect ratio, surface area, loading and the nature of the interactions between the nanoparticles and the polymer matrix. We have observed a minimum in the diffusion coefficient as a function of nanoparticle concentration when the nanoparticles are rod-like and a collapse of the diffusion coefficient onto a master curve when the nanoparticles are spherical. We are simulating the dynamics using molecular and dissipative particle simulations in order to provide physical insight into the local structure and dynamics, and have also carried out highly coarse grained Monte Carlo simulations of entangled polymers to explore how reptation is affected by the presence of larger scale obstacles. We acknowledge support from the NSF/EPSRC Materials World Network Program.

  12. Microstructural study of brass matrix internal tin multifilamentary Nb3Sn superconductors

    NASA Astrophysics Data System (ADS)

    Banno, Nobuya; Miyamoto, Yasuo; Tachikawa, Kyoji

    2018-03-01

    Zn addition to the Cu matrix in internal-tin-processed Nb3Sn superconductors is attractive in terms of the growth kinetics of the Nb3Sn layers. Sn activity is enhanced in the Cu-Zn (brass) matrix, which accelerates Nb3Sn layer formation. Here, we prepared multifilamentary wires using a brass matrix with a Nb core diameter of less than 10 μm and investigated the potential for further Jc improvement through microstructural and microchemical studies. Ti was added into the Sn cores in the precursor wire. Microchemical analysis showed that Ti accumulates between subelements consisting of Nb cores, which blocks Sn diffusion through this region when the spacing between the subelements in the precursor wire is a few microns. The average grain size was found to be about 230 nm through image analysis. To date, matrix Jc values of 1470 and 640 A/mm-2 have been obtained at 12 and 16 T, respectively. The area fraction of Nb cores in the filamentary region of the precursor wire was about 36.3%. There was still some unreacted Nb core area after heat treatment. Insufficient Ti diffusion into the Nb3Sn layers was identified in the outer subelements. These findings suggest that there is still room for improvement in Jc.

  13. Global solutions to a class of multi-species reaction-diffusion systems with cross-diffusions arising in population dynamics

    NASA Astrophysics Data System (ADS)

    Wen, Zijuan; Fu, Shengmao

    2009-08-01

    In this paper, an n-species strongly coupled cooperating diffusive system is considered in a bounded smooth domain, subject to homogeneous Neumann boundary conditions. Employing the method of energy estimates, we obtain some conditions on the diffusion matrix and inter-specific cooperatives to ensure the global existence and uniform boundedness of a nonnegative solution. The globally asymptotical stability of the constant positive steady state is also discussed. As a consequence, all the results hold true for multi-species Lotka-Volterra type competition model and prey-predator model.

  14. Jet Penetration into a Scaled Microfabricated Stirling Cycle Regenerator

    NASA Technical Reports Server (NTRS)

    Sun, Liyong; Simon, Terrence W.; Mantell, Susan; Ibrahim, Mournir; Gedeon, David; Tew, Roy

    2008-01-01

    The cooler and heater adjacent to the regenerator of a Stirling cycle engine have tubes or channels which form jets that pass into the regenerator while diffusing within the matrix. An inactive part of the matrix, beyond the cores of these jets, does not participate fully in the heat transfer between the flow of working fluid and the regenerator matrix material, weakening the regenerator s ability to exchange heat with the working fluid. The objective of the present program is to document this effect on the performance of the regenerator and to develop a model for generalizing the results. However, the small scales of actual Stirling regenerator matrices (on the order of tens of microns) make direct measurements of this effect very difficult. As a result, jet spreading within a regenerator matrix has not been characterized well and is poorly understood. Also, modeling is lacking experimental verification. To address this, a large-scale mockup of thirty times actual scale was constructed and operated under conditions that are dynamically similar to the engine operation. Jet penetration with round jets and slot jets into the microfabricated regenerator geometry are then measured by conventional means. The results are compared with those from a study of spreading of round jets within woven screen regenerator for further documentation of the comparative performance of the microfabricated regenerator geometry.

  15. Microstructure Evolution and Mechanical Behavior of Ultrafine Ti-6Al-4V During Low Temperature Superplastic Deformation (Postprint)

    DTIC Science & Technology

    2016-09-13

    through the deformed β matrix . A total elongation of 1000% and strain-rate-sensitivity exponent m = 0.48 were obtained at 550 °C and 2 × 10−4 s−1...two orders of magnitude faster than the corresponding static behaviors due to enhanced diffusion through the deformed b matrix . A total elongation of...various metallic materials, including titanium alloys, is usually the result of concurrent grain- or interphase-boundary sliding, grain- matrix

  16. Separator for lithium-sulfur battery based on polymer blend membrane

    NASA Astrophysics Data System (ADS)

    Freitag, Anne; Stamm, Manfred; Ionov, Leonid

    2017-09-01

    In this work we report a novel way of reducing the polysulfide shuttle in lithium-sulfur batteries by a new separator material. Polyvinylsulfate potassium salt (PVSK) as polymeric additive is introduced into a polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP) matrix membrane to improve the battery performance. PVSK is expected to lower the polysulfide mobility due to interaction with the sulfonic group. PVdF-HFP/PVSK blend membranes are prepared and an UV/Vis polysulfide diffusion test clearly demonstrates the positive effect of PVSK. Electrochemical testing reveals a significant improvement of cycling stability up to more than 200 cycles. In addition, the effect of separator porosity to the polysulfide shuttle is investigated with PVdF-HFP membranes of different porosity. A simple polysulfide diffusion test and potentiostatic charge/discharge cycling clearly demonstrate that low separator porosity is favorable in a lithium-sulfur cell.

  17. Fokker-Planck analysis of transverse collective instabilities in electron storage rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindberg, Ryan R.

    We analyze single bunch transverse instabilities due to wakefields using a Fokker-Planck model. We first expand on the work of T. Suzuki, Part. Accel. 12, 237 (1982) to derive the theoretical model including chromaticity, both dipolar and quadrupolar transverse wakefields, and the effects of damping and diffusion due to the synchrotron radiation. We reduce the problem to a linear matrix equation, whose eigenvalues and eigenvectors determine the collective stability of the beam. We then show that various predictions of the theory agree quite well with results from particle tracking simulations, including the threshold current for transverse instability and the profilemore » of the unstable mode. In particular, we find that predicting collective stability for high energy electron beams at moderate to large values of chromaticity requires the full Fokker-Planck analysis to properly account for the effects of damping and diffusion due to synchrotron radiation.« less

  18. Vibration effect on the Soret-induced convection of ternary mixture in a rectangular cavity heated from below

    NASA Astrophysics Data System (ADS)

    Lyubimova, T. P.; Zubova, N. A.

    2017-06-01

    This paper presents the results of numerical simulation of the Soret-induced convection of ternary mixture in the rectangular cavity elongated in horizontal direction in gravity field. The cavity has rigid impermeable boundaries. It is heated from the bellow and undergoes translational linearly polarized vibrations of finite amplitude and frequency in the horizontal direction. The problem is solved by finite difference method in the framework of full unsteady non-linear approach. The procedure of diagonalization of the molecular diffusion coefficient matrix is applied, allowing to eliminate cross-diffusion components in the equations and to reduce the number of the governing parameters. The calculations are performed for model ternary mixture with positive separation ratios of the components. The data on the vibration effect on temporal evolution of instantaneous and average fields and integral characteristics of the flow and heat and mass transfer at different levels of gravity are obtained.

  19. Effect of liquid-phase sintering as a means of quality enhancement of pseudoalloys based on copper

    NASA Astrophysics Data System (ADS)

    Gordeev, Yu I.; Abkaryan, A. K.; Zeer, G. M.; Lepeshev, A. A.; Zelenkova, E. G.

    2017-01-01

    The effects of the liquid phase of a metal binder on the microstructure and properties of self-diffusion gradient composite (Cu - Al - ZnO) were investigated. For the compositions considered, it was revealed that at the temperature of about 550 °C, a liquid phase binder forms from nanoparticles Cu - Al. Applying a proper amount of a (Cu - Al) binder appeared to be beneficial for fabricating gradient composites with the desired self-diffusion process. It is also favorable for mass transfer of additives nanoparticles into the volume of a matrix during sintering and for the desired fine microstructure and mechanical properties. For the experimental conditions considered in this study, the best mechanical properties can be obtained when 6 mass % (Cu - Al) of ligature were used, which gave hardness HB at 120, electroerosion wear - 0.092 • 10-6 g / cycle, resistivity - 0.025 mcOm.

  20. Utilisation of steel furnace slag coarse aggregate in a low calcium fly ash geopolymer concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, M. S.H.,; Castel, Arnaud; Akbarnezhad, A.

    This paper evaluates the performance of steel furnace slag (SFS) coarse aggregate in blended slag and low calcium fly ash geopolymer concrete (GPC). The geopolymer binder is composed of 90% of low calcium fly ash and 10% of ground granulated blast furnace slag (GGBFS). Mechanical and physical properties, shrinkage, and detailed microstructure analysis were carried out. The results showed that geopolymer concrete with SFS aggregate offered higher compressive strength, surface resistivity and pulse velocity than that of GPC with traditional aggregate. The shrinkage results showed no expansion or swelling due to delayed calcium oxide (CaO) hydration after 320 days. Nomore » traditional porous interfacial transition zone (ITZ) was detected using scanning electron microscopy, indicating a better bond between SFS aggregate and geopolymer matrix. Energy dispersive spectroscopy results further revealed calcium (Ca) diffusion at the vicinity of ITZ. Raman spectroscopy results showed no new crystalline phase formed due to Ca diffusion. X-ray fluorescence result showed Mg diffusion from SFS aggregate towards geopolymer matrix. The incorporation of Ca and Mg into the geopolymer structure and better bond between SFS aggregate and geopolymer matrix are the most likely reasons for the higher compressive strength observed in GPC with SFS aggregate.« less

  1. Metallized Nanotube Polymer Composite (MNPC) and Methods for Making Same

    NASA Technical Reports Server (NTRS)

    Harrison, Joycelyn S. (Inventor); Lowther, Sharon E. (Inventor); Lillehei, Peter T. (Inventor); Park, Cheol (Inventor); Taylor, Larry (Inventor); Kang, Jin Ho (Inventor); Nazem, Negin (Inventor); Kim, Jae-Woo (Inventor); Sauti, Godfrey (Inventor)

    2017-01-01

    A novel method to develop highly conductive functional materials which can effectively shield various electromagnetic effects (EMEs) and harmful radiations. Metallized nanotube polymer composites (MNPC) are composed of a lightweight polymer matrix, superstrong nanotubes (NT), and functional nanoparticle inclusions. MNPC is prepared by supercritical fluid infusion of various metal precursors (Au, Pt, Fe, and Ni salts), incorporated simultaneously or sequentially, into a solid NT-polymer composite followed by thermal reduction. The infused metal precursor tends to diffuse toward the nanotube surface preferentially as well as the surfaces of the NT-polymer matrix, and is reduced to form nanometer-scale metal particles or metal coatings. The conductivity of the MNPC increases with the metallization, which provides better shielding capabilities against various EMEs and radiations by reflecting and absorbing EM waves more efficiently. Furthermore, the supercritical fluid infusion process aids to improve the toughness of the composite films significantly regardless of the existence of metal.

  2. Thermoplastic matrix composite processing model

    NASA Technical Reports Server (NTRS)

    Dara, P. H.; Loos, A. C.

    1985-01-01

    The effects the processing parameters pressure, temperature, and time have on the quality of continuous graphite fiber reinforced thermoplastic matrix composites were quantitatively accessed by defining the extent to which intimate contact and bond formation has occurred at successive ply interfaces. Two models are presented predicting the extents to which the ply interfaces have achieved intimate contact and cohesive strength. The models are based on experimental observation of compression molded laminates and neat resin conditions, respectively. Identified as the mechanism explaining the phenomenon by which the plies bond to themselves is the theory of autohesion (or self diffusion). Theoretical predictions from the Reptation Theory between autohesive strength and contact time are used to explain the effects of the processing parameters on the observed experimental strengths. The application of a time-temperature relationship for autohesive strength predictions is evaluated. A viscoelastic compression molding model of a tow was developed to explain the phenomenon by which the prepreg ply interfaces develop intimate contact.

  3. Accumulation of dislocation loops in the α phase of Zr Excel alloy under heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Yu, Hongbing; Yao, Zhongwen; Idrees, Yasir; Zhang, He K.; Kirk, Mark A.; Daymond, Mark R.

    2017-08-01

    In-situ heavy ion irradiations were performed on the high Sn content Zr alloy 'Excel', measuring type dislocation loop accumulation up to irradiation damage doses of 10 dpa at a range of temperatures. The high content of Sn, which diffuses slowly, and the thin foil geometry of the sample provide a unique opportunity to study an extreme case where displacement cascades dominate the loop formation and evolution. The dynamic observation of dislocation loop evolution under irradiation at 200 °C reveals that type dislocation loops can form at very low dose (0.0025 dpa). The size of the dislocation loops increases slightly with irradiation damage dose. The mechanism controlling loop growth in this study is different from that in neutron irradiation; in this study, larger dislocation loops can condense directly from the interaction of displacement cascades and the high concentration of point defects in the matrix. The size of the dislocation loop is dependent on the point defect concentration in the matrix. A negative correlation between the irradiation temperature and the dislocation loop size was observed. A comparison between cascade dominated loop evolution (this study), diffusion dominated loop evolution (electron irradiation) and neutron irradiation suggests that heavy ion irradiation alone may not be enough to accurately reproduce neutron irradiation induced loop structures. An alternative method is proposed in this paper. The effects of Sn on the displacement cascades, defect yield, and the diffusion behavior of point defects are established.

  4. Propylene/propane permeation properties of ethyl cellulose (EC) mixed matrix membranes fabricated by incorporation of nanoporous graphene nanosheets

    PubMed Central

    Yuan, Bingbing; Sun, Haixiang; Wang, Tao; Xu, Yanyan; Li, Peng; Kong, Ying; Niu, Q. Jason

    2016-01-01

    Nanopore containing graphene nanosheets were synthesized by graphene oxide and a reducing agent using a facile hydrothermal treatment in sodium hydroxide media. The as-prepared nanoporous graphene was incorporated into ethyl cellulose (EC) to prepare the mixed matrix membranes (MMMs) for C3H6/C3H8 separation. Transmission electron microscopy (TEM) photograph and X-ray photoelectron spectroscopy (XPS) analysis of nanoporous graphene nanosheets indicated that the structure of nano-pore was irregular and the oxygen-containing groups in the surface were limited. More importantly, the as-prepared MMMs presented better separation performance than that of pristine EC membrane due to simultaneous enhancement of C3H6 permeability and ideal selectivity. The ideal selectivity of the MMMs with 1.125 wt‰ nanoporous graphene content for C3H6/C3H8 increased from 3.45 to 10.42 and the permeability of C3H6 increased from 57.9 Barrer to 89.95 Barrer as compared with the pristine membrane. The presumed facilitated mechanism was that the high specific surface area of nanoporous graphene in polymer matrix increased the length of the tortuous pathway formed by nanopores for the gas diffusion as compared with the pristine graphene nanosheets, and generated a rigidified interface between the EC chains and fillers, thus enhanced the diffusivity selectivity. Therefore, it is expected that nanoporous graphene would be effective material for the C3H6/C3H8 separation. PMID:27352851

  5. Efficiency of fly ash belite cement and zeolite matrices for immobilizing cesium.

    PubMed

    Goñi, S; Guerrero, A; Lorenzo, M P

    2006-10-11

    The efficiency of innovative matrices for immobilizing cesium is presented in this work. The matrix formulation included the use of fly ash belite cement (FABC-2-W) and gismondine-type Na-P1 zeolite, both of which are synthesized from fly ash of coal combustion. The efficiency for immobilizing cesium is evaluated from the leaching test ANSI/ANS 16.1-1986 at the temperature of 40 degrees C, from which the apparent diffusion coefficient of cesium is obtained. Matrices with 100% of FABC-2-W are used as a reference. The integrity of matrices is evaluated by porosity and pore-size distribution from mercury intrusion porosimetry, X-ray diffraction and nitrogen adsorption analyses. Both matrices can be classified as good solidify systems for cesium, specially the FABC-2-W/zeolite matrix in which the replacement of 50% of belite cement by the gismondine-type Na-P1 zeolite caused a decrease of two orders of magnitude of cesium mean Effective Diffusion Coefficient (D(e)) (2.8e-09 cm(2)/s versus 2.2e-07 cm(2)/s, for FABC-2-W/zeolite and FABC-2-W matrices, respectively).

  6. Unsaturated flow and transport through a fault embedded in fractured welded tuff

    USGS Publications Warehouse

    Salve, Rohit; Liu, Hui‐Hai; Cook, Paul; Czarnomski, Atlantis; Hu, Qinhong; Hudson, David

    2004-01-01

    To evaluate the importance of matrix diffusion as a mechanism for retarding radionuclide transport in the vicinity of a fault located in unsaturated fractured rock, we carried out an in situ field experiment in the Exploratory Studies Facility at Yucca Mountain, Nevada. This experiment involved the release of ∼82,000 L of water over a period of 17 months directly into a near‐vertical fault under both constant positive head (at ∼0.04 m) and decreasing fluxes. A mix of conservative tracers (pentafluorobenzoic acid (PFBA) and bromide (applied in the form of lithium bromide)) was released along the fault over a period of 9 days, 7 months after the start of water release along the fault. As water was released into the fault, seepage rates were monitored in a large cavity excavated below the test bed. After the release of tracers, seepage water was continuously collected from three locations and analyzed for the injected tracers. Observations of bromide concentrations in seepage water during the early stages of the experiment and bromide and PFBA concentrations in the seepage water indicate the significant effects of matrix diffusion on transport through a fault embedded in fractured, welded rock.

  7. Performance analysis of stationary Hadamard matrix diffusers in free-space optical communication links

    NASA Astrophysics Data System (ADS)

    Burrell, Derek J.; Middlebrook, Christopher T.

    2017-08-01

    Wireless communication systems that employ free-space optical links in place of radio/microwave technologies carry substantial benefits in terms of data throughput, network security and design efficiency. Along with these advantages comes the challenge of counteracting signal degradation caused by atmospheric turbulence in free-space environments. A fully coherent laser source experiences random phase delays along its traversing path in turbulent conditions forming a speckle pattern and lowering the received signal-to-noise ratio upon detection. Preliminary research has shown that receiver-side speckle contrast may be significantly reduced and signal-to-noise ratio increased accordingly through the use of a partially coherent light source. While dynamic diffusers and adaptive optics solutions have been proven effective, they also add expense and complexity to a system that relies on accessibility and robustness for successful implementation. A custom Hadamard diffractive matrix design is used to statically induce partial coherence in a transmitted beam to increase signal-to-noise ratio for experimental turbulence scenarios. Atmospheric phase screens are generated using an open-source software package and subsequently loaded into a spatial light modulator using nematic liquid crystals to modulate the phase.

  8. Micro/Nano-pore Network Analysis of Gas Flow in Shale Matrix

    PubMed Central

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N.; Gao, Shengyan

    2015-01-01

    The gas flow in shale matrix is of great research interests for optimized shale gas extraction. The gas flow in the nano-scale pore may fall in flow regimes such as viscous flow, slip flow and Knudsen diffusion. A 3-dimensional nano-scale pore network model was developed to simulate dynamic gas flow, and to describe the transient properties of flow regimes. The proposed pore network model accounts for the various size distributions and low connectivity of shale pores. The pore size, pore throat size and coordination number obey normal distribution, and the average values can be obtained from shale reservoir data. The gas flow regimes were simulated using an extracted pore network backbone. The numerical results show that apparent permeability is strongly dependent on pore pressure in the reservoir and pore throat size, which is overestimated by low-pressure laboratory tests. With the decrease of reservoir pressure, viscous flow is weakening, then slip flow and Knudsen diffusion are gradually becoming dominant flow regimes. The fingering phenomenon can be predicted by micro/nano-pore network for gas flow, which provides an effective way to capture heterogeneity of shale gas reservoir. PMID:26310236

  9. Micro/Nano-pore Network Analysis of Gas Flow in Shale Matrix.

    PubMed

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N; Gao, Shengyan

    2015-08-27

    The gas flow in shale matrix is of great research interests for optimized shale gas extraction. The gas flow in the nano-scale pore may fall in flow regimes such as viscous flow, slip flow and Knudsen diffusion. A 3-dimensional nano-scale pore network model was developed to simulate dynamic gas flow, and to describe the transient properties of flow regimes. The proposed pore network model accounts for the various size distributions and low connectivity of shale pores. The pore size, pore throat size and coordination number obey normal distribution, and the average values can be obtained from shale reservoir data. The gas flow regimes were simulated using an extracted pore network backbone. The numerical results show that apparent permeability is strongly dependent on pore pressure in the reservoir and pore throat size, which is overestimated by low-pressure laboratory tests. With the decrease of reservoir pressure, viscous flow is weakening, then slip flow and Knudsen diffusion are gradually becoming dominant flow regimes. The fingering phenomenon can be predicted by micro/nano-pore network for gas flow, which provides an effective way to capture heterogeneity of shale gas reservoir.

  10. Modeling drug release from PVAc/PVP matrix tablets.

    PubMed

    Siepmann, F; Eckart, K; Maschke, A; Kolter, K; Siepmann, J

    2010-01-25

    Kollidon SR-based matrix tablets containing various amounts of diprophylline were prepared and thoroughly characterized in vitro. This includes drug release measurements in 0.1M HCl and phosphate buffer pH 7.4, monitoring of changes in the tablet's height and diameter, morphology as well as dry mass upon exposure to the release media. Based on these experimental results, a mechanistic realistic mathematical theory is proposed, taking into account the given initial and boundary conditions as well as radial and axial mass transport in cylinders. Importantly, good agreement between theory and experiment was obtained in all cases, indicating that drug diffusion with constant diffusivity is the dominant mass transport mechanism in these systems. Furthermore, the proposed theory was used to quantitatively predict the effects of the initial tablet height and diameter on the resulting drug release patterns. These theoretical predictions were compared with independently measured drug release kinetics. Good agreement was observed in all cases, proving the validity of the mathematical theory and illustrating the latter's practical benefit: The model can help to significantly facilitate the recipe optimization of this type of advanced drug delivery systems in order to achieve a desired release profile. Copyright 2009 Elsevier B.V. All rights reserved.

  11. Diffusivity measurements of volatile organics in levitated viscous aerosol particles

    NASA Astrophysics Data System (ADS)

    Bastelberger, Sandra; Krieger, Ulrich K.; Luo, Beiping; Peter, Thomas

    2017-07-01

    Field measurements indicating that atmospheric secondary organic aerosol (SOA) particles can be present in a highly viscous, glassy state have spurred numerous studies addressing low diffusivities of water in glassy aerosols. The focus of these studies is on kinetic limitations of hygroscopic growth and the plasticizing effect of water. In contrast, much less is known about diffusion limitations of organic molecules and oxidants in viscous matrices. These may affect atmospheric chemistry and gas-particle partitioning of complex mixtures with constituents of different volatility. In this study, we quantify the diffusivity of a volatile organic in a viscous matrix. Evaporation of single particles generated from an aqueous solution of sucrose and small amounts of volatile tetraethylene glycol (PEG-4) is investigated in an electrodynamic balance at controlled relative humidity (RH) and temperature. The evaporative loss of PEG-4 as determined by Mie resonance spectroscopy is used in conjunction with a radially resolved diffusion model to retrieve translational diffusion coefficients of PEG-4. Comparison of the experimentally derived diffusivities with viscosity estimates for the ternary system reveals a breakdown of the Stokes-Einstein relationship, which has often been invoked to infer diffusivity from viscosity. The evaporation of PEG-4 shows pronounced RH and temperature dependencies and is severely depressed for RH ≲ 30 %, corresponding to diffusivities < 10-14 cm2 s-1 at temperatures < 15 °C. The temperature dependence is strong, suggesting a diffusion activation energy of about 300 kJ mol-1. We conclude that atmospheric volatile organic compounds can be subject to severe diffusion limitations in viscous organic aerosol particles. This may enable an important long-range transport mechanism for organic material, including pollutant molecules such as polycyclic aromatic hydrocarbons (PAHs).

  12. Hanle effect in nonmonochromatic laser light

    NASA Astrophysics Data System (ADS)

    Ryan, R. E.; Bergeman, T. H.

    1991-06-01

    We report results of calculations on the Hanle effect in a J=0⇆J=1 atomic transition with three types of model fluctuating light fields: (a) the Brownian-motion phase-diffusion field, as produced in recent experiments by Arnett et al. [Phys. Rev. A 41, 2580 (1990)]; (b) Gaussian amplitude fluctuations; and (c) the chaotic field model, in which real and imaginary parts of the electric-field amplitude fluctuate. For the stochastic density-matrix equations, we use methods developed by Zoller and co-workers [e.g., Dixit, Zoller, and Lambropoulos, Phys. Rev. A 21, 1289 (1980)] employing the Fokker-Planck operator and leading to matrix continued-fraction expansions. The Hanle effect is of interest as a prototype for multisublevel atomic transitions. The width of the Hanle dip at zero magnetic field reflects the tendency of the light field to preserve the coherence between excited-state sublevels. For monochromatic light, the Hanle dip width increases as the square root of light intensity. When the laser bandwidth increases, power broadening of the coherence dip normally decreases. However, with the Brownian-motion phase-diffusion model, if the laser spectral profile is nearly Gaussian, broadening the laser up to several times the natural width of the atomic line does not diminish the Hanle dip width. With amplitude fluctuations, even in the limit of monochromatic light, power broadening of the Hanle dip with intensity is reduced by one-third to one-half depending on the particular model.

  13. Microenvironmental influence on microtumour infiltration patterns: 3D-mathematical modelling supported by in vitro studies.

    PubMed

    Luján, Emmanuel; Soto, Daniela; Rosito, María S; Soba, Alejandro; Guerra, Liliana N; Calvo, Juan C; Marshall, Guillermo; Suárez, Cecilia

    2018-05-09

    Mathematical modelling approaches have become increasingly abundant in cancer research. Tumour infiltration extent and its spatial organization depend both on the tumour type and stage and on the bio-physicochemical characteristics of the microenvironment. This sets a complex scenario that often requires a multidisciplinary and individually adjusted approach. The ultimate goal of this work is to present an experimental/numerical combined method for the development of a three-dimensional mathematical model with the ability to reproduce the growth and infiltration patterns of a given avascular microtumour in response to different microenvironmental conditions. The model is based on a diffusion-convection reaction equation that considers logistic proliferation, volumetric growth, a rim of proliferative cells at the tumour surface, and invasion with diffusive and convective components. The parameter values of the model were fitted to experimental results while radial velocity and diffusion coefficients were made spatially variable in a case-specific way through the introduction of a shape function and a diffusion-limited-aggregation (DLA)-derived fractal matrix, respectively, according to the infiltration pattern observed. The in vitro model consists of multicellular tumour spheroids (MTSs) of an epithelial mammary tumour cell line (LM3) immersed in a collagen I gel matrix with a standard culture medium ("naive" matrix) or a conditioned medium from adipocytes or preadipocytes ("conditioned" matrix). It was experimentally determined that both adipocyte and preadipocyte conditioned media had the ability to change the MTS infiltration pattern from collective and laminar to an individual and atomized one. Numerical simulations were able to adequately reproduce qualitatively and quantitatively both kinds of infiltration patterns, which were determined by area quantification, analysis of fractal dimensions and lacunarity, and Bland-Altman analysis. These results suggest that the combined approach presented here could be established as a new framework with interesting potential applications at both the basic and clinical levels in the oncology area.

  14. Diffusion tensor imaging using multiple coils for mouse brain connectomics.

    PubMed

    Nouls, John C; Badea, Alexandra; Anderson, Robert B J; Cofer, Gary P; Allan Johnson, G

    2018-06-01

    The correlation between brain connectivity and psychiatric or neurological diseases has intensified efforts to develop brain connectivity mapping techniques on mouse models of human disease. The neural architecture of mouse brain specimens can be shown non-destructively and three-dimensionally by diffusion tensor imaging, which enables tractography, the establishment of a connectivity matrix and connectomics. However, experiments on cohorts of animals can be prohibitively long. To improve throughput in a 7-T preclinical scanner, we present a novel two-coil system in which each coil is shielded, placed off-isocenter along the axis of the magnet and connected to a receiver circuit of the scanner. Preservation of the quality factor of each coil is essential to signal-to-noise ratio (SNR) performance and throughput, because mouse brain specimen imaging at 7 T takes place in the coil-dominated noise regime. In that regime, we show a shielding configuration causing no SNR degradation in the two-coil system. To acquire data from several coils simultaneously, the coils are placed in the magnet bore, around the isocenter, in which gradient field distortions can bias diffusion tensor imaging metrics, affect tractography and contaminate measurements of the connectivity matrix. We quantified the experimental alterations in fractional anisotropy and eigenvector direction occurring in each coil. We showed that, when the coils were placed 12 mm away from the isocenter, measurements of the brain connectivity matrix appeared to be minimally altered by gradient field distortions. Simultaneous measurements on two mouse brain specimens demonstrated a full doubling of the diffusion tensor imaging throughput in practice. Each coil produced images devoid of shading or artifact. To further improve the throughput of mouse brain connectomics, we suggested a future expansion of the system to four coils. To better understand acceptable trade-offs between imaging throughput and connectivity matrix integrity, studies may seek to clarify how measurement variability, post-processing techniques and biological variability impact mouse brain connectomics. Copyright © 2018 John Wiley & Sons, Ltd.

  15. Minimisation of Signal Intensity Differences in Distortion Correction Approaches of Brain Magnetic Resonance Diffusion Tensor Imaging.

    PubMed

    Lee, Dong-Hoon; Lee, Do-Wan; Henry, David; Park, Hae-Jin; Han, Bong-Soo; Woo, Dong-Cheol

    2018-04-12

    To evaluate the effects of signal intensity differences between the b0 image and diffusion tensor imaging (DTI) in the image registration process. To correct signal intensity differences between the b0 image and DTI data, a simple image intensity compensation (SIMIC) method, which is a b0 image re-calculation process from DTI data, was applied before the image registration. The re-calculated b0 image (b0 ext ) from each diffusion direction was registered to the b0 image acquired through the MR scanning (b0 nd ) with two types of cost functions and their transformation matrices were acquired. These transformation matrices were then used to register the DTI data. For quantifications, the dice similarity coefficient (DSC) values, diffusion scalar matrix, and quantified fibre numbers and lengths were calculated. The combined SIMIC method with two cost functions showed the highest DSC value (0.802 ± 0.007). Regarding diffusion scalar values and numbers and lengths of fibres from the corpus callosum, superior longitudinal fasciculus, and cortico-spinal tract, only using normalised cross correlation (NCC) showed a specific tendency toward lower values in the brain regions. Image-based distortion correction with SIMIC for DTI data would help in image analysis by accounting for signal intensity differences as one additional option for DTI analysis. • We evaluated the effects of signal intensity differences at DTI registration. • The non-diffusion-weighted image re-calculation process from DTI data was applied. • SIMIC can minimise the signal intensity differences at DTI registration.

  16. Integrated Analysis Tools for Determination of Structural Integrity and Durability of High temperature Polymer Matrix Composites

    DTIC Science & Technology

    2008-08-18

    fidelity will be used to reduce the massive experimental testing and associated time required for qualification of new materials. Tools and...develping a model of the thermo-oxidative process for polymer systems, that incorporates the effects of reaction rates, Fickian diffusion, time varying...degradation processes. Year: 2005 Month: 12 Not required at this time . AIR FORCE OFFICE OF SCIENTIFIC KESEARCH 04 SEP 2008 Page 2 of 2 DTIC Data

  17. New experimental and analytical results for diffusion and swelling of resins used in graphite/epoxy composite materials

    NASA Technical Reports Server (NTRS)

    Hiel, C. C.; Adamson, M. J.

    1986-01-01

    The epoxy resins currently in use can slowly absorb moisture from the atmosphere over a long period. This reduces those mechanical properties of composites which depend strongly on the matrix, such as compressive strength and buckling instabilities. The effect becomes greater at elevated temperatures. The paper will discuss new phenomena which occur under simultaneous temperature and moisture variations. An analytical model will also be discussed and documented.

  18. Application of pulsed field gradient NMR techniques for investigating binding of flavor compounds to macromolecules.

    PubMed

    Jung, Da-Mi; De Ropp, Jeffrey S; Ebeler, Susan E

    2002-07-17

    Two diffusion-based NMR techniques are presented and used to investigate the binding of selected flavor compounds to macromolecules. A pulsed field gradient NMR (PFG-NMR) method was applied to measure the apparent diffusion coefficients of four alkanone compounds as they associated with bovine serum albumin (BSA). The change in the apparent diffusion coefficient as a function of the BSA/alkanone ratio was fitted to yield binding constants (K(a)()) and binding stoichiometry (n) for each alkanone. The results showed that the apparent diffusion coefficients of alkanones increased with a decrease in the BSA/alkanone ratios, and the measured values of K(a)() and n were comparable with those obtained with other methods and depended on the alkanone structure. A diffusion-based nuclear Overhauser effect (called diffusion NOE pumping) method was also applied to screen mixtures of flavor compounds and identify those that have a binding affinity to complex macromolecules. Using this technique benzaldehyde and vanillin were observed to bind with bovine serum albumin, whereas 2-phenylethanol was identified as a nonbinding or weakly binding ligand with BSA. The diffusion NOE pumping method was also applied to a hydro alcoholic solution of cacao bean tannin extracts to which a mixture of ethylbenzoate, benzaldehyde, and 2-phenylethanol was added. The diffusion NOE pumping technique clearly indicated that ethylbenzoate had a stronger binding affinity to the polymeric (-)-epicatechin units of the cacao bean tannin extracts than the other two flavor compounds. The results successfully demonstrate the potential applications of diffusion-based NMR techniques for studying flavors and nonvolatile food matrix interactions.

  19. Predicting neo-adjuvant chemotherapy response and progression-free survival of locally advanced breast cancer using textural features of intratumoral heterogeneity on F-18 FDG PET/CT and diffusion-weighted MR imaging.

    PubMed

    Yoon, Hai-Jeon; Kim, Yemi; Chung, Jin; Kim, Bom Sahn

    2018-03-30

    Predicting response to neo-adjuvant chemotherapy (NAC) and survival in locally advanced breast cancer (LABC) is important. This study investigated the prognostic value of tumor heterogeneity evaluated with textural analysis through F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) and diffusion-weighted imaging (DWI). We enrolled 83 patients with LABC who had completed NAC and curative surgery. Tumor texture indices from pretreatment FDG PET and DWI were extracted from histogram analysis and 7 different parent matrices: co-occurrence matrix, the voxel-alignment matrix, neighborhood intensity difference matrix, intensity size-zone matrix (ISZM), normalized gray-level co-occurrence matrix (NGLCM), neighboring gray-level dependence matrix (NGLDM), and texture spectrum matrix. The predictive values of textural features were tested regarding both pathologic NAC response and progression-free survival. Among 83 patients, 46 were pathologic responders, while 37 were nonresponders. The PET texture indices from 7 parent matrices, DWI texture indices from histogram, and 1 parent matrix (NGLCM) showed significant differences according to NAC response. On multivariable analysis, number nonuniformity of PET extracted from the NGLDM was an independent predictor of pathologic response (P = .009). During a median follow-up period of 17.3 months, 14 patients experienced recurrence. High-intensity zone emphasis (HIZE) and high-intensity short-zone emphasis (HISZE) from PET extracted from ISZM were significant textural predictors (P = .011 and P = .033). On Cox regression analysis, only HIZE was a significant predictor of recurrence (P = .027), while HISZE showed borderline significance (P = .107). Tumor texture indices are useful for NAC response prediction in LABC. Moreover, PET texture indices can help to predict disease recurrence. © 2018 Wiley Periodicals, Inc.

  20. [Effects of forest gap size and light intensity on herbaceous plants in Pinus koraiensis-dominated broadleaved mixed forest].

    PubMed

    Duan, Wen-Biao; Wang, Li-Xia; Chen, Li-Xin; Du, Shan; Wei, Quan-Shuai; Zhao, Jian-Hui

    2013-03-01

    1 m x 1 m fixed quadrats were parallelly arranged with a space of 2 m in each of six forest gaps in Pinus koraiensis-dominated broadleaved mixed forest, taking the gap center as the starting point and along east-west and south-north directions. In each quadrat, the coverage and abundance of herbaceous plants at different height levels were investigated by estimation method in June and September 2011, and the matrix characteristics within the quadrats were recorded. Canopy analyzer was used to take fish-eye photos in the selected overcast days in each month from June to September, 2011, and the relative light intensity was calculated by using Gap Light Analyzer 2.0 software. The differences in the relative light intensity and herbaceous plants coverage and richness between different gaps as well as the correlations between the coverage of each species and the direct light, diffuse light, and matrix were analyzed. The results showed that in opening areas and under canopy, the relative light intensity in large gaps was higher than that in small gaps, and the variation ranges of diffuse light and direct light from gap center to gap edge were bigger in large gaps than in small gaps. The direct light reaching at the ground both in large gaps and in small gaps was higher in the north than in the south direction. In the Z1, Z2, Z3, and Z4 zones, both the coverage and the richness of herbaceous plants were larger in large gaps than in small gaps, and the differences of species richness between large and small gaps reached significant level. The coverage of the majority of the herbaceous plants had significant correlations with diffuse light and matrix, and only the coverage of a few herbaceous plants was correlated with direct light.

  1. Diffusion modulation of DNA by toehold exchange

    NASA Astrophysics Data System (ADS)

    Rodjanapanyakul, Thanapop; Takabatake, Fumi; Abe, Keita; Kawamata, Ibuki; Nomura, Shinichiro M.; Murata, Satoshi

    2018-05-01

    We propose a method to control the diffusion speed of DNA molecules with a target sequence in a polymer solution. The interaction between solute DNA and diffusion-suppressing DNA that has been anchored to a polymer matrix is modulated by the concentration of the third DNA molecule called the competitor by a mechanism called toehold exchange. Experimental results show that the sequence-specific modulation of the diffusion coefficient is successfully achieved. The diffusion coefficient can be modulated up to sixfold by changing the concentration of the competitor. The specificity of the modulation is also verified under the coexistence of a set of DNA with noninteracting base sequences. With this mechanism, we are able to control the diffusion coefficient of individual DNA species by the concentration of another DNA species. This methodology introduces a programmability to a DNA-based reaction-diffusion system.

  2. On the matrix Fourier filtering problem for a class of models of nonlinear optical systems with a feedback

    NASA Astrophysics Data System (ADS)

    Razgulin, A. V.; Sazonova, S. V.

    2017-09-01

    A novel statement of the Fourier filtering problem based on the use of matrix Fourier filters instead of conventional multiplier filters is considered. The basic properties of the matrix Fourier filtering for the filters in the Hilbert-Schmidt class are established. It is proved that the solutions with a finite energy to the periodic initial boundary value problem for the quasi-linear functional differential diffusion equation with the matrix Fourier filtering Lipschitz continuously depend on the filter. The problem of optimal matrix Fourier filtering is formulated, and its solvability for various classes of matrix Fourier filters is proved. It is proved that the objective functional is differentiable with respect to the matrix Fourier filter, and the convergence of a version of the gradient projection method is also proved.

  3. A numerical solution for the diffusion equation in hydrogeologic systems

    USGS Publications Warehouse

    Ishii, A.L.; Healy, R.W.; Striegl, Robert G.

    1989-01-01

    The documentation of a computer code for the numerical solution of the linear diffusion equation in one or two dimensions in Cartesian or cylindrical coordinates is presented. Applications of the program include molecular diffusion, heat conduction, and fluid flow in confined systems. The flow media may be anisotropic and heterogeneous. The model is formulated by replacing the continuous linear diffusion equation by discrete finite-difference approximations at each node in a block-centered grid. The resulting matrix equation is solved by the method of preconditioned conjugate gradients. The conjugate gradient method does not require the estimation of iteration parameters and is guaranteed convergent in the absence of rounding error. The matrixes are preconditioned to decrease the steps to convergence. The model allows the specification of any number of boundary conditions for any number of stress periods, and the output of a summary table for selected nodes showing flux and the concentration of the flux quantity for each time step. The model is written in a modular format for ease of modification. The model was verified by comparison of numerical and analytical solutions for cases of molecular diffusion, two-dimensional heat transfer, and axisymmetric radial saturated fluid flow. Application of the model to a hypothetical two-dimensional field situation of gas diffusion in the unsaturated zone is demonstrated. The input and output files are included as a check on program installation. The definition of variables, input requirements, flow chart, and program listing are included in the attachments. (USGS)

  4. Effect of polyethyleneimine modified graphene on the mechanical and water vapor barrier properties of methyl cellulose composite films.

    PubMed

    Liu, Hongyu; Liu, Cuiyun; Peng, Shuge; Pan, Bingli; Lu, Chang

    2018-02-15

    A series of novel methyl cellulose (MC) composite films were prepared using polyethyleneimine reduced graphene oxide (PEI-RGO) as an effective filler for water vapor barrier application. The as-prepared PEI-RGO/MC composites were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, tensile test and scanning electron microscopy. The experimental and theoretical results exhibited that PEI-RGO was uniformly dispersed in the MC matrix without aggregation and formed an aligned dispersion. The addition of PEI-RGO resulted in an enhanced surface hydrophobicity and a tortuous diffusion pathway for water molecules. Water vapor permeability of PEI-RGO/MC with loading of 3.0% of surface modified graphene was as low as 5.98×10 -11 gmm -2 s -1 Pa -1 . The synergistic effects of enhanced surface hydrophobicity and tortuous diffusion pathway were accounted for the improved water vapor barrier performance of the PEI-RGO/MC composite films. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Low Temperature Diffusion Transformations in Fe-Ni-Ti Alloys During Deformation and Irradiation

    NASA Astrophysics Data System (ADS)

    Sagaradze, Victor; Shabashov, Valery; Kataeva, Natalya; Kozlov, Kirill; Arbuzov, Vadim; Danilov, Sergey; Ustyugov, Yury

    2018-03-01

    The deformation-induced dissolution of Ni3Ti intermetallics in the matrix of austenitic alloys of Fe-36Ni-3Ti type was revealed in the course of their cascade-forming neutron irradiation and cold deformation at low temperatures via employment of Mössbauer method. The anomalous deformation-related dissolution of the intermetallics has been explained by the migration of deformation-induced interstitial atoms from the particles into a matrix in the stress field of moving dislocations. When rising the deformation temperature, this process is substituted for by the intermetallics precipitation accelerated by point defects. A calculation of diffusion processes has shown the possibility of the realization of the low-temperature diffusion of interstitial atoms in configurations of the crowdions and dumbbell pairs at 77-173 K. The existence of interstitial atoms in the Fe-36Ni alloy irradiated by electrons or deformed at 77 K was substantiated in the experiments of the electrical resistivity measurements.

  6. Recommendation based on trust diffusion model.

    PubMed

    Yuan, Jinfeng; Li, Li

    2014-01-01

    Recommender system is emerging as a powerful and popular tool for online information relevant to a given user. The traditional recommendation system suffers from the cold start problem and the data sparsity problem. Many methods have been proposed to solve these problems, but few can achieve satisfactory efficiency. In this paper, we present a method which combines the trust diffusion (DiffTrust) algorithm and the probabilistic matrix factorization (PMF). DiffTrust is first used to study the possible diffusions of trust between various users. It is able to make use of the implicit relationship of the trust network, thus alleviating the data sparsity problem. The probabilistic matrix factorization (PMF) is then employed to combine the users' tastes with their trusted friends' interests. We evaluate the algorithm on Flixster, Moviedata, and Epinions datasets, respectively. The experimental results show that the recommendation based on our proposed DiffTrust + PMF model achieves high performance in terms of the root mean square error (RMSE), Recall, and F Measure.

  7. Recommendation Based on Trust Diffusion Model

    PubMed Central

    Li, Li

    2014-01-01

    Recommender system is emerging as a powerful and popular tool for online information relevant to a given user. The traditional recommendation system suffers from the cold start problem and the data sparsity problem. Many methods have been proposed to solve these problems, but few can achieve satisfactory efficiency. In this paper, we present a method which combines the trust diffusion (DiffTrust) algorithm and the probabilistic matrix factorization (PMF). DiffTrust is first used to study the possible diffusions of trust between various users. It is able to make use of the implicit relationship of the trust network, thus alleviating the data sparsity problem. The probabilistic matrix factorization (PMF) is then employed to combine the users' tastes with their trusted friends' interests. We evaluate the algorithm on Flixster, Moviedata, and Epinions datasets, respectively. The experimental results show that the recommendation based on our proposed DiffTrust + PMF model achieves high performance in terms of the root mean square error (RMSE), Recall, and F Measure. PMID:25009827

  8. Thermogravimetric analysis for rapid assessment of moisture diffusivity in polydisperse powder and thin film matrices.

    PubMed

    Thirunathan, Praveena; Arnz, Patrik; Husny, Joeska; Gianfrancesco, Alessandro; Perdana, Jimmy

    2018-03-01

    Accurate description of moisture diffusivity is key to precisely understand and predict moisture transfer behaviour in a matrix. Unfortunately, measuring moisture diffusivity is not trivial, especially at low moisture values and/or elevated temperatures. This paper presents a novel experimental procedure to accurately measure moisture diffusivity based on thermogravimetric approach. The procedure is capable to measure diffusivity even at elevated temperatures (>70°C) and low moisture values (>1%). Diffusivity was extracted from experimental data based on "regular regime approach". The approach was tailored to determine diffusivity from thin film and from poly-dispersed powdered samples. Subsequently, measured diffusivity was validated by comparing to available literature data, showing good agreement. Ability of this approach to accurately measure diffusivity at a wider range of temperatures provides better insight on temperature dependency of diffusivity. Thus, this approach can be crucial to ensure good accuracy of moisture transfer description/prediction especially when involving elevated temperatures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Diffusion MRI noise mapping using random matrix theory

    PubMed Central

    Veraart, Jelle; Fieremans, Els; Novikov, Dmitry S.

    2016-01-01

    Purpose To estimate the spatially varying noise map using a redundant magnitude MR series. Methods We exploit redundancy in non-Gaussian multi-directional diffusion MRI data by identifying its noise-only principal components, based on the theory of noisy covariance matrices. The bulk of PCA eigenvalues, arising due to noise, is described by the universal Marchenko-Pastur distribution, parameterized by the noise level. This allows us to estimate noise level in a local neighborhood based on the singular value decomposition of a matrix combining neighborhood voxels and diffusion directions. Results We present a model-independent local noise mapping method capable of estimating noise level down to about 1% error. In contrast to current state-of-the art techniques, the resultant noise maps do not show artifactual anatomical features that often reflect physiological noise, the presence of sharp edges, or a lack of adequate a priori knowledge of the expected form of MR signal. Conclusions Simulations and experiments show that typical diffusion MRI data exhibit sufficient redundancy that enables accurate, precise, and robust estimation of the local noise level by interpreting the PCA eigenspectrum in terms of the Marchenko-Pastur distribution. PMID:26599599

  10. In vitro dissolution kinetic study of theophylline from hydrophilic and hydrophobic matrices.

    PubMed

    Maswadeh, Hamzah M; Semreen, Mohammad H; Abdulhalim, Abdulatif A

    2006-01-01

    Oral dosage forms containing 300 mg theophylline in matrix type tablets, were prepared by direct compression method using two kinds of matrices, glycerylbehenate (hydrophobic), and (hydroxypropyl)methyl cellulose (hydrophilic). The in vitro release kinetics of these formulations were studied at pH 6.8 using the USP dissolution apparatus with the paddle assemble. The kinetics of the dissolution process were studied by analyzing the dissolution data using four kinetic equations, the zero-order equation, the first-order equation, the Higuchi square root equation and the Hixson-Crowell cube root law. The analysis of the dissolution kinetic data for the theophylline preparations in this study shows that it follows the first order kinetics and the release process involves erosion / diffusion and an alteration in the surface area and diameter of the matrix system, as well as in the diffusion path length from the matrix drug load during the dissolution process. This relation is best described by the use of both the first-order equation and the Hixson-Crowell cube root law.

  11. Formulation and evaluation of diclofenac controlled release matrix tablets made of HPMC and Poloxamer 188 polymer: An assessment on mechanism of drug release.

    PubMed

    Al-Hanbali, Othman A; Hamed, Rania; Arafat, Mosab; Bakkour, Youssef; Al-Matubsi, Hisham; Mansour, Randa; Al-Bataineh, Yazan; Aldhoun, Mohammad; Sarfraz, Muhammad; Dardas, Abdel Khaleq Yousef

    2018-01-01

    In this study, hydrophilic hydroxypropyl methylcellulose matrices with various concentrations of Poloxamer 188 were used in the development of oral controlled release tablets containing diclofenac sodium. Four formulations of hydrophilic matrix tablets containing 16.7% w/w HPMC and 0, 6.7, 16.7 and 25.0% w/w Poloxamer 188, respectively, were developed. Tablets were prepared by direct compression and characterized for diameter, hardness, thickness, weight and uniformity of content. The influence of various blends of hydroxypropyl methylcellulose and Poloxamer 188 on the in vitro dissolution profile and mechanism of drug release of was investigated. In the four formulations, the rate of drug release decreased with increasing the concentration of Poloxamer 188 at the initial dissolution stages due to the increase in the apparent viscosity of the gel diffusion layer. However, in the late dissolution stages, the rate of drug release increased with increasing Poloxamer 188 concentration due to the increase in wettability and dissolution of the matrix. The kinetic of drug release from the tablets followed non-Fickian mechanism, as predicted by Korsmeyer-Peppas model, which involves diffusion through the gel layer and erosion of the matrix system.

  12. Fast mean and variance computation of the diffuse sound transmission through finite-sized thick and layered wall and floor systems

    NASA Astrophysics Data System (ADS)

    Decraene, Carolina; Dijckmans, Arne; Reynders, Edwin P. B.

    2018-05-01

    A method is developed for computing the mean and variance of the diffuse field sound transmission loss of finite-sized layered wall and floor systems that consist of solid, fluid and/or poroelastic layers. This is achieved by coupling a transfer matrix model of the wall or floor to statistical energy analysis subsystem models of the adjacent room volumes. The modal behavior of the wall is approximately accounted for by projecting the wall displacement onto a set of sinusoidal lateral basis functions. This hybrid modal transfer matrix-statistical energy analysis method is validated on multiple wall systems: a thin steel plate, a polymethyl methacrylate panel, a thick brick wall, a sandwich panel, a double-leaf wall with poro-elastic material in the cavity, and a double glazing. The predictions are compared with experimental data and with results obtained using alternative prediction methods such as the transfer matrix method with spatial windowing, the hybrid wave based-transfer matrix method, and the hybrid finite element-statistical energy analysis method. These comparisons confirm the prediction accuracy of the proposed method and the computational efficiency against the conventional hybrid finite element-statistical energy analysis method.

  13. The controversial nuclear matrix: a balanced point of view.

    PubMed

    Martelli, A M; Falcieri, E; Zweyer, M; Bortul, R; Tabellini, G; Cappellini, A; Cocco, L; Manzoli, L

    2002-10-01

    The nuclear matrix is defined as the residual framework after the removal of the nuclear envelope, chromatin, and soluble components by sequential extractions. According to several investigators the nuclear matrix provides the structural basis for intranuclear order. However, the existence itself and the nature of this structure is still uncertain. Although the techniques used for the visualization of the nuclear matrix have improved over the years, it is still unclear to what extent the isolated nuclear matrix corresponds to an in vivo existing structure. Therefore, considerable skepticism continues to surround the nuclear matrix fraction as an accurate representation of the situation in living cells. Here, we summarize the experimental evidence in favor of, or against, the presence of a diffuse nucleoskeleton as a facilitating organizational nonchromatin structure of the nucleus.

  14. Dynamic characterization of external and internal mass transport in heterotrophic biofilms from microsensors measurements.

    PubMed

    Guimerà, Xavier; Dorado, Antonio David; Bonsfills, Anna; Gabriel, Gemma; Gabriel, David; Gamisans, Xavier

    2016-10-01

    Knowledge of mass transport mechanisms in biofilm-based technologies such as biofilters is essential to improve bioreactors performance by preventing mass transport limitation. External and internal mass transport in biofilms was characterized in heterotrophic biofilms grown on a flat plate bioreactor. Mass transport resistance through the liquid-biofilm interphase and diffusion within biofilms were quantified by in situ measurements using microsensors with a high spatial resolution (<50 μm). Experimental conditions were selected using a mathematical procedure based on the Fisher Information Matrix to increase the reliability of experimental data and minimize confidence intervals of estimated mass transport coefficients. The sensitivity of external and internal mass transport resistances to flow conditions within the range of typical fluid velocities over biofilms (Reynolds numbers between 0.5 and 7) was assessed. Estimated external mass transfer coefficients at different liquid phase flow velocities showed discrepancies with studies considering laminar conditions in the diffusive boundary layer near the liquid-biofilm interphase. The correlation of effective diffusivity with flow velocities showed that the heterogeneous structure of biofilms defines the transport mechanisms inside biofilms. Internal mass transport was driven by diffusion through cell clusters and aggregates at Re below 2.8. Conversely, mass transport was driven by advection within pores, voids and water channels at Re above 5.6. Between both flow velocities, mass transport occurred by a combination of advection and diffusion. Effective diffusivities estimated at different biofilm densities showed a linear increase of mass transport resistance due to a porosity decrease up to biofilm densities of 50 g VSS·L(-1). Mass transport was strongly limited at higher biofilm densities. Internal mass transport results were used to propose an empirical correlation to assess the effective diffusivity within biofilms considering the influence of hydrodynamics and biofilm density. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. In Vitro Investigation of Influences of Chitosan Nanoparticles on Fluorescein Permeation into Alveolar Macrophages.

    PubMed

    Chachuli, Siti Haziyah Mohd; Nawaz, Asif; Shah, Kifayatullah; Naharudin, Idanawati; Wong, Tin Wui

    2016-06-01

    Pulmonary infection namely tuberculosis is characterized by alveolar macrophages harboring a large microbe population. The chitosan nanoparticles exhibit fast extracellular drug release in aqueous biological milieu. This study investigated the matrix effects of chitosan nanoparticles on extracellular drug diffusion into macrophages. Oligo, low, medium and high molecular weight chitosan nanoparticles were prepared by nanospray drying technique. These nanoparticles were incubated with alveolar macrophages in vitro and had model drug sodium fluorescein added into the same cell culture. The diffusion characteristics of sodium fluorescein and nanoparticle behavior were investigated using fluorescence microscopy, scanning electron microscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy techniques. The oligochitosan nanoparticles enabled macrophage membrane fluidization with the extent of sodium fluorescein entry into macrophages being directly governed by the nanoparticle loading. Using nanoparticles made of higher molecular weight chitosan, sodium fluorescein permeation into macrophages was delayed due to viscous chitosan diffusion barrier at membrane boundary. Macrophage-chitosan nanoparticle interaction at membrane interface dictates drug migration into cellular domains.

  16. NMR imaging of high-amylose starch tablets. 1. Swelling and water uptake.

    PubMed

    Baille, Wilms E; Malveau, Cédric; Zhu, Xiao Xia; Marchessault, Robert H

    2002-01-01

    Pharmaceutical tablets made of modified high-amylose starch have a hydrophilic polymer matrix into which water can penetrate with time to form a hydrogel. Nuclear magnetic resonance imaging was used to study the water penetration and the swelling of the matrix of these tablets. The tablets immersed in water were imaged at different time intervals on a 300 MHz NMR spectrometer. Radial images show clearly the swelling of the tablets and the water concentration profile. The rate constants for water diffusion and the tablet swelling were extracted from the experimental data. The water diffusion process was found to follow case II kinetics at 25 degrees C. NMR imaging also provided spin density profiles of the water penetrating inside the tablets.

  17. Simultaneous infrared and UV-visible absorption spectra of matrix-isolated carbon vapor

    NASA Technical Reports Server (NTRS)

    Kurtz, Joe; Huffman, Donald R.

    1989-01-01

    Carbon molecules were suggested as possible carriers of the diffuse interstellar bands. In particular, it was proposed that the 443 nm diffuse interstellar band is due to the same molecule which gives rise to the 447 nm absorption feature in argon matrix-isolated carbon vapor. If so, then an associated C-C stretching mode should be seen in the IR. By doing spectroscopy in both the IR and UV-visible regions on the same sample, the present work provides evidence for correlating UV-visible absorption features with those found in the IR. Early data indicates no correlation between the strongest IR feature (1997/cm) and the 447 nm band. Correlation with weaker IR features is being investigated.

  18. Effect of Nb Content on Mechanical Behavior and Structural Properties of W/(Zr55Cu30Al10Ni5)100- x Nb x Composite

    NASA Astrophysics Data System (ADS)

    Mahmoodan, Morteza; Gholamipour, Reza; Mirdamadi, Shamseddin; Nategh, Said

    2017-05-01

    In the present study, (Zr55Cu30Al10Ni5)100- x Nb( x=0,1,2,3) bulk metallic glass matrix/tungsten wire composites were fabricated by infiltration process. Structural studies were investigated by scanning electron microscopy and X-ray diffraction method. Also, mechanical behaviors of the materials were analyzed using quasi-static compressive tests. Results indicated that the best mechanical properties i.e., 2105 MPa compressive ultimate strength and 28 pct plastic strain before failure, were achieved in the composite sample with X = 2. It was also found that adding Nb to the matrix modified interface structure in W fiber/(Zr55Cu30Al10Ni5)98Nb2 since the stable diffusion band formation acts as a functionally graded layer. Finally, the observation of multiple shear bands formation in the matrix could confirm the excellent plastic deformation behavior of the composite.

  19. Development of RWHet to Simulate Contaminant Transport in Fractured Porous Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yong; LaBolle, Eric; Reeves, Donald M

    2012-07-01

    Accurate simulation of matrix diffusion in regional-scale dual-porosity and dual-permeability media is a critical issue for the DOE Underground Test Area (UGTA) program, given the prevalence of fractured geologic media on the Nevada National Security Site (NNSS). Contaminant transport through regional-scale fractured media is typically quantified by particle-tracking based Lagrangian solvers through the inclusion of dual-domain mass transfer algorithms that probabilistically determine particle transfer between fractures and unfractured matrix blocks. UGTA applications include a wide variety of fracture aperture and spacing, effective diffusion coefficients ranging four orders of magnitude, and extreme end member retardation values. This report incorporates the currentmore » dual-domain mass transfer algorithms into the well-known particle tracking code RWHet [LaBolle, 2006], and then tests and evaluates the updated code. We also develop and test a direct numerical simulation (DNS) approach to replace the classical transfer probability method in characterizing particle dynamics across the fracture/matrix interface. The final goal of this work is to implement the algorithm identified as most efficient and effective into RWHet, so that an accurate and computationally efficient software suite can be built for dual-porosity/dual-permeability applications. RWHet is a mature Lagrangian transport simulator with a substantial user-base that has undergone significant development and model validation. In this report, we also substantially tested the capability of RWHet in simulating passive and reactive tracer transport through regional-scale, heterogeneous media. Four dual-domain mass transfer methodologies were considered in this work. We first developed the empirical transfer probability approach proposed by Liu et al. [2000], and coded it into RWHet. The particle transfer probability from one continuum to the other is proportional to the ratio of the mass entering the other continuum to the mass in the current continuum. Numerical examples show that this method is limited to certain ranges of parameters, due to an intrinsic assumption of an equilibrium concentration profile in the matrix blocks in building the transfer probability. Subsequently, this method fails in describing mass transfer for parameter combinations that violate this assumption, including small diffusion coefficients (i.e., the free-water molecular diffusion coefficient 1×10-11 meter2/second), relatively large fracture spacings (such as meter), and/or relatively large matrix retardation coefficients (i.e., ). These “outliers” in parameter range are common in UGTA applications. To address the above limitations, we then developed a Direct Numerical Simulation (DNS)-Reflective method. The novel DNS-Reflective method can directly track the particle dynamics across the fracture/matrix interface using a random walk, without any empirical assumptions. This advantage should make the DNS-Reflective method feasible for a wide range of parameters. Numerical tests of the DNS-Reflective, however, show that the method is computationally very demanding, since the time step must be very small to resolve particle transfer between fractures and matrix blocks. To improve the computational efficiency of the DNS approach, we then adopted Roubinet et al.’s method [2009], which uses first passage time distributions to simulate dual-domain mass transfer. The DNS-Roubinet method was found to be computationally more efficient than the DNS-Reflective method. It matches the analytical solution for the whole range of major parameters (including diffusion coefficient and fracture aperture values that are considered “outliers” for Liu et al.’s transfer probability method [2000]) for a single fracture system. The DNS-Roubinet method, however, has its own disadvantage: for a parallel fracture system, the truncation of the first passage time distribution creates apparent errors when the fracture spacing is small, and thus it tends to erroneously predict breakthrough curves (BTCs) for the parallel fracture system. Finally, we adopted the transient range approach proposed by Pan and Bodvarsson [2002] in RWHet. In this method, particle transfer between fractures and matrix blocks can be resolved without using very small time steps. It does not use any truncation of the first passage time distribution for particles. Hence it does not have the limitation identified above for the DNS-Reflective method and the DNS-Roubinet method. Numerical results were checked against analytical solutions, and also compared to DCPTV2.0 [Pan, 2002]. This version of RWHet (called RWHet-Pan&Bodvarsson in this report) can accurately capture contaminant transport in fractured porous media for a full range of parameters without any practical or theoretical limitations.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Dan, E-mail: danzhou@is.mpg.de; Sigle, Wilfried; Wang, Yi

    We studied ZrO{sub 2} − La{sub 2/3}Sr{sub 1/3}MnO{sub 3} pillar–matrix thin films which were found to show anomalous magnetic and electron transport properties. With the application of an aberration-corrected transmission electron microscope, interfacial chemistry, and atomic-arrangement of the system, especially of the pillar–matrix interface were revealed at atomic resolution. Minor amounts of Zr were found to occupy Mn positions within the matrix. The Zr concentration reaches a minimum near the pillar–matrix interface accompanied by oxygen vacancies. La and Mn diffusion into the pillar was revealed at atomic resolution and a concomitant change of the Mn valence state was observed.

  1. Growth of polymer-metal nanocomposites by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Röder, Johanna; Faupel, Jörg; Krebs, Hans-Ulrich

    2008-12-01

    Complex polymer-metal nanocomposites have a wide range of applications, e.g. as flexible displays and packaging materials. Pulsed laser deposition was applied to form nanostructured materials consisting of metal clusters (Ag, Au, Pd and Cu) embedded in a polymer (polycarbonate, PC) matrix. The size and amount of the metal clusters are controlled by the number of laser pulses hitting the respective targets. For Cu and Pd, smaller clusters and higher cluster densities are obtained as in the cases of Ag and Au due to a stronger reactivity with the polymers and thus a lower diffusivity. Implantation effects, differences in metal diffusivity and reactivity on the polymer surfaces, and the coalescence properties are discussed with respect to the observed microstructures on PC and compared to the metal growth on poly (methyl methacrylate), PMMA.

  2. Porous carbon derived from Sunflower as a host matrix for ultra-stable lithium-selenium battery.

    PubMed

    Jia, Min; Niu, Yubin; Mao, Cuiping; Liu, Sangui; Zhang, Yan; Bao, Shu-Juan; Xu, Maowen

    2017-03-15

    A novel porous carbon material using the spongy tissue of sunflower as raw material is reported for the first time. The obtained porous carbon has an extremely high surface area of 2493.0m 2 g -1 , which is beneficial to focus on encapsulating selenium in it and have an inhibiting effect about diffusion of polyselenides over the charge/discharge processes used as the host matrix for Li-Se battery. The porous carbon/Se composite electrode with 63wt% selenium delivers a high specific capacitance of 319mAhg -1 of the initial capacity, and maintains 290mAhg -1 , representing an extremely high capacity retention of 90.9% after 840 cycles with the rate of 1C. Copyright © 2016. Published by Elsevier Inc.

  3. Diffusion Behavior of Mn and Si Between Liquid Oxide Inclusions and Solid Iron-Based Alloy at 1473 K

    NASA Astrophysics Data System (ADS)

    Kim, Sun-Joong; Tago, Hanae; Kim, Kyung-Ho; Kitamura, Shin-ya; Shibata, Hiroyuki

    2018-06-01

    In order to clarify the changes in the composition of oxide inclusions in steel, the effect of the metal and oxide composition on the reaction between solid Fe-based alloys and liquid multi-component oxides was investigated using the diffusion couple method at 1473 K. The measured concentration gradients of Mn and Si in the metal indicated that Mn diffused into the metal from the oxide, while the diffusion of Si occurred in the opposite direction. In addition, the MnO content in the oxide decreased with heat treatment time, while the SiO2 content increased. The compositional changes in both phases indicated that the Mn content in the metal near the interface increased with heat treatment with decreasing MnO content in the oxide. Assuming local equilibrium at the interface, the calculated [Mn]2/[Si] ratio at the interface in equilibrium with the oxide increased with increases in the MnO/SiO2 ratio in the oxide. The difference in the [Mn]2/[Si] ratios between the interface and the metal matrix increased, which caused the diffusion of Mn and Si between the multi-component oxide and metal. By measuring the diffusion lengths of Mn and Si in the metal, the chemical diffusion coefficients of Mn and Si were obtained to calculate the composition changes in Mn and Si in the metal. The calculated changes in Mn and Si in the metal agreed with the experimental results.

  4. A cross-diffusion system derived from a Fokker-Planck equation with partial averaging

    NASA Astrophysics Data System (ADS)

    Jüngel, Ansgar; Zamponi, Nicola

    2017-02-01

    A cross-diffusion system for two components with a Laplacian structure is analyzed on the multi-dimensional torus. This system, which was recently suggested by P.-L. Lions, is formally derived from a Fokker-Planck equation for the probability density associated with a multi-dimensional Itō process, assuming that the diffusion coefficients depend on partial averages of the probability density with exponential weights. A main feature is that the diffusion matrix of the limiting cross-diffusion system is generally neither symmetric nor positive definite, but its structure allows for the use of entropy methods. The global-in-time existence of positive weak solutions is proved and, under a simplifying assumption, the large-time asymptotics is investigated.

  5. On the Maxwell-Stefan approach to diffusion: a general resolution in the transient regime for one-dimensional systems.

    PubMed

    Leonardi, Erminia; Angeli, Celestino

    2010-01-14

    The diffusion process in a multicomponent system can be formulated in a general form by the generalized Maxwell-Stefan equations. This formulation is able to describe the diffusion process in different systems, such as, for instance, bulk diffusion (in the gas, liquid, and solid phase) and diffusion in microporous materials (membranes, zeolites, nanotubes, etc.). The Maxwell-Stefan equations can be solved analytically (only in special cases) or by numerical approaches. Different numerical strategies have been previously presented, but the number of diffusing species is normally restricted, with only few exceptions, to three in bulk diffusion and to two in microporous systems, unless simplifications of the Maxwell-Stefan equations are considered. In the literature, a large effort has been devoted to the derivation of the analytic expression of the elements of the Fick-like diffusion matrix and therefore to the symbolic inversion of a square matrix with dimensions n x n (n being the number of independent components). This step, which can be easily performed for n = 2 and remains reasonable for n = 3, becomes rapidly very complex in problems with a large number of components. This paper addresses the problem of the numerical resolution of the Maxwell-Stefan equations in the transient regime for a one-dimensional system with a generic number of components, avoiding the definition of the analytic expression of the elements of the Fick-like diffusion matrix. To this aim, two approaches have been implemented in a computational code; the first is the simple finite difference second-order accurate in time Crank-Nicolson scheme for which the full mathematical derivation and the relevant final equations are reported. The second is based on the more accurate backward differentiation formulas, BDF, or Gear's method (Shampine, L. F. ; Gear, C. W. SIAM Rev. 1979, 21, 1.), as implemented in the Livermore solver for ordinary differential equations, LSODE (Hindmarsh, A. C. Serial Fortran Solvers for ODE Initial Value Problems, Technical Report; https://computation.llnl.gov/casc/odepack/odepack_ home.html (2006).). Both methods have been applied to a series of specific problems, such as bulk diffusion of acetone and methanol through stagnant air, uptake of two components on a microporous material in a model system, and permeation across a microporous membrane in model systems, both with the aim to validate the method and to add new information to the comprehension of the peculiar behavior of these systems. The approach is validated by comparison with different published results and with analytic expressions for the steady-state concentration profiles or fluxes in particular systems. The possibility to treat a generic number of components (the limitation being essentially the computational power) is also tested, and results are reported on the permeation of a five component mixture through a membrane in a model system. It is worth noticing that the algorithm here reported can be applied also to the Fick formulation of the diffusion problem with concentration-dependent diffusion coefficients.

  6. Understanding micro-diffusion bonding from the fabrication of B4C/Ni composites

    NASA Astrophysics Data System (ADS)

    Wang, Miao; Wang, Wen-xian; Chen, Hong-sheng; Li, Yu-li

    2018-03-01

    A Ni-B4C macroscopic diffusion welding couple and a Ni-15wt%B4C composite fabricated by spark plasma sintering (SPS) were used to understand the micro-scale diffusion bonding between metals and ceramics. In the Ni-B4C macroscopic diffusion welding couple a perfect diffusion welding joint was achieved. In the Ni-15wt%B4C sample, microstructure analyses demonstrated that loose structures occurred around the B4C particles. Energy dispersive X-ray spectroscopy analyses revealed that during the SPS process, the process of diffusion bonding between Ni and B4C particles can be divided into three stages. By employing a nano-indentation test, the room-temperature fracture toughness of the Ni matrix was found to be higher than that of the interface. The micro-diffusion bonding between Ni and B4C particles is quite different from the Ni-B4C reaction couple.

  7. Diffusive counter dispersion of mass in bubbly media.

    PubMed

    Goldobin, Denis S; Brilliantov, Nikolai V

    2011-11-01

    We consider a liquid bearing gas bubbles in a porous medium. When gas bubbles are immovably trapped in a porous matrix by surface-tension forces, the dominant mechanism of transfer of gas mass becomes the diffusion of gas molecules through the liquid. Essentially, the gas solution is in local thermodynamic equilibrium with vapor phase all over the system, i.e., the solute concentration equals the solubility. When temperature and/or pressure gradients are applied, diffusion fluxes appear and these fluxes are faithfully determined by the temperature and pressure fields, not by the local solute concentration, which is enslaved by the former. We derive the equations governing such systems, accounting for thermodiffusion and gravitational segregation effects, which are shown not to be neglected for geological systems-marine sediments, terrestrial aquifers, etc. The results are applied for the treatment of non-high-pressure systems and real geological systems bearing methane or carbon dioxide, where we find a potential possibility of the formation of gaseous horizons deep below a porous medium surface. The reported effects are of particular importance for natural methane hydrate deposits and the problem of burial of industrial production of carbon dioxide in deep aquifers.

  8. Diffusion of Chlorinated Organic Contaminants into Aquitards: Enhanced by the Flocculation of Clay?

    NASA Astrophysics Data System (ADS)

    Ayral, D.; Otero, M.; Demond, A. H.; Goltz, M. N.; Huang, J.

    2011-12-01

    Waste organic contaminants stored in low permeability subsurface layers serve as long-term sources for dissolved phase contaminant plumes. Current models consider the movement into and out of aquitards or other low permeability layers to occur through transverse diffusion. Yet, field evidence suggests higher transport rates of contaminants than can be accounted for by diffusion alone. Waste organic liquids contain both organic liquid solvents as well as surface-active solutes. Measurements using montmorillonite in contact with pure chlorinated organic liquids such as trichloroethylene (TCE) showed that the basal spacing is similar to the case of montmorillonite in contact with air, thus suggesting that these fluids have similar flocculation effects. On the other hand, the basal spacing increased in contact with aqueous surfactant solutions. Measurements of the basal spacing in contact with a TCE waste gave the same results as with pure TCE, suggesting that effect on basal spacing is dominated by the organic solvent matrix rather than by the surfactant content. Since flocculation can lead to cracking, this behavior suggests that aquitards underlying aquifers contaminated with chlorinated organic wastes may develop cracks, thus enhancing the transport into low permeability layers.

  9. Matrix exponential-based closures for the turbulent subgrid-scale stress tensor.

    PubMed

    Li, Yi; Chevillard, Laurent; Eyink, Gregory; Meneveau, Charles

    2009-01-01

    Two approaches for closing the turbulence subgrid-scale stress tensor in terms of matrix exponentials are introduced and compared. The first approach is based on a formal solution of the stress transport equation in which the production terms can be integrated exactly in terms of matrix exponentials. This formal solution of the subgrid-scale stress transport equation is shown to be useful to explore special cases, such as the response to constant velocity gradient, but neglecting pressure-strain correlations and diffusion effects. The second approach is based on an Eulerian-Lagrangian change of variables, combined with the assumption of isotropy for the conditionally averaged Lagrangian velocity gradient tensor and with the recent fluid deformation approximation. It is shown that both approaches lead to the same basic closure in which the stress tensor is expressed as the matrix exponential of the resolved velocity gradient tensor multiplied by its transpose. Short-time expansions of the matrix exponentials are shown to provide an eddy-viscosity term and particular quadratic terms, and thus allow a reinterpretation of traditional eddy-viscosity and nonlinear stress closures. The basic feasibility of the matrix-exponential closure is illustrated by implementing it successfully in large eddy simulation of forced isotropic turbulence. The matrix-exponential closure employs the drastic approximation of entirely omitting the pressure-strain correlation and other nonlinear scrambling terms. But unlike eddy-viscosity closures, the matrix exponential approach provides a simple and local closure that can be derived directly from the stress transport equation with the production term, and using physically motivated assumptions about Lagrangian decorrelation and upstream isotropy.

  10. Intra-Articular Lubricin Gene Therapy for Post-Traumatic Arthritis

    DTIC Science & Technology

    2015-09-01

    recreational activities. In our previously funded work, we developed the Yucatan minipig as a large animal model of PTOA following an intra-articular...65% in the deep zone. Water allows load-dependent deformation of the cartilage. It provides nutrition and medium for lubrication, creating a low...spread within the matrix. Chondrocytes receive their nutrition by diffusion through the matrix. Chondrocytes are specialized cells for synthesizing

  11. High Chromium Cast Irons: Destabilized-Subcritical Secondary Carbide Precipitation and Its Effect on Hardness and Wear Properties

    NASA Astrophysics Data System (ADS)

    Guitar, María Agustina; Suárez, Sebastián; Prat, Orlando; Duarte Guigou, Martín; Gari, Valentina; Pereira, Gastón; Mücklich, Frank

    2018-05-01

    This work evaluates the effect of a destabilization treatment combined with a subcritical diffusion (SCD) and a subsequent quenching (Q) steps on precipitation of secondary carbides and their influence on the wear properties of HCCI (16%Cr). The destabilization of the austenite at high temperature leads to a final microstructure composed of eutectic and secondary carbides, with an M7C3 nature, embedded in a martensitic matrix. An improved wear resistance was observed in the SCD + Q samples in comparison with the Q one, which was attributed to the size of secondary carbides.

  12. Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Liu, Feng (Inventor); Lax, Melvin (Inventor); Das, Bidyut B. (Inventor)

    1999-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: ##EQU1## wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/<.DELTA.Xj.DELTA.Xj> Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absoption information. An algorithm, which combines a two dimensional (2D) matrix inversion with a one-dimensional (1D) Fourier transform inversion is used to obtain images of three dimensional hidden objects in turbid scattering media.

  13. Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Gayen, Swapan K. (Inventor)

    2000-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/<.DELTA.Xj.DELTA.Xj> Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absorption information. An algorithm, which combines a two dimensional (2D) matrix inversion with a one-dimensional (1D) Fourier transform inversion is used to obtain images of three dimensional hidden objects in turbid scattering media.

  14. A novel approach for blood purification: mixed-matrix membranes combining diffusion and adsorption in one step.

    PubMed

    Tijink, Marlon S L; Wester, Maarten; Sun, Junfen; Saris, Anno; Bolhuis-Versteeg, Lydia A M; Saiful, Saiful; Joles, Jaap A; Borneman, Zandrie; Wessling, Matthias; Stamatialis, Dimitris F

    2012-07-01

    Hemodialysis is a commonly used blood purification technique in patients requiring kidney replacement therapy. Sorbents could increase uremic retention solute removal efficiency but, because of poor biocompatibility, their use is often limited to the treatment of patients with acute poisoning. This paper proposes a novel membrane concept for combining diffusion and adsorption of uremic retention solutes in one step: the so-called mixed-matrix membrane (MMM). In this concept, adsorptive particles are incorporated in a macro-porous membrane layer whereas an extra particle-free membrane layer is introduced on the blood-contacting side of the membrane to improve hemocompatibility and prevent particle release. These dual-layer mixed-matrix membranes have high clean-water permeance and high creatinine adsorption from creatinine model solutions. In human plasma, the removal of creatinine and of the protein-bound solute para-aminohippuric acid (PAH) by single and dual-layer membranes is in agreement with the removal achieved by the activated carbon particles alone, showing that under these experimental conditions the accessibility of the particles in the MMM is excellent. This study proves that the combination of diffusion and adsorption in a single step is possible and paves the way for the development of more efficient blood purification devices, excellently combining the advantages of both techniques. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Sparse and optimal acquisition design for diffusion MRI and beyond

    PubMed Central

    Koay, Cheng Guan; Özarslan, Evren; Johnson, Kevin M.; Meyerand, M. Elizabeth

    2012-01-01

    Purpose: Diffusion magnetic resonance imaging (MRI) in combination with functional MRI promises a whole new vista for scientists to investigate noninvasively the structural and functional connectivity of the human brain—the human connectome, which had heretofore been out of reach. As with other imaging modalities, diffusion MRI data are inherently noisy and its acquisition time-consuming. Further, a faithful representation of the human connectome that can serve as a predictive model requires a robust and accurate data-analytic pipeline. The focus of this paper is on one of the key segments of this pipeline—in particular, the development of a sparse and optimal acquisition (SOA) design for diffusion MRI multiple-shell acquisition and beyond. Methods: The authors propose a novel optimality criterion for sparse multiple-shell acquisition and quasimultiple-shell designs in diffusion MRI and a novel and effective semistochastic and moderately greedy combinatorial search strategy with simulated annealing to locate the optimum design or configuration. The goal of the optimality criteria is threefold: first, to maximize uniformity of the diffusion measurements in each shell, which is equivalent to maximal incoherence in angular measurements; second, to maximize coverage of the diffusion measurements around each radial line to achieve maximal incoherence in radial measurements for multiple-shell acquisition; and finally, to ensure maximum uniformity of diffusion measurement directions in the limiting case when all the shells are coincidental as in the case of a single-shell acquisition. The approach taken in evaluating the stability of various acquisition designs is based on the condition number and the A-optimal measure of the design matrix. Results: Even though the number of distinct configurations for a given set of diffusion gradient directions is very large in general—e.g., in the order of 10232 for a set of 144 diffusion gradient directions, the proposed search strategy was found to be effective in finding the optimum configuration. It was found that the square design is the most robust (i.e., with stable condition numbers and A-optimal measures under varying experimental conditions) among many other possible designs of the same sample size. Under the same performance evaluation, the square design was found to be more robust than the widely used sampling schemes similar to that of 3D radial MRI and of diffusion spectrum imaging (DSI). Conclusions: A novel optimality criterion for sparse multiple-shell acquisition and quasimultiple-shell designs in diffusion MRI and an effective search strategy for finding the best configuration have been developed. The results are very promising, interesting, and practical for diffusion MRI acquisitions. PMID:22559620

  16. Effects of polymer graft properties on protein adsorption and transport in ion exchange chromatography: a multiscale modeling study.

    PubMed

    Basconi, Joseph E; Carta, Giorgio; Shirts, Michael R

    2015-04-14

    Multiscale simulation is used to study the adsorption of lysozyme onto ion exchangers obtained by grafting charged polymers into a porous matrix, in systems with various polymer properties and strengths of electrostatic interaction. Molecular dynamics simulations show that protein partitioning into the polymer-filled pore space increases with the overall charge content of the polymers, while the diffusivity in the pore space decreases. However, the combination of greatly increased partitioning and modestly decreased diffusion results in macroscopic transport rates that increase as a function of charge content, as the large concentration driving force due to enhanced pore space partitioning outweighs the reduction in the pore space diffusivity. Matrices having greater charge associated with the grafted polymers also exhibit more diffuse intraparticle concentration profiles during transient adsorption. In systems with a high charge content per polymer and a low protein loading, the polymers preferentially partition toward the surface due to favorable interactions with the surface-bound protein. These results demonstrate the potential of multiscale modeling to illuminate qualitative trends between molecular properties and the adsorption equilibria and kinetic properties observable on macroscopic scales.

  17. Reactive transport in fractured porous media

    NASA Astrophysics Data System (ADS)

    Adler, P.; Jasinski, L.; Thovert, J.-F.; Mourzenko, V. V.

    2012-04-01

    Reactive flow through geological formations occurs in many situations due to human intervention or during natural processes. For instance, chemical dissolution and precipitation play a major role in diagenesis or in the formation of karsts. The quantitative description of the injection of a reacting fluid from a well into a fractured porous medium is also a subject of high interest. It can be provoked, as in the acidization stimulation technique for increasing well productivity, or accidental, in CO2 sequestration. Ideally, one wishes to analyze the improvements or damages caused by the fluid to the well itself and to its immediate surroundings. To this end, a coupled system of equations has to be solved. It includes the description of the flow in the porous matrix and in the fracture network by Darcy-like equations, and the description of the reactive solute transport and of the reactions which occur in the two structures. In addition, constitutive equations are required for the evolution of these two structures, such as evolution laws for permeability and reactivity as functions of porosity. Our discrete fracture numerical model involves three major steps. First, an unstructured tetrahedral mesh of the fractures and of the porous matrix is built. Second, the Darcy equations are discretized and solved, in a finite volume formulation. Third, the evolution of the solute concentration has to be calculated. This is the most difficult point if one wants to avoid numerical diffusion and accurately describe the transfers between the fractures and the matrix. A non linear flux limiting scheme of the Superbee type coupled with a systematic use of triple control volumes proved to be the most efficient. Various simple model situations have been considered, for validation purposes or to illustrate some physical points. In particular, it is shown that even when the matrix permeability is small and the flow is predominantly carried by the fracture network, convective exchanges still exist between the fractures and the matrix which can widely exceed diffusive ones and strongly affect the solute transport and its residence time distribution. Finally, simulations of passive and reactive solute transport have been performed in large samples containing percolating or non percolating fracture networks. Various parameters have been systematically investigated, including the transmissivity of the fractures, the flow regime characterized by Péclet numbers in the fractures and in the matrix, and the Damköhler numbers of the reaction process in the matrix and fractures. The passive transport behavior and the effect of the gradual clogging of the fractures and/or matrix pore space in the case of a precipitation process are analyzed.

  18. Reactive flow in fractured porous media

    NASA Astrophysics Data System (ADS)

    Jasinski, L.; Thovert, J.; Mourzenko, V.; Adler, P. M.

    2011-12-01

    Reactive flow through geological formations occurs in many situations due to human intervention or during natural processes. For instance, chemical dissolution and precipitation play a major role in diagenesis or in the formation of karsts. The quantitative description of the injection of a reacting fluid from a well into a fractured porous medium is also a subject of high interest. It can be provoked, as in the acidization stimulation technique for increasing well productivity, or accidental, in CO2 sequestration. Ideally, one wishes to analyze the improvements or damages caused by the fluid to the well itself and to its immediate surroundings. To this end, a coupled system of equations has to be solved. It includes the description of the flow in the porous matrix and in the fracture network by Darcy-like equations, and the description of the reactive solute transport and of the reactions which occur in the two structures. In addition, constitutive equations are required for the evolution of these two structures, such as evolution laws for permeability and reactivity as functions of porosity. Our discrete fracture numerical model involves three major steps. First, an unstructured tetrahedral mesh of the fractures and of the porous matrix is built. Second, the Darcy equations are discretized and solved, in a finite volume formulation. Third, the evolution of the solute concentration has to be calculated. This is the most difficult point if one wants to avoid numerical diffusion and accurately describe the transfers between the fractures and the matrix. A non linear flux limiting scheme of the Superbee type coupled with a systematic use of triple control volumes proved to be the most efficient. Various simple model situations have been considered, for validation purposes or to illustrate some physical points. In particular, it is shown that even when the matrix permeability is small and the flow is predominantly carried by the fracture network, convective exchanges still exist between the fractures and the matrix which can widely exceed diffusive ones and strongly affect the solute transport and its residence time distribution. Finally, simulations of passive and reactive solute transport have been performed in large samples containing percolating or non percolating fracture networks. Various parameters have been systematically investigated, including the transmissivity of the fractures, the flow regime characterized by Péclet numbers in the fractures and in the matrix, and the Damköhler numbers of the reaction process in the matrix and fractures. The passive transport behavior and the effect of the gradual clogging of the fractures and/or matrix pore space in the case of a precipitation process are analyzed.

  19. Transport with Bimolecular Reactions: Applications to In-Situ Chemical Oxidation of DNAPLs by Permanganate in Fractured Rock

    NASA Astrophysics Data System (ADS)

    Arshadi, Masoud

    Chemical oxidation of dense nonaqueous-phase liquids (DNAPLs) by permanganate has emerged as an effective remediation strategy in fractured rock. Our objectives in this research were to carry out a sequence of experimental, computational and theoretical tasks aimed at improving current understanding of permanganate oxidation in fractured rock systems, and also develop modeling tools that can be used for preliminary design of oxidation schemes at field sites. Our research focused on both free-phase entrapped DNAPL in variable-aperture fractures and dissolved DNAPL in the rock matrix. In the first section of our research, we present high-resolution experimental investigations in transparent analog variable-aperture fractures to improve understanding of chemical oxidation of residual entrapped trichloroethylene (TCE) in fractures. Four experiments were performed with different permanganate concentrations, flow rates, and initial TCE phase geometry. The initial aperture field and evolving entrapped-phase geometry were measured quantitatively. We present results on the time-evolution of fracture-scale TCE consumption and DNAPL removal rates for all the experiments. In the next part of this work, we developed theoretical understanding of the reaction front dynamics in the case of chemical oxidation of aqueous-phase DNAPL within fracture-matrix system, backed up by numerical simulations. We also consider the influence of NOD consumption and contaminant sorption to solid aquifer materials in our models. Based on the results from this task we are able to propose simple strategies for remediation design (e.g. the time needed to degrade DNAPL inside the fracture-matrix system and the permanganate injection pattern) for a given set of conditions. Our numerical simulations of diffusion with bimolecular reaction in the rock matrix demonstrated a transition in the spatially integrated reaction rate - increasing with time initially, and transitioning to a decrease with time. We developed a general non-dimensionalization of the problem and a perturbation analysis to show that there is always an early time regime where the spatially integrated reaction rate scales as √t rather than 1/√t. The duration of this early time regime (where the total reaction rate is kinetically rather than diffusion controlled) is shown to depend on the kinetic rate parameters, diffusion coefficients and initial concentrations of the two species.

  20. The use of a combination of different MR methods to study swelling of hydrophilic xanthan matrix tablets at different pHs.

    PubMed

    Mikac, U; Sepe, A; Kristl, J; Baumgartner, I

    2012-01-01

    Modified-release matrix tablets have been extensively used by the pharmaceutical industry as one of the most successful oral drug-delivery systems. The key element in drug release from hydrophilic matrix tablets is the gel layer that regulates the penetration of water and controls drug dissolution and diffusion. Magnetic resonance imaging (MRI) is a powerful, non-invasive technique that can help improve our understanding of the gel layer formed on swellable, polymer-matrix tablets, as well as the layer's properties and its influence on the drug release. The aim was to investigate the effects of pH and ionic strength on swelling and to study the influence of structural changes in xanthan gel on drug release. For this purpose a combination of different MRI methods for accurate determination of penetration, swelling and erosion fronts was used. The position of the penetration and swelling fronts were the same, independently of the different xanthan gel structures formed under different conditions of pH and ionic strength. The position of the erosion front, on the other hand, is strongly dependent on pH and ionic strength, as reflected in different thicknesses of the gel layers.

  1. Effect of Quaternary Ammonium Carboxymethylchitosan on Release Rate In-vitro of Aspirin Sustained-release Matrix Tablets

    PubMed Central

    Meng, Lingbin; Teng, Zhongqiu; Zheng, Nannan; Meng, Weiwei; Dai, Rongji; Deng, Yulin

    2013-01-01

    The aim of this study was to develop a derivative of chitosan as pharmaceutical excipient used in sustained-release matrix tablets of poorly soluble drugs. A water-soluble quaternary ammonium carboxymethylchitosan was synthesized by a two-step reaction with carboxymethylchitosan (CMCTS), decylalkyl dimethyl ammonium and epichlorohydrin. The elemental analysis showed that the target product with 10.27% of the maximum grafting degree was obtained. To assess the preliminary safety of this biopolymer, cell toxicity assay was employed. In order to further investigate quaternary ammonium carboxymethylchitosan application as pharmaceutical excipient, aspirin was chosen as model drug. The effect of quaternary ammonium CMCTS on aspirin release rate from sustained-release matrix tablets was examined by in-vitro dissolution experiments. The results showed that this biopolymer had a great potential in increasing the dissolution of poorly soluble drug. With the addition of CMCTS-CEDA, the final cumulative release rate of drug rose up to 90%. After 12 h, at the grade of 10, 20 and 50 cps, the drug release rate increased from 58.1 to 90.7%, from 64.1 to 93.9%, from 69.3 to 96.1%, respectively. At the same time, aspirin release rate from sustainedrelease model was found to be related to the amount of quaternary ammonium CMCTS employed. With the increase of CMCTS-CEDA content, the accumulated release rate increased from 69.1% to 86.7%. The mechanism of aspirin release from sustained-release matrix tablets was also preliminary studied to be Fick diffusion. These data demonstrated that the chitosan derivative has positive effect on drug release from sustained-release matrix tablets. PMID:24250627

  2. Preparation and characterization of metoprolol tartrate containing matrix type transdermal drug delivery system.

    PubMed

    Malipeddi, Venkata Ramana; Awasthi, Rajendra; Ghisleni, Daniela Dal Molim; de Souza Braga, Marina; Kikuchi, Irene Satiko; de Jesus Andreoli Pinto, Terezinha; Dua, Kamal

    2017-02-01

    The present study aimed to develop matrix-type transdermal drug delivery system (TDDS) of metoprolol tartrate using polyvinyl pyrrolidone (PVP) and polyvinyl alcohol (PVA). The transdermal films were evaluated for physical parameters, Fourier transform infrared spectroscopy analysis (FTIR), differential scanning calorimetry (DSC), in vitro drug release, in vitro skin permeability, skin irritation test and stability studies. The films were found to be tough, non-sticky, easily moldable and possess good tensile strength. As the concentration of PVA was increased, the tensile strength of the films was also increased. Results of FTIR spectroscopy and DSC revealed the absence of any drug-polymer interactions. In vitro release of metoprolol followed zero-order kinetics and the mechanism of release was found to be diffusion rate controlled. In vitro release studies of metoprolol using Keshary-Chein (vertical diffusion cell) indicated 65.5 % drug was released in 24 h. In vitro skin permeation of metoprolol transdermal films showed 58.13 % of the drug was released after 24 h. In vitro skin permeation of metoprolol followed zero-order kinetics in selected formulations. The mechanism of release was found to be diffusion rate controlled. In a 22-day skin irritation test, tested formulation of transdermal films did not exhibit any allergic reactions, inflammation, or contact dermatitis. The transdermal films showed good stability in the 180-day stability study. It can be concluded that the TDDS of MPT can help in bypassing the first-pass effect and will provide patient improved compliance, without sacrificing the therapeutic advantages of the drugs.

  3. Interdiffusion behaviors in doped molybdenum uranium and aluminum or aluminum silicon dispersion fuels: Effects of the microstructure

    NASA Astrophysics Data System (ADS)

    Allenou, J.; Tougait, O.; Pasturel, M.; Iltis, X.; Charollais, F.; Anselmet, M. C.; Lemoine, P.

    2011-09-01

    Si addition to Al is considered as a promising route to reduce (U,Mo)-Al interaction kinetics, due to its accumulation in the interaction layer, yielding the formation of silicide phases. The (U,Mo) alloy microstructure, and especially its homogenization state, could play a role on this accumulation process. The addition of a third element in γ(U,Mo) could also influence diffusion mechanisms of Al and Si. These two parameters were studied by means of diffusion couple experiments by joining γU based alloys with Al and (Al,Si) alloy. Chemical elements X added into γ(U,Mo) were thoroughly chosen on the following criteria: (i) the potential solubility of the alloying element into the γ(U,Mo) matrix, (ii) its capability to form the ternary aluminides based on the CeCr 2Al 20 and Ho 6Mo 4Al 43 - types, and (iii) the feasibility to control the microstructure of the alloys. On this basis, a test matrix is defined. It concerns γ(U80,Mo15,X5) alloys (in at.%) with X = Y, Cu, Zr, Ti or Cr. These alloys were homogenized and coupled with Al or (Al,Si) alloy. Results evidenced, first, the importance of the state of homogenization of the γ(U,Mo) binary alloy on interaction processes with (Al,Si) alloy, and the benefit on the diffusion of Si through the interaction layer, as observed on the elementary concentration profiles, when the third element X has some solubility into γ(U,Mo) alloy.

  4. Contributions of fluid convection and electrical migration to transport in cartilage: relevance to loading.

    PubMed

    Garcia, A M; Frank, E H; Grimshaw, P E; Grodzinsky, A J

    1996-09-15

    We have studied the contributions of diffusion, fluid flow and electrical migration to molecular transport through adult articular cartilage explants using neutral and charged solutes that were either radiolabeled (3H2O, [35S]sulfate, [3H]thymidine, [3H]raffinose, and a synthetic matrix metalloproteinase inhibitor) or fluorescently tagged (NSPA and Lissamine-dextran). In order to induce fluid flow within the cartilage matrix without mechanical deformation, electric current densities were applied across cartilage disks. These currents produced electroosmotic fluid velocities of 1-2 microns/s, magnitudes that have been reported to exist during joint loading in vivo. This fluid convection enhanced neutral solute flux relative to passive diffusion alone by a factor that increased with the size of the solute. While the enhancement factor for 3H2O was 2.3-fold, that for [3H]raffinose (594 Da) and similar sized neutral solutes was 10-fold, suggesting that the effect of fluid flow is important even for small solutes. The largest enhancement (25-fold) was seen for the neutral 10-kDa Lissamine-dextran, confirming that fluid convection is most important for large solutes. We also studied the electrophoretic contribution to solute flux, which is relevant to the presence of intratissue streaming potentials induced during loading in vivo. Using the negatively charged [35S]sulfate ion with a range of current densities, as much as a 10-fold enhancement in flux was observed. Values for the intrinsic transport properties of the solutes (e.g., diffusivity, electrical mobility, hydrodynamic hindrance factor) can be obtained from the data.

  5. Influence of diameter on particle transport in a fractured shale saprolite

    USGS Publications Warehouse

    Cumbie, D.H.; McKay, L.D.

    1999-01-01

    Experiments in an undisturbed, saturated column of weathered and fractured shale saprolite using fluorescent carboxylate-coated latex microspheres as tracers indicate that particle diameter plays a major role in controlling transport. In this study the optimum microsphere diameter for transport was approximately 0.5 ??m. Microspheres larger than the optimum size were present in the effluent at lower relative concentrations, apparently because of greater retention due to gravitational settling and/or physical straining. The smaller than optimum microspheres also experienced greater retention, apparently related to their higher rates of diffusion. Faster diffusion can lead to more frequent collisions with, and attachment to, fracture walls and may also lead to movement of particles into zones of relatively immobile pore water in the fractures or in the fine pore structure of the clay-rich matrix between fractures. Dismantling of the soil column and mapping of the distribution of retained microspheres indicated that there was substantial size-segregation of the microspheres between different fractures or in 'channels' within a fracture. Examination of small core samples showed that the smallest microspheres (0.05-0.1 ??m) were present in the fine pores of the matrix at distances of up to 3-4 mm from the nearest fracture, which supports the hypothesis that small particles can be retained by diffusion into the matrix. Calculations of settling velocity and diffusion rate using simple 1D approaches suggest that these processes could both cause significant retention of the larger and smaller particles, respectively, even for the fast advective transport rates (up to 32 m/day) observed during the experiments. Copyright (C) 1999 Elsevier Science B.V.

  6. Penetration of analogues of H2O and CO2 in proteins studied by room temperature phosphorescence of tryptophan.

    PubMed

    Wright, W W; Owen, C S; Vanderkooi, J M

    1992-07-21

    The influence of the protein matrix on the reactivity of external molecules with a species buried within the protein interior is considered in two general ways: (1) there may be structural fluctuations that allow for the diffusive penetration of the small molecules and/or (2) the external molecule may react over a distance. As a means to study the protein matrix, a reactive species within the protein can be formed by exciting tryptophan to the triplet state, and then the reaction of the triplet-state molecule with an external molecule can be monitored by a decrease in phosphorescence. In this work, the quenching ability (i.e., reactivity) was examined for H2S, CS2, and NO2- acting on tryptophan phosphorescence in parvalbumin, azurin, horse liver alcohol dehydrogenase, and alkaline phosphatase. A comparison of charged versus uncharged quenchers (H2S vs SH- and CS2 vs NO2-) reveals that the uncharged molecules are much more effective than charged species in quenching the phosphorescence of fully buried tryptophan, whereas the quenching for exposed tryptophan is relatively independent of the charge of the quencher. This is consistent with the view that uncharged triatomic molecules can penetrate the protein matrix to some extent. The energies of activation of the quenching reaction are low for the charged quenchers and higher for the uncharged CS2. A model is presented in which the quenchability of a buried tryptophan is inversely related to the distance from the surface when diffusion through the protein is the rate-limiting step.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Microstructure, Tensile Adhesion Strength and Thermal Shock Resistance of TBCs with Different Flame-Sprayed Bond Coat Materials Onto BMI Polyimide Matrix Composite

    NASA Astrophysics Data System (ADS)

    Abedi, H. R.; Salehi, M.; Shafyei, A.

    2017-10-01

    In this study, thermal barrier coatings (TBCs) composed of different bond coats (Zn, Al, Cu-8Al and Cu-6Sn) with mullite top coats were flame-sprayed and air-plasma-sprayed, respectively, onto bismaleimide matrix composites. These polyimide matrix composites are of interest to replace PMR-15, due to concerns about the toxicity of the MDA monomer from which PMR-15 is made. The results showed that pores and cracks appeared at the bond coat/substrate interface for the Al-bonded TBC because of its high thermal conductivity and diffusivity resulting in transferring of high heat flux and temperature to the polymeric substrate during top coat deposition. The other TBC systems due to the lower conductivity and diffusivity of bonding layers could decrease the adverse thermal effect on the polymer substrate during top coat deposition and exhibited adhesive bond coat/substrate interfaces. The tensile adhesion test showed that the adhesion strength of the coatings to the substrate is inversely proportional to the level of residual stress in the coatings. However, the adhesion strength of Al bond-coated sample decreased strongly after mullite top coat deposition due to thermal damage at the bond coat/substrate interface. TBC system with the Cu-6Sn bond coat exhibited the best thermal shock resistance, while Al-bonded TBC showed the lowest. It was inferred that thermal mismatch stresses and oxidation of the bond coats were the main factors causing failure in the thermal shock test.

  8. Cadmium-Aluminum Layered Double Hydroxide Microspheres for Photocatalytic CO2 Reduction.

    PubMed

    Saliba, Daniel; Ezzeddine, Alaa; Sougrat, Rachid; Khashab, Niveen M; Hmadeh, Mohamad; Al-Ghoul, Mazen

    2016-04-21

    We report the synthesis of cadmium-aluminum layered double hydroxide (CdAl LDH) using the reaction-diffusion framework. As the hydroxide anions diffuse into an agar gel matrix containing the mixture of aluminum and cadmium salts at a given ratio, they react to give the LDH. The LDH self-assembles inside the pores of the gel matrix into a unique spherical-porous shaped microstructure. The internal and external morphologies of the particles are studied by electron microscopy and tomography revealing interconnected channels and a high surface area. This material is shown to exhibit a promising performance in the photoreduction of carbon dioxide using solar light. Moreover, the palladium-decorated version shows a significant improvement in its reduction potential at room temperature. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Quantitative framework for preferential flow initiation and partitioning

    USGS Publications Warehouse

    Nimmo, John R.

    2016-01-01

    A model for preferential flow in macropores is based on the short-range spatial distribution of soil matrix infiltrability. It uses elementary areas at two different scales. One is the traditional representative elementary area (REA), which includes a sufficient heterogeneity to typify larger areas, as for measuring field-scale infiltrability. The other, called an elementary matrix area (EMA), is smaller, but large enough to represent the local infiltrability of soil matrix material, between macropores. When water is applied to the land surface, each EMA absorbs water up to the rate of its matrix infiltrability. Excess water flows into a macropore, becoming preferential flow. The land surface then can be represented by a mesoscale (EMA-scale) distribution of matrix infiltrabilities. Total preferential flow at a given depth is the sum of contributions from all EMAs. Applying the model, one case study with multi-year field measurements of both preferential and diffuse fluxes at a specific depth was used to obtain parameter values by inverse calculation. The results quantify the preferential–diffuse partition of flow from individual storms that differed in rainfall amount, intensity, antecedent soil water, and other factors. Another case study provided measured values of matrix infiltrability to estimate parameter values for comparison and illustrative predictions. These examples give a self-consistent picture from the combination of parameter values, directions of sensitivities, and magnitudes of differences caused by different variables. One major practical use of this model is to calculate the dependence of preferential flow on climate-related factors, such as varying soil wetness and rainfall intensity.

  10. Numerical approximations for fractional diffusion equations via a Chebyshev spectral-tau method

    NASA Astrophysics Data System (ADS)

    Doha, Eid H.; Bhrawy, Ali H.; Ezz-Eldien, Samer S.

    2013-10-01

    In this paper, a class of fractional diffusion equations with variable coefficients is considered. An accurate and efficient spectral tau technique for solving the fractional diffusion equations numerically is proposed. This method is based upon Chebyshev tau approximation together with Chebyshev operational matrix of Caputo fractional differentiation. Such approach has the advantage of reducing the problem to the solution of a system of algebraic equations, which may then be solved by any standard numerical technique. We apply this general method to solve four specific examples. In each of the examples considered, the numerical results show that the proposed method is of high accuracy and is efficient for solving the time-dependent fractional diffusion equations.

  11. Synthesizing (ZrAl3 + AlN)/Mg-Al composites by a 'matrix exchange' method

    NASA Astrophysics Data System (ADS)

    Gao, Tong; Li, Zengqiang; Hu, Kaiqi; Han, Mengxia; Liu, Xiangfa

    2018-06-01

    A method named 'matrix exchange' to synthesize ZrAl3 and AlN reinforced Mg-Al composite was developed in this paper. By inserting Al-10ZrN master alloy into Mg matrix and reheating the cooled ingot to 550 °C, Al and Mg atoms diffuse to the opposite side. As a result, liquid melt occurs once the interface areas reach to proper compositions. Then dissolved Al atoms react with ZrN, leading to the in-situ formation of ZrAl3 and AlN particles, while the Al matrix is finally replaced by Mg. This study provides a new insight for preparing Mg composites.

  12. Diffusion weighted imaging: a comprehensive evaluation of a fast spin echo DWI sequence with BLADE (PROPELLER) k-space sampling at 3 T, using a 32-channel head coil in acute brain ischemia.

    PubMed

    Attenberger, Ulrike I; Runge, Val M; Stemmer, Alto; Williams, Kenneth D; Naul, L Gill; Michaely, Henrik J; Schoenberg, Stefan O; Reiser, Maximilian F; Wintersperger, Bernd J

    2009-10-01

    To evaluate the signal-to-noise ratio (SNR) and diagnostic quality of diffusion weighted imaging (DWI) using a fast spin echo (FSE) sequence with BLADE k-space trajectory at 3 T in combination with a 32-channel head coil. The scan was compared with a standard spin echo (SE) echo-planar imaging (EPI) DWI and a high resolution SE EPI DWI sequence. Fourteen patients with acute brain ischemia were included in this Institutional Review Board approved study. All patients were evaluated with 3 different image sequences, using a 3 T scanner and a 32-channel head coil: (a) a standard SE EPI DWI (matrix size 192 x 192), (b) a high resolution SE EPI DWI (matrix size of 256 x 256) and (c) a FSE DWI BLADE (matrix size 192 x 192). The SNR of the 3 scans was compared in 10 healthy volunteers by a paired student t test. Image quality was evaluated with 4 dedicated questions in a blinded read: (1) The scans were ranked in terms of bulk susceptibility artifact. (2) The scan preference for diagnosis of any diffusion abnormality that might occur and (3) the preference for visualization of the diffusion abnormality actually present was determined. (4) The influence of bulk susceptibility on image evaluation for the diffusion abnormality present was assessed. For visualization of the diffusion abnormality present, BLADE DWI was the scan sequence preferred most by both readers (reader 1: 41.7%, reader 2: 35.7%). For visualization of any diffusion abnormality present, BLADE DWI was the preferred scan in 13 of 14 cases for reader 1 (93%) and in 11 of 14 cases for reader 2 (78.6%). No high resolution SE EPI DWI scan was rated best by reader 1. Reader 2 rated the high resolution SE EPI DWI scan superior in only 1 of 56 judgments. The standard EPI DWI sequence (21.8 +/- 5.3) had in comparison to the high resolution EPI DWI (11.9 +/- 2.6) and the BLADE DWI scans (11.3 +/- 3.8) significantly higher SNR mean values. Our preliminary data demonstrates the feasibility of a FSE EPI DWI scan with radial-like k-space sampling, using a 32-channel coil at 3 T in acute brain ischemia. The BLADE DWI was the preferred scan for the detection of acute diffusion abnormalities because of the lack of bulk susceptibility artifacts.

  13. The evolution, argon diffusion properties, and 40Argon/39Argon ages of detachment-related fault rocks in the footwalls of the Whipple and Chemehuevi Mountains, Southeastern, California

    NASA Astrophysics Data System (ADS)

    Hazelton, Garrett Blaine

    Furnace and laser spot methods of obtaining 40Ar/ 39Ar ages from fine-grained cataclasite and pseudotachylyte are compared and evaluated in terms of protolith, faulting, and cooling age components. These methods are applied to fault rocks from outcrop-scale, small-displacement, brittle detachment faults (minidetachments or MDF's) that cut mid-crustal rocks from the footwalls of brittle, large-displacement (>20 km), top-to-the-NE, low-angle normal (i.e., detachment) faults in the Whipple (WM) and Chemehuevi Mountains (CM), SE California. Mid-Tertiary extension affected both areas from ˜26 Ma to ˜11--8 Ma. Rapid footwall cooling began at ˜22 Ma. WM-CM furnace ages range from 22.0 +/- 1.3 to 14.6 +/- 0.6 Ma, CM laser ages from 29.9 +/- 3.7 to 15.7 +/- 1.2 Ma. These ages are younger than host protolith formation and record detachment faulting or footwall cooling. At least 50 MDF's were mapped; they typically cut all basement fabrics. Brittle MDFand detacriment-generated fault rocks are texturally similar, but some in the WM are plastically deformed. Fault rock matrix was mechanically extracted, optically studied, probed to characterize bulk mineralogy. K-feldspar grains are the primary source of fault rock-derived Ar. The laser provides high spatial resolution and the furnace method yields the Ar diffusion properties of fault rock matrix. Both methods yield reproducible results, but ages are difficult to interpret without an established geothermochronologic context. Fault rock 40Ar/39Ar measurements reveal: (1) closure temperatures of 140--280°C (at 100°C/Myr); (2) activation energies ranging from 33--50 kcal/mol; (3) individual K-feldspar grain ages of 55--5 Ma; (4) unanticipated and poorly understood low-temperature diffusion behavior; (5) little difference between pseudotachylyte and cataclasite matrix diffusion and age results; (6) that pre-analysis sample characterization is requisite. The diffusion properties of prepared glasses (47--84% SiO2) were also measured. Those with fault rock-like compositions yield activation energies of 25--39 kca/mol and average diffusivity of 4.63 · 10-3 cm2/sec. Network-forming Ca, Fe, and Mg partly cause certain low-temperature diffusion behaviors that, if unaccounted for, could allow an underestimation of Ar diffusion rates in some glass-bearing materials. Numerical models show that ambient temperature, grain size, and cooling rate strongly influence the Ar retention rate and interpretability of fault rock 40Ar/39Ar ages.

  14. Event-triggered synchronization for reaction-diffusion complex networks via random sampling

    NASA Astrophysics Data System (ADS)

    Dong, Tao; Wang, Aijuan; Zhu, Huiyun; Liao, Xiaofeng

    2018-04-01

    In this paper, the synchronization problem of the reaction-diffusion complex networks (RDCNs) with Dirichlet boundary conditions is considered, where the data is sampled randomly. An event-triggered controller based on the sampled data is proposed, which can reduce the number of controller and the communication load. Under this strategy, the synchronization problem of the diffusion complex network is equivalently converted to the stability of a of reaction-diffusion complex dynamical systems with time delay. By using the matrix inequality technique and Lyapunov method, the synchronization conditions of the RDCNs are derived, which are dependent on the diffusion term. Moreover, it is found the proposed control strategy can get rid of the Zeno behavior naturally. Finally, a numerical example is given to verify the obtained results.

  15. A method for modeling oxygen diffusion in an agent-based model with application to host-pathogen infection

    DOE PAGES

    Plimpton, Steven J.; Sershen, Cheryl L.; May, Elebeoba E.

    2015-01-01

    This paper describes a method for incorporating a diffusion field modeling oxygen usage and dispersion in a multi-scale model of Mycobacterium tuberculosis (Mtb) infection mediated granuloma formation. We implemented this method over a floating-point field to model oxygen dynamics in host tissue during chronic phase response and Mtb persistence. The method avoids the requirement of satisfying the Courant-Friedrichs-Lewy (CFL) condition, which is necessary in implementing the explicit version of the finite-difference method, but imposes an impractical bound on the time step. Instead, diffusion is modeled by a matrix-based, steady state approximate solution to the diffusion equation. Moreover, presented in figuremore » 1 is the evolution of the diffusion profiles of a containment granuloma over time.« less

  16. Considerations in high-resolution skeletal muscle diffusion tensor imaging using single-shot echo planar imaging with stimulated-echo preparation and sensitivity encoding.

    PubMed

    Karampinos, Dimitrios C; Banerjee, Suchandrima; King, Kevin F; Link, Thomas M; Majumdar, Sharmila

    2012-05-01

    Previous studies have shown that skeletal muscle diffusion tensor imaging (DTI) can noninvasively probe changes in the muscle fiber architecture and microstructure in diseased and damaged muscles. However, DTI fiber reconstruction in small muscles and in muscle regions close to aponeuroses and tendons remains challenging because of partial volume effects. Increasing the spatial resolution of skeletal muscle single-shot diffusion-weighted echo planar imaging (DW-EPI) can be hindered by the inherently low signal-to-noise ratio (SNR) of muscle DW-EPI because of the short muscle T(2) and the high sensitivity of single-shot EPI to off-resonance effects and T(2)* blurring. In this article, eddy current-compensated diffusion-weighted stimulated-echo preparation is combined with sensitivity encoding (SENSE) to maintain good SNR properties and to reduce the sensitivity to distortions and T(2)* blurring in high-resolution skeletal muscle single-shot DW-EPI. An analytical framework is developed to optimize the reduction factor and diffusion weighting time to achieve maximum SNR. Arguments for the selection of the experimental parameters are then presented considering the compromise between SNR, B(0)-induced distortions, T(2)* blurring effects and tissue incoherent motion effects. On the basis of the selected parameters in a high-resolution skeletal muscle single-shot DW-EPI protocol, imaging protocols at lower acquisition matrix sizes are defined with matched bandwidth in the phase-encoding direction and SNR. In  vivo results show that high-resolution skeletal muscle DTI with minimized sensitivity to geometric distortions and T(2)* blurring is feasible using the proposed methodology. In particular, a significant benefit is demonstrated from a reduction in partial volume effects for resolving multi-pennate muscles and muscles with small cross-sections in calf muscle DTI. Copyright © 2011 John Wiley & Sons, Ltd.

  17. Considerations in high resolution skeletal muscle DTI using single-shot EPI with stimulated echo preparation and SENSE

    PubMed Central

    Karampinos, Dimitrios C.; Banerjee, Suchandrima; King, Kevin F.; Link, Thomas M.; Majumdar, Sharmila

    2011-01-01

    Previous studies have shown that skeletal muscle diffusion tensor imaging (DTI) can non-invasively probe changes in the muscle fiber architecture and microstructure in diseased and damaged muscles. However, DTI fiber reconstruction in small muscles and in muscle regions close to aponeuroses and tendons remains challenging because of partial volume effects. Increasing the spatial resolution of skeletal muscle single-shot diffusion weighted (DW)-EPI can be hindered by the inherently low SNR of muscle DW-EPI due to the short muscle T2 and the high sensitivity of single-shot EPI to off-resonance effects and T2* blurring. In the present work, eddy-current compensated diffusion-weighted stimulated echo preparation is combined with sensitivity encoding (SENSE) to maintain good SNR properties and reduce the sensitivity to distortions and T2* blurring in high resolution skeletal muscle single-shot DW-EPI. An analytical framework is developed for optimizing the reduction factor and diffusion weighting time to achieve maximum SNR. Arguments for the selection of the experimental parameters are then presented considering the compromise between SNR, B0-induced distortions, T2* blurring effects and tissue incoherent motion effects. Based on the selected parameters in a high resolution skeletal muscle single-shot DW-EPI protocol, imaging protocols at lower acquisition matrix sizes are defined with matched bandwidth in the phase-encoding direction and SNR. In vivo results show that high resolution skeletal muscle DTI with minimized sensitivity to geometric distortions and T2* blurring is feasible using the proposed methodology. In particular, a significant benefit is demonstrated from reducing partial volume effects on resolving multi-pennate muscles and muscles with small cross sections in calf muscle DTI. PMID:22081519

  18. DFN-M field characterization of sandstone for a process-based site conceptual model and numerical simulations of TCE transport with degradation

    NASA Astrophysics Data System (ADS)

    Pierce, Amanda A.; Chapman, Steven W.; Zimmerman, Laura K.; Hurley, Jennifer C.; Aravena, Ramon; Cherry, John A.; Parker, Beth L.

    2018-05-01

    Plumes of trichloroethene (TCE) with degradation products occur at a large industrial site in California where TCE as a dense non-aqueous phase liquid (DNAPL) entered the fractured sandstone bedrock at many locations beginning in the late 1940s. Groundwater flows rapidly in closely spaced fractures but plume fronts are strongly retarded relative to groundwater flow velocities owing largely to matrix diffusion in early decades and degradation processes in later decades and going forward. Multiple data types show field evidence for both biotic and abiotic dechlorination of TCE and its degradation products, resulting in non-chlorinated compounds. Analyses were conducted on groundwater samples from hundreds of monitoring wells and on thousands of rock samples from continuous core over depths ranging from 6 to 426 metres below ground surface. Nearly all of the present-day mass of TCE and degradation products resides in the water-saturated, low-permeability rock matrix blocks. Although groundwater and DNAPL flow primarily occur in the fractures, DNAPL dissolution followed by diffusion and sorption readily transfers contaminant mass into the rock matrix. The presence of non-chlorinated degradation products (ethene, ethane, acetylene) and compound specific isotope analysis (CSIA) of TCE and cis-1,2-dichloroethene (cDCE) indicate at least some complete dechlorination by both biotic and abiotic pathways, consistent with the observed mineralogy and hydrogeochemistry and with published results from crushed rock microcosms. The rock matrix contains abundant iron-bearing minerals and solid-phase organic carbon with large surface areas and long contact times, suggesting degradation processes are occurring in the rock matrix. Multiple, high-resolution datasets provide strong evidence for spatially heterogeneous distributions of TCE and degradation products with varying degrees of degradation observed only when using new methods that achieve better detection of dissolved gases (i.e., Snap Sampler™) and contaminant mass stored in the low permeability rock matrix (i.e., CORE-DFN™). Simulations using a discrete fracture-matrix (DFN-M) numerical model capable of rigorously simulating flow and transport in both the fractures and matrix, including interactions, show that even slow, first-order degradation rates (i.e., 5- to 20-year half-lives) informed by site-derived parameters can contribute strongly to natural attenuation, resulting in TCE plumes that become stationary in space and might even retreat after 50 to 100 years, if the DNAPL sources become depleted due to the combination of diffusion and degradation processes.

  19. DFN-M field characterization of sandstone for a process-based site conceptual model and numerical simulations of TCE transport with degradation.

    PubMed

    Pierce, Amanda A; Chapman, Steven W; Zimmerman, Laura K; Hurley, Jennifer C; Aravena, Ramon; Cherry, John A; Parker, Beth L

    2018-05-01

    Plumes of trichloroethene (TCE) with degradation products occur at a large industrial site in California where TCE as a dense non-aqueous phase liquid (DNAPL) entered the fractured sandstone bedrock at many locations beginning in the late 1940s. Groundwater flows rapidly in closely spaced fractures but plume fronts are strongly retarded relative to groundwater flow velocities owing largely to matrix diffusion in early decades and degradation processes in later decades and going forward. Multiple data types show field evidence for both biotic and abiotic dechlorination of TCE and its degradation products, resulting in non-chlorinated compounds. Analyses were conducted on groundwater samples from hundreds of monitoring wells and on thousands of rock samples from continuous core over depths ranging from 6 to 426 metres below ground surface. Nearly all of the present-day mass of TCE and degradation products resides in the water-saturated, low-permeability rock matrix blocks. Although groundwater and DNAPL flow primarily occur in the fractures, DNAPL dissolution followed by diffusion and sorption readily transfers contaminant mass into the rock matrix. The presence of non-chlorinated degradation products (ethene, ethane, acetylene) and compound specific isotope analysis (CSIA) of TCE and cis-1,2-dichloroethene (cDCE) indicate at least some complete dechlorination by both biotic and abiotic pathways, consistent with the observed mineralogy and hydrogeochemistry and with published results from crushed rock microcosms. The rock matrix contains abundant iron-bearing minerals and solid-phase organic carbon with large surface areas and long contact times, suggesting degradation processes are occurring in the rock matrix. Multiple, high-resolution datasets provide strong evidence for spatially heterogeneous distributions of TCE and degradation products with varying degrees of degradation observed only when using new methods that achieve better detection of dissolved gases (i.e., Snap Sampler™) and contaminant mass stored in the low permeability rock matrix (i.e., CORE-DFN™). Simulations using a discrete fracture-matrix (DFN-M) numerical model capable of rigorously simulating flow and transport in both the fractures and matrix, including interactions, show that even slow, first-order degradation rates (i.e., 5- to 20-year half-lives) informed by site-derived parameters can contribute strongly to natural attenuation, resulting in TCE plumes that become stationary in space and might even retreat after 50 to 100 years, if the DNAPL sources become depleted due to the combination of diffusion and degradation processes. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Design and characterization of hydrogel-based microfluidic devices with biomimetic solute transport networks

    PubMed Central

    Koo, Hyung-Jun

    2017-01-01

    Hydrogel could serve as a matrix material of new classes of solar cells and photoreactors with embedded microfluidic networks. These devices mimic the structure and function of plant leaves, which are a natural soft matter based microfluidic system. These unusual microfluidic-hydrogel devices with fluid-penetrable medium operate on the basis of convective-diffusive mechanism, where the liquid is transported between the non-connected channels via molecular permeation through the hydrogel. We define three key designs of such hydrogel devices, having linear, T-shaped, and branched channels and report results of numerical simulation of the process of their infusion with solute carried by the incoming fluid. The computational procedure takes into account both pressure-driven convection and concentration gradient-driven diffusion in the permeable gel matrix. We define the criteria for evaluation of the fluid infusion rate, uniformity, solute loss by outflow and overall performance. The T-shaped channel network was identified as the most efficient one and was improved further by investigating the effect of the channel-end secondary branches. Our parallel experimental data on the pattern of solute infusions are in excellent agreement with the simulation. These network designs can be applied to a broad range of novel microfluidic materials and soft matter devices with distributed microchannel networks. PMID:28396708

  1. Preparation and drug release properties of chitosan/organomodified palygorskite microspheres.

    PubMed

    Wu, Jie; Ding, Shijie; Chen, Jing; Zhou, Suqin; Ding, Hongyan

    2014-07-01

    The novel composite microspheres, based on the hybridization of chitosan (CS) and organomodified palygorskite (OPAL), were prepared by emulsion cross-linking technique and applied as a drug carrier. Palygorskite, a kind of natural one-dimensional clay, was modified with hexadecyl betaine (BS-16) to improve the compatibility and affinity with chitosan matrix, and worked as a perfect micron-filler to enhance drug encapsulation and retard drug migration. The structure of the microspheres was characterized by fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The swelling behavior of the microspheres and the effect of the amount of OPAL and BS-16 on the properties of the drug loading and releasing have been investigated. Compared to the pure chitosan microspheres (CM), the composite one with 20wt% OPAL modified by 20mmol/100g BS-16 possessed the higher encapsulation efficiency and the slower and continuous cumulative release for diclofenac sodium (DS) in phosphate buffer solution (pH 6.8). The study of drug release kinetics in vitro found that the drug release mechanism of the microspheres changed from the simple diffusion-control to diffusion and dissolution-control as the OPAL content in matrix increased from 0 to 20wt%. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Matrix-type transdermal films to enhance simvastatin ex vivo skin permeability.

    PubMed

    El-Say, Khalid M; Ahmed, Osama A A; Aljaeid, Bader M; Zidan, Ahmed S

    2017-06-01

    This study aimed at employing Plackett-Burman design in screening formulation variables that affect quality of matrix-type simvastatin (SMV) transdermal film. To achieve this goal, 12 formulations were prepared by casting method. The investigated variables were Eudragit RL percentage, polymer mixture percentage, plasticizer type, plasticizer percentage, enhancer type, enhancer percentage and dichloromethane fraction in organic phase. The films were evaluated for physicochemical properties and ex vivo SMV permeation. SMV initial, delayed flux, diffusivity and permeability coefficient were calculated on the delayed flux phase with constraint to minimize the initial flux and approaching steady-state flux. The obtained results revealed flat films with homogeneous distribution of SMV within the films. Thickness values changed from 65 to 180 μm by changing the factors' combinations. Most of the permeation profiles showed sustained release feature with fast permeation phase followed by slow phase. Analysis of variance (ANOVA) showed significant effects (p < 0.05) of the investigated variables on the responses with Prob > F values of 0.0147, 0.0814, 0.0063 and 0.0142 for the initial and delayed fluxes, permeability coefficients and diffusivities, respectively. The findings of screening study showed the importance of the significant variables to be scaled up for full optimization study as a promising alternative drug delivery system.

  3. Fabrication of Polyimide Membrane Incorporated with Functional Graphene Oxide for CO2 Separation: The Effects of GO Surface Modification on Membrane Performance.

    PubMed

    Wang, Ting; Cheng, Cheng; Wu, Li-Guang; Shen, Jiang-Nan; Van der Bruggen, Bart; Chen, Qian; Chen, Di; Dong, Chun-Ying

    2017-06-06

    Two kinds of isocyanate were used to modify graphene oxide (GO) samples. Then, polyimide (PI) hybrid membranes containing GO and modified GO were prepared by in situ polymerization. The permeation of CO 2 and N 2 was studied using these novel membranes. The morphology experiments showed that the isocyanate groups were successfully grafted on the surface of GO by replacement of the oxygen-containing functional groups. After modification, the surface polarity of the GO increased, and more defect structures were introduced into the GO surface. This resulted in a good distribution of more modified GO samples in the PI polymer matrix. Thus, the PI hybrid membranes incorporated by modified GO samples showed a high gas permeability and ideal selectivity of membranes. In addition, enhancement of the selectivity due to the solubility of CO 2 played a major role in the increase in the separation performance of the hybrid membranes for CO 2 , although the diffusion coefficients for CO 2 also increased. Both the higher condensability and the strong affinity between CO 2 molecules and GO in the polymer matrix caused an enhancement of the solubility selectivity higher than the diffusion selectivity after GO surface modification.

  4. Density-Gradient Theory: A Macroscopic Approach to Quantum Confinement and Tunneling in Semiconductor Devices

    DTIC Science & Technology

    2011-01-01

    that are attractive as luminescent biolabels, and possibly also for optoelectronic devices and solar cells . The equilibrium nature of such situations...The boundary layers as- sociated with the diffusion and Debye lengths are familiar, while that of LQ defines the layer in which the quantum in...circuits, transmission lines Diffusion -drift, density-gradient Semi-classical electron dynamics, Boltzmann transport Schrödinger, density- matrix, Wigner

  5. 24-HOUR DIFFUSIVE SAMPLING OF 1,3-BUTADIENE IN AIR ONTO CARBONPAK X SOLID ADSORBENT WITH THEMAL DESORPTION/GC/MS ANALYSIS - FEASIBILITY STUDIES

    EPA Science Inventory

    Diffusive sampling of 1,3-butadiene for 24 hours onto the graphitic adsorbent Carbopack X contained in a stainless steel tube badge (6.3 mm OD, 5 mm ID, and 90 mm in length) with analysis by thermal desorption/GC/MS has been evaluated in controlled tests. A test matrix of 42 tr...

  6. Reexamination of relaxation of spins due to a magnetic field gradient: Identity of the Redfield and Torrey theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golub, R.; Rohm, Ryan M.; Swank, C. M.

    2011-02-15

    There is an extensive literature on magnetic-gradient-induced spin relaxation. Cates, Schaefer, and Happer, in a seminal publication, have solved the problem in the regime where diffusion theory (the Torrey equation) is applicable using an expansion of the density matrix in diffusion equation eigenfunctions and angular momentum tensors. McGregor has solved the problem in the same regime using a slightly more general formulation using the Redfield theory formulated in terms of the autocorrelation function of the fluctuating field seen by the spins and calculating the correlation functions using the diffusion-theory Green's function. The results of both calculations were shown to agreemore » for a special case. In the present work, we show that the eigenfunction expansion of the Torrey equation yields the expansion of the Green's function for the diffusion equation, thus showing the identity of this approach with that of the Redfield theory. The general solution can also be obtained directly from the Torrey equation for the density matrix. Thus, the physical content of the Redfield and Torrey approaches are identical. We then introduce a more general expression for the position autocorrelation function of particles moving in a closed cell, extending the range of applicability of the theory.« less

  7. Towards a better understanding of the mechanisms controlling the durability of FRP composites in concrete

    NASA Astrophysics Data System (ADS)

    Kamal, Abu Sayed Md

    Wide adoption by the construction industry of Fibre Reinforced Polymer (FRP) rebars - a relatively recent construction material that offers numerous advantages of corrosion resistance, higher strength, lighter weight, etc. over conventional reinforcing materials for concrete, such as steel - is at least partially impeded due to a lack of an effective long term in-service performance prediction model and relatively high initial costs. A reliable service life prediction model for FRP composites in concrete depends on a clear understanding of the transport mechanisms of potentially harmful chemical species into the FRP composites and their subsequent contribution to any potentially active degradation mechanism(s). To identify which mechanisms control the degradation of Glass Fibre Reinforced Polymers (GFRP) in alkaline environments, GFRP rebars were immersed into simulated concrete pore solutions and subjected to accelerated ageing tests (Phase 1). The conditioned samples were analyzed by various electron microscopy (SEM, EDS) and spectroscopic methods (FTIR). Analyses of these tests revealed that fibre-matrix debonding took place in few samples exposed to 75 °C (the highest temperature considered in this study), and tested after one year, despite the fact that the glass fibres and polymer matrix remained essentially intact and that no penetration of alkalis into the GFRP rebars was observed. Hence, this study shows that the Vinyl Ester (VE) polymer matrix used acts as an effective semi-permeable membrane by allowing the penetration of water while blocking alkali ions. The findings showing that most of the damage seems to be confined to the fibre-matrix interphase (or interface), under the considered test conditions, stimulated an investigation on the effects of sizing on the strength retention and water up-take of GFRP rebars in Phase 2 of the testing program. In order to study the effects of sizing on the properties of GFRP rebars, GFRP custom plane sheets with sized and desized glass fibers were produced and exposed to deionized water at 4 °C, 23 °C, and 50 °C. Irrespective of sample types, the tensile strength decreased with temperature while the mass gain and moisture diffusivity increased with temperature. However, the sized samples showed a similar mass gain behavior as the desized ones, at the same exposure environment. This study confirms that sizing in GFRP custom plane sheets contributes not only to the initial strength of the composite by enhancing the adhesion between the glass fibre and a matrix, but also to the strength retention (i.e., durability) when exposed to harsh environments. The experiments of Phase 2 were carried out at 100% relative humidity (RH). However, field service conditions vary with respect to RH and temperature for GFRP composites in concrete. Therefore, a further study was conducted to investigate the effects of RH and temperature on the properties of GFRP rebars in Phase 3. The effects of RH were investigated by exposing GFRP rebars to nine RH environments (9%-100%) while monitoring mass changes during drying and wetting. Moreover, the thermal effects of GFRP rebars on water uptake in deionized water at 4 °C, 23 °C, and 50 °C were studied and compared with those for GFRP custom plane sheets. The effects of RH on drying and wetting for GFRP rebars exhibited a hysteretic behavior. The percent of mass gain at 100% RH showed a significant difference from that in other RH environments. Mass gain and moisture diffusivity were found to increase for both rebars and custom sheets with increasing temperature. A typical Fickian behaviour of water absorption was observed for both types of samples at all exposure conditions, except the GFRP rebars at higher temperatures (starting at 50 °C) which showed non-Fickian behaviour for water absorption. The dependence of the diffusion coefficient on temperature was found to follow the Arrhenius equation. (Abstract shortened by UMI.)

  8. Synthetic design of growth factor sequestering extracellular matrix mimetic hydrogel for promoting in vivo bone formation.

    PubMed

    Yan, Hong Ji; Casalini, Tommaso; Hulsart-Billström, Gry; Wang, Shujiang; Oommen, Oommen P; Salvalaglio, Matteo; Larsson, Sune; Hilborn, Jöns; Varghese, Oommen P

    2018-04-01

    Synthetic scaffolds that possess an intrinsic capability to protect and sequester sensitive growth factors is a primary requisite for developing successful tissue engineering strategies. Growth factors such as recombinant human bone morphogenetic protein-2 (rhBMP-2) is highly susceptible to premature degradation and to provide a meaningful clinical outcome require high doses that can cause serious side effects. We discovered a unique strategy to stabilize and sequester rhBMP-2 by enhancing its molecular interactions with hyaluronic acid (HA), an extracellular matrix (ECM) component. We found that by tuning the initial protonation state of carboxylic acid residues of HA in a covalently crosslinked hydrogel modulate BMP-2 release at physiological pH by minimizing the electrostatic repulsion and maximizing the Van der Waals interactions. At neutral pH, BMP-2 release is primarily governed by Fickian diffusion, whereas at acidic pH both diffusion and electrostatic interactions between HA and BMP-2 become important as confirmed by molecular dynamics simulations. Our results were also validated in an in vivo rat ectopic model with rhBMP-2 loaded hydrogels, which demonstrated superior bone formation with acidic hydrogel as compared to the neutral counterpart. We believe this study provides new insight on growth factor stabilization and highlights the therapeutic potential of engineered matrices for rhBMP-2 delivery and may help to curtail the adverse side effects associated with the high dose of the growth factor. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Effect of drug loading method against drug dissolution mechanism of encapsulated amoxicillin trihydrate in matrix of semi-IPN chitosan-poly(N-vinylpyrrolidone) hydrogel with KHCO3 as pore forming agent in floating drug delivery system

    NASA Astrophysics Data System (ADS)

    Fimantari, Khansa; Budianto, Emil

    2018-04-01

    Helicobacterpylori infection can be treated using trihydrate amoxicillin. However, this treatment is not effective enough, as the conventional dosage treatment has a relatively short retention time in the human stomach. In the present study, the amoxicillin trihydrate drug will be encapsulated into a semi-IPN K-PNVP hydrogel matrix with 7,5% KHCO3 as a pore-forming agent. The encapsulated drug is tested with in vitro method to see the efficiency of its encapsulation and dissolution. The hydrogel in situ loading produces an encapsulation efficiency value. The values of the encapsulation efficiency are 95% and 98%, while post loading hydrogel yields an encapsulation efficiency value is 77% and the dissolution is 84%. The study of drug dissolution mechanism was done by using mathematical equation model to know its kinetics and its mechanism of dissolution. The post loading hydrogel was done by using thefirst-order model, while hydrogel in situ loading used Higuchi model. The Korsmeyer-Peppas model shows that post loading hydrogel dissolution mechanism is a mixture of diffusion and erosion, and in situ loading hydrogel in the form of diffusion. It is supported by the results of hydrogel characterization, before and after dissolution test with an optical microscope. The results of the optical microscope show that the hydrogel surface before and after the dissolution tested for both methods shows the change becomes rougher.

  10. Analysis of structure of hyperfine poly(3-hydroxybutyrate) fibers (PHB) for controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Olkhov, A. A.; Kosenko, R. Yu; Markin, V. S.; Zykova, A. K.; Pantyukhov, P. V.; Karpova, S. G.; Iordanskii, A. L.

    2017-12-01

    Hyperfine fibers based on biodegradable poly (3-hydroxybutyrate) with encapsulated drug substance (dipyridamol) were obtained by using electrospinning method. Addition of dipyridamol has a significant effect on geometrical shape and structure of microfibers as well as total porosity of fibrous material. Observation of fibers using scanning electron microscopy (SEM) method showed that without or at lower dipyridamol content (<3%) fibers consisted of interleaved ellipsoid and cylindrical fragments. At higher dipyridamol content (3-5%) anomalous ellipsoid structures did not practically form, and fiber’s shape became cylindrical. The totality of morphological and structural characteristics determined the rate of dipyridamol diffusive transports. The simplified model of drug desorption from fibrous matrix was presented. In current work it was showed that the rate-limiting stage of transport was the diffusion of dipyridamol in the bulk of cylindrical fibers.

  11. Bio-dissolution of Ni, V and Mo from spent petroleum catalyst using iron oxidizing bacteria.

    PubMed

    Pradhan, Debabrata; Kim, Dong J; Roychaudhury, Gautam; Lee, Seoung W

    2010-01-01

    Bioleaching studies of spent petroleum catalyst containing Ni, V and Mo were carried out using iron oxidizing bacteria. Various leaching parameters such as Fe(II) concentration, pulp density, pH, temperature and particle size were studied to evaluate their effects on the leaching efficiency as well as the kinetics of dissolution. The percentage of leaching of Ni and V were higher than Mo. The leaching process followed a diffusion controlled model and the product layer was observed to be impervious due to formation of ammonium jarosite (NH(4))Fe(3)(SO(4))(2)(OH)(6). Apart from this, the lower leaching efficiency of Mo was due to a hydrophobic coating of elemental sulfur over Mo matrix in the spent catalyst. The diffusivities of the attacking species for Ni, V and Mo were also calculated.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Siqi; Senses, Erkan; Jiao, Yang

    Nanoparticles functionalized with long polymer chains at low graft density are interesting systems to study structure–dynamic relationships in polymer nanocomposites since they are shown to aggregate into strings in both solution and melts and also into spheres and branched aggregates in the presence of free polymer chains. Our work investigates structure and entanglement effects in composites of polystyrene-grafted iron oxide nanoparticles by measuring particle relaxations using X-ray photon correlation spectroscopy. And for particles within highly ordered strings and aggregated systems, they experience a dynamically heterogeneous environment displaying hyperdiffusive relaxation commonly observed in jammed soft glassy systems. Furthermore, particle dynamics ismore » diffusive for branched aggregated structures which could be caused by less penetration of long matrix chains into brushes. These results suggest that particle motion is dictated by the strong interactions of chains grafted at low density with the host matrix polymer.« less

  13. Searching for high-k RE2O3 nanoparticles embedded in SiO2 glass matrix

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Lin, Y. H.; Kao, T. H.; Chou, C. C.; Yang, H. D.

    2012-03-01

    Significant experimental effort has been explored to search and characterize high-k materials with magnetodielectric effect (MDE) of series of rare earth (RE) oxide (RE2O3) nanoparticles (NPs) embedded in SiO2 glass matrix by a sol-gel route. Properly annealed sol-gel glass (in which RE = Sm, Gd, and Er) shows colossal response of dielectric constant along with diffuse phase transition and MDE around room temperature. The radial distribution functions, reconstructed from extended x-ray absorption fine structure, show the shortening of RE3 + -O depending on the RE2O3 NP size, which is consistent with oxygen vacancy induced dielectric anomaly. The magnetoresistive MDE is very much conditioned by magnetic property of RE2O3 NP grain, the degree of deformation of the lattice and constituent host.

  14. Insight from simulations of single-well injection-withdrawal tracer tests on simple and complex fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsang, C.-F.; Doughty, C.

    2009-08-06

    The single-well injection withdrawal (SWIW) test, a tracer test utilizing only one well, is proposed as a useful contribution to site characterization of fractured rock, as well as providing parameters relevant to tracer diffusion and sorption. The usual conceptual model of flow and solute transport through fractured rock with low matrix permeability involves solute advection and dispersion through a fracture network coupled with diffusion and sorption into the surrounding rock matrix. Unlike two-well tracer tests, results of SWIW tests are ideally independent of advective heterogeneity, channeling and flow dimension, and, instead, focus on diffusive and sorptive characteristics of tracer (solute)more » transport. Thus, they can be used specifically to study such characteristics and evaluate the diffusive parameters associated with tracer transport through fractured media. We conduct simulations of SWIW tests on simple and complex fracture models, the latter being defined as having two subfractures with altered rock blocks in between and gouge material in their apertures. Using parameters from the Aspo site in Sweden, we calculate and study SWIW tracer breakthrough curves (BTCs) from a test involving four days of injection and then withdrawal. By examining the peak concentration C{sub pk} of the SWIW BTCs for a variety of parameters, we confirm that C{sub pk} is largely insensitive to the fracture advective flow properties, in particular to permeability heterogeneity over the fracture plane or to subdividing the flow into two subfractures in the third dimension orthogonal to the fracture plane. The peak arrival time t{sub pk} is not a function of fracture or rock properties, but is controlled by the time schedule of the SWIW test. The study shows that the SWIW test is useful for the study of tracer diffusion-sorption processes, including the effect of the so-called flow-wetted surface (FWS) of the fracture. Calculations with schematic models with different FWS values are conducted and the possibility of direct in situ measurement of FWS with SWIW tests is demonstrated.« less

  15. Study of diffusion bond development in 6061 aluminum and its relationship to future high density fuels fabrication.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokofiev, I.; Wiencek, T.; McGann, D.

    1997-10-07

    Powder metallurgy dispersions of uranium alloys and silicides in an aluminum matrix have been developed by the RERTR program as a new generation of proliferation-resistant fuels. Testing is done with miniplate-type fuel plates to simulate standard fuel with cladding and matrix in plate-type configurations. In order to seal the dispersion fuel plates, a diffusion bond must exist between the aluminum coverplates surrounding the fuel meat. Four different variations in the standard method for roll-bonding 6061 aluminum were studied. They included mechanical cleaning, addition of a getter material, modifications to the standard chemical etching, and welding methods. Aluminum test pieces weremore » subjected to a bend test after each rolling pass. Results, based on 400 samples, indicate that at least a 70% reduction in thickness is required to produce a diffusion bond using the standard rollbonding method versus a 60% reduction using the Type II method in which the assembly was welded 100% and contained open 9mm holes at frame corners.« less

  16. An approximate stationary solution for multi-allele neutral diffusion with low mutation rates.

    PubMed

    Burden, Conrad J; Tang, Yurong

    2016-12-01

    We address the problem of determining the stationary distribution of the multi-allelic, neutral-evolution Wright-Fisher model in the diffusion limit. A full solution to this problem for an arbitrary K×K mutation rate matrix involves solving for the stationary solution of a forward Kolmogorov equation over a (K-1)-dimensional simplex, and remains intractable. In most practical situations mutations rates are slow on the scale of the diffusion limit and the solution is heavily concentrated on the corners and edges of the simplex. In this paper we present a practical approximate solution for slow mutation rates in the form of a set of line densities along the edges of the simplex. The method of solution relies on parameterising the general non-reversible rate matrix as the sum of a reversible part and a set of (K-1)(K-2)/2 independent terms corresponding to fluxes of probability along closed paths around faces of the simplex. The solution is potentially a first step in estimating non-reversible evolutionary rate matrices from observed allele frequency spectra. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Automated artifact detection and removal for improved tensor estimation in motion-corrupted DTI data sets using the combination of local binary patterns and 2D partial least squares.

    PubMed

    Zhou, Zhenyu; Liu, Wei; Cui, Jiali; Wang, Xunheng; Arias, Diana; Wen, Ying; Bansal, Ravi; Hao, Xuejun; Wang, Zhishun; Peterson, Bradley S; Xu, Dongrong

    2011-02-01

    Signal variation in diffusion-weighted images (DWIs) is influenced both by thermal noise and by spatially and temporally varying artifacts, such as rigid-body motion and cardiac pulsation. Motion artifacts are particularly prevalent when scanning difficult patient populations, such as human infants. Although some motion during data acquisition can be corrected using image coregistration procedures, frequently individual DWIs are corrupted beyond repair by sudden, large amplitude motion either within or outside of the imaging plane. We propose a novel approach to identify and reject outlier images automatically using local binary patterns (LBP) and 2D partial least square (2D-PLS) to estimate diffusion tensors robustly. This method uses an enhanced LBP algorithm to extract texture features from a local texture feature of the image matrix from the DWI data. Because the images have been transformed to local texture matrices, we are able to extract discriminating information that identifies outliers in the data set by extending a traditional one-dimensional PLS algorithm to a two-dimension operator. The class-membership matrix in this 2D-PLS algorithm is adapted to process samples that are image matrix, and the membership matrix thus represents varying degrees of importance of local information within the images. We also derive the analytic form of the generalized inverse of the class-membership matrix. We show that this method can effectively extract local features from brain images obtained from a large sample of human infants to identify images that are outliers in their textural features, permitting their exclusion from further processing when estimating tensors using the DWIs. This technique is shown to be superior in performance when compared with visual inspection and other common methods to address motion-related artifacts in DWI data. This technique is applicable to correct motion artifact in other magnetic resonance imaging (MRI) techniques (e.g., the bootstrapping estimation) that use univariate or multivariate regression methods to fit MRI data to a pre-specified model. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Complex Analysis of Diffusion Transport and Microstructure of an Intervertebral Disk.

    PubMed

    Byvaltsev, V A; Kolesnikov, S I; Belykh, E G; Stepanov, I A; Kalinin, A A; Bardonova, L A; Sudakov, N P; Klimenkov, I V; Nikiforov, S B; Semenov, A V; Perfil'ev, D V; Bespyatykh, I V; Antipina, S L; Giers, M; Prul, M

    2017-12-01

    We studied the relationship between diffusion transport and morphological and microstructural organization of extracellular matrix of human intervertebral disk. Specimens of the lumbar intervertebral disks without abnormalities were studied ex vivo by diffusion-weighed magnetic resonance imaging, histological and immunohistochemical methods, and electron microscopy. Distribution of the diffusion coefficient in various compartments of the intervertebral disk was studied. Significant correlations between diffusion coefficient and cell density in the nucleus pulposus, posterior aspects of annulus fibrosus, and endplate at the level of the posterior annulus fibrosus were detected for each disk. In disks with nucleus pulposus diffusion coefficient below 15×10 -4 mm 2 /sec, collagens X and XI were detected apart from aggrecan and collagens I and II. The results supplement the concept on the relationship between the microstructure and cell composition of various compartments of the intervertebral disk and parameters of nutrient transport.

  19. Thermal single-well injection-withdrawal tracer tests for determining fracture-matrix heat transfer area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruess, K.; Doughty, C.

    2010-01-15

    Single-well injection-withdrawal (SWIW) tracer tests involve injection of traced fluid and subsequent tracer recovery from the same well, usually with some quiescent time between the injection and withdrawal periods. SWIW are insensitive to variations in advective processes that arise from formation heterogeneities, because upon withdrawal, fluid parcels tend to retrace the paths taken during injection. However, SWIW are sensitive to diffusive processes, such as diffusive exchange of conservative or reactive solutes between fractures and rock matrix. This paper focuses on SWIW tests in which temperature itself is used as a tracer. Numerical simulations demonstrate the sensitivity of temperature returns tomore » fracture-matrix interaction. We consider thermal SWIW response to the two primary reservoir improvements targeted with stimulation, (1) making additional fractures accessible to injected fluids, and (2) increasing the aperture and permeability of pre-existing fractures. It is found that temperature returns in SWIW tests are insensitive to (2), while providing a strong signal of more rapid temperature recovery during the withdrawal phase for (1).« less

  20. Parallel halftoning technique using dot diffusion optimization

    NASA Astrophysics Data System (ADS)

    Molina-Garcia, Javier; Ponomaryov, Volodymyr I.; Reyes-Reyes, Rogelio; Cruz-Ramos, Clara

    2017-05-01

    In this paper, a novel approach for halftone images is proposed and implemented for images that are obtained by the Dot Diffusion (DD) method. Designed technique is based on an optimization of the so-called class matrix used in DD algorithm and it consists of generation new versions of class matrix, which has no baron and near-baron in order to minimize inconsistencies during the distribution of the error. Proposed class matrix has different properties and each is designed for two different applications: applications where the inverse-halftoning is necessary, and applications where this method is not required. The proposed method has been implemented in GPU (NVIDIA GeForce GTX 750 Ti), multicore processors (AMD FX(tm)-6300 Six-Core Processor and in Intel core i5-4200U), using CUDA and OpenCV over a PC with linux. Experimental results have shown that novel framework generates a good quality of the halftone images and the inverse halftone images obtained. The simulation results using parallel architectures have demonstrated the efficiency of the novel technique when it is implemented in real-time processing.

  1. D2O clusters isolated in rare-gas solids: Dependence of infrared spectrum on concentration, deposition rate, heating temperature, and matrix material

    NASA Astrophysics Data System (ADS)

    Shimazaki, Yoichi; Arakawa, Ichiro; Yamakawa, Koichiro

    2018-04-01

    The infrared absorption spectra of D2O monomers and clusters isolated in rare-gas matrices were systematically reinvestigated under the control of the following factors: the D2O concentration, deposition rate, heating temperature, and rare-gas species. We clearly show that the cluster-size distribution is dependent on not only the D2O concentration but also the deposition rate of a sample; as the rate got higher, smaller clusters were preferentially formed. Under the heating procedures at different temperatures, the cluster-size growth was successfully observed. Since the monomer diffusion was not enough to balance the changes in the column densities of the clusters, the dimer diffusion was likely to contribute the cluster growth. The frequencies of the bonded-OD stretches of (D2O)k with k = 2-6 were almost linearly correlated with the square root of the critical temperature of the matrix material. Additional absorption peaks of (D2O)2 and (D2O)3 in a Xe matrix were assigned to the species trapped in tight accommodation sites.

  2. Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites

    NASA Technical Reports Server (NTRS)

    Wei, Chengyu; Srivastava, Deepak; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Classical molecular dynamics (MD) simulations employing Brenner potential for intra-nanotube interactions and van der Waals forces for polymer-nanotube interface have been used to investigate thermal expansion and diffusion characteristics of carbon nanotube-polyethylene composites. Addition of carbon nanotubes to polymer matrix is found to significantly increase the glass transition temperature Tg, and thermal expansion and diffusion coefficients in the composite above Tg. The increase has been attributed to the temperature dependent increase of the excluded volume for the polymer chains, and the findings could have implications in the composite processing, coating and painting applications.

  3. The three-zone composite productivity model for a multi-fractured horizontal shale gas well

    NASA Astrophysics Data System (ADS)

    Qi, Qian; Zhu, Weiyao

    2018-02-01

    Due to the nano-micro pore structures and the massive multi-stage multi-cluster hydraulic fracturing in shale gas reservoirs, the multi-scale seepage flows are much more complicated than in most other conventional reservoirs, and are crucial for the economic development of shale gas. In this study, a new multi-scale non-linear flow model was established and simplified, based on different diffusion and slip correction coefficients. Due to the fact that different flow laws existed between the fracture network and matrix zone, a three-zone composite model was proposed. Then, according to the conformal transformation combined with the law of equivalent percolation resistance, the productivity equation of a horizontal fractured well, with consideration given to diffusion, slip, desorption, and absorption, was built. Also, an analytic solution was derived, and the interference of the multi-cluster fractures was analyzed. The results indicated that the diffusion of the shale gas was mainly in the transition and Fick diffusion regions. The matrix permeability was found to be influenced by slippage and diffusion, which was determined by the pore pressure and diameter according to the Knudsen number. It was determined that, with the increased half-lengths of the fracture clusters, flow conductivity of the fractures, and permeability of the fracture network, the productivity of the fractured well also increased. Meanwhile, with the increased number of fractures, the distance between the fractures decreased, and the productivity slowly increased due to the mutual interfere of the fractures.

  4. Photo- and thermally induced property change in Ag diffusion into Ag/As2Se3 thin films

    NASA Astrophysics Data System (ADS)

    Aparimita, Adyasha; Sripan, C.; Ganesan, R.; Naik, Ramakanta

    2018-03-01

    In the present report, we have prepared As2Se3 and bilayer Ag/As2Se3 chalcogenide thin films prepared by thermal evaporation process. The top Ag layer is being diffused into the bottom As2Se3 layer by 532 nm laser irradiation and thermal annealing process. The photo and thermal energy drives the Ag+ ions into the As2Se3 matrix that enhances the formation of As-Se-Ag solid solution which shows the changes of optical properties such as transmission, absorption power, refractive index, and optical band gap. The transmission power drastically decreased for the thermal-induced film than the laser induced one; and the reverse effect is seen for the absorption coefficient. The non-linear refractive index is found to be increased due to the Ag diffusion into As2Se3 film. The indirect allowed optical band gap is being reduced by a significant amount of 0.17 eV (thermal diffusion) and 0.03 eV (photo diffusion) from the Ag/As2Se3 film. The Ag diffusion creates chemical disorderness in the film observed from the two parameters which measures the degree of disorder such as Urbach energy and Tauc parameter. The structural change is not noticed in the studied film as seen from the X-ray diffraction pattern. Scanning electron microscopy and atomic force microscopy investigations showed that the surface morphology was influenced by the diffusion phenomena. The change in optical constants in such type of film can be used in optical waveguides and optical devices.

  5. Variation in diffusion of gases through PDMS due to plasma surface treatment and storage conditions.

    PubMed

    Markov, Dmitry A; Lillie, Elizabeth M; Garbett, Shawn P; McCawley, Lisa J

    2014-02-01

    Polydimethylsiloxane (PDMS) is a commonly used polymer in the fabrication of microfluidic devices due to such features as transparency, gas permeability, and ease of patterning with soft lithography. The surface characteristics of PDMS can also be easily changed with oxygen or low pressure air plasma converting it from a hydrophobic to a hydrophilic state. As part of such a transformation, surface methyl groups are removed and replaced with hydroxyl groups making the exposed surface to resemble silica, a gas impermeable substance. We have utilized Platinum(II)-tetrakis(pentaflourophenyl)porphyrin immobilized within a thin (~1.5 um thick) polystyrene matrix as an oxygen sensor, Stern-Volmer relationship, and Fick's Law of simple diffusion to measure the effects of PDMS composition, treatment, and storage on oxygen diffusion through PDMS. Results indicate that freshly oxidized PDMS showed a significantly smaller diffusion coefficient, indicating that the SiO2 layer formed on the PDMS surface created an impeding barrier. This barrier disappeared after a 3-day storage in air, but remained significant for up to 3 weeks if PDMS was maintained in contact with water. Additionally, higher density PDMS formulation (5:1 ratio) showed similar diffusion characteristics as normal (10:1 ratio) formulation, but showed 60 % smaller diffusion coefficient after plasma treatment that never recovered to pre-treatment levels even after a 3-week storage in air. Understanding how plasma surface treatments contribute to oxygen diffusion will be useful in exploiting the gas permeability of PDMS to establish defined normoxic and hypoxic oxygen conditions within microfluidic bioreactor systems.

  6. Variation in diffusion of gases through PDMS due to plasma surface treatment and storage conditions

    PubMed Central

    Markov, Dmitry A.; Lillie, Elizabeth M.; Garbett, Shawn P.; McCawley, Lisa J.

    2013-01-01

    Polydimethylsiloxane (PDMS) is a commonly used polymer in the fabrication of microfluidic devices due to such features as transparency, gas permeability, and ease of patterning with soft lithography. The surface characteristics of PDMS can also be easily changed with oxygen or low pressure air converting it from a hydrophobic to a hydrophilic state. As part of such a transformation, surface methyl groups are removed and replaced with hydroxyl groups making the exposed surface to resemble silica, a gas impermeable substance. We have utilized Platinum(II)-tetrakis(pentaflourophenyl)porphyrin immobilized within a thin (~1.5 um thick) polystyrene matrix as an oxygen sensor, Stern-Volmer relationship, and Fick's Law of simple diffusion to measure the effects of PDMS composition, treatment, and storage on oxygen diffusion through PDMS. Results show that freshly oxidized PDMS showed a significantly smaller diffusion coefficient, indicating that the SiO2 layer formed on the PDMS surface created an impeding barrier. This barrier disappeared after a three-day storage in air, but remained significant for up to three weeks if PDMS was maintained in contact with water. Additionally, higher density PDMS formulation (5:1 ratio) showed similar diffusion characteristics as normal (10:1 ratio) formulation, but showed 60% smaller diffusion coefficient after plasma treatment that never recovered to pre-treatment levels even after a three-week storage in air. Understanding how plasma surface treatments contribute to oxygen diffusion will be useful in exploiting the gas permeability of PDMS to establish defined normoxic and hypoxic oxygen conditions within microfluidic bioreactor systems. PMID:24065585

  7. RERTR-9 Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. M. Perez

    2011-05-01

    The RERTR-9 experiment was designed to test the effect of modified fuel/clad interfaces in monolithic fuel plates and to demonstrate that the addition of Si to the matrix material in dispersion plates continued to be effective at high loading (~8.5 g U/cc). Several monolithic fuel plates were fabricated by Hot Isostatic Pressing (HIP) and Friction Bonding (FB) with thin layers of Si inserted and by HIP with a Zr diffusion barrier between the fuel and cladding. Si was applied to the interface by thermal spray of Al Si mixtures and by the insertion of thin Si-rich Al alloy foil betweenmore » the fuel/clad interface. The dispersion fuel plates were fabricated by semi-standard rolling techniques (the reduction by rolling was lowered to limit fabrication defects). Matrix materials consisted of Al-Si alloys and mixtures with various levels of Si. The following report summarizes the life of the RERTR-9A/B experiment through end of irradiation, including as-run neutronic analysis, thermal analysis and hydraulic testing results.« less

  8. Effects of Sintering and Extrusion on the Microstructures and Mechanical Properties of a SiC/Al-Cu Composite

    NASA Astrophysics Data System (ADS)

    Sun, Chao; Shen, Rujuan; Song, Min

    2012-03-01

    This article studied the effects of sintering and extrusion on the microstructures and mechanical properties of SiC particle reinforced Al-Cu alloy composite produced by powder metallurgy method. It has been shown that both extrusion and increasing sintering temperature can significantly improve the strength and plasticity of the composite. The extrusion and increase of the sintering temperature can break up the oxide coating on the matrix powder surfaces, decrease the number of pores, accelerate the elements' diffusion and increase the density and particle interfacial bonding strength, thus significantly improve the mechanical properties of the composite. The strength and hardness of the composite increase and the elongation decreases with increasing the aging time at under-aged stage, while the strength and hardness start to decrease and the elongation starts to increase with increasing the aging time at over-aged stage due to the formation and growth of the secondary strengthening precipitates in the Al-Cu matrix.

  9. The acousto-ultrasonic approach

    NASA Technical Reports Server (NTRS)

    Vary, Alex

    1987-01-01

    The nature and underlying rationale of the acousto-ultrasonic approach is reviewed, needed advanced signal analysis and evaluation methods suggested, and application potentials discussed. Acousto-ultrasonics is an NDE technique combining aspects of acoustic emission methodology with ultrasonic simulation of stress waves. This approach uses analysis of simulated stress waves for detecting and mapping variations of mechanical properties. Unlike most NDE, acousto-ultrasonics is less concerned with flaw detection than with the assessment of the collective effects of various flaws and material anomalies. Acousto-ultrasonics has been applied chiefly to laminated and filament-wound fiber reinforced composites. It has been used to assess the significant strength and toughness reducing effects that can be wrought by combinations of essentially minor flaws and diffuse flaw populations. Acousto-ultrasonics assesses integrated defect states and the resultant variations in properties such as tensile, shear, and flexural strengths and fracture resistance. Matrix cure state, porosity, fiber orientation, fiber volume fraction, fiber-matrix bonding, and interlaminar bond quality are underlying factors.

  10. Study of kinetic desorption rate constant in fish muscle and agarose gel model using solid phase microextraction coupled with liquid chromatography with tandem mass spectrometry.

    PubMed

    Togunde, Oluranti Paul; Oakes, Ken; Servos, Mark; Pawliszyn, Janusz

    2012-09-12

    This study aims to use solid phase microextraction (SPME), a simple tool to investigate diffusion rate (time) constant of selected pharmaceuticals in gel and fish muscle by comparing desorption rate of diffusion of the drugs in both agarose gel prepared with phosphate-buffered saline (PBS; pH 7.4) and fish muscle. The gel concentration (agarose gel model) that could be used to simulate tissue matrix (fish muscle) for free diffusion of drugs under in vitro and in vivo conditions was determined to model mass transfer phenomena between fibre polymer coating and environmental matrix such that partition coefficients and desorption time constant (diffusion coefficient) can be determined. SPME procedure involves preloading the extraction phase (fibre) with the standards from spiked PBS for 1h via direct extraction. Subsequently, the preloaded fibre is introduced to the sample such fish or agarose gel for specified time ranging from 0.5 to 60 h. Then, fibre is removed at specified time and desorbed in 100 μL of desorption solution (acetonitrile: water 1:1) for 90 min under agitation speed of 1000 rpm. The samples extract were immediately injected to the instrument and analysed using liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS). The limit of detection of the method in gel and fish muscle was 0.01-0.07 ng mL(-1) and 0.07-0.34 ng g(-1), respectively, while the limit quantification was 0.10-0.20 ng mL(-1) in gel samples and 0.40-0.97 ng g(-1) in fish sample. The reproducibility of the method was good (5-15% RSD). The results suggest that kinetics of desorption of the compounds in fish tissue and different viscosity of gel can be determined using desorption time constant. In this study, desorption time constant which is directly related to desorption rate (diffusion kinetics) of selected drugs from the fibre to the gel matrix is faster as the viscosity of the gel matrix reduces from 2% (w/v) to 0.8% (w/v). As the concentration of gel reduces, viscosity of the gel will be reduced therefore allowing faster diffusion which invariably affect desorption time constant. Also, desorption time constant of model drugs in the fish muscle and 0.8-0.9% (w/v) gel model are similar based on free diffusion of studied compounds. In addition, in vitro and in vivo desorption time constant comparison shows that desorption time constant in an in vivo system (live fish muscle) is generally higher than an in vitro system (dead fish muscle) except for sertraline and nordiazepam. This study demonstrates SPME as a simple investigative tool to understand kinetics of desorption in an in vivo system with a goal to measure desorption rate of pharmaceuticals in fish. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Slow-down or speed-up of inter- and intra-cluster diffusion of controversial knowledge in stubborn communities based on a small world network

    NASA Astrophysics Data System (ADS)

    Ausloos, Marcel

    2015-06-01

    Diffusion of knowledge is expected to be huge when agents are open minded. The report concerns a more difficult diffusion case when communities are made of stubborn agents. Communities having markedly different opinions are for example the Neocreationist and Intelligent Design Proponents (IDP), on one hand, and the Darwinian Evolution Defenders (DED), on the other hand. The case of knowledge diffusion within such communities is studied here on a network based on an adjacency matrix built from time ordered selected quotations of agents, whence for inter- and intra-communities. The network is intrinsically directed and not necessarily reciprocal. Thus, the adjacency matrices have complex eigenvalues; the eigenvectors present complex components. A quantification of the slow-down or speed-up effects of information diffusion in such temporal networks, with non-Markovian contact sequences, can be made by comparing the real time dependent (directed) network to its counterpart, the time aggregated (undirected) network, - which has real eigenvalues. In order to do so, small world networks which both contain an odd number of nodes are studied and compared to similar networks with an even number of nodes. It is found that (i) the diffusion of knowledge is more difficult on the largest networks; (ii) the network size influences the slowing-down or speeding-up diffusion process. Interestingly, it is observed that (iii) the diffusion of knowledge is slower in IDP and faster in DED communities. It is suggested that the finding can be "rationalized", if some "scientific quality" and "publication habit" is attributed to the agents, as common sense would guess. This finding offers some opening discussion toward tying scientific knowledge to belief.

  12. Gas uptake and chemical aging of semisolid organic aerosol particles

    PubMed Central

    Shiraiwa, Manabu; Ammann, Markus; Koop, Thomas; Pöschl, Ulrich

    2011-01-01

    Organic substances can adopt an amorphous solid or semisolid state, influencing the rate of heterogeneous reactions and multiphase processes in atmospheric aerosols. Here we demonstrate how molecular diffusion in the condensed phase affects the gas uptake and chemical transformation of semisolid organic particles. Flow tube experiments show that the ozone uptake and oxidative aging of amorphous protein is kinetically limited by bulk diffusion. The reactive gas uptake exhibits a pronounced increase with relative humidity, which can be explained by a decrease of viscosity and increase of diffusivity due to hygroscopic water uptake transforming the amorphous organic matrix from a glassy to a semisolid state (moisture-induced phase transition). The reaction rate depends on the condensed phase diffusion coefficients of both the oxidant and the organic reactant molecules, which can be described by a kinetic multilayer flux model but not by the traditional resistor model approach of multiphase chemistry. The chemical lifetime of reactive compounds in atmospheric particles can increase from seconds to days as the rate of diffusion in semisolid phases can decrease by multiple orders of magnitude in response to low temperature or low relative humidity. The findings demonstrate that the occurrence and properties of amorphous semisolid phases challenge traditional views and require advanced formalisms for the description of organic particle formation and transformation in atmospheric models of aerosol effects on air quality, public health, and climate. PMID:21690350

  13. Application of quality by design approach for intranasal delivery of rivastigmine loaded solid lipid nanoparticles: Effect on formulation and characterization parameters.

    PubMed

    Shah, Brijesh; Khunt, Dignesh; Bhatt, Himanshu; Misra, Manju; Padh, Harish

    2015-10-12

    In the present investigation, Quality by Design (QbD) approach was applied on the development and optimization of solid lipid nanoparticle (SLN) formulation of hydrophilic drug rivastigmine (RHT). RHT SLN were formulated by homogenization and ultrasonication method using Compritol 888 ATO, tween-80 and poloxamer-188 as lipid, surfactant and stabilizer respectively. The effect of independent variables (X1 - drug: lipid ratio, X2 - surfactant concentration and X3 - homogenization time) on quality attributes of SLN i.e. dependent variables (Y1 - size, Y2 - PDI and Y3 - %entrapment efficiency (%EE)) were investigated using 3(3) factorial design. Multiple linear regression analysis and ANOVA were employed to indentify and estimate the main effect, 2FI, quadratic and cubic effect. Optimized RHT SLN formula was derived from an overlay plot on which further effect of probe sonication was evaluated. Final RHT SLN showed narrow size distribution (PDI- 0.132±0.016) with particle size of 82.5±4.07 nm and %EE of 66.84±2.49. DSC and XRD study showed incorporation of RHT into imperfect crystal lattice of Compritol 888 ATO. In comparison to RHT solution, RHT SLN showed higher in-vitro and ex-vivo diffusion. The diffusion followed Higuchi model indicating drug diffusion from the lipid matrix due to erosion. Histopathology study showed intact nasal mucosa with RHT SLN indicating safety of RHT SLN for intranasal administration. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Quantitative SIMS depth profiling of diffusion barrier gate-oxynitride structures in TFT-LCDs.

    PubMed

    Dreer, Sabine; Wilhartitz, Peter; Piplits, Kurt; Mayerhofer, Karl; Foisner, Johann; Hutter, Herbert

    2004-06-01

    Gate oxynitride structures of TFT-LCDs were investigated by SIMS, and successful solutions are demonstrated to overcome difficulties arising due to the charging effects of the multilayer systems, the matrix effect of the method, and the small pattern sizes of the samples. Because of the excellent reproducibility achieved by applying exponential relative sensitivity functions for quantitative analysis, minor differences in the barrier gate-oxynitride composition deposited on molybdenum capped aluminium-neodymium metallisation electrodes were determined between the centre and the edge of the TFT-LCD substrates. No differences were found for molybdenum-tungsten metallisations. Furthermore, at the edge of the glass substrates, aluminium, neodymium, and molybdenum SIMS depth profiles show an exponential trend. With TEM micrographs an inhomogeneous thickness of the molybdenum capping is revealed as the source of this effect, which influences the electrical behaviour of the device. The production process was improved after these results and the aging behaviour of TFT-LCDs was investigated in order to explain the change in control voltage occurring during the lifetime of the displays. SIMS and TEM show an enrichment of neodymium at the interface to the molybdenum layer, confirming good diffusion protection of the molybdenum barrier during accelerated aging. The reason for the shift of the control voltage was finally located by semi-quantitative depth profiling of the sodium diffusion originating from the glass substrate. Molybdenum-tungsten was a much better buffer for the highly-mobile charge carriers than aluminium-neodymium. Best results were achieved with PVD silicon oxynitride as diffusion barrier and gate insulator deposited on aluminium-neodymium metallisation layers.

  15. Mathematical Modeling of Cancer Invasion: The Role of Membrane-Bound Matrix Metalloproteinases

    PubMed Central

    Deakin, Niall E.; Chaplain, Mark A. J.

    2013-01-01

    One of the hallmarks of cancer growth and metastatic spread is the process of local invasion of the surrounding tissue. Cancer cells achieve protease-dependent invasion by the secretion of enzymes involved in proteolysis. These overly expressed proteolytic enzymes then proceed to degrade the host tissue allowing the cancer cells to disseminate throughout the microenvironment by active migration and interaction with components of the extracellular matrix (ECM) such as collagen. In this paper we develop a mathematical model of cancer invasion which consider the role of matrix metalloproteinases (MMPs). Specifically our model will focus on two distinct types of MMP, i.e., soluble, diffusible MMPs (e.g., MMP-2) and membrane-bound MMPs (e.g., MT1-MMP), and the roles each of these plays in cancer invasion. The implications of MMP-2 activation by MMP-14 and the tissue inhibitor of metalloproteinases-2 are considered alongside the effect the architecture of the matrix may have when applied to a model of cancer invasion. Elements of the ECM architecture investigated include pore size of the matrix, since in some highly dense collagen structures such as breast tissue, the cancer cells are unable to physically fit through a porous region, and the crosslinking of collagen fibers. In this scenario, cancer cells rely on membrane-bound MMPs to forge a path through which degradation by other MMPs and movement of cancer cells becomes possible. PMID:23565505

  16. Co-delivery of cisplatin and doxorubicin from calcium phosphate beads/matrix scaffolds for osteosarcoma therapy.

    PubMed

    Hess, Ulrike; Shahabi, Shakiba; Treccani, Laura; Streckbein, Philipp; Heiss, Christian; Rezwan, Kurosch

    2017-08-01

    Bone substitute materials with a controlled drug release ability can fill cavities caused by the resection of bone tumours and thereby combat any leftover bone cancer cells. The combined release of different cytostatics seems to enhance their toxicity. In this study, calcium phosphate beads and matrix scaffolds are combined for a long-term co-delivery of cis-diamminedichloroplatinum (cisplatin, CDDP) and doxorubicin hydrochloride (DOX) as clinical relevant model drugs. Tricalcium phosphate/alginate beads as additional drug carrier are produced by droplet extrusion with ionotropic gelation and incorporated in scaffold matrix by freeze gelation without sintering. CDDP shows a short burst release while DOX has a continuous release measurable over the entire study period of 40days. Drug release from matrix is decreased by ~30% compared to release from beads. Nevertheless, all formulations follow the Korsmeyer-Peppas release kinetic model and show Fickian diffusion. Cytotoxic activity was conducted on MG-63 osteosarcoma cells after 1, 4, and 7days with WST-1 cell viability assay. Co-loaded composites enhance activity towards MG-63 cells up to ~75% toxicity while reducing the released drug quantity. The results suggest that co-loaded beads/matrix scaffolds are highly promising for osteosarcoma therapy due to synergistic effects over a long period of more than a month. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Modelling of intermittent microwave convective drying: parameter sensitivity

    NASA Astrophysics Data System (ADS)

    Zhang, Zhijun; Qin, Wenchao; Shi, Bin; Gao, Jingxin; Zhang, Shiwei

    2017-06-01

    The reliability of the predictions of a mathematical model is a prerequisite to its utilization. A multiphase porous media model of intermittent microwave convective drying is developed based on the literature. The model considers the liquid water, gas and solid matrix inside of food. The model is simulated by COMSOL software. Its sensitivity parameter is analysed by changing the parameter values by ±20%, with the exception of several parameters. The sensitivity analysis of the process of the microwave power level shows that each parameter: ambient temperature, effective gas diffusivity, and evaporation rate constant, has significant effects on the process. However, the surface mass, heat transfer coefficient, relative and intrinsic permeability of the gas, and capillary diffusivity of water do not have a considerable effect. The evaporation rate constant has minimal parameter sensitivity with a ±20% value change, until it is changed 10-fold. In all results, the temperature and vapour pressure curves show the same trends as the moisture content curve. However, the water saturation at the medium surface and in the centre show different results. Vapour transfer is the major mass transfer phenomenon that affects the drying process.

  18. A comparison of Fick and Maxwell-Stefan diffusion formulations in PEMFC gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Lindstrom, Michael; Wetton, Brian

    2017-01-01

    This paper explores the mathematical formulations of Fick and Maxwell-Stefan diffusion in the context of polymer electrolyte membrane fuel cell cathode gas diffusion layers. The simple Fick law with a diagonal diffusion matrix is an approximation of Maxwell-Stefan. Formulations of diffusion combined with mass-averaged Darcy flow are considered for three component gases. For this application, the formulations can be compared computationally in a simple, one dimensional setting. Despite the models' seemingly different structure, it is observed that the predictions of the formulations are very similar on the cathode when air is used as oxidant. The two formulations give quite different results when the Nitrogen in the air oxidant is replaced by helium (this is often done as a diagnostic for fuel cells designs). The two formulations also give quite different results for the anode with a dilute Hydrogen stream. These results give direction to when Maxwell-Stefan diffusion, which is more complicated to implement computationally in many codes, should be used in fuel cell simulations.

  19. Moderate MAS enhances local (1)H spin exchange and spin diffusion.

    PubMed

    Roos, Matthias; Micke, Peter; Saalwächter, Kay; Hempel, Günter

    2015-11-01

    Proton NMR spin-diffusion experiments are often combined with magic-angle spinning (MAS) to achieve higher spectral resolution of solid samples. Here we show that local proton spin diffusion can indeed become faster at low (<10 kHz) spinning rates as compared to static conditions. Spin diffusion under static conditions can thus be slower than the often referred value of 0.8 nm(2)/ms, which was determined using slow MAS (Clauss et al., 1993). The enhancement of spin diffusion by slow MAS relies on the modulation of the orientation-dependent dipolar couplings during sample rotation and goes along with transient level crossings in combination with dipolar truncation. The experimental finding and its explanation is supported by density matrix simulations, and also emphasizes the sensitivity of spin diffusion to the local coupling topology. The amplification of spin diffusion by slow MAS cannot be explained by any model based on independent spin pairs; at least three spins have to be considered. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Computational study of the electronic spectra of the rare gas fluorohydrides HRgF (Rg = Ar, Kr, Xe, Rn)

    NASA Astrophysics Data System (ADS)

    van Hoeve, Miriam D.; Klobukowski, Mariusz

    2018-03-01

    Simulation of the electronic spectra of HRgF (Rg = Ar, Kr, Xe, Rn) was carried out using the time-dependent density functional method, with the CAMB3LYP functional and several basis sets augmented with even-tempered diffuse functions. A full spectral assignment for the HRgF systems was done. The effect of the rare gas matrix on the HRgF (Rg = Ar and Kr) spectra was investigated and it was found that the matrix blue-shifted the spectra. Scalar relativistic effects on the spectra were also studied and it was found that while the excitation energies of HArF and HKrF were insignificantly affected by relativistic effects, most of the excitation energies of HXeF and HRnF were red-shifted. Spin-orbit coupling was found to significantly affect excitation energies in HRnF. Analysis of performance of the model core potential basis set relative to all-electron (AE) basis sets showed that the former basis set increased computational efficiency and gave results similar to those obtained with the AE basis set.

  1. Effects of multiple scattering and surface albedo on the photochemistry of the troposphere

    NASA Technical Reports Server (NTRS)

    Augustsson, T. R.; Tiwari, S. N.

    1981-01-01

    The effect of treatment of incoming solar radiation on the photochemistry of the troposphere is discussed. A one dimensional photochemical model of the troposphere containing the species of the nitrogen, oxygen, carbon, hydrogen, and sulfur families was developed. The vertical flux is simulated by use of the parameterized eddy diffusion coefficients. The photochemical model is coupled to a radiative transfer model that calculates the radiation field due to the incoming solar radiation which initiates much of the photochemistry of the troposphere. Vertical profiles of tropospheric species were compared with the Leighton approximation, radiative transfer, matrix inversion model. The radiative transfer code includes the effects of multiple scattering due to molecules and aerosols, pure absorption, and surface albedo on the transfer of incoming solar radiation. It is indicated that significant differences exist for several key photolysis frequencies and species number density profiles between the Leighton approximation and the profiles generated with, radiative transfer, matrix inversion technique. Most species show enhanced vertical profiles when the more realistic treatment of the incoming solar radiation field is included

  2. Absorption and Reflection Contributions to the High Performance of Electromagnetic Waves Shielding Materials Fabricated by Compositing Leather Matrix with Metal Nanoparticles.

    PubMed

    Liu, Chang; Wang, Xiaoling; Huang, Xin; Liao, Xuepin; Shi, Bi

    2018-04-25

    Leather matrix (LM), a natural dielectric material, features a hierarchically suprafibrillar structure and abundant dipoles, which provides the possibility to dissipate electromagnetic waves (EW) energy via dipole relaxation combined with multiple diffuse reflections. Conventionally, metal-based materials are used as EW shielding materials due to that their high conductivity can reflect EW effectively. Herein, a lightweight and high-performance EW shielding composite with both absorption and reflection ability to EW was developed by coating metal nanoparticles (MNPs) onto LM. The as-prepared metal/LM membrane with only 4.58 wt % of coated MNPs showed excellent EW shielding effectiveness of ∼76.0 dB and specific shielding effectiveness of ∼200.0 dB cm 3 g -1 in the frequency range of 0.01-3.0 GHz, implying that more than 99.98% of EW was shielded. Further investigations indicated that the high shielding performances of the metal/LM membrane were attributed to the cooperative shielding mechanism between LM and the coating of MNPs.

  3. Effects of multiple scattering and surface albedo on the photochemistry of the troposphere. Final report, period ending 30 Nov 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustsson, T.R.; Tiwari, S.N.

    The effect of treatment of incoming solar radiation on the photochemistry of the troposphere is discussed. A one dimensional photochemical model of the troposphere containing the species of the nitrogen, oxygen, carbon, hydrogen, and sulfur families was developed. The vertical flux is simulated by use of the parameterized eddy diffusion coefficients. The photochemical model is coupled to a radiative transfer model that calculates the radiation field due to the incoming solar radiation which initiates much of the photochemistry of the troposphere. Vertical profiles of tropospheric species were compared with the Leighton approximation, radiative transfer, matrix inversion model. The radiative transfermore » code includes the effects of multiple scattering due to molecules and aerosols, pure absorption, and surface albedo on the transfer of incoming solar radiation. It is indicated that significant differences exist for several key photolysis frequencies and species number density profiles between the Leighton approximation and the profiles generated with, radiative transfer, matrix inversion technique. Most species show enhanced vertical profiles when the more realistic treatment of the incoming solar radiation field is included« less

  4. Multivariate analysis of nystatin and metronidazole in a semi-solid matrix by means of diffuse reflectance NIR spectroscopy and PLS regression.

    PubMed

    Baratieri, Sabrina C; Barbosa, Juliana M; Freitas, Matheus P; Martins, José A

    2006-01-23

    A multivariate method of analysis of nystatin and metronidazole in a semi-solid matrix, based on diffuse reflectance NIR measurements and partial least squares regression, is reported. The product, a vaginal cream used in the antifungal and antibacterial treatment, is usually, quantitatively analyzed through microbiological tests (nystatin) and HPLC technique (metronidazole), according to pharmacopeial procedures. However, near infrared spectroscopy has demonstrated to be a valuable tool for content determination, given the rapidity and scope of the method. In the present study, it was successfully applied in the prediction of nystatin (even in low concentrations, ca. 0.3-0.4%, w/w, which is around 100,000 IU/5g) and metronidazole contents, as demonstrated by some figures of merit, namely linearity, precision (mean and repeatability) and accuracy.

  5. Approximate solutions for diffusive fracture-matrix transfer: Application to storage of dissolved CO 2 in fractured rocks

    DOE PAGES

    Zhou, Quanlin; Oldenburg, Curtis M.; Spangler, Lee H.; ...

    2017-01-05

    Analytical solutions with infinite exponential series are available to calculate the rate of diffusive transfer between low-permeability blocks and high-permeability zones in the subsurface. Truncation of these series is often employed by neglecting the early-time regime. Here in this paper, we present unified-form approximate solutions in which the early-time and the late-time solutions are continuous at a switchover time. The early-time solutions are based on three-term polynomial functions in terms of square root of dimensionless time, with the first coefficient dependent only on the dimensionless area-to-volume ratio. The last two coefficients are either determined analytically for isotropic blocks (e.g., spheresmore » and slabs) or obtained by fitting the exact solutions, and they solely depend on the aspect ratios for rectangular columns and parallelepipeds. For the late-time solutions, only the leading exponential term is needed for isotropic blocks, while a few additional exponential terms are needed for highly anisotropic rectangular blocks. The optimal switchover time is between 0.157 and 0.229, with highest relative approximation error less than 0.2%. The solutions are used to demonstrate the storage of dissolved CO 2 in fractured reservoirs with low-permeability matrix blocks of single and multiple shapes and sizes. These approximate solutions are building blocks for development of analytical and numerical tools for hydraulic, solute, and thermal diffusion processes in low-permeability matrix blocks.« less

  6. A case study of view-factor rectification procedures for diffuse-gray radiation enclosure computations

    NASA Technical Reports Server (NTRS)

    Taylor, Robert P.; Luck, Rogelio

    1995-01-01

    The view factors which are used in diffuse-gray radiation enclosure calculations are often computed by approximate numerical integrations. These approximately calculated view factors will usually not satisfy the important physical constraints of reciprocity and closure. In this paper several view-factor rectification algorithms are reviewed and a rectification algorithm based on a least-squares numerical filtering scheme is proposed with both weighted and unweighted classes. A Monte-Carlo investigation is undertaken to study the propagation of view-factor and surface-area uncertainties into the heat transfer results of the diffuse-gray enclosure calculations. It is found that the weighted least-squares algorithm is vastly superior to the other rectification schemes for the reduction of the heat-flux sensitivities to view-factor uncertainties. In a sample problem, which has proven to be very sensitive to uncertainties in view factor, the heat transfer calculations with weighted least-squares rectified view factors are very good with an original view-factor matrix computed to only one-digit accuracy. All of the algorithms had roughly equivalent effects on the reduction in sensitivity to area uncertainty in this case study.

  7. Boson peak and Ioffe-Regel criterion in amorphous siliconlike materials: The effect of bond directionality.

    PubMed

    Beltukov, Y M; Fusco, C; Parshin, D A; Tanguy, A

    2016-02-01

    The vibrational properties of model amorphous materials are studied by combining complete analysis of the vibration modes, dynamical structure factor, and energy diffusivity with exact diagonalization of the dynamical matrix and the kernel polynomial method, which allows a study of very large system sizes. Different materials are studied that differ only by the bending rigidity of the interactions in a Stillinger-Weber modelization used to describe amorphous silicon. The local bending rigidity can thus be used as a control parameter, to tune the sound velocity together with local bonds directionality. It is shown that for all the systems studied, the upper limit of the Boson peak corresponds to the Ioffe-Regel criterion for transverse waves, as well as to a minimum of the diffusivity. The Boson peak is followed by a diffusivity's increase supported by longitudinal phonons. The Ioffe-Regel criterion for transverse waves corresponds to a common characteristic mean-free path of 5-7 Å (which is slightly bigger for longitudinal phonons), while the fine structure of the vibrational density of states is shown to be sensitive to the local bending rigidity.

  8. Quantitative spatiotemporal analysis of antibody fragment diffusion and endocytic consumption in tumor spheroids.

    PubMed

    Thurber, Greg M; Wittrup, K Dane

    2008-05-01

    Antibody-based cancer treatment depends upon distribution of the targeting macromolecule throughout tumor tissue, and spatial heterogeneity could significantly limit efficacy in many cases. Antibody distribution in tumor tissue is a function of drug dosage, antigen concentration, binding affinity, antigen internalization, drug extravasation from blood vessels, diffusion in the tumor extracellular matrix, and systemic clearance rates. We have isolated the effects of a subset of these variables by live-cell microscopic imaging of single-chain antibody fragments against carcinoembryonic antigen in LS174T tumor spheroids. The measured rates of scFv penetration and retention were compared with theoretical predictions based on simple scaling criteria. The theory predicts that antibody dose must be large enough to drive a sufficient diffusive flux of antibody to overcome cellular internalization, and exposure time must be long enough to allow penetration to the spheroid center. The experimental results in spheroids are quantitatively consistent with these predictions. Therefore, simple scaling criteria can be applied to accurately predict antibody and antibody fragment penetration distance in tumor tissue.

  9. Quantitative Spatiotemporal Analysis of Antibody Fragment Diffusion and Endocytic Consumption in Tumor Spheroids

    PubMed Central

    Thurber, Greg M.; Wittrup, K. Dane

    2010-01-01

    Antibody-based cancer treatment depends upon distribution of the targeting macromolecule throughout tumor tissue, and spatial heterogeneity could significantly limit efficacy in many cases. Antibody distribution in tumor tissue is a function of drug dosage, antigen concentration, binding affinity, antigen internalization, drug extravasation from blood vessels, diffusion in the tumor extracellular matrix, and systemic clearance rates. We have isolated the effects of a subset of these variables by live-cell microscopic imaging of single-chain antibody fragments against carcinoembryonic antigen in LS174T tumor spheroids. The measured rates of scFv penetration and retention were compared with theoretical predictions based on simple scaling criteria. The theory predicts that antibody dose must be large enough to drive a sufficient diffusive flux of antibody to overcome cellular internalization, and exposure time must be long enough to allow penetration to the spheroid center. The experimental results in spheroids are quantitatively consistent with these predictions. Therefore, simple scaling criteria can be applied to accurately predict antibody and antibody fragment penetration distance in tumor tissue. PMID:18451160

  10. Phase I Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John McCord

    2007-09-01

    This report documents transport data and data analyses for Yucca Flat/Climax Mine CAU 97. The purpose of the data compilation and related analyses is to provide the primary reference to support parameterization of the Yucca Flat/Climax Mine CAU transport model. Specific task objectives were as follows: • Identify and compile currently available transport parameter data and supporting information that may be relevant to the Yucca Flat/Climax Mine CAU. • Assess the level of quality of the data and associated documentation. • Analyze the data to derive expected values and estimates of the associated uncertainty and variability. The scope of thismore » document includes the compilation and assessment of data and information relevant to transport parameters for the Yucca Flat/Climax Mine CAU subsurface within the context of unclassified source-term contamination. Data types of interest include mineralogy, aqueous chemistry, matrix and effective porosity, dispersivity, matrix diffusion, matrix and fracture sorption, and colloid-facilitated transport parameters.« less

  11. Some experiments to study diffusive transport through a semi interpenetrating polymeric network in the absence and presence of aqueous electrolytes

    NASA Astrophysics Data System (ADS)

    Biswas, Pritha; Das, Atreyee; Yasmin, Tanvee; Kanjilal, Baishali; Chakrabarti, Haimanti

    2018-05-01

    The study of ion transport in biological system has become a topic of great current interest. This work presents the diffusive transport properties through a typical semi interpenetrating polymeric network (SIPN) which mimics many characteristic features of the walls of human food pipes. The SIPN matrix has been synthesised from Polyvinyl alcohol, Acrylamide monomer, Glutaraldehyde and Ammonium Per sulphate in our laboratory is utilised to study the diffusive transport in the absence and presence of aqueous electrolyte (KCl) at varying concentrations. The diffusivity of the SIPN polymer hydrogel was estimated by the `Theory of Elastomer' to get an insight into process of Potassium and Chlorine ion transport through the SIPN.

  12. Radon (222Rn) in ground water of fractured rocks: A diffusion/ion exchange model

    USGS Publications Warehouse

    Wood, W.W.; Kraemer, T.F.; Shapiro, A.

    2004-01-01

    Ground waters from fractured igneous and high-grade sialic metamorphic rocks frequently have elevated activity of dissolved radon (222Rn). A chemically based model is proposed whereby radium (226Ra) from the decay of uranium (238U) diffuses through the primary porosity of the rock to the water-transmitting fracture where it is sorbed on weathering products. Sorption of 226Ra on the fracture surface maintains an activity gradient in the rock matrix, ensuring a continuous supply of 226Ra to fracture surfaces. As a result of the relatively long half-life of 226Ra (1601 years), significant activity can accumulate on fracture surfaces. The proximity of this sorbed 226Ra to the active ground water flow system allows its decay progeny 222Rn to enter directly into the water. Laboratory analyses of primary porosity and diffusion coefficients of the rock matrix, radon emanation, and ion exchange at fracture surfaces are consistent with the requirements of a diffusion/ion- exchange model. A dipole-brine injection/withdrawal experiment conducted between bedrock boreholes in the high-grade metamorphic and granite rocks at the Hubbard Brook Experimental Forest, Grafton County, New Hampshire, United States (42??56???N, 71??43???W) shows a large activity of 226Ra exchanged from fracture surfaces by a magnesium brine. The 226Ra activity removed by the exchange process is 34 times greater than that of 238U activity. These observations are consistent with the diffusion/ion-exchange model. Elutriate isotopic ratios of 223Ra/226Ra and 238U/226Ra are also consistent with the proposed chemically based diffusion/ion-exchange model.

  13. Effect of the Parameters of Gas-Powder Laser Surfacing on the Structural Characteristics of Reconditioned Surface Layer of Corrosion-Resistant Steels

    NASA Astrophysics Data System (ADS)

    Krylova, S. E.; Oplesnin, S. P.; Manakov, N. A.; Yasakov, A. S.; Strizhov, A. O.

    2018-01-01

    Results of the developed commercial process for reconditioning the surface of corrosion-resistant steels by the method of laser surfacing are presented. A comparative analysis of the microstructures of the deposited wear-resistant layer, of the zone of fusion with the matrix material and of the diffusion zone after different variants of surfacing is performed. The hardness of the deposited layer is measured and a nondestructive inspection of the latter for the presence of flaws is performed.

  14. The influence of hair bleach on the ultrastructure of human hair with special reference to hair damage.

    PubMed

    Imai, Takehito

    2011-05-01

    The influence of human hair bleaching agents with different bleaching strength on the ultrastructure of human hair was studied using a transmission electron microscope (TEM) and an energy dispersive X-ray spectrometer equipped with TEM (EDS-TEM). Two kinds of bleaching agents were used: a lightener agent with a weak bleaching effect and a powder-bleach with a stronger bleaching effect. From the comparison of the bleaching properties obtained by the electronic staining of black and white hair samples, it was suggested that the permeability of hair was increased by bleaching, and there was an increase of the stainability of hair subjected to electronic staining. The bleaching action provoked the decomposition of melanin granules and the flow out of granular contents into the intermacrofibrillar matrix. Some metal elements were detected in the melanin granular matrix by EDS-TEM. As a result, the diffusion of metal elements into the intermacrofibrillar matrix promoted further damage to the hair by catalytic action with the hydrogen peroxide in the bleaching agents outside the melanin granules. Further study will lead us to the edge of the development of a new bleaching agent, which reacts only with melanin granules and causes the minimum of damage to outside the melanin granules.

  15. Dynamic nuclear polarization assisted spin diffusion for the solid effect case.

    PubMed

    Hovav, Yonatan; Feintuch, Akiva; Vega, Shimon

    2011-02-21

    The dynamic nuclear polarization (DNP) process in solids depends on the magnitudes of hyperfine interactions between unpaired electrons and their neighboring (core) nuclei, and on the dipole-dipole interactions between all nuclei in the sample. The polarization enhancement of the bulk nuclei has been typically described in terms of a hyperfine-assisted polarization of a core nucleus by microwave irradiation followed by a dipolar-assisted spin diffusion process in the core-bulk nuclear system. This work presents a theoretical approach for the study of this combined process using a density matrix formalism. In particular, solid effect DNP on a single electron coupled to a nuclear spin system is considered, taking into account the interactions between the spins as well as the main relaxation mechanisms introduced via the electron, nuclear, and cross-relaxation rates. The basic principles of the DNP-assisted spin diffusion mechanism, polarizing the bulk nuclei, are presented, and it is shown that the polarization of the core nuclei and the spin diffusion process should not be treated separately. To emphasize this observation the coherent mechanism driving the pure spin diffusion process is also discussed. In order to demonstrate the effects of the interactions and relaxation mechanisms on the enhancement of the nuclear polarization, model systems of up to ten spins are considered and polarization buildup curves are simulated. A linear chain of spins consisting of a single electron coupled to a core nucleus, which in turn is dipolar coupled to a chain of bulk nuclei, is considered. The interaction and relaxation parameters of this model system were chosen in a way to enable a critical analysis of the polarization enhancement of all nuclei, and are not far from the values of (13)C nuclei in frozen (glassy) organic solutions containing radicals, typically used in DNP at high fields. Results from the simulations are shown, demonstrating the complex dependences of the DNP-assisted spin diffusion process on variations of the relevant parameters. In particular, the effect of the spin lattice relaxation times on the polarization buildup times and the resulting end polarization are discussed, and the quenching of the polarizations by the hyperfine interaction is demonstrated.

  16. Conditions and processes affecting radionuclide transport

    USGS Publications Warehouse

    Simmons, Ardyth M.; Neymark, Leonid A.

    2012-01-01

    Understanding of unsaturated-zone transport is based on laboratory and field-scale experiments. Fractures provide advective transport pathways. Sorption and matrix diffusion may contribute to retardation of radionuclides. Conversely, sorption onto mobile colloids may enhance radionuclide transport.

  17. A fast semi-discrete Kansa method to solve the two-dimensional spatiotemporal fractional diffusion equation

    NASA Astrophysics Data System (ADS)

    Sun, HongGuang; Liu, Xiaoting; Zhang, Yong; Pang, Guofei; Garrard, Rhiannon

    2017-09-01

    Fractional-order diffusion equations (FDEs) extend classical diffusion equations by quantifying anomalous diffusion frequently observed in heterogeneous media. Real-world diffusion can be multi-dimensional, requiring efficient numerical solvers that can handle long-term memory embedded in mass transport. To address this challenge, a semi-discrete Kansa method is developed to approximate the two-dimensional spatiotemporal FDE, where the Kansa approach first discretizes the FDE, then the Gauss-Jacobi quadrature rule solves the corresponding matrix, and finally the Mittag-Leffler function provides an analytical solution for the resultant time-fractional ordinary differential equation. Numerical experiments are then conducted to check how the accuracy and convergence rate of the numerical solution are affected by the distribution mode and number of spatial discretization nodes. Applications further show that the numerical method can efficiently solve two-dimensional spatiotemporal FDE models with either a continuous or discrete mixing measure. Hence this study provides an efficient and fast computational method for modeling super-diffusive, sub-diffusive, and mixed diffusive processes in large, two-dimensional domains with irregular shapes.

  18. Study of Solid-State Diffusion of Bi in Polycrystalline Sn Using Electron Probe Microanalysis

    NASA Astrophysics Data System (ADS)

    Delhaise, André M.; Perovic, Doug D.

    2018-03-01

    Current lead-free solders such as SAC305 exhibit degradation in microstructure, properties, and reliability. Current third-generation alloys containing bismuth (Bi) demonstrate preservation of strength after aging; this is accompanied by homogenization of the Bi precipitates in the tin (Sn) matrix, driven via solid-state diffusion. This study quantifies the diffusion of Bi in Sn. Diffusion couples were prepared by mating together polished samples of pure Sn and Bi. Couples were annealed at one of three temperatures, viz. 85°C for 7 days, 100°C for 2 days, or 125°C for 1 day. After cross-sectioning the couples to examine the diffusion microstructure and grain size, elemental analysis was performed using electron probe microanalysis. For this study, it was assumed that the diffusivity of Bi in Sn is concentration dependent, therefore inverse methods were used to solve Fick's non-steady-state diffusion equation. In addition, Darken analysis was used to extract the impurity diffusivity of Bi in Sn at each temperature, allowing estimation of the Arrhenius parameters D 0 and k A.

  19. Planar Gradient Diffusion System to Investigate Chemotaxis in a 3D Collagen Matrix.

    PubMed

    Stout, David A; Toyjanova, Jennet; Franck, Christian

    2015-06-12

    The importance of cell migration can be seen through the development of human life. When cells migrate, they generate forces and transfer these forces to their surrounding area, leading to cell movement and migration. In order to understand the mechanisms that can alter and/or affect cell migration, one can study these forces. In theory, understanding the fundamental mechanisms and forces underlying cell migration holds the promise of effective approaches for treating diseases and promoting cellular transplantation. Unfortunately, modern chemotaxis chambers that have been developed are usually restricted to two dimensions (2D) and have complex diffusion gradients that make the experiment difficult to interpret. To this end, we have developed, and describe in this paper, a direct-viewing chamber for chemotaxis studies, which allows one to overcome modern chemotaxis chamber obstacles able to measure cell forces and specific concentration within the chamber in a 3D environment to study cell 3D migration. More compelling, this approach allows one to successfully model diffusion through 3D collagen matrices and calculate the coefficient of diffusion of a chemoattractant through multiple different concentrations of collagen, while keeping the system simple and user friendly for traction force microscopy (TFM) and digital volume correlation (DVC) analysis.

  20. Pore-size dependence and characteristics of water diffusion in slitlike micropores

    DOE PAGES

    Diallo, S. O.

    2015-07-16

    The temperature dependence of the dynamics of water inside microporous activated carbon fibers (ACF) is investigated by means of incoherent elastic and quasielastic neutron-scattering techniques. The aim is to evaluate the effect of increasing pore size on the water dynamics in these primarily hydrophobic slit-shaped channels. Using two different micropore sizes (similar to 12 and 18 angstrom, denoted, respectively, ACF-10 and ACF-20), a clear suppression of the mobility of the water molecules is observed as the pore gap or temperature decreases. Suppression, we found, is accompanied by a systematic dependence of the average translational diffusion coefficient D-r and relaxation timemore » [tau(0)] of the restricted water on pore size and temperature. We observed D-r values and tested against a proposed scaling law, in which the translational diffusion coefficient D-r of water within a porous matrix was found to depend solely on two single parameters, a temperature-independent translational diffusion coefficient D-c associated with the water bound to the pore walls and the ratio theta of this strictly confined water to the total water inside the pore, yielding unique characteristic parameters for water transport in these carbon channels across the investigated temperature range.« less

  1. Crawling from soft to stiff matrix polarizes the cytoskeleton and phosphoregulates myosin-II heavy chain

    PubMed Central

    Raab, Matthew; Swift, Joe; P. Dingal, P.C. Dave; Shah, Palak; Shin, Jae-Won

    2012-01-01

    On rigid surfaces, the cytoskeleton of migrating cells is polarized, but tissue matrix is normally soft. We show that nonmuscle MIIB (myosin-IIB) is unpolarized in cells on soft matrix in 2D and also within soft 3D collagen, with rearward polarization of MIIB emerging only as cells migrate from soft to stiff matrix. Durotaxis is the tendency of cells to crawl from soft to stiff matrix, and durotaxis of primary mesenchymal stem cells (MSCs) proved more sensitive to MIIB than to the more abundant and persistently unpolarized nonmuscle MIIA (myosin-IIA). However, MIIA has a key upstream role: in cells on soft matrix, MIIA appeared diffuse and mobile, whereas on stiff matrix, MIIA was strongly assembled in oriented stress fibers that MIIB then polarized. The difference was caused in part by elevated phospho-S1943–MIIA in MSCs on soft matrix, with site-specific mutants revealing the importance of phosphomoderated assembly of MIIA. Polarization is thus shown to be a highly regulated compass for mechanosensitive migration. PMID:23128239

  2. Bromo-oxidation reaction in enzyme-entrapped alginate hollow microfibers

    PubMed Central

    Asthana, Amit; Lee, Kwang Ho; Shin, Su-Jung; Perumal, Jayakumar; Butler, Lauren; Lee, Sang-Hoon; Kim, Dong-Pyo

    2011-01-01

    In this article, the authors present the fabrication of an enzyme-entrapped alginate hollow fiber using a microfluidic device. Further use of enzyme-entrapped alginate hollow fibers as a biocatalytic microchemical reactor for chemical synthesis is also deliberated in this article. To ensure that there is no enzyme leaching from the fiber, fiber surfaces were coated with chitosan. To confine the mobility of reactants and products within the porous hollow fibers the entire fibers were embedded into a transparent polydimethylsiloxane (PDMS) matrix which also works as a support matrix. A vanadium-containing bromoperoxidase enzyme isolated from Corallina confusa was used as a model enzyme to demonstrate the use of these alginate hollow-fiber reactors in bromo-oxidation of phenol red to bromophenol blue at different dye flow rates. Stability of the entrapped enzyme at different temperatures and the effect of the chitosan coating on the reaction conversion were also studied. It was observed that molecules as big as 27 kDa can be retained in the matrix after coating with chitosan while molecules with molecular-weight of around 378 Da can still diffuse in and out of the matrix. The kinetic conversion rate in this microfluidic bioreactor was more than 41-fold faster when compared with the standard test-tube procedure. PMID:21799723

  3. Investigation of the effect of tablet surface area/volume on drug release from hydroxypropylmethylcellulose controlled-release matrix tablets.

    PubMed

    Reynolds, Thomas D; Mitchell, Shawn A; Balwinski, Karen M

    2002-04-01

    The purpose of this study was to investigate the influence of tablet surface area/volume (SA/Vol) on drug release from controlled-release matrix tablets containing hydroxypropylmethylcellulose (HPMC). Soluble drugs (promethazine HCl, diphenhydramine HCl, and propranolol HCl) were utilized in this study to give predominantly diffusion-controlled release. Drug release from HPMC matrix tablets with similar values of SA/Vol was comparable within the same tablet shape (i.e., flat-faced round tablets) and among different shapes (i.e., oval, round concave, flat-faced beveled-edge, and flat-faced round tablets). Tablets having the same surface area but different SA/Vol values did not result in similar drug release; tablets with larger SA/Vol values hadfaster release profiles. Utility of SA/Vol to affect drug release was demonstrated by changing drug doses, and altering tablet shape to adjust SA/Vol. When SA/Vol was held constant, similar release profiles were obtained with f2 metric values greater than 70. Thus, surface area/volume is one of the key variables in controlling drug release from HPMC matrix tablets. Proper use of this variable has practical application by formulators who may need to duplicate drug release profiles from tablets of different sizes and different shapes.

  4. Protons Trigger Mitochondrial Flashes.

    PubMed

    Wang, Xianhua; Zhang, Xing; Huang, Zhanglong; Wu, Di; Liu, Beibei; Zhang, Rufeng; Yin, Rongkang; Hou, Tingting; Jian, Chongshu; Xu, Jiejia; Zhao, Yan; Wang, Yanru; Gao, Feng; Cheng, Heping

    2016-07-26

    Emerging evidence indicates that mitochondrial flashes (mitoflashes) are highly conserved elemental mitochondrial signaling events. However, which signal controls their ignition and how they are integrated with other mitochondrial signals and functions remain elusive. In this study, we aimed to further delineate the signal components of the mitoflash and determine the mitoflash trigger mechanism. Using multiple biosensors and chemical probes as well as label-free autofluorescence, we found that the mitoflash reflects chemical and electrical excitation at the single-organelle level, comprising bursting superoxide production, oxidative redox shift, and matrix alkalinization as well as transient membrane depolarization. Both electroneutral H(+)/K(+) or H(+)/Na(+) antiport and matrix proton uncaging elicited immediate and robust mitoflash responses over a broad dynamic range in cardiomyocytes and HeLa cells. However, charge-uncompensated proton transport, which depolarizes mitochondria, caused the opposite effect, and steady matrix acidification mildly inhibited mitoflashes. Based on a numerical simulation, we estimated a mean proton lifetime of 1.42 ns and diffusion distance of 2.06 nm in the matrix. We conclude that nanodomain protons act as a novel, to our knowledge, trigger of mitoflashes in energized mitochondria. This finding suggests that mitoflash genesis is functionally and mechanistically integrated with mitochondrial energy metabolism. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Correcting for diffusion in carbon-14 dating of ground water

    USGS Publications Warehouse

    Sanford, W.E.

    1997-01-01

    It has generally been recognized that molecular diffusion can be a significant process affecting the transport of carbon-14 in the subsurface when occurring either from a permeable aquifer into a confining layer or from a fracture into a rock matrix. An analytical solution that is valid for steady-state radionuclide transport through fractured rock is shown to be applicable to many multilayered aquifer systems. By plotting the ratio of the rate of diffusion to the rate of decay of carbon-14 over the length scales representative of several common hydrogeologic settings, it is demonstrated that diffusion of carbon-14 should often be not only a significant process, but a dominant one relative to decay. An age-correction formula is developed and applied to the Bangkok Basin of Thailand, where a mean carbon-14-based age of 21,000 years was adjusted to 11,000 years to account for diffusion. This formula and its graphical representation should prove useful for many studies, for they can be used first to estimate the potential role of diffusion and then to make a simple first-order age correction if necessary.It has generally been recognized that molecular diffusion can be a significant process affecting the transport of carbon-14 in the subsurface when occurring either from a permeable aquifer into a confining layer or from a fracture into a rock matrix. An analytical solution that is valid for steady-state radionuclide transport through fractured rock is shown to be applicable to many multilayered aquifer systems. By plotting the ratio of the rate of diffusion to the rate of decay of carbon-14 over the length scales representative of several common hydrogeologic settings, it is demonstrated that diffusion of carbon-14 should often be not only a significant process, but a dominant one relative to decay. An age-correction formula is developed and applied to the Bangkok Basin of Thailand, where a mean carbon-14-based age of 21,000 years was adjusted to 11,000 years to account for diffusion. This formula and its graphical representation should prove useful for many studies, for they can be used first to estimate the potential role of diffusion and then to make a simple first-order age correction if necessary.

  6. Influence of hydrological and geochemical processes on the transport of chelated metals and chromate in fractured shale bedrock

    NASA Astrophysics Data System (ADS)

    Jardine, P. M.; Mehlhorn, T. L.; Larsen, I. L.; Bailey, W. B.; Brooks, S. C.; Roh, Y.; Gwo, J. P.

    2002-03-01

    Field-scale processes governing the transport of chelated radionuclides in groundwater remain conceptually unclear for highly structured, heterogeneous environments. The objectives of this research were to provide an improved understanding and predictive capability of the hydrological and geochemical mechanisms that control the transport behavior of chelated radionuclides and metals in anoxic subsurface environments that are complicated by fracture flow and matrix diffusion. Our approach involved a long-term, steady-state natural gradient field experiment where nonreactive Br - and reactive 57Co(II)EDTA 2-, 109CdEDTA 2-, and 51Cr(VI) were injected into a fracture zone of a contaminated fractured shale bedrock. The spatial and temporal distribution of the tracer and solutes was monitored for 500 days using an array of groundwater sampling wells instrumented within the fast-flowing fracture regime and a slower flowing matrix regime. The tracers were preferentially transported along strike-parallel fractures coupled with the slow diffusion of significant tracer mass into the bedrock matrix. The chelated radionuclides and metals were significantly retarded by the solid phase with the mechanisms of retardation largely due to redox reactions and sorption coupled with mineral-induced chelate-radionuclide dissociation. The formation of significant Fe(III)EDTA - byproduct that accompanied the dissociation of the radionuclide-chelate complexes was believed to be the result of surface interactions with biotite which was the only Fe(III)-bearing mineral phase present in these Fe-reducing environments. These results counter current conceptual models that suggest chelated contaminants move conservatively through Fe-reducing environments since they are devoid of Fe-oxyhydroxides that are known to aggressively compete for chelates in oxic regimes. Modeling results further demonstrated that chelate-radionuclide dissociation reactions were most prevalent along fractures where accelerated weathering processes are expected to expose more primary minerals than the surrounding rock matrix. The findings of this study suggest that physical retardation mechanisms (i.e. diffusion) are dominant within the matrix regime, whereas geochemical retardation mechanisms are dominant within the fracture regime.

  7. Study of gas production from shale reservoirs with multi-stage hydraulic fracturing horizontal well considering multiple transport mechanisms.

    PubMed

    Guo, Chaohua; Wei, Mingzhen; Liu, Hong

    2018-01-01

    Development of unconventional shale gas reservoirs (SGRs) has been boosted by the advancements in two key technologies: horizontal drilling and multi-stage hydraulic fracturing. A large number of multi-stage fractured horizontal wells (MsFHW) have been drilled to enhance reservoir production performance. Gas flow in SGRs is a multi-mechanism process, including: desorption, diffusion, and non-Darcy flow. The productivity of the SGRs with MsFHW is influenced by both reservoir conditions and hydraulic fracture properties. However, rare simulation work has been conducted for multi-stage hydraulic fractured SGRs. Most of them use well testing methods, which have too many unrealistic simplifications and assumptions. Also, no systematical work has been conducted considering all reasonable transport mechanisms. And there are very few works on sensitivity studies of uncertain parameters using real parameter ranges. Hence, a detailed and systematic study of reservoir simulation with MsFHW is still necessary. In this paper, a dual porosity model was constructed to estimate the effect of parameters on shale gas production with MsFHW. The simulation model was verified with the available field data from the Barnett Shale. The following mechanisms have been considered in this model: viscous flow, slip flow, Knudsen diffusion, and gas desorption. Langmuir isotherm was used to simulate the gas desorption process. Sensitivity analysis on SGRs' production performance with MsFHW has been conducted. Parameters influencing shale gas production were classified into two categories: reservoir parameters including matrix permeability, matrix porosity; and hydraulic fracture parameters including hydraulic fracture spacing, and fracture half-length. Typical ranges of matrix parameters have been reviewed. Sensitivity analysis have been conducted to analyze the effect of the above factors on the production performance of SGRs. Through comparison, it can be found that hydraulic fracture parameters are more sensitive compared with reservoir parameters. And reservoirs parameters mainly affect the later production period. However, the hydraulic fracture parameters have a significant effect on gas production from the early period. The results of this study can be used to improve the efficiency of history matching process. Also, it can contribute to the design and optimization of hydraulic fracture treatment design in unconventional SGRs.

  8. Study of gas production from shale reservoirs with multi-stage hydraulic fracturing horizontal well considering multiple transport mechanisms

    PubMed Central

    Wei, Mingzhen; Liu, Hong

    2018-01-01

    Development of unconventional shale gas reservoirs (SGRs) has been boosted by the advancements in two key technologies: horizontal drilling and multi-stage hydraulic fracturing. A large number of multi-stage fractured horizontal wells (MsFHW) have been drilled to enhance reservoir production performance. Gas flow in SGRs is a multi-mechanism process, including: desorption, diffusion, and non-Darcy flow. The productivity of the SGRs with MsFHW is influenced by both reservoir conditions and hydraulic fracture properties. However, rare simulation work has been conducted for multi-stage hydraulic fractured SGRs. Most of them use well testing methods, which have too many unrealistic simplifications and assumptions. Also, no systematical work has been conducted considering all reasonable transport mechanisms. And there are very few works on sensitivity studies of uncertain parameters using real parameter ranges. Hence, a detailed and systematic study of reservoir simulation with MsFHW is still necessary. In this paper, a dual porosity model was constructed to estimate the effect of parameters on shale gas production with MsFHW. The simulation model was verified with the available field data from the Barnett Shale. The following mechanisms have been considered in this model: viscous flow, slip flow, Knudsen diffusion, and gas desorption. Langmuir isotherm was used to simulate the gas desorption process. Sensitivity analysis on SGRs’ production performance with MsFHW has been conducted. Parameters influencing shale gas production were classified into two categories: reservoir parameters including matrix permeability, matrix porosity; and hydraulic fracture parameters including hydraulic fracture spacing, and fracture half-length. Typical ranges of matrix parameters have been reviewed. Sensitivity analysis have been conducted to analyze the effect of the above factors on the production performance of SGRs. Through comparison, it can be found that hydraulic fracture parameters are more sensitive compared with reservoir parameters. And reservoirs parameters mainly affect the later production period. However, the hydraulic fracture parameters have a significant effect on gas production from the early period. The results of this study can be used to improve the efficiency of history matching process. Also, it can contribute to the design and optimization of hydraulic fracture treatment design in unconventional SGRs. PMID:29320489

  9. Used Fuel Disposal in Crystalline Rocks. FY15 Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yifeng

    2015-08-20

    The objective of the Crystalline Disposal R&D Work Package is to advance our understanding of long-term disposal of used fuel in crystalline rocks and to develop necessary experimental and computational capabilities to evaluate various disposal concepts in such media. Chapter headings are as follows: Fuel matrix degradation model and its integration with performance assessments, Investigation of thermal effects on the chemical behavior of clays, Investigation of uranium diffusion and retardation in bentonite, Long-term diffusion of U(VI) in bentonite: dependence on density, Sorption and desorption of plutonium by bentonite, Dissolution of plutonium intrinsic colloids in the presence of clay and asmore » a function of temperature, Laboratory investigation of colloid-facilitated transport of cesium by bentonite colloids in a crystalline rock system, Development and demonstration of discrete fracture network model, Fracture continuum model and its comparison with discrete fracture network model.« less

  10. Onset of density-driven instabilities in fractured aquifers

    NASA Astrophysics Data System (ADS)

    Jafari Raad, Seyed Mostafa; Hassanzadeh, Hassan

    2018-04-01

    Linear stability analysis is conducted to study the onset of density-driven convection involved in solubility trapping of C O2 in fractured aquifers. The effect of physical properties of a fracture network on the stability of a diffusive boundary layer in a saturated fractured porous media is investigated using the dual porosity concept. Linear stability analysis results show that both fracture interporosity flow and fracture storativity play an important role in the stability behavior of the system. It is shown that a diffusive boundary layer under the gravity field in fractured porous media with lower fracture storativity and/or higher fracture interporosity flow coefficient is more stable. We present scaling relations for the onset of convective instability in fractured aquifers with single and variable matrix block size distribution. These findings improve our understanding of density-driven flow in fractured aquifers and are important in the estimation of potential storage capacity, risk assessment, and storage site characterization and screening.

  11. Risk assessment of failure modes of gas diffuser liner of V94.2 siemens gas turbine by FMEA method

    NASA Astrophysics Data System (ADS)

    Mirzaei Rafsanjani, H.; Rezaei Nasab, A.

    2012-05-01

    Failure of welding connection of gas diffuser liner and exhaust casing is one of the failure modes of V94.2 gas turbines which are happened in some power plants. This defect is one of the uncertainties of customers when they want to accept the final commissioning of this product. According to this, the risk priority of this failure evaluated by failure modes and effect analysis (FMEA) method to find out whether this failure is catastrophic for turbine performance and is harmful for humans. By using history of 110 gas turbines of this model which are used in some power plants, the severity number, occurrence number and detection number of failure determined and consequently the Risk Priority Number (RPN) of failure determined. Finally, critically matrix of potential failures is created and illustrated that failure modes are located in safe zone.

  12. Recrystallization inhibition in ice due to ice binding protein activity detected by nuclear magnetic resonance.

    PubMed

    Brown, Jennifer R; Seymour, Joseph D; Brox, Timothy I; Skidmore, Mark L; Wang, Chen; Christner, Brent C; Luo, Bing-Hao; Codd, Sarah L

    2014-09-01

    Liquid water present in polycrystalline ice at the interstices between ice crystals results in a network of liquid-filled veins and nodes within a solid ice matrix, making ice a low porosity porous media. Here we used nuclear magnetic resonance (NMR) relaxation and time dependent self-diffusion measurements developed for porous media applications to monitor three dimensional changes to the vein network in ices with and without a bacterial ice binding protein (IBP). Shorter effective diffusion distances were detected as a function of increased irreversible ice binding activity, indicating inhibition of ice recrystallization and persistent small crystal structure. The modification of ice structure by the IBP demonstrates a potential mechanism for the microorganism to enhance survivability in ice. These results highlight the potential of NMR techniques in evaluation of the impact of IBPs on vein network structure and recrystallization processes; information useful for continued development of ice-interacting proteins for biotechnology applications.

  13. Limits on diffuse X-ray emission from M101

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Sanders, W. T.

    1984-01-01

    Observed limits on diffuse X-ray emission from M101 require that the temperature of any coronal or matrix hot gas which is radiating an appreciable part ( 10%) of the average supernova power be less than 10(5.7)K. Furthermore, the fraction of the galactic plane occupied by hot buttles similar to the one which apparently surrounds the Sun is at most 25% in the region between 10 kpc and 20 kpc from the galactic center.

  14. Structure and Entanglement Factors on Dynamics of Polymer-Grafted Nanoparticles

    DOE PAGES

    Liu, Siqi; Senses, Erkan; Jiao, Yang; ...

    2016-04-15

    Nanoparticles functionalized with long polymer chains at low graft density are interesting systems to study structure–dynamic relationships in polymer nanocomposites since they are shown to aggregate into strings in both solution and melts and also into spheres and branched aggregates in the presence of free polymer chains. Our work investigates structure and entanglement effects in composites of polystyrene-grafted iron oxide nanoparticles by measuring particle relaxations using X-ray photon correlation spectroscopy. And for particles within highly ordered strings and aggregated systems, they experience a dynamically heterogeneous environment displaying hyperdiffusive relaxation commonly observed in jammed soft glassy systems. Furthermore, particle dynamics ismore » diffusive for branched aggregated structures which could be caused by less penetration of long matrix chains into brushes. These results suggest that particle motion is dictated by the strong interactions of chains grafted at low density with the host matrix polymer.« less

  15. Crowding of Interacting Fluid Particles in Porous Media through Molecular Dynamics: Breakdown of Universality for Soft Interactions.

    PubMed

    Schnyder, Simon K; Horbach, Jürgen

    2018-02-16

    Molecular dynamics simulations of interacting soft disks confined in a heterogeneous quenched matrix of soft obstacles show dynamics which is fundamentally different from that of hard disks. The interactions between the disks can enhance transport when their density is increased, as disks cooperatively help each other over the finite energy barriers in the matrix. The system exhibits a transition from a diffusive to a localized state, but the transition is strongly rounded. Effective exponents in the mean-squared displacement can be observed over three decades in time but depend on the density of the disks and do not correspond to asymptotic behavior in the vicinity of a critical point, thus, showing that it is incorrect to relate them to the critical exponents in the Lorentz model scenario. The soft interactions are, therefore, responsible for a breakdown of the universality of the dynamics.

  16. Wear and Reactivity Studies of Melt infiltrated Ceramic Matrix Composite

    NASA Technical Reports Server (NTRS)

    Jarmon, David C.; Ojard, Greg; Brewer, David N.

    2013-01-01

    As interest grows in the use of ceramic matrix composites (CMCs) for critical gas turbine engine components, the effects of the CMCs interaction with the adjoining structure needs to be understood. A series of CMC/material couples were wear tested in a custom elevated temperature test rig and tested as diffusion couples, to identify interactions. Specifically, melt infiltrated silicon carbide/silicon carbide (MI SiC/SiC) CMC was tested in combination with a nickel-based super alloy, Waspaloy, a thermal barrier coating, Yttria Stabilized Zirconia (YSZ), and a monolithic ceramic, silicon nitride (Si3N4). To make the tests more representative of actual hardware, the surface of the CMC was kept in the as-received state (not machined) with the full surface features/roughness present. Test results include: scanning electron microscope characterization of the surfaces, micro-structural characterization, and microprobe analysis.

  17. Physicochemical aspects involved in methotrexate release kinetics from biodegradable spray-dried chitosan microparticles

    NASA Astrophysics Data System (ADS)

    Mesquita, Philippe C.; Oliveira, Alice R.; Pedrosa, Matheus F. Fernandes; de Oliveira, Anselmo Gomes; da Silva-Júnior, Arnóbio Antônio

    2015-06-01

    Spray dried methotrexate (MTX) loaded chitosan microparticles were prepared using different drug/copolymer ratios (9%, 18%, 27% and 45% w/w). The physicochemical aspects were assessed in order to select particles that were able to induce a sustained drug release effect. Particles were successfully produced which exhibited desired physicochemical aspects such as spherical shape and high drug loading. XRD and FT-IR analysis demonstrated that drug is not bound to copolymer and is only homogeneously dispersed in an amorphous state into polymeric matrix. Even the particles with higher drug loading levels presented a sustained drug release profile, which were mathematically modeled using adjusted Higuchi model. The drug release occurred predominantly with drug dissolution and diffusion through swollen polymeric matrix, with the slowest release occurring with particles containing 9% of drug, demonstrating an interesting and promising drug delivery system for MTX.

  18. Crowding of Interacting Fluid Particles in Porous Media through Molecular Dynamics: Breakdown of Universality for Soft Interactions

    NASA Astrophysics Data System (ADS)

    Schnyder, Simon K.; Horbach, Jürgen

    2018-02-01

    Molecular dynamics simulations of interacting soft disks confined in a heterogeneous quenched matrix of soft obstacles show dynamics which is fundamentally different from that of hard disks. The interactions between the disks can enhance transport when their density is increased, as disks cooperatively help each other over the finite energy barriers in the matrix. The system exhibits a transition from a diffusive to a localized state, but the transition is strongly rounded. Effective exponents in the mean-squared displacement can be observed over three decades in time but depend on the density of the disks and do not correspond to asymptotic behavior in the vicinity of a critical point, thus, showing that it is incorrect to relate them to the critical exponents in the Lorentz model scenario. The soft interactions are, therefore, responsible for a breakdown of the universality of the dynamics.

  19. Correlation effects in focused transmission through disordered media (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hsu, Chia Wei; Liew, Seng Fatt; Goetschy, Arthur; Cao, Hui; Stone, A. Douglas

    2017-02-01

    By controlling the many degrees of freedom in the incident wavefront, one can manipulate wave propagation in complex structures. Such wavefront-shaping methods have been used extensively for controlling light transmitted into wavelength-scale regions (speckles), a property that is insensitive to correlations in the speckle pattern. Extending coherent control to larger regions is of great interest both scientifically and for applications such as optical communications, photothermal therapy, and the imaging of large objects within or behind a diffusive medium. However, waves diffusing through a disordered medium are known to exhibit non-local intensity correlations, and their effect on coherent control has not been fully understood. Here, we demonstrate the effects of correlations with wavefront-shaping experiments on a scattering sample of zinc oxide microparticles. Long-range correlations substantially increase the dynamic range of coherent control over light transmitted onto larger target regions, far beyond what would be achievable if correlations were negligible. This and other effects of correlations emerge when the number of speckles targeted, M2, exceeds the dimensionless conductance g. Using a filtered random matrix ensemble appropriate for describing coherent diffusion and the lateral spreading in an open geometry, we show analytically that M2/g appears as the controlling parameter in universal scaling laws for several statistical properties of interest--predictions that we quantitatively confirm with experimental data. Our work elucidates the roles of speckle correlations and provides a general theoretical framework for modeling open systems in wavefront-shaping experiments.

  20. Local measurements of the diffusion constant in multiple scattering media: Application to human trabecular bone imaging

    NASA Astrophysics Data System (ADS)

    Aubry, Alexandre; Derode, Arnaud; Padilla, Frédéric

    2008-03-01

    We present local measurements of the diffusion constant for ultrasonic waves undergoing multiple scattering. The experimental setup uses a coherent array of programmable transducers. By achieving Gaussian beamforming at emission and reception, an array of virtual sources and receivers located in the near field is constructed. A matrix treatment is proposed to separate the incoherent intensity from the coherent backscattering peak. Local measurements of the diffusion constant D are then achieved. This technique is applied to a real case: a sample of human trabecular bone for which the ultrasonic characterization of multiple scattering is an issue.

Top