Sample records for effective mesh text

  1. Retrieval feedback in MEDLINE.

    PubMed Central

    Srinivasan, P

    1996-01-01

    OBJECTIVE: To investigate a new approach for query expansion based on retrieval feedback. The first objective in this study was to examine alternative query-expansion methods within the same retrieval-feedback framework. The three alternatives proposed are: expansion on the MeSH query field alone, expansion on the free-text field alone, and expansion on both the MeSH and the free-text fields. The second objective was to gain further understanding of retrieval feedback by examining possible dependencies on relevant documents during the feedback cycle. DESIGN: Comparative study of retrieval effectiveness using the original unexpanded and the alternative expanded user queries on a MEDLINE test collection of 75 queries and 2,334 MEDLINE citations. MEASUREMENTS: Retrieval effectivenesses of the original unexpanded and the alternative expanded queries were compared using 11-point-average precision scores (11-AvgP). These are averages of precision scores obtained at 11 standard recall points. RESULTS: All three expansion strategies significantly improved the original queries in terms of retrieval effectiveness. Expansion on MeSH alone was equivalent to expansion on both MeSH and the free-text fields. Expansion on the free-text field alone improved the queries significantly less than did the other two strategies. The second part of the study indicated that retrieval-feedback-based expansion yields significant performance improvements independent of the availability of relevant documents for feedback information. CONCLUSIONS: Retrieval feedback offers a robust procedure for query expansion that is most effective for MEDLINE when applied to the MeSH field. PMID:8653452

  2. MeSHLabeler: improving the accuracy of large-scale MeSH indexing by integrating diverse evidence.

    PubMed

    Liu, Ke; Peng, Shengwen; Wu, Junqiu; Zhai, Chengxiang; Mamitsuka, Hiroshi; Zhu, Shanfeng

    2015-06-15

    Medical Subject Headings (MeSHs) are used by National Library of Medicine (NLM) to index almost all citations in MEDLINE, which greatly facilitates the applications of biomedical information retrieval and text mining. To reduce the time and financial cost of manual annotation, NLM has developed a software package, Medical Text Indexer (MTI), for assisting MeSH annotation, which uses k-nearest neighbors (KNN), pattern matching and indexing rules. Other types of information, such as prediction by MeSH classifiers (trained separately), can also be used for automatic MeSH annotation. However, existing methods cannot effectively integrate multiple evidence for MeSH annotation. We propose a novel framework, MeSHLabeler, to integrate multiple evidence for accurate MeSH annotation by using 'learning to rank'. Evidence includes numerous predictions from MeSH classifiers, KNN, pattern matching, MTI and the correlation between different MeSH terms, etc. Each MeSH classifier is trained independently, and thus prediction scores from different classifiers are incomparable. To address this issue, we have developed an effective score normalization procedure to improve the prediction accuracy. MeSHLabeler won the first place in Task 2A of 2014 BioASQ challenge, achieving the Micro F-measure of 0.6248 for 9,040 citations provided by the BioASQ challenge. Note that this accuracy is around 9.15% higher than 0.5724, obtained by MTI. The software is available upon request. © The Author 2015. Published by Oxford University Press.

  3. MeSHLabeler: improving the accuracy of large-scale MeSH indexing by integrating diverse evidence

    PubMed Central

    Liu, Ke; Peng, Shengwen; Wu, Junqiu; Zhai, Chengxiang; Mamitsuka, Hiroshi; Zhu, Shanfeng

    2015-01-01

    Motivation: Medical Subject Headings (MeSHs) are used by National Library of Medicine (NLM) to index almost all citations in MEDLINE, which greatly facilitates the applications of biomedical information retrieval and text mining. To reduce the time and financial cost of manual annotation, NLM has developed a software package, Medical Text Indexer (MTI), for assisting MeSH annotation, which uses k-nearest neighbors (KNN), pattern matching and indexing rules. Other types of information, such as prediction by MeSH classifiers (trained separately), can also be used for automatic MeSH annotation. However, existing methods cannot effectively integrate multiple evidence for MeSH annotation. Methods: We propose a novel framework, MeSHLabeler, to integrate multiple evidence for accurate MeSH annotation by using ‘learning to rank’. Evidence includes numerous predictions from MeSH classifiers, KNN, pattern matching, MTI and the correlation between different MeSH terms, etc. Each MeSH classifier is trained independently, and thus prediction scores from different classifiers are incomparable. To address this issue, we have developed an effective score normalization procedure to improve the prediction accuracy. Results: MeSHLabeler won the first place in Task 2A of 2014 BioASQ challenge, achieving the Micro F-measure of 0.6248 for 9,040 citations provided by the BioASQ challenge. Note that this accuracy is around 9.15% higher than 0.5724, obtained by MTI. Availability and implementation: The software is available upon request. Contact: zhusf@fudan.edu.cn PMID:26072501

  4. Feature engineering for MEDLINE citation categorization with MeSH.

    PubMed

    Jimeno Yepes, Antonio Jose; Plaza, Laura; Carrillo-de-Albornoz, Jorge; Mork, James G; Aronson, Alan R

    2015-04-08

    Research in biomedical text categorization has mostly used the bag-of-words representation. Other more sophisticated representations of text based on syntactic, semantic and argumentative properties have been less studied. In this paper, we evaluate the impact of different text representations of biomedical texts as features for reproducing the MeSH annotations of some of the most frequent MeSH headings. In addition to unigrams and bigrams, these features include noun phrases, citation meta-data, citation structure, and semantic annotation of the citations. Traditional features like unigrams and bigrams exhibit strong performance compared to other feature sets. Little or no improvement is obtained when using meta-data or citation structure. Noun phrases are too sparse and thus have lower performance compared to more traditional features. Conceptual annotation of the texts by MetaMap shows similar performance compared to unigrams, but adding concepts from the UMLS taxonomy does not improve the performance of using only mapped concepts. The combination of all the features performs largely better than any individual feature set considered. In addition, this combination improves the performance of a state-of-the-art MeSH indexer. Concerning the machine learning algorithms, we find that those that are more resilient to class imbalance largely obtain better performance. We conclude that even though traditional features such as unigrams and bigrams have strong performance compared to other features, it is possible to combine them to effectively improve the performance of the bag-of-words representation. We have also found that the combination of the learning algorithm and feature sets has an influence in the overall performance of the system. Moreover, using learning algorithms resilient to class imbalance largely improves performance. However, when using a large set of features, consideration needs to be taken with algorithms due to the risk of over-fitting. Specific combinations of learning algorithms and features for individual MeSH headings could further increase the performance of an indexing system.

  5. DeepMeSH: deep semantic representation for improving large-scale MeSH indexing.

    PubMed

    Peng, Shengwen; You, Ronghui; Wang, Hongning; Zhai, Chengxiang; Mamitsuka, Hiroshi; Zhu, Shanfeng

    2016-06-15

    Medical Subject Headings (MeSH) indexing, which is to assign a set of MeSH main headings to citations, is crucial for many important tasks in biomedical text mining and information retrieval. Large-scale MeSH indexing has two challenging aspects: the citation side and MeSH side. For the citation side, all existing methods, including Medical Text Indexer (MTI) by National Library of Medicine and the state-of-the-art method, MeSHLabeler, deal with text by bag-of-words, which cannot capture semantic and context-dependent information well. We propose DeepMeSH that incorporates deep semantic information for large-scale MeSH indexing. It addresses the two challenges in both citation and MeSH sides. The citation side challenge is solved by a new deep semantic representation, D2V-TFIDF, which concatenates both sparse and dense semantic representations. The MeSH side challenge is solved by using the 'learning to rank' framework of MeSHLabeler, which integrates various types of evidence generated from the new semantic representation. DeepMeSH achieved a Micro F-measure of 0.6323, 2% higher than 0.6218 of MeSHLabeler and 12% higher than 0.5637 of MTI, for BioASQ3 challenge data with 6000 citations. The software is available upon request. zhusf@fudan.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  6. Meshable: searching PubMed abstracts by utilizing MeSH and MeSH-derived topical terms.

    PubMed

    Kim, Sun; Yeganova, Lana; Wilbur, W John

    2016-10-01

    Medical Subject Headings (MeSH(®)) is a controlled vocabulary for indexing and searching biomedical literature. MeSH terms and subheadings are organized in a hierarchical structure and are used to indicate the topics of an article. Biologists can use either MeSH terms as queries or the MeSH interface provided in PubMed(®) for searching PubMed abstracts. However, these are rarely used, and there is no convenient way to link standardized MeSH terms to user queries. Here, we introduce a web interface which allows users to enter queries to find MeSH terms closely related to the queries. Our method relies on co-occurrence of text words and MeSH terms to find keywords that are related to each MeSH term. A query is then matched with the keywords for MeSH terms, and candidate MeSH terms are ranked based on their relatedness to the query. The experimental results show that our method achieves the best performance among several term extraction approaches in terms of topic coherence. Moreover, the interface can be effectively used to find full names of abbreviations and to disambiguate user queries. https://www.ncbi.nlm.nih.gov/IRET/MESHABLE/ CONTACT: sun.kim@nih.gov Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  7. DeepMeSH: deep semantic representation for improving large-scale MeSH indexing

    PubMed Central

    Peng, Shengwen; You, Ronghui; Wang, Hongning; Zhai, Chengxiang; Mamitsuka, Hiroshi; Zhu, Shanfeng

    2016-01-01

    Motivation: Medical Subject Headings (MeSH) indexing, which is to assign a set of MeSH main headings to citations, is crucial for many important tasks in biomedical text mining and information retrieval. Large-scale MeSH indexing has two challenging aspects: the citation side and MeSH side. For the citation side, all existing methods, including Medical Text Indexer (MTI) by National Library of Medicine and the state-of-the-art method, MeSHLabeler, deal with text by bag-of-words, which cannot capture semantic and context-dependent information well. Methods: We propose DeepMeSH that incorporates deep semantic information for large-scale MeSH indexing. It addresses the two challenges in both citation and MeSH sides. The citation side challenge is solved by a new deep semantic representation, D2V-TFIDF, which concatenates both sparse and dense semantic representations. The MeSH side challenge is solved by using the ‘learning to rank’ framework of MeSHLabeler, which integrates various types of evidence generated from the new semantic representation. Results: DeepMeSH achieved a Micro F-measure of 0.6323, 2% higher than 0.6218 of MeSHLabeler and 12% higher than 0.5637 of MTI, for BioASQ3 challenge data with 6000 citations. Availability and Implementation: The software is available upon request. Contact: zhusf@fudan.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307646

  8. MeSH indexing based on automatically generated summaries.

    PubMed

    Jimeno-Yepes, Antonio J; Plaza, Laura; Mork, James G; Aronson, Alan R; Díaz, Alberto

    2013-06-26

    MEDLINE citations are manually indexed at the U.S. National Library of Medicine (NLM) using as reference the Medical Subject Headings (MeSH) controlled vocabulary. For this task, the human indexers read the full text of the article. Due to the growth of MEDLINE, the NLM Indexing Initiative explores indexing methodologies that can support the task of the indexers. Medical Text Indexer (MTI) is a tool developed by the NLM Indexing Initiative to provide MeSH indexing recommendations to indexers. Currently, the input to MTI is MEDLINE citations, title and abstract only. Previous work has shown that using full text as input to MTI increases recall, but decreases precision sharply. We propose using summaries generated automatically from the full text for the input to MTI to use in the task of suggesting MeSH headings to indexers. Summaries distill the most salient information from the full text, which might increase the coverage of automatic indexing approaches based on MEDLINE. We hypothesize that if the results were good enough, manual indexers could possibly use automatic summaries instead of the full texts, along with the recommendations of MTI, to speed up the process while maintaining high quality of indexing results. We have generated summaries of different lengths using two different summarizers, and evaluated the MTI indexing on the summaries using different algorithms: MTI, individual MTI components, and machine learning. The results are compared to those of full text articles and MEDLINE citations. Our results show that automatically generated summaries achieve similar recall but higher precision compared to full text articles. Compared to MEDLINE citations, summaries achieve higher recall but lower precision. Our results show that automatic summaries produce better indexing than full text articles. Summaries produce similar recall to full text but much better precision, which seems to indicate that automatic summaries can efficiently capture the most important contents within the original articles. The combination of MEDLINE citations and automatically generated summaries could improve the recommendations suggested by MTI. On the other hand, indexing performance might be dependent on the MeSH heading being indexed. Summarization techniques could thus be considered as a feature selection algorithm that might have to be tuned individually for each MeSH heading.

  9. Local Refinement of Analysis-Suitable T-splines

    DTIC Science & Technology

    2011-03-01

    3.2. The extension graph Intersecting T-junction extensions in an extended T-mesh Text can be visualized using an undirected graph . We call this graph ...the extension graph and denote it by E(Text). Each node in E corresponds to a single T-junction extension in Text. If two extensions in Text...intersect then an edge is drawn between the corresponding nodes in E. The extension graph for the extended T-mesh in Figure 7b is shown in Figure 8a. In this

  10. MeSH indexing based on automatically generated summaries

    PubMed Central

    2013-01-01

    Background MEDLINE citations are manually indexed at the U.S. National Library of Medicine (NLM) using as reference the Medical Subject Headings (MeSH) controlled vocabulary. For this task, the human indexers read the full text of the article. Due to the growth of MEDLINE, the NLM Indexing Initiative explores indexing methodologies that can support the task of the indexers. Medical Text Indexer (MTI) is a tool developed by the NLM Indexing Initiative to provide MeSH indexing recommendations to indexers. Currently, the input to MTI is MEDLINE citations, title and abstract only. Previous work has shown that using full text as input to MTI increases recall, but decreases precision sharply. We propose using summaries generated automatically from the full text for the input to MTI to use in the task of suggesting MeSH headings to indexers. Summaries distill the most salient information from the full text, which might increase the coverage of automatic indexing approaches based on MEDLINE. We hypothesize that if the results were good enough, manual indexers could possibly use automatic summaries instead of the full texts, along with the recommendations of MTI, to speed up the process while maintaining high quality of indexing results. Results We have generated summaries of different lengths using two different summarizers, and evaluated the MTI indexing on the summaries using different algorithms: MTI, individual MTI components, and machine learning. The results are compared to those of full text articles and MEDLINE citations. Our results show that automatically generated summaries achieve similar recall but higher precision compared to full text articles. Compared to MEDLINE citations, summaries achieve higher recall but lower precision. Conclusions Our results show that automatic summaries produce better indexing than full text articles. Summaries produce similar recall to full text but much better precision, which seems to indicate that automatic summaries can efficiently capture the most important contents within the original articles. The combination of MEDLINE citations and automatically generated summaries could improve the recommendations suggested by MTI. On the other hand, indexing performance might be dependent on the MeSH heading being indexed. Summarization techniques could thus be considered as a feature selection algorithm that might have to be tuned individually for each MeSH heading. PMID:23802936

  11. Comparative effectiveness research designs: an analysis of terms and coverage in Medical Subject Headings (MeSH) and Emtree*†

    PubMed Central

    Bekhuis, Tanja; Demner-Fushman, Dina; Crowley, Rebecca S.

    2013-01-01

    Objectives: We analyzed the extent to which comparative effectiveness research (CER) organizations share terms for designs, analyzed coverage of CER designs in Medical Subject Headings (MeSH) and Emtree, and explored whether scientists use CER design terms. Methods: We developed local terminologies (LTs) and a CER design terminology by extracting terms in documents from five organizations. We defined coverage as the distribution over match type in MeSH and Emtree. We created a crosswalk by recording terms to which design terms mapped in both controlled vocabularies. We analyzed the hits for queries restricted to titles and abstracts to explore scientists' language. Results: Pairwise LT overlap ranged from 22.64% (12/53) to 75.61% (31/41). The CER design terminology (n = 78 terms) consisted of terms for primary study designs and a few terms useful for evaluating evidence, such as opinion paper and systematic review. Patterns of coverage were similar in MeSH and Emtree (gamma = 0.581, P = 0.002). Conclusions: Stakeholder terminologies vary, and terms are inconsistently covered in MeSH and Emtree. The CER design terminology and crosswalk may be useful for expert searchers. For partially mapped terms, queries could consist of free text for modifiers such as nonrandomized or interrupted added to broad or related controlled terms. PMID:23646024

  12. An Experiment Comparing Lexical and Statistical Methods for Extracting MeSH Terms from Clinical Free Text

    PubMed Central

    Cooper, Gregory F.; Miller, Randolph A.

    1998-01-01

    Abstract Objective: A primary goal of the University of Pittsburgh's 1990-94 UMLS-sponsored effort was to develop and evaluate PostDoc (a lexical indexing system) and Pindex (a statistical indexing system) comparatively, and then in combination as a hybrid system. Each system takes as input a portion of the free text from a narrative part of a patient's electronic medical record and returns a list of suggested MeSH terms to use in formulating a Medline search that includes concepts in the text. This paper describes the systems and reports an evaluation. The intent is for this evaluation to serve as a step toward the eventual realization of systems that assist healthcare personnel in using the electronic medical record to construct patient-specific searches of Medline. Design: The authors tested the performances of PostDoc, Pindex, and a hybrid system, using text taken from randomly selected clinical records, which were stratified to include six radiology reports, six pathology reports, and six discharge summaries. They identified concepts in the clinical records that might conceivably be used in performing a patient-specific Medline search. Each system was given the free text of each record as an input. The extent to which a system-derived list of MeSH terms captured the relevant concepts in these documents was determined based on blinded assessments by the authors. Results: PostDoc output a mean of approximately 19 MeSH terms per report, which included about 40% of the relevant report concepts. Pindex output a mean of approximately 57 terms per report and captured about 45% of the relevant report concepts. A hybrid system captured approximately 66% of the relevant concepts and output about 71 terms per report. Conclusion: The outputs of PostDoc and Pindex are complementary in capturing MeSH terms from clinical free text. The results suggest possible approaches to reduce the number of terms output while maintaining the percentage of terms captured, including the use of UMLS semantic types to constrain the output list to contain only clinically relevant MeSH terms. PMID:9452986

  13. Comparison and combination of several MeSH indexing approaches

    PubMed Central

    Yepes, Antonio Jose Jimeno; Mork, James G.; Demner-Fushman, Dina; Aronson, Alan R.

    2013-01-01

    MeSH indexing of MEDLINE is becoming a more difficult task for the group of highly qualified indexing staff at the US National Library of Medicine, due to the large yearly growth of MEDLINE and the increasing size of MeSH. Since 2002, this task has been assisted by the Medical Text Indexer or MTI program. We extend previous machine learning analysis by adding a more diverse set of MeSH headings targeting examples where MTI has been shown to perform poorly. Machine learning algorithms exceed MTI’s performance on MeSH headings that are used very frequently and headings for which the indexing frequency is very low. We find that when we combine the MTI suggestions and the prediction of the learning algorithms, the performance improves compared to any single method for most of the evaluated MeSH headings. PMID:24551371

  14. Comparison and combination of several MeSH indexing approaches.

    PubMed

    Yepes, Antonio Jose Jimeno; Mork, James G; Demner-Fushman, Dina; Aronson, Alan R

    2013-01-01

    MeSH indexing of MEDLINE is becoming a more difficult task for the group of highly qualified indexing staff at the US National Library of Medicine, due to the large yearly growth of MEDLINE and the increasing size of MeSH. Since 2002, this task has been assisted by the Medical Text Indexer or MTI program. We extend previous machine learning analysis by adding a more diverse set of MeSH headings targeting examples where MTI has been shown to perform poorly. Machine learning algorithms exceed MTI's performance on MeSH headings that are used very frequently and headings for which the indexing frequency is very low. We find that when we combine the MTI suggestions and the prediction of the learning algorithms, the performance improves compared to any single method for most of the evaluated MeSH headings.

  15. Information content in Medline record fields.

    PubMed

    Kostoff, Ronald N; Block, Joel A; Stump, Jesse A; Pfeil, Kirstin M

    2004-06-30

    The authors have been conducting text mining analyses (extraction of useful information from text) of Medline records, using Abstracts as the main data source. For literature-based discovery, and other text mining applications as well, all records in a discipline need to be evaluated for determining prior art. Many Medline records do not contain Abstracts, but typically contain Titles and Mesh terms. Substitution of these fields for Abstracts in the non-Abstract records would restore the missing literature to some degree. Determine how well the information content of Title and Mesh fields approximates that of Abstracts in Medline records. Select historical Medline records related to Raynaud's Phenomenon that contain Abstracts. Determine the information content in the Abstract fields through text mining. Then, determine the information content in the Title fields, the Mesh fields, and the combined Title-Mesh fields, and compare with the information content in the Abstracts. Four metrics were used to compare the information content related to Raynaud's Phenomenon in the different fields: total number of phrases; number of unique phrases; content of factors from factor analyses; content of clusters from multi-link clustering. The Abstract field contains almost an order of magnitude more phrases than the other fields, and slightly more than an order of magnitude more unique phrases than the other fields. Each field used a factor matrix with 14 factors, and the combination of all 56 factors for the four fields represented 27 separate, but not unique, themes. These themes could be placed in two major categories, with two sub-categories per major category: Auto-immunity (antibodies, inflammation) and circulation (peripheral vessel circulation, coronary vessel circulation). All four sub-categories included representation from each field. Thus, while the focus of the representation of each field in each sub-category was moderately different, the four sub-category structure could be identified by analyzing the total factors in each field. In the cluster comparison phase of the study, the phrases used to create the clusters were the most important phrases identified for each factor. Thus, the factor matrix served as a filter for words used for clustering. While clusters were generated for all four fields, the Title hierarchy tended to be fragmented due to sparsity of the co-occurrence matrix that underlies the clusters. Therefore, the Title clusters were examined at only the lower levels of aggregation. The Abstract, Mesh, and Mesh + Title fields had the same first level taxonomy categories, auto-immunity and circulation. At the second level, the Abstract, Mesh, and Mesh + Title fields had the autoimmune diseases and antibodies sub-category in common. The Abstract and Mesh fields shared fascia inflammation as the other auto-immunity sub-category, while the other Mesh + Title sub-category focuses on vinyl chloride poisoning from industrial contact, and consequences of antineoplastic agents. However, in both cases, even though the words may be different, inflammation may be the common theme. For taxonomy generation, especially at the higher levels, each of the four fields has a similar thematic structure. At very detailed levels, the Mesh and Title fields run out of phrases relative to the Abstract field. Therefore, selection of field (s) to be employed for taxonomy generation depends on the objectives of the study, particularly the level of categorization required for the taxonomy. For information retrieval, or literature-based discovery, selection of the appropriate field again depends on the study objectives. If large queries, or large numbers of concepts or themes are desired, then the field with the largest number of technical phrases would be desirable. If queries or concepts represented by the more accepted popular terminology is adequate, then the smaller fields may be sufficient. Because of its established and controlled vocabulary, the Mesh field lags the Title or Abss the Title or Abstract fields in currency. Thus, the Title or Abstract fields would retrieve records with the most explicitly stated current concepts, but the Mesh field would capture a larger swath of fields that contained a concept of interest but perhaps had a wider range of specific terminology in the Abstract or Title text. In addition, this study provides the first validated estimate of the disparity in information retrieved through text mining limited to Titles and Mesh terms relative to entire Abstracts. As much of the older biomedical literature was entered into electronic databases without associated Abstracts, literature-based discovery exercises that search the older medical literature may miss a substantial proportion of relevant information. On the basis of this study, it may be estimated that up to a log order more information may be retrieved when complete Abstracts are searched.

  16. Cost effectiveness of mesh prophylaxis to prevent parastomal hernia in patients undergoing permanent colostomy for rectal cancer.

    PubMed

    Lee, Lawrence; Saleem, Abdulaziz; Landry, Tara; Latimer, Eric; Chaudhury, Prosanto; Feldman, Liane S

    2014-01-01

    Parastomal hernia (PSH) is common after stoma formation. Studies have reported that mesh prophylaxis reduces PSH, but there are no cost-effectiveness data. Our objective was to determine the cost effectiveness of mesh prophylaxis vs no prophylaxis to prevent PSH in patients undergoing abdominoperineal resection with permanent colostomy for rectal cancer. Using a cohort Markov model, we modeled the costs and effectiveness of mesh prophylaxis vs no prophylaxis at the index operation in a cohort of 60-year-old patients undergoing abdominoperineal resection for rectal cancer during a time horizon of 5 years. Costs were expressed in 2012 Canadian dollars (CAD$) and effectiveness in quality-adjusted life years. Deterministic and probabilistic sensitivity analyses were performed. In patients with stage I to III rectal cancer, prophylactic mesh was dominant (less costly and more effective) compared with no mesh. In patients with stage IV disease, mesh prophylaxis was associated with higher cost (CAD$495 more) and minimally increased effectiveness (0.05 additional quality-adjusted life years), resulting in an incremental cost-effectiveness ratio of CAD$10,818 per quality-adjusted life year. On sensitivity analyses, the decision was sensitive to the probability of mesh infection and the cost of the mesh, and method of diagnosing PSH. In patients undergoing abdominoperineal resection with permanent colostomy for rectal cancer, mesh prophylaxis might be the less costly and more effective strategy compared with no mesh to prevent PSH in patients with stage I to III disease, and might be cost effective in patients with stage IV disease. Copyright © 2014 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Three-dimensional analysis of implanted magnetic-resonance-visible meshes.

    PubMed

    Sindhwani, Nikhil; Feola, Andrew; De Keyzer, Frederik; Claus, Filip; Callewaert, Geertje; Urbankova, Iva; Ourselin, Sebastien; D'hooge, Jan; Deprest, Jan

    2015-10-01

    Our primary objective was to develop relevant algorithms for quantification of mesh position and 3D shape in magnetic resonance (MR) images. In this proof-of-principle study, one patient with severe anterior vaginal wall prolapse was implanted with an MR-visible mesh. High-resolution MR images of the pelvis were acquired 6 weeks and 8 months postsurgery. 3D models were created using semiautomatic segmentation techniques. Conformational changes were recorded quantitatively using part-comparison analysis. An ellipticity measure is proposed to record longitudinal conformational changes in the mesh arms. The surface that is the effective reinforcement provided by the mesh is calculated using a novel methodology. The area of this surface is the effective support area (ESA). MR-visible mesh was clearly outlined in the images, which allowed us to longitudinally quantify mesh configuration between 6 weeks and 8 months after implantation. No significant changes were found in mesh position, effective support area, conformation of the mesh's main body, and arm length during the period of observation. Ellipticity profiles show longitudinal conformational changes in posterior arms. This paper proposes novel methodologies for a systematic 3D assessment of the position and morphology of MR-visible meshes. A novel semiautomatic tool was developed to calculate the effective area of support provided by the mesh, a potentially clinically important parameter.

  18. Efficient chemical-disease identification and relationship extraction using Wikipedia to improve recall

    PubMed Central

    Lowe, Daniel M.; O’Boyle, Noel M.; Sayle, Roger A.

    2016-01-01

    Awareness of the adverse effects of chemicals is important in biomedical research and healthcare. Text mining can allow timely and low-cost extraction of this knowledge from the biomedical literature. We extended our text mining solution, LeadMine, to identify diseases and chemical-induced disease relationships (CIDs). LeadMine is a dictionary/grammar-based entity recognizer and was used to recognize and normalize both chemicals and diseases to Medical Subject Headings (MeSH) IDs. The disease lexicon was obtained from three sources: MeSH, the Disease Ontology and Wikipedia. The Wikipedia dictionary was derived from pages with a disease/symptom box, or those where the page title appeared in the lexicon. Composite entities (e.g. heart and lung disease) were detected and mapped to their composite MeSH IDs. For CIDs, we developed a simple pattern-based system to find relationships within the same sentence. Our system was evaluated in the BioCreative V Chemical–Disease Relation task and achieved very good results for both disease concept ID recognition (F1-score: 86.12%) and CIDs (F1-score: 52.20%) on the test set. As our system was over an order of magnitude faster than other solutions evaluated on the task, we were able to apply the same system to the entirety of MEDLINE allowing us to extract a collection of over 250 000 distinct CIDs. PMID:27060160

  19. A recent advance in the automatic indexing of the biomedical literature.

    PubMed

    Névéol, Aurélie; Shooshan, Sonya E; Humphrey, Susanne M; Mork, James G; Aronson, Alan R

    2009-10-01

    The volume of biomedical literature has experienced explosive growth in recent years. This is reflected in the corresponding increase in the size of MEDLINE, the largest bibliographic database of biomedical citations. Indexers at the US National Library of Medicine (NLM) need efficient tools to help them accommodate the ensuing workload. After reviewing issues in the automatic assignment of Medical Subject Headings (MeSH terms) to biomedical text, we focus more specifically on the new subheading attachment feature for NLM's Medical Text Indexer (MTI). Natural Language Processing, statistical, and machine learning methods of producing automatic MeSH main heading/subheading pair recommendations were assessed independently and combined. The best combination achieves 48% precision and 30% recall. After validation by NLM indexers, a suitable combination of the methods presented in this paper was integrated into MTI as a subheading attachment feature producing MeSH indexing recommendations compliant with current state-of-the-art indexing practice.

  20. Applications of information and communications technologies to public health: A scoping review using the MeSH term: "public health informatics".

    PubMed

    Bhattarai, Arjun Kumar; Zarrin, Aein; Lee, Joon

    2017-01-01

    To investigate the public health domains, key informatics concepts, and information and communications technologies (ICTs) applied in articles that are tagged with the MeSH term "public health informatics" and primarily focus on applying ICTs to public health. The MeSH term "public health informatics" was searched on MEDLINE-PubMed. The results of the search were then screened in two steps in order to only include articles about applying ICTs to public health problems. First, articles were screened based on their titles and abstracts. Second, a full-text review was conducted to ensure the relevance of the included articles. All articles were charted based on public health domain, information technology, article type, and informatics concept. 515 articles were included. Communicable disease monitoring (N=235), public health policy and research (N=201), and public health awareness (N=85) constituted the majority of the articles. Inconsistent results were found regarding the validity of syndromic surveillance and the effectiveness of PHI integration within the healthcare systems. PHI articles with an ICT focus cover a wide range of themes. Collectively, the included articles emphasized the need for further research in interoperability, data quality, appropriate data sources, accessible health information, and communication. The limitations of the study include:1) only one database was searched; 2) by using MeSH tags as a selection criterion, PHI articles without the "public health informatics" MeSH term were excluded. Due to the multi-disciplinary nature of PHI, MeSH identifiers were not assigned consistently. Current MeSH-tagged articles indicate that a comprehensive approach is required to integrate PHI into the healthcare system.

  1. Visualization of semantic indexing similarity over MeSH.

    PubMed

    Du, Haixia; Yoo, Terry S

    2007-10-11

    We present an interactive visualization system for the evaluation of indexing results of the MEDLINE data-base over the Medical Subject Headings (MeSH) structure in a graphical radial-tree layout. It displays indexing similarity measurements with 2D color coding and a 3D height field permitting the evaluation of the automatic Medical Text Indexer (MTI), compared with human indexers.

  2. Risk factors for bladder cancer: challenges of conducting a literature search using PubMed.

    PubMed

    Joshi, Ashish; Preslan, Elicia

    2011-04-01

    The objective of this study was to assess the risk factors for bladder cancer using PubMed articles from January 2000 to December 2009. The study also aimed to describe the challenges encountered in the methodology of a literature search for bladder cancer risk factors using PubMed. Twenty-six categories of risk factors for bladder cancer were identified using the National Cancer Institute Web site and the Medical Subject Headings (MeSH) Web site. A total of 1,338 PubMed searches were run using the term "urinary bladder cancer" and a risk factor term (e.g., "cigarette smoking") and were screened to identify 260 articles for final analysis. The search strategy had an overall precision of 3.42 percent, relative recall of 12.64 percent, and an F-measure of 5.39 percent. Although search terms derived from MeSH had the highest overall precision and recall, the differences did not reach significance, which indicates that for generalized, free-text searches of the PubMed database, the searchers' own terms are generally as effective as MeSH terms.

  3. Mesh abdominal wall hernia surgery is safe and effective-the harm New Zealand media has done.

    PubMed

    Kelly, Steven

    2017-10-06

    Patients in New Zealand have now developed a fear of mesh abdominal wall hernia repair due to inaccurate media reporting. This article outlines the extensive literature that confirms abdominal wall mesh hernia repair is safe and effective. The worsening confidence in the transvaginal mesh prolapse repair should not adversely affect the good results of mesh abdominal wall hernia repair. New Zealand general surgeons are well trained in providing modern hernia surgery.

  4. Efficient chemical-disease identification and relationship extraction using Wikipedia to improve recall.

    PubMed

    Lowe, Daniel M; O'Boyle, Noel M; Sayle, Roger A

    2016-01-01

    Awareness of the adverse effects of chemicals is important in biomedical research and healthcare. Text mining can allow timely and low-cost extraction of this knowledge from the biomedical literature. We extended our text mining solution, LeadMine, to identify diseases and chemical-induced disease relationships (CIDs). LeadMine is a dictionary/grammar-based entity recognizer and was used to recognize and normalize both chemicals and diseases to Medical Subject Headings (MeSH) IDs. The disease lexicon was obtained from three sources: MeSH, the Disease Ontology and Wikipedia. The Wikipedia dictionary was derived from pages with a disease/symptom box, or those where the page title appeared in the lexicon. Composite entities (e.g. heart and lung disease) were detected and mapped to their composite MeSH IDs. For CIDs, we developed a simple pattern-based system to find relationships within the same sentence. Our system was evaluated in the BioCreative V Chemical-Disease Relation task and achieved very good results for both disease concept ID recognition (F1-score: 86.12%) and CIDs (F1-score: 52.20%) on the test set. As our system was over an order of magnitude faster than other solutions evaluated on the task, we were able to apply the same system to the entirety of MEDLINE allowing us to extract a collection of over 250 000 distinct CIDs. © The Author(s) 2016. Published by Oxford University Press.

  5. A bottom-up approach to MEDLINE indexing recommendations.

    PubMed

    Jimeno-Yepes, Antonio; Wilkowski, Bartłomiej; Mork, James G; Van Lenten, Elizabeth; Fushman, Dina Demner; Aronson, Alan R

    2011-01-01

    MEDLINE indexing performed by the US National Library of Medicine staff describes the essence of a biomedical publication in about 14 Medical Subject Headings (MeSH). Since 2002, this task is assisted by the Medical Text Indexer (MTI) program. We present a bottom-up approach to MEDLINE indexing in which the abstract is searched for indicators for a specific MeSH recommendation in a two-step process. Supervised machine learning combined with triage rules improves sensitivity of recommendations while keeping the number of recommended terms relatively small. Improvement in recommendations observed in this work warrants further exploration of this approach to MTI recommendations on a larger set of MeSH headings.

  6. The effect of fabric structure on the mechanical properties of warp knitted surgical mesh for hernia repair.

    PubMed

    Mirjavan, Mohammad; Asayesh, Azita; Asgharian Jeddi, Ali Asghar

    2017-02-01

    Surgical mesh is being used for healing hernia, pelvic organ prolapse, skull injuries and urinary incontinence. In this research the effect of fabric structure on the mechanical properties of warp knitted surgical meshes in comparison to abdominal fascia has been investigated. For this purpose, warp knitted surgical mesh with five different structures (Tricot, Pin-hole-net, quasi-Sandfly, Sandfly and quasi-Marquissite) were produced using polypropylene monofilament. Thereafter, their mechanical properties such as uniaxial tensile behavior in various directions (wale-wise (90°), course-wise (0°) and diagonal (45°)), bending resistance and crease recovery were analyzed. The meshes demonstrated different elastic modulus in various directions, which can be attributed to the pore shape (pore angle) and underlap angle in the structure of mesh. Except Pin-hole-net mesh, other produced meshes exhibited better level of orthotropy in comparison to abdominal fascia. The most flexible mesh in both wale-wise and course-wise directions was quasi-Sandfly and thereafter quasi-Marquissite. Tricot and Pin-hole-net manifested the highest crease recovery in wale-wise and coursewise directions respectively. The most desirable mesh in terms of porosity was quasi-Marquissite mesh. Overall, the quasi-Marquissite mesh was selected as the most suitable surgical mesh considering all advantages and disadvantages of each produced mesh in this study. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Effect of Codend Circumference on the Size Selection of Square-Mesh Codends in Trawl Fisheries

    PubMed Central

    De Carlo, Francesco; Lucchetti, Alessandro

    2016-01-01

    It is well established that increasing mesh number in the circumference of a diamond-mesh trawl codend can reduce size selection for round fish, whereas selection for flat fish species is unaffected. This effect has also been documented in Mediterranean trawl fisheries. In contrast, no information is available with regard to the effect of increasing mesh number in the circumference of square-mesh codends on the size selection of round fish and flat fish species. A field study was devised to bridge this gap and formulate proposals aimed at improving trawl fishery management. Size selection data were collected for a round fish species, red mullet (Mullus barbatus), and two flat fish species, Mediterranean scaldfish (Arnoglossus laterna) and solenette (Buglossidium luteum). Fishing trials were conducted in the Adriatic Sea (Central Mediterranean) using three square-mesh codends that differed only in mesh number around the circumference. Results demonstrated that increasing the number of meshes from 107 to 213 reduced the 50% retention length (L50) for red mullet by 2.5 cm but did not affect size selection for the two flat fish species. In some fisheries, regulatory provisions regarding the number of meshes in the circumference should therefore be carefully considered both for diamond- and square-mesh codends. PMID:27472058

  8. Superhydrophobic hierarchical structure carbon mesh films for oil/water separation application

    NASA Astrophysics Data System (ADS)

    Lu, Zhaoxia; Huang, Xing; Wang, Lisheng

    2017-08-01

    In this study, we showed that a superoleophobic mesh with the self-cleaning ability could be readily prepared by a facile spray-coating method on stainless steel mesh. Poly(methyl methacrylate) was employed to provide a stable strength between carbon nanotubes and steel mesh surface. The effect of opening size of these steel meshes on surface wetting has been investigated. The dynamics of liquid droplets was investigated as well. The as-prepared meshes exhibited both superhydrophobicity and superoleophilicity and could effectively separate water from the oil and water mixture. The present study contributes to the development of oil and water separation materials for marine industrial application.

  9. Hexahedral Mesh Untangling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KNUPP,PATRICK

    2000-12-13

    We investigate a well-motivated mesh untangling objective function whose optimization automatically produces non-inverted elements when possible. Examples show the procedure is highly effective on simplicial meshes and on non-simplicial (e.g., hexahedral) meshes constructed via mapping or sweeping algorithms. The current whisker-weaving (WW) algorithm in CUBIT usually produces hexahedral meshes that are unsuitable for analyses due to inverted elements. The majority of these meshes cannot be untangled using the new objective function. The most likely source of the difficulty is poor mesh topology.

  10. Comparative analysis of histopathologic effects of synthetic meshes based on material, weight, and pore size in mice.

    PubMed

    Orenstein, Sean B; Saberski, Ean R; Kreutzer, Donald L; Novitsky, Yuri W

    2012-08-01

    While synthetic prosthetics have essentially become mandatory for hernia repair, mesh-induced chronic inflammation and scarring can lead to chronic pain and limited mobility. Mesh propensity to induce such adverse effects is likely related to the prosthetic's material, weight, and/or pore size. We aimed to compare histopathologic responses to various synthetic meshes after short- and long-term implantations in mice. Samples of macroporous polyester (Parietex [PX]), heavyweight microporous polypropylene (Trelex[TX]), midweight microporous polypropylene (ProLite[PL]), lightweight macroporous polypropylene (Ultrapro[UP]), and expanded polytetrafluoroethylene (DualMesh[DM]) were implanted subcutaneously in mice. Four and 12 wk post-implantation, meshes were assessed for inflammation, foreign body reaction (FBR), and fibrosis. All meshes induced varying levels of inflammatory responses. PX induced the greatest inflammatory response and marked FBR. DM induced moderate FBR and a strong fibrotic response with mesh encapsulation at 12 wk. UP and PL had the lowest FBR, however, UP induced a significant chronic inflammatory response. Although inflammation decreased slightly for TX, marked FBR was present throughout the study. Of the three polypropylene meshes, fibrosis was greatest for TX and slightly reduced for PL and UP. For UP and PL, there was limited fibrosis within each mesh pore. Polyester mesh induced the greatest FBR and lasting chronic inflammatory response. Likewise, marked fibrosis and encapsulation was seen surrounding ePTFE. Heavier polypropylene meshes displayed greater early and persistent fibrosis; the reduced-weight polypropylene meshes were associated with the least amount of fibrosis. Mesh pore size was inversely proportional to bridging fibrosis. Moreover, reduced-weight polypropylene meshes demonstrated the smallest FBR throughout the study. Overall, we demonstrated that macroporous, reduced-weight polypropylene mesh exhibited the highest degree of biocompatibility at sites of mesh implantation. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Effects of mesenchymal stem cell and fibroblast coating on immunogenic potential of prosthetic meshes in vitro.

    PubMed

    Gao, Yue; Krpata, David M; Criss, Cory N; Liu, Lijia; Posielski, Natasza; Rosen, Michael J; Novitsky, Yuri W

    2014-08-01

    The aim of this study was to reveal the effect of fibroblast or mesenchymal stem cell (MSC) coating on the mesh-induced production of IL-1β, IL-6, and VEGF by macrophages. Four commonly used surgical meshes were tested in this study, including Parietex, SoftMesh, TIGR, and Strattice. One-square-centimeter pieces of each mesh were placed on top of a monolayer of human fibroblasts or rat MSCs. The coating status was monitored with a light microscope. The human promonocytic cell line U937 was induced to differentiate into macrophages (MΦ). Three weeks later, meshes were transferred to new 24-well plates and cocultured with the MΦs for 72 h. Culture medium was collected and analyzed for IL-1β, IL-6, and VEGF production using standard ELISA essays. Parallel mesh samples were fixed with paraformaldehyde or glutaraldehyde for histology or transmission electronic microscopy (TEM) analyses, respectively. Uncoated meshes induced increased production of all three cytokines compared with macrophages cultured alone. HF coating further increased the production of both IL-6 and VEGF but reduced IL-1β production. Except for the SoftMesh group, MSC coating significantly blunted release of all cytokines to levels even lower than with MΦs cultured alone. MΦs tended to deteriorate in the presence of MSCs. Both histology and TEM revealed intimate interactions between cell-coated meshes and MΦs. Cytokine response to fibroblast coating varied, while MSC coating blunted the immunogenic effect of both synthetic and biologic meshes in vitro. Cell coating appears to affect mesh biocompatibility and may become a key process in mesh evolution.

  12. Effect of boundary representation on viscous, separated flows in a discontinuous-Galerkin Navier-Stokes solver

    NASA Astrophysics Data System (ADS)

    Nelson, Daniel A.; Jacobs, Gustaaf B.; Kopriva, David A.

    2016-08-01

    The effect of curved-boundary representation on the physics of the separated flow over a NACA 65(1)-412 airfoil is thoroughly investigated. A method is presented to approximate curved boundaries with a high-order discontinuous-Galerkin spectral element method for the solution of the Navier-Stokes equations. Multiblock quadrilateral element meshes are constructed with the grid generation software GridPro. The boundary of a NACA 65(1)-412 airfoil, defined by a cubic natural spline, is piecewise-approximated by isoparametric polynomial interpolants that represent the edges of boundary-fitted elements. Direct numerical simulation of the airfoil is performed on a coarse mesh and fine mesh with polynomial orders ranging from four to twelve. The accuracy of the curve fitting is investigated by comparing the flows computed on curved-sided meshes with those given by straight-sided meshes. Straight-sided meshes yield irregular wakes, whereas curved-sided meshes produce a regular Karman street wake. Straight-sided meshes also produce lower lift and higher viscous drag as compared with curved-sided meshes. When the mesh is refined by reducing the sizes of the elements, the lift decrease and viscous drag increase are less pronounced. The differences in the aerodynamic performance between the straight-sided meshes and the curved-sided meshes are concluded to be the result of artificial surface roughness introduced by the piecewise-linear boundary approximation provided by the straight-sided meshes.

  13. Effect of particle size on mixing degree in dispensation.

    PubMed

    Nakamura, Hitoshi; Yanagihara, Yoshitsugu; Sekiguchi, Hiroko; Ohtani, Michiteru; Kariya, Satoru; Uchino, Katsuyoshi; Suzuki, Hiroshi; Iga, Tatsuji

    2004-03-01

    By using lactose colored with erythrocin, we examined the effect of particle size on mixing degree during the preparation of triturations with a mortar and pestle. We used powders with different distributions of particle sizes, i.e., powder that passed through 32-mesh but was trapped on a 42-mesh sieve (32/42-mesh powder), powder that passed through a 42-mesh sieve but was trapped on a 60-mesh sieve (42/60-mesh powder), powder that passed through a 60-mesh sieve but was trapped on a 100-mesh sieve (60/100-mesh powder), and powder that passes through a 100-mesh sieve (> 100-mesh powder). The mixing degree of colored powder and non-colored powder whose distribution of particle sizes was the same as that of the colored powder was excellent. The coefficient of variation (CV) value of the mixing degree was 6.08% after 40 rotations when colored powder was mixed with non-colored powder that both passed through a 100-mesh sieve. The CV value of the mixing degree was low in the case of mixing of colored and non-colored powders with different particle size distributions. After mixing, about 50% of 42/60-mesh powder had become smaller particles, whereas the distribution of particle sizes was not influenced by the mixing of 60/100-mesh powder. It was suggested that the mixing degree is affected by distribution of particle sizes. It may be important to determine the mixing degrees for drugs with narrow therapeutic ranges.

  14. Latent Heat Thermal Energy Storage: Effect of Metallic Mesh Size on Storage Time and Capacity

    NASA Astrophysics Data System (ADS)

    Shuja, S. Z.; Yilbas, B. S.

    2015-11-01

    Use of metallic meshes in latent heat thermal storage system shortens the charging time (total melting of the phase change material), which is favorable in practical applications. In the present study, effect of metallic mesh size on the thermal characteristics of latent heat thermal storage system is investigated. Charging time is predicted for various mesh sizes, and the influence of the amount of mesh material on the charging capacity is examined. An experiment is carried out to validate the numerical predictions. It is found that predictions of the thermal characteristics of phase change material with presence of metallic meshes agree well with the experimental data. High conductivity of the metal meshes enables to transfer heat from the edges of the thermal system towards the phase change material while forming a conduction tree in the system. Increasing number of meshes in the thermal system reduces the charging time significantly due to increased rate of conduction heat transfer in the thermal storage system; however, increasing number of meshes lowers the latent heat storage capacity of the system.

  15. Biaxial Mechanical Evaluation of Absorbable and Nonabsorbable Synthetic Surgical Meshes Used for Hernia Repair: Physiological Loads Modify Anisotropy Response.

    PubMed

    Cordero, A; Hernández-Gascón, B; Pascual, G; Bellón, J M; Calvo, B; Peña, E

    2016-07-01

    The aim of this study was to obtain information about the mechanical properties of six meshes commonly used for hernia repair (Surgipro(®), Optilene(®), Infinit(®), DynaMesh(®), Ultrapro™ and TIGR(®)) by planar biaxial tests. Stress-stretch behavior and equibiaxial stiffness were evaluated, and the anisotropy was determined by testing. In particular, equibiaxial test (equal simultaneous loading in both directions) and biaxial test (half of the load in one direction following the Laplace law) were selected as a representation of physiologically relevant loads. The majority of the meshes displayed values in the range of 8 and 18 (N/mm) in each direction for equibiaxial stiffness (tangent modulus under equibiaxial load state in both directions), while a few achieved 28 and 50 (N/mm) (Infinit (®) and TIGR (®)). Only the Surgipro (®) mesh exhibited planar isotropy, with similar mechanical properties regardless of the direction of loading, and an anisotropy ratio of 1.18. Optilene (®), DynaMesh (®), Ultrapro (®) and TIGR (®) exhibited moderate anisotropy with ratios of 1.82, 1.84, 2.17 and 1.47, respectively. The Infinit (®) scaffold exhibited very high anisotropy with a ratio of 3.37. These trends in material anisotropic response changed during the physiological state in the human abdominal wall, i.e. T:0.5T test, which the meshes were loaded in one direction with half the load used in the other direction. The Surgipro (®) mesh increased its anisotropic response (Anis[Formula: see text] = 0.478) and the materials that demonstrated moderate and high anisotropic responses during multiaxial testing presented a quasi-isotropic response, especially the Infinit(®) mesh that decreased its anisotropic response from 3.369 to 1.292.

  16. Patterning of polymer nanofiber meshes by electrospinning for biomedical applications

    PubMed Central

    Neves, Nuno M; Campos, Rui; Pedro, Adriano; Cunha, José; Macedo, Francisco; Reis, Rui L

    2007-01-01

    The end-product of the electrospinning process is typically a randomly aligned fiber mesh or membrane. This is a result of the electric field generated between the drop of polymer solution at the needle and the collector. The developed electric field causes the stretching of the fibers and their random deposition. By judicious selection of the collector architecture, it is thus possible to develop other morphologies on the nanofiber meshes. The aim of this work is to prepare fiber meshes using various patterned collectors with specific dimensions and designs and to evaluate how those patterns can affect the properties of the meshes relevant to biomedical applications. This study aims at verifying whether it is possible to control the architecture of the fiber meshes by tailoring the geometry of the collector. Three different metallic collector topographies are used to test this hypothesis. Electrospun nonwoven patterned meshes of polyethylene oxide (PEO) and poly(ε-capro-lactone) (PCL) were successfully prepared. Those fiber meshes were analyzed by scanning electron microscopy (SEM). Both mechanical properties of the meshes and cell contacting experiments were performed to test the effect of the produced patterns over the properties of the meshes relevant for biomedical applications. The present study will evaluate cell adhesion sensitivity to the patterns generated and the effect of those patterns on the tensile properties of the fiber meshes. PMID:18019842

  17. Chi-square-based scoring function for categorization of MEDLINE citations.

    PubMed

    Kastrin, A; Peterlin, B; Hristovski, D

    2010-01-01

    Text categorization has been used in biomedical informatics for identifying documents containing relevant topics of interest. We developed a simple method that uses a chi-square-based scoring function to determine the likelihood of MEDLINE citations containing genetic relevant topic. Our procedure requires construction of a genetic and a nongenetic domain document corpus. We used MeSH descriptors assigned to MEDLINE citations for this categorization task. We compared frequencies of MeSH descriptors between two corpora applying chi-square test. A MeSH descriptor was considered to be a positive indicator if its relative observed frequency in the genetic domain corpus was greater than its relative observed frequency in the nongenetic domain corpus. The output of the proposed method is a list of scores for all the citations, with the highest score given to those citations containing MeSH descriptors typical for the genetic domain. Validation was done on a set of 734 manually annotated MEDLINE citations. It achieved predictive accuracy of 0.87 with 0.69 recall and 0.64 precision. We evaluated the method by comparing it to three machine-learning algorithms (support vector machines, decision trees, naïve Bayes). Although the differences were not statistically significantly different, results showed that our chi-square scoring performs as good as compared machine-learning algorithms. We suggest that the chi-square scoring is an effective solution to help categorize MEDLINE citations. The algorithm is implemented in the BITOLA literature-based discovery support system as a preprocessor for gene symbol disambiguation process.

  18. A tuned mesh-generation strategy for image representation based on data-dependent triangulation.

    PubMed

    Li, Ping; Adams, Michael D

    2013-05-01

    A mesh-generation framework for image representation based on data-dependent triangulation is proposed. The proposed framework is a modified version of the frameworks of Rippa and Garland and Heckbert that facilitates the development of more effective mesh-generation methods. As the proposed framework has several free parameters, the effects of different choices of these parameters on mesh quality are studied, leading to the recommendation of a particular set of choices for these parameters. A mesh-generation method is then introduced that employs the proposed framework with these best parameter choices. This method is demonstrated to produce meshes of higher quality (both in terms of squared error and subjectively) than those generated by several competing approaches, at a relatively modest computational and memory cost.

  19. Evaluation on Compressive Characteristics of Medical Stents Applied by Mesh Structures

    NASA Astrophysics Data System (ADS)

    Hirayama, Kazuki; He, Jianmei

    2017-11-01

    There are concerns about strength reduction and fatigue fracture due to stress concentration in currently used medical stents. To address these problems, meshed stents applied by mesh structures were interested for achieving long life and high strength perfromance of medical stents. The purpose of this study is to design basic mesh shapes to obatin three dimensional (3D) meshed stent models for mechanical property evaluation. The influence of introduced design variables on compressive characteristics of meshed stent models are evaluated through finite element analysis using ANSYS Workbench code. From the analytical results, the compressive stiffness are changed periodically with compressive directions, average results need to be introduced as the mean value of compressive stiffness of meshed stents. Secondly, compressive flexibility of meshed stents can be improved by increasing the angle proportional to the arm length of the mesh basic shape. By increasing the number of basic mesh shapes arranged in stent’s circumferential direction, compressive rigidity of meshed stent tends to be increased. Finaly reducing the mesh line width is found effective to improve compressive flexibility of meshed stents.

  20. Clinical effectiveness and cost-effectiveness of surgical options for the management of anterior and/or posterior vaginal wall prolapse: two randomised controlled trials within a comprehensive cohort study - results from the PROSPECT Study.

    PubMed

    Glazener, Cathryn; Breeman, Suzanne; Elders, Andrew; Hemming, Christine; Cooper, Kevin; Freeman, Robert; Smith, Anthony; Hagen, Suzanne; Montgomery, Isobel; Kilonzo, Mary; Boyers, Dwayne; McDonald, Alison; McPherson, Gladys; MacLennan, Graeme; Norrie, John

    2016-12-01

    The use of mesh in prolapse surgery is controversial, leading to a number of enquiries into its safety and efficacy. To compare synthetic non-absorbable mesh inlay, biological graft and mesh kit with a standard repair in terms of clinical effectiveness, adverse effects, quality of life (QoL), costs and cost-effectiveness. Two randomised controlled trials within a comprehensive cohort (CC) study. Allocation was by a remote web-based randomisation system in a 1 :1 : 1 ratio (Primary trial) or 1 : 1 : 2 ratio (Secondary trial), and was minimised on age, type of prolapse repair planned, need for a concomitant continence procedure, need for a concomitant upper vaginal prolapse procedure and surgeon. Participants and outcome assessors were blinded to randomisation; participants were unblinded if they requested the information. Surgeons were not blinded to allocated procedure. Thirty-five UK hospitals. Primary study : 2474 women in the analysis (including 1348 randomised) having primary anterior or posterior prolapse surgery. Secondary study : 398 in the analysis (including 154 randomised) having repeat anterior or posterior prolapse surgery. CC3 : 215 women having either uterine or vault prolapse repair. Anterior or posterior repair alone, or with mesh inlay, biological graft or mesh kit. Prolapse symptoms [Pelvic Organ Prolapse Symptom Score (POP-SS)]; prolapse-specific QoL; cost-effectiveness [incremental cost per quality-adjusted life-year (QALY)]. Primary trials : adjusting for baseline and minimisation covariates, mean POP-SS was similar for each comparison {standard 5.4 [standard deviation (SD) 5.5] vs. mesh 5.5 (SD 5.1), mean difference (MD) 0.00, 95% confidence interval (CI) -0.70 to 0.71; standard 5.5 (SD 5.6) vs. graft 5.6 (SD 5.6), MD -0.15, 95% CI -0.93 to 0.63}. Serious non-mesh adverse effects rates were similar between the groups in year 1 [standard 7.2% vs. mesh 7.8%, risk ratio (RR) 1.08, 95% CI 0.68 to 1.72; standard 6.3% vs. graft 9.8%, RR 1.57, 95% CI 0.95 to 2.59]. There were no statistically significant differences between groups in any other outcome measure. The cumulative mesh complication rates over 2 years were 2 of 430 (0.5%) for standard repair (trial 1), 46 of 435 (10.6%) for mesh inlay and 2 of 368 (0.5%) for biological graft. The CC findings were comparable. Incremental costs were £363 (95% CI -£32 to £758) and £565 (95% CI £180 to £950) for mesh and graft vs. standard, respectively. Incremental QALYs were 0.071 (95% CI -0.004 to 0.145) and 0.039 (95% CI -0.041 to 0.120) for mesh and graft vs. standard, respectively. A Markov decision model extrapolating trial results over 5 years showed standard repair had the highest probability of cost-effectiveness, but results were surrounded by considerable uncertainty. Secondary trials : there were no statistically significant differences between the randomised groups in any outcome measure, but the sample size was too small to be conclusive. The cumulative mesh complication rates over 2 years were 7 of 52 (13.5%) for mesh inlay and 4 of 46 (8.7%) for mesh kit, with no mesh exposures for standard repair. In women who were having primary repairs, there was evidence of no benefit from the use of mesh inlay or biological graft compared with standard repair in terms of efficacy, QoL or adverse effects (other than mesh complications) in the short term. The Secondary trials were too small to provide conclusive results. Women in the Primary trials included some with a previous repair in another compartment. Follow-up is vital to identify any long-term potential benefits and serious adverse effects. Long-term follow-up to at least 6 years after surgery is ongoing to identify recurrence rates, need for further prolapse surgery, adverse effects and cost-effectiveness. Current Controlled Trials ISRCTN60695184. This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment ; Vol. 20, No. 95. See the NIHR Journals Library website for further project information.

  1. MRI Evaluation of an Elastic TPU Mesh under Pneumoperitoneum in IPOM Position in a Porcine Model.

    PubMed

    Lambertz, A; van den Hil, L C L; Ciritsis, A; Eickhoff, R; Kraemer, N A; Bouvy, N D; Müllen, A; Klinge, U; Neumann, U P; Klink, C D

    2018-06-01

    The frequency of laparoscopic approaches increased in hernia surgery over the past years. After mesh placement in IPOM position, the real extent of the meshes configurational changes after termination of pneumoperitoneum is still largely unknown. To prevent a later mesh folding it might be useful to place the mesh while it is kept under tension. Conventionally used meshes may lose their Effective Porosity under these conditions due to poor elastic properties. The aim of this study was to evaluate a newly developed elastic thermoplastic polyurethane (TPU) containing mesh that retains its Effective Porosity under mechanical strain in IPOM position in a porcine model. It was visualized under pneumoperitoneum using MRI in comparison to polyvinylidenefluoride (PVDF) meshes with similar structure. In each of ten minipigs, a mesh (TPU containing or native PVDF, 10 × 20 cm) was randomly placed in IPOM position at the center of the abdominal wall. After 8 weeks, six pigs underwent MRI evaluation with and without pneumoperitoneum to assess the visibility and elasticity of the mesh. Finally, pigs were euthanized and abdominal walls were explanted for histological and immunohistochemical assessment. The degree of adhesion formation was documented. Laparoscopic implantation of elastic TPU meshes in IPOM position was feasible and safe in a minipig model. Mesh position could be precisely visualized and assessed with and without pneumoperitoneum using MRI after 8 weeks. Elastic TPU meshes showed a significantly higher surface increase under pneumoperitoneum in comparison to PVDF. Immunohistochemically, the amount of CD45-positive cells was significantly lower and the Collagen I/III ratio was significantly higher in TPU meshes after 8 weeks. There were no differences regarding adhesion formation between study groups. The TPU mesh preserves its elastic properties in IPOM position in a porcine model after 8 weeks. Immunohistochemistry indicates superior biocompatibility regarding CD45-positive cells and Collagen I/III ratio in comparison to PVDF meshes with a similar structure.

  2. Design variability in web geometry of an orb-weaving spider.

    PubMed

    Vollrath, F; Downes, M; Krackow, S

    1997-10-01

    We studied the effect of several variables (environmental and physiological) on web geometry in the garden cross spider Araneus diadematus. Variables were: web support, wind, temperature, humidity, and silk supply. All had an effect. The spiders generally attempted to fit their webs to the shape of the supporting frame (standard, small, vertical, or horizontal). Windy conditions (0.5 m s-1) during web construction caused spiders to build smaller and rounder webs, laying down fewer capture spirals while increasing the distances between capture-spiral meshes. Decreasing temperature from 24 degrees to 12 degrees C caused the capture spiral to have fewer and wider spaced meshes, which did not change overall capture area but reduced the length of capture-spiral threads laid down. Subsequent increase of temperature to 24 degrees C restored the number of meshes laid down, but the wider mesh was retained, causing the capture area to be increased over initial control values. Decreased humidity (from 70 to 20% rH) had the effect of reducing web and capture-spiral size, the latter by reducing mesh number while keeping mesh spacing constant. Subsequent increase of humidity to control level (70%) restored web and capture area. However, this was achieved by laying down capture meshes at larger distances, rather than returning to initial mesh numbers. Silk supply also had a strong effect. Webs built in unnaturally rapid succession by the same spider (4 in 24 h when 1 is the norm) became sequentially smaller, had fewer radii, shorter capture spirals, and were wider meshed.

  3. Construction and temporal behaviour study of multi RLC intense light pulses for dermatological applications.

    PubMed

    Hamoudi, Walid K; Ismail, Raid A; Shakir, Hussein A

    2017-10-01

    Driving a flash lamp in an intense pulsed light system requires a high-voltage DC power supply, capacitive energy storage and a flash lamp triggering unit. Single, double, triple and quadruple-mesh discharge and triggering circuits were constructed to provide intense light pulses of variable energy and time durations. The system was treated as [Formula: see text] circuit in some cases and [Formula: see text] circuit in others with a light pulse profile following the temporal behaviour of the exciting current pulse. Distributing the energy delivered to one lamp onto a number of LC meshes permitted longer current pulses, and consequently increased the light pulse length. Positive results were obtained when using the system to treat skin wrinkles.

  4. The sensitivity of biological finite element models to the resolution of surface geometry: a case study of crocodilian crania

    PubMed Central

    Evans, Alistair R.; McHenry, Colin R.

    2015-01-01

    The reliability of finite element analysis (FEA) in biomechanical investigations depends upon understanding the influence of model assumptions. In producing finite element models, surface mesh resolution is influenced by the resolution of input geometry, and influences the resolution of the ensuing solid mesh used for numerical analysis. Despite a large number of studies incorporating sensitivity studies of the effects of solid mesh resolution there has not yet been any investigation into the effect of surface mesh resolution upon results in a comparative context. Here we use a dataset of crocodile crania to examine the effects of surface resolution on FEA results in a comparative context. Seven high-resolution surface meshes were each down-sampled to varying degrees while keeping the resulting number of solid elements constant. These models were then subjected to bite and shake load cases using finite element analysis. The results show that incremental decreases in surface resolution can result in fluctuations in strain magnitudes, but that it is possible to obtain stable results using lower resolution surface in a comparative FEA study. As surface mesh resolution links input geometry with the resulting solid mesh, the implication of these results is that low resolution input geometry and solid meshes may provide valid results in a comparative context. PMID:26056620

  5. Effect of soil sieving on respiration induced by low-molecular-weight substrates

    NASA Astrophysics Data System (ADS)

    Datta, Rahul; Vranová, Valerie; Pavelka, Marian; Rejšek, Klement; Formánek, Pavel

    2014-03-01

    The mesh size of sieves has a significant impact upon soil disturbance, affecting pore structure, fungal hyphae, proportion of fungi to bacteria, and organic matter fractions. The effects are dependent upon soil type and plant coverage. Sieving through a 2 mm mesh increases mineralization of exogenously supplied carbohydrates and phenolics compared to a 5 mm mesh and the effect is significant (p<0.05), especially in organic horizons, due to increased microbial metabolism and alteration of other soil properties. Finer mesh size particularly increases arabinose, mannose, galactose, ferulic and pthalic acid metabolism, whereas maltose mineralization is less affected. Sieving through a 5 mm mesh size is suggested for all type of experiments where enhanced mineralization of low-molecular-weight organic compounds needs to be minimalized.

  6. Towards a new multiscale air quality transport model using the fully unstructured anisotropic adaptive mesh technology of Fluidity (version 4.1.9)

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Zhu, J.; Wang, Z.; Fang, F.; Pain, C. C.; Xiang, J.

    2015-10-01

    An integrated method of advanced anisotropic hr-adaptive mesh and discretization numerical techniques has been, for first time, applied to modelling of multiscale advection-diffusion problems, which is based on a discontinuous Galerkin/control volume discretization on unstructured meshes. Over existing air quality models typically based on static-structured grids using a locally nesting technique, the advantage of the anisotropic hr-adaptive model has the ability to adapt the mesh according to the evolving pollutant distribution and flow features. That is, the mesh resolution can be adjusted dynamically to simulate the pollutant transport process accurately and effectively. To illustrate the capability of the anisotropic adaptive unstructured mesh model, three benchmark numerical experiments have been set up for two-dimensional (2-D) advection phenomena. Comparisons have been made between the results obtained using uniform resolution meshes and anisotropic adaptive resolution meshes. Performance achieved in 3-D simulation of power plant plumes indicates that this new adaptive multiscale model has the potential to provide accurate air quality modelling solutions effectively.

  7. Mesh quality control for multiply-refined tetrahedral grids

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Strawn, Roger

    1994-01-01

    A new algorithm for controlling the quality of multiply-refined tetrahedral meshes is presented in this paper. The basic dynamic mesh adaption procedure allows localized grid refinement and coarsening to efficiently capture aerodynamic flow features in computational fluid dynamics problems; however, repeated application of the procedure may significantly deteriorate the quality of the mesh. Results presented show the effectiveness of this mesh quality algorithm and its potential in the area of helicopter aerodynamics and acoustics.

  8. Non-woven PGA/PVA fibrous mesh as an appropriate scaffold for chondrocyte proliferation.

    PubMed

    Rampichová, M; Koštáková, E; Filová, E; Prosecká, E; Plencner, M; Ocheretná, L; Lytvynets, A; Lukáš, D; Amler, E

    2010-01-01

    Non-woven textile mesh from polyglycolic acid (PGA) was found as a proper material for chondrocyte adhesion but worse for their proliferation. Neither hyaluronic acid nor chitosan nor polyvinyl alcohol (PVA) increased chondrocyte adhesion. However, chondrocyte proliferation suffered from acidic byproducts of PGA degradation. However, the addition of PVA and/or chitosan into a wet-laid non-woven textile mesh from PGA improved chondrocyte proliferation seeded in vitro on the PGA-based composite scaffold namely due to a diminished acidification of their microenvironment. This PVA/PGA composite mesh used in combination with a proper hydrogel minimized the negative effect of PGA degradation without dropping positive parameters of the PGA wet-laid non-woven textile mesh. In fact, presence of PVA and/or chitosan in the PGA-based wet-laid non-woven textile mesh even advanced the PGA-based wet-laid non-woven textile mesh for chondrocyte seeding and artificial cartilage production due to a positive effect of PVA in such a scaffold on chondrocyte proliferation.

  9. Effects of Titanium Mesh Surfaces-Coated with Hydroxyapatite/β-Tricalcium Phosphate Nanotubes on Acetabular Bone Defects in Rabbits

    PubMed Central

    Nguyen, Thuy-Duong Thi; Bae, Tae-Sung; Yang, Dae-hyeok; Park, Myung-sik; Yoon, Sun-jung

    2017-01-01

    The management of severe acetabular bone defects in revision reconstructive orthopedic surgery is challenging. In this study, cyclic precalcification (CP) treatment was used on both nanotube-surface Ti-mesh and a bone graft substitute for the acetabular defect model, and its effects were assessed in vitro and in vivo. Nanotube-Ti mesh coated with hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) was manufactured by an anodizing and a sintering method, respectively. An 8 mm diameter defect was created on each acetabulum of eight rabbits, then treated by grafting materials and covered by Ti meshes. At four and eight weeks, postoperatively, biopsies were performed for histomorphometric analyses. The newly-formed bone layers under cyclic precalcified anodized Ti (CP-AT) meshes were superior with regard to the mineralized area at both four and eight weeks, as compared with that under untreated Ti meshes. Active bone regeneration at 2–4 weeks was stronger than at 6–8 weeks, particularly with treated biphasic ceramic (p < 0.05). CP improved the bioactivity of Ti meshes and biphasic grafting materials. Moreover, the precalcified nanotubular Ti meshes could enhance early contact bone formation on the mesh and, therefore, may reduce the collapse of Ti meshes into the defect, increasing the sufficiency of acetabular reconstruction. Finally, cyclic precalcification did not affect bone regeneration by biphasic grafting materials in vivo. PMID:28686210

  10. Effects of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data.

    PubMed

    Longest, P Worth; Vinchurkar, Samir

    2007-04-01

    A number of research studies have employed a wide variety of mesh styles and levels of grid convergence to assess velocity fields and particle deposition patterns in models of branching biological systems. Generating structured meshes based on hexahedral elements requires significant time and effort; however, these meshes are often associated with high quality solutions. Unstructured meshes that employ tetrahedral elements can be constructed much faster but may increase levels of numerical diffusion, especially in tubular flow systems with a primary flow direction. The objective of this study is to better establish the effects of mesh generation techniques and grid convergence on velocity fields and particle deposition patterns in bifurcating respiratory models. In order to achieve this objective, four widely used mesh styles including structured hexahedral, unstructured tetrahedral, flow adaptive tetrahedral, and hybrid grids have been considered for two respiratory airway configurations. Initial particle conditions tested are based on the inlet velocity profile or the local inlet mass flow rate. Accuracy of the simulations has been assessed by comparisons to experimental in vitro data available in the literature for the steady-state velocity field in a single bifurcation model as well as the local particle deposition fraction in a double bifurcation model. Quantitative grid convergence was assessed based on a grid convergence index (GCI), which accounts for the degree of grid refinement. The hexahedral mesh was observed to have GCI values that were an order of magnitude below the unstructured tetrahedral mesh values for all resolutions considered. Moreover, the hexahedral mesh style provided GCI values of approximately 1% and reduced run times by a factor of 3. Based on comparisons to empirical data, it was shown that inlet particle seedings should be consistent with the local inlet mass flow rate. Furthermore, the mesh style was found to have an observable effect on cumulative particle depositions with the hexahedral solution most closely matching empirical results. Future studies are needed to assess other mesh generation options including various forms of the hybrid configuration and unstructured hexahedral meshes.

  11. EFFECTS OF ETHYLENE OXIDE RESTERILISATION AND IN-VITRO DEGRADATION ON MECHANICAL PROPERTIES OF PARTIALLY ABSORBABLE COMPOSITE HERNIA MESHES.

    PubMed

    Endogan, T; Ozyaylali, I; Kulacoglu, H; Serbetci, K; Kiyak, G; Hasirci, N

    2013-06-01

    Prosthetic mesh repair for abdominal wall hernias is widely used because of its technical simplicity and low hernia recurrence rates. The most commonly used material is pure polypropylene mesh, however newer composite materials are recommended by some centers because of their advantages. However, these meshes are more expensive than pure polypropylene meshes. Resterilisation of a pure polypropylene mesh has been shown to be quite safe, and many centers prefer slicing a large mesh into smaller pieces that suitable for hernia type or defect size. Nevertheless there is no data about the safety after resterilisation of the composite meshes. To search the effects of resterilisation and In vitro degradation in phosphate buffered saline solution on the physical structure and the mechanical properties of partially absorbable lightweigth meshes. Laboratory-based research. Two composite meshes were used in the study: One mesh is consisted of monofilament polypropylene and monofilament polyglecaprone--a copolymer of glycolide and epsilon (ε)-caprolactone--(Ultrapro®, 28 g/m2, Ethicon, Hamburg, Germany),andthe otherone consisted of multifilamentpolypropyleneandmultifilament polyglactine (Vypro II®, 30 g/m2,Ethicon, Hamburg, Germany). Two large meshes were cut into rectangular specimens sized 50x20 mm for mechanical testing and 20x20 mm for In vitro degradation experiments. Meshes were divided into control group with no resterilisation and gas resterilisation. Ethylene oxide gas sterilisation was performed at 55°C for 4.5 hours. In vitro degradation in 0.01 M phosphate buffered saline (PBS, pH 7.4) solution at 37 ± 1°C for 8 weeks was applied to one subgroup in each mesh group. Tensiometric measurements and scanning electron microscopyic evaluations were completed for control and resterilisation specimens. Regardless of resterilisation, when meshes were exposed to In vitro degradation, all mechanical parameters decreased significantly. Highest reduction in mechanical properties was observed for Ultrapro due to the degradation of absorbable polyglecaprone and polyglactin parts of these meshes. It was observed that resterilisation by ethylene oxide did not have significant difference on the degradation characteristics and almost similar physical structures were observed for resterilised and non-resterilised meshes. For Vypro II meshes, no significant mechanical difference was observedbetweenresterilised andnon-resterilised meshes after degradationwhile resterilised Ultrapro meshes exhibited stronger characteristics than non-resterilised counterparts, after degradation. Resterilisation with ethylene oxide did not affect the mechanical properties of partially absorbable composite meshes. No important surface changeswere observed in scanning electron microscopy after resterilisation.

  12. In-memory integration of existing software components for parallel adaptive unstructured mesh workflows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Cameron W.; Granzow, Brian; Diamond, Gerrett

    Unstructured mesh methods, like finite elements and finite volumes, support the effective analysis of complex physical behaviors modeled by partial differential equations over general threedimensional domains. The most reliable and efficient methods apply adaptive procedures with a-posteriori error estimators that indicate where and how the mesh is to be modified. Although adaptive meshes can have two to three orders of magnitude fewer elements than a more uniform mesh for the same level of accuracy, there are many complex simulations where the meshes required are so large that they can only be solved on massively parallel systems.

  13. In-memory integration of existing software components for parallel adaptive unstructured mesh workflows

    DOE PAGES

    Smith, Cameron W.; Granzow, Brian; Diamond, Gerrett; ...

    2017-01-01

    Unstructured mesh methods, like finite elements and finite volumes, support the effective analysis of complex physical behaviors modeled by partial differential equations over general threedimensional domains. The most reliable and efficient methods apply adaptive procedures with a-posteriori error estimators that indicate where and how the mesh is to be modified. Although adaptive meshes can have two to three orders of magnitude fewer elements than a more uniform mesh for the same level of accuracy, there are many complex simulations where the meshes required are so large that they can only be solved on massively parallel systems.

  14. Hybrid seine for full fish community collections

    USGS Publications Warehouse

    McKenna, James E.; Waldt, Emily M.; Abbett, Ross; David, Anthony; Snyder, James

    2013-01-01

    Seines are simple and effective fish collection gears, but the net mesh size influences how well the catch represents the fish communities. We designed and tested a hybrid seine with a dual-mesh bag (1/4″ and 1/8″) and compared the fish assemblage collected by each mesh. The fine-mesh net retained three times as many fish and collected more species (as many as eight), including representatives of several rare species, than did the coarser mesh. The dual-mesh bag permitted us to compare both sizes and species retained by each layer and to develop species-specific abundance correction factors, which allowed comparison of catches with the coarse-mesh seine used for earlier collections. The results indicate that a hybrid seine with coarse-mesh wings and a fine-mesh bag would enhance future studies of fish communities, especially when small-bodied fishes or early life stages are the research focus.

  15. Effect of ground control mesh on dust sampling and explosion mitigation.

    PubMed

    Alexander, D W; Chasko, L L

    2015-07-01

    Researchers from the National Institute for Occupational Safety and Health's Office of Mine Safety and Health Research conducted an assessment of the effects that ground control mesh might have on rock and float coal dust distribution in a coal mine. The increased use of mesh to control roof and rib spall introduces additional elevated surfaces on which rock or coal dust can collect. It is possible to increase the potential for dust explosion propagation if any float coal dust is not adequately inerted. In addition, the mesh may interfere with the collection of representative dust samples when using the pan-and-brush sampling method developed by the U.S. Bureau of Mines and used by the Mine Safety and Health Administration for band sampling. This study estimates the additional coal or rock dust that could accumulate on mesh and develops a means to collect representative dust samples from meshed entries.

  16. Effect of ground control mesh on dust sampling and explosion mitigation

    PubMed Central

    Alexander, D.W.; Chasko, L.L.

    2017-01-01

    Researchers from the National Institute for Occupational Safety and Health’s Office of Mine Safety and Health Research conducted an assessment of the effects that ground control mesh might have on rock and float coal dust distribution in a coal mine. The increased use of mesh to control roof and rib spall introduces additional elevated surfaces on which rock or coal dust can collect. It is possible to increase the potential for dust explosion propagation if any float coal dust is not adequately inerted. In addition, the mesh may interfere with the collection of representative dust samples when using the pan-and-brush sampling method developed by the U.S. Bureau of Mines and used by the Mine Safety and Health Administration for band sampling. This study estimates the additional coal or rock dust that could accumulate on mesh and develops a means to collect representative dust samples from meshed entries. PMID:28936000

  17. Effects of ethylene oxide resterilization and in-vitro degradation on mechanical properties of partially absorbable composite hernia meshes.

    PubMed

    Endogan, T; Ozyaylali, I; Kulacoglu, H; Serbetci, K; Kiyak, G; Hasirci, N

    2013-01-01

    Prosthetic mesh repair for abdominal wall hernias is widely used because of its technical simplicity and low hernia recurrence rates. The most commonly used material is pure polypropylene mesh, although newer composite materials are recommended by some centers due to their advantages.However, these meshes are more expensive than pure polypropylene meshes. Resterilization of a pure polypropylene mesh has been shown to be quite safe, and many centers prefer slicing a large mesh into smaller pieces, suitable for any hernia type or defect size. Nevertheless there is no data about the safety after resterilization of the composite meshes. The present study was carried out to investigate the effects of resterilization and in vitro degradation in phosphate buffered saline solution on the physical structure and the mechanical properties of partially absorbable lightweight meshes. Two composite meshes were used in the study: One mesh consists of monofilament polypropylene and monofilament polyglecaprone -a copolymer of glycolide and epsilon(ε)- caprolactone - (Ultrapro®, 28 g m2, Ethicon, Hamburg,Germany), and the other one consisted of multifilament polypropylene and multifilament polyglactine (Vypro II®, 30g m2, Ethicon, Hamburg, Germany). Two large meshes were cut into rectangular specimens sized 50 x 20 mm for mechanical testing and 20 x 20 mm for in vitro degradation experiments.Meshes were divided into control group with no resterilization and gas resterilization. Ethylene oxide gas sterilization was performed at 55°C for 4.5 hours. In vitro degradation in 0.01M phosphate buffered saline (PBS, pH 7.4) solution at 37 ± 1°C for 8 weeks was applied to one subgroup in each mesh group. Tensiometric measurements and scanning electronmicroscopic evaluations were completed for control and resterilization specimens. Regardless of resterilization, when the meshes were exposed to in vitro degradation, all mechanical parameters decreased significantly. Highest reduction in mechanical properties was observed for Ultrapro due to the degradation of absorbable polyglecaprone and polyglactin parts of these meshes. It was observed that resterilization by ethylene oxide did not determine significant difference on the degradation characteristics and almost similar physical structures were observed for resterilized and non-resterilized meshes. For VyproII meshes, no significant mechanical difference was observed between resterilized and non-resterilized meshes after degradation while resterilized Ultrapro meshes exhibited stronger characteristics than non-resterilized counterparts, after degradation. Resterilization with ethylene oxide did not affect the mechanical properties of partially absorbable compositemeshes. No important surface changes were observed inscanning electron microscopy after resterilization. Celsius.

  18. Comparison of three different methods for effective introduction of platelet-rich plasma on PLGA woven mesh.

    PubMed

    Lee, Ji-Hye; Nam, Jinwoo; Kim, Hee Joong; Yoo, Jeong Joon

    2015-03-11

    For successful tissue regeneration, effective cell delivery to defect site is very important. Various types of polymer biomaterials have been developed and applied for effective cell delivery. PLGA (poly lactic-co-glycolic acid), a synthetic polymer, is a commercially available and FDA approved material. Platelet-rich plasma (PRP) is an autologous growth factor cocktail containing various growth factors including PDGF, TGFβ-1 and BMPs, and has shown positive effects on cell behaviors. We hypothesized that PRP pretreatment on PLGA mesh using different methods would cause different patterns of platelet adhesion and stages which would modulate cell adhesion and proliferation on the PLGA mesh. In this study, we pretreated PRP on PLGA using three different methods including simple dripping (SD), dynamic oscillation (DO) and centrifugation (CE), then observed the amount of adhered platelets and their activation stage distribution. The highest amount of platelets was observed on CE mesh and calcium treated CE mesh. Moreover, calcium addition after PRP coating triggered dramatic activation of platelets which showed large and flat morphologies of platelets with rich fibrin networks. Human chondrocytes (hCs) and human bone marrow stromal cells (hBMSCs) were next cultured on PRP-pretreated PLGA meshes using different preparation methods. CE mesh showed a significant increase in the initial cell adhesion of hCs and proliferation of hBMSCs compared with SD and DO meshes. The results demonstrated that the centrifugation method can be considered as a promising coating method to introduce PRP on PLGA polymeric material which could improve cell-material interaction using a simple method.

  19. The complete digital workflow in fixed prosthodontics: a systematic review.

    PubMed

    Joda, Tim; Zarone, Fernando; Ferrari, Marco

    2017-09-19

    The continuous development in dental processing ensures new opportunities in the field of fixed prosthodontics in a complete virtual environment without any physical model situations. The aim was to compare fully digitalized workflows to conventional and/or mixed analog-digital workflows for the treatment with tooth-borne or implant-supported fixed reconstructions. A PICO strategy was executed using an electronic (MEDLINE, EMBASE, Google Scholar) plus manual search up to 2016-09-16 focusing on RCTs investigating complete digital workflows in fixed prosthodontics with regard to economics or esthetics or patient-centered outcomes with or without follow-up or survival/success rate analysis as well as complication assessment of at least 1 year under function. The search strategy was assembled from MeSH-Terms and unspecific free-text words: {(("Dental Prosthesis" [MeSH]) OR ("Crowns" [MeSH]) OR ("Dental Prosthesis, Implant-Supported" [MeSH])) OR ((crown) OR (fixed dental prosthesis) OR (fixed reconstruction) OR (dental bridge) OR (implant crown) OR (implant prosthesis) OR (implant restoration) OR (implant reconstruction))} AND {("Computer-Aided Design" [MeSH]) OR ((digital workflow) OR (digital technology) OR (computerized dentistry) OR (intraoral scan) OR (digital impression) OR (scanbody) OR (virtual design) OR (digital design) OR (cad/cam) OR (rapid prototyping) OR (monolithic) OR (full-contour))} AND {("Dental Technology" [MeSH) OR ((conventional workflow) OR (lost-wax-technique) OR (porcelain-fused-to-metal) OR (PFM) OR (implant impression) OR (hand-layering) OR (veneering) OR (framework))} AND {(("Study, Feasibility" [MeSH]) OR ("Survival" [MeSH]) OR ("Success" [MeSH]) OR ("Economics" [MeSH]) OR ("Costs, Cost Analysis" [MeSH]) OR ("Esthetics, Dental" [MeSH]) OR ("Patient Satisfaction" [MeSH])) OR ((feasibility) OR (efficiency) OR (patient-centered outcome))}. Assessment of risk of bias in selected studies was done at a 'trial level' including random sequence generation, allocation concealment, blinding, completeness of outcome data, selective reporting, and other bias using the Cochrane Collaboration tool. A judgment of risk of bias was assigned if one or more key domains had a high or unclear risk of bias. An official registration of the systematic review was not performed. The systematic search identified 67 titles, 32 abstracts thereof were screened, and subsequently, three full-texts included for data extraction. Analysed RCTs were heterogeneous without follow-up. One study demonstrated that fully digitally produced dental crowns revealed the feasibility of the process itself; however, the marginal precision was lower for lithium disilicate (LS2) restorations (113.8 μm) compared to conventional metal-ceramic (92.4 μm) and zirconium dioxide (ZrO2) crowns (68.5 μm) (p < 0.05). Another study showed that leucite-reinforced glass ceramic crowns were esthetically favoured by the patients (8/2 crowns) and clinicians (7/3 crowns) (p < 0.05). The third study investigated implant crowns. The complete digital workflow was more than twofold faster (75.3 min) in comparison to the mixed analog-digital workflow (156.6 min) (p < 0.05). No RCTs could be found investigating multi-unit fixed dental prostheses (FDP). The number of RCTs testing complete digital workflows in fixed prosthodontics is low. Scientifically proven recommendations for clinical routine cannot be given at this time. Research with high-quality trials seems to be slower than the industrial progress of available digital applications. Future research with well-designed RCTs including follow-up observation is compellingly necessary in the field of complete digital processing.

  20. A new multiscale air quality transport model (Fluidity, 4.1.9) using fully unstructured anisotropic adaptive mesh technology

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Zhu, J.; Wang, Z.; Fang, F.; Pain, C. C.; Xiang, J.

    2015-06-01

    A new anisotropic hr-adaptive mesh technique has been applied to modelling of multiscale transport phenomena, which is based on a discontinuous Galerkin/control volume discretization on unstructured meshes. Over existing air quality models typically based on static-structured grids using a locally nesting technique, the advantage of the anisotropic hr-adaptive model has the ability to adapt the mesh according to the evolving pollutant distribution and flow features. That is, the mesh resolution can be adjusted dynamically to simulate the pollutant transport process accurately and effectively. To illustrate the capability of the anisotropic adaptive unstructured mesh model, three benchmark numerical experiments have been setup for two-dimensional (2-D) transport phenomena. Comparisons have been made between the results obtained using uniform resolution meshes and anisotropic adaptive resolution meshes.

  1. Open and Laparo-Endoscopic Repair of Incarcerated Abdominal Wall Hernias by the Use of Biological and Biosynthetic Meshes.

    PubMed

    Fortelny, René H; Hofmann, Anna; May, Christopher; Köckerling, Ferdinand

    2016-01-01

    Although recently published guidelines recommend against the use of synthetic non-absorbable materials in cases of potentially contaminated or contaminated surgical fields due to the increased risk of infection (1, 2), the use of bio-prosthetic meshes for abdominal wall or ventral hernia repair is still controversially discussed in such cases. Bio-prosthetic meshes have been recommended due to less susceptibility for infection and the decreased risk of subsequent mesh explantation. The purpose of this review is to elucidate if there are any indications for the use of biological and biosynthetic meshes in incarcerated abdominal wall hernias based on the recently published literature. A literature search of the Medline database using the PubMed search engine, using the keywords returned 486 articles up to June 2015. The full text of 486 articles was assessed and 13 relevant papers were identified including 5 retrospective case cohort studies, 2 case-controlled studies, and 6 case series. The results of Franklin et al. (3-5) included the highest number of biological mesh repairs (Surgisis(®)) by laparoscopic IPOM in infected fields, which demonstrated a very low incidence of infection and recurrence (0.7 and 5.2%). Han et al. (6) reported in his retrospective study, the highest number of treated patients due to incarcerated hernias by open approach using acellular dermal matrix (ADM(®)) with very low rate of infection as well as recurrences (1.6 and 15.9%). Both studies achieved acceptable outcome in a follow-up of at least 3.5 years compared to the use of synthetic mesh in this high-risk population (7). Currently, there is a very limited evidence for the use of biological and biosynthetic meshes in strangulated hernias in either open or laparo-endoscopic repair. Finally, there is an urgent need to start with randomized controlled comparative trials as well as to support registries with data to achieve more knowledge for tailored indication for the use of biological meshes.

  2. Combined in vivo and ex vivo analysis of mesh mechanics in a porcine hernia model.

    PubMed

    Kahan, Lindsey G; Lake, Spencer P; McAllister, Jared M; Tan, Wen Hui; Yu, Jennifer; Thompson, Dominic; Brunt, L Michael; Blatnik, Jeffrey A

    2018-02-01

    Hernia meshes exhibit variability in mechanical properties, and their mechanical match to tissue has not been comprehensively studied. We used an innovative imaging model of in vivo strain tracking and ex vivo mechanical analysis to assess effects of mesh properties on repaired abdominal walls in a porcine model. We hypothesized that meshes with dissimilar mechanical properties compared to native tissue would alter abdominal wall mechanics more than better-matched meshes. Seven mini-pigs underwent ventral hernia creation and subsequent open repair with one of two heavyweight polypropylene meshes. Following mesh implantation with attached radio-opaque beads, fluoroscopic images were taken at insufflation pressures from 5 to 30 mmHg on postoperative days 0, 7, and 28. At 28 days, animals were euthanized and ex vivo mechanical testing performed on full-thickness samples across repaired abdominal walls. Testing was conducted on 13 mini-pig controls, and on meshes separately. Stiffness and anisotropy (the ratio of stiffness in the transverse versus craniocaudal directions) were assessed. 3D reconstructions of repaired abdominal walls showed stretch patterns. As pressure increased, both meshes expanded, with no differences between groups. Over time, meshes contracted 17.65% (Mesh A) and 0.12% (Mesh B; p = 0.06). Mesh mechanics showed that Mesh A deviated from anisotropic native tissue more than Mesh B. Compared to native tissue, Mesh A was stiffer both transversely and craniocaudally. Explanted repaired abdominal walls of both treatment groups were stiffer than native tissue. Repaired tissue became less anisotropic over time, as mesh properties prevailed over native abdominal wall properties. This technique assessed 3D stretch at the mesh level in vivo in a porcine model. While the abdominal wall expanded, mesh-ingrown areas contracted, potentially indicating stresses at mesh edges. Ex vivo mechanics demonstrate that repaired tissue adopts mesh properties, suggesting that a better-matched mesh could reduce changes to abdominal wall mechanics.

  3. Fluid intake from beverages across age groups: a systematic review.

    PubMed

    Özen, A E; Bibiloni, M Del Mar; Pons, A; Tur, J A

    2015-10-01

    Fluid intake, especially water, is essential for human life and also necessary for physical and mental function. The present study aimed to assess beverage consumption across age groups. A systematic review was conducted. Original research in English language publications and available studies (or abstracts in English) from 2000 to 2013 was searched for by using the medical subheading (MeSH) terms: ('beverage' OR 'fluid' [Major]) AND ('consumption' [Mesh] OR 'drinking' [Mesh] OR 'intake' [Mesh]) AND ('child' [Mesh] OR 'adolescent' [Mesh] OR 'adult' [Mesh]). Article selection was restricted to those papers covering healthy populations of all age groups in a nationwide sample, or from a representative sample of the population of a city or cities, which examined the trends or patterns of beverage intake and the determinants of beverage intake. Sixty-five studies were identified with respect to beverage consumption across age groups. The papers were screened by thoroughly reading titles or abstracts. Full-text articles were assessed by three investigators. Total beverage intake varied between 0.6 and 3.5 L day(-1) among all age groups (males more than females). Plain water contributed up to 58%, 75% and 80% of the total beverage intake in children, adolescents and adults, respectively. Milk consumption was higher among children; consumption of soft drinks was higher among adolescents; and the consumption of tea, coffee and alcoholic beverages was higher among adults. Plain water is the main water source for all age groups and the consumption of other beverages varies according to age. © 2014 The British Dietetic Association Ltd.

  4. Cart3D Simulations for the Second AIAA Sonic Boom Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Anderson, George R.; Aftosmis, Michael J.; Nemec, Marian

    2017-01-01

    Simulation results are presented for all test cases prescribed in the Second AIAA Sonic Boom Prediction Workshop. For each of the four nearfield test cases, we compute pressure signatures at specified distances and off-track angles, using an inviscid, embedded-boundary Cartesian-mesh flow solver with output-based mesh adaptation. The cases range in complexity from an axisymmetric body to a full low-boom aircraft configuration with a powered nacelle. For efficiency, boom carpets are decomposed into sets of independent meshes and computed in parallel. This also facilitates the use of more effective meshing strategies - each off-track angle is computed on a mesh with good azimuthal alignment, higher aspect ratio cells, and more tailored adaptation. The nearfield signatures generally exhibit good convergence with mesh refinement. We introduce a local error estimation procedure to highlight regions of the signatures most sensitive to mesh refinement. Results are also presented for the two propagation test cases, which investigate the effects of atmospheric profiles on ground noise. Propagation is handled with an augmented Burgers' equation method (NASA's sBOOM), and ground noise metrics are computed with LCASB.

  5. Modeling Radiation Effects on a Triple Junction Solar Cell using Silvaco ATLAS

    DTIC Science & Technology

    2012-06-01

    circuit voltage can then be calculated from ln 1 Loc t S IV V I        (4.3) where IS is the reverse saturation current, and Vt is the...orbiting electronic equipment. The first orbit of interest is the low Earth orbit ( LEO ). LEO encompasses any orbit within 650 kilometers of the...Light Beams #Solving #Meshing mesh width=200000 #X-Mesh: Surface=500 um2 = 1/200000 cm2 x.mesh loc =-250 spac=50 x.mesh loc =0 spac=10

  6. Assessment of Hybrid High-Order methods on curved meshes and comparison with discontinuous Galerkin methods

    NASA Astrophysics Data System (ADS)

    Botti, Lorenzo; Di Pietro, Daniele A.

    2018-10-01

    We propose and validate a novel extension of Hybrid High-Order (HHO) methods to meshes featuring curved elements. HHO methods are based on discrete unknowns that are broken polynomials on the mesh and its skeleton. We propose here the use of physical frame polynomials over mesh elements and reference frame polynomials over mesh faces. With this choice, the degree of face unknowns must be suitably selected in order to recover on curved meshes the same convergence rates as on straight meshes. We provide an estimate of the optimal face polynomial degree depending on the element polynomial degree and on the so-called effective mapping order. The estimate is numerically validated through specifically crafted numerical tests. All test cases are conducted considering two- and three-dimensional pure diffusion problems, and include comparisons with discontinuous Galerkin discretizations. The extension to agglomerated meshes with curved boundaries is also considered.

  7. Tissue response to collagen containing polypropylene meshes in an ovine vaginal repair model.

    PubMed

    Darzi, Saeedeh; Urbankova, Iva; Su, Kai; White, Jacinta; Lo, Camden; Alexander, David; Werkmeister, Jerome A; Gargett, Caroline E; Deprest, Jan

    2016-07-15

    Pelvic Organ Prolapse (POP) is the herniation of pelvic organs into the vagina. Despite broad acceptance of mesh use in POP surgical repair, the complication rate is unacceptable. We hypothesized that collagen-containing polypropylene (PP) mesh types could modulate mesh-tissue integration and reduce long-term inflammation, thereby reducing mesh-associated complications. This study compared the long-term tissue response to an unmodified PP mesh and two collagen containing meshes in an ovine model which has similar pelvic anatomy and vaginal size to human. Three commercially available macroporous PP meshes, uncoated PP mesh (Avaulta Solo) (PP), the same textile PP mesh layered with a sheet of cross-linked porcine acellular matrix (Avaulta Plus) (PP-ACM) and a different yet also macroporous PP (Sofradim) mesh coated with solubilized atelocollagen (Ugytex) (PP-sCOL) were implanted in the ovine vagina and tissue explanted after 60 and 180days. The macrophage phenotype and response to implanted meshes, and vascularity were quantified by immunostaining and morphometry. We quantified changes in extracellular matrix composition biochemically and collagen organisation and percentage area around the interface of the mesh implants by Sirius Red birefringence and morphometry. PP-ACM induced a more sustained inflammatory response, indicated by similar CD45(+) leukocytes but reduced CD163(+) M2 macrophages at 60days (P<0.05). PP-sCOL increased Von Willebrand Factor (vWF)-immunoreactive vessel profiles after 60days. At the micro-molecular level, collagen birefringence quantification revealed significantly fewer mature collagen fibrils (red, thick fibrils) at the mesh-tissue interface than control tissue for all mesh types (P<0.001) but still significantly greater than the proportion of immature (green thin fibrils) at 60days (P<0.05). The proportion of mature collagen fibrils increased with time around the mesh filaments, particularly those containing collagen. The total collagen percent area at the mesh interface was greatest around the PP-ACM mesh at 60days (P<0.05). By 180days the total mature and immature collagen fibres at the interface of the mesh filaments resembled that of native tissue. In particular, these results suggest that both meshes containing collagen evoke different types of tissue responses at different times during the healing response yet both ultimately lead to physiological tissue formation approaching that of normal tissue. Pelvic organ prolapse (POP) is the descent of the pelvic organs to the vagina. POP affects more than 25% of all women and the lifetime risk of undergoing POP surgery is 19%. Although synthetic polypropylene (PP) meshes have improved the outcome of the surgical treatment for POP, there was an unacceptable rate of adverse events including mesh exposure and contracture. It is hypothesized that coating the PP meshes with collagen would provide a protective effect by preventing severe mesh adhesions to the wound, resulting in a better controlled initial inflammatory response, and diminished risk of exposure. In this study we assessed the effect of two collagen-containing PP meshes on the long-term vaginal tissue response using new techniques to quantify these tissue responses. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Monte Carlo simulation and film dosimetry for electron therapy in vicinity of a titanium mesh

    PubMed Central

    Rostampour, Masoumeh; Roayaei, Mahnaz

    2014-01-01

    Titanium (Ti) mesh plates are used as a bone replacement in brain tumor surgeries. In the case of radiotherapy, these plates might interfere with the beam path. The purpose of this study is to evaluate the effect of titanium mesh on the dose distribution of electron fields. Simulations were performed using Monte Carlo BEAMnrc and DOSXYZnrc codes for 6 and 10 MeV electron beams. In Monte Carlo simulation, the shape of the titanium mesh was simulated. The simulated titanium mesh was considered as the one which is used in head and neck surgery with a thickness of 0.055 cm. First, by simulation, the percentage depth dose was obtained while the titanium mesh was present, and these values were then compared with the depth dose of homogeneous phantom with no titanium mesh. In the experimental measurements, the values of depth dose with titanium mesh and without titanium mesh in various depths were measured. The experiments were performed using a RW3 phantom with GAFCHROMIC EBT2 film. The results of experimental measurements were compared with values of depth dose obtained by simulation. In Monte Carlo simulation, as well as experimental measurements, for the voxels immediately beyond the titanium mesh, the change of the dose were evaluated. For this purpose the ratio of the dose for the case with titanium to the case without titanium was calculated as a function of titanium depth. For the voxels before the titanium mesh there was always an increase of the dose up to 13% with respect to the same voxel with no titanium mesh. This is because of the increased back scattering effect of the titanium mesh. The results also showed that for the voxel right beyond the titanium mesh, there is an increased or decreased dose to soft tissues, depending on the depth of the titanium mesh. For the regions before the depth of maximum dose, there is an increase of the dose up to 10% compared to the dose of the same depth in homogeneous phantom. Beyond the depth of maximum dose, there was a 16% decrease in dose. For both 6 and 10 MeV, before the titanium mesh, there was always an increase in dose. If titanium mesh is placed in buildup region, it causes an increase of the dose and could lead to overdose of the adjacent tissue, whereas if titanium mesh is placed beyond the buildup region, it would lead to a decrease in dose compared to the homogenous tissue. PACS number: 87.53.Bn PMID:25207397

  9. Effects of Mesh Irregularities on Accuracy of Finite-Volume Discretization Schemes

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2012-01-01

    The effects of mesh irregularities on accuracy of unstructured node-centered finite-volume discretizations are considered. The focus is on an edge-based approach that uses unweighted least-squares gradient reconstruction with a quadratic fit. For inviscid fluxes, the discretization is nominally third order accurate on general triangular meshes. For viscous fluxes, the scheme is an average-least-squares formulation that is nominally second order accurate and contrasted with a common Green-Gauss discretization scheme. Gradient errors, truncation errors, and discretization errors are separately studied according to a previously introduced comprehensive methodology. The methodology considers three classes of grids: isotropic grids in a rectangular geometry, anisotropic grids typical of adapted grids, and anisotropic grids over a curved surface typical of advancing layer grids. The meshes within the classes range from regular to extremely irregular including meshes with random perturbation of nodes. Recommendations are made concerning the discretization schemes that are expected to be least sensitive to mesh irregularities in applications to turbulent flows in complex geometries.

  10. Does the use of hernia mesh in surgical inguinal hernia repairs cause male infertility? A systematic review and descriptive analysis.

    PubMed

    Dong, Zhiyong; Kujawa, Stacy Ann; Wang, Cunchuan; Zhao, Hong

    2018-04-23

    The aim of this study was to systematically review the available clinical trials examining male infertility after inguinal hernias were repaired using mesh procedures. The Cochrane Library, PubMed, Embase, Web of Science, and Chinese Biomedical Medicine Database were investigated. The Jada score was used to evaluate the quality of the studies, "Oxford Centre for Evidence-based Medicine-Levels of Evidence" was used to assess the level of the trials, and descriptive analysis was used to evaluate the studies. Twenty nine related trials with a total of 36,552 patients were investigated, including seven randomized controlled trials (RCTs) with 616 patients and 10 clinical trials (1230 patients) with mesh or non-mesh repairs. The Jada score showed that there were six high quality RCTs and one low quality RCT. Levels of evidence determined from the Oxford Centre for Evidence-based Medicine further demonstrated that those six high quality RCTs also had high levels of evidence. It was found that serum testosterone, LH, and FSH levels declined in the laparoscopic group compared to the open group; however, the testicular volume only slightly increased without statistical significance. Testicular and sexual functions remained unchanged after both laparoscopic transabdominal preperitoneal hernia repair (TAPP) and totally extra-peritoneal repair (TEP). We also compared the different meshes used post-surgeries. VyproII/Timesh lightweight mesh had a diminished effect on sperm motility compared to Marlex heavyweight mesh after a one-year follow-up, but there was no effect after 3 years. Additionally, various open hernia repair procedures (Lichtenstein, mesh plug method, posterior pre-peritoneal mesh repair, and anterior tension-free repair) did not cause infertility. This systematic review suggests that hernia repair with mesh either in an open or a laparoscopic procedure has no significant effect on male fertility.

  11. Comparison of the fracture resistances of glass fiber mesh- and metal mesh-reinforced maxillary complete denture under dynamic fatigue loading.

    PubMed

    Im, So-Min; Huh, Yoon-Hyuk; Cho, Lee-Ra; Park, Chan-Jin

    2017-02-01

    The aim of this study was to investigate the effect of reinforcing materials on the fracture resistances of glass fiber mesh- and Cr-Co metal mesh-reinforced maxillary complete dentures under fatigue loading. Glass fiber mesh- and Cr-Co mesh-reinforced maxillary complete dentures were fabricated using silicone molds and acrylic resin. A control group was prepared with no reinforcement (n = 15 per group). After fatigue loading was applied using a chewing simulator, fracture resistance was measured by a universal testing machine. The fracture patterns were analyzed and the fractured surfaces were observed by scanning electron microscopy. After cyclic loading, none of the dentures showed cracks or fractures. During fracture resistance testing, all unreinforced dentures experienced complete fracture. The mesh-reinforced dentures primarily showed posterior framework fracture. Deformation of the all-metal framework caused the metal mesh-reinforced denture to exhibit the highest fracture resistance, followed by the glass fiber mesh-reinforced denture ( P <.05) and the control group ( P <.05). The glass fiber mesh-reinforced denture primarily maintained its original shape with unbroken fibers. River line pattern of the control group, dimples and interdendritic fractures of the metal mesh group, and radial fracture lines of the glass fiber group were observed on the fractured surfaces. The glass fiber mesh-reinforced denture exhibits a fracture resistance higher than that of the unreinforced denture, but lower than that of the metal mesh-reinforced denture because of the deformation of the metal mesh. The glass fiber mesh-reinforced denture maintains its shape even after fracture, indicating the possibility of easier repair.

  12. Polymer microfiber meshes facilitate cardiac differentiation of c-kit{sup +} human cardiac stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kan, Lijuan; Thayer, Patrick; Fan, Huimin

    Electrospun microfiber meshes have been shown to support the proliferation and differentiation of many types of stem cells, but the phenotypic fate of c-kit{sup +} human cardiac stem cells (hCSCs) have not been explored. To this end, we utilized thin (~5 µm) elastomeric meshes consisting of aligned 1.7 µm diameter poly (ester-urethane urea) microfibers as substrates to examine their effect on hCSC viability, morphology, proliferation, and differentiation relative to cells cultured on tissue culture polystyrene (TCPS). The results showed that cells on microfiber meshes displayed an elongated morphology aligned in the direction of fiber orientation, lower proliferation rates, but increasedmore » expressions of genes and proteins majorly associated with cardiomyocyte phenotype. The early (NK2 homeobox 5, Nkx2.5) and late (cardiac troponin I, cTnI) cardiomyocyte genes were significantly increased on meshes (Nkx=2.5 56.2±13.0, cTnl=2.9±0.56,) over TCPS (Nkx2.5=4.2±0.9, cTnl=1.6±0.5, n=9, p<0.05 for both groups) after differentiation. In contrast, expressions of smooth muscle markers, Gata6 and myosin heavy chain (SM-MHC), were decreased on meshes. Immunocytochemical analysis with cardiac antibody exhibited the similar pattern of above cardiac differentiation. We conclude that aligned microfiber meshes are suitable for guiding cardiac differentiation of hCSCs and may facilitate stem cell-based therapies for treatment of cardiac diseases. - Highlights: • First study to characterize c-kit{sup +} human cardiac stem cells on microfiber meshes. • Microfiber meshes seem reducing cell proliferation, but no effect on cell viability. • Microfiber meshes facilitate the elongation of human cardiac stem cells in culture. • Cardiac but not smooth muscle differentiation were enhanced on microfiber meshes. • Microfiber meshes may be used as cardiac patches in cell-based cardiac therapy.« less

  13. Using an Adjoint Approach to Eliminate Mesh Sensitivities in Computational Design

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.; Park, Michael A.

    2006-01-01

    An algorithm for efficiently incorporating the effects of mesh sensitivities in a computational design framework is introduced. The method is based on an adjoint approach and eliminates the need for explicit linearizations of the mesh movement scheme with respect to the geometric parameterization variables, an expense that has hindered practical large-scale design optimization using discrete adjoint methods. The effects of the mesh sensitivities can be accounted for through the solution of an adjoint problem equivalent in cost to a single mesh movement computation, followed by an explicit matrix-vector product scaling with the number of design variables and the resolution of the parameterized surface grid. The accuracy of the implementation is established and dramatic computational savings obtained using the new approach are demonstrated using several test cases. Sample design optimizations are also shown.

  14. Using an Adjoint Approach to Eliminate Mesh Sensitivities in Computational Design

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.; Park, Michael A.

    2005-01-01

    An algorithm for efficiently incorporating the effects of mesh sensitivities in a computational design framework is introduced. The method is based on an adjoint approach and eliminates the need for explicit linearizations of the mesh movement scheme with respect to the geometric parameterization variables, an expense that has hindered practical large-scale design optimization using discrete adjoint methods. The effects of the mesh sensitivities can be accounted for through the solution of an adjoint problem equivalent in cost to a single mesh movement computation, followed by an explicit matrix-vector product scaling with the number of design variables and the resolution of the parameterized surface grid. The accuracy of the implementation is established and dramatic computational savings obtained using the new approach are demonstrated using several test cases. Sample design optimizations are also shown.

  15. AXAF VETA-I mirror encircled energy measurements and data reduction

    NASA Technical Reports Server (NTRS)

    Zhao, Ping; Freeman, Mark D.; Hughes, John P.; Kellogg, Edwin M.; Nguyen, Dan T.; Joy, Marshall; Kolodziejczak, Jeffery J.

    1992-01-01

    The AXAF VETA-I mirror encircled energy was measured with a series of apertures and two flow gas proportional counters at five X-ray energies ranging from 0.28 to 2.3 keV. The proportional counter has a thin plastic window with an opaque wire mesh supporting grid. Depending on the counter position, this mesh can cause the X-ray transmission to vary as much as +/-9 percent, which directly translates into an error in the encircled energy. In order to correct this wire mesh effect, window scan measurements were made, in which the counter was scanned in both horizontal (Y) and vertical (Z) directions with the aperture fixed. Post VETA measurement of the VXDS setup were made to determine the exact geometry and position of the mesh grid. Computer models of the window mesh were developed to simulate the X-ray transmission based on this measurement. The window scan data were fitted to such mesh models and corrections were made. After this study, the mesh effect was well understood and the final results of the encircled energy were obtained with an uncertainty of less than 0.8 percent.

  16. Visibility and oxidation stability of hybrid-type copper mesh electrodes with combined nickel-carbon nanotube coating

    NASA Astrophysics Data System (ADS)

    Kim, Bu-Jong; Hwang, Young-Jin; Park, Jin-Seok

    2017-04-01

    Hybrid-type transparent conductive electrodes (TCEs) were fabricated by coating copper (Cu) meshes with carbon nanotube (CNT) via electrophoretic deposition, and with nickel (Ni) via electroplating. For the fabricated electrodes, the effects of the coating with CNT and Ni on their transmittance and reflectance in the visible-light range, electrical sheet resistance, and chromatic parameters (e.g., redness and yellowness) were characterized. Also, an oxidation stability test was performed by exposing the electrodes to air for 20 d at 85 °C and 85% temperature and humidity conditions, respectively. It was discovered that the CNT coating considerably reduced the reflectance of the Cu meshes, and that the Ni coating effectively protected the Cu meshes against oxidation. Furthermore, after the coating with CNT, both the redness and yellowness of the Cu mesh regardless of the Ni coating approached almost zero, indicating a natural color. The experiment results confirmed that the hybrid-type Cu meshes with combined Ni-CNT coating improved characteristics in terms of reflectance, sheet resistance, oxidation stability, and color, superior to those of the primitive Cu mesh, and also simultaneously satisfied most of the requirements for TCEs.

  17. Effects of glass fiber mesh with different fiber content and structures on the compressive properties of complete dentures.

    PubMed

    Yu, Sang-Hui; Cho, Hye-Won; Oh, Seunghan; Bae, Ji-Myung

    2015-06-01

    No study has yet evaluated the strength of complete dentures reinforced with glass fiber meshes with different content and structures. The purpose of this study was to compare the reinforcing effects of glass fiber mesh with different content and structures with that of metal mesh in complete dentures. Two types of glass fiber mesh were used: SES mesh (SES) and glass cloth (GC2, GC3, and GC4). A metal mesh was used for comparison. The complete dentures were made by placing the reinforcement 1 mm away from the tissue surface. A control group was prepared without any reinforcement (n=10). The compressive properties were measured by a universal testing machine at a crosshead speed of 5 mm/min. The results were analyzed with the Kruskal-Wallis test and the Duncan multiple range test (α=.05). The fracture resistance of the SES group was significantly higher than that of the control, GC4, and metal groups (asymptotic P=.004), but not significantly different from the GC2 and GC3 groups. The toughness of the SES and GC3 groups was significantly higher than that of the others (asymptotic P<.001), but not significantly different from that of the GC4 group. SES and GC3, which have different structures but similar volume content, were the most effective in reinforcing complete dentures. The content of the glass fiber mesh seemed more important than the structures. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  18. Mesh infrastructure for coupled multiprocess geophysical simulations

    DOE PAGES

    Garimella, Rao V.; Perkins, William A.; Buksas, Mike W.; ...

    2014-01-01

    We have developed a sophisticated mesh infrastructure capability to support large scale multiphysics simulations such as subsurface flow and reactive contaminant transport at storage sites as well as the analysis of the effects of a warming climate on the terrestrial arctic. These simulations involve a wide range of coupled processes including overland flow, subsurface flow, freezing and thawing of ice rich soil, accumulation, redistribution and melting of snow, biogeochemical processes involving plant matter and finally, microtopography evolution due to melting and degradation of ice wedges below the surface. In addition to supporting the usual topological and geometric queries about themore » mesh, the mesh infrastructure adds capabilities such as identifying columnar structures in the mesh, enabling deforming of the mesh subject to constraints and enabling the simultaneous use of meshes of different dimensionality for subsurface and surface processes. The generic mesh interface is capable of using three different open source mesh frameworks (MSTK, MOAB and STKmesh) under the hood allowing the developers to directly compare them and choose one that is best suited for the application's needs. We demonstrate the results of some simulations using these capabilities as well as present a comparison of the performance of the different mesh frameworks.« less

  19. Vaginal Approaches Using Synthetic Mesh to Treat Pelvic Organ Prolapse.

    PubMed

    Moon, Jei Won; Chae, Hee Dong

    2016-02-01

    Pelvic organ prolapse (POP) is a very common condition in elderly women. In women with POP, a sacrocolpopexy or a vaginal hysterectomy with anterior and posterior colporrhaphy has long been considered as the gold standard of treatment. However, in recent decades, the tendency to use a vaginal approach with mesh for POP surgery has been increasing. A vaginal approach using mesh has many advantages, such as its being less invasive than an abdominal approach and easier to do than a laparoscopic approach and its having a lower recurrence rate than a traditional approach. However, the advantages of a vaginal approach with mesh for POP surgery must be weighed against the disadvantages. Specific complications that have been reported when using mesh in POP procedures are mesh erosion, dyspareunia, hematomas, urinary incontinence and so on, and evidence supporting the use of transvaginal surgery with mesh is still lacking. Hence, surgeons should understand the details of the surgical pelvic anatomy, the various surgical techniques for POP surgery, including using mesh, and the possible side effects of using mesh.

  20. Self-gripping mesh versus fibrin glue fixation in laparoscopic inguinal hernia repair: a randomized prospective clinical trial in young and elderly patients

    PubMed Central

    Bindi, Marco; Rivelli, Matteo; Solej, Mario; Enrico, Stefano; Martino, Valter

    2016-01-01

    Abstract Laparoscopic transabdominal preperitoneal inguinal hernia repair is a safe and effective technique. In this study we tested the hypothesis that self-gripping mesh used with the laparoscopic approach is comparable to polypropylene mesh in terms of perioperative complications, against a lower overall cost of the procedure. We carried out a prospective randomized trial comparing a group of 30 patients who underwent laparoscopic inguinal hernia repair with self-gripping mesh versus a group of 30 patients who received polypropylene mesh with fibrin glue fixation. There were no statistically significant differences between the two groups with regard to intraoperative variables, early or late intraoperative complications, chronic pain or recurrence. Self-gripping mesh in transabdominal hernia repair was found to be a valid alternative to polypropylene mesh in terms of complications, recurrence and postoperative pain. The cost analysis and comparability of outcomes support the preferential use of self-gripping mesh. PMID:28352842

  1. [Analysis of mesh related complications after trans-vaginal mesh-augmented pelvic floor reconstruction surgery].

    PubMed

    Zhang, Kun; Han, Jin-song; Zhu, Fu-li; Yao, Ying

    2012-09-01

    To evaluate the complications after trans-vaginal mesh-augmented pelvic floor reconstruction in treatment of pelvic organ prolapse (POP). From February 2007 to October 2009, vaginal mesh procedures were performed on 91 women with POP stage III-IV in Peking University Third Hospital. The operative complications were studied. Ninety patients underwent successful surgery among 91 patients. Follow-up rate was 94% (85/90) at a median follow-up of 28.4 (15 - 44) months. One patient underwent intraoperative organ injuries, and 10 patients had postoperation mesh-related complications. The rate of mesh-related complications was 2% (2/85), 2% (2/85), 4% (3/85), 4% (3/85) on 6, 6 - 12, 12 - 24 and more than 24 months following up, respectively. Seven patients underwent conservative treatment and the symptoms were improved. Three patients underwent the second surgery, and the symptoms were cured or relieved. The incidence of mesh-related complications was low, and interventions were effective in vaginal mesh procedure.

  2. Effectiveness of the steel mesh track in repairing asphalt pavements in Małopolska region

    NASA Astrophysics Data System (ADS)

    Zieliński, P.

    2018-05-01

    The aim of this publication is to present and evaluate the effectiveness of the steel mesh track during reconstruction of the pavement on national roads in Małopolska. The paper presents the condition of the pavement before reconstruction, applied design solutions and the current state after 6-10 years of operation. To assess the effectiveness of pavement reinforcement, the results of central deflection tests using the FWD apparatus before and a few years after the reconstruction were compared, it was found that the reinforcement effect was achieved, what has been demonstrated by means of significance analysis of differences in Statgraphics program. Additionally the analyses were extended with parameters characterizing the FWD deflection basin. For selected parameters the values of tensile strains at the bottom of asphalt layers were determined on the basis of correlations given in literature and then the fatigue life was calculated using the criteria of the USA Asphalt Institute and compared with the results of design calculations. The pavement fatigue life estimated on the basis of FWD measurements is generally greater than the one calculated for the design solutions. The assessment of the influence of the steel mesh track on the bearing capacity of the pavement was carried out indirectly, by comparing the central deflections of the structures measured after the reconstruction, with theoretical deflections calculated using the pavement model in the BISAR program, without taking into account the presence of the steel mesh. In some cases the deflections measured are significantly smaller than the deflections calculated for the model without mesh, which can be explained by the reinforced effect of the steel mesh track, especially for sections with the lowest bearing capacity before reconstruction, and where the steel mesh track is placed in the tension zone of the asphalt layers.

  3. Textile properties of synthetic prolapse mesh in response to uniaxial loading.

    PubMed

    Barone, William R; Moalli, Pamela A; Abramowitch, Steven D

    2016-09-01

    Although synthetic mesh is associated with superior anatomic outcomes for the repair of pelvic organ prolapse, the benefits of mesh have been questioned because of the relatively high complication rates. To date, the mechanisms that result in such complications are poorly understood, yet the textile characteristics of mesh products are believed to play an important role. Interestingly, the pore diameter of synthetic mesh has been shown to impact the host response after hernia repair greatly, and such findings have served as design criteria for prolapse meshes, with larger pores viewed as more favorable. Although pore size and porosity are well-characterized before implantation, the changes in these textile properties after implantation are unclear; the application of mechanical forces has the potential to greatly alter pore geometries in vivo. Understanding the impact of mechanical loading on the textile properties of mesh is essential for the development of more effective devices for prolapse repair. The objective of this study was to determine the effect of tensile loading and pore orientation on mesh porosity and pore dimensions. In this study, the porosity and pore diameter of 4 currently available prolapse meshes were examined in response to uniaxial tensile loads of 0.1, 5, and 10 N while mimicking clinical loading conditions. The textile properties were compared with those observed for the unloaded mesh. Meshes included Gynemesh PS (Ethicon, Somerville, NJ), UltraPro (Artisyn; Ethicon), Restorelle (Coloplast, Minneapolis, MN), and Alyte Y-mesh (Bard, Covington, GA). In addition to the various pore geometries, 3 orientations of Restorelle (0-, 5-, 45-degree offset) and 2 orientations of UltraPro (0-, 90-degree offset) were examined. In response to uniaxial loading, both porosity and pore diameter dramatically decreased for most mesh products. The application of 5 N led to reductions in porosity for nearly all groups, with values decreasing by as much as 87% (P < .05). On loading to 10 N of force, nearly all mesh products that were tested were found to have porosities that approached 0% and 0 pores with diameters >1 mm. In this study, it was shown that the pore size of current prolapse meshes dramatically decreases in response to mechanical loading. These findings suggest that prolapse meshes, which are more likely to experience tensile forces in vivo relative to hernia repair meshes, have pores that are unfavorable for tissue integration after surgical tensioning and/or loading in urogynecologic surgeries. Such decreases in pore geometry support the hypothesis that regional increases in the concentration of mesh leads to an enhanced local foreign body response. Although pore deformation in transvaginal meshes requires further characterization, the findings presented here provide a mechanical understanding that can be used to recognize potential areas of concern for complex mesh geometries. Understanding mesh mechanics in response to surgical and in vivo loading conditions may provide improved design criteria for mesh and a refinement of surgical techniques, ultimately leading to better patient outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Comparison of the fracture resistances of glass fiber mesh- and metal mesh-reinforced maxillary complete denture under dynamic fatigue loading

    PubMed Central

    2017-01-01

    PURPOSE The aim of this study was to investigate the effect of reinforcing materials on the fracture resistances of glass fiber mesh- and Cr–Co metal mesh-reinforced maxillary complete dentures under fatigue loading. MATERIALS AND METHODS Glass fiber mesh- and Cr–Co mesh-reinforced maxillary complete dentures were fabricated using silicone molds and acrylic resin. A control group was prepared with no reinforcement (n = 15 per group). After fatigue loading was applied using a chewing simulator, fracture resistance was measured by a universal testing machine. The fracture patterns were analyzed and the fractured surfaces were observed by scanning electron microscopy. RESULTS After cyclic loading, none of the dentures showed cracks or fractures. During fracture resistance testing, all unreinforced dentures experienced complete fracture. The mesh-reinforced dentures primarily showed posterior framework fracture. Deformation of the all-metal framework caused the metal mesh-reinforced denture to exhibit the highest fracture resistance, followed by the glass fiber mesh-reinforced denture (P<.05) and the control group (P<.05). The glass fiber mesh-reinforced denture primarily maintained its original shape with unbroken fibers. River line pattern of the control group, dimples and interdendritic fractures of the metal mesh group, and radial fracture lines of the glass fiber group were observed on the fractured surfaces. CONCLUSION The glass fiber mesh-reinforced denture exhibits a fracture resistance higher than that of the unreinforced denture, but lower than that of the metal mesh-reinforced denture because of the deformation of the metal mesh. The glass fiber mesh-reinforced denture maintains its shape even after fracture, indicating the possibility of easier repair. PMID:28243388

  5. Surface orientation effects on bending properties of surgical mesh are independent of tensile properties.

    PubMed

    Simon, David D; Andrews, Sharon M; Robinson-Zeigler, Rebecca; Valdes, Thelma; Woods, Terry O

    2018-02-01

    Current mechanical testing of surgical mesh focuses primarily on tensile properties even though implanted devices are not subjected to pure tensile loads. Our objective was to determine the flexural (bending) properties of surgical mesh and determine if they correlate with mesh tensile properties. The flexural rigidity values of 11 different surgical mesh designs were determined along three textile directions (machine, cross-machine, and 45° to machine; n = 5 for each) using ASTM D1388-14 while tracking surface orientation. Tensile testing was also performed on the same specimens using ASTM D882-12. Linear regressions were performed to compare mesh flexural rigidity to mesh thickness, areal mass density, filament diameter, ultimate tensile strength, and maximum extension. Of 33 mesh specimen groups, 30 had significant differences in flexural rigidity values when comparing surface orientations (top and bottom). Flexural rigidity and mesh tensile properties also varied with textile direction (machine and cross-machine). There was no strong correlation between the flexural and tensile properties, with mesh thickness having the best overall correlation with flexural rigidity. Currently, surface orientation is not indicated on marketed surgical mesh, and a single mesh may behave differently depending on the direction of loading. The lack of correlation between flexural stiffness and tensile properties indicates the need to examine mesh bending stiffness to provide a more comprehensive understanding of surgical mesh mechanical behaviors. Further investigation is needed to determine if these flexural properties result in the surgical mesh behaving mechanically different depending on implantation direction. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 854-862, 2018. © 2017 Wiley Periodicals, Inc.

  6. Floating shock fitting via Lagrangian adaptive meshes

    NASA Technical Reports Server (NTRS)

    Vanrosendale, John

    1995-01-01

    In recent work we have formulated a new approach to compressible flow simulation, combining the advantages of shock-fitting and shock-capturing. Using a cell-centered on Roe scheme discretization on unstructured meshes, we warp the mesh while marching to steady state, so that mesh edges align with shocks and other discontinuities. This new algorithm, the Shock-fitting Lagrangian Adaptive Method (SLAM), is, in effect, a reliable shock-capturing algorithm which yields shock-fitted accuracy at convergence.

  7. Coarse mesh and one-cell block inversion based diffusion synthetic acceleration

    NASA Astrophysics Data System (ADS)

    Kim, Kang-Seog

    DSA (Diffusion Synthetic Acceleration) has been developed to accelerate the SN transport iteration. We have developed solution techniques for the diffusion equations of FLBLD (Fully Lumped Bilinear Discontinuous), SCB (Simple Comer Balance) and UCB (Upstream Corner Balance) modified 4-step DSA in x-y geometry. Our first multi-level method includes a block Gauss-Seidel iteration for the discontinuous diffusion equation, uses the continuous diffusion equation derived from the asymptotic analysis, and avoids void cell calculation. We implemented this multi-level procedure and performed model problem calculations. The results showed that the FLBLD, SCB and UCB modified 4-step DSA schemes with this multi-level technique are unconditionally stable and rapidly convergent. We suggested a simplified multi-level technique for FLBLD, SCB and UCB modified 4-step DSA. This new procedure does not include iterations on the diffusion calculation or the residual calculation. Fourier analysis results showed that this new procedure was as rapidly convergent as conventional modified 4-step DSA. We developed new DSA procedures coupled with 1-CI (Cell Block Inversion) transport which can be easily parallelized. We showed that 1-CI based DSA schemes preceded by SI (Source Iteration) are efficient and rapidly convergent for LD (Linear Discontinuous) and LLD (Lumped Linear Discontinuous) in slab geometry and for BLD (Bilinear Discontinuous) and FLBLD in x-y geometry. For 1-CI based DSA without SI in slab geometry, the results showed that this procedure is very efficient and effective for all cases. We also showed that 1-CI based DSA in x-y geometry was not effective for thin mesh spacings, but is effective and rapidly convergent for intermediate and thick mesh spacings. We demonstrated that the diffusion equation discretized on a coarse mesh could be employed to accelerate the transport equation. Our results showed that coarse mesh DSA is unconditionally stable and is as rapidly convergent as fine mesh DSA in slab geometry. For x-y geometry our coarse mesh DSA is very effective for thin and intermediate mesh spacings independent of the scattering ratio, but is not effective for purely scattering problems and high aspect ratio zoning. However, if the scattering ratio is less than about 0.95, this procedure is very effective for all mesh spacing.

  8. Financial implications of ventral hernia repair: a hospital cost analysis.

    PubMed

    Reynolds, Drew; Davenport, Daniel L; Korosec, Ryan L; Roth, J Scott

    2013-01-01

    Complicated ventral hernias are often referred to tertiary care centers. Hospital costs associated with these repairs include direct costs (mesh materials, supplies, and nonsurgeon labor costs) and indirect costs (facility fees, equipment depreciation, and unallocated labor). Operative supplies represent a significant component of direct costs, especially in an era of proprietary synthetic meshes and biologic grafts. We aim to evaluate the cost-effectiveness of complex abdominal wall hernia repair at a tertiary care referral facility. Cost data on all consecutive open ventral hernia repairs (CPT codes 49560, 49561, 49565, and 49566) performed between 1 July 2008 and 31 May 2011 were analyzed. Cases were analyzed based upon hospital status (inpatient vs. outpatient) and whether the hernia repair was a primary or secondary procedure. We examined median net revenue, direct costs, contribution margin, indirect costs, and net profit/loss. Among primary hernia repairs, cost data were further analyzed based upon mesh utilization (no mesh, synthetic, or biologic). Four-hundred and fifteen patients underwent ventral hernia repair (353 inpatients and 62 outpatients); 173 inpatients underwent ventral hernia repair as the primary procedure; 180 inpatients underwent hernia repair as a secondary procedure. Median net revenue ($17,310 vs. 10,360, p < 0.001) and net losses (3,430 vs. 1,700, p < 0.025) were significantly greater for those who underwent hernia repair as a secondary procedure. Among inpatients undergoing ventral hernia repair as the primary procedure, 46 were repaired without mesh; 79 were repaired with synthetic mesh and 48 with biologic mesh. Median direct costs for cases performed without mesh were $5,432; median direct costs for those using synthetic and biologic mesh were $7,590 and 16,970, respectively (p < .01). Median net losses for repairs without mesh were $500. Median net profit of $60 was observed for synthetic mesh-based repairs. The median contribution margin for cases utilizing biologic mesh was -$4,560, and the median net financial loss was $8,370. Outpatient ventral hernia repairs, with and without synthetic mesh, resulted in median net losses of $1,560 and 230, respectively. Ventral hernia repair is associated with overall financial losses. Inpatient synthetic mesh repairs are essentially budget neutral. Outpatient and inpatient repairs without mesh result in net financial losses. Inpatient biologic mesh repairs result in a negative contribution margin and striking net financial losses. Cost-effective strategies for managing ventral hernias in a tertiary care environment need to be developed in light of the financial implications of this patient population.

  9. Baseline Experimental Results on the Effect of Oil Temperature on Shrouded Meshed Spur Gear Windage Power Loss

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Hurrell, Michael

    2017-01-01

    Rotorcraft gearbox efficiencies are reduced at increased surface speeds due to viscous and impingement drag on the gear teeth. This windage power loss can affect overall mission range, payload, and frequency of transmission maintenance. Experimental and analytical studies on shrouding for single gears have shown it to be potentially effective in mitigating windage power loss. Efficiency studies on unshrouded meshed gears have shown the effect of speed, oil viscosity, temperature, load, lubrication scheme, etc. on gear windage power loss. The open literature does not contain experimental test data on shrouded meshed spur gears. Gear windage power loss test results are presented on shrouded meshed spur gears at elevated oil inlet temperatures and constant oil pressure both with and without shrouding. Shroud effectiveness is compared at four oil inlet temperatures. The results are compared to the available literature and follow-up work is outlined.

  10. Baseline Experimental Results on the Effect of Oil Temperature on Shrouded Meshed Spur Gear Windage Power Loss

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Hurrell, Michael James

    2017-01-01

    Rotorcraft gearbox efficiencies are reduced at increased surface speeds due to viscous and impingement drag on the gear teeth. This windage power loss can affect overall mission range, payload, and frequency of transmission maintenance. Experimental and analytical studies on shrouding for single gears have shown it be potentially effective in mitigating windage power loss. Efficiency studies on unshrouded meshed gears have shown the effect of speed, oil viscosity, temperature, load, lubrication scheme, etc. on gear windage power loss. The open literature does not cite data on shrouded meshed spur gears. Gear windage power loss test results are presented on shrouded meshed spur gears at elevated oil inlet temperatures and constant oil pressure both with and without shrouding. Shroud effectiveness is compared at four oil inlet temperatures. The results are compared to the available literature and follow-up work is outlined.

  11. Surgical meshes coated with mesenchymal stem cells provide an anti-inflammatory environment by a M2 macrophage polarization.

    PubMed

    Blázquez, Rebeca; Sánchez-Margallo, Francisco Miguel; Álvarez, Verónica; Usón, Alejandra; Casado, Javier G

    2016-02-01

    Surgical meshes are widely used in clinics to reinforce soft tissue's defects, and to give support to prolapsed organs. However, the implantation of surgical meshes is commonly related with an inflammatory response being difficult to eradicate without removing the mesh. Here we hypothesize that the combined use of surgical meshes and mesenchymal stem cells (MSCs) could be a useful tool to reduce the inflammatory reaction secondary to mesh implantation. In vitro determinations of viability, metabolic activity and immunomodulation assays were performed on MSCs-coated meshes. Magnetic resonance imaging, evaluation by laparoscopic optical system and histology were performed for safety assessment. Finally, flow cytometry and qRT-PCR were used to elucidate the mechanism of action of MSCs-coated meshes. Our results demonstrate the feasibility to obtain MSCs-coated surgical meshes and their cryopreservability to be used as an 'off the shelf' product. These biological meshes fulfill the safety aspects as non-adverse effects were observed when compared to controls. Moreover, both in vitro and in vivo studies demonstrated that, local immunomodulation of implanted meshes is mediated by a macrophage polarization towards an anti-inflammatory phenotype. In conclusion, the combined usage of surgical meshes with MSCs fulfills the safety requirements for a future clinical application, providing an anti-inflammatory environment that could reduce the inflammatory processes commonly observed after surgical mesh implantation. Surgical meshes are medical devices widely used in clinics to resolve hernias and organs' prolapses, among other disorders. However, the implantation of surgical meshes is commonly related with an inflammatory response being difficult to eradicate without removing the mesh, causing pain and discomfort in the patient. Previously, the anti-inflammatory, immunomodulatory and pro-regenerative ability of mesenchymal stem cells (MSCs) have been described. To our knowledge, this is the first report where the anti-inflammatory and pro-regenerative ability of MSCs have been successfully applied in combination with surgical meshes, reducing the inflammatory processes commonly observed after mesh implantation. Moreover, our in vitro and in vivo results highlight the safety and efficacy of these bioactive meshes as a 'ready to use' medical product. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. New Software Developments for Quality Mesh Generation and Optimization from Biomedical Imaging Data

    PubMed Central

    Yu, Zeyun; Wang, Jun; Gao, Zhanheng; Xu, Ming; Hoshijima, Masahiko

    2013-01-01

    In this paper we present a new software toolkit for generating and optimizing surface and volumetric meshes from three-dimensional (3D) biomedical imaging data, targeted at image-based finite element analysis of some biomedical activities in a single material domain. Our toolkit includes a series of geometric processing algorithms including surface re-meshing and quality-guaranteed tetrahedral mesh generation and optimization. All methods described have been encapsulated into a user-friendly graphical interface for easy manipulation and informative visualization of biomedical images and mesh models. Numerous examples are presented to demonstrate the effectiveness and efficiency of the described methods and toolkit. PMID:24252469

  13. Field and in vitro insecticidal efficacy of alphacypermethrin-treated high density polyethylene mesh against Culicoides biting midges in South Africa.

    PubMed

    Page, P C; Labuschagne, K; Venter, G J; Schoeman, J P; Guthrie, A J

    2014-06-16

    The efficacy of untreated and alphacypermethrin-treated high density polyethylene (HDPE) mesh against Culicoides biting midges (Diptera: Ceratopogonidae) was determined using Onderstepoort downdraught black light traps and a contact bioassay. Three traps were operated overnight in four replicates of a 3×3 randomised Latin square design near horses under South African field conditions. Both the untreated and alphacypermethrin-treated HDPE mesh significantly (P<0.05) reduced the numbers of Culicoides midges, predominantly Culicoides (Avaritia) imicola Kieffer, collected in the light traps by 4.2 and 7.2 times, respectively. A repellent effect of the alphacypermethrin-treated mesh was not confirmed because the number of midges collected in the light traps with untreated and alphacypermethrin-treated HDPE mesh was not significantly different (P=0.656). Bioassay of the insecticidal contact efficacy indicated median C. imicola mortality of 100% from 30 and 10 min following exposure to the alphacypermethrin-treated HDPE mesh for 1 or 3 min, respectively. In the bioassay, mortality was significantly higher (P=0.016) at 5 min post exposure in the midges exposed to the alphacypermethrin-treated mesh for 3 min (74.8%) compared to the 1 min exposure group (59.5%). The HDPE mesh could be used to reduce exposure of housed animals to Culicoides midges, specifically C. imicola, and viruses transmitted by these midges. Mesh treated with alphacypermethrin had the additional benefit of a rapid insecticidal effect on C. imicola. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Mesh-size effects on drift sample composition as determined with a triple net sampler

    USGS Publications Warehouse

    Slack, K.V.; Tilley, L.J.; Kennelly, S.S.

    1991-01-01

    Nested nets of three different mesh apertures were used to study mesh-size effects on drift collected in a small mountain stream. The innermost, middle, and outermost nets had, respectively, 425 ??m, 209 ??m and 106 ??m openings, a design that reduced clogging while partitioning collections into three size groups. The open area of mesh in each net, from largest to smallest mesh opening, was 3.7, 5.7 and 8.0 times the area of the net mouth. Volumes of filtered water were determined with a flowmeter. The results are expressed as (1) drift retained by each net, (2) drift that would have been collected by a single net of given mesh size, and (3) the percentage of total drift (the sum of the catches from all three nets) that passed through the 425 ??m and 209 ??m nets. During a two day period in August 1986, Chironomidae larvae were dominant numerically in all 209 ??m and 106 ??m samples and midday 425 ??m samples. Large drifters (Ephemerellidae) occurred only in 425 ??m or 209 ??m nets, but the general pattern was an increase in abundance and number of taxa with decreasing mesh size. Relatively more individuals occurred in the larger mesh nets at night than during the day. The two larger mesh sizes retained 70% of the total sediment/detritus in the drift collections, and this decreased the rate of clogging of the 106 ??m net. If an objective of a sampling program is to compare drift density or drift rate between areas or sampling dates, the same mesh size should be used for all sample collection and processing. The mesh aperture used for drift collection should retain all species and life stages of significance in a study. The nested net design enables an investigator to test the adequacy of drift samples. ?? 1991 Kluwer Academic Publishers.

  15. Engagement of Metal Debris into Gear Mesh

    NASA Technical Reports Server (NTRS)

    handschuh, Robert F.; Krantz, Timothy L.

    2010-01-01

    A series of bench-top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.

  16. Using multi-terminology indexing for the assignment of MeSH descriptors to health resources in a French online catalogue.

    PubMed

    Pereira, Suzanne; Névéol, Aurélie; Kerdelhué, Gaétan; Serrot, Elisabeth; Joubert, Michel; Darmoni, Stéfan J

    2008-11-06

    To assist with the development of a French online quality-controlled health gateway(CISMeF), an automatic indexing tool assigning MeSH descriptors to medical text in French was created. The French Multi-Terminology Indexer (FMTI) relies on a multi-terminology approach involving four prominent medical terminologies and the mappings between them. In this paper,we compare lemmatization and stemming as methods to process French medical text for indexing. We also evaluate the multi-terminology approach implemented in F-MTI. The indexing strategies were assessed on a corpus of 18,814 resources indexed manually. There is little difference in the indexing performance when lemmatization or stemming is used. However, the multi-terminology approach outperforms indexing relying on a single terminology in terms of recall. F-MTI will soon be used in the CISMeF production environment and in a Health MultiTerminology Server in French.

  17. An accuracy assessment of Cartesian-mesh approaches for the Euler equations

    NASA Technical Reports Server (NTRS)

    Coirier, William J.; Powell, Kenneth G.

    1995-01-01

    A critical assessment of the accuracy of Cartesian-mesh approaches for steady, transonic solutions of the Euler equations of gas dynamics is made. An exact solution of the Euler equations (Ringleb's flow) is used not only to infer the order of the truncation error of the Cartesian-mesh approaches, but also to compare the magnitude of the discrete error directly to that obtained with a structured mesh approach. Uniformly and adaptively refined solutions using a Cartesian-mesh approach are obtained and compared to each other and to uniformly refined structured mesh results. The effect of cell merging is investigated as well as the use of two different K-exact reconstruction procedures. The solution methodology of the schemes is explained and tabulated results are presented to compare the solution accuracies.

  18. Biomechanical properties of synthetic surgical meshes for pelvic prolapse repair.

    PubMed

    Todros, S; Pavan, P G; Natali, A N

    2015-03-01

    Synthetic meshes are widely used for surgical repair of different kind of prolapses. In the light of the experience of abdominal wall repair, similar prostheses are currently used in the pelvic region, to restore physiological anatomy after organ prolapse into the vaginal wall, that represent a recurrent dysfunction. For this purpose, synthetic meshes are surgically positioned in contact with the anterior and/or posterior vaginal wall, to inferiorly support prolapsed organs. Nonetheless, while mesh implantation restores physiological anatomy, it is often associated with different complications in the vaginal region. These potentially dangerous effects induce the surgical community to reconsider the safety and efficacy of mesh transvaginal placement. For this purpose, the evaluation of state-of-the-art research may provide the basis for a comprehensive analysis of mesh compatibility and functionality. The aim of this work is to review synthetic surgical meshes for pelvic organs prolapse repair, taking into account the mechanics of mesh material and structure, and to relate them with pelvic and vaginal tissue biomechanics. Synthetic meshes are currently available in different chemical composition, fiber and textile conformations. Material and structural properties are key factors in determining mesh biochemical and mechanical compatibility in vivo. The most significant results on vaginal tissue and surgical meshes mechanical characterization are here reported and discussed. Moreover, computational models of the pelvic region, which could support the surgeon in the evaluation of mesh performances in physiological conditions, are recalled. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Immediate effects of the initial FDA notification on the use of surgical mesh for pelvic organ prolapse surgery in medicare beneficiaries.

    PubMed

    Reynolds, W Stuart; Gold, Karen P; Ni, Shenghua; Kaufman, Melissa R; Dmochowski, Roger R; Penson, David F

    2013-04-01

    Prompted by increased reports of complications with the use of mesh for pelvic organ prolapse (POP) surgery, the FDA issued an initial public health notification (PHN) in 2008. We proposed to determine if the numbers of POP cases augmented with surgical mesh performed in U.S. Medicare beneficiaries changed relative to this PHN. Using administrative healthcare claims for beneficiaries enrolled in the U.S. Medicare program from 2008 to 2009, we identified women who underwent POP surgery with and without surgical mesh by procedural and diagnosis coding. In addition to comparing cases with and without mesh, we also calculated rates (number of cases per 100,000 female beneficiaries) and compared these relative to the timing of the PHN. We identified 104,185 POP procedures, of which 27,839 (26.7%) included mesh material and 76,346 (73.3%) did not. Between the last three quarters of 2008 and the first three of 2009, the rates of mesh cases increased (40.3-42.1, P < 0.001) and those without mesh decreased (115.5-111.4, P < 0.001). Inpatient procedures decreased and outpatient procedures increased for both those with and without mesh augmentation. For inpatient procedures, the relative use of biologic graft and synthetic mesh material did not vary over the study period. A substantial number of Medicare beneficiaries underwent mesh POP procedures in 2008-2009. However, despite the PHN cautioning about potential mesh complications, the numbers of mesh cases continued to rise in the immediate period after the PHN. Copyright © 2012 Wiley Periodicals, Inc.

  20. High-performance metal mesh/graphene hybrid films using prime-location and metal-doped graphene.

    PubMed

    Min, Jung-Hong; Jeong, Woo-Lim; Kwak, Hoe-Min; Lee, Dong-Seon

    2017-08-31

    We introduce high-performance metal mesh/graphene hybrid transparent conductive layers (TCLs) using prime-location and metal-doped graphene in near-ultraviolet light-emitting diodes (NUV LEDs). Despite the transparency and sheet resistance values being similar for hybrid TCLs, there were huge differences in the NUV LEDs' electrical and optical properties depending on the location of the graphene layer. We achieved better physical stability and current spreading when the graphene layer was located beneath the metal mesh, in direct contact with the p-GaN layer. We further improved the contact properties by adding a very thin Au mesh between the thick Ag mesh and the graphene layer to produce a dual-layered metal mesh. The Au mesh effectively doped the graphene layer to create a p-type electrode. Using Raman spectra, work function variations, and the transfer length method (TLM), we verified the effect of doping the graphene layer after depositing a very thin metal layer on the graphene layers. From our results, we suggest that the nature of the contact is an important criterion for improving the electrical and optical performance of hybrid TCLs, and the method of doping graphene layers provides new opportunities for solving contact issues in other semiconductor devices.

  1. Indium-free, highly transparent, flexible Cu2O/Cu/Cu2O mesh electrodes for flexible touch screen panels

    PubMed Central

    Kim, Dong-Ju; Kim, Hyo-Joong; Seo, Ki-Won; Kim, Ki-Hyun; Kim, Tae-Wong; Kim, Han-Ki

    2015-01-01

    We report on an indium-free and cost-effective Cu2O/Cu/Cu2O multilayer mesh electrode grown by room temperature roll-to-roll sputtering as a viable alternative to ITO electrodes for the cost-effective production of large-area flexible touch screen panels (TSPs). By using a low resistivity metallic Cu interlayer and a patterned mesh structure, we obtained Cu2O/Cu/Cu2O multilayer mesh electrodes with a low sheet resistance of 15.1 Ohm/square and high optical transmittance of 89% as well as good mechanical flexibility. Outer/inner bending test results showed that the Cu2O/Cu/Cu2O mesh electrode had a mechanical flexibility superior to that of conventional ITO films. Using the diamond-patterned Cu2O/Cu/Cu2O multilayer mesh electrodes, we successfully demonstrated TSPS of the flexible film-film type and rigid glass-film-film type TSPs. The TSPs with Cu2O/Cu/Cu2O mesh electrode were used to perform zoom in/out functions and multi-touch writing, indicating that these electrodes are promising cost-efficient transparent electrodes to substitute for conventional ITO electrodes in large-area flexible TSPs. PMID:26582471

  2. Indium-free, highly transparent, flexible Cu2O/Cu/Cu2O mesh electrodes for flexible touch screen panels.

    PubMed

    Kim, Dong-Ju; Kim, Hyo-Joong; Seo, Ki-Won; Kim, Ki-Hyun; Kim, Tae-Wong; Kim, Han-Ki

    2015-11-19

    We report on an indium-free and cost-effective Cu2O/Cu/Cu2O multilayer mesh electrode grown by room temperature roll-to-roll sputtering as a viable alternative to ITO electrodes for the cost-effective production of large-area flexible touch screen panels (TSPs). By using a low resistivity metallic Cu interlayer and a patterned mesh structure, we obtained Cu2O/Cu/Cu2O multilayer mesh electrodes with a low sheet resistance of 15.1 Ohm/square and high optical transmittance of 89% as well as good mechanical flexibility. Outer/inner bending test results showed that the Cu2O/Cu/Cu2O mesh electrode had a mechanical flexibility superior to that of conventional ITO films. Using the diamond-patterned Cu2O/Cu/Cu2O multilayer mesh electrodes, we successfully demonstrated TSPS of the flexible film-film type and rigid glass-film-film type TSPs. The TSPs with Cu2O/Cu/Cu2O mesh electrode were used to perform zoom in/out functions and multi-touch writing, indicating that these electrodes are promising cost-efficient transparent electrodes to substitute for conventional ITO electrodes in large-area flexible TSPs.

  3. Indium-free, highly transparent, flexible Cu2O/Cu/Cu2O mesh electrodes for flexible touch screen panels

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Ju; Kim, Hyo-Joong; Seo, Ki-Won; Kim, Ki-Hyun; Kim, Tae-Wong; Kim, Han-Ki

    2015-11-01

    We report on an indium-free and cost-effective Cu2O/Cu/Cu2O multilayer mesh electrode grown by room temperature roll-to-roll sputtering as a viable alternative to ITO electrodes for the cost-effective production of large-area flexible touch screen panels (TSPs). By using a low resistivity metallic Cu interlayer and a patterned mesh structure, we obtained Cu2O/Cu/Cu2O multilayer mesh electrodes with a low sheet resistance of 15.1 Ohm/square and high optical transmittance of 89% as well as good mechanical flexibility. Outer/inner bending test results showed that the Cu2O/Cu/Cu2O mesh electrode had a mechanical flexibility superior to that of conventional ITO films. Using the diamond-patterned Cu2O/Cu/Cu2O multilayer mesh electrodes, we successfully demonstrated TSPS of the flexible film-film type and rigid glass-film-film type TSPs. The TSPs with Cu2O/Cu/Cu2O mesh electrode were used to perform zoom in/out functions and multi-touch writing, indicating that these electrodes are promising cost-efficient transparent electrodes to substitute for conventional ITO electrodes in large-area flexible TSPs.

  4. Shelter effect efficacy of sand fences: A comparison of systems in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Qu, Jianjun; Ling, Yuquan; Liu, Benli; Xiao, Jianhua

    2018-02-01

    The Lanzhou-Xinjiang High-speed Railway runs through an expansive wind area in the Gobi Desert and blown-sand disasters are a critical issue affecting its operation. To strengthen the blown-sand disaster shelter systems along the railway, the shelter effects of punching plate and wire mesh fences with approximately equal porosity (48%) were simulated in a wind tunnel. The experimental results showed that the wind velocity was reduced to a higher extent by the punching plate fence than by the wire mesh fence. When a single row of sand fencing was used, the wind velocity reduction coefficient (Rcz) values downwind of the punching plate fence and wire mesh fence reached 71.77% and 39.37%, respectively. When double rows of sand fencing were used, the Rcz values downwind of the punching plate and wire mesh fences were approximately 87.48% and 60.81%, respectively. For the flow field structure on the leeward side of the fencing, the deceleration zone behind the punching plate fence was more pronounced than that behind the wire mesh fence. The vortex zone was not obvious and the reverse flow disappeared for both types of fences, which indicates that the turbulent intensity was small. The sand-trapping efficiency of the wire mesh fence was close to that of punching plate fence. When a single row of sand fencing was set up, the total mass flux density decreased, on average, by 65.85% downwind of the wire mesh fence, and 75.06% downwind of the punching plate fence; when double rows of sand fencing were present, the total mass flux density decreased, on average, by 84.53% downwind of the wire mesh fence and 84.51% downwind of the punching plate fence. In addition, the wind-proof efficiency and the sand-proof efficiency of the punching plate fence and the wire mesh fence decreased with increasing wind velocities. Consequently, punching plate and wire mesh fences may effectively control the sand hazard in the expansive wind area of the Gobi Desert.

  5. Effects of tooth profile modification on dynamic responses of a high speed gear-rotor-bearing system

    NASA Astrophysics Data System (ADS)

    Hu, Zehua; Tang, Jinyuan; Zhong, Jue; Chen, Siyu; Yan, Haiyan

    2016-08-01

    A finite element node dynamic model of a high speed gear-rotor-bearing system considering the time-varying mesh stiffness, backlash, gyroscopic effect and transmission error excitation is developed. Different tooth profile modifications are introduced into the gear pair and corresponding time-varying mesh stiffness curves are obtained. Effects of the tooth profile modification on mesh stiffness are analyzed, and the natural frequencies and mode shapes of the gear-rotor-bearing transmission system are given. The dynamic responses with respect to a wide input speed region including dynamic factor, vibration amplitude near the bearing and dynamic transmission error are obtained by introducing the time-varying mesh stiffness in different tooth profile modification cases into the gear-rotor-bearing dynamic system. Effects of the tooth profile modification on the dynamic responses are studied in detail. The numerical simulation results show that both the short profile modification and the long profile modification can affect the mutation of the mesh stiffness when the number of engaging tooth pairs changes. A short profile modification with an appropriate modification amount can improve the dynamic property of the system in certain work condition.

  6. An improved time-varying mesh stiffness model for helical gear pairs considering axial mesh force component

    NASA Astrophysics Data System (ADS)

    Wang, Qibin; Zhao, Bo; Fu, Yang; Kong, Xianguang; Ma, Hui

    2018-06-01

    An improved time-varying mesh stiffness (TVMS) model of a helical gear pair is proposed, in which the total mesh stiffness contains not only the common transverse tooth bending stiffness, transverse tooth shear stiffness, transverse tooth radial compressive stiffness, transverse gear foundation stiffness and Hertzian contact stiffness, but also the axial tooth bending stiffness, axial tooth torsional stiffness and axial gear foundation stiffness proposed in this paper. In addition, a rapid TVMS calculation method is proposed. Considering each stiffness component, the TVMS can be calculated by the integration along the tooth width direction. Then, three cases are applied to validate the developed model. The results demonstrate that the proposed analytical method is accurate, effective and efficient for helical gear pairs and the axial mesh stiffness should be taken into consideration in the TVMS of a helical gear pair. Finally, influences of the helix angle on TVMS are studied. The results show that the improved TVMS model is effective for any helix angle and the traditional TVMS model is only effective under a small helix angle.

  7. An embedded mesh method using piecewise constant multipliers with stabilization: mathematical and numerical aspects

    DOE PAGES

    Puso, M. A.; Kokko, E.; Settgast, R.; ...

    2014-10-22

    An embedded mesh method using piecewise constant multipliers originally proposed by Puso et al. (CMAME, 2012) is analyzed here to determine effects of the pressure stabilization term and small cut cells. The approach is implemented for transient dynamics using the central difference scheme for the time discretization. It is shown that the resulting equations of motion are a stable linear system with a condition number independent of mesh size. Furthermore, we show that the constraints and the stabilization terms can be recast as non-proportional damping such that the time integration of the scheme is provably stable with a critical timemore » step computed from the undamped equations of motion. Effects of small cuts are discussed throughout the presentation. A mesh study is conducted to evaluate the effects of the stabilization on the discretization error and conditioning and is used to recommend an optimal value for stabilization scaling parameter. Several nonlinear problems are also analyzed and compared with comparable conforming mesh results. Finally, we show several demanding problems highlighting the robustness of the proposed approach.« less

  8. Automated 3D closed surface segmentation: application to vertebral body segmentation in CT images.

    PubMed

    Liu, Shuang; Xie, Yiting; Reeves, Anthony P

    2016-05-01

    A fully automated segmentation algorithm, progressive surface resolution (PSR), is presented in this paper to determine the closed surface of approximately convex blob-like structures that are common in biomedical imaging. The PSR algorithm was applied to the cortical surface segmentation of 460 vertebral bodies on 46 low-dose chest CT images, which can be potentially used for automated bone mineral density measurement and compression fracture detection. The target surface is realized by a closed triangular mesh, which thereby guarantees the enclosure. The surface vertices of the triangular mesh representation are constrained along radial trajectories that are uniformly distributed in 3D angle space. The segmentation is accomplished by determining for each radial trajectory the location of its intersection with the target surface. The surface is first initialized based on an input high confidence boundary image and then resolved progressively based on a dynamic attraction map in an order of decreasing degree of evidence regarding the target surface location. For the visual evaluation, the algorithm achieved acceptable segmentation for 99.35 % vertebral bodies. Quantitative evaluation was performed on 46 vertebral bodies and achieved overall mean Dice coefficient of 0.939 (with max [Formula: see text] 0.957, min [Formula: see text] 0.906 and standard deviation [Formula: see text] 0.011) using manual annotations as the ground truth. Both visual and quantitative evaluations demonstrate encouraging performance of the PSR algorithm. This novel surface resolution strategy provides uniform angular resolution for the segmented surface with computation complexity and runtime that are linearly constrained by the total number of vertices of the triangular mesh representation.

  9. Performance of search strategies to retrieve systematic reviews of diagnostic test accuracy from the Cochrane Library.

    PubMed

    Huang, Yuansheng; Yang, Zhirong; Wang, Jing; Zhuo, Lin; Li, Zhixia; Zhan, Siyan

    2016-05-06

    To compare the performance of search strategies to retrieve systematic reviews of diagnostic test accuracy from The Cochrane Library. Databases of CDSR and DARE in the Cochrane Library were searched for systematic reviews of diagnostic test accuracy published between 2008 and 2012 through nine search strategies. Each strategy consists of one group or combination of groups of searching filters about diagnostic test accuracy. Four groups of diagnostic filters were used. The Strategy combing all the filters was used as the reference to determine the sensitivity, precision, and the sensitivity x precision product for another eight Strategies. The reference Strategy retrieved 8029 records, of which 832 were eligible. The strategy only composed of MeSH terms about "accuracy measures" achieved the highest values in both precision (69.71%) and product (52.45%) with a moderate sensitivity (75.24%). The combination of MeSH terms and free text words about "accuracy measures" contributed little to increasing the sensitivity. Strategies composed of filters about "diagnosis" had similar sensitivity but lower precision and product to those composed of filters about "accuracy measures". MeSH term "exp'diagnosis' " achieved the lowest precision (9.78%) and product (7.91%), while its hyponym retrieved only half the number of records at the expense of missing 53 target articles. The precision was negatively correlated with sensitivities among the nine strategies. Compared to the filters about "diagnosis", the filters about "accuracy measures" achieved similar sensitivities but higher precision. When combining both terms, sensitivity of the strategy was enhanced obviously. The combination of MeSH terms and free text words about the same concept seemed to be meaningless for enhancing sensitivity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Merge measuring mesh for complex surface parts

    NASA Astrophysics Data System (ADS)

    Ye, Jianhua; Gao, Chenghui; Zeng, Shoujin; Xu, Mingsan

    2018-04-01

    Due to most parts self-occlude and limitation of scanner range, it is difficult to scan the entire part by one time. For modeling of part, multi measuring meshes need to be merged. In this paper, a new merge method is presented. At first, using the grid voxelization method to eliminate the most of non-overlap regions, and retrieval overlap triangles method by the topology of mesh is proposed due to its ability to improve the efficiency. Then, to remove the large deviation of overlap triangles, deleting by overlap distance is discussion. After that, this paper puts forward a new method of merger meshes by registration and combination mesh boundary point. Through experimental analysis, the suggested methods are effective.

  11. New software developments for quality mesh generation and optimization from biomedical imaging data.

    PubMed

    Yu, Zeyun; Wang, Jun; Gao, Zhanheng; Xu, Ming; Hoshijima, Masahiko

    2014-01-01

    In this paper we present a new software toolkit for generating and optimizing surface and volumetric meshes from three-dimensional (3D) biomedical imaging data, targeted at image-based finite element analysis of some biomedical activities in a single material domain. Our toolkit includes a series of geometric processing algorithms including surface re-meshing and quality-guaranteed tetrahedral mesh generation and optimization. All methods described have been encapsulated into a user-friendly graphical interface for easy manipulation and informative visualization of biomedical images and mesh models. Numerous examples are presented to demonstrate the effectiveness and efficiency of the described methods and toolkit. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Predicted and measured transmission and diffraction by a metallic mesh coating

    NASA Astrophysics Data System (ADS)

    Halman, Jennifer I.; Ramsey, Keith A.; Thomas, Michael; Griffin, Andrew

    2009-05-01

    Metallic mesh coatings are used on visible and infrared windows and domes to provide shielding from electromagnetic interference (EMI) and as heaters to de-fog or de-ice windows or domes. The periodic metallic mesh structures that provide the EMI shielding and/or resistive electrical paths for the heating elements create a diffraction pattern when optical or infrared beams are incident on the coated windows. Over the years several different mesh geometries have been used to try to reduce the effects of diffraction. We have fabricated several different mesh patterns on small coupons of BK-7 and measured the transmitted power and the diffraction patterns of each one using a CW 1064 nm laser. In this paper we will present some predictions and measurements of the diffraction patterns of several different mesh patterns.

  13. Polypropylene Surgical Mesh Coated with Extracellular Matrix Mitigates the Host Foreign Body Response

    PubMed Central

    Wolf, Matthew T.; Carruthers, Christopher A.; Dearth, Christopher L.; Crapo, Peter M.; Huber, Alexander; Burnsed, Olivia A.; Londono, Ricardo; Johnson, Scott A.; Daly, Kerry A.; Stahl, Elizabeth C.; Freund, John M.; Medberry, Christopher J.; Carey, Lisa E.; Nieponice, Alejandro; Amoroso, Nicholas J.; Badylak, Stephen F.

    2013-01-01

    Surgical mesh devices composed of synthetic materials are commonly used for ventral hernia repair. These materials provide robust mechanical strength and are quickly incorporated into host tissue; factors which contribute to reduced hernia recurrence rates. However, such mesh devices cause a foreign body response with the associated complications of fibrosis and patient discomfort. In contrast, surgical mesh devices composed of naturally occurring extracellular matrix (ECM) are associated with constructive tissue remodeling, but lack the mechanical strength of synthetic materials. A method for applying a porcine dermal ECM hydrogel coating to a polypropylene mesh is described herein with the associated effects upon the host tissue response and biaxial mechanical behavior. Uncoated and ECM coated heavy-weight BARD™ Mesh were compared to the light-weight ULTRAPRO™ and BARD™ Soft Mesh devices in a rat partial thickness abdominal defect overlay model. The ECM coated mesh attenuated the pro-inflammatory response compared to all other devices, with a reduced cell accumulation and fewer foreign body giant cells. The ECM coating degraded by 35 days, and was replaced with loose connective tissue compared to the dense collagenous tissue associated with the uncoated polypropylene mesh device. Biaxial mechanical characterization showed that all of the mesh devices were of similar isotropic stiffness. Upon explantation, the light-weight mesh devices were more compliant than the coated or uncoated heavy-weight devices. The present study shows that an ECM coating alters the default host response to a polypropylene mesh, but not the mechanical properties in an acute in vivo abdominal repair model. PMID:23873846

  14. Numerical analysis on pressure drop and heat transfer performance of mesh regenerators used in cryocoolers

    NASA Astrophysics Data System (ADS)

    Tao, Y. B.; Liu, Y. W.; Gao, F.; Chen, X. Y.; He, Y. L.

    2009-09-01

    An anisotropic porous media model for mesh regenerator used in pulse tube refrigerator (PTR) is established. Formulas for permeability and Forchheimer coefficient are derived which include the effects of regenerator configuration and geometric parameters, oscillating flow, operating frequency, cryogenic temperature. Then, the fluid flow and heat transfer performances of mesh regenerator are numerically investigated under different mesh geometric parameters and material properties. The results indicate that the cooling power of the PTR increases with the increases of specific heat capacity and density of the regenerator mesh material, and decreases with the increases of penetration depth and thermal conductivity ratio ( a). The cooling power at a = 0.1 is 0.5-2.0 W higher than that at a = 1. Optimizing the filling scale of different mesh configurations (such as 75% #200 twill and 25% #250 twill) and adopting multi segments regenerator with stainless steel meshes at the cold end can enhance the regenerator's efficiency and achieve better heat transfer performance.

  15. Mesh for prolapse surgery: Why the fuss?

    PubMed

    Rajshekhar, Smita; Mukhopadhyay, Sambit; Klinge, Uwe

    2015-06-01

    Pelvic organ prolapse is a common gynaecological problem. Surgical techniques to repair prolapse have been constantly evolving to reduce the recurrence of prolapse and need for reoperation. Grafts made of synthetic and biological materials became popular in the last decade as they were intended to provide extra support to native tissue repairs. However, serious complications related to use of synthetic meshes have been reported and there is increasing medico-legal concern about mesh use in prolapse surgery. Some mesh products already have been withdrawn from the market and the FDA has introduced stricter surveillance of new and existing products. Large randomized studies comparing mesh with non-mesh procedures are lacking which creates uncertainty for the surgeon and their patients.The small cohorts of the RCTs available with short follow-up periods just allow the conclusion that the mesh repair can be helpful in the short to medium term but unfortunately are not able to prove safety for all patients. In particular, current clinical reports cannot define for which indication what material may be superior compared to non-mesh repair.Quality control through long-term individual and national mesh registries is needed to keep a record of all surgeons using mesh and all devices being used, monitoring their effectiveness and safety data. Meshes with better biocompatibility designed specifically for use in vaginal surgery may provide superior clinical results, where the reduction of complications may allow a wider range of indications. © The Author(s) 2015.

  16. Mechanical behaviour of synthetic surgical meshes: finite element simulation of the herniated abdominal wall.

    PubMed

    Hernández-Gascón, B; Peña, E; Melero, H; Pascual, G; Doblaré, M; Ginebra, M P; Bellón, J M; Calvo, B

    2011-11-01

    The material properties of meshes used in hernia surgery contribute to the overall mechanical behaviour of the repaired abdominal wall. The mechanical response of a surgical mesh has to be defined since the haphazard orientation of an anisotropic mesh can lead to inconsistent surgical outcomes. This study was designed to characterize the mechanical behaviour of three surgical meshes (Surgipro®, Optilene® and Infinit®) and to describe a mechanical constitutive law that accurately reproduces the experimental results. Finally, through finite element simulation, the behaviour of the abdominal wall was modelled before and after surgical mesh implant. Uniaxial loading of mesh samples in two perpendicular directions revealed the isotropic response of Surgipro® and the anisotropic behaviour of Optilene® and Infinit®. A phenomenological constitutive law was used to reproduce the measured experimental curves. To analyze the mechanical effect of the meshes once implanted in the abdomen, finite element simulation of the healthy and partially herniated repaired rabbit abdominal wall served to reproduce wall behaviour before and after mesh implant. In all cases, maximal displacements were lower and maximal principal stresses higher in the implanted abdomen than the intact wall model. Despite the fact that no mesh showed a behaviour that perfectly matched that of abdominal muscle, the Infinit® mesh was able to best comply with the biomechanics of the abdominal wall. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Engagement of Metal Debris into a Gear Mesh

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Krantz, Timothy L.

    2010-01-01

    A series of bench top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock, and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.

  18. Clinical observation of a modified surgical method: posterior vaginal mesh suspension of female rectocele with intractable constipation.

    PubMed

    Hong, Ling; Li, Huai-Fang; Sun, Jing; Zhu, Jian-Long; Ai, Gui-hai; Li, Li; Zhang, Bo; Chi, Feng-li; Tong, Xiao-Wen

    2012-01-01

    To explore the feasibility and effectiveness of a modified posterior vaginal mesh suspension method in treating female rectocele with intractable constipation. Descriptive study (Canadian Task Force classification II-3). The study was performed in the Study Center for Female Pelvic Dysfunction Disease, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China. The Study Center includes 15 physicians, most of whom have received advanced training in pelvic floor dysfunctional disease and can skillfully perform many types of operations in patients with such disease. Almost 1500 operations to treat pelvic floor dysfunctional disease are performed every year at the center. Thirty-six women with rectocele with intractable constipation. Posterior vaginal mesh suspension. All patients were followed up for 15 to 36 months. In 29 patients, the condition was cured completely; in 5 patients it had improved; and in 2 patients, the intervention had no effect. Insofar as recovery and improved results, the overall effectiveness rate was 94.4%. Posterior vaginal mesh suspension is an effective, harmless, and convenient method for treatment of female rectocele with intractable constipation. It has positive short-term curative effects, with few complications and sequelae. However, the long-term effects of posterior vaginal mesh suspension should be evaluated. Copyright © 2012 AAGL. Published by Elsevier Inc. All rights reserved.

  19. An effective lattice Boltzmann flux solver on arbitrarily unstructured meshes

    NASA Astrophysics Data System (ADS)

    Wu, Qi-Feng; Shu, Chang; Wang, Yan; Yang, Li-Ming

    2018-05-01

    The recently proposed lattice Boltzmann flux solver (LBFS) is a new approach for the simulation of incompressible flow problems. It applies the finite volume method (FVM) to discretize the governing equations, and the flux at the cell interface is evaluated by local reconstruction of lattice Boltzmann solution from macroscopic flow variables at cell centers. In the previous application of the LBFS, the structured meshes have been commonly employed, which may cause inconvenience for problems with complex geometries. In this paper, the LBFS is extended to arbitrarily unstructured meshes for effective simulation of incompressible flows. Two test cases, the lid-driven flow in a triangular cavity and flow around a circular cylinder, are carried out for validation. The obtained results are compared with the data available in the literature. Good agreement has been achieved, which demonstrates the effectiveness and reliability of the LBFS in simulating flows on arbitrarily unstructured meshes.

  20. Controlling Reflections from Mesh Refinement Interfaces in Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Baker, John G.; Van Meter, James R.

    2005-01-01

    A leading approach to improving the accuracy on numerical relativity simulations of black hole systems is through fixed or adaptive mesh refinement techniques. We describe a generic numerical error which manifests as slowly converging, artificial reflections from refinement boundaries in a broad class of mesh-refinement implementations, potentially limiting the effectiveness of mesh- refinement techniques for some numerical relativity applications. We elucidate this numerical effect by presenting a model problem which exhibits the phenomenon, but which is simple enough that its numerical error can be understood analytically. Our analysis shows that the effect is caused by variations in finite differencing error generated across low and high resolution regions, and that its slow convergence is caused by the presence of dramatic speed differences among propagation modes typical of 3+1 relativity. Lastly, we resolve the problem, presenting a class of finite-differencing stencil modifications which eliminate this pathology in both our model problem and in numerical relativity examples.

  1. Array-based, parallel hierarchical mesh refinement algorithms for unstructured meshes

    DOE PAGES

    Ray, Navamita; Grindeanu, Iulian; Zhao, Xinglin; ...

    2016-08-18

    In this paper, we describe an array-based hierarchical mesh refinement capability through uniform refinement of unstructured meshes for efficient solution of PDE's using finite element methods and multigrid solvers. A multi-degree, multi-dimensional and multi-level framework is designed to generate the nested hierarchies from an initial coarse mesh that can be used for a variety of purposes such as in multigrid solvers/preconditioners, to do solution convergence and verification studies and to improve overall parallel efficiency by decreasing I/O bandwidth requirements (by loading smaller meshes and in memory refinement). We also describe a high-order boundary reconstruction capability that can be used tomore » project the new points after refinement using high-order approximations instead of linear projection in order to minimize and provide more control on geometrical errors introduced by curved boundaries.The capability is developed under the parallel unstructured mesh framework "Mesh Oriented dAtaBase" (MOAB Tautges et al. (2004)). We describe the underlying data structures and algorithms to generate such hierarchies in parallel and present numerical results for computational efficiency and effect on mesh quality. Furthermore, we also present results to demonstrate the applicability of the developed capability to study convergence properties of different point projection schemes for various mesh hierarchies and to a multigrid finite-element solver for elliptic problems.« less

  2. Robot-Assisted Ventral Mesh Rectopexy for Rectal Prolapse: A 5-Year Experience at a Tertiary Referral Center.

    PubMed

    van Iersel, Jan J; Formijne Jonkers, Hendrik A; Paulides, Tim J C; Verheijen, Paul M; Draaisma, Werner A; Consten, Esther C J; Broeders, Ivo A M J

    2017-11-01

    Laparoscopic ventral mesh rectopexy is being increasingly performed internationally to treat rectal prolapse syndromes. Robotic assistance appears advantageous for this procedure, but literature regarding robot-assisted ventral mesh rectopexy is limited. The primary objective of this study was to assess the safety and effectiveness of robot-assisted ventral mesh rectopexy in the largest consecutive series of patients to date. This study is a retrospective cross-sectional analysis of prospectively collected data. The study was conducted in a tertiary referral center. All of the patients undergoing robot-assisted ventral mesh rectopexy for rectal prolapse syndromes between 2010 and 2015 were evaluated. Preoperative and postoperative (mesh and nonmesh) morbidity and functional outcome were analyzed. The actuarial recurrence rates were calculated using the Kaplan-Meier method. A total of 258 patients underwent robot-assisted ventral mesh rectopexy (mean ± SD follow-up = 23.5 ± 21.8 mo; range, 0.2 - 65.1 mo). There were no conversions and only 5 intraoperative complications (1.9%). Mortality (0.4%) and major (1.9%) and minor (<30 d) early morbidity (7.0%) were acceptably low. Only 1 (1.3%) mesh-related complication (asymptomatic vaginal mesh erosion) was observed. A significant improvement in obstructed defecation (78.6%) and fecal incontinence (63.7%) were achieved for patients (both p < 0.0005). At final follow-up, a new onset of fecal incontinence and obstructed defecation was induced or worsened in 3.9% and 0.4%. The actuarial 5-year external rectal prolapse and internal rectal prolapse recurrence rates were 12.9% and 10.4%. This was a retrospective study including patients with minimal follow-up. No validated scores were used to assess function. The study was monocentric, and there was no control group. Robot-assisted ventral mesh rectopexy is a safe and effective technique to treat rectal prolapse syndromes, providing an acceptable recurrence rate and good symptomatic relief with minimal morbidity. See Video Abstract at http://links.lww.com/DCR/A427.

  3. Methods to control ectomycorrhizal colonization: effectiveness of chemical and physical barriers.

    PubMed

    Teste, François P; Karst, Justine; Jones, Melanie D; Simard, Suzanne W; Durall, Daniel M

    2006-12-01

    We conducted greenhouse experiments using Douglas-fir (Pseudotsuga menziesii var. glauca) seedlings where chemical methods (fungicides) were used to prevent ectomycorrhizal colonization of single seedlings or physical methods (mesh barriers) were used to prevent formation of mycorrhizal connections between neighboring seedlings. These methods were chosen for their ease of application in the field. We applied the fungicides, Topas (nonspecific) and Senator (ascomycete specific), separately and in combination at different concentrations and application frequencies to seedlings grown in unsterilized forest soils. Additionally, we assessed the ability of hyphae to penetrate mesh barriers of various pore sizes (0.2, 1, 20, and 500 microm) to form mycorrhizas on roots of neighboring seedlings. Ectomycorrhizal colonization was reduced by approximately 55% with the application of Topas at 0.5 g l(-1). Meshes with pore sizes of 0.2 and 1 microm were effective in preventing the formation of mycorrhizas via hyphal growth across the mesh barriers. Hence, meshes in this range of pore sizes could also be used to prevent the formation of common mycorrhizal networks in the field. Depending on the ecological question of interest, Topas or the employment of mesh with pore sizes <1 microm are suitable for restricting mycorrhization in the field.

  4. Effects of bedding material and running wheel surface on paw wounds in male and female Syrian hamsters.

    PubMed

    Beaulieu, A; Reebs, S G

    2009-01-01

    The present study investigated the effects of bedding material (pine shavings versus beta chip) and running wheel surfaces (standard metal bars versus metal bars covered with a plastic mesh) on the occurrence of wounds on the paws of male and female Syrian (golden) hamsters, Mesocricetus auratus. Four groups of 10 males and 10 females were each assigned to one of the following treatments: pine/no mesh, pine/mesh, chips/no mesh and chips/mesh. Each hamster paw was observed at 1-3-day intervals for 60 days. A total of 1-3 wounds, separate in time, developed on the paws (mostly the hind ones) of almost all animals. Wounds appeared as small pinpricks, cuts or scabs, mostly on the palms. Females ran 15% less than males, yet their front paws were more commonly affected and their wounds tended to last longer. Hamsters with plastic mesh inside their wheels took longer to develop wounds but once they appeared, the wounds were larger and lasted longer. Hamsters on pine shavings developed fewer wounds and had more wound-free days. Hamsters kept running at high levels and many wounds did not heal during the study, suggesting a need for veterinary intervention.

  5. Generating Inviscid and Viscous Fluid-Flow Simulations over an Aircraft Surface Using a Fluid-Flow Mesh

    NASA Technical Reports Server (NTRS)

    Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)

    2013-01-01

    Fluid-flow simulation over a computer-generated aircraft surface is generated using inviscid and viscous simulations. A fluid-flow mesh of fluid cells is obtained. At least one inviscid fluid property for the fluid cells is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. A set of intersecting fluid cells that intersects the aircraft surface are identified. One surface mesh polygon of the surface mesh is identified for each intersecting fluid cell. A boundary-layer prediction point for each identified surface mesh polygon is determined. At least one boundary-layer fluid property for each boundary-layer prediction point is determined using the at least one inviscid fluid property of the corresponding intersecting fluid cell and a boundary-layer simulation that simulates fluid viscous effects. At least one updated fluid property for at least one fluid cell is determined using the at least one boundary-layer fluid property and the inviscid fluid simulation.

  6. Evaluation of mechanical properties in metal wire mesh supported selective catalytic reduction (SCR) catalyst structures

    NASA Astrophysics Data System (ADS)

    Rajath, S.; Siddaraju, C.; Nandakishora, Y.; Roy, Sukumar

    2018-04-01

    The objective of this research is to evaluate certain specific mechanical properties of certain stainless steel wire mesh supported Selective catalytic reduction catalysts structures wherein the physical properties of the metal wire mesh and also its surface treatments played vital role thereby influencing the mechanical properties. As the adhesion between the stainless steel wire mesh and the catalyst material determines the bond strength and the erosion resistance of catalyst structures, surface modifications of the metal- wire mesh structure in order to facilitate the interface bonding is therefore very important to realize enhanced level of mechanical properties. One way to enhance such adhesion properties, the stainless steel wire mesh is treated with the various acids, i.e., chromic acid, phosphoric acid including certain mineral acids and combination of all those in various molar ratios that could generate surface active groups on metal surface that promotes good interface structure between the metal- wire mesh and metal oxide-based catalyst material and then the stainless steel wire mesh is dipped in the glass powder slurry containing some amount of organic binder. As a result of which the said catalyst material adheres to the metal-wire mesh surface more effectively that improves the erosion profile of supported catalysts structure including bond strength.

  7. Variations in Medical Subject Headings (MeSH) mapping: from the natural language of patron terms to the controlled vocabulary of mapped lists*

    PubMed Central

    Gault, Lora V.; Shultz, Mary; Davies, Kathy J.

    2002-01-01

    Objectives: This study compared the mapping of natural language patron terms to the Medical Subject Headings (MeSH) across six MeSH interfaces for the MEDLINE database. Methods: Test data were obtained from search requests submitted by patrons to the Library of the Health Sciences, University of Illinois at Chicago, over a nine-month period. Search request statements were parsed into separate terms or phrases. Using print sources from the National Library of Medicine, Each parsed patron term was assigned corresponding MeSH terms. Each patron term was entered into each of the selected interfaces to determine how effectively they mapped to MeSH. Data were collected for mapping success, accessibility of MeSH term within mapped list, and total number of MeSH choices within each list. Results: The selected MEDLINE interfaces do not map the same patron term in the same way, nor do they consistently lead to what is considered the appropriate MeSH term. Conclusions: If searchers utilize the MEDLINE database to its fullest potential by mapping to MeSH, the results of the mapping will vary between interfaces. This variance may ultimately impact the search results. These differences should be considered when choosing a MEDLINE interface and when instructing end users. PMID:11999175

  8. Variations in Medical Subject Headings (MeSH) mapping: from the natural language of patron terms to the controlled vocabulary of mapped lists.

    PubMed

    Gault, Lora V; Shultz, Mary; Davies, Kathy J

    2002-04-01

    This study compared the mapping of natural language patron terms to the Medical Subject Headings (MeSH) across six MeSH interfaces for the MEDLINE database. Test data were obtained from search requests submitted by patrons to the Library of the Health Sciences, University of Illinois at Chicago, over a nine-month period. Search request statements were parsed into separate terms or phrases. Using print sources from the National Library of Medicine, Each parsed patron term was assigned corresponding MeSH terms. Each patron term was entered into each of the selected interfaces to determine how effectively they mapped to MeSH. Data were collected for mapping success, accessibility of MeSH term within mapped list, and total number of MeSH choices within each list. The selected MEDLINE interfaces do not map the same patron term in the same way, nor do they consistently lead to what is considered the appropriate MeSH term. If searchers utilize the MEDLINE database to its fullest potential by mapping to MeSH, the results of the mapping will vary between interfaces. This variance may ultimately impact the search results. These differences should be considered when choosing a MEDLINE interface and when instructing end users.

  9. Adaptive mesh refinement and load balancing based on multi-level block-structured Cartesian mesh

    NASA Astrophysics Data System (ADS)

    Misaka, Takashi; Sasaki, Daisuke; Obayashi, Shigeru

    2017-11-01

    We developed a framework for a distributed-memory parallel computer that enables dynamic data management for adaptive mesh refinement and load balancing. We employed simple data structure of the building cube method (BCM) where a computational domain is divided into multi-level cubic domains and each cube has the same number of grid points inside, realising a multi-level block-structured Cartesian mesh. Solution adaptive mesh refinement, which works efficiently with the help of the dynamic load balancing, was implemented by dividing cubes based on mesh refinement criteria. The framework was investigated with the Laplace equation in terms of adaptive mesh refinement, load balancing and the parallel efficiency. It was then applied to the incompressible Navier-Stokes equations to simulate a turbulent flow around a sphere. We considered wall-adaptive cube refinement where a non-dimensional wall distance y+ near the sphere is used for a criterion of mesh refinement. The result showed the load imbalance due to y+ adaptive mesh refinement was corrected by the present approach. To utilise the BCM framework more effectively, we also tested a cube-wise algorithm switching where an explicit and implicit time integration schemes are switched depending on the local Courant-Friedrichs-Lewy (CFL) condition in each cube.

  10. Surface smoothing, decimation, and their effects on 3D biological specimens.

    PubMed

    Veneziano, Alessio; Landi, Federica; Profico, Antonio

    2018-06-01

    Smoothing and decimation filters are commonly used to restore the realistic appearance of virtual biological specimens, but they can cause a loss of topological information of unknown extent. In this study, we analyzed the effect of smoothing and decimation on a 3D mesh to highlight the consequences of an inappropriate use of these filters. Topological noise was simulated on four anatomical regions of the virtual reconstruction of an orangutan cranium. Sequential levels of smoothing and decimation were applied, and their effects were analyzed on the overall topology of the 3D mesh and on linear and volumetric measurements. Different smoothing algorithms affected mesh topology and measurements differently, although the influence on the latter was generally low. Decimation always produced detrimental effects on both topology and measurements. The application of smoothing and decimation, both separate and combined, is capable of recovering topological information. Based on the results, objective guidelines are provided to minimize information loss when using smoothing and decimation on 3D meshes. © 2018 Wiley Periodicals, Inc.

  11. Mesh refinement in a two-dimensional large eddy simulation of a forced shear layer

    NASA Technical Reports Server (NTRS)

    Claus, R. W.; Huang, P. G.; Macinnes, J. M.

    1989-01-01

    A series of large eddy simulations are made of a forced shear layer and compared with experimental data. Several mesh densities were examined to separate the effect of numerical inaccuracy from modeling deficiencies. The turbulence model that was used to represent small scale, 3-D motions correctly predicted some gross features of the flow field, but appears to be structurally incorrect. The main effect of mesh refinement was to act as a filter on the scale of vortices that developed from the inflow boundary conditions.

  12. Conservative management of mesh-site infection in hernia repair surgery: a case series.

    PubMed

    Meagher, H; Clarke Moloney, M; Grace, P A

    2015-04-01

    The aim of this study is to assess the outcome of conservative management of infected mesh grafts following abdominal wall hernia repair. This study retrospectively examined the charts of patients who developed mesh-site infection following surgery for abdominal hernia repair to determine how effective conservative management in the form of antibiotics and wound management was on the resolution of infection and wound healing. Over a period of 30 months, 13 patients developed infected mesh grafts post-hernia repair surgery. Twelve patients were successfully treated conservatively with local wound care and antibiotics if clinically indicated. One patient returned to theatre to have the infected mesh removed. Of the patients that healed eleven were treated with negative pressure wound therapy (VAC(®)). This series of case studies indicate that conservative management of abdominal wall-infected hernia mesh cases is likely to be successful.

  13. Floating shock fitting via Lagrangian adaptive meshes

    NASA Technical Reports Server (NTRS)

    Vanrosendale, John

    1994-01-01

    In recent works we have formulated a new approach to compressible flow simulation, combining the advantages of shock-fitting and shock-capturing. Using a cell-centered Roe scheme discretization on unstructured meshes, we warp the mesh while marching to steady state, so that mesh edges align with shocks and other discontinuities. This new algorithm, the Shock-fitting Lagrangian Adaptive Method (SLAM) is, in effect, a reliable shock-capturing algorithm which yields shock-fitted accuracy at convergence. Shock-capturing algorithms like this, which warp the mesh to yield shock-fitted accuracy, are new and relatively untried. However, their potential is clear. In the context of sonic booms, accurate calculation of near-field sonic boom signatures is critical to the design of the High Speed Civil Transport (HSCT). SLAM should allow computation of accurate N-wave pressure signatures on comparatively coarse meshes, significantly enhancing our ability to design low-boom configurations for high-speed aircraft.

  14. Box truss analysis and technology development. Task 1: Mesh analysis and control

    NASA Technical Reports Server (NTRS)

    Bachtell, E. E.; Bettadapur, S. S.; Coyner, J. V.

    1985-01-01

    An analytical tool was developed to model, analyze and predict RF performance of box truss antennas with reflective mesh surfaces. The analysis system is unique in that it integrates custom written programs for cord tied mesh surfaces, thereby drastically reducing the cost of analysis. The analysis system is capable of determining the RF performance of antennas under any type of manufacturing or operating environment by integrating together the various disciplines of design, finite element analysis, surface best fit analysis and RF analysis. The Integrated Mesh Analysis System consists of six separate programs: The Mesh Tie System Model Generator, The Loadcase Generator, The Model Optimizer, The Model Solver, The Surface Topography Solver and The RF Performance Solver. Additionally, a study using the mesh analysis system was performed to determine the effect of on orbit calibration, i.e., surface adjustment, on a typical box truss antenna.

  15. Nanofiber Orientation and Surface Functionalization Modulate Human Mesenchymal Stem Cell Behavior In Vitro

    PubMed Central

    Kolambkar, Yash M.; Bajin, Mehmet; Wojtowicz, Abigail; Hutmacher, Dietmar W.; García, Andrés J.

    2014-01-01

    Electrospun nanofiber meshes have emerged as a new generation of scaffold membranes possessing a number of features suitable for tissue regeneration. One of these features is the flexibility to modify their structure and composition to orchestrate specific cellular responses. In this study, we investigated the effects of nanofiber orientation and surface functionalization on human mesenchymal stem cell (hMSC) migration and osteogenic differentiation. We used an in vitro model to examine hMSC migration into a cell-free zone on nanofiber meshes and mitomycin C treatment to assess the contribution of proliferation to the observed migration. Poly (ɛ-caprolactone) meshes with oriented topography were created by electrospinning aligned nanofibers on a rotating mandrel, while randomly oriented controls were collected on a stationary collector. Both aligned and random meshes were coated with a triple-helical, type I collagen-mimetic peptide, containing the glycine-phenylalanine-hydroxyproline-glycine-glutamate-arginine (GFOGER) motif. Our results indicate that nanofiber GFOGER peptide functionalization and orientation modulate cellular behavior, individually, and in combination. GFOGER significantly enhanced the migration, proliferation, and osteogenic differentiation of hMSCs on nanofiber meshes. Aligned nanofiber meshes displayed increased cell migration along the direction of fiber orientation compared to random meshes; however, fiber alignment did not influence osteogenic differentiation. Compared to each other, GFOGER coating resulted in a higher proliferation-driven cell migration, whereas fiber orientation appeared to generate a larger direct migratory effect. This study demonstrates that peptide surface modification and topographical cues associated with fiber alignment can be used to direct cellular behavior on nanofiber mesh scaffolds, which may be exploited for tissue regeneration. PMID:24020454

  16. Trials of transvaginal mesh devices for pelvic organ prolapse: a systematic database review of the US FDA approval process.

    PubMed

    Heneghan, Carl J; Goldacre, Ben; Onakpoya, Igho; Aronson, Jeffrey K; Jefferson, Tom; Pluddemann, Annette; Mahtani, Kamal R

    2017-12-06

    Transvaginal mesh devices are approved in the USA by the Food and Drug Administration (FDA), through the 510(k) system. However, there is uncertainty about the benefit to harm balance of mesh approved for pelvic organ prolapse. We, therefore, assessed the evidence at the time of approval for transvaginal mesh products and the impact of safety studies the FDA mandated in 2012 because of emerging harms. We used FDA databases to determine the evidence for approval of transvaginal mesh. To create a 'family tree' of device equivalence, we used the 510(k) regulatory approval of the 1985 Mersilene Mesh (Ethicon) and the 1996 ProteGen Sling (Boston Scientific), searched for all subsequently related device approvals, and for the first published randomised trial evidence. We assessed compliance with all FDA 522 orders issued in 2012 requiring postmarketing surveillance studies. We found 61 devices whose approval ultimately relied on claimed equivalence to the Mersilene Mesh and the ProteGen Sling. We found no clinical trials evidence for these 61 devices at the time of approval. Publication of randomised clinical trials occurred at a median of 5 years after device approval (range 1-14 years). Analysis of 119 FDA 522 orders revealed that in 79 (66%) the manufacturer ceased market distribution of the device, and in 26 (22%) the manufacturer had changed the indication. Only seven studies (six cohorts and new randomised controlled trial) covering 11 orders were recruiting participants (none had reported outcomes). Transvaginal mesh products for pelvic organ prolapse have been approved on the basis of weak evidence over the last 20 years. Devices have inherited approval status from a few products. A publicly accessible registry of licensed invasive devices, with details of marketing status and linked evidence, should be created and maintained at the time of approval. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. A Simplified Mesh Deformation Method Using Commercial Structural Analysis Software

    NASA Technical Reports Server (NTRS)

    Hsu, Su-Yuen; Chang, Chau-Lyan; Samareh, Jamshid

    2004-01-01

    Mesh deformation in response to redefined or moving aerodynamic surface geometries is a frequently encountered task in many applications. Most existing methods are either mathematically too complex or computationally too expensive for usage in practical design and optimization. We propose a simplified mesh deformation method based on linear elastic finite element analyses that can be easily implemented by using commercially available structural analysis software. Using a prescribed displacement at the mesh boundaries, a simple structural analysis is constructed based on a spatially varying Young s modulus to move the entire mesh in accordance with the surface geometry redefinitions. A variety of surface movements, such as translation, rotation, or incremental surface reshaping that often takes place in an optimization procedure, may be handled by the present method. We describe the numerical formulation and implementation using the NASTRAN software in this paper. The use of commercial software bypasses tedious reimplementation and takes advantage of the computational efficiency offered by the vendor. A two-dimensional airfoil mesh and a three-dimensional aircraft mesh were used as test cases to demonstrate the effectiveness of the proposed method. Euler and Navier-Stokes calculations were performed for the deformed two-dimensional meshes.

  18. On the application of hybrid meshes in hydraulic machinery CFD simulations

    NASA Astrophysics Data System (ADS)

    Schlipf, M.; Tismer, A.; Riedelbauch, S.

    2016-11-01

    The application of two different hybrid mesh types for the simulation of a Francis runner for automated optimization processes without user input is investigated. Those mesh types are applied to simplified test cases such as flow around NACA airfoils to identify the special mesh resolution effects with reduced complexity, like rotating cascade flows, as they occur in a turbomachine runner channel. The analysis includes the application of those different meshes on the geometries by keeping defined quality criteria and exploring the influences on the simulation results. All results are compared with reference values gained by simulations with blockstructured hexahedron meshes and the same numerical scheme. This avoids additional inaccuracies caused by further numerical and experimental measurement methods. The results show that a simulation with hybrid meshes built up by a blockstructured domain with hexahedrons around the blade in combination with a tetrahedral far field in the channel is sufficient to get results which are almost as accurate as the results gained by the reference simulation. Furthermore this method is robust enough for automated processes without user input and enables comparable meshes in size, distribution and quality for different similar geometries as occurring in optimization processes.

  19. Mesh size effects on assessments of planktonic hydrozoan abundance and assemblage structure

    NASA Astrophysics Data System (ADS)

    Nogueira Júnior, Miodeli; Pukanski, Luis Eduardo de M.; Souza-Conceição, José M.

    2015-04-01

    The choice of appropriate mesh-size is paramount to accurately quantify planktonic assemblages, however there is no such information available for hydrozoans. Here planktonic hydrozoan abundance and assemblage structure were compared using 200 and 500 μm meshes at Babitonga estuary (S Brazil), throughout a year cycle. Species richness and Shannon-Wiener diversity were higher in the 200 μm mesh, while evenness was typically higher in the 500 μm. Assemblage structure was significantly different between meshes (PERMANOVA, P < 0.05; n = 72 pairs of samples) both regarding taxa and size composition. These discrepancies are due to significant underestimation of small hydromedusae by the coarse mesh, like Obelia spp., young Liriope tetraphylla, Podocoryna loyola and others. Yet, larger taxa like Eucheilota maculata and adult L. tetraphylla were more abundant in the coarse mesh on some occasions and others such as Blackfordia virginica and Muggiaea kochi were similarly represented in both meshes. Overall collection efficiency of the coarse mesh (CE500) was 14.4%, with monthly averages between 1.6% and 43.0%, in July (winter) and January (summer) respectively. Differences between the meshes were size-dependent; CE500 was ~ 0.3% for hydrozoans sizing < 0.5 mm, ~ 21% for those between 1 and 2 mm, ~ 56% for those between 2 and 4 mm, and nearly 100% for larger ones, reaching up to 312% for hydrozoans > 8 mm in October. These results suggest that both meshes have their drawbacks and the best choice would depend on the objectives of each study. Nevertheless species richness, total abundances and most taxa were better represented by the 200 μm mesh, suggesting that it is more appropriate to quantitatively sample planktonic hydrozoan assemblages.

  20. Effects of mesh-related complications in vaginal surgery on quality of life.

    PubMed

    Kowalik, Claudia R; Lakeman, Mariëlle M E; de Kraker, Alyde T; Roovers, Jan Paul W R

    2018-06-16

    Vaginal mesh surgery is subject of debate due to the impact of mesh-related complications on patient's lives. Not all of these complications are symptomatic. Restoration of the anatomy and improvement of pelvic floor function as a result may counter the experienced discomfort related to adverse events. We hypothesized that health-related quality of life (HR-QoL) is comparable in women after vaginal mesh surgery regardless of the presence or absence of a mesh-specific complication. This was a cross-sectional study of 128 women who had vaginal mesh surgery in a Dutch university hospital between 2007 and 2012. HR-QoL was measured in women with and without mesh complications using standardized QoL questionnaires Urogenital Distress Inventory-6 (UDI-6), Incontinence Impact Questionnaire (IIQ), Defecation Distress Inventory (DDI), and Pelvic Organ Prolapse/Urinary Incontinence Sexual Function Questionnaire (PISQ-12). Complications were scored according to the International Urogynecological Association (IUGA) complication classification. Comparisons between groups were performed with Student's t test and analysis of variance (ANOVA) test. In 29 (23%) women, a mesh-related complication occurred. The domain scores of the UDI-6, DDI, IIQ, and PISQ showed no statistically significant differences between women with and without a mesh-related complication. A post hoc analysis showed similar HR-QoL for those in whom the complication had been resolved and those with persistent symptoms of the complication. Mesh surgery imposes specific complications. When counseling patients about the potential adverse events related to vaginal mesh surgery, it is important to inform them that mesh-related complications do not negatively affect QoL related to micturition, defecation, and sexual functioning.

  1. Evaluation of a simple method for the automatic assignment of MeSH descriptors to health resources in a French online catalogue.

    PubMed

    Névéol, Aurélie; Pereira, Suzanne; Kerdelhué, Gaetan; Dahamna, Badisse; Joubert, Michel; Darmoni, Stéfan J

    2007-01-01

    The growing number of resources to be indexed in the catalogue of online health resources in French (CISMeF) calls for curating strategies involving automatic indexing tools while maintaining the catalogue's high indexing quality standards. To develop a simple automatic tool that retrieves MeSH descriptors from documents titles. In parallel to research on advanced indexing methods, a bag-of-words tool was developed for timely inclusion in CISMeF's maintenance system. An evaluation was carried out on a corpus of 99 documents. The indexing sets retrieved by the automatic tool were compared to manual indexing based on the title and on the full text of resources. 58% of the major main headings were retrieved by the bag-of-words algorithm and the precision on main heading retrieval was 69%. Bag-of-words indexing has effectively been used on selected resources to be included in CISMeF since August 2006. Meanwhile, on going work aims at improving the current version of the tool.

  2. Prophylactic mesh to prevent parastomal hernia after end colostomy: a meta-analysis and trial sequential analysis.

    PubMed

    López-Cano, M; Brandsma, H-T; Bury, K; Hansson, B; Kyle-Leinhase, I; Alamino, J G; Muysoms, F

    2017-04-01

    Prevention of parastomal hernia (PSH) formation is crucial, given the high prevalence and difficulties in the surgical repair of PSH. To investigate the effect of a preventive mesh in PSH formation after an end colostomy, we aimed to meta-analyze all relevant randomized controlled trials (RCTs). We searched five databases. For each trial, we extracted risk ratios (RRs) of the effects of mesh or no mesh. The primary outcome was incidence of PSH with a minimum follow-up of 12 months with a clinical and/or computed tomography diagnosis. RRs were combined using the random-effect model (Mantel-Haenszel). To control the risk of type I error, we performed a trial sequential analysis (TSA). Seven RCTs with low risk of bias (451 patients) were included. Meta-analysis for primary outcome showed a significant reduction of the incidence of PSH using a mesh (RR 0.43, 95% CI 0.26-0.71; P = 0.0009). Regarding TSA calculation for the primary outcome, the accrued information size (451) was 187.1% of the estimated required information size (RIS) (241). Wound infection showed no statistical differences between groups (RR 0.77, 95% CI 0.39-1.54; P = 0.46). PSH repair rate showed a significant reduction in the mesh group (RR 0.28 (95% CI 0.10-0.78; P = 0.01). PSH prevention with mesh when creating an end colostomy reduces the incidence of PSH, the risk for subsequent PSH repair and does not increase wound infections. TSA shows that the RIS is reached for the primary outcome. Additional RCTs in the previous context are not needed.

  3. Configuring the Mesh Size, Side Taper and Wing Depth of Penaeid Trawls to Reduce Environmental Impacts

    PubMed Central

    Broadhurst, Matt K.; Sterling, David J.; Millar, Russell B.

    2014-01-01

    The effects of reducing mesh size while concomitantly varying the side taper and wing depth of a generic penaeid-trawl body were investigated to improve engineering performance and minimize bycatch. Five trawl bodies (with the same codends) were tested across various environmental (e.g. depth and current) and biological (e.g. species and sizes) conditions. The first trawl body comprised 41-mm mesh and represented conventional designs (termed the ‘41 long deep-wing'), while the remaining trawl bodies were made from 32-mm mesh and differed only in their side tapers, and therefore length (i.e. 1N3B or ‘long’ and ∼28o to the tow direction vs 1N5B or ‘short’ and ∼35o) and wing depths (‘deep’–97 T vs ‘shallow’–60 T). There were incremental drag reductions (and therefore fuel savings – by up to 18 and 12% per h and ha trawled) associated with reducing twine area via either modification, and subsequently minimizing otter-board area in attempts to standardize spread. Side taper and wing depth had interactive and varied effects on species selectivity, but compared to the conventional 41 long deep-wing trawl, the 32 short shallow-wing trawl (i.e. the least twine area) reduced the total bycatch by 57% (attributed to more fish swimming forward and escaping). In most cases, all small-meshed trawls also caught more smaller school prawns Metapenaeus macleayi but to decrease this effect it should be possible to increase mesh size slightly, while still maintaining the above engineering benefits and species selectivity. The results support precisely optimizing mesh size as a precursor to any other anterior penaeid-trawl modifications designed to improve environmental performance. PMID:24911786

  4. An eFTD-VP framework for efficiently generating patient-specific anatomically detailed facial soft tissue FE mesh for craniomaxillofacial surgery simulation

    PubMed Central

    Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime

    2017-01-01

    Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians’ need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical simulation of facial soft tissue change. PMID:29027022

  5. An Adaptive Mesh Algorithm: Mesh Structure and Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scannapieco, Anthony J.

    2016-06-21

    The purpose of Adaptive Mesh Refinement is to minimize spatial errors over the computational space not to minimize the number of computational elements. The additional result of the technique is that it may reduce the number of computational elements needed to retain a given level of spatial accuracy. Adaptive mesh refinement is a computational technique used to dynamically select, over a region of space, a set of computational elements designed to minimize spatial error in the computational model of a physical process. The fundamental idea is to increase the mesh resolution in regions where the physical variables are represented bymore » a broad spectrum of modes in k-space, hence increasing the effective global spectral coverage of those physical variables. In addition, the selection of the spatially distributed elements is done dynamically by cyclically adjusting the mesh to follow the spectral evolution of the system. Over the years three types of AMR schemes have evolved; block, patch and locally refined AMR. In block and patch AMR logical blocks of various grid sizes are overlaid to span the physical space of interest, whereas in locally refined AMR no logical blocks are employed but locally nested mesh levels are used to span the physical space. The distinction between block and patch AMR is that in block AMR the original blocks refine and coarsen entirely in time, whereas in patch AMR the patches change location and zone size with time. The type of AMR described herein is a locally refi ned AMR. In the algorithm described, at any point in physical space only one zone exists at whatever level of mesh that is appropriate for that physical location. The dynamic creation of a locally refi ned computational mesh is made practical by a judicious selection of mesh rules. With these rules the mesh is evolved via a mesh potential designed to concentrate the nest mesh in regions where the physics is modally dense, and coarsen zones in regions where the physics is modally sparse.« less

  6. An eFTD-VP framework for efficiently generating patient-specific anatomically detailed facial soft tissue FE mesh for craniomaxillofacial surgery simulation.

    PubMed

    Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime; Liebschner, Michael A K; Xia, James J

    2018-04-01

    Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians' need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical simulation of facial soft tissue change.

  7. [Abdominal traumatic evisceration: reconstruction abdominal wall with biologic mesh and negative pressure therapy].

    PubMed

    Jiménez Gómez, M; Betancor Rivera, N; Lima Sánchez, J; Hernández Hernández, J R

    2016-04-10

    Abdominal traumatic evisceration as a result of high energy trauma is uncommon. Once repaired the possible internal damage, an abdominal wall defect of high complexity may exist, whose reconstruction represents a surgical challenge. Politraumatized male with important abdominal muculocutaneous avulsion and evisceration. After initial repair, the patient developed a big eventration in which we use a porcine dermis-derived mesh (Permacol TM ), a safe and effective alternative in abdominal wall repair, thanks to its seamless integration with other tissues, even when exposed. Negative pressure therapy has been used for the management of wound complications after surgical implantation of PermacolTM mesh. We describe our experience with the use of PermacolTM mesh and negative pressure therapy to aid the wound closure after skin necrosis and exposed mesh.

  8. Procedure for Adapting Direct Simulation Monte Carlo Meshes

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael S.; Wilmoth, Richard G.; Carlson, Ann B.; Rault, Didier F. G.

    1992-01-01

    A technique is presented for adapting computational meshes used in the G2 version of the direct simulation Monte Carlo method. The physical ideas underlying the technique are discussed, and adaptation formulas are developed for use on solutions generated from an initial mesh. The effect of statistical scatter on adaptation is addressed, and results demonstrate the ability of this technique to achieve more accurate results without increasing necessary computational resources.

  9. Titanium Mesh Shaping and Fixation for the Treatment of Comminuted Mandibular Fractures.

    PubMed

    Dai, Jiewen; Shen, Guofang; Yuan, Hao; Zhang, Wenbin; Shen, Shunyao; Shi, Jun

    2016-02-01

    Treating comminuted mandibular fractures remains a challenge. In this study, we used titanium mesh to treat comminuted mandibular fractures. Nine patients with traumatically comminuted mandibular fractures who received open reduction and internal stable fixation with titanium mesh were retrospectively reviewed. Open reduction-internal stable fixation was performed 7 to 10 days after primary debridement of the facial trauma. After the fractured mandible and the displaced fragments were reduced, the titanium mesh was reshaped according to the morphology of the mandible, and the reduced bone fragments were fixed with the reshaped titanium mesh and screws. Then, the surgical effects were evaluated during routine follow-up. Most of the displaced fragments were preserved and exhibited a favorable shaping ability in restoring the morphology of the mandible during surgery. No intraoperative complications were encountered. In addition, all patients were infection free, with no obvious resorption in the fixed fragments after surgery. The mandible also exhibited favorable morphology and offered sufficient bone mass for dental implantation or a denture prosthesis. We conclude that titanium mesh shaping and fixation can effectively treat comminuted mandibular fractures with little bone fragment loss, little soft tissue exposure, a low infection rate, and favorable mandibular morphology. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  10. Fabrication of superhydrophobic nano-aluminum films on stainless steel meshes by electrophoretic deposition for oil-water separation

    NASA Astrophysics Data System (ADS)

    Xu, Zhe; Jiang, Deyi; Wei, Zhibo; Chen, Jie; Jing, Jianfeng

    2018-01-01

    Stainless steel meshes with superhydrophobic surfaces were successfully fabricated via a facile electrophoretic deposition process. The surface morphology and chemical compositions were characterized by a field emission scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscope (EDS), X-ray diffraction (XRD) and fourier-transform infrared spectrophotometer (FTIR). After stearic acid modification, the obtained nano-aluminum films on stainless steel meshes showed an excellent superhydrophobic properties with a water contact angle of 160° ± 1.2° and a water sliding angle of less than 5°. In addition, on the basis of the superhydrophobic meshes, a simple, continuous oil-water separation apparatus was designed, and the oil-water separation efficiency was up to 95.8% ± 0.9%. Meanwhile, after 20 oil-water separation cycles, the separation efficiency without significant reduction suggested the stable performance of superhydrophobic stainless steel meshes on the oil-water separation. Moreover, the flow rate of oil-water mixture and effective separation length were investigated to determine their effects on the oil-water separation efficiency, respectively. Our work provides a cost-efficient method to prepare stable superhydrophobic nano-Al films on stainless steel meshes, and it has promising practical applications on oil-water separation.

  11. Beyond coverage: improving the quality of antenatal care delivery through integrated mentorship and quality improvement at health centers in rural Rwanda.

    PubMed

    Manzi, Anatole; Nyirazinyoye, Laetitia; Ntaganira, Joseph; Magge, Hema; Bigirimana, Evariste; Mukanzabikeshimana, Leoncie; Hirschhorn, Lisa R; Hedt-Gauthier, Bethany

    2018-02-23

    Inadequate antenatal care (ANC) can lead to missed diagnosis of danger signs or delayed referral to emergency obstetrical care, contributing to maternal mortality. In developing countries, ANC quality is often limited by skill and knowledge gaps of the health workforce. In 2011, the Mentorship, Enhanced Supervision for Healthcare and Quality Improvement (MESH-QI) program was implemented to strengthen providers' ANC performance at 21 rural health centers in Rwanda. We evaluated the effect of MESH-QI on the completeness of danger sign assessments. Completeness of danger sign assessments was measured by expert nurse mentors using standardized observation checklists. Checklists completed from October 2010 to May 2011 (n = 330) were used as baseline measurement and checklists completed between February and November 2012 (12-15 months after the start of MESH-QI implementation) were used for follow-up. We used a mixed-effects linear regression model to assess the effect of the MESH-QI intervention on the danger sign assessment score, controlling for potential confounders and the clustering of effect at the health center level. Complete assessment of all danger signs improved from 2.1% at baseline to 84.2% after MESH-QI (p <  0.001). Similar improvements were found for 20 of 23 other essential ANC screening items. After controlling for potential confounders, the improvement in danger sign assessment score was significant. However, the effect of the MESH-QI was different by intervention district and type of observed ANC visit. In Southern Kayonza District, the increase in the danger sign assessment score was 6.28 (95% CI: 5.59, 6.98) for non-first ANC visits and 5.39 (95% CI: 4.62, 6.15) for first ANC visits. In Kirehe District, the increase in danger sign assessment score was 4.20 (95% CI: 3.59, 4.80) for non-first ANC visits and 3.30 (95% CI: 2.80, 3.81) for first ANC visits. Assessment of critical danger signs improved under MESH-QI, even when controlling for nurse-mentees' education level and previous training in focused ANC. MESH-QI offers an approach to enhance quality of care after traditional training and may be an approach to support newer providers who have not yet attended content-focused courses.

  12. An adaptive mesh refinement-multiphase lattice Boltzmann flux solver for simulation of complex binary fluid flows

    NASA Astrophysics Data System (ADS)

    Yuan, H. Z.; Wang, Y.; Shu, C.

    2017-12-01

    This paper presents an adaptive mesh refinement-multiphase lattice Boltzmann flux solver (AMR-MLBFS) for effective simulation of complex binary fluid flows at large density ratios. In this method, an AMR algorithm is proposed by introducing a simple indicator on the root block for grid refinement and two possible statuses for each block. Unlike available block-structured AMR methods, which refine their mesh by spawning or removing four child blocks simultaneously, the present method is able to refine its mesh locally by spawning or removing one to four child blocks independently when the refinement indicator is triggered. As a result, the AMR mesh used in this work can be more focused on the flow region near the phase interface and its size is further reduced. In each block of mesh, the recently proposed MLBFS is applied for the solution of the flow field and the level-set method is used for capturing the fluid interface. As compared with existing AMR-lattice Boltzmann models, the present method avoids both spatial and temporal interpolations of density distribution functions so that converged solutions on different AMR meshes and uniform grids can be obtained. The proposed method has been successfully validated by simulating a static bubble immersed in another fluid, a falling droplet, instabilities of two-layered fluids, a bubble rising in a box, and a droplet splashing on a thin film with large density ratios and high Reynolds numbers. Good agreement with the theoretical solution, the uniform-grid result, and/or the published data has been achieved. Numerical results also show its effectiveness in saving computational time and virtual memory as compared with computations on uniform meshes.

  13. Using multi-terminology indexing for the assignment of MeSH descriptors to health resources in a French online catalogue

    PubMed Central

    Pereira, Suzanne; Névéol, Aurélie; Kerdelhué, Gaétan; Serrot, Elisabeth; Joubert, Michel; Darmoni, Stéfan J.

    2008-01-01

    Background: To assist with the development of a French online quality-controlled health gateway (CISMeF), an automatic indexing tool assigning MeSH descriptors to medical text in French was created. The French Multi-Terminology Indexer (F-MTI) relies on a multi-terminology approach involving four prominent medical terminologies and the mappings between them. Objective: In this paper, we compare lemmatization and stemming as methods to process French medical text for indexing. We also evaluate the multi-terminology approach implemented in F-MTI. Methods: The indexing strategies were assessed on a corpus of 18,814 resources indexed manually. Results: There is little difference in the indexing performance when lemmatization or stemming is used. However, the multi-terminology approach outperforms indexing relying on a single terminology in terms of recall. Conclusion: F-MTI will soon be used in the CISMeF production environment and in a Health MultiTerminology Server in French. PMID:18998933

  14. A Recent Advance in the Automatic Indexing of the Biomedical Literature

    PubMed Central

    Névéol, Aurélie; Shooshan, Sonya E.; Humphrey, Susanne M.; Mork, James G.; Aronson, Alan R.

    2009-01-01

    The volume of biomedical literature has experienced explosive growth in recent years. This is reflected in the corresponding increase in the size of MEDLINE®, the largest bibliographic database of biomedical citations. Indexers at the U.S. National Library of Medicine (NLM) need efficient tools to help them accommodate the ensuing workload. After reviewing issues in the automatic assignment of Medical Subject Headings (MeSH® terms) to biomedical text, we focus more specifically on the new subheading attachment feature for NLM’s Medical Text Indexer (MTI). Natural Language Processing, statistical, and machine learning methods of producing automatic MeSH main heading/subheading pair recommendations were assessed independently and combined. The best combination achieves 48% precision and 30% recall. After validation by NLM indexers, a suitable combination of the methods presented in this paper was integrated into MTI as a subheading attachment feature producing MeSH indexing recommendations compliant with current state-of-the-art indexing practice. PMID:19166973

  15. A flexible nonlinear diffusion acceleration method for the S N transport equations discretized with discontinuous finite elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schunert, Sebastian; Wang, Yaqi; Gleicher, Frederick

    This paper presents a flexible nonlinear diffusion acceleration (NDA) method that discretizes both the S N transport equation and the diffusion equation using the discontinuous finite element method (DFEM). The method is flexible in that the diffusion equation can be discretized on a coarser mesh with the only restriction that it is nested within the transport mesh and the FEM shape function orders of the two equations can be different. The consistency of the transport and diffusion solutions at convergence is defined by using a projection operator mapping the transport into the diffusion FEM space. The diffusion weak form ismore » based on the modified incomplete interior penalty (MIP) diffusion DFEM discretization that is extended by volumetric drift, interior face, and boundary closure terms. In contrast to commonly used coarse mesh finite difference (CMFD) methods, the presented NDA method uses a full FEM discretized diffusion equation for acceleration. Suitable projection and prolongation operators arise naturally from the FEM framework. Via Fourier analysis and numerical experiments for a one-group, fixed source problem the following properties of the NDA method are established for structured quadrilateral meshes: (1) the presented method is unconditionally stable and effective in the presence of mild material heterogeneities if the same mesh and identical shape functions either of the bilinear or biquadratic type are used, (2) the NDA method remains unconditionally stable in the presence of strong heterogeneities, (3) the NDA method with bilinear elements extends the range of effectiveness and stability by a factor of two when compared to CMFD if a coarser diffusion mesh is selected. In addition, the method is tested for solving the C5G7 multigroup, eigenvalue problem using coarse and fine mesh acceleration. Finally, while NDA does not offer an advantage over CMFD for fine mesh acceleration, it reduces the iteration count required for convergence by almost a factor of two in the case of coarse mesh acceleration.« less

  16. A flexible nonlinear diffusion acceleration method for the S N transport equations discretized with discontinuous finite elements

    DOE PAGES

    Schunert, Sebastian; Wang, Yaqi; Gleicher, Frederick; ...

    2017-02-21

    This paper presents a flexible nonlinear diffusion acceleration (NDA) method that discretizes both the S N transport equation and the diffusion equation using the discontinuous finite element method (DFEM). The method is flexible in that the diffusion equation can be discretized on a coarser mesh with the only restriction that it is nested within the transport mesh and the FEM shape function orders of the two equations can be different. The consistency of the transport and diffusion solutions at convergence is defined by using a projection operator mapping the transport into the diffusion FEM space. The diffusion weak form ismore » based on the modified incomplete interior penalty (MIP) diffusion DFEM discretization that is extended by volumetric drift, interior face, and boundary closure terms. In contrast to commonly used coarse mesh finite difference (CMFD) methods, the presented NDA method uses a full FEM discretized diffusion equation for acceleration. Suitable projection and prolongation operators arise naturally from the FEM framework. Via Fourier analysis and numerical experiments for a one-group, fixed source problem the following properties of the NDA method are established for structured quadrilateral meshes: (1) the presented method is unconditionally stable and effective in the presence of mild material heterogeneities if the same mesh and identical shape functions either of the bilinear or biquadratic type are used, (2) the NDA method remains unconditionally stable in the presence of strong heterogeneities, (3) the NDA method with bilinear elements extends the range of effectiveness and stability by a factor of two when compared to CMFD if a coarser diffusion mesh is selected. In addition, the method is tested for solving the C5G7 multigroup, eigenvalue problem using coarse and fine mesh acceleration. Finally, while NDA does not offer an advantage over CMFD for fine mesh acceleration, it reduces the iteration count required for convergence by almost a factor of two in the case of coarse mesh acceleration.« less

  17. The application of the mesh-free method in the numerical simulations of the higher-order continuum structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yuzhou, E-mail: yuzhousun@126.com; Chen, Gensheng; Li, Dongxia

    2016-06-08

    This paper attempts to study the application of mesh-free method in the numerical simulations of the higher-order continuum structures. A high-order bending beam considers the effect of the third-order derivative of deflections, and can be viewed as a one-dimensional higher-order continuum structure. The moving least-squares method is used to construct the shape function with the high-order continuum property, the curvature and the third-order derivative of deflections are directly interpolated with nodal variables and the second- and third-order derivative of the shape function, and the mesh-free computational scheme is establish for beams. The coupled stress theory is introduced to describe themore » special constitutive response of the layered rock mass in which the bending effect of thin layer is considered. The strain and the curvature are directly interpolated with the nodal variables, and the mesh-free method is established for the layered rock mass. The good computational efficiency is achieved based on the developed mesh-free method, and some key issues are discussed.« less

  18. Numerical Issues for Circulation Control Calculations

    NASA Technical Reports Server (NTRS)

    Swanson, Roy C., Jr.; Rumsey, Christopher L.

    2006-01-01

    Steady-state and time-accurate two-dimensional solutions of the compressible Reynolds-averaged Navier- Stokes equations are obtained for flow over the Lockheed circulation control (CC) airfoil and the General Aviation CC (GACC) airfoil. Numerical issues in computing circulation control flows such as the effects of grid resolution, boundary and initial conditions, and unsteadiness are addressed. For the Lockheed CC airfoil computed solutions are compared with detailed experimental data, which include velocity and Reynolds stress profiles. Three turbulence models, having either one or two transport equations, are considered. Solutions are obtained on a sequence of meshes, with mesh refinement primarily concentrated on the airfoil circular trailing edge. Several effects related to mesh refinement are identified. For example, sometimes sufficient mesh resolution can exclude nonphysical solutions, which can occur in CC airfoil calculations. Also, sensitivities of the turbulence models with mesh refinement are discussed. In the case of the GACC airfoil the focus is on the difference between steady-state and time-accurate solutions. A specific objective is to determine if there is self-excited vortex shedding from the jet slot lip.

  19. Efficacy of Prophylactic Mesh in End-Colostomy Construction: A Systematic Review and Meta-analysis of Randomized Controlled Trials.

    PubMed

    Wang, Shuanhu; Wang, Wenbin; Zhu, Bing; Song, Guolei; Jiang, Congqiao

    2016-10-01

    Parastomal hernia is a very common complication after colostomy, especially end-colostomy. It is unclear whether prophylactic placement of mesh at the time of stoma formation could prevent parastomal hernia formation after surgery for rectal cancer. A systematic review and meta-analysis were conducted to evaluate the efficacy of prophylactic mesh in end-colostomy construction. PubMed, Embase, and the Cochrane Library were searched, covering records entered from their inception to September 2015. Randomized controlled trials (RCTs) comparing stoma with mesh to stoma without mesh after surgery for rectal cancer were included. The primary outcome was the incidence of parastomal hernia. Pooled risk ratios (RR) with 95 % confidence intervals (CI) were obtained using random effects models. Six RCTs containing 309 patients were included. Parastomal hernia occurred in 24.4 % (38 of 156) of patients with mesh and 50.3 % (77 of 153) of patients without mesh. Meta-analysis showed a lower incidence of parastomal hernia (RR, 0.42; 95 % CI 0.22-0.82) and reoperation related to parastomal hernia (RR, 0.23; 95 % CI 0.06-0.89) in patients with mesh. Stoma-related morbidity was similar between mesh group and non-mesh group (RR, 0.65; 95 % CI 0.33-1.30). Prophylactic placement of a mesh at the time of a stoma formation seems to be associated with a significant reduction in the incidence of parastomal hernia and reoperation related to parastomal hernia after surgery for rectal cancer, but not the rate of stoma-related morbidity. However, the results should be interpreted with caution because of the heterogeneity among the studies.

  20. Fog water collection effectiveness: Mesh intercomparisons

    USGS Publications Warehouse

    Fernandez, Daniel; Torregrosa, Alicia; Weiss-Penzias, Peter; Zhang, Bong June; Sorensen, Deckard; Cohen, Robert; McKinley, Gareth; Kleingartner, Justin; Oliphant, Andrew; Bowman, Matthew

    2018-01-01

    To explore fog water harvesting potential in California, we conducted long-term measurements involving three types of mesh using standard fog collectors (SFC). Volumetric fog water measurements from SFCs and wind data were collected and recorded in 15-minute intervals over three summertime fog seasons (2014–2016) at four California sites. SFCs were deployed with: standard 1.00 m2 double-layer 35% shade coefficient Raschel; stainless steel mesh coated with the MIT-14 hydrophobic formulation; and FogHa-Tin, a German manufactured, 3-dimensional spacer fabric deployed in two orientations. Analysis of 3419 volumetric samples from all sites showed strong relationships between mesh efficiency and wind speed. Raschel mesh collected 160% more fog water than FogHa-Tin at wind speeds less than 1 m s–1 and 45% less for wind speeds greater than 5 m s–1. MIT-14 coated stainless-steel mesh collected more fog water than Raschel mesh at all wind speeds. At low wind speeds of < 1 m s–1 the coated stainless steel mesh collected 3% more and at wind speeds of 4–5 m s–1, it collected 41% more. FogHa-Tin collected 5% more fog water when the warp of the weave was oriented vertically, per manufacturer specification, than when the warp of the weave was oriented horizontally. Time series measurements of three distinct mesh across similar wind regimes revealed inconsistent lags in fog water collection and inconsistent performance. Since such differences occurred under similar wind-speed regimes, we conclude that other factors play important roles in mesh performance, including in-situ fog event and aerosol dynamics that affect droplet-size spectra and droplet-to-mesh surface interactions.

  1. Effect of mesh-peel ply variation on mechanical properties of E-glas composite by infusion vacuum method

    NASA Astrophysics Data System (ADS)

    Abdurohman, K.; Siahaan, Mabe

    2018-04-01

    Composite materials made of glass fiber EW-135 with epoxy lycal resin with vacuum infusion method have been performed. The dried glass fiber is arranged in a mold then connected to a vacuum machine and a resin tube. Then, the vacuum machine is turned on and at the same time the resin is sucked and flowed into the mold. This paper reports on the effect of using mesh- peel ply singles on upper-side laminates called A and the effect of using double mesh-peel ply on upper and lower-side laminates call B with glass fiber arrangement is normal and ± 450 in vacuum infusion process. Followed by the manufacture of tensile test specimen and tested its tensile strength with universal test machine 100kN Tensilon RTF 2410, at room temperature with constant crosshead speed. From tensile test results using single and double layers showed that double mesh-peel ply can increase tensile strength 14% and Young modulus 17%.

  2. Does Attorney Advertising Influence Patient Perceptions of Pelvic Mesh?

    PubMed

    Tippett, Elizabeth; King, Jesse; Lucent, Vincent; Ephraim, Sonya; Murphy, Miles; Taff, Eileen

    2018-01-01

    To measure the relative influence of attorney advertising on patient perceptions of pelvic mesh compared with a history of surgery and a first urology visit. A 52-item survey was administered to 170 female patients in 2 urology offices between 2014 and 2016. Multiple survey items were combined to form scales for benefit and risk perceptions of pelvic mesh, perceptions of the advertising, attitudes toward pelvic mesh, and knowledge of pelvic mesh and underlying medical conditions. Data were analyzed using hierarchical linear regression models. Exposure to attorney advertising was quite high; 88% reported seeing a mesh-related attorney advertisement in the last 6 months. Over half of patients reported seeing attorney advertisements more than once per week. A history of prior mesh implant surgery was the strongest predictor of benefit and risk perceptions of pelvic mesh. Exposure to attorney advertising was associated with higher risk perceptions but did not significantly affect perceptions of benefits. Past urologist visits increased perceptions of benefits but had no effect on risk perceptions. Attorney advertising appears to have some influence on risk perceptions, but personal experience and discussions with a urogynecologist or urologist also influence patient perceptions. Implications, limitations, and future research are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Effects of polyglactin mesh combined with resorbable calcium carbonate or replamineform hydroxyapatite on periodontal repair in dogs.

    PubMed

    Moon, I S; Chai, J K; Cho, K S; Wikesjö, U M; Kim, C K

    1996-10-01

    This study evaluates periodontal repair and biomaterial reaction following implantation of a polyglactin mesh with or without porous resorbable calcium carbonate (RCC) or porous replamineform hydroxyapatite (RHA) in conjunction with reconstructive surgery. Ligature- and surgically-induced interproximal periodontal defects of left and right mandibular premolar teeth in 7 dogs were used. Bilaterally, mesial defects of the 2nd, 3rd and 4th premolar teeth were treated with polyglactin mesh, polyglactin mesh and RHA, or polyglactin mesh and RCC, respectively. The polyglactin mesh, shaped according to the contour of the defect, was adapted to the experimental teeth; its coronal margin positioned immediately apical to the cemento-enamel junction. Gingival flap margins were adapted and sutured to cover the polyglactin mesh completely. Clinical healing was generally uneventful. The dogs were sacrificed to provide block sections for histologic evaluation at 1, 3, 6, 12, 26, 32 and 56 weeks following wound closure. Generally, cementum regeneration was observed beginning at week 6 in all groups. Bone regeneration was observed from week 3 in polyglactin mesh-treated groups, and from week 6 in polyglactin mesh+RCC or polyglactin mesh+RHA treated groups. Bone regeneration appeared enhanced in polyglactin mesh+RCC or polyglactin mesh+RHA treated defects at week 12 and 26, with little difference between the three experimental conditions at week 56. Polyglactin mesh degradation was observed at week 3 and appeared complete at week 12. The RHA did not appear to resorb, while the RCC was gradually replaced by bone from week 3. Within limitations of the study conditions, periodontal regeneration was observed following implantation of a polyglactin mesh with or without RCC or RHA in conjunction with reconstructive surgery. As a conclusion, there seems to be no significant difference in periodontal regeneration after 12 months of healing between the group treated with the membrane only, and the group treated with the membrane and the bone substitution material. Changes in connective fiber orientation over the 1st 12 weeks of healing may suggest that "fibrous encapsulation" observed in earlier studies may only represent a transient stage in periodontal regeneration.

  4. Hot water-repellent and mechanically durable superhydrophobic mesh for oil/water separation.

    PubMed

    Cao, Min; Luo, Xiaomin; Ren, Huijun; Feng, Jianyan

    2018-02-15

    The leakage of oil or organic pollutants into the ocean arouses a global catastrophe. The superhydrophobic materials have offered a new idea for the efficient, thorough and automated oil/water separation. However, most of such materials lose superhydrophobicity when exposed to hot water (e.g. >55 °C). In this study, a hot water-repellent superhydrophobic mesh used for oil/water separation was prepared with one-step spray of modified polyurethane and hydrophobic silica nanoparticles on the copper mesh. The as-prepared superhydrophobic mesh could be applied as the effective materials for the separation of oil/water mixture with a temperature up to 100 °C. In addition, the obtained mesh could selectively remove a wide range of organic solvents from water with high absorption capacity and good recyclability. Moreover, the as-prepared superhydrophobic mesh shows excellent mechanical durability, which makes it a promising material for practical oil/water separation. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. PolySearch2: a significantly improved text-mining system for discovering associations between human diseases, genes, drugs, metabolites, toxins and more.

    PubMed

    Liu, Yifeng; Liang, Yongjie; Wishart, David

    2015-07-01

    PolySearch2 (http://polysearch.ca) is an online text-mining system for identifying relationships between biomedical entities such as human diseases, genes, SNPs, proteins, drugs, metabolites, toxins, metabolic pathways, organs, tissues, subcellular organelles, positive health effects, negative health effects, drug actions, Gene Ontology terms, MeSH terms, ICD-10 medical codes, biological taxonomies and chemical taxonomies. PolySearch2 supports a generalized 'Given X, find all associated Ys' query, where X and Y can be selected from the aforementioned biomedical entities. An example query might be: 'Find all diseases associated with Bisphenol A'. To find its answers, PolySearch2 searches for associations against comprehensive collections of free-text collections, including local versions of MEDLINE abstracts, PubMed Central full-text articles, Wikipedia full-text articles and US Patent application abstracts. PolySearch2 also searches 14 widely used, text-rich biological databases such as UniProt, DrugBank and Human Metabolome Database to improve its accuracy and coverage. PolySearch2 maintains an extensive thesaurus of biological terms and exploits the latest search engine technology to rapidly retrieve relevant articles and databases records. PolySearch2 also generates, ranks and annotates associative candidates and present results with relevancy statistics and highlighted key sentences to facilitate user interpretation. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. PolySearch2: a significantly improved text-mining system for discovering associations between human diseases, genes, drugs, metabolites, toxins and more

    PubMed Central

    Liu, Yifeng; Liang, Yongjie; Wishart, David

    2015-01-01

    PolySearch2 (http://polysearch.ca) is an online text-mining system for identifying relationships between biomedical entities such as human diseases, genes, SNPs, proteins, drugs, metabolites, toxins, metabolic pathways, organs, tissues, subcellular organelles, positive health effects, negative health effects, drug actions, Gene Ontology terms, MeSH terms, ICD-10 medical codes, biological taxonomies and chemical taxonomies. PolySearch2 supports a generalized ‘Given X, find all associated Ys’ query, where X and Y can be selected from the aforementioned biomedical entities. An example query might be: ‘Find all diseases associated with Bisphenol A’. To find its answers, PolySearch2 searches for associations against comprehensive collections of free-text collections, including local versions of MEDLINE abstracts, PubMed Central full-text articles, Wikipedia full-text articles and US Patent application abstracts. PolySearch2 also searches 14 widely used, text-rich biological databases such as UniProt, DrugBank and Human Metabolome Database to improve its accuracy and coverage. PolySearch2 maintains an extensive thesaurus of biological terms and exploits the latest search engine technology to rapidly retrieve relevant articles and databases records. PolySearch2 also generates, ranks and annotates associative candidates and present results with relevancy statistics and highlighted key sentences to facilitate user interpretation. PMID:25925572

  7. Highly flexible nitinol mesh to encase aortocoronary saphenous vein grafts: first clinical experiences and angiographic results nine months postoperatively.

    PubMed

    Schoettler, Jan; Jussli-Melchers, Jill; Grothusen, Christina; Stracke, Lars; Schoeneich, Felix; Stohn, Simon; Hoffmann, Grischa; Cremer, Jochen

    2011-10-01

    Saphenous vein graft patency is frequently limited by degeneration. Experimental studies have indicated that rigid external support of venous grafts by a flexible, tubular nitinol mesh may improve graft patency. The study presented was part of a prospective, randomized, multicenter first-in-man trial investigating the safety and effectiveness of nitinol-supported venous grafts in coronary artery bypass graft (CABG) surgery. From our clinic, 25 subjects with multivessel coronary artery disease requiring saphenous vein graft CABG of the right coronary artery (RCA) and the circumflex artery were entered into the trial. Subjects were randomized to receive a mesh-supported graft on one of these arteries; the other vessel received an untreated vein graft. Graft patency was assessed by coronary angiography nine months after surgery. The implantation of mesh grafts was simple and safe. In 10 cases, a nitinol mesh-supported venous graft was anastomosed to the circumflex artery and in 15 cases to the RCA. All patients survived the observation period. A total of 72% of the patients underwent control coronary angiography. The patency rate of mesh-supported grafts was 27.8% nine months postoperatively. Conventional vein grafts showed an 85.7% patency, and arterial grafts had a 100% patency. No complications directly related to the implantation of mesh-supported grafts were observed. The promising experimental results of mesh-supported venous grafts could not be reproduced in the study presented. A critical item seems to be correct selection of nitinol mesh diameter, the anastomotic method and fixation of the mesh tube to the venous graft.

  8. Autoclaved Sand-Lime Products with a Polypropylene Mesh

    NASA Astrophysics Data System (ADS)

    Kostrzewa, Paulina; Stępień, Anna

    2017-10-01

    The paper presents the results of the research on modifications of silicate bricks with a polypropylene mesh and their influence on physical, mechanical and microstructural properties of such bricks. The main goal of the paper was to determine effects of the polypropylene mesh on sand-lime product parameters. The analysis has focused on compressive strength, water absorption, bulk density and structural features of the material. The obtained product is characterized by improved basic performance characteristics compared to traditional silicate products. Using the polypropylene mesh increased compressive strength by 25% while decreasing the product density. The modified products retain their form and do not disintegrate after losing their bearing capacity.

  9. Performing clinical studies involving hernia mesh devices: what every investigator should know about the FDA investigational device exemption (IDE) process.

    PubMed

    Ashar, B S; Dang, J M; Krause, D; Luke, M C

    2011-12-01

    The FDA's Center for Devices and Radiological Health (CDRH) is responsible for providing reasonable assurance of safety and effectiveness of all medical devices marketed within the US. To date, CDRH has cleared numerous hernia mesh devices for general use, but has not cleared/approved any mesh devices intended for certain specific uses, such as for infected wounds, hernia prevention, biofilm reduction, or prevention of adhesions. CDRH is requesting that manufacturers seeking specific hernia mesh device labeling claims consult with the Agency to determine the level of evidence necessary for justifying such claims.

  10. Boundary element based multiresolution shape optimisation in electrostatics

    NASA Astrophysics Data System (ADS)

    Bandara, Kosala; Cirak, Fehmi; Of, Günther; Steinbach, Olaf; Zapletal, Jan

    2015-09-01

    We consider the shape optimisation of high-voltage devices subject to electrostatic field equations by combining fast boundary elements with multiresolution subdivision surfaces. The geometry of the domain is described with subdivision surfaces and different resolutions of the same geometry are used for optimisation and analysis. The primal and adjoint problems are discretised with the boundary element method using a sufficiently fine control mesh. For shape optimisation the geometry is updated starting from the coarsest control mesh with increasingly finer control meshes. The multiresolution approach effectively prevents the appearance of non-physical geometry oscillations in the optimised shapes. Moreover, there is no need for mesh regeneration or smoothing during the optimisation due to the absence of a volume mesh. We present several numerical experiments and one industrial application to demonstrate the robustness and versatility of the developed approach.

  11. Macrophage polarization in response to ECM coated polypropylene mesh

    PubMed Central

    Wolf, MT; Dearth, CL; Ranallo, CA; LoPresti, S; Carey, LE; Daly, KA; Brown, BN; Badylak, SF

    2015-01-01

    The host response to implanted biomaterials is a highly regulated process that influences device functionality and clinical outcome. Non-degradable biomaterials, such as knitted polypropylene mesh, frequently elicit a chronic foreign body reaction with resultant fibrosis. Previous studies have shown that an extracellular matrix (ECM) hydrogel coating of polypropylene mesh reduces the intensity of the foreign body reaction, though the mode of action is unknown. Macrophage participation plays a key role in the development of the foreign body reaction to biomaterials, and therefore the present study investigated macrophage polarization following mesh implantation. Spatiotemporal analysis of macrophage polarization was conducted in response to uncoated polypropylene mesh and mesh coated with hydrated and dry forms of ECM hydrogels derived from either dermis or urinary bladder. Pro-inflammatory M1 macrophages (CD86+/CD68+), alternatively activated M2 macrophages (CD206+/CD68+), and foreign body giant cells were quantified between 3-35 days. Uncoated polypropylene mesh elicited a dominant M1 response at the mesh fiber surface, which was decreased by each ECM coating type beginning at 7 days. The diminished M1 response was accompanied by a reduction in the number of foreign body giant cells at 14 and 35 days, though there was a minimal effect upon the number of M2 macrophages at any time. These results show that ECM coatings attenuate the M1 macrophage response and increase the M2/M1 ratio to polypropylene mesh in vivo. PMID:24856104

  12. Incorporation of carrot pomace powder in wheat flour: effect on flour, dough and cookie characteristics.

    PubMed

    Ahmad, Mukhtar; Wani, Touseef Ahmed; Wani, S M; Masoodi, F A; Gani, Adil

    2016-10-01

    Carrot pomace powder (CPP) of 72 and 120 mesh sizes was incorporated in wheat flour at 10, 15 and 20 % level and its impact on flour, dough and cookie characteristics was evaluated. Protein content of the flour blends (8.84-7.88 %) decreased and fibre content (4.63-6.68 %) increased upon blending of CPP in wheat flour. Wheat flour containing 120 mesh CPP showed better functional properties [water absorption (1.16-1.47 %), oil absorption (1.11-1.39 %), solubility index (41-50 %) and swelling power (1.34-1.39)] than those containing 72 mesh. Water solvent retention capacity and sucrose solvent retention capacity increased while lactic acid solvent retention capacity and sodium carbonate solvent retention capacity decreased with blending of CPP. Water absorption, dough development time and degree of softening increased whereas, dough stability and mixing tolerance decreased with increasing CPP. The highest decrease in pasting was observed flour containing 72 mesh CPP. Rheology of dough containing 120 mesh CPP closely resembled the control. Color of flour and cookies increased with blending of CPP irrespective of mesh size. Antioxidant activity of cookies was higher than the flour blends. The cookies containing CPP of 72 mesh showed the lowest hardness. However, cookies containing CPP of 120 mesh showed the best sensory properties. Incorporation of 120 mesh CPP produced low gluten cookies with manageable flour and dough characteristics and better antioxidant and sensory properties.

  13. Automated Patent Categorization and Guided Patent Search using IPC as Inspired by MeSH and PubMed.

    PubMed

    Eisinger, Daniel; Tsatsaronis, George; Bundschus, Markus; Wieneke, Ulrich; Schroeder, Michael

    2013-04-15

    Document search on PubMed, the pre-eminent database for biomedical literature, relies on the annotation of its documents with relevant terms from the Medical Subject Headings ontology (MeSH) for improving recall through query expansion. Patent documents are another important information source, though they are considerably less accessible. One option to expand patent search beyond pure keywords is the inclusion of classification information: Since every patent is assigned at least one class code, it should be possible for these assignments to be automatically used in a similar way as the MeSH annotations in PubMed. In order to develop a system for this task, it is necessary to have a good understanding of the properties of both classification systems. This report describes our comparative analysis of MeSH and the main patent classification system, the International Patent Classification (IPC). We investigate the hierarchical structures as well as the properties of the terms/classes respectively, and we compare the assignment of IPC codes to patents with the annotation of PubMed documents with MeSH terms.Our analysis shows a strong structural similarity of the hierarchies, but significant differences of terms and annotations. The low number of IPC class assignments and the lack of occurrences of class labels in patent texts imply that current patent search is severely limited. To overcome these limits, we evaluate a method for the automated assignment of additional classes to patent documents, and we propose a system for guided patent search based on the use of class co-occurrence information and external resources.

  14. Automated Patent Categorization and Guided Patent Search using IPC as Inspired by MeSH and PubMed

    PubMed Central

    2013-01-01

    Document search on PubMed, the pre-eminent database for biomedical literature, relies on the annotation of its documents with relevant terms from the Medical Subject Headings ontology (MeSH) for improving recall through query expansion. Patent documents are another important information source, though they are considerably less accessible. One option to expand patent search beyond pure keywords is the inclusion of classification information: Since every patent is assigned at least one class code, it should be possible for these assignments to be automatically used in a similar way as the MeSH annotations in PubMed. In order to develop a system for this task, it is necessary to have a good understanding of the properties of both classification systems. This report describes our comparative analysis of MeSH and the main patent classification system, the International Patent Classification (IPC). We investigate the hierarchical structures as well as the properties of the terms/classes respectively, and we compare the assignment of IPC codes to patents with the annotation of PubMed documents with MeSH terms. Our analysis shows a strong structural similarity of the hierarchies, but significant differences of terms and annotations. The low number of IPC class assignments and the lack of occurrences of class labels in patent texts imply that current patent search is severely limited. To overcome these limits, we evaluate a method for the automated assignment of additional classes to patent documents, and we propose a system for guided patent search based on the use of class co-occurrence information and external resources. PMID:23734562

  15. Adaptive Shape Functions and Internal Mesh Adaptation for Modelling Progressive Failure in Adhesively Bonded Joints

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott; Gries, Thomas; Waas, Anthony M.; Pineda, Evan J.

    2014-01-01

    Enhanced finite elements are elements with an embedded analytical solution that can capture detailed local fields, enabling more efficient, mesh independent finite element analysis. The shape functions are determined based on the analytical model rather than prescribed. This method was applied to adhesively bonded joints to model joint behavior with one element through the thickness. This study demonstrates two methods of maintaining the fidelity of such elements during adhesive non-linearity and cracking without increasing the mesh needed for an accurate solution. The first method uses adaptive shape functions, where the shape functions are recalculated at each load step based on the softening of the adhesive. The second method is internal mesh adaption, where cracking of the adhesive within an element is captured by further discretizing the element internally to represent the partially cracked geometry. By keeping mesh adaptations within an element, a finer mesh can be used during the analysis without affecting the global finite element model mesh. Examples are shown which highlight when each method is most effective in reducing the number of elements needed to capture adhesive nonlinearity and cracking. These methods are validated against analogous finite element models utilizing cohesive zone elements.

  16. Adaptive unstructured triangular mesh generation and flow solvers for the Navier-Stokes equations at high Reynolds number

    NASA Technical Reports Server (NTRS)

    Ashford, Gregory A.; Powell, Kenneth G.

    1995-01-01

    A method for generating high quality unstructured triangular grids for high Reynolds number Navier-Stokes calculations about complex geometries is described. Careful attention is paid in the mesh generation process to resolving efficiently the disparate length scales which arise in these flows. First the surface mesh is constructed in a way which ensures that the geometry is faithfully represented. The volume mesh generation then proceeds in two phases thus allowing the viscous and inviscid regions of the flow to be meshed optimally. A solution-adaptive remeshing procedure which allows the mesh to adapt itself to flow features is also described. The procedure for tracking wakes and refinement criteria appropriate for shock detection are described. Although at present it has only been implemented in two dimensions, the grid generation process has been designed with the extension to three dimensions in mind. An implicit, higher-order, upwind method is also presented for computing compressible turbulent flows on these meshes. Two recently developed one-equation turbulence models have been implemented to simulate the effects of the fluid turbulence. Results for flow about a RAE 2822 airfoil and a Douglas three-element airfoil are presented which clearly show the improved resolution obtainable.

  17. Incidence of Extrusion Following Type I Polypropylene Mesh “Kit” Repairs in the Correction of Pelvic Organ Prolapse

    PubMed Central

    Lukban, James C.; Beyer, Roger D.; Moore, Robert D.

    2012-01-01

    Introduction and Hypothesis. We sought to determine the mesh extrusion (vaginal exposure) rates and subject outcomes following IntePro (Type I polypropylene) mesh “kit” repairs for vaginal prolapse. Methods. Data were pooled from two prospective multicenter studies evaluating the safety and efficacy of the Perigee and Apogee (American Medical Systems, Minnetonka, Minn, USA) to treat anterior and posterior/apical prolapses, respectively. Extrusions involving the anterior compartment (AC) or posterior compartment/apex (PC/A) were recorded. Results. Two hundred sixty women underwent mesh placement, with a total of 368 mesh units inserted (173 in the AC and 195 in the PC/A). Extrusions were noted in 13 (7.5%) of AC implants and 27 (13.8%) of PC/A implants through 12 months. No difference was seen between those with and without extrusion in regard to anatomic cure, postoperative painor quality of life at 1 year. Conclusions. Extrusion had no apparent effect on short-term outcomes. Given the unknown long-term sequellae of vaginal mesh exposure, a thorough assessment of risks and benefits of transvaginal mesh placement should be considered at the time of preoperative planning. PMID:22190952

  18. Adsorption and kinetics study of manganesse (II) in waste water using vertical column method by sugar cane bagasse

    NASA Astrophysics Data System (ADS)

    Zaini, H.; Abubakar, S.; Rihayat, T.; Suryani, S.

    2018-03-01

    Removal of heavy metal content in wastewater has been largely done by various methods. One effective and efficient method is the adsorption method. This study aims to reduce manganese (II) content in wastewater based on column adsorption method using absorbent material from bagasse. The fixed variable consisted of 50 g adsorbent, 10 liter adsorbate volume, flow rate of 7 liters / min. Independent variable of particle size with variation 10 – 30 mesh and contact time with variation 0 - 240 min and respon variable concentration of adsorbate (ppm), pH and conductivity. The results showed that the adsorption process of manganese metal is influenced by particle size and contact time. The adsorption kinetics takes place according to pseudo-second order kinetics with an equilibrium adsorption capacity (qe: mg / g) for 10 mesh adsorbent particles: 0.8947; 20 mesh adsorbent particles: 0.4332 and 30 mesh adsorbent particles: 1.0161, respectively. Highest removal efficience for 10 mesh adsorbent particles: 49.22% on contact time 60 min; 20 mesh adsorbent particles: 35,25% on contact time 180 min and particle 30 mesh adsorbent particles: 51,95% on contact time 150 min.

  19. Small herbivores suppress algal accumulation on Agatti atoll, Indian Ocean

    NASA Astrophysics Data System (ADS)

    Cernohorsky, Nicole H.; McClanahan, Timothy R.; Babu, Idrees; Horsák, Michal

    2015-12-01

    Despite large herbivorous fish being generally accepted as the main group responsible for preventing algal accumulation on coral reefs, few studies have experimentally examined the relative importance of herbivore size on algal communities. This study used exclusion cages with two different mesh sizes (1 × 1 cm and 6 × 6 cm) to investigate the impact of different-sized herbivores on algal accumulation rates on the shallow (<2 m) back-reef of Agatti atoll, Lakshadweep. The fine-mesh cages excluded all visible herbivores, which had rapid and lasting effects on the benthic communities, and, after 127 d of deployment, there was a visible and significant increase in algae (mainly macroalgae) with algal volume being 13 times greater than in adjacent open areas. The coarse-mesh cages excluded larger fishes (>8 cm body depth) while allowing smaller fishes to access the plots. In contrast to the conclusions of most previous studies, the exclusion of large herbivores had no significant effect on the accumulation of benthic algae and the amount of algae present within the coarse-mesh cages was relatively consistent throughout the experimental period (around 50 % coverage and 1-2 mm height). The difference in algal accumulation between the fine-mesh and coarse-mesh cages appears to be related to the actions of small individuals from 12 herbivorous fish species (0.17 ind. m-2 and 7.7 g m-2) that were able to enter through the coarse mesh. Although restricted to a single habitat, these results suggest that when present in sufficient densities and diversity, small herbivorous fishes can prevent the accumulation of algal biomass on coral reefs.

  20. The Effectiveness of Shrouding on Reducing Meshed Spur Gear Power Loss - Test Results

    NASA Technical Reports Server (NTRS)

    Delgado, I. R.; Hurrell, M. J.

    2017-01-01

    Gearbox efficiency is reduced at high rotational speeds due to windage drag and viscous effects on rotating, meshed gear components. A goal of NASA aeronautics rotorcraft research is aimed at propulsion technologies that improve efficiency while minimizing vehicle weight. Specifically, reducing power losses to rotorcraft gearboxes would allow gains in areas such as vehicle payload, range, mission type, and fuel consumption. To that end, a gear windage rig has been commissioned at NASA Glenn Research Center to measure windage drag on gears and to test methodologies to mitigate windage power losses. One method used in rotorcraft gearbox design attempts to reduce gear windage power loss by utilizing close clearance walls to enclose the gears in both the axial and radial directions. The close clearance shrouds result in reduced drag on the gear teeth, and reduced power loss. For meshed spur gears, the shrouding takes the form of metal side plates and circumferential metal sectors. Variably positioned axial and radial shrouds are incorporated in the NASA rig to study the effect of shroud clearance on gearbox power loss. A number of researchers have given experimental and analytical results for single spur gears, with and without shrouding. Shrouded meshed spur gear test results are sparse in the literature. Windage tests were run at NASA Glenn using meshed spur gears at four shroud configurations: unshrouded, shrouded (max. axial, max radial), and two intermediate shrouding conditions. Results are compared to available meshed spur gear power loss data analyses as well as single spur gear data/analyses. Recommendations are made for future work.

  1. The Effectiveness of Shrouding on Reducing Meshed Spur Gear Power Loss Test Results

    NASA Technical Reports Server (NTRS)

    Delgado, I. R.; Hurrell, M. J.

    2017-01-01

    Gearbox efficiency is reduced at high rotational speeds due to windage drag and viscous effects on rotating, meshed gear components. A goal of NASA aeronautics rotorcraft research is aimed at propulsion technologies that improve efficiency while minimizing vehicle weight. Specifically, reducing power losses to rotorcraft gearboxes would allow gains in areas such as vehicle payload, range, mission type, and fuel consumption. To that end, a gear windage rig has been commissioned at NASA Glenn Research Center to measure windage drag on gears and to test methodologies to mitigate windage power losses. One method used in rotorcraft gearbox design attempts to reduce gear windage power loss by utilizing close clearance walls to enclose the gears in both the axial and radial directions. The close clearance shrouds result in reduced drag on the gear teeth and reduced power loss. For meshed spur gears, the shrouding takes the form of metal side plates and circumferential metal sectors. Variably positioned axial and radial shrouds are incorporated in the NASA rig to study the effect of shroud clearance on gearbox power loss. A number of researchers have given experimental and analytical results for single spur gears, with and without shrouding. Shrouded meshed spur gear test results are sparse in the literature. Windage tests were run at NASA Glenn using meshed spur gears at four shroud configurations: unshrouded, shrouded (max. axial, max. radial), and two intermediate shrouding conditions. Results are compared to available meshed spur gear power loss data analyses as well as single spur gear data analyses.

  2. A computer program to generate two-dimensional grids about airfoils and other shapes by the use of Poisson's equation

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.

    1980-01-01

    A method for generating two dimensional finite difference grids about airfoils and other shapes by the use of the Poisson differential equation is developed. The inhomogeneous terms are automatically chosen such that two important effects are imposed on the grid at both the inner and outer boundaries. The first effect is control of the spacing between mesh points along mesh lines intersecting the boundaries. The second effect is control of the angles with which mesh lines intersect the boundaries. A FORTRAN computer program has been written to use this method. A description of the program, a discussion of the control parameters, and a set of sample cases are included.

  3. Mechanical behavior of surgical meshes for abdominal wall repair: In vivo versus biaxial characterization.

    PubMed

    Simón-Allué, R; Ortillés, A; Calvo, B

    2018-06-01

    Despite the widespread use of synthetic meshes in the surgical treatment of the hernia pathology, the election criteria of a suitable mesh for specific patient continues to be uncertain. Thus, in this work, we propose a methodology to determine in advance potential disadvantages on the use of certain meshes based on the patient-specific abdominal geometry and the mechanical features of the certain meshes. To that purpose, we have first characterized the mechanical behavior of four synthetic meshes through biaxial tests. Secondly, two of these meshes were implanted in several New Zealand rabbits with a total defect previously created on the center of the abdominal wall. After the surgical procedure, specimen were subjected to in vivo pneumoperitoneum tests to determine the immediate post-surgical response of those meshes after implanted in a healthy specimen. Experimental performance was recorded by a stereo rig with the aim of obtaining quantitative information about the pressure-displacement relation of the abdominal wall. Finally, following the procedure presented in prior works (Simón-Allué et al., 2015, 2017), a finite element model was reconstructed from the experimental measurements and tests were computationally reproduced for the healthy and herniated cases. Simulations were compared and validated with the in vivo behavior and results were given along the abdominal wall in terms of displacements, stresses and strain. Mechanical characterization of the meshes revealed Surgipro TM as the most rigid implant and Neomesh SuperSoft® as the softer, while other two meshes (Neomesh Soft®, Neopore®) remained in between. These two meshes were employed in the experimental study and resulted in similar effect in the abdominal wall cavity and both were close to the healthy case. Simulations confirmed this result while showed potential objections in the case of the other two meshes, due to high values in stresses or elongation that may led to discomfort in real tissue. The use of this methodology on human surgery may provide the surgeons with reliable and useful information to avoid certain meshes on specific-patient treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. RICH: OPEN-SOURCE HYDRODYNAMIC SIMULATION ON A MOVING VORONOI MESH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yalinewich, Almog; Steinberg, Elad; Sari, Re’em

    2015-02-01

    We present here RICH, a state-of-the-art two-dimensional hydrodynamic code based on Godunov’s method, on an unstructured moving mesh (the acronym stands for Racah Institute Computational Hydrodynamics). This code is largely based on the code AREPO. It differs from AREPO in the interpolation and time-advancement schemeS as well as a novel parallelization scheme based on Voronoi tessellation. Using our code, we study the pros and cons of a moving mesh (in comparison to a static mesh). We also compare its accuracy to other codes. Specifically, we show that our implementation of external sources and time-advancement scheme is more accurate and robustmore » than is AREPO when the mesh is allowed to move. We performed a parameter study of the cell rounding mechanism (Lloyd iterations) and its effects. We find that in most cases a moving mesh gives better results than a static mesh, but it is not universally true. In the case where matter moves in one way and a sound wave is traveling in the other way (such that relative to the grid the wave is not moving) a static mesh gives better results than a moving mesh. We perform an analytic analysis for finite difference schemes that reveals that a Lagrangian simulation is better than a Eulerian simulation in the case of a highly supersonic flow. Moreover, we show that Voronoi-based moving mesh schemes suffer from an error, which is resolution independent, due to inconsistencies between the flux calculation and the change in the area of a cell. Our code is publicly available as open source and designed in an object-oriented, user-friendly way that facilitates incorporation of new algorithms and physical processes.« less

  5. Assessment of Pain and Quality of Life in Lichtenstein Hernia Repair Using a New Monofilament PTFE Mesh: Comparison of Suture vs. Fibrin-Sealant Mesh Fixation

    PubMed Central

    Fortelny, René H.; Petter-Puchner, Alexander H.; Redl, Heinz; May, Christopher; Pospischil, Wolfgang; Glaser, Karl

    2014-01-01

    Background: Inguinal hernia repair is one of the most common operations in general surgery. The Lichtenstein tension-free operation has become the gold standard in open inguinal hernia repair. Despite the low recurrence rates, pain and discomfort remain a problem for a large number of patients. The aim of this study was to compare suture fixation vs. fibrin sealing by using a new monofilament PTFE mesh, i.e., the Infinit® mesh by W. L. Gore & Associates. Methods: This study was designed as a controlled prospective single-center two-cohort study. A total of 38 patients were enrolled and operated in Lichtenstein technique either standard suture mesh fixation or fibrin-sealant mesh fixation were used as described in the TIMELI trial. Primary outcome parameters were postoperative complications with the new mesh (i.e., seroma, infection), pain, and quality of life evaluated by the VAS and the SF-36 questionnaire. Secondary outcome was recurrence assessed by ultrasound and physical examination. Follow-up time was 1 year. Results: Significantly, less postoperative pain was reported in the fibrin-sealant group compared to the suture group at 6 weeks (P = 0.035), 6 months (P = 0.023), and 1 year (P = 0.011) postoperatively. Additionally, trends toward a higher postoperative quality of life, a faster surgical procedure, and a shorter hospital stay were seen in the fibrin-sealant group. Conclusion: Fibrin-sealant mesh fixation in Lichtenstein hernioplasty effectively reduces acute and chronic postoperative pain. Monofilament, macro-porous, knitted PTFE meshes seem to be a practicable alternative to commonly used polypropylene meshes in open inguinal hernia repair. PMID:25593969

  6. Assessment of Pain and Quality of Life in Lichtenstein Hernia Repair Using a New Monofilament PTFE Mesh: Comparison of Suture vs. Fibrin-Sealant Mesh Fixation.

    PubMed

    Fortelny, René H; Petter-Puchner, Alexander H; Redl, Heinz; May, Christopher; Pospischil, Wolfgang; Glaser, Karl

    2014-01-01

    Inguinal hernia repair is one of the most common operations in general surgery. The Lichtenstein tension-free operation has become the gold standard in open inguinal hernia repair. Despite the low recurrence rates, pain and discomfort remain a problem for a large number of patients. The aim of this study was to compare suture fixation vs. fibrin sealing by using a new monofilament PTFE mesh, i.e., the Infinit(®) mesh by W. L. Gore & Associates. This study was designed as a controlled prospective single-center two-cohort study. A total of 38 patients were enrolled and operated in Lichtenstein technique either standard suture mesh fixation or fibrin-sealant mesh fixation were used as described in the TIMELI trial. Primary outcome parameters were postoperative complications with the new mesh (i.e., seroma, infection), pain, and quality of life evaluated by the VAS and the SF-36 questionnaire. Secondary outcome was recurrence assessed by ultrasound and physical examination. Follow-up time was 1 year. Significantly, less postoperative pain was reported in the fibrin-sealant group compared to the suture group at 6 weeks (P = 0.035), 6 months (P = 0.023), and 1 year (P = 0.011) postoperatively. Additionally, trends toward a higher postoperative quality of life, a faster surgical procedure, and a shorter hospital stay were seen in the fibrin-sealant group. Fibrin-sealant mesh fixation in Lichtenstein hernioplasty effectively reduces acute and chronic postoperative pain. Monofilament, macro-porous, knitted PTFE meshes seem to be a practicable alternative to commonly used polypropylene meshes in open inguinal hernia repair.

  7. Pain and quality of life after inguinal hernia surgery: a multicenter randomized controlled trial comparing lightweight vs heavyweight mesh (Supermesh Study).

    PubMed

    Bona, Stefano; Rosati, Riccardo; Opocher, Enrico; Fiore, Barbara; Montorsi, Marco

    2018-03-01

    Mesh repair has significantly reduced recurrence rate after groin hernia surgery. Recently, attention has shifted to issues such as chronic pain and discomfort, leading to development of lightweight and partially re-absorbable meshes. The aim of the study was to evaluate the effect of lightweight mesh vs heavyweight mesh on post-operative pain, discomfort and quality of life in short and medium term after inguinal hernia surgery. Eight hundred and eight patients with primary inguinal hernia were allocated to anterior repair (Lichtenstein technique) using a lightweight mesh (Ultrapro ® ) or a heavyweight mesh (Prolene ® ). Primary outcomes were incidence of chronic pain and discomfort at 6-month follow-up. Secondary endpoints were quality of life (QoL), pain and complication at 1 week, 1 and 6 months. At 6 months, 25% of patients reported pain of some intensity; severe pain was reported by 1% of patients in both groups. A statistically significant difference in favour of lightweight mesh was found at multivariable analysis for pain (1 week and 6 months after surgery: p = 0.02 and p = 0.04, respectively) and QoL at 1 month and 6 months (p = 0.05 and p = 0.02, respectively). There was no difference in complication rate and no hernia recurrences were detected. The use of lightweight mesh in anterior Lichtenstein inguinal hernia repair significantly reduced the incidence of pain and favourably affected the perceived quality of life at 6 months after surgery compared to heavyweight mesh.

  8. Design Investigation on Applicable Mesh Structures for Medical Stent Applications

    NASA Astrophysics Data System (ADS)

    Asano, Shoji; He, Jianmei

    2017-11-01

    In recent years, utilization of medical stents is one of effective treatments for stenosis and occlusion occurring in a living body’s lumen indispensable for maintenance of human life such as superficial femoral artery (SFA) occlusion. However, there are concerns about the occurrence of fatigue fractures caused by stress concentrations, neointimal hyperplasia and the like due to the shape structure and the manufacturing method in the conventional stents, and a stent having high strength and high flexibility is required. Therefore, in this research, applicable mesh structures for medical stents based on the design concepts of high strength, high flexibility are interested to solve various problem of conventional stent. According to the shape and dimensions of SFA occlusion therapy stent and indwelling delivery catheter, shape design of the meshed stent are performed using 3-dimensional CAD software Solid Works first. Then analytical examination on storage characteristics and compression characteristics of such mesh structure applied stent models were carried out through finite element analysis software ANSYS Workbench. Meshed stent models with higher strength and higher flexibility with integral molding are investigated analytically. It was found that the storage characteristics and compression characteristics of meshed stent modles are highly dependent on the basic mesh shapes with same surface void ratio. Trade-off relationship between flexibility and storage characteristics is found exited, it is required to provide appropriate curvatures during basic mesh shape design.

  9. A multidimensional unified gas-kinetic scheme for radiative transfer equations on unstructured mesh

    NASA Astrophysics Data System (ADS)

    Sun, Wenjun; Jiang, Song; Xu, Kun

    2017-12-01

    In order to extend the unified gas kinetic scheme (UGKS) to solve radiative transfer equations in a complex geometry, a multidimensional asymptotic preserving implicit method on unstructured mesh is constructed in this paper. With an implicit formulation, the CFL condition for the determination of the time step in UGKS can be much relaxed, and a large time step is used in simulations. Differently from previous direction-by-direction UGKS on orthogonal structured mesh, on unstructured mesh the interface flux transport takes into account multi-dimensional effect, where gradients of radiation intensity and material temperature in both normal and tangential directions of a cell interface are included in the flux evaluation. The multiple scale nature makes the UGKS be able to capture the solutions in both optically thin and thick regions seamlessly. In the optically thick region the condition of cell size being less than photon's mean free path is fully removed, and the UGKS recovers a solver for diffusion equation in such a limit on unstructured mesh. For a distorted quadrilateral mesh, the UGKS goes to a nine-point scheme for the diffusion equation, and it naturally reduces to the standard five-point scheme for a orthogonal quadrilateral mesh. Numerical computations covering a wide range of transport regimes on unstructured and distorted quadrilateral meshes will be presented to validate the current approach.

  10. Comprehensive study of numerical anisotropy and dispersion in 3-D TLM meshes

    NASA Astrophysics Data System (ADS)

    Berini, Pierre; Wu, Ke

    1995-05-01

    This paper presents a comprehensive analysis of the numerical anisotropy and dispersion of 3-D TLM meshes constructed using several generalized symmetrical condensed TLM nodes. The dispersion analysis is performed in isotropic lossless, isotropic lossy and anisotropic lossless media and yields a comparison of the simulation accuracy for the different TLM nodes. The effect of mesh grading on the numerical dispersion is also determined. The results compare meshes constructed with Johns' symmetrical condensed node (SCN), two hybrid symmetrical condensed nodes (HSCN) and two frequency domain symmetrical condensed nodes (FDSCN). It has been found that under certain circumstances, the time domain nodes may introduce numerical anisotropy when modelling isotropic media.

  11. Load Balancing Unstructured Adaptive Grids for CFD Problems

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Oliker, Leonid

    1996-01-01

    Mesh adaption is a powerful tool for efficient unstructured-grid computations but causes load imbalance among processors on a parallel machine. A dynamic load balancing method is presented that balances the workload across all processors with a global view. After each parallel tetrahedral mesh adaption, the method first determines if the new mesh is sufficiently unbalanced to warrant a repartitioning. If so, the adapted mesh is repartitioned, with new partitions assigned to processors so that the redistribution cost is minimized. The new partitions are accepted only if the remapping cost is compensated by the improved load balance. Results indicate that this strategy is effective for large-scale scientific computations on distributed-memory multiprocessors.

  12. Reliability optimization design of the gear modification coefficient based on the meshing stiffness

    NASA Astrophysics Data System (ADS)

    Wang, Qianqian; Wang, Hui

    2018-04-01

    Since the time varying meshing stiffness of gear system is the key factor affecting gear vibration, it is important to design the meshing stiffness to reduce vibration. Based on the effect of gear modification coefficient on the meshing stiffness, considering the random parameters, reliability optimization design of the gear modification is researched. The dimension reduction and point estimation method is used to estimate the moment of the limit state function, and the reliability is obtained by the forth moment method. The cooperation of the dynamic amplitude results before and after optimization indicates that the research is useful for the reduction of vibration and noise and the improvement of the reliability.

  13. Complex sacral abscess 8 years after abdominal sacral colpopexy.

    PubMed

    Collins, Sarah A; Tulikangas, Paul K; LaSala, Christine A; Lind, Lawrence R

    2011-08-01

    Sacral colpopexy is an effective, durable repair for women with apical vaginal or uterovaginal prolapse. There are few reports of serious complications diagnosed in the remote postoperative period. A 74-year-old woman presented 8 years after undergoing posthysterectomy abdominal sacral colpopexy using polypropylene mesh. Posterior vaginal mesh erosion had been diagnosed several months before presentation. She suffered severe infectious complications including an infected thrombus in the inferior vena cava, sacral osteomyelitis, and a complex abscess with presacral and epidural components. Surgical exploration revealed an abscess cavity surrounding the mesh. Although minor complications commonly occur after sacral colpopexy using abdominal mesh, serious and rare postoperative infectious complications may occur years postoperatively.

  14. An updated systematic review on the possible effect of nonylphenol on male fertility.

    PubMed

    Noorimotlagh, Zahra; Haghighi, Neemat Jaafarzadeh; Ahmadimoghadam, Mehdi; Rahim, Fakher

    2017-02-01

    Diverse industries like detergents, resins and polymers, hair dyes, intravaginal spermicides, and pesticides produce endocrine disruptor (ED)-containing wastewaters that have hazardous effects on the environment and public health. Nonylphenol (NP) is a chemical substance that consists of a phenolic group and an attached lipophilic linear nonyl chain. NP has weak estrogenic activity and affects estrogen receptor (ER), as well as induces male infertility via a negative impact on spermatogenesis and sperm quality. The aim of this study was to comprehensively review all available literature about the side effects of NP on the male genital system. We systematically searched Scopus and PubMed using MeSH terms that include "Organic Chemicals," "Infertility," "Infertility, Male," "Nonylphenol", ("Infertility, Male"[Mesh]) OR "Nonylphenol" [Supplementary Concept]) OR "Prostate"[Mesh]) OR "Spermatozoa"[Mesh]) OR "Sertoli Cells"[Mesh]) OR "Leydig Cells"[Mesh] OR "Male accessory gland" OR "Epididym" OR "Reproductive toxicity"), and all other possible combinations from January 1, 1970, to September 15, 2016, with language limit. The initial search identified 117,742 potentially eligible studies, of which 33 met the established inclusion criteria and were included in the analysis. Thirty-three selected studies include animal model (n = 18), cell line (n = 15), human model (n = 1), morphology (n = 13), sperm quality (n = 17), and toxicity (n = 14). This review highlighted the evidence for the ED effect of NP that acts through interference with ER, discussing male reproductive tract perturbations. We critically discuss the available evidence on the effect of NP on sperm quality (such as motility, viability, sperm count, and sperm concentration), dramatic morphological changes (such as change of weights of testes and epididymis), and biochemical changes related to oxidative stress in testes. Finally, it is important to take caution with the continued use of NP that disrupts male reproductive health.

  15. [Medpor plus titanic mesh implant in the repair of orbital blowout fractures].

    PubMed

    Han, Xiao-hui; Zhang, Jia-yu; Cai, Jian-qiu; Shi, Ming-guang

    2011-05-10

    To study the efficacy of porous polyethylene (Medpor) plus titanic mesh sheets in the repair of orbital blowout fractures. A total of 20 patients underwent open surgical reduction with the combined usage of Medpor and titanic mesh. And they were followed up for average period of 14.5 months (range: 9 - 18). There is no infection or extrusion of medpor and titanic mesh in follow-up periods. There was no instance of decreased visual acuity at post-operation. And all cases of enophthalmos were corrected. The post-operative protrusion degree of both eyes was almost identical at less than 2 mm. The movement of eye balls was satisfactory in all directions. Diplopia disappeared in 18 cases with a cure rate of 90%, 1 case improved and 1 case persisted. Medpor plus titanic mesh implant is a safe and effective treatment in the repair of orbital blow out fractures.

  16. A self-cleaning underwater superoleophobic mesh for oil-water separation.

    PubMed

    Zhang, Lianbin; Zhong, Yujiang; Cha, Dongkyu; Wang, Peng

    2013-01-01

    Oil-water separation has recently become a global challenging task because of the frequent occurrence of oil spill accidents due to the offshore oil production and transportation, and there is an increasing demand for the development of effective and inexpensive approaches for the cleaning-up of the oily pollution in water system. In this study, a self-cleaning underwater superoleophobic mesh that can be used for oil-water separation is prepared by the layer-by-layer (LbL) assembly of sodium silicate and TiO2 nanoparticles on the stainless steel mesh. The integration of the self-cleaning property into the all-inorganic separation mesh by using TiO2 enables the convenient removal of the contaminants by ultraviolet (UV) illumination, and allows for the facile recovery of the separation ability of the contaminated mesh, making it promising for practial oil-water separation applications.

  17. A self-cleaning underwater superoleophobic mesh for oil-water separation

    PubMed Central

    Zhang, Lianbin; Zhong, Yujiang; Cha, Dongkyu; Wang, Peng

    2013-01-01

    Oil–water separation has recently become a global challenging task because of the frequent occurrence of oil spill accidents due to the offshore oil production and transportation, and there is an increasing demand for the development of effective and inexpensive approaches for the cleaning-up of the oily pollution in water system. In this study, a self-cleaning underwater superoleophobic mesh that can be used for oil-water separation is prepared by the layer-by-layer (LbL) assembly of sodium silicate and TiO2 nanoparticles on the stainless steel mesh. The integration of the self-cleaning property into the all-inorganic separation mesh by using TiO2 enables the convenient removal of the contaminants by ultraviolet (UV) illumination, and allows for the facile recovery of the separation ability of the contaminated mesh, making it promising for practial oil-water separation applications. PMID:23900109

  18. Modeling, Modal Properties, and Mesh Stiffness Variation Instabilities of Planetary Gears

    NASA Technical Reports Server (NTRS)

    Parker, Robert G.; Lin, Jian; Krantz, Timothy L. (Technical Monitor)

    2001-01-01

    Planetary gear noise and vibration are primary concerns in their applications in helicopters, automobiles, aircraft engines, heavy machinery and marine vehicles. Dynamic analysis is essential to the noise and vibration reduction. This work analytically investigates some critical issues and advances the understanding of planetary gear dynamics. A lumped-parameter model is built for the dynamic analysis of general planetary gears. The unique properties of the natural frequency spectra and vibration modes are rigorously characterized. These special structures apply for general planetary gears with cyclic symmetry and, in practically important case, systems with diametrically opposed planets. The special vibration properties are useful for subsequent research. Taking advantage of the derived modal properties, the natural frequency and vibration mode sensitivities to design parameters are investigated. The key parameters include mesh stiffnesses, support/bearing stiffnesses, component masses, moments of inertia, and operating speed. The eigen-sensitivities are expressed in simple, closed-form formulae associated with modal strain and kinetic energies. As disorders (e.g., mesh stiffness variation. manufacturing and assembling errors) disturb the cyclic symmetry of planetary gears, their effects on the free vibration properties are quantitatively examined. Well-defined veering rules are derived to identify dramatic changes of natural frequencies and vibration modes under parameter variations. The knowledge of free vibration properties, eigen-sensitivities, and veering rules provide important information to effectively tune the natural frequencies and optimize structural design to minimize noise and vibration. Parametric instabilities excited by mesh stiffness variations are analytically studied for multi-mesh gear systems. The discrepancies of previous studies on parametric instability of two-stage gear chains are clarified using perturbation and numerical methods. The operating conditions causing parametric instabilities are expressed in closed-form suitable for design guidance. Using the well-defined modal properties of planetary gears, the effects of mesh parameters on parametric instability are analytically identified. Simple formulae are obtained to suppress particular instabilities by adjusting contact ratios and mesh phasing.

  19. Interplay between self-assembled structure of bone morphogenetic protein-2 (BMP-2) and osteoblast functions in three-dimensional titanium alloy scaffolds: Stimulation of osteogenic activity.

    PubMed

    Nune, K C; Kumar, A; Murr, L E; Misra, R D K

    2016-02-01

    Three-dimensional cellular scaffolds are receiving significant attention in bone tissue engineering to treat segmental bone defects. However, there are indications of lack of significant osteoinductive ability of three-dimensional cellular scaffolds. In this regard, the objective of the study is to elucidate the interplay between bone morphogenetic protein (BMP-2) and osteoblast functions on 3D mesh structures with different porosities and pore size that were fabricated by electron beam melting. Self-assembled dendritic microstructure with interconnected cellular-type morphology of BMP-2 on 3D scaffolds stimulated osteoblast functions including adhesion, proliferation, and mineralization, with prominent effect on 2-mm mesh. Furthermore, immunofluorescence studies demonstrated higher density and viability of osteoblasts on lower porosity mesh structure (2 mm) as compared to 3- and 4-mm mesh structures. Enhanced filopodia cellular extensions with extensive cell spreading was observed on BMP-2 treated mesh structures, a behavior that is attributed to the unique self-assembled structure of BMP-2 that effectively communicates with the cells. The study underscores the potential of BMP-2 in imparting osteoinductive capability to the 3D printed scaffolds. © 2015 Wiley Periodicals, Inc.

  20. Effects of Schwann cell alignment along the oriented electrospun chitosan nanofibers on nerve regeneration.

    PubMed

    Wang, Wei; Itoh, Soichiro; Konno, Katsumi; Kikkawa, Takeshi; Ichinose, Shizuko; Sakai, Katsuyoshi; Ohkuma, Tsuneo; Watabe, Kazuhiko

    2009-12-15

    We have constructed a chitosan nonwoven nanofiber mesh tube consisting of oriented fibers by the electrospinning method. The efficacy of oriented nanofibers on Schwann cell alignment and positive effect of this tube on peripheral nerve regeneration were confirmed. The physical properties of the chitosan nanofiber mesh sheets prepared by electrospinning with or without fiber orientation were characterized. Then, immortalized Schwann cells were cultured on these sheets. Furthermore, the chitosan nanofiber mesh tubes with or without orientation, and bilayered chitosan mesh tube with an inner layer of oriented nanofibers and an outer layer of randomized nanofibers were bridgegrafted into rat sciatic nerve defect. As a result of fiber orientation, the tensile strength along the axis of the sheet increased. Because Schwann cells aligned along the nanofibers, oriented fibrous sheets could exhibit a Schwann cell column. Functional recovery and electrophysiological recovery occurred in time in the oriented group as well as in the bilayered group, and approximately matched those in the isograft. Furthermore, histological analysis revealed that the sprouting of myelinated axons occurred vigorously followed by axonal maturation in the isograft, oriented, and bilayered group in the order. The oriented chitosan nanofiber mesh tube may be a promising substitute for autogenous nerve graft.

  1. A Mesh Refinement Study on the Impact Response of a Shuttle Leading-Edge Panel Finite Element Simulation

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Lyle, Karen H.; Spellman, Regina L.

    2006-01-01

    A study was performed to examine the influence of varying mesh density on an LS-DYNA simulation of a rectangular-shaped foam projectile impacting the space shuttle leading edge Panel 6. The shuttle leading-edge panels are fabricated of reinforced carbon-carbon (RCC) material. During the study, nine cases were executed with all possible combinations of coarse, baseline, and fine meshes of the foam and panel. For each simulation, the same material properties and impact conditions were specified and only the mesh density was varied. In the baseline model, the shell elements representing the RCC panel are approximately 0.2-in. on edge, whereas the foam elements are about 0.5-in. on edge. The element nominal edge-length for the baseline panel was halved to create a fine panel (0.1-in. edge length) mesh and doubled to create a coarse panel (0.4-in. edge length) mesh. In addition, the element nominal edge-length of the baseline foam projectile was halved (0.25-in. edge length) to create a fine foam mesh and doubled (1.0-in. edge length) to create a coarse foam mesh. The initial impact velocity of the foam was 775 ft/s. The simulations were executed in LS-DYNA for 6 ms of simulation time. Contour plots of resultant panel displacement and effective stress in the foam were compared at four discrete time intervals. Also, time-history responses of internal and kinetic energy of the panel, kinetic and hourglass energy of the foam, and resultant contact force were plotted to determine the influence of mesh density.

  2. Biomechanical evaluation of potential damage to hernia repair materials due to fixation with helical titanium tacks.

    PubMed

    Lerdsirisopon, Sopon; Frisella, Margaret M; Matthews, Brent D; Deeken, Corey R

    2011-12-01

    This study aimed to determine whether the strength and extensibility of hernia repair materials are negatively influenced by the application of helical titanium tacks. This study evaluated 14 meshes including bare polypropylene, macroporous polytetrafluoroethylene, absorbable barrier, partially absorbable mesh, and expanded polytetrafluoroethylene materials. Each mesh provided 15 specimens, which were prepared in 7.5 × 7.5-cm squares. Of these, 5 "undamaged" specimens were subjected to ball-burst testing to determine their biomechanical properties before application of helical titanium tacks (ProTack). To 10 "damaged" specimens 7 tacks were applied 1 cm apart in a 3.5-cm-diameter circle using a tacking force of 25 to 28 N. The tacks were removed from five of the specimens before ball-burst testing and left intact in the remaining five specimens. The application of tacks had no effect on the tensile strength of Dualmesh, ProLite Ultra, Infinit, Ultrapro, C-QUR Lite (<6 in.), Prolene Soft, or Physiomesh, but the tensile strengths were reduced for Bard Mesh, C-QUR, ProLite, and C-QUR Lite (>6 in.). Most of the meshes did not exhibit significantly different tensile strengths between removal of tacks and tacks left intact. Exceptions included C-QUR, Prolene, Ultrapro, and Bard Soft Mesh, which were weaker with removal of tacks than with tacks left intact during the test. Damage due to the application of helical titanium tacks also caused increased strain at a stress of 16 N/cm for all the meshes except C-QUR Lite (>6 in.) and Physiomesh. Many of the meshes evaluated in this study exhibited damage in the form of reduced tensile strength and increased extensibility after the application of tacks compared with the corresponding "undamaged" meshes. Meshes with smaller interstices and larger filaments were influenced negatively by the application of helical titanium tacks, whereas mesh designs with larger interstices and smaller filaments tended to maintain their baseline mechanical properties.

  3. Effectiveness of fishing gears to assess fish assemblage size structure in small lake ecosystems

    Treesearch

    T. A. Clement; K. Pangle; D. G. Uzarski; B. A. Murry

    2014-01-01

    Measurement of fish body-size distributions is increasingly used as a management tool to assess fishery status. However, the effects of gear selection on observed fish size structure has not received sufficient attention. Four different gear types (experimental gill nets, fine mesh bag seine, and two different sized mesh trap nets), which are commonly employed in the...

  4. The Janus effect on superhydrophilic Cu mesh decorated with Ni-NiO/Ni(OH)2 core-shell nanoparticles for oil/water separation

    NASA Astrophysics Data System (ADS)

    Luo, Zhi-Yong; Lyu, Shu-Shen; Fu, Yuan-Xiang; Heng, Yi; Mo, Dong-Chuan

    2017-07-01

    Janus effect has been studied for emerging materials like Janus membranes, Janus nanoparticles, etc., and the applications including fog collection, oil/water separation, CO2 removal and stabilization of multiphasic mixtures. However, the Janus effect on oil/water separation is still unclear. Herein, Janus Cu mesh decorated with Ni-NiO/Ni(OH)2 core-shell nanoparticles is synthesized via selective electrodeposition, in which we keep one side of Cu mesh (Janus A) to be superhydrophilic, while manipulate the wettability of another side (Janus B) from hydrophobic to superhydrophilic. Experimental results indicate that Cu mesh with both-side superhydrophilic shows the superior oil/water separation performance (separation efficiency >99.5%), which is mainly due to its higher water capture percentage as well as larger oil intrusion pressure. Further, we demonstrate the orientation of Janus membranes for oil/water separation, and summarize that the wettability of the upper surface plays a more important role than the lower surface to achieve remarkable performance. Our work provides a clear insight of Janus effect on oil/water separation, it is significative to design high-performance membranes for oil/water separation and many other applications.

  5. Physicomechanical evaluation of polypropylene, polyester, and polytetrafluoroethylene meshes for inguinal hernia repair.

    PubMed

    Deeken, Corey R; Abdo, Michael S; Frisella, Margaret M; Matthews, Brent D

    2011-01-01

    For meshes to be used effectively for hernia repair, it is imperative that engineers and surgeons standardize the terminology and techniques related to physicomechanical evaluation of these materials. The objectives of this study were to propose standard techniques, perform physicomechanical testing, and classify materials commonly used for inguinal hernia repair. Nine meshes were evaluated: 4 polypropylene, 1 polyester, 1 polytetrafluoroethylene, and 3 partially absorbable. Physical properties were determined through image analysis, laser micrometry, and density measurements. Biomechanical properties were determined through suture retention, tear resistance, uniaxial, and ball burst testing with specimens tested in 2 different orientations. A 1-way ANOVA with Tukey's post-test or a t-test were performed, with p < 0.05. Significant differences were observed due to both mesh type and orientation. Areas of interstices ranged from 0.33 ± 0.01 mm² for ProLite (Atrium Medical Corp) and C-QUR Lite (Atrium Medical Corp) Large to 4.10 ± 0.06 mm² for ULTRAPRO (Ethicon), and filament diameters ranged from 99.00 ±8.1 μm for ProLite Ultra (Atrium Medical Corp) and C-QUR Lite Small to 338.8 ± 3.7 μm for Parietex Flat Sheet TEC (Covidien). These structural characteristics influenced biomechanical properties such as tear resistance and tensile strength. ProLite Ultra, C-QUR Lite Small, ULTRAPRO and INFINIT (WL Gore & Associates) did not resist tearing as effectively as the others. All meshes exhibited supraphysiologic burst strengths except INFINIT and ULTRAPRO. Significant differences exist between the physicomechanical properties of polypropylene, polyester, polytetrafluoroethylene, and partially absorbable mesh prostheses commonly used for inguinal hernia repair. Orientation of the mesh was also shown to be critical for the success of meshes, particularly those demonstrating anisotropy. Copyright © 2011 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  6. Effect of platelet-rich plasma on polypropylene meshes implanted in the rabbit vagina: histological analysis.

    PubMed

    Parizzi, Natália Gomes; Rubini, Oscar Ávila; Almeida, Silvio Henrique Maia de; Ireno, Lais Caetano; Tashiro, Roger Mitio; Carvalho, Victor Hugo Tolotto de

    2017-01-01

    The polypropylene mesh (PPM) is used in many surgical interventions because of its good incorporation and accessibility. However, potential mesh-related complications are common. Platelet-rich plasma (PRP) improves the healing of wounds and is inexpensive. Thus, the purpose of this study was to analyze the effect of the PRP-gel coating of a PPM on inflammation, production of collagen, and smooth muscle in the rabbit vagina. The intervention consisted of a 1.5cm incision and divulsion of the vaginal mucosa for the implantation of a PRP-coated PPM. The PRP-coated mesh was implanted in 15 rabbits, and in the second group, the same implant was used without the PRP coating. In the sham group, the intervention consisted of the incision, divulsion, and suture. The rabbits were euthanized at 7, 30 and 90 days, and full-thickness sagittal sections of the posterior vaginal wall and rectum were scored. The inflammatory infiltrate was evaluated using hematoxylin and eosin staining. The Sirius Red stain was used to examine deposition of collagen I and III, and Masson's trichrome staining was used to visualize the smooth muscle. The group with PRP-coated meshes had a lower inflammatory infiltrate count at 30 days. Deposition of collagen III increased with the use of PRP-coating at 90 days. The area of inflammatory infiltrate was significantly increased in the group without the PRP-coated mesh at 30 days but not in the group with the PRPcoated mesh, indicating a less intense inflammatory response. In addition, a significant increase in collagen III occurred at 90 days. Copyright® by the International Brazilian Journal of Urology.

  7. An optimization-based framework for anisotropic simplex mesh adaptation

    NASA Astrophysics Data System (ADS)

    Yano, Masayuki; Darmofal, David L.

    2012-09-01

    We present a general framework for anisotropic h-adaptation of simplex meshes. Given a discretization and any element-wise, localizable error estimate, our adaptive method iterates toward a mesh that minimizes error for a given degrees of freedom. Utilizing mesh-metric duality, we consider a continuous optimization problem of the Riemannian metric tensor field that provides an anisotropic description of element sizes. First, our method performs a series of local solves to survey the behavior of the local error function. This information is then synthesized using an affine-invariant tensor manipulation framework to reconstruct an approximate gradient of the error function with respect to the metric tensor field. Finally, we perform gradient descent in the metric space to drive the mesh toward optimality. The method is first demonstrated to produce optimal anisotropic meshes minimizing the L2 projection error for a pair of canonical problems containing a singularity and a singular perturbation. The effectiveness of the framework is then demonstrated in the context of output-based adaptation for the advection-diffusion equation using a high-order discontinuous Galerkin discretization and the dual-weighted residual (DWR) error estimate. The method presented provides a unified framework for optimizing both the element size and anisotropy distribution using an a posteriori error estimate and enables efficient adaptation of anisotropic simplex meshes for high-order discretizations.

  8. Decay of grid turbulence in superfluid helium-4: Mesh dependence

    NASA Astrophysics Data System (ADS)

    Yang, J.; Ihas, G. G.

    2018-03-01

    Temporal decay of grid turbulence is experimentally studied in superfluid 4He in a large square channel. The second sound attenuation method is used to measure the turbulent vortex line density (L) with a phase locked tracking technique to minimize frequency shift effects induced by temperature fluctuations. Two different grids (0.8 mm and 3.0 mm mesh) are pulled to generate turbulence. Different power laws for decaying behavior are predicted by a theory. According to this theory, L should decay as t‑11/10 when the length scale of energy containing eddies grows from the grid mesh size to the size of the channel. At later time, after the energy containing eddy size becomes comparable to the channel, L should follow t‑3/2. Our recent experimental data exhibit evidence for t‑11/10 during the early time and t‑2 instead of t‑3/2 for later time. Moreover, a consistent bump/plateau feature is prominent between the two decay regimes for smaller (0.8 mm) grid mesh holes but absent with a grid mesh hole of 3.0 mm. This implies that in the large channel different types of turbulence are generated, depending on mesh hole size (mesh Reynolds number) compared to channel Reynolds number.

  9. A network medicine approach to quantify distance between hereditary disease modules on the interactome

    NASA Astrophysics Data System (ADS)

    Caniza, Horacio; Romero, Alfonso E.; Paccanaro, Alberto

    2015-12-01

    We introduce a MeSH-based method that accurately quantifies similarity between heritable diseases at molecular level. This method effectively brings together the existing information about diseases that is scattered across the vast corpus of biomedical literature. We prove that sets of MeSH terms provide a highly descriptive representation of heritable disease and that the structure of MeSH provides a natural way of combining individual MeSH vocabularies. We show that our measure can be used effectively in the prediction of candidate disease genes. We developed a web application to query more than 28.5 million relationships between 7,574 hereditary diseases (96% of OMIM) based on our similarity measure.

  10. Enhanced retained dose uniformity in NiTi spinal correction rod treated by three-dimensional mesh-assisted nitrogen plasma immersion ion implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Q. Y.; Hu, T.; Kwok, Dixon T. K.

    2010-05-15

    Owing to the nonconformal plasma sheath in plasma immersion ion implantation of a rod sample, the retained dose can vary significantly. The authors propose to improve the implant uniformity by introducing a metal mesh. The depth profiles obtained with and without the mesh are compared and the implantation temperature at various locations is evaluated indirectly by differential scanning calorimeter. Our results reveal that by using the metal mesh, the retained dose uniformity along the length is greatly improved and the effects of the implantation temperature on the localized mechanical properties of the implanted NiTi shape memory alloy rod are nearlymore » negligible.« less

  11. Characterizing mesh size distributions (MSDs) in thermosetting materials using a high-pressure system.

    PubMed

    Larché, J-F; Seynaeve, J-M; Voyard, G; Bussière, P-O; Gardette, J-L

    2011-04-21

    The thermoporosimetry method was adapted to determine the mesh size distribution of an acrylate thermoset clearcoat. This goal was achieved by increasing the solvent rate transfer by increasing the pressure and temperature. A comparison of the results obtained using this approach with those obtained by DMA (dynamic mechanical analysis) underlined the accuracy of thermoporosimetry in characterizing the macromolecular architecture of thermosets. The thermoporosimetry method was also used to analyze the effects of photoaging on cross-linking, which result from the photodegradation of the acrylate thermoset. It was found that the formation of a three-dimensional network followed by densification generates a modification of the average mesh size that leads to a dramatic decrease of the meshes of the polymer.

  12. An Engineering Solution for Solving Mesh Size Effects in the Simulation of Delamination with Cohesive Zone Models

    NASA Technical Reports Server (NTRS)

    Turon, A.; Davila, C. G.; Camanho, P. P.; Costa, J.

    2007-01-01

    This paper presents a methodology to determine the parameters to be used in the constitutive equations of Cohesive Zone Models employed in the simulation of delamination in composite materials by means of decohesion finite elements. A closed-form expression is developed to define the stiffness of the cohesive layer. A novel procedure that allows the use of coarser meshes of decohesion elements in large-scale computations is also proposed. The procedure ensures that the energy dissipated by the fracture process is computed correctly. It is shown that coarse-meshed models defined using the approach proposed here yield the same results as the models with finer meshes normally used for the simulation of fracture processes.

  13. 2D automatic body-fitted structured mesh generation using advancing extraction method

    NASA Astrophysics Data System (ADS)

    Zhang, Yaoxin; Jia, Yafei

    2018-01-01

    This paper presents an automatic mesh generation algorithm for body-fitted structured meshes in Computational Fluids Dynamics (CFD) analysis using the Advancing Extraction Method (AEM). The method is applicable to two-dimensional domains with complex geometries, which have the hierarchical tree-like topography with extrusion-like structures (i.e., branches or tributaries) and intrusion-like structures (i.e., peninsula or dikes). With the AEM, the hierarchical levels of sub-domains can be identified, and the block boundary of each sub-domain in convex polygon shape in each level can be extracted in an advancing scheme. In this paper, several examples were used to illustrate the effectiveness and applicability of the proposed algorithm for automatic structured mesh generation, and the implementation of the method.

  14. Long-Term Outcome of Laparoscopic Totally Extraperitoneal Repair of Bilateral Inguinal Hernias with a Large Single Mesh.

    PubMed

    Issa, Nidal; Ohana, Gil; Bachar, Gil Nissim; Powsner, Eldad

    2016-02-01

    A totally extraperitoneal (TEP) approach is currently the technique of choice for the laparoscopic repair of bilateral inguinal hernias in our institution. Most other surgeons use two meshes for the TEP repair, one for each side. We prefer a large single mesh when possible since it allows for easier correct placement of the mesh in one stage. We compared our long-term results of both techniques in terms of late complications and recurrence rates. This study retrospectively evaluated the medical records of 108 patients who underwent bilateral laparoscopic TEP repair in our institution between January 2002 and December 2003. Excluded were patients who had a conversion to a transabdominal preperitoneal or open approach. A total of 73 (67 %) patients fulfilled study entrance criteria and were enrolled: 39 had undergone single mesh repair and 34 had undergone double mesh repair. There were no significant group differences in demographics, operating time, postoperative morbidity, or hospital stay. Likewise, after a median follow-up of 102 months (range 94–115 months), there were no significant group differences between the single and double mesh groups in persistent pain (5.8 vs 2.5 %, respectively; p = 0.476) and recurrence (7.6 vs 8.8 %, respectively; p = 0.55). The use of a large single mesh is an effective and safe alternative technique for TEP repair of bilateral inguinal hernias, and is technically easy to perform.

  15. Verification Test of the SURF and SURFplus Models in xRage: Part III Affect of Mesh Alignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    The previous studies used an underdriven detonation wave in 1-dimension (steady ZND reaction zone profile followed by a scale-invariant rarefaction wave) for PBX 9502 as a verification test of the implementation of the SURF and SURFplus models in the xRage code. Since the SURF rate is a function of the lead shock pressure, the question arises as to the effect on accuracy of variations in the detected shock pressure due to the alignment of the shock front with the mesh. To study the effect of mesh alignment we simulate a cylindrically diverging detonation wave using a planar 2-D mesh. Themore » leading issue is the magnitude of azimuthal asymmetries in the numerical solution. The 2-D test case does not have an exact analytic solution. To quantify the accuracy, the 2-D solution along rays through the origin are compared to a highly resolved 1-D simulation in cylindrical geometry.« less

  16. Engagement of Metal Debris into a Gear Mesh

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Krantz, Timothy L.

    2009-01-01

    A series of bench top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock, and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined. INTRODUCTION In some space mechanisms the loading can be so high that there is some possibility that a gear chip might be liberated while in operation of the mechanism [1-5]. Also, due to the closely packed nature of some space mechanisms and the fact that a space grease is used for lubrication, chips that are released can then be introduced to other gear meshes within this mechanism. In this instance, it is desirable to know the consequences of a gear chip entering in between meshing gear teeth. To help provide some understanding, a series of bench-top experiments was conducted to engage chips of simulated and gear material fragments into a meshing gear pair. One purpose of the experiments was to determine the relationship of chip size to the torque required to rotate the gear set through the mesh cycle. The second purpose was to determine the condition of the gear chip material after engagement by the meshing gears, primarily to determine if the chip would break into pieces and to observe the motion of the chip as the engagement was completed. This document also presents preliminary testing done with metal debris other than chips from gears, namely steel shim stock and drill bits of various sizes and diameters.

  17. Exploring supervised and unsupervised methods to detect topics in biomedical text

    PubMed Central

    Lee, Minsuk; Wang, Weiqing; Yu, Hong

    2006-01-01

    Background Topic detection is a task that automatically identifies topics (e.g., "biochemistry" and "protein structure") in scientific articles based on information content. Topic detection will benefit many other natural language processing tasks including information retrieval, text summarization and question answering; and is a necessary step towards the building of an information system that provides an efficient way for biologists to seek information from an ocean of literature. Results We have explored the methods of Topic Spotting, a task of text categorization that applies the supervised machine-learning technique naïve Bayes to assign automatically a document into one or more predefined topics; and Topic Clustering, which apply unsupervised hierarchical clustering algorithms to aggregate documents into clusters such that each cluster represents a topic. We have applied our methods to detect topics of more than fifteen thousand of articles that represent over sixteen thousand entries in the Online Mendelian Inheritance in Man (OMIM) database. We have explored bag of words as the features. Additionally, we have explored semantic features; namely, the Medical Subject Headings (MeSH) that are assigned to the MEDLINE records, and the Unified Medical Language System (UMLS) semantic types that correspond to the MeSH terms, in addition to bag of words, to facilitate the tasks of topic detection. Our results indicate that incorporating the MeSH terms and the UMLS semantic types as additional features enhances the performance of topic detection and the naïve Bayes has the highest accuracy, 66.4%, for predicting the topic of an OMIM article as one of the total twenty-five topics. Conclusion Our results indicate that the supervised topic spotting methods outperformed the unsupervised topic clustering; on the other hand, the unsupervised topic clustering methods have the advantages of being robust and applicable in real world settings. PMID:16539745

  18. Prolonged amelioration of experimental postoperative pain by bupivacaine released from microsphere-coated hernia mesh.

    PubMed

    Ohri, Rachit; Wang, Jeffery Chi-Fei; Pham, Lan; Blaskovich, Phillip D; Costa, Daniel; Nichols, Gary; Hildebrand, William; Scarborough, Nelson; Herman, Clifford; Strichartz, Gary R

    2014-01-01

    Postoperative pain alters physiological functions and delays discharge. Perioperative local anesthetics are effective analgesics in the immediate 1- to 2-day postoperative period, but acute pain often lasts longer. The goal of this work was to develop a local anesthetic formulation adhering to an intraoperative implanted device that reduces pain for at least 3 days after surgery. Six groups, each with 8 rats, were studied. In a control group (group I), one 1.2-cm-long incision of the skin was followed by blunt dissection to separate the skin away from the underlying tissues and closing with 2 sutures. In 3 of the treatment groups, the same surgical procedure was used, with the subcutaneous space formed by the blunt dissection lined with a 1-cm square patch of hernia mesh coated with poly lactide co-glycolic acid microspheres containing approximately 17 mg of bupivacaine (group II), no drug (placebo; group III), or bupivacaine free-base powder (group IV). Uncoated mesh implants (group V) served as a secondary control. A standard bupivacaine solution (0.4 mL, 0.5%; 2-mg dose) was infiltrated subcutaneously 30 minutes before the surgery and served as a standard control (group VI). Mechanosensitivity of the skin was tested by the local subcutaneous muscle responses to cutaneous tactile stimulation by von Frey hairs with forces of 4 g (for allodynia) and 15 g (for hyperalgesia) preoperatively and for 7 postoperative days. Control rats (group I) showed mechanohypersensitivity, indicative of postoperative allodynia and hyperalgesia, for all 7 postoperative days. Mechanohyperalgesia in rats that received mesh coated with bupivacaine-releasing microspheres (group II) was reduced during this period to 13% of control postoperative values (P < 0.001); mesh coated with bupivacaine base (group IV) reduced it by 50% (P = 0.034). The placebo mesh (group III) and uncoated mesh (group V) caused no significant reduction of mechanohypersensitivity, and bupivacaine solution infiltrated before the incision (group VI) reduced hypersensitivity for only approximately 2 hours, an overall insignificant effect. Bupivacaine slowly released for 72 hours from microspheres adsorbed to the hernia mesh significantly suppresses evoked postoperative hypersensitivity for at least 1 week and is more effective than a suspension of these microspheres or preoperative single-shot infiltration of bupivacaine.

  19. Influence of cell shape on mechanical properties of Ti-6Al-4V meshes fabricated by electron beam melting method.

    PubMed

    Li, S J; Xu, Q S; Wang, Z; Hou, W T; Hao, Y L; Yang, R; Murr, L E

    2014-10-01

    Ti-6Al-4V reticulated meshes with different elements (cubic, G7 and rhombic dodecahedron) in Materialise software were fabricated by additive manufacturing using the electron beam melting (EBM) method, and the effects of cell shape on the mechanical properties of these samples were studied. The results showed that these cellular structures with porosities of 88-58% had compressive strength and elastic modulus in the range 10-300MPa and 0.5-15GPa, respectively. The compressive strength and deformation behavior of these meshes were determined by the coupling of the buckling and bending deformation of struts. Meshes that were dominated by buckling deformation showed relatively high collapse strength and were prone to exhibit brittle characteristics in their stress-strain curves. For meshes dominated by bending deformation, the elastic deformation corresponded well to the Gibson-Ashby model. By enhancing the effect of bending deformation, the stress-strain curve characteristics can change from brittle to ductile (the smooth plateau area). Therefore, Ti-6Al-4V cellular solids with high strength, low modulus and desirable deformation behavior could be fabricated through the cell shape design using the EBM technique. Copyright © 2014 Acta Materialia Inc. All rights reserved.

  20. High-Performance Flexible Transparent Electrode with an Embedded Metal Mesh Fabricated by Cost-Effective Solution Process.

    PubMed

    Khan, Arshad; Lee, Sangeon; Jang, Taehee; Xiong, Ze; Zhang, Cuiping; Tang, Jinyao; Guo, L Jay; Li, Wen-Di

    2016-06-01

    A new structure of flexible transparent electrodes is reported, featuring a metal mesh fully embedded and mechanically anchored in a flexible substrate, and a cost-effective solution-based fabrication strategy for this new transparent electrode. The embedded nature of the metal-mesh electrodes provides a series of advantages, including surface smoothness that is crucial for device fabrication, mechanical stability under high bending stress, strong adhesion to the substrate with excellent flexibility, and favorable resistance against moisture, oxygen, and chemicals. The novel fabrication process replaces vacuum-based metal deposition with an electrodeposition process and is potentially suitable for high-throughput, large-volume, and low-cost production. In particular, this strategy enables fabrication of a high-aspect-ratio (thickness to linewidth) metal mesh, substantially improving conductivity without considerably sacrificing transparency. Various prototype flexible transparent electrodes are demonstrated with transmittance higher than 90% and sheet resistance below 1 ohm sq(-1) , as well as extremely high figures of merit up to 1.5 × 10(4) , which are among the highest reported values in recent studies. Finally using our embedded metal-mesh electrode, a flexible transparent thin-film heater is demonstrated with a low power density requirement, rapid response time, and a low operating voltage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A repellent net as a new technology to protect cabbage crops.

    PubMed

    Martin, T; Palix, R; Kamal, A; Delétré, E; Bonafos, R; Simon, S; Ngouajio, M

    2013-08-01

    Floating row covers or insect-proof nets with fine mesh are effective at protecting vegetable crops against aphids but negatively impact plant health, especially under warm conditions. Furthermore, in control of cabbage insect pests, aphid parasitoids cannot enter the fine-mesh nets, leading to frequent aphid outbreaks. To surmount these difficulties, a 40-mesh-size repellent net treated with alphacypermethrin was studied in laboratory and field tests. Results showed both irritant and repellent effects of the alphacypermethrin-treated net on Myzus persicae (Sulzer) (Hemiptera: Aphididae) and its parasitoid Aphidius colemani (Haliday) (Hymenoptera: Braconidae). Under field conditions, there were no pests on cabbage protected with the repellent net. The repellent net allowed combining a visual and repellent barrier against aphids. Because of this additive effect, repellent nets allowed covering cabbage permanently with adequate protection against all pests.

  2. The Influence of Mesh Density on the Impact Response of a Shuttle Leading-Edge Panel Finite Element Simulation

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Lyle, Karen H.; Spellman, Regina L.

    2004-01-01

    A study was performed to examine the influence of varying mesh density on an LS-DYNA simulation of a rectangular-shaped foam projectile impacting the space shuttle leading edge Panel 6. The shuttle leading-edge panels are fabricated of reinforced carbon-carbon (RCC) material. During the study, nine cases were executed with all possible combinations of coarse, baseline, and fine meshes of the foam and panel. For each simulation, the same material properties and impact conditions were specified and only the mesh density was varied. In the baseline model, the shell elements representing the RCC panel are approximately 0.2-in. on edge, whereas the foam elements are about 0.5-in. on edge. The element nominal edge-length for the baseline panel was halved to create a fine panel (0.1-in. edge length) mesh and doubled to create a coarse panel (0.4-in. edge length) mesh. In addition, the element nominal edge-length of the baseline foam projectile was halved (0.25-in. edge length) to create a fine foam mesh and doubled (1.0- in. edge length) to create a coarse foam mesh. The initial impact velocity of the foam was 775 ft/s. The simulations were executed in LS-DYNA version 960 for 6 ms of simulation time. Contour plots of resultant panel displacement and effective stress in the foam were compared at five discrete time intervals. Also, time-history responses of internal and kinetic energy of the panel, kinetic and hourglass energy of the foam, and resultant contact force were plotted to determine the influence of mesh density. As a final comparison, the model with a fine panel and fine foam mesh was executed with slightly different material properties for the RCC. For this model, the average degraded properties of the RCC were replaced with the maximum degraded properties. Similar comparisons of panel and foam responses were made for the average and maximum degraded models.

  3. Numerical form-finding method for large mesh reflectors with elastic rim trusses

    NASA Astrophysics Data System (ADS)

    Yang, Dongwu; Zhang, Yiqun; Li, Peng; Du, Jingli

    2018-06-01

    Traditional methods for designing a mesh reflector usually treat the rim truss as rigid. Due to large aperture, light weight and high accuracy requirements on spaceborne reflectors, the rim truss deformation is indeed not negligible. In order to design a cable net with asymmetric boundaries for the front and rear nets, a cable-net form-finding method is firstly introduced. Then, the form-finding method is embedded into an iterative approach for designing a mesh reflector considering the elasticity of the supporting rim truss. By iterations on form-findings of the cable-net based on the updated boundary conditions due to the rim truss deformation, a mesh reflector with a fairly uniform tension distribution in its equilibrium state could be finally designed. Applications on offset mesh reflectors with both circular and elliptical rim trusses are illustrated. The numerical results show the effectiveness of the proposed approach and that a circular rim truss is more stable than an elliptical rim truss.

  4. Large area nanoscale metal meshes for use as transparent conductive layers.

    PubMed

    Jin, Yuanhao; Li, Qunqing; Chen, Mo; Li, Guanhong; Zhao, Yudan; Xiao, Xiaoyang; Wang, Jiaping; Jiang, Kaili; Fan, Shoushan

    2015-10-21

    We report on the experimental realization of using super-aligned carbon nanotubes (SACNTs) as etching masks for the fabrication of large area nanoscale metal meshes. This method can easily be extended to different metals on both rigid and flexible substrates. The as-fabricated metal meshes, including the ones made of gold, copper, and aluminum, are suitable for use as transparent conductive layers (TCLs). The metal meshes, which are similar to the SACNT networks in their dimensional features of tens of nanometers, exhibit compatible performance in terms of optical transmittance and sheet resistance. Moreover, because the metal meshes are fabricated as an integrated material, there is no junction resistance between the interconnected metal nanostructures, which markedly lowers their sheet resistance at high temperatures. The fabrication of such an effective etching mask involves a simple drawing process of the SACNT networks prepared and a common deposition process. This approach should be easy to extend to various research fields and has broad prospects in commercial applications.

  5. Color change in acrylic denture base resin reinforced with wire mesh and glass cloth.

    PubMed

    Kanie, Takahito; Arikawa, Hiroyuki; Fujii, Koichi; Ban, Seiji

    2003-12-01

    In this study, the L*a*b* color system as a color system and light transmittance of the denture base resin reinforced with wire mesh and glass cloth were measured, and the color difference (deltaE*ab) was calculated using L*, a* and b* values which were measured both on a white calibration plate and on a null background. The thicknesses of test specimens, which were reinforced with wire mesh and glass cloth 0.5 and 1.0 mm below the surface, were 3 and 5 mm. L*, a* and b* values of wire mesh reinforcing specimens decreased in comparison with the non-reinforcing specimens (p<0.05). L* values of glass cloth-reinforcing specimens increased compared with the non-reinforcing specimens (p<0.05). The glass cloth is an effective reinforcing material and an aesthetically important property of denture base resin, since wire mesh makes the resin appear darker with the background condition greatly altering the color, while glass cloth makes the resin lighter.

  6. Active vibration control of a single-stage spur gearbox

    NASA Astrophysics Data System (ADS)

    Dogruer, C. U.; Pirsoltan, Abbas K.

    2017-02-01

    The dynamic transmission error between driving and driven gears of a gear mechanism with torsional mode is induced by periodic time-varying mesh stiffness. In this study, to minimize the adverse effect of this time-varying mesh stiffness, a nonlinear controller which adjusts the torque acting on the driving gear is proposed. The basic approach is to modulate the input torque such that it compensates the periodic change in mesh stiffness. It is assumed that gears are assembled with high precision and gearbox is analyzed by a finite element software to calculate the mesh stiffness curve. Thus, change in the mesh stiffness, which is inherently nonlinear, can be predicted and canceled by a feed-forward loop. Then, remaining linear dynamics is controlled by pole placement techniques. Under these premises, it is claimed that any acceleration and velocity profile of the input shaft can be tracked accurately. Thereby, dynamic transmission error is kept to a minimum possible value and a spur gearbox, which does not emit much noise and vibration, is designed.

  7. Laparoscopic-assisted tension-free vaginal mesh: an innovative approach to placing synthetic mesh: transvaginally for surgical correction of pelvic organ prolapse.

    PubMed

    Watanabe, Toyohiko; Inoue, Miyabi; Ishii, Ayano; Yamato, Toyoko; Yamamoto, Masumi; Sasaki, Katsumi; Kobayashi, Yasuyuki; Araki, Motoo; Uehara, Shinya; Saika, Takashi; Kumon, Hiromi

    2012-01-01

    Polypropylene mesh implants for the correction of pelvic organ prolapse (POP) are now available in Japan. We developed an innovative approach for correcting POP by placing polypropylene mesh transvaginally with laparoscopic assistance. From June 2007 through March 2010, sixteen consecutive patients with symptomatic stage 2 or 3 pelvic organ prolapse underwent the laparoscopic-assisted tension-free vaginal mesh procedure at Okayama University Hospital. All patients were evaluated before and at 1, 3, 6, and 12 months after surgery. Female sexual function was also evaluated with the Female Sexual Function Index (FSFI). The procedure was performed successfully without significant complications. Fifteen of 16 patients were considered anatomically cured (93.8%) at 12 months postoperatively. One patient with a recurrent stage 3 vaginal vault prolapse required sacral colpopexy six months postoperatively. Total FSFI scores improved significantly from 10.3 ± 1.3 at baseline to 18.0 ± 1.2 at 12 months after surgery. The laparoscopic-assisted trans-vaginal mesh is a safe, effective, and simple procedure for POP repairs. The procedure not only restores anatomic relationships but also improves sexual function.

  8. Automatic partitioning of unstructured meshes for the parallel solution of problems in computational mechanics

    NASA Technical Reports Server (NTRS)

    Farhat, Charbel; Lesoinne, Michel

    1993-01-01

    Most of the recently proposed computational methods for solving partial differential equations on multiprocessor architectures stem from the 'divide and conquer' paradigm and involve some form of domain decomposition. For those methods which also require grids of points or patches of elements, it is often necessary to explicitly partition the underlying mesh, especially when working with local memory parallel processors. In this paper, a family of cost-effective algorithms for the automatic partitioning of arbitrary two- and three-dimensional finite element and finite difference meshes is presented and discussed in view of a domain decomposed solution procedure and parallel processing. The influence of the algorithmic aspects of a solution method (implicit/explicit computations), and the architectural specifics of a multiprocessor (SIMD/MIMD, startup/transmission time), on the design of a mesh partitioning algorithm are discussed. The impact of the partitioning strategy on load balancing, operation count, operator conditioning, rate of convergence and processor mapping is also addressed. Finally, the proposed mesh decomposition algorithms are demonstrated with realistic examples of finite element, finite volume, and finite difference meshes associated with the parallel solution of solid and fluid mechanics problems on the iPSC/2 and iPSC/860 multiprocessors.

  9. Effect of surface condition to temperature distribution in living tissue during cryopreservation

    NASA Astrophysics Data System (ADS)

    Nozawa, M.; Hatakeyama, S.; Sugimoto, Y.; Sasaki, H.

    2017-12-01

    The temperature distribution of the simulated living tissue is measured for the improvement of the cooling rate during cryopreservation when the surface condition of the test sample is changed by covering the stainless steel mesh. Agar is used as a simulated living tissue and is filled inside the test sample. The variation of the transient temperature with mesh by the directly immersion in the liquid nitrogen is measured. The temperatures on the sample surface and the inside of the sample are measured by use of type T thermocouples. It is confirmed that on the sample surface there is the slightly temperature increase than that in the saturated liquid nitrogen at the atmospheric pressure. It is found by the comparison of the degree of superheat with or without the mesh that the surface temperature of the test sample with the mesh is lower than that without the mesh. On the other hand, the time series variations of the temperature located in the center of the sample does not change with or without the mesh. It is considered that the center of the sample used is too deep from the surface to respond to the boiling state on the sample surface.

  10. Bone-anchored sling using the Mini Quick Anchor Plus and polypropylene mesh to treat post-radical prostatectomy incontinence: early experience.

    PubMed

    Suzuki, Yasutomo; Saito, Yuka; Ogushi, Satoko; Kimura, Go; Kondo, Yukihiro

    2012-10-01

    Herein we describe our experience with a bone-anchored sling using a suture anchor and polypropylene mesh for the treatment of post-radical prostatectomy urinary incontinence. Eight patients with urinary incontinence as a result of intrinsic sphincter deficiency after radical prostatectomy were included in the analysis. The procedure involved piercing the pubic bone with a bone drill, inserting the suture anchor and fixing a soft or rigid polypropylene mesh to press firmly on the bulbar urethra. Urinary incontinence was significantly improved according to changes in the daily number of pads used at 1, 3 and 6 months postoperatively in comparison with preoperatively. However, no meaningful improvement at 6 months postoperatively was seen with the soft mesh. Complications included perineal pain in four cases, but pain control was achieved using non-steroidal anti-inflammatory drugs. The bone-anchored sling with a suture anchor and polypropylene mesh appears to be safe and effective for the treatment of post-radical prostatectomy urinary incontinence. Soft mesh appears inappropriate as material for the bone-anchored sling because of the progressive likelihood of worsened urinary incontinence. © 2012 The Japanese Urological Association.

  11. Direction-aware Slope Limiter for 3D Cubic Grids with Adaptive Mesh Refinement

    DOE PAGES

    Velechovsky, Jan; Francois, Marianne M.; Masser, Thomas

    2018-06-07

    In the context of finite volume methods for hyperbolic systems of conservation laws, slope limiters are an effective way to suppress creation of unphysical local extrema and/or oscillations near discontinuities. We investigate properties of these limiters as applied to piecewise linear reconstructions of conservative fluid quantities in three-dimensional simulations. In particular, we are interested in linear reconstructions on Cartesian adaptively refined meshes, where a reconstructed fluid quantity at a face center depends on more than a single gradient component of the quantity. We design a new slope limiter, which combines the robustness of a minmod limiter with the accuracy ofmore » a van Leer limiter. The limiter is called Direction-Aware Limiter (DAL), because the combination is based on a principal flow direction. In particular, DAL is useful in situations where the Barth–Jespersen limiter for general meshes fails to maintain global linear functions, such as on cubic computational meshes with stencils including only faceneighboring cells. Here, we verify the new slope limiter on a suite of standard hydrodynamic test problems on Cartesian adaptively refined meshes. Lastly, we demonstrate reduced mesh imprinting; for radially symmetric problems such as the Sedov blast wave or the Noh implosion test cases, the results with DAL show better preservation of radial symmetry compared to the other standard methods on Cartesian meshes.« less

  12. Covalent layer-by-layer grafting (LBLG) functionalized superhydrophobic stainless steel mesh for oil/water separation

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; Zhang, Hongjie; Sun, Yongli; Zhang, Luhong; Xu, Lidong; Hao, Li; Yang, Huawei

    2017-06-01

    A superhydrophobic and superoleophilic stainless steel (SS) mesh for oil/water separation has been developed by using a novel, facile and inexpensive covalent layer-by-layer grafting (LBLG) method. Hierarchical micro/nanostructure surface was formed through grafting the (3-aminopropyl) triethoxysilane (SCA), polyethylenimine (PEI) and trimesoyl chloride (TMC) onto the mesh in sequence, accompanied with SiO2 nanoparticles subtly and firmly anchored in multilayers. Superhydrophobic characteristic was realized by self-assembly grafting of hydrophobic groups onto the surface. The as-prepared mesh exhibits excellent superhydrophobicity with a water contact angle of 159°. Moreover, with a low sliding angle of 4°, it shows the "lotus effect" for self-cleaning. As for application evaluation, the as-prepared mesh can be used for large-scale separation of oil/water mixtures with a relatively high separation efficiency after 30 times reuse (99.88% for n-octane/water mixture) and a high intrusion pressure (3.58 kPa). More importantly, the mesh exhibited excellent stability in the case of vibration situation, long-term storage as well as saline corrosion conditions, and the compatible pH range was determined to be 1-13. In summary, this work provides a brand new method of modifying SS mesh in a covalent LBLG way, and makes it possible to introduce various functionalized groups onto the surface.

  13. Direction-aware Slope Limiter for 3D Cubic Grids with Adaptive Mesh Refinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velechovsky, Jan; Francois, Marianne M.; Masser, Thomas

    In the context of finite volume methods for hyperbolic systems of conservation laws, slope limiters are an effective way to suppress creation of unphysical local extrema and/or oscillations near discontinuities. We investigate properties of these limiters as applied to piecewise linear reconstructions of conservative fluid quantities in three-dimensional simulations. In particular, we are interested in linear reconstructions on Cartesian adaptively refined meshes, where a reconstructed fluid quantity at a face center depends on more than a single gradient component of the quantity. We design a new slope limiter, which combines the robustness of a minmod limiter with the accuracy ofmore » a van Leer limiter. The limiter is called Direction-Aware Limiter (DAL), because the combination is based on a principal flow direction. In particular, DAL is useful in situations where the Barth–Jespersen limiter for general meshes fails to maintain global linear functions, such as on cubic computational meshes with stencils including only faceneighboring cells. Here, we verify the new slope limiter on a suite of standard hydrodynamic test problems on Cartesian adaptively refined meshes. Lastly, we demonstrate reduced mesh imprinting; for radially symmetric problems such as the Sedov blast wave or the Noh implosion test cases, the results with DAL show better preservation of radial symmetry compared to the other standard methods on Cartesian meshes.« less

  14. Polypropylene-based composite mesh versus standard polypropylene mesh in the reconstruction of complicated large abdominal wall hernias: a prospective randomized study.

    PubMed

    Kassem, M I; El-Haddad, H M

    2016-10-01

    To compare polypropylene mesh positioned onlay supported by omentum and/or peritoneum versus inlay implantation of polypropylene-based composite mesh in patients with complicated wide-defect ventral hernias. This was a prospective randomized study carried out on 60 patients presenting with complicated large ventral hernia in the period from January 2012 to January 2016 in the department of Gastrointestinal Surgery unit and Surgical Emergency of the Main Alexandria University Hospital, Egypt. Large hernia had an abdominal wall defect that could not be closed. Patients were divided into two groups of 30 patients according to the type of mesh used to deal with the large abdominal wall defect. The study included 38 women (63.3 %) and 22 men (37.7 %); their mean age was 46.5 years (range, 25-70). Complicated incisional hernia was the commonest presentation (56.7 %).The operative and mesh fixation times were longer in the polypropylene group. Seven wound infections and two recurrences were encountered in the propylene group. Mean follow-up was 28.7 months (2-48 months). Composite mesh provided, in one session, satisfactory results in patients with complicated large ventral hernia. The procedure is safe and effective in lowering operative time with a trend of low wound complication and recurrence rates.

  15. Architectural and Mobility Management Designs in Internet-Based Infrastructure Wireless Mesh Networks

    ERIC Educational Resources Information Center

    Zhao, Weiyi

    2011-01-01

    Wireless mesh networks (WMNs) have recently emerged to be a cost-effective solution to support large-scale wireless Internet access. They have numerous applications, such as broadband Internet access, building automation, and intelligent transportation systems. One research challenge for Internet-based WMNs is to design efficient mobility…

  16. Edge gradients evaluation for 2D hybrid finite volume method model

    USDA-ARS?s Scientific Manuscript database

    In this study, a two-dimensional depth-integrated hydrodynamic model was developed using FVM on a hybrid unstructured collocated mesh system. To alleviate the negative effects of mesh irregularity and non-uniformity, a conservative evaluation method for edge gradients based on the second-order Tayl...

  17. [Selective catalytic reduction of NOx over Pd/CeZr/TiO2/Al2O3 wire-mesh honeycomb catalysts].

    PubMed

    Sun, Hong; Quan, Xie; Zhang, Yao-bin; Zhao, Ya-zhi

    2008-06-01

    Pd/CeZr/TiO2/Al2O3 wire-mesh honeycomb catalyst was prepared by sol-gel and impregnation. Furthermore, selective catalytic reduction of NOx over Pd/CeZr/TiO2/Al2O3 wire-mesh honeycomb catalyst with propylene under lean burn condition was studied. The effects of the concentration of tetra-n-butyl titanate and dipcoat cycles on TiO2 washcoat were studied by SEM, and the effects of Pd concentration, O2 concentration and gas velocity on catalytic activity were investigated. The experimental results showed that the TiO2 washcoat on wire-mesh support is even and crack-free when the support is impregnated in 20.0% tetra- n-butyl titanate sol for 2 cycles. The NOx conversion decreases with Pd concentration increase. When Pd concentration is 0.23%, NOx conversion is highest. NOx conversion increases with oxygen concentration increase in the range of 1.5%-6.0%. However, when oxygen concentration is higher than 6.0%, NOx conversion decreases with increasing oxygen concentration. The NOx conversion decreases with gas velocity increase and its effect is severer at high temperature than low temperature.

  18. A promising new device for the prevention of parastomal hernia.

    PubMed

    Hoffmann, Henry; Oertli, Daniel; Soysal, Savas; Zingg, Urs; Hahnloser, Dieter; Kirchhoff, Philipp

    2015-06-01

    Parastomal hernia (PSH) is the most frequent long-term stoma complication with serious negative effects on quality of life. Surgical revision is often required and has a substantial morbidity and recurrence rate. The development of PSH requires revisional surgery with a substantial perioperative morbidity and high failure rate in the long-term follow-up. Prophylactic parastomal mesh insertion during stoma creation has the potential to reduce the rate of PSH, but carries the risk of early and late mesh-related complications such as infection, fibrosis, mesh shrinkage, and/or bowel erosion. We developed a new stomaplasty ring (KORING), which is easy to implant, avoids potential mesh-related complications, and has a high potential of long-term prevention of PSH. Here we describe the technique and the first use. © The Author(s) 2014.

  19. Anisotropic mesh adaptation for marine ice-sheet modelling

    NASA Astrophysics Data System (ADS)

    Gillet-Chaulet, Fabien; Tavard, Laure; Merino, Nacho; Peyaud, Vincent; Brondex, Julien; Durand, Gael; Gagliardini, Olivier

    2017-04-01

    Improving forecasts of ice-sheets contribution to sea-level rise requires, amongst others, to correctly model the dynamics of the grounding line (GL), i.e. the line where the ice detaches from its underlying bed and goes afloat on the ocean. Many numerical studies, including the intercomparison exercises MISMIP and MISMIP3D, have shown that grid refinement in the GL vicinity is a key component to obtain reliable results. Improving model accuracy while maintaining the computational cost affordable has then been an important target for the development of marine icesheet models. Adaptive mesh refinement (AMR) is a method where the accuracy of the solution is controlled by spatially adapting the mesh size. It has become popular in models using the finite element method as they naturally deal with unstructured meshes, but block-structured AMR has also been successfully applied to model GL dynamics. The main difficulty with AMR is to find efficient and reliable estimators of the numerical error to control the mesh size. Here, we use the estimator proposed by Frey and Alauzet (2015). Based on the interpolation error, it has been found effective in practice to control the numerical error, and has some flexibility, such as its ability to combine metrics for different variables, that makes it attractive. Routines to compute the anisotropic metric defining the mesh size have been implemented in the finite element ice flow model Elmer/Ice (Gagliardini et al., 2013). The mesh adaptation is performed using the freely available library MMG (Dapogny et al., 2014) called from Elmer/Ice. Using a setup based on the inter-comparison exercise MISMIP+ (Asay-Davis et al., 2016), we study the accuracy of the solution when the mesh is adapted using various variables (ice thickness, velocity, basal drag, …). We show that combining these variables allows to reduce the number of mesh nodes by more than one order of magnitude, for the same numerical accuracy, when compared to uniform mesh refinement. For transient solutions where the GL is moving, we have implemented an algorithm where the computation is reiterated allowing to anticipate the GL displacement and to adapt the mesh to the transient solution. We discuss the performance and robustness of this algorithm.

  20. [The Open Retromuscular Preperitoneal Mesh Repair of the Incisional Lateral Hernia - Technique and Results of a Prospective Cohort Study].

    PubMed

    Isemer, Friedrich-Eckart; Dietz, Ulrich; Ackermann, Maximilian

    2018-05-18

    Surgical approaches to flank hernias have been poorly standardised. The most demanding issues in intermuscular net insertion are the limited area in the dorsal direction and the difficulties in fixing the net to the costal arch or the iliac crest. This is why many different surgical procedures have been published. From August 2015 to October 2016, nine patients with a primary incisional lateral hernia received open retromuscular preperitoneal mesh repair. In intermuscular mesh placement, the mesh size must be smaller at smaller values of the CPA (costopelvic angle). On the dorsal side of the reference stretch RS of 10 cm between costal arch and iliac crest, fixations are necessary to achieve stability. Retroperitoneal preperitoneal net implantation is unrestricted by the patient's anatomy. The placement of the mesh is similar to the Stoppa procedure and almost any size can be used with little fixation. Remodeling of the abdominal wall can be comfortably achieved. All 9 patients underwent retromuscular preperitoneal mesh repair. The hernia size was 92.85 cm 2 with a corresponding mesh size of 426.22 cm 2 . No adverse side effects or surgical complications were observed; the length of hospital stay was between 3 to 7 days; the follow up was 3 to 18 months, with a mean follow-up of 9.1 months. In a follow-up questionnaire, the patients reported a high satisfaction rate with a grade of 1,2 (school mark); there was no recurrence. The pain level decreased from VAS grade 4 preoperatively to 1.2 postoperatively. 7 patients had no pain at all. In conclusion, adequate overlap of the implanted mesh can be achieved in the preperitoneal retromuscular space even in large hernias. Fixation of the mesh to the costal arch or the iliac crest is not necessary and would only induce postoperative pain. Long-term stability depends on the size of the mesh. Remodeling of the abdominal wall with closure of the fascia above the mesh can be easily achieved. Georg Thieme Verlag KG Stuttgart · New York.

  1. Syringe-Injectable Electronics with a Plug-and-Play Input/Output Interface.

    PubMed

    Schuhmann, Thomas G; Yao, Jun; Hong, Guosong; Fu, Tian-Ming; Lieber, Charles M

    2017-09-13

    Syringe-injectable mesh electronics represent a new paradigm for brain science and neural prosthetics by virtue of the stable seamless integration of the electronics with neural tissues, a consequence of the macroporous mesh electronics structure with all size features similar to or less than individual neurons and tissue-like flexibility. These same properties, however, make input/output (I/O) connection to measurement electronics challenging, and work to-date has required methods that could be difficult to implement by the life sciences community. Here we present a new syringe-injectable mesh electronics design with plug-and-play I/O interfacing that is rapid, scalable, and user-friendly to nonexperts. The basic design tapers the ultraflexible mesh electronics to a narrow stem that routes all of the device/electrode interconnects to I/O pads that are inserted into a standard zero insertion force (ZIF) connector. Studies show that the entire plug-and-play mesh electronics can be delivered through capillary needles with precise targeting using microliter-scale injection volumes similar to the standard mesh electronics design. Electrical characterization of mesh electronics containing platinum (Pt) electrodes and silicon (Si) nanowire field-effect transistors (NW-FETs) demonstrates the ability to interface arbitrary devices with a contact resistance of only 3 Ω. Finally, in vivo injection into mice required only minutes for I/O connection and yielded expected local field potential (LFP) recordings from a compact head-stage compatible with chronic studies. Our results substantially lower barriers for use by new investigators and open the door for increasingly sophisticated and multifunctional mesh electronics designs for both basic and translational studies.

  2. Tooth-meshing-harmonic static-transmission-error amplitudes of helical gears

    NASA Astrophysics Data System (ADS)

    Mark, William D.

    2018-01-01

    The static transmission errors of meshing gear pairs arise from deviations of loaded tooth working surfaces from equispaced perfect involute surfaces. Such deviations consist of tooth-pair elastic deformations and geometric deviations (modifications) of tooth working surfaces. To a very good approximation, the static-transmission-error tooth-meshing-harmonic amplitudes of helical gears are herein expressed by superposition of Fourier transforms of the quantities: (1) the combination of tooth-pair elastic deformations and geometric tooth-pair modifications and (2) fractional mesh-stiffness fluctuations, each quantity (1) and (2) expressed as a function of involute "roll distance." Normalization of the total roll-distance single-tooth contact span to unity allows tooth-meshing-harmonic amplitudes to be computed for different shapes of the above-described quantities (1) and (2). Tooth-meshing harmonics p = 1, 2, … are shown to occur at Fourier-transform harmonic values of Qp, p = 1, 2, …, where Q is the actual (total) contact ratio, thereby verifying its importance in minimizing transmission-error tooth-meshing-harmonic amplitudes. Two individual shapes and two series of shapes of the quantities (1) and (2) are chosen to illustrate a wide variety of shapes. In most cases representative of helical gears, tooth-meshing-harmonic values p = 1, 2, … are shown to occur in Fourier-transform harmonic regions governed by discontinuities arising from tooth-pair-contact initiation and termination, thereby showing the importance of minimizing such discontinuities. Plots and analytical expressions for all such Fourier transforms are presented, thereby illustrating the effects of various types of tooth-working-surface modifications and tooth-pair stiffnesses on transmission-error generation.

  3. Smooth operator: The effects of different 3D mesh retriangulation protocols on the computation of Dirichlet normal energy.

    PubMed

    Spradley, Jackson P; Pampush, James D; Morse, Paul E; Kay, Richard F

    2017-05-01

    Dirichlet normal energy (DNE) is a metric of surface topography that has been used to evaluate the relationship between the surface complexity of primate cheek teeth and dietary categories. This study examines the effects of different 3D mesh retriangulation protocols on DNE. We examine how different protocols influence the DNE of a simple geometric shape-a hemisphere-to gain a more thorough understanding than can be achieved by investigating a complex biological surface such as a tooth crown. We calculate DNE on 3D surface meshes of hemispheres and on primate molars subjected to various retriangulation protocols, including smoothing algorithms, smoothing amounts, target face counts, and criteria for boundary face exclusion. Software used includes R, MorphoTester, Avizo, and MeshLab. DNE was calculated using the R package "molaR." In all cases, smoothing as performed in Avizo sharply decreases DNE initially, after which DNE becomes stable. Using a broader boundary exclusion criterion or performing additional smoothing (using "mesh fairing" methods) further decreases DNE. Increasing the mesh face count also results in increased DNE on tooth surfaces. Different retriangulation protocols yield different DNE values for the same surfaces, and should not be combined in meta-analyses. Increasing face count will capture surface microfeatures, but at the expense of computational speed. More aggressive smoothing is more likely to alter the essential geometry of the surface. A protocol is proposed that limits potential artifacts created during surface production while preserving pertinent features on the occlusal surface. © 2017 Wiley Periodicals, Inc.

  4. SU-E-J-108: Solving the Chinese Postman Problem for Effective Contour Deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, J; Zhang, L; Balter, P

    2015-06-15

    Purpose: To develop a practical approach for accurate contour deformation when deformable image registration (DIR) is used for atlas-based segmentation or contour propagation in image-guided radiotherapy. Methods: A contour deformation approach was developed on the basis of 3D mesh operations. The 2D contours represented by a series of points in each slice were first converted to a 3D triangular mesh, which was deformed by the deformation vectors resulting from DIR. A set of parallel 2D planes then cut through the deformed 3D mesh, generating unordered points and line segments, which should be reorganized into a set of 2D contour points.more » It was realized that the reorganization problem was equivalent to solving the Chinese Postman Problem (CPP) by traversing a graph built from the unordered points with the least cost. Alternatively, deformation could be applied to a binary mask converted from the original contours. The deformed binary mask was then converted back into contours at the CT slice locations. We performed a qualitative comparison to validate the mesh-based approach against the image-based approach. Results: The DIR could considerably change the 3D mesh, making complicated 2D contour representations after deformation. CPP was able to effectively reorganize the points in 2D planes no matter how complicated the 2D contours were. The mesh-based approach did not require a post-processing of the contour, thus accurately showing the actual deformation in DIR. The mesh-based approach could keep some fine details and resulted in smoother contours than the image-based approach did, especially for the lung structure. Image-based approach appeared to over-process contours and suffered from image resolution limits. The mesh-based approach was integrated into in-house DIR software for use in routine clinic and research. Conclusion: We developed a practical approach for accurate contour deformation. The efficiency of this approach was demonstrated in both clinic and research applications. This work was partially supported by Cancer Prevention & Research Institute of Texas (CPRIT) RP110562.« less

  5. The NLM Indexing Initiative's Medical Text Indexer.

    PubMed

    Aronson, Alan R; Mork, James G; Gay, Clifford W; Humphrey, Susanne M; Rogers, Willie J

    2004-01-01

    The Medical Text Indexer (MTI) is a program for producing MeSH indexing recommendations. It is the major product of NLM's Indexing Initiative and has been used in both semi-automated and fully automated indexing environments at the Library since mid 2002. We report here on an experiment conducted with MEDLINE indexers to evaluate MTI's performance and to generate ideas for its improvement as a tool for user-assisted indexing. We also discuss some filtering techniques developed to improve MTI's accuracy for use primarily in automatically producing the indexing for several abstracts collections.

  6. The effect of different propolis harvest methods on its lead contents determined by ET AAS and UV-visS.

    PubMed

    Sales, A; Alvarez, A; Areal, M Rodriguez; Maldonado, L; Marchisio, P; Rodríguez, M; Bedascarrasbure, E

    2006-10-11

    Argentinean propolis is exported to different countries, specially Japan. The market demands propolis quality control according to international standards. The analytical determination of some metals, as lead in food, is very important for their high toxicity even in low concentrations and because of their harmful effects on health. Flavonoids, the main bioactive compounds of propolis, tend to chelate metals as lead, which becomes one of the main polluting agents of propolis. The lead found in propolis may come from the atmosphere or it may be incorporated in the harvest, extraction and processing methods. The aim of this work is to evaluate lead level on Argentinean propolis determined by electrothermal atomic absorption spectrometry (ET AAS) and UV-vis spectrophotometry (UV-visS) methods, as well as the effect of harvest methods on those contents. A randomized test with three different treatments of collection was made to evaluate the effect of harvest methods. These procedures were: separating wedges (traditional), netting plastic meshes and stamping out plastic meshes. By means of the analysis of variance technique for multiple comparisons (ANOVA) it was possible to conclude that there are significant differences between scraped and mesh methods (stamped out and mosquito netting meshes). The results obtained in the present test would allow us to conclude that mesh methods are more advisable than scraped ones in order to obtain innocuous and safe propolis with minor lead contents. A statistical comparison of lead determination by both, ET AAS and UV-visS methods, demonstrated that there is not a significant difference in the results achieved with the two analytical techniques employed.

  7. Assessment of adhesion formation to intra-abdominal polypropylene mesh and polytetrafluoroethylene mesh.

    PubMed

    Matthews, Brent D; Pratt, Broc L; Pollinger, Harrison S; Backus, Charles L; Kercher, Kent W; Sing, R F; Heniford, B Todd

    2003-10-01

    The development of intra-abdominal adhesions, bowel obstruction, and enterocutaneous fistulas are potentially severe complications related to the intraperitoneal placement of prosthetic biomaterials. The purpose of this study was to determine the natural history of adhesion formation to polypropylene mesh and two types of polytetrafluoroethylene (ePTFE) mesh when placed intraperitoneally in a rabbit model that simulates laparoscopic ventral hernia repair. Thirty New Zealand white rabbits were used for this study. A 10-cm midline incision was performed for intra-abdominal access and a 2 cm x 2 cm piece of mesh (n = 60) was sewn to an intact peritoneum on each side of the midline. Two types of ePTFE mesh (Dual Mesh and modified Dual Mesh, W.L. Gore & Assoc., Flagstaff, AZ) and polypropylene mesh were compared. The rate of adhesion formation was evaluated by direct visualization using microlaparoscopy (2-mm endoscope/trocar) at 7 days, 3 weeks, 9 weeks, and 16 weeks after mesh implantation. Adhesions to the prosthetic mesh were scored for extent (%) using the Modified Diamond Scale (0 = 0%, 1 50%). At necropsy the mesh was excised en bloc with the anterior abdominal wall for histological evaluation of mesothelial layer growth. The mean adhesion score for the polypropylene mesh was significantly greater (P < 0.05) than Dual Mesh at 9 weeks and 16 weeks and modified Dual Mesh at 7 days, 9 weeks, and 16 weeks. Fifty-five percent (n = 11) of the polypropylene mesh had adhesions to small intestine or omentum at necropsy compared to 30% (n = 6) of the Dual Mesh and 20% (n = 4) of the modified Dual Mesh. There was a significantly greater percentage (P < 0.003) of ePTFE mesh mesothelialized at explant (modified Dual Mesh 44.2%; Dual Mesh 55.8%) compared to the polypropylene mesh (12.9%). Serial microlaparoscopic evaluation of intraperitoneally implanted polypropylene mesh and ePTFE mesh in a rabbit model revealed a progression of adhesions to polypropylene mesh over a 16 week period. The pore size of mesh is critical in the development and maintenance of abdominal adhesions and tissue ingrowth. The macroporous polypropylene mesh promoted adhesion formation, while the microporous nature of the visceral side of the ePTFE served as a barrier to adhesions.

  8. How to minimize ischemic complication related to swollen temporalis muscle following indirect revascularization surgery in moyamoya disease: a technical report.

    PubMed

    Joo, Sung Pil; Kim, Tae Sun; Moon, Hyung Sik

    2014-05-01

    There are several reports in the literature of postoperative ischemic events due to swelling of the temporalis muscle after indirect revascularization surgery. Here, we report our surgical technique for preventing ischemic events during the acute postoperative recovery period in moyamoya patients. We used various types of titanium mesh to cover the bony defect area in 8 patients (10 operations) with moyamoya disease. The mesh was cut and manipulated according to the shape of the bony defect. Surgical results were favorable, with no newly developed ischemic event or infarction in the acute recovery period. The mesh formed an outer table of skull, so there was no compressive effect on the temporalis muscle and no cosmetic defects. The titanium mesh appears to be effective and useful for prevention of ischemic insult in the treatment of moyamoya disease. The choice of this procedure depends on both the operative findings of temporalis muscle thickness and the status of ischemic vulnerability of moyamoya brain. Georg Thieme Verlag KG Stuttgart · New York.

  9. Cu mesh's super-hydrophobic and oleophobic properties with variations in gravitational pressure and surface components for oil/water separation applications

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Zhang, Qin; Xiao, Haibo; Xu, Jie; Li, Qintao; Pan, Xiaohui; Huang, Zhiyong

    2014-09-01

    The super-hydrophobic and super-oleophilic properties of various materials have been utilized to separate oil from water. These properties induce both oil penetration and water slide off. This research demonstrates that the mesh with both super-hydrophobic and oleophobic properties, with a water contact angle (WCA) higher than 150° and oil contact angle (OCA) near 140°, can also be used to separate oil from. Oil has a higher probability than water of entering into the interstice of the Cu mesh surface and passing through it due to the capillarity effect, van der Waals attractions and the effects of gravitational pressure. The modified mesh surface can easily adsorb the oil, which then forms a film, due to the very strong adhesion properties of the oil molecules. The oil film then contributes to the water sliding off. These properties can be used to separate oil from water with separation efficiencies reaching 99.3%. Additionally, the separation of an oil/water mixture using sand permeated with oil yielded separation efficiencies exceeding 90%.

  10. Which drugs are risk factors for the development of gastroesophageal reflux disease?

    PubMed

    Mungan, Zeynel; Pınarbaşı Şimşek, Binnur

    2017-12-01

    Gastroesophageal reflux disease (GERD), which is common in many communities, is associated with structural factors, eating habits, and the use of certain drugs. The use of such drugs can lead to the emergence of GERD and can also exacerbate existing reflux symptoms. These drugs can contribute to GERD by directly causing mucosal damage, by reducing lower esophageal sphincter pressure (LESP), or by affecting esophagogastric motility. In this article, we report our investigation of the relationships between GERD and medications within the scope of the "Turkish GERD Consensus Group." For the medication groups for which sufficient data were obtained (Figure 1), a systematic literature review in English was conducted using the keywords "gastroesophageal reflux" [MeSH Terms] and "anti-inflammatory agents, non-steroidal" [MeSH Terms], "gastroesophageal reflux" [MeSH Terms] and "acetylsalicylic acid" [MeSH Terms], "gastroesophageal reflux" [All Fields] and "estrogenic agents" [All Fields], "gastroesophageal reflux" [All Fields] and "progesterones" [All Fields], "gastroesophageal reflux" [All Fields] and "hormone replacement therapy" [All Fields], "gastroesophageal reflux" [MeSH Terms] and "diphosphonates" [MeSH Terms] OR "diphosphonates" [All Fields], "calcium channel blockers" [MeSH Terms] and "gastroesophageal reflux" [MeSH Terms], "gastroesophageal reflux" [MeSH Terms] and "nitrates" [MeSH Terms], "gastroesophageal reflux" [MeSH Terms] and "antidepressive agents" [MeSH Terms], "gastroesophageal reflux" [MeSH Terms] and "benzodiazepines" [MeSH Terms] and "hypnotic drugs" [MeSH Terms], "gastroesophageal reflux" [MeSH Terms] and "cholinergic antagonists" [MeSH Terms], "gastroesophageal reflux" [MeSH Terms] and "theophylline" [MeSH Terms], and "gastroesophageal reflux [MeSH Terms] AND "anti-asthmatic agents" [MeSH Terms]. The studies were analyzed and the results are presented here.

  11. Contact stresses in meshing spur gear teeth: Use of an incremental finite element procedure

    NASA Technical Reports Server (NTRS)

    Hsieh, Chih-Ming; Huston, Ronald L.; Oswald, Fred B.

    1992-01-01

    Contact stresses in meshing spur gear teeth are examined. The analysis is based upon an incremental finite element procedure that simultaneously determines the stresses in the contact region between the meshing teeth. The teeth themselves are modeled by two dimensional plain strain elements. Friction effects are included, with the friction forces assumed to obey Coulomb's law. The analysis assumes that the displacements are small and that the tooth materials are linearly elastic. The analysis procedure is validated by comparing its results with those for the classical two contacting semicylinders obtained from the Hertz method. Agreement is excellent.

  12. Selection of finite-element mesh parameters in modeling the growth of hydraulic fracturing cracks

    NASA Astrophysics Data System (ADS)

    Kurguzov, V. D.

    2016-12-01

    The effect of the mesh geometry on the accuracy of solutions obtained by the finite-element method for problems of linear fracture mechanics is investigated. The guidelines have been formulated for constructing an optimum mesh for several routine problems involving elements with linear and quadratic approximation of displacements. The accuracy of finite-element solutions is estimated based on the degree of the difference between the calculated stress-intensity factor (SIF) and its value obtained analytically. In problems of hydrofracturing of oil-bearing formation, the pump-in pressure of injected water produces a distributed load on crack flanks as opposed to standard fracture mechanics problems that have analytical solutions, where a load is applied to the external boundaries of the computational region and the cracks themselves are kept free from stresses. Some model pressure profiles, as well as pressure profiles taken from real hydrodynamic computations, have been considered. Computer models of cracks with allowance for the pre-stressed state, fracture toughness, and elastic properties of materials are developed in the MSC.Marc 2012 finite-element analysis software. The Irwin force criterion is used as a criterion of brittle fracture and the SIFs are computed using the Cherepanov-Rice invariant J-integral. The process of crack propagation in a linearly elastic isotropic body is described in terms of the elastic energy release rate G and modeled using the VCCT (Virtual Crack Closure Technique) approach. It has been found that the solution accuracy is sensitive to the mesh configuration. Several parameters that are decisive in constructing effective finite-element meshes, namely, the minimum element size, the distance between mesh nodes in the vicinity of a crack tip, and the ratio of the height of an element to its length, have been established. It has been shown that a mesh that consists of only small elements does not improve the accuracy of the solution.

  13. A new parallelization scheme for adaptive mesh refinement

    DOE PAGES

    Loffler, Frank; Cao, Zhoujian; Brandt, Steven R.; ...

    2016-05-06

    Here, we present a new method for parallelization of adaptive mesh refinement called Concurrent Structured Adaptive Mesh Refinement (CSAMR). This new method offers the lower computational cost (i.e. wall time x processor count) of subcycling in time, but with the runtime performance (i.e. smaller wall time) of evolving all levels at once using the time step of the finest level (which does more work than subcycling but has less parallelism). We demonstrate our algorithm's effectiveness using an adaptive mesh refinement code, AMSS-NCKU, and show performance on Blue Waters and other high performance clusters. For the class of problem considered inmore » this paper, our algorithm achieves a speedup of 1.7-1.9 when the processor count for a given AMR run is doubled, consistent with our theoretical predictions.« less

  14. A new parallelization scheme for adaptive mesh refinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loffler, Frank; Cao, Zhoujian; Brandt, Steven R.

    Here, we present a new method for parallelization of adaptive mesh refinement called Concurrent Structured Adaptive Mesh Refinement (CSAMR). This new method offers the lower computational cost (i.e. wall time x processor count) of subcycling in time, but with the runtime performance (i.e. smaller wall time) of evolving all levels at once using the time step of the finest level (which does more work than subcycling but has less parallelism). We demonstrate our algorithm's effectiveness using an adaptive mesh refinement code, AMSS-NCKU, and show performance on Blue Waters and other high performance clusters. For the class of problem considered inmore » this paper, our algorithm achieves a speedup of 1.7-1.9 when the processor count for a given AMR run is doubled, consistent with our theoretical predictions.« less

  15. Creating wi-fi bluetooth mesh network for crisis management applications

    NASA Astrophysics Data System (ADS)

    Al-Tekreeti, Safa; Adams, Christopher; Al-Jawad, Naseer

    2010-04-01

    This paper proposes a wireless mesh network implementation consisting of both Wi-Fi Ad-Hoc networks as well as Bluetooth Piconet/Scatternet networks, organised in an energy and throughput efficient structure. This type of networks can be easily constructed for Crises management applications, for example in an Earthquake disaster. The motivation of this research is to form mesh network from the mass availability of WiFi and Bluetooth enabled electronic devices such as mobile phones and PC's that are normally present in most regions were major crises occurs. The target of this study is to achieve an effective solution that will enable Wi-Fi and/or Bluetooth nodes to seamlessly configure themselves to act as a bridge between their own network and that of the other network to achieve continuous routing for our proposed mesh networks.

  16. On Multiscale Modeling: Preserving Energy Dissipation Across the Scales with Consistent Handshaking Methods

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Bednarcyk, Brett A.; Arnold, Steven M.; Waas, Anthony M.

    2013-01-01

    A mesh objective crack band model was implemented within the generalized method of cells micromechanics theory. This model was linked to a macroscale finite element model to predict post-peak strain softening in composite materials. Although a mesh objective theory was implemented at the microscale, it does not preclude pathological mesh dependence at the macroscale. To ensure mesh objectivity at both scales, the energy density and the energy release rate must be preserved identically across the two scales. This requires a consistent characteristic length or localization limiter. The effects of scaling (or not scaling) the dimensions of the microscale repeating unit cell (RUC), according to the macroscale element size, in a multiscale analysis was investigated using two examples. Additionally, the ramifications of the macroscale element shape, compared to the RUC, was studied.

  17. Grid Effects on LES Thermo-Acoustic Limit-Cycle of a Full Annular Aeronautical Engine

    NASA Astrophysics Data System (ADS)

    Wolf, Pierre; Gicquel, Laurent Y. M.; Staffelbach, Gabriel; Poinsot, Thierry

    Recent developments in large scale computer architectures allow Large Eddy Simulation (LES) to be considered for the prediction of turbulent reacting flows in geometries encountered in industry. To do so, various difficulties must be overcome and the first one is to ensure that proper meshes can be used for LES. Indeed, the quality of meshes is known to be a critical factor in LES of reacting flows. This issue becomes even more crucial when LES is used to compute large configurations such as full annular combustion chambers. Various analysis of mesh effects on LES results have been published before but all are limited to single-sector computational domains. However, real annular gas-turbine engines contain ten to twenty of such sectors and LES must also be used in such full chambers for the study of ignition or azimuthal thermo-acoustic interactions. Instabilities (mostly azimuthal modes involving the full annular geometry) remain a critical issue to aeronautical or power-generation industries and LES seems to be a promising path to properly apprehend such complex unsteady couplings. Based on these observations, mesh effects on LES in a full annular gas-turbine combustion chamber (including its casing) is studied here in the context of its azimuthal thermo-acoustic response. To do so, a fully compressible, multi-species reacting LES is used on two meshes yielding two fully unsteady turbulent reacting predictions of the same configuration. The two tetrahedra meshes contain respectively 38 and 93 millions cells. Limit-cycles as obtained by the two LES are gauged against each other for various flow quantities such as mean velocity profiles, flame position and temperature fields. The thermo-acoustic limit-cycles are observed to be relatively indepedent of the grid resolution which comforts the use of LES tools to provide insights and understanding of the mechanisms triggering the coupling between the system acoustic eigenmodes and combustion.

  18. CFD simulation of a screw compressor including leakage flows and rotor heating

    NASA Astrophysics Data System (ADS)

    Spille-Kohoff, Andreas, Dr.; Hesse, Jan; El Shorbagy, Ahmed

    2015-08-01

    Computational Fluid Dynamics (CFD) simulations have promising potential to become an important part in the development process of positive displacement (PD) machines. CFD delivers deep insights into the flow and thermodynamic behaviour of PD machines. However, the numerical simulation of such machines is more complex compared to dynamic pumps like turbines or fans. The fluid transport in size-changing chambers with very small clearances between the rotors, and between rotors and casing, demands complex meshes that change with each time step. Additionally, the losses due to leakage flows and the heat transfer to the rotors need high-quality meshes so that automatic remeshing is almost impossible. In this paper, setup steps and results for the simulation of a dry screw compressor are shown. The rotating parts are meshed with TwinMesh, a special hexahedral meshing program for gear pumps, gerotors, lobe pumps and screw compressors. In particular, these meshes include axial and radial clearances between housing and rotors, and beside the fluid volume the rotor solids are also meshed. The CFD simulation accounts for gas flow with compressibility and turbulence effects, heat transfer between gas and rotors, and leakage flows through the clearances. We show time- resolved results for torques, forces, interlobe pressure, mass flow, and heat flow between gas and rotors, as well as time- and space-resolved results for pressure, velocity, temperature etc. for different discharge ports and working points of the screw compressor. These results are also used as thermal loads for deformation simulations of the rotors.

  19. Mesh fixation in laparoscopic incisional hernia repair: glue fixation provides attachment strength similar to absorbable tacks but differs substantially in different meshes.

    PubMed

    Rieder, Erwin; Stoiber, Martin; Scheikl, Verena; Poglitsch, Marcus; Dal Borgo, Andrea; Prager, Gerhard; Schima, Heinrich

    2011-01-01

    Laparoscopic ventral hernia repair has gained popularity among minimally invasive surgeons. However, mesh fixation remains a matter of discussion. This study was designed to compare noninvasive fibrin-glue attachment with tack fixation of meshes developed primarily for intra-abdominal use. It was hypothesized that particular mesh structures would substantially influence detachment force. For initial evaluation, specimens of laminated polypropylene/polydioxanone meshes were anchored to porcine abdominal walls by either helical titanium tacks or absorbable tacks in vitro. A universal tensile-testing machine was used to measure tangential detachment forces (TF). For subsequent experiments of glue fixation, polypropylene/polydioxanone mesh and 4 additional meshes with diverse particular mesh structure, ie, polyvinylidene fluoride/polypropylene mesh, a titanium-coated polypropylene mesh, a polyester mesh bonded with a resorbable collagen, and a macroporous condensed PTFE mesh were evaluated. TF tests revealed that fibrin-glue attachment was not substantially different from that achieved with absorbable tacks (median TF 7.8 Newton [N], range 1.3 to 15.8 N), but only when certain open porous meshes (polyvinylidene fluoride/polypropylene mesh: median 6.2 N, range 3.4 to 10.3 N; titanium-coated polypropylene mesh: median 5.2 N, range 2.1 to 11.7 N) were used. Meshes coated by an anti-adhesive barrier (polypropylene/polydioxanone mesh: median 3.1 N, range 1.7 to 5.8 N; polyester mesh bonded with a resorbable collagen: median 1.3 N, range 0.5 to 1.9 N), or the condensed PTFE mesh (median 3.1 N, range 2.1 to 7.0 N) provided a significantly lower TF (p < 0.01). Fibrin glue appears to be an appealing noninvasive option for mesh fixation in laparoscopic ventral hernia repair, but only if appropriate meshes are used. Glue can also serve as an adjunct to mechanical fixation to reduce the number of invasive tacks. Copyright © 2010 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  20. Graphene, microscale metallic mesh, and transparent dielectric hybrid structure for excellent transparent electromagnetic interference shielding and absorbing

    NASA Astrophysics Data System (ADS)

    Lu, Zhengang; Ma, Limin; Tan, Jiubin; Wang, Heyan; Ding, Xuemei

    2017-06-01

    A high-performance transparent electromagnetic interference (EMI) shielding material based on a graphene/metallic mesh/transparent dielectric (GMTD) hybrid structure is designed and characterized. It consists of stacked graphene and metallic mesh layers, with neighboring layers separated by a quartz-glass substrsate. The GMTD hybrid structure combines the microwave-reflecting characteristics of the metallic mesh and the microwave-absorbing characteristics of graphene to achieve simultaneously high visible transmittance, strong microwave shielding effectiveness (SE), and low microwave reflection. Experiments show that a double-graphene and double-metallic mesh GMTD hybrid structure with a mesh periodicity of 160 µm provides microwave SE exceeding 47.79 dB in the K u-band, and an SE exceeding 32.12 dB in the K a-band, with a maximum value of 37.78 dB at 26.5 GHz. SE by absorption exceeds 30.78 dB in the K a-band, with a maximum value of 34.55 dB at 26.5 GHz, while maintaining a normalized visible transmittance of ~85% at 700 nm. This remarkable performance favors the application of the proposed structure as a transparent microwave shield and absorber, and offers a new strategy for transparent EMI shielding.

  1. Influence of reinforcement mesh configuration for improvement of concrete durability

    NASA Astrophysics Data System (ADS)

    Pan, Chong-gen; Jin, Wei-liang; Mao, Jiang-hong; Zhang, Hua; Sun, Li-hao; Wei, Dong

    2017-10-01

    Steel bar in concrete structures under harsh environmental conditions, such as chlorine corrosion, seriously affects its service life. Bidirectional electromigration rehabilitation (BIEM) is a new method of repair technology for reinforced concrete structures in such chloride corrosion environments. By applying the BIEM, chloride ions can be removed from the concrete and the migrating corrosion inhibit can be moved to the steel surface. In conventional engineering, the concrete structure is often configured with a multi-layer steel mesh. However, the effect of the BIEM in such structures has not yet been investigated. In this paper, the relevant simulation test is carried out to study the migration law of chloride ions and the migrating corrosion inhibitor in a concrete specimen with complex steel mesh under different energizing modes. The results show that the efficiency of the BIEM increases 50% in both the monolayer steel mesh and the double-layer steel mesh. By using the single-sided BIEM, 87% of the chloride ions are removed from the steel surface. The different step modes can affect the chloride ion removal. The chloride ions within the range of the reinforcement protective cover are easier to be removed than those in the concrete between the two layers of steel mesh. However, the amount of migrating corrosion inhibitor is larger in the latter circumstances.

  2. 3D face analysis by using Mesh-LBP feature

    NASA Astrophysics Data System (ADS)

    Wang, Haoyu; Yang, Fumeng; Zhang, Yuming; Wu, Congzhong

    2017-11-01

    Objective: Face Recognition is one of the widely application of image processing. Corresponding two-dimensional limitations, such as the pose and illumination changes, to a certain extent restricted its accurate rate and further development. How to overcome the pose and illumination changes and the effects of self-occlusion is the research hotspot and difficulty, also attracting more and more domestic and foreign experts and scholars to study it. 3D face recognition fusing shape and texture descriptors has become a very promising research direction. Method: Our paper presents a 3D point cloud based on mesh local binary pattern grid (Mesh-LBP), then feature extraction for 3D face recognition by fusing shape and texture descriptors. 3D Mesh-LBP not only retains the integrity of the 3D geometry, is also reduces the need for recognition process of normalization steps, because the triangle Mesh-LBP descriptor is calculated on 3D grid. On the other hand, in view of multi-modal consistency in face recognition advantage, construction of LBP can fusing shape and texture information on Triangular Mesh. In this paper, some of the operators used to extract Mesh-LBP, Such as the normal vectors of the triangle each face and vertex, the gaussian curvature, the mean curvature, laplace operator and so on. Conclusion: First, Kinect devices obtain 3D point cloud face, after the pretreatment and normalization, then transform it into triangular grid, grid local binary pattern feature extraction from face key significant parts of face. For each local face, calculate its Mesh-LBP feature with Gaussian curvature, mean curvature laplace operator and so on. Experiments on the our research database, change the method is robust and high recognition accuracy.

  3. Research Trend Visualization by MeSH Terms from PubMed.

    PubMed

    Yang, Heyoung; Lee, Hyuck Jai

    2018-05-30

    Motivation : PubMed is a primary source of biomedical information comprising search tool function and the biomedical literature from MEDLINE which is the US National Library of Medicine premier bibliographic database, life science journals and online books. Complimentary tools to PubMed have been developed to help the users search for literature and acquire knowledge. However, these tools are insufficient to overcome the difficulties of the users due to the proliferation of biomedical literature. A new method is needed for searching the knowledge in biomedical field. Methods : A new method is proposed in this study for visualizing the recent research trends based on the retrieved documents corresponding to a search query given by the user. The Medical Subject Headings (MeSH) are used as the primary analytical element. MeSH terms are extracted from the literature and the correlations between them are calculated. A MeSH network, called MeSH Net, is generated as the final result based on the Pathfinder Network algorithm. Results : A case study for the verification of proposed method was carried out on a research area defined by the search query (immunotherapy and cancer and "tumor microenvironment"). The MeSH Net generated by the method is in good agreement with the actual research activities in the research area (immunotherapy). Conclusion : A prototype application generating MeSH Net was developed. The application, which could be used as a "guide map for travelers", allows the users to quickly and easily acquire the knowledge of research trends. Combination of PubMed and MeSH Net is expected to be an effective complementary system for the researchers in biomedical field experiencing difficulties with search and information analysis.

  4. Altering surface characteristics of polypropylene mesh via sodium hydroxide treatment.

    PubMed

    Regis, Shawn; Jassal, Manisha; Mukherjee, Nilay; Bayon, Yves; Scarborough, Nelson; Bhowmick, Sankha

    2012-05-01

    Incisional hernias represent a serious and common complication following laparotomy. The use of synthetic (e.g. polypropylene) meshes to aid repair of these hernias has considerably reduced recurrence rates. While polypropylene is biocompatible and has a long successful clinical history in treating hernias and preventing reherniation, this material may suffer some limitations, particularly in challenging patients at risk of wound failure due to, for example, an exaggerated inflammation reaction, delayed wound healing, and infection. Surface modification of the polypropylene mesh without sacrificing its mechanical properties, critical for hernia repair, represents one way to begin to address these clinical complications. Our hypothesis is treatment of a proprietary polypropylene mesh with sodium hydroxide (NaOH) will increase in vitro NIH/3T3 cell attachment, predictive of earlier and improved cell colonization and tissue integration of polypropylene materials. Our goal is to achieve this altered surface functionality via enhanced removal of chemicals/oils used during material synthesis without compromising the mechanical properties of the mesh. We found that NaOH treatment does not appear to compromise the mechanical strength of the material, despite roughly a 10% decrease in fiber diameter. The treatment increases in vitro NIH/3T3 cell attachment within the first 72 h and this effect is sustained up to 7 days in vitro. This research demonstrates that sodium hydroxide treatment is an efficient way to modify the surface of polypropylene hernia meshes without losing the mechanical integrity of the material. This simple procedure could also allow the attachment of a variety of biomolecules to the polypropylene mesh that may aid in reducing the complications associated with polypropylene meshes today. Copyright © 2012 Wiley Periodicals, Inc.

  5. Wire-Mesh-Based Sorber for Removing Contaminants from Air

    NASA Technical Reports Server (NTRS)

    Perry, Jay; Roychoudhury, Subir; Walsh, Dennis

    2006-01-01

    A paper discusses an experimental regenerable sorber for removing CO2 and trace components principally, volatile organic compounds, halocarbons, and NH3 from spacecraft cabin air. This regenerable sorber is a prototype of what is intended to be a lightweight alternative to activated-carbon and zeolite-pellet sorbent beds now in use. The regenerable sorber consists mainly of an assembly of commercially available meshes that have been coated with a specially-formulated washcoat containing zeolites. The zeolites act as the sorbents while the meshes support the zeolite-containing washcoat in a configuration that affords highly effective surface area for exposing the sorbents to flowing air. The meshes also define flow paths characterized by short channel lengths to prevent excessive buildup of flow boundary layers. Flow boundary layer resistance is undesired because it can impede mass and heat transfer. The total weight and volume comparison versus the atmosphere revitalization equipment used onboard the International Space Station for CO2 and trace-component removal will depend upon the design details of the final embodiment. However, the integrated mesh-based CO2 and trace-contaminant removal system is expected to provide overall weight and volume savings by eliminating most of the trace-contaminant control equipment presently used in parallel processing schemes traditionally used for spacecraft. The mesh-based sorbent media enables integrating the two processes within a compact package. For the purpose of regeneration, the sorber can be heated by passing electric currents through the metallic meshes combined with exposure to space vacuum. The minimal thermal mass of the meshes offers the potential for reduced regeneration-power requirements and cycle time required for regeneration compared to regenerable sorption processes now in use.

  6. Investigation into the optimal prosthetic material for wound healing of abdominal wall defects

    PubMed Central

    Akcakaya, Adem; Aydogdu, Ibrahim; Citgez, Bulent

    2018-01-01

    The purpose of this experimental study is to investigate and compare the effects of prosthetic materials used for wound healing of abdominal wall hernias. A total of 60 rats were divided into five equal groups: Group I, control subjected to laparotomy; group II, abdominal wall defect 3×2 cm+polypropylene (PP) mesh; group III, abdominal wall defect 3×2 cm+PP mesh+hyaluronate and carboxymethylcellulose (H-CMC; Seprafilm®); group IV, abdominal wall defect 3×2 cm+polytetrafluoroethylene (PTFE; Composix™); and group V, abdominal wall defect 3×2 cm+polyethylene terephthalate (PET; Dacron®). A total of 14 days after the surgery, rats were sacrificed and the meshes with the surrounding tissue were extracted in block. The breaking strength of the mesh from the fascia was recorded. The healing tissue was examined with the index of histopathology and the hydroxyproline value was analyzed using the Switzer method. Both the breaking strength and histopathological index of the wound healing were significantly improved in groups II and III compared with that in groups IV and V (P<0.001). Hydroxyproline values were the highest in group I (P<0.001). There was also a statistically significant difference between groups II and IV, and group V and the other groups (P<0.001). The present findings demonstrated that PP mesh and PP mesh+H-CMC had a superior breaking strength and improved histopathologic indices compared with PTFE and PET. Furthermore, hydroxyproline values were the lowest in the PET group. In conclusion, wound healing was improved in the PP mesh group and the PP mesh+H-CMC group compared with the PTFE and PET groups according to the present study parameters. PMID:29399133

  7. Characterization of the mechanism of drug-drug interactions from PubMed using MeSH terms.

    PubMed

    Lu, Yin; Figler, Bryan; Huang, Hong; Tu, Yi-Cheng; Wang, Ju; Cheng, Feng

    2017-01-01

    Identifying drug-drug interaction (DDI) is an important topic for the development of safe pharmaceutical drugs and for the optimization of multidrug regimens for complex diseases such as cancer and HIV. There have been about 150,000 publications on DDIs in PubMed, which is a great resource for DDI studies. In this paper, we introduced an automatic computational method for the systematic analysis of the mechanism of DDIs using MeSH (Medical Subject Headings) terms from PubMed literature. MeSH term is a controlled vocabulary thesaurus developed by the National Library of Medicine for indexing and annotating articles. Our method can effectively identify DDI-relevant MeSH terms such as drugs, proteins and phenomena with high accuracy. The connections among these MeSH terms were investigated by using co-occurrence heatmaps and social network analysis. Our approach can be used to visualize relationships of DDI terms, which has the potential to help users better understand DDIs. As the volume of PubMed records increases, our method for automatic analysis of DDIs from the PubMed database will become more accurate.

  8. Moving mesh finite element simulation for phase-field modeling of brittle fracture and convergence of Newton's iteration

    NASA Astrophysics Data System (ADS)

    Zhang, Fei; Huang, Weizhang; Li, Xianping; Zhang, Shicheng

    2018-03-01

    A moving mesh finite element method is studied for the numerical solution of a phase-field model for brittle fracture. The moving mesh partial differential equation approach is employed to dynamically track crack propagation. Meanwhile, the decomposition of the strain tensor into tensile and compressive components is essential for the success of the phase-field modeling of brittle fracture but results in a non-smooth elastic energy and stronger nonlinearity in the governing equation. This makes the governing equation much more difficult to solve and, in particular, Newton's iteration often fails to converge. Three regularization methods are proposed to smooth out the decomposition of the strain tensor. Numerical examples of fracture propagation under quasi-static load demonstrate that all of the methods can effectively improve the convergence of Newton's iteration for relatively small values of the regularization parameter but without compromising the accuracy of the numerical solution. They also show that the moving mesh finite element method is able to adaptively concentrate the mesh elements around propagating cracks and handle multiple and complex crack systems.

  9. Modeling of a stacked-screen regenerator in an oscillatory flow

    NASA Astrophysics Data System (ADS)

    Hsu, Shu Han; Biwa, Tetsushi

    2017-01-01

    In this paper, we model tortuous flow channels of a stacked-screen regenerator as a bundle of cylindrical tubes to analyze and design thermoacoustic Stirling engines. The oscillatory flow resistance of stacked-screen regenerators is measured and compared with those obtained using empirical equations to verify the applicability of those empirical equations to oscillating flows of pressurized Ar and He gases. It is then converted to an effective radius parameterized by Re h and r 0/δν, where Re h represents the Reynolds number based on velocity oscillation amplitude, r 0 is Ueda’s effective radius ( = \\sqrt{d\\text{h}D} /2, where d h is the hydraulic diameter and D is the mesh wire diameter), and δν denotes the viscous penetration depth. The applicability of the proposed effective radius is demonstrated experimentally when the axial temperature gradient is imposed on the regenerator.

  10. Method and system for mesh network embedded devices

    NASA Technical Reports Server (NTRS)

    Wang, Ray (Inventor)

    2009-01-01

    A method and system for managing mesh network devices. A mesh network device with integrated features creates an N-way mesh network with a full mesh network topology or a partial mesh network topology.

  11. Convergence study of global meshing on enamel-cement-bracket finite element model

    NASA Astrophysics Data System (ADS)

    Samshuri, S. F.; Daud, R.; Rojan, M. A.; Basaruddin, K. S.; Abdullah, A. B.; Ariffin, A. K.

    2017-09-01

    This paper presents on meshing convergence analysis of finite element (FE) model to simulate enamel-cement-bracket fracture. Three different materials used in this study involving interface fracture are concerned. Complex behavior ofinterface fracture due to stress concentration is the reason to have a well-constructed meshing strategy. In FE analysis, meshing size is a critical factor that influenced the accuracy and computational time of analysis. The convergence study meshing scheme involving critical area (CA) and non-critical area (NCA) to ensure an optimum meshing sizes are acquired for this FE model. For NCA meshing, the area of interest are at the back of enamel, bracket ligature groove and bracket wing. For CA meshing, area of interest are enamel area close to cement layer, the cement layer and bracket base. The value of constant NCA meshing tested are meshing size 1 and 0.4. The value constant CA meshing tested are 0.4 and 0.1. Manipulative variables are randomly selected and must abide the rule of NCA must be higher than CA. This study employed first principle stresses due to brittle failure nature of the materials used. Best meshing size are selected according to convergence error analysis. Results show that, constant CA are more stable compare to constant NCA meshing. Then, 0.05 constant CA meshing are tested to test the accuracy of smaller meshing. However, unpromising result obtained as the errors are increasing. Thus, constant CA 0.1 with NCA mesh of 0.15 until 0.3 are the most stable meshing as the error in this region are lowest. Convergence test was conducted on three selected coarse, medium and fine meshes at the range of NCA mesh of 0.15 until 3 and CA mesh area stay constant at 0.1. The result shows that, at coarse mesh 0.3, the error are 0.0003% compare to 3% acceptable error. Hence, the global meshing are converge as the meshing size at CA 0.1 and NCA 0.15 for this model.

  12. Method and apparatus for connecting finite element meshes and performing simulations therewith

    DOEpatents

    Dohrmann, Clark R.; Key, Samuel W.; Heinstein, Martin W.

    2003-05-06

    The present invention provides a method of connecting dissimilar finite element meshes. A first mesh, designated the master mesh, and a second mesh, designated the slave mesh, each have interface surfaces proximal the other. Each interface surface has a corresponding interface mesh comprising a plurality of interface nodes. Each slave interface node is assigned new coordinates locating the interface node on the interface surface of the master mesh. The slave interface surface is further redefined to be the projection of the slave interface mesh onto the master interface surface.

  13. Tetrahedral-Mesh Simulation of Turbulent Flows with the Space-Time Conservative Schemes

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Venkatachari, Balaji; Cheng, Gary C.

    2015-01-01

    Direct numerical simulations of turbulent flows are predominantly carried out using structured, hexahedral meshes despite decades of development in unstructured mesh methods. Tetrahedral meshes offer ease of mesh generation around complex geometries and the potential of an orientation free grid that would provide un-biased small-scale dissipation and more accurate intermediate scale solutions. However, due to the lack of consistent multi-dimensional numerical formulations in conventional schemes for triangular and tetrahedral meshes at the cell interfaces, numerical issues exist when flow discontinuities or stagnation regions are present. The space-time conservative conservation element solution element (CESE) method - due to its Riemann-solver-free shock capturing capabilities, non-dissipative baseline schemes, and flux conservation in time as well as space - has the potential to more accurately simulate turbulent flows using unstructured tetrahedral meshes. To pave the way towards accurate simulation of shock/turbulent boundary-layer interaction, a series of wave and shock interaction benchmark problems that increase in complexity, are computed in this paper with triangular/tetrahedral meshes. Preliminary computations for the normal shock/turbulence interactions are carried out with a relatively coarse mesh, by direct numerical simulations standards, in order to assess other effects such as boundary conditions and the necessity of a buffer domain. The results indicate that qualitative agreement with previous studies can be obtained for flows where, strong shocks co-exist along with unsteady waves that display a broad range of scales, with a relatively compact computational domain and less stringent requirements for grid clustering near the shock. With the space-time conservation properties, stable solutions without any spurious wave reflections can be obtained without a need for buffer domains near the outflow/farfield boundaries. Computational results for the isotropic turbulent flow decay, at a relatively high turbulent Mach number, show a nicely behaved spectral decay rate for medium to high wave numbers. The high-order CESE schemes offer very robust solutions even with the presence of strong shocks or widespread shocklets. The explicit formulation in conjunction with a close to unity theoretical upper Courant number bound has the potential to offer an efficient numerical framework for general compressible turbulent flow simulations with unstructured meshes.

  14. A methodology for quadrilateral finite element mesh coarsening

    DOE PAGES

    Staten, Matthew L.; Benzley, Steven; Scott, Michael

    2008-03-27

    High fidelity finite element modeling of continuum mechanics problems often requires using all quadrilateral or all hexahedral meshes. The efficiency of such models is often dependent upon the ability to adapt a mesh to the physics of the phenomena. Adapting a mesh requires the ability to both refine and/or coarsen the mesh. The algorithms available to refine and coarsen triangular and tetrahedral meshes are very robust and efficient. However, the ability to locally and conformally refine or coarsen all quadrilateral and all hexahedral meshes presents many difficulties. Some research has been done on localized conformal refinement of quadrilateral and hexahedralmore » meshes. However, little work has been done on localized conformal coarsening of quadrilateral and hexahedral meshes. A general method which provides both localized conformal coarsening and refinement for quadrilateral meshes is presented in this paper. This method is based on restructuring the mesh with simplex manipulations to the dual of the mesh. Finally, this method appears to be extensible to hexahedral meshes in three dimensions.« less

  15. Adaptive Skin Meshes Coarsening for Biomolecular Simulation

    PubMed Central

    Shi, Xinwei; Koehl, Patrice

    2011-01-01

    In this paper, we present efficient algorithms for generating hierarchical molecular skin meshes with decreasing size and guaranteed quality. Our algorithms generate a sequence of coarse meshes for both the surfaces and the bounded volumes. Each coarser surface mesh is adaptive to the surface curvature and maintains the topology of the skin surface with guaranteed mesh quality. The corresponding tetrahedral mesh is conforming to the interface surface mesh and contains high quality tetrahedral that decompose both the interior of the molecule and the surrounding region (enclosed in a sphere). Our hierarchical tetrahedral meshes have a number of advantages that will facilitate fast and accurate multigrid PDE solvers. Firstly, the quality of both the surface triangulations and tetrahedral meshes is guaranteed. Secondly, the interface in the tetrahedral mesh is an accurate approximation of the molecular boundary. In particular, all the boundary points lie on the skin surface. Thirdly, our meshes are Delaunay meshes. Finally, the meshes are adaptive to the geometry. PMID:21779137

  16. Mesh, graft, or standard repair for women having primary transvaginal anterior or posterior compartment prolapse surgery: two parallel-group, multicentre, randomised, controlled trials (PROSPECT).

    PubMed

    Glazener, Cathryn Ma; Breeman, Suzanne; Elders, Andrew; Hemming, Christine; Cooper, Kevin G; Freeman, Robert M; Smith, Anthony Rb; Reid, Fiona; Hagen, Suzanne; Montgomery, Isobel; Kilonzo, Mary; Boyers, Dwayne; McDonald, Alison; McPherson, Gladys; MacLennan, Graeme; Norrie, John

    2017-01-28

    The use of transvaginal mesh and biological graft material in prolapse surgery is controversial and has led to a number of enquiries into their safety and efficacy. Existing trials of these augmentations are individually too small to be conclusive. We aimed to compare the outcomes of prolapse repair involving either synthetic mesh inlays or biological grafts against standard repair in women. We did two pragmatic, parallel-group, multicentre, randomised controlled trials for our study (PROSPECT [PROlapse Surgery: Pragmatic Evaluation and randomised Controlled Trials]) in 35 centres (a mix of secondary and tertiary referral hospitals) in the UK. We recruited women undergoing primary transvaginal anterior or posterior compartment prolapse surgery by 65 gynaecological surgeons in these centres. We randomly assigned participants by a remote web-based randomisation system to one of the two trials: comparing standard (native tissue) repair alone with standard repair augmented with either synthetic mesh (the mesh trial) or biological graft (the graft trial). We assigned women (1:1:1 or 1:1) within three strata: assigned to one of the three treatment options, comparison of standard repair with mesh, and comparison of standard repair with graft. Participants, ward staff, and outcome assessors were masked to randomisation where possible; masking was obviously not possible for the surgeon. Follow-up was for 2 years after the surgery; the primary outcomes, measured at 1 year and 2 years, were participant-reported prolapse symptoms (i.e. the Pelvic Organ Prolapse Symptom Score [POP-SS]) and condition-specific (ie, prolapse-related) quality-of-life scores, analysed in the modified intention-to-treat population. This trial is registered as an International Standard Randomised Controlled Trial, number ISRCTN60695184. Between Jan 8, 2010, and Aug 30, 2013, we randomly allocated 1352 women to treatment, of whom 1348 were included in the analysis. 865 women were included in the mesh trial (430 to standard repair alone, 435 to mesh augmentation) and 735 were included in the graft trial (367 to standard repair alone, 368 to graft augmentation). Because the analyses were carried out separately for each trial (mesh trial and graft trial) some women in the standard repair arm assigned to all treatment options were included in the standard repair group of both trials. 23 of these women did not receive any surgery (15 in the mesh trial, 13 in the graft trial; five were included in both trials) and were included in the baseline analyses only. Mean POP-SS at 1 year did not differ substantially between comparisons (standard 5·4 [SD 5·5] vs mesh 5·5 [5·1], mean difference 0·00, 95% CI -0·70 to 0·71; p=0·99; standard 5·5 [SD 5·6] vs graft 5·6 [5·6]; mean difference -0·15, -0·93 to 0·63; p=0·71). Mean prolapse-related quality-of-life scores also did not differ between groups at 1 year (standard 2·0 [SD 2·7] vs mesh 2·2 [2·7], mean difference 0·13, 95% CI -0·25 to 0·51; p=0·50; standard 2·2 [SD 2·8] vs graft 2·4 [2·9]; mean difference 0·13, -0·30 to 0·56; p=0·54). Mean POP-SS at 2 years were: standard 4·9 (SD 5·1) versus mesh 5·3 (5·1), mean difference 0·32, 95% CI -0·39 to 1·03; p=0·37; standard 4·9 (SD 5·1) versus graft 5·5 (5·7); mean difference 0·32, -0·48 to 1·12; p=0·43. Prolapse-related quality-of-life scores at 2 years were: standard 1·9 (SD 2·5) versus mesh 2·2 (2·6), mean difference 0·15, 95% CI -0·23 to 0·54; p=0·44; standard 2·0 (2·5) versus graft 2·2 (2·8); mean difference 0·10, -0·33 to 0·52; p=0·66. Serious adverse events such as infection, urinary retention, or dyspareunia or other pain, excluding mesh complications, occurred with similar frequency in the groups over 1 year (mesh trial: 31/430 [7%] with standard repair vs 34/435 [8%] with mesh, risk ratio [RR] 1·08, 95% CI 0·68 to 1·72; p=0·73; graft trial: 23/367 [6%] with standard repair vs 36/368 [10%] with graft, RR 1·57, 0·95 to 2·59; p=0·08). The cumulative number of women with a mesh complication over 2 years in women actually exposed to synthetic mesh was 51 (12%) of 434. Augmentation of a vaginal repair with mesh or graft material did not improve women's outcomes in terms of effectiveness, quality of life, adverse effects, or any other outcome in the short term, but more than one in ten women had a mesh complication. Therefore, follow-up is vital to identify any longer-term potential benefits and serious adverse effects of mesh or graft reinforcement in vaginal prolapse surgery. UK National Institute of Health Research. Copyright © 2017 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY license. Published by Elsevier Ltd.. All rights reserved.

  17. Mesh repair of umbilical hernia without a visible abdominal scar.

    PubMed

    Kurpiewski, Waldemar; Kiliańczyk, Michał; Szynkarczuk, Rafał; Tenderenda, Michał

    2014-02-01

    Experience in the use of Single Incision Laparoscopic Surgery procedures and the persistent urge to improve the cosmetic effect have contributed to the introduction of mesh repair of an umbilical hernia by means of a small incision in the natural position of the umbilicus. The aim of the study was to present the surgical technique and assess its postoperative results. During the period between 24.08.2011 and 01.01.2013, twenty-three umbilical hernia repair operations with the use of a polypropylene mesh by means of a small incision in the natural position of the umbilicus were performed. The synthetic material was placed in the preperitoneal space. The wound was closed and the umbilicus was reconstructed simultaneously, in order to make the scar invisible. Cutaneous stitches were not used. The average duration of the operation was 49 minutes. In one case of an obese patient with coexisting linea alba dehiscence, hernia recurrence was observed. All wounds healed without complications. The cosmetic effect was very good. Based on the presented experience mesh repair of the umbilical hernia by means of a small incision in the natural position of the umbilicus contributes essential benefits, such as a very good cosmetic effect without consecutive increasing costs, as compared to standard treatment by means of an infraumbilical incision.

  18. dc3dm: Software to efficiently form and apply a 3D DDM operator for a nonuniformly discretized rectangular planar fault

    NASA Astrophysics Data System (ADS)

    Bradley, A. M.

    2013-12-01

    My poster will describe dc3dm, a free open source software (FOSS) package that efficiently forms and applies the linear operator relating slip and traction components on a nonuniformly discretized rectangular planar fault in a homogeneous elastic (HE) half space. This linear operator implements what is called the displacement discontinuity method (DDM). The key properties of dc3dm are: 1. The mesh can be nonuniform. 2. Work and memory scale roughly linearly in the number of elements (rather than quadratically). 3. The order of accuracy of my method on a nonuniform mesh is the same as that of the standard method on a uniform mesh. Property 2 is achieved using my FOSS package hmmvp [AGU 2012]. A nonuniform mesh (property 1) is natural for some problems. For example, in a rate-state friction simulation, nucleation length, and so required element size, scales reciprocally with effective normal stress. Property 3 assures that if a nonuniform mesh is more efficient than a uniform mesh (in the sense of accuracy per element) at one level of mesh refinement, it will remain so at all further mesh refinements. I use the routine DC3D of Y. Okada, which calculates the stress tensor at a receiver resulting from a rectangular uniform dislocation source in an HE half space. On a uniform mesh, straightforward application of this Green's function (GF) yields a DDM I refer to as DDMu. On a nonuniform mesh, this same procedure leads to artifacts that degrade the order of accuracy of the DDM. I have developed a method I call IGA that implements the DDM using this GF for a nonuniformly discretized mesh having certain properties. Importantly, IGA's order of accuracy on a nonuniform mesh is the same as DDMu's on a uniform one. Boundary conditions can be periodic in the surface-parallel direction (in both directions if the GF is for a whole space), velocity on any side, and free surface. The mesh must have the following main property: each uniquely sized element must tile each element larger than itself. A mesh generated by a family of quadtrees has this property. Using multiple quadtrees that collectively cover the domain enables the elements to have a small aspect ratio. Mathematically, IGA works as follows. Let Mn be the nonuniform mesh. Define Mu to be the uniform mesh that is composed of the smallest element in Mn. Every element e in Mu has associated subelements in Mn that tile e. First, a linear operator Inu mapping data on Mn to Mu implements smooth (C^1) interpolation; I use cubic (Clough-Tocher) interpolation over a triangulation induced by Mn. Second, a linear operator Gu implements DDMu on Mu. Third, a linear operator Aun maps data on Mu to Mn. These three linear operators implement exact IGA (EIGA): Gn = Aun Gu Inu. Computationally, there are several more details. EIGA has the undesirable property that calculating one entry of Gn for receiver ri requires calculating multiple entries of Gu, no matter how far away from ri the smallest element is. Approximate IGA (AIGA) solves this problem by restricting EIGA to a neighborhood around each receiver. Associated with each neighborhood is a minimum element size s^i that indexes a family of operators Gu^i. The order of accuracy of AIGA is the same as that of EIGA and DDMu if each neighborhood is kept constant in spatial extent as the mesh is refined.

  19. Status of LANL Efforts to Effectively Use Sequoia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nystrom, William David

    2015-05-14

    Los Alamos National Laboratory (LANL) is currently working on 3 new production applications, VPC, xRage, and Pagosa. VPIC was designed to be a 3D relativist, electromagnetic Particle-In-Cell code for plasma simulation. xRage, a 3D AMR mesh amd multi physics hydro code. Pagosa, is a 3D structured mesh and multi physics hydro code.

  20. Laboratory hydraulic calibration of the Helley-Smith bedload sediment sampler

    USGS Publications Warehouse

    Druffel, Leroy; Emmett, W.W.; Schneider, V.R.; Skinner, J.V.

    1976-01-01

    Filling the sample bag to 40 percent capacity with a sediment larger in diameter than the mesh size of the bag had no effect on the hydraulic efficiency. Particles close to the 0.2 mm mesh size of the sample bag plugged the openings and caused the efficiency to decrease in an undetermined manner.

  1. User Manual for the PROTEUS Mesh Tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Micheal A.; Shemon, Emily R.

    2015-06-01

    This report describes the various mesh tools that are provided with the PROTEUS code giving both descriptions of the input and output. In many cases the examples are provided with a regression test of the mesh tools. The most important mesh tools for any user to consider using are the MT_MeshToMesh.x and the MT_RadialLattice.x codes. The former allows the conversion between most mesh types handled by PROTEUS while the second allows the merging of multiple (assembly) meshes into a radial structured grid. Note that the mesh generation process is recursive in nature and that each input specific for a givenmore » mesh tool (such as .axial or .merge) can be used as “mesh” input for any of the mesh tools discussed in this manual.« less

  2. User Manual for the PROTEUS Mesh Tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Micheal A.; Shemon, Emily R

    2016-09-19

    PROTEUS is built around a finite element representation of the geometry for visualization. In addition, the PROTEUS-SN solver was built to solve the even-parity transport equation on a finite element mesh provided as input. Similarly, PROTEUS-MOC and PROTEUS-NEMO were built to apply the method of characteristics on unstructured finite element meshes. Given the complexity of real world problems, experience has shown that using commercial mesh generator to create rather simple input geometries is overly complex and slow. As a consequence, significant effort has been put into place to create multiple codes that help assist in the mesh generation and manipulation.more » There are three input means to create a mesh in PROTEUS: UFMESH, GRID, and NEMESH. At present, the UFMESH is a simple way to generate two-dimensional Cartesian and hexagonal fuel assembly geometries. The UFmesh input allows for simple assembly mesh generation while the GRID input allows the generation of Cartesian, hexagonal, and regular triangular structured grid geometry options. The NEMESH is a way for the user to create their own mesh or convert another mesh file format into a PROTEUS input format. Given that one has an input mesh format acceptable for PROTEUS, we have constructed several tools which allow further mesh and geometry construction (i.e. mesh extrusion and merging). This report describes the various mesh tools that are provided with the PROTEUS code giving both descriptions of the input and output. In many cases the examples are provided with a regression test of the mesh tools. The most important mesh tools for any user to consider using are the MT_MeshToMesh.x and the MT_RadialLattice.x codes. The former allows the conversion between most mesh types handled by PROTEUS while the second allows the merging of multiple (assembly) meshes into a radial structured grid. Note that the mesh generation process is recursive in nature and that each input specific for a given mesh tool (such as .axial or .merge) can be used as “mesh” input for any of the mesh tools discussed in this manual.« less

  3. Image Engine: an object-oriented multimedia database for storing, retrieving and sharing medical images and text.

    PubMed Central

    Lowe, H. J.

    1993-01-01

    This paper describes Image Engine, an object-oriented, microcomputer-based, multimedia database designed to facilitate the storage and retrieval of digitized biomedical still images, video, and text using inexpensive desktop computers. The current prototype runs on Apple Macintosh computers and allows network database access via peer to peer file sharing protocols. Image Engine supports both free text and controlled vocabulary indexing of multimedia objects. The latter is implemented using the TView thesaurus model developed by the author. The current prototype of Image Engine uses the National Library of Medicine's Medical Subject Headings (MeSH) vocabulary (with UMLS Meta-1 extensions) as its indexing thesaurus. PMID:8130596

  4. First case of mesh infection due to Coccidioides spp. and literature review of fungal mesh infections after hernia repair.

    PubMed

    Forrester, Joseph D; Gomez, Carlos A; Forrester, Jared A; Nguyen, Mike; Gregg, David; Deresinski, Stan; Banaei, Niaz; Weiser, Thomas G

    2015-10-01

    Fungal mesh infections are a rare complication of hernia repairs with mesh. The first case of Coccidioides spp. mesh infection is described, and a systematic literature review of all known fungal mesh infections was performed. Nine cases of fungal mesh infection are reviewed. Female and male patients are equally represented, median age is 49.5 years, and critical illness and preinfection antibiotic use were common. Fungal mesh infections are rare, but potentially fatal, complications of hernias repaired with mesh. © 2015 Blackwell Verlag GmbH.

  5. The transfer function method for gear system dynamics applied to conventional and minimum excitation gearing designs

    NASA Technical Reports Server (NTRS)

    Mark, W. D.

    1982-01-01

    A transfer function method for predicting the dynamic responses of gear systems with more than one gear mesh is developed and applied to the NASA Lewis four-square gear fatigue test apparatus. Methods for computing bearing-support force spectra and temporal histories of the total force transmitted by a gear mesh, the force transmitted by a single pair of teeth, and the maximum root stress in a single tooth are developed. Dynamic effects arising from other gear meshes in the system are included. A profile modification design method to minimize the vibration excitation arising from a pair of meshing gears is reviewed and extended. Families of tooth loading functions required for such designs are developed and examined for potential excitation of individual tooth vibrations. The profile modification design method is applied to a pair of test gears.

  6. The effect of crumb rubber particle size to the optimum binder content for open graded friction course.

    PubMed

    Ibrahim, Mohd Rasdan; Katman, Herda Yati; Karim, Mohamed Rehan; Koting, Suhana; Mashaan, Nuha S

    2014-01-01

    The main objective of this paper is to investigate the relations of rubber size, rubber content, and binder content in determination of optimum binder content for open graded friction course (OGFC). Mix gradation type B as specified in Specification for Porous Asphalt produced by the Road Engineering Association of Malaysia (REAM) was used in this study. Marshall specimens were prepared with four different sizes of rubber, namely, 20 mesh size [0.841 mm], 40 mesh [0.42 mm], 80 mesh [0.177 mm], and 100 mesh [0.149 mm] with different concentrations of rubberised bitumen (4%, 8%, and 12%) and different percentages of binder content (4%-7%). The appropriate optimum binder content is then selected according to the results of the air voids, binder draindown, and abrasion loss test. Test results found that crumb rubber particle size can affect the optimum binder content for OGFC.

  7. Analysis of the vibratory excitation arising from spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Mark, William D.

    1987-01-01

    Tools required to understand and predict in terms of its underlying causes the vibratory excitation arising from meshing spiral bevel gears are developed. A generalized three component transmission error of meshing spiral bevel gears is defined. Equations are derived that yield the three components of the generalized transmission error in terms of deviations of tooth running surfaces from equispaced perfect spherical involute surfaces and tooth/gearbody elastic deformations arising from the three components of the generalized force transmitted by the meshing gears. A method for incorporating these equations into the equations of motion of a gear system is described. Equations are derived for the three components of the generalized force transmitted by the gears which are valid whenever inertial effects of the meshing gears and their supports are negligible. Bearing offsets from the positions occupied by the shaft centerlines of perfect spherical involute bevel gears and bearing/bearing support flexibilities enter into the computation of these forces.

  8. Predicted effect of dynamic load on pitting fatigue life for low-contact-ratio spur gears

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.

    1986-01-01

    How dynamic load affects the surface pitting fatigue life of external spur gears was predicted by using the NASA computer program TELSGE. Parametric studies were performed over a range of various gear parameters modeling low-contact-ratio involute spur gears. In general, gear life predictions based on dynamic loads differed significantly from those based on static loads, with the predictions being strongly influenced by the maximum dynamic load during contact. Gear mesh operating speed strongly affected predicted dynamic load and life. Meshes operating at a resonant speed or one-half the resonant speed had significantly shorter lives. Dynamic life factors for gear surface pitting fatigue were developed on the basis of the parametric studies. In general, meshes with higher contact ratios had higher dynamic life factors than meshes with lower contact ratios. A design chart was developed for hand calculations of dynamic life factors.

  9. Dynamic Analysis of Geared Rotors by Finite Elements

    NASA Technical Reports Server (NTRS)

    Kahraman, A.; Ozguven, H. Nevzat; Houser, D. R.; Zakrajsek, J. J.

    1992-01-01

    A finite element model of a geared rotor system on flexible bearings has been developed. The model includes the rotary inertia of on shaft elements, the axial loading on shafts, flexibility and damping of bearings, material damping of shafts and the stiffness and the damping of gear mesh. The coupling between the torsional and transverse vibrations of gears were considered in the model. A constant mesh stiffness was assumed. The analysis procedure can be used for forced vibration analysis geared rotors by calculating the critical speeds and determining the response of any point on the shafts to mass unbalances, geometric eccentricities of gears, and displacement transmission error excitation at the mesh point. The dynamic mesh forces due to these excitations can also be calculated. The model has been applied to several systems for the demonstration of its accuracy and for studying the effect of bearing compliances on system dynamics.

  10. 3D Reconstruction of human bones based on dictionary learning.

    PubMed

    Zhang, Binkai; Wang, Xiang; Liang, Xiao; Zheng, Jinjin

    2017-11-01

    An effective method for reconstructing a 3D model of human bones from computed tomography (CT) image data based on dictionary learning is proposed. In this study, the dictionary comprises the vertices of triangular meshes, and the sparse coefficient matrix indicates the connectivity information. For better reconstruction performance, we proposed a balance coefficient between the approximation and regularisation terms and a method for optimisation. Moreover, we applied a local updating strategy and a mesh-optimisation method to update the dictionary and the sparse matrix, respectively. The two updating steps are iterated alternately until the objective function converges. Thus, a reconstructed mesh could be obtained with high accuracy and regularisation. The experimental results show that the proposed method has the potential to obtain high precision and high-quality triangular meshes for rapid prototyping, medical diagnosis, and tissue engineering. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Quality factors and local adaption (with applications in Eulerian hydrodynamics)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowley, W.P.

    1992-06-17

    Adapting the mesh to suit the solution is a technique commonly used for solving both ode`s and pde`s. For Lagrangian hydrodynamics, ALE and Free-Lagrange are examples of structured and unstructured adaptive methods. For Eulerian hydrodynamics the two basic approaches are the macro-unstructuring technique pioneered by Oliger and Berger and the micro-structuring technique due to Lohner and others. Here we will describe a new micro-unstructuring technique, LAM, (for Local Adaptive Mesh) as applied to Eulerian hydrodynamics. The LAM technique consists of two independent parts: (1) the time advance scheme is a variation on the artificial viscosity method; (2) the adaption schememore » uses a micro-unstructured mesh with quadrilateral mesh elements. The adaption scheme makes use of quality factors and the relation between these and truncation errors is discussed. The time advance scheme; the adaption strategy; and the effect of different adaption parameters on numerical solutions are described.« less

  12. Quality factors and local adaption (with applications in Eulerian hydrodynamics)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowley, W.P.

    1992-06-17

    Adapting the mesh to suit the solution is a technique commonly used for solving both ode's and pde's. For Lagrangian hydrodynamics, ALE and Free-Lagrange are examples of structured and unstructured adaptive methods. For Eulerian hydrodynamics the two basic approaches are the macro-unstructuring technique pioneered by Oliger and Berger and the micro-structuring technique due to Lohner and others. Here we will describe a new micro-unstructuring technique, LAM, (for Local Adaptive Mesh) as applied to Eulerian hydrodynamics. The LAM technique consists of two independent parts: (1) the time advance scheme is a variation on the artificial viscosity method; (2) the adaption schememore » uses a micro-unstructured mesh with quadrilateral mesh elements. The adaption scheme makes use of quality factors and the relation between these and truncation errors is discussed. The time advance scheme; the adaption strategy; and the effect of different adaption parameters on numerical solutions are described.« less

  13. An Adaptive Mesh Algorithm: Mapping the Mesh Variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scannapieco, Anthony J.

    2016-07-25

    Both thermodynamic and kinematic variables must be mapped. The kinematic variables are defined on a separate kinematic mesh; it is the duel mesh to the thermodynamic mesh. The map of the kinematic variables is done by calculating the contributions of kinematic variables on the old thermodynamic mesh, mapping the kinematic variable contributions onto the new thermodynamic mesh and then synthesizing the mapped kinematic variables on the new kinematic mesh. In this document the map of the thermodynamic variables will be described.

  14. A chimera grid scheme. [multiple overset body-conforming mesh system for finite difference adaptation to complex aircraft configurations

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Dougherty, F. C.; Benek, J. A.

    1983-01-01

    A mesh system composed of multiple overset body-conforming grids is described for adapting finite-difference procedures to complex aircraft configurations. In this so-called 'chimera mesh,' a major grid is generated about a main component of the configuration and overset minor grids are used to resolve all other features. Methods for connecting overset multiple grids and modifications of flow-simulation algorithms are discussed. Computational tests in two dimensions indicate that the use of multiple overset grids can simplify the task of grid generation without an adverse effect on flow-field algorithms and computer code complexity.

  15. Cost Effectiveness Study of Wastewater Management Systems for Selected U.S. Coast Guard Vessels. Volume 3. Installation Analysis. Part 5. White Sage (133 Feet)

    DTIC Science & Technology

    1977-02-01

    located in a wire mesh enclosure in the center of the hold. The cargo boom hydraulic tank is located in the port aft corner of the hold. The rcmainder...2, there may be minor modifications required to the shelving on the starboard side (along the I shell of the vessel) and the wire mesh eculosure...along the shell of the vessel) and the wire mesh enclosure for the ship’s dry stores on the centerline of the vessel (between Frames 9 and 10). 24 NOW oI

  16. The contribution of morphological knowledge to French MeSH mapping for information retrieval.

    PubMed Central

    Zweigenbaum, P.; Darmoni, S. J.; Grabar, N.

    2001-01-01

    MeSH-indexed Internet health directories must provide a mapping from natural language queries to MeSH terms so that both health professionals and the general public can query their contents. We describe here the design of lexical knowledge bases for mapping French expressions to MeSH terms, and the initial evaluation of their contribution to Doc'CISMeF, the search tool of a MeSH-indexed directory of French-language medical Internet resources. The observed trend is in favor of the use of morphological knowledge as a moderate (approximately 5%) but effective factor for improving query to term mapping capabilities. PMID:11825295

  17. The Database for Aggregate Analysis of ClinicalTrials.gov (AACT) and Subsequent Regrouping by Clinical Specialty

    PubMed Central

    Tasneem, Asba; Aberle, Laura; Ananth, Hari; Chakraborty, Swati; Chiswell, Karen; McCourt, Brian J.; Pietrobon, Ricardo

    2012-01-01

    Background The ClinicalTrials.gov registry provides information regarding characteristics of past, current, and planned clinical studies to patients, clinicians, and researchers; in addition, registry data are available for bulk download. However, issues related to data structure, nomenclature, and changes in data collection over time present challenges to the aggregate analysis and interpretation of these data in general and to the analysis of trials according to clinical specialty in particular. Improving usability of these data could enhance the utility of ClinicalTrials.gov as a research resource. Methods/Principal Results The purpose of our project was twofold. First, we sought to extend the usability of ClinicalTrials.gov for research purposes by developing a database for aggregate analysis of ClinicalTrials.gov (AACT) that contains data from the 96,346 clinical trials registered as of September 27, 2010. Second, we developed and validated a methodology for annotating studies by clinical specialty, using a custom taxonomy employing Medical Subject Heading (MeSH) terms applied by an NLM algorithm, as well as MeSH terms and other disease condition terms provided by study sponsors. Clinical specialists reviewed and annotated MeSH and non-MeSH disease condition terms, and an algorithm was created to classify studies into clinical specialties based on both MeSH and non-MeSH annotations. False positives and false negatives were evaluated by comparing algorithmic classification with manual classification for three specialties. Conclusions/Significance The resulting AACT database features study design attributes parsed into discrete fields, integrated metadata, and an integrated MeSH thesaurus, and is available for download as Oracle extracts (.dmp file and text format). This publicly-accessible dataset will facilitate analysis of studies and permit detailed characterization and analysis of the U.S. clinical trials enterprise as a whole. In addition, the methodology we present for creating specialty datasets may facilitate other efforts to analyze studies by specialty groups. PMID:22438982

  18. The database for aggregate analysis of ClinicalTrials.gov (AACT) and subsequent regrouping by clinical specialty.

    PubMed

    Tasneem, Asba; Aberle, Laura; Ananth, Hari; Chakraborty, Swati; Chiswell, Karen; McCourt, Brian J; Pietrobon, Ricardo

    2012-01-01

    The ClinicalTrials.gov registry provides information regarding characteristics of past, current, and planned clinical studies to patients, clinicians, and researchers; in addition, registry data are available for bulk download. However, issues related to data structure, nomenclature, and changes in data collection over time present challenges to the aggregate analysis and interpretation of these data in general and to the analysis of trials according to clinical specialty in particular. Improving usability of these data could enhance the utility of ClinicalTrials.gov as a research resource. The purpose of our project was twofold. First, we sought to extend the usability of ClinicalTrials.gov for research purposes by developing a database for aggregate analysis of ClinicalTrials.gov (AACT) that contains data from the 96,346 clinical trials registered as of September 27, 2010. Second, we developed and validated a methodology for annotating studies by clinical specialty, using a custom taxonomy employing Medical Subject Heading (MeSH) terms applied by an NLM algorithm, as well as MeSH terms and other disease condition terms provided by study sponsors. Clinical specialists reviewed and annotated MeSH and non-MeSH disease condition terms, and an algorithm was created to classify studies into clinical specialties based on both MeSH and non-MeSH annotations. False positives and false negatives were evaluated by comparing algorithmic classification with manual classification for three specialties. The resulting AACT database features study design attributes parsed into discrete fields, integrated metadata, and an integrated MeSH thesaurus, and is available for download as Oracle extracts (.dmp file and text format). This publicly-accessible dataset will facilitate analysis of studies and permit detailed characterization and analysis of the U.S. clinical trials enterprise as a whole. In addition, the methodology we present for creating specialty datasets may facilitate other efforts to analyze studies by specialty groups.

  19. Mesh control information of windmill designed by Solidwork program

    NASA Astrophysics Data System (ADS)

    Mulyana, T.; Sebayang, D.; Rafsanjani, A. M. D.; Adani, J. H. D.; Muhyiddin, Y. S.

    2017-12-01

    This paper presents the mesh control information imposed on the windmill already designed. The accuracy of Simulation results is influenced by the quality of the created mesh. However, compared to the quality of the mesh is made, the simulation time running will be done software also increases. The smaller the size of the elements created when making the mesh, the better the mesh quality will be generated. When adjusting the mesh size, there is a slider that acts as the density regulator of the element. SolidWorks Simulation also has Mesh Control facility. Features that can adjust mesh density only in the desired part. The best results of mesh control obtained for both static and thermal simulation have ratio 1.5.

  20. Scalable Computing of the Mesh Size Effect on Modeling Damage Mechanics in Woven Armor Composites

    DTIC Science & Technology

    2008-12-01

    manner of a user defined material subroutine to provide overall stress increments to, the parallel LS-DYNA3D a Lagrangian explicit code used in...finite element code, as a user defined material subroutine . The ability of this subroutine to model the effect of the progressions of a select number...is added as a user defined material subroutine to parallel LS-DYNA3D. The computations of the global mesh are handled by LS-DYNA3D and are spread

  1. Evidence for the use of "medical marijuana" in psychiatric and neurologic disorders.

    PubMed

    Noel, Christopher

    2017-01-01

    Cannabis is listed as a Schedule I substance under the Controlled Substances Act of 1970, meaning the US federal government defines it as an illegal drug that has high potential for abuse and no established medical use; however, half of the states in the nation have enacted "medical marijuana" (MM) laws. Clinicians must be aware of the evidence for and against the use of MM in their patients who may consider using this substance. A PubMed database search was performed using the text string: "Cannabis"[Mesh] OR "Marijuana Abuse"[Mesh] OR "Medical Marijuana"[Mesh] OR "Marijuana Smoking"[Mesh] OR "cannabi*" OR "tetrahydrocannabinol." The search was further limited to randomized clinical trial publications in English on human subjects to identify articles regarding the therapeutic use of phytocannabinoids for psychiatric and neurologic disorders. Commercially available products (ie, dronabinol, nabilone, nabiximols) and synthetic cannabinoids were excluded from the review. Publications were identified that included patients with dementia, multiple sclerosis, Parkinson disease, Huntington disease, schizophrenia, social anxiety disorder, depression, tobacco use disorder, and neuropathic pain. There is great variety concerning which medical conditions are approved for treatment with MM for either palliative or therapeutic benefit, depending on the state law. It is important to keep an evidence-based approach in mind, even with substances considered to be illegal under US federal law. Clinicians must weigh risks and benefits of the use of MM in their patients and should ensure that patients have tried other treatment modalities with higher levels of evidence for use when available and appropriate.

  2. Changes in pelvic organ prolapse mesh mechanical properties following implantation in rats.

    PubMed

    Ulrich, Daniela; Edwards, Sharon L; Alexander, David L J; Rosamilia, Anna; Werkmeister, Jerome A; Gargett, Caroline E; Letouzey, Vincent

    2016-02-01

    Pelvic organ prolapse (POP) is a multifactorial disease that manifests as the herniation of the pelvic organs into the vagina. Surgical methods for prolapse repair involve the use of a synthetic polypropylene mesh. The use of this mesh has led to significantly higher anatomical success rates compared with native tissue repairs, and therefore, despite recent warnings by the Food and Drug Administration regarding the use of vaginal mesh, the number of POP mesh surgeries has increased over the last few years. However, mesh implantation is associated with higher postsurgery complications, including pain and erosion, with higher consecutive rates of reoperation when placed vaginally. Little is known on how the mechanical properties of the implanted mesh itself change in vivo. It is assumed that the mechanical properties of these meshes remain unchanged, with any differences in mechanical properties of the formed mesh-tissue complex attributed to the attached tissue alone. It is likely that any changes in mesh mechanical properties that do occur in vivo will have an impact on the biomechanical properties of the formed mesh-tissue complex. The objective of the study was to assess changes in the multiaxial mechanical properties of synthetic clinical prolapse meshes implanted abdominally for up to 90 days, using a rat model. Another objective of the study was to assess the biomechanical properties of the formed mesh-tissue complex following implantation. Three nondegradable polypropylene clinical synthetic mesh types for prolapse repair (Gynemesh PS, Polyform Lite, and Restorelle) and a partially degradable polypropylene/polyglecaprone mesh (UltraPro) were mechanically assessed before and after implantation (n = 5/ mesh type) in Sprague Dawley rats for 30 (Gynemesh PS, Polyform Lite, and Restorelle) and 90 (UltraPro and Polyform Lite) days. Stiffness and permanent extension following cyclic loading, and breaking load, of the preimplanted mesh types, explanted mesh-tissue complexes, and explanted meshes were assessed using a multi-axial (ball-burst) method. The 4 clinical meshes varied from each other in weight, thickness, porosity, and pore size and showed significant differences in stiffness and breaking load before implantation. Following 30 days of implantation, the mechanical properties of some mesh types altered, with significant decreases in mesh stiffness and breaking load, and increased permanent extension. After 90 days these changes were more obvious, with significant decreases in stiffness and breaking load and increased permanent extension. Similar biomechanical properties of formed mesh-tissue complexes were observed for mesh types of different preimplant stiffness and structure after 90 days implantation. This is the first study to report on intrinsic changes in the mechanical properties of implanted meshes and how these changes have an impact on the estimated tissue contribution of the formed mesh-tissue complex. Decreased mesh stiffness, strength, and increased permanent extension following 90 days of implantation increase the biomechanical contribution of the attached tissue of the formed mesh-tissue complex more than previously thought. This needs to be considered when using meshes for prolapse repair. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  3. Grouper: a compact, streamable triangle mesh data structure.

    PubMed

    Luffel, Mark; Gurung, Topraj; Lindstrom, Peter; Rossignac, Jarek

    2014-01-01

    We present Grouper: an all-in-one compact file format, random-access data structure, and streamable representation for large triangle meshes. Similarly to the recently published SQuad representation, Grouper represents the geometry and connectivity of a mesh by grouping vertices and triangles into fixed-size records, most of which store two adjacent triangles and a shared vertex. Unlike SQuad, however, Grouper interleaves geometry with connectivity and uses a new connectivity representation to ensure that vertices and triangles can be stored in a coherent order that enables memory-efficient sequential stream processing. We present a linear-time construction algorithm that allows streaming out Grouper meshes using a small memory footprint while preserving the initial ordering of vertices. As a part of this construction, we show how the problem of assigning vertices and triangles to groups reduces to a well-known NP-hard optimization problem, and present a simple yet effective heuristic solution that performs well in practice. Our array-based Grouper representation also doubles as a triangle mesh data structure that allows direct access to vertices and triangles. Storing only about two integer references per triangle--i.e., less than the three vertex references stored with each triangle in a conventional indexed mesh format--Grouper answers both incidence and adjacency queries in amortized constant time. Our compact representation enables data-parallel processing on multicore computers, instant partitioning and fast transmission for distributed processing, as well as efficient out-of-core access. We demonstrate the versatility and performance benefits of Grouper using a suite of example meshes and processing kernels.

  4. Radial cold trap

    DOEpatents

    Grundy, Brian R.

    1981-01-01

    The radial cold trap comprises a housing having a plurality of mesh bands disposed therein. The mesh bands comprise concentrically arranged bands of mesh with the mesh specific surface area of each band increasing from the outermost mesh band to the innermost mesh band. An inlet nozzle is attached to the outside section of the housing while an outlet nozzle is attached to the inner portion of the housing so as to be concentrically connected to the innermost mesh band. An inlet baffle having orifices therein may be disposed around the outermost mesh band and within the housing for directing the flow of the fluid from the inlet nozzle to the outermost mesh band in a uniform manner. The flow of fluid passes through each consecutive mesh band and into the outlet nozzle. The circular pattern of the symmetrically arranged mesh packing allows for better utilization of the entire cold trap volume.

  5. Radial cold trap

    DOEpatents

    Grundy, B.R.

    1981-09-29

    The radial cold trap comprises a housing having a plurality of mesh bands disposed therein. The mesh bands comprise concentrically arranged bands of mesh with the mesh specific surface area of each band increasing from the outermost mesh band to the innermost mesh band. An inlet nozzle is attached to the outside section of the housing while an outlet nozzle is attached to the inner portion of the housing so as to be concentrically connected to the innermost mesh band. An inlet baffle having orifices therein may be disposed around the outermost mesh band and within the housing for directing the flow of the fluid from the inlet nozzle to the outermost mesh band in a uniform manner. The flow of fluid passes through each consecutive mesh band and into the outlet nozzle. The circular pattern of the symmetrically arranged mesh packing allows for better utilization of the entire cold trap volume. 2 figs.

  6. [Development of better tolerated prosthetic materials: applications in gynecological surgery].

    PubMed

    Debodinance, P; Delporte, P; Engrand, J B; Boulogne, M

    2002-10-01

    Meshes have come to be widely used for surgical repair of the dysfunctional pelvic floor. The problem to date has been mesh intolerance. History. The first meshes were made with silver filigrees or stainless steel. Non-metallic and non-absorbable synthetic prostheses include nylon, silastic, polytetrafluoroethylene as well as expansive polyester and polypropylene forms. Most of the absorbable prostheses are made of polyglycolic acid and polyglactine 910. Classification. Four groups of biomaterials can be described according to pore size. Mechanical and biological properties. The mechanical properties of meshes have been tested industrially for resistance, pliability, elasticity and ductile qualities. These properties depend on type of tissue structure (woven or knitted) and the type of fiber used (mono and multi-filaments). The goal is to obtain a "silent" material, i.e. a material which does not trigger a host tissue reaction. Introducing the foreign body induces a "scarring" response. This fibroblastic reaction replaces the inflammatory reaction, leading to progressive colonization of the prosthesis. The major risk is infection caused by a disturbance of the inflammatory phase and bacterial development. Bacteria can be trapped in fibrotic tissue, with the risk of delayed infection. Immunological reactions may have an additive effect. These problems are not encountered with absorbable meshes. An ideal implant material must: not undergo physical modification by tissue fluids, be chemically inert, not trigger inflammatory or foreign body cell response in body tissues, be noncarcinogenic and nonallergenic, be capable of resisting mechanical stress and sterilization, and be able to be manufactured in the necessary shape. Polyester, polypropylene and expansive polytetrafluoroethylene fulfill these criteria. The ideal mesh. Eleven criteria are proposed. Complications for hernia repair. Infection and seroma are the most frequent complications with micro-porous meshes. Macro-porous meshes can cause erosive phenomena and adhesions. Retraction of synthetic tissues is observed in 20 to 30% of cases. Meshes in gynecology. In gynecology surgery, meshes made their first appearance in trans-abdominal sacrocolpopexy and slings. A detailed review of complications found in 32 articles studying slings and 22 studying sacrocolpopexy with approximately 10 types of meshes shows that intolerance of slings has oscillated between 1% with Prolene and 31% with Gore-Tex; for abdominal sacrocolpopexy the rate was between 1.7% with Prolene and 20% with Teflon. Rejection phenomena appear during the first year and are proportional to the surface area of the synthetic tissue and the proximity of the vaginal scar. New materials have been proposed over the last ten years for prolapse surgery, notably for cystocele, which accounts for 70% of all repair procedures. Nearly fifteen studies have reported a level of intolerance reaching 6%, the large majority of the meshes used being Prolene meshes. Our personal experience with 87 repair procedures has led us to the conclusion that Prolene is the most adapted mesh, allowing free tension between the bladder and the anterior vaginal wall. Continuous evaluation is needed to study these replacement materials which should in theory, improve the rate of recurrence, which is at present 20% with classic procedures not using a mesh.

  7. Association Between the Amount of Vaginal Mesh Used With Mesh Erosions and Repeated Surgery After Repairing Pelvic Organ Prolapse and Stress Urinary Incontinence.

    PubMed

    Chughtai, Bilal; Barber, Matthew D; Mao, Jialin; Forde, James C; Normand, Sharon-Lise T; Sedrakyan, Art

    2017-03-01

    Mesh, a synthetic graft, has been used in pelvic organ prolapse (POP) repair and stress urinary incontinence (SUI) to augment and strengthen weakened tissue. Polypropylene mesh has come under scrutiny by the US Food and Drug Administration. To examine the rates of mesh complications and invasive reintervention after the placement of vaginal mesh for POP repair or SUI surgery. This investigation was an observational cohort study at inpatient and ambulatory surgery settings in New York State. Participants were women who underwent transvaginal repair for POP or SUI with mesh between January 1, 2008, and December 31, 2012, and were followed up through December 31, 2013. They were divided into the following 4 groups based on the amount of mesh exposure: transvaginal POP repair surgery with mesh and concurrent sling use (vaginal mesh plus sling group), transvaginal POP repair with mesh and no concurrent sling use (vaginal mesh group), transvaginal POP repair without mesh but concurrent sling use for SUI (POP sling group), and sling for SUI alone (SUI sling group). The primary outcome was the occurrence of mesh complications and repeated invasive intervention within 1 year after the initial mesh implantation. A time-to-event analysis was performed to examine the occurrence of mesh erosions and subsequent reintervention. Secondary analyses of an age association (<65 vs ≥65 years) were conducted. The study identified 41 604 women who underwent 1 of the 4 procedures. The mean (SD) age of women at their initial mesh implantation was 56.2 (13.0) years. The highest risk of erosions was found in the vaginal mesh plus sling group (2.72%; 95% CI, 2.31%-3.21%) and the lowest in the SUI sling group (1.57%; 95% CI, 1.41%-1.74%). The risk of repeated surgery with concomitant erosion diagnosis was also the highest in the vaginal mesh plus sling group (2.13%; 95% CI, 1.76%-2.56%) and the lowest in the SUI sling group (1.16%; 95% CI, 1.03%-1.31%). The combined use of POP mesh and SUI mesh sling was associated with the highest erosion and repeated intervention risk, while mesh sling alone had the lowest erosion and repeated intervention risk. There is evidence for a dose-response relationship between the amount of mesh used and subsequent mesh erosions, complications, and invasive repeated intervention.

  8. Documentation for MeshKit - Reactor Geometry (&mesh) Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Rajeev; Mahadevan, Vijay

    2015-09-30

    This report gives documentation for using MeshKit’s Reactor Geometry (and mesh) Generator (RGG) GUI and also briefly documents other algorithms and tools available in MeshKit. RGG is a program designed to aid in modeling and meshing of complex/large hexagonal and rectilinear reactor cores. RGG uses Argonne’s SIGMA interfaces, Qt and VTK to produce an intuitive user interface. By integrating a 3D view of the reactor with the meshing tools and combining them into one user interface, RGG streamlines the task of preparing a simulation mesh and enables real-time feedback that reduces accidental scripting mistakes that could waste hours of meshing.more » RGG interfaces with MeshKit tools to consolidate the meshing process, meaning that going from model to mesh is as easy as a button click. This report is designed to explain RGG v 2.0 interface and provide users with the knowledge and skills to pilot RGG successfully. Brief documentation of MeshKit source code, tools and other algorithms available are also presented for developers to extend and add new algorithms to MeshKit. RGG tools work in serial and parallel and have been used to model complex reactor core models consisting of conical pins, load pads, several thousands of axially varying material properties of instrumentation pins and other interstices meshes.« less

  9. Is photobiomodulation (PBM) effective for the treatment of dentin hypersensitivity? A systematic review.

    PubMed

    Machado, Alana Cristina; Viana, Ítallo Emídio Lira; Farias-Neto, Aloisio Melo; Braga, Mariana Minatel; de Paula Eduardo, Carlos; de Freitas, Patricia Moreira; Aranha, Ana Cecilia Corrêa

    2018-05-01

    The present study aims to evaluate the current scientific data regarding the effectiveness of photobiomodulation (PBM) in the treatment of dentin hypersensitivity (DH) as an alternative method for pain control. A systematic review was conducted to assess the effectiveness of PBM as treatment for DH. A complete literature search was performed up to October 2016. Searches were conducted using Boolean operators and MeSH terms. References of all selected full-text articles and related reviews were scanned. A total of 280 articles were identified (241 articles were excluded by the title and abstract). Of the 39 articles selected for analysis, 36 were excluded because they presented one or more exclusion criteria. Therefore, three articles were qualified for inclusion in this systematic review. PBM may not lead to adverse effects provided that adequately controlled parameters are followed when treating DH. More consistent studies should be conducted in order to adequately observe the advantageous therapeutic effect of PBM.

  10. The Role of Chronic Mesh Infection in Delayed-Onset Vaginal Mesh Complications or Recurrent Urinary Tract Infections: Results From Explanted Mesh Cultures.

    PubMed

    Mellano, Erin M; Nakamura, Leah Y; Choi, Judy M; Kang, Diana C; Grisales, Tamara; Raz, Shlomo; Rodriguez, Larissa V

    2016-01-01

    Vaginal mesh complications necessitating excision are increasingly prevalent. We aim to study whether subclinical chronically infected mesh contributes to the development of delayed-onset mesh complications or recurrent urinary tract infections (UTIs). Women undergoing mesh removal from August 2013 through May 2014 were identified by surgical code for vaginal mesh removal. Only women undergoing removal of anti-incontinence mesh were included. Exclusion criteria included any women undergoing simultaneous prolapse mesh removal. We abstracted preoperative and postoperative information from the medical record and compared mesh culture results from patients with and without mesh extrusion, de novo recurrent UTIs, and delayed-onset pain. One hundred seven women with only anti-incontinence mesh removed were included in the analysis. Onset of complications after mesh placement was within the first 6 months in 70 (65%) of 107 and delayed (≥6 months) in 37 (35%) of 107. A positive culture from the explanted mesh was obtained from 82 (77%) of 107 patients, and 40 (37%) of 107 were positive with potential pathogens. There were no significant differences in culture results when comparing patients with delayed-onset versus immediate pain, extrusion with no extrusion, and de novo recurrent UTIs with no infections. In this large cohort of patients with mesh removed for a diverse array of complications, cultures of the explanted vaginal mesh demonstrate frequent low-density bacterial colonization. We found no differences in culture results from women with delayed-onset pain versus acute pain, vaginal mesh extrusions versus no extrusions, or recurrent UTIs using standard culture methods. Chronic prosthetic infections in other areas of medicine are associated with bacterial biofilms, which are resistant to typical culture techniques. Further studies using culture-independent methods are needed to investigate the potential role of chronic bacterial infections in delayed vaginal mesh complications.

  11. [Evaluation of safety and effectiveness of pelvic organ prolapse treatment with the use of polypropylene mesh depending on mesh and application technique].

    PubMed

    Banach, Renata; Antosiak, Beata; Blewniewska, Grazyna; Malinowski, Andrzej

    2013-07-01

    Evaluation of safety and effectiveness of POP (pelvic organ prolapse) treatment with the use of polypropylene mesh depending on type of mesh and application technique. We carried out a retrospective study and compared the frequency of perioperative complications and treatment results three months after the surgical procedure in two groups of patients, divided according to POP type. The first group comprise of patients with anterior compartment disorders who had Prolift Anterior (n = 100) or Pelvimesh Anterior (n = 98) placed. The second group included patients with posterior and central compartment who had Prolifit Posterior (n = 72) and Pelvimesh Posterior (n = 89) fitted. Early peri- and postoperative complications criteria were: profuse intraoperative bleeding (hemoglobin decrease of 3g%), intraoperative damage of urinary bladder and bowel, presence of hematoma in paravesical and perirectal space, urine retention after miction on the second day after the operation (> 100 ml), uroschesis after catheter removal, early operative failure (during 3 months after the operation), mesh erosion. No statistically significant differences in peri- and postoperative complications were reported between the studied groups (Pelvimesh vs. Prolift). No damage of urinary bladder or bowel was found in any of the studied groups. Other complications in Prolift Ant. Vs. Pelvimesh Ant groups were: postoperative anemia (4.00% vs. 4.09%); presence of hematoma (1.00% vs. 1.03%); postoperative urine retention (7.00% vs. 5.11%); uroschesis (1.00% vs. 1.03%); mesh erosion (2.00% vs. 1.03%); early operative failure (1.00% vs. 3.07%). Early postoperative results did not statistically differ between the Pelvimesh and the Prolift group. Results in the Prolift Post. vs. Pelvimesh Post. Groups were: postoperative anemia (2.78% vs. 5.62%); mesh erosion (1.38% vs. 0%), early operative failure (1.38% vs. 5.62%). Damage to bowel and hematoma was not observed in these groups. Our research failed to observe an advantage of any of the ready POP treatment kits. Despite application of different systems for mesh placement and pulling the arms through ligaments (either obturator foramen or sacrospinous ligament), no statistically significant differences were demonstrated with regard to the occurrence of early peri- and postoperative complications or efficiency in POP treatment in Prolift Anterior vs. Pelvimesh Anterior and Prolift Posterior vs. Prolift Pelvimesh groups.

  12. Experimental Investigation of Shrouding on Meshed Spur Gear Windage Power Loss

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Hurrell, Michael J.

    2017-01-01

    Windage power loss in high-speed gearboxes results in efficiency losses and increased heating due to drag on the gear teeth. Test results for meshed spur gear windage power loss are presented at ambient oil inlet temperatures, both with and without shrouding. The rate of windage power loss is observed to increase above a gear surface speed of 10,000 feet per minute (51 meters per second), similar to results presented in the literature. Shrouding is observed to become more effective above 15,000 feet per minute (76 meters per second), decreasing power loss by 10 percent at 25,000 feet per minute (127 meters per second). The need for gearbox oil drain slots limits the effectiveness of shrouding in reducing windage power loss. Windage power loss is observed to decrease with increasing gearbox temperatures and to increase with oil flow. Windage power losses for unshrouded meshed spur gears are 7 times greater than losses determined from unshrouded single spur gear tests. A 6- to 12-times increase in windage power loss is observed in the shrouded meshed spur gear data compared with shrouded single spur gear data. Based on this preliminary study, additional research is suggested to determine the effect of oil drain slot configurations, axial and radial shroud clearances, and higher gear surface speeds on windage power loss. Additional work is also suggested to determine the sensitivity of windage power loss to oil temperature and oil flow. Windage power loss for meshed spur gears tested in both the shrouded and unshrouded configurations is shown to be more than double versus windage power loss for the same spur gears run individually in the same shroud configurations. Further study of the physical processes behind these results is needed to optimize gearbox shrouds for minimum windage power loss.

  13. Experimental Investigation of Shrouding on Meshed Spur Gear Windage Power Loss

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert; Hurrell, Michael

    2017-01-01

    Windage power loss in high-speed gearboxes result in efficiency losses and increased heating due to drag on the gear teeth. Meshed spur gear windage power loss test results are presented at ambient oil inlet temperatures both with and without shrouding. The rate of windage power loss is observed to increase above 10,000 ft.min., gear surface speed, similar to results presented in the literature. Shrouding is observed to become more effective above 15,000 ft.min., decreasing power loss by 10 at 25,000 ft.min. The need for gearbox oil drain slots limits the effectiveness of shrouding on reducing windage power loss. Also, windage power loss is observed to decrease with increasing gearbox temperatures and to increase with oil flow. Windage power losses for the unshrouded meshed spur gears are 7x more than losses determined from unshrouded single spur gear tests. A 6x to 12x increase in windage power is observed comparing shrouded single spur gear data with shrouded meshed spur gear data. Based on this preliminary study additional research is suggested to determine the effect of oil drain slot configurations, axial and radial shroud clearances, and higher gear surface speeds on windage power loss. Additional work is also suggested to determine the sensitivity of windage power loss to oil temperature and oil flow. Windage power loss of meshed spur gears tested in both the shrouded and unshrouded configurations is shown to be more than double versus the same spur gears run individually in the same shroud configurations. Further study of the physical processes behind these results is needed for optimizing gearbox shrouds for minimum windage power loss.

  14. Automatic Texture Reconstruction of 3d City Model from Oblique Images

    NASA Astrophysics Data System (ADS)

    Kang, Junhua; Deng, Fei; Li, Xinwei; Wan, Fang

    2016-06-01

    In recent years, the photorealistic 3D city models are increasingly important in various geospatial applications related to virtual city tourism, 3D GIS, urban planning, real-estate management. Besides the acquisition of high-precision 3D geometric data, texture reconstruction is also a crucial step for generating high-quality and visually realistic 3D models. However, most of the texture reconstruction approaches are probably leading to texture fragmentation and memory inefficiency. In this paper, we introduce an automatic framework of texture reconstruction to generate textures from oblique images for photorealistic visualization. Our approach include three major steps as follows: mesh parameterization, texture atlas generation and texture blending. Firstly, mesh parameterization procedure referring to mesh segmentation and mesh unfolding is performed to reduce geometric distortion in the process of mapping 2D texture to 3D model. Secondly, in the texture atlas generation step, the texture of each segmented region in texture domain is reconstructed from all visible images with exterior orientation and interior orientation parameters. Thirdly, to avoid color discontinuities at boundaries between texture regions, the final texture map is generated by blending texture maps from several corresponding images. We evaluated our texture reconstruction framework on a dataset of a city. The resulting mesh model can get textured by created texture without resampling. Experiment results show that our method can effectively mitigate the occurrence of texture fragmentation. It is demonstrated that the proposed framework is effective and useful for automatic texture reconstruction of 3D city model.

  15. Silk fibroin hydrogel as physical barrier for prevention of post hernia adhesion.

    PubMed

    Konar, S; Guha, R; Kundu, B; Nandi, S; Ghosh, T K; Kundu, S C; Konar, A; Hazra, S

    2017-02-01

    Adhesion formation remains a major complication following hernia repair surgery. Physical barriers though effective for adhesion prevention in clinical settings are associated with major disadvantages, therefore, needs further investigation. This study evaluates silk fibroin hydrogel as a physical barrier on polypropylene mesh for the prevention of adhesion following ventral hernia repair. Peritoneal explants were cultured on silk fibroin scaffold to evaluate its support for mesothelial cell growth. Full thickness uniform sized defects were created on the ventral abdominal wall of rabbits, and the defects were covered either with silk hydrogel coated polypropylene mesh or with plain polypropylene mesh as a control. The animals were killed after 1 month, and the adhesion formation was graded; healing response of peritoneum was evaluated by immunohistochemistry with calretinin, collagen staining of peritoneal sections, and expression of PCNA, collagen-I, TNFα, IL6 by real time PCR; and its adverse effect if any was determined. Silk fibroin scaffold showed excellent support for peritoneal cell growth in vitro and the cells expressed calretinin. A remarkable prevention of adhesion formation was observed in the animals implanted with silk hydrogel coated mesh compared to the control group; in these animals peritoneal healing was complete and predominantly by mesothelial cells with minimum fibrotic changes. Expression of inflammatory cytokines decreased compared to control animals, histology of abdominal organs, haematological and blood biochemical parameters remained normal. Therefore, silk hydrogel coating of polypropylene mesh can improve peritoneal healing, minimize adhesion formation, is safe and can augment the outcome of hernia surgery.

  16. Effects on Diagnostic Parameters After Removing Additional Synchronous Gear Meshes

    NASA Technical Reports Server (NTRS)

    Decker, Harry J.

    2003-01-01

    Gear cracks are typically difficult to diagnose with sufficient time before catastrophic damage occurs. Significant damage must be present before algorithms appear to be able to detect the damage. Frequently there are multiple gear meshes on a single shaft. Since they are all synchronous with the shaft frequency, the commonly used synchronous averaging technique is ineffective in removing other gear mesh effects. Carefully applying a filter to these extraneous gear mesh frequencies can reduce the overall vibration signal and increase the accuracy of commonly used vibration metrics. The vibration signals from three seeded fault tests were analyzed using this filtering procedure. Both the filtered and unfiltered vibration signals were then analyzed using commonly used fault detection metrics and compared. The tests were conducted on aerospace quality spur gears in a test rig. The tests were conducted at speeds ranging from 2500 to 5000 revolutions per minute and torques from 184 to 228 percent of design load. The inability to detect these cracks with high confidence results from the high loading which is causing fast fracture as opposed to stable crack growth. The results indicate that these techniques do not currently produce an indication of damage that significantly exceeds experimental scatter.

  17. Continuum Damage Mechanics Models for the Analysis of Progressive Failure in Open-Hole Tension Laminates

    NASA Technical Reports Server (NTRS)

    Song, Kyonchan; Li, Yingyong; Rose, Cheryl A.

    2011-01-01

    The performance of a state-of-the-art continuum damage mechanics model for interlaminar damage, coupled with a cohesive zone model for delamination is examined for failure prediction of quasi-isotropic open-hole tension laminates. Limitations of continuum representations of intra-ply damage and the effect of mesh orientation on the analysis predictions are discussed. It is shown that accurate prediction of matrix crack paths and stress redistribution after cracking requires a mesh aligned with the fiber orientation. Based on these results, an aligned mesh is proposed for analysis of the open-hole tension specimens consisting of different meshes within the individual plies, such that the element edges are aligned with the ply fiber direction. The modeling approach is assessed by comparison of analysis predictions to experimental data for specimen configurations in which failure is dominated by complex interactions between matrix cracks and delaminations. It is shown that the different failure mechanisms observed in the tests are well predicted. In addition, the modeling approach is demonstrated to predict proper trends in the effect of scaling on strength and failure mechanisms of quasi-isotropic open-hole tension laminates.

  18. Effects of mesh type on a non-premixed model in a flameless combustion simulation

    NASA Astrophysics Data System (ADS)

    Komonhirun, Seekharin; Yongyingsakthavorn, Pisit; Nontakeaw, Udomkiat

    2018-01-01

    Flameless combustion is a recently developed combustion system, which provides zero emission product. This phenomenon requires auto-ignition by supplying high-temperature air with low oxygen concentration. The flame is vanished and colorless. Temperature of the flameless combustion is less than that of a conventional case, where NOx reactions can be well suppressed. To design a flameless combustor, the computational fluid dynamics (CFD) is employed. The designed air-and-fuel injection method can be applied with the turbulent and non-premixed models. Due to the fact that nature of turbulent non-premixed combustion is based on molecular randomness, inappropriate mesh type can lead to significant numerical errors. Therefore, this research aims to numerically investigate the effects of mesh type on flameless combustion characteristics, which is a primary step of design process. Different meshes, i.e. tetrahedral, hexagonal are selected. Boundary conditions are 5% of oxygen and 900 K of air-inlet temperature for the flameless combustion, and 21% of oxygen and 300 K of air-inlet temperature for the conventional case. The results are finally presented and discussed in terms of velocity streamlines, and contours of turbulent kinetic energy and viscosity, temperature, and combustion products.

  19. Comparison of updated Lagrangian FEM with arbitrary Lagrangian Eulerian method for 3D thermo-mechanical extrusion of a tube profile

    NASA Astrophysics Data System (ADS)

    Kronsteiner, J.; Horwatitsch, D.; Zeman, K.

    2017-10-01

    Thermo-mechanical numerical modelling and simulation of extrusion processes faces several serious challenges. Large plastic deformations in combination with a strong coupling of thermal with mechanical effects leads to a high numerical demand for the solution as well as for the handling of mesh distortions. The two numerical methods presented in this paper also reflect two different ways to deal with mesh distortions. Lagrangian Finite Element Methods (FEM) tackle distorted elements by building a new mesh (called re-meshing) whereas Arbitrary Lagrangian Eulerian (ALE) methods use an "advection" step to remap the solution from the distorted to the undistorted mesh. Another difference between conventional Lagrangian and ALE methods is the separate treatment of material and mesh in ALE, allowing the definition of individual velocity fields. In theory, an ALE formulation contains the Eulerian formulation as a subset to the Lagrangian description of the material. The investigations presented in this paper were dealing with the direct extrusion of a tube profile using EN-AW 6082 aluminum alloy and a comparison of experimental with Lagrangian and ALE results. The numerical simulations cover the billet upsetting and last until one third of the billet length is extruded. A good qualitative correlation of experimental and numerical results could be found, however, major differences between Lagrangian and ALE methods concerning thermo-mechanical coupling lead to deviations in the thermal results.

  20. Vaginal mucosal flap as a sling preservation for the treatment of vaginal exposure of mesh.

    PubMed

    Kim, Sea Young; Park, Jong Yeon; Kim, Han Kwon; Park, Chang Hoo; Kim, Sung Jin; Sung, Gi Teck; Park, Chang Myon

    2010-06-01

    Tension-free vaginal tape (TVT) procedures are used for the treatment of stress urinary incontinence in women. The procedures with synthetic materials can have a risk of vaginal erosion. We experienced transobturator suburethral sling (TOT) tape-induced vaginal erosion and report the efficacy of a vaginal mucosal covering technique. A total of 560 female patients diagnosed with stress urinary incontinence underwent TOT procedures at our hospital between January 2005 and August 2009. All patients succeeded in follow-ups, among which 8 patients (mean age: 50.5 years) presented with vaginal exposure of the mesh. A vaginal mucosal covering technique was performed under local anesthesia after administration of antibiotics and vaginal wound dressings for 3-4 days. Seven of the 8 patients complained of persistent vaginal discharge postoperatively. Two of the 8 patients complained of dyspareunia of their male partners. The one remaining patient was otherwise asymptomatic, but mesh erosion was discovered at the routine follow-up visit. Six of the 8 patients showed complete mucosal covering of the mesh after the operation (mean follow-up period: 16 moths). Vaginal mucosal erosion recurred in 2 patients, and the mesh was then partially removed. One patient had recurrent stress urinary incontinence. Vaginal mucosal covering as a sling preservation with continued patient continence may be a feasible and effective option for the treatment of vaginal exposure of mesh after TOT tape procedures.

  1. Dynamic Mesh CFD Simulations of Orion Parachute Pendulum Motion During Atmospheric Entry

    NASA Technical Reports Server (NTRS)

    Halstrom, Logan D.; Schwing, Alan M.; Robinson, Stephen K.

    2016-01-01

    This paper demonstrates the usage of computational fluid dynamics to study the effects of pendulum motion dynamics of the NASAs Orion Multi-Purpose Crew Vehicle parachute system on the stability of the vehicles atmospheric entry and decent. Significant computational fluid dynamics testing has already been performed at NASAs Johnson Space Center, but this study sought to investigate the effect of bulk motion of the parachute, such as pitching, on the induced aerodynamic forces. Simulations were performed with a moving grid geometry oscillating according to the parameters observed in flight tests. As with the previous simulations, OVERFLOW computational fluid dynamics tool is used with the assumption of rigid, non-permeable geometry. Comparison to parachute wind tunnel tests is included for a preliminary validation of the dynamic mesh model. Results show qualitative differences in the flow fields of the static and dynamic simulations and quantitative differences in the induced aerodynamic forces, suggesting that dynamic mesh modeling of the parachute pendulum motion may uncover additional dynamic effects.

  2. What is the evidence for the use of biologic or biosynthetic meshes in abdominal wall reconstruction?

    PubMed

    Köckerling, F; Alam, N N; Antoniou, S A; Daniels, I R; Famiglietti, F; Fortelny, R H; Heiss, M M; Kallinowski, F; Kyle-Leinhase, I; Mayer, F; Miserez, M; Montgomery, A; Morales-Conde, S; Muysoms, F; Narang, S K; Petter-Puchner, A; Reinpold, W; Scheuerlein, H; Smietanski, M; Stechemesser, B; Strey, C; Woeste, G; Smart, N J

    2018-04-01

    Although many surgeons have adopted the use of biologic and biosynthetic meshes in complex abdominal wall hernia repair, others have questioned the use of these products. Criticism is addressed in several review articles on the poor standard of studies reporting on the use of biologic meshes for different abdominal wall repairs. The aim of this consensus review is to conduct an evidence-based analysis of the efficacy of biologic and biosynthetic meshes in predefined clinical situations. A European working group, "BioMesh Study Group", composed of invited surgeons with a special interest in surgical meshes, formulated key questions, and forwarded them for processing in subgroups. In January 2016, a workshop was held in Berlin where the findings were presented, discussed, and voted on for consensus. Findings were set out in writing by the subgroups followed by consensus being reached. For the review, 114 studies and background analyses were used. The cumulative data regarding biologic mesh under contaminated conditions do not support the claim that it is better than synthetic mesh. Biologic mesh use should be avoided when bridging is needed. In inguinal hernia repair biologic and biosynthetic meshes do not have a clear advantage over the synthetic meshes. For prevention of incisional or parastomal hernias, there is no evidence to support the use of biologic/biosynthetic meshes. In complex abdominal wall hernia repairs (incarcerated hernia, parastomal hernia, infected mesh, open abdomen, enterocutaneous fistula, and component separation technique), biologic and biosynthetic meshes do not provide a superior alternative to synthetic meshes. The routine use of biologic and biosynthetic meshes cannot be recommended.

  3. Toward An Unstructured Mesh Database

    NASA Astrophysics Data System (ADS)

    Rezaei Mahdiraji, Alireza; Baumann, Peter Peter

    2014-05-01

    Unstructured meshes are used in several application domains such as earth sciences (e.g., seismology), medicine, oceanography, cli- mate modeling, GIS as approximate representations of physical objects. Meshes subdivide a domain into smaller geometric elements (called cells) which are glued together by incidence relationships. The subdivision of a domain allows computational manipulation of complicated physical structures. For instance, seismologists model earthquakes using elastic wave propagation solvers on hexahedral meshes. The hexahedral con- tains several hundred millions of grid points and millions of hexahedral cells. Each vertex node in the hexahedrals stores a multitude of data fields. To run simulation on such meshes, one needs to iterate over all the cells, iterate over incident cells to a given cell, retrieve coordinates of cells, assign data values to cells, etc. Although meshes are used in many application domains, to the best of our knowledge there is no database vendor that support unstructured mesh features. Currently, the main tool for querying and manipulating unstructured meshes are mesh libraries, e.g., CGAL and GRAL. Mesh li- braries are dedicated libraries which includes mesh algorithms and can be run on mesh representations. The libraries do not scale with dataset size, do not have declarative query language, and need deep C++ knowledge for query implementations. Furthermore, due to high coupling between the implementations and input file structure, the implementations are less reusable and costly to maintain. A dedicated mesh database offers the following advantages: 1) declarative querying, 2) ease of maintenance, 3) hiding mesh storage structure from applications, and 4) transparent query optimization. To design a mesh database, the first challenge is to define a suitable generic data model for unstructured meshes. We proposed ImG-Complexes data model as a generic topological mesh data model which extends incidence graph model to multi-incidence relationships. We instrument ImG model with sets of optional and application-specific constraints which can be used to check validity of meshes for a specific class of object such as manifold, pseudo-manifold, and simplicial manifold. We conducted experiments to measure the performance of the graph database solution in processing mesh queries and compare it with GrAL mesh library and PostgreSQL database on synthetic and real mesh datasets. The experiments show that each system perform well on specific types of mesh queries, e.g., graph databases perform well on global path-intensive queries. In the future, we investigate database operations for the ImG model and design a mesh query language.

  4. The impact of hydrophobic hernia mesh coating by omega fatty acid on atraumatic fibrin sealant fixation.

    PubMed

    Gruber-Blum, S; Brand, J; Keibl, C; Redl, H; Fortelny, R H; May, C; Petter-Puchner, A H

    2015-08-01

    Fibrin sealant (FS) is a safe and efficient fixation method in open intraperitoneal hernia repair. While favourable results have been achieved with hydrophilic meshes, hydrophobic (such as Omega fatty acid coated) meshes (OFM) have not been specifically assessed so far. Atrium C-qur lite(®) mesh was tested in rats in models of open onlay and intraperitoneal hernia repair. 44 meshes (2 × 2 cm) were implanted in 30 male Sprague-Dawley rats in open (n = 2 meshes per animal) and intraperitoneal technique (IPOM; n = 1 mesh per animal). Animals were randomised to four groups: onlay and IPOM sutured vs. sealed. Follow-up was 6 weeks, sutured groups serving as controls. Evaluation criteria were mesh dislocation, adhesions and foreign body reaction. FS provided a reliable fixation in onlay technique, whereas OFM meshes dislocated in the IPOM position when sealed only. FS mesh fixation was safe with OFM meshes in open onlay repair. Intraperitoneal placement of hydrophobic meshes requires additional fixation and cannot be achieved with FS alone.

  5. Preparation and biocompatibility evaluation of polypropylene mesh coated with electrospinning membrane for pelvic defects repair.

    PubMed

    Lu, Yao; Fu, Shaoju; Zhou, Shuanglin; Chen, Ge; Zhu, Chaoting; Li, Nannan; Ma, Ying

    2018-05-01

    Composite mesh with different materials composition could compensate for the drawbacks brought by single component mesh. Coating a membrane layer on the surface of macroporous mesh is a common method for preparing composite medical mesh. Electrospinning and dipping methods were introduced to form the two kinds of membrane-coated PP meshes (electro-mesh and dip-mesh); several properties were measured based on subcutaneous implantation model in rat. The results revealed that continuous tissue ingrowth could be observed for electro-mesh only with evidences of strength increase (electro-mesh: 0 week - 13.1 ± 0.88 N, 2 week - 16.87 ± 1.39 N, 4 week - 22.04 ± 2.05 N) and thickness increase (electro-mesh: 0 week - 0.437 ± 0.023 mm, 2 week - 0.488 ± 0.025 mm, 4 week - 0.576 ± 0.028 mm). However, no tissues were observed for dip-mesh in the first 2 weeks, both on macroscopic level and microscopic level, proved by strength data (dip-mesh: 0 week - 13.36 ± 1.06 N, 2 week - 13.4 ± 1.33 N, 4 week - 18.61 ± 1.89 N) and thickness data (dip-mesh: 0 week - 0.439 ± 0.018 mm, 2 week - 0.439 ± 0.019 mm, 4 week - 0.502 ± 0.032 mm). Electro-mesh had larger surface area decrease (10.74 ± 1.22%) than that of dip-mesh (2.78 ± 0.52%). The adhesion level of electro-mesh (medium adhesion) was also higher than that of dip-mesh (mild adhesion). Even if showing differences in several properties, both meshes were similar under histological observation, with the ability to support fresh tissues ingrowth. Considering operation environment, electro-mesh seems more suitable than dip-mesh with a rapid tissue growing, medium adhesion rate for repairing pelvic floor defects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Negative pressure wound therapy using polyvinyl alcohol foam to bolster full-thickness mesh skin grafts in dogs.

    PubMed

    Or, Matan; Van Goethem, Bart; Kitshoff, Adriaan; Koenraadt, Annika; Schwarzkopf, Ilona; Bosmans, Tim; de Rooster, Hilde

    2017-04-01

    To report the use of negative pressure wound therapy (NPWT) with polyvinyl alcohol (PVA) foam to bolster full-thickness mesh skin grafts in dogs. Retrospective case series. Client-owned dogs (n = 8). Full-thickness mesh skin graft was directly covered with PVA foam. NPWT was maintained for 5 days (in 1 or 2 cycles). Grafts were evaluated on days 2, 5, 10, 15, and 30 for graft appearance and graft take, granulation tissue formation, and complications. Firm attachment of the graft to the recipient bed was accomplished in 7 dogs with granulation tissue quickly filling the mesh holes, and graft take considered excellent. One dog had bandage complications after cessation of the NPWT, causing partial graft loss. The PVA foam did not adhere to the graft or damage the surrounding skin. The application of NPWT with a PVA foam after full-thickness mesh skin grafting in dogs provides an effective method for securing skin grafts, with good graft acceptance. PVA foam can be used as a primary dressing for skin grafts, obviating the need for other interposing materials to protect the graft and the surrounding skin. © 2017 The American College of Veterinary Surgeons.

  7. An implementation of a chemical and thermal nonequilibrium flow solver on unstructured meshes and application to blunt bodies

    NASA Technical Reports Server (NTRS)

    Prabhu, Ramadas K.

    1994-01-01

    This paper presents a nonequilibrium flow solver, implementation of the algorithm on unstructured meshes, and application to hypersonic flow past blunt bodies. Air is modeled as a mixture of five chemical species, namely O2, N2, O, NO, and N, having two temperatures namely translational and vibrational. The solution algorithm is a cell centered, point implicit upwind scheme that employs Roe's flux difference splitting technique. Implementation of this algorithm on unstructured meshes is described. The computer code is applied to solve Mach 15 flow with and without a Type IV shock interference on a cylindrical body of 2.5mm radius representing a cowl lip. Adaptively generated meshes are employed, and the meshes are refined several times until the solution exhibits detailed flow features and surface pressure and heat flux distributions. Effects of a catalytic wall on surface heat flux distribution are studied. For the Mach 15 Type IV shock interference flow, present results showed a peak heat flux of 544 MW/m2 for a fully catalytic wall and 431 MW/m(exp 2) for a noncatalytic wall. Some of the results are compared with available computational data.

  8. A Novel Haptic Interactive Approach to Simulation of Surgery Cutting Based on Mesh and Meshless Models

    PubMed Central

    Liu, Peter X.; Lai, Pinhua; Xu, Shaoping; Zou, Yanni

    2018-01-01

    In the present work, the majority of implemented virtual surgery simulation systems have been based on either a mesh or meshless strategy with regard to soft tissue modelling. To take full advantage of the mesh and meshless models, a novel coupled soft tissue cutting model is proposed. Specifically, the reconstructed virtual soft tissue consists of two essential components. One is associated with surface mesh that is convenient for surface rendering and the other with internal meshless point elements that is used to calculate the force feedback during cutting. To combine two components in a seamless way, virtual points are introduced. During the simulation of cutting, the Bezier curve is used to characterize smooth and vivid incision on the surface mesh. At the same time, the deformation of internal soft tissue caused by cutting operation can be treated as displacements of the internal point elements. Furthermore, we discussed and proved the stability and convergence of the proposed approach theoretically. The real biomechanical tests verified the validity of the introduced model. And the simulation experiments show that the proposed approach offers high computational efficiency and good visual effect, enabling cutting of soft tissue with high stability. PMID:29850006

  9. Method of and apparatus for modeling interactions

    DOEpatents

    Budge, Kent G.

    2004-01-13

    A method and apparatus for modeling interactions can accurately model tribological and other properties and accommodate topological disruptions. Two portions of a problem space are represented, a first with a Lagrangian mesh and a second with an ALE mesh. The ALE and Lagrangian meshes are constructed so that each node on the surface of the Lagrangian mesh is in a known correspondence with adjacent nodes in the ALE mesh. The interaction can be predicted for a time interval. Material flow within the ALE mesh can accurately model complex interactions such as bifurcation. After prediction, nodes in the ALE mesh in correspondence with nodes on the surface of the Lagrangian mesh can be mapped so that they are once again adjacent to their corresponding Lagrangian mesh nodes. The ALE mesh can then be smoothed to reduce mesh distortion that might reduce the accuracy or efficiency of subsequent prediction steps. The process, from prediction through mapping and smoothing, can be repeated until a terminal condition is reached.

  10. Collisionless stellar hydrodynamics as an efficient alternative to N-body methods

    NASA Astrophysics Data System (ADS)

    Mitchell, Nigel L.; Vorobyov, Eduard I.; Hensler, Gerhard

    2013-01-01

    The dominant constituents of the Universe's matter are believed to be collisionless in nature and thus their modelling in any self-consistent simulation is extremely important. For simulations that deal only with dark matter or stellar systems, the conventional N-body technique is fast, memory efficient and relatively simple to implement. However when extending simulations to include the effects of gas physics, mesh codes are at a distinct disadvantage compared to Smooth Particle Hydrodynamics (SPH) codes. Whereas implementing the N-body approach into SPH codes is fairly trivial, the particle-mesh technique used in mesh codes to couple collisionless stars and dark matter to the gas on the mesh has a series of significant scientific and technical limitations. These include spurious entropy generation resulting from discreteness effects, poor load balancing and increased communication overhead which spoil the excellent scaling in massively parallel grid codes. In this paper we propose the use of the collisionless Boltzmann moment equations as a means to model the collisionless material as a fluid on the mesh, implementing it into the massively parallel FLASH Adaptive Mesh Refinement (AMR) code. This approach which we term `collisionless stellar hydrodynamics' enables us to do away with the particle-mesh approach and since the parallelization scheme is identical to that used for the hydrodynamics, it preserves the excellent scaling of the FLASH code already demonstrated on peta-flop machines. We find that the classic hydrodynamic equations and the Boltzmann moment equations can be reconciled under specific conditions, allowing us to generate analytic solutions for collisionless systems using conventional test problems. We confirm the validity of our approach using a suite of demanding test problems, including the use of a modified Sod shock test. By deriving the relevant eigenvalues and eigenvectors of the Boltzmann moment equations, we are able to use high order accurate characteristic tracing methods with Riemann solvers to generate numerical solutions which show excellent agreement with our analytic solutions. We conclude by demonstrating the ability of our code to model complex phenomena by simulating the evolution of a two-armed spiral galaxy whose properties agree with those predicted by the swing amplification theory.

  11. Biocompatibility and tissue integration of a novel shape memory surgical mesh for ventral hernia: In vivo animal studies

    PubMed Central

    Zimkowski, Michael M.; Rentschler, Mark E.; Schoen, Jonathan A.; Mandava, Nageswara; Shandas, Robin

    2014-01-01

    Approximately 400,000 ventral hernia repair surgeries are performed each year in the United States. Many of these procedures are performed using laparoscopic minimally invasive techniques and employ the use of surgical mesh. The use of surgical mesh has been shown to reduce recurrence rates compared to standard suture repairs. The placement of surgical mesh in a ventral hernia repair procedure can be challenging, and may even complicate the procedure. Others have attempted to provide commercial solutions to the problems of mesh placement, but these have not been well accepted by the clinical community. In this article, two versions of shape memory polymer (SMP)-modified surgical mesh, and unmodified surgical mesh, were compared by performing laparoscopic manipulation in an acute porcine model. Also, SMP-integrated polyester surgical meshes were implanted in four rats for 30–33 days to evaluate chronic biocompatibility and capacity for tissue integration. Porcine results show that the modified mesh provides a controlled, temperature-activated, automated deployment when compared to an unmodified mesh. In rats, results indicate that implanted SMP-modified meshes exhibit exceptional biocompatibility and excellent integration with surrounding tissue with no noticeable differences from the unmodified counterpart. This article provides further evidence that an SMP-modified surgical mesh promises reduction in surgical placement time and that such a mesh is not substantially different from unmodified meshes in chronic biocompatibility. PMID:24327401

  12. Highly Symmetric and Congruently Tiled Meshes for Shells and Domes

    PubMed Central

    Rasheed, Muhibur; Bajaj, Chandrajit

    2016-01-01

    We describe the generation of all possible shell and dome shapes that can be uniquely meshed (tiled) using a single type of mesh face (tile), and following a single meshing (tiling) rule that governs the mesh (tile) arrangement with maximal vertex, edge and face symmetries. Such tiling arrangements or congruently tiled meshed shapes, are frequently found in chemical forms (fullerenes or Bucky balls, crystals, quasi-crystals, virus nano shells or capsids), and synthetic shapes (cages, sports domes, modern architectural facades). Congruently tiled meshes are both aesthetic and complete, as they support maximal mesh symmetries with minimal complexity and possess simple generation rules. Here, we generate congruent tilings and meshed shape layouts that satisfy these optimality conditions. Further, the congruent meshes are uniquely mappable to an almost regular 3D polyhedron (or its dual polyhedron) and which exhibits face-transitive (and edge-transitive) congruency with at most two types of vertices (each type transitive to the other). The family of all such congruently meshed polyhedra create a new class of meshed shapes, beyond the well-studied regular, semi-regular and quasi-regular classes, and their duals (platonic, Catalan and Johnson). While our new mesh class is infinite, we prove that there exists a unique mesh parametrization, where each member of the class can be represented by two integer lattice variables, and moreover efficiently constructable. PMID:27563368

  13. Sirolimus-coated, poly(L-lactic acid)-modified polypropylene mesh with minimal intra-peritoneal adhesion formation in a rat model.

    PubMed

    Lu, S; Hu, W; Zhang, Z; Ji, Z; Zhang, T

    2018-05-18

    This study evaluated the manufacturing method and anti-adhesion properties of a new composite mesh in the rat model, which was made from sirolimus (SRL) grafts on a poly(L-lactic acid) (PLLA)-modified polypropylene (PP) hernia mesh. PLLA was first grafted onto argon-plasma-treated native PP mesh through catalysis of stannous chloride. SRL was grafted onto the surface of PP-PLLA meshes using catalysis of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and 4-dimethylaminopyridine (DMAP) in a CH 2 Cl 2 solvent. Sprague-Dawley female rats received either SRL-coated meshes, PP-PLLA meshes, or native PP meshes to repair abdominal wall defects. At different intervals, rats were euthanized by a lethal dose of chloral hydrate and adhesion area and tenacity were evaluated. Sections of the mesh with adjacent tissues were assessed histologically. Attenuated total reflection Fourier transformed infrared (ATR-FTIR) spectroscopy indicated the existence of a C=O group absorption peak (1724.1 cm -1 ), and scanning electron microscope morphological analysis indicated that the surface of the PP mesh was covered with SRL. Compared to the native PP meshes and PP-PLLA meshes, SRL-coated meshes demonstrated the greatest ability to decrease the formation of adhesions (P < 0.05) and inflammation. The SRL-coated composite mesh showed minimal formation of intra-abdominal adhesions in a rat model of abdominal wall defect repair.

  14. A Comparative Study of Four Impedance Eduction Methodologies Using Several Test Liners

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.

    2013-01-01

    A comparative study of four commonly used impedance eduction methods is presented for a range of liner structures and test conditions. Two of the methods are restricted to uniform flow while the other two accommodate both uniform and boundary layer flows. Measurements on five liner structures (a rigid-wall insert, a ceramic tubular liner, a wire mesh liner, a low porosity conventional liner, and a high porosity conventional liner) are obtained using the NASA Langley Grazing Flow Impedance Tube. The educed impedance of each liner is presented for forty-two test conditions (three Mach numbers and fourteen frequencies). In addition, the effects of moving the acoustic source from upstream to downstream and the refractive effects of the mean boundary layer on the wire mesh liner are investigated. The primary conclusions of the study are that: (1) more accurate results are obtained for the upstream source, (2) the uniform flow methods produce nearly identical impedance spectra at and below Mach 0.3 but significant scatter in the educed impedance occurs at the higher Mach number, (3) there is better agreement in educed impedance among the methods for the conventional liners than for the rigid-wall insert, ceramic, or wire mesh liner, and (4) the refractive effects of the mean boundary layer on the educed impedance of the wire mesh liner are generally small except at Mach 0.5.

  15. Sampling techniques for burbot in a western non-wadeable river

    USGS Publications Warehouse

    Klein, Z. B.; Quist, Michael C.; Rhea, D.T.; Senecal, A. C.

    2015-01-01

    Burbot, Lota lota (L.), populations are declining throughout much of their native distribution. Although numerous aspects of burbot ecology are well understood, less is known about effective sampling techniques for burbot in lotic systems. Occupancy models were used to estimate the probability of detection () for three gears (6.4- and 19-mm bar mesh hoop nets, night electric fishing), within the context of various habitat characteristics. During the summer, night electric fishing had the highest estimated detection probability for both juvenile (, 95% C.I.; 0.35, 0.26–0.46) and adult (0.30, 0.20–0.41) burbot. However, small-mesh hoop nets (6.4-mm bar mesh) had similar detection probabilities to night electric fishing for both juvenile (0.26, 0.17–0.36) and adult (0.27, 0.18–0.39) burbot during the summer. In autumn, a similar overlap between detection probabilities was observed for juvenile and adult burbot. Small-mesh hoop nets had the highest estimated probability of detection for both juvenile and adult burbot (0.46, 0.33–0.59), whereas night electric fishing had a detection probability of 0.39 (0.28–0.52) for juvenile and adult burbot. By using detection probabilities to compare gears, the most effective sampling technique can be identified, leading to increased species detections and more effective management of burbot.

  16. Carotenoids as Potential Antioxidant Agents in Stroke Prevention: A Systematic Review

    PubMed Central

    Bahonar, Ahmad; Saadatnia, Mohammad; Khorvash, Fariborz; Maracy, Mohammadreza; Khosravi, Alireza

    2017-01-01

    Stroke and other cerebrovascular diseases are among the most common causes of death worldwide. Prevention of modifiable risk factors is a cost-effective approach to decrease the risk of stroke. Oxidative stress is regarded as the major flexible operative agent in ischemic brain damage. This review presents recent scientific advances in understanding the role of carotenoids as antioxidants in lowering stroke risk based on observational studies. We searched Medline using the following terms: (Carotenoids [MeSH] OR Carotenes [tiab] OR Carotene [tiab] OR “lycopene [Supplementary Concept]” [MeSH] OR lycopene [tiab] OR beta-Carotene [tiab]) AND (stroke [MeSH] OR stroke [tiab] OR “Cerebrovascular Accident” [tiab] OR “Cerebrovascular Apoplexy” [tiab] OR “Brain Vascular Accident” [tiab] OR “Cerebrovascular Stroke” [tiab]) AND (“oxidative stress” [MeSH] OR “oxidative stress”[tiab]). This search considered papers that had been published between 2000 and 2017. Recent studies indicated that high dietary intake of six main carotenoids (i.e., lycopene, <- and®-carotene, lutein, zeaxanthin, and astaxanthin) was associated with reduced risk of stroke and other cardiovascular outcomes. However, the main mechanism of the action of these nutrients was not identified, and multiple mechanisms except antioxidant activity were suggested to be involved in the observed beneficial effects. The dietary intake of six major carotenoids should be promoted as this may have a substantial positive effect on stroke prevention and stroke mortality reduction. PMID:28983399

  17. [Pilot study of domain-specific terminology adaptation for morphological analysis: research on unknown terms in national examination documents of radiological technologists].

    PubMed

    Tsuji, Shintarou; Nishimoto, Naoki; Ogasawara, Katsuhiko

    2008-07-20

    Although large medical texts are stored in electronic format, they are seldom reused because of the difficulty of processing narrative texts by computer. Morphological analysis is a key technology for extracting medical terms correctly and automatically. This process parses a sentence into its smallest unit, the morpheme. Phrases consisting of two or more technical terms, however, cause morphological analysis software to fail in parsing the sentence and output unprocessed terms as "unknown words." The purpose of this study was to reduce the number of unknown words in medical narrative text processing. The results of parsing the text with additional dictionaries were compared with the analysis of the number of unknown words in the national examination for radiologists. The ratio of unknown words was reduced 1.0% to 0.36% by adding terminologies of radiological technology, MeSH, and ICD-10 labels. The terminology of radiological technology was the most effective resource, being reduced by 0.62%. This result clearly showed the necessity of additional dictionary selection and trends in unknown words. The potential for this investigation is to make available a large body of clinical information that would otherwise be inaccessible for applications other than manual health care review by personnel.

  18. Fine-grained indexing of the biomedical literature: MeSH subheading attachment for a MEDLINE indexing tool.

    PubMed

    Névéol, Aurélie; Shooshan, Sonya E; Mork, James G; Aronson, Alan R

    2007-10-11

    This paper reports on the latest results of an Indexing Initiative effort addressing the automatic attachment of subheadings to MeSH main headings recommended by the NLM's Medical Text Indexer. Several linguistic and statistical approaches are used to retrieve and attach the subheadings. Continuing collaboration with NLM indexers also provided insight on how automatic methods can better enhance indexing practice. The methods were evaluated on corpus of 50,000 MEDLINE citations. For main heading/subheading pair recommendations, the best precision is obtained with a post-processing rule method (58%) while the best recall is obtained by pooling all methods (64%). For stand-alone subheading recommendations, the best performance is obtained with the PubMed Related Citations algorithm. Significant progress has been made in terms of subheading coverage. After further evaluation, some of this work may be integrated in the MEDLINE indexing workflow.

  19. Reflective random indexing for semi-automatic indexing of the biomedical literature.

    PubMed

    Vasuki, Vidya; Cohen, Trevor

    2010-10-01

    The rapid growth of biomedical literature is evident in the increasing size of the MEDLINE research database. Medical Subject Headings (MeSH), a controlled set of keywords, are used to index all the citations contained in the database to facilitate search and retrieval. This volume of citations calls for efficient tools to assist indexers at the US National Library of Medicine (NLM). Currently, the Medical Text Indexer (MTI) system provides assistance by recommending MeSH terms based on the title and abstract of an article using a combination of distributional and vocabulary-based methods. In this paper, we evaluate a novel approach toward indexer assistance by using nearest neighbor classification in combination with Reflective Random Indexing (RRI), a scalable alternative to the established methods of distributional semantics. On a test set provided by the NLM, our approach significantly outperforms the MTI system, suggesting that the RRI approach would make a useful addition to the current methodologies.

  20. Fine-Grained Indexing of the Biomedical Literature: MeSH Subheading Attachment for a MEDLINE Indexing Tool

    PubMed Central

    Névéol, Aurélie; Shooshan, Sonya E.; Mork, James G.; Aronson, Alan R.

    2007-01-01

    Objective This paper reports on the latest results of an Indexing Initiative effort addressing the automatic attachment of subheadings to MeSH main headings recommended by the NLM’s Medical Text Indexer. Material and Methods Several linguistic and statistical approaches are used to retrieve and attach the subheadings. Continuing collaboration with NLM indexers also provided insight on how automatic methods can better enhance indexing practice. Results The methods were evaluated on corpus of 50,000 MEDLINE citations. For main heading/subheading pair recommendations, the best precision is obtained with a post-processing rule method (58%) while the best recall is obtained by pooling all methods (64%). For stand-alone subheading recommendations, the best performance is obtained with the PubMed Related Citations algorithm. Conclusion Significant progress has been made in terms of subheading coverage. After further evaluation, some of this work may be integrated in the MEDLINE indexing workflow. PMID:18693897

  1. Bone Marrow–Derived Mesenchymal Stem Cells Enhance Bacterial Clearance and Preserve Bioprosthetic Integrity in a Model of Mesh Infection

    PubMed Central

    Criman, Erik T.; Kurata, Wendy E.; Matsumoto, Karen W.; Aubin, Harry T.; Campbell, Carmen E.

    2016-01-01

    Background: The reported incidence of mesh infection in contaminated operative fields is as high as 30% regardless of the material used. Recently, mesenchymal stem cells (MSCs) have been shown to possess favorable immunomodulatory properties and improve tissue incorporation when seeded onto bioprosthetics. The aim of this study was to evaluate whether seeding noncrosslinked bovine pericardium (Veritas Collagen Matrix) with allogeneic bone marrow–derived MSCs improves infection resistance in vivo after inoculation with Escherichia coli (E. coli). Methods: Rat bone marrow–derived MSCs at passage 3 were seeded onto bovine pericardium and cultured for 7 days before implantation. Additional rats (n = 24) were implanted subcutaneously with MSC-seeded or unseeded mesh and inoculated with 7 × 105 colony-forming units of E. coli or saline before wound closure (group 1, unseeded mesh/saline; group 2, unseeded mesh/E. coli; group 3, MSC-seeded mesh/E. coli; 8 rats per group). Meshes were explanted at 4 weeks and underwent microbiologic and histologic analyses. Results: MSC-seeded meshes inoculated with E. coli demonstrated superior bacterial clearance and preservation of mesh integrity compared with E. coli–inoculated unseeded meshes (87.5% versus 0% clearance; p = 0.001). Complete mesh degradation concurrent with abscess formation was observed in 100% of rats in the unseeded/E. coli group, which is in contrast to 12.5% of rats in the MSC-seeded/E. coli group. Histologic evaluation determined that remodeling characteristics of E. coli–inoculated MSC-seeded meshes were similar to those of uninfected meshes 4 weeks after implantation. Conclusions: Augmenting a bioprosthetic material with stem cells seems to markedly enhance resistance to bacterial infection in vivo and preserve mesh integrity. PMID:27482490

  2. SU-E-T-176: Clinical Experience of Brass Mesh Bolus: Patient-Specific Parameters as Predictors of Measured Dosimetric Effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yock, A; Manger, R; Einck, J

    2015-06-15

    Purpose: Increasingly, brass mesh bolus is used to insure dosimetric coverage of the skin for patients treated post-mastectomy for breast cancer. Contribution of photoelectrons from interactions between the bolus and the primary beam increases dose superficially without affecting dose at greater depths. We present our experience using brass mesh bolus – including patients for whom the bolus was dosimetrically inadequate – along with analysis of relevant patient-specific parameters. Methods: Optically-stimulated luminescent dosimeters (OSLDs) were used to determine the effect of the bolus for 15 patients. They were positioned beneath the bolus within the tangent fields at three positions: 1.5–3cm insidemore » the medial and lateral field edges, and midway between the two. All OSLDs were midfield in the cranial-caudal direction. The measurements were compared with patient-specific parameters including separation, chest wall/breast tissue thickness, beam angle incidence, and planned surface dose. Results: The average OSLD measurement at the medial field edge, midfield, and lateral field edge position was 86.8%, 101.8%, and 92.8% of the prescription dose, respectively. A measurement for one patient was low enough (77.0%) to warrant a switch to an alternative type of bolus. Anatomic parameters were analyzed to investigate the low dose in this case, not observed in the planning system. The patient was observed to have a thin chest wall and very oblique beam angles. A second patient was also switched to an alternative type of bolus due to her being high risk and treated with an electron patch that extended onto the breast. Conclusion: Brass mesh bolus increases dose superficially while leaving dose at greater depths unaffected. However, our results suggest that this effect may be insufficient in patients with a thin chest wall or very oblique beam angles. More data and analysis is necessary to proactively identify patients for whom brass mesh bolus is effective.« less

  3. An adaptive mesh-moving and refinement procedure for one-dimensional conservation laws

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Flaherty, Joseph E.; Arney, David C.

    1993-01-01

    We examine the performance of an adaptive mesh-moving and /or local mesh refinement procedure for the finite difference solution of one-dimensional hyperbolic systems of conservation laws. Adaptive motion of a base mesh is designed to isolate spatially distinct phenomena, and recursive local refinement of the time step and cells of the stationary or moving base mesh is performed in regions where a refinement indicator exceeds a prescribed tolerance. These adaptive procedures are incorporated into a computer code that includes a MacCormack finite difference scheme wih Davis' artificial viscosity model and a discretization error estimate based on Richardson's extrapolation. Experiments are conducted on three problems in order to qualify the advantages of adaptive techniques relative to uniform mesh computations and the relative benefits of mesh moving and refinement. Key results indicate that local mesh refinement, with and without mesh moving, can provide reliable solutions at much lower computational cost than possible on uniform meshes; that mesh motion can be used to improve the results of uniform mesh solutions for a modest computational effort; that the cost of managing the tree data structure associated with refinement is small; and that a combination of mesh motion and refinement reliably produces solutions for the least cost per unit accuracy.

  4. Introducing a distributed unstructured mesh into gyrokinetic particle-in-cell code, XGC

    NASA Astrophysics Data System (ADS)

    Yoon, Eisung; Shephard, Mark; Seol, E. Seegyoung; Kalyanaraman, Kaushik

    2017-10-01

    XGC has shown good scalability for large leadership supercomputers. The current production version uses a copy of the entire unstructured finite element mesh on every MPI rank. Although an obvious scalability issue if the mesh sizes are to be dramatically increased, the current approach is also not optimal with respect to data locality of particles and mesh information. To address these issues we have initiated the development of a distributed mesh PIC method. This approach directly addresses the base scalability issue with respect to mesh size and, through the use of a mesh entity centric view of the particle mesh relationship, provides opportunities to address data locality needs of many core and GPU supported heterogeneous systems. The parallel mesh PIC capabilities are being built on the Parallel Unstructured Mesh Infrastructure (PUMI). The presentation will first overview the form of mesh distribution used and indicate the structures and functions used to support the mesh, the particles and their interaction. Attention will then focus on the node-level optimizations being carried out to ensure performant operation of all PIC operations on the distributed mesh. Partnership for Edge Physics Simulation (EPSI) Grant No. DE-SC0008449 and Center for Extended Magnetohydrodynamic Modeling (CEMM) Grant No. DE-SC0006618.

  5. Parallel Adaptive Mesh Refinement for High-Order Finite-Volume Schemes in Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Schwing, Alan Michael

    For computational fluid dynamics, the governing equations are solved on a discretized domain of nodes, faces, and cells. The quality of the grid or mesh can be a driving source for error in the results. While refinement studies can help guide the creation of a mesh, grid quality is largely determined by user expertise and understanding of the flow physics. Adaptive mesh refinement is a technique for enriching the mesh during a simulation based on metrics for error, impact on important parameters, or location of important flow features. This can offload from the user some of the difficult and ambiguous decisions necessary when discretizing the domain. This work explores the implementation of adaptive mesh refinement in an implicit, unstructured, finite-volume solver. Consideration is made for applying modern computational techniques in the presence of hanging nodes and refined cells. The approach is developed to be independent of the flow solver in order to provide a path for augmenting existing codes. It is designed to be applicable for unsteady simulations and refinement and coarsening of the grid does not impact the conservatism of the underlying numerics. The effect on high-order numerical fluxes of fourth- and sixth-order are explored. Provided the criteria for refinement is appropriately selected, solutions obtained using adapted meshes have no additional error when compared to results obtained on traditional, unadapted meshes. In order to leverage large-scale computational resources common today, the methods are parallelized using MPI. Parallel performance is considered for several test problems in order to assess scalability of both adapted and unadapted grids. Dynamic repartitioning of the mesh during refinement is crucial for load balancing an evolving grid. Development of the methods outlined here depend on a dual-memory approach that is described in detail. Validation of the solver developed here against a number of motivating problems shows favorable comparisons across a range of regimes. Unsteady and steady applications are considered in both subsonic and supersonic flows. Inviscid and viscous simulations achieve similar results at a much reduced cost when employing dynamic mesh adaptation. Several techniques for guiding adaptation are compared. Detailed analysis of statistics from the instrumented solver enable understanding of the costs associated with adaptation. Adaptive mesh refinement shows promise for the test cases presented here. It can be considerably faster than using conventional grids and provides accurate results. The procedures for adapting the grid are light-weight enough to not require significant computational time and yield significant reductions in grid size.

  6. Method of modifying a volume mesh using sheet extraction

    DOEpatents

    Borden, Michael J [Albuquerque, NM; Shepherd, Jason F [Albuquerque, NM

    2007-02-20

    A method and machine-readable medium provide a technique to modify a hexahedral finite element volume mesh using dual generation and sheet extraction. After generating a dual of a volume stack (mesh), a predetermined algorithm may be followed to modify the volume mesh of hexahedral elements. The predetermined algorithm may include the steps of determining a sheet of hexahedral mesh elements, generating nodes for merging, and merging the nodes to delete the sheet of hexahedral mesh elements and modify the volume mesh.

  7. Naturally-Occurring DMSP Analogs as Potential Precursors of Dimethyl Sulfide (DMS) and Methanethiol (MeSH) in Coastal Seawater

    NASA Astrophysics Data System (ADS)

    Cordero, D.; Kiene, R. P.

    2016-02-01

    Dimethylsulfoniopropionate (DMSP) is an osmolyte produced by various macroalgae and phytoplankton in the marine environment. DMSP is known to be the main precursor for dimethyl sulfide (DMS), the major natural sulfur gas emitted from the oceans to the atmosphere. DMS contributes to formation and growth of sulfur-containing aerosols in our stratosphere. These aerosols influence Earth's solar radiation balance and potentially affect the formation of clouds, which could function as a counter-effect to global warming. Bacterioplankton are capable of converting DMSP into DMS via the enzyme DMSP lyase. But not all DMSP in the ocean is converted into DMS. A significant fraction of the DMSP available in the ocean is converted to methanethiol (MeSH) via the bacterial demethylation/demethiolation pathway, with a portion of the MeSH being assimilated as both a carbon and sulfur source. Here we test whether several other naturally-occurring dimethyl sulfonium compounds could be precursors of DMS and MeSH. To test this, we carried out experiments with estuarine water samples from Mobile Bay in the Northern Gulf of Mexico. After collection, unfiltered seawater and seawater filtrate samples, the later containing bacteria only, were treated with 50 nM additions of either 2-dimethylsulfononioacetate (DMSA) or S-Methylmethionine (SMM). After addition of the dimethyl sulfonium compounds, samples were analyzed for sulfur gases with Gas Chromatography-Flame Photometric Detection, using cryogenic-trapping techniques. Addition of DMSA resulted in an immediate increase in MeSH production in both seawater and seawater filtrate containing bacteria only, producing even more MeSH than DMSP. This suggests that DMSA is potentially a significant precursor for MeSH. DMS was not produced in significant amounts from DMSA. Addition of SMM resulted in low rates of both DMS and MeSH accumulation in both seawater samples, indicating that SMM may be a minor precursor for both gases compared to DMSP.

  8. Reinforcing effect of glass-fiber mesh on complete dentures in a test model with a simulated oral mucosa.

    PubMed

    Yu, Sang-Hui; Oh, Seunghan; Cho, Hye-Won; Bae, Ji-Myung

    2017-11-01

    Studies that evaluated the strength of complete dentures reinforced with glass-fiber mesh or metal mesh on a cast with a simulated oral mucosa are lacking. The purpose of this in vitro study was to compare the mechanical properties of maxillary complete dentures reinforced with glass-fiber mesh with those of metal mesh in a new test model, using a simulated oral mucosa. Complete dentures reinforced with 2 types of glass-fiber mesh, SES mesh (SES) and glass cloth (GC) and metal mesh (metal) were fabricated. Complete dentures without any reinforcement were prepared as a control (n=10). The complete dentures were located on a cast with a simulated oral mucosa, and a load was applied on the posterior artificial teeth bilaterally. The fracture load, elastic modulus, and toughness of a complete denture were measured using a universal testing machine at a crosshead speed of 5 mm/min. The fracture load and elastic modulus were analyzed using 1-way analysis of variance, and the toughness was analyzed with the Kruskal-Wallis test (α=.05). The Tukey multiple range test was used as a post hoc test. The fracture load and toughness of the SES group was significantly higher than that of the metal and control groups (P<.05) but not significantly different from that of the GC group. The elastic modulus of the metal group was significantly higher than that of the control group (P<.05), and no significant differences were observed in the SES and GC groups. Compared with the control group, the fracture load and toughness of the SES and GC groups were higher, while those of the metal group were not significantly different. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. Prevention of parastomal herniation with biologic/composite prosthetic mesh: a systematic review and meta-analysis of randomized controlled trials.

    PubMed

    Wijeyekoon, Sanjaya Prabhath; Gurusamy, Kurinchi; El-Gendy, Khalid; Chan, Christopher L

    2010-11-01

    Parastomal herniation is a frequent complication of stoma formation and can be difficult to repair satisfactorily, making it a recognized cause of significant morbidity. A systematic review with meta-analysis of randomized clinical trials was performed to determine the benefits and risks of mesh reinforcement versus conventional stoma formation in preventing parastomal herniation. Trials were identified from The Cochrane Library trials register, Medline, Embase, Science Citation Index Expanded, and reference lists. The primary outcome was the incidence of parastomal herniation. The secondary outcomes were the incidence of parastomal herniation requiring surgical repair, postoperative morbidity, and mortality. Meta-analysis was performed using a random-effects model. The risk ratio (RR) was estimated with 95% confidence intervals (CI) based on an intention-to-treat analysis. Three trials with 129 patients were included. Composite or biologic mesh was used in either the preperitoneal or sublay position. Mesh reinforcement was associated with a reduction in parastomal herniation versus conventional stoma formation (RR 0.23, 95%CI 0.06 to 0.81; p = 0.02), and a reduction in the percentage of parastomal hernias requiring surgical treatment (RR 0.13, 95%CI 0.02 to 1.02; p = 0.05). There was no difference between groups in stoma-related morbidity (2 of 58, 3.4% in the mesh group versus 2 of 57, 3.5% in the conventional group; p = 0.97), nor was there any mortality related to the placement of mesh. Composite or biologic mesh reinforcement of stomas in the preperitoneal/sublay position is associated with a reduced incidence of parastomal herniation with no excess morbidity. Mesh reinforcement also demonstrates a trend toward a decreased incidence of parastomal herniation requiring surgical repair. Copyright © 2010 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  10. Comparative study of safety and efficacy of synthetic surgical glue for mesh fixation in ventral rectopexy.

    PubMed

    Silveira, Raquel Kelner; Domingie, Sophie; Kirzin, Sylvain; de Melo Filho, Djalma Agripino; Portier, Guillaume

    2017-10-01

    Ventral mesh rectopexy (VMR) is a surgical option to treat rectal prolapse with pelvic floor dysfunction (PFD). Using synthetic surgical glue to fix the mesh to the anterior rectal wall after ventral dissection could be advantageous in comparison with sutured or stapled fixation. This study aimed to evaluate the safety and efficacy of synthetic surgical glue for mesh fixation compared with suture mesh fixation in VMR. This observational cohort study is a retrospective analysis conducted in a University Hospital Pelvic Surgery Center. All consecutive female patients (n = 176) who underwent laparoscopic or laparotomic VMR between January 2009 and December 2014 were included. Two groups were defined based on mesh fixation technique of the rectal wall: VMR with synthetic glue (n = 66) and VMR with suture (n = 110). The recurrence-free survival after VMR was determined by Kaplan-Meier method and multivariate analysis by Cox regression. Short-term postoperative complications, postoperative symptom improvement, the need for complementary treatment postoperatively, and procedure length were evaluated. A total of 176 females patients (mean age, 58.6 ± 13.7 years) underwent VMR with synthetic mesh. Mean recurrence-free survivals after VMR were 17.16 (CI 95% 16.54-17.80) and 17.33 (CI 95% 16.89-17.77) months in the glue group and the suture group, respectively (p > 0.05). Cox regression identified an independent effect on the recurrence risk of the external rectal prolapse, alone, or in combination with other anatomical abnormalities (HR = 0.37; CI 95% 0.14-0.93; p = 0.03). There was no significant difference of short-term postoperative morbidity, procedure length, postoperative symptom improvement, or need for complementary treatment postoperatively between suture versus glue groups (all p > 0.05). Use of glue to fix the mesh in VMR was safe and had no impact on outcomes. External prolapse was the unique significant predictive factor for recurrence.

  11. Personal computer study of finite-difference methods for the transonic small disturbance equation

    NASA Technical Reports Server (NTRS)

    Bland, Samuel R.

    1989-01-01

    Calculation of unsteady flow phenomena requires careful attention to the numerical treatment of the governing partial differential equations. The personal computer provides a convenient and useful tool for the development of meshes, algorithms, and boundary conditions needed to provide time accurate solution of these equations. The one-dimensional equation considered provides a suitable model for the study of wave propagation in the equations of transonic small disturbance potential flow. Numerical results for effects of mesh size, extent, and stretching, time step size, and choice of far-field boundary conditions are presented. Analysis of the discretized model problem supports these numerical results. Guidelines for suitable mesh and time step choices are given.

  12. Numerical modelling of new rockfall interception nets

    NASA Astrophysics Data System (ADS)

    von Boetticher, Albrecht; Volkwein, Axel; Wendeler, Corinna

    2010-05-01

    The design and certification of effective rockfall protection barriers is mainly achieved through 1:1 prototype testing. In order to reduce development costs of a prototype it is recommended that pre-studies using numerical simulations are performed. A large component to modelling rockfall protection systems is the numerical simulation of the nets. To date there exist several approaches to model the different mesh types such as ring nets or diagonal meshes (Nicot 1999, Cazzani et al. 2002, Volkwein 2004). However, the consideration of chain link meshes has not yet been realised. Chain link meshes are normally found as standard fence structures. However, they also exist in setups using high-strength steel and wire bundles. These variants show an enormous capacity to retain loads e.g. rockfalls, and at the same time are very efficient due to their low demand of steel material. The increasing application of chain link mesh in barrier systems requires an accurate model is available to complete prototype studies. A new approach now aims to perform a Finite Element simulation of such chain link meshes. The main challenge herein is to achieve the net deformation behaviour that is observed in field tests also in the simulation. A simulation using simple truss elements would not work since it neglects the out-of-plane-height of the mesh construction providing important reserves for local and global high deformations. Thus addressing this, a specially developed Discrete Element is able to reconstruct the mechanical behaviour of the single chain wire (bundles). As input parameters it utilises typical properties such as longitudinal and transversal mesh widths, and break loads resulting from in-plane-tension tests and steel strength. The single chain elements then can be combined to a complete mesh (e.g. 130 x 65 mm, 3 - 4 mm wire with a strength of 1770 N-mm2). Combining these elements with a supporting structure consisting of posts, ropes and energy absorbers, enables the simulation of protection barriers used for natural hazards such as rockfalls or even landslides. The contribution explains the mechanical behaviour of the chain mesh, the calibration procedures and their application in flexible rockfall protection systems. The investigated meshes are built using three or four millimeter wire with a minimum yield strength of 1770 N-mm2: The maximal load in longitudinal mesh direction ranges about 130 - 380 kN-m and transversal 50 - 170 kN-m. The mesh size varies from 83 × 143 mm to 292 × 500 mm. References Cazzani, A., Mongiovi, L. and Frenez, T. (2002) Dynamic Finite Element Analysis of Interceptive Devices for Falling Rocks, International Journal of Rock Mechanics & Mining Sciences. 39,303-321. Volkwein, A. (2004) Numerische Simulation von flexiblen Steinschlagschutzsystemen. Diss. ETH Nr. 15641. Nicot, F. (1999) Etude du comportement méchanique des ouvrages souples de protection contre les éboulements rocheux. Diss. Ecole Centrale de Lyon.

  13. Extracellular matrix regenerative graft attenuates the negative impact of polypropylene prolapse mesh on vagina in rhesus macaque.

    PubMed

    Liang, Rui; Knight, Katrina; Barone, William; Powers, Robert W; Nolfi, Alexis; Palcsey, Stacy; Abramowitch, Steven; Moalli, Pamela A

    2017-02-01

    The use of wide pore lightweight polypropylene mesh to improve anatomical outcomes in the surgical repair of prolapse has been hampered by mesh complications. One of the prototype prolapse meshes has been found to negatively impact the vagina by inducing a decrease in smooth muscle volume and contractility and the degradation of key structural proteins (collagen and elastin), resulting in vaginal degeneration. Recently, bioscaffolds derived from extracellular matrix have been used to mediate tissue regeneration and have been widely adopted in tissue engineering applications. Here we aimed to: (1) define whether augmentation of a polypropylene prolapse mesh with an extracellular matrix regenerative graft in a primate sacrocolpopexy model could mitigate the degenerative changes; and (2) determine the impact of the extracellular matrix graft on vagina when implanted alone. A polypropylene-extracellular matrix composite graft (n = 9) and a 6-layered extracellular matrix graft alone (n = 8) were implanted in 17 middle-aged parous rhesus macaques via sacrocolpopexy and compared to historical data obtained from sham (n = 12) and the polypropylene mesh (n = 12) implanted by the same method. Vaginal function was measured in passive (ball-burst test) and active (smooth muscle contractility) mechanical tests. Vaginal histomorphologic/biochemical assessments included hematoxylin-eosin and trichrome staining, immunofluorescent labeling of α-smooth muscle actin and apoptotic cells, measurement of total collagen, collagen subtypes (ratio III/I), mature elastin, and sulfated glycosaminoglycans. Statistical analyses included 1-way analysis of variance, Kruskal-Wallis, and appropriate post-hoc tests. The host inflammatory response in the composite mesh-implanted vagina was reduced compared to that following implantation with the polypropylene mesh alone. The increase in apoptotic cells observed with the polypropylene mesh was blunted in the composite (overall P < .001). Passive mechanical testing showed inferior parameters for both polypropylene mesh alone and the composite compared to sham whereas the contractility and thickness of smooth muscle layer in the composite were improved with a value similar to sham, which was distinct from the decreases observed with polypropylene mesh alone. Biochemically, the composite had similar mature elastin content, sulfated glycosaminoglycan content, and collagen subtype III/I ratio but lower total collagen content when compared to sham (P = .011). Multilayered extracellular matrix graft alone showed overall comparable values to sham in aspects of the biomechanical, histomorphologic, or biochemical endpoints of the vagina. The increased collagen subtype ratio III/I with the extracellular matrix graft alone (P = .033 compared to sham) is consistent with an ongoing active remodeling response. Mesh augmentation with a regenerative extracellular matrix graft attenuated the negative impact of polypropylene mesh on the vagina. Application of the extracellular matrix graft alone had no measurable negative effects suggesting that the benefits of this extracellular matrix graft occur when used without a permanent material. Future studies will focus on understanding mechanisms. Copyright © 2016. Published by Elsevier Inc.

  14. Extracellular matrix regenerative graft attenuates the negative impact of polypropylene prolapse mesh on vagina in rhesus macaque

    PubMed Central

    Liang, Rui; Knight, Katrina; Barone, William; Powers, Robert W.; Nolfi, Alexis; Palcsey, Stacy; Abramowitch, Steven; Moalli, Pamela A.

    2016-01-01

    BACKGROUND The use of wide pore lightweight polypropylene mesh to improve anatomical outcomes in the surgical repair of prolapse has been hampered by mesh complications. One of the prototype prolapse meshes has been found to negatively impact the vagina by inducing a decrease in smooth muscle volume and contractility and the degradation of key structural proteins (collagen and elastin), resulting in vaginal degeneration. Recently, bioscaffolds derived from extracellular matrix have been used to mediate tissue regeneration and have been widely adopted in tissue engineering applications. OBJECTIVE Here we aimed to: (1) define whether augmentation of a polypropylene prolapse mesh with an extracellular matrix regenerative graft in a primate sacrocolpopexy model could mitigate the degenerative changes; and (2) determine the impact of the extracellular matrix graft on vagina when implanted alone. STUDY DESIGN A polypropylene-extracellular matrix composite graft (n = 9) and a 6-layered extracellular matrix graft alone (n = 8) were implanted in 17 middle-aged parous rhesus macaques via sacrocolpopexy and compared to historical data obtained from sham (n = 12) and the polypropylene mesh (n = 12) implanted by the same method. Vaginal function was measured in passive (ball-burst test) and active (smooth muscle contractility) mechanical tests. Vaginal histomorphologic/ biochemical assessments included hematoxylin-eosin and trichrome staining, immunofluorescent labeling of α-smooth muscle actin and apoptotic cells, measurement of total collagen, collagen subtypes (ratio III/ I), mature elastin, and sulfated glycosaminoglycans. Statistical analyses included 1-way analysis of variance, Kruskal-Wallis, and appropriate posthoc tests. RESULTS The host inflammatory response in the composite mesh-implanted vagina was reduced compared to that following implantation with the polypropylene mesh alone. The increase in apoptotic cells observed with the polypropylene mesh was blunted in the composite (overall P < .001). Passive mechanical testing showed inferior parameters for both polypropylene mesh alone and the composite compared to sham whereas the contractility and thickness of smooth muscle layer in the composite were improved with a value similar to sham, which was distinct from the decreases observed with polypropylene mesh alone. Biochemically, the composite had similar mature elastin content, sulfated glycosaminoglycan content, and collagen subtype III/I ratio but lower total collagen content when compared to sham (P = .011). Multilayered extracellular matrix graft alone showed overall comparable values to sham in aspects of the biomechanical, histomorphologic, or biochemical end-points of the vagina. The increased collagen subtype ratio III/I with the extracellular matrix graft alone (P = .033 compared to sham) is consistent with an ongoing active remodeling response. CONCLUSION Mesh augmentation with a regenerative extracellular matrix graft attenuated the negative impact of polypropylene mesh on the vagina. Application of the extracellular matrix graft alone had no measurable negative effects suggesting that the benefits of this extra-cellular matrix graft occur when used without a permanent material. Future studies will focus on understanding mechanisms. PMID:27615441

  15. Effects of mesh bag enclosure and termites on fine woody debris decomposition in a subtropical forest

    Treesearch

    Allison M. Stoklosa; Michael D. Ulyshen; Zhaofei Fan; Morgan Varner; Sebastian Seibold; Jorg Muller

    2016-01-01

    The role of insects in terrestrial decomposition remains poorly resolved, particularly for infrequently studied substrates like small diameter woody debris.  Uncertainty about how mesh bags used to exclude arthropods may affect decomposition rates continues to impede progress in this area.  We sought to (1) measure how insects affect the decomposition of small diameter...

  16. Method of modifying a volume mesh using sheet insertion

    DOEpatents

    Borden, Michael J [Albuquerque, NM; Shepherd, Jason F [Albuquerque, NM

    2006-08-29

    A method and machine-readable medium provide a technique to modify a hexahedral finite element volume mesh using dual generation and sheet insertion. After generating a dual of a volume stack (mesh), a predetermined algorithm may be followed to modify (refine) the volume mesh of hexahedral elements. The predetermined algorithm may include the steps of locating a sheet of hexahedral mesh elements, determining a plurality of hexahedral elements within the sheet to refine, shrinking the plurality of elements, and inserting a new sheet of hexahedral elements adjacently to modify the volume mesh. Additionally, another predetermined algorithm using mesh cutting may be followed to modify a volume mesh.

  17. Predicting mesh density for adaptive modelling of the global atmosphere.

    PubMed

    Weller, Hilary

    2009-11-28

    The shallow water equations are solved using a mesh of polygons on the sphere, which adapts infrequently to the predicted future solution. Infrequent mesh adaptation reduces the cost of adaptation and load-balancing and will thus allow for more accurate mapping on adaptation. We simulate the growth of a barotropically unstable jet adapting the mesh every 12 h. Using an adaptation criterion based largely on the gradient of the vorticity leads to a mesh with around 20 per cent of the cells of a uniform mesh that gives equivalent results. This is a similar proportion to previous studies of the same test case with mesh adaptation every 1-20 min. The prediction of the mesh density involves solving the shallow water equations on a coarse mesh in advance of the locally refined mesh in order to estimate where features requiring higher resolution will grow, decay or move to. The adaptation criterion consists of two parts: that resolved on the coarse mesh, and that which is not resolved and so is passively advected on the coarse mesh. This combination leads to a balance between resolving features controlled by the large-scale dynamics and maintaining fine-scale features.

  18. MeSH Now: automatic MeSH indexing at PubMed scale via learning to rank.

    PubMed

    Mao, Yuqing; Lu, Zhiyong

    2017-04-17

    MeSH indexing is the task of assigning relevant MeSH terms based on a manual reading of scholarly publications by human indexers. The task is highly important for improving literature retrieval and many other scientific investigations in biomedical research. Unfortunately, given its manual nature, the process of MeSH indexing is both time-consuming (new articles are not immediately indexed until 2 or 3 months later) and costly (approximately ten dollars per article). In response, automatic indexing by computers has been previously proposed and attempted but remains challenging. In order to advance the state of the art in automatic MeSH indexing, a community-wide shared task called BioASQ was recently organized. We propose MeSH Now, an integrated approach that first uses multiple strategies to generate a combined list of candidate MeSH terms for a target article. Through a novel learning-to-rank framework, MeSH Now then ranks the list of candidate terms based on their relevance to the target article. Finally, MeSH Now selects the highest-ranked MeSH terms via a post-processing module. We assessed MeSH Now on two separate benchmarking datasets using traditional precision, recall and F 1 -score metrics. In both evaluations, MeSH Now consistently achieved over 0.60 in F-score, ranging from 0.610 to 0.612. Furthermore, additional experiments show that MeSH Now can be optimized by parallel computing in order to process MEDLINE documents on a large scale. We conclude that MeSH Now is a robust approach with state-of-the-art performance for automatic MeSH indexing and that MeSH Now is capable of processing PubMed scale documents within a reasonable time frame. http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/MeSHNow/ .

  19. Preclinical evaluation of the effect of the combined use of the Ethicon Securestrap® Open Absorbable Strap Fixation Device and Ethicon Physiomesh™ Open Flexible Composite Mesh Device on surgeon stress during ventral hernia repair

    PubMed Central

    Sutton, Nadia; MacDonald, Melinda H; Lombard, John; Ilie, Bodgan; Hinoul, Piet; Granger, Douglas A

    2018-01-01

    Aim To evaluate whether performing ventral hernia repairs using the Ethicon Physiomesh™ Open Flexible Composite Mesh Device in conjunction with the Ethicon Securestrap® Open Absorbable Strap Fixation Device reduces surgical time and surgeon stress levels, compared with traditional surgical repair methods. Methods To repair a simulated ventral incisional hernia, two surgeries were performed by eight experienced surgeons using a live porcine model. One procedure involved traditional suture methods and a flat mesh, and the other procedure involved a mechanical fixation device and a skirted flexible composite mesh. A Surgery Task Load Index questionnaire was administered before and after the procedure to establish the surgeons’ perceived stress levels, and saliva samples were collected before, during, and after the surgical procedures to assess the biologically expressed stress (cortisol and salivary alpha amylase) levels. Results For mechanical fixation using the Ethicon Physiomesh Open Flexible Composite Mesh Device in conjunction with the Ethicon Securestrap Open Absorbable Strap Fixation Device, surgeons reported a 46.2% reduction in perceived workload stress. There was also a lower physiological reactivity to the intraoperative experience and the total surgical procedure time was reduced by 60.3%. Conclusions This study provides preliminary findings suggesting that the combined use of a mechanical fixation device and a skirted flexible composite mesh in an open intraperitoneal onlay mesh repair has the potential to reduce surgeon stress. Additional studies are needed to determine whether a reduction in stress is observed in a clinical setting and, if so, confirm that this results in improved clinical outcomes. PMID:29296101

  20. Influence of local meshing size on stress intensity factor of orthopedic lag screw

    NASA Astrophysics Data System (ADS)

    Husain, M. N.; Daud, R.; Basaruddin, K. S.; Mat, F.; Bajuri, M. Y.; Arifin, A. K.

    2017-09-01

    Linear elastic fracture mechanics (LEFM) concept is generally used to study the influence of crack on the performance of structures. In order to study the LEFM concept on damaged structure, the usage of finite element analysis software is implemented to do the simulation of the structure. Mesh generation is one of the most crucial procedures in finite element method. For the structure that crack or damaged, it is very important to determine the accurate local meshing size at the crack tip of the crack itself in order to get the accurate value of stress intensity factor, KI. Pre crack will be introduced to the lag screw based on the von mises' stress result that had been performed in previous research. This paper shows the influence of local mesh arrangement on numerical value of the stress intensity factor, KI obtained by the displacement method. This study aims to simulate the effect of local meshing which is the singularity region on stress intensity factor, KI to the critical point of failure in screw. Five different set of wedges meshing size are introduced during the simulation of finite element analysis. The number of wedges used to simulate this research is 8, 10, 14, 16 and 20. There are three set of numerical equations used to validate the results which are brown and srawley, gross and brown and Tada equation. The result obtained from the finite element software (ANSYS APDL) has a positive agreement with the numerical analysis which is Brown and Srawley compared to other numerical formula. Radius of first row size of 0.014 and singularity element with 14 numbers of wedges is proved to be the best local meshing for this study.

  1. Evaluation of the Antimicrobial Activity of Lysostaphin-Coated Hernia Repair Meshes▿

    PubMed Central

    Satishkumar, Rohan; Sankar, Sriram; Yurko, Yuliya; Lincourt, Amy; Shipp, John; Heniford, B. Todd; Vertegel, Alexey

    2011-01-01

    Bacterial infections by antibiotic-resistant Staphylococcus aureus strains are among the most common postoperative complications in surgical hernia repair with synthetic mesh. Surface coating of medical devices/implants using antibacterial peptides and enzymes has recently emerged as a potentially effective method for preventing infections. The objective of this study was to evaluate the in vitro antimicrobial activity of hernia repair meshes coated by the antimicrobial enzyme lysostaphin at different initial concentrations. Lysostaphin was adsorbed on pieces of polypropylene (Ultrapro) mesh with binding yields of ∼10 to 40% at different coating concentrations of between 10 and 500 μg/ml. Leaching of enzyme from the surface of all the samples was studied in 2% (wt/vol) bovine serum albumin in phosphate-buffered saline buffer at 37°C, and it was found that less than 3% of adsorbed enzyme desorbed from the surface after 24 h of incubation. Studies of antibacterial activity against a cell suspension of S. aureus were performed using turbidity assay and demonstrated that the small amount of enzyme leaching from the mesh surface contributes to the lytic activity of the lysostaphin-coated samples. Colony counting data from the broth count (model for bacteria in wound fluid) and wash count (model for colonized bacteria) for the enzyme-coated samples showed significantly decreased numbers of CFU compared to uncoated samples (P < 0.05). A pilot in vivo study showed a dose-dependent efficacy of lysostaphin-coated meshes in a rat model of S. aureus infection. The antimicrobial activity of the lysostaphin-coated meshes suggests that such enzyme-leaching surfaces could be efficient at actively resisting initial bacterial adhesion and preventing subsequent colonization of hernia repair meshes. PMID:21709102

  2. Fracture Capabilities in Grizzly with the extended Finite Element Method (X-FEM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolbow, John; Zhang, Ziyu; Spencer, Benjamin

    Efforts are underway to develop fracture mechanics capabilities in the Grizzly code to enable it to be used to perform deterministic fracture assessments of degraded reactor pressure vessels (RPVs). A capability was previously developed to calculate three-dimensional interaction- integrals to extract mixed-mode stress-intensity factors. This capability requires the use of a finite element mesh that conforms to the crack geometry. The eXtended Finite Element Method (X-FEM) provides a means to represent a crack geometry without explicitly fitting the finite element mesh to it. This is effected by enhancing the element kinematics to represent jump discontinuities at arbitrary locations inside ofmore » the element, as well as the incorporation of asymptotic near-tip fields to better capture crack singularities. In this work, use of only the discontinuous enrichment functions was examined to see how accurate stress intensity factors could still be calculated. This report documents the following work to enhance Grizzly’s engineering fracture capabilities by introducing arbitrary jump discontinuities for prescribed crack geometries; X-FEM Mesh Cutting in 3D: to enhance the kinematics of elements that are intersected by arbitrary crack geometries, a mesh cutting algorithm was implemented in Grizzly. The algorithm introduces new virtual nodes and creates partial elements, and then creates a new mesh connectivity; Interaction Integral Modifications: the existing code for evaluating the interaction integral in Grizzly was based on the assumption of a mesh that was fitted to the crack geometry. Modifications were made to allow for the possibility of a crack front that passes arbitrarily through the mesh; and Benchmarking for 3D Fracture: the new capabilities were benchmarked against mixed-mode three-dimensional fracture problems with known analytical solutions.« less

  3. Influence of mesh structure on 2D full shallow water equations and SCS Curve Number simulation of rainfall/runoff events

    NASA Astrophysics Data System (ADS)

    Caviedes-Voullième, Daniel; García-Navarro, Pilar; Murillo, Javier

    2012-07-01

    SummaryHydrological simulation of rain-runoff processes is often performed with lumped models which rely on calibration to generate storm hydrographs and study catchment response to rain. In this paper, a distributed, physically-based numerical model is used for runoff simulation in a mountain catchment. This approach offers two advantages. The first is that by using shallow-water equations for runoff flow, there is less freedom to calibrate routing parameters (as compared to, for example, synthetic hydrograph methods). The second, is that spatial distributions of water depth and velocity can be obtained. Furthermore, interactions among the various hydrological processes can be modeled in a physically-based approach which may depend on transient and spatially distributed factors. On the other hand, the undertaken numerical approach relies on accurate terrain representation and mesh selection, which also affects significantly the computational cost of the simulations. Hence, we investigate the response of a gauged catchment with this distributed approach. The methodology consists of analyzing the effects that the mesh has on the simulations by using a range of meshes. Next, friction is applied to the model and the response to variations and interaction with the mesh is studied. Finally, a first approach with the well-known SCS Curve Number method is studied to evaluate its behavior when coupled with a shallow-water model for runoff flow. The results show that mesh selection is of great importance, since it may affect the results in a magnitude as large as physical factors, such as friction. Furthermore, results proved to be less sensitive to roughness spatial distribution than to mesh properties. Finally, the results indicate that SCS-CN may not be suitable for simulating hydrological processes together with a shallow-water model.

  4. Combining 3d Volume and Mesh Models for Representing Complicated Heritage Buildings

    NASA Astrophysics Data System (ADS)

    Tsai, F.; Chang, H.; Lin, Y.-W.

    2017-08-01

    This study developed a simple but effective strategy to combine 3D volume and mesh models for representing complicated heritage buildings and structures. The idea is to seamlessly integrate 3D parametric or polyhedral models and mesh-based digital surfaces to generate a hybrid 3D model that can take advantages of both modeling methods. The proposed hybrid model generation framework is separated into three phases. Firstly, after acquiring or generating 3D point clouds of the target, these 3D points are partitioned into different groups. Secondly, a parametric or polyhedral model of each group is generated based on plane and surface fitting algorithms to represent the basic structure of that region. A "bare-bones" model of the target can subsequently be constructed by connecting all 3D volume element models. In the third phase, the constructed bare-bones model is used as a mask to remove points enclosed by the bare-bones model from the original point clouds. The remaining points are then connected to form 3D surface mesh patches. The boundary points of each surface patch are identified and these boundary points are projected onto the surfaces of the bare-bones model. Finally, new meshes are created to connect the projected points and original mesh boundaries to integrate the mesh surfaces with the 3D volume model. The proposed method was applied to an open-source point cloud data set and point clouds of a local historical structure. Preliminary results indicated that the reconstructed hybrid models using the proposed method can retain both fundamental 3D volume characteristics and accurate geometric appearance with fine details. The reconstructed hybrid models can also be used to represent targets in different levels of detail according to user and system requirements in different applications.

  5. An efficient and robust 3D mesh compression based on 3D watermarking and wavelet transform

    NASA Astrophysics Data System (ADS)

    Zagrouba, Ezzeddine; Ben Jabra, Saoussen; Didi, Yosra

    2011-06-01

    The compression and watermarking of 3D meshes are very important in many areas of activity including digital cinematography, virtual reality as well as CAD design. However, most studies on 3D watermarking and 3D compression are done independently. To verify a good trade-off between protection and a fast transfer of 3D meshes, this paper proposes a new approach which combines 3D mesh compression with mesh watermarking. This combination is based on a wavelet transformation. In fact, the used compression method is decomposed to two stages: geometric encoding and topologic encoding. The proposed approach consists to insert a signature between these two stages. First, the wavelet transformation is applied to the original mesh to obtain two components: wavelets coefficients and a coarse mesh. Then, the geometric encoding is done on these two components. The obtained coarse mesh will be marked using a robust mesh watermarking scheme. This insertion into coarse mesh allows obtaining high robustness to several attacks. Finally, the topologic encoding is applied to the marked coarse mesh to obtain the compressed mesh. The combination of compression and watermarking permits to detect the presence of signature after a compression of the marked mesh. In plus, it allows transferring protected 3D meshes with the minimum size. The experiments and evaluations show that the proposed approach presents efficient results in terms of compression gain, invisibility and robustness of the signature against of many attacks.

  6. Does PRP enhance bone integration with grafts, graft substitutes, or implants? A systematic review

    PubMed Central

    2013-01-01

    Background Several bone implants are applied in clinical practice, but none meets the requirements of an ideal implant. Platelet-rich plasma (PRP) is an easy and inexpensive way to obtain growth factors in physiologic proportions that might favour the regenerative process. The aim of this review is to analyse clinical studies in order to investigate the role of PRP in favouring bone integration of graft, graft substitutes, or implants, and to identify the materials for which the additional use of PRP might be associated with superior osseo- and soft tissues integration. Methods A search on PubMed database was performed considering the literature from 2000 to 2012, using the following string: ("Bone Substitutes"[Mesh] OR "Bone Transplantation"[Mesh] OR "Bone Regeneration"[Mesh] OR "Osseointegration"[Mesh]) AND ("Blood Platelets"[Mesh] OR "Platelet-Rich Plasma"[Mesh]). After abstracts screening, the full-texts of selected papers were analyzed and the papers found from the reference lists were also considered. The search focused on clinical applications documented in studies in the English language: levels of evidence included in the literature analysis were I, II and III. Results Literature analysis showed 83 papers that fulfilled the inclusion criteria: 26 randomized controlled trials (RCT), 14 comparative studies, 29 case series, and 14 case reports. Several implant materials were identified: 24 papers on autologous bone, 6 on freeze-dried bone allograft (FDBA), 16 on bovine porous bone mineral (BPBM), 9 on β-tricalcium phosphate (β-TCP), 4 on hydroxyapatite (HA), 2 on titanium (Ti), 1 on natural coral, 1 on collagen sponge, 1 on medical-grade calcium sulphate hemihydrate (MGCSH), 1 on bioactive glass (BG) and 18 on a combination of biomaterials. Only 4 papers were related to the orthopaedic field, whereas the majority belonged to clinical applications in oral/maxillofacial surgery. Conclusions The systematic research showed a growing interest in this approach for bone implant integration, with an increasing number of studies published over time. However, knowledge on this topic is still preliminary, with the presence mainly of low quality studies. Many aspects still have to be understood, such as the biomaterials that can benefit most from PRP and the best protocol for PRP both for production and application. PMID:24261343

  7. Magnesium Based Materials and their Antimicrobial Activity

    NASA Astrophysics Data System (ADS)

    Robinson, Duane Allan

    The overall goals of this body of work were to characterize the antimicrobial properties of magnesium (Mg) metal and nano-magnesium oxide (nMgO) in vitro, to evaluate the in vitro cytotoxicity of Mg metal, and to incorporate MgO nanoparticles into a polymeric implant coating and evaluate its in vitro antimicrobial properties. In the course of this work it was found that Mg metal, Mg-mesh, and nMgO have in vitro antimicrobial properties that are similar to a bactericidal antibiotic. For Mg metal, the mechanism of this activity appears to be related to an increase in pH (i.e. a more alkaline environment) and not an increase in Mg2+. Given that Mg-mesh is a Mg metal powder, the assumption is that it has the same mechanism of activity as Mg metal. The mechanism of activity for nMgO remains to be elucidated and may be related to a combination of interaction of the nanoparticles with the bacteria and the alkaline pH. It was further demonstrated that supernatants from suspensions of Mg-mesh and nMgO had the same antimicrobial effect as was noted when the particles were used. The supernatant from Mg-mesh and nMgO was also noted to prevent biofilm formation for two Staphylococcus strains. Finally, poly-epsilon-caprolactone (PCL) composites of Mg-mesh (PCL+Mg-mesh) and nMgO (PCL+nMgO) were produced. Coatings applied to screws inhibited growth of Escherichia coli and Pseudomonas aeruginosa and in thin disc format inhibited the growth of Staphylococcus aureus in addition to the E. coli and P. aeruginosa. Pure Mg metal was noted to have some cytotoxic effect on murine fibroblast and osteoblast cell lines, although this effect needs to be characterized further. To address the need for an in vivo model for evaluating implant associated infections, a new closed fracture osteomyelitis model in the femur of the rat was developed. Magnesium, a readily available and inexpensive metal was shown to have antimicrobial properties that appear to be related to its corrosion products and that nMgO has similar effects. Incorporation of nMgO into a PCL composite was easily achieved and revealed similar, although not identical antimicrobial results. This work has provided a strong foundation and methodology for further evaluation of Mg based materials and their antimicrobial properties.

  8. BioCreative V CDR task corpus: a resource for chemical disease relation extraction.

    PubMed

    Li, Jiao; Sun, Yueping; Johnson, Robin J; Sciaky, Daniela; Wei, Chih-Hsuan; Leaman, Robert; Davis, Allan Peter; Mattingly, Carolyn J; Wiegers, Thomas C; Lu, Zhiyong

    2016-01-01

    Community-run, formal evaluations and manually annotated text corpora are critically important for advancing biomedical text-mining research. Recently in BioCreative V, a new challenge was organized for the tasks of disease named entity recognition (DNER) and chemical-induced disease (CID) relation extraction. Given the nature of both tasks, a test collection is required to contain both disease/chemical annotations and relation annotations in the same set of articles. Despite previous efforts in biomedical corpus construction, none was found to be sufficient for the task. Thus, we developed our own corpus called BC5CDR during the challenge by inviting a team of Medical Subject Headings (MeSH) indexers for disease/chemical entity annotation and Comparative Toxicogenomics Database (CTD) curators for CID relation annotation. To ensure high annotation quality and productivity, detailed annotation guidelines and automatic annotation tools were provided. The resulting BC5CDR corpus consists of 1500 PubMed articles with 4409 annotated chemicals, 5818 diseases and 3116 chemical-disease interactions. Each entity annotation includes both the mention text spans and normalized concept identifiers, using MeSH as the controlled vocabulary. To ensure accuracy, the entities were first captured independently by two annotators followed by a consensus annotation: The average inter-annotator agreement (IAA) scores were 87.49% and 96.05% for the disease and chemicals, respectively, in the test set according to the Jaccard similarity coefficient. Our corpus was successfully used for the BioCreative V challenge tasks and should serve as a valuable resource for the text-mining research community.Database URL: http://www.biocreative.org/tasks/biocreative-v/track-3-cdr/. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the United States.

  9. Minimizing finite-volume discretization errors on polyhedral meshes

    NASA Astrophysics Data System (ADS)

    Mouly, Quentin; Evrard, Fabien; van Wachem, Berend; Denner, Fabian

    2017-11-01

    Tetrahedral meshes are widely used in CFD to simulate flows in and around complex geometries, as automatic generation tools now allow tetrahedral meshes to represent arbitrary domains in a relatively accessible manner. Polyhedral meshes, however, are an increasingly popular alternative. While tetrahedron have at most four neighbours, the higher number of neighbours per polyhedral cell leads to a more accurate evaluation of gradients, essential for the numerical resolution of PDEs. The use of polyhedral meshes, nonetheless, introduces discretization errors for finite-volume methods: skewness and non-orthogonality, which occur with all sorts of unstructured meshes, as well as errors due to non-planar faces, specific to polygonal faces with more than three vertices. Indeed, polyhedral mesh generation algorithms cannot, in general, guarantee to produce meshes free of non-planar faces. The presented work focuses on the quantification and optimization of discretization errors on polyhedral meshes in the context of finite-volume methods. A quasi-Newton method is employed to optimize the relevant mesh quality measures. Various meshes are optimized and CFD results of cases with known solutions are presented to assess the improvements the optimization approach can provide.

  10. LBMD : a layer-based mesh data structure tailored for generic API infrastructures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebeida, Mohamed S.; Knupp, Patrick Michael

    2010-11-01

    A new mesh data structure is introduced for the purpose of mesh processing in Application Programming Interface (API) infrastructures. This data structure utilizes a reduced mesh representation to increase its ability to handle significantly larger meshes compared to full mesh representation. In spite of the reduced representation, each mesh entity (vertex, edge, face, and region) is represented using a unique handle, with no extra storage cost, which is a crucial requirement in most API libraries. The concept of mesh layers makes the data structure more flexible for mesh generation and mesh modification operations. This flexibility can have a favorable impactmore » in solver based queries of finite volume and multigrid methods. The capabilities of LBMD make it even more attractive for parallel implementations using Message Passing Interface (MPI) or Graphics Processing Units (GPUs). The data structure is associated with a new classification method to relate mesh entities to their corresponding geometrical entities. The classification technique stores the related information at the node level without introducing any ambiguities. Several examples are presented to illustrate the strength of this new data structure.« less

  11. Anterior pelvic organ prolapse repair using synthetic mesh.

    PubMed

    Patel, Bhavin N; Lucioni, Alvaro; Kobashi, Kathleen C

    2012-06-01

    Since the U.S. Food and Drug Administration (FDA) statement on mesh in July of 2011, there has been controversy regarding synthetic mesh repairs for vaginal prolapse. In this article, we review the biochemical basis for the use of synthetic mesh in prolapse repair as well as clinical results of anterior compartment prolapse repair with synthetic mesh. Finally, we discuss the FDA warning regarding mesh.

  12. Quality of pharmacy-specific Medical Subject Headings (MeSH) assignment in pharmacy journals indexed in MEDLINE.

    PubMed

    Minguet, Fernando; Salgado, Teresa M; van den Boogerd, Lucienne; Fernandez-Llimos, Fernando

    2015-01-01

    The Medical Subject Headings (MeSH) is the National Library of Medicine (NLM) controlled vocabulary for indexing articles. Inaccuracies in the MeSH thesaurus have been reported for several areas including pharmacy. To assess the quality of pharmacy-specific MeSH assignment to articles indexed in pharmacy journals. The 10 journals containing the highest number of articles published in 2012 indexed under the MeSH 'Pharmacists' were identified. All articles published over a 5-year period (2008-2012) in the 10 previously selected journals were retrieved from PubMed. MeSH terms used to index these articles were extracted and pharmacy-specific MeSH terms were identified. The frequency of use of pharmacy-specific MeSH terms was calculated across journals. A total of 6989 articles were retrieved from the 10 pharmacy journals, of which 328 (4.7%) were articles not fully indexed and therefore did not contain any MeSH terms assigned. Among the 6661 articles fully indexed, the mean number of MeSH terms was 10.1 (SD = 4.0), being 1.0 (SD = 1.3) considered as Major MeSH. Both values significantly varied across journals. The mean number of pharmacy-specific MeSH terms per article was 0.9 (SD = 1.2). A total of 3490 (52.4%) of the 6661 articles were indexed in pharmacy journals without a single pharmacy-specific MeSH. Of the total 67193 MeSH terms assigned to articles, on average 10.5% (SD = 13.9) were pharmacy-specific MeSH. A statistically significant different pattern of pharmacy-specific MeSH assignment was identified across journals (Kruskal-Wallis P < 0.001). The quality of assignment of the existing pharmacy-specific MeSH terms to articles indexed in pharmacy journals can be improved to further enhance evidence gathering in pharmacy. Over half of the articles published in the top-10 journals publishing pharmacy literature were indexed without a single pharmacy-specific MeSH. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. A Proximal Straining Mesh Location Is Associated With De Novo Stress Urinary Incontinence After Transobturator Mesh Procedures.

    PubMed

    Huang, Wen-Chen; Yang, Jenn-Ming

    2017-03-01

    The purpose of this study was to explore the association between mesh location and de novo stress urinary incontinence (SUI) after transvaginal mesh procedures. We retrospectively analyzed a database of women who had received transvaginal mesh procedures for stage III or greater cystocele according to the Pelvic Organ Prolapse Quantification system. Only data for women who neither reported SUI preoperatively nor had received concomitant anti-incontinence surgery were included for analyses. The mesh location was investigated by sonography via the percentage of the urethra covered by mesh, defined as the number calculated by dividing the portion of the urethral length covered by mesh (the distance from the bladder neck to the point of the urethra, which was indicated by an imaginary line at the level of the lower [caudal] mesh end and perpendicular to the urethra) by the total urethral length (the distance from the bladder neck to the external urethral meatus) in the sagittal plane. The resting, straining, coughing, and squeezing mesh locations of women who did (n = 29) and did not (n = 54) report SUI at the 12-month follow-up were compared. At the 12-month follow-up, women who reported SUI had a significantly smaller straining percentage of the urethra covered by mesh (mean ± SD, 28.5% ± 9.6%) compared with continent women (35.2% ± 15.8%), indicating a more proximal straining mesh location. Sonography is useful in investigating the location of the transvaginal mesh. De novo SUI after transvaginal mesh procedures is associated with a more proximal straining mesh location. © 2017 by the American Institute of Ultrasound in Medicine.

  14. Mesh Oriented datABase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tautges, Timothy J.

    MOAB is a component for representing and evaluating mesh data. MOAB can store stuctured and unstructured mesh, consisting of elements in the finite element "zoo". The functional interface to MOAB is simple yet powerful, allowing the representation of many types of metadata commonly found on the mesh. MOAB is optimized for efficiency in space and time, based on access to mesh in chunks rather than through individual entities, while also versatile enough to support individual entity access. The MOAB data model consists of a mesh interface instance, mesh entities (vertices and elements), sets, and tags. Entities are addressed through handlesmore » rather than pointers, to allow the underlying representation of an entity to change without changing the handle to that entity. Sets are arbitrary groupings of mesh entities and other sets. Sets also support parent/child relationships as a relation distinct from sets containing other sets. The directed-graph provided by set parent/child relationships is useful for modeling topological relations from a geometric model or other metadata. Tags are named data which can be assigned to the mesh as a whole, individual entities, or sets. Tags are a mechanism for attaching data to individual entities and sets are a mechanism for describing relations between entities; the combination of these two mechanisms isa powerful yet simple interface for representing metadata or application-specific data. For example, sets and tags can be used together to describe geometric topology, boundary condition, and inter-processor interface groupings in a mesh. MOAB is used in several ways in various applications. MOAB serves as the underlying mesh data representation in the VERDE mesh verification code. MOAB can also be used as a mesh input mechanism, using mesh readers induded with MOAB, or as a t’anslator between mesh formats, using readers and writers included with MOAB.« less

  15. A probability distribution model of tooth pits for evaluating time-varying mesh stiffness of pitting gears

    NASA Astrophysics Data System (ADS)

    Lei, Yaguo; Liu, Zongyao; Wang, Delong; Yang, Xiao; Liu, Huan; Lin, Jing

    2018-06-01

    Tooth damage often causes a reduction in gear mesh stiffness. Thus time-varying mesh stiffness (TVMS) can be treated as an indication of gear health conditions. This study is devoted to investigating the mesh stiffness variations of a pair of external spur gears with tooth pitting, and proposes a new model for describing tooth pitting based on probability distribution. In the model, considering the appearance and development process of tooth pitting, we model the pitting on the surface of spur gear teeth as a series of pits with a uniform distribution in the direction of tooth width and a normal distribution in the direction of tooth height, respectively. In addition, four pitting degrees, from no pitting to severe pitting, are modeled. Finally, influences of tooth pitting on TVMS are analyzed in details and the proposed model is validated by comparing with a finite element model. The comparison results show that the proposed model is effective for the TVMS evaluations of pitting gears.

  16. Interference Effects Redress over Power-Efficient Wireless-Friendly Mesh Networks for Ubiquitous Sensor Communications across Smart Cities.

    PubMed

    Santana, Jose; Marrero, Domingo; Macías, Elsa; Mena, Vicente; Suárez, Álvaro

    2017-07-21

    Ubiquitous sensing allows smart cities to take control of many parameters (e.g., road traffic, air or noise pollution levels, etc.). An inexpensive Wireless Mesh Network can be used as an efficient way to transport sensed data. When that mesh is autonomously powered (e.g., solar powered), it constitutes an ideal portable network system which can be deployed when needed. Nevertheless, its power consumption must be restrained to extend its operational cycle and for preserving the environment. To this end, our strategy fosters wireless interface deactivation among nodes which do not participate in any route. As we show, this contributes to a significant power saving for the mesh. Furthermore, our strategy is wireless-friendly, meaning that it gives priority to deactivation of nodes receiving (and also causing) interferences from (to) the rest of the smart city. We also show that a routing protocol can adapt to this strategy in which certain nodes deactivate their own wireless interfaces.

  17. The Effect of Crumb Rubber Particle Size to the Optimum Binder Content for Open Graded Friction Course

    PubMed Central

    Ibrahim, Mohd Rasdan; Katman, Herda Yati; Karim, Mohamed Rehan; Koting, Suhana; Mashaan, Nuha S.

    2014-01-01

    The main objective of this paper is to investigate the relations of rubber size, rubber content, and binder content in determination of optimum binder content for open graded friction course (OGFC). Mix gradation type B as specified in Specification for Porous Asphalt produced by the Road Engineering Association of Malaysia (REAM) was used in this study. Marshall specimens were prepared with four different sizes of rubber, namely, 20 mesh size [0.841 mm], 40 mesh [0.42 mm], 80 mesh [0.177 mm], and 100 mesh [0.149 mm] with different concentrations of rubberised bitumen (4%, 8%, and 12%) and different percentages of binder content (4%–7%). The appropriate optimum binder content is then selected according to the results of the air voids, binder draindown, and abrasion loss test. Test results found that crumb rubber particle size can affect the optimum binder content for OGFC. PMID:24574875

  18. Interference Effects Redress over Power-Efficient Wireless-Friendly Mesh Networks for Ubiquitous Sensor Communications across Smart Cities

    PubMed Central

    Marrero, Domingo; Macías, Elsa; Mena, Vicente

    2017-01-01

    Ubiquitous sensing allows smart cities to take control of many parameters (e.g., road traffic, air or noise pollution levels, etc.). An inexpensive Wireless Mesh Network can be used as an efficient way to transport sensed data. When that mesh is autonomously powered (e.g., solar powered), it constitutes an ideal portable network system which can be deployed when needed. Nevertheless, its power consumption must be restrained to extend its operational cycle and for preserving the environment. To this end, our strategy fosters wireless interface deactivation among nodes which do not participate in any route. As we show, this contributes to a significant power saving for the mesh. Furthermore, our strategy is wireless-friendly, meaning that it gives priority to deactivation of nodes receiving (and also causing) interferences from (to) the rest of the smart city. We also show that a routing protocol can adapt to this strategy in which certain nodes deactivate their own wireless interfaces. PMID:28754013

  19. Medium-term clinical outcomes following surgical repair for vaginal prolapse with tension-free mesh and vaginal support device.

    PubMed

    Sayer, T; Lim, J; Gauld, J M; Hinoul, P; Jones, P; Franco, N; Van Drie, D; Slack, M

    2012-04-01

    This study was designed to evaluate clinical outcomes ≥2 years following surgery with polypropylene mesh and vaginal support device (VSD) in women with vaginal prolapse, in a prospective, multi-center setting. Patients re-consented for this extended follow-up (n = 110), with anatomic evaluation using Pelvic Organ Prolapse Quantification (POP-Q) and validated questionnaires to assess pelvic symptoms and sexual function. Complications were recorded (safety set; n = 121). Median length of follow-up was 29 months (range 24-34 months). The primary anatomic success, defined as POP-Q 0-I, was 69.1%; however, in 84.5% of the cases, the leading vaginal edge was above the hymen. Pelvic symptoms and sexual function improved significantly from baseline (p < 0.01). Mesh exposure rate was 9.1%. Five percent reported stress urinary incontinence and 3.3% required further prolapse surgery. These results indicate this non-anchored mesh repair is a safe and effective treatment for women with symptomatic vaginal prolapse in the medium term.

  20. Vaginal surgery for pelvic organ prolapse using mesh and a vaginal support device.

    PubMed

    Carey, M; Slack, M; Higgs, P; Wynn-Williams, M; Cornish, A

    2008-02-01

    To describe a new surgical procedure for pelvic organ prolapse using mesh and a vaginal support device (VSD) and to report the results of surgery. A prospective observational study. Two tertiary referral Urogynaecology practices. Ninety-five women with International Continence Society pelvic organ prolapse quantification stage 2 or more pelvic organ prolapse who underwent vaginal surgery using mesh augmentation and a VSD. Surgery involved a vaginal approach with mesh reinforcement and placement of a VSD for 4 weeks. At 6 and 12 months, women were examined for prolapse recurrence, and visual analogue scales for satisfaction were completed. Women completed quality-of-life (QOL) questionnaires preoperatively and at 6 and 12 months. Objective success of surgery at 6 and 12 months following surgery. Secondary outcomes were subjective success, complications, QOL outcomes and patients' satisfaction. Objective success rate was 92 and 85% at 6 and 12 months, respectively. Subjective success rate was 91 and 87% at 6 and 12 months, respectively. New prolapse in nonrepaired compartments accounted for 7 of 12 (58%) failures at 12 months. Two of 4 mesh exposures required surgery. Sexual dysfunction was reported by 58% of sexually active women preoperatively and 23% at 12 months. QOL scores significantly improved at 12 months compared with baseline (P < 0.0001). Vaginal surgery using mesh and a VSD is an effective procedure for pelvic organ prolapse. However, further studies are required to establish the role of the surgery described in this study.

  1. Flexible 3D Fe@VO2 core-shell mesh: A highly efficient and easy-recycling catalyst for the removal of organic dyes.

    PubMed

    Li, Jing; Wang, Ruoqi; Su, Zhen; Zhang, Dandan; Li, Heping; Yan, Youwei

    2018-10-01

    Nowadays, it is extremely urgent to search for efficient and effective catalysts for water purification due to the severe worldwide water-contamination crises. Here, 3D Fe@VO 2 core-shell mesh, a highly efficient catalyst toward removal of organic dyes with excellent recycling ability in the dark is designed and developed for the first time. This novel core-shell structure is actually 304 stainless steel mesh coated by VO 2 , fabricated by an electrophoretic deposition method. In such a core-shell structure, Fe as the core allows much easier separation from the water, endowing the catalyst with a flexible property for easy recycling, while VO 2 as the shell is highly efficient in degradation of organic dyes with the addition of H 2 O 2 . More intriguingly, the 3D Fe@VO 2 core-shell mesh exhibits favorable performance across a wide pH range. The 3D Fe@VO 2 core-shell mesh can decompose organic dyes both in a light-free condition and under visible irradiation. The possible catalytic oxidation mechanism of Fe@VO 2 /H 2 O 2 system is also proposed in this work. Considering its facile fabrication, remarkable catalytic efficiency across a wide pH range, and easy recycling characteristic, the 3D Fe@VO 2 core-shell mesh is a newly developed high-performance catalyst for addressing the universal water crises. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Bioprosthetic Mesh in Abdominal Wall Reconstruction

    PubMed Central

    Baumann, Donald P.; Butler, Charles E.

    2012-01-01

    Mesh materials have undergone a considerable evolution over the last several decades. There has been enhancement of biomechanical properties, improvement in manufacturing processes, and development of antiadhesive laminate synthetic meshes. The evolution of bioprosthetic mesh materials has markedly changed our indications and methods for complex abdominal wall reconstruction. The authors review the optimal properties of bioprosthetic mesh materials, their evolution over time, and their indications for use. The techniques to optimize outcomes are described using bioprosthetic mesh for complex abdominal wall reconstruction. Bioprosthetic mesh materials clearly have certain advantages over other implantable mesh materials in select indications. Appropriate patient selection and surgical technique are critical to the successful use of bioprosthetic materials for abdominal wall repair. PMID:23372454

  3. Mesh morphing for finite element analysis of implant positioning in cementless total hip replacements.

    PubMed

    Bah, Mamadou T; Nair, Prasanth B; Browne, Martin

    2009-12-01

    Finite element (FE) analysis of the effect of implant positioning on the performance of cementless total hip replacements (THRs) requires the generation of multiple meshes to account for positioning variability. This process can be labour intensive and time consuming as CAD operations are needed each time a specific orientation is to be analysed. In the present work, a mesh morphing technique is developed to automate the model generation process. The volume mesh of a baseline femur with the implant in a nominal position is deformed as the prosthesis location is varied. A virtual deformation field, obtained by solving a linear elasticity problem with appropriate boundary conditions, is applied. The effectiveness of the technique is evaluated using two metrics: the percentages of morphed elements exceeding an aspect ratio of 20 and an angle of 165 degrees between the adjacent edges of each tetrahedron. Results show that for 100 different implant positions, the first and second metrics never exceed 3% and 3.5%, respectively. To further validate the proposed technique, FE contact analyses are conducted using three selected morphed models to predict the strain distribution in the bone and the implant micromotion under joint and muscle loading. The entire bone strain distribution is well captured and both percentages of bone volume with strain exceeding 0.7% and bone average strains are accurately computed. The results generated from the morphed mesh models correlate well with those for models generated from scratch, increasing confidence in the methodology. This morphing technique forms an accurate and efficient basis for FE based implant orientation and stability analysis of cementless hip replacements.

  4. On the Stiffness of the Mesh and Urethral Mobility: A Finite Element Analysis.

    PubMed

    Brandão, Sofia; Parente, Marco; Da Roza, Thuane Huyer; Silva, Elisabete; Ramos, Isabel Maria; Mascarenhas, Teresa; Natal Jorge, Renato Manuel

    2017-08-01

    Midurethral slings are used to correct urethral hypermobility in female stress urinary incontinence (SUI), defined as the complaint of involuntary urine leakage when the intra-abdominal pressure (IAP) is increased. Structural and thermal features influence their mechanical properties, which may explain postoperative complications, e.g., erosion and urethral obstruction. We studied the effect of the mesh stiffness on urethral mobility at Valsalva maneuver, under impairment of the supporting structures (levator ani and/or ligaments), by using a numerical model. For that purpose, we modeled a sling with "lower" versus "higher" stiffness and evaluated the mobility of the bladder and urethra, that of the urethrovesical junction (the α-angle), and the force exerted at the fixation of the sling. The effect of impaired levator ani or pubourethral ligaments (PUL) alone on the organs displacement and α-angle opening was similar, showing their important role together on urethral stabilization. When the levator ani and all the ligaments were simulated as impaired, the descent of the bladder and urethra went up to 25.02 mm, that of the bladder neck was 14.57 mm, and the α-angle was 129.7 deg, in the range of what was found in women with SUI. Both meshes allowed returning to normal positioning, although at the cost of higher force exerted by the mesh with higher stiffness (3.4 N against 2.3 N), which can relate to tissue erosion. This finite element analysis allowed mimicking the biomechanical response of the pelvic structures in response to changing a material property of the midurethral synthetic mesh.

  5. Effect of Reinforcement Using Stainless Steel Mesh, Glass Fibers, and Polyethylene on the Impact Strength of Heat Cure Denture Base Resin - An In Vitro Study.

    PubMed

    Murthy, H B Mallikarjuna; Shaik, Sharaz; Sachdeva, Harleen; Khare, Sumit; Haralur, Satheesh B; Roopa, K T

    2015-06-01

    The impact strength of denture base resin is of great concern and many approaches have been made to strengthen acrylic resin dentures. The objective of this study was to compare the impact strength of the denture base resin with and without reinforcement and to evaluate the impact strength of denture base resin when reinforced with stainless steel mesh, glass fiber, and polyethylene fibers in the woven form. The specimens (maxillary denture bases) were fabricated using a standard polyvinylsiloxane mold with conventional heat cured polymethyl methacrylate resin. The specimens were divided into four groups (n = 10). Group I specimens or control group were not reinforced. Group II specimens were reinforced with stainless steel mesh and Group III and Group IV specimens were reinforced with three percent by weight of glass fibers and polyethylene fibers in weave form respectively. All the specimens were immersed in water for 1-week before testing. The impact strength was measured with falling weight impact testing machine. One-way analysis of variance and Tukey's post-hoc test were used for statistical analysis. Highest impact strength values were exhibited by the specimens reinforced with polyethylene fibers followed by glass fibers, stainless steel mesh, and control group. Reinforcement of maxillary complete dentures showed a significant increase in impact strength when compared to unreinforced dentures. Polyethylene fibers exhibit better impact strength followed by glass fibers and stainless steel mesh. By using pre-impregnated glass and polyethylene fibers in woven form (prepregs) the impact strength of the denture bases can be increased effectively.

  6. Fibrin sealant for mesh fixation in laparoscopic umbilical hernia repair: 1-year results of a randomized controlled double-blinded study.

    PubMed

    Eriksen, J R; Bisgaard, T; Assaadzadeh, S; Jorgensen, L N; Rosenberg, J

    2013-08-01

    Fibrin sealant for mesh fixation has significant positive effects on early outcome after laparoscopic ventral hernia repair (LVHR) compared with titanium tacks. Whether fibrin sealant fixation also results in better long-term outcome is unknown. We performed a randomized controlled trial including patients with umbilical hernia defects from 1.5 to 5 cm at three Danish hernia centres. We used a 12 cm circular mesh. Participants were randomized to fibrin sealant or titanium tack fixation. Patients were seen in the outpatient clinic at 1 and 12 months follow-up. Forty patients were included of whom 34 were available for intention to treat analysis after 1 year. There were no significant differences in pain, discomfort, fatigue, satisfaction or quality of life between the two groups at the 1-year follow-up. Five patients (26 %) in the fibrin sealant group and one (6 %) in the tack group were diagnosed with a recurrence at the 1-year follow-up (p = 0.182) (overall recurrence rate 17 %). Hernia defects in patients with recurrence were significantly larger than in those without recurrence (median 4.0 vs. 2.8 cm, p = 0.009). Patients with larger hernia defects and fibrin sealant mesh fixation had higher recurrence rates than expected, although the study was not powered for assessment of recurrence. There was no significant difference between groups in any parameters after the 1-year follow-up. The beneficial effects of mesh fixation with fibrin sealant on early outcome warrant further studies on optimization of the surgical technique to prevent recurrence.

  7. The Use of Mesh Plates for Difficult Fractures of the Patella.

    PubMed

    Volgas, David; Dreger, Tina K

    2017-03-01

    Patella fractures present some of the more complicated fracture patterns in orthopaedic trauma care. This is partially due to the small size of the fragments but also the articular nature of each fragment. Fixation methods such as cerclage wiring, excision of smaller fragments, and screw fixation of larger fragments all have their own challenges. Our study examined our Level I trauma center's experience with variable angle locked 2.7 mm titanium plates for treatment of comminuted patella fractures or treatment of patellar nonunion. After Institutional Review Board approval, we used billing records to identify 105 patients who had undergone operative management of a displaced patella fracture between January 2011 and December 2015. We reviewed the radiographs of these patients to identify which patients underwent treatment with a mesh plate. We found 16 patients (6 males and 10 females) who had undergone fixation with a mesh plate; mean age was 47 years. Nine patients underwent primary open reduction internal fixation (ORIF) and seven underwent mesh plate fixation for failed ORIF of a patella fracture. The mean visual analog pain score was 2.75 (range, 0-9). The mean range of motion was 1 degree of extension (range, 0-10 degrees) to 110 degrees of flexion (range, 45-135 degrees). All fractures healed. Five patients required hardware removal for pain. This review illustrates the effectiveness of the locking mesh plate in two challenging clinical scenarios: that of patellar nonunion and comminuted fractures that preclude standard fixation methods. Although multiple options exist for patellar fracture fixation, the titanium mesh locking plate can be an effective option for retaining the patella in the setting of comminution. Further comparative studies should be undertaken to determine which method of treatment may be superior in the treatment of these fractures. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  8. eBits: Compact stream of mesh refinements for remote visualization

    DOE PAGES

    Sati, Mukul; Lindstrom, Peter; Rossignac, Jarek

    2016-05-12

    Here, we focus on applications where a remote client needs to visualize or process a complex, manifold triangle mesh, M, but only in a relatively small, user controlled, Region of Interest (RoI) at a time. The client first downloads a coarse base mesh, pre-computed on the server via a series of simplification passes on M, one per Level of Detail (LoD), each pass identifying an independent set of triangles, collapsing them, and, for each collapse, storing, in a Vertex Expansion Record (VER), the information needed to reverse the collapse. On each client initiated RoI modification request, the server pushes tomore » the client a selected subset of these VERs, which, when decoded and applied to refine the mesh locally, ensure that the portion in the RoI is always at full resolution. The eBits approach proposed here offers state of the art compression ratios (using less than 2.5 bits per new full resolution RoI triangle when the RoI has more than 2000 vertices to transmit the connectivity for the selective refinements) and fine-grain control (allowing the user to adjust the RoI by small increments). The effectiveness of eBits results from several novel ideas and novel variations of previous solutions. We represent the VERs using persistent labels so that they can be applied in different orders within a given LoD. The server maintains a shadow copy of the client’s mesh. To avoid sending IDs identifying which vertices should be expanded, we either transmit, for each new vertex, a compact encoding of its death tag–the LoD at which it will be expanded if it lies in the Rol–or transmit vertex masks for the RoI and its neighboring vertices. We also propose a three-step simplification that reduces the overall transmission cost by increasing both the simplification effectiveness and the regularity of the valences in the resulting meshes.« less

  9. eBits: Compact stream of mesh refinements for remote visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sati, Mukul; Lindstrom, Peter; Rossignac, Jarek

    2016-05-12

    Here, we focus on applications where a remote client needs to visualize or process a complex, manifold triangle mesh, M, but only in a relatively small, user controlled, Region of Interest (RoI) at a time. The client first downloads a coarse base mesh, pre-computed on the server via a series of simplification passes on M, one per Level of Detail (LoD), each pass identifying an independent set of triangles, collapsing them, and, for each collapse, storing, in a Vertex Expansion Record (VER), the information needed to reverse the collapse. On each client initiated RoI modification request, the server pushes tomore » the client a selected subset of these VERs, which, when decoded and applied to refine the mesh locally, ensure that the portion in the RoI is always at full resolution. The eBits approach proposed here offers state of the art compression ratios (using less than 2.5 bits per new full resolution RoI triangle when the RoI has more than 2000 vertices to transmit the connectivity for the selective refinements) and fine-grain control (allowing the user to adjust the RoI by small increments). The effectiveness of eBits results from several novel ideas and novel variations of previous solutions. We represent the VERs using persistent labels so that they can be applied in different orders within a given LoD. The server maintains a shadow copy of the client’s mesh. To avoid sending IDs identifying which vertices should be expanded, we either transmit, for each new vertex, a compact encoding of its death tag ​–the LoD at which it will be expanded if it lies in the RoI–or transmit vertex masks for the RoI and its neighboring vertices. We also propose a three-step simplification that reduces the overall transmission cost by increasing both the simplification effectiveness and the regularity of the valences in the resulting meshes.« less

  10. Integration of Mesh Optimization with 3D All-Hex Mesh Generation, LDRD Subcase 3504340000, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KNUPP,PATRICK; MITCHELL,SCOTT A.

    1999-11-01

    In an attempt to automatically produce high-quality all-hex meshes, we investigated a mesh improvement strategy: given an initial poor-quality all-hex mesh, we iteratively changed the element connectivity, adding and deleting elements and nodes, and optimized the node positions. We found a set of hex reconnection primitives. We improved the optimization algorithms so they can untangle a negative-Jacobian mesh, even considering Jacobians on the boundary, and subsequently optimize the condition number of elements in an untangled mesh. However, even after applying both the primitives and optimization we were unable to produce high-quality meshes in certain regions. Our experiences suggest that manymore » boundary configurations of quadrilaterals admit no hexahedral mesh with positive Jacobians, although we have no proof of this.« less

  11. Update on Development of Mesh Generation Algorithms in MeshKit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Rajeev; Vanderzee, Evan; Mahadevan, Vijay

    2015-09-30

    MeshKit uses a graph-based design for coding all its meshing algorithms, which includes the Reactor Geometry (and mesh) Generation (RGG) algorithms. This report highlights the developmental updates of all the algorithms, results and future work. Parallel versions of algorithms, documentation and performance results are reported. RGG GUI design was updated to incorporate new features requested by the users; boundary layer generation and parallel RGG support were added to the GUI. Key contributions to the release, upgrade and maintenance of other SIGMA1 libraries (CGM and MOAB) were made. Several fundamental meshing algorithms for creating a robust parallel meshing pipeline in MeshKitmore » are under development. Results and current status of automated, open-source and high quality nuclear reactor assembly mesh generation algorithms such as trimesher, quadmesher, interval matching and multi-sweeper are reported.« less

  12. Surgical mesh for ventral incisional hernia repairs: Understanding mesh design

    PubMed Central

    Rastegarpour, Ali; Cheung, Michael; Vardhan, Madhurima; Ibrahim, Mohamed M; Butler, Charles E; Levinson, Howard

    2016-01-01

    Surgical mesh has become an indispensable tool in hernia repair to improve outcomes and reduce costs; however, efforts are constantly being undertaken in mesh development to overcome postoperative complications. Common complications include infection, pain, adhesions, mesh extrusion and hernia recurrence. Reducing the complications of mesh implantation is of utmost importance given that hernias occur in hundreds of thousands of patients per year in the United States. In the present review, the authors present the different types of hernia meshes, discuss the key properties of mesh design, and demonstrate how each design element affects performance and complications. The present article will provide a basis for surgeons to understand which mesh to choose for patient care and why, and will explain the important technological aspects that will continue to evolve over the ensuing years. PMID:27054138

  13. Integrating a novel shape memory polymer into surgical meshes to improve device performance during laparoscopic hernia surgery

    NASA Astrophysics Data System (ADS)

    Zimkowski, Michael M.

    About 600,000 hernia repair surgeries are performed each year. The use of laparoscopic minimally invasive techniques has become increasingly popular in these operations. Use of surgical mesh in hernia repair has shown lower recurrence rates compared to other repair methods. However in many procedures, placement of surgical mesh can be challenging and even complicate the procedure, potentially leading to lengthy operating times. Various techniques have been attempted to improve mesh placement, including use of specialized systems to orient the mesh into a specific shape, with limited success and acceptance. In this work, a programmed novel Shape Memory Polymer (SMP) was integrated into commercially available polyester surgical meshes to add automatic unrolling and tissue conforming functionalities, while preserving the intrinsic structural properties of the original surgical mesh. Tensile testing and Dynamic Mechanical Analysis was performed on four different SMP formulas to identify appropriate mechanical properties for surgical mesh integration. In vitro testing involved monitoring the time required for a modified surgical mesh to deploy in a 37°C water bath. An acute porcine model was used to test the in vivo unrolling of SMP integrated surgical meshes. The SMP-integrated surgical meshes produced an automated, temperature activated, controlled deployment of surgical mesh on the order of several seconds, via laparoscopy in the animal model. A 30 day chronic rat model was used to test initial in vivo subcutaneous biocompatibility. To produce large more clinical relevant sizes of mesh, a mold was developed to facilitate manufacturing of SMP-integrated surgical mesh. The mold is capable of manufacturing mesh up to 361 cm2, which is believed to accommodate the majority of clinical cases. Results indicate surgical mesh modified with SMP is capable of laparoscopic deployment in vivo, activated by body temperature, and possesses the necessary strength and biocompatibility to function as suitable ventral hernia repair mesh, while offering a reduction in surgical operating time and improving mesh placement characteristics. Future work will include ball-burst tests similar to ASTM D3787-07, direct surgeon feedback studies, and a 30 day chronic porcine model to evaluate the SMP surgical mesh in a realistic hernia repair environment, using laparoscopic techniques for typical ventral hernia repair.

  14. Meshes optimized for discrete exterior calculus (DEC).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mousley, Sarah C.; Deakin, Michael; Knupp, Patrick

    We study the optimization of an energy function used by the meshing community to measure and improve mesh quality. This energy is non-traditional because it is dependent on both the primal triangulation and its dual Voronoi (power) diagram. The energy is a measure of the mesh's quality for usage in Discrete Exterior Calculus (DEC), a method for numerically solving PDEs. In DEC, the PDE domain is triangulated and this mesh is used to obtain discrete approximations of the continuous operators in the PDE. The energy of a mesh gives an upper bound on the error of the discrete diagonal approximationmore » of the Hodge star operator. In practice, one begins with an initial mesh and then makes adjustments to produce a mesh of lower energy. However, we have discovered several shortcomings in directly optimizing this energy, e.g. its non-convexity, and we show that the search for an optimized mesh may lead to mesh inversion (malformed triangles). We propose a new energy function to address some of these issues.« less

  15. Determination of Proper Timing for the Placement of Intra-Abdominal Mesh after Incidental Enterotomy in a Rodent Model (Rattus norvegicus).

    PubMed

    Muir, Kathryn B; Smoot, Charles P; Viera, Jennifer L; Sirkin, Maxwell R; Yoon, Brian; Bader, Julia; Smiley, Rebecca; Holt, Danielle; Hofmann, Luke J

    2018-04-01

    Controversy exists regarding the appropriate timing for placement of permanent intra-abdominal mesh after inadvertent enterotomy during elective hernia repair. The aim of this study was to examine mesh placement at variable postoperative periods and the subsequent risk of infection. Fifty rodents were divided into five groups. Groups one to four underwent laparotomy, enterotomy, and repair. Physiomesh® was placed at the index operation one, three, or seven days postoperatively in Groups 1, 2, 3, and 4. Group 5 underwent mesh placement only. Necropsy with mesh harvest was performed seven days after placement. Cultures of mesh were obtained and Fisher's exact test was used to compare groups. Bacterial growth postsonication was identified in 30, 30, 50, and 90 per cent versus 20 per cent in controls. Compared with controls, there was significantly increased risk of mesh infection when it was placed seven days after enterotomy (P = 0.006). There was no significant difference in bacterial growth when mesh was placed at the time of enterotomy, one or three days later. The risk of bacterial contamination of permanent mesh placed immediately after inadvertent enterotomy during elective hernia repair is as safe as placing mesh at one or three days. Placing mesh at seven days significantly increased the risk of mesh contamination.

  16. Grain Boundary Conformed Volumetric Mesh Generation from a Three-Dimensional Voxellated Polycrystalline Microstructure

    NASA Astrophysics Data System (ADS)

    Lee, Myeong-Jin; Jeon, Young-Ju; Son, Ga-Eun; Sung, Sihwa; Kim, Ju-Young; Han, Heung Nam; Cho, Soo Gyeong; Jung, Sang-Hyun; Lee, Sukbin

    2018-07-01

    We present a new comprehensive scheme for generating grain boundary conformed, volumetric mesh elements from a three-dimensional voxellated polycrystalline microstructure. From the voxellated image of a polycrystalline microstructure obtained from the Monte Carlo Potts model in the context of isotropic normal grain growth simulation, its grain boundary network is approximated as a curvature-maintained conformal triangular surface mesh using a set of in-house codes. In order to improve the surface mesh quality and to adjust mesh resolution, various re-meshing techniques in a commercial software are applied to the approximated grain boundary mesh. It is found that the aspect ratio, the minimum angle and the Jacobian value of the re-meshed surface triangular mesh are successfully improved. Using such an enhanced surface mesh, conformal volumetric tetrahedral elements of the polycrystalline microstructure are created using a commercial software, again. The resultant mesh seamlessly retains the short- and long-range curvature of grain boundaries and junctions as well as the realistic morphology of the grains inside the polycrystal. It is noted that the proposed scheme is the first to successfully generate three-dimensional mesh elements for polycrystals with high enough quality to be used for the microstructure-based finite element analysis, while the realistic characteristics of grain boundaries and grains are maintained from the corresponding voxellated microstructure image.

  17. Grain Boundary Conformed Volumetric Mesh Generation from a Three-Dimensional Voxellated Polycrystalline Microstructure

    NASA Astrophysics Data System (ADS)

    Lee, Myeong-Jin; Jeon, Young-Ju; Son, Ga-Eun; Sung, Sihwa; Kim, Ju-Young; Han, Heung Nam; Cho, Soo Gyeong; Jung, Sang-Hyun; Lee, Sukbin

    2018-03-01

    We present a new comprehensive scheme for generating grain boundary conformed, volumetric mesh elements from a three-dimensional voxellated polycrystalline microstructure. From the voxellated image of a polycrystalline microstructure obtained from the Monte Carlo Potts model in the context of isotropic normal grain growth simulation, its grain boundary network is approximated as a curvature-maintained conformal triangular surface mesh using a set of in-house codes. In order to improve the surface mesh quality and to adjust mesh resolution, various re-meshing techniques in a commercial software are applied to the approximated grain boundary mesh. It is found that the aspect ratio, the minimum angle and the Jacobian value of the re-meshed surface triangular mesh are successfully improved. Using such an enhanced surface mesh, conformal volumetric tetrahedral elements of the polycrystalline microstructure are created using a commercial software, again. The resultant mesh seamlessly retains the short- and long-range curvature of grain boundaries and junctions as well as the realistic morphology of the grains inside the polycrystal. It is noted that the proposed scheme is the first to successfully generate three-dimensional mesh elements for polycrystals with high enough quality to be used for the microstructure-based finite element analysis, while the realistic characteristics of grain boundaries and grains are maintained from the corresponding voxellated microstructure image.

  18. Automatic Mesh Generation of Hybrid Mesh on Valves in Multiple Positions in Feedline Systems

    NASA Technical Reports Server (NTRS)

    Ross, Douglass H.; Ito, Yasushi; Dorothy, Fredric W.; Shih, Alan M.; Peugeot, John

    2010-01-01

    Fluid flow simulations through a valve often require evaluation of the valve in multiple opening positions. A mesh has to be generated for the valve for each position and compounding. The problem is the fact that the valve is typically part of a larger feedline system. In this paper, we propose to develop a system to create meshes for feedline systems with parametrically controlled valve openings. Herein we outline two approaches to generate the meshes for a valve in a feedline system at multiple positions. There are two issues that must be addressed. The first is the creation of the mesh on the valve for multiple positions. The second is the generation of the mesh for the total feedline system including the valve. For generation of the mesh on the valve, we will describe the use of topology matching and mesh generation parameter transfer. For generation of the total feedline system, we will describe two solutions that we have implemented. In both cases the valve is treated as a component in the feedline system. In the first method the geometry of the valve in the feedline system is replaced with a valve at a different opening position. Geometry is created to connect the valve to the feedline system. Then topology for the valve is created and the portion of the topology for the valve is topology matched to the standard valve in a different position. The mesh generation parameters are transferred and then the volume mesh for the whole feedline system is generated. The second method enables the user to generate the volume mesh on the valve in multiple open positions external to the feedline system, to insert it into the volume mesh of the feedline system, and to reduce the amount of computer time required for mesh generation because only two small volume meshes connecting the valve to the feedline mesh need to be updated.

  19. MOAB : a mesh-oriented database.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tautges, Timothy James; Ernst, Corey; Stimpson, Clint

    A finite element mesh is used to decompose a continuous domain into a discretized representation. The finite element method solves PDEs on this mesh by modeling complex functions as a set of simple basis functions with coefficients at mesh vertices and prescribed continuity between elements. The mesh is one of the fundamental types of data linking the various tools in the FEA process (mesh generation, analysis, visualization, etc.). Thus, the representation of mesh data and operations on those data play a very important role in FEA-based simulations. MOAB is a component for representing and evaluating mesh data. MOAB can storemore » structured and unstructured mesh, consisting of elements in the finite element 'zoo'. The functional interface to MOAB is simple yet powerful, allowing the representation of many types of metadata commonly found on the mesh. MOAB is optimized for efficiency in space and time, based on access to mesh in chunks rather than through individual entities, while also versatile enough to support individual entity access. The MOAB data model consists of a mesh interface instance, mesh entities (vertices and elements), sets, and tags. Entities are addressed through handles rather than pointers, to allow the underlying representation of an entity to change without changing the handle to that entity. Sets are arbitrary groupings of mesh entities and other sets. Sets also support parent/child relationships as a relation distinct from sets containing other sets. The directed-graph provided by set parent/child relationships is useful for modeling topological relations from a geometric model or other metadata. Tags are named data which can be assigned to the mesh as a whole, individual entities, or sets. Tags are a mechanism for attaching data to individual entities and sets are a mechanism for describing relations between entities; the combination of these two mechanisms is a powerful yet simple interface for representing metadata or application-specific data. For example, sets and tags can be used together to describe geometric topology, boundary condition, and inter-processor interface groupings in a mesh. MOAB is used in several ways in various applications. MOAB serves as the underlying mesh data representation in the VERDE mesh verification code. MOAB can also be used as a mesh input mechanism, using mesh readers included with MOAB, or as a translator between mesh formats, using readers and writers included with MOAB. The remainder of this report is organized as follows. Section 2, 'Getting Started', provides a few simple examples of using MOAB to perform simple tasks on a mesh. Section 3 discusses the MOAB data model in more detail, including some aspects of the implementation. Section 4 summarizes the MOAB function API. Section 5 describes some of the tools included with MOAB, and the implementation of mesh readers/writers for MOAB. Section 6 contains a brief description of MOAB's relation to the TSTT mesh interface. Section 7 gives a conclusion and future plans for MOAB development. Section 8 gives references cited in this report. A reference description of the full MOAB API is contained in Section 9.« less

  20. 3D animation of facial plastic surgery based on computer graphics

    NASA Astrophysics Data System (ADS)

    Zhang, Zonghua; Zhao, Yan

    2013-12-01

    More and more people, especial women, are getting desired to be more beautiful than ever. To some extent, it becomes true because the plastic surgery of face was capable in the early 20th and even earlier as doctors just dealing with war injures of face. However, the effect of post-operation is not always satisfying since no animation could be seen by the patients beforehand. In this paper, by combining plastic surgery of face and computer graphics, a novel method of simulated appearance of post-operation will be given to demonstrate the modified face from different viewpoints. The 3D human face data are obtained by using 3D fringe pattern imaging systems and CT imaging systems and then converted into STL (STereo Lithography) file format. STL file is made up of small 3D triangular primitives. The triangular mesh can be reconstructed by using hash function. Top triangular meshes in depth out of numbers of triangles must be picked up by ray-casting technique. Mesh deformation is based on the front triangular mesh in the process of simulation, which deforms interest area instead of control points. Experiments on face model show that the proposed 3D animation facial plastic surgery can effectively demonstrate the simulated appearance of post-operation.

  1. Promoting Wired Links in Wireless Mesh Networks: An Efficient Engineering Solution

    PubMed Central

    Barekatain, Behrang; Raahemifar, Kaamran; Ariza Quintana, Alfonso; Triviño Cabrera, Alicia

    2015-01-01

    Wireless Mesh Networks (WMNs) cannot completely guarantee good performance of traffic sources such as video streaming. To improve the network performance, this study proposes an efficient engineering solution named Wireless-to-Ethernet-Mesh-Portal-Passageway (WEMPP) that allows effective use of wired communication in WMNs. WEMPP permits transmitting data through wired and stable paths even when the destination is in the same network as the source (Intra-traffic). Tested with four popular routing protocols (Optimized Link State Routing or OLSR as a proactive protocol, Dynamic MANET On-demand or DYMO as a reactive protocol, DYMO with spanning tree ability and HWMP), WEMPP considerably decreases the end-to-end delay, jitter, contentions and interferences on nodes, even when the network size or density varies. WEMPP is also cost-effective and increases the network throughput. Moreover, in contrast to solutions proposed by previous studies, WEMPP is easily implemented by modifying the firmware of the actual Ethernet hardware without altering the routing protocols and/or the functionality of the IP/MAC/Upper layers. In fact, there is no need for modifying the functionalities of other mesh components in order to work with WEMPPs. The results of this study show that WEMPP significantly increases the performance of all routing protocols, thus leading to better video quality on nodes. PMID:25793516

  2. Particle Shape and Composition of NU-LHT-2M

    NASA Technical Reports Server (NTRS)

    Rickman, D. L.; Lowers, H.

    2012-01-01

    Particle shapes of the lunar regolith simulant NU-LHT-2M were analyzed by scanning electron microscope of polished sections. These data provide shape, size, and composition information on a particle by particle basis. 5,193 particles were measured, divided into four sized fractions: less than 200 mesh, 200-100 mesh, 100-35 mesh, and greater than 35 mesh. 99.2% of all particles were monominerallic. Minor size versus composition effects were noted in minor and trace mineralogy. The two metrics used are aspect ratio and Heywood factor, plotted as normalized frequency distributions. Shape versus composition effects were noted for glass and possibly chlorite. To aid in analysis, the measured shape distributions are compared to data for ellipses and rectangles. Several other simple geometric shapes are also investigated as to how they plot in aspect ratio versus Heywood factor space. The bulk of the data previously reported, which were acquired in a plane of projection, are between the ellipse and rectangle lines. In contrast, these data, which were acquired in a plane of section, clearly show that a significant number of particles have concave hulls in this view. Appendices cover details of measurement error, use of geometric shapes for comparative analysis, and a logic for comparing data from plane of projection and plane of section measurements.

  3. Effect of process variables on the calorific value and compressive strength of the briquettes made from high moisture Empty Fruit Bunches (EFB)

    NASA Astrophysics Data System (ADS)

    Helwani, Z.; Fatra, W.; Arifin, L.; Othman, M. R.; Syapsan

    2018-04-01

    In this study, the manual hydraulic press was designed to prepare the briquettes from selected biomass waste. Each biomass was sun-dried and milled into small particle sizes before mixing with crude glycerol that used as a biomass binder. The effects of applied pressure levels of 100, 110, 120 bars, the particle size of 60, 80 and 100 mesh and the binder composition on the density, compressive strength and calorific heating value of the prepared briquettes were investigated using response surface methodology (RSM). Results showed that the briquettes have an average inside diameter, average outside diameter, and height of 12, 38, and 25-30 mm, respectively. The density of the briquettes increased with increasing the applied pressure, was in the range of 623-923 kg/m3. The densest briquettes were obtained at 80 mesh of particle size, 53:47 binder composition ratio and 110 bars of pressurizing. The heating value of the briquette reached up to 28.99 MJ/kg obtained on the particle size of 80 mesh, 53:47 binder composition, and 110 bars and the best compressive strength of 6.991 kg/cm2 obtained at a particle size of 100 mesh, 60:40 binder composition, and 120 bars. Process conditions influence the calorific value significantly.

  4. High-fidelity meshes from tissue samples for diffusion MRI simulations.

    PubMed

    Panagiotaki, Eleftheria; Hall, Matt G; Zhang, Hui; Siow, Bernard; Lythgoe, Mark F; Alexander, Daniel C

    2010-01-01

    This paper presents a method for constructing detailed geometric models of tissue microstructure for synthesizing realistic diffusion MRI data. We construct three-dimensional mesh models from confocal microscopy image stacks using the marching cubes algorithm. Random-walk simulations within the resulting meshes provide synthetic diffusion MRI measurements. Experiments optimise simulation parameters and complexity of the meshes to achieve accuracy and reproducibility while minimizing computation time. Finally we assess the quality of the synthesized data from the mesh models by comparison with scanner data as well as synthetic data from simple geometric models and simplified meshes that vary only in two dimensions. The results support the extra complexity of the three-dimensional mesh compared to simpler models although sensitivity to the mesh resolution is quite robust.

  5. Reversible switch between underwater superaerophilicity and superaerophobicity on the superhydrophobic nanowire-haired mesh for controlling underwater bubble wettability

    NASA Astrophysics Data System (ADS)

    Shan, Chao; Yong, Jiale; Yang, Qing; Chen, Feng; Huo, Jinglan; Zhuang, Jian; Jiang, Zhuangde; Hou, Xun

    2018-04-01

    Controlling the underwater bubble wettability on a solid surface is of great research significance. In this letter, a simple method to achieve reversible switch between underwater superaerophilicity and underwater superaerophobicity on a superhydrophobic nanowire-haired mesh by alternately vacuumizing treatment in water and drying in air is reported. Such reversible switch endows the as-prepared mesh with many functional applications in controlling bubble's behavior on a solid substrate. The underwater superaerophilic mesh is able to absorb/capture bubbles in water, while the superaerophobic mesh has great anti-bubble ability. The reversible switch between underwater superaerophilicity and superaerophobicity can selectively allow bubbles to go through the resultant mesh; that is, bubbles can pass through the underwater superaerophilic mesh while are fully intercepted by the underwater superaerophobic mesh in a water medium. We believe these meshes will have important applications in removing or capturing underwater bubbles/gas.

  6. Metamesh, Version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staley, Martin

    Metamesh is a general-purpose C++ library for creating "mesh" data structures from smaller parts. That is, rather than providing a traditional "mesh format," as many libraries do, or a GUI for building meshes, Metamesh provides tools by which the mesh structures themselves can be built. Consider that a mesh in up to three dimensions can contain nodes (0d entities), edges (1d), faces (2d), and cells (3d). Edges are typically defined from two nodes. Faces can be defined from nodes or edges; and cells from nodes, edges, or faces. Someone might also wish to allow for general faces or cells, ormore » for only a specific variant - say, triangular faces and tetrahedral cells. Moreover, a mesh can have the same or a lesser dimension than that of its enclosing space. In 3d, say, one could have a full 3d mesh, a 2d "sheet" mesh without cells, a 1d "string" mesh with neither faces nor cells, or even a 1d "point cloud." And, aside from the mesh structure itself, additional data might be wanted: velocities at nodes, say, or fluxes across faces, or an average density in each cell. Metamesh supports all of this, through C++ generics and template metaprogramming techniques. Users fit Metamesh constructs together to define a mesh layout, and Metamesh then automatically provides the newly constructed mesh with functionality. Metamesh also provides facilities for spinning, extruding, visualizing, and performing I/O of whatever meshes a user builds.« less

  7. Anisotropic evaluation of synthetic surgical meshes.

    PubMed

    Saberski, E R; Orenstein, S B; Novitsky, Y W

    2011-02-01

    The material properties of meshes used in hernia repair contribute to the overall mechanical behavior of the repair. The anisotropic potential of synthetic meshes, representing a difference in material properties (e.g., elasticity) in different material axes, is not well defined to date. Haphazard orientation of anisotropic mesh material can contribute to inconsistent surgical outcomes. We aimed to characterize and compare anisotropic properties of commonly used synthetic meshes. Six different polypropylene (Trelex(®), ProLite™, Ultrapro™), polyester (Parietex™), and PTFE-based (Dualmesh(®), Infinit) synthetic meshes were selected. Longitudinal and transverse axes were defined for each mesh, and samples were cut in each axis orientation. Samples underwent uniaxial tensile testing, from which the elastic modulus (E) in each axis was determined. The degree of anisotropy (λ) was calculated as a logarithmic expression of the ratio between the elastic modulus in each axis. Five of six meshes displayed significant anisotropic behavior. Ultrapro™ and Infinit exhibited approximately 12- and 20-fold differences between perpendicular axes, respectively. Trelex(®), ProLite™, and Parietex™ were 2.3-2.4 times. Dualmesh(®) was the least anisotropic mesh, without marked difference between the axes. Anisotropy of synthetic meshes has been underappreciated. In this study, we found striking differences between elastic properties of perpendicular axes for most commonly used synthetic meshes. Indiscriminate orientation of anisotropic mesh may adversely affect hernia repairs. Proper labeling of all implants by manufacturers should be mandatory. Understanding the specific anisotropic behavior of synthetic meshes should allow surgeons to employ rational implant orientation to maximize outcomes of hernia repair.

  8. Use and risks of surgical mesh for pelvic organ prolapse surgery in women in New York state: population based cohort study.

    PubMed

    Chughtai, Bilal; Mao, Jialin; Buck, Jessica; Kaplan, Steven; Sedrakyan, Art

    2015-06-02

    To assess the use of mesh in pelvic organ prolapse surgery, and compare short term outcomes between procedures using and not using mesh. All inclusive, population based cohort study. Statewide surgical care captured in the New York Statewide Planning and Research Cooperative System. Women who underwent prolapse repair procedures in New York state from 2008 to 2011. 90 day safety events and reinterventions within one year, after propensity score matching. Categorical, time to event, and subgroup analyses (<65 and ≥ 65 year age groups) were conducted. Of 27,991 patients in total, 7338 and 20, 653 underwent prolapse repair procedures with and without mesh, respectively. Mesh use increased by 44.7%, from 1461 procedures in 2008 to 2114 procedures in 2011. Most patients in the cohort were younger than 65 years (62.3% (n=17,424/27, 991)). However, more patients were aged 65 years and older in the mesh group than in the non-mesh group (44.3% (n=3249) v 35.4% (n=7318)). Complications after surgery were not common, irrespective of the use or non-use of mesh. After propensity score matching, patients who received the surgery with mesh had a higher chance of having a reintervention within one year (mesh 3.3% v no mesh 2.2%, hazard ratio 1.47 (95% confidence interval 1.21 to 1.79)) and were more likely to have urinary retention within 90 days (mesh 7.5% v no mesh 5.6%, risk ratio 1.33 (95% confidence interval 1.18 to 1.51)), compared with those who received surgery without mesh. In subgroup analyses based on age, mesh use was associated with an increased risk of reintervention within one year in patients under age 65 years, and increased risk of urinary retention in patients aged 65 years and over. Despite multiple warnings released by the US Food and Drug Administration since 2008, use of mesh in pelvic organ prolapse surgery continues to grow. In this statewide comprehensive study, mesh procedures were associated with an increased risk of reinterventions within one year and urinary retention after surgery. © Chughtai et al 2015.

  9. Cost Analysis of Cerebrospinal Fluid Leaks and Cerebrospinal Fluid Leak Prevention in Patients Undergoing Cerebellopontine Angle Surgery.

    PubMed

    Chern, Alexander; Hunter, Jacob B; Bennett, Marc L

    2017-01-01

    To determine if cranioplasty techniques following translabyrinthine approaches to the cerebellopontine angle are cost-effective. Retrospective case series. One hundred eighty patients with available financial data who underwent translabyrinthine approaches at a single academic referral center between 2005 and 2015. Cranioplasty with a dural substitute, layered fat graft, and a resorbable mesh plate secured with screws Main Outcome Measures: billing data was obtained for each patient's hospital course for translabyrinthine approaches and postoperative cerebrospinal fluid (CSF) leaks. One hundred nineteen patients underwent translabyrinthine approaches with an abdominal fat graft closure, with a median cost of $25759.89 (range, $15885.65-$136433.07). Sixty-one patients underwent translabyrinthine approaches with a dural substitute, abdominal fat graft, and a resorbable mesh for closure, with a median cost of $29314.97 (range, $17674.28-$111404.55). The median cost of a CSF leak was $50401.25 (range, $0-$384761.71). The additional cost of a CSF leak when shared by all patients who underwent translabyrinthine approaches is $6048.15. The addition of a dural substitute and a resorbable mesh plate after translabyrinthine approaches reduced the CSF leak from 12 to 1.9%, an 84.2% reduction, and a median savings per patient of $2932.23. Applying our cohort's billing data to previously published cranioplasty techniques, costs, and leak rate improvements after translabyrinthine approaches, all techniques were found to be cost-effective. Resorbable mesh cranioplasty is cost-effective at reducing CSF leaks after translabyrinthine approaches. Per our billing data and achieving the same CSF leak rate, cranioplasty costs exceeding $5090.53 are not cost-effective.

  10. Interpolation methods and the accuracy of lattice-Boltzmann mesh refinement

    DOE PAGES

    Guzik, Stephen M.; Weisgraber, Todd H.; Colella, Phillip; ...

    2013-12-10

    A lattice-Boltzmann model to solve the equivalent of the Navier-Stokes equations on adap- tively refined grids is presented. A method for transferring information across interfaces between different grid resolutions was developed following established techniques for finite- volume representations. This new approach relies on a space-time interpolation and solving constrained least-squares problems to ensure conservation. The effectiveness of this method at maintaining the second order accuracy of lattice-Boltzmann is demonstrated through a series of benchmark simulations and detailed mesh refinement studies. These results exhibit smaller solution errors and improved convergence when compared with similar approaches relying only on spatial interpolation. Examplesmore » highlighting the mesh adaptivity of this method are also provided.« less

  11. Element Verification and Comparison in Sierra/Solid Mechanics Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohashi, Yuki; Roth, William

    2016-05-01

    The goal of this project was to study the effects of element selection on the Sierra/SM solutions to five common solid mechanics problems. A total of nine element formulations were used for each problem. The models were run multiple times with varying spatial and temporal discretization in order to ensure convergence. The first four problems have been compared to analytical solutions, and all numerical results were found to be sufficiently accurate. The penetration problem was found to have a high mesh dependence in terms of element type, mesh discretization, and meshing scheme. Also, the time to solution is shown formore » each problem in order to facilitate element selection when computer resources are limited.« less

  12. Adaptive Crack Modeling with Interface Solid Elements for Plain and Fiber Reinforced Concrete Structures.

    PubMed

    Zhan, Yijian; Meschke, Günther

    2017-07-08

    The effective analysis of the nonlinear behavior of cement-based engineering structures not only demands physically-reliable models, but also computationally-efficient algorithms. Based on a continuum interface element formulation that is suitable to capture complex cracking phenomena in concrete materials and structures, an adaptive mesh processing technique is proposed for computational simulations of plain and fiber-reinforced concrete structures to progressively disintegrate the initial finite element mesh and to add degenerated solid elements into the interfacial gaps. In comparison with the implementation where the entire mesh is processed prior to the computation, the proposed adaptive cracking model allows simulating the failure behavior of plain and fiber-reinforced concrete structures with remarkably reduced computational expense.

  13. Adaptive Crack Modeling with Interface Solid Elements for Plain and Fiber Reinforced Concrete Structures

    PubMed Central

    Zhan, Yijian

    2017-01-01

    The effective analysis of the nonlinear behavior of cement-based engineering structures not only demands physically-reliable models, but also computationally-efficient algorithms. Based on a continuum interface element formulation that is suitable to capture complex cracking phenomena in concrete materials and structures, an adaptive mesh processing technique is proposed for computational simulations of plain and fiber-reinforced concrete structures to progressively disintegrate the initial finite element mesh and to add degenerated solid elements into the interfacial gaps. In comparison with the implementation where the entire mesh is processed prior to the computation, the proposed adaptive cracking model allows simulating the failure behavior of plain and fiber-reinforced concrete structures with remarkably reduced computational expense. PMID:28773130

  14. Surgical outcomes and quality of life post-synthetic mesh-augmented repair for pelvic organ prolapse in the Chinese population.

    PubMed

    Sun, Xiuli; Zhang, Xiaowei; Wang, Jianliu

    2014-02-01

    To investigate the surgical outcomes, urinary incontinence and quality of life (QOL) of patients with pelvic organ prolapse after synthetic mesh-augmented repair in the Chinese population. This is a retrospective study of women who underwent synthetic mesh-augmented repair. Surgical outcomes were investigated by recurrence rate of prolapse and Organ Prolapse Quantification, and QOL by Pelvic Floor Impact Questionnaire-7 (PFIQ-7) and Pelvic Floor Distress Inventory-20 (PFDI-20). The sex life quality was evaluated by Pelvic Organ Prolapse/Urinary Incontinence Sexual Questionnaire-31 (PISQ-31). Eighty-three patients completed the entire study. Anatomical success was 90.36%. Of patients with preoperative stress urinary incontinence, 91.89% claimed that the incontinence symptoms were completely relieved. The 6-month PFDI-20 and PFIQ-7 scores were significantly decreased, indicating that improved QOL occurs. However, the PISQ-31 showed no significant difference between preoperative and postoperative data in sex life quality. The synthetic polypropylene mesh is effective in treating POP and may improve QOL with no significant difference in the sexual life postoperatively. De novo stress urinary incontinence may occur after synthetic mesh-augmented repair. © 2013 The Authors. Journal of Obstetrics and Gynaecology Research © 2013 Japan Society of Obstetrics and Gynecology.

  15. Biomechanics of Polyhydroxyalkanoate Mesh-Augmented Single-Row Rotator Cuff Repairs.

    PubMed

    Tashjian, Robert Z; Kolz, Christopher W; Suter, Thomas; Henninger, Heath B

    Polyhydroxyalkanoate (PHA) mesh is a bioresorbable scaffold used to reinforce the suture-tendon interface in rotator cuff repairs (RCRs). We conducted a study of cyclic and ultimate failure properties of PHA mesh-augmented single-row RCRs and nonaugmented RCRs. Eight pairs of fresh-frozen cadaver humeri (6 male, 2 female) were tested. Mean (SD) age was 61 (9) years. The supraspinatus tendon was resected and reattached in a single-row configuration using 2 triple-loaded suture anchors and 6 simple stitches. The opposite humerus underwent RCR augmented with 2 strips of 13-mm × 23-mm PHA mesh. Humeri were mounted in an Instron load frame, cycled 1000 times to 1.0 MPa of effective stress, and loaded to failure. Construct gapping and ultimate failure loads/displacements were recorded. Paired t tests compared augmented and nonaugmented RCRs (P ≤ .05 was significant). There was no difference in gapping over 1000 cycles (P = .879). Mean (SD) failure load was higher for PHA mesh-augmented RCRs, 571 (173) N, than for nonaugmented (control) RCRs, 472 (120) N (P = .042), and failures were consistent within pairs because of tissue failure at the knots or anchor pullout. This technique for arthroscopic augmentation can be used to improve initial biomechanical repair strength in tears at risk for failure.

  16. Improving global estimates of syphilis in pregnancy by diagnostic test type: A systematic review and meta-analysis.

    PubMed

    Ham, D Cal; Lin, Carol; Newman, Lori; Wijesooriya, N Saman; Kamb, Mary

    2015-06-01

    "Probable active syphilis," is defined as seroreactivity in both non-treponemal and treponemal tests. A correction factor of 65%, namely the proportion of pregnant women reactive in one syphilis test type that were likely reactive in the second, was applied to reported syphilis seropositivity data reported to WHO for global estimates of syphilis during pregnancy. To identify more accurate correction factors based on test type reported. Medline search using: "Syphilis [Mesh] and Pregnancy [Mesh]," "Syphilis [Mesh] and Prenatal Diagnosis [Mesh]," and "Syphilis [Mesh] and Antenatal [Keyword]. Eligible studies must have reported results for pregnant or puerperal women for both non-treponemal and treponemal serology. We manually calculated the crude percent estimates of subjects with both reactive treponemal and reactive non-treponemal tests among subjects with reactive treponemal and among subjects with reactive non-treponemal tests. We summarized the percent estimates using random effects models. Countries reporting both reactive non-treponemal and reactive treponemal testing required no correction factor. Countries reporting non-treponemal testing or treponemal testing alone required a correction factor of 52.2% and 53.6%, respectively. Countries not reporting test type required a correction factor of 68.6%. Future estimates should adjust reported maternal syphilis seropositivity by test type to ensure accuracy. Published by Elsevier Ireland Ltd.

  17. Grouper: A Compact, Streamable Triangle Mesh Data Structure.

    PubMed

    Luffel, Mark; Gurung, Topraj; Lindstrom, Peter; Rossignac, Jarek

    2013-05-08

    We present Grouper: an all-in-one compact file format, random-access data structure, and streamable representation for large triangle meshes. Similarly to the recently published SQuad representation, Grouper represents the geometry and connectivity of a mesh by grouping vertices and triangles into fixed-size records, most of which store two adjacent triangles and a shared vertex. Unlike SQuad, however, Grouper interleaves geometry with connectivity and uses a new connectivity representation to ensure that vertices and triangles can be stored in a coherent order that enables memory-efficient sequential stream processing. We present a linear-time construction algorithm that allows streaming out Grouper meshes using a small memory footprint while preserving the initial ordering of vertices. As part of this construction, we show how the problem of assigning vertices and triangles to groups reduces to a well-known NP-hard optimization problem, and present a simple yet effective heuristic solution that performs well in practice. Our array-based Grouper representation also doubles as a triangle mesh data structure that allows direct access to vertices and triangles. Storing only about two integer references per triangle, Grouper answers both incidence and adjacency queries in amortized constant time. Our compact representation enables data-parallel processing on multicore computers, instant partitioning and fast transmission for distributed processing, as well as efficient out-of-core access.

  18. ALEGRA -- A massively parallel h-adaptive code for solid dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Summers, R.M.; Wong, M.K.; Boucheron, E.A.

    1997-12-31

    ALEGRA is a multi-material, arbitrary-Lagrangian-Eulerian (ALE) code for solid dynamics designed to run on massively parallel (MP) computers. It combines the features of modern Eulerian shock codes, such as CTH, with modern Lagrangian structural analysis codes using an unstructured grid. ALEGRA is being developed for use on the teraflop supercomputers to conduct advanced three-dimensional (3D) simulations of shock phenomena important to a variety of systems. ALEGRA was designed with the Single Program Multiple Data (SPMD) paradigm, in which the mesh is decomposed into sub-meshes so that each processor gets a single sub-mesh with approximately the same number of elements. Usingmore » this approach the authors have been able to produce a single code that can scale from one processor to thousands of processors. A current major effort is to develop efficient, high precision simulation capabilities for ALEGRA, without the computational cost of using a global highly resolved mesh, through flexible, robust h-adaptivity of finite elements. H-adaptivity is the dynamic refinement of the mesh by subdividing elements, thus changing the characteristic element size and reducing numerical error. The authors are working on several major technical challenges that must be met to make effective use of HAMMER on MP computers.« less

  19. Grid vs Mesh: The case of Hyper-resolution Modeling in Urban Landscapes

    NASA Astrophysics Data System (ADS)

    Grimley, L. E.; Tijerina, D.; Khanam, M.; Tiernan, E. D.; Frazier, N.; Ogden, F. L.; Steinke, R. C.; Maxwell, R. M.; Cohen, S.

    2017-12-01

    In this study, the relative performance of ADHydro and GSSHA was analyzed for a small and large rainfall event in an urban watershed called Dead Run near Baltimore, Maryland. ADHydro is a physics-based, distributed, hydrologic model that uses an unstructured mesh and operates in a high performance computing environment. The Gridded Surface/Subsurface Hydrological Analysis (GSSHA) model, which is maintained by the US Army Corps of Engineers, is a physics-based, distributed, hydrologic model that incorporates subsurface utilities and uses a structured mesh. A large portion of the work served as alpha-testing of ADHydro, which is under development by the CI-WATER modeling team at the University of Wyoming. Triangular meshes at variable resolutions were created to assess the sensitivity of ADHydro to changes in resolution and test the model's ability to handle a complicated urban routing network with structures present. ADHydro was compared with GSSHA which does not have the flexibility of an unstructured grid but does incorporate the storm drainage network. The modelled runoff hydrographs were compared to observed United States Geological Survey (USGS) stream gage data. The objective of this study was to analyze the effects of mesh type and resolution using ADHydro and GSSHA in simulations of an urban watershed.

  20. TESS: A RELATIVISTIC HYDRODYNAMICS CODE ON A MOVING VORONOI MESH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffell, Paul C.; MacFadyen, Andrew I., E-mail: pcd233@nyu.edu, E-mail: macfadyen@nyu.edu

    2011-12-01

    We have generalized a method for the numerical solution of hyperbolic systems of equations using a dynamic Voronoi tessellation of the computational domain. The Voronoi tessellation is used to generate moving computational meshes for the solution of multidimensional systems of conservation laws in finite-volume form. The mesh-generating points are free to move with arbitrary velocity, with the choice of zero velocity resulting in an Eulerian formulation. Moving the points at the local fluid velocity makes the formulation effectively Lagrangian. We have written the TESS code to solve the equations of compressible hydrodynamics and magnetohydrodynamics for both relativistic and non-relativistic fluidsmore » on a dynamic Voronoi mesh. When run in Lagrangian mode, TESS is significantly less diffusive than fixed mesh codes and thus preserves contact discontinuities to high precision while also accurately capturing strong shock waves. TESS is written for Cartesian, spherical, and cylindrical coordinates and is modular so that auxiliary physics solvers are readily integrated into the TESS framework and so that this can be readily adapted to solve general systems of equations. We present results from a series of test problems to demonstrate the performance of TESS and to highlight some of the advantages of the dynamic tessellation method for solving challenging problems in astrophysical fluid dynamics.« less

  1. An electrostatic Particle-In-Cell code on multi-block structured meshes

    NASA Astrophysics Data System (ADS)

    Meierbachtol, Collin S.; Svyatskiy, Daniil; Delzanno, Gian Luca; Vernon, Louis J.; Moulton, J. David

    2017-12-01

    We present an electrostatic Particle-In-Cell (PIC) code on multi-block, locally structured, curvilinear meshes called Curvilinear PIC (CPIC). Multi-block meshes are essential to capture complex geometries accurately and with good mesh quality, something that would not be possible with single-block structured meshes that are often used in PIC and for which CPIC was initially developed. Despite the structured nature of the individual blocks, multi-block meshes resemble unstructured meshes in a global sense and introduce several new challenges, such as the presence of discontinuities in the mesh properties and coordinate orientation changes across adjacent blocks, and polyjunction points where an arbitrary number of blocks meet. In CPIC, these challenges have been met by an approach that features: (1) a curvilinear formulation of the PIC method: each mesh block is mapped from the physical space, where the mesh is curvilinear and arbitrarily distorted, to the logical space, where the mesh is uniform and Cartesian on the unit cube; (2) a mimetic discretization of Poisson's equation suitable for multi-block meshes; and (3) a hybrid (logical-space position/physical-space velocity), asynchronous particle mover that mitigates the performance degradation created by the necessity to track particles as they move across blocks. The numerical accuracy of CPIC was verified using two standard plasma-material interaction tests, which demonstrate good agreement with the corresponding analytic solutions. Compared to PIC codes on unstructured meshes, which have also been used for their flexibility in handling complex geometries but whose performance suffers from issues associated with data locality and indirect data access patterns, PIC codes on multi-block structured meshes may offer the best compromise for capturing complex geometries while also maintaining solution accuracy and computational efficiency.

  2. An electrostatic Particle-In-Cell code on multi-block structured meshes

    DOE PAGES

    Meierbachtol, Collin S.; Svyatskiy, Daniil; Delzanno, Gian Luca; ...

    2017-09-14

    We present an electrostatic Particle-In-Cell (PIC) code on multi-block, locally structured, curvilinear meshes called Curvilinear PIC (CPIC). Multi-block meshes are essential to capture complex geometries accurately and with good mesh quality, something that would not be possible with single-block structured meshes that are often used in PIC and for which CPIC was initially developed. In spite of the structured nature of the individual blocks, multi-block meshes resemble unstructured meshes in a global sense and introduce several new challenges, such as the presence of discontinuities in the mesh properties and coordinate orientation changes across adjacent blocks, and polyjunction points where anmore » arbitrary number of blocks meet. In CPIC, these challenges have been met by an approach that features: (1) a curvilinear formulation of the PIC method: each mesh block is mapped from the physical space, where the mesh is curvilinear and arbitrarily distorted, to the logical space, where the mesh is uniform and Cartesian on the unit cube; (2) a mimetic discretization of Poisson's equation suitable for multi-block meshes; and (3) a hybrid (logical-space position/physical-space velocity), asynchronous particle mover that mitigates the performance degradation created by the necessity to track particles as they move across blocks. The numerical accuracy of CPIC was verified using two standard plasma–material interaction tests, which demonstrate good agreement with the corresponding analytic solutions. And compared to PIC codes on unstructured meshes, which have also been used for their flexibility in handling complex geometries but whose performance suffers from issues associated with data locality and indirect data access patterns, PIC codes on multi-block structured meshes may offer the best compromise for capturing complex geometries while also maintaining solution accuracy and computational efficiency.« less

  3. An electrostatic Particle-In-Cell code on multi-block structured meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meierbachtol, Collin S.; Svyatskiy, Daniil; Delzanno, Gian Luca

    We present an electrostatic Particle-In-Cell (PIC) code on multi-block, locally structured, curvilinear meshes called Curvilinear PIC (CPIC). Multi-block meshes are essential to capture complex geometries accurately and with good mesh quality, something that would not be possible with single-block structured meshes that are often used in PIC and for which CPIC was initially developed. In spite of the structured nature of the individual blocks, multi-block meshes resemble unstructured meshes in a global sense and introduce several new challenges, such as the presence of discontinuities in the mesh properties and coordinate orientation changes across adjacent blocks, and polyjunction points where anmore » arbitrary number of blocks meet. In CPIC, these challenges have been met by an approach that features: (1) a curvilinear formulation of the PIC method: each mesh block is mapped from the physical space, where the mesh is curvilinear and arbitrarily distorted, to the logical space, where the mesh is uniform and Cartesian on the unit cube; (2) a mimetic discretization of Poisson's equation suitable for multi-block meshes; and (3) a hybrid (logical-space position/physical-space velocity), asynchronous particle mover that mitigates the performance degradation created by the necessity to track particles as they move across blocks. The numerical accuracy of CPIC was verified using two standard plasma–material interaction tests, which demonstrate good agreement with the corresponding analytic solutions. And compared to PIC codes on unstructured meshes, which have also been used for their flexibility in handling complex geometries but whose performance suffers from issues associated with data locality and indirect data access patterns, PIC codes on multi-block structured meshes may offer the best compromise for capturing complex geometries while also maintaining solution accuracy and computational efficiency.« less

  4. Unstructured mesh generation and adaptivity

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1995-01-01

    An overview of current unstructured mesh generation and adaptivity techniques is given. Basic building blocks taken from the field of computational geometry are first described. Various practical mesh generation techniques based on these algorithms are then constructed and illustrated with examples. Issues of adaptive meshing and stretched mesh generation for anisotropic problems are treated in subsequent sections. The presentation is organized in an education manner, for readers familiar with computational fluid dynamics, wishing to learn more about current unstructured mesh techniques.

  5. Mesh Intercomparisons of Fog Water Collected Yield Insight Into the Nature of Fog-Drip Collection Mechanisms

    NASA Astrophysics Data System (ADS)

    Fernandez, D.; Torregrosa, A.; Weiss-Penzias, P. S.; Oliphant, A. J.; Dodge, C.; Bowman, M.; Wilson, S.; Mairs, A. A.; Gravelle, M.; Barkley, T.

    2016-12-01

    At multiple sites across central CA, several passive fog water collectors have been deployed for the past 3 years. All of the sites employ standard Raschel polypropylene mesh as the fog collection medium and five of them also integrated a novel polypropylene mesh of German manufacture with a 3-dimensional internal structure. Additionally, six metal mesh manufactured by McMaster-Carr of various hole sizing were coated with a POSS-PEMA substance at the Massachusetts Institute of Technology and deployed in parallel with the Raschel mesh at six distinct locations. Finally, fluorine-free versions of the POSS-PEMA substance were generated by NBD Nanotechnology and coated on a much finer mesh substrate. Three of those and one control (uncoated mesh) were deployed at one of the fog collection sites for one season, along with a standard Raschel mesh. Preliminary results from one intercomparison from just one pair of mesh over two seasons seem to reveal a wind speed and also, possibly, a droplet-size dependence on the fog collection efficiency for the mesh. This study will continue to intercompare the various mesh in conjunction with the wind speed and direction data. If a collection efficiency dependence on mesh size or coating is confirmed, it may point to interesting and relevant mechanisms for fog droplet capture and collection hitherto unobserved in field conditions.

  6. Mesh Algorithms for PDE with Sieve I: Mesh Distribution

    DOE PAGES

    Knepley, Matthew G.; Karpeev, Dmitry A.

    2009-01-01

    We have developed a new programming framework, called Sieve, to support parallel numerical partial differential equation(s) (PDE) algorithms operating over distributed meshes. We have also developed a reference implementation of Sieve in C++ as a library of generic algorithms operating on distributed containers conforming to the Sieve interface. Sieve makes instances of the incidence relation, or arrows, the conceptual first-class objects represented in the containers. Further, generic algorithms acting on this arrow container are systematically used to provide natural geometric operations on the topology and also, through duality, on the data. Finally, coverings and duality are used to encode notmore » only individual meshes, but all types of hierarchies underlying PDE data structures, including multigrid and mesh partitions. In order to demonstrate the usefulness of the framework, we show how the mesh partition data can be represented and manipulated using the same fundamental mechanisms used to represent meshes. We present the complete description of an algorithm to encode a mesh partition and then distribute a mesh, which is independent of the mesh dimension, element shape, or embedding. Moreover, data associated with the mesh can be similarly distributed with exactly the same algorithm. The use of a high level of abstraction within the Sieve leads to several benefits in terms of code reuse, simplicity, and extensibility. We discuss these benefits and compare our approach to other existing mesh libraries.« less

  7. Mapping annotations with textual evidence using an scLDA model.

    PubMed

    Jin, Bo; Chen, Vicky; Chen, Lujia; Lu, Xinghua

    2011-01-01

    Most of the knowledge regarding genes and proteins is stored in biomedical literature as free text. Extracting information from complex biomedical texts demands techniques capable of inferring biological concepts from local text regions and mapping them to controlled vocabularies. To this end, we present a sentence-based correspondence latent Dirichlet allocation (scLDA) model which, when trained with a corpus of PubMed documents with known GO annotations, performs the following tasks: 1) learning major biological concepts from the corpus, 2) inferring the biological concepts existing within text regions (sentences), and 3) identifying the text regions in a document that provides evidence for the observed annotations. When applied to new gene-related documents, a trained scLDA model is capable of predicting GO annotations and identifying text regions as textual evidence supporting the predicted annotations. This study uses GO annotation data as a testbed; the approach can be generalized to other annotated data, such as MeSH and MEDLINE documents.

  8. AMRZone: A Runtime AMR Data Sharing Framework For Scientific Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wenzhao; Tang, Houjun; Harenberg, Steven

    Frameworks that facilitate runtime data sharing across multiple applications are of great importance for scientific data analytics. Although existing frameworks work well over uniform mesh data, they can not effectively handle adaptive mesh refinement (AMR) data. Among the challenges to construct an AMR-capable framework include: (1) designing an architecture that facilitates online AMR data management; (2) achieving a load-balanced AMR data distribution for the data staging space at runtime; and (3) building an effective online index to support the unique spatial data retrieval requirements for AMR data. Towards addressing these challenges to support runtime AMR data sharing across scientific applications,more » we present the AMRZone framework. Experiments over real-world AMR datasets demonstrate AMRZone's effectiveness at achieving a balanced workload distribution, reading/writing large-scale datasets with thousands of parallel processes, and satisfying queries with spatial constraints. Moreover, AMRZone's performance and scalability are even comparable with existing state-of-the-art work when tested over uniform mesh data with up to 16384 cores; in the best case, our framework achieves a 46% performance improvement.« less

  9. [Effects of mulberry/soybean intercropping on the plant growth and rhizosphere soil microbial number and enzyme activities].

    PubMed

    Hu, Ju-Wei; Zhu, Wen-Xu; Zhang, Hui-Hui; Xu, Nan; Li, Xin; Yue, Bing-Bing; Sun, Guang-yu

    2013-05-01

    A root separation experiment was conducted to investigate the plant growth and rhizosphere soil microbes and enzyme activities in a mulberry/soybean intercropping system. As compared with those in plastic barrier and nylon mesh barrier treatments, the plant height, leaf number, root length, root nodule number, and root/shoot ratio of mulberry and soybean in non-barrier treatment were significantly higher, and the soybean's effective nodule number was larger. The available phosphorous content in the rhizosphere soils of mulberry and soybean in no barrier and nylon mesh barrier treatments was increased by 10.3% and 11.1%, and 5.1% and 4.6%, respectively, as compared with that in plastic barrier treatment. The microbial number, microbial diversity, and enzyme activities in the rhizosphere soils of mulberry and soybean were higher in the treatments of no barrier and nylon mesh barrier than in the treatment of plastic barrier. All the results indicated that there was an obvious interspecific synergistic effect between mulberry and soybean in the mulberry/soybean intercropping system.

  10. Adaptive moving mesh methods for simulating one-dimensional groundwater problems with sharp moving fronts

    USGS Publications Warehouse

    Huang, W.; Zheng, Lingyun; Zhan, X.

    2002-01-01

    Accurate modelling of groundwater flow and transport with sharp moving fronts often involves high computational cost, when a fixed/uniform mesh is used. In this paper, we investigate the modelling of groundwater problems using a particular adaptive mesh method called the moving mesh partial differential equation approach. With this approach, the mesh is dynamically relocated through a partial differential equation to capture the evolving sharp fronts with a relatively small number of grid points. The mesh movement and physical system modelling are realized by solving the mesh movement and physical partial differential equations alternately. The method is applied to the modelling of a range of groundwater problems, including advection dominated chemical transport and reaction, non-linear infiltration in soil, and the coupling of density dependent flow and transport. Numerical results demonstrate that sharp moving fronts can be accurately and efficiently captured by the moving mesh approach. Also addressed are important implementation strategies, e.g. the construction of the monitor function based on the interpolation error, control of mesh concentration, and two-layer mesh movement. Copyright ?? 2002 John Wiley and Sons, Ltd.

  11. A novel method for pair-matching using three-dimensional digital models of bone: mesh-to-mesh value comparison.

    PubMed

    Karell, Mara A; Langstaff, Helen K; Halazonetis, Demetrios J; Minghetti, Caterina; Frelat, Mélanie; Kranioti, Elena F

    2016-09-01

    The commingling of human remains often hinders forensic/physical anthropologists during the identification process, as there are limited methods to accurately sort these remains. This study investigates a new method for pair-matching, a common individualization technique, which uses digital three-dimensional models of bone: mesh-to-mesh value comparison (MVC). The MVC method digitally compares the entire three-dimensional geometry of two bones at once to produce a single value to indicate their similarity. Two different versions of this method, one manual and the other automated, were created and then tested for how well they accurately pair-matched humeri. Each version was assessed using sensitivity and specificity. The manual mesh-to-mesh value comparison method was 100 % sensitive and 100 % specific. The automated mesh-to-mesh value comparison method was 95 % sensitive and 60 % specific. Our results indicate that the mesh-to-mesh value comparison method overall is a powerful new tool for accurately pair-matching commingled skeletal elements, although the automated version still needs improvement.

  12. Geometric modeling of hepatic arteries in 3D ultrasound with unsupervised MRA fusion during liver interventions.

    PubMed

    Gérard, Maxime; Michaud, François; Bigot, Alexandre; Tang, An; Soulez, Gilles; Kadoury, Samuel

    2017-06-01

    Modulating the chemotherapy injection rate with regard to blood flow velocities in the tumor-feeding arteries during intra-arterial therapies may help improve liver tumor targeting while decreasing systemic exposure. These velocities can be obtained noninvasively using Doppler ultrasound (US). However, small vessels situated in the liver are difficult to identify and follow in US. We propose a multimodal fusion approach that non-rigidly registers a 3D geometric mesh model of the hepatic arteries obtained from preoperative MR angiography (MRA) acquisitions with intra-operative 3D US imaging. The proposed fusion tool integrates 3 imaging modalities: an arterial MRA, a portal phase MRA and an intra-operative 3D US. Preoperatively, the arterial phase MRA is used to generate a 3D model of the hepatic arteries, which is then non-rigidly co-registered with the portal phase MRA. Once the intra-operative 3D US is acquired, we register it with the portal MRA using a vessel-based rigid initialization followed by a non-rigid registration using an image-based metric based on linear correlation of linear combination. Using the combined non-rigid transformation matrices, the 3D mesh model is fused with the 3D US. 3D US and multi-phase MRA images acquired from 10 porcine models were used to test the performance of the proposed fusion tool. Unimodal registration of the MRA phases yielded a target registration error (TRE) of [Formula: see text] mm. Initial rigid alignment of the portal MRA and 3D US yielded a mean TRE of [Formula: see text] mm, which was significantly reduced to [Formula: see text] mm ([Formula: see text]) after affine image-based registration. The following deformable registration step allowed for further decrease of the mean TRE to [Formula: see text] mm. The proposed tool could facilitate visualization and localization of these vessels when using 3D US intra-operatively for either intravascular or percutaneous interventions to avoid vessel perforation.

  13. Towards hybrid mesh generation for realistic design environments

    NASA Astrophysics Data System (ADS)

    McMorris, Harlan Tom

    Two different techniques that allow hybrid mesh generation to be easily used in the design environment are presented. The purpose of this research is to allow for hybrid meshes to be used during the design process where the geometry is being varied. The first technique, modular hybrid mesh generation, allows for the replacement of portions of a geometry with a new design shape. The mesh is maintained for the portions of that have not changed during the design process. A new mesh is generated for the new part of the geometry and this piece is added to the existing mesh. The new mesh must match the remaining portions of the geometry plus the element sizes must match exactly across the interfaces. The second technique, hybrid mesh movement, is used when the basic geometry remains the same with only small variations to portions of the geometry. These small variations include changing the cross-section of a wing, twisting a blade or changing the length of some portion of the geometry. The mesh for the original geometry is moved onto the new geometry one step at a time beginning with the curves of the surface, continuing with the surface mesh geometry and ending with the interior points of the mesh. The validity of the hybrid mesh is maintained by applying corrections to the motion of the points. Finally, the quality of the new hybrid mesh is improved to ensure that the new mesh maintains the quality of the original hybrid mesh. Applications of both design techniques are applied to typical example cases from the fields of turbomachinery, aerospace and offshore technology. The example test cases demonstrate the ability of the two techniques to reuse the majority of an existing hybrid mesh for typical design changes. Modular mesh generation is used to change the shape of piece of a seafloor pipeline geometry to a completely different configuration. The hybrid mesh movement technique is used to change the twist of a turbomachinery blade, the tip clearance of a rotor blade and to simulate the aeroelastic bending of a wing. Finally, the movement technique is applied to an offshore application where the solution for the original configuration is used as a starting point for solution for a new configuration. The application of both techniques show that the methods can be a powerful addition to the design environment and will facilitate a rapid turnaround when the design geometry changes.

  14. The transmission of stress to grafted bone inside a titanium mesh cage used in anterior column reconstruction after total spondylectomy: a finite-element analysis.

    PubMed

    Akamaru, Tomoyuki; Kawahara, Norio; Sakamoto, Jiro; Yoshida, Akira; Murakami, Hideki; Hato, Taizo; Awamori, Serina; Oda, Juhachi; Tomita, Katsuro

    2005-12-15

    A finite-element study of posterior alone or anterior/posterior combined instrumentation following total spondylectomy and replacement with a titanium mesh cage used as an anterior strut. To compare the effect of posterior instrumentation versus anterior/posterior instrumentation on transmission of the stress to grafted bone inside a titanium mesh cage following total spondylectomy. The most recent reconstruction techniques following total spondylectomy for malignant spinal tumor include a titanium mesh cage filled with autologous bone as an anterior strut. The need for additional anterior instrumentation with posterior pedicle screws and rods is controversial. Transmission of the mechanical stress to grafted bone inside a titanium mesh cage is important for fusion and remodeling. To our knowledge, there are no published reports comparing the load-sharing properties of the different reconstruction methods following total spondylectomy. A 3-dimensional finite-element model of the reconstructed spine (T10-L4) following total spondylectomy at T12 was constructed. A Harms titanium mesh cage (DePuy Spine, Raynham, MA) was positioned as an anterior replacement, and 3 types of the reconstruction methods were compared: (1) multilevel posterior instrumentation (MPI) (i.e., posterior pedicle screws and rods at T10-L2 without anterior instrumentation); (2) MPI with anterior instrumentation (MPAI) (i.e., MPAI [Kaneda SR; DePuy Spine] at T11-L1); and (3) short posterior and anterior instrumentation (SPAI) (i.e., posterior pedicle screws and rods with anterior instrumentation at T11-L1). The mechanical energy stress distribution exerted inside the titanium mesh cage was evaluated and compared by finite-element analysis for the 3 different reconstruction methods. Simulated forces were applied to give axial compression, flexion, extension, and lateral bending. In flexion mode, the energy stress distribution in MPI was higher than 3.0 x 10 MPa in 73.0% of the total volume inside the titanium mesh cage, while 38.0% in MPAI, and 43.3% in SPAI. In axial compression and extension modes, there were no remarkable differences for each reconstruction method. In left-bending mode, there was little stress energy in the cancellous bone inside the titanium mesh cage in MPAI and SPAI. This experiment shows that from the viewpoint of stress shielding, the reconstruction method, using additional anterior instrumentation with posterior pedicle screws (MPAI and SPAI), stress shields the cancellous bone inside the titanium mesh cage to a higher degree than does the system using posterior pedicle screw fixation alone (MPI). Thus, a reconstruction method with no anterior fixation should be better at allowing stress for remodeling of the bone graft inside the titanium mesh cage.

  15. Coated mesh photocatalytic reactor for air treatment applications: comparative study of support materials.

    PubMed

    Passalía, Claudio; Nocetti, Emanuel; Alfano, Orlando; Brandi, Rodolfo

    2017-03-01

    An experimental comparative study of different meshes as support materials for photocatalytic applications in gas phase is presented. The photocatalytic oxidation of dichloromethane in air was addressed employing different coated meshes in a laboratory-scale, continuous reactor. Two fiberglass meshes and a stainless steel mesh were studied regarding the catalyst load, adherence, and catalytic activity. Titanium dioxide photocatalyst was immobilized on the meshes by dip-coating cycles. Results indicate the feasibility of the dichloromethane elimination in the three cases. When the number of coating cycles was doubled, the achieved conversion levels were increased twofold for stainless steel and threefold for the fiberglass meshes. One of the fiberglass meshes (FG2) showed the highest reactivity per mass of catalyst and per catalytic surface area.

  16. Array-based Hierarchical Mesh Generation in Parallel

    DOE PAGES

    Ray, Navamita; Grindeanu, Iulian; Zhao, Xinglin; ...

    2015-11-03

    In this paper, we describe an array-based hierarchical mesh generation capability through uniform refinement of unstructured meshes for efficient solution of PDE's using finite element methods and multigrid solvers. A multi-degree, multi-dimensional and multi-level framework is designed to generate the nested hierarchies from an initial mesh that can be used for a number of purposes such as multi-level methods to generating large meshes. The capability is developed under the parallel mesh framework “Mesh Oriented dAtaBase” a.k.a MOAB. We describe the underlying data structures and algorithms to generate such hierarchies and present numerical results for computational efficiency and mesh quality. Inmore » conclusion, we also present results to demonstrate the applicability of the developed capability to a multigrid finite-element solver.« less

  17. Towards Improved Finite Element Modelling of the Interaction of Elastic Waves with Complex Defect Geometries

    NASA Astrophysics Data System (ADS)

    Rajagopal, P.; Drozdz, M.; Lowe, M. J. S.

    2009-03-01

    A solution to the problem of improving the finite element (FE) modeling of elastic wave-defect interaction is sought by reconsidering the conventional opinion on meshing strategy. The standard approach using uniform square elements imposes severe limitations in representing complex defect outlines but this is thought to improve when the mesh is made finer. Free meshing algorithms available widely in commercial packages of late can cope with difficult features well but they are thought to cause scattering by the irregular mesh itself. This paper examines whether the benefits offered by free meshing in representing defects better outweigh the inaccuracies due to mesh scattering. If using the standard mesh, the questions whether mesh refinement leads to improved results and whether a practical strategy can be constructed are considered.

  18. Early Wound Morbidity after Open Ventral Hernia Repair with Biosynthetic or Polypropylene Mesh.

    PubMed

    Sahoo, Sambit; Haskins, Ivy N; Huang, Li-Ching; Krpata, David M; Derwin, Kathleen A; Poulose, Benjamin K; Rosen, Michael J

    2017-10-01

    Recently introduced slow-resorbing biosynthetic and non-resorbing macroporous polypropylene meshes are being used in hernias with clean-contaminated and contaminated wounds. However, information about the use of biosynthetic meshes and their outcomes compared with polypropylene meshes in clean-contaminated and contaminated cases is lacking. Here we evaluate the use of biosynthetic mesh and polypropylene mesh in elective open ventral hernia repair (OVHR) and investigate differences in early wound morbidity after OVHR within clean-contaminated and contaminated cases. All elective, OVHR with biosynthetic mesh or uncoated polypropylene mesh from January 2013 through October 2016 were identified within the Americas Hernia Society Quality Collaborative. Association of mesh type with 30-day wound events in clean-contaminated or contaminated wounds was investigated using a 1:3 propensity-matched analysis. Biosynthetic meshes were used in 8.5% (175 of 2,051) of elective OVHR, with the majority (57.1%) used in low-risk or comorbid clean cases. Propensity-matched analysis in clean-contaminated and contaminated cases showed no significant difference between biosynthetic mesh and polypropylene mesh groups for 30-day surgical site occurrences (20.7% vs 16.7%; p = 0.49) or unplanned readmission (13.8% vs 9.8%; p = 0.4). However, surgical site infections (22.4% vs 10.9%; p = 0.03), surgical site occurrences requiring procedural intervention (24.1% vs 13.2%; p = 0.049), and reoperation rates (13.8% vs 4.0%; p = 0.009) were significantly higher in the biosynthetic group. Biosynthetic mesh appears to have higher rates of 30-day wound morbidity compared with polypropylene mesh in elective OVHR with clean-contaminated or contaminated wounds. Additional post-market analysis is needed to provide evidence defining best mesh choices, location, and surgical technique for repairing contaminated ventral hernias. Copyright © 2017 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  19. A Linear-Elasticity Solver for Higher-Order Space-Time Mesh Deformation

    NASA Technical Reports Server (NTRS)

    Diosady, Laslo T.; Murman, Scott M.

    2018-01-01

    A linear-elasticity approach is presented for the generation of meshes appropriate for a higher-order space-time discontinuous finite-element method. The equations of linear-elasticity are discretized using a higher-order, spatially-continuous, finite-element method. Given an initial finite-element mesh, and a specified boundary displacement, we solve for the mesh displacements to obtain a higher-order curvilinear mesh. Alternatively, for moving-domain problems we use the linear-elasticity approach to solve for a temporally discontinuous mesh velocity on each time-slab and recover a continuous mesh deformation by integrating the velocity. The applicability of this methodology is presented for several benchmark test cases.

  20. Approaches to the automatic generation and control of finite element meshes

    NASA Technical Reports Server (NTRS)

    Shephard, Mark S.

    1987-01-01

    The algorithmic approaches being taken to the development of finite element mesh generators capable of automatically discretizing general domains without the need for user intervention are discussed. It is demonstrated that because of the modeling demands placed on a automatic mesh generator, all the approaches taken to date produce unstructured meshes. Consideration is also given to both a priori and a posteriori mesh control devices for automatic mesh generators as well as their integration with geometric modeling and adaptive analysis procedures.

  1. Unstructured mesh algorithms for aerodynamic calculations

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1992-01-01

    The use of unstructured mesh techniques for solving complex aerodynamic flows is discussed. The principle advantages of unstructured mesh strategies, as they relate to complex geometries, adaptive meshing capabilities, and parallel processing are emphasized. The various aspects required for the efficient and accurate solution of aerodynamic flows are addressed. These include mesh generation, mesh adaptivity, solution algorithms, convergence acceleration, and turbulence modeling. Computations of viscous turbulent two-dimensional flows and inviscid three-dimensional flows about complex configurations are demonstrated. Remaining obstacles and directions for future research are also outlined.

  2. Percept User Manual.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carnes, Brian; Kennon, Stephen Ray

    2017-05-01

    This document is the main user guide for the Sierra/Percept capabilities including the mesh_adapt and mesh_transfer tools. Basic capabilities for uniform mesh refinement (UMR) and mesh transfers are discussed. Examples are used to provide illustration. Future versions of this manual will include more advanced features such as geometry and mesh smoothing. Additionally, all the options for the mesh_adapt code will be described in detail. Capabilities for local adaptivity in the context of offline adaptivity will also be included. This page intentionally left blank.

  3. The Effect of Orthodontic Therapy on Periodontal Health: A Review of the Literature

    PubMed Central

    Alfuriji, Samah; Alhazmi, Nora; Alhamlan, Nasir; Al-Ehaideb, Ali; Alruwaithi, Moatazbellah; Alkatheeri, Nasser; Geevarghese, Amrita

    2014-01-01

    Objectives. This review aims to evaluate the effect of orthodontic therapy on periodontal health. Data. Original articles that reported on the effect of orthodontic therapy on periodontal health were included. The reference lists of potentially relevant review articles were also sought. Sources. A literature search was conducted using the databases, Medline, EMBASE, Cochrane Library, Web of Science, Google Scholar, and Scopus databases for relevant studies. The search was carried out by using a combined text and the MeSH search strategies: using the key words in different combinations: “periodontal disease,” “orthodontics” and “root resorption.” This was supplemented by hand-searching in peer-reviewed journals and cross-referenced with the articles accessed. Articles published only in English language were included. Letters to the Editor, historical reviews and unpublished articles were not sought. Conclusions. Within the limitations of the present literature review, it was observed that there is a very close inter-relationship between the periodontal health and the outcome of orthodontic therapy. PMID:24991214

  4. Texturing of continuous LOD meshes with the hierarchical texture atlas

    NASA Astrophysics Data System (ADS)

    Birkholz, Hermann

    2006-02-01

    For the rendering of detailed virtual environments, trade-offs have to be made between image quality and rendering time. An immersive experience of virtual reality always demands high frame-rates with the best reachable image qual-ity. Continuous Level of Detail (cLoD) triangle-meshes provide an continuous spectrum of detail for a triangle mesh that can be used to create view-dependent approximations of the environment in real-time. This enables the rendering with a constant number of triangles and thus with constant frame-rates. Normally the construction of such cLoD mesh representations leads to the loss of all texture information of the original mesh. To overcome this problem, a parameter domain can be created, in order to map the surface properties (colour, texture, normal) to it. This parameter domain can be used to map the surface properties back to arbitrary approximations of the original mesh. The parameter domain is often a simplified version of the mesh to be parameterised. This limits the reachable simplification to the domain mesh which has to map the surface of the original mesh with the least possible stretch. In this paper, a hierarchical domain mesh is presented, that scales between very coarse domain meshes and good property-mapping.

  5. Robust moving mesh algorithms for hybrid stretched meshes: Application to moving boundaries problems

    NASA Astrophysics Data System (ADS)

    Landry, Jonathan; Soulaïmani, Azzeddine; Luke, Edward; Ben Haj Ali, Amine

    2016-12-01

    A robust Mesh-Mover Algorithm (MMA) approach is designed to adapt meshes of moving boundaries problems. A new methodology is developed from the best combination of well-known algorithms in order to preserve the quality of initial meshes. In most situations, MMAs distribute mesh deformation while preserving a good mesh quality. However, invalid meshes are generated when the motion is complex and/or involves multiple bodies. After studying a few MMA limitations, we propose the following approach: use the Inverse Distance Weighting (IDW) function to produce the displacement field, then apply the Geometric Element Transformation Method (GETMe) smoothing algorithms to improve the resulting mesh quality, and use an untangler to revert negative elements. The proposed approach has been proven efficient to adapt meshes for various realistic aerodynamic motions: a symmetric wing that has suffered large tip bending and twisting and the high-lift components of a swept wing that has moved to different flight stages. Finally, the fluid flow problem has been solved on meshes that have moved and they have produced results close to experimental ones. However, for situations where moving boundaries are too close to each other, more improvements need to be made or other approaches should be taken, such as an overset grid method.

  6. Biologic meshes are not superior to synthetic meshes in ventral hernia repair: an experimental study with long-term follow-up evaluation.

    PubMed

    Ditzel, M; Deerenberg, E B; Grotenhuis, N; Harlaar, J J; Monkhorst, K; Bastiaansen-Jenniskens, Y M; Jeekel, J; Lange, J F

    2013-10-01

    In laparoscopic incisional hernia repair, direct contact between the prosthesis and the abdominal viscera is inevitable, which may lead to an inflammatory reaction resulting in abdominal adhesion formation. This study compared five different synthetic and biologic meshes in terms of adhesion formation, shrinkage, incorporation, and histologic characteristics after a period of 30 and 90 days. In 85 rats, a mesh was positioned intraperitoneally in direct contact with the viscera. Five different meshes were implanted: Prolene (polypropylene), Parietex composite (collagen-coated polyester), Strattice (porcine dermis, non-cross-linked), Surgisis (porcine small intestine submucosa, non-cross-linked), and Permacol (porcine dermis, cross-linked). The meshes were tested in terms of adhesion formation, shrinkage, and incorporation after a period of 30 and 90 days. Additionally, collagen formation after 90 days was determined. Significantly less adhesion formation was observed with Parietex composite (5 %; interquartile range [IQR], 2-5 %) and Strattice (5 %; IQR, 4-10 %) in the long term. In contrast, organs were attached to Permacol with four of seven meshes (57 %), and adhesion coverage of Surgisis mesh was present in 66 % (IQR, 0-100 %) of the cases. After 90 days, the best incorporation was seen with the Parietex composite mesh (79 %; IQR, 61-83 %). After 90 days, major alterations in adhesion formation were seen compared with 30 days. Histologically, Strattice and Parietex composite showed a new mesothelial layer on the visceral side of the mesh. Microscopic degradation and new collagen formation were seen in the Surgisis group. Parietex composite mesh demonstrated the best long-term results compared with all the other meshes. The biologic non-cross-linked mesh, Strattice, showed little adhesion formation and moderate shrinkage but poor incorporation. Biologic meshes are promising, but varying results require a more detailed investigation and demonstrate that biologic meshes are not necessarily superior to synthetic meshes. The significant changes that take place between 30 and 90 days should lead to careful interpretation of short-term experimental results.

  7. Onlay with Adhesive Use Compared with Sublay Mesh Placement in Ventral Hernia Repair: Was Chevrel Right? An Americas Hernia Society Quality Collaborative Analysis.

    PubMed

    Haskins, Ivy N; Voeller, Guy R; Stoikes, Nathaniel F; Webb, David L; Chandler, Robert G; Phillips, Sharon; Poulose, Benjamin K; Rosen, Michael J

    2017-05-01

    The use of mesh during ventral hernia repair (VHR) is a well-accepted concept. However, the ideal location of mesh placement remains strongly debated. Although VHR with onlay mesh placement has historically been associated with a high rate of wound events, this surgical approach is technically less challenging than VHR with sublay mesh placement. The purpose of this study was to compare 30-day wound events after onlay mesh placement with adhesive fixation vs those after sublay mesh placement using the Americas Hernia Society Quality Collaborative database. All patients undergoing elective, open VHR with synthetic mesh placement from January 2013 through January 2016 were identified within the Americas Hernia Society Quality Collaborative. Only patients with clean wounds were included. Patients were divided into 2 groups: onlay mesh placement with the use of adhesive and sublay mesh placement. The association of mesh location with 30-day wound events was investigated using a matched analysis. A total of 1,854 patients met inclusion criteria; 1,761 (95.0%) underwent sublay mesh placement and 93 (5.0%) underwent onlay mesh placement with the use of adhesive. A 2:1 sublay to onlay matched analysis was performed based on factors previously shown to influence wound events after VHR. After matching, both groups had a lower mean Ventral Hernia Working Group grade and fewer associated comorbidities. There was no statistically significant difference between the sublay and onlay groups with respect to 30-day surgical site infections (2.9% vs 5.5%; p = 0.30), surgical site occurrences (15.2% vs 7.7%; p = 0.08), or surgical site occurrences requiring procedural intervention (8.2% vs 5.5%; p = 0.42). Ventral hernia repair with onlay mesh placement is a safe alternative to VHR with sublay mesh placement in low-risk patients. Additional studies are needed to determine the long-term mesh outcomes and recurrence rates in both of these groups. Copyright © 2017 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  8. Role of Prophylactic Mesh Placement for Laparotomy and Stoma Creation.

    PubMed

    Rhemtulla, Irfan A; Messa, Charles A; Enriquez, Fabiola A; Hope, William W; Fischer, John P

    2018-06-01

    Incisional and parastomal hernias are a cause of significant morbidity and have a substantial effect on quality of life and economic costs for patients and hospital systems. Although many aspects of abdominal hernias are understood, prevention is a feature that is still being realized. This article reviews the current literature and determines the utility of prophylactic mesh placement in prevention of incisional and parastomal hernias. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Validation of 3D RANS-SA Calculations on Strand/Cartesian Meshes

    DTIC Science & Technology

    2014-01-07

    a parallel environment. This allows for significant gains in efficiency and scalability of domain connectiv- ity, effectively eliminating inter... equation of state , p = ρRT is used to close the equations . 4 of 22 American Institute of Aeronautics and Astronautics 6 III.A. Discretization and...Utah State University 1415 Old Main Hill - Room 64 Logan, UT 84322 -1415 1 ABSTRACT Validation of 3D RANS-SA Calculations on Strand/Cartesian Meshes

  10. 50 CFR 697.7 - Prohibitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-inch (8.3 cm) square stretch mesh (as measured between the centers of opposite knots when stretched taut) or 33/4-inch (9.5 cm) diamond stretch mesh for trawls and 27/8-inch (7.3 cm) stretch mesh for..., in the EEZ when using a mesh size less than 3 1/4-inch (8.3 cm) square stretch mesh (as measured...

  11. 50 CFR 697.7 - Prohibitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-inch (8.3 cm) square stretch mesh (as measured between the centers of opposite knots when stretched taut) or 33/4-inch (9.5 cm) diamond stretch mesh for trawls and 27/8-inch (7.3 cm) stretch mesh for..., in the EEZ when using a mesh size less than 3 1/4-inch (8.3 cm) square stretch mesh (as measured...

  12. 50 CFR 697.7 - Prohibitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-inch (8.3 cm) square stretch mesh (as measured between the centers of opposite knots when stretched taut) or 33/4-inch (9.5 cm) diamond stretch mesh for trawls and 27/8-inch (7.3 cm) stretch mesh for..., in the EEZ when using a mesh size less than 3 1/4-inch (8.3 cm) square stretch mesh (as measured...

  13. Linking fishery management and conservation in a tropical estuarine lagoon: biological and physical effects of an artisanal fishing gear

    NASA Astrophysics Data System (ADS)

    Rueda, M.; Defeo, O.

    2003-04-01

    Information coming from fishery monitoring, surveys and experimental fishing with participation of fishers was employed to determine the impact of an artisanal gear, 'boliche', on the biodiversity of the Ciénaga Grande de Santa Marta (CGSM), an estuarine lagoon on the Caribbean coast of Colombia. Fishery monitoring (catch data) included landings before (1968 and 1978) and after (1994-1996) the introduction of the boliche in the CGSM (1985), whereas surveys were conducted seasonally during 1993-1994. Fishing experiments involved evaluating different mesh sizes and the short-term effect of physical disturbance by the boliche. Monitoring suggested potential trophic effects of this fishing gear: the catch of large, long-lived, carnivorous species declined after the introduction of the boliche in the CGSM, whereas catch rates of smaller, shorter-lived, and lower trophic level species increased. Surveys revealed that the boliche retained 41 species. The by-catch made up 62% of the total catch and the remaining 38% involved the three target species Eugerres plumieri, Mugil incilis and Cathorops spixii. Selectivity experiments showed that 2.5 in. stretched mesh size gill nets caught more species than the 3.0-in. mesh. The smaller mesh also increased the risk of a critical reduction in the spawning stock of target species (notably E. plumieri); a situation that could affect the fish community if mesh sizes lower than 2.5 in. were intensively used. Suspended particulate matter significantly increased after fishing activity, with higher resuspension on mud-shells and mud substrata, whereas dissolved oxygen showed no appreciable changes after fishing operations. Notwithstanding, the activity of the boliche would generate sediment resuspension between 382 and 470 t day -1, which could lead to potential cascade impacts on water quality. We propose a framework of redundancy in management measures in order to simultaneously reach management and conservation goals.

  14. Do Invertebrate Activity and Current Velocity Affect Fungal Assemblage Structure in Leaves?

    NASA Astrophysics Data System (ADS)

    Ferreira, Verónica; Graça, Manuel A. S.

    2006-02-01

    In this study we assessed the effect of current velocity and shredder presence, manipulated in artificial channels, on the structure of the fungal assemblage colonizing alder (Alnus glutinosa (L.) Gaertner) leaves incubated in coarse and fine mesh bags. Fungal sporulation rates, cumulative conidial production and number of species of aquatic hyphomycetes were higher in leaves exposed to high rather than to low current velocity. The opposite was observed regarding Simpson's index (D) on the fungal assemblage. Some species of aquatic hyphomycetes were consistently stimulated in high current channels. No effect of shredders or of mesh type was observed.

  15. Vibration characteristics of OH-58A helicopter main rotor transmission

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Coy, John J.

    1987-01-01

    Experimental vibration tests covering a range of torque and speed conditions were performed on the OH-58A helicopter main rotor transmission at the NASA Lewis Research Center. Signals from accelerometers located on the transmission housing were analyzed by using Fourier spectra, power spectral density functions, and averaging techniques. Most peaks of the Fourier spectra occurred at the spiral bevel and planetary gear mesh harmonics. The highest level of vibration occurred at the spiral bevel meshing frequency. Transmission speed and vibration measurement location had a significant effect on measured vibration; transmission torque and measurement direction had a small effect.

  16. OvidSP Medline-to-PubMed search filter translation: a methodology for extending search filter range to include PubMed's unique content.

    PubMed

    Damarell, Raechel A; Tieman, Jennifer J; Sladek, Ruth M

    2013-07-02

    PubMed translations of OvidSP Medline search filters offer searchers improved ease of access. They may also facilitate access to PubMed's unique content, including citations for the most recently published biomedical evidence. Retrieving this content requires a search strategy comprising natural language terms ('textwords'), rather than Medical Subject Headings (MeSH). We describe a reproducible methodology that uses a validated PubMed search filter translation to create a textword-only strategy to extend retrieval to PubMed's unique heart failure literature. We translated an OvidSP Medline heart failure search filter for PubMed and established version equivalence in terms of indexed literature retrieval. The PubMed version was then run within PubMed to identify citations retrieved by the filter's MeSH terms (Heart failure, Left ventricular dysfunction, and Cardiomyopathy). It was then rerun with the same MeSH terms restricted to searching on title and abstract fields (i.e. as 'textwords'). Citations retrieved by the MeSH search but not the textword search were isolated. Frequency analysis of their titles/abstracts identified natural language alternatives for those MeSH terms that performed less effectively as textwords. These terms were tested in combination to determine the best performing search string for reclaiming this 'lost set'. This string, restricted to searching on PubMed's unique content, was then combined with the validated PubMed translation to extend the filter's performance in this database. The PubMed heart failure filter retrieved 6829 citations. Of these, 834 (12%) failed to be retrieved when MeSH terms were converted to textwords. Frequency analysis of the 834 citations identified five high frequency natural language alternatives that could improve retrieval of this set (cardiac failure, cardiac resynchronization, left ventricular systolic dysfunction, left ventricular diastolic dysfunction, and LV dysfunction). Together these terms reclaimed 157/834 (18.8%) of lost citations. MeSH terms facilitate precise searching in PubMed's indexed subset. They may, however, work less effectively as search terms prior to subject indexing. A validated PubMed search filter can be used to develop a supplementary textword-only search strategy to extend retrieval to PubMed's unique content. A PubMed heart failure search filter is available on the CareSearch website (http://www.caresearch.com.au) providing access to both indexed and non-indexed heart failure evidence.

  17. Jali - Unstructured Mesh Infrastructure for Multi-Physics Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garimella, Rao V; Berndt, Markus; Coon, Ethan

    2017-04-13

    Jali is a parallel unstructured mesh infrastructure library designed for use by multi-physics simulations. It supports 2D and 3D arbitrary polyhedral meshes distributed over hundreds to thousands of nodes. Jali can read write Exodus II meshes along with fields and sets on the mesh and support for other formats is partially implemented or is (https://github.com/MeshToolkit/MSTK), an open source general purpose unstructured mesh infrastructure library from Los Alamos National Laboratory. While it has been made to work with other mesh frameworks such as MOAB and STKmesh in the past, support for maintaining the interface to these frameworks has been suspended formore » now. Jali supports distributed as well as on-node parallelism. Support of on-node parallelism is through direct use of the the mesh in multi-threaded constructs or through the use of "tiles" which are submeshes or sub-partitions of a partition destined for a compute node.« less

  18. Chronic Quadriceps Tendon Rupture After Total Knee Arthroplasty Augmented With Synthetic Mesh.

    PubMed

    Ormaza, Amaia; Moreta, Jesús; Mosquera, Javier; de Ugarte, Oskar Sáez; Mozos, José Luis Martinez-de Los

    2017-01-01

    Tear of the quadriceps tendon after revision or primary total knee arthroplasty is a rare complication, but when it occurs, this injury has serious functional consequences. In complete tears, the outcome of direct repair is unpredictable, and several authors recommend that the suture should be reinforced. Several techniques have been described, including the use of autografts, allografts, and synthetic mesh. The goal of this study was to assess the outcomes of a reconstruction technique augmented with synthetic mesh. A retrospective study was performed involving 3 patients who had chronic partial quadriceps tendon tear after total knee revision. In 2 cases, proximal quadriceps release was performed. When conservative management failed, surgical reconstruction with suture reinforced with synthetic mesh was attempted. The knee was immobilized in full extension for 6 weeks after the surgical procedure. A minimum follow-up of 12 months was required to assess results. All reconstructions showed clinical success at a mean follow-up of 19 months. Mean Knee Society Score improved from 55.7 to 87.3, with average postoperative extensor lag of 3.3° (range, 0°-10°). The mean visual analog scale pain score was 2.3 (range, 0-4). No complications were reported. Synthetic mesh has previously been shown to be an effective treatment for patellar tendon repairs after total knee replacement, but there have been few articles on quadriceps rupture. Surgical reconstruction with synthetic mesh is a viable option that provides good functional outcomes in chronic quadriceps tendon rupture after total knee arthroplasty. [Orthopedics. 2017; 40(1):38-42.]. Copyright 2016, SLACK Incorporated.

  19. Sexual function in women following transvaginal mesh procedures for the treatment of pelvic organ prolapse.

    PubMed

    Liang, Ching-Chung; Lo, Tsia-Shu; Tseng, Ling-Hong; Lin, Yi-Hao; Lin, Yu-Jr; Chang, Shuenn-Dhy

    2012-10-01

    Synthetic mesh kits recently adopted in pelvic reconstructive surgeries have achieved great surgical efficacy, but the effects of transvaginal synthetic mesh procedures on women's sexual function are still controversial. This study was conducted to demonstrate sexual function in women before and after surgery with transvaginal mesh (TVM) repair for pelvic organ prolapse (POP). A total of 93 sexually active women scheduled for correcting POP with synthetic mesh kits were recruited. In addition to urogynecological history, pelvic examination by the Pelvic Organ Prolapse Quantification system, and urodynamic testing, consenting participants were asked to complete the Pelvic Organ Prolapse/Urinary Incontinence Sexual Questionnaire (PISQ-12) to evaluate sexual function before and after surgery. At the 3-month urodynamic studies, among the 25 patients with coexistent urodynamic stress incontinence (USI) who had undergone a concomitant transobturator suburethral tape procedure (TOT), 1 (4 %) had persistent USI; 8 of 68 (11.8 %) patients with a negative pessary test developed postoperative USI. Six-month prolapse recurrence rates following TVM alone and TVM with concomitant TOT were 9 and 12 %, respectively. The total PISQ-12 score after surgery showed worse results in the TVM alone group but not in the TVM with concomitant TOT group. The individual scores of PISQ-12 after surgery demonstrated prolapse-related items improved in both TVM groups; sexual function worsened in dyspareunia and behavior domains. Our data revealed that transvaginal synthetic mesh procedures for the treatment of POP generated favorable clinical outcomes, but situations might worsen in dyspareunia and behavior domains, thereby invoking a negative emotional reaction during intercourse after surgery.

  20. Electrochemical reduction of UO2 in LiCl-Li2O molten salt using porous and nonporous anode shrouds

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Young; Won, Chan Yeon; Cha, Ju-Sun; Park, Wooshin; Im, Hun Suk; Hong, Sun-Seok; Hur, Jin-Mok

    2014-01-01

    Electrochemical reductions of uranium oxide in a molten LiCl-Li2O electrolyte were carried out using porous and nonporous anode shrouds. The study focused on the effect of the type of anode shroud on the current density by running experiments with six anode shrouds. Dense ceramics, MgO, and MgO (3 wt%) stabilized ZrO2 (ZrO2-MgO) were used as nonporous shrouds. STS 20, 100, and 300 meshes and ZrO2-MgO coated STS 40 mesh were used as porous shrouds. The current densities (0.34-0.40 A cm-2) of the electrolysis runs using the nonporous anode shrouds were much lower than those (0.76-0.79 A cm-2) of the runs using the porous shrouds. The ZrO2-MgO shroud (600-700 MPa at 25 °C) showed better bending strength than that of MgO (170 MPa at 25 °C). The high current densities achieved in the electrolysis runs using the porous anode shrouds were attributed to the transport of O2- ions through the pores in meshes of the shroud wall. ZrO2-MgO coating on STS mesh was chemically unstable in a molten LiCl-Li2O electrolyte containing Li metal. The electrochemical reduction runs using STS 20, 100, and 300 meshes showed similar current densities in spite of their different opening sizes. The STS mesh shrouds which were immersed in a LiCl-Li2O electrolyte were stable without any damage or corrosion.

  1. Grouper: A Compact, Streamable Triangle Mesh Data Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luffel, Mark; Gurung, Topraj; Lindstrom, Peter

    2014-01-01

    Here, we present Grouper: an all-in-one compact file format, random-access data structure, and streamable representation for large triangle meshes. Similarly to the recently published SQuad representation, Grouper represents the geometry and connectivity of a mesh by grouping vertices and triangles into fixed-size records, most of which store two adjacent triangles and a shared vertex. Unlike SQuad, however, Grouper interleaves geometry with connectivity and uses a new connectivity representation to ensure that vertices and triangles can be stored in a coherent order that enables memory-efficient sequential stream processing. We also present a linear-time construction algorithm that allows streaming out Grouper meshesmore » using a small memory footprint while preserving the initial ordering of vertices. In this construction, we show how the problem of assigning vertices and triangles to groups reduces to a well-known NP-hard optimization problem, and present a simple yet effective heuristic solution that performs well in practice. Our array-based Grouper representation also doubles as a triangle mesh data structure that allows direct access to vertices and triangles. Storing only about two integer references per triangle-i.e., less than the three vertex references stored with each triangle in a conventional indexed mesh format-Grouper answers both incidence and adjacency queries in amortized constant time. Our compact representation enables data-parallel processing on multicore computers, instant partitioning and fast transmission for distributed processing, as well as efficient out-of-core access. We demonstrate the versatility and performance benefits of Grouper using a suite of example meshes and processing kernels.« less

  2. Spectral-element simulations of wave propagation in complex exploration-industry models: Mesh generation and forward simulations

    NASA Astrophysics Data System (ADS)

    Nissen-Meyer, T.; Luo, Y.; Morency, C.; Tromp, J.

    2008-12-01

    Seismic-wave propagation in exploration-industry settings has seen major research and development efforts for decades, yet large-scale applications have often been limited to 2D or 3D finite-difference, (visco- )acoustic wave propagation due to computational limitations. We explore the possibility of including all relevant physical signatures in the wavefield using the spectral- element method (SPECFEM3D, SPECFEM2D), thereby accounting for acoustic, (visco-)elastic, poroelastic, anisotropic wave propagation in meshes which honor all crucial discontinuities. Mesh design is the crux of the problem, and we use CUBIT (Sandia Laboratories) to generate unstructured quadrilateral 2D and hexahedral 3D meshes for these complex background models. While general hexahedral mesh generation is an unresolved problem, we are able to accommodate most of the relevant settings (e.g., layer-cake models, salt bodies, overthrusting faults, and strong topography) with respectively tailored workflows. 2D simulations show localized, characteristic wave effects due to these features that shall be helpful in designing survey acquisition geometries in a relatively economic fashion. We address some of the fundamental issues this comprehensive modeling approach faces regarding its feasibility: Assessing geological structures in terms of the necessity to honor the major structural units, appropriate velocity model interpolation, quality control of the resultant mesh, and computational cost for realistic settings up to frequencies of 40 Hz. The solution to this forward problem forms the basis for subsequent 2D and 3D adjoint tomography within this context, which is the subject of a companion paper.

  3. Prevention of parastomal hernia with a preperitoneal polypropelene mesh.

    PubMed

    Valdés-Hernández, Javier; Díaz Milanés, Juan Antonio; Capitán Morales, Luis Cristóbal; Del Río la Fuente, Francisco Javier; Torres Arcos, Cristina; Cañete Gómez, Jesús; Oliva Mompeán, Fernando; Padillo Ruiz, Javier

    2015-01-01

    To show our results with the use of a polypropylene mesh at the stoma site, as prophylaxis of parastomal hernias in patients with rectal cancer when a terminal colostomy is performed. From January 2010 until March 2014, 45 consecutive patients with rectal cancer, underwent surgical treatment with the need of a terminal colostomy. A prophylactic mesh was placed in a sublay position at the stoma site in all cases. We analyze Demographics, technical issues and effectiveness of the procedure, as well as subsequent complications. A prophylactic mesh was placed in 45 patients, 35 male and 10 females, mean age of 66.2 (47-88) and Body Mass Index 29.19 (20.4-40.6). A total of 7 middle rectal carcinoma, 36 low rectal carcinoma, one rectal melanoma and one squamous cell anal carcinoma were electively treated with identical protocol. Abdominoperineal resection was performed in 38 patients, and low anterior resection with terminal colostomy in 7. An open approach was elected in 39 patients and laparoscopy in 6, with 2 conversions to open surgery. Medium follow up was 22 months (2.1-53). Overall, 3 parastomal hernias (6.66%) were found, one of which was a radiological finding with no clinical significance. No complications related to the mesh or the colostomy were found. The use of a prophylactic polypropylene mesh placed in a sublay position at the stoma site is a safe and feasible technique. It lowers the incidence of parastomal hernias with no increased morbidity. Copyright © 2014 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Integration of aerobic granular sludge and mesh filter membrane bioreactor for cost-effective wastewater treatment.

    PubMed

    Li, Wen-Wei; Wang, Yun-Kun; Sheng, Guo-Ping; Gui, Yong-Xin; Yu, Lei; Xie, Tong-Qing; Yu, Han-Qing

    2012-10-01

    Conventional MBR has been mostly based on floc sludge and the use of costly microfiltration membranes. Here, a novel aerobic granule (AG)-mesh filter MBR (MMBR) process was developed for cost-effective wastewater treatment. During 32-day continuous operation, a predominance of granules was maintained in the system, and good filtration performance was achieved at a low trans-membrane pressure (TMP) of below 0.025 m. The granules showed a lower fouling propensity than sludge flocs, attributed to the formation of more porous biocake layer at mesh surface. A low-flux and low-TMP filtration favored a stable system operation. In addition, the reactor had high pollutant removal efficiencies, with a 91.4% chemical oxygen demand removal, 95.7% NH(4)(+) removal, and a low effluent turbidity of 4.1 NTU at the stable stage. This AG-MMBR process offers a promising technology for low-cost and efficient treatment of wastewaters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Effective algal harvesting by using mesh membrane for enhanced energy recovery in an innovative integrated photobioelectrochemical system.

    PubMed

    Luo, Shuai; Sai Shankar Sampara, Pranav; He, Zhen

    2018-04-01

    In this work, an innovative design of integrated photobioelectrochemcial system (IPB) and an algal harvesting method based on polyester-mesh membrane (MM) were investigated. The algal growth/harvesting period of 6 days led to the highest surface biomass productivity (SBP) of 0.88 g m -2  day -1 and the highest energy generation of 0.157 ± 0.001 kJ day -1 . The harvesting frequency of 3 times in an operational cycle (with three pieces of MM) enhanced the SBP to 1.14 g m -2  day -1 . The catholyte recirculation for catholyte mixing resulted in a positive net energy production (NEP) of 0.227 ± 0.025 kJ day -1 . Those results have demonstrated the benefits of both using mesh membrane and the new reactor design for algal collection with positive effects on improving IPB performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Effect of catalysts on dc corona discharge poisoning

    NASA Astrophysics Data System (ADS)

    Pekárek, S.

    2011-02-01

    The processes of ozone generation in non-thermal plasma produced by an electrical discharge in air at atmospheric pressure are burdened by the presence of nitrogen oxides, which on the one hand contribute to ozone generation and on the other hand are responsible for unpleasant discharge poisoning. The term discharge poisoning refers to the situation when the discharge ozone formation completely breaks down. Discharge poisoning can be affected by placing a catalyst in the discharge chamber. For the dc hollow needle to mesh corona discharge enhanced by the flow of air through the needle electrode we studied the effect of titanium dioxide TiO2, ZSM-5 zeolite or Cu++ZSM-5 zeolite on discharge poisoning by monitoring the ozone, nitrogen monoxide and nitrogen dioxide discharge production. We found that placing globules of any of these catalysts on the mesh decreases the energy density of the onset of discharge poisoning, and this energy density is smallest for a discharge with globules of a TiO2 on the mesh.

  7. Past, Present and Future of Surgical Meshes: A Review.

    PubMed

    Baylón, Karen; Rodríguez-Camarillo, Perla; Elías-Zúñiga, Alex; Díaz-Elizondo, Jose Antonio; Gilkerson, Robert; Lozano, Karen

    2017-08-22

    Surgical meshes, in particular those used to repair hernias, have been in use since 1891. Since then, research in the area has expanded, given the vast number of post-surgery complications such as infection, fibrosis, adhesions, mesh rejection, and hernia recurrence. Researchers have focused on the analysis and implementation of a wide range of materials: meshes with different fiber size and porosity, a variety of manufacturing methods, and certainly a variety of surgical and implantation procedures. Currently, surface modification methods and development of nanofiber based systems are actively being explored as areas of opportunity to retain material strength and increase biocompatibility of available meshes. This review summarizes the history of surgical meshes and presents an overview of commercial surgical meshes, their properties, manufacturing methods, and observed biological response, as well as the requirements for an ideal surgical mesh and potential manufacturing methods.

  8. Heterogeneous Wireless Mesh Network Technology Evaluation for Space Proximity and Surface Applications

    NASA Technical Reports Server (NTRS)

    DeCristofaro, Michael A.; Lansdowne, Chatwin A.; Schlesinger, Adam M.

    2014-01-01

    NASA has identified standardized wireless mesh networking as a key technology for future human and robotic space exploration. Wireless mesh networks enable rapid deployment, provide coverage in undeveloped regions. Mesh networks are also self-healing, resilient, and extensible, qualities not found in traditional infrastructure-based networks. Mesh networks can offer lower size, weight, and power (SWaP) than overlapped infrastructure-perapplication. To better understand the maturity, characteristics and capability of the technology, we developed an 802.11 mesh network consisting of a combination of heterogeneous commercial off-the-shelf devices and opensource firmware and software packages. Various streaming applications were operated over the mesh network, including voice and video, and performance measurements were made under different operating scenarios. During the testing several issues with the currently implemented mesh network technology were identified and outlined for future work.

  9. Robust laser-structured asymmetrical PTFE mesh for underwater directional transportation and continuous collection of gas bubbles

    NASA Astrophysics Data System (ADS)

    Yin, Kai; Yang, Shuai; Dong, Xinran; Chu, Dongkai; Duan, Ji-An; He, Jun

    2018-06-01

    We report a simple, efficient method to fabricate micro/nanoscale hierarchical structures on one side of polytetrafluoroethylene mesh surfaces, using one-step femtosecond laser direct writing technology. The laser-treated surface exhibits superhydrophobicity in air and superaerophilicity in water, resulting in the mesh possessing the hydrophobic/superhydrophobic asymmetrical property. Bubbles can pass through the mesh from the untreated side to the laser-treated side but cannot pass through the mesh in the opposite direction. The asymmetrical mesh can therefore be designed for the directional transportation and continuous collection of gas bubbles in aqueous environments. Furthermore, the asymmetrical mesh shows excellent stability during corrosion and abrasion tests. These findings may provide an efficient route for fabricating a durable asymmetrical mesh for the directional and continuous transport of gas bubbles.

  10. Enhanced model of gear transmission dynamics for condition monitoring applications: Effects of torque, friction and bearing clearance

    NASA Astrophysics Data System (ADS)

    Fernandez-del-Rincon, A.; Garcia, P.; Diez-Ibarbia, A.; de-Juan, A.; Iglesias, M.; Viadero, F.

    2017-02-01

    Gear transmissions remain as one of the most complex mechanical systems from the point of view of noise and vibration behavior. Research on gear modeling leading to the obtaining of models capable of accurately reproduce the dynamic behavior of real gear transmissions has spread out the last decades. Most of these models, although useful for design stages, often include simplifications that impede their application for condition monitoring purposes. Trying to filling this gap, the model presented in this paper allows us to simulate gear transmission dynamics including most of these features usually neglected by the state of the art models. This work presents a model capable of considering simultaneously the internal excitations due to the variable meshing stiffness (including the coupling among successive tooth pairs in contact, the non-linearity linked with the contacts between surfaces and the dissipative effects), and those excitations consequence of the bearing variable compliance (including clearances or pre-loads). The model can also simulate gear dynamics in a realistic torque dependent scenario. The proposed model combines a hybrid formulation for calculation of meshing forces with a non-linear variable compliance approach for bearings. Meshing forces are obtained by means of a double approach which combines numerical and analytical aspects. The methodology used provides a detailed description of the meshing forces, allowing their calculation even when gear center distance is modified due to shaft and bearing flexibilities, which are unavoidable in real transmissions. On the other hand, forces at bearing level were obtained considering a variable number of supporting rolling elements, depending on the applied load and clearances. Both formulations have been developed and applied to the simulation of the vibration of a sample transmission, focusing the attention on the transmitted load, friction meshing forces and bearing preloads.

  11. [Vaginal mesh operations in the urogynecological practice after the FDA warnings. Use or not to use mesh?

    PubMed

    Fekete, Zoltán; Körösi, Szilvia; Németh, Gábor

    2018-03-01

    The prevalence of pelvic organ prolapse (POP) with aging is escalating alarmingly, and now becoming a growing epidemic among the elderly. Synthetic transvaginal mesh (TVM) has been employed with increasing popularity in the treatment of POP until the end of the last decade. After the U.S. Drug and Food Administration (FDA) warnings in the years 2008 and 2011, the number of vaginal mesh operations has decreased dramatically. The aim of the study was to evaluate and compare the anti-POP effectivity, the anti-stress incontinence (anti-SUI) efficacy, and the late (36 months) post-operative complications of the anterior vaginoplasty and the TVM operations. We analysed the clinical data from 120 patients with stage II-III anterior prolapse and concomitant SUI who had undergone surgery at a tertiary referral centre in Hungary between January 2013 and January 2014. Sixty patients underwent Kelly-Stoeckel vaginoplasty and the other 60 cases had TVM operation. The surgical complications were classified using the Clavien-Dindo (CD) classification system. The anti-POP (91.6% vs. 63.3%; p<0.001) and the anti-SUI efficacy (90% vs. 55%, p<0.001) were significantly higher in the TVM group than in the vaginoplasty group, while the overall extrusion rate was found 8.3% after a 3-year follow-up. The Clavien-Dindo score (CD) proved that the early post-operative complication profile was similar among the TVM patients as compared to the vaginoplasty group (p = 0.405). Vaginal mesh surgery represents an effective procedure for prolapse and concomitant SUI with a decreased risk of short- and long-term complications. Orv Hetil. 2018; 159(10): 397-404.

  12. Adaptive finite-volume WENO schemes on dynamically redistributed grids for compressible Euler equations

    NASA Astrophysics Data System (ADS)

    Pathak, Harshavardhana S.; Shukla, Ratnesh K.

    2016-08-01

    A high-order adaptive finite-volume method is presented for simulating inviscid compressible flows on time-dependent redistributed grids. The method achieves dynamic adaptation through a combination of time-dependent mesh node clustering in regions characterized by strong solution gradients and an optimal selection of the order of accuracy and the associated reconstruction stencil in a conservative finite-volume framework. This combined approach maximizes spatial resolution in discontinuous regions that require low-order approximations for oscillation-free shock capturing. Over smooth regions, high-order discretization through finite-volume WENO schemes minimizes numerical dissipation and provides excellent resolution of intricate flow features. The method including the moving mesh equations and the compressible flow solver is formulated entirely on a transformed time-independent computational domain discretized using a simple uniform Cartesian mesh. Approximations for the metric terms that enforce discrete geometric conservation law while preserving the fourth-order accuracy of the two-point Gaussian quadrature rule are developed. Spurious Cartesian grid induced shock instabilities such as carbuncles that feature in a local one-dimensional contact capturing treatment along the cell face normals are effectively eliminated through upwind flux calculation using a rotated Hartex-Lax-van Leer contact resolving (HLLC) approximate Riemann solver for the Euler equations in generalized coordinates. Numerical experiments with the fifth and ninth-order WENO reconstructions at the two-point Gaussian quadrature nodes, over a range of challenging test cases, indicate that the redistributed mesh effectively adapts to the dynamic flow gradients thereby improving the solution accuracy substantially even when the initial starting mesh is non-adaptive. The high adaptivity combined with the fifth and especially the ninth-order WENO reconstruction allows remarkably sharp capture of discontinuous propagating shocks with simultaneous resolution of smooth yet complex small scale unsteady flow features to an exceptional detail.

  13. Effect of Reinforcement Using Stainless Steel Mesh, Glass Fibers, and Polyethylene on the Impact Strength of Heat Cure Denture Base Resin - An In Vitro Study

    PubMed Central

    Murthy, H B Mallikarjuna; Shaik, Sharaz; Sachdeva, Harleen; Khare, Sumit; Haralur, Satheesh B; Roopa, K T

    2015-01-01

    Background: The impact strength of denture base resin is of great concern and many approaches have been made to strengthen acrylic resin dentures. The objective of this study was to compare the impact strength of the denture base resin with and without reinforcement and to evaluate the impact strength of denture base resin when reinforced with stainless steel mesh, glass fiber, and polyethylene fibers in the woven form. Materials and Methods: The specimens (maxillary denture bases) were fabricated using a standard polyvinylsiloxane mold with conventional heat cured polymethyl methacrylate resin. The specimens were divided into four groups (n = 10). Group I specimens or control group were not reinforced. Group II specimens were reinforced with stainless steel mesh and Group III and Group IV specimens were reinforced with three percent by weight of glass fibers and polyethylene fibers in weave form respectively. All the specimens were immersed in water for 1-week before testing. The impact strength was measured with falling weight impact testing machine. One-way analysis of variance and Tukey’s post-hoc test were used for statistical analysis. Results: Highest impact strength values were exhibited by the specimens reinforced with polyethylene fibers followed by glass fibers, stainless steel mesh, and control group. Conclusions: Reinforcement of maxillary complete dentures showed a significant increase in impact strength when compared to unreinforced dentures. Polyethylene fibers exhibit better impact strength followed by glass fibers and stainless steel mesh. By using pre-impregnated glass and polyethylene fibers in woven form (prepregs) the impact strength of the denture bases can be increased effectively. PMID:26124604

  14. Temporary abdominal closure with zipper-mesh device for management of intra-abdominal sepsis.

    PubMed

    Utiyama, Edivaldo Massazo; Pflug, Adriano Ribeiro Meyer; Damous, Sérgio Henrique Bastos; Rodrigues, Adilson Costa; Montero, Edna Frasson de Souza; Birolini, Claudio Augusto Vianna

    2015-01-01

    to present our experience with scheduled reoperations in 15 patients with intra-abdominal sepsis. we have applied a more effective technique consisting of temporary abdominal closure with a nylon mesh sheet containing a zipper. We performed reoperations in the operating room under general anesthesia at an average interval of 84 hours. The revision consisted of debridement of necrotic material and vigorous lavage of the involved peritoneal area. The mean age of patients was 38.7 years (range, 15 to 72 years); 11 patients were male, and four were female. forty percent of infections were due to necrotizing pancreatitis. Sixty percent were due to perforation of the intestinal viscus secondary to inflammation, vascular occlusion or trauma. We performed a total of 48 reoperations, an average of 3.2 surgeries per patient. The mesh-zipper device was left in place for an average of 13 days. An intestinal ostomy was present adjacent to the zipper in four patients and did not present a problem for patient management. Mortality was 26.6%. No fistulas resulted from this technique. When intra-abdominal disease was under control, the mesh-zipper device was removed, and the fascia was closed in all patients. In three patients, the wound was closed primarily, and in 12 it was allowed to close by secondary intent. Two patients developed hernia; one was incisional and one was in the drain incision. the planned reoperation for manual lavage and debridement of the abdomen through a nylon mesh-zipper combination was rapid, simple, and well-tolerated. It permitted effective management of severe septic peritonitis, easy wound care and primary closure of the abdominal wall.

  15. Determination of the optimal mesh parameters for Iguassu centrifuge flow and separation calculations

    NASA Astrophysics Data System (ADS)

    Romanihin, S. M.; Tronin, I. V.

    2016-09-01

    We present the method and the results of the determination for optimal computational mesh parameters for axisymmetric modeling of flow and separation in the Iguasu gas centrifuge. The aim of this work was to determine the mesh parameters which provide relatively low computational cost whithout loss of accuracy. We use direct search optimization algorithm to calculate optimal mesh parameters. Obtained parameters were tested by the calculation of the optimal working regime of the Iguasu GC. Separative power calculated using the optimal mesh parameters differs less than 0.5% from the result obtained on the detailed mesh. Presented method can be used to determine optimal mesh parameters of the Iguasu GC with different rotor speeds.

  16. Dynamic mesh adaption for triangular and tetrahedral grids

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Strawn, Roger

    1993-01-01

    The following topics are discussed: requirements for dynamic mesh adaption; linked-list data structure; edge-based data structure; adaptive-grid data structure; three types of element subdivision; mesh refinement; mesh coarsening; additional constraints for coarsening; anisotropic error indicator for edges; unstructured-grid Euler solver; inviscid 3-D wing; and mesh quality for solution-adaptive grids. The discussion is presented in viewgraph form.

  17. Tetrahedral and polyhedral mesh evaluation for cerebral hemodynamic simulation--a comparison.

    PubMed

    Spiegel, Martin; Redel, Thomas; Zhang, Y; Struffert, Tobias; Hornegger, Joachim; Grossman, Robert G; Doerfler, Arnd; Karmonik, Christof

    2009-01-01

    Computational fluid dynamic (CFD) based on patient-specific medical imaging data has found widespread use for visualizing and quantifying hemodynamics in cerebrovascular disease such as cerebral aneurysms or stenotic vessels. This paper focuses on optimizing mesh parameters for CFD simulation of cerebral aneurysms. Valid blood flow simulations strongly depend on the mesh quality. Meshes with a coarse spatial resolution may lead to an inaccurate flow pattern. Meshes with a large number of elements will result in unnecessarily high computation time which is undesirable should CFD be used for planning in the interventional setting. Most CFD simulations reported for these vascular pathologies have used tetrahedral meshes. We illustrate the use of polyhedral volume elements in comparison to tetrahedral meshing on two different geometries, a sidewall aneurysm of the internal carotid artery and a basilar bifurcation aneurysm. The spatial mesh resolution ranges between 5,119 and 228,118 volume elements. The evaluation of the different meshes was based on the wall shear stress previously identified as a one possible parameter for assessing aneurysm growth. Polyhedral meshes showed better accuracy, lower memory demand, shorter computational speed and faster convergence behavior (on average 369 iterations less).

  18. Anatomically Realistic Three-Dimensional Meshes of the Pelvic Floor & Anal Canal for Finite Element Analysis

    PubMed Central

    Noakes, Kimberley F.; Bissett, Ian P.; Pullan, Andrew J.; Cheng, Leo K.

    2014-01-01

    Three anatomically realistic meshes, suitable for finite element analysis, of the pelvic floor and anal canal regions have been developed to provide a framework with which to examine the mechanics, via finite element analysis of normal function within the pelvic floor. Two cadaver-based meshes were produced using the Visible Human Project (male and female) cryosection data sets, and a third mesh was produced based on MR image data from a live subject. The Visible Man (VM) mesh included 10 different pelvic structures while the Visible Woman and MRI meshes contained 14 and 13 structures respectively. Each image set was digitized and then finite element meshes were created using an iterative fitting procedure with smoothing constraints calculated from ‘L’-curves. These weights produced accurate geometric meshes of each pelvic structure with average Root Mean Square (RMS) fitting errors of less than 1.15 mm. The Visible Human cadaveric data provided high resolution images, however, the cadaveric meshes lacked the normal dynamic form of living tissue and suffered from artifacts related to postmortem changes. The lower resolution MRI mesh was able to accurately portray structure of the living subject and paves the way for dynamic, functional modeling. PMID:18317929

  19. Wind Farm LES Simulations Using an Overset Methodology

    NASA Astrophysics Data System (ADS)

    Ananthan, Shreyas; Yellapantula, Shashank

    2017-11-01

    Accurate simulation of wind farm wakes under realistic atmospheric inflow conditions and complex terrain requires modeling a wide range of length and time scales. The computational domain can span several kilometers while requiring mesh resolutions in O(10-6) to adequately resolve the boundary layer on the blade surface. Overset mesh methodology offers an attractive option to address the disparate range of length scales; it allows embedding body-confirming meshes around turbine geomtries within nested wake capturing meshes of varying resolutions necessary to accurately model the inflow turbulence and the resulting wake structures. Dynamic overset hole-cutting algorithms permit relative mesh motion that allow this nested mesh structure to track unsteady inflow direction changes, turbine control changes (yaw and pitch), and wake propagation. An LES model with overset mesh for localized mesh refinement is used to analyze wind farm wakes and performance and compared with local mesh refinements using non-conformal (hanging node) unstructured meshes. Turbine structures will be modeled using both actuator line approaches and fully-resolved structures to test the efficacy of overset methods for wind farm applications. Exascale Computing Project (ECP), Project Number: 17-SC-20-SC, a collaborative effort of two DOE organizations - the Office of Science and the National Nuclear Security Administration.

  20. Monitoring and evaluation of wire mesh forming life

    NASA Astrophysics Data System (ADS)

    Enemuoh, Emmanuel U.; Zhao, Ping; Kadlec, Alec

    2018-03-01

    Forming tables are used with stainless steel wire mesh conveyor belts to produce variety of products. The forming tables will typically run continuously for several days, with some hours of scheduled downtime for maintenance, cleaning and part replacement after several weeks of operation. The wire mesh conveyor belts show large variation in their remaining life due to associated variations in their nominal thicknesses. Currently the industry is dependent on seasoned operators to determine the replacement time for the wire mesh formers. The drawback of this approach is inconsistency in judgements made by different operators and lack of data knowledge that can be used to develop decision making system that will be more consistent with wire mesh life prediction and replacement time. In this study, diagnostic measurements about the health of wire mesh former is investigated and developed. The wire mesh quality characteristics considered are thermal measurement, tension property, gage thickness, and wire mesh wear. The results show that real time thermal sensor and wear measurements would provide suitable data for the estimation of wire mesh failure, therefore, can be used as a diagnostic parameter for developing structural health monitoring (SHM) system for stainless steel wire mesh formers.

  1. Assessing the impact of short-term surgical education on practice: a retrospective study of the introduction of mesh for inguinal hernia repair in sub-Saharan Africa.

    PubMed

    Wang, Y T; Meheš, M M; Naseem, H-R; Ibrahim, M; Butt, M A; Ahmed, N; Wahab Bin Adam, M A; Issah, A-W; Mohammed, I; Goldstein, S D; Cartwright, K; Abdullah, F

    2014-08-01

    Inguinal hernia repair is the most common general surgery operation performed globally. However, the adoption of tension-free hernia repair with mesh has been limited in low-income settings, largely due to a lack of technical training and resources. The present study evaluates the impact of a 2-day training course instructing use of polypropylene mesh for inguinal hernia repair on the practice patterns of sub-Saharan African physicians. A surgical training course on tension-free mesh repair of hernias was provided to 16 physicians working in rural Ghanaian and Liberian hospitals. Three physicians were requested to prospectively record all their inguinal hernia surgeries, performed with or without mesh, during the 14-month period following the training. Demographic variables, diagnoses, and complications were collected by an independent data collector for mesh and non-mesh procedures. Surgery with mesh increased significantly following intervention, from near negligible levels prior to the training to 8.1 % of all inguinal hernia repairs afterwards. Mesh repair accounted for 90.8 % of recurrent hernia repairs and 2.9 % of primary hernia repairs after training. Overall complication rates between mesh and non-mesh procedures were not significantly different (p = 0.20). Three physicians who participated in an intensive education course were routinely using mesh for inguinal hernia repair 14 months after the training. This represents a significant change in practice pattern. Complication rates between patients who underwent inguinal hernia repairs with and without mesh were comparable. The present study provides evidence that short-term surgical training initiatives can have a substantial impact on local healthcare practice in resource-limited settings.

  2. Hexahedral mesh generation via the dual arrangement of surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, S.A.; Tautges, T.J.

    1997-12-31

    Given a general three-dimensional geometry with a prescribed quadrilateral surface mesh, the authors consider the problem of constructing a hexahedral mesh of the geometry whose boundary is exactly the prescribed surface mesh. Due to the specialized topology of hexahedra, this problem is more difficult than the analogous one for tetrahedra. Folklore has maintained that a surface mesh must have a constrained structure in order for there to exist a compatible hexahedral mesh. However, they have proof that a surface mesh need only satisfy mild parity conditions, depending on the topology of the three-dimensional geometry, for there to exist a compatiblemore » hexahedral mesh. The proof is based on the realization that a hexahedral mesh is dual to an arrangement of surfaces, and the quadrilateral surface mesh is dual to the arrangement of curves bounding these surfaces. The proof is constructive and they are currently developing an algorithm called Whisker Weaving (WW) that mirrors the proof steps. Given the bounding curves, WW builds the topological structure of an arrangement of surfaces having those curves as its boundary. WW progresses in an advancing front manner. Certain local rules are applied to avoid structures that lead to poor mesh quality. Also, after the arrangement is constructed, additional surfaces are inserted to separate features, so e.g., no two hexahedra share more than one quadrilateral face. The algorithm has generated meshes for certain non-trivial problems, but is currently unreliable. The authors are exploring strategies for consistently selecting which portion of the surface arrangement to advance based on the existence proof. This should lead us to a robust algorithm for arbitrary geometries and surface meshes.« less

  3. Transvaginal mesh in the media following the 2011 US food and drug administration public health notification update.

    PubMed

    Koo, Kevin; Gormley, E Ann

    2017-02-01

    Prompted by patients' changing perceptions of transvaginal mesh, this study examines how mesh has been reported in the news following the 2011 US Food and Drug Administration (FDA) updated notification about the use of mesh in the treatment of pelvic organ prolapse. Two national newspaper databases were queried for articles discussing transvaginal mesh published within 3 years of the FDA announcement. Content analysis included headline subjects, mesh-related complications, quoted sources, and the FDA recommendations. To determine whether more widely read sources publish higher quality reporting, a subgroup analysis was conducted based on newspaper circulation. Ninety-five articles met inclusion criteria. Mesh-related litigation was the most common headline subject (36 articles, 38%), and 54% of all articles referenced legal action. Fifty-seven articles (60%) cited at least one mesh-related complication. Only 18 articles (19%) quoted surgeons who use transvaginal mesh. For the FDA update, 40% of articles that first reported the announcement accurately specified that it applies to mesh for prolapse, not incontinence. This ambiguity persisted: half of all articles cited the warning, but only 23% distinguished between prolapse and incontinence. Higher newspaper circulation did not significantly improve the quality of reporting about the content or context of the FDA's recommendations. Despite frequent media coverage of transvaginal mesh and its complications since 2011, very few news sources that cited the FDA warning distinguished between prolapse and incontinence. Given prevalent reporting of mesh-related litigation, the findings raise concern about how patients perceive the safety and efficacy of transvaginal mesh, regardless of indication. Neurourol. Urodynam. 36:329-332, 2017. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  4. Methanethiol Concentrations and Sea-Air Fluxes in the Subarctic NE Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Kiene, R. P.; Williams, T. E.; Esson, K.; Tortell, P. D.; Dacey, J. W. H.

    2017-12-01

    Exchange of volatile organic sulfur from the ocean to the atmosphere impacts the global sulfur cycle and the climate system and is thought to occur mainly via the gas dimethylsulfide (DMS). DMS is produced during degradation of the abundant phytoplankton osmolyte dimethylsulfoniopropionate (DMSP) but bacteria can also convert dissolved DMSP into the sulfur gas methanethiol (MeSH). MeSH has been difficult to measure in seawater because of its high chemical and biological reactivity and, thus, information on MeSH concentrations, distribution and sea-air fluxes is limited. We measured MeSH in the northeast subarctic Pacific Ocean in July 2016, along transects with strong phytoplankton abundance gradients. Water samples obtained with Niskin bottles were analyzed for MeSH by purge-and-trap gas chromatography. Depth profiles showed that MeSH concentrations were high near the surface and declined with depth. Surface waters (5 m depth) had an average MeSH concentration of 0.75 nM with concentrations reaching up to 3nM. MeSH concentrations were correlated (r = 0.47) with microbial turnover of dissolved DMSP which ranged up to 236 nM per day. MeSH was also correlated with total DMSP (r = 0.93) and dissolved DMS (r = 0.63), supporting the conclusion that DMSP was a major precursor of MeSH. Surface water MeSH:DMS concentration ratios averaged 0.19 and ranged up to 0.50 indicating that MeSH was a significant fraction of the volatile sulfur pool in surface waters. Sea-air fluxes of MeSH averaged 15% of the combined DMS+MeSH flux, therefore MeSH contributed an important fraction of the sulfur emitted to the atmosphere from the subarctic NE Pacific Ocean.

  5. Adaptive Meshing Techniques for Viscous Flow Calculations on Mixed Element Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1997-01-01

    An adaptive refinement strategy based on hierarchical element subdivision is formulated and implemented for meshes containing arbitrary mixtures of tetrahendra, hexahendra, prisms and pyramids. Special attention is given to keeping memory overheads as low as possible. This procedure is coupled with an algebraic multigrid flow solver which operates on mixed-element meshes. Inviscid flows as well as viscous flows are computed an adaptively refined tetrahedral, hexahedral, and hybrid meshes. The efficiency of the method is demonstrated by generating an adapted hexahedral mesh containing 3 million vertices on a relatively inexpensive workstation.

  6. METHOD OF PREPARING A CERAMIC FUEL ELEMENT

    DOEpatents

    Ross, W.T.; Bloomster, C.H.; Bardsley, R.E.

    1963-09-01

    A method is described for preparing a fuel element from -325 mesh PuO/ sub 2/ and -20 mesh UO/sub 2/, and the steps of screening --325 mesh UO/sub 2/ from the -20 mesh UO/sub 2/, mixing PuO/sub 2/ with the --325 mesh UO/sub 2/, blending this mixture with sufficient --20 mesh UO/sub 2/ to obtain the desired composition, introducing the blend into a metal tube, repeating the procedure until the tube is full, and vibrating the tube to compact the powder are included. (AEC)

  7. Effect of vibration on retention characteristics of screen acquisition systems. [for surface tension propellant acquisition

    NASA Technical Reports Server (NTRS)

    Tegart, J. R.; Aydelott, J. C.

    1978-01-01

    The design of surface tension propellant acquisition systems using fine-mesh screen must take into account all factors that influence the liquid pressure differentials within the system. One of those factors is spacecraft vibration. Analytical models to predict the effects of vibration have been developed. A test program to verify the analytical models and to allow a comparative evaluation of the parameters influencing the response to vibration was performed. Screen specimens were tested under conditions simulating the operation of an acquisition system, considering the effects of such parameters as screen orientation and configuration, screen support method, screen mesh, liquid flow and liquid properties. An analytical model, based on empirical coefficients, was most successful in predicting the effects of vibration.

  8. GRAPE- TWO-DIMENSIONAL GRIDS ABOUT AIRFOILS AND OTHER SHAPES BY THE USE OF POISSON'S EQUATION

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.

    1994-01-01

    The ability to treat arbitrary boundary shapes is one of the most desirable characteristics of a method for generating grids, including those about airfoils. In a grid used for computing aerodynamic flow over an airfoil, or any other body shape, the surface of the body is usually treated as an inner boundary and often cannot be easily represented as an analytic function. The GRAPE computer program was developed to incorporate a method for generating two-dimensional finite-difference grids about airfoils and other shapes by the use of the Poisson differential equation. GRAPE can be used with any boundary shape, even one specified by tabulated points and including a limited number of sharp corners. The GRAPE program has been developed to be numerically stable and computationally fast. GRAPE can provide the aerodynamic analyst with an efficient and consistent means of grid generation. The GRAPE procedure generates a grid between an inner and an outer boundary by utilizing an iterative procedure to solve the Poisson differential equation subject to geometrical restraints. In this method, the inhomogeneous terms of the equation are automatically chosen such that two important effects are imposed on the grid. The first effect is control of the spacing between mesh points along mesh lines intersecting the boundaries. The second effect is control of the angles with which mesh lines intersect the boundaries. Along with the iterative solution to Poisson's equation, a technique of coarse-fine sequencing is employed to accelerate numerical convergence. GRAPE program control cards and input data are entered via the NAMELIST feature. Each variable has a default value such that user supplied data is kept to a minimum. Basic input data consists of the boundary specification, mesh point spacings on the boundaries, and mesh line angles at the boundaries. Output consists of a dataset containing the grid data and, if requested, a plot of the generated mesh. The GRAPE program is written in FORTRAN IV for batch execution and has been implemented on a CDC 6000 series computer with a central memory requirement of approximately 135K (octal) of 60 bit words. For plotted output the commercially available DISSPLA graphics software package is required. The GRAPE program was developed in 1980.

  9. GeneMesh: a web-based microarray analysis tool for relating differentially expressed genes to MeSH terms.

    PubMed

    Jani, Saurin D; Argraves, Gary L; Barth, Jeremy L; Argraves, W Scott

    2010-04-01

    An important objective of DNA microarray-based gene expression experimentation is determining inter-relationships that exist between differentially expressed genes and biological processes, molecular functions, cellular components, signaling pathways, physiologic processes and diseases. Here we describe GeneMesh, a web-based program that facilitates analysis of DNA microarray gene expression data. GeneMesh relates genes in a query set to categories available in the Medical Subject Headings (MeSH) hierarchical index. The interface enables hypothesis driven relational analysis to a specific MeSH subcategory (e.g., Cardiovascular System, Genetic Processes, Immune System Diseases etc.) or unbiased relational analysis to broader MeSH categories (e.g., Anatomy, Biological Sciences, Disease etc.). Genes found associated with a given MeSH category are dynamically linked to facilitate tabular and graphical depiction of Entrez Gene information, Gene Ontology information, KEGG metabolic pathway diagrams and intermolecular interaction information. Expression intensity values of groups of genes that cluster in relation to a given MeSH category, gene ontology or pathway can be displayed as heat maps of Z score-normalized values. GeneMesh operates on gene expression data derived from a number of commercial microarray platforms including Affymetrix, Agilent and Illumina. GeneMesh is a versatile web-based tool for testing and developing new hypotheses through relating genes in a query set (e.g., differentially expressed genes from a DNA microarray experiment) to descriptors making up the hierarchical structure of the National Library of Medicine controlled vocabulary thesaurus, MeSH. The system further enhances the discovery process by providing links between sets of genes associated with a given MeSH category to a rich set of html linked tabular and graphic information including Entrez Gene summaries, gene ontologies, intermolecular interactions, overlays of genes onto KEGG pathway diagrams and heatmaps of expression intensity values. GeneMesh is freely available online at http://proteogenomics.musc.edu/genemesh/.

  10. MeshVoro: A Three-Dimensional Voronoi Mesh Building Tool for the TOUGH Family of Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, C. M.; Boyle, K. L.; Reagan, M.

    2013-09-30

    Few tools exist for creating and visualizing complex three-dimensional simulation meshes, and these have limitations that restrict their application to particular geometries and circumstances. Mesh generation needs to trend toward ever more general applications. To that end, we have developed MeshVoro, a tool that is based on the Voro (Rycroft 2009) library and is capable of generating complex threedimensional Voronoi tessellation-based (unstructured) meshes for the solution of problems of flow and transport in subsurface geologic media that are addressed by the TOUGH (Pruess et al. 1999) family of codes. MeshVoro, which includes built-in data visualization routines, is a particularly usefulmore » tool because it extends the applicability of the TOUGH family of codes by enabling the scientifically robust and relatively easy discretization of systems with challenging 3D geometries. We describe several applications of MeshVoro. We illustrate the ability of the tool to straightforwardly transform a complex geological grid into a simulation mesh that conforms to the specifications of the TOUGH family of codes. We demonstrate how MeshVoro can describe complex system geometries with a relatively small number of grid blocks, and we construct meshes for geometries that would have been practically intractable with a standard Cartesian grid approach. We also discuss the limitations and appropriate applications of this new technology.« less

  11. Performance effects of irregular communications patterns on massively parallel multiprocessors

    NASA Technical Reports Server (NTRS)

    Saltz, Joel; Petiton, Serge; Berryman, Harry; Rifkin, Adam

    1991-01-01

    A detailed study of the performance effects of irregular communications patterns on the CM-2 was conducted. The communications capabilities of the CM-2 were characterized under a variety of controlled conditions. In the process of carrying out the performance evaluation, extensive use was made of a parameterized synthetic mesh. In addition, timings with unstructured meshes generated for aerodynamic codes and a set of sparse matrices with banded patterns on non-zeroes were performed. This benchmarking suite stresses the communications capabilities of the CM-2 in a range of different ways. Benchmark results demonstrate that it is possible to make effective use of much of the massive concurrency available in the communications network.

  12. Dynamic mesh for TCAD modeling with ECORCE

    NASA Astrophysics Data System (ADS)

    Michez, A.; Boch, J.; Touboul, A.; Saigné, F.

    2016-08-01

    Mesh generation for TCAD modeling is challenging. Because densities of carriers can change by several orders of magnitude in thin areas, a significant change of the solution can be observed for two very similar meshes. The mesh must be defined at best to minimize this change. To address this issue, a criterion based on polynomial interpolation on adjacent nodes is proposed that adjusts accurately the mesh to the gradients of Degrees of Freedom. Furthermore, a dynamic mesh that follows changes of DF in DC and transient mode is a powerful tool for TCAD users. But, in transient modeling, adding nodes to a mesh induces oscillations in the solution that appears as spikes at the current collected at the contacts. This paper proposes two schemes that solve this problem. Examples show that using these techniques, the dynamic mesh generator of the TCAD tool ECORCE handle semiconductors devices in DC and transient mode.

  13. Past, Present and Future of Surgical Meshes: A Review

    PubMed Central

    Baylón, Karen; Rodríguez-Camarillo, Perla; Elías-Zúñiga, Alex; Díaz-Elizondo, Jose Antonio; Gilkerson, Robert; Lozano, Karen

    2017-01-01

    Surgical meshes, in particular those used to repair hernias, have been in use since 1891. Since then, research in the area has expanded, given the vast number of post-surgery complications such as infection, fibrosis, adhesions, mesh rejection, and hernia recurrence. Researchers have focused on the analysis and implementation of a wide range of materials: meshes with different fiber size and porosity, a variety of manufacturing methods, and certainly a variety of surgical and implantation procedures. Currently, surface modification methods and development of nanofiber based systems are actively being explored as areas of opportunity to retain material strength and increase biocompatibility of available meshes. This review summarizes the history of surgical meshes and presents an overview of commercial surgical meshes, their properties, manufacturing methods, and observed biological response, as well as the requirements for an ideal surgical mesh and potential manufacturing methods. PMID:28829367

  14. Influence of the Mesh Geometry Evolution on Gearbox Dynamics during Its Maintenance

    NASA Astrophysics Data System (ADS)

    Dąbrowski, Z.; Dziurdź, J.; Klekot, G.

    2017-12-01

    Toothed gears constitute the necessary elements of power transmission systems. They are applied as stationary devices in drive systems of road vehicles, ships and crafts as well as airplanes and helicopters. One of the problems related to the toothed gears usage is the determination of their technical state or its evolutions. Assuming that the gear slippage velocity is attributed to vibrations and noises generated by cooperating toothed wheels, the application of a simple cooperation model of rolled wheels of skew teeth is proposed for the analysis of the mesh evolution influence on the gear dynamics. In addition, an example of utilising an ordinary coherence function for investigating evolutionary mesh changes related to the effects impossible to be described by means of the simple kinematic model is presented.

  15. Accuracy Quantification of the Loci-CHEM Code for Chamber Wall Heat Transfer in a GO2/GH2 Single Element Model Problem

    NASA Technical Reports Server (NTRS)

    West, Jeff; Westra, Doug; Lin, Jeff; Tucker, Kevin

    2006-01-01

    All solutions with Loci-CHEM achieved demonstrated steady state and mesh convergence. Preconditioning had no effect on solution accuracy and typically yields a 3-5times solution speed-up. The SST turbulence model has superior performance, relative to the data in the head end region, for the rise rate and peak heat flux. It was slightly worse than the others in the downstream region where all over-predicted the data by 30-100%.There was systematic mesh refinement in the unstructured volume and structured boundary layer areas produced only minor solution differences. Mesh convergence was achieved. Overall, Loci-CHEM satisfactorily predicts heat flux rise rate and peak heat flux and significantly over predicts the downstream heat flux.

  16. Implementation of Implicit Adaptive Mesh Refinement in an Unstructured Finite-Volume Flow Solver

    NASA Technical Reports Server (NTRS)

    Schwing, Alan M.; Nompelis, Ioannis; Candler, Graham V.

    2013-01-01

    This paper explores the implementation of adaptive mesh refinement in an unstructured, finite-volume solver. Unsteady and steady problems are considered. The effect on the recovery of high-order numerics is explored and the results are favorable. Important to this work is the ability to provide a path for efficient, implicit time advancement. A method using a simple refinement sensor based on undivided differences is discussed and applied to a practical problem: a shock-shock interaction on a hypersonic, inviscid double-wedge. Cases are compared to uniform grids without the use of adapted meshes in order to assess error and computational expense. Discussion of difficulties, advances, and future work prepare this method for additional research. The potential for this method in more complicated flows is described.

  17. American Society of Composites, 32nd Technical Conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aitharaju, Venkat; Wollschlager, Jeffrey; Plakomytis2, Dimitrios

    This paper will present a general methodology by which weave draping manufacturing simulation results can be utilized to include the effects of weave draping and scissor angle in a structural multiscale simulation. While the methodology developed is general in nature, this paper will specifically demonstrate the methodology applied to a truncated pyramid, utilizing manufacturing simulation weave draping results from ESI PAM-FORM, and multiscale simulation using Altair Multiscale Designer (MDS) and OptiStruct. From a multiscale simulation perspective, the weave draping manufacturing simulation results will be used to develop a series of woven unit cells which cover the range of weave scissormore » angles existing within the part. For each unit cell, a multiscale material model will be developed, and applied to the corresponding spatial locations within the structural simulation mesh. In addition, the principal material orientation will be mapped from the wave draping manufacturing simulation mesh to the structural simulation mesh using Altair HyperMesh mapping technology. Results of the coupled simulation will be compared and verified against experimental data of the same available via General Motors (GM) Department of Energy (DOE) project.« less

  18. Non-conforming finite-element formulation for cardiac electrophysiology: an effective approach to reduce the computation time of heart simulations without compromising accuracy

    NASA Astrophysics Data System (ADS)

    Hurtado, Daniel E.; Rojas, Guillermo

    2018-04-01

    Computer simulations constitute a powerful tool for studying the electrical activity of the human heart, but computational effort remains prohibitively high. In order to recover accurate conduction velocities and wavefront shapes, the mesh size in linear element (Q1) formulations cannot exceed 0.1 mm. Here we propose a novel non-conforming finite-element formulation for the non-linear cardiac electrophysiology problem that results in accurate wavefront shapes and lower mesh-dependance in the conduction velocity, while retaining the same number of global degrees of freedom as Q1 formulations. As a result, coarser discretizations of cardiac domains can be employed in simulations without significant loss of accuracy, thus reducing the overall computational effort. We demonstrate the applicability of our formulation in biventricular simulations using a coarse mesh size of ˜ 1 mm, and show that the activation wave pattern closely follows that obtained in fine-mesh simulations at a fraction of the computation time, thus improving the accuracy-efficiency trade-off of cardiac simulations.

  19. Anisotropic diffusion in mesh-free numerical magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.

    2017-04-01

    We extend recently developed mesh-free Lagrangian methods for numerical magnetohydrodynamics (MHD) to arbitrary anisotropic diffusion equations, including: passive scalar diffusion, Spitzer-Braginskii conduction and viscosity, cosmic ray diffusion/streaming, anisotropic radiation transport, non-ideal MHD (Ohmic resistivity, ambipolar diffusion, the Hall effect) and turbulent 'eddy diffusion'. We study these as implemented in the code GIZMO for both new meshless finite-volume Godunov schemes (MFM/MFV). We show that the MFM/MFV methods are accurate and stable even with noisy fields and irregular particle arrangements, and recover the correct behaviour even in arbitrarily anisotropic cases. They are competitive with state-of-the-art AMR/moving-mesh methods, and can correctly treat anisotropic diffusion-driven instabilities (e.g. the MTI and HBI, Hall MRI). We also develop a new scheme for stabilizing anisotropic tensor-valued fluxes with high-order gradient estimators and non-linear flux limiters, which is trivially generalized to AMR/moving-mesh codes. We also present applications of some of these improvements for SPH, in the form of a new integral-Godunov SPH formulation that adopts a moving-least squares gradient estimator and introduces a flux-limited Riemann problem between particles.

  20. High-resolution multi-code implementation of unsteady Navier-Stokes flow solver based on paralleled overset adaptive mesh refinement and high-order low-dissipation hybrid schemes

    NASA Astrophysics Data System (ADS)

    Li, Gaohua; Fu, Xiang; Wang, Fuxin

    2017-10-01

    The low-dissipation high-order accurate hybrid up-winding/central scheme based on fifth-order weighted essentially non-oscillatory (WENO) and sixth-order central schemes, along with the Spalart-Allmaras (SA)-based delayed detached eddy simulation (DDES) turbulence model, and the flow feature-based adaptive mesh refinement (AMR), are implemented into a dual-mesh overset grid infrastructure with parallel computing capabilities, for the purpose of simulating vortex-dominated unsteady detached wake flows with high spatial resolutions. The overset grid assembly (OGA) process based on collection detection theory and implicit hole-cutting algorithm achieves an automatic coupling for the near-body and off-body solvers, and the error-and-try method is used for obtaining a globally balanced load distribution among the composed multiple codes. The results of flows over high Reynolds cylinder and two-bladed helicopter rotor show that the combination of high-order hybrid scheme, advanced turbulence model, and overset adaptive mesh refinement can effectively enhance the spatial resolution for the simulation of turbulent wake eddies.

Top