Costs and Effectiveness of Treatment Alternatives for Proximal Caries Lesions
Schwendicke, Falk; Meyer-Lueckel, Hendrik; Stolpe, Michael; Dörfer, Christof Edmund; Paris, Sebastian
2014-01-01
Objectives Invasive therapy of proximal caries lesions initiates a cascade of re-treatment cycles with increasing loss of dental hard tissue. Non- and micro-invasive treatment aim at delaying this cascade and may thus reduce both the health and economic burden of such lesions. This study compared the costs and effectiveness of alternative treatments of proximal caries lesions. Methods A Markov-process model was used to simulate the events following the treatment of a proximal posterior lesion (E2/D1) in a 20-year-old patient in Germany. We compared three interventions (non-invasive; micro-invasive using resin infiltration; invasive using composite restoration). We calculated the risk of complications of initial and possible follow-up treatments and modelled time-dependent non-linear transition probabilities. Costs were calculated based on item-fee catalogues in Germany. Monte-Carlo-microsimulations were performed to compare cost-effectiveness of non- versus micro-invasive treatment and to analyse lifetime costs of all three treatments. Results Micro-invasive treatment was both more costly and more effective than non-invasive therapy, with ceiling-value-thresholds for willingness-to-pay between 16.73 € for E2 and 1.57 € for D1 lesions. Invasive treatment was the most costly strategy. Calculated costs and effectiveness were sensitive to lesion stage, patient’s age, discounting rate and assumed initial treatment costs. Conclusions Non- and micro-invasive treatments have lower long-term costs than invasive therapy of proximal lesions. Micro-invasive therapy had the highest cost-effectiveness for treating D1 lesions in young patients. Decision makers with a willingness-to-pay over 16.73 € and 1.57 € for E2 and D1 lesions, respectively, will find micro-invasive treatment more cost-effective than non-invasive therapy. PMID:24475208
Omura, Yoshiaki; Lu, Dominic; O'Young, Brian; Jones, Marilyn; Nihrane, Abdallah; Duvvi, Harsha; Shimotsuura, Yasuhiro; Ohki, Motomu
2015-01-01
There are many methods of detecting cancers including detection of cancer markers by blood test, (which is invasive, time consuming and relatively expensive), detection of cancers by non-invasive methods such as X-Ray, CT scan, and MRI & PET Scan (which are non-invasive and quick but very expensive). Our research was performed to develop new non-invasive, safe, quick economical method of detecting cancers and the 1st author already developed for clinically important non-invasive new methods including early stage of present method using his method of localizing accurate organ representation areas of face, eyebrows, upper lip, lower lip, surface and dorsal part of the tongue, surface backs, and palm side of the hands. This accurate localization of the organ representation area of the different parts of the body was performed using electromagnetic field resonance phenomenon between 2 identical molecules or tissues based on our US patented non-invasive method in 1993. Since year 2000, we developed the following non-invasive diagnostic methods that can be quickly identified by the patented simple non-invasive method without using expensive or bulky instrument at any office or field where there is no electricity or instrument available. The following are examples of non-invasive quick method of diagnosis and treatment of cancers using different approaches: 1) Soft red laser beam scanning of different parts of body; 2) By speaking voice; 3) Visible and invisible characteristic abnormalities on different organ representation areas of the different parts of the body, and 4) Mouth, Hand, and Foot Writings of both right and left side of the body. As a consequence of our latest research, we were able to develop a simple method of detecting cancer from existing recorded electrocardiograms. In this article, we are going to describe the method and result of clinical applications on many different cancers of different organs including lung, esophagus, breast, stomach, colon, uterus, ovary, prostate gland, as well as common bone marrow related malignancies such as Hodgkin's Lymphoma, Non-Hodgkin's Lymphoma, Multiple Myeloma as well as Leukemia.
Effectiveness and efficacy of minimally invasive lung volume reduction surgery for emphysema
Pertl, Daniela; Eisenmann, Alexander; Holzer, Ulrike; Renner, Anna-Theresa; Valipour, A.
2014-01-01
Lung emphysema is a chronic, progressive and irreversible destruction of the lung tissue. Besides non-medical therapies and the well established medical treatment there are surgical and minimally invasive methods for lung volume reduction (LVR) to treat severe emphysema. This report deals with the effectiveness and cost-effectiveness of minimally invasive methods compared to other treatments for LVR in patients with lung emphysema. Furthermore, legal and ethical aspects are discussed. No clear benefit of minimally invasive methods compared to surgical methods can be demonstrated based on the identified and included evidence. In order to assess the different methods for LVR regarding their relative effectiveness and safety in patients with lung emphysema direct comparative studies are necessary. PMID:25295123
Effectiveness and efficacy of minimally invasive lung volume reduction surgery for emphysema.
Pertl, Daniela; Eisenmann, Alexander; Holzer, Ulrike; Renner, Anna-Theresa; Valipour, A
2014-01-01
Lung emphysema is a chronic, progressive and irreversible destruction of the lung tissue. Besides non-medical therapies and the well established medical treatment there are surgical and minimally invasive methods for lung volume reduction (LVR) to treat severe emphysema. This report deals with the effectiveness and cost-effectiveness of minimally invasive methods compared to other treatments for LVR in patients with lung emphysema. Furthermore, legal and ethical aspects are discussed. No clear benefit of minimally invasive methods compared to surgical methods can be demonstrated based on the identified and included evidence. In order to assess the different methods for LVR regarding their relative effectiveness and safety in patients with lung emphysema direct comparative studies are necessary.
Can ozone be used to control the spread of freshwater Aquatic Invasive Species?
Buley, Riley P.; Hasler, Caleb T.; Tix, John A.; Suski, Cory D.; Hubert, Terrance D.
2017-01-01
The introduction of aquatic invasive species to non-native habitats can cause negative ecological effects and also billions of dollars in economic damage to governments and private industries. Once aquatic invasive species are introduced, eradication may be difficult without adversely affecting native species and habitats, urging resource managers to find preventative methods to protect non-invaded areas. The use of ozone (O3) as a non-physical barrier has shown promise as it is lethal to a wide range of aquatic taxa, requires a short contact time, and is relatively environmentally safe in aquatic systems when compared to other chemicals. However, before O3 can be considered as an approach to prevent the spread of aquatic invasive species, its effects on non-target organisms and already established aquatic invasive species must be fully evaluated. A review of the current literature was conducted to summarize data regarding the effects of O3 on aquatic taxa including fish, macroinvertebrates, zooplankton, phytoplankton, microbes, and pathogens. In addition, we assessed the practicality of ozone applications to control the movement of aquatic invasive species, and identified data gaps concerning the use of O3 as a non-physical barrier in field applications.
Thermal dosimetry for bladder hyperthermia treatment. An overview.
Schooneveldt, Gerben; Bakker, Akke; Balidemaj, Edmond; Chopra, Rajiv; Crezee, Johannes; Geijsen, Elisabeth D; Hartmann, Josefin; Hulshof, Maarten C C M; Kok, H Petra; Paulides, Margarethus M; Sousa-Escandon, Alejandro; Stauffer, Paul R; Maccarini, Paolo F
2016-06-01
The urinary bladder is a fluid-filled organ. This makes, on the one hand, the internal surface of the bladder wall relatively easy to heat and ensures in most cases a relatively homogeneous temperature distribution; on the other hand the variable volume, organ motion, and moving fluid cause artefacts for most non-invasive thermometry methods, and require additional efforts in planning accurate thermal treatment of bladder cancer. We give an overview of the thermometry methods currently used and investigated for hyperthermia treatments of bladder cancer, and discuss their advantages and disadvantages within the context of the specific disease (muscle-invasive or non-muscle-invasive bladder cancer) and the heating technique used. The role of treatment simulation to determine the thermal dose delivered is also discussed. Generally speaking, invasive measurement methods are more accurate than non-invasive methods, but provide more limited spatial information; therefore, a combination of both is desirable, preferably supplemented by simulations. Current efforts at research and clinical centres continue to improve non-invasive thermometry methods and the reliability of treatment planning and control software. Due to the challenges in measuring temperature across the non-stationary bladder wall and surrounding tissues, more research is needed to increase our knowledge about the penetration depth and typical heating pattern of the various hyperthermia devices, in order to further improve treatments. The ability to better determine the delivered thermal dose will enable clinicians to investigate the optimal treatment parameters, and consequentially, to give better controlled, thus even more reliable and effective, thermal treatments.
Non-invasive, investigative methods in skin aging.
Longo, C; Ciardo, S; Pellacani, G
2015-12-01
A precise and noninvasive quantification of aging is of outmost importance for in vivo assessment of the skin aging "stage", and thus acts to minimize it. Several bioengineering methods have been proposed to objectively, precisely, and non-invasively measure skin aging, and to detect early skin damage, that is sub-clinically observable. In this review we have described the most relevant methods that have emerged from recently introduced technologies, aiming at quantitatively assessing the effects of aging on the skin.
Micro-invasive interventions for managing proximal dental decay in primary and permanent teeth.
Dorri, Mojtaba; Dunne, Stephen M; Walsh, Tanya; Schwendicke, Falk
2015-11-05
Proximal dental lesions, limited to dentine, are traditionally treated by invasive (drill and fill) means. Non-invasive alternatives (e.g. fluoride varnish, flossing) might avoid substance loss but their effectiveness depends on patients' adherence. Recently, micro-invasive approaches for treating proximal caries lesions have been tried. These interventions install a barrier either on top (sealing) or within (infiltrating) the lesion. Different methods and materials are currently available for micro-invasive treatments, such as sealing via resin sealants, (polyurethane) patches/tapes, glass ionomer cements (GIC) or resin infiltration. To evaluate the effects of micro-invasive treatments for managing proximal caries lesions in primary and permanent dentition in children and adults. We searched the following databases to 31 December 2014: the Cochrane Oral Health Group Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE via OVID, EMBASE via OVID, LILACs via BIREME Virtual Health Library, Web of Science Conference Proceedings, ZETOC Conference Proceedings, Proquest Dissertations and Theses, ClinicalTrials.gov, OpenGrey and the World Health Organization (WHO) International Clinical Trials Registry Platform. We searched the metaRegister of Controlled Trials to 1 October 2014. There were no language or date restrictions in the searches of the electronic databases. We included randomised controlled trials of at least six months' duration that compared micro-invasive treatments for managing non-cavitated proximal dental decay in primary teeth, permanent teeth or both, versus non-invasive measures, invasive means, no intervention or placebo. We also included studies that compared different types of micro-invasive treatments. Two review authors independently screened search results, extracted data and assessed the risk of bias. We used standard methodological procedures expected by Cochrane to evaluate risk of bias and synthesise data. We conducted meta-analyses with the random-effects model, using the Becker-Balagtas method to calculate the odds ratio (OR) for lesion progression. We assessed the quality of the evidence using GRADE methods. We included eight trials, which randomised 365 participants. The trials all used a split-mouth design, some with more than one pair of lesions treated within the same participant. Studies took place in university or dental public health clinics in Brazil, Colombia, Denmark, Germany, Thailand, Greenland and Chile. Six studies evaluated the effects of micro-invasive treatments in the permanent dentition and two studies on the primary dentition, with caries risk ranging from low to high. Investigators measured caries risk in different studies either by caries experience alone or by using the Cariogram programme, which combines eight contributing factors, including caries experience, diet, saliva and other factors related to caries. The follow-up period in the trials ranged from one to three years. All studies used lesion progression as the primary outcome, evaluating it by different methods of reading radiographs. Four studies received industry support to carry out the research, with one of them being carried out by inventors of the intervention.We judged seven studies to be at high overall risk of bias, primarily due to lack of blinding of participants and personnel. We evaluated intervention effects for all micro-invasive therapies and analysed subgroups according to the different treatment methods reported in the included studies.Our meta-analysis, which pooled the most sensitive set of data (in terms of measurement method) from studies presenting data in a format suitable for meta-analysis, showed that micro-invasive treatment significantly reduced the odds of lesion progression compared with non-invasive treatment (e.g fluoride varnish) or oral hygiene advice (e.g to floss) (OR 0.24, 95% CI 0.14 to 0.41; 602 lesions; seven studies; I(2) = 32%). There was no evidence of subgroup differences (P = 0.36).The four studies that measured adverse events reported no adverse events after micro-invasive treatment. Most studies did not report on any further outcomes.We assessed the quality of evidence for micro-invasive treatments as moderate. It remains unclear which micro-invasive treatment is more advantageous, or if certain clinical conditions or patient characteristics are better suited for micro-invasive treatments than others. The available evidence shows that micro-invasive treatment of proximal caries lesions arrests non-cavitated enamel and initial dentinal lesions (limited to outer third of dentine, based on radiograph) and is significantly more effective than non-invasive professional treatment (e.g. fluoride varnish) or advice (e.g. to floss). We can be moderately confident that further research is unlikely to substantially change the estimate of effect. Due to the small number of studies, it does remain unclear which micro-invasive technique offers the greatest benefit, or whether the effects of micro-invasive treatment confer greater or lesser benefit according to different clinical or patient considerations.
Non-invasive prediction of forthcoming cirrhosis-related complications
Kang, Wonseok; Kim, Seung Up; Ahn, Sang Hoon
2014-01-01
In patients with chronic liver diseases, identification of significant liver fibrosis and cirrhosis is essential for determining treatment strategies, assessing therapeutic response, and stratifying long-term prognosis. Although liver biopsy remains the reference standard for evaluating the extent of liver fibrosis in patients with chronic liver diseases, several non-invasive methods have been developed as alternatives to liver biopsies. Some of these non-invasive methods have demonstrated clinical accuracy for diagnosing significant fibrosis or cirrhosis in many cross-sectional studies with the histological fibrosis stage as a reference standard. However, non-invasive methods cannot be fully validated through cross-sectional studies since liver biopsy is not a perfect surrogate endpoint marker. Accordingly, recent studies have focused on assessing the performance of non-invasive methods through long-term, longitudinal, follow-up studies with solid clinical endpoints related to advanced stages of liver fibrosis and cirrhosis. As a result, current view is that these alternative methods can independently predict future cirrhosis-related complications, such as hepatic decompensation, liver failure, hepatocellular carcinoma, or liver-related death. The clinical role of non-invasive models seems to be shifting from a simple tool for predicting the extent of fibrosis to a surveillance tool for predicting future liver-related events. In this article, we will summarize recent longitudinal studies of non-invasive methods for predicting forthcoming complications related to liver cirrhosis and discuss the clinical value of currently available non-invasive methods based on evidence from the literature. PMID:24627597
Non invasive diagnostic methods for better screening of peripheral arterial disease.
Nirala, Neelamshobha; Periyasamy, R; Kumar, Awanish
2018-05-16
Peripheral arterial disease (PAD) is a common circulatory problem in which narrowed arteries reduce blood flow to extremities usually legs. It does not receive enough blood flow to keep up with demand. This causes symptoms, most notably leg pain while walking which is known as claudication. It is a common manifestation of type II Diabetes, but the relationship between other vascular diseases and lower limb (LL)-PAD has been poorly understood and investigated. When assessing a patient with clinically LLPAD, two questions are in order to establish a diagnosis: one is non-invasive testing and other is invasive. Invasive methods are painful and get so bad that some people need to have a leg surgery. People with Diabetes are at increased risk for amputation and it is used only when the damage is very severe. Diagnosis of LLPAD begins with a physical examination, patient history, certain questionnaire and non invasive mode of diagnosis is started for the screening of patients. Clinicians check for weak pulses in the legs and then decide for further diagnosis. Paper discusses the prevalence of LLPAD worldwide and in India along with the clinical effectiveness and limitations of these methods in case of Diabetes. The focus of this review is to discuss only those non invasive methods which are widely used for screening of LLPAD like Ankle brachial index (ABI), Toe brachial Index (TBI), and use of photoplethysmogram (PPG) specially in case of Diabetic patients. Also, this paper gives an overview of the work done using ABI, TBI, and PPG for detection of LLPAD. These tests are not painful and could be performed in a cost-effective manner to avoid delays in screening/diagnosis and also reduce costs. Copyright © 2018. Published by Elsevier Inc.
Pestel, G; Fukui, K; Higashi, M; Schmidtmann, I; Werner, C
2018-06-01
An ideal non-invasive monitoring system should provide accurate and reproducible measurements of clinically relevant variables that enables clinicians to guide therapy accordingly. The monitor should be rapid, easy to use, readily available at the bedside, operator-independent, cost-effective and should have a minimal risk and side effect profile for patients. An example is the introduction of pulse oximetry, which has become established for non-invasive monitoring of oxygenation worldwide. A corresponding non-invasive monitoring of hemodynamics and perfusion could optimize the anesthesiological treatment to the needs in individual cases. In recent years several non-invasive technologies to monitor hemodynamics in the perioperative setting have been introduced: suprasternal Doppler ultrasound, modified windkessel function, pulse wave transit time, radial artery tonometry, thoracic bioimpedance, endotracheal bioimpedance, bioreactance, and partial CO 2 rebreathing have been tested for monitoring cardiac output or stroke volume. The photoelectric finger blood volume clamp technique and respiratory variation of the plethysmography curve have been assessed for monitoring fluid responsiveness. In this manuscript meta-analyses of non-invasive monitoring technologies were performed when non-invasive monitoring technology and reference technology were comparable. The primary evaluation criterion for all studies screened was a Bland-Altman analysis. Experimental and pediatric studies were excluded, as were all studies without a non-invasive monitoring technique or studies without evaluation of cardiac output/stroke volume or fluid responsiveness. Most studies found an acceptable bias with wide limits of agreement. Thus, most non-invasive hemodynamic monitoring technologies cannot be considered to be equivalent to the respective reference method. Studies testing the impact of non-invasive hemodynamic monitoring technologies as a trend evaluation on outcome, as well as studies evaluating alternatives to the finger for capturing the raw signals for hemodynamic assessment, and, finally, studies evaluating technologies based on a flow time measurement are current topics of clinical research.
Stasi, Cristina; Milani, Stefano
2016-01-28
The assessment of the fibrotic evolution of chronic hepatitis has always been a challenge for the clinical hepatologist. Over the past decade, various non-invasive methods have been proposed to detect the presence of fibrosis, including the elastometric measure of stiffness, panels of clinical and biochemical parameters, and combinations of both methods. The aim of this review is to analyse the most recent data on non-invasive techniques for the evaluation of hepatic fibrosis with particular attention to cost-effectiveness. We searched for relevant studies published in English using the PubMed database from 2009 to the present. A large number of studies have suggested that elastography and serum markers are useful techniques for diagnosing severe fibrosis and cirrhosis and for excluding significant fibrosis in hepatitis C virus patients. In addition, hepatic stiffness may also help to prognosticate treatment response to antiviral therapy. It has also been shown that magnetic resonance elastography has a high accuracy for staging and differentiating liver fibrosis. Finally, studies have shown that non-invasive methods are becoming increasingly precise in either positively identifying or excluding liver fibrosis, thus reducing the need for liver biopsy. However, both serum markers and transient elastography still have "grey area" values of lower accuracy. In this case, liver biopsy is still required to properly assess liver fibrosis. Recently, the guidelines produced by the World Health Organization have suggested that the AST-to-platelet ratio index or FIB-4 test could be utilised for the evaluation of liver fibrosis rather than other, more expensive non-invasive tests, such as elastography or FibroTest.
Stasi, Cristina; Milani, Stefano
2016-01-01
The assessment of the fibrotic evolution of chronic hepatitis has always been a challenge for the clinical hepatologist. Over the past decade, various non-invasive methods have been proposed to detect the presence of fibrosis, including the elastometric measure of stiffness, panels of clinical and biochemical parameters, and combinations of both methods. The aim of this review is to analyse the most recent data on non-invasive techniques for the evaluation of hepatic fibrosis with particular attention to cost-effectiveness. We searched for relevant studies published in English using the PubMed database from 2009 to the present. A large number of studies have suggested that elastography and serum markers are useful techniques for diagnosing severe fibrosis and cirrhosis and for excluding significant fibrosis in hepatitis C virus patients. In addition, hepatic stiffness may also help to prognosticate treatment response to antiviral therapy. It has also been shown that magnetic resonance elastography has a high accuracy for staging and differentiating liver fibrosis. Finally, studies have shown that non-invasive methods are becoming increasingly precise in either positively identifying or excluding liver fibrosis, thus reducing the need for liver biopsy. However, both serum markers and transient elastography still have “grey area” values of lower accuracy. In this case, liver biopsy is still required to properly assess liver fibrosis. Recently, the guidelines produced by the World Health Organization have suggested that the AST-to-platelet ratio index or FIB-4 test could be utilised for the evaluation of liver fibrosis rather than other, more expensive non-invasive tests, such as elastography or FibroTest. PMID:26819535
Ryan D. DeSantis; W. Keith Moser; Dale D. Gormanson; Marshall G. Bartlett; Bradley Vermunt
2013-01-01
Non-native invasive insects such as the emerald ash borer (Agrilus planipennis Fairmaire; EAB) cause billions of dollars; worth of economic damage and unquantifiable but substantial ecological damage in North America each year. There are methods to mitigate, contain, control, or even eradicate some non-native invasive insects, but so far the spread...
Berton, Danilo Cortozi; Kalil, Andre C; Cavalcanti, Manuela; Teixeira, Paulo José Zimermann
2008-10-08
Ventilator-associated pneumonia (VAP) is a common infectious disease in intensive care units (ICUs). The best diagnostic approach to resolve this condition remains uncertain. To evaluate whether quantitative cultures of respiratory secretions are effective in reducing mortality in immunocompetent patients with VAP, compared with qualitative cultures. We also considered changes in antibiotic use, length of ICU stay and mechanical ventilation. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2007, issue 4), which contains the Acute Respiratory Infections Group's Specialized Register; MEDLINE (1966 to December 2007); EMBASE (1974 to December 2007); and LILACS (1982 to December 2007). Randomized controlled trials (RCTs) comparing respiratory samples processed quantitatively or qualitatively, obtained by invasive or non-invasive methods from immunocompetent patients with VAP, and which analyzed the impact of these methods on antibiotic use and mortality rates. Two review authors independently reviewed and selected trials from the search results, and assessed studies for suitability, methodology and quality. We analyzed data using Review Manager software. We pooled the included studies to yield the risk ratio (RR) for mortality and antibiotic change with 95% confidence intervals (CI). Of the 3931 references identified from the electronic databases, five RCTs (1367 patients) met the inclusion criteria. Three studies compared invasive methods using quantitative cultures versus non-invasive methods using qualitative cultures, and were used to answer the main objective of this review. The other two studies compared invasive versus non-invasive methods, both using quantitative cultures. All five studies were combined to compare invasive versus non-invasive interventions for diagnosing VAP. The studies that compared quantitative and qualitative cultures (1240 patients) showed no statistically significant differences in mortality rates (RR = 0.91, 95% CI 0.75 to 1.11). The analysis of all five RCTs showed there was no evidence of mortality reduction in the invasive group versus the non-invasive group (RR = 0.93, 95% CI 0.78 to 1.11). There were no significant differences between the interventions with respect to the number of days on mechanical ventilation, length of ICU stay or antibiotic change. There is no evidence that the use of quantitative cultures of respiratory secretions results in reduced mortality, reduced time in ICU and on mechanical ventilation, or higher rates of antibiotic change when compared to qualitative cultures in patients with VAP. Similar results were observed when invasive strategies were compared with non-invasive strategies.
A novel environmental DNA approach to quantify the cryptic invasion of non-native genotypes.
Uchii, Kimiko; Doi, Hideyuki; Minamoto, Toshifumi
2016-03-01
The invasion of non-native species that are closely related to native species can lead to competitive elimination of the native species and/or genomic extinction through hybridization. Such invasions often become serious before they are detected, posing unprecedented threats to biodiversity. A Japanese native strain of common carp (Cyprinus carpio) has become endangered owing to the invasion of non-native strains introduced from the Eurasian continent. Here, we propose a rapid environmental DNA-based approach to quantitatively monitor the invasion of non-native genotypes. Using this system, we developed a method to quantify the relative proportion of native and non-native DNA based on a single-nucleotide polymorphism using cycling probe technology in real-time PCR. The efficiency of this method was confirmed in aquarium experiments, where the quantified proportion of native and non-native DNA in the water was well correlated to the biomass ratio of native and non-native genotypes. This method provided quantitative estimates for the proportion of native and non-native DNA in natural rivers and reservoirs, which allowed us to estimate the degree of invasion of non-native genotypes without catching and analysing individual fish. Our approach would dramatically facilitate the process of quantitatively monitoring the invasion of non-native conspecifics in aquatic ecosystems, thus revealing a promising method for risk assessment and management in biodiversity conservation. © 2015 John Wiley & Sons Ltd.
Harford, Mirae; Catherall, Jacqueline; Gerry, Stephen; Young, Duncan; Watkinson, Peter
2017-10-25
For many vital signs, monitoring methods require contact with the patient and/or are invasive in nature. There is increasing interest in developing still and video image-guided monitoring methods that are non-contact and non-invasive. We will undertake a systematic review of still and video image-based monitoring methods. We will perform searches in multiple databases which include MEDLINE, Embase, CINAHL, Cochrane library, IEEE Xplore and ACM Digital Library. We will use OpenGrey and Google searches to access unpublished or commercial data. We will not use language or publication date restrictions. The primary goal is to summarise current image-based vital signs monitoring methods, limited to heart rate, respiratory rate, oxygen saturations and blood pressure. Of particular interest will be the effectiveness of image-based methods compared to reference devices. Other outcomes of interest include the quality of the method comparison studies with respect to published reporting guidelines, any limitations of non-contact non-invasive technology and application in different populations. To the best of our knowledge, this is the first systematic review of image-based non-contact methods of vital signs monitoring. Synthesis of currently available technology will facilitate future research in this highly topical area. PROSPERO CRD42016029167.
[Current radionuclear methods in the diagnosis of regional myocardial circulation disorders].
Felix, R; Winkler, C
1977-01-29
Among nuclear medical diagnostic procedures a distinction can be made between non-invasive and invasive methods. The non-invasive methods serve either to image the still viable myocardium ("cold spot" technique) or for direct visualization of recently infarcted myocardial tissue ("hot spot" technique). These methods have the advantage of simple handling and good reproducibility. Side effects and risks are thus far unknown. Improvement of local dissolution should be aimed at in the future and wound greatly increase diagnostic and topographic security. The invasive procedures always require catheterization of the coronary arteries. This is the reason why they can be performed only with coronary arteriography. The Xenon "wash out" technique permits, with some restrictions, quantitative measurement of the regional flow rate. The "inflow technique" permits determination of perfusion distribution. The possibilities of the "double-radionuclide" scintigramm are discussed. For measurement of activity distribution, sationary detectors are generally preferred. In the case of the time-activity curves with the Xenon "wash out" technique, single detectors offer certain advantages.
Non-Invasive Seismic Methods for Earthquake Site Classification Applied to Ontario Bridge Sites
NASA Astrophysics Data System (ADS)
Bilson Darko, A.; Molnar, S.; Sadrekarimi, A.
2017-12-01
How a site responds to earthquake shaking and its corresponding damage is largely influenced by the underlying ground conditions through which it propagates. The effects of site conditions on propagating seismic waves can be predicted from measurements of the shear wave velocity (Vs) of the soil layer(s) and the impedance ratio between bedrock and soil. Currently the seismic design of new buildings and bridges (2015 Canadian building and bridge codes) requires determination of the time-averaged shear-wave velocity of the upper 30 metres (Vs30) of a given site. In this study, two in situ Vs profiling methods; Multichannel Analysis of Surface Waves (MASW) and Ambient Vibration Array (AVA) methods are used to determine Vs30 at chosen bridge sites in Ontario, Canada. Both active-source (MASW) and passive-source (AVA) surface wave methods are used at each bridge site to obtain Rayleigh-wave phase velocities over a wide frequency bandwidth. The dispersion curve is jointly inverted with each site's amplification function (microtremor horizontal-to-vertical spectral ratio) to obtain shear-wave velocity profile(s). We apply our non-invasive testing at three major infrastructure projects, e.g., five bridge sites along the Rt. Hon. Herb Gray Parkway in Windsor, Ontario. Our non-invasive testing is co-located with previous invasive testing, including Standard Penetration Test (SPT), Cone Penetration Test and downhole Vs data. Correlations between SPT blowcount and Vs are developed for the different soil types sampled at our Ontario bridge sites. A robust earthquake site classification procedure (reliable Vs30 estimates) for bridge sites across Ontario is evaluated from available combinations of invasive and non-invasive site characterization methods.
W. Keith Moser; Zhaofei Fan; Mark H. Hansen; Michael K. Crosby; Shirley X. Fan
2016-01-01
We used non-native invasive plant data from the US Forest Serviceâs Forest Inventory and Analysis (FIA) program, spatial statistical methods, and the space (cover class)-for-time approach to quantify the invasion potential and success ("invasibility") of three major invasive shrubs (multiflora rose, non-native bush honeysuckles, and common buckthorn...
Changing Brain Networks Through Non-invasive Neuromodulation
To, Wing Ting; De Ridder, Dirk; Hart Jr., John; Vanneste, Sven
2018-01-01
Background/Objective: Non-invasive neuromodulation techniques, such as repetitive Transcranial Magnetic Stimulation (rTMS) and transcranial Direct Current Stimulation (tDCS), have increasingly been investigated for their potential as treatments for neurological and psychiatric disorders. Despite widespread dissemination of these techniques, the underlying therapeutic mechanisms and the ideal stimulation site for a given disorder remain unknown. Increasing evidence support the possibility of non-invasive neuromodulation affecting a brain network rather than just the local stimulation target. In this article, we present evidence in a clinical setting to support the idea that non-invasive neuromodulation changes brain networks. Method: This article addresses the idea that non-invasive neuromodulation modulates brain networks, rather than just the local stimulation target, using neuromodulation studies in tinnitus and major depression as examples. We present studies that support this hypothesis from different perspectives. Main Results/Conclusion: Studies stimulating the same brain region, such as the dorsolateral prefrontal cortex (DLPFC), have shown to be effective for several disorders and studies using different stimulation sites for the same disorder have shown similar results. These findings, as well as results from studies investigating brain network connectivity on both macro and micro levels, suggest that non-invasive neuromodulation affects a brain network rather than just the local stimulation site targeted. We propose that non-invasive neuromodulation should be approached from a network perspective and emphasize the therapeutic potential of this approach through the modulation of targeted brain networks. PMID:29706876
Changing Brain Networks Through Non-invasive Neuromodulation.
To, Wing Ting; De Ridder, Dirk; Hart, John; Vanneste, Sven
2018-01-01
Background/Objective : Non-invasive neuromodulation techniques, such as repetitive Transcranial Magnetic Stimulation (rTMS) and transcranial Direct Current Stimulation (tDCS), have increasingly been investigated for their potential as treatments for neurological and psychiatric disorders. Despite widespread dissemination of these techniques, the underlying therapeutic mechanisms and the ideal stimulation site for a given disorder remain unknown. Increasing evidence support the possibility of non-invasive neuromodulation affecting a brain network rather than just the local stimulation target. In this article, we present evidence in a clinical setting to support the idea that non-invasive neuromodulation changes brain networks. Method : This article addresses the idea that non-invasive neuromodulation modulates brain networks, rather than just the local stimulation target, using neuromodulation studies in tinnitus and major depression as examples. We present studies that support this hypothesis from different perspectives. Main Results/Conclusion : Studies stimulating the same brain region, such as the dorsolateral prefrontal cortex (DLPFC), have shown to be effective for several disorders and studies using different stimulation sites for the same disorder have shown similar results. These findings, as well as results from studies investigating brain network connectivity on both macro and micro levels, suggest that non-invasive neuromodulation affects a brain network rather than just the local stimulation site targeted. We propose that non-invasive neuromodulation should be approached from a network perspective and emphasize the therapeutic potential of this approach through the modulation of targeted brain networks.
Papanicolaou, Andrew C; Rezaie, Roozbeh; Narayana, Shalini; Choudhri, Asim F; Abbas-Babajani-Feremi; Boop, Frederick A; Wheless, James W
2018-05-01
Cortical Stimulation Mapping (CSM) and the Wada procedure have long been considered the gold standard for localizing motor and language-related cortical areas and for determining the language and memory-dominant hemisphere, respectively. In recent years, however, non-invasive methods such as magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI), and transcranial magnetic stimulation (TMS) have emerged as promising alternatives to the aforementioned procedures, particularly in cases where the invasive localization of eloquent cortex has proven to be challenging. To illustrate this point, we will first introduce the evidence of the compatibility of invasive and non-invasive methods and subsequently outline the rationale and the conditions where the latter methods are applicable. Copyright © 2017 Elsevier B.V. All rights reserved.
de Araújo-Filho, Amaro Afrânio; de Cerqueira-Neto, Manoel Luiz; de Assis Pereira Cacau, Lucas; Oliveira, Géssica Uruga; Cerqueira, Telma Cristina Fontes; de Santana-Filho, Valter Joviniano
2017-01-01
OBJECTIVE: During cardiac surgery, several factors contribute to the development of postoperative pulmonary complications. Non-invasive ventilation is a promising therapeutic tool for improving the functionality of this type of patient. The aim of this study is to evaluate the functional capacity and length of stay of patients in a nosocomial intensive care unit who underwent prophylactic non-invasive ventilation after heart valve replacement. METHOD: The study was a controlled clinical trial, comprising 50 individuals of both sexes who were allocated by randomization into two groups with 25 patients in each group: the control group and experimental group. After surgery, the patients were transferred to the intensive care unit and then participated in standard physical therapy, which was provided to the experimental group after 3 applications of non-invasive ventilation within the first 26 hours after extubation. For non-invasive ventilation, the positive pressure was 10 cm H2O, with a duration of 1 hour. The evaluation was performed on the 7th postoperative day/discharge and included a 6-minute walk test. The intensive care unit and hospitalization times were monitored in both groups. Brazilian Registry of Clinical Trials (REBeC): RBR number 8bxdd3. RESULTS: Analysis of the 6-minute walk test showed that the control group walked an average distance of 264.34±76 meters and the experimental group walked an average distance of 334.07±71 meters (p=0.002). The intensive care unit and hospitalization times did not differ between the groups. CONCLUSION: Non-invasive ventilation as a therapeutic resource was effective toward improving functionality; however, non-invasive ventilation did not influence the intensive care unit or hospitalization times of the studied cardiac patients. PMID:29160424
Electrical bioimpedance and other techniques for gastric emptying and motility evaluation
Huerta-Franco, María Raquel; Vargas-Luna, Miguel; Montes-Frausto, Juana Berenice; Flores-Hernández, Corina; Morales-Mata, Ismael
2012-01-01
The aim of this article is to identify non-invasive, inexpensive, highly sensitive and accurate techniques for evaluating and diagnosing gastric diseases. In the case of the stomach, there are highly sensitive and specific methods for assessing gastric motility and emptying (GME). However, these methods are invasive, expensive and/or not technically feasible for all clinicians and patients. We present a summary of the most relevant international information on non-invasive methods and techniques for clinically evaluating GME. We particularly emphasize the potential of gastric electrical bioimpedance (EBI). EBI was initially used mainly in gastric emptying studies and was essentially abandoned in favor of techniques such as electrogastrography and the gold standard, scintigraphy. The current research evaluating the utility of gastric EBI either combines this technique with other frequently used techniques or uses new methods for gastric EBI signal analysis. In this context, we discuss our results and those of other researchers who have worked with gastric EBI. In this review article, we present the following topics: (1) a description of the oldest methods and procedures for evaluating GME; (2) an explanation of the methods currently used to evaluate gastric activity; and (3) a perspective on the newest trends and techniques in clinical and research GME methods. We conclude that gastric EBI is a highly effective non-invasive, easy to use and inexpensive technique for assessing GME. PMID:22368782
Non-invasive peripheral nerve stimulation via focused ultrasound in vivo
NASA Astrophysics Data System (ADS)
Downs, Matthew E.; Lee, Stephen A.; Yang, Georgiana; Kim, Seaok; Wang, Qi; Konofagou, Elisa E.
2018-02-01
Focused ultrasound (FUS) has been employed on a wide range of clinical applications to safely and non-invasively achieve desired effects that have previously required invasive and lengthy procedures with conventional methods. Conventional electrical neuromodulation therapies that are applied to the peripheral nervous system (PNS) are invasive and/or non-specific. Recently, focused ultrasound has demonstrated the ability to modulate the central nervous system and ex vivo peripheral neurons. Here, for the first time, noninvasive stimulation of the sciatic nerve eliciting a physiological response in vivo is demonstrated with FUS. FUS was applied on the sciatic nerve in mice with simultaneous electromyography (EMG) on the tibialis anterior muscle. EMG signals were detected during or directly after ultrasound stimulation along with observable muscle contraction of the hind limb. Transecting the sciatic nerve downstream of FUS stimulation eliminated EMG activity during FUS stimulation. Peak-to-peak EMG response amplitudes and latency were found to be comparable to conventional electrical stimulation methods. Histology along with behavioral and thermal testing did not indicate damage to the nerve or surrounding regions. The findings presented herein demonstrate that FUS can serve as a targeted, safe and non-invasive alternative to conventional peripheral nervous system stimulation to treat peripheral neuropathic diseases in the clinic.
Non-invasive genetic censusing and monitoring of primate populations.
Arandjelovic, Mimi; Vigilant, Linda
2018-03-01
Knowing the density or abundance of primate populations is essential for their conservation management and contextualizing socio-demographic and behavioral observations. When direct counts of animals are not possible, genetic analysis of non-invasive samples collected from wildlife populations allows estimates of population size with higher accuracy and precision than is possible using indirect signs. Furthermore, in contrast to traditional indirect survey methods, prolonged or periodic genetic sampling across months or years enables inference of group membership, movement, dynamics, and some kin relationships. Data may also be used to estimate sex ratios, sex differences in dispersal distances, and detect gene flow among locations. Recent advances in capture-recapture models have further improved the precision of population estimates derived from non-invasive samples. Simulations using these methods have shown that the confidence interval of point estimates includes the true population size when assumptions of the models are met, and therefore this range of population size minima and maxima should be emphasized in population monitoring studies. Innovations such as the use of sniffer dogs or anti-poaching patrols for sample collection are important to ensure adequate sampling, and the expected development of efficient and cost-effective genotyping by sequencing methods for DNAs derived from non-invasive samples will automate and speed analyses. © 2018 Wiley Periodicals, Inc.
Fairhall, Sarah J; Dickson, Carol A; Scott, Leah; Pearce, Peter C
2006-04-01
A non-invasive model has been developed to estimate gaze direction and relative pupil diameter, in minimally restrained rhesus monkeys, to investigate the effects of low doses of ocularly administered cholinergic compounds on visual performance. Animals were trained to co-operate with a novel device, which enabled eye movements to be recorded using modified human eye-tracking equipment, and to perform a task which determined visual threshold contrast. Responses were made by gaze transfer under twilight conditions. 4% w/v pilocarpine nitrate was studied to demonstrate the suitability of the model. Pilocarpine induced marked miosis for >3 h which was accompanied by a decrement in task performance. The method obviates the need for invasive surgery and, as the position of point of gaze can be approximately defined, the approach may have utility in other areas of research involving non-human primates.
[Non-invasive assessment of fatty liver].
Egresi, Anna; Lengyel, Gabriella; Hagymási, Krisztina
2015-04-05
As the result of various harmful effects (infectious agents, metabolic diseases, unhealthy diet, obesity, toxic agents, autoimmune processes) hepatic damage may develop, which can progress towards liver steatosis, and fibrosis as well. The most common etiological factors of liver damages are hepatitis B and C infection, alcohol consumption and non-alcoholic fatty liver disease. Liver biopsy is considered as the gold standard for the diagnosis of chronic liver diseases. Due to the dangers and complications of liver biopsy, studies are focused on non-invasive markers and radiological imaging for liver steatosis, progression of fatty liver, activity of the necroinflammation and the severity of the fibrosis. Authors review the possibilities of non-invasive assessment of liver steatosis. The statistical features of the probes (positive, negative predictive values, sensitivity, specificity) are reviewed. The role of radiological imaging is also discussed. Although the non-invasive methods discussed in this article are useful to assess liver steatosis, further studies are needed to validate to follow progression of the diseases and to control therapeutic response.
White, P. Lewis; Archer, Alice E.; Barnes, Rosemary A.
2005-01-01
The accepted limitations associated with classic culture techniques for the diagnosis of invasive fungal infections have lead to the emergence of many non-culture-based methods. With superior sensitivities and quicker turnaround times, non-culture-based methods may aid the diagnosis of invasive fungal infections. In this review of the diagnostic service, we assessed the performances of two antigen detection techniques (enzyme-linked immunosorbent assay [ELISA] and latex agglutination) with a molecular method for the detection of invasive Candida infection and invasive aspergillosis. The specificities for all three assays were high (≥97%), although the Candida PCR method had enhanced sensitivity over both ELISA and latex agglutination with values of 95%, 75%, and 25%, respectively. However, calculating significant sensitivity values for the Aspergillus detection methods was not feasible due to a low number of proven/probable cases. Despite enhanced sensitivity, the PCR method failed to detect nucleic acid in a probable case of invasive Candida infection that was detected by ELISA. In conclusion, both PCR and ELISA techniques should be used in unison to aid the detection of invasive fungal infections. PMID:15872239
López-de-Ipiña, Karmele; Alonso, Jesus-Bernardino; Travieso, Carlos Manuel; Solé-Casals, Jordi; Egiraun, Harkaitz; Faundez-Zanuy, Marcos; Ezeiza, Aitzol; Barroso, Nora; Ecay-Torres, Miriam; Martinez-Lage, Pablo; de Lizardui, Unai Martinez
2013-01-01
The work presented here is part of a larger study to identify novel technologies and biomarkers for early Alzheimer disease (AD) detection and it focuses on evaluating the suitability of a new approach for early AD diagnosis by non-invasive methods. The purpose is to examine in a pilot study the potential of applying intelligent algorithms to speech features obtained from suspected patients in order to contribute to the improvement of diagnosis of AD and its degree of severity. In this sense, Artificial Neural Networks (ANN) have been used for the automatic classification of the two classes (AD and control subjects). Two human issues have been analyzed for feature selection: Spontaneous Speech and Emotional Response. Not only linear features but also non-linear ones, such as Fractal Dimension, have been explored. The approach is non invasive, low cost and without any side effects. Obtained experimental results were very satisfactory and promising for early diagnosis and classification of AD patients. PMID:23698268
Bourget, Philippe; Amin, Alexandre; Vidal, Fabrice; Merlette, Christophe; Troude, Pénélope; Baillet-Guffroy, Arlette
2014-08-15
The purpose of the study was to perform a comparative analysis of the technical performance, respective costs and environmental effect of two invasive analytical methods (HPLC and UV/visible-FTIR) as compared to a new non-invasive analytical technique (Raman spectroscopy). Three pharmacotherapeutic models were used to compare the analytical performances of the three analytical techniques. Statistical inter-method correlation analysis was performed using non-parametric correlation rank tests. The study's economic component combined calculations relative to the depreciation of the equipment and the estimated cost of an AQC unit of work. In any case, analytical validation parameters of the three techniques were satisfactory, and strong correlations between the two spectroscopic techniques vs. HPLC were found. In addition, Raman spectroscopy was found to be superior as compared to the other techniques for numerous key criteria including a complete safety for operators and their occupational environment, a non-invasive procedure, no need for consumables, and a low operating cost. Finally, Raman spectroscopy appears superior for technical, economic and environmental objectives, as compared with the other invasive analytical methods. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Salvemini, Filomena; Grazzi, Francesco; Kardjilov, Nikolay; Wieder, Frank; Manke, Ingo; Edge, David; Williams, Alan; Zoppi, Marco
2017-05-01
Non-invasive experimental methods play an important role in the field of cultural heritage. Benefiting from the technical progress in recent years, neutron imaging has been demonstrated to complement effectively studies based on surface analysis, allowing for a non-invasive characterization of the whole three-dimensional volume. This study focuses on a kris and a kanjar, two weapons from ancient Asia, to show the potential of the combined use of X-ray and neutron imaging techniques for the characterisation of the manufacturing methods and the authentication of objects of cultural and historical interest.
[Atrial fibrillation as consequence and cause of structural changes of atria].
Aparina, O P; Chikhireva, L N; Stukalova, O V; Mironova, N A; Kashtanova, S Iu; Ternovoĭ, S K; Golitsyn, S P
2014-01-01
Changes of atrial structure and function are the contributors of atrial fibrillation clinical course, complications and treatment effectiveness. Effects of inflammation and mechanical stretch on atrial structural remodeling leading to atrial fibrillation are reviewed in the article. Contemporary invasive and non-invasive methods of evaluation (including late gadolinium enhancement magnetic resonance imaging) of patients with atrial structural remodeling in atrial fibrillation are also described.
Doudová, Jana; Douda, Jan; Mandák, Bohumil
2017-01-01
Heterocarpy enables species to effectively spread under unfavourable conditions by producing two or more types of fruit differing in ecological characteristics. Although it is frequent in annuals occupying disturbed habitats that are vulnerable to invasion, there is still a lack of congeneric studies addressing the importance of heterocarpy for species invasion success. We compared two pairs of heterocarpic Atriplex species, each of them comprising one invasive and one non-invasive non-native congener. In two common garden experiments, we (i) simulated the influence of different levels of nutrients and population density on plants grown from different types of fruits and examined several traits that are generally positively associated with invasion success, and (ii) grew plants in a replacement series experiment to evaluate resource partitioning between them and to compare their competitive ability. We found that specific functional traits or competitiveness of species cannot explain the invasiveness of Atriplex species, indicating that species invasiveness involves more complex interactions of traits that are important only in certain ecological contexts, i.e. in specific environmental conditions and only some habitats. Interestingly, species trait differences related to invasion success were found between plants growing from the ecologically most contrasting fruit types. We suggest that fruit types differing in ecological behaviour may be essential in the process of invasion or in the general spreading of heterocarpic species, as they either the maximize population growth (type C fruit) or enhance the chance of survival of new populations (type A fruit). Congeners offer the best available methodical framework for comparing traits among phylogenetically closely related invasive and non-invasive species. However, as indicated by our results, this approach is unlikely to reveal invasive traits because of the complexity underlying invasiveness. PMID:28445514
Analysis of biomedical time signals for characterization of cutaneous diabetic micro-angiopathy
NASA Astrophysics Data System (ADS)
Kraitl, Jens; Ewald, Hartmut
2007-02-01
Photo-plethysmography (PPG) is frequently used in research on microcirculation of blood. It is a non-invasive procedure and takes minimal time to be carried out. Usually PPG time series are analyzed by conventional linear methods, mainly Fourier analysis. These methods may not be optimal for the investigation of nonlinear effects of the hearth circulation system like vasomotion, autoregulation, thermoregulation, breathing, heartbeat and vessels. The wavelet analysis of the PPG time series is a specific, sensitive nonlinear method for the in vivo identification of hearth circulation patterns and human health status. This nonlinear analysis of PPG signals provides additional information which cannot be detected using conventional approaches. The wavelet analysis has been used to study healthy subjects and to characterize the health status of patients with a functional cutaneous microangiopathy which was associated with diabetic neuropathy. The non-invasive in vivo method is based on the radiation of monochromatic light through an area of skin on the finger. A Photometrical Measurement Device (PMD) has been developed. The PMD is suitable for non-invasive continuous online monitoring of one or more biologic constituent values and blood circulation patterns.
Chronic hepatitis C and liver fibrosis
Sebastiani, Giada; Gkouvatsos, Konstantinos; Pantopoulos, Kostas
2014-01-01
Chronic infection with hepatitis C virus (HCV) is a leading cause of liver-related morbidity and mortality worldwide and predisposes to liver fibrosis and end-stage liver complications. Liver fibrosis is the excessive accumulation of extracellular matrix proteins, including collagen, and is considered as a wound healing response to chronic liver injury. Its staging is critical for the management and prognosis of chronic hepatitis C (CHC) patients, whose number is expected to rise over the next decades, posing a major health care challenge. This review provides a brief update on HCV epidemiology, summarizes basic mechanistic concepts of HCV-dependent liver fibrogenesis, and discusses methods for assessment of liver fibrosis that are routinely used in clinical practice. Liver biopsy was until recently considered as the gold standard to diagnose and stage liver fibrosis. However, its invasiveness and drawbacks led to the development of non-invasive methods, which include serum biomarkers, transient elastography and combination algorithms. Clinical studies with CHC patients demonstrated that non-invasive methods are in most cases accurate for diagnosis and for monitoring liver disease complications. Moreover, they have a high prognostic value and are cost-effective. Non-invasive methods for assessment of liver fibrosis are gradually being incorporated into new guidelines and are becoming standard of care, which significantly reduces the need for liver biopsy. PMID:25170193
Non-invasive indices for the estimation of the anaerobic threshold of oarsmen.
Erdogan, A; Cetin, C; Karatosun, H; Baydar, M L
2010-01-01
This study compared four common non-invasive indices with an invasive index for determining the anaerobic threshold (AT) in 22 adult male rowers using a Concept2 rowing ergometer. A criterion-standard progressive incremental test (invasive method) measured blood lactate concentrations to determine the 4 mmol/l threshold (La4-AT) and Dmax AT (Dm-AT). This was compared with three indices obtained by analysis of respiratory gases and one that was based on the heart rate (HR) deflection point (HRDP) all of which used the Conconi test (non-invasive methods). In the Conconi test, the HRDP was determined whilst continuously increasing the power output (PO) by 25 W/min and measuring respiratory gases and HR. The La4-AT and Dm-AT values differed slightly with respect to oxygen uptake, PO and HR however, AT values significantly correlated with each other and with the four non-invasive methods. In conclusion, the non-invasive indices were comparable with the invasive index and could, therefore, be used in the assessment of AT during rowing ergometer use. In this population of elite rowers, Conconi threshold (Con-AT), based on the measurement of HRDP tended to be the most adequate way of estimating AT for training regulation purposes.
Laryngeal closure impedes non-invasive ventilation at birth
Crawshaw, Jessica R; Kitchen, Marcus J; Binder-Heschl, Corinna; Thio, Marta; Wallace, Megan J; Kerr, Lauren T; Roehr, Charles C; Lee, Katie L; Buckley, Genevieve A; Davis, Peter G; Flemmer, Andreas; te Pas, Arjan B; Hooper, Stuart B
2018-01-01
Background Non-invasive ventilation is sometimes unable to provide the respiratory needs of very premature infants in the delivery room. While airway obstruction is thought to be the main problem, the site of obstruction is unknown. We investigated whether closure of the larynx and epiglottis is a major site of airway obstruction. Methods We used phase contrast X-ray imaging to visualise laryngeal function in spontaneously breathing premature rabbits immediately after birth and at approximately 1 hour after birth. Non-invasive respiratory support was applied via a facemask and images were analysed to determine the percentage of the time the glottis and the epiglottis were open. Hypothesis Immediately after birth, the larynx is predominantly closed, only opening briefly during a breath, making non-invasive intermittent positive pressure ventilation (iPPV) ineffective, whereas after lung aeration, the larynx is predominantly open allowing non-invasive iPPV to ventilate the lung. Results The larynx and epiglottis were predominantly closed (open 25.5%±1.1% and 17.1%±1.6% of the time, respectively) in pups with unaerated lungs and unstable breathing patterns immediately after birth. In contrast, the larynx and the epiglottis were mostly open (90.5%±1.9% and 72.3%±2.3% of the time, respectively) in pups with aerated lungs and stable breathing patterns irrespective of time after birth. Conclusion Laryngeal closure impedes non-invasive iPPV at birth and may reduce the effectiveness of non-invasive respiratory support in premature infants immediately after birth. PMID:29054974
Emerging non-invasive Raman methods in process control and forensic applications.
Macleod, Neil A; Matousek, Pavel
2008-10-01
This article reviews emerging Raman techniques (Spatially Offset and Transmission Raman Spectroscopy) for non-invasive, sub-surface probing in process control and forensic applications. New capabilities offered by these methods are discussed and several application examples are given including the non-invasive detection of counterfeit drugs through blister packs and opaque plastic bottles and the rapid quantitative analysis of the bulk content of pharmaceutical tablets and capsules without sub-sampling.
A review on the non-invasive evaluation of skeletal muscle oxygenation
NASA Astrophysics Data System (ADS)
Halim, A. A. A.; Laili, M. H.; Aziz, N. A.; Laili, A. R.; Salikin, M. S.; Rusop, M.
2016-07-01
The aim of this review is to conduct a feasibility study of non-invasive evaluation in skeletal muscle oxygenation. This non-invasive evaluation could extract many information using a safe non-invasive method regarding to the oxygenation and microcirculation status in human blood muscle. This brief review highlights the progress of the application of NIRS to evaluate skeletal muscle oxygenation in various activity of human nature from the historical point of view to the present advancement. Since the discovery of non-invasive optical method during 1992, there are many non-invasive techniques uses optical properties on human subject such as near infrared spectroscopy NIRS, optical topography, functional near infrared spectroscopy fNIRS and imaging fNIRI. Furthermore, in this paper we discuss the light absorption potential (LAP) towards chromophores content inside human muscle. Modified beer lambert law was studied in order to build a better understanding toward LAP between chromophores under tissue multilayers in human muscle. This paper will describe the NIRS principle and the basis for its proposed used in skeletal muscle oxygenation. This will cover the advantages and limitation of such application. Thus, these non-invasive techniques could open other possibilities to study muscle performance diagnosis.
Rius, Marc; Turon, Xavier; Marshall, Dustin J
2009-04-01
Studies examining the effects of invasive species have focussed traditionally on the direct/lethal effects of the invasive on the native community but there is a growing recognition that invasive species may also have non-lethal effects. In terrestrial systems, non-lethal effects of invasive species can disrupt early life-history phases (such as fertilisation, dispersal and subsequent establishment) of native species, but in the marine environment most studies focus on adult rather than early life-history stages. Here, we examine the potential for an introduced sessile marine invertebrate (Styela plicata) to exert both lethal and non-lethal effects on a native species (Microcosmus squamiger) across multiple early life-history stages. We determined whether sperm from the invasive species interfered with the fertilisation of eggs from the native species and found no effect. However, we did find strong effects of the invasive species on the post-fertilisation performance of the native species. The invasive species inhibited the settlement of native larvae and, in the field, the presence of the invasive species was associated with a ten-fold increase in the post-settlement mortality of the native species, as well as an initial reduction of growth in the native. Our results suggest that larvae of the native species avoid settling near the invasive species due to reduced post-settlement survival in its presence. Overall, we found that invasive species can have complex and pervasive effects (both lethal and non-lethal) across the early life-history stages of the native species, which are likely to result in its displacement and to facilitate further invasion.
NASA Astrophysics Data System (ADS)
Jenie, R. P.; Iskandar, J.; Kurniawan, A.; Rustami, E.; Syafutra, H.; Nurdin, N. M.; Handoyo, T.; Prabowo, J.; Febryarto, R.; Rahayu, M. S. K.; Damayanthi, E.; Rimbawan; Sukandar, D.; Suryana, Y.; Irzaman; Alatas, H.
2017-03-01
Worldwide emergence of glycaemic status related health disorders, such as diabetes and metabolic syndrome, is growing in alarming rate. The objective was to propose new methods for non invasive blood glucose level measurement system, based on implementation of Fast Fourier Transform methods. This was an initial-lab-scale-research. Data on non invasive blood glucose measurement are referred from Scopus, Medline, and Google Scholar, from 2011 until 2016, and was used as design references, combined with in house verification. System was developed in modular fashion, based on aforementioned compiled references. Several preliminary tests to understand relationship between LED and photo-diode responses have been done. Several references were used as non invasive blood glucose measurement tools design basis. Solution is developed in modular fashion. we have proven different sensor responses to water and glucose. Human test for non invasive blood glucose level measurement system is needed.
Hirose, Takahiko; Kimura, Fumiharu; Tani, Hiroki; Ota, Shin; Tsukahara, Akihiro; Sano, Eri; Shigekiyo, Taro; Nakamura, Yoshitsugu; Kakiuchi, Kensuke; Motoki, Mikiko; Unoda, Kiichi; Ishida, Simon; Nakajima, Hideto; Arawaka, Shigeki
2018-04-20
Introduction We evaluated post non-invasive ventilation survival and factors for the transition to tracheostomy in amyotrophic lateral sclerosis. Methods We analyzed 197 patients using a prospectively-collected database, with 114 patients since 2000. Results Of 114 patients, 59 patients underwent non-invasive ventilation (NIV), which prolonged the total median survival time to 43 months compared with 32 months without treatment. The best post-NIV survival was associated with a lack of bulbar symptoms, higher measured pulmonary function, and a slower rate of progression at diagnosis. The transition rate from NIV to tracheostomy gradually decreased over the years. Patients using NIV for more than 6 months were more likely to refuse tracheostomy and to be female. Discussion This study confirmed a positive survival effect with NIV, which was less effective in patients with bulbar dysfunction. Further studies are necessary to determine the best timing for using NIV with ALS in patients with bulbar dysfunction. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
Wolzt, M; Schmetterer, L; Rheinberger, A; Salomon, A; Unfried, C; Breiteneder, H; Ehringer, H; Eichler, H G; Fercher, A F
1995-01-01
1. The study was performed to determine the sensitivity and short-term and day-to-day variability of a novel technique based on laser interferometry of ocular fundus pulsations and of non-invasive methods for the quantification of haemodynamic drug effects. An additional aim was to assess sex differences in haemodynamic responsiveness to cardiovascular drugs in male and female healthy volunteers. 2. Ten males and nine females (age range 20-33 years) were studied in a double-blind, randomized, cross-over trial. Simultaneous measurements from systemic haemodynamics, laser interferometry of ocular fundus pulsations, systolic time intervals from mechanocardiography, a/b ratio from oxymetric fingerplethysmography and Doppler sonography of the radial artery were used to describe the haemodynamic effects of cumulative, stepwise increasing intravenous doses of phenylephrine, isoprenaline, sodium nitroprusside and of placebo. 3. Laser interferometry detected the isoprenaline-effects at the lowest dose level of 0.1 micrograms min-1 with a high signal-to-noise ratio. The reproducibility of measurements under baseline was high, no changes were observed after systemically effective doses of phenylephrine or sodium nitroprusside. Systolic time intervals were sensitive and specific for isoprenaline-induced effects, PEP and QS2c-measurements had high reproducibility. Fingerplethysmography proved a sensitive measurement for the detection of the vasodilating effects of sodium nitroprusside, but was not specific, and showed low reproducibility. Measurements from Doppler sonography had lower reproducibility and sensitivity compared with the other applied methods. 4. There was a significant sex difference for several of the haemodynamic parameters under baseline conditions; however, the responsiveness to the drugs under study was not different, when drug effects were expressed as %-change from the baseline. 5. Laser interferometry is a valuable non-invasive, highly sensitive and specific approach for the detection of pulse pressure changes. A battery of non-invasive tests appears useful for the characterization of cardiovascular drugs. Gender differences may not pose a relevant problem for the study of acute haemodynamic effects of cardiovascular drugs. Images Figure 1 PMID:7640140
Lakhno, Igor; Behar, Joachim A; Oster, Julien; Shulgin, Vyacheslav; Ostras, Oleksii; Andreotti, Fernando
2017-01-01
Complete atrioventricular block in fetuses is known to be mostly associated with autoimmune disease and can be irreversible if no steroids treatment is provided. Conventional methods used in clinical practice for diagnosing fetal arrhythmia are limited since they do not reflect the primary electrophysiological conduction processes that take place in the myocardium. The non-invasive fetal electrocardiogram has the potential to better support fetal arrhythmias diagnosis through the continuous analysis of the beat to beat variation of the fetal heart rate and morphological analysis of the PQRST complex. We present two retrospective case reports on which atrioventricular block diagnosis could have been supported by the non-invasive fetal electrocardiogram. The two cases comprised a 22-year-old pregnant woman with the gestational age of 31 weeks and a 25-year-old pregnant woman with the gestational age of 41 weeks. Both women were admitted to the Department of Maternal and Fetal Medicine at the Kyiv and Kharkiv municipal perinatal clinics. Patients were observed using standard fetal monitoring methods as well as the non-invasive fetal electrocardiogram. The non-invasive fetal electrocardiographic recordings were analyzed retrospectively, where it is possible to identify the presence of the atrioventricular block. This study demonstrates, for the first time, the feasibility of the non-invasive fetal electrocardiogram as a supplementary method to diagnose of the fetal atrioventricular block. Combined with current fetal monitoring techniques, non-invasive fetal electrocardiography could support clinical decisions.
Cicchi, Riccardo; Kapsokalyvas, Dimitrios; Troiano, Michela; Campolmi, Piero; Morini, Cristiano; Massi, Daniela; Cannarozzo, Giovanni; Lotti, Torello; Pavone, Francesco Saverio
2014-11-01
Non-linear optical microscopy is becoming popular as a non-invasive in vivo imaging modality in dermatology. In this study, combined TPF and SHG microscopy were used to monitor collagen remodelling in vivo after micro-ablative fractional laser resurfacing. Papillary dermis of living subjects, covering a wide age range, was imaged immediately before and forty days after treatment. A qualitative visual examination of acquired images demonstrated an age-dependent remodelling effect on collagen. Additional quantitative analysis of new collagen production was performed by means of two image analysis methods. A higher increase in SHG to TPF ratio, corresponding to a stronger treatment effectiveness, was found in older subjects, whereas the effect was found to be negligible in young, and minimal in middle age subjects. Analysis of collagen images also showed a dependence of the treatment effectiveness with age but with controversial results. While the diagnostic potential of in vivo multiphoton microscopy has already been demonstrated for skin cancer and other skin diseases, here we first successfully explore its potential use for a non-invasive follow-up of a laser-based treatment. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ross, Michael P.
1996-01-01
A coaxial hyperthermia applicator for applying non-invasively electromagnetic energy to a body against which it is placed. The coaxial applicator antenna has formed integrally within it a non-invasive radiometric antenna for receiving thermoelectromagnetic emissions. The coaxial-configured applicator produces a bell-shaped radiation pattern symmetric about the axis of symmetry of the coaxial applicator. Integrating the radiometric antenna within the coaxial applicator produces a single device that performs dual functions. The first function is to transmit non-invasively energy for heating a subcutaneous tumor. The second function is to receive non-invasively thermal electromagnetic radiation from the tumor by which temperature is sensed and fed back to control the output of the coaxial applicator.
Ross, M.P.
1996-08-27
A coaxial hyperthermia applicator is disclosed for applying non-invasively electromagnetic energy to a body against which it is placed. The coaxial applicator antenna has formed integrally within it a non-invasive radiometric antenna for receiving thermoelectromagnetic emissions. The coaxial-configured applicator produces a bell-shaped radiation pattern symmetric about the axis of symmetry of the coaxial applicator. Integrating the radiometric antenna within the coaxial applicator produces a single device that performs dual functions. The first function is to transmit non-invasively energy for heating a subcutaneous tumor. The second function is to receive non-invasively thermal electromagnetic radiation from the tumor by which temperature is sensed and fed back to control the output of the coaxial applicator. 11 figs.
Tan, Xia; Ji, Zhong; Zhang, Yadan
2018-04-25
Non-invasive continuous blood pressure monitoring can provide an important reference and guidance for doctors wishing to analyze the physiological and pathological status of patients and to prevent and diagnose cardiovascular diseases in the clinical setting. Therefore, it is very important to explore a more accurate method of non-invasive continuous blood pressure measurement. To address the shortcomings of existing blood pressure measurement models based on pulse wave transit time or pulse wave parameters, a new method of non-invasive continuous blood pressure measurement - the GA-MIV-BP neural network model - is presented. The mean impact value (MIV) method is used to select the factors that greatly influence blood pressure from the extracted pulse wave transit time and pulse wave parameters. These factors are used as inputs, and the actual blood pressure values as outputs, to train the BP neural network model. The individual parameters are then optimized using a genetic algorithm (GA) to establish the GA-MIV-BP neural network model. Bland-Altman consistency analysis indicated that the measured and predicted blood pressure values were consistent and interchangeable. Therefore, this algorithm is of great significance to promote the clinical application of a non-invasive continuous blood pressure monitoring method.
Skin Rejuvenation with Non-Invasive Pulsed Electric Fields
NASA Astrophysics Data System (ADS)
Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P.; Albadawi, Hassan; Felix Broelsch, G.; Watkins, Michael T.; Georgakoudi, Irene; Papisov, Mikhail; Mihm, Martin C., Jr.; Austen, William G., Jr.; Yarmush, Martin L.
2015-05-01
Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases.
Shallow Reflection Method for Water-Filled Void Detection and Characterization
NASA Astrophysics Data System (ADS)
Zahari, M. N. H.; Madun, A.; Dahlan, S. H.; Joret, A.; Hazreek, Z. A. M.; Mohammad, A. H.; Izzaty, R. A.
2018-04-01
Shallow investigation is crucial in enhancing the characteristics of subsurface void commonly encountered in civil engineering, and one such technique commonly used is seismic-reflection technique. An assessment of the effectiveness of such an approach is critical to determine whether the quality of the works meets the prescribed requirements. Conventional quality testing suffers limitations including: limited coverage (both area and depth) and problems with resolution quality. Traditionally quality assurance measurements use laboratory and in-situ invasive and destructive tests. However geophysical approaches, which are typically non-invasive and non-destructive, offer a method by which improvement of detection can be measured in a cost-effective way. Of this seismic reflection have proved useful to assess void characteristic, this paper evaluates the application of shallow seismic-reflection method in characterizing the water-filled void properties at 0.34 m depth, specifically for detection and characterization of void measurement using 2-dimensional tomography.
Non-invasive Assessments of Adipose Tissue Metabolism In Vitro.
Abbott, Rosalyn D; Borowsky, Francis E; Quinn, Kyle P; Bernstein, David L; Georgakoudi, Irene; Kaplan, David L
2016-03-01
Adipose tissue engineering is a diverse area of research where the developed tissues can be used to study normal adipose tissue functions, create disease models in vitro, and replace soft tissue defects in vivo. Increasing attention has been focused on the highly specialized metabolic pathways that regulate energy storage and release in adipose tissues which affect local and systemic outcomes. Non-invasive, dynamic measurement systems are useful to track these metabolic pathways in the same tissue model over time to evaluate long term cell growth, differentiation, and development within tissue engineering constructs. This approach reduces costs and time in comparison to more traditional destructive methods such as biochemical and immunochemistry assays and proteomics assessments. Towards this goal, this review will focus on important metabolic functions of adipose tissues and strategies to evaluate them with non-invasive in vitro methods. Current non-invasive methods, such as measuring key metabolic markers and endogenous contrast imaging will be explored.
NASA Astrophysics Data System (ADS)
Stelmashchuk, O.; Zherebtsov, E.; Zherebtsova, A.; Kuznetsova, E.; Vinokurov, A.; Dunaev, A.; Mamoshin, A.; Snimshchikova, I.; Borsukov, A.; Bykov, A.; Meglinski, I.
2017-03-01
The studies were carried out on groups of clinically healthy mice line of outbred CD-1 stock. The model animals were divided into 2 groups and received experimental liposomal formulations. Using the method of fluorescence spectroscopy, we investigated the effectiveness of penetration into the circulatory system of fluorescently stained liposomes with polyethylene glycol (PEG) and without PEG when administered orally. Fluorescence channel with a fiber probe series of multifunctional laser non-invasive diagnostic system "LAKK-M" (SPE "LAZMA" Ltd, Russia) was used as the measuring equipment.
Shearin, Zackery R. C.; Filipek, Matthew; Desai, Rushvi; Bickford, Wesley A.; Kowalski, Kurt P.; Clay, Keith
2018-01-01
Background and aimsWe characterized fungal endophytes of seeds of invasive, non-native Phragmites from three sites in the Great Lakes region to determine if fungal symbiosis could contribute to invasiveness through their effects on seed germination and seedling growth.MethodsField-collected seeds were surface sterilized and plated on agar to culture endophytes for ITS sequencing. Prevalence of specific endophytes from germinated and non-germinated seeds, and from seedlings, was compared.ResultsOne-third of 740 seeds yielded endophyte isolates. Fifteen taxa were identified with Alternaria sp. representing 54% of all isolates followed by Phoma sp. (21%) and Penicillium corylophilum (12%). Overall germination of seeds producing an isolate (36%) was significantly higher than seeds not producing an isolate (20%). Penicillium in particular was strongly associated with increased germination of seeds from one site. Sixty-three isolates and 11 taxa were also obtained from 30 seedlings where Phoma, Penicillium and Alternaria respectively were most prevalent. There was a significant effect of isolating an endophyte from the seed on seedling growth.ConclusionsThese results suggest that many endophyte taxa are transmitted in seeds and can increase seed germination and seedling growth of invasive Phragmites. The role of fungal endophytes in host establishment, growth and invasiveness in nature requires further research.
Tissue-Informative Mechanism for Wearable Non-invasive Continuous Blood Pressure Monitoring
NASA Astrophysics Data System (ADS)
Woo, Sung Hun; Choi, Yun Young; Kim, Dae Jung; Bien, Franklin; Kim, Jae Joon
2014-10-01
Accurate continuous direct measurement of the blood pressure is currently available thru direct invasive methods via intravascular needles, and is mostly limited to use during surgical procedures or in the intensive care unit (ICU). Non-invasive methods that are mostly based on auscultation or cuff oscillometric principles do provide relatively accurate measurement of blood pressure. However, they mostly involve physical inconveniences such as pressure or stress on the human body. Here, we introduce a new non-invasive mechanism of tissue-informative measurement, where an experimental phenomenon called subcutaneous tissue pressure equilibrium is revealed and related for application in detection of absolute blood pressure. A prototype was experimentally verified to provide an absolute blood pressure measurement by wearing a watch-type measurement module that does not cause any discomfort. This work is supposed to contribute remarkably to the advancement of continuous non-invasive mobile devices for 24-7 daily-life ambulatory blood-pressure monitoring.
NASA Astrophysics Data System (ADS)
Chlebda, Damian K.; Majda, Alicja; Łojewski, Tomasz; Łojewska, Joanna
2016-11-01
Differentiation of the written text can be performed with a non-invasive and non-contact tool that connects conventional imaging methods with spectroscopy. Hyperspectral imaging (HSI) is a relatively new and rapid analytical technique that can be applied in forensic science disciplines. It allows an image of the sample to be acquired, with full spectral information within every pixel. For this paper, HSI and three statistical methods (hierarchical cluster analysis, principal component analysis, and spectral angle mapper) were used to distinguish between traces of modern black gel pen inks. Non-invasiveness and high efficiency are among the unquestionable advantages of ink differentiation using HSI. It is also less time-consuming than traditional methods such as chromatography. In this study, a set of 45 modern gel pen ink marks deposited on a paper sheet were registered. The spectral characteristics embodied in every pixel were extracted from an image and analysed using statistical methods, externally and directly on the hypercube. As a result, different black gel inks deposited on paper can be distinguished and classified into several groups, in a non-invasive manner.
Optical microtopographic inspection of asphalt pavement surfaces
NASA Astrophysics Data System (ADS)
Costa, Manuel F. M.; Freitas, E. F.; Torres, H.; Cerezo, V.
2017-08-01
Microtopographic and rugometric characterization of surfaces is routinely and effectively performed non-invasively by a number of different optical methods. Rough surfaces are also inspected using optical profilometers and microtopographer. The characterization of road asphalt pavement surfaces produced in different ways and compositions is fundamental for economical and safety reasons. Having complex structures, including topographically with different ranges of form error and roughness, the inspection of asphalt pavement surfaces is difficult to perform non-invasively. In this communication we will report on the optical non-contact rugometric characterization of the surface of different types of road pavements performed at the Microtopography Laboratory of the Physics Department of the University of Minho.
Prospective clinical study to evaluate an oscillometric blood pressure monitor in pet rabbits.
Bellini, Luca; Veladiano, Irene A; Schrank, Magdalena; Candaten, Matteo; Mollo, Antonio
2018-02-27
Rabbits are particularly sensitive to develop hypotension during sedation or anaesthesia. Values of systolic or mean non-invasive arterial blood pressure below 80 or 60 mmHg respectively are common under anaesthesia despite an ongoing surgery. A reliable method of monitoring arterial blood pressure is extremely important, although invasive technique is not always possible due to the anatomy and dimension of the artery. The aim of this study was to evaluate the agreement between a new oscillometric device for non-invasive arterial blood pressure measurement and the invasive method. Moreover the trending ability of the device, ability to identify changes in the same direction with the invasive methods, was evaluated as well as the sensibility of the device in identifying hypotension arbitrarily defined as invasive arterial blood pressure below 80 or 60 mmHg. Bland-Altman analysis for repeated measurements showed a poor agreement between the two methods; the oscillometric device overestimated the invasive arterial blood pressure, particularly at high arterial pressure values. The same analysis repeated considering oscillometric measurement that match invasive mean pressure lower or equal to 60 mmHg showed a decrease in biases and limits of agreement between methods. The trending ability of the device, evaluated with both the 4-quadrant plot and the polar plot was poor. Concordance rate of mean arterial blood pressure was higher than systolic and diastolic pressure although inferior to 90%. The sensibility of the device in detecting hypotension defined as systolic or mean invasive arterial blood pressure lower than 80 or 60 mmHg was superior for mean oscillometric pressure rather than systolic. A sensitivity of 92% was achieved with an oscillometric measurement for mean pressure below 65 mmHg instead of 60 mmHg. Non-invasive systolic blood pressure is less sensitive as indicator of hypotension regardless of the cutoff limit considered. Although mean invasive arterial blood pressure is overestimated by the device, the sensitivity of this non-invasive oscillometric monitor in detecting invasive mean pressure below 60 mmHg is acceptable but a cutoff value of 65 mmHg needs to be used.
Drivers of Non-Native Aquatic Species Invasions across the ...
Background/Question/Methods Mapping the geographic distribution of non-native aquatic species is a critically important precursor to understanding the anthropogenic and environmental factors that drive freshwater biological invasions. Such efforts are often limited to local scales and/or to a single taxa, missing the opportunity to observe and understand the drivers of macroscale invasion patterns at sub-continental or continental scales. Here we map the distribution of exotic freshwater species richness across the continental United States using publicly accessible species occurrence data (e.g GBIF) and investigate the role of human activity in driving macroscale patterns of aquatic invasion. Using a dasymetric model of human population density and a spatially explicit model of recreational freshwater fishing demand, we analyzed the effect of these metrics of human influence on non-native aquatic species richness at the watershed scale, while controlling for spatial and sampling bias. We also assessed the effects that a temporal mismatch between occurrence data (collected since 1815) and cross-sectional predictors (developed using 2010 data) may have on model fit. Results/Conclusions Our results indicated that non-native aquatic species richness exhibits a highly patchy distribution, with hotspots in the Northeast, Great Lakes, Florida, and human population centers on the Pacific coast. These richness patterns are correlated with population density, but are m
Visualizing ultrasound through computational modeling
NASA Technical Reports Server (NTRS)
Guo, Theresa W.
2004-01-01
The Doppler Ultrasound Hematocrit Project (DHP) hopes to find non-invasive methods of determining a person s blood characteristics. Because of the limits of microgravity and the space travel environment, it is important to find non-invasive methods of evaluating the health of persons in space. Presently, there is no well developed method of determining blood composition non-invasively. This projects hopes to use ultrasound and Doppler signals to evaluate the characteristic of hematocrit, the percentage by volume of red blood cells within whole blood. These non-invasive techniques may also be developed to be used on earth for trauma patients where invasive measure might be detrimental. Computational modeling is a useful tool for collecting preliminary information and predictions for the laboratory research. We hope to find and develop a computer program that will be able to simulate the ultrasound signals the project will work with. Simulated models of test conditions will more easily show what might be expected from laboratory results thus help the research group make informed decisions before and during experimentation. There are several existing Matlab based computer programs available, designed to interpret and simulate ultrasound signals. These programs will be evaluated to find which is best suited for the project needs. The criteria of evaluation that will be used are 1) the program must be able to specify transducer properties and specify transmitting and receiving signals, 2) the program must be able to simulate ultrasound signals through different attenuating mediums, 3) the program must be able to process moving targets in order to simulate the Doppler effects that are associated with blood flow, 4) the program should be user friendly and adaptable to various models. After a computer program is chosen, two simulation models will be constructed. These models will simulate and interpret an RF data signal and a Doppler signal.
A Non-Invasive Deep Tissue PH Monitor.
1995-08-11
disturbances in acid-base regulation may have serious effects on metabolic activity, circulation, and the central nervous system. Currently, acid-base...to tissue ischemia than is arterial pH. Consequently, a non-invasive deep tissue pH monitor has enormous value as a mechanism for rapid and effective ...achieved, and improve our understanding of what physical effects are important to successful non-invasive deep tissue pH monitoring. This last statement
Interventional MSK procedures: the hip.
Dodré, Emilie; Lefebvre, Guillaume; Cockenpot, Eric; Chastanet, Patrick; Cotten, Anne
2016-01-01
Percutaneous musculoskeletal procedures are widely accepted as low invasive, highly effective, efficient and safe methods in a vast amount of hip pathologies either in diagnostic or in therapeutic management. Hip intra-articular injections are used for the symptomatic treatment of osteoarthritis. Peritendinous or intrabursal corticosteroid injections can be used for the symptomatic treatment of greater trochanteric pain syndrome and anterior iliopsoas impingement. In past decades, the role of interventional radiology has rapidly increased in metastatic disease, thanks to the development of many ablative techniques. Image-guided percutaneous ablation of skeletal metastases provides a minimally invasive treatment option that appears to be a safe and effective palliative treatment for localized painful lytic lesion. Methods of tumour destruction based on temperature, such as radiofrequency ablation (RFA) and cryotherapy, are performed for the management of musculoskeletal metastases. MR-guided focused ultrasound surgery provides a non-invasive alternative to these ablative methods. Cementoplasty is now widely used for pain management and consolidation of acetabular metastases and can be combined with RFA. RFA is also used to treat benign tumours, namely osteoid osteomas. New interventional procedures such as percutaneous screw fixation are also proposed to treat non-displaced or minimally displaced acetabular roof fractures.
Conser, Christiana; Seebacher, Lizbeth; Fujino, David W; Reichard, Sarah; DiTomaso, Joseph M
2015-01-01
Weed Risk Assessment (WRA) methods for evaluating invasiveness in plants have evolved rapidly in the last two decades. Many WRA tools exist, but none were specifically designed to screen ornamental plants prior to being released into the environment. To be accepted as a tool to evaluate ornamental plants for the nursery industry, it is critical that a WRA tool accurately predicts non-invasiveness without falsely categorizing them as invasive. We developed a new Plant Risk Evaluation (PRE) tool for ornamental plants. The 19 questions in the final PRE tool were narrowed down from 56 original questions from existing WRA tools. We evaluated the 56 WRA questions by screening 21 known invasive and 14 known non-invasive ornamental plants. After statistically comparing the predictability of each question and the frequency the question could be answered for both invasive and non-invasive species, we eliminated questions that provided no predictive power, were irrelevant in our current model, or could not be answered reliably at a high enough percentage. We also combined many similar questions. The final 19 remaining PRE questions were further tested for accuracy using 56 additional known invasive plants and 36 known non-invasive ornamental species. The resulting evaluation demonstrated that when "needs further evaluation" classifications were not included, the accuracy of the model was 100% for both predicting invasiveness and non-invasiveness. When "needs further evaluation" classifications were included as either false positive or false negative, the model was still 93% accurate in predicting invasiveness and 97% accurate in predicting non-invasiveness, with an overall accuracy of 95%. We conclude that the PRE tool should not only provide growers with a method to accurately screen their current stock and potential new introductions, but also increase the probability of the tool being accepted for use by the industry as the basis for a nursery certification program.
Conser, Christiana; Seebacher, Lizbeth; Fujino, David W.; Reichard, Sarah; DiTomaso, Joseph M.
2015-01-01
Weed Risk Assessment (WRA) methods for evaluating invasiveness in plants have evolved rapidly in the last two decades. Many WRA tools exist, but none were specifically designed to screen ornamental plants prior to being released into the environment. To be accepted as a tool to evaluate ornamental plants for the nursery industry, it is critical that a WRA tool accurately predicts non-invasiveness without falsely categorizing them as invasive. We developed a new Plant Risk Evaluation (PRE) tool for ornamental plants. The 19 questions in the final PRE tool were narrowed down from 56 original questions from existing WRA tools. We evaluated the 56 WRA questions by screening 21 known invasive and 14 known non-invasive ornamental plants. After statistically comparing the predictability of each question and the frequency the question could be answered for both invasive and non-invasive species, we eliminated questions that provided no predictive power, were irrelevant in our current model, or could not be answered reliably at a high enough percentage. We also combined many similar questions. The final 19 remaining PRE questions were further tested for accuracy using 56 additional known invasive plants and 36 known non-invasive ornamental species. The resulting evaluation demonstrated that when “needs further evaluation” classifications were not included, the accuracy of the model was 100% for both predicting invasiveness and non-invasiveness. When “needs further evaluation” classifications were included as either false positive or false negative, the model was still 93% accurate in predicting invasiveness and 97% accurate in predicting non-invasiveness, with an overall accuracy of 95%. We conclude that the PRE tool should not only provide growers with a method to accurately screen their current stock and potential new introductions, but also increase the probability of the tool being accepted for use by the industry as the basis for a nursery certification program. PMID:25803830
Non-invasive method of measuring cerebral spinal fluid pressure
NASA Technical Reports Server (NTRS)
Borchert, Mark S. (Inventor); Lambert, James L. (Inventor)
2000-01-01
The invention provides a method of non-invasively determining intracranial pressure from measurements of an eye. A parameter of an optic nerve of the eye is determined, along with an intraocular pressure of the eye. The intracranial pressure may be determined from the intraocular pressure and the parameter.
Klaus, Jana; Schutter, Dennis J L G
2018-06-01
Non-invasive brain stimulation (NIBS) has become a common method to study the interrelations between the brain and language functioning. This meta-analysis examined the efficacy of transcranial magnetic stimulation (TMS) and direct current stimulation (tDCS) in the study of language production in healthy volunteers. Forty-five effect sizes from 30 studies which investigated the effects of NIBS on picture naming or verbal fluency in healthy participants were meta-analysed. Further sub-analyses investigated potential influences of stimulation type, control, target site, task, online vs. offline application, and current density of the target electrode. Random effects modelling showed a small, but reliable effect of NIBS on language production. Subsequent analyses indicated larger weighted mean effect sizes for TMS as compared to tDCS studies. No statistical differences for the other sub-analyses were observed. We conclude that NIBS is a useful method for neuroscientific studies on language production in healthy volunteers. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Non-Invasive markers for hepatic fibrosis
2011-01-01
With great advancements in the therapeutic modalities used for the treatment of chronic liver diseases, the accurate assessment of liver fibrosis is a vital need for successful individualized management of disease activity in patients. The lack of accurate, reproducible and easily applied methods for fibrosis assessment has been the major limitation in both the clinical management and for research in liver diseases. However, the problem of the development of biomarkers capable of non-invasive staging of fibrosis in the liver is difficult due to the fact that the process of fibrogenesis is a component of the normal healing response to injury, invasion by pathogens, and many other etiologic factors. Current non-invasive methods range from serum biomarker assays to advanced imaging techniques such as transient elastography and magnetic resonance imaging (MRI). Among non-invasive methods that gain strongest clinical foothold are FibroScan elastometry and serum-based APRI and FibroTest. There are many other tests that are not yet widely validated, but are none the less, promising. The rate of adoption of non-invasive diagnostic tests for liver fibrosis differs from country to country, but remains limited. At the present time, use of non-invasive procedures could be recommended as pre-screening that may allow physicians to narrow down the patients' population before definitive testing of liver fibrosis by biopsy of the liver. This review provides a systematic overview of these techniques, as well as both direct and indirect biomarkers based approaches used to stage fibrosis and covers recent developments in this rapidly advancing area. PMID:21849046
Scarpa, M C; Kulkarni, N; Maestrelli, P
2014-09-01
The role of non-invasive methods in the investigation of acute effects of traffic-related air pollution is not clearly established. We evaluated the usefulness of non-invasive biomarkers in detecting acute air pollution effects according to the age of participants, the disease status, their sensitivity compared with lung function tests and their specificity for a type of pollutant. Search terms lead to 535 titles, among them 128 had potentially relevant abstracts. Sixtynine full papers were reviewed, while 59 articles were excluded as they did not meet the selection criteria. Methods used to assess short-term effects of air pollution included analysis of nasal lavage (NAL) for the upper airways, and induced sputum (IS), exhaled breath condensate (EBC) and exhaled nitric oxide (FeNO) for central and lower airways. There is strong evidence that FeNO evaluation is useful independently from subject age, while IS analysis is suitable almost for adults. Biomarker changes are generally observed upon pollutant exposure irrespective of the disease status of the participants. None of the biomarkers identified are specific for a type of pollutant exposure. Based on experimental exposure studies, there is moderate evidence that IS analysis is more sensitive than lung function tests, whereas this is not the case for biomarkers obtained by NAL or EBC. Cells and some cytokines (IL-6, IL-8 and myeloperoxidase) have been measured both in the upper respiratory tract (NAL) and in the lower airways (IS). Overall, the response to traffic exposure seems different in the two compartments. In conclusion, this survey of current literature displays the complexity of this research field, highlights the significance of short-term studies on traffic pollution and gives important tips when planning studies to detect acute respiratory effects of air pollution in a non-invasive way. © 2014 John Wiley & Sons Ltd.
Hsieh, Chung-Bao; Chen, Chung-Jueng; Chen, Teng-Wei; Yu, Jyh-Cherng; Shen, Kuo-Liang; Chang, Tzu-Ming; Liu, Yao-Chi
2004-01-01
AIM: To investigate whether the non-invasive real-time Indocynine green (ICG) clearance is a sensitive index of liver viability in patients before, during, and after liver transplantation. METHODS: Thirteen patients were studied, two before, three during, and eight following liver transplantation, with two patients suffering acute rejection. The conventional invasive ICG clearance test and ICG pulse spectrophotometry non-invasive real-time ICG clearance test were performed simultaneously. Using linear regression analysis we tested the correlation between these two methods. The transplantation condition of these patients and serum total bilirubin (T. Bil), alanine aminotransferase (ALT), and platelet count were also evaluated. RESULTS: The correlation between these two methods was excellent (r2 = 0.977). CONCLUSION: ICG pulse spectrophotometry clearance is a quick, non-invasive, and reliable liver function test in transplantation patients. PMID:15285026
Benson, Robert A; Garcon, Fabien; Recino, Asha; Ferdinand, John R; Clatworthy, Menna R; Waldmann, Herman; Brewer, James M; Okkenhaug, Klaus; Cooke, Anne; Garside, Paul; Wållberg, Maja
2018-01-01
We present a novel and readily accessible method facilitating cellular time-resolved imaging of transplanted pancreatic islets. Grafting of islets to the mouse ear pinna allows non-invasive, in vivo longitudinal imaging of events in the islets and enables improved acquisition of experimental data and use of fewer experimental animals than is possible using invasive techniques, as the same mouse can be assessed for the presence of islet infiltrating cells before and after immune intervention. We have applied this method to investigating therapeutic protection of beta cells through the well-established use of anti-CD3 injection, and have acquired unprecedented data on the nature and rapidity of the effect on the islet infiltrating T cells. We demonstrate that infusion of anti-CD3 antibody leads to immediate effects on islet infiltrating T cells in islet grafts in the pinna of the ear, and causes them to increase their speed and displacement within 20 min of infusion. This technique overcomes several technical challenges associated with intravital imaging of pancreatic immune responses and facilitates routine study of beta islet cell development, differentiation, and function in health and disease.
A new CFD based non-invasive method for functional diagnosis of coronary stenosis.
Xie, Xinzhou; Zheng, Minwen; Wen, Didi; Li, Yabing; Xie, Songyun
2018-03-22
Accurate functional diagnosis of coronary stenosis is vital for decision making in coronary revascularization. With recent advances in computational fluid dynamics (CFD), fractional flow reserve (FFR) can be derived non-invasively from coronary computed tomography angiography images (FFR CT ) for functional measurement of stenosis. However, the accuracy of FFR CT is limited due to the approximate modeling approach of maximal hyperemia conditions. To overcome this problem, a new CFD based non-invasive method is proposed. Instead of modeling maximal hyperemia condition, a series of boundary conditions are specified and those simulated results are combined to provide a pressure-flow curve for a stenosis. Then, functional diagnosis of stenosis is assessed based on parameters derived from the obtained pressure-flow curve. The proposed method is applied to both idealized and patient-specific models, and validated with invasive FFR in six patients. Results show that additional hemodynamic information about the flow resistances of a stenosis is provided, which cannot be directly obtained from anatomy information. Parameters derived from the simulated pressure-flow curve show a linear and significant correlations with invasive FFR (r > 0.95, P < 0.05). The proposed method can assess flow resistances by the pressure-flow curve derived parameters without modeling of maximal hyperemia condition, which is a new promising approach for non-invasive functional assessment of coronary stenosis.
State of the Art: Neonatal Non-invasive Respiratory Support: Physiological Implications
Shaffer, Thomas H.; Alapati, Deepthi; Greenspan, Jay S.; Wolfson, Marla R.
2013-01-01
Summary The introduction of assisted ventilation for neonatal pulmonary insufficiency has resulted in the successful treatment of many previously fatal diseases. During the past three decades, refinement of invasive mechanical ventilation techniques has dramatically improved survival of many high-risk neonates. However, as with many advances in medicine, while mortality has been reduced, morbidity has increased in the surviving high-risk neonate. In this regard, introduction of assisted ventilation has been associated with chronic lung injury, also known as bronchopulmonary dysplasia. This disease, unknown prior to the appearance of mechanical ventilation, has produced a population of patients characterized by ventilator or oxygen dependence with serious accompanying pulmonary and neurodevelopmental morbidity. The purpose of this article is to review non-invasive respiratory support methodologies to address the physiologic mechanisms by which these methods may prevent the pathophysiologic effects of invasive mechanical ventilation. PMID:22777738
Noninvasive blood glucose sensing on human body with near-infrared reflection spectroscopy
NASA Astrophysics Data System (ADS)
Huang, Zhen-hao; Hao, Chang-ning; Zhang, Lin-lin; Huang, Yan-chao; Shi, Yi-qin; Jiang, Geng-ru; Duan, Jun-li
2011-08-01
The non-invasive blood glucose sensing method has shown its high impact on the clinic application. This can make the measurement on the clinically relevant concentrations of glucose be free from the pain of patient. The transmission spectrum study indicates that the dependence of glucose concentration on the absorbance is in linear manner for the glucose concentration in the region of 30mg/dL to 4.5×104mg/dL. By the near infrared reflection spectroscopy of fiber spectrometer, the reflection band between 1.2μm and 1.35μm can be used to correlated with the glucose concentration in the range of 30 to 300 mg/dL. This reflection band is finally used to measure the glucose concentration effect in non-invasive manner, which gives the statistical significance of P value 0.02. Our experiment result shows that it is possible to get the glucose concentration by the near infrared reflection spectrum measurement on the human forefinger. This non-invasive blood glucose sensing method may useful in clinic after more experiment for different people.
Paraskevaidi, Maria; Morais, Camilo L M; Lima, Kássio M G; Ashton, Katherine M; Stringfellow, Helen F; Martin-Hirsch, Pierre L; Martin, Francis L
2018-06-07
The current lack of an accurate, cost-effective and non-invasive test that would allow for screening and diagnosis of gynaecological carcinomas, such as endometrial and ovarian cancer, signals the necessity for alternative approaches. The potential of spectroscopic techniques in disease investigation and diagnosis has been previously demonstrated. Here, we used attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy to analyse urine samples from women with endometrial (n = 10) and ovarian cancer (n = 10), as well as from healthy individuals (n = 10). After applying multivariate analysis and classification algorithms, biomarkers of disease were pointed out and high levels of accuracy were achieved for both endometrial (95% sensitivity, 100% specificity; accuracy: 95%) and ovarian cancer (100% sensitivity, 96.3% specificity; accuracy 100%). The efficacy of this approach, in combination with the non-invasive method for urine collection, suggest a potential diagnostic tool for endometrial and ovarian cancers.
Griffiths, C. J.; Pickard, R. S.
2009-01-01
Objective: This article defines the need for objective measurements to help diagnose the cause of lower urinary tract symptoms (LUTS). It describes the conventional techniques available, mainly invasive, and then summarizes the emerging range of non-invasive measurement techniques. Methods: This is a narrative review derived form the clinical and scientific knowledge of the authors together with consideration of selected literature. Results: Consideration of measured bladder pressure urinary flow rate during voiding in an invasive pressure flow study is considered the gold standard for categorization of bladder outlet obstruction (BOO). The diagnosis is currently made by plotting the detrusor pressure at maximum flow (pdetQmax) and maximum flow rate (Qmax) on the nomogram approved by the International Continence Society. This plot will categorize the void as obstructed, equivocal or unobstructed. The invasive and relatively complex nature of this investigation has led to a number of inventive techniques to categorize BOO either by measuring bladder pressure non-invasively or by providing a proxy measure such as bladder weight. Conclusion: Non-invasive methods of diagnosing BOO show great promise and a few have reached the stage of being commercially available. Further studies are however needed to validate the measurement technique and assess their worth in the assessment of men with LUTS. PMID:19468436
Non-invasive prenatal detection of achondroplasia using circulating fetal DNA in maternal plasma.
Lim, Ji Hyae; Kim, Mee Jin; Kim, Shin Young; Kim, Hye Ok; Song, Mee Jin; Kim, Min Hyoung; Park, So Yeon; Yang, Jae Hyug; Ryu, Hyun Mee
2011-02-01
To perform a reliable non-invasive detection of the fetal achondroplasia using maternal plasma. We developed a quantitative fluorescent-polymerase chain reaction (QF-PCR) method suitable for detection of the FGFR3 mutation (G1138A) causing achondroplasia. This method was applied in a non-invasive detection of the fetal achondroplasia using circulating fetal-DNA (cf-DNA) in maternal plasma. Maternal plasmas were obtained at 27 weeks of gestational age from women carrying an achondroplasia fetus or a normal fetus. Two percent or less achondroplasia DNA was reliably detected by QF-PCR. In a woman carrying a normal fetus, analysis of cf-DNA showed only one peak of the wild-type G allele. In a woman expected an achondroplasia fetus, analysis of cf-DNA showed the two peaks of wild-type G allele and mutant-type A allele and accurately detected the fetal achondroplasia. The non-invasive method using maternal plasma and QF-PCR may be useful for diagnosis of the fetal achondroplasia.
Kelaher, Amy
2006-01-01
Invasive aspergillosis (IA) is a serious cause of morbidity and mortality among immunocompromised patients. Prompt and non-invasive methods for diagnosing IA are needed to improve the management of this life-threatening infection in patients with hematological disorders. In summary, this retrospective review of studies performed on the two assays finds that both assays have high sensitivity and specificity but are more useful when used together as a diagnostic strategy for patients with invasive aspergillosis.
NASA Astrophysics Data System (ADS)
Edwards, Perry S.
2016-10-01
Fiber-optic based diffuse reflectance spectroscopy (DRS) is shown to be a highly specific and highly sensitive method for non-invasive detection of various cancers (e.g. cervical and oral) as well as many other diseases. Fiber-optic DRS diagnosis relies on non-invasive biomarker detection (e.g. oxy- and deoxy-hemoglobin) and can be done without the need for sophisticated laboratory analysis of samples. Thus, it is highly amenable for clinical adoption especially in resource scarce regions that have limited access to such developed laboratory infrastructure. Despite the demonstrated effectiveness of fiber-optic DRS, such systems remain cost prohibitive in many of these regions, mainly due to the use of bulky and expensive spectrometers. Here, a fiber-optic DRS system is coupled to a smartphone spectrometer and is proposed as a low-cost solution for non-invasive tissue hemoglobin sensing. The performance of the system is assessed by measuring tissue phantoms with varying hemoglobin concentrations. A DRS retrieval algorithm is used to extract hemoglobin parameters from the measurements and determine the accuracy of the system. The results are then compared with those of a previously reported fiber-optic DRS system which is based on a larger more expensive spectrometer system. The preliminary results are encouraging and indicate the potential of the smartphone spectrometer as a viable low-cost option for non-invasive tissue hemoglobin sensing.
Method for non-invasive detection of ocular melanoma
Lambrecht, Richard M.; Packer, Samuel
1984-01-01
There is described an apparatus and method for diagnosing ocular cancer that is both non-invasive and accurate which comprises two radiation detectors positioned before each of the patient's eyes which will measure the radiation level produced in each eye after the administration of a tumor-localizing radiopharmaceutical such as gallium-67.
Method for non-invasive detection of ocular melanoma
Lambrecht, R.M.; Packer, S.
1984-10-30
An apparatus and method is disclosed for diagnosing ocular cancer that is both non-invasive and accurate. The apparatus comprises two radiation detectors positioned before each of the patient's eyes which will measure the radiation level produced in each eye after the administration of a tumor-localizing radiopharmaceutical such as gallium-67. 2 figs.
NASA Astrophysics Data System (ADS)
Manfredi, Marcello; Barberis, Elettra; Aceto, Maurizio; Marengo, Emilio
2017-06-01
During the last years the need for non-invasive and non-destructive analytical methods brought to the development and application of new instrumentation and analytical methods for the in-situ analysis of cultural heritage objects. In this work we present the application of a portable diffuse reflectance infrared Fourier transform (DRIFT) method for the non-invasive characterization of colorants prepared according to ancient recipes and using egg white and Gum Arabic as binders. Approximately 50 colorants were analyzed with the DRIFT spectroscopy: we were able to identify and discriminate the most used yellow (i.e. yellow ochres, Lead-tin Yellow, Orpiment, etc.), red (i.e. red ochres, Hematite) and blue (i.e. Lapis Lazuli, Azurite, indigo) colorants, creating a complete DRIFT spectral library. The Principal Component Analysis-Discriminant Analysis (PCA-DA) was then employed for the colorants classification according to the chemical/mineralogical composition. The DRIFT analysis was also performed on a gouache painting of the artist Sutherland; and the colorants used by the painter were identified directly in-situ and in a non-invasive manner.
A New Low-frequency Sonophoresis System Combined with Ultrasonic Motor and Transducer
NASA Astrophysics Data System (ADS)
Zhu, Pancheng; Peng, Hanmin; Yang, Jianzhi; Mao, Ting; Sheng, Juan
2018-03-01
Low frequency sonophoresis (LFS) is currently being attempted as a transdermal drug delivery method in clinical areas. However, it lacks both an effective control method and the equipment to satisfy the varying drug dosage requirements of individual patients. Herein, a novel method aimed at controlling permeability is proposed and developed, using a pressure control strategy which is based on an accurate, adjustable and non-invasive ultrasound transdermal drug delivery system in in vitro LFS. The system mainly consists of a lead screw linear ultrasonic motor and an ultrasonic transducer, in which the former offers pressure and the latter provides ultrasound wave in the liquid. The ultrasound can enhance non-invasive permeation and the pressure from the motor can control the permeability. The calculated and experimental results demonstrate that the maximum pressure on artificial skin is under the area with the maximum vibration amplitude of the ultrasonic transducer, and the total pressure consists of acoustic pressure from the transducer and approximate static pressure from the motor. Changing the static pressure from the ultrasonic motor can effectively control the non-invasive permeability, by adjusting the duty ratio or the amplitude of the motor’s driving voltage. In addition, the permeability control of calcein by thrust control is realized in 15 min, indicating the suitability of this method for application in accurate medical technology. The obtained results reveal that the issue of difficult permeability control can be addressed, using this control method in in vitro LFS to open up a route to the design of accurate drug delivery technology for individual patients.
A non-invasive technique for rapid extraction of DNA from fish scales.
Kumar, Ravindra; Singh, Poonam Jayant; Nagpure, N S; Kushwaha, Basdeo; Srivastava, S K; Lakra, W S
2007-11-01
DNA markers are being increasingly used in studies related to population genetics and conservation biology of endangered species. DNA isolation for such studies requires a source of biological material that is easy to collect, non-bulky and reliable. Further, the sampling strategies based on non-invasive procedures are desirable, especially for the endangered fish species. In view of above, a rapid DNA extraction method from fish scales has been developed with the use of a modified lysis buffer that require about 2 hr duration. This methodology is non-invasive, less expensive and reproducible with high efficiency of DNA recovery. The DNA extracted by this technique, have been found suitable for performing restriction enzyme digestion and PCR amplification. Therefore, the present DNA extraction procedure can be used as an alternative technique in population genetic studies pertaining to endangered fish species. The technique was also found equally effective for DNA isolation from fresh, dried and ethanol preserved scales.
Cost-effectiveness of minimally invasive sacroiliac joint fusion
Cher, Daniel J; Frasco, Melissa A; Arnold, Renée JG; Polly, David W
2016-01-01
Background Sacroiliac joint (SIJ) disorders are common in patients with chronic lower back pain. Minimally invasive surgical options have been shown to be effective for the treatment of chronic SIJ dysfunction. Objective To determine the cost-effectiveness of minimally invasive SIJ fusion. Methods Data from two prospective, multicenter, clinical trials were used to inform a Markov process cost-utility model to evaluate cumulative 5-year health quality and costs after minimally invasive SIJ fusion using triangular titanium implants or non-surgical treatment. The analysis was performed from a third-party perspective. The model specifically incorporated variation in resource utilization observed in the randomized trial. Multiple one-way and probabilistic sensitivity analyses were performed. Results SIJ fusion was associated with a gain of approximately 0.74 quality-adjusted life years (QALYs) at a cost of US$13,313 per QALY gained. In multiple one-way sensitivity analyses all scenarios resulted in an incremental cost-effectiveness ratio (ICER) <$26,000/QALY. Probabilistic analyses showed a high degree of certainty that the maximum ICER for SIJ fusion was less than commonly selected thresholds for acceptability (mean ICER =$13,687, 95% confidence interval $5,162–$28,085). SIJ fusion provided potential cost savings per QALY gained compared to non-surgical treatment after a treatment horizon of greater than 13 years. Conclusion Compared to traditional non-surgical treatments, SIJ fusion is a cost-effective, and, in the long term, cost-saving strategy for the treatment of SIJ dysfunction due to degenerative sacroiliitis or SIJ disruption. PMID:26719717
Intracranial Pressure Monitoring: Invasive versus Non-Invasive Methods—A Review
Raboel, P. H.; Bartek, J.; Andresen, M.; Bellander, B. M.; Romner, B.
2012-01-01
Monitoring of intracranial pressure (ICP) has been used for decades in the fields of neurosurgery and neurology. There are multiple techniques: invasive as well as noninvasive. This paper aims to provide an overview of the advantages and disadvantages of the most common and well-known methods as well as assess whether noninvasive techniques (transcranial Doppler, tympanic membrane displacement, optic nerve sheath diameter, CT scan/MRI and fundoscopy) can be used as reliable alternatives to the invasive techniques (ventriculostomy and microtransducers). Ventriculostomy is considered the gold standard in terms of accurate measurement of pressure, although microtransducers generally are just as accurate. Both invasive techniques are associated with a minor risk of complications such as hemorrhage and infection. Furthermore, zero drift is a problem with selected microtransducers. The non-invasive techniques are without the invasive methods' risk of complication, but fail to measure ICP accurately enough to be used as routine alternatives to invasive measurement. We conclude that invasive measurement is currently the only option for accurate measurement of ICP. PMID:22720148
Brown, P; Demaerel, P; McNaught, A; Revesz, T; Graham, E; Kendall, B E; Plant, G
1994-01-01
Two cases of non-invasive aspergillosis of the nose and paranasal sinuses are described. The first presented with left proptosis and ophthalmoplegia. Imaging and histology showed a maxillary sinus aspergilloma. The second case presented as a compressive optic neuropathy and histology showed allergic aspergillus sinusitis. The pathological distinction between invasive and non-invasive forms of aspergillus sinusitis is important as in invasive aspergillosis surgical treatment is most effectively combined with systemic antifungal treatment, whereas in aspergilloma of the paranasal sinuses surgical drainage of the sinuses alone is usually sufficient, and in allergic aspergillus sinusitis surgery is best combined with systemic or topical steroids. The distinction between invasive and non-invasive forms is particularly important as both may present with cranial neuropathies. Images PMID:8126516
Non-invasive acoustic-based monitoring of uranium in solution and H/D ratio
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pantea, Cristian; Beedle, Christopher Craig; Sinha, Dipen N.
The primary objective of this project is to adapt existing non-invasive acoustic techniques (Swept-Frequency Acoustic Interferometry and Gaussian-pulse acoustic technique) for the purpose of demonstrating the ability to quantify U or H/D ratios in solution. Furthermore, a successful demonstration will provide an easily implemented, low cost, and non-invasive method for remote and unattended uranium mass measurements for International Atomic Energy Agency (IAEA).
Continuous non-invasive blood glucose monitoring by spectral image differencing method
NASA Astrophysics Data System (ADS)
Huang, Hao; Liao, Ningfang; Cheng, Haobo; Liang, Jing
2018-01-01
Currently, the use of implantable enzyme electrode sensor is the main method for continuous blood glucose monitoring. But the effect of electrochemical reactions and the significant drift caused by bioelectricity in body will reduce the accuracy of the glucose measurements. So the enzyme-based glucose sensors need to be calibrated several times each day by the finger-prick blood corrections. This increases the patient's pain. In this paper, we proposed a method for continuous Non-invasive blood glucose monitoring by spectral image differencing method in the near infrared band. The method uses a high-precision CCD detector to switch the filter in a very short period of time, obtains the spectral images. And then by using the morphological method to obtain the spectral image differences, the dynamic change of blood sugar is reflected in the image difference data. Through the experiment proved that this method can be used to monitor blood glucose dynamically to a certain extent.
Day, Jasmine; Bianucci, Raffaella
2015-01-01
Advances in the application of non invasive techniques to mummified remains have shed new light on past diseases. The virtual inspection of a corpse, which has almost completely replaced classical autopsy, has proven to be important especially when dealing with valuable museum specimens. In spite of some very rewarding results, there are still many open questions. Non invasive techniques provide information on hard and soft tissue pathologies and allow information to be gleaned concerning mummification practices (e.g., ancient Egyptian artificial mummification). Nevertheless, there are other fields of mummy studies in which the results provided by non invasive techniques are not always self-explanatory. Reliance exclusively upon virtual diagnoses can sometimes lead to inconclusive and misleading interpretations. On the other hand, several types of investigation (e.g., histology, paleomicrobiology, and biochemistry), although minimally invasive, require direct contact with the bodies and, for this reason, are often avoided, particularly by museum curators. Here we present an overview of the non invasive and invasive techniques currently used in mummy studies and propose an approach that might solve these conflicts. PMID:26345295
A technology roadmap of smart biosensors from conventional glucose monitoring systems.
Shende, Pravin; Sahu, Pratiksha; Gaud, Ram
2017-06-01
The objective of this review article is to focus on technology roadmap of smart biosensors from a conventional glucose monitoring system. The estimation of glucose with commercially available devices involves analysis of blood samples that are obtained by pricking finger or extracting blood from the forearm. Since pain and discomfort are associated with invasive methods, the non-invasive measurement techniques have been investigated. The non-invasive methods show advantages like non-exposure to sharp objects such as needles and syringes, due to which there is an increase in testing frequency, improved control of glucose concentration and absence of pain and biohazard materials. This review study is aimed to describe recent invasive techniques and major noninvasive techniques, viz. biosensors, optical techniques and sensor-embedded contact lenses for glucose estimation.
Effects of white-tailed deer and invasive plants on the herb layer of suburban forests.
Morrison, Janet A
2017-11-01
Lack of hunting and predators and proximity to human communities make suburban forests prone to high deer abundance and non-native plant invasions. I investigated these likely drivers of community structure in the herb layers of six suburban forests in one region of New Jersey, USA. In 223 plots I assessed the herb layer response to 2.5 years with or without deer fencing and the early stage of invasion from seed additions of Microstegium vimineum , an invasive, annual grass. Non-native plants and herbaceous native plants were affected very little by fencing or M. vimineum invasion. In contrast, across all forests the combination of deer access and M. vimineum addition had a strongly negative effect on woody native percent cover. Forests differed in overall fencing effects on woody natives; their cover was greater in fenced plots in just three forests, suggesting greater deer pressure in those forests during the experiment. The early invasion by M. vimineum was greatest in two of these same forests, but was not influenced by fencing. Multi-group structural equation modelling compared two groups of forests that differed in vegetation abundance and other characteristics. It paralleled the results above and also showed no negative influence of non-native cover on native cover, even in the forests where non-native cover was greater. It identified a positive effect of light level on herb layer plants in the forests with less vegetation, and also revealed a positive effect of soil water potential (SWP) on non-native plants in the forests with more vegetation, which had higher SWP. These suburban forests within a common region varied widely in native and non-native herb layer abundance, the early success of M. vimineum invasion and the herb layer's response to early invasion and protection from deer.
Ou, Huang-Tz; Lee, Tsung-Ying; Chen, Yee-Chun; Charbonneau, Claudie
2017-07-10
Cost-effectiveness studies of echinocandins for the treatment of invasive candidiasis, including candidemia, are rare in Asia. No study has determined whether echinocandins are cost-effective for both Candida albicans and non-albicans Candida species. There have been no economic evaluations that compare non-echinocandins with the three available echinocandins. This study was aimed to assess the cost-effectiveness of individual echinocandins, namely caspofungin, micafungin, and anidulafungin, versus non-echinocandins for C. albicans and non-albicans Candida species, respectively. A decision tree model was constructed to assess the cost-effectiveness of echinocandins and non-echinocandins for invasive candidiasis. The probability of treatment success, mortality rate, and adverse drug events were extracted from published clinical trials. The cost variables (i.e., drug acquisition) were based on Taiwan's healthcare system from the perspective of a medical payer. One-way sensitivity analyses and probability sensitivity analyses were conducted. For treating invasive candidiasis (all species), as compared to fluconazole, micafungin and caspofungin are dominated (less effective, more expensive), whereas anidulafungin is cost-effective (more effective, more expensive), costing US$3666.09 for each life-year gained, which was below the implicit threshold of the incremental cost-effectiveness ratio in Taiwan. For C. albicans, echinocandins are cost-saving as compared to non-echinocandins. For non-albicans Candida species, echinocandins are cost-effective as compared to non-echinocandins, costing US$652 for each life-year gained. The results were robust over a wide range of sensitivity analyses and were most sensitive to the clinical efficacy of antifungal treatment. Echinocandins, especially anidulafungin, appear to be cost-effective for invasive candidiasis caused by C. albicans and non-albicans Candida species in Taiwan.
Clifton, Lei; Clifton, David A; Hahn, Clive E W; Farmeryy, Andrew D
2013-01-01
Conventional methods for estimating cardiopulmonary variables usually require complex gas analyzers and the active co-operation of the patient. Therefore, they are not compatible with the crowded environment of the intensive care unit (ICU) or operating theatre, where patient co-operation is typically impossible. However, it is these patients that would benefit the most from accurate estimation of cardiopulmonary variables, because of their critical condition. This paper describes the results of a collaborative development between an anesthesiologists and biomedical engineers to create a compact and non-invasive system for the measurement of cardiopulmonary variables such as lung volume, airway dead space volume, and pulmonary blood flow. In contrast with conventional methods, the compact apparatus and non-invasive nature of the proposed method allow it to be used in the ICU, as well as in general clinical settings. We propose the use of a non-invasive method, in which tracer gases are injected into the patient's inspired breath, and the concentration of the tracer gases is subsequently measured. A novel breath-by-breath tidal ventilation model is then used to estimate the value of a patient's cardiopulmonary variables. Experimental results from an artificial lung demonstrate minimal error in the estimation of known parameters using the proposed method. Results from analysis of a cohort of 20 healthy volunteers (within the Oxford University Hospitals NHS Trust) show that the values of estimated cardiopulmonary variables from these subjects lies within the expected ranges. Advantages of this method are that it is non-invasive, compact, portable, and can perform analysis in real time with less than 1 min of acquired respiratory data.
Impact of High-Intensity-NIV on the heart in stable COPD: a randomised cross-over pilot study.
Duiverman, Marieke Leontine; Maagh, Petra; Magnet, Friederike Sophie; Schmoor, Claudia; Arellano-Maric, Maria Paola; Meissner, Axel; Storre, Jan Hendrik; Wijkstra, Peter Jan; Windisch, Wolfram; Callegari, Jens
2017-05-02
Although high-intensity non-invasive ventilation has been shown to improve outcomes in stable COPD, it may adversely affect cardiac performance. Therefore, the aims of the present pilot study were to compare cardiac and pulmonary effects of 6 weeks of low-intensity non-invasive ventilation and 6 weeks of high-intensity non-invasive ventilation in stable COPD patients. In a randomised crossover pilot feasibility study, the change in cardiac output after 6 weeks of each NIV mode compared to baseline was assessed with echocardiography in 14 severe stable COPD patients. Furthermore, CO during NIV, gas exchange, lung function, and health-related quality of life were investigated. Three patients dropped out: two deteriorated on low-intensity non-invasive ventilation, and one presented with decompensated heart failure while on high-intensity non-invasive ventilation. Eleven patients were included in the analysis. In general, cardiac output and NTproBNP did not change, although individual effects were noticed, depending on the pressures applied and/or the co-existence of heart failure. High-intensity non-invasive ventilation tended to be more effective in improving gas exchange, but both modes improved lung function and the health-related quality of life. Long-term non-invasive ventilation with adequate pressure to improve gas exchange and health-related quality of life did not have an overall adverse effect on cardiac performance. Nevertheless, in patients with pre-existing heart failure, the application of very high inspiratory pressures might reduce cardiac output. The trial was registered in the Deutsches Register Klinischer Studien (DRKS-ID: DRKS00007977 ).
Non-invasive subcutaneous fat reduction: a review.
Kennedy, J; Verne, S; Griffith, R; Falto-Aizpurua, L; Nouri, K
2015-09-01
The risks, financial costs and lengthy downtime associated with surgical procedures for fat reduction have led to the development of a number of non-invasive techniques. Non-invasive body contouring now represents the fastest growing area of aesthetic medicine. There are currently four leading non-invasive techniques for reducing localized subcutaneous adipose tissue: low-level laser therapy (LLLT), cryolipolysis, radio frequency (RF) and high-intensity focused ultrasound (HIFU). To review and compare leading techniques and clinical outcomes of non-invasive subcutaneous fat reduction. The terms 'non-invasive', 'low-level laser', 'cryolipolysis', 'ultrasound' and 'radio frequency' were combined with 'lipolysis', 'fat reduction' or 'body contour' during separate searches in the PubMed database. We identified 31 studies (27 prospective clinical studies and four retrospective chart reviews) with a total of 2937 patients that had been treated with LLLT (n = 1114), cryolipolysis (n = 706), HIFU (n = 843) or RF (n = 116) or other techniques (n = 158) for fat reduction or body contouring. A majority of these patients experienced significant and satisfying results without any serious adverse effects. The studies investigating these devices have all varied in treatment regimen, body locations, follow-up times or outcome operationalization. Each technique differs in offered advantages and severity of adverse effects. However, multiple non-invasive devices are safe and effective for circumferential reduction in local fat tissue by 2 cm or more across the abdomen, hips and thighs. Results are consistent and reproducible for each device and none are associated with any serious or permanent adverse effects. © 2015 European Academy of Dermatology and Venereology.
5.0 Monitoring methods for forests vulnerable to non-native invasive pest species
David W. Williams; Michael E. Montgomery; Kathleen S. Shields; Richard A. Evans
2008-01-01
Non-native invasive species pose a serious threat to forest resources, requiring programs to monitor their spatial spread and the damage they inflict on forest ecosystems. Invasive species research in the Delaware River Basin (DRB) had three primary objectives: to develop and evaluate monitoring protocols for selected pests and resulting ecosystem damage at the IMRAs...
Non-invasive monitoring of spreading depression.
Bastany, Zoya J R; Askari, Shahbaz; Dumont, Guy A; Speckmann, Erwin-Josef; Gorji, Ali
2016-10-01
Spreading depression (SD), a slow propagating depolarization wave, plays an important role in pathophysiology of different neurological disorders. Yet, research into SD-related disorders has been hampered by the lack of non-invasive recording techniques of SD. Here we compared the manifestations of SD in continuous non-invasive electroencephalogram (EEG) recordings to invasive electrocorticographic (ECoG) recordings in order to obtain further insights into generator structures and electrogenic mechanisms of surface recording of SD. SD was induced by KCl application and simultaneous SD recordings were performed by scalp EEG as well as ECoG electrodes of somatosensory neocortex of rats using a novel homemade EEG amplifier, AgCl recording electrodes, and high chloride conductive gel. Different methods were used to analyze the data; including the spectrogram, bi-spectrogram, pattern distribution, relative spectrum power, and multivariable Gaussian fit analysis. The negative direct current (DC) shifts recorded by scalp electrodes exhibited a high homogeneity to those recorded by ECoG electrodes. Furthermore, this novel method of recording and analysis was able to separate SD recorded by scalp electrodes from non-neuronal DC shifts induced by other potential generators, such as the skin, muscles, arteries, dura, etc. These data suggest a novel application for continuous non-invasive monitoring of DC potential changes, such as SD. Non-invasive monitoring of SD would allow early intervention and improve outcome in SD-related neurological disorders. Copyright © 2016 IBRO. All rights reserved.
Bai, Yuqiang; Nichols, Jason J
2017-05-01
The thickness of tear film has been investigated under both invasive and non-invasive methods. While invasive methods are largely historical, more recent noninvasive methods are generally based on optical approaches that provide accurate, precise, and rapid measures. Optical microscopy, interferometry, and optical coherence tomography (OCT) have been developed to characterize the thickness of tear film or certain aspects of the tear film (e.g., the lipid layer). This review provides an in-depth overview on contemporary optical techniques used in studying the tear film, including both advantages and limitations of these approaches. It is anticipated that further developments of high-resolution OCT and other interferometric methods will enable a more accurate and precise measurement of the thickness of the tear film and its related dynamic properties. Copyright © 2017 Elsevier Ltd. All rights reserved.
Martinek, Radek; Kelnar, Michal; Koudelka, Petr; Vanus, Jan; Bilik, Petr; Janku, Petr; Nazeran, Homer; Zidek, Jan
2016-02-01
This paper describes the design, construction, and testing of a multi-channel fetal electrocardiogram (fECG) signal generator based on LabVIEW. Special attention is paid to the fetal heart development in relation to the fetus' anatomy, physiology, and pathology. The non-invasive signal generator enables many parameters to be set, including fetal heart rate (FHR), maternal heart rate (MHR), gestational age (GA), fECG interferences (biological and technical artifacts), as well as other fECG signal characteristics. Furthermore, based on the change in the FHR and in the T wave-to-QRS complex ratio (T/QRS), the generator enables manifestations of hypoxic states (hypoxemia, hypoxia, and asphyxia) to be monitored while complying with clinical recommendations for classifications in cardiotocography (CTG) and fECG ST segment analysis (STAN). The generator can also produce synthetic signals with defined properties for 6 input leads (4 abdominal and 2 thoracic). Such signals are well suited to the testing of new and existing methods of fECG processing and are effective in suppressing maternal ECG while non-invasively monitoring abdominal fECG. They may also contribute to the development of a new diagnostic method, which may be referred to as non-invasive trans-abdominal CTG + STAN. The functional prototype is based on virtual instrumentation using the LabVIEW developmental environment and its associated data acquisition measurement cards (DAQmx). The generator also makes it possible to create synthetic signals and measure actual fetal and maternal ECGs by means of bioelectrodes.
Ocular delivery of macromolecules
Kim, Yoo-Chun; Chiang, Bryce; Wu, Xianggen; Prausnitz, Mark R.
2014-01-01
Biopharmaceuticals are making increasing impact on medicine, including treatment of indications in the eye. Macromolecular drugs are typically given by physician-administered invasive delivery methods, because non--invasive ocular delivery methods, such as eye drops, and systemic delivery, have low bioavailability and/or poor ocular targeting. There is a need to improve delivery of biopharmaceuticals to enable less-invasive delivery routes, less-frequent dosing through controlled-release drug delivery and improved drug targeting within the eye to increase efficacy and reduce side effects. This review discusses the barriers to drug delivery via various ophthalmic routes of administration in the context of macromolecule delivery and discusses efforts to develop controlled-release systems for delivery of biopharmaceuticals to the eye. The growing number of macromolecular therapies in the eye needs improved drug delivery methods that increase drug efficacy, safety and patient compliance. PMID:24998941
van Werkhoven, Cornelis H
2017-05-04
Quantification of pneumococcal conjugate vaccines (PCVs) herd effects are mainly performed on invasive pneumococcal disease (IPD) but there is conflicting evidence regarding herd effects of PCVs on non-IPD pneumococcal community-acquired pneumonia. This review summarizes the available literature on herd effects of PCVs on non-IPD pneumococcal community-acquired pneumonia.
Diagnosis of Helicobacter pylori infection: Current options and developments
Wang, Yao-Kuang; Kuo, Fu-Chen; Liu, Chung-Jung; Wu, Meng-Chieh; Shih, Hsiang-Yao; Wang, Sophie SW; Wu, Jeng-Yih; Kuo, Chao-Hung; Huang, Yao-Kang; Wu, Deng-Chyang
2015-01-01
Accurate diagnosis of Helicobacter pylori (H. pylori) infection is a crucial part in the effective management of many gastroduodenal diseases. Several invasive and non-invasive diagnostic tests are available for the detection of H. pylori and each test has its usefulness and limitations in different clinical situations. Although none can be considered as a single gold standard in clinical practice, several techniques have been developed to give the more reliable results. Invasive tests are performed via endoscopic biopsy specimens and these tests include histology, culture, rapid urease test as well as molecular methods. Developments of endoscopic equipment also contribute to the real-time diagnosis of H. pylori during endoscopy. Urea breathing test and stool antigen test are most widely used non-invasive tests, whereas serology is useful in screening and epidemiological studies. Molecular methods have been used in variable specimens other than gastric mucosa. More than detection of H. pylori infection, several tests are introduced into the evaluation of virulence factors and antibiotic sensitivity of H. pylori, as well as screening precancerous lesions and gastric cancer. The aim of this article is to review the current options and novel developments of diagnostic tests and their applications in different clinical conditions or for specific purposes. PMID:26523098
Artificial intelligence and bladder cancer arrays.
Wild, P J; Catto, J W F; Abbod, M F; Linkens, D A; Herr, A; Pilarsky, C; Wissmann, C; Stoehr, R; Denzinger, S; Knuechel, R; Hamdy, F C; Hartmann, A
2007-01-01
Non-muscle invasive bladder cancer is a heterogenous disease whose management is dependent upon the risk of progression to muscle invasion. Although the recurrence rate is high, the majority of tumors are indolent and can be managed by endoscopic means alone. The prognosis of muscle invasion is poor and radical treatment is required if cure is to be obtained. Progression risk in non-invasive tumors is hard to determine at tumor diagnosis using current clinicopathological means. To improve the accuracy of progression prediction various biomarkers have been evaluated. To discover novel biomarkers several authors have used gene expression microarrays. Various statistical methods have been described to interpret array data, but to date no biomarkers have entered clinical practice. Here, we describe a new method of microarray analysis using neurofuzzy modeling (NFM), a form of artificial intelligence, and integrate it with artificial neural networks (ANN) to investigate non-muscle invasive bladder cancer array data (n=66 tumors). We develop a predictive panel of 11 genes, from 2800 expressed genes, that can significantly identify tumor progression (average Logrank p = 0.0288) in the analyzed cancers. In comparison, this panel appears superior to those genes chosen using traditional analyses (average Logrank p = 0.3455) and tumor grade (Logrank, p = 0.2475) in this non-muscle invasive cohort. We then analyze panel members in a new non-muscle invasive bladder cancer cohort (n=199) using immunohistochemistry with six commercially available antibodies. The combination of 6 genes (LIG3, TNFRSF6, KRT18, ICAM1, DSG2 and BRCA2) significantly stratifies tumor progression (Logrank p = 0.0096) in the new cohort. We discuss the benefits of the transparent NFM approach with respect to other reported methods.
Simple and effective method to lower body core temperatures of hyperthermic patients.
O'Connor, John P
2017-06-01
Hyperthermia is a potentially life threatening scenario that may occur in patients due to accompanying morbidities, exertion, or exposure to dry and arid environmental conditions. In particular, heat stroke may result from environmental exposure combined with a lack of thermoregulation. Key clinical findings in the diagnosis of heatstroke are (1) a history of heat stress or exposure, (2) a rectal temperature greater than 40 °C, and (3) central nervous system dysfunction (altered mental state, disorientation, stupor, seizures, or coma) (Prendergast and Erickson, 2014 [1]). In these patients, it is important to bring the body's core temperature down to acceptable levels in a short period of time to avoid tissue/organ injury or death (Yoder, 2001; Casa et al., 2007 [2,3]). A number of potential approaches, both non-invasive and invasive, may be used to lower the temperature of these individuals. Non-invasive techniques generally include: evaporative cooling, ice water immersion, whole-body ice packing, strategic ice packing, and convective cooling. Invasive approaches may include gastric lavage or peritoneal lavage (Schraga and Kates [4]). The efficacy of these methods vary and select treatment approaches may be unsuitable for specific individuals (Schraga and Kates [4]). In this work, the effectiveness of radiation cooling of individuals as a stand-alone treatment and comparisons with existing noninvasive techniques are presented. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Wei; Yu, K. N.; Bao, Lingzhi; Shen, Jie; Cheng, Cheng; Han, Wei
2016-01-01
Non-thermal plasma (NTP) has been proposed as a novel therapeutic method for anticancer treatment. However, the mechanism underlying its biological effects remains unclear. In this study, we investigated the inhibitory effect of NTP on the invasion of HeLa cells, and explored the possible mechanism. Our results showed that NTP exposure for 20 or 40 s significantly suppressed the migration and invasion of HeLa cells on the basis of matrigel invasion assay and wound healing assay, respectively. Moreover, NTP reduced the activity and protein expression of the matrix metalloproteinase (MMP)-9 enzyme. Western blot analysis indicated that NTP exposure effectively decreased phosphorylation level of both ERK1/2 and JNK, but not p38 MAPK. Furthermore, treatment with MAPK signal pathway inhibitors or NTP all exhibited significant depression of HeLa cells migration and MMP-9 expression. The result showed that NTP synergistically suppressed migration and MMP-9 expression in the presence of ERK1/2 inhibitor and JNK inhibitor, but not p38 MAPK inhibitor. Taken together, these findings suggested that NTP exposure inhibited the migration and invasion of HeLa cells via down-regulating MMP-9 expression in ERK1/2 and JNK signaling pathways dependent manner. These findings provide hints to the potential clinical research and therapy of NTP on cervical cancer metastasis.
Non-invasive Foetal ECG – a Comparable Alternative to the Doppler CTG?
Reinhard, J.; Louwen, F.
2012-01-01
This review discusses the alternative of using the non-invasive foetal ECG compared with the conventionally used Doppler CTG. Non-invasive abdominal electrocardiograms (ECG) have been approved for clinical routine since 2008; subsequently they were also approved for antepartum and subpartum procedures. The first study results have been published. Non-invasive foetal ECG is especially indicated during early pregnancy, while the Doppler CTG is recommended for the vernix period. Beyond the vernix period no difference has been recorded in the success rate of either approach. The foetal ECG signal quality is independent of the BMI, whereas the success rate of the Doppler CTG is diminished with an increased BMI. During the first stage of labour, non-invasive foetal ECG demonstrates better signal quality; however during the second stage of labour no difference has been identified between the methods. PMID:25308981
Li, Junmin; Jin, Zexin; Song, Wenjing
2012-01-01
Field studies have shown that native, parasitic plants grow vigorously on invasive plants and can cause more damage to invasive plants than native plants. However, no empirical test has been conducted and the mechanism is still unknown. We conducted a completely randomized greenhouse experiment using 3 congeneric pairs of exotic, invasive and native, non-invasive herbaceous plant species to quantify the damage caused by parasitic plants to hosts and its correlation with the hosts' growth rate and resource use efficiency. The biomass of the parasitic plants on exotic, invasive hosts was significantly higher than on congeneric native, non-invasive hosts. Parasites caused more damage to exotic, invasive hosts than to congeneric, native, non-invasive hosts. The damage caused by parasites to hosts was significantly positively correlated with the biomass of parasitic plants. The damage of parasites to hosts was significantly positively correlated with the relative growth rate and the resource use efficiency of its host plants. It may be the mechanism by which parasitic plants grow more vigorously on invasive hosts and cause more damage to exotic, invasive hosts than to native, non-invasive hosts. These results suggest a potential biological control effect of native, parasitic plants on invasive species by reducing the dominance of invasive species in the invaded community.
Nanophotosensitizers toward advanced photodynamic therapy of Cancer.
Lim, Chang-Keun; Heo, Jeongyun; Shin, Seunghoon; Jeong, Keunsoo; Seo, Young Hun; Jang, Woo-Dong; Park, Chong Rae; Park, Soo Young; Kim, Sehoon; Kwon, Ick Chan
2013-07-01
Photodynamic therapy (PDT) is a non-invasive treatment modality for selective destruction of cancer and other diseases and involves the colocalization of light, oxygen, and a photosensitizer (PS) to achieve photocytotoxicity. Although this therapeutic method has considerably improved the quality of life and life expectancy of cancer patients, further advances in selectivity and therapeutic efficacy are required to overcome numerous side effects related to classical PDT. The application of nanoscale photosensitizers (NPSs) comprising molecular PSs and nanocarriers with or without other biological/photophysical functions is a promising approach for improving PDT. In this review, we focus on four nanomedical approaches for advanced PDT: (1) nanocarriers for targeted delivery of PS, (2) introduction of active targeting moieties for disease-specific PDT, (3) stimulus-responsive NPSs for selective PDT, and (4) photophysical improvements in NPS for enhanced PDT efficacy. ► Conservation of normal tissues demands non-invasive therapeutic methods. ► PDT is a light-activated, non-invasive modality for selective destruction of cancers.► Success of PDT requires further advances to overcome the limitations of classical PDT. ►Nanophotosensitizers help improve target selectivity and therapeutic efficacy of PDT. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
A non-invasive implementation of a mixed domain decomposition method for frictional contact problems
NASA Astrophysics Data System (ADS)
Oumaziz, Paul; Gosselet, Pierre; Boucard, Pierre-Alain; Guinard, Stéphane
2017-11-01
A non-invasive implementation of the Latin domain decomposition method for frictional contact problems is described. The formulation implies to deal with mixed (Robin) conditions on the faces of the subdomains, which is not a classical feature of commercial software. Therefore we propose a new implementation of the linear stage of the Latin method with a non-local search direction built as the stiffness of a layer of elements on the interfaces. This choice enables us to implement the method within the open source software Code_Aster, and to derive 2D and 3D examples with similar performance as the standard Latin method.
Hsieh, Chih-Hsiung; Lu, Chueh-Hsuan; Chen, Wei-Ting; Ma, Bo-Lun
2017-01-01
Traditional therapies for pancreatic cancer are usually expensive and likely to cause side effects, and most patients have the risk of recurrence and suffering pain. Here, we investigated combination treatment of epigallocatechin-3-gallate (EGCG) and non-invasive low strength pulsed electric field (PEF) on the human pancreatic cell line PANC-1. Cells were cultured in various concentrations of EGCG and exposed to trains of PEF. The results showed that the low strength PEF alone or single treatment with low concentration of EGCG did not obviously affect the cell proliferation and migration in PANC-1. However, the EGCG-induced inhibitions of cell viability and migration ability in PANC-1 were dramatically enhanced by the further exposure of low strength PEF (60 V/cm). In particular, the same combination treatment caused less inhibition of cell viability in non-malignant HEK293 cells. We also found the combination treatment significantly decreased the ratio of Bcl-2/Bax protein and increased caspase activity in PANC-1 cells, resulting in the promotion of apoptotic responses, evidenced by chromatin condensation. The findings of the present study reveal the synergistic reactions in the combination treatment may severely disturb mitochondria, enhance the intrinsic pathway transduction, and effectively induce apoptosis; moreover, the migration and invasion of PANC-1 cancer cells were also significantly suppressed. Since normal cells are less sensitive to this combination treatment, and the non-invasive PEF could be modified to focus on a specific location, this treatment may serve as a promising method for anti-cancer therapy. PMID:29186186
Hsieh, Chih-Hsiung; Lu, Chueh-Hsuan; Chen, Wei-Ting; Ma, Bo-Lun; Chao, Chih-Yu
2017-01-01
Traditional therapies for pancreatic cancer are usually expensive and likely to cause side effects, and most patients have the risk of recurrence and suffering pain. Here, we investigated combination treatment of epigallocatechin-3-gallate (EGCG) and non-invasive low strength pulsed electric field (PEF) on the human pancreatic cell line PANC-1. Cells were cultured in various concentrations of EGCG and exposed to trains of PEF. The results showed that the low strength PEF alone or single treatment with low concentration of EGCG did not obviously affect the cell proliferation and migration in PANC-1. However, the EGCG-induced inhibitions of cell viability and migration ability in PANC-1 were dramatically enhanced by the further exposure of low strength PEF (60 V/cm). In particular, the same combination treatment caused less inhibition of cell viability in non-malignant HEK293 cells. We also found the combination treatment significantly decreased the ratio of Bcl-2/Bax protein and increased caspase activity in PANC-1 cells, resulting in the promotion of apoptotic responses, evidenced by chromatin condensation. The findings of the present study reveal the synergistic reactions in the combination treatment may severely disturb mitochondria, enhance the intrinsic pathway transduction, and effectively induce apoptosis; moreover, the migration and invasion of PANC-1 cancer cells were also significantly suppressed. Since normal cells are less sensitive to this combination treatment, and the non-invasive PEF could be modified to focus on a specific location, this treatment may serve as a promising method for anti-cancer therapy.
Non-invasive in vivo measurement of macular carotenoids
NASA Technical Reports Server (NTRS)
Lambert, James L. (Inventor); Borchert, Mark S. (Inventor)
2009-01-01
A non-invasive in vivo method for assessing macular carotenoids includes performing Optical Coherence Tomography (OCT) on a retina of a subject. A spatial representation of carotenoid levels in the macula based on data from the OCT of the retina can be generated.
Herron, P.M.; Martine, C.T.; Latimer, A.M.; Leicht-Young, S. A.
2007-01-01
Effective management of introduced species requires the early identification of species that pose a significant threat of becoming invasive. To better understand the invasive ecology of species in New England, USA, we compiled a character data set with which to compare non-native species that are known invaders to non-native species that are not currently known to be invasive. In contrast to previous biological trait-based models, we employed a Bayesian hierarchical analysis to identify sets of plant traits associated with invasiveness for each of three growth forms (vines, shrubs, and trees). The resulting models identify a suite of 'invasive traits' highlighting the ecology associated with invasiveness for each of three growth forms. The most effective predictors of invasiveness that emerged from our model were 'invasive elsewhere', 'fast growth rate', 'native latitudinal range', and 'growth form'. The contrast among growth forms was pronounced. For example, 'wind dispersal' was positively correlated with invasiveness in trees, but negatively correlated in shrubs and vines. The predictive model was able to correctly classify invasive plants 67% of the time (22/33), and non-invasive plants 95% of the time (204/215). A number of potential future invasive species in New England that deserve management consideration were identified. ?? 2007 The Authors.
Comparison of non-invasive measures of cholinergic and allergic airway responsiveness in rats.
Glaab, T; Hecker, H; Stephan, M; Baelder, R; Braun, A; Korolewitz, R; Krug, N; Hoymann, H G
2006-04-01
Non-invasive analysis of tidal expiratory flow parameters such as Tme/TE (time needed to reach peak expiratory flow divided by total expiratory time) or midexpiratory tidal flow (EF50) has been shown useful for phenotypic characterization of lung function in humans and animal models. In this study, we aimed to compare the utility of two non-invasive measures, EF50 and Tme/TE, to monitor bronchoconstriction to inhaled cholinergic and allergic challenges in Brown-Norway rats. Non-invasive measurements of Tme/TE and EF50 were paralleled by invasive recordings of Tme/TE, EF50 and pulmonary conductance (GL). First, dose-response studies with acetylcholine were performed in naive rats, showing that EF50 better than Tme/TE reflected the dose-related changes as observed with the classical invasive outcome parameter GL. The subsequent determination of allergen-specific early airway responsiveness (EAR) showed that ovalbumin-sensitized and -challenged rats exhibited airway inflammation and allergen-specific EAR. Again, EF50 was more sensitive than Tme/TE in detecting the allergen-specific EAR recorded with invasive and non-invasive lung function methods and agreed well with classical GL measurements. We conclude that non-invasive assessment of EF50 is significantly superior to Tme/TE and serves as a suitable and valid tool for phenotypic screening of cholinergic and allergic airway responsiveness in rats.
Drivers of Non-Native Aquatic Species Invasions across the Continental U.S: A Macroscale Assessment
Background/Question/Methods Mapping the geographic distribution of non-native aquatic species is a critically important precursor to understanding the anthropogenic and environmental factors that drive freshwater biological invasions. Such efforts are often limited to local scale...
Guo, Siqi; Israel, Annelise L.; Basu, Gaurav; Donate, Amy; Heller, Richard
2013-01-01
Topical gene delivery to the epidermis has the potential to be an effective therapy for skin disorders, cutaneous cancers, vaccinations and systemic metabolic diseases. Previously, we reported on a non-invasive multielectrode array (MEA) that efficiently delivered plasmid DNA and enhanced expression to the skin of several animal models by in vivo gene electrotransfer. Here, we characterized plasmid DNA delivery with the MEA in a hairless guinea pig model, which has a similar histology and structure to human skin. Significant elevation of gene expression up to 4 logs was achieved with intradermal DNA administration followed by topical non-invasive skin gene electrotransfer. This delivery produced gene expression in the skin of hairless guinea pig up to 12 to 15 days. Gene expression was observed exclusively in the epidermis. Skin gene electrotransfer with the MEA resulted in only minimal and mild skin changes. A low level of human Factor IX was detected in the plasma of hairless guinea pig after gene electrotransfer with the MEA, although a significant increase of Factor IX was obtained in the skin of animals. These results suggest gene electrotransfer with the MEA can be a safe, efficient, non-invasive skin delivery method for skin disorders, vaccinations and potential systemic diseases where low levels of gene products are sufficient. PMID:24015305
Invasive and non-invasive measurement in medicine and biology: calibration issues
NASA Astrophysics Data System (ADS)
Rolfe, P.; Zhang, Yan; Sun, Jinwei; Scopesi, F.; Serra, G.; Yamakoshi, K.; Tanaka, S.; Yamakoshi, T.; Yamakoshi, Y.; Ogawa, M.
2010-08-01
Invasive and non-invasive measurement sensors and systems perform vital roles in medical care. Devices are based on various principles, including optics, photonics, and plasmonics, electro-analysis, magnetics, acoustics, bio-recognition, etc. Sensors are used for the direct insertion into the human body, for example to be in contact with blood, which constitutes Invasive Measurement. This approach is very challenging technically, as sensor performance (sensitivity, response time, linearity) can deteriorate due to interactions between the sensor materials and the biological environment, such as blood or interstitial fluid. Invasive techniques may also be potentially hazardous. Alternatively, sensors or devices may be positioned external to the body surface, for example to analyse respired breath, thereby allowing safer Non-Invasive Measurement. However, such methods, which are inherently less direct, often requiring more complex calibration algorithms, perhaps using chemometric principles. This paper considers and reviews the issue of calibration in both invasive and non-invasive biomedical measurement systems. Systems in current use usually rely upon periodic calibration checks being performed by clinical staff against a variety of laboratory instruments and QC samples. These procedures require careful planning and overall management if reliable data are to be assured.
Enabling skin vaccination using new delivery technologies
Kim, Yeu-Chun; Prausnitz, Mark R.
2011-01-01
The skin is known to be a highly immunogenic site for vaccination, but few vaccines in clinical use target skin largely because conventional intradermal injection is difficult and unreliable to perform. Now, a number of new or newly adapted delivery technologies have been shown to administer vaccine to the skin either by non-invasive or minimally invasive methods. Non-invasive methods include high-velocity powder and liquid jet injection, as well as diffusion-based patches in combination with skin abrasion, thermal ablation, ultrasound, electroporation, and chemical enhancers. Minimally invasive methods are generally based on small needles, including solid microneedle patches, hollow microneedle injections, and tattoo guns. The introduction of these advanced delivery technologies can make the skin a site for simple, reliable vaccination that increases vaccine immunogenicity and offers logistical advantages to improve the speed and coverage of vaccination. PMID:21799951
Enabling skin vaccination using new delivery technologies
Kim, Yeu-Chun; Prausnitz, Mark R.
2011-01-01
The skin is known to be a highly immunogenic site for vaccination, but few vaccines in clinical use target skin largely because conventional intradermal injection is difficult and unreliable to perform. Now, a number of new or newly adapted delivery technologies have been shown to administer vaccine to the skin either by non-invasive or minimally invasive methods. Non-invasive methods include high-velocity powder and liquid jet injection, as well as diffusion-based patches in combination with skin abrasion, thermal ablation, ultrasound, electroporation, and chemical enhancers. Minimally invasive methods are generally based on small needles, including solid microneedle patches, hollow microneedle injections and tattoo guns. The introduction of these advanced delivery technologies can make the skin a site for simple, reliable vaccination that increases vaccine immunogenicity and offers logistical advantages to improve the speed and coverage of vaccination. PMID:21472533
Greene, Jacob; Louis, Julien; Korostynska, Olga; Mason, Alex
2017-02-23
Muscle glycogen levels have a profound impact on an athlete's sporting performance, thus measurement is vital. Carbohydrate manipulation is a fundamental component in an athlete's lifestyle and is a critical part of elite performance, since it can provide necessary training adaptations. This paper provides a critical review of the current invasive and non-invasive methods for measuring skeletal muscle glycogen levels. These include the gold standard muscle biopsy, histochemical analysis, magnetic resonance spectroscopy, and musculoskeletal high frequency ultrasound, as well as pursuing future application of electromagnetic sensors in the pursuit of portable non-invasive quantification of muscle glycogen. This paper will be of interest to researchers who wish to understand the current and most appropriate techniques in measuring skeletal muscle glycogen. This will have applications both in the lab and in the field by improving the accuracy of research protocols and following the physiological adaptations to exercise.
Non-invasive spectroscopic techniques in the diagnosis of non-melanoma skin cancer
NASA Astrophysics Data System (ADS)
Drakaki, E.; Sianoudis, IA; Zois, EN; Makropoulou, M.; Serafetinides, AA; Dessinioti, C.; Stefanaki, E.; Stratigos, AJ; Antoniou, C.; Katsambas, A.; Christofidou, E.
2017-11-01
The number of non-melanoma skin cancers is increasing worldwide and has become an important health and economic issue. Early detection and treatment of skin cancer can significantly improve patient outcome. Therefore there is an increase in the demand for proper management and effective non-invasive diagnostic modalities in order to avoid relapses or unnecessary treatments. Although the gold standard of diagnosis for non-melanoma skin cancers is biopsy followed by histopathology evaluation, optical non-invasive diagnostic tools have obtained increased attention. Emerging non-invasive or minimal invasive techniques with possible application in the diagnosis of non-melanoma skin cancers include high-definition optical coherence tomography, fluorescence spectroscopy, oblique incidence diffuse reflectance spectrometry among others spectroscopic techniques. Our findings establish how those spectrometric techniques can be used to more rapidly and easily diagnose skin cancer in an accurate and automated manner in the clinic.
Effects of white-tailed deer and invasive plants on the herb layer of suburban forests
2017-01-01
Abstract Lack of hunting and predators and proximity to human communities make suburban forests prone to high deer abundance and non-native plant invasions. I investigated these likely drivers of community structure in the herb layers of six suburban forests in one region of New Jersey, USA. In 223 plots I assessed the herb layer response to 2.5 years with or without deer fencing and the early stage of invasion from seed additions of Microstegium vimineum, an invasive, annual grass. Non-native plants and herbaceous native plants were affected very little by fencing or M. vimineum invasion. In contrast, across all forests the combination of deer access and M. vimineum addition had a strongly negative effect on woody native percent cover. Forests differed in overall fencing effects on woody natives; their cover was greater in fenced plots in just three forests, suggesting greater deer pressure in those forests during the experiment. The early invasion by M. vimineum was greatest in two of these same forests, but was not influenced by fencing. Multi-group structural equation modelling compared two groups of forests that differed in vegetation abundance and other characteristics. It paralleled the results above and also showed no negative influence of non-native cover on native cover, even in the forests where non-native cover was greater. It identified a positive effect of light level on herb layer plants in the forests with less vegetation, and also revealed a positive effect of soil water potential (SWP) on non-native plants in the forests with more vegetation, which had higher SWP. These suburban forests within a common region varied widely in native and non-native herb layer abundance, the early success of M. vimineum invasion and the herb layer’s response to early invasion and protection from deer. PMID:29218140
Li, Junmin; Jin, Zexin; Song, Wenjing
2012-01-01
Field studies have shown that native, parasitic plants grow vigorously on invasive plants and can cause more damage to invasive plants than native plants. However, no empirical test has been conducted and the mechanism is still unknown. We conducted a completely randomized greenhouse experiment using 3 congeneric pairs of exotic, invasive and native, non-invasive herbaceous plant species to quantify the damage caused by parasitic plants to hosts and its correlation with the hosts' growth rate and resource use efficiency. The biomass of the parasitic plants on exotic, invasive hosts was significantly higher than on congeneric native, non-invasive hosts. Parasites caused more damage to exotic, invasive hosts than to congeneric, native, non-invasive hosts. The damage caused by parasites to hosts was significantly positively correlated with the biomass of parasitic plants. The damage of parasites to hosts was significantly positively correlated with the relative growth rate and the resource use efficiency of its host plants. It may be the mechanism by which parasitic plants grow more vigorously on invasive hosts and cause more damage to exotic, invasive hosts than to native, non-invasive hosts. These results suggest a potential biological control effect of native, parasitic plants on invasive species by reducing the dominance of invasive species in the invaded community. PMID:22493703
Zardi, Enrico Maria; Di Matteo, Francesco Maria; Pacella, Claudio Maurizio; Sanyal, Arun J
2014-02-01
Portal hypertension is a severe syndrome that may derive from pre-sinusoidal, sinusoidal, and post-sinusoidal causes. As a consequence, several complications (i.e. ascites, oesophageal varices) may develop. In sinusoidal portal hypertension, hepatic venous pressure gradient (HVPG) is a reliable method for defining the grade of portal pressure, establishing the effectiveness of the treatment, and predicting the occurrence of complications; however, some questions exist regarding its ability to discriminate bleeding from non-bleeding varices in cirrhotic patients. Other imaging techniques (transient elastography, endoscopy, endosonography, and duplex Doppler sonography) for assessing causes and complications of portal hypertensive syndrome are available and may be valuable for the management of these patients. In this review, we evaluate invasive and non-invasive techniques currently employed to obtain a clinical prediction of deadly complications, such as variceal bleeding in patients affected by sinusoidal portal hypertension, in order to create a diagnostic algorithm to manage them. Again, HVPG appears to be the reference standard to evaluate portal hypertension and monitor the response to treatment, but its ability to predict several complications and support management decisions might be further improved through the diagnostic combination with other imaging techniques.
The importance of optical methods for non-invasive measurements in the skin care industry
NASA Astrophysics Data System (ADS)
Stamatas, Georgios N.
2010-02-01
Pharmaceutical and cosmetic industries are concerned with treating skin disease, as well as maintaining and promoting skin health. They are dealing with a unique tissue that defines our body in space. As such, skin provides not only the natural boundary with the environment inhibiting body dehydration as well as penetration of exogenous aggressors to the body, it is also ideally situated for optical measurements. A plurality of spectroscopic and imaging methods is being used to understand skin physiology and pathology and document the effects of topically applied products on the skin. The obvious advantage of such methods over traditional biopsy techniques is the ability to measure the cutaneous tissue in vivo and non-invasively. In this work, we will review such applications of various spectroscopy and imaging methods in skin research that is of interest the cosmetic and pharmaceutical industry. Examples will be given on the importance of optical techniques in acquiring new insights about acne pathogenesis and infant skin development.
Gardiner, Riana Zanarivero; Doran, Erik; Strickland, Kasha; Carpenter-Bundhoo, Luke; Frère, Celine
2014-01-01
Ectothermic vertebrates face many challenges of thermoregulation. Many species rely on behavioral thermoregulation and move within their landscape to maintain homeostasis. Understanding the fine-scale nature of this regulation through tracking techniques can provide a better understanding of the relationships between such species and their dynamic environments. The use of animal tracking and telemetry technology has allowed the extensive collection of such data which has enabled us to better understand the ways animals move within their landscape. However, such technologies do not come without certain costs: they are generally invasive, relatively expensive, can be too heavy for small sized animals and unreliable in certain habitats. This study provides a cost-effective and non-invasive method through photo-identification, to determine fine scale movements of individuals. With our methodology, we have been able to find that male eastern water dragons (Intellagama leuseurii) have home ranges one and a half times larger than those of females. Furthermore, we found intraspecific differences in the size of home ranges depending on the time of the day. Lastly, we found that location mostly influenced females' home ranges, but not males and discuss why this may be so. Overall, we provide valuable information regarding the ecology of the eastern water dragon, but most importantly demonstrate that non-invasive photo-identification can be successfully applied to the study of reptiles.
Non-Invasive Thrombolysis Using Pulsed Ultrasound Cavitation Therapy – Histotripsy
Maxwell, Adam D.; Cain, Charles A.; Duryea, Alexander P.; Yuan, Lingqian; Gurm, Hitinder S.; Xu, Zhen
2009-01-01
Clinically available thrombolysis techniques are limited by either slow reperfusion (drugs) or invasiveness (catheters), and carry significant risks of bleeding. In this study, the feasibility of using histotripsy as an efficient and non-invasive thrombolysis technique was investigated. Histotripsy fractionates soft tissue through controlled cavitation using focused, short, high-intensity ultrasound pulses. In-vitro blood clots formed from fresh canine blood were treated by histotripsy. The treatment was applied using a focused 1-MHz transducer, with 5-cycle pulses at a pulse repetition rate of 1 kHz. Acoustic pressures varying from 2 – 12 MPa peak negative pressure were tested. Our results show that histotripsy can perform effective thrombolysis with ultrasound energy alone. Histotripsy thrombolysis only occurred at peak negative pressure ≥6 MPa when initiation of a cavitating bubble cloud was detected using acoustic backscatter monitoring. Blood clots weighing 330 mg were completely broken down by histotripsy in 1.5 – 5 minutes. The clot was fractionated to debris with >96% weight smaller than 5 μm diameter. Histotripsy thrombolysis treatment remained effective under a fast, pulsating flow (a circulatory model) as well as in static saline. Additionally, we observed that fluid flow generated by a cavitation cloud can attract, trap, and further break down clot fragments. This phenomenon may provide a non-invasive method to filter and eliminate hazardous emboli during thrombolysis. PMID:19854563
Non-invasive reproductive and stress endocrinology in amphibian conservation physiology
Narayan, E. J.
2013-01-01
Non-invasive endocrinology utilizes non-invasive biological samples (such as faeces, urine, hair, aquatic media, and saliva) for the quantification of hormones in wildlife. Urinary-based enzyme immunoassay (EIA) and radio-immunoassay have enabled the rapid quantification of reproductive and stress hormones in amphibians (Anura: Amphibia). With minimal disturbance, these methods can be used to assess the ovarian and testicular endocrine functions as well as physiological stress in captive and free-living populations. Non-invasive endocrine monitoring has therefore greatly advanced our knowledge of the functioning of the stress endocrine system (the hypothalamo–pituitary–interrenal axis) and the reproductive endocrine system (the hypothalamo–pituitary–gonadal axis) in the amphibian physiological stress response, reproductive ecology, health and welfare, and survival. Biological (physiological) validation is necessary for obtaining the excretory lag time of hormone metabolites. Urinary-based EIA for the major reproductive hormones, estradiol and progesterone in females and testosterone in males, can be used to track the reproductive hormone profiles in relationship to reproductive behaviour and environmental data in free-living anurans. Urinary-based corticosterone metabolite EIA can be used to assess the sublethal impacts of biological stressors (such as invasive species and pathogenic diseases) as well as anthropogenic induced environmental stressors (e.g. extreme temperatures) on free-living populations. Non-invasive endocrine methods can also assist in the diagnosis of success or failure of captive breeding programmes by measuring the longitudinal patterns of changes in reproductive hormones and corticosterone within captive anurans and comparing the endocrine profiles with health records and reproductive behaviour. This review paper focuses on the reproductive and the stress endocrinology of anurans and demonstrates the uses of non-invasive endocrinology for advancing amphibian conservation physiology. It also provides key technical considerations for future research that will increase the accuracy and reliability of the data and the value of non-invasive endocrinology within the conceptual framework of conservation physiology. PMID:27293595
[Observation on non-invasive electrode pulse electric stimulation for treatment of Bell's palsy].
Guo, Qing-Hua; Yan, Jian-Zhen; Yan, Wu-Shen; Xiao, Mei-Zhen
2006-12-01
To explore non-invasive therapy for treatment of Bell palsy. Two hundred and seventy-six were randomly divided into two groups, a treatment group and a control group, 138 cases in each group. The treatment group were treated with non-invasive electrode pulse electric stimulation at Taiyang (EX-HN 5), Sibai (ST 2), Qianzheng (Extra), Dicang (ST 4), and the control group with routine medicine (prednisone, dibazol, vitamine B complex and Qianzheng Powder), once each day, 10 days constituting one course. After two courses, their therapeutic effects were compared. The cured rate and the effective rate were 83.3% and 99.3% in the treatment group, and 48.5% and 88.4% in the control group respectively with a significant difference between the two groups (P < 0.05). Non-invasive electrode pulse electric stimulation at facial points has obvious therapeutic effect on Bell palsy.
Papasavva, Thessalia; van IJcken, Wilfred F J; Kockx, Christel E M; van den Hout, Mirjam C G N; Kountouris, Petros; Kythreotis, Loukas; Kalogirou, Eleni; Grosveld, Frank G; Kleanthous, Marina
2013-01-01
β-Thalassaemia is one of the most common autosomal recessive single-gene disorder worldwide, with a carrier frequency of 12% in Cyprus. Prenatal tests for at risk pregnancies use invasive methods and development of a non-invasive prenatal diagnostic (NIPD) method is of paramount importance to prevent unnecessary risks inherent to invasive methods. Here, we describe such a method by assessing a modified version of next generation sequencing (NGS) using the Illumina platform, called ‘targeted sequencing', based on the detection of paternally inherited fetal alleles in maternal plasma. We selected four single-nucleotide polymorphisms (SNPs) located in the β-globin locus with a high degree of heterozygosity in the Cypriot population. Spiked genomic samples were used to determine the specificity of the platform. We could detect the minor alleles in the expected ratio, showing the specificity of the platform. We then developed a multiplexed format for the selected SNPs and analysed ten maternal plasma samples from pregnancies at risk. The presence or absence of the paternal mutant allele was correctly determined in 27 out of 34 samples analysed. With haplotype analysis, NIPD was possible on eight out of ten families. This is the first study carried out for the NIPD of β-thalassaemia using targeted NGS and haplotype analysis. Preliminary results show that NGS is effective in detecting paternally inherited alleles in the maternal plasma. PMID:23572027
Report on Non-invasive acoustic monitoring of D2O concentration Oct 31 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pantea, Cristian; Sinha, Dipen N.; Lakis, Rollin Evan
There is an urgent need for real-time monitoring of the hydrogen /deuterium ratio (H/D) for heavy water production monitoring. Based upon published literature, sound speed is sensitive to the deuterium content of heavy water and can be measured using existing acoustic methods to determine the deuterium concentration in heavy water solutions. We plan to adapt existing non-invasive acoustic techniques (Swept-Frequency Acoustic Interferometry and Gaussian-pulse acoustic technique) for the purpose of quantifying H/D ratios in solution. A successful demonstration will provide an easily implemented, low cost, and non-invasive method for remote and unattended H/D ratio measurements with a resolution of lessmore » than 0.2% vol.« less
Alday, Erick A Perez; Colman, Michael A; Langley, Philip; Zhang, Henggui
2017-03-01
Atrial tachy-arrhytmias, such as atrial fibrillation (AF), are characterised by irregular electrical activity in the atria, generally associated with erratic excitation underlain by re-entrant scroll waves, fibrillatory conduction of multiple wavelets or rapid focal activity. Epidemiological studies have shown an increase in AF prevalence in the developed world associated with an ageing society, highlighting the need for effective treatment options. Catheter ablation therapy, commonly used in the treatment of AF, requires spatial information on atrial electrical excitation. The standard 12-lead electrocardiogram (ECG) provides a method for non-invasive identification of the presence of arrhythmia, due to irregularity in the ECG signal associated with atrial activation compared to sinus rhythm, but has limitations in providing specific spatial information. There is therefore a pressing need to develop novel methods to identify and locate the origin of arrhythmic excitation. Invasive methods provide direct information on atrial activity, but may induce clinical complications. Non-invasive methods avoid such complications, but their development presents a greater challenge due to the non-direct nature of monitoring. Algorithms based on the ECG signals in multiple leads (e.g. a 64-lead vest) may provide a viable approach. In this study, we used a biophysically detailed model of the human atria and torso to investigate the correlation between the morphology of the ECG signals from a 64-lead vest and the location of the origin of rapid atrial excitation arising from rapid focal activity and/or re-entrant scroll waves. A focus-location algorithm was then constructed from this correlation. The algorithm had success rates of 93% and 76% for correctly identifying the origin of focal and re-entrant excitation with a spatial resolution of 40 mm, respectively. The general approach allows its application to any multi-lead ECG system. This represents a significant extension to our previously developed algorithms to predict the AF origins in association with focal activities.
Non-invasive Prediction of Pork Loin Tenderness
USDA-ARS?s Scientific Manuscript database
The present experiment was conducted to develop a non-invasive method to predict tenderness of pork loins. Boneless pork loins (n = 901) were evaluated either on line on the loin boning and trimming line of large-scale commercial plants (n = 465) or at the U.S. Meat Animal Research Center abattoir ...
Method for Non-Invasive Determination of Chemical Properties of Aqueous Solutions
NASA Technical Reports Server (NTRS)
Jones, Alan (Inventor); Thomas, Nathan A. (Inventor); Todd, Paul W. (Inventor)
2016-01-01
A method for non-invasively determining a chemical property of an aqueous solution is provided. The method provides the steps of providing a colored solute having a light absorbance spectrum and transmitting light through the colored solute at two different wavelengths. The method further provides the steps of measuring light absorbance of the colored solute at the two different transmitted light wavelengths, and comparing the light absorbance of the colored solute at the two different wavelengths to determine a chemical property of an aqueous solution.
Bullich, Santiago; Barthel, Henryk; Koglin, Norman; Becker, Georg A; De Santi, Susan; Jovalekic, Aleksandar; Stephens, Andrew W; Sabri, Osama
2017-11-24
Accurate amyloid PET quantification is necessary for monitoring amyloid-beta accumulation and response to therapy. Currently, most of the studies are analyzed using the static standardized uptake value ratio (SUVR) approach because of its simplicity. However, this approach may be influenced by changes in cerebral blood flow (CBF) or radiotracer clearance. Full tracer kinetic models require arterial blood sampling and dynamic image acquisition. The objectives of this work were: (1) to validate a non-invasive kinetic modeling approach for 18 F-florbetaben PET using an acquisition protocol with the best compromise between quantification accuracy and simplicity and (2) to assess the impact of CBF changes and radiotracer clearance on SUVRs and non-invasive kinetic modeling data in 18 F-florbetaben PET. Methods: Data from twenty subjects (10 patients with probable Alzheimer's dementia/ 10 healthy volunteers) were used to compare the binding potential (BP ND ) obtained from the full kinetic analysis to the SUVR and to non-invasive tracer kinetic methods (simplified reference tissue model (SRTM), and multilinear reference tissue model 2 (MRTM2)). Different approaches using shortened or interrupted acquisitions were compared to the results of the full acquisition (0-140 min). Simulations were carried out to assess the effect of CBF and radiotracer clearance changes on SUVRs and non-invasive kinetic modeling outputs. Results: A 0-30 and 120-140 min dual time-window acquisition protocol using appropriate interpolation of the missing time points provided the best compromise between patient comfort and quantification accuracy. Excellent agreement was found between BP ND obtained using full and dual time-window (2TW) acquisition protocols (BP ND,2TW =0.01+ 1.00 BP ND,FULL , R2=0.97 (MRTM2); BP ND,2TW = 0.05+ 0.92·BP ND,FULL , R2=0.93 (SRTM)). Simulations showed a limited impact of CBF and radiotracer clearance changes on MRTM parameters and SUVRs. Conclusion: This study demonstrates accurate non-invasive kinetic modeling of 18 F-florbetaben PET data using a dual time-window acquisition protocol, thus providing a good compromise between quantification accuracy, scan duration and patient burden. The influence of CBF and radiotracer clearance changes on amyloid-beta load estimates was small. For most clinical research applications, the SUVR approach is appropriate. However, for longitudinal studies in which a maximum quantification accuracy is desired, this non-invasive dual time-window acquisition protocol and kinetic analysis is recommended. Copyright © 2017 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Non-invasive and non-destructive measurements of confluence in cultured adherent cell lines.
Busschots, Steven; O'Toole, Sharon; O'Leary, John J; Stordal, Britta
2015-01-01
Many protocols used for measuring the growth of adherent monolayer cells in vitro are invasive, destructive and do not allow for the continued, undisturbed growth of cells within flasks. Protocols often use indirect methods for measuring proliferation. Microscopy techniques can analyse cell proliferation in a non-invasive or non-destructive manner but often use expensive equipment and software algorithms. In this method images of cells within flasks are captured by photographing under a standard inverted phase contract light microscope using a digital camera with a camera lens adaptor. Images are analysed for confluence using ImageJ freeware resulting in a measure of confluence known as an Area Fraction (AF) output. An example of the AF method in use on OVCAR8 and UPN251 cell lines is included. •Measurements of confluence from growing adherent cell lines in cell culture flasks is obtained in a non-invasive, non-destructive, label-free manner.•The technique is quick, affordable and eliminates sample manipulation.•The technique provides an objective, consistent measure of when cells reach confluence and is highly correlated to manual counting with a haemocytometer. The average correlation co-efficient from a Spearman correlation (n = 3) was 0.99 ± 0.008 for OVCAR8 (p = 0.01) and 0.99 ± 0.01 for UPN251 (p = 0.01) cell lines.
A review of invasive and non-invasive sensory feedback in upper limb prostheses.
Svensson, Pamela; Wijk, Ulrika; Björkman, Anders; Antfolk, Christian
2017-06-01
The constant challenge to restore sensory feedback in prosthetic hands has provided several research solutions, but virtually none has reached clinical fruition. A prosthetic hand with sensory feedback that closely imitates an intact hand and provides a natural feeling may induce the prosthetic hand to be included in the body image and also reinforces the control of the prosthesis. Areas covered: This review presents non-invasive sensory feedback systems such as mechanotactile, vibrotactile, electrotactile and combinational systems which combine the modalities; multi-haptic feedback. Invasive sensory feedback has been tried less, because of the inherent risk, but it has successfully shown to restore some afferent channels. In this review, invasive methods are also discussed, both extraneural and intraneural electrodes, such as cuff electrodes and transverse intrafascicular multichannel electrodes. The focus of the review is on non-invasive methods of providing sensory feedback to upper-limb amputees. Expert commentary: Invoking embodiment has shown to be of importance for the control of prosthesis and acceptance by the prosthetic wearers. It is a challenge to provide conscious feedback to cover the lost sensibility of a hand, not be overwhelming and confusing for the user, and to integrate technology within the constraint of a wearable prosthesis.
Caboot, Jason B.; Jawad, Abbas F.; McDonough, Joseph M.; Bowdre, Cheryl Y.; Arens, Raanan; Marcus, Carole L.; Mason, Thornton B.A.; Smith-Whitley, Kim; Ohene-Frempong, Kwaku; Allen, Julian L.
2012-01-01
SUMMARY Assessment of oxyhemoglobin saturation in patients with sickle cell disease (SCD) is vital for prompt recognition of hypoxemia. The accuracy of pulse oximeter measurements of blood oxygenation in SCD patients is variable, partially due to carboxyhemoglobin (COHb) and methemoglobin (MetHb), which decrease the oxygen content of blood. This study evaluated the accuracy and reliability of a non-invasive pulse co-oximeter in measuring COHb and MetHb percentages (SpCO and SpMet) in children with SCD. We hypothesized that measurements of COHb and MetHb by non-invasive pulse co-oximetry agree within acceptable clinical accuracy with those made by invasive whole blood co-oximetry. Fifty children with SCD-SS underwent pulse co-oximetry and blood co-oximetry while breathing room air. Non-invasive COHb and MetHb readings were compared to the corresponding blood measurements. The pulse co-oximeter bias was 0.1% for COHb and −0.22% for MetHb. The precision of the measured SpCO was ±2.1% within a COHb range of 0.4–6.1%, and the precision of the measured SpMet was ±0.33% within a MetHb range of 0.1–1.1%. Non-invasive pulse co-oximetry was useful in measuring COHb and MetHb levels in children with SCD. Although the non-invasive technique slightly overestimated the invasive COHb measurements and slightly underestimated the invasive MetHb measurements, there was close agreement between the two methods. PMID:22328189
Caboot, Jason B; Jawad, Abbas F; McDonough, Joseph M; Bowdre, Cheryl Y; Arens, Raanan; Marcus, Carole L; Mason, Thornton B A; Smith-Whitley, Kim; Ohene-Frempong, Kwaku; Allen, Julian L
2012-08-01
Assessment of oxyhemoglobin saturation in patients with sickle cell disease (SCD) is vital for prompt recognition of hypoxemia. The accuracy of pulse oximeter measurements of blood oxygenation in SCD patients is variable, partially due to carboxyhemoglobin (COHb) and methemoglobin (MetHb), which decrease the oxygen content of blood. This study evaluated the accuracy and reliability of a non-invasive pulse co-oximeter in measuring COHb and MetHb percentages (SpCO and SpMet) in children with SCD. We hypothesized that measurements of COHb and MetHb by non-invasive pulse co-oximetry agree within acceptable clinical accuracy with those made by invasive whole blood co-oximetry. Fifty children with SCD-SS underwent pulse co-oximetry and blood co-oximetry while breathing room air. Non-invasive COHb and MetHb readings were compared to the corresponding blood measurements. The pulse co-oximeter bias was 0.1% for COHb and -0.22% for MetHb. The precision of the measured SpCO was ± 2.1% within a COHb range of 0.4-6.1%, and the precision of the measured SpMet was ± 0.33% within a MetHb range of 0.1-1.1%. Non-invasive pulse co-oximetry was useful in measuring COHb and MetHb levels in children with SCD. Although the non-invasive technique slightly overestimated the invasive COHb measurements and slightly underestimated the invasive MetHb measurements, there was close agreement between the two methods. Copyright © 2012 Wiley Periodicals, Inc.
Ryan P. Shanley; Melody Keena; Micheal M. Wheeler; Jarrod Leland; Ann E. Hajek
2009-01-01
Fiber bands impregnated with entomopathogenic fungi (=fungal bands) provide an effective method for controlling the invasive Asian longhorned beetle, Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae). In this study we investigated the effective longevity of fungal bands for use against A. glabripennis, using...
Non-invasive molecular imaging for preclinical cancer therapeutic development
O'Farrell, AC; Shnyder, SD; Marston, G; Coletta, PL; Gill, JH
2013-01-01
Molecular and non-invasive imaging are rapidly emerging fields in preclinical cancer drug discovery. This is driven by the need to develop more efficacious and safer treatments, the advent of molecular-targeted therapeutics, and the requirements to reduce and refine current preclinical in vivo models. Such bioimaging strategies include MRI, PET, single positron emission computed tomography, ultrasound, and optical approaches such as bioluminescence and fluorescence imaging. These molecular imaging modalities have several advantages over traditional screening methods, not least the ability to quantitatively monitor pharmacodynamic changes at the cellular and molecular level in living animals non-invasively in real time. This review aims to provide an overview of non-invasive molecular imaging techniques, highlighting the strengths, limitations and versatility of these approaches in preclinical cancer drug discovery and development. PMID:23488622
[Spiral CT angiography in practice].
Pavcec, Zlatko; Zokalj, Ivan; Rumboldt, Zoran; Pal, Andrej; Saghir, Hussein; Ozretić, David; Latin, Branko; Perhoć, Zeljka; Marotti, Miljenko
2005-01-01
Incidence of vascular diseases and development of new radiologic techniques in the last three decades has given strong impuls for introduction of non-invasive vascular diagnostic methods. Thanks to the introduction of Doppler ultrasound, new types of computed tomography (CT) and magnetic resonance (MR) scanners, non-invasive vascular diagnostic methods are replacing conventional invasive (catheter) angiographic methods. Computed tomographic angiography (CTA) is a noninvasive vascular diagnostic method based on continuous scanning with CT scanner during intravenous application of contrast material. Performing of CTA is possible after introduction of spiral CT technique whose characteristics are short imaging time and volumetric data acquisition. The main goal of this article, based on our experiences, is to review the role of CTA, performed on single-slice CT scanner, in managment of patients with vascular pathology.
Effects of time and rainfall on PCR success using DNA extracted from deer fecal pellets
Todd J. Brinkman; Michael K. Schwartz; David K. Person; Kristine L. Pilgrim; Kris J. Hundertmark
2009-01-01
Non-invasive wildlife research using DNA from feces has become increasingly popular. Recent studies have attempted to solve problems associated with recovering DNA from feces by investigating the influence of factors such as season, diet, collection method, preservation method, extraction protocol, and time. To our knowledge, studies of this nature have not addressed...
Non-invasive assessments of adipose tissue metabolism in vitro
Abbott, Rosalyn D.; Borowsky, Francis E.; Quinn, Kyle P.; Bernstein, David L.; Georgakoudi, Irene; Kaplan, David L.
2015-01-01
Adipose tissue engineering is a diverse area of research where the developed tissues can be used to study normal adipose tissue functions, create disease models in vitro, and replace soft tissue defects in vivo. Increasing attention has been focused on the highly specialized metabolic pathways that regulate energy storage and release in adipose tissues which affect local and systemic outcomes. Non-invasive, dynamic measurement systems are useful to track these metabolic pathways in the same tissue model over time to evaluate long term cell growth, differentiation, and development within tissue engineering constructs. This approach reduces costs and time in comparison to more traditional destructive methods such as biochemical and immunochemistry assays and proteomics assessments. Towards this goal, this review will focus on important metabolic functions of adipose tissues and strategies to evaluate them with noninvasive in vitro methods. Current non-invasive methods, such as measuring key metabolic markers and endogenous contrast imaging will be explored. PMID:26399988
Alfa, M J; Nemes, R
2004-09-01
We undertook a simulated-use study using quantitative methods to evaluate the cleaning efficacy of ported and non-ported accessory devices used in minimally invasive surgery. We chose laparoscopic scissors and forceps to represent worst-case devices which were inoculated with artificial test soil containing 10(6) cfu/mL Enterococcus faecalis and Geobacillus stearothermophilus and allowed to dry for 1 h. Cleaning was performed manually, as well as by the automated SI-Auto Narrow lumen cleaner. Manual cleaning left two- to 50-fold more soil residuals (protein, haemoglobin and carbohydrate) inside the lumen of non-ported versus ported laparoscopic accessory devices. The SI-Auto Narrow lumen cleaner was more efficient than manual cleaning and achieved >99% reduction in soil parameters in both non-ported (using retro-flushing) and ported laparoscopic devices. Only the automated cleaning of ported devices achieved 10(3)-10(4)-fold reduction in bacterial numbers. Sonication alone (no flushing of inner channel) did not effectively remove soil or organisms from the inner channel. Our findings indicate that non-ported accessory devices cannot be as reliably cleaned as ported devices regardless of the cleaning method used. If non-ported accessory devices are reprocessed, they should be cleaned using retro-flushing in an automated narrow lumen cleaner.
Early Detection of Lung Cancer Using Nano-Nose - A Review
Fernandes, M. P.; Venkatesh, S; Sudarshan, B. G
2015-01-01
Lung cancer is one of the malignancies causing deaths worldwide. The yet to be developed non-invasive diagnostic techniques, are a challenge for early detection of cancer before it progresses to its later stages. The currently available diagnostic methods are expensive or invasive, and are not fit for general screening purposes. Early identification not only helps in detecting primary cancer, but also in treating its secondaries; which creates a need for easily applicable tests to screen individuals at risk. A detailed review of the various screening methods, including the latest trend of breath analysis using gold nanoparticles, to identify cancer at its early stage, are studied here. The VOC based breath biomarkers are used to analyze the exhaled breath of the patients. These biomarkers are utilized by Chemiresistors coated with gold nanoparticles, which are found to be the most suited technique for early detection of lung cancer. This technique is highly accurate and is relatively easy to operate and was tested on smokers and non-smokers. This review also gives as an outline of the fabrication and working of the device Na-Nose. The Chemiresistors coated with Gold nanoparticles, show a great potential in being an non-invasive and cost-effective diagnostic technique for early detection of lung cancer. PMID:26628933
Early Detection of Lung Cancer Using Nano-Nose - A Review.
Fernandes, M P; Venkatesh, S; Sudarshan, B G
2015-01-01
Lung cancer is one of the malignancies causing deaths worldwide. The yet to be developed non-invasive diagnostic techniques, are a challenge for early detection of cancer before it progresses to its later stages. The currently available diagnostic methods are expensive or invasive, and are not fit for general screening purposes. Early identification not only helps in detecting primary cancer, but also in treating its secondaries; which creates a need for easily applicable tests to screen individuals at risk. A detailed review of the various screening methods, including the latest trend of breath analysis using gold nanoparticles, to identify cancer at its early stage, are studied here. The VOC based breath biomarkers are used to analyze the exhaled breath of the patients. These biomarkers are utilized by Chemiresistors coated with gold nanoparticles, which are found to be the most suited technique for early detection of lung cancer. This technique is highly accurate and is relatively easy to operate and was tested on smokers and non-smokers. This review also gives as an outline of the fabrication and working of the device Na-Nose. The Chemiresistors coated with Gold nanoparticles, show a great potential in being an non-invasive and cost-effective diagnostic technique for early detection of lung cancer.
Differential radioactivity monitor for non-invasive detection of ocular melanoma
Lambrecht, R.M.; Packer, S.
1982-09-23
There is described an apparatus and method for diagnosing ocular cancer that is both non-invasive and accurate which comprises two radiation detectors positioned before each of the patient's eyes which will measure the radiation level produced in each eye after the administration of a tumor-localizing radiopharmaceutical such as gallium-67.
Mark-recapture with multiple, non-invasive marks.
Bonner, Simon J; Holmberg, Jason
2013-09-01
Non-invasive marks, including pigmentation patterns, acquired scars, and genetic markers, are often used to identify individuals in mark-recapture experiments. If animals in a population can be identified from multiple, non-invasive marks then some individuals may be counted twice in the observed data. Analyzing the observed histories without accounting for these errors will provide incorrect inference about the population dynamics. Previous approaches to this problem include modeling data from only one mark and combining estimators obtained from each mark separately assuming that they are independent. Motivated by the analysis of data from the ECOCEAN online whale shark (Rhincodon typus) catalog, we describe a Bayesian method to analyze data from multiple, non-invasive marks that is based on the latent-multinomial model of Link et al. (2010, Biometrics 66, 178-185). Further to this, we describe a simplification of the Markov chain Monte Carlo algorithm of Link et al. (2010, Biometrics 66, 178-185) that leads to more efficient computation. We present results from the analysis of the ECOCEAN whale shark data and from simulation studies comparing our method with the previous approaches. © 2013, The International Biometric Society.
Valdes, Claudia P.; Varma, Hari M.; Kristoffersen, Anna K.; Dragojevic, Tanja; Culver, Joseph P.; Durduran, Turgut
2014-01-01
We introduce a new, non-invasive, diffuse optical technique, speckle contrast optical spectroscopy (SCOS), for probing deep tissue blood flow using the statistical properties of laser speckle contrast and the photon diffusion model for a point source. The feasibility of the method is tested using liquid phantoms which demonstrate that SCOS is capable of measuring the dynamic properties of turbid media non-invasively. We further present an in vivo measurement in a human forearm muscle using SCOS in two modalities: one with the dependence of the speckle contrast on the source-detector separation and another on the exposure time. In doing so, we also introduce crucial corrections to the speckle contrast that account for the variance of the shot and sensor dark noises. PMID:25136500
Fringe projection application for surface variation analysis on helical shaped silicon breast
NASA Astrophysics Data System (ADS)
Vairavan, R.; Ong, N. R.; Sauli, Z.; Shahimin, M. M.; Kirtsaeng, S.; Sakuntasathien, S.; Alcain, J. B.; Paitong, P.; Retnasamy, V.
2017-09-01
Breast carcinoma is rated as a second collective cause of cancer associated death among adult females. Detection of the disease at an early stage would enhance the chance for survival. Established detection methods such as mammography, ultrasound and MRI are classified as non invasive breast cancer detection modality, but however they are not entire non-invasive as physical contact still occurs to the breast. Thus requirement for a complete non invasive and non contact is evident. Therefore, in this work, a novel application of digital fringe projection for early detection of breast cancer based on breast surface analysis is reported. Phase shift fringe projection technique and pixel tracing method was utilized to analyze the breast surface change due to the incidence of breast lump. Results have shown that the digital fringe projection is capable in detecting the existence of 1 cm sized lump within the breast sample.
An Effective Technique for Enhancing an Intrauterine Catheter Fetal Electrocardiogram
NASA Astrophysics Data System (ADS)
Horner, Steven L.; Holls, William M.
2003-12-01
Physician can obtain fetal heart rate, electrophysiological information, and uterine contraction activity for determining fetal status from an intrauterine catheters electrocardiogram with the maternal electrocardiogram canceled. In addition, the intrauterine catheter would allow physicians to acquire fetal status with one non-invasive to the fetus biosensor as compared to invasive to the fetus scalp electrode and intrauterine pressure catheter used currently. A real-time maternal electrocardiogram cancellation technique of the intrauterine catheters electrocardiogram will be discussed along with an analysis for the methods effectiveness with synthesized and clinical data. The positive results from an original detailed subjective and objective analysis of synthesized and clinical data clearly indicate that the maternal electrocardiogram cancellation method was found to be effective. The resulting intrauterine catheters electrocardiogram from effectively canceling the maternal electrocardiogram could be used for determining fetal heart rate, fetal electrocardiogram electrophysiological information, and uterine contraction activity.
Exploiting Allee effects for managing biological invasions
Patrick C. Tobin; Ludek Berec; Andrew M. Liebhold
2011-01-01
Biological invasions are a global and increasing threat to the function and diversity of ecosystems. Allee effects (positive density dependence) have been shown to play an important role in the establishment and spread of non-native species. Although Allee effects can be considered a bane in conservation efforts, they can be a benefit in attempts to manage non-native...
Non-Invasive Monitoring of Cardiac Output in Critical Care Medicine.
Nguyen, Lee S; Squara, Pierre
2017-01-01
Critically ill patients require close hemodynamic monitoring to titrate treatment on a regular basis. It allows administering fluid with parsimony and adjusting inotropes and vasoactive drugs when necessary. Although invasive monitoring is considered as the reference method, non-invasive monitoring presents the obvious advantage of being associated with fewer complications, at the expanse of accuracy, precision, and step-response change. A great many methods and devices are now used over the world, and this article focuses on several of them, providing with a brief review of related underlying physical principles and validation articles analysis. Reviewed methods include electrical bioimpedance and bioreactance, respiratory-derived cardiac output (CO) monitoring technique, pulse wave transit time, ultrasound CO monitoring, multimodal algorithmic estimation, and inductance thoracocardiography. Quality criteria with which devices were reviewed included: accuracy (closeness of agreement between a measurement value and a true value of the measured), precision (closeness of agreement between replicate measurements on the same or similar objects under specified conditions), and step response change (delay between physiological change and its indication). Our conclusion is that the offer of non-invasive monitoring has improved in the past few years, even though further developments are needed to provide clinicians with sufficiently accurate devices for routine use, as alternative to invasive monitoring devices.
NASA Astrophysics Data System (ADS)
Coker, Zachary; Troyanova-Wood, Maria; Traverso, Andrew; Meng, Zhaokai; Ballmann, Charles; Petrov, Georgi; Ibey, Bennett L.; Yakovlev, Vladislav
2017-02-01
Nanosecond electric pulses (nsEPs) are known to cause a variety of effects on mammalian cells, ranging from destabilization of cell membranes to changes in cytoskeleton and elastic moduli. Measurement of a cells mechanoelastic properties have previously been limited to only invasive and destructive techniques such as atomic force microscopy or application of optical tweezers. However, due to recent advances, Brillouin spectroscopy has now become viable as a non-contact, non-invasive method for measuring these properties in cells and other materials. Here, we present progress toward applying Brillouin spectroscopy using a unique microscopy system for measuring changes in CHO-K1 cells when exposed to nsEPs of 600ns pulse duration with intensity of 50kV/cm. Successful measurement of mechanoelastic changes in these cells will demonstrate Brillouin spectroscopy as a viable method for measuring changes in elastic properties of other cells and living organisms.
Biological control via "ecological" damping: An approach that attenuates non-target effects.
Parshad, Rana D; Quansah, Emmanuel; Black, Kelly; Beauregard, Matthew
2016-03-01
In this work we develop and analyze a mathematical model of biological control to prevent or attenuate the explosive increase of an invasive species population, that functions as a top predator, in a three-species food chain. We allow for finite time blow-up in the model as a mathematical construct to mimic the explosive increase in population, enabling the species to reach "disastrous", and uncontrollable population levels, in a finite time. We next improve the mathematical model and incorporate controls that are shown to drive down the invasive population growth and, in certain cases, eliminate blow-up. Hence, the population does not reach an uncontrollable level. The controls avoid chemical treatments and/or natural enemy introduction, thus eliminating various non-target effects associated with such classical methods. We refer to these new controls as "ecological damping", as their inclusion dampens the invasive species population growth. Further, we improve prior results on the regularity and Turing instability of the three-species model that were derived in Parshad et al. (2014). Lastly, we confirm the existence of spatiotemporal chaos. Copyright © 2016 Elsevier Inc. All rights reserved.
Electronic-nose devices - Potential for noninvasive early disease-detection applications
Alphus Dan Wilson
2017-01-01
Significant progress in the development of portable electronic devices is showing considerable promise to facilitate clinical diagnostic processes. The increasing global trend of shifts in healthcare policies and priorities toward shortening and improving the effectiveness of diagnostic procedures by utilizing non-invasive methods should provide multiple benefits of...
Ding, Haiquan; Lu, Qipeng; Gao, Hongzhi; Peng, Zhongqi
2014-01-01
To facilitate non-invasive diagnosis of anemia, specific equipment was developed, and non-invasive hemoglobin (HB) detection method based on back propagation artificial neural network (BP-ANN) was studied. In this paper, we combined a broadband light source composed of 9 LEDs with grating spectrograph and Si photodiode array, and then developed a high-performance spectrophotometric system. By using this equipment, fingertip spectra of 109 volunteers were measured. In order to deduct the interference of redundant data, principal component analysis (PCA) was applied to reduce the dimensionality of collected spectra. Then the principal components of the spectra were taken as input of BP-ANN model. On this basis we obtained the optimal network structure, in which node numbers of input layer, hidden layer, and output layer was 9, 11, and 1. Calibration and correction sample sets were used for analyzing the accuracy of non-invasive hemoglobin measurement, and prediction sample set was used for testing the adaptability of the model. The correlation coefficient of network model established by this method is 0.94, standard error of calibration, correction, and prediction are 11.29g/L, 11.47g/L, and 11.01g/L respectively. The result proves that there exist good correlations between spectra of three sample sets and actual hemoglobin level, and the model has a good robustness. It is indicated that the developed spectrophotometric system has potential for the non-invasive detection of HB levels with the method of BP-ANN combined with PCA. PMID:24761296
Protogerou, Athanase D; Nasothimiou, Efthimia G; Sfikakis, Petros P; Tzioufas, Athanasios G
2017-01-01
Vascular inflammation in small to large veins and arteries contributes substantially to mortality above that of the general population in Behçet's disease. Recent data verified also the presence of accelerated classical subclinical arterial damage (atheromatosis, arteriosclerosis, arterial hypertrophy) even in patients free of overt vascular complications, and may be complementary to that of vasculitis. Early detection of such vascular damage might provide helpful pathophysiological insight and potentially even guide treatment management. Herein, we review the existing literature for each one of the most widely applied non-invasive vascular biomarkers (assessing endothelial dysfunction, atheromatosis/hypertrophy, arteriosclerosis and central haemodynamic parameters) that are clinically used in primary cardiovascular prevention. We aim to: (i) identify early pathophysiological vascular pathways, complementary to vasculitis, in the development of vascular complications and (ii) identify gaps in knowledge and suggest future research topics. We identified evidence of proof of concept for some of the widely applied non-invasive vascular biomarkers (carotid plaques, pulse wave velocity, flow mediated dilatation). Yet, several steps in their clinical validation process are lacking. Extensive vascular phenotyping of a large prospective observational patient cohort with the application of these easy-to-use, low-cost, free of any adverse effect, non-invasive methods should be performed in order to test their ability to provide clinically meaningful guidance regarding the prognosis and treatment of Behçet's disease.
Maharjan, Ashim; Wang, Eunice; Peng, Mei; Cakmak, Yusuf O.
2018-01-01
In past literature on animal models, invasive vagal nerve stimulation using high frequencies has shown to be effective at modulating the activity of the olfactory bulb (OB). Recent advances in invasive vagal nerve stimulation in humans, despite previous findings in animal models, used low frequency stimulation and found no effect on the olfactory functioning. The present article aimed to test potential effects of non-invasive, high and low frequency vagal nerve stimulation in humans, with supplementary exploration of the orbitofrontal cortex using near-infrared spectroscopy (NIRS). Healthy, male adult participants (n = 18) performed two olfactory tests [odor threshold test (OTT) and supra-threshold test (STT)] before and after receiving high-, low frequency vagal nerve stimulation and placebo (no stimulation). Participant's olfactory functioning was monitored using NIRS, and assessed with two behavioral olfactory tests. NIRS data of separate stimulation parameters were statistically analyzed using repeated-measures ANOVA across different stages. Data from olfactory tests were analyzed using paired parametric and non-parametric statistical tests. Only high frequency, non-invasive vagal nerve stimulation was able to positively modulate the performance of the healthy participants in the STT (p = 0.021, Wilcoxon sign-ranked test), with significant differences in NIRS (p = 0.014, post-hoc with Bonferroni correction) recordings of the right hemispheric, orbitofrontal cortex. The results from the current article implore further exploration of the neurocircuitry involved under vagal nerve stimulation and the effects of non-invasive, high frequency, vagal nerve stimulation toward olfactory dysfunction which showcase in Parkinson's and Alzheimer's Diseases. Despite the sufficient effect size (moderate effect, correlation coefficient (r): 0.39 for the STT) of the current study, future research should replicate the current findings with a larger cohort. PMID:29740266
Maharjan, Ashim; Wang, Eunice; Peng, Mei; Cakmak, Yusuf O
2018-01-01
In past literature on animal models, invasive vagal nerve stimulation using high frequencies has shown to be effective at modulating the activity of the olfactory bulb (OB). Recent advances in invasive vagal nerve stimulation in humans, despite previous findings in animal models, used low frequency stimulation and found no effect on the olfactory functioning. The present article aimed to test potential effects of non-invasive, high and low frequency vagal nerve stimulation in humans, with supplementary exploration of the orbitofrontal cortex using near-infrared spectroscopy (NIRS). Healthy, male adult participants ( n = 18) performed two olfactory tests [odor threshold test (OTT) and supra-threshold test (STT)] before and after receiving high-, low frequency vagal nerve stimulation and placebo (no stimulation). Participant's olfactory functioning was monitored using NIRS, and assessed with two behavioral olfactory tests. NIRS data of separate stimulation parameters were statistically analyzed using repeated-measures ANOVA across different stages. Data from olfactory tests were analyzed using paired parametric and non-parametric statistical tests. Only high frequency, non-invasive vagal nerve stimulation was able to positively modulate the performance of the healthy participants in the STT ( p = 0.021, Wilcoxon sign-ranked test), with significant differences in NIRS ( p = 0.014, post-hoc with Bonferroni correction ) recordings of the right hemispheric, orbitofrontal cortex. The results from the current article implore further exploration of the neurocircuitry involved under vagal nerve stimulation and the effects of non-invasive, high frequency, vagal nerve stimulation toward olfactory dysfunction which showcase in Parkinson's and Alzheimer's Diseases. Despite the sufficient effect size (moderate effect, correlation coefficient (r): 0.39 for the STT) of the current study, future research should replicate the current findings with a larger cohort.
Leonardi, Gislaine Ricci; Gaspar, Lorena Rigo; Maia Campos, Patrícia M B G
2002-01-01
Moisturizers containing vitamins A and E as well as ceramides are believed to improve the skin condition by increasing the water content of the stratum corneum. The aim of this research was to evaluate, through the capacitance method (a non-invasive method), the moisturizing effect of an O/W emulsion (non-ionic self-emulsifying base) containing vitamin A palmitate, vitamin E acetate, and ceramide III on human skin. The studies were carried out on a group of 40 healthy Caucasian female test subjects between 30 and 45 years of age, using the Corneometer CM 825 PC. Skin measurements were taken from the volunteers at 7 and 30 days after daily use (twice a day) of the tested products. The presence of vitamins A and E or ceramide III did not cause an improvement in the hydration of the stratum corneum, which means that none of those compounds strengthens the hydration effectiveness of the base formulations used, at least at the doses tested. The interpretation of electrical measurement regarding skin moisture should be made with caution; thus the results observed in this study show the importance of using different approaches (or methodologies) to verify the performance of the formulas tested. We conclude that, at the low doses typically used in cosmetic formulations, vitamins A and E and ceramide III are not likely to contribute to the hydrating effects of the base moisturizing formulation when assessed by capacitance.
A phantom with pulsating artificial vessels for non-invasive fetal pulse oximetry.
Laqua, Daniel; Pollnow, Stefan; Fischer, Jan; Ley, Sebastian; Husar, Peter
2014-01-01
Arterial oxygen saturation of the fetus is an important parameter for monitoring its physical condition. During labor and delivery the transabdominal non-invasive fetal pulse oximetry could minimize the risk for mother and fetus, compared to other existing invasive examination methods. In this contribution, we developed a physical-like phantom to investigate new sensor circuits and algorithms of a non-invasive diagnostic method for fetal pulse oximetry. Hence, the developed artificial vascular system consists of two independent tube systems representing the maternal and fetal vessel system. The arterial blood pressure is reproduced with a pre-pressure and an artificial vascular system. Each pulse wave can be reproduced, by digital control of a proportional valve, adjustable viscoelastic elements, and resistances. The measurements are performed by pressure transducers, optical sensor units, and a coplanar capacitive sensor. Transmission and reflection measurements have shown that the fetal and maternal pulse waves can be reproduced qualitatively. The measured light represents the transabdominal modulated signal on an abdomen of a pregnant woman.
Greene, Jacob; Louis, Julien; Korostynska, Olga; Mason, Alex
2017-01-01
Muscle glycogen levels have a profound impact on an athlete’s sporting performance, thus measurement is vital. Carbohydrate manipulation is a fundamental component in an athlete’s lifestyle and is a critical part of elite performance, since it can provide necessary training adaptations. This paper provides a critical review of the current invasive and non-invasive methods for measuring skeletal muscle glycogen levels. These include the gold standard muscle biopsy, histochemical analysis, magnetic resonance spectroscopy, and musculoskeletal high frequency ultrasound, as well as pursuing future application of electromagnetic sensors in the pursuit of portable non-invasive quantification of muscle glycogen. This paper will be of interest to researchers who wish to understand the current and most appropriate techniques in measuring skeletal muscle glycogen. This will have applications both in the lab and in the field by improving the accuracy of research protocols and following the physiological adaptations to exercise. PMID:28241495
Fungal Rhinosinusitis: Microbiological and Histopathological Perspective
Singh, Ajay Kumar; Verma, Nitya; Khare, Vineeta; Ahamad, Abrar; Verma, Virendra; Agarwal, S.P
2017-01-01
Introduction On the basis of histopathology Fungal Rhinosinusitis (FRS) is categorized into non-invasive (allergic fungal rhinosinusitis, fungal ball) and invasive (acute invasive, chronic invasive and granulomatous invasive fungal sinusitis). This differentiation helps to decide the treatment. Role of latest molecular methods such as PCR and conventional methods such as KOH microscopy and culture also needs to be evaluated. Therefore, in this study we planned to categorise fungal rhinosinusitis on the basis of histopathology and compare it with other methods such as PCR, culture and KOH microscopy. Aim To analyse fungal rhinosinusitis cases by both histopathologically and microbiologically. Materials and Methods A total of 76 clinically suspected fungal rhinosinusitis cases were included in the study. The tissue of suspected cases were processed and examined by KOH microscopy, histopathologically, culture and PCR. Histopathological examination was done by PAS, GMS and H&E stain. Results FRS was diagnosed in 37 (48.68%) cases out of 76 clinically suspected cases of FRS. In which 17 (22.3%) cases were positive by direct microscopy, 21 (27.6%) by culture, 27 (35.5%) by PCR and 14 (18.42%) by histopathology. Approximately 14 cases of FRS were classified according to histopathology; 10 (71.3%) as non-invasive FRS. Out of these 10, 9 (64.2%) were classified as AFRS and 1 (7.14%) as fungal ball. Only 4 cases (28.5%) were diagnosed with invasive FRS. Out of these 4 cases, 2 (14.2%) were of chronic invasive fungal rhinosinusitis, 1 (7.14%) was of granulomatous invasive fungal rhinosinusitis and 1 (7.14%) was of acute fulminant invasive fungal rhinosinusitis. Allergic Fungal Rhinosinusitis (AFRS) is the most common type of FRS. Aspergillus flavus was found to be the most common fungi causing FRS. Conclusion Diagnosis should not be based on the single method. It should be done by both histopathological and microbiological methods, especially for those cases which are difficult to diagnose. PMID:28892889
Non-invasive imaging methods applied to neo- and paleontological cephalopod research
NASA Astrophysics Data System (ADS)
Hoffmann, R.; Schultz, J. A.; Schellhorn, R.; Rybacki, E.; Keupp, H.; Gerden, S. R.; Lemanis, R.; Zachow, S.
2013-11-01
Several non-invasive methods are common practice in natural sciences today. Here we present how they can be applied and contribute to current topics in cephalopod (paleo-) biology. Different methods will be compared in terms of time necessary to acquire the data, amount of data, accuracy/resolution, minimum-maximum size of objects that can be studied, of the degree of post-processing needed and availability. Main application of the methods is seen in morphometry and volumetry of cephalopod shells in order to improve our understanding of diversity and disparity, functional morphology and biology of extinct and extant cephalopods.
Non-invasive detection of vulnerable coronary plaque
Sharif, Faisal; Lohan, Derek G; Wijns, William
2011-01-01
Critical coronary stenoses have been shown to contribute to only a minority of acute coronary syndromes and sudden cardiac death. Autopsy studies have identified a subgroup of high-risk patients with disrupted vulnerable plaque and modest stenosis. Consequently, a clinical need exists to develop methods to identify these plaques prospectively before disruption and clinical expression of disease. Recent advances in invasive and non-invasive imaging techniques have shown the potential to identify these high-risk plaques. Non-invasive imaging with magnetic resonance imaging, computed tomography and positron emission tomography holds the potential to differentiate between low- and high-risk plaques. There have been significant technological advances in non-invasive imaging modalities, and the aim is to achieve a diagnostic sensitivity for these technologies similar to that of the invasive modalities. Molecular imaging with the use of novel targeted nanoparticles may help in detecting high-risk plaques that will ultimately cause acute myocardial infarction. Moreover, nanoparticle-based imaging may even provide non-invasive treatments for these plaques. However, at present none of these imaging modalities are able to detect vulnerable plaque nor have they been shown to definitively predict outcome. Further trials are needed to provide more information regarding the natural history of high-risk but non-flow-limiting plaque to establish patient specific targeted therapy and to refine plaque stabilizing strategies in the future. PMID:21860703
Zhang, Xuewei; Yu, Peiqiang
2014-07-02
Non-invasive techniques are a key to study nutrition and structure interaction. Fourier transform infrared microspectroscopy coupled with a synchrotron radiation source (SR-IMS) is a rapid, non-invasive, and non-destructive bioanalytical technique. To understand internal structure changes in relation to nutrient availability in oil seed processing is vital to find optimal processing conditions. The objective of this study was to use a synchrotron-based bioanalytical technique SR-IMS as a non-invasive and non-destructive tool to study the effects of heat-processing methods and oil seed canola type on modeled protein structure based on spectral data within intact tissue that were randomly selected and quantify the relationship between the modeled protein structure and protein nutrient supply to ruminants. The results showed that the moisture heat-related processing significantly changed (p<0.05) modeled protein structures compared to the raw canola (control) and those processing by dry heating. The moisture heating increased (p<0.05) spectral intensities of amide I, amide II, α-helices, and β-sheets but decreased (p<0.05) the ratio of modeled α-helices to β-sheet spectral intensity. There was no difference (p>0.05) in the protein spectral profile between the raw and dry-heated canola tissue and between yellow- and brown-type canola tissue. The results indicated that different heat processing methods have different impacts on the protein inherent structure. The protein intrinsic structure in canola seed tissue was more sensitive and more response to the moisture heating in comparison to the dry heating. These changes are expected to be related to the nutritive value. However, the current study is based on limited samples, and more large-scale studies are needed to confirm our findings.
Nagle, Anna S.; Speich, John E.; De Wachter, Stefan G.; Ghamarian, Peter P.; Le, David M.; Colhoun, Andrew F.; Ratz, Paul H.; Barbee, Robert W.; Klausner, Adam P.
2016-01-01
AIMS The purpose of this investigation was to develop a non-invasive, objective, and unprompted method to characterize real-time bladder sensation. METHODS Volunteers with and without overactive bladder (OAB) were prospectively enrolled in a preliminary accelerated hydration study. Participants drank 2L Gatorade-G2® and recorded real-time sensation (0–100% scale) and standardized verbal sensory thresholds using a novel, touch-screen “sensation meter.” 3D bladder ultrasound images were recorded throughout fillings for a subset of participants. Sensation data were recorded for two consecutive complete fill-void cycles. RESULTS Data from 14 normal and 12 OAB participants were obtained (ICIq-OAB-5a = 0 vs. ≥3). Filling duration decreased in fill2 compared to fill1, but volume did not significantly change. In normals, adjacent verbal sensory thresholds (within fill) showed no overlap, and identical thresholds (between fill) were similar, demonstrating effective differentiation between degrees of %bladder capacity. In OAB, within-fill overlaps and between-fill differences were identified. Real-time %capacity-sensation curves left shifted from fill1 to fill2 in normals, consistent with expected viscoelastic behavior, but unexpectedly right shifted in OAB. 3D ultrasound volume data showed that fill rates started slowly and ramped up with variable end points. CONCLUSIONS This study establishes a non-invasive means to evaluate real-time bladder sensation using a two-fill accelerated hydration protocol and a sensation meter. Verbal thresholds were inconsistent in OAB, and the right shift in OAB %capacity–sensation curve suggests potential biomechanical and/or sensitization changes. This methodology could be used to gain valuable information on different forms of OAB in a completely non-invasive way. PMID:27654469
Job, Agnès; Baille, Valérie; Dorandeu, Frédéric; Pouyatos, Benoît; Foquin, Annie; Delacour, Claire; Denis, Josiane; Carpentier, Pierre
2007-09-05
The organophosphorus nerve agent soman is an irreversible cholinesterase (ChE) inhibitor that can produce long-lasting seizures and brain damage in which the neurotransmitters acetylcholine and glutamate are involved. These same neurotransmitters play key-roles in the auditory function. It was then assumed that exploring the hearing function may provide markers of the central events triggered by soman intoxication. In the present study, distortion product otoacoustic emissions (DPOAEs), a non-invasive audiometric method, were used to monitor cochlear functionality in rats administered with a moderate dose of soman (45 microg/kg). DPOAEs were investigated either 4h or 24h post-challenge. In parallel, the effects of soman on whole blood and brain ChE activity and on brain histology were also studied. The first main result is that DPOAE intensities were significantly decreased 4h post-soman and returned to baseline at 24h. The amplitude changes were well related to the severity of symptoms, with the greatest change being recorded in the rats that survived long-lasting convulsions. The second main result is that baseline DPOAEs recorded 8 days before soman appear to predict the severity of symptoms produced by the intoxication. Indeed, the lowest baseline DPOAEs corresponded to the occurrence of long-lasting convulsions and brain damage and to the greatest inhibition in central ChE. These results thus suggest that DPOAEs represent a promising non-invasive tool to assess and predict the central consequences of nerve agent poisoning. Further investigations will be carried out to assess the potential applications and the limits of this non-invasive method.
NASA Astrophysics Data System (ADS)
Mahbub, Saabah B.; Succer, Peter; Gosnell, Martin E.; Anwaer, Ayad G.; Herbert, Benjamin; Vesey, Graham; Goldys, Ewa M.
2016-03-01
Extracting biochemical information from tissue autofluorescence is a promising approach to non-invasively monitor disease treatments at a cellular level, without using any external biomarkers. Our recently developed unsupervised hyperspectral unmixing by Dependent Component Analysis (DECA) provides robust and detailed metabolic information with proper account of intrinsic cellular heterogeneity. Moreover this method is compatible with established methods of fluorescent biomarker labelling. Recently adipose-derived stem cell (ADSC) - based therapies have been introduced for treating different diseases in animals and humans. ADSC have been shown promise in regenerative treatments for osteoarthritis and other bone and joint disorders. One of the mechanism of their action is their anti-inflammatory effects within osteoarthritic joints which aid the regeneration of cartilage. These therapeutic effects are known to be driven by secretions of different cytokines from the ADSCs. We have been using the hyperspectral unmixing techniques to study in-vitro the effects of ADSC-derived cytokine-rich secretions with the cartilage chip in both human and bovine samples. The study of metabolic effects of different cytokine treatment on different cartilage layers makes it possible to compare the merits of those treatments for repairing cartilage.
Bracke, Marc E; Roman, Bart I; Stevens, Christian V; Mus, Liselot M; Parmar, Virinder S; De Wever, Olivier; Mareel, Marc M
2015-06-06
The goal of the chick heart assay is to offer a relevant organ culture method to study tumor invasion in three dimensions. The assay can distinguish between invasive and non-invasive cells, and enables study of the effects of test compounds on tumor invasion. Cancer cells - either as aggregates or single cells - are confronted with fragments of embryonic chick heart. After organ culture in suspension for a few days or weeks the confronting cultures are fixed and embedded in paraffin for histological analysis. The three-dimensional interaction between the cancer cells and the normal tissue is then reconstructed from serial sections stained with hematoxylin-eosin or after immunohistochemical staining for epitopes in the heart tissue or the confronting cancer cells. The assay is consistent with the recent concept that cancer invasion is the result of molecular interactions between the cancer cells and their neighbouring stromal host elements (myofibroblasts, endothelial cells, extracellular matrix components, etc.). Here, this stromal environment is offered to the cancer cells as a living tissue fragment. Supporting aspects to the relevance of the assay are multiple. Invasion in the assay is in accordance with the criteria of cancer invasion: progressive occupation and replacement in time and space of the host tissue, and invasiveness and non-invasiveness in vivo of the confronting cells generally correlates with the outcome of the assay. Furthermore, the invasion pattern of cells in vivo, as defined by pathologists, is reflected in the histological images in the assay. Quantitative structure-activity relation (QSAR) analysis of the results obtained with numerous potentially anti-invasive organic congener compounds allowed the study of structure-activity relations for flavonoids and chalcones, and known anti-metastatic drugs used in the clinic (e.g., microtubule inhibitors) inhibit invasion in the assay as well. However, the assay does not take into account immunological contributions to cancer invasion.
Photoacoustic tomography and sensing in biomedicine
Li, Changhui; Wang, Lihong V.
2010-01-01
Photoacoustics has been broadly studied in biomedicine, for both human and small animal tissues. Photoacoustics uniquely combines the absorption contrast of light or radio frequency waves with ultrasound resolution. Moreover, it is non-ionizing and non-invasive, and is the fastest growing new biomedical method, with clinical applications on the way. This article provides a brief review of recent developments in photoacoustics in biomedicine, from basic principles to applications. The emphasized areas include the new imaging modalities, hybrid detection methods, photoacoustic contrast agents, and the photoacoustic Doppler effect, as well as translational research topics. PMID:19724102
Non-invasive neural stimulation
NASA Astrophysics Data System (ADS)
Tyler, William J.; Sanguinetti, Joseph L.; Fini, Maria; Hool, Nicholas
2017-05-01
Neurotechnologies for non-invasively interfacing with neural circuits have been evolving from those capable of sensing neural activity to those capable of restoring and enhancing human brain function. Generally referred to as non-invasive neural stimulation (NINS) methods, these neuromodulation approaches rely on electrical, magnetic, photonic, and acoustic or ultrasonic energy to influence nervous system activity, brain function, and behavior. Evidence that has been surmounting for decades shows that advanced neural engineering of NINS technologies will indeed transform the way humans treat diseases, interact with information, communicate, and learn. The physics underlying the ability of various NINS methods to modulate nervous system activity can be quite different from one another depending on the energy modality used as we briefly discuss. For members of commercial and defense industry sectors that have not traditionally engaged in neuroscience research and development, the science, engineering and technology required to advance NINS methods beyond the state-of-the-art presents tremendous opportunities. Within the past few years alone there have been large increases in global investments made by federal agencies, foundations, private investors and multinational corporations to develop advanced applications of NINS technologies. Driven by these efforts NINS methods and devices have recently been introduced to mass markets via the consumer electronics industry. Further, NINS continues to be explored in a growing number of defense applications focused on enhancing human dimensions. The present paper provides a brief introduction to the field of non-invasive neural stimulation by highlighting some of the more common methods in use or under current development today.
Deasy, William; Shepherd, Tom; Alexander, Colin J; Birch, A Nicholas E; Evans, K Andrew
2016-11-01
Research on plant root chemical ecology has benefited greatly from recent developments in analytical chemistry. Numerous reports document techniques for sampling root volatiles, although only a limited number describe in situ collection. To demonstrate a new method for non-invasive in situ passive sampling using solid phase micro extraction (SPME), from the immediate vicinity of growing roots. SPME fibres inserted into polyfluorotetrafluoroethylene (PTFE) sampling tubes located in situ which were either perforated, covered with stainless steel mesh or with microporous PTFE tubing, were used for non-invasive sub-surface sampling of root volatiles from glasshouse-grown broccoli. Sampling methods were compared with above surface headspace collection using Tenax TA. The roots were either mechanically damaged or infested with Delia radicum larvae. Principal component analysis (PCA) was used to investigate the effect of damage on the composition of volatiles released by broccoli roots. Analyses by gas chromatography-mass spectrometry (GC-MS) with SPME and automated thermal desorption (ATD) confirmed that sulphur compounds, showing characteristic temporal emission patterns, were the principal volatiles released by roots following insect larval damage. Use of SPME with in situ perforated PTFE sampling tubes was the most robust method for out-of-lab sampling. This study describes a new method for non-invasive passive sampling of volatiles in situ from intact and insect damaged roots using SPME. The method is highly suitable for remote sampling and has potential for wide application in chemical ecology/root/soil research. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Gardiner, Riana Zanarivero; Doran, Erik; Strickland, Kasha; Carpenter-Bundhoo, Luke; Frère, Celine
2014-01-01
Ectothermic vertebrates face many challenges of thermoregulation. Many species rely on behavioral thermoregulation and move within their landscape to maintain homeostasis. Understanding the fine-scale nature of this regulation through tracking techniques can provide a better understanding of the relationships between such species and their dynamic environments. The use of animal tracking and telemetry technology has allowed the extensive collection of such data which has enabled us to better understand the ways animals move within their landscape. However, such technologies do not come without certain costs: they are generally invasive, relatively expensive, can be too heavy for small sized animals and unreliable in certain habitats. This study provides a cost-effective and non-invasive method through photo-identification, to determine fine scale movements of individuals. With our methodology, we have been able to find that male eastern water dragons (Intellagama leuseurii) have home ranges one and a half times larger than those of females. Furthermore, we found intraspecific differences in the size of home ranges depending on the time of the day. Lastly, we found that location mostly influenced females’ home ranges, but not males and discuss why this may be so. Overall, we provide valuable information regarding the ecology of the eastern water dragon, but most importantly demonstrate that non-invasive photo-identification can be successfully applied to the study of reptiles. PMID:24835073
[Non-invasive mechanical ventilation in the pre- and intraoperative period and difficult airway].
Esquinas, A M; Jover, J L; Úbeda, A; Belda, F J
2015-11-01
Non-invasive mechanical ventilation is a method of ventilatory assistance aimed at increasing alveolar ventilation, thus achieving, in selected subjects, the avoidance of endotracheal intubation and invasive mechanical ventilation, with the consequent improvement in survival. There has been a systematic review and study of the technical, clinical experiences, and recommendations concerning the application of non-invasive mechanical ventilation in the pre- and intraoperative period. The use of prophylactic non-invasive mechanical ventilation before surgery that involves significant alterations in the ventilatory function may decrease the incidence of postoperative respiratory complications. Its intraoperative use will mainly depend on the type of surgery, type of anaesthetic technique, and the clinical status of the patient. Its use allows greater anaesthetic depth without deterioration of oxygenation and ventilation of patients. Copyright © 2015 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.
Non-invasive pressure difference estimation from PC-MRI using the work-energy equation
Donati, Fabrizio; Figueroa, C. Alberto; Smith, Nicolas P.; Lamata, Pablo; Nordsletten, David A.
2015-01-01
Pressure difference is an accepted clinical biomarker for cardiovascular disease conditions such as aortic coarctation. Currently, measurements of pressure differences in the clinic rely on invasive techniques (catheterization), prompting development of non-invasive estimates based on blood flow. In this work, we propose a non-invasive estimation procedure deriving pressure difference from the work-energy equation for a Newtonian fluid. Spatial and temporal convergence is demonstrated on in silico Phase Contrast Magnetic Resonance Image (PC-MRI) phantoms with steady and transient flow fields. The method is also tested on an image dataset generated in silico from a 3D patient-specific Computational Fluid Dynamics (CFD) simulation and finally evaluated on a cohort of 9 subjects. The performance is compared to existing approaches based on steady and unsteady Bernoulli formulations as well as the pressure Poisson equation. The new technique shows good accuracy, robustness to noise, and robustness to the image segmentation process, illustrating the potential of this approach for non-invasive pressure difference estimation. PMID:26409245
K.R. Marlow; K.D. Wiseman; Clara Wheeler; J.E. Drennan; R.E. Jackman
2016-01-01
The ability to identify individual animals is a valuable tool in the study of amphibian population dynamics, movement ecology, social behavior, and habitat use. Numerous methods of marking amphibians have been employed including the use of passive integrated transponder (PIT) tags, radio-transmitters, elastomers, branding, and mutilation techniques such as toe...
William E. Eck; David W. McGill
2007-01-01
Tree-of-heaven (Ailanthus altissima [Mill.] Swingle) is a non-native invasive plant that is spreading throughout much of the U.S. In this study, efficacy of the herbicides triclopyr and imazapyr was tested using injection and basal bark treatment methods. No treatment was 100 percent effective. Only triclopyr injection was significantly different...
USDA-ARS?s Scientific Manuscript database
Skin is a relatively stable storage medium for carotenoids; non-invasive optical measurements of carotenoids in this tissue via Resonance Raman spectroscopy (RRS) serve as a non-invasive biomarker for fruit and vegetable (F/V) intake. The RRS method has been validated with HPLC-based measurements of...
Invasive non-native plants have a greater effect on neighbouring natives than other non-natives.
Kuebbing, Sara E; Nuñez, Martin A
2016-09-12
Human activity is creating a global footprint by changing the climate, altering habitats and reshuffling the distribution of species. The movement of species around the globe has led to the naturalization and accumulation of multiple non-native species within ecosystems, which is frequently associated with habitat disturbance and changing environmental conditions. However, interactions among species will also influence community composition, but little is known about the full range of direct and indirect interactions among native and non-native species. Here, we show through a meta-analysis of 1,215 pairwise plant interactions between 274 vascular plant species in 21 major habitat types that interactions between non-native plants are asymmetrical with interactions between non-native and native plants. Non-native plants were always bad neighbours, but the negative effect of non-natives on natives was around two times greater than the effect of non-natives on other non-natives. In contrast, the performance of non-native plants was five times higher in the presence of a neighbouring native plant species than in the presence of a neighbouring non-native plant species. Together, these results demonstrate that invaded plant communities may accumulate additional non-native species even if direct interactions between non-natives species are negative. Put another way, invasions may be more likely to lead to more invasions, requiring more active management of ecosystems by promoting native species restoration to undermine invasive positive feedback and to assist native species recovery in invaded ecosystems.
Qiao, Mu; Liu, Honglin; Pang, Guanghui; Han, Shensheng
2017-08-29
Manipulating light non-invasively through inhomogeneous media is an attractive goal in many disciplines. Wavefront shaping and optical phase conjugation can focus light to a point. Transmission matrix method can control light on multiple output modes simultaneously. Here we report a non-invasive approach which enables three-dimension (3D) light control between two turbid layers. A digital optical phase conjugation mirror measured and conjugated the diffused wavefront, which originated from a quasi-point source on the front turbid layer and passed through the back turbid layer. And then, because of memory effect, the phase-conjugated wavefront could be used as a carrier wave to transport a pre-calculated wavefront through the back turbid layer. The pre-calculated wavefront could project a desired 3D light field inside the sample, which, in our experiments, consisted of two 220-grid ground glass plates spaced by a 20 mm distance. The controllable range of light, according to the memory effect, was calculated to be 80 mrad in solid angle and 16 mm on z-axis. Due to the 3D light control ability, our approach may find applications in photodynamic therapy and optogenetics. Besides, our approach can also be combined with ghost imaging or compressed sensing to achieve 3D imaging between turbid layers.
Fundamental study on non-invasive blood glucose sensing.
Xu, K; Li, Q; Lu, Z; Jiang, J
2002-01-01
Diabetes is a disease which severely threatens the health of human beings. Unfortunately, current monitoring techniques with finger sticks discourage the regular use. Noninvasive spectroscopic measurement of blood glucose is a simple and painless technique, and reduces the long-term health care costs of diabetic patients due to no reagents. It is suitable for home use. Moreover, the establishment of the methodology not only applies to blood glucose noninvasive measurement, but also can be extended to noninvasive measurement of other analytes in body fluid, which will be of important significance for the development of the technique of clinical analysis. In this paper, some fundamental researches, which have been achieved in our laboratory in the field of non-invasive blood glucose measurement, were introduced. 1. Fundamental research was done for the glucose concentrations from simple to complex samples with near and middle infrared spectroscopy: (1) the relationship between the instrument precision and prediction accuracy of the glucose measurement; (2) the change of the result of the quantitative measurement with the change of the complexity of samples; (3) the attempt of increasing the prediction accuracy of the glucose measurement by improving the methods of modeling. The research results showed that it is feasible for non-invasive blood glucose measurement with near and middle infrared spectroscopy in theory, and the experimental results, from simple to complex samples, proved that it is effective for the methodology consisting of hardware and software. 2. According to the characteristics of human body measurement, the effects of measuring conditions on measurement results, such as: (1) the effect of measurement position; (2) the effect of measurement pressure; (3) the effect of measurement site; (4) the effect of measured individual, were investigated. With the fundamental researches, the special problems of human body measurement were solved. In addition, the practical and effective method of noninvasive human blood glucose measurement was proposed.
USDA-ARS?s Scientific Manuscript database
Biological invasions resulting from international trade can have major ecological and economic impacts. Eradication can be a viable strategy during the early stage of an invasion but there is a need for the development of suitable tactics that are both effective and have minimal non-target effects. ...
Neurophotonics: non-invasive optical techniques for monitoring brain functions
Torricelli, Alessandro; Contini, Davide; Mora, Alberto Dalla; Pifferi, Antonio; Re, Rebecca; Zucchelli, Lucia; Caffini, Matteo; Farina, Andrea; Spinelli, Lorenzo
2014-01-01
Summary The aim of this review is to present the state of the art of neurophotonics, a recently founded discipline lying at the interface between optics and neuroscience. While neurophotonics also includes invasive techniques for animal studies, in this review we focus only on the non-invasive methods that use near infrared light to probe functional activity in the brain, namely the fast optical signal, diffuse correlation spectroscopy, and functional near infrared spectroscopy methods. We also present an overview of the physical principles of light propagation in biological tissues, and of the main physiological sources of signal. Finally, we discuss the open issues in models, instrumentation, data analysis and clinical approaches. PMID:25764252
Optogenetic pacing in Drosophila melanogaster (Conference Presentation)
NASA Astrophysics Data System (ADS)
Alex, Aneesh; Li, Airong; Men, Jing; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao
2016-03-01
A non-invasive, contact-less cardiac pacing technology can be a powerful tool in basic cardiac research and in clinics. Currently, electrical pacing is the gold standard for cardiac pacing. Although highly effective in controlling the cardiac function, the invasive nature, non-specificity to cardiac tissues and possible tissue damage limits its capabilities. Optical pacing of heart is a promising alternative, which is non-invasive and more specific, has high spatial and temporal precision, and avoids shortcomings in electrical stimulation. Optical coherence tomography has been proved to be an effective technique in non-invasive imaging in vivo with ultrahigh resolution and imaging speed. In the last several years, non-invasive specific optical pacing in animal hearts has been reported in quail, zebrafish, and rabbit models. However, Drosophila Melanogaster, which is a significant model with orthologs of 75% of human disease genes, has rarely been studied concerning their optical pacing in heart. Here, we combined optogenetic control of Drosophila heartbeat with optical coherence microscopy (OCM) technique for the first time. The light-gated cation channel, channelrhodopsin-2 (ChR2) was specifically expressed by transgene as a pacemaker in drosophila heart. By stimulating the pacemaker with 472 nm pulsed laser light at different frequencies, we achieved non-invasive and more specific optical control of the Drosophila heart rhythm, which demonstrates the wide potential of optical pacing for studying cardiac dynamics and development. Imaging capability of our customized OCM system was also involved to observe the pacing effect visually. No tissue damage was found after long exposure to laser pulses, which proved the safety of optogenetic control of Drosophila heart.
Dickie, Ian A; St John, Mark G; Yeates, Gregor W; Morse, Chris W; Bonner, Karen I; Orwin, Kate; Peltzer, Duane A
2014-01-01
Plant invasions can change soil biota and nutrients in ways that drive subsequent plant communities, particularly when co-invading with belowground mutualists such as ectomycorrhizal fungi. These effects can persist following removal of the invasive plant and, combined with effects of removal per se, influence subsequent plant communities and ecosystem functioning. We used field observations and a soil bioassay with multiple plant species to determine the belowground effects and post-removal legacy caused by invasion of the non-native tree Pinus contorta into a native plant community. Pinus facilitated ectomycorrhizal infection of the co-occurring invasive tree, Pseudotsuga menziesii, but not conspecific Pinus (which always had ectomycorrhizas) nor the native pioneer Kunzea ericoides (which never had ectomycorrhizas). Pinus also caused a major shift in soil nutrient cycling as indicated by increased bacterial dominance, NO3-N (17-fold increase) and available phosphorus (3.2-fold increase) in soils, which in turn promoted increased growth of graminoids. These results parallel field observations, where Pinus removal is associated with invasion by non-native grasses and herbs, and suggest that legacies of Pinus on soil nutrient cycling thus indirectly promote invasion of other non-native plant species. Our findings demonstrate that multi-trophic belowground legacies are an important but hitherto largely unconsidered factor in plant community reassembly following invasive plant removal. Published by Oxford University Press on behalf of the Annals of Botany Company.
Dickie, Ian A.; St John, Mark G.; Yeates, Gregor W.; Morse, Chris W.; Bonner, Karen I.; Orwin, Kate; Peltzer, Duane A.
2013-01-01
Plant invasions can change soil biota and nutrients in ways that drive subsequent plant communities, particularly when co-invading with belowground mutualists such as ectomycorrhizal fungi. These effects can persist following removal of the invasive plant and, combined with effects of removal per se, influence subsequent plant communities and ecosystem functioning. We used field observations and a soil bioassay with multiple plant species to determine the belowground effects and post-removal legacy caused by invasion of the non-native tree Pinus contorta into a native plant community. Pinus facilitated ectomycorrhizal infection of the co-occurring invasive tree, Pseudotsuga menziesii, but not conspecific Pinus (which always had ectomycorrhizas) nor the native pioneer Kunzea ericoides (which never had ectomycorrhizas). Pinus also caused a major shift in soil nutrient cycling as indicated by increased bacterial dominance, NO3-N (17-fold increase) and available phosphorus (3.2-fold increase) in soils, which in turn promoted increased growth of graminoids. These results parallel field observations, where Pinus removal is associated with invasion by non-native grasses and herbs, and suggest that legacies of Pinus on soil nutrient cycling thus indirectly promote invasion of other non-native plant species. Our findings demonstrate that multi-trophic belowground legacies are an important but hitherto largely unconsidered factor in plant community reassembly following invasive plant removal. PMID:25228312
Non-invasive analysis of swelling in polymer dispersions by means of time-domain(TD)-NMR.
Nestle, Nikolaus; Häberle, Karl
2009-11-03
In this contribution, we discuss the potential of low-field time-domain(TD)-NMR to study the swelling of (aqueous) polymer dispersions by a volatile solvent. Due to the sensitivity of transverse relaxation times (T2) to swelling-induced changes in the molecular dynamics of the polymer component, the effects of swelling can be measured without spectral resolution. The measurement is performed on polymer dispersions in native state with solids contents around 50% in a non-invasive way without separating the polymeric phase and the water phase from each other. Using acetone in two polyurethane (PU) dispersions with different hard phase contents, we explore the sensitivity of the method and present a data evaluation strategy based on multicomponent fitting and proton balancing. Furthermore, we report exchange continualization as a further effect that needs to be taken into account for correct interpretation of the data.
Badole, Gautam P; Warhadpande, Manjusha M; Bahadure, Rakesh N; Badole, Shital G
2013-01-01
Discolouration of teeth, especially the anteriores, can result in considerably cosmetic impairment in person. Combine effects of intrinsic and extrinsic colour determines the appearance of teeth. Whitening of teeth with bleaching is a more conservative therapeutic method than full crowns, veneers or composite restorations which is more invasive and expensive. Among bleaching techniques, in office bleaching with carbamide peroxide provide superior aesthetic result in short period of time with no adverse effects. This paper presents case series of tooth discolouration in non-vital tooth which was successfully bleached using 35 % carbamide peroxide. After 1 year follow up the prognosis was good with no reversal of tooth discolouration. This case report allows the better understanding of the concept of nonvital tooth bleaching with carbamide peroxide which gives a non-invasive alternative for aesthetic purpose in preserving the natural tooth structure. PMID:24551731
Chung, S H; Cerussi, A E; Merritt, S I; Ruth, J; Tromberg, B J
2010-07-07
We describe the development of a non-invasive method for quantitative tissue temperature measurements using Broadband diffuse optical spectroscopy (DOS). Our approach is based on well-characterized opposing shifts in near-infrared (NIR) water absorption spectra that appear with temperature and macromolecular binding state. Unlike conventional reflectance methods, DOS is used to generate scattering-corrected tissue water absorption spectra. This allows us to separate the macromolecular bound water contribution from the thermally induced spectral shift using the temperature isosbestic point at 996 nm. The method was validated in intralipid tissue phantoms by correlating DOS with thermistor measurements (R=0.96) with a difference of 1.1+/-0.91 degrees C over a range of 28-48 degrees C. Once validated, thermal and hemodynamic (i.e. oxy- and deoxy-hemoglobin concentration) changes were measured simultaneously and continuously in human subjects (forearm) during mild cold stress. DOS-measured arm temperatures were consistent with previously reported invasive deep tissue temperature studies. These results suggest that DOS can be used for non-invasive, co-registered measurements of absolute temperature and hemoglobin parameters in thick tissues, a potentially important approach for optimizing thermal diagnostics and therapeutics.
Neurostimulation in the treatment of primary headaches
Miller, Sarah; Sinclair, Alex J; Davies, Brendan; Matharu, Manjit
2016-01-01
There is increasing interest in using neurostimulation to treat headache disorders. There are now several non-invasive and invasive stimulation devices available with some open-label series and small controlled trial studies that support their use. Non-invasive stimulation options include supraorbital stimulation (Cefaly), vagus nerve stimulation (gammaCore) and single-pulse transcranial magnetic stimulation (SpringTMS). Invasive procedures include occipital nerve stimulation, sphenopalatine ganglion stimulation and ventral tegmental area deep brain stimulation. These stimulation devices may find a place in the treatment pathway of headache disorders. Here, we explore the basic principles of neurostimulation for headache and overview the available methods of neurostimulation. PMID:27152027
British Thoracic Society Quality Standards for acute non-invasive ventilation in adults
Davies, Michael; Allen, Martin; Bentley, Andrew; Bourke, Stephen C; Creagh-Brown, Ben; D’Oliveiro, Rachel; Glossop, Alastair; Gray, Alasdair; Jacobs, Phillip; Mahadeva, Ravi; Moses, Rachael; Setchfield, Ian
2018-01-01
Introduction The purpose of the quality standards document is to provide healthcare professionals, commissioners, service providers and patients with a guide to standards of care that should be met for the provision of acute non-invasive ventilation in adults together with measurable markers of good practice. Methods Development of British Thoracic Society (BTS) Quality Standards follows the BTS process of quality standard production based on the National Institute for Health and Care Excellence process manual for the development of quality standards. Results 6 quality statements have been developed, each describing a standard of care for the provision of acute non-invasive ventilation in the UK, together with measurable markers of good practice. Conclusion BTS Quality Standards for acute non-invasive ventilation in adults form a key part of the range of supporting materials that the Society produces to assist in the dissemination and implementation of guideline’s recommendations. PMID:29636979
Ecology of invasive mosquitoes: effects on resident species and on human health
Juliano, Steven A.; Lounibos, L. Philip
2007-01-01
Investigations of biological invasions focus on patterns and processes that are related to introduction, establishment, spread and impacts of introduced species. This review focuses on the ecological interactions operating during invasions by the most prominent group of insect vectors of disease, mosquitoes. First, we review characteristics of non-native mosquito species that have established viable populations, and those invasive species that have spread widely and had major impacts, testing whether biotic characteristics are associated with the transition from established non-native to invasive. Second, we review the roles of interspecific competition, apparent competition, predation, intraguild predation and climatic limitation as causes of impacts on residents or as barriers to invasion. We concentrate on the best-studied invasive mosquito, Aedes albopictus, evaluating the application of basic ecological theory to invasions by Aedes albopictus. We develop a model based on observations of Aedes albopictus for effects of resource competition and predation as barriers to invasion, evaluating which community and ecosystem characteristics favour invasion. Third, we evaluate the ways in which invasive mosquitoes have contributed to outbreaks of human and animal disease, considering specifically whether invasive mosquitoes create novel health threats, or modify disease transmission for existing pathogen–host systems. PMID:17637849
USDA-ARS?s Scientific Manuscript database
Herbicide applications have shown potential for control and management of invasive perennial pepperweed (Lepidium latifolium) in rangelands and tidal wetlands. However, reported efficacy of management methods varies widely, and the effects of more recently labeled aquatic herbicides on non-target ve...
Cardim, Danilo; Robba, C; Bohdanowicz, M; Donnelly, J; Cabella, B; Liu, X; Cabeleira, M; Smielewski, P; Schmidt, B; Czosnyka, M
2016-12-01
Although intracranial pressure (ICP) is essential to guide management of patients suffering from acute brain diseases, this signal is often neglected outside the neurocritical care environment. This is mainly attributed to the intrinsic risks of the available invasive techniques, which have prevented ICP monitoring in many conditions affecting the intracranial homeostasis, from mild traumatic brain injury to liver encephalopathy. In such scenario, methods for non-invasive monitoring of ICP (nICP) could improve clinical management of these conditions. A review of the literature was performed on PUBMED using the search keywords 'Transcranial Doppler non-invasive intracranial pressure.' Transcranial Doppler (TCD) is a technique primarily aimed at assessing the cerebrovascular dynamics through the cerebral blood flow velocity (FV). Its applicability for nICP assessment emerged from observation that some TCD-derived parameters change during increase of ICP, such as the shape of FV pulse waveform or pulsatility index. Methods were grouped as: based on TCD pulsatility index; aimed at non-invasive estimation of cerebral perfusion pressure and model-based methods. Published studies present with different accuracies, with prediction abilities (AUCs) for detection of ICP ≥20 mmHg ranging from 0.62 to 0.92. This discrepancy could result from inconsistent assessment measures and application in different conditions, from traumatic brain injury to hydrocephalus and stroke. Most of the reports stress a potential advantage of TCD as it provides the possibility to monitor changes of ICP in time. Overall accuracy for TCD-based methods ranges around ±12 mmHg, with a great potential of tracing dynamical changes of ICP in time, particularly those of vasogenic nature.
Can intracranial pressure be measured non-invasively bedside using a two-depth Doppler-technique?
Koskinen, Lars-Owe D; Malm, Jan; Zakelis, Rolandas; Bartusis, Laimonas; Ragauskas, Arminas; Eklund, Anders
2017-04-01
Measurement of intracranial pressure (ICP) is necessary in many neurological and neurosurgical diseases. To avoid lumbar puncture or intracranial ICP probes, non-invasive ICP techniques are becoming popular. A recently developed technology uses two-depth Doppler to compare arterial pulsations in the intra- and extra-cranial segments of the ophthalmic artery for non-invasive estimation of ICP. The aim of this study was to investigate how well non-invasively-measured ICP and invasively-measured cerebrospinal fluid (CSF) pressure correlate. We performed multiple measurements over a wide ICP span in eighteen elderly patients with communicating hydrocephalus. As a reference, an automatic CSF infusion apparatus was connected to the lumbar space. Ringer's solution was used to create elevation to pre-defined ICP levels. Bench tests of the infusion apparatus showed a random error (95 % CI) of less than ±0.9 mmHg and a systematic error of less than ±0.5 mmHg. Reliable Doppler signals were obtained in 13 (72 %) patients. An infusion test could not be performed in one patient. Thus, twelve patients and a total of 61 paired data points were studied. The correlation between invasive and non-invasive ICP measurements was good (R = 0.74), and the 95 % limits of agreements were -1.4 ± 8.8 mmHg. The within-patient correlation varied between 0.47 and 1.00. This non-invasive technique is promising, and these results encourage further development and evaluation before the method can be recommended for use in clinical practice.
Nanri, Akiko; Nakagawa, Tohru; Kuwahara, Keisuke; Yamamoto, Shuichiro; Honda, Toru; Okazaki, Hiroko; Uehara, Akihiko; Yamamoto, Makoto; Miyamoto, Toshiaki; Kochi, Takeshi; Eguchi, Masafumi; Murakami, Taizo; Shimizu, Chii; Shimizu, Makiko; Tomita, Kentaro; Nagahama, Satsue; Imai, Teppei; Nishihara, Akiko; Sasaki, Naoko; Hori, Ai; Sakamoto, Nobuaki; Nishiura, Chihiro; Totsuzaki, Takafumi; Kato, Noritada; Fukasawa, Kenji; Huanhuan, Hu; Akter, Shamima; Kurotani, Kayo; Kabe, Isamu; Mizoue, Tetsuya; Sone, Tomofumi; Dohi, Seitaro
2015-01-01
Objective Risk models and scores have been developed to predict incidence of type 2 diabetes in Western populations, but their performance may differ when applied to non-Western populations. We developed and validated a risk score for predicting 3-year incidence of type 2 diabetes in a Japanese population. Methods Participants were 37,416 men and women, aged 30 or older, who received periodic health checkup in 2008–2009 in eight companies. Diabetes was defined as fasting plasma glucose (FPG) ≥126 mg/dl, random plasma glucose ≥200 mg/dl, glycated hemoglobin (HbA1c) ≥6.5%, or receiving medical treatment for diabetes. Risk scores on non-invasive and invasive models including FPG and HbA1c were developed using logistic regression in a derivation cohort and validated in the remaining cohort. Results The area under the curve (AUC) for the non-invasive model including age, sex, body mass index, waist circumference, hypertension, and smoking status was 0.717 (95% CI, 0.703–0.731). In the invasive model in which both FPG and HbA1c were added to the non-invasive model, AUC was increased to 0.893 (95% CI, 0.883–0.902). When the risk scores were applied to the validation cohort, AUCs (95% CI) for the non-invasive and invasive model were 0.734 (0.715–0.753) and 0.882 (0.868–0.895), respectively. Participants with a non-invasive score of ≥15 and invasive score of ≥19 were projected to have >20% and >50% risk, respectively, of developing type 2 diabetes within 3 years. Conclusions The simple risk score of the non-invasive model might be useful for predicting incident type 2 diabetes, and its predictive performance may be markedly improved by incorporating FPG and HbA1c. PMID:26558900
NASA Technical Reports Server (NTRS)
Cantrell, John H. (Inventor); Yost, William T. (Inventor)
1994-01-01
Non-invasive measuring devices responsive to changes in a patient's intracranial pressure (ICP) can be accurately calibrated for monitoring purposes by providing known changes in ICP by non-invasive methods, such as placing the patient on a tilting bed and calculating a change in ICP from the tilt angle and the length of the patient's cerebrospinal column, or by placing a pressurized skull cap on the patient and measuring the inflation pressure. Absolute values for the patient's pressure-volume index (PVI) and the steady state ICP can then be determined by inducing two known changes in the volume of cerebrospinal fluid while recording the corresponding changes in ICP by means of the calibrated measuring device. The two pairs of data for pressure change and volume change are entered into an equation developed from an equation describing the relationship between ICP and cerebrospinal fluid volume. PVI and steady state ICP are then determined by solving the equation. Methods for inducing known changes in cerebrospinal fluid volume are described.
NASA Technical Reports Server (NTRS)
Yost, William T. (Inventor); Cantrell, Jr., John H. (Inventor)
1997-01-01
Non-invasive measuring devices responsive to changes in a patient's intracranial pressure (ICP) can be accurately calibrated for monitoring purposes by providing known changes in ICP by non-invasive methods, such as placing the patient on a tilting bed and calculating a change in ICP from the tilt angle and the length of the patient's cerebrospinal column, or by placing a pressurized skull cap on the patient and measuring the inflation pressure. Absolute values for the patient's pressure-volume index (PVI) and the steady state ICP can then be determined by inducing two known changes in the volume of cerebrospinal fluid while recording the corresponding changes in ICP by means of the calibrated measuring device. The two pairs of data for pressure change and volume change are entered into an equation developed from an equation describing the relationship between ICP and cerebrospinal fluid volume. PVI and steady state ICP are then determined by solving the equation. Methods for inducing known changes in cerebrospinal fluid volume are described.
Zeng, Xianxu; Zhang, Xiaoan; Li, Canyu; Wang, Xiaofang; Jerwick, Jason; Xu, Tao; Ning, Yuan; Wang, Yihong; Zhang, Linlin; Zhang, Zhan; Ma, Yutao; Zhou, Chao
2018-01-01
Cervical cancer remains the fourth most common cause of cancer worldwide and the third leading cause of cancer deaths for women in developing countries. Traditional screening tools, such as human papillomavirus and Pap tests, cannot provide results in real-time and cannot localize suspicious regions. Colposcopy-directed biopsies are invasive in nature and only a few sites of the cervix may be chosen for investigation. A non-invasive, label-free and real-time imaging method with a resolution approaching that of histopathology is desirable for early detection of the disease. Methods: Ultrahigh-resolution optical coherence microscopy (OCM) is an emerging imaging technique used to obtain 3-dimensional (3-D) “optical biopsies” of biological samples with cellular resolution. In this study, 497 3-D OCM datasets from 159 specimens were collected from 92 patients. Results: Distinctive patterns for normal cervix, squamocolumnar junction, ectropion, low-grade and high-grade squamous intraepithelial lesions (LSIL and HSIL) and invasive cervical lesions were clearly observed from OCM images, which matched well with corresponding histological slides. OCM images demonstrated a sensitivity of 80% (95% confidence interval, CI, 72%-86%) and a specificity of 89% (95% CI, 84%-93%) for detecting high-risk lesions (HSIL and invasive lesions) when blindly tested by three investigators. A substantial inter-observer agreement was observed (κ=0.627), which showed high diagnostic consistency among three investigators. Conclusion: These results laid the foundation for future non-invasive optical evaluation of cervical tissue in vivo, which could lead to a less invasive and more effective screening and “see-and-treat” strategy for the management of cervical cancer. PMID:29896305
Brnijć, Zoran; Brkljacić, Boris; Drinković, Ivan; Jakić-Razumović, Jasminka; Kardum-Skelin, Ika; Krajina, Zdenko; Margaritoni, Marko; Strnad, Marija; Sarcević, Bozena; Tomić, Snjezana; Zic, Rado
2012-01-01
Breast cancer is the most common malignancy in women. Early diagnosis and more effective treatment of invasive breast cancer resulted in significant mortality reduction, improvement of survival and the quality of life of the patients. The management od non-invasive breast cancer, on the contrary, is still controversial and the problem of overdiagnosis and overtreatment of patients come to evidence. In the following text a multidisciplinary team of experts brings the first consensus guidelines aimed to standardize and optimize the criteria and management in diagnosis, treatment and monitoring of non-invasive breast cancer patients in the Republic of Croatia.
Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging
NASA Astrophysics Data System (ADS)
Wang, Feifei; Liu, Lianqing; Yu, Haibo; Wen, Yangdong; Yu, Peng; Liu, Zhu; Wang, Yuechao; Li, Wen Jung
2016-12-01
Nanoscale correlation of structural information acquisition with specific-molecule identification provides new insight for studying rare subcellular events. To achieve this correlation, scanning electron microscopy has been combined with super-resolution fluorescent microscopy, despite its destructivity when acquiring biological structure information. Here we propose time-efficient non-invasive microsphere-based scanning superlens microscopy that enables the large-area observation of live-cell morphology or sub-membrane structures with sub-diffraction-limited resolution and is demonstrated by observing biological and non-biological objects. This microscopy operates in both non-invasive and contact modes with ~200 times the acquisition efficiency of atomic force microscopy, which is achieved by replacing the point of an atomic force microscope tip with an imaging area of microspheres and stitching the areas recorded during scanning, enabling sub-diffraction-limited resolution. Our method marks a possible path to non-invasive cell imaging and simultaneous tracking of specific molecules with nanoscale resolution, facilitating the study of subcellular events over a total cell period.
Shiha, Gamal; Ibrahim, Alaa; Helmy, Ahmed; Sarin, Shiv Kumar; Omata, Masao; Kumar, Ashish; Bernstien, David; Maruyama, Hitushi; Saraswat, Vivek; Chawla, Yogesh; Hamid, Saeed; Abbas, Zaigham; Bedossa, Pierre; Sakhuja, Puja; Elmahatab, Mamun; Lim, Seng Gee; Lesmana, Laurentius; Sollano, Jose; Jia, Ji-Dong; Abbas, Bahaa; Omar, Ashraf; Sharma, Barjesh; Payawal, Diana; Abdallah, Ahmed; Serwah, Abdelhamid; Hamed, Abdelkhalek; Elsayed, Aly; AbdelMaqsod, Amany; Hassanein, Tarek; Ihab, Ahmed; GHaziuan, Hamsik; Zein, Nizar; Kumar, Manoj
2017-01-01
Hepatic fibrosis is a common pathway leading to liver cirrhosis, which is the end result of any injury to the liver. Accurate assessment of the degree of fibrosis is important clinically, especially when treatments aimed at reversing fibrosis are being evolved. Despite the fact that liver biopsy (LB) has been considered the "gold standard" of assessment of hepatic fibrosis, LB is not favored by patients or physicians owing to its invasiveness, limitations, sampling errors, etc. Therefore, many alternative approaches to assess liver fibrosis are gaining more popularity and have assumed great importance, and many data on such approaches are being generated. The Asian Pacific Association for the Study of the Liver (APASL) set up a working party on liver fibrosis in 2007, with a mandate to develop consensus guidelines on various aspects of liver fibrosis relevant to disease patterns and clinical practice in the Asia-Pacific region. The first consensus guidelines of the APASL recommendations on hepatic fibrosis were published in 2009. Due to advances in the field, we present herein the APASL 2016 updated version on invasive and non-invasive assessment of hepatic fibrosis. The process for the development of these consensus guidelines involved review of all available published literature by a core group of experts who subsequently proposed consensus statements followed by discussion of the contentious issues and unanimous approval of the consensus statements. The Oxford System of the evidence-based approach was adopted for developing the consensus statements using the level of evidence from one (highest) to five (lowest) and grade of recommendation from A (strongest) to D (weakest). The topics covered in the guidelines include invasive methods (LB and hepatic venous pressure gradient measurements), blood tests, conventional radiological methods, elastography techniques and cost-effectiveness of hepatic fibrosis assessment methods, in addition to fibrosis assessment in special and rare situations.
Manzano-Szalai, Krisztina; Pali-Schöll, Isabella; Krishnamurthy, Durga; Stremnitzer, Caroline; Flaschberger, Ingo; Jensen-Jarolim, Erika
2016-01-01
In highly sensitized patients, the encounter with a specific allergen from food, insect stings or medications may rapidly induce systemic anaphylaxis with potentially lethal symptoms. Countless animal models of anaphylaxis, most often in BALB/c mice, were established to understand the pathophysiology and to prove the safety of different treatments. The most common symptoms during anaphylactic shock are drop of body temperature and reduced physical activity. To refine, improve and objectify the currently applied manual monitoring methods, we developed an imaging method for the automated, non-invasive measurement of the whole-body surface temperature and, at the same time, of the horizontal and vertical movement activity of small animals. We tested the anaphylaxis imaging in three in vivo allergy mouse models for i) milk allergy, ii) peanut allergy and iii) egg allergy. These proof-of-principle experiments suggest that the imaging technology represents a reliable non-invasive method for the objective monitoring of small animals during anaphylaxis over time. We propose that the method will be useful for monitoring diseases associated with both, changes in body temperature and in physical behaviour. PMID:26963393
Adaptive control with self-tuning for non-invasive beat-by-beat blood pressure measurement.
Nogawa, Masamichi; Ogawa, Mitsuhiro; Yamakoshi, Takehiro; Tanaka, Shinobu; Yamakoshi, Ken-ichi
2011-01-01
Up to now, we have successfully carried out the non-invasive beat-by-beat measurement of blood pressure (BP) in the root of finger, superficial temporal and radial artery based on the volume-compensation technique with reasonable accuracy. The present study concerns with improvement of control method for this beat-by-beat BP measurement. The measurement system mainly consists of a partial pressurization cuff with a pair of LED and photo-diode for the detection of arterial blood volume, and a digital self-tuning control method. Using healthy subjects, the performance and accuracy of this system were evaluated through comparison experiments with the system using a conventional empirically tuned PID controller. The significant differences of BP measured in finger artery were not showed in systolic (SBP), p=0.52, and diastolic BP (DBP), p=0.35. With the advantage of the adaptive control with self-tuning method, which can tune the control parameters without disturbing the control system, the application area of the non-invasive beat-by-beat measurement method will be broadened.
Orhant, Lucie; Anselem, Olivia; Fradin, Mélanie; Becker, Pierre Hadrien; Beugnet, Caroline; Deburgrave, Nathalie; Tafuri, Gilles; Letourneur, Franck; Goffinet, François; Allach El Khattabi, Laïla; Leturcq, France; Bienvenu, Thierry; Tsatsaris, Vassilis; Nectoux, Juliette
2016-05-01
Achondroplasia is generally detected by abnormal prenatal ultrasound findings in the third trimester of pregnancy and then confirmed by molecular genetic testing of fetal genomic DNA obtained by aspiration of amniotic fluid. This invasive procedure presents a small but significant risk for both the fetus and mother. Therefore, non-invasive procedures using cell-free fetal DNA in maternal plasma have been developed for the detection of the fetal achondroplasia mutations. To determine whether the fetus carries the de novo mis-sense genetic mutation at nucleotide 1138 in FGFR3 gene involved in >99% of achondroplasia cases, we developed two independent methods: digital-droplet PCR combined with minisequencing, which are very sensitive methods allowing detection of rare alleles. We collected 26 plasmatic samples from women carrying fetus at risk of achondroplasia and diagnosed to date a total of five affected fetuses in maternal blood. The sensitivity and specificity of our test are respectively 100% [95% confidence interval, 56.6-100%] and 100% [95% confidence interval, 84.5-100%]. This novel, original strategy for non-invasive prenatal diagnosis of achondroplasia is suitable for implementation in routine clinical testing and allows considering extending the applications of these technologies in non-invasive prenatal diagnosis of many other monogenic diseases. © 2016 John Wiley & Sons, Ltd. © 2016 John Wiley & Sons, Ltd.
Prediction of human core body temperature using non-invasive measurement methods.
Niedermann, Reto; Wyss, Eva; Annaheim, Simon; Psikuta, Agnes; Davey, Sarah; Rossi, René Michel
2014-01-01
The measurement of core body temperature is an efficient method for monitoring heat stress amongst workers in hot conditions. However, invasive measurement of core body temperature (e.g. rectal, intestinal, oesophageal temperature) is impractical for such applications. Therefore, the aim of this study was to define relevant non-invasive measures to predict core body temperature under various conditions. We conducted two human subject studies with different experimental protocols, different environmental temperatures (10 °C, 30 °C) and different subjects. In both studies the same non-invasive measurement methods (skin temperature, skin heat flux, heart rate) were applied. A principle component analysis was conducted to extract independent factors, which were then used in a linear regression model. We identified six parameters (three skin temperatures, two skin heat fluxes and heart rate), which were included for the calculation of two factors. The predictive value of these factors for core body temperature was evaluated by a multiple regression analysis. The calculated root mean square deviation (rmsd) was in the range from 0.28 °C to 0.34 °C for all environmental conditions. These errors are similar to previous models using non-invasive measures to predict core body temperature. The results from this study illustrate that multiple physiological parameters (e.g. skin temperature and skin heat fluxes) are needed to predict core body temperature. In addition, the physiological measurements chosen in this study and the algorithm defined in this work are potentially applicable as real-time core body temperature monitoring to assess health risk in broad range of working conditions.
MoDOT pavement preservation research program volume V, site-specific pavement condition assessment.
DOT National Transportation Integrated Search
2015-11-01
The overall objective of Task 4 was to thoroughly assess the cost-effectiveness and utility of selected non-invasive technologies as : applicable to MoDOT roadways. Non-invasive imaging technologies investigated in this project were Ultrasonic Surfac...
Singh, Shamsher; Adlakha, Vivek; Babaji, Prashant; Chandna, Preetika; Thomas, Abi M; Chopra, Saroj
2013-10-01
Newer technologies and the development of pit and fissure sealants have shifted the treatment philosophy from 'drill and fill' to that of 'seal and heal'. The purpose of this in-vitro study was to evaluate the effects of bonding agents on the tensile bond strengths of two pit and fissure sealants by using invasive and non-invasive techniques. One hundred and twenty bicuspids were collected and teeth were divided into two groups: Group-I (Clinpro) and Group-II (Conseal f) with 60 teeth in each group. For evaluating tensile bond strengths, occlusal surfaces of all the teeth were flattened by reducing buccal and lingual cusps without disturbing fissures. Standardised polyvinyl tube was bonded to occlusal surfaces with respective materials. Sealants were applied, with or without bonding agents, in increments and they were light cured. Tensile bond strengths were determined by using Universal Testing Machine. Data were then statistically analysed by using Student t-test for comparison. A statistically significant difference was found in tensile bond strength in invasive with bonding agent group than in non-invasive with bonding agent group. This study revealed that invasive techniques increase the tensile bond strengths of sealants as compared to non- invasive techniques and that the use of a bonding agent as an intermediate layer between the tooth and fissure sealant is beneficial for increasing the bond strength.
Warmerdam, G; Vullings, R; Van Pul, C; Andriessen, P; Oei, S G; Wijn, P
2013-01-01
Non-invasive fetal electrocardiography (ECG) can be used for prolonged monitoring of the fetal heart rate (FHR). However, the signal-to-noise-ratio (SNR) of non-invasive ECG recordings is often insufficient for reliable detection of the FHR. To overcome this problem, source separation techniques can be used to enhance the fetal ECG. This study uses a physiology-based source separation (PBSS) technique that has already been demonstrated to outperform widely used blind source separation techniques. Despite the relatively good performance of PBSS in enhancing the fetal ECG, PBSS is still susceptible to artifacts. In this study an augmented PBSS technique is developed to reduce the influence of artifacts. The performance of the developed method is compared to PBSS on multi-channel non-invasive fetal ECG recordings. Based on this comparison, the developed method is shown to outperform PBSS for the enhancement of the fetal ECG.
Kreiner-Møller, A; Stracke, F; Zimmermann, H
2013-01-01
Various cryoprotective agents (CPA) are added to cell media in order to avoid cell injury during cryo preservation. The resulting complex environment of the preserved cell, consisting of crystalline and liquid phases can however not be investigated non-invasively by established methods in cryobiology. This study shows how scanning confocal Raman microscopy can non-invasively extract information on chemical composition, phase domain and distribution at cryogenic temperatures. The formation of the salt hydrate, hydrohalite NaCl∙H2O, in solutions comprised of phosphate buffered saline (PBS) and dimethyl sulphoxide (DMSO) is studied in particular. Scanning confocal Raman microscopy can be used to unambiguously identify hydrohalite in a medium containing DMSO and saline. The confocal Raman microscopy imaging along with differential scanning calorimetric measurements further show that the hydrohalite is formed without eutectic formation. This method also allows for discrimination between closely packed hydrohalite crystals that are oriented differently.
Kimura, Fumiharu
2016-04-28
Invasive and/or non-invasive mechanical ventilation are most important options of respiratory management in amyotrophic lateral sclerosis. We evaluated the frequency, clinical characteristics, decision-making factors about ventilation and survival analysis of 190 people with amyotrophic lateral sclerosis patients from 1990 until 2013. Thirty-one percentage of patients underwent tracheostomy invasive ventilation with the rate increasing more than the past 20 years. The ratio of tracheostomy invasive ventilation in patients >65 years old was significantly increased after 2000 (25%) as compared to before (10%). After 2010, the standard use of non-invasive ventilation showed a tendency to reduce the frequency of tracheostomy invasive ventilation. Mechanical ventilation prolonged median survival (75 months in tracheostomy invasive ventilation, 43 months in non-invasive ventilation vs natural course, 32 months). The life-extending effects by tracheostomy invasive ventilation were longer in younger patients ≤65 years old at the time of ventilation support than in older patients. Presence of partners and care at home were associated with better survival. Following factors related to the decision to perform tracheostomy invasive ventilation: patients ≤65 years old: greater use of non-invasive ventilation: presence of a spouse: faster tracheostomy: higher progression rate; and preserved motor functions. No patients who underwent tracheostomy invasive ventilation died from a decision to withdraw mechanical ventilation. The present study provides factors related to decision-making process and survival after tracheostomy and help clinicians and family members to expand the knowledge about ventilation.
NASA Astrophysics Data System (ADS)
Hatlinski, Grzegorz J.; Kornacki, Witold; Kukwa, Andrzej; Dobrowiecka, Bozena; Pikiel, Marek
2004-07-01
This paper proposes non-invasive solution to the problem of sleep apnea diagnosis especially in small children when sudden death syndrome is suspected. Plethysmographic wave analysis and digital signal processing algorithms are applied in order to find the effect invoked by respiratory movements of sleeping patients so as to diagnose the sleep apnea syndrome. The practical results of finding solution to problems mentioned above will be the possibility of algorithms implementation in a portable intelligent measurement system with a non-invasive monitoring of respiratory action. It works without any disturbances of sleep and respiratory movements especially in small children what could make possible in the future when continuous monitoring were applied to prevent sudden death syndrome occurrence.
NASA Astrophysics Data System (ADS)
Sternberg, Oren; Bednarski, Valerie R.; Perez, Israel; Wheeland, Sara; Rockway, John D.
2016-09-01
Non-invasive optical techniques pertaining to the remote sensing of power quality disturbances (PQD) are part of an emerging technology field typically dominated by radio frequency (RF) and invasive-based techniques. Algorithms and methods to analyze and address PQD such as probabilistic neural networks and fully informed particle swarms have been explored in industry and academia. Such methods are tuned to work with RF equipment and electronics in existing power grids. As both commercial and defense assets are heavily power-dependent, understanding electrical transients and failure events using non-invasive detection techniques is crucial. In this paper we correlate power quality empirical models to the observed optical response. We also empirically demonstrate a first-order approach to map household, office and commercial equipment PQD to user functions and stress levels. We employ a physics-based image and signal processing approach, which demonstrates measured non-invasive (remote sensing) techniques to detect and map the base frequency associated with the power source to the various PQD on a calibrated source.
Wang, Hua; Zeng, Deping; Chen, Ziguang; Yang, Zengtao
2017-04-12
Based on the acousto-optic interaction, we propose a laser deflection method for rapidly, non-invasively and quantitatively measuring the peak positive pressure of HIFU fields. In the characterization of HIFU fields, the effect of nonlinear propagation is considered. The relation between the laser deflection length and the peak positive pressure is derived. Then the laser deflection method is assessed by comparing it with the hydrophone method. The experimental results show that the peak positive pressure measured by laser deflection method is little higher than that obtained by the hydrophone, confirming that they are in reasonable agreement. Considering that the peak pressure measured by hydrophones is always underestimated, the laser deflection method is assumed to be more accurate than the hydrophone method due to the absence of the errors in hydrophone spatial-averaging measurement and the influence of waveform distortion on hydrophone corrections. Moreover, noting that the Lorentz formula still remains applicable to high-pressure environments, the laser deflection method exhibits a great potential for measuring HIFU field under high-pressure amplitude. Additionally, the laser deflection method provides a rapid way for measuring the peak positive pressure, without the scan time, which is required by the hydrophones.
Lu, Tianyu; Yu, Chen; Ni, Hongbin; Liang, Weibang; Yan, Huiying; Jin, Wei
2018-06-01
Aggressive growth hormone-secreting pituitary adenomas (GHPAs) represent an important clinical problem in patients with acromegaly. Surgical therapy, although often the mainstay of treatment for GHPAs, is less effective in aggressive GHPAs due to their invasive and destructive growth patterns, and their proclivity for infrasellar invasion. LncRNAs are important players in cancer development and emerging in various fundamental biological processes. In the present study, qRT-PCR was performed to examine the expression of lncRNA H19 and MALAT-1 in invasive and non-invasive GHPAs. Our results revealed that the expression of lncRNA H19 was remarkably higher in invasive GHPAs, however, there was no significant differences between the expression of lncRNA MALAT-1 in invasive GHPAs and non-invasive GHPAs, suggesting that lncRNA H19 may play an important role in GHPA invasion. LncRNA H19 might be a target for the study of GHPAs invasion, and a potential index for the diagnosis or prognosis of GHPAs. Copyright © 2018. Published by Elsevier Ltd.
Villaseñor-Sierra, Alberto; Katahira, Eva; Jaramillo-Valdivia, Abril N.; de los Angeles Barajas-García, María; Bryant, Amy; Morfín-Otero, Rayo; Márquez-Díaz, Francisco; Tinoco, Juan Carlos; Sánchez-Corona, José; Stevens, Dennis L.
2012-01-01
Summary Objective To compare the prevalence, phenotypes, and genes responsible for erythromycin resistance among Streptococcus pyogenes isolates from Mexico and the USA. Methods Eighty-nine invasive and 378 non-invasive isolates from Mexico, plus 148 invasive, 21 non-invasive, and five unclassified isolates from the USA were studied. Susceptibilities to penicillin, erythromycin, clindamycin, ceftriaxone, and vancomycin were evaluated according to Clinical and Laboratory Standards Institute (CLSI) standards. Phenotypes of erythromycin resistance were identified by triple disk test, and screening for mefA, ermTR, and ermB genes was carried out by PCR. Results All isolates were susceptible to penicillin, ceftriaxone, and vancomycin. Erythromycin resistance was found in 4.9% of Mexican strains and 5.2% of USA strains. Phenotypes in Mexican strains were 95% M and 5% cMLS; in strains from the USA, phenotypes were 33.3% iMLS, 33.3% iMLS-D, and 33.3% M. Erythromycin resistance genes in strains from Mexico were mefA (95%) and ermB (5%); USA strains harbored ermTR (56%), mefA (33%), and none (11%). In Mexico, all erythromycin-resistant strains were non-invasive, whereas 89% of strains from the USA were invasive. Conclusions Erythromycin resistance continues to exist at low levels in both Mexico and the USA, although the genetic mechanisms responsible differ between the two nations. These genetic differences may be related to the invasive character of the S. pyogenes isolated. PMID:22217469
Barcelona, Pablo F; Galan, Alba; Nedev, Hinyu; Jian, Yifan; Sarunic, Marinko V; Saragovi, H Uri
2018-01-01
Many neurodegenerative retinal diseases are treated with monoclonal antibodies (mAb) delivered by invasive intravitreal injection (IVT). In Diabetic Retinopathy there is a scarcity of effective agents that can be delivered using non-invasive methods, and there are significant challenges in the validation of novel therapeutic targets. ProNGF represents a potential novel target, and IVT administration of a function-blocking anti-proNGF mAb is therapeutic in a mouse model of DR. We therefore compared invasive IVT to less invasive systemic intravenous (IV) and local subconjunctival (SCJ) administration, for therapy of Diabetic Retinopathy. The IV and SCJ routes are safe, afford sustained pharmacokinetics and tissue penetration of anti-proNGF mAb, and result in long-term therapeutic efficacy that blocks retinal inflammation, edema, and neuronal death. SCJ may be a more convenient and less-invasive approach for ophthalmic use and may enable reduced frequency of intervention for the treatment of retinal pathologies.
Porter, Stephanie S.; Stanton, Maureen L.; Rice, Kevin J.
2011-01-01
Species interactions play a critical role in biological invasions. For example, exotic plant and microbe mutualists can facilitate each other's spread as they co-invade novel ranges. Environmental context may influence the effect of mutualisms on invasions in heterogeneous environments, however these effects are poorly understood. We examined the mutualism between the legume, Medicago polymorpha, and the rhizobium, Ensifer medicae, which have both invaded California grasslands. Many of these invaded grasslands are composed of a patchwork of harsh serpentine and relatively benign non-serpentine soils. We grew legume genotypes collected from serpentine or non-serpentine soil in both types of soil in combination with rhizobium genotypes from serpentine or non-serpentine soils and in the absence of rhizobia. Legumes invested more strongly in the mutualism in the home soil type and trends in fitness suggested that this ecotypic divergence was adaptive. Serpentine legumes had greater allocation to symbiotic root nodules in serpentine soil than did non-serpentine legumes and non-serpentine legumes had greater allocation to nodules in non-serpentine soil than did serpentine legumes. Therefore, this invasive legume has undergone the rapid evolution of divergence for soil-specific investment in the mutualism. Contrary to theoretical expectations, the mutualism was less beneficial for legumes grown on the stressful serpentine soil than on the non-serpentine soil, possibly due to the inhibitory effects of serpentine on the benefits derived from the interaction. The soil-specific ability to allocate to a robust microbial mutualism may be a critical, and previously overlooked, adaptation for plants adapting to heterogeneous environments during invasion. PMID:22174755
Wallentin, Lars; Lindhagen, Lars; Ärnström, Elisabet; Husted, Steen; Janzon, Magnus; Johnsen, Søren Paaske; Kontny, Frederic; Kempf, Tibor; Levin, Lars-Åke; Lindahl, Bertil; Stridsberg, Mats; Ståhle, Elisabeth; Venge, Per; Wollert, Kai C; Swahn, Eva; Lagerqvist, Bo
2016-10-15
The FRISC-II trial was the first randomised trial to show a reduction in death or myocardial infarction with an early invasive versus a non-invasive treatment strategy in patients with non-ST-elevation acute coronary syndrome. Here we provide a remaining lifetime perspective on the effects on all cardiovascular events during 15 years' follow-up. The FRISC-II prospective, randomised, multicentre trial was done at 58 Scandinavian centres in Sweden, Denmark, and Norway. Between June 17, 1996, and Aug 28, 1998, we randomly assigned (1:1) 2457 patients with non-ST-elevation acute coronary syndrome to an early invasive treatment strategy, aiming for revascularisation within 7 days, or a non-invasive strategy, with invasive procedures at recurrent symptoms or severe exercise-induced ischaemia. Plasma for biomarker analyses was obtained at randomisation. For long-term outcomes, we linked data with national health-care registers. The primary endpoint was a composite of death or myocardial infarction. Outcomes were compared as the average postponement of the next event, including recurrent events, calculated as the area between mean cumulative count-of-events curves. Analyses were done by intention to treat. At a minimum of 15 years' follow-up on Dec 31, 2014, data for survival status and death were available for 2421 (99%) of the initially recruited 2457 patients, and for other events after 2 years for 2182 (89%) patients. During follow-up, the invasive strategy postponed death or next myocardial infarction by a mean of 549 days (95% CI 204-888; p=0·0020) compared with the non-invasive strategy. This effect was larger in non-smokers (mean gain 809 days, 95% CI 402-1175; p interaction =0·0182), patients with elevated troponin T (778 days, 357-1165; p interaction =0·0241), and patients with high concentrations of growth differentiation factor-15 (1356 days, 507-1650; p interaction =0·0210). The difference was mainly driven by postponement of new myocardial infarction, whereas the early difference in mortality alone was not sustained over time. The invasive strategy led to a mean of 1128 days (95% CI 830-1366) postponement of death or next readmission to hospital for ischaemic heart disease, which was consistent in all subgroups (p<0·0001). During 15 years of follow-up, an early invasive treatment strategy postponed the occurrence of death or next myocardial infarction by an average of 18 months, and the next readmission to hospital for ischaemic heart disease by 37 months, compared with a non-invasive strategy in patients with non-ST-elevation acute coronary syndrome. This remaining lifetime perspective supports that an early invasive treatment strategy should be the preferred option in most patients with non-ST-elevation acute coronary syndrome. Swedish Heart-Lung Foundation, Swedish Foundation for Strategic Research, and Uppsala Clinical Research Center. Copyright © 2016 Elsevier Ltd. All rights reserved.
J.Stephen Brewer; W. Chase Bailey
2014-01-01
Despite widespread acknowledgment that disturbance favors invasion, a hypothesis that has received little attention is whether non-native invaders have greater competitive effects on native plants in undisturbed habitats than in disturbed habitats. This hypothesis derives from the assumption that competitive interactions are more persistent in habitats that have not...
Mitchell, Andrea Z; McMahon, Carrie; Beck, Tom W; Sarazan, R Dustan
2010-01-01
Animals are commonly used in toxicological research for the evaluation of drug effects on the cardiovascular system. Accurate and reproducible determination of blood pressure (BP) in conscious, manually restrained monkeys and dogs is a challenge with current non-invasive cuff techniques. The High Definition Oscillometry (HDO) technique enables real time measurements with immediate visual feedback via PC screen on data validity. HDO measurements are considerably faster with a duration of approximately 8 to 15s than conventional cuff methods that can take several minutes. HDO Memo Diagnostic Model Science and Cardell BP Monitor Model 9401 measurements were compared for accuracy and reliability with simultaneously recorded direct blood pressure data captured via radiotelemetry. Six monkeys and six dogs implanted with DSI PCT telemetry transmitters were used; BP data were collected by all methods under manual constraint and compared. Measurements were performed with HDO and Cardell in the presence of a BP lowering drug (hexamethonium bromide). Systolic, diastolic, mean arterial pressure, and pulse rate were determined before, during and following up to 10mg/kg hexamethonium administration via intravenous slow bolus injection. Drug induced hemodynamic changes could be detected in monkeys and dogs with the HDO method but only in dogs with the Cardell method. Correlation coefficients were generally higher for HDO versus Telemetry than Cardell versus Telemetry comparisons, indicating that this novel, non-invasive technique produces reliable blood pressure data and is able to detect drug-induced hemodynamic changes. HDO provides an alternative approach for invasive telemetry surgeries to obtain reliable hemodynamic data in animal models for cardiovascular research when invasive techniques are not warranted. Copyright 2010 Elsevier Inc. All rights reserved.
Zardi, Enrico Maria; Di Matteo, Francesco Maria; Pacella, Claudio Maurizio; Sanyal, Arun J
2016-01-01
Portal hypertension is a severe syndrome that may derive from pre-sinusoidal, sinusoidal and post-sinusoidal causes. As a consequence, several complications (i.e., ascites, oesophageal varices) may develop. In sinusoidal portal hypertension, hepatic venous pressure gradient (HVPG) is a reliable method for defining the grade of portal pressure, establishing the effectiveness of the treatment and predicting the occurrence of complications; however, some questions exist regarding its ability to discriminate bleeding from nonbleeding varices in cirrhotic patients. Other imaging techniques (transient elastography, endoscopy, endosonography and duplex Doppler sonography) for assessing causes and complications of portal hypertensive syndrome are available and may be valuable for the management of these patients. In this review, we evaluate invasive and non-invasive techniques currently employed to obtain a clinical prediction of deadly complications, such as variceal bleeding in patients affected by sinusoidal portal hypertension, in order to create a diagnostic algorithm to manage them. Again, HVPG appears to be the reference standard to evaluate portal hypertension and monitor the response to treatment, but its ability to predict several complications and support management decisions might be further improved through the diagnostic combination with other imaging techniques. PMID:24328372
Non-invasive Brain Stimulation: A Paradigm Shift in Understanding Brain Oscillations.
Vosskuhl, Johannes; Strüber, Daniel; Herrmann, Christoph S
2018-01-01
Cognitive neuroscience set out to understand the neural mechanisms underlying cognition. One central question is how oscillatory brain activity relates to cognitive processes. Up to now, most of the evidence supporting this relationship was correlative in nature. This situation changed dramatically with the recent development of non-invasive brain stimulation (NIBS) techniques, which open up new vistas for neuroscience by allowing researchers for the first time to validate their correlational theories by manipulating brain functioning directly. In this review, we focus on transcranial alternating current stimulation (tACS), an electrical brain stimulation method that applies sinusoidal currents to the intact scalp of human individuals to directly interfere with ongoing brain oscillations. We outline how tACS can impact human brain oscillations by employing different levels of observation from non-invasive tACS application in healthy volunteers and intracranial recordings in patients to animal studies demonstrating the effectiveness of alternating electric fields on neurons in vitro and in vivo . These findings likely translate to humans as comparable effects can be observed in human and animal studies. Neural entrainment and plasticity are suggested to mediate the behavioral effects of tACS. Furthermore, we focus on mechanistic theories about the relationship between certain cognitive functions and specific parameters of brain oscillaitons such as its amplitude, frequency, phase and phase coherence. For each of these parameters we present the current state of testing its functional relevance by means of tACS. Recent developments in the field of tACS are outlined which include the stimulation with physiologically inspired non-sinusoidal waveforms, stimulation protocols which allow for the observation of online-effects, and closed loop applications of tACS.
A review of MRI evaluation of demyelination in cuprizone murine model
NASA Astrophysics Data System (ADS)
Krutenkova, E.; Pan, E.; Khodanovich, M.
2015-11-01
The cuprizone mouse model of non-autoimmune demyelination reproduces some phenomena of multiple sclerosis and is appropriate for validation and specification of a new method of non-invasive diagnostics. In the review new data which are collected using the new MRI method are compared with one or more conventional MRI tools. Also the paper reviewed the validation of MRI approaches using histological or immunohistochemical methods. Luxol fast blue histological staining and myelin basic protein immunostaining is widespread. To improve the accuracy of non-invasive conventional MRI, multimodal scanning could be applied. The new quantitative MRI method of fast mapping of the macromolecular proton fraction is a reliable biomarker of myelin in the brain and can be used for research of demyelination in animals. To date, a validation of MPF method on the CPZ mouse model of demyelination is not performed, although this method is probably the best way to evaluate demyelination using MRI.
Intercomparison of techniques for the non-invasive measurement of bone mass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohn, S.H.
1981-01-01
A variety of methods are presently available for the non-invasive measurement of bone mass of both normal individuals and patients with metabolic disorders. Chief among these methods are radiographic techniques such as radiogrammetry, photon absorptiometry, computer tomography, Compton scattering and neutron activation analysis. In this review, the salient features of the bone measurement techniques are discussed along with their accuracy and precision. The advantages and disadvantages of the various techniques for measuring bone mass are summarized. Where possible, intercomparisons are made of the various techniques.
Moewis, P; Boeth, H; Heller, M O; Yntema, C; Jung, T; Doyscher, R; Ehrig, R M; Zhong, Y; Taylor, W R
2014-07-01
The in vivo quantification of rotational laxity of the knee joint is of importance for monitoring changes in joint stability or the outcome of therapies. While invasive assessments have been used to study rotational laxity, non-invasive methods are attractive particularly for assessing young cohorts. This study aimed to determine the conditions under which tibio-femoral rotational laxity can be assessed reliably and accurately in a non-invasive manner. The reliability and error of non-invasive examinations of rotational joint laxity were determined by comparing the artefact associated with surface mounted markers against simultaneous measurements using fluoroscopy in five knees including healthy and ACL deficient joints. The knees were examined at 0°, 30°, 60° and 90° flexion using a device that allows manual axial rotation of the joint. With a mean RMS error of 9.6°, the largest inaccuracy using non-invasive assessment was present at 0° knee flexion, whereas at 90° knee flexion, a smaller RMS error of 5.7° was found. A Bland and Altman assessment indicated that a proportional bias exists between the non-invasive and fluoroscopic approaches, with limits of agreement that exceeded 20°. Correction using average linear regression functions resulted in a reduction of the RMS error to below 1° and limits of agreement to less than ±1° across all knees and flexion angles. Given the excellent reliability and the fact that a correction of the surface mounted marker based rotation values can be achieved, non-invasive evaluation of tibio-femoral rotation could offer opportunities for simplified devices for use in clinical settings in cases where invasive assessments are not justified. Although surface mounted marker based measurements tend to overestimate joint rotation, and therefore joint laxity, our results indicate that it is possible to correct for this error. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Frontal Non-Invasive Neurostimulation Modulates Antisaccade Preparation in Non-Human Primates
Valero-Cabre, Antoni; Wattiez, Nicolas; Monfort, Morgane; François, Chantal; Rivaud-Péchoux, Sophie; Gaymard, Bertrand; Pouget, Pierre
2012-01-01
A combination of oculometric measurements, invasive electrophysiological recordings and microstimulation have proven instrumental to study the role of the Frontal Eye Field (FEF) in saccadic activity. We hereby gauged the ability of a non-invasive neurostimulation technology, Transcranial Magnetic Stimulation (TMS), to causally interfere with frontal activity in two macaque rhesus monkeys trained to perform a saccadic antisaccade task. We show that online single pulse TMS significantly modulated antisaccade latencies. Such effects proved dependent on TMS site (effects on FEF but not on an actively stimulated control site), TMS modality (present under active but not sham TMS on the FEF area), TMS intensity (intensities of at least 40% of the TMS machine maximal output required), TMS timing (more robust for pulses delivered at 150 ms than at 100 post target onset) and visual hemifield (relative latency decreases mainly for ipsilateral AS). Our results demonstrate the feasibility of using TMS to causally modulate antisaccade-associated computations in the non-human primate brain and support the use of this approach in monkeys to study brain function and its non-invasive neuromodulation for exploratory and therapeutic purposes. PMID:22701691
Clinical applications of breath testing
Paschke, Kelly M; Mashir, Alquam
2010-01-01
Breath testing has the potential to benefit the medical field as a cost-effective, non-invasive diagnostic tool for diseases of the lung and beyond. With growing evidence of clinical worth, standardization of methods, and new sensor and detection technologies the stage is set for breath testing to gain considerable attention and wider application in upcoming years. PMID:21173863
Frasch, Martin G; Lobmaier, Silvia M; Stampalija, Tamara; Desplats, Paula; Pallarés, María Eugenia; Pastor, Verónica; Brocco, Marcela A; Wu, Hau-Tieng; Schulkin, Jay; Herry, Christophe L; Seely, Andrew J E; Metz, Gerlinde A S; Louzoun, Yoram; Antonelli, Marta C
2018-05-30
Prenatal stress (PS) impacts early postnatal behavioural and cognitive development. This process of 'fetal programming' is mediated by the effects of the prenatal experience on the developing hypothalamic-pituitary-adrenal (HPA) axis and autonomic nervous system (ANS). We derive a multi-scale multi-species approach to devising preclinical and clinical studies to identify early non-invasively available pre- and postnatal biomarkers of PS. The multiple scales include brain epigenome, metabolome, microbiome and the ANS activity gauged via an array of advanced non-invasively obtainable properties of fetal heart rate fluctuations. The proposed framework has the potential to reveal mechanistic links between maternal stress during pregnancy and changes across these physiological scales. Such biomarkers may hence be useful as early and non-invasive predictors of neurodevelopmental trajectories influenced by the PS as well as follow-up indicators of success of therapeutic interventions to correct such altered neurodevelopmental trajectories. PS studies must be conducted on multiple scales derived from concerted observations in multiple animal models and human cohorts performed in an interactive and iterative manner and deploying machine learning for data synthesis, identification and validation of the best non-invasive detection and follow-up biomarkers, a prerequisite for designing effective therapeutic interventions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sagnelli, Caterina; Martini, Salvatore; Pisaturo, Mariantonietta; Pasquale, Giuseppe; Macera, Margherita; Zampino, Rosa; Coppola, Nicola; Sagnelli, Evangelista
2015-01-01
Several non-invasive surrogate methods have recently challenged the main role of liver biopsy in assessing liver fibrosis in hepatitis C virus (HCV)-monoinfected and human immunodeficiency virus (HIV)/HCV-coinfected patients, applied to avoid the well-known side effects of liver puncture. Serological tests involve the determination of biochemical markers of synthesis or degradation of fibrosis, tests not readily available in clinical practice, or combinations of routine tests used in chronic hepatitis and HIV/HCV coinfection. Several radiologic techniques have also been proposed, some of which commonly used in clinical practice. The studies performed to compare the prognostic value of non-invasive surrogate methods with that of the degree of liver fibrosis assessed on liver tissue have not as yet provided conclusive results. Each surrogate technique has shown some limitations, including the risk of over- or under-estimating the extent of liver fibrosis. The current knowledge on liver fibrosis in HIV/HCV-coinfected patients will be summarized in this review article, which is addressed in particular to physicians involved in this setting in their clinical practice. PMID:26523204
Raggi, Paolo; Baldassarre, Damiano; Day, Simon; de Groot, Eric; Fayad, Z A
2016-08-01
Slowing of progression and inducing the regression of atherosclerosis with medical therapy have been shown to be associated with an extensive reduction in risk of cardiovascular events. This proof of concept was obtained with invasive angiographic studies but these are, for obvious reasons, impractical for sequential investigations. Non-invasive imaging has henceforth replaced the more cumbersome invasive studies and has proven extremely valuable in numerous occasions. Because of excellent reproducibility and no radiation exposure, magnetic resonance imaging (MRI) has become the non-invasive method of choice to assess the efficacy of anti-atherosclerotic drugs. The high accuracy of this technology is particularly helpful in rare diseases where the small number of affected patients makes the conduct of outcome-trials in large cohorts impractical. With MRI it is possible to assess the extent, as well as the composition, of atherosclerotic plaques and this further enhances the utility of this technology. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Whole-Brain In-vivo Measurements of the Axonal G-Ratio in a Group of 37 Healthy Volunteers
Mohammadi, Siawoosh; Carey, Daniel; Dick, Fred; Diedrichsen, Joern; Sereno, Martin I.; Reisert, Marco; Callaghan, Martina F.; Weiskopf, Nikolaus
2015-01-01
The g-ratio, quantifying the ratio between the inner and outer diameters of a fiber, is an important microstructural characteristic of fiber pathways and is functionally related to conduction velocity. We introduce a novel method for estimating the MR g-ratio non-invasively across the whole brain using high-fidelity magnetization transfer (MT) imaging and single-shell diffusion MRI. These methods enabled us to map the MR g-ratio in vivo across the brain's prominent fiber pathways in a group of 37 healthy volunteers and to estimate the inter-subject variability. Effective correction of susceptibility-related distortion artifacts was essential before combining the MT and diffusion data, in order to reduce partial volume and edge artifacts. The MR g-ratio is in good qualitative agreement with histological findings despite the different resolution and spatial coverage of MRI and histology. The MR g-ratio holds promise as an important non-invasive biomarker due to its microstructural and functional relevance in neurodegeneration. PMID:26640427
Peterson, Gunnel; Nilsson, David; Trygg, Johan; Falla, Deborah; Dedering, Åsa; Wallman, Thorne; Peolsson, Anneli
2015-10-16
Chronic whiplash-associated disorder (WAD) is common after whiplash injury, with considerable personal, social, and economic burden. Despite decades of research, factors responsible for continuing pain and disability are largely unknown, and diagnostic tools are lacking. Here, we report a novel model of mechanical ventral neck muscle function recorded from non-invasive, real-time, ultrasound measurements. We calculated the deformation area and deformation rate in 23 individuals with persistent WAD and compared them to 23 sex- and age-matched controls. Multivariate statistics were used to analyse interactions between ventral neck muscles, revealing different interplay between muscles in individuals with WAD and healthy controls. Although the cause and effect relation cannot be established from this data, for the first time, we reveal a novel method capable of detecting different neck muscle interplay in people with WAD. This non-invasive method stands to make a major breakthrough in the assessment and diagnosis of people following a whiplash trauma.
Clinical and diagnostic utility of saliva as a non-invasive diagnostic fluid: a systematic review
Nunes, Lazaro Alessandro Soares; Mussavira, Sayeeda
2015-01-01
This systematic review presents the latest trends in salivary research and its applications in health and disease. Among the large number of analytes present in saliva, many are affected by diverse physiological and pathological conditions. Further, the non-invasive, easy and cost-effective collection methods prompt an interest in evaluating its diagnostic or prognostic utility. Accumulating data over the past two decades indicates towards the possible utility of saliva to monitor overall health, diagnose and treat various oral or systemic disorders and drug monitoring. Advances in saliva based systems biology has also contributed towards identification of several biomarkers, development of diverse salivary diagnostic kits and other sensitive analytical techniques. However, its utilization should be carefully evaluated in relation to standardization of pre-analytical and analytical variables, such as collection and storage methods, analyte circadian variation, sample recovery, prevention of sample contamination and analytical procedures. In spite of all these challenges, there is an escalating evolution of knowledge with the use of this biological matrix. PMID:26110030
Bjarnason, I; Batt, R; Catt, S; Macpherson, A; Maxton, D; Menzies, I S
1996-01-01
BACKGROUND/AIM: The reliability of a quantitative method for the non-invasive assessment of intestinal disaccharide hydrolysis was assessed. METHODS: Differential excretion of intact disaccharide, expressed as ratios of lactulose to appropriate hydrolysable disaccharides in urine collected following combined ingestion, has been investigated in healthy volunteers with drug induced alpha-glucosidase inhibition, in subjects with primary hypolactasia, and patients with coeliac disease. RESULTS: Oral administration of the alpha-glucosidase inhibitor 'Acarbose' (BAY g 5421, 200 mg) together with sucrose and lactulose increased the urinary sucrose/lactulose excretion ratios (% dose/10 h) fivefold. The effect was quantitatively reproducible, a higher dose of 'Acarbose' (500 mg) increasing the excretion ratio to about 1.0 indicating complete inhibition of intestinal sucrase activity. The suitability of the method for measuring differences in dose/response and duration of action was assessed by comparing three different alpha-glucosidase inhibitors (BAY g 5421, BAY m 1099, and BAY o 1248) and found to be satisfactory. Subjects with primary adult hypolactasia had urine lactose/lactulose excretion ratios raised to values indicating reduced rather than complete absence of lactase activity whereas sucrose/lactulose ratios were not significantly affected. 'Whole' intestinal disaccharidase activity assessed by this method demonstrated impairment of lactase, sucrase, and isomaltase in eight, one, and seven, respectively, of 20 patients with coeliac disease. By contrast in vitro assay of jejunal biopsy tissue indicated pan-disaccharidase deficiency in all but five of these patients. This shows the importance of distinguishing between 'local' and 'whole' intestinal performance. CONCLUSIONS: Differential urinary excretion of ingested disaccharides provides a reliable, quantitative, and non-invasive technique for assessing profiles of intestinal disaccharidase activity. PMID:8949640
Invasive plants, insects, and diseases in the forests of the Anthropocene
Alexander M. Evans
2014-01-01
Invasive species, non-native plants, insects, and diseases can devastate forests. They outcompete native species, replace them in the ecosystem, and even drive keystone forest species to functional extinction. Invasives have negative effects on forest hydrology, carbon storage, and nutrient cycling. The damage caused by invasive species exacerbates the other forest...
Bajwa, Ali S.; Rammappa, Manju; Lee, Ling; Nanda, Rajesh
2015-01-01
Introduction: Distal radius fracture (DRF) is a common injury and various treatment modalities including open reduction and internal fixation (ORIF) with volar locking plate are available. More recently, a non-invasive external fixator has been used. Aims: To prospectively compare the use of a non-invasive external fixator with early dynamisation for DRF against ORIF with volar locking plate control group. Methods: Consecutive patients with closed DRF were included in a prospective case-controlled study. Patients were assigned to non-invasive external fixator or ORIF. Minimum follow-up was two years. Follow-up was at weeks 2, 4, 6, 8, 12, 26 and at one and two-year post-operatively. The outcome measures included demographic details, injury mechanism, AO fracture type, risk factors, body mass index (BMI), ulnar styloid fracture and dorsal comminution, radiographs, grip strength and DASH score. Results: Consecutive 50 patients were treated either with non-invasive external fixator (25/50) or with ORIF (25/50) and the mean age of the two groups was 53 years (SD 17.1) and 49 years (SD 19.5), respectively. Demographics were matched in two groups. In the non-invasive external fixator group, there were 10 AO Type-A, 5 Type-B and 10 Type-C fractures. The ORIF group included 8 Type-A, 6 Type-B and 11 Type-C fractures. The mean DASH score at three-months and one-year post-injury in non-invasive fixator group was 12.2 (SD 3.1) and 3.5 (SD 0.7), respectively, significantly greater than those of ORIF group 14.5 (SD 5.6) and 11.2 (SD 4.4), respectively (p < 0.05). Conclusion: DRF treated with non-invasive external fixator can give functional results superior to ORIF at three-months and the trend is maintained at one and two-year post-operatively. PMID:27163089
Maggi, Roberto; Viscardi, Valentina; Furukawa, Toshiyuki; Brignole, Michele
2010-01-01
Aims We thought to evaluate feasibility of continuous non-invasive blood pressure monitoring during procedures of interventional electrophysiology. Methods and results We evaluated continuous non-invasive finger blood pressure (BP) monitoring by means of the Nexfin device in 22 patients (mean age 70 ± 24 years), undergoing procedures of interventional electrophysiology, in critical situations of hypotension caused by tachyarrhythmias or by intermittent incremental ventricular temporary pacing till to the maximum tolerated systolic BP fall (mean 61 ± 14 mmHg per patient at a rate of 195 ± 37 bpm). In all patients, Nexfin was able to detect immediately, at the onset of tachyarrythmia, the changes in BP and recorded reliable waveforms. The quality of the signal was arbitrarily classified as excellent in 11 cases, good in 10 cases, and sufficient in 1 case. In basal conditions, calibrations of the signal occurred every 49.2 ± 24.3 s and accounted for 4% of total monitoring time; during tachyarrhythmias their frequency increased to one every 12.7 s and accounted for 19% of total recording duration. A linear correlation for a range of BP values from 41 to 190 mmHg was found between non-invasive and intra-arterial BP among a total of 1055 beats from three patients who underwent simultaneous recordings with both methods (coefficient of correlation of 0.81, P < 0.0001). Conclusion In conclusion, continuous non-invasive BP monitoring is feasible in the clinical practise of an interventional electrophysiology laboratory without the need of utilization of an intra-arterial BP line. PMID:20837572
Development and validation of a MRgHIFU non-invasive tissue acoustic property estimation technique.
Johnson, Sara L; Dillon, Christopher; Odéen, Henrik; Parker, Dennis; Christensen, Douglas; Payne, Allison
2016-11-01
MR-guided high-intensity focussed ultrasound (MRgHIFU) non-invasive ablative surgeries have advanced into clinical trials for treating many pathologies and cancers. A remaining challenge of these surgeries is accurately planning and monitoring tissue heating in the face of patient-specific and dynamic acoustic properties of tissues. Currently, non-invasive measurements of acoustic properties have not been implemented in MRgHIFU treatment planning and monitoring procedures. This methods-driven study presents a technique using MR temperature imaging (MRTI) during low-temperature HIFU sonications to non-invasively estimate sample-specific acoustic absorption and speed of sound values in tissue-mimicking phantoms. Using measured thermal properties, specific absorption rate (SAR) patterns are calculated from the MRTI data and compared to simulated SAR patterns iteratively generated via the Hybrid Angular Spectrum (HAS) method. Once the error between the simulated and measured patterns is minimised, the estimated acoustic property values are compared to the true phantom values obtained via an independent technique. The estimated values are then used to simulate temperature profiles in the phantoms, and compared to experimental temperature profiles. This study demonstrates that trends in acoustic absorption and speed of sound can be non-invasively estimated with average errors of 21% and 1%, respectively. Additionally, temperature predictions using the estimated properties on average match within 1.2 °C of the experimental peak temperature rises in the phantoms. The positive results achieved in tissue-mimicking phantoms presented in this study indicate that this technique may be extended to in vivo applications, improving HIFU sonication temperature rise predictions and treatment assessment.
Non-native earthworms promote plant invasion by ingesting seeds and modifying soil properties
NASA Astrophysics Data System (ADS)
Clause, Julia; Forey, Estelle; Lortie, Christopher J.; Lambert, Adam M.; Barot, Sébastien
2015-04-01
Earthworms can have strong direct effects on plant communities through consumption and digestion of seeds, however it is unclear how earthworms may influence the relative abundance and composition of plant communities invaded by non-native species. In this study, earthworms, seed banks, and the standing vegetation were sampled in a grassland of central California. Our objectives were i) to examine whether the abundances of non-native, invasive earthworm species and non-native grassland plant species are correlated, and ii) to test whether seed ingestion by these worms alters the soil seed bank by evaluating the composition of seeds in casts relative to uningested soil. Sampling locations were selected based on historical land-use practices, including presence or absence of tilling, and revegetation by seed using Phalaris aquatica. Only non-native earthworm species were found, dominated by the invasive European species Aporrectodea trapezoides. Earthworm abundance was significantly higher in the grassland blocks dominated by non-native plant species, and these sites had higher carbon and moisture contents. Earthworm abundance was also positively related to increased emergence of non-native seedlings, but had no effect on that of native seedlings. Plant species richness and total seedling emergence were higher in casts than in uningested soils. This study suggests that there is a potential effect of non-native earthworms in promoting non-native and likely invasive plant species within grasslands, due to seed-plant-earthworm interactions via soil modification or to seed ingestion by earthworms and subsequent cast effects on grassland dynamics. This study supports a growing body of literature for earthworms as ecosystem engineers but highlights the relative importance of considering non-native-native interactions with the associated plant community.
Non-invasive diagnostic methods in dentistry
NASA Astrophysics Data System (ADS)
Todea, Carmen
2016-03-01
The paper, will present the most important non-invasive methods for diagnostic, in different fields of dentistry. Moreover, the laser-based methods will be emphasis. In orthodontics, 3D laser scanners are increasingly being used to establish database for normative population and cross-sectional growth changes but also to asses clinical outcomes in orthognatic surgical and non-surgical treatments. In prevention the main methods for diagnostic of demineralization and caries detection in early stages are represented by laser fluorescence - Quantitative Light Florescence (QLF); DiagnoDent-system-655nm; FOTI-Fiberoptic transillumination; DIFOTI-Digital Imaging Fiberoptic transillumination; and Optical Coherence Tomography (OCT). In odontology, Laser Doppler Flowmetry (LDF) is a noninvasive real time method used for determining the tooth vitality by monitoring the pulp microcirculation in traumatized teeth, fractured teeth, and teeth undergoing different conservative treatments. In periodontology, recently study shows the ability of LDF to evaluate the health of gingival tissue in periodontal tissue diseases but also after different periodontal treatments.
Rezvani, Mohammad Bagher; Karimi, Mehrdad; Akhavan Rasoolzade, Raheleh; Haghgoo, Roza
2015-01-01
Statement of the Problem With the recent focus of researches on the development of non-invasive treatment modalities, the non-invasive treatment of early carious lesions by remineralization would bring a major advance in the clinical management of these dental defects. Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) is considered to be effective in tooth remineralization. Purpose The aim of this in-vitro study was to compare the effects of whey and CPP-ACP in increasing the enamel microhardness. Materials and Method Microhardness of 30 sound human permanent premolars was measured before and after 8-minute immersion of samples in Coca-Cola. The teeth were then randomly divided into 3 groups and were immersed in artificial saliva, whey, and tooth mousse for 10 minutes. The changes of microhardness within each group and among the groups were recorded and analyzed using paired t-test. Results The microhardness increased in each group and between the groups; this increase was statistically significant (p= 0.009). Conclusion The effect of whey on increasing the enamel microhardness was more than that of tooth mousse. PMID:25759858
A potential non-invasive approach to evaluating blastocyst quality using biodynamic imaging
NASA Astrophysics Data System (ADS)
Li, Zhe; Ehmke, Natalie; Machaty, Zoltan; Nolte, David
2018-02-01
Biodynamic imaging (BDI) is capable of capturing the intracellular dynamics of blastocysts within a relatively short time. Spectroscopic signatures of embryos in the 0.01 Hz - 1 Hz range display responses to external factors before morphology changes take place. Viability evaluation is consistent with results from other non-invasive methods. Biodynamic imaging is a potential tool for selecting high quality embryos in clinical IVF practices.
Pellegrini, Michael; Zoghi, Maryam; Jaberzadeh, Shapour
2018-01-12
Cluster analysis and other subgrouping techniques have risen in popularity in recent years in non-invasive brain stimulation research in the attempt to investigate the issue of inter-individual variability - the issue of why some individuals respond, as traditionally expected, to non-invasive brain stimulation protocols and others do not. Cluster analysis and subgrouping techniques have been used to categorise individuals, based on their response patterns, as responder or non-responders. There is, however, a lack of consensus and consistency on the most appropriate technique to use. This systematic review aimed to provide a systematic summary of the cluster analysis and subgrouping techniques used to date and suggest recommendations moving forward. Twenty studies were included that utilised subgrouping techniques, while seven of these additionally utilised cluster analysis techniques. The results of this systematic review appear to indicate that statistical cluster analysis techniques are effective in identifying subgroups of individuals based on response patterns to non-invasive brain stimulation. This systematic review also reports a lack of consensus amongst researchers on the most effective subgrouping technique and the criteria used to determine whether an individual is categorised as a responder or a non-responder. This systematic review provides a step-by-step guide to carrying out statistical cluster analyses and subgrouping techniques to provide a framework for analysis when developing further insights into the contributing factors of inter-individual variability in response to non-invasive brain stimulation.
Fetal sex determination in twin pregnancies using cell free fetal DNA analysis.
Milan, Miguel; Mateu, Emilia; Blesa, David; Clemente-Ciscar, Monica; Simon, Carlos
2018-04-23
We sought to develop an accurate sex classification method in twin pregnancies using data obtained from a standard commercial non-invasive prenatal test. A total of 706 twin pregnancies were included in this retrospective analytical data study. Normalized chromosome values for chromosomes X and Y were used and adapted into a sex-score to predict fetal sex in each fetus, and results were compared with the clinical outcome at birth. Outcome information at birth for sex chromosomes was available for 232 twin pregnancies. From these, a total of 173 twin pregnancies with a Y chromosome identified in non-invasive pregnancy testing were used for the development of a predictive model. Global accuracy for sex classification in the testing set with 51 samples was 0.98 (95% confidence interval [0.90,0.99]), with a specificity and sensitivity of 1 (95% confidence interval [0.82,1.00]) and 0.97 (95% confidence interval [0.84,0.99]), respectively. While non-invasive prenatal testing is a screening method and confirmatory results must be obtained by ultrasound or genetic diagnosis, the sex-score determination presented herein offers an accurate and useful approach to characterizing fetus sex in twin pregnancies in a non-invasive manner early on in pregnancy. © 2018 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Fajkus, Marcel; Nedoma, Jan; Martinek, Radek; Vasinek, Vladimir
2017-10-01
In this article, we describe an innovative non-invasive method of Fetal Phonocardiography (fPCG) using fiber-optic sensors and adaptive algorithm for the measurement of fetal heart rate (fHR). Conventional PCG is based on a noninvasive scanning of acoustic signals by means of a microphone placed on the thorax. As for fPCG, the microphone is placed on the maternal abdomen. Our solution is based on patent pending non-invasive scanning of acoustic signals by means of a fiber-optic interferometer. Fiber-optic sensors are resistant to technical artifacts such as electromagnetic interferences (EMI), thus they can be used in situations where it is impossible to use conventional EFM methods, e.g. during Magnetic Resonance Imaging (MRI) examination or in case of delivery in water. The adaptive evaluation system is based on Recursive least squares (RLS) algorithm. Based on real measurements provided on five volunteers with their written consent, we created a simplified dynamic signal model of a distribution of heartbeat sounds (HS) through the human body. Our created model allows us to verification of the proposed adaptive system RLS algorithm. The functionality of the proposed non-invasive adaptive system was verified by objective parameters such as Sensitivity (S+) and Signal to Noise Ratio (SNR).
Non-invasive detection of language-related prefrontal high gamma band activity with beamforming MEG.
Hashimoto, Hiroaki; Hasegawa, Yuka; Araki, Toshihiko; Sugata, Hisato; Yanagisawa, Takufumi; Yorifuji, Shiro; Hirata, Masayuki
2017-10-27
High gamma band (>50 Hz) activity is a key oscillatory phenomenon of brain activation. However, there has not been a non-invasive method established to detect language-related high gamma band activity. We used a 160-channel whole-head magnetoencephalography (MEG) system equipped with superconducting quantum interference device (SQUID) gradiometers to non-invasively investigate neuromagnetic activities during silent reading and verb generation tasks in 15 healthy participants. Individual data were divided into alpha (8-13 Hz), beta (13-25 Hz), low gamma (25-50 Hz), and high gamma (50-100 Hz) bands and analysed with the beamformer method. The time window was consecutively moved. Group analysis was performed to delineate common areas of brain activation. In the verb generation task, transient power increases in the high gamma band appeared in the left middle frontal gyrus (MFG) at the 550-750 ms post-stimulus window. We set a virtual sensor on the left MFG for time-frequency analysis, and high gamma event-related synchronization (ERS) induced by a verb generation task was demonstrated at 650 ms. In contrast, ERS in the high gamma band was not detected in the silent reading task. Thus, our study successfully non-invasively measured language-related prefrontal high gamma band activity.
Non-invasive, non-radiological quantification of anteroposterior knee joint ligamentous laxity
Russell, D. F.; Deakin, A. H.; Fogg, Q. A.; Picard, F.
2013-01-01
Objectives We performed in vitro validation of a non-invasive skin-mounted system that could allow quantification of anteroposterior (AP) laxity in the outpatient setting. Methods A total of 12 cadaveric lower limbs were tested with a commercial image-free navigation system using trackers secured by bone screws. We then tested a non-invasive fabric-strap system. The lower limb was secured at 10° intervals from 0° to 60° of knee flexion and 100 N of force was applied perpendicular to the tibia. Acceptable coefficient of repeatability (CR) and limits of agreement (LOA) of 3 mm were set based on diagnostic criteria for anterior cruciate ligament (ACL) insufficiency. Results Reliability and precision within the individual invasive and non-invasive systems was acceptable throughout the range of flexion tested (intra-class correlation coefficient 0.88, CR 1.6 mm). Agreement between the two systems was acceptable measuring AP laxity between full extension and 40° knee flexion (LOA 2.9 mm). Beyond 40° of flexion, agreement between the systems was unacceptable (LOA > 3 mm). Conclusions These results indicate that from full knee extension to 40° flexion, non-invasive navigation-based quantification of AP tibial translation is as accurate as the standard validated commercial system, particularly in the clinically and functionally important range of 20° to 30° knee flexion. This could be useful in diagnosis and post-operative evaluation of ACL pathology. Cite this article: Bone Joint Res 2013;2:233–7. PMID:24184443
Understanding the factors contributing to expansion of non-native populations is a critical step toward accurate risk assessment and effective management of biological invasions. Numerous studies have attempted to predict spread of invasive populations by assessing habitat suitab...
Reproductive effort in invasive and non-invasive Rubus.
McDowell, Susan C; Turner, David P
2002-10-01
We quantified the physiological costs and the total amount of resources allocated to reproduction in two closely related species of Rubus, one of which is invasive. These two species share several morphological and life-history characteristics and grow together in the Pacific Northwestern United States. Reproductive effort was manipulated in canes of both species by removing flower buds. The non-invasive species, R. ursinus, exhibited significantly greater water stress in the reproductive canes, as indicated by lower leaf water potential (Ψ) and reduced stomatal conductance (g s ). This species also showed a reduction in leaf nitrogen concentration ([N]) associated with reproduction. Combined, these factors led to reduced photosynthesis (A) on a diurnal basis, lower water-use efficiency as inferred from δ 13 C, and reduced photosynthetic capacity. All of these effects were more pronounced during the fruiting stage than in the flowering stage. The invasive species, R. discolor, showed no changes in water stress, [N], δ 13 C, or A associated with reproduction. A model was used to estimate total gross photosynthesis (A gross ) for reproductive and non-reproductive canes of both species over cane lifetime. Reproduction was associated with a greater decline in A gross for the non-invasive R. ursinus than for the invasive R. discolor. Although R. discolor allocated more resources directly to flowers and fruit than R. ursinus, the invasive species had significantly lower reproductive effort, or total amount of resources diverted from vegetative activity to reproduction, than the non-invasive species. By minimizing the reduction of photosynthesis associated with reproduction, this invasive species may be able to minimize the trade-offs commonly associated with reproduction.
Non-invasive blood glucose monitor based on spectroscopy using a smartphone.
Dantu, Vishnu; Vempati, Jagannadh; Srivilliputhur, Srinivasan
2014-01-01
Development of a novel method for non-invasive measurement of blood glucose concentration using smartphone is discussed. Our research work has three major contributions to society and science. First, we modified and extended the Beer-Lambert's law in physics to accommodate for multiple wavelengths. This extension can aid researchers who wish to perform optical spectroscopy. Second, we successfully developed a creative and non-invasive way for diabetic patients to measure glucose levels via a smartphone. Researchers and chemists can now use their smartphones to determine the absorbance and, therefore, concentration of a chemical. Third, we created an inexpensive way to perform optical spectroscopy by using a smartphone. Monitoring blood glucose using a smartphone application that simply uses equipment already available on smartphones will improve the lives of diabetic patients who can continuously check their blood glucose levels while avoiding the current inconvenient, unhygienic, and costly invasive glucose meters.
NASA Astrophysics Data System (ADS)
Gabai, Haniel; Baranes-Zeevi, Maya; Zilberman, Meital; Shaked, Natan T.
2013-04-01
We propose an off-axis interferometric imaging system as a simple and unique modality for continuous, non-contact and non-invasive wide-field imaging and characterization of drug release from its polymeric device used in biomedicine. In contrast to the current gold-standard methods in this field, usually based on chromatographic and spectroscopic techniques, our method requires no user intervention during the experiment, and only one test-tube is prepared. We experimentally demonstrate imaging and characterization of drug release from soy-based protein matrix, used as skin equivalent for wound dressing with controlled anesthetic, Bupivacaine drug release. Our preliminary results demonstrate the high potential of our method as a simple and low-cost modality for wide-field imaging and characterization of drug release from drug delivery devices.
Ferreira, João C. P.; Fujihara, Caroline J.; Fruhvald, Erika; Trevisol, Eduardo; Destro, Flavia C.; Teixeira, Carlos R.; Pantoja, José C. F.; Schmidt, Elizabeth M. S.; Palme, Rupert
2015-01-01
Parrots kept in zoos and private households often develop psychological and behavioural disorders. Despite knowing that such disorders have a multifactorial aetiology and that chronic stress is involved, little is known about their development mainly due to a poor understanding of the parrots’ physiology and the lack of validated methods to measure stress in these species. In birds, blood corticosterone concentrations provide information about adrenocortical activity. However, blood sampling techniques are difficult, highly invasive and inappropriate to investigate stressful situations and welfare conditions. Thus, a non-invasive method to measure steroid hormones is critically needed. Aiming to perform a physiological validation of a cortisone enzyme immunoassay (EIA) to measure glucocorticoid metabolites (GCM) in droppings of 24 Blue-fronted parrots (Amazona aestiva), two experiments were designed. During the experiments all droppings were collected at 3-h intervals. Initially, birds were sampled for 24 h (experiment 1) and one week later assigned to four different treatments (experiment 2): Control (undisturbed), Saline (0.2 mL of 0.9% NaCl IM), Dexamethasone (1 mg/kg IM) and Adrenocorticotropic hormone (ACTH; 25 IU IM). Treatments (always one week apart) were applied to all animals in a cross-over study design. A daily rhythm pattern in GCM excretion was detected but there were no sex differences (first experiment). Saline and dexamethasone treatments had no effect on GCM (not different from control concentrations). Following ACTH injection, GCM concentration increased about 13.1-fold (median) at the peak (after 3–9 h), and then dropped to pre-treatment concentrations. By a successful physiological validation, we demonstrated the suitability of the cortisone EIA to non-invasively monitor increased adrenocortical activity, and thus, stress in the Blue-fronted parrot. This method opens up new perspectives for investigating the connection between behavioural disorders and stress in this bird species, and could also help in their captive management. PMID:26717147
Ferreira, João C P; Fujihara, Caroline J; Fruhvald, Erika; Trevisol, Eduardo; Destro, Flavia C; Teixeira, Carlos R; Pantoja, José C F; Schmidt, Elizabeth M S; Palme, Rupert
2015-01-01
Parrots kept in zoos and private households often develop psychological and behavioural disorders. Despite knowing that such disorders have a multifactorial aetiology and that chronic stress is involved, little is known about their development mainly due to a poor understanding of the parrots' physiology and the lack of validated methods to measure stress in these species. In birds, blood corticosterone concentrations provide information about adrenocortical activity. However, blood sampling techniques are difficult, highly invasive and inappropriate to investigate stressful situations and welfare conditions. Thus, a non-invasive method to measure steroid hormones is critically needed. Aiming to perform a physiological validation of a cortisone enzyme immunoassay (EIA) to measure glucocorticoid metabolites (GCM) in droppings of 24 Blue-fronted parrots (Amazona aestiva), two experiments were designed. During the experiments all droppings were collected at 3-h intervals. Initially, birds were sampled for 24 h (experiment 1) and one week later assigned to four different treatments (experiment 2): Control (undisturbed), Saline (0.2 mL of 0.9% NaCl IM), Dexamethasone (1 mg/kg IM) and Adrenocorticotropic hormone (ACTH; 25 IU IM). Treatments (always one week apart) were applied to all animals in a cross-over study design. A daily rhythm pattern in GCM excretion was detected but there were no sex differences (first experiment). Saline and dexamethasone treatments had no effect on GCM (not different from control concentrations). Following ACTH injection, GCM concentration increased about 13.1-fold (median) at the peak (after 3-9 h), and then dropped to pre-treatment concentrations. By a successful physiological validation, we demonstrated the suitability of the cortisone EIA to non-invasively monitor increased adrenocortical activity, and thus, stress in the Blue-fronted parrot. This method opens up new perspectives for investigating the connection between behavioural disorders and stress in this bird species, and could also help in their captive management.
Zhang, Kai-Mei; Shen, Yu; Zhou, Xiao-Qi; Fang, Yan-Ming; Liu, Ying; Ma, Lena Q
2016-05-01
To date, the response of the fern gametophyte to its environment has received considerable attention. However, studies on the influence of plant invasion on the fern gametophyte are fewer. Allelopathy has been hypothesized to play an important role in biological invasion. Hence, it is necessary to study the allelopathy of invasive plant species to the fern gametophyte and elucidate the mechanisms by which invasive plants cause phytotoxicity. As one of the main invasive plants in China, Bidens pilosa exhibits allelopathic effects on the gametophytic growth of Pteris multifida. The root exudate plays an important role among various allelochemical delivery mechanisms in B. pilosa. The effect invasive plant species has on photosynthesis in native species is poorly understood. To elucidate this effect, the changes in photosynthesis in the gametophytes of P. multifida are analyzed to examine the mechanisms of the root exudates of B. pilosa. Meanwhile, a non-invasive plant, Coreopsis basalis, was also applied to investigate the effects on fluorescence and pigments in P. multifida gametophytes. We found that gametophytes exposed to both B. pilosa and C. basalis had decreased fluorescence parameters in comparison with the control, except for non-photochemical quenching. Furthermore, it was found that these parameters were markedly affected from day 2 to day 10 in the presence of both exudates at a concentration of 25% or above. B. pilosa exudate had a negative dose-dependent effect on chlorophyll a, chlorophyll b, carotenoid, and the total chlorophyll in the gametophyte. The inhibitory effects increased with increasing exudate concentrations of both species, exhibiting the greatest inhibition at day 10. In conclusion, B. pilosa irreversibly affected the photosynthesis of P. multifida on both PS I and PS II. Root exudates caused the primary damage with respect to the decrease of the acceptors and donors of photon and electron in photosynthetic units and the production and the relative yield of photochemical quantum in PS II. With the effects of exudates, part of the energy is released as heat in chloroplasts. The comparison of invasive and non-invasive plants in allelopathic experiments demonstrated that invasive plants were responsible for the critical damage to the photosynthetic process in local species. Copyright © 2016 Elsevier B.V. All rights reserved.
Khalil, Omar S
2004-10-01
There are three main issues in non-invasive (NI) glucose measurements: namely, specificity, compartmentalization of glucose values, and calibration. There has been progress in the use of near-infrared and mid-infrared spectroscopy. Recently new glucose measurement methods have been developed, exploiting the effect of glucose on erythrocyte scattering, new photoacoustic phenomenon, optical coherence tomography, thermo-optical studies on human skin, Raman spectroscopy studies, fluorescence measurements, and use of photonic crystals. In addition to optical methods, in vivo electrical impedance results have been reported. Some of these methods measure intrinsic properties of glucose; others deal with its effect on tissue or blood properties. Recent studies on skin from individuals with diabetes and its response to stimuli, skin thermo-optical response, peripheral blood flow, and red blood cell rheology in diabetes shed new light on physical and physiological changes resulting from the disease that can affect NI glucose measurements. There have been advances in understanding compartmentalization of glucose values by targeting certain regions of human tissue. Calibration of NI measurements and devices is still an open question. More studies are needed to understand the specific glucose signals and signals that are due to the effect of glucose on blood and tissue properties. These studies should be performed under normal physiological conditions and in the presence of other co-morbidities.
[Cardiac arrest due to accidental hypothermia and prolonged cardiopulmonary resuscitation].
Kot, P; Botella, J
2010-11-01
In cardiac arrest produced by accidental hypothermia, cardiopulmonary resuscitation must be prolonged until normal body temperature is achieved. There are different rewarming methods. In theory, the more invasive ones are elective in patients with cardiac arrest because of their higher rewarming speed. However, it has not been proven that these methods are better than the non-invasive ones. We present a case report of a patient with cardiac arrest due to accidental hypothermia who was treated without interruption for three hours with heart massage. This is the longest successful cardiopulmonary resuscitation known up-to-date in Spain. In order to rewarm the body, a combination of non-invasive methods was used: active external rewarming with convective warm air, gastric and bladder lavage with warm saline solution and intravenous warm saline infusion. This case shows that it is possible to treat hypothermic cardiac arrest successfully through these rewarming methods, which are both easy to apply and feasible in any hospital. Copyright © 2009 Elsevier España, S.L. y SEMICYUC. All rights reserved.
Fitzpatrick, Megan J; Mathewson, Paul D; Porter, Warren P
2015-01-01
Mechanistic models provide a powerful, minimally invasive tool for gaining a deeper understanding of the ecology of animals across geographic space and time. In this paper, we modified and validated the accuracy of the mechanistic model Niche Mapper for simulating heat exchanges of animals with counter-current heat exchange mechanisms in their legs and animals that wade in water. We then used Niche Mapper to explore the effects of wading and counter-current heat exchange on the energy expenditures of Whooping Cranes, a long-legged wading bird. We validated model accuracy against the energy expenditure of two captive Whooping Cranes measured using the doubly-labeled water method and time energy budgets. Energy expenditure values modeled by Niche Mapper were similar to values measured by the doubly-labeled water method and values estimated from time-energy budgets. Future studies will be able to use Niche Mapper as a non-invasive tool to explore energy-based limits to the fundamental niche of Whooping Cranes and apply this knowledge to management decisions. Basic questions about the importance of counter-current exchange and wading to animal physiological tolerances can also now be explored with the model.
Fitzpatrick, Megan J.; Mathewson, Paul D.; Porter, Warren P.
2015-01-01
Mechanistic models provide a powerful, minimally invasive tool for gaining a deeper understanding of the ecology of animals across geographic space and time. In this paper, we modified and validated the accuracy of the mechanistic model Niche Mapper for simulating heat exchanges of animals with counter-current heat exchange mechanisms in their legs and animals that wade in water. We then used Niche Mapper to explore the effects of wading and counter-current heat exchange on the energy expenditures of Whooping Cranes, a long-legged wading bird. We validated model accuracy against the energy expenditure of two captive Whooping Cranes measured using the doubly-labeled water method and time energy budgets. Energy expenditure values modeled by Niche Mapper were similar to values measured by the doubly-labeled water method and values estimated from time-energy budgets. Future studies will be able to use Niche Mapper as a non-invasive tool to explore energy-based limits to the fundamental niche of Whooping Cranes and apply this knowledge to management decisions. Basic questions about the importance of counter-current exchange and wading to animal physiological tolerances can also now be explored with the model. PMID:26308207
Recovery of native forest after removal of an invasive tree, Falcataria moluccana, in American Samoa
R. Flint Hughes; Amanda L. Uowolo; Tavita P. Togia
2012-01-01
Invasive species are among the greatest threats to global biodiversity. Unfortunately, meaningful control of invasive species is often difficult. Here, we present results concerning the effects of invasion by a non-native, N2-fixing tree, Falcataria moluccana, on native-dominated forests of American Samoa and the response of...
The spread of invasive species and infectious disease as drivers of ecosystem change.
Todd A. Crowl; Thomas O. Crist; Robert R. Parmenter; Gary Belovsky; Ariel E. Lugo
2008-01-01
Invasive species, disease vectors, and pathogens affect biodiversity, ecosystem function and services, and human health. Climate change, land use, and transport vectors interact in complex ways to determine the spread of native and non-native invasive species, pathogens, and their effects on ecosystem dynamics. Early detection and in-depth understanding of invasive...
Schwalbe, H J; Bamfaste, G; Franke, R P
1999-01-01
Quality control in orthopaedic diagnostics according to DIN EN ISO 9000ff requires methods of non-destructive process control, which do not harm the patient by radiation or by invasive examinations. To obtain an improvement in health economy, quality-controlled and non-destructive measurements have to be introduced into the diagnostics and therapy of human joints and bones. A non-invasive evaluation of the state of wear of human joints and of the cracking tendency of bones is, as of today's point of knowledge, not established. The analysis of acoustic emission signals allows the prediction of bone rupture far below the fracture load. The evaluation of dry and wet bone samples revealed that it is possible to conclude from crack initiation to the bone strength and thus to predict the probability of bone rupture.
Wang, C; Zhou, J; Liu, J; Jiang, K; Xiao, H; Du, D
2018-01-01
Soil fungal communities play an important role in the successful invasion of non-native species. It is common for two or more invasive plant species to co-occur in invaded ecosystems. This study aimed to determine the effects of co-invasion of two invasive species (Erigeron annuus and Solidago canadensis) with different cover classes on soil fungal communities using high-throughput sequencing. Invasion of E. annuus and/or S. canadensis had positive effects on the sequence number, operational taxonomic unit (OTU) richness, Shannon diversity, abundance-based cover estimator (ACE index) and Chao1 index of soil fungal communities, but negative effects on the Simpson index. Thus, invasion of E. annuus and/or S. canadensis could increase diversity and richness of soil fungal communities but decrease dominance of some members of these communities, in part to facilitate plant further invasion, because high soil microbial diversity could increase soil functions and plant nutrient acquisition. Some soil fungal species grow well, whereas others tend to extinction after non-native plant invasion with increasing invasion degree and presumably time. The sequence number, OTU richness, Shannon diversity, ACE index and Chao1 index of soil fungal communities were higher under co-invasion of E. annuus and S. canadensis than under independent invasion of either individual species. The co-invasion of the two invasive species had a positive synergistic effect on diversity and abundance of soil fungal communities, partly to build a soil microenvironment to enhance competitiveness of the invaders. The changed diversity and community under co-invasion could modify resource availability and niche differentiation within the soil fungal communities, mediated by differences in leaf litter quality and quantity, which can support different fungal/microbial species in the soil. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
NASA Technical Reports Server (NTRS)
Henriksen, Mina D.
1995-01-01
The research performed was a small portion of the patent to be submitted by Dr. Alan T. Pope entitled 'A Method of Providing Veridical Non-Invasive Endoscopic Feedback for Learning of Voluntary Control of Physiological Functioning'. The focus of this study is to incorporate the emerging technology of virtual reality with the forms of biofeedback already in existance producing a life-like, real-time model of the body's functioning without using invasive procedures, yet still producing the equivalent of a picture from an invasive endoscopic procedure in the region of interest. The portion of the project designated to me was to research and report as many possible uses for such technology as possible.
Ultrasonographic Evaluation of Oral Submucous Fibrosis and Masseteric Hypertrophy
Devathambi, Jones Raja; Aswath, Nalini
2013-01-01
Objectives: To evaluate the efficacy of ultrasonography (USG) as a non-invasive tool in assessing the severity of oral submucous fibrosis (OSMF) and also to assess the relationship between OSMF and hypertrophy of the masseter muscle. Materials and Methods: The submucosal thickness in buccal mucosa and masseteric muscle hypertrophy were measured using ultrasound (10-15 MHz) in 60 patients comprising 30 OSMF patients and 30 controls. Results: Results were analyzed by one way analysis of variance, Chi-square test and t-test. As the stages of OSMF advanced there was an increase in submucosal thickness of the buccal mucosa as well as masseter muscle thickness in both relaxed and contracted state in the study group when compared with controls (P < 0.005). Conclusion: USG is an effective non-invasive zero radiation tool for assessing the progression of OSMF. PMID:24516775
NASA Astrophysics Data System (ADS)
Zude, Manuela; Spinelli, Lorenzo; Dosche, Carsten; Torricelli, Alessandro
2009-08-01
In sweet cherry (Prunus avium), the red pigmentation is correlated with the fruit maturity stage and can be measured by non-invasive spectroscopy. In the present study, the influence of varying fruit scattering coefficients on the fruit remittance spectrum (cw) were corrected with the effective pathlength and refractive index in the fruit tissue obtained with distribution of time-of-flight (DTOF) readings and total internal reflection fluorescence (TIRF) analysis, respectively. The approach was validated on fruits providing variation in the scattering coefficient outside the calibration sample set. In the validation, the measuring uncertainty when non-invasively analyzing fruits with cw method in comparison with combined application of cw, DTOF, and TIRF measurements showed an increase in r2 up to 22.7 % with, however, high errors in all approaches.
NASA Astrophysics Data System (ADS)
Fryskowska, A.; Kedzierski, M.; Walczykowski, P.; Wierzbicki, D.; Delis, P.; Lada, A.
2017-08-01
The archaeological heritage is non-renewable, and any invasive research or other actions leading to the intervention of mechanical or chemical into the ground lead to the destruction of the archaeological site in whole or in part. For this reason, modern archeology is looking for alternative methods of non-destructive and non-invasive methods of new objects identification. The concept of aerial archeology is relation between the presence of the archaeological site in the particular localization, and the phenomena that in the same place can be observed on the terrain surface form airborne platform. One of the most appreciated, moreover, extremely precise, methods of such measurements is airborne laser scanning. In research airborne laser scanning point cloud with a density of 5 points/sq. m was used. Additionally unmanned aerial vehicle imagery data was acquired. Test area is located in central Europe. The preliminary verification of potentially microstructures localization was the creation of digital terrain and surface models. These models gave an information about the differences in elevation, as well as regular shapes and sizes that can be related to the former settlement/sub-surface feature. The paper presents the results of the detection of potentially sub-surface microstructure fields in the forestry area.
Prognostic value of the frequency of vascular invasion in stage I non-small cell lung cancer.
Okada, Satoshi; Mizuguchi, Shinjiro; Izumi, Nobuhiro; Komatsu, Hiroaki; Toda, Michihito; Hara, Kantaro; Okuno, Takahiro; Shibata, Toshihiko; Wanibuchi, Hideki; Nishiyama, Noritoshi
2017-01-01
There is no standard pathological method for determining vessel invasion in lung cancer. Herein, we examine whether vessel invasion can be accurately assessed using hematoxylin-eosin staining alone, and investigate the prognostic impact of the presence and frequency of vessel invasion in lung cancer. Vessel invasion was assessed by hematoxylin-eosin, Victoria blue, and D2-40 in 251 completely resected stage I non-small cell lung cancer patients. Vessel invasion was classified into 3 grades according to the number of invaded vessels. Using hematoxylin-eosin and Victoria blue, vascular invasion was detected in 27 (10.8 %) and 75 (29.9 %) of patients, respectively. Lymphatic permeation was detected in 126 (50.2 %) and 70 (27.9 %) of patients using hematoxylin-eosin and D2-40 staining. Hematoxylin-eosin staining did not accurately detect a high frequency of vessel invasion; only 5 and 21.7 % of high-frequency vascular invasion and lymphatic permeation cases diagnosed with Victoria blue and D2-40 were detected. Multivariate analysis based on elastic stain and immunostaining indicated that plural invasion, a high frequency of vascular invasion (hazard ratio 4.00), and a high frequency of lymphatic permeation (hazard ratio 2.30) were independent predictors of cancer recurrence within 3 years. Likewise, an age ≥70 years, male, and a high frequency of vascular invasion (hazard ratio 3.41) were independent predictors of overall survival. Vascular invasion should be confirmed by elastic stains, and the frequency, not but the presence, of vascular invasion is a powerful independent prognostic factor in completely resected stage I non-small cell lung cancer patients.
Newall, A T; Reyes, J F; McIntyre, P; Menzies, R; Beutels, P; Wood, J G
2016-01-12
Retrospective cost-effectiveness analyses of vaccination programs using routinely collected post-implementation data are sparse by comparison with pre-program analyses. We performed a retrospective economic evaluation of the childhood 7-valent pneumococcal conjugate vaccine (PCV7) program in Australia. We developed a deterministic multi-compartment model that describes health states related to invasive and non-invasive pneumococcal disease. Costs (Australian dollars, A$) and health effects (quality-adjusted life years, QALYs) were attached to model states. The perspective for costs was that of the healthcare system and government. Where possible, we used observed changes in the disease rates from national surveillance and healthcare databases to estimate the impact of the PCV7 program (2005-2010). We stratified our cost-effectiveness results into alternative scenarios which differed by the outcome states included. Parameter uncertainty was explored using probabilistic sensitivity analysis. The PCV7 program was estimated to have prevented ∼5900 hospitalisations and ∼160 deaths from invasive pneumococcal disease (IPD). Approximately half of these were prevented in adults via herd protection. The incremental cost-effectiveness ratio was ∼A$161,000 per QALY gained when including only IPD-related outcomes. The cost-effectiveness of PCV7 remained in the range A$88,000-$122,000 when changes in various non-invasive disease states were included. The inclusion of observed changes in adult non-invasive pneumonia deaths substantially improved cost-effectiveness (∼A$9000 per QALY gained). Using the initial vaccine price negotiated for Australia, the PCV7 program was unlikely to have been cost-effective (at conventional thresholds) unless observed reductions in non-invasive pneumonia deaths in the elderly are attributed to it. Further analyses are required to explore this finding, which has significant implications for the incremental benefit achievable by adult PCV programs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dave, Chirag; Turner, Alice; Dretzke, Janine; Bayliss, Sue; O'Brien, Deirdre; Jowett, Sue; Moore, David
2014-03-27
Chronic obstructive pulmonary disease (COPD) remains a significant public health burden. Non-invasive ventilation (NIV) is a method of supported breathing used as standard care for acutely unwell patients in hospital with COPD, but there is uncertainty around the potential benefits of using NIV in the treatment of stable patients in a non-hospital setting. This is a protocol for systematic reviews of the clinical and cost-effectiveness of NIV in this context, being undertaken in support of a model based economic evaluation. Standard systematic review methods aimed at minimising bias will be employed for study identification, selection and data extraction for both the clinical and economic systematic reviews. Bibliographic databases (for example MEDLINE, EMBASE) and ongoing trials registers will be searched from 1980 onwards. The search strategy will combine terms for the population with those for the intervention. Studies will be selected for review if the population includes adult patients with COPD and hypercapnic respiratory failure, however defined. Systematic reviews, randomised controlled trials and observational studies (with n >1) will be included, and quality assessment will be tailored to the different study designs. The primary outcome measures of interest are survival, quality of life, and healthcare utilisations (hospitalisation and Accident and Emergency attendances). Meta-analyses will be undertaken where clinical and methodological homogeneity exists, supported by predefined subgroup analyses where appropriate. A systematic review of the evidence on the cost-effectiveness of non-hospital NIV will be completed, and a model-based cost-utility analysis undertaken to determine the cost-effectiveness of non-hospital-based NIV compared with standard care. These reviews will attempt to clarify the clinical effectiveness of non-hospital NIV in COPD patients as well as the cost-effectiveness. The findings may indicate whether NIV in a non-hospital setting should be considered more routinely in this patient group, and what the likely cost implications will be. 2012:CRD42012003286.
[Non-invasive mechanical ventilation in the treatment of acute heart failure].
Alfonso Megido, Joaquín; González Franco, Alvaro
2014-03-01
When acute heart failure progresses and there is acute cardiogenic pulmonary edema, routine therapeutic measures should be accompanied by other measures that help to correct oxygenation of the patient. The final and most drastic step is mechanical ventilation. Non-invasive ventilation has been developed in the last few years as a method that attempts to improve oxygenation without the need for intubation, thus, in theory, reducing morbidity and mortality in these patients. The present article describes the controversies surrounding the results of this technique and discusses its indications. The article also discusses how to start non-invasive ventilation in patients with acute pulmonary edema from a practical point of view. Copyright © 2014 Elsevier España, S.L. All rights reserved.
Determining the numbers of a landscape architect species (Tapirus terrestris), using footprints
da Cunha, Cristina J.
2018-01-01
Background As a landscape architect and a major seed disperser, the lowland tapir (Tapirus terrestris) is an important indicator of the ecological health of certain habitats. Therefore, reliable data regarding tapir populations are fundamental in understanding ecosystem dynamics, including those associated with the Atlantic Forest in Brazil. Currently, many population monitoring studies use invasive tagging with radio or satellite/Global Positioning System (GPS) collars. These techniques can be costly and unreliable, and the immobilization required carries physiological risks that are undesirable particularly for threatened and elusive species such as the lowland tapir. Methods We collected data from one of the last regions with a viable population of lowland tapir in the south-eastern Atlantic Forest, Brazil, using a new non-invasive method for identifying species, the footprint identification technique (FIT). Results We identified the minimum number of tapirs in the study area and, in addition, we observed that they have overlapping ranges. Four hundred and forty footprints from 46 trails collected from six locations in the study area in a landscape known to contain tapir were analyzed, and 29 individuals were identified from these footprints. Discussion We demonstrate a practical application of FIT for lowland tapir censusing. Our study shows that FIT is an effective method for the identification of individuals of a threatened species, even when they lack visible natural markings on their bodies. FIT offers several benefits over other methods, especially for tapir management. As a non-invasive method, it can be used to census or monitor species, giving rapid feedback to managers of protected areas. PMID:29610711
Elizabeth E. Crone; Marilyn Marler; Dean E. Pearson
2009-01-01
Invasive species are one of the leading threats to biodiversity worldwide. Therefore, chemical herbicides are increasingly used to control invasive plants in natural and semi-natural areas. Little is known about the non-target impacts of these chemicals on native species. We conducted an experiment to test the demographic effects of the herbicide picloram on a native...
Knowledge gain and behavioral change in citizen-science programs.
Jordan, Rebecca C; Gray, Steven A; Howe, David V; Brooks, Wesley R; Ehrenfeld, Joan G
2011-12-01
Citizen-science programs are often touted as useful for advancing conservation literacy, scientific knowledge, and increasing scientific-reasoning skills among the public. Guidelines for collaboration among scientists and the public are lacking and the extent to which these citizen-science initiatives change behavior is relatively unstudied. Over two years, we studied 82 participants in a three-day program that included education about non-native invasive plants and collection of data on the occurrence of those plants. Volunteers were given background knowledge about invasive plant ecology and trained on a specific protocol for collecting invasive plant data. They then collected data and later gathered as a group to analyze data and discuss responsible environmental behavior with respect to invasive plants. We tested whether participants without experience in plant identification and with little knowledge of invasive plants increased their knowledge of invasive species ecology, participation increased knowledge of scientific methods, and participation affected behavior. Knowledge of invasive plants increased on average 24%, but participation was insufficient to increase understanding of how scientific research is conducted. Participants reported increased ability to recognize invasive plants and increased awareness of effects of invasive plants on the environment, but this translated into little change in behavior regarding invasive plants. Potential conflicts between scientific goals, educational goals, and the motivation of participants must be considered during program design. ©2011 Society for Conservation Biology.
Advances in Intracranial Pressure Monitoring and Its Significance in Managing Traumatic Brain Injury
Kawoos, Usmah; McCarron, Richard M.; Auker, Charles R.; Chavko, Mikulas
2015-01-01
Intracranial pressure (ICP) measurements are essential in evaluation and treatment of neurological disorders such as subarachnoid and intracerebral hemorrhage, ischemic stroke, hydrocephalus, meningitis/encephalitis, and traumatic brain injury (TBI). The techniques of ICP monitoring have evolved from invasive to non-invasive—with both limitations and advantages. Some limitations of the invasive methods include short-term monitoring, risk of infection, restricted mobility of the subject, etc. The invasiveness of a method limits the frequency of ICP evaluation in neurological conditions like hydrocephalus, thus hampering the long-term care of patients with compromised ICP. Thus, there has been substantial interest in developing noninvasive techniques for assessment of ICP. Several approaches were reported, although none seem to provide a complete solution due to inaccuracy. ICP measurements are fundamental for immediate care of TBI patients in the acute stages of severe TBI injury. In severe TBI, elevated ICP is associated with mortality or poor clinical outcome. ICP monitoring in conjunction with other neurological monitoring can aid in understanding the pathophysiology of brain damage. This review article presents: (a) the significance of ICP monitoring; (b) ICP monitoring methods (invasive and non-invasive); and (c) the role of ICP monitoring in the management of brain damage, especially TBI. PMID:26690122
Machine learning methods for credibility assessment of interviewees based on posturographic data.
Saripalle, Sashi K; Vemulapalli, Spandana; King, Gregory W; Burgoon, Judee K; Derakhshani, Reza
2015-01-01
This paper discusses the advantages of using posturographic signals from force plates for non-invasive credibility assessment. The contributions of our work are two fold: first, the proposed method is highly efficient and non invasive. Second, feasibility for creating an autonomous credibility assessment system using machine-learning algorithms is studied. This study employs an interview paradigm that includes subjects responding with truthful and deceptive intent while their center of pressure (COP) signal is being recorded. Classification models utilizing sets of COP features for deceptive responses are derived and best accuracy of 93.5% for test interval is reported.
Elastography methods for the non-invasive assessment of portal hypertension.
Roccarina, Davide; Rosselli, Matteo; Genesca, Joan; Tsochatzis, Emmanuel A
2018-02-01
The gold standard to assess the presence and severity of portal hypertension remains the hepatic vein pressure gradient, however the recent development of non-invasive assessment using elastography techniques offers valuable alternatives. In this review, we discuss the diagnostic accuracy and utility of such techniques in patients with portal hypertension due to cirrhosis. Areas covered: A literature search focused on liver and spleen stiffness measurement with different elastographic techniques for the assessment of the presence and severity of portal hypertension and oesophageal varices in people with chronic liver disease. The combination of elastography with parameters such as platelet count and spleen size is also discussed. Expert commentary: Non-invasive assessment of liver fibrosis and portal hypertension is a validated tool for the diagnosis and follow-up of patients. Baveno VI recommended the combination of transient elastography and platelet count for ruling out varices needing treatment in patients with compensated advanced chronic liver disease. Assessment of aetiology specific cut-offs for ruling in and ruling out clinically significant portal hypertension is an unmet clinical need. The incorporation of spleen stiffness measurements in non-invasive algorithms using validated software and improved measuring scales might enhance the non-invasive diagnosis of portal hypertension in the next 5 years.
Grundeis, Felicitas; Brand, Cristin; Kumar, Saurabh; Rullmann, Michael; Mehnert, Jan; Pleger, Burkhard
2017-01-01
Background/Objectives: Previous studies suggest that non-invasive transcranial direct current stimulation (tDCS) applied to the prefrontal cortex modulates food choices and calorie intake in obese humans. Participants/Methods: In the present fully randomized, placebo-controlled, within-subject and double-blinded study, we applied single sessions of anodal, cathodal, and sham tDCS to the left dorsolateral prefrontal cortex (DLPFC) and contralateral frontal operculum in 25 hungry obese women and investigated possible influences on food reappraisal abilities as well as calorie intake. We hypothesized that tDCS, (i) improves the ability to regulate the desire for visually presented foods and, (ii) reduces their consumption. Results: We could not confirm an effect of anodal or cathodal tDCS, neither on the ability to modulate the desire for visually presented foods, nor on calorie consumption. Conclusions: The present findings do not support the notion of prefrontal/frontal tDCS as a promising treatment option for obesity. PMID:28676735
Detecting and treating occlusal caries lesions: a cost-effectiveness analysis.
Schwendicke, F; Stolpe, M; Meyer-Lueckel, H; Paris, S
2015-02-01
The health gains and costs resulting from using different caries detection strategies might not only depend on the accuracy of the used method but also the treatment emanating from its use in different populations. We compared combinations of visual-tactile, radiographic, or laser-fluorescence-based detection methods with 1 of 3 treatments (non-, micro-, and invasive treatment) initiated at different cutoffs (treating all or only dentinal lesions) in populations with low or high caries prevalence. A Markov model was constructed to follow an occlusal surface in a permanent molar in an initially 12-y-old male German patient over his lifetime. Prevalence data and transition probabilities were extracted from the literature, while validity parameters of different methods were synthesized or obtained from systematic reviews. Microsimulations were performed to analyze the model, assuming a German health care setting and a mixed public-private payer perspective. Radiographic and fluorescence-based methods led to more overtreatments, especially in populations with low prevalence. For the latter, combining visual-tactile or radiographic detection with microinvasive treatment retained teeth longest (mean 66 y) at lowest costs (329 and 332 Euro, respectively), while combining radiographic or fluorescence-based detections with invasive treatment was the least cost-effective (<60 y, >700 Euro). In populations with high prevalence, combining radiographic detection with microinvasive treatment was most cost-effective (63 y, 528 Euro), while sensitive detection methods combined with invasive treatments were again the least cost-effective (<59 y, >690 Euro). The suitability of detection methods differed significantly between populations, and the cost-effectiveness was greatly influenced by the treatment initiated after lesion detection. The accuracy of a detection method relative to a "gold standard" did not automatically convey into better health or reduced costs. Detection methods should be evaluated not only against their criterion validity but also the long-term effects resulting from their use in different populations. © International & American Associations for Dental Research 2014.
Barrett, Eva; McCreesh, Karen; Lewis, Jeremy
2014-02-01
A wide array of instruments are available for non-invasive thoracic kyphosis measurement. Guidelines for selecting outcome measures for use in clinical and research practice recommend that properties such as validity and reliability are considered. This systematic review reports on the reliability and validity of non-invasive methods for measuring thoracic kyphosis. A systematic search of 11 electronic databases located studies assessing reliability and/or validity of non-invasive thoracic kyphosis measurement techniques. Two independent reviewers used a critical appraisal tool to assess the quality of retrieved studies. Data was extracted by the primary reviewer. The results were synthesized qualitatively using a level of evidence approach. 27 studies satisfied the eligibility criteria and were included in the review. The reliability, validity and both reliability and validity were investigated by sixteen, two and nine studies respectively. 17/27 studies were deemed to be of high quality. In total, 15 methods of thoracic kyphosis were evaluated in retrieved studies. All investigated methods showed high (ICC ≥ .7) to very high (ICC ≥ .9) levels of reliability. The validity of the methods ranged from low to very high. The strongest levels of evidence for reliability exists in support of the Debrunner kyphometer, Spinal Mouse and Flexicurve index, and for validity supports the arcometer and Flexicurve index. Further reliability and validity studies are required to strengthen the level of evidence for the remaining methods of measurement. This should be addressed by future research. Copyright © 2013 Elsevier Ltd. All rights reserved.
Szarvas, Tibor
2009-12-01
Bladder cancer is the second most common malignancy affecting the urinary system. Currently, histology is the only tool that determines therapy and patients' prognosis. As the treatment of non-invasive (Ta/T1) and muscle invasive (T2-T4) bladder tumors are completely different, correct staging is important, although it is often hampered by disturbing factors. Molecular methods offer new prospects for early disease detection, confirmation of unclear histological findings and prognostication. Applying molecular biological methods, the present study is searching for answers to current diagnostic and prognostic problems in bladder carcinoma. We analyzed tumor, blood and/or urine samples of 334 bladder cancer patients and 117 control individuals. Genetic alterations were analyzed in urine samples of patients and controls, both by PCR-based microsatellite loss of heterozigosity (LOH) analysis using 12 fluorescently labeled primers and by DNA hybridization based UroVysion FISH technique using 4 probes, to assess the diagnostic values of these methods. Whole genome microsatellite analysis (with 400 markers) was performed in tumor and blood specimens of bladder cancer patients to find chromosomal regions, the loss of which may be associated with tumor stage. Furthermore, we assessed the prognostic value of Tie2, VEGF, Angiopoietin-1 and -2. We concluded that DNA analysis of voided urine samples by microsatellite analysis and FISH are sensitive and non-invasive methods to detect bladder cancer. Furthermore, we established a panel of microsatellite markers that could differentiate between non-invasive and invasive bladder cancer. However, further analyses in a larger cohort of patients are needed to assess their specificity and sensitivity. Finally, we identified high Ang-2 and low Tie2 gene expression as significant and independent risk factors of tumor recurrence and cancer related survival.
Are native songbird populations affected by non-native plant invasion?
Amanda M. Conover; Christopher K. Williams; Vincent. D' Amico
2011-01-01
Development into forested areas is occurring rapidly across the United States, and many of the remnant forests within suburban landscapes are being fragmented into smaller patches, impacting the quality of this habitat for avian species. An ecological effect linked to forest fragmentation is the invasion of non-native plants into the ecosystem.
Fouré, Alexandre
2016-01-01
The mechanical properties of tendon play a fundamental role to passively transmit forces from muscle to bone, withstand sudden stretches, and act as a mechanical buffer allowing the muscle to work more efficiently. The use of non-invasive imaging methods for the assessment of human tendon's mechanical, structural, and biochemical properties in vivo is relatively young in sports medicine, clinical practice, and basic science. Non-invasive assessment of the tendon properties may enhance the diagnosis of tendon injury and the characterization of recovery treatments. While ultrasonographic imaging is the most popular tool to assess the tendon's structural and indirectly, mechanical properties, ultrasonographic elastography, and ultra-high field magnetic resonance imaging (UHF MRI) have recently emerged as potentially powerful techniques to explore tendon tissues. This paper highlights some methodological cautions associated with conventional ultrasonography and perspectives for in vivo human Achilles tendon assessment using ultrasonographic elastography and UHF MRI. PMID:27512376
Hennig, Georg; Homann, Christian; Teksan, Ilknur; Hasbargen, Uwe; Hasmüller, Stephan; Holdt, Lesca M.; Khaled, Nadia; Sroka, Ronald; Stauch, Thomas; Stepp, Herbert; Vogeser, Michael; Brittenham, Gary M.
2016-01-01
Worldwide, more individuals have iron deficiency than any other health problem. Most of those affected are unaware of their lack of iron, in part because detection of iron deficiency has required a blood sample. Here we report a non-invasive method to optically measure an established indicator of iron status, red blood cell zinc protoporphyrin, in the microcirculation of the lower lip. An optical fibre probe is used to illuminate the lip and acquire fluorescence emission spectra in ∼1 min. Dual-wavelength excitation with spectral fitting is used to distinguish the faint zinc protoporphyrin fluorescence from the much greater tissue background fluorescence, providing immediate results. In 56 women, 35 of whom were iron-deficient, the sensitivity and specificity of optical non-invasive detection of iron deficiency were 97% and 90%, respectively. This fluorescence method potentially provides a rapid, easy to use means for point-of-care screening for iron deficiency in resource-limited settings lacking laboratory infrastructure. PMID:26883939
Chu, Jun; Haynes, Russell D; Corbel, Stéphane Y; Li, Pengpeng; González-González, Emilio; Burg, John S; Ataie, Niloufar J; Lam, Amy J; Cranfill, Paula J; Baird, Michelle A; Davidson, Michael W; Ng, Ho-Leung; Garcia, K Christopher; Contag, Christopher H; Shen, Kang; Blau, Helen M; Lin, Michael Z
2014-01-01
A method for non-invasive visualization of genetically labelled cells in animal disease models with micron-level resolution would greatly facilitate development of cell-based therapies. Imaging of fluorescent proteins (FPs) using red excitation light in the “optical window” above 600 nm is one potential method for visualizing implanted cells. However, previous efforts to engineer FPs with peak excitation beyond 600 nm have resulted in undesirable reductions in brightness. Here we report three new red-excitable monomeric FPs obtained by structure-guided mutagenesis of mNeptune, previously the brightest monomeric FP when excited beyond 600 nm. Two of these, mNeptune2 and mNeptune2.5, demonstrate improved maturation and brighter fluorescence, while the third, mCardinal, has a red-shifted excitation spectrum without reduction in brightness. We show that mCardinal can be used to non-invasively and longitudinally visualize the differentiation of myoblasts and stem cells into myocytes in living mice with high anatomical detail. PMID:24633408
Non-invasive diagnosis of hepatitis B virus-related cirrhosis
Lee, Sangheun; Kim, Do Young
2014-01-01
Chronic hepatitis B (CHB) infection is a major public health problem associated with significant morbidity and mortality worldwide. Twenty-three percent of patients with CHB progress naturally to liver cirrhosis, which was earlier thought to be irreversible. However, it is now known that cirrhosis can in fact be reversed by treatment with oral anti-nucleotide drugs. Thus, early and accurate diagnosis of cirrhosis is important to allow an appropriate treatment strategy to be chosen and to predict the prognosis of patients with CHB. Liver biopsy is the reference standard for assessment of liver fibrosis. However, the method is invasive, and is associated with pain and complications that can be fatal. In addition, intra- and inter-observer variability compromises the accuracy of liver biopsy data. Only small tissue samples are obtained and fibrosis is heterogeneous in such samples. This confounds the two types of observer variability mentioned above. Such limitations have encouraged development of non-invasive methods for assessment of fibrosis. These include measurements of serum biomarkers of fibrosis; and assessment of liver stiffness via transient elastography, acoustic radiation force impulse imaging, real-time elastography, or magnetic resonance elastography. Although significant advances have been made, most work to date has addressed the diagnostic utility of these techniques in the context of cirrhosis caused by chronic hepatitis C infection. In the present review, we examine the advantages afforded by use of non-invasive methods to diagnose cirrhosis in patients with CHB infections and the utility of such methods in clinical practice. PMID:24574713
Clinical role of non-invasive assessment of portal hypertension.
Bolognesi, Massimo; Di Pascoli, Marco; Sacerdoti, David
2017-01-07
Measurement of portal pressure is pivotal in the evaluation of patients with liver cirrhosis. The measurement of the hepatic venous pressure gradient represents the reference method by which portal pressure is estimated. However, it is an invasive procedure that requires significant hospital resources, including experienced staff, and is associated with considerable cost. Non-invasive methods that can be reliably used to estimate the presence and the degree of portal hypertension are urgently needed in clinical practice. Biochemical and morphological parameters have been proposed for this purpose, but have shown disappointing results overall. Splanchnic Doppler ultrasonography and the analysis of microbubble contrast agent kinetics with contrast-enhanced ultrasonography have shown better accuracy for the evaluation of patients with portal hypertension. A key advancement in the non-invasive evaluation of portal hypertension has been the introduction in clinical practice of methods able to measure stiffness in the liver, as well as stiffness/congestion in the spleen. According to the data published to date, it appears to be possible to rule out clinically significant portal hypertension in patients with cirrhosis ( i.e ., hepatic venous pressure gradient ≥ 10 mmHg) with a level of clinically-acceptable accuracy by combining measurements of liver stiffness and spleen stiffness along with Doppler ultrasound evaluation. It is probable that the combination of these methods may also allow for the identification of patients with the most serious degree of portal hypertension, and ongoing research is helping to ensure progress in this field.
Clinical role of non-invasive assessment of portal hypertension
Bolognesi, Massimo; Di Pascoli, Marco; Sacerdoti, David
2017-01-01
Measurement of portal pressure is pivotal in the evaluation of patients with liver cirrhosis. The measurement of the hepatic venous pressure gradient represents the reference method by which portal pressure is estimated. However, it is an invasive procedure that requires significant hospital resources, including experienced staff, and is associated with considerable cost. Non-invasive methods that can be reliably used to estimate the presence and the degree of portal hypertension are urgently needed in clinical practice. Biochemical and morphological parameters have been proposed for this purpose, but have shown disappointing results overall. Splanchnic Doppler ultrasonography and the analysis of microbubble contrast agent kinetics with contrast-enhanced ultrasonography have shown better accuracy for the evaluation of patients with portal hypertension. A key advancement in the non-invasive evaluation of portal hypertension has been the introduction in clinical practice of methods able to measure stiffness in the liver, as well as stiffness/congestion in the spleen. According to the data published to date, it appears to be possible to rule out clinically significant portal hypertension in patients with cirrhosis (i.e., hepatic venous pressure gradient ≥ 10 mmHg) with a level of clinically-acceptable accuracy by combining measurements of liver stiffness and spleen stiffness along with Doppler ultrasound evaluation. It is probable that the combination of these methods may also allow for the identification of patients with the most serious degree of portal hypertension, and ongoing research is helping to ensure progress in this field. PMID:28104976
Method and apparatus for non-invasive evaluation of diaphragmatic function
NASA Technical Reports Server (NTRS)
Yost, William T. (Inventor); Wait, Juliette L. (Inventor); Nahormek, Patricia A. (Inventor); Cantrell, John H. (Inventor); Hanna-Hawver, Pamela D. (Inventor)
1995-01-01
A method for non-invasive evaluation of diaphragmatic function in humans measures the thickness of the diaphragm in real time with an ultrasonic device, and displays the variations of diaphragm thickness versus time. Formulae are given for calculating a quantitative value for the reserve fatigue capacity of a patient's diaphragm from data obtained by measuring the time limits for maintaining a constant breathing pattern on the display at two different pressure differentials in series with the patient's airways. An apparatus for displaying the diaphragm thickness in real time is also described. The method can be used both on healthy patients and on patients with so severe breathing dysfunctions that they require breathing support from respirators.
Method and apparatus for non-invasive evaluation of diaphragmatic function
NASA Technical Reports Server (NTRS)
Yost, William T. (Inventor); Wait, Juliette L. (Inventor); Nahormek, Patricia A. (Inventor); Cantrell, John H. (Inventor); Hanna-Hawver, Pamela D. (Inventor)
1994-01-01
A method for non-invasive evaluation of diaphragmatic function in humans measures the thickness of the diaphragm in real time with an ultrasonic device, and displays the variations of diaphragm thickness versus time. Formulae are given for calculating a quantitative value for the reserve fatigue capacity of a patient's diaphragm from data obtained by measuring the time limits for maintaining a constant breathing pattern on the display at two different pressure differentials in series with the patient's airways. An apparatus for displaying the diaphragm thickness in real time is also described. The method can be used both on healthy patients and on patients with so severe breathing dysfunctions that they require breathing support from respirators.
Non-invasive method for the aortic blood pressure waveform estimation using the measured radial EBI
NASA Astrophysics Data System (ADS)
Krivoshei, Andrei; Lamp, Jürgen; Min, Mart; Uuetoa, Tiina; Uuetoa, Hasso; Annus, Paul
2013-04-01
The paper presents a method for the Central Aortic Pressure (CAP) waveform estimation from the measured radial Electrical Bio-Impedance (EBI). The method proposed here is a non-invasive and health-safe approach to estimate the cardiovascular system parameters, such as the Augmentation Index (AI). Reconstruction of the CAP curve from the EBI data is provided by spectral domain transfer functions (TF), found on the bases of data analysis. Clinical experiments were carried out on 30 patients in the Center of Cardiology of East-Tallinn Central Hospital during coronary angiography on patients in age of 43 to 80 years. The quality and reliability of the method was tested by comparing the evaluated augmentation indices obtained from the invasively measured CAP data and from the reconstructed curve. The correlation coefficient r = 0.89 was calculated in the range of AICAP values from 5 to 28. Comparing to the traditional tonometry based method, the developed one is more convenient to use and it allows long-term monitoring of the AI, what is not possible with tonometry probes.
A review of MRI evaluation of demyelination in cuprizone murine model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krutenkova, E., E-mail: len--k@yandex.ru; Pan, E.; Khodanovich, M., E-mail: khodanovich@mail.tsu.ru
The cuprizone mouse model of non-autoimmune demyelination reproduces some phenomena of multiple sclerosis and is appropriate for validation and specification of a new method of non-invasive diagnostics. In the review new data which are collected using the new MRI method are compared with one or more conventional MRI tools. Also the paper reviewed the validation of MRI approaches using histological or immunohistochemical methods. Luxol fast blue histological staining and myelin basic protein immunostaining is widespread. To improve the accuracy of non-invasive conventional MRI, multimodal scanning could be applied. The new quantitative MRI method of fast mapping of the macromolecular protonmore » fraction is a reliable biomarker of myelin in the brain and can be used for research of demyelination in animals. To date, a validation of MPF method on the CPZ mouse model of demyelination is not performed, although this method is probably the best way to evaluate demyelination using MRI.« less
Jalón Monzón, A; Fernández Gómez, J M; Escaf Barmadah, S; Alvarez Múgica, M; Martín Benito, J L; Regadera Sejas, F J
2008-10-01
Approximately 70-85% of transitional bladder cell carcinomas are non-muscle-invasive. After an initial surgery, around 60-90% will have a recurrence, being the highest risk period the first two years. Urothelium instability could be the main reason for recurrence in mid grade tumours, reason why a single dose of a chemotherapy after transurethral resection of the bladder (TURB) might be insufficient. That is why a deferred therapy in occasions associated with maintenance is recommended. A prospective, controlled and randomized study was performed. We included non-muscle-invasive mid risk bladder tumours. All patients had initially a TURB performed and were randomized to receive a single dose of mitomycin C (MMC), in the immediate postoperative period. A total of 105 patients were included. Mean follow-up was 22, 70 +/- 8, 15 months. MMC was administered to 53 patients. Of these 66, 0% had no recurrence and 34.0% had a non-muscle-invasive recurrence. Of the 52 patients in the non MMC group, 53.8% had no recurrence and 44.2% had a non-muscle-invasive recurrence and only 1 patient had a muscle-invasive progression. We did not find significantly differences in time to recurrence in mid risk tumours when using immediate postoperative single dose of MMC or deferred therapy. There was only one case of myelosuppression. In mid risk non-muscle-invasive tumors, some studies suggest that early intravesical instillation of chemotherapy reduces the risk of recurrence after TURB. We could not show significantly differences when comparing postoperatorive MMC versus traditional deferred instillations.
Sebastiani, Giada; Alshaalan, Rasha; Wong, Philip; Rubino, Maria; Salman, Ayat; Metrakos, Peter; Deschenes, Marc; Ghali, Peter
2015-01-01
Non-invasive diagnostic methods for liver fibrosis predict clinical outcomes in viral hepatitis and nonalcoholic fatty liver disease (NAFLD). We specifically evaluated prognostic value of non-invasive fibrosis methods in nonalcoholic steatohepatitis (NASH) against hepatic venous pressure gradient (HVPG) and liver histology. This was a retrospective cohort study of 148 consecutive patients who met the following criteria: transjugular liver biopsy with HVPG measurement; biopsy-proven NASH; absence of decompensation; AST-to-Platelets Ratio Index (APRI), fibrosis-4 (FIB-4), NAFLD fibrosis score, ultrasound, hepatic steatosis index and Xenon-133 scan available within 6 months from biopsy; a minimum follow-up of 1 year. Outcomes were defined by death, liver transplantation, cirrhosis complications. Kaplan-Meier and Cox regression analyses were employed to estimate incidence and predictors of outcomes, respectively. Prognostic value was expressed as area under the curve (AUC). During a median follow-up of 5 years (interquartile range 3-8), 16.2% developed outcomes, including 7.4% who died or underwent liver transplantation. After adjustment for age, sex, diabetes, the following fibrosis tools predicted outcomes: HVPG >10mmHg (HR=9.60; 95% confidence interval [CI] 3.07-30.12), histologic fibrosis F3-F4 (HR=3.14; 1.41-6.95), APRI >1.5 (HR=5.02; 1.6-15.7), FIB-4 >3.25 (HR=6.33; 1.98-20.2), NAFLD fibrosis score >0.676 (HR=11.9; 3.79-37.4). Prognostic value was as follows: histologic fibrosis stage, AUC=0.85 (95% CI 0.76-0.93); HVPG, AUC=0.81 (0.70-0.91); APRI, AUC=0.89 (0.82-0.96); FIB-4, AUC=0.89 (0.83-0.95); NAFLD fibrosis score, AUC=0.79 (0.69-0.91). Neither histologic steatosis nor non-invasive steatosis methods predicted outcomes (AUC<0.50). Non-invasive methods for liver fibrosis predict outcomes of patients with NASH. They could be used for serial monitoring, risk stratification and targeted interventions.
Chitty, Lyn S; Mason, Sarah; Barrett, Angela N; McKay, Fiona; Lench, Nicholas; Daley, Rebecca; Jenkins, Lucy A
2015-01-01
Abstract Objective Accurate prenatal diagnosis of genetic conditions can be challenging and usually requires invasive testing. Here, we demonstrate the potential of next-generation sequencing (NGS) for the analysis of cell-free DNA in maternal blood to transform prenatal diagnosis of monogenic disorders. Methods Analysis of cell-free DNA using a PCR and restriction enzyme digest (PCR–RED) was compared with a novel NGS assay in pregnancies at risk of achondroplasia and thanatophoric dysplasia. Results PCR–RED was performed in 72 cases and was correct in 88.6%, inconclusive in 7% with one false negative. NGS was performed in 47 cases and was accurate in 96.2% with no inconclusives. Both approaches were used in 27 cases, with NGS giving the correct result in the two cases inconclusive with PCR–RED. Conclusion NGS provides an accurate, flexible approach to non-invasive prenatal diagnosis of de novo and paternally inherited mutations. It is more sensitive than PCR–RED and is ideal when screening a gene with multiple potential pathogenic mutations. These findings highlight the value of NGS in the development of non-invasive prenatal diagnosis for other monogenic disorders. © 2015 The Authors. Prenatal Diagnosis published by John Wiley & Sons, Ltd. What's already known about this topic? Non-invasive prenatal diagnosis (NIPD) using PCR-based methods has been reported for the detection or exclusion of individual paternally inherited or de novo alleles in maternal plasma. What does this study add? NIPD using next generation sequencing provides an accurate, more sensitive approach which can be used to detect multiple mutations in a single assay and so is ideal when screening a gene with multiple potential pathogenic mutations. Next generation sequencing thus provides a flexible approach to non-invasive prenatal diagnosis ideal for use in a busy service laboratory. PMID:25728633
Talaska, G; Cudnik, J; Jaeger, M; Rothman, N; Hayes, R; Bhatnagar, V J; Kayshup, S J
1996-07-17
Biological monitoring of exposures to carcinogenic compounds in the workplace can be a valuable adjunct to environmental sampling and occupational medicine. Carcinogen-DNA adduct analysis has promise as a biomarker of effective dose if target organ samples can be obtained non-invasively. We have developed non-invasive techniques using exfoliated urothelial and bronchial cells collected in urine and sputum, respectively. First morning urine samples were collected from 33 workers exposed to benzidine or benzidine-based dyes and controls matched for age, education, and smoking status. Sufficient DNA for 32P-postlabelling analysis was obtained from every sample. Mean levels of a specific DNA adduct (which co-chromatographed with standard characterized by MS) were elevated significantly in the benzidine-exposed workers relative to controls. In addition, workers exposed to benzidine had higher adduct levels than those exposed to benzidine-based dyes. This study demonstrates the usefulness of these non-invasive techniques for exposure/effect assessment. To be useful in occupational studies, biomarkers must also be sensitive to exposure interventions. We have conducted topical application studies of used gasoline engine oils in mice and found that the levels of carcinogen-DNA adducts in skin and lung can be significantly lowered if skin cleaning is conducted in a timely manner. The combination of useful, non-invasive techniques to monitor exposure and effect and industrial hygiene interventions can be used to detect and prevent exposures to a wide range of carcinogens including those found in used gasoline engine oils and jet exhausts.
Clinical, social and ethical issues associated with non-invasive prenatal testing for aneuploidy.
Griffin, Blanche; Edwards, Samantha; Chitty, Lyn S; Lewis, Celine
2018-03-01
Non-invasive prenatal testing (NIPT), based on analysis of cell-free foetal DNA, is rapidly becoming a preferred method to screen for chromosomal aneuploidy with the technology now available in over 90 countries. This review provides an up-to-date discussion of the key clinical, social and ethical implications associated with this revolutionary technology. Stakeholders are positive about a test that is highly accurate, safe, can be perfomed early in pregnancy, identifies affected pregnancies that might otherwise have been missed and reduces the need for invasive testing. Nevertheless, professional societies currently recommend it as an advanced screening test due to the low false positive rate (FPR). Despite the practical and psychological benefits, a number of concerns have been raised which warrant attention. These include the potential for routinisation of testing and subsequent impact on informed decision-making, an "easy" blood test inadvertently contributing to women feeling pressured to take the test, fears NIPT will lead to less tolerance and support for those living with Down syndrome and the heightened expectation of having "perfect babies". These issues can be addressed to some extent through clinician education, patient information and establishing national and international consensus in the development of comprehensive and regularly updated guidelines. As the number of conditions we are able to test for non-invasively expands it will be increasingly important to ensure pre-test counselling can be delivered effectively supported by knowledgeable healthcare professionals.
Cranial diameter pulsations measured by non-invasive ultrasound decrease with tilt
NASA Technical Reports Server (NTRS)
Ueno, Toshiaki; Ballard, Richard E.; Macias, Brandon R.; Yost, William T.; Hargens, Alan R.
2003-01-01
INTRODUCTION: Intracranial pressure (ICP) may play a significant role in physiological responses to microgravity by contributing to the nausea associated with microgravity exposure. However, effects of altered gravity on ICP in astronauts have not been investigated, primarily due to the invasiveness of currently available techniques. We have developed an ultrasonic device that monitors changes in cranial diameter pulsation non-invasively so that we can evaluate ICP dynamics in astronauts during spaceflight. This study was designed to demonstrate the feasibility of our ultrasound technique under the physiological condition in which ICP dynamics are changed due to altered gravitational force. METHODS: Six healthy volunteers were placed at 60 degrees head-up, 30 degrees headup, supine, and 15 degrees head-down positions for 3 min at each angle. We measured arterial blood pressure (ABP) with a finger pressure cuff, and cranial diameter pulsation with a pulsed phase lock loop device (PPLL). RESULTS: Analysis of covariance demonstrated that amplitudes of cranial diameter pulsations were significantly altered with the angle of tilt (p < 0.001). The 95% confidence interval for linear regression coefficients of the cranial diameter pulsation amplitudes with tilt angle was 0.862 to 0.968. However, ABP amplitudes did not show this relationship. DISCUSSION: Our noninvasive ultrasonic technique reveals that the amplitude of cranial diameter pulsation decreases as a function of tilt angle, suggesting that ICP pulsation follows the same relationship. It is demonstrated that the PPLL device has a sufficient sensitivity to detect changes non-invasively in ICP pulsation caused by altered gravity.
Xu, Jing; Molday, Laurie L.; Molday, Robert S.; Sarunic, Marinko V.
2009-01-01
Purpose The purpose of this study is to investigate Fourier Domain Optical Coherence Tomography (FD OCT) as a non-invasive tool for retinal imaging in the Rs1h knockout mouse (model for X-linked Juvenile Retinoschisis). Methods A prototype spectrometer based FD OCT system was used in combination with a custom optical beam-scanning platform. Images of the retinas from wild type and Rs1h knockout mice were acquired non-invasively using FD OCT with the specimen anesthetized. At the completion of the non-invasive FD OCT imaging, invasive retinal cross sectional images (histology) were acquired from a nearby region for comparison to the FD OCT images. Results The retinal layers could be identified in the FD OCT images, permitting delineation and thickness measurement of the outer nuclear layer (ONL). During FD OCT in vivo imaging of the Rs1h knockout mouse, holes were observed in the inner nuclear layer (INL) and retinal cell disorganization was observed as a change in the backscattering intensity profile. Comparison of the ONL measurements acquired non-invasively using FD OCT to measurements taken using histology at nearby locations showed a degeneration of roughly thirty percent of the ONL by the age of two months in Rs1h knockout mice relative to wild type. Conclusions FD OCT has been demonstrated for non-invasive imaging of retinal degeneration and observation of retinal holes in Rs1h knockout mice. PMID:19182246
Ge, L L; Han, Z Y; Liu, A H; Zhu, L; Meng, J H
2017-02-02
Objective: To investigate the antibiotic resistance status of Streptococcus pneumoniae isolates from hospitalized children in Shanxi Children's Hospital. Method: E-test and Kirby-Bauer methods were applied to determine drug sensitivity of the isolates collected from the body fluid specimens of hospitalized children in Shanxi Children's Hospital from January 2012 to December 2014. The antimicrobial sensitivity and minimum inhibitory concentration (MIC) of Streptococcus pneumoniae to the conventional antibiotics were analyzed, in order to compare the annual trends of non-invasive isolates, while the differentiation of sensitivity from specimens. The comparison of rates was performed by Chi-squared test and Fisher's exact test. Result: A total of 671 isolates of streptococcus pneumoniae were obtained, which could be divided as non-invasive isolates(607), invasive isolates from non-cerebrospinal fluid(non-CSF)(40) and invasive isolates from cerebrospinal fluid(CSF)(24). The antimicrobial sensitivity(isolates(%)) of the 671 isolates were respectively vancomycin 671(100.0%), linezolid 671(100.0%), levofloxacin 665(99.1%), penicillin 595(88.7%), ceftriaxone 516(76.9%), cefotaxime 512(76.3%), sulfamethoxazole-trimethoprin(SMZ-TMP) 103(15.4%), clindamycin 28(4.2%), tetracycline 26(3.9%), erythromycin 12(1.8%). From 2012 to 2014, the susceptibility rates of non-invasive isolates to penicillin every year were 95.0%(96/101), 97.3%(110/113), 87.3%(343/393), respectively, and there was significant difference among the three years(χ(2)=13.266, P <0.05), and the values of MIC(50, )MIC(90) and the maximum values of MIC(mg/L) of penicillin were 0.064, 2.000, 6.000 in 2012, which grew up to 1.000, 3.000, 16.000 in 2014. There was no significant difference in the susceptibility rate of non-invasive isolates to ceftriaxone and cefotaxime during these three years, (χ(2)=1.172, 1.198, both P >0.05). On the other hand, the values of MIC(50, )MIC(90) and the maximum value of MIC(mg/L) of ceftriaxone and cefotaxime both increased from 0.500, 2.000, 8.000 in 2012 to 0.750, 4.000, 32.000 in 2014. There was no significant difference in the susceptibility rate of non-invasive isolates to the rest antibiotic. Based on the same examining standard of CSF, the antimicrobial sensitivity(isolates(%)) of the non-invasive isolates to ceftriaxone, cefotaxime, SMZ-TMP were respectively 281(46.3%), 278(45.8%), 78(12.9%), were significantly lower than the susceptibility rate of the invasive isolates from non-CSF (28(70%), 28(70%), 14(35%), χ(2)=8.453, 8.817, 15.094, all P <0.012 5), and lower than the invasive isolates from CSF (18(75%), 18(75%), χ(2)=7.631, 7.905, P <0.012 5; 11(45.8%), P =0.001). The sensitivity of the isolates to the rest antibiotics were similar( P >0.05). Conclusion: More than 95.0% strains of the streptococcus pneumoniae isolates from the hospitalized children in Shanxi Children's Hospital were sensitive to vancomycin, linezolid, levofloxacin, and the susceptibility rate of penicillin, ceftriaxone, cefotaxime were 88.7%, 76.9%, 76.3%. However, less than 20.0% of streptococcus pneumoniae were sensitive to erythromycin, clindamycin, SMZ-TMP and tetracycline. The susceptibility rate of penicillin of non-invasive Streptococcus pneumoniae declined by these years, and the differences to ceftriaxone and cefotaxime can be neglected, but the values of MIC(50, )MIC(90) and the maximum value of MIC of all were linearly rising. The susceptibility rate of antibiotics to ceftriaxone and cefotaxime of the non-invasive isolates was lower than the invasive isolates.
NASA Astrophysics Data System (ADS)
Hasanjee, Aamr M.; Zhou, Feifan; West, Connor; Silk, Kegan; Doughty, Austin; Bahavar, Cody F.; Chen, Wei R.
2016-03-01
Non-invasive laser immunotherapy (NLIT) is a treatment method for metastatic cancer which combines noninvasive laser irradiation with immunologically modified nanostructures to ablate a primary tumor and induce a systemic anti-tumor response. To further expand the development of NLIT, two different photosensitizing agents were compared: gold nanorods (GNR) with an optical absorption peak of 808 nm and indocyanine green (ICG) with an optical absorption peak of ~800 nm. Various concentrations of GNR and ICG solutions were irradiated at different power densities using an 805 nm diode laser, and the temperature of the solutions was monitored during irradiation using a thermal camera. For comparison, dye balls made up of a 1:1 volume ratio of gel solution to GNR or ICG solution were placed in phantom gels and were then irradiated using the 805 nm diode laser to imitate the effect of laser irradiation on in vivo tumors. Non-invasive laser irradiation of GNR solution for 2 minutes resulted in a maximum increase in temperature by 31.8 °C. Additionally, similar irradiation of GNR solution dye ball within phantom gel for 10 minutes resulted in a maximum temperature increase of 8.2 °C. Comparatively, non-invasive laser irradiation of ICG solution for 2 minutes resulted in a maximum increase in temperature by 28.0 °C. Similar irradiation of ICG solution dye ball within phantom gel for 10 minutes yielded a maximum temperature increase of only 3.4 °C. Qualitatively, these studies showed that GNR solutions are more effective photosensitizing agents than ICG solution.
Maldonado, Fabien; Boland, Jennifer M.; Raghunath, Sushravya; Aubry, Marie Christine; Bartholmai, Brian J.; deAndrade, Mariza; Hartman, Thomas E.; Karwoski, Ronald A.; Rajagopalan, Srinivasan; Sykes, Anne-Marie; Yang, Ping; Yi, Eunhee S.; Robb, Richard A.; Peikert, Tobias
2013-01-01
Introduction Pulmonary nodules of the adenocarcinoma spectrum are characterized by distinctive morphological and radiological features and variable prognosis. Non-invasive high-resolution computed-tomography (HRCT)-based risk stratification tools are needed to individualize their management. Methods Radiological measurements of histopathologic tissue invasion were developed in a training set of 54 pulmonary nodules of the adenocarcinoma spectrum and validated in 86 consecutively resected nodules. Nodules were isolated and characterized by computer-aided analysis and data were analyzed by Spearman correlation, sensitivity, specificity as well as the positive and negative predictive values. Results Computer Aided Nodule Assessment and Risk Yield (CANARY) can non-invasively characterize pulmonary nodules of the adenocarcinoma spectrum. Unsupervised clustering analysis of HRCT data identified 9 unique exemplars representing the basic radiologic building blocks of these lesions. The exemplar distribution within each nodule correlated well with the proportion of histologic tissue invasion, Spearman R=0.87,p < 0.0001 and 0.89,p < 0.0001 for the training and the validation set, respectively. Clustering of the exemplars in three-dimensional space corresponding to tissue invasion and lepidic growth was used to develop a CANARY decision algorithm, which successfully categorized these pulmonary nodules as “aggressive” (invasive adenocarcinoma) or “indolent” (adenocarcinoma in situ and minimally invasive adenocarcinoma). Sensitivity, specificity, positive predictive value and negative predictive value of this approach for the detection of “aggressive” lesions were 95.4%, 96.8%, 95.4% and 96.8%, respectively in the training set and 98.7%, 63.6%, 94.9% and 87.5%, respectively in the validation set. Conclusion CANARY represents a promising tool to non-invasively risk stratify pulmonary nodules of the adenocarcinoma spectrum. PMID:23486265
2012-01-01
Background In this paper a new non-invasive, operator-free, continuous ventricular stroke volume monitoring device (Hemodynamic Cardiac Profiler, HCP) is presented, that measures the average stroke volume (SV) for each period of 20 seconds, as well as ventricular volume-time curves for each cardiac cycle, using a new electric method (Ventricular Field Recognition) with six independent electrode pairs distributed over the frontal thoracic skin. In contrast to existing non-invasive electric methods, our method does not use the algorithms of impedance or bioreactance cardiography. Instead, our method is based on specific 2D spatial patterns on the thoracic skin, representing the distribution, over the thorax, of changes in the applied current field caused by cardiac volume changes during the cardiac cycle. Since total heart volume variation during the cardiac cycle is a poor indicator for ventricular stroke volume, our HCP separates atrial filling effects from ventricular filling effects, and retrieves the volume changes of only the ventricles. Methods ex-vivo experiments on a post-mortem human heart have been performed to measure the effects of increasing the blood volume inside the ventricles in isolation, leaving the atrial volume invariant (which can not be done in-vivo). These effects have been measured as a specific 2D pattern of voltage changes on the thoracic skin. Furthermore, a working prototype of the HCP has been developed that uses these ex-vivo results in an algorithm to decompose voltage changes, that were measured in-vivo by the HCP on the thoracic skin of a human volunteer, into an atrial component and a ventricular component, in almost real-time (with a delay of maximally 39 seconds). The HCP prototype has been tested in-vivo on 7 human volunteers, using G-suit inflation and deflation to provoke stroke volume changes, and LVot Doppler as a reference technique. Results The ex-vivo measurements showed that ventricular filling caused a pattern over the thorax quite distinct from that of atrial filling. The in-vivo tests of the HCP with LVot Doppler resulted in a Pearson’s correlation of R = 0.892, and Bland-Altman plotting of SV yielded a mean bias of -1.6 ml and 2SD =14.8 ml. Conclusions The results indicate that the HCP was able to track the changes in ventricular stroke volume reliably. Furthermore, the HCP produced ventricular volume-time curves that were consistent with the literature, and may be a diagnostic tool as well. PMID:22900831
Detection of contraband using microwave radiation
Toth, Richard P.; Loubriel, Guillermo M.; Bacon, Larry D.; Watson, Robert D.
2002-01-01
The present invention relates to a method and system for using microwave radiation to detect contraband hidden inside of a non-metallic container, such as a pneumatic vehicle tire. The method relies on the attenuation, retardation, time delay, or phase shift of microwave radiation as it passes through the container plus the contraband. The method is non-invasive, non-destructive, low power, and does not require physical contact with the container.
Howeth, Jennifer G.; Gantz, Crysta A.; Angermeier, Paul; Frimpong, Emmanuel A.; Hoff, Michael H.; Keller, Reuben P.; Mandrak, Nicholas E.; Marchetti, Michael P.; Olden, Julian D.; Romagosa, Christina M.; Lodge, David M.
2016-01-01
AimImpacts of non-native species have motivated development of risk assessment tools for identifying introduced species likely to become invasive. Here, we develop trait-based models for the establishment and impact stages of freshwater fish invasion, and use them to screen non-native species common in international trade. We also determine which species in the aquarium, biological supply, live bait, live food and water garden trades are likely to become invasive. Results are compared to historical patterns of non-native fish establishment to assess the relative importance over time of pathways in causing invasions.LocationLaurentian Great Lakes region.MethodsTrait-based classification trees for the establishment and impact stages of invasion were developed from data on freshwater fish species that established or failed to establish in the Great Lakes. Fishes in trade were determined from import data from Canadian and United States regulatory agencies, assigned to specific trades and screened through the developed models.ResultsClimate match between a species’ native range and the Great Lakes region predicted establishment success with 75–81% accuracy. Trophic guild and fecundity predicted potential harmful impacts of established non-native fishes with 75–83% accuracy. Screening outcomes suggest the water garden trade poses the greatest risk of introducing new invasive species, followed by the live food and aquarium trades. Analysis of historical patterns of introduction pathways demonstrates the increasing importance of these trades relative to other pathways. Comparisons among trades reveal that model predictions parallel historical patterns; all fishes previously introduced from the water garden trade have established. The live bait, biological supply, aquarium and live food trades have also contributed established non-native fishes.Main conclusionsOur models predict invasion risk of potential fish invaders to the Great Lakes region and could help managers prioritize efforts among species and pathways to minimize such risk. Similar approaches could be applied to other taxonomic groups and geographic regions.
Non-invasive Diagnosis of Fibrosis in Non-alcoholic Fatty Liver Disease
Arora, Anil; Sharma, Praveen
2012-01-01
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in developed as well as in developing countries. Its prevalence continues to rise currently affecting approximately 20-30% of adults and 10% of children in the United States. Non-alcoholic fatty liver disease represents a wide spectrum of conditions ranging from fatty liver, which in general follows a benign non-progressive clinical course, to non-alcoholic steatohepatitis (NASH), a more serious form of NAFLD that may progress to cirrhosis and end-stage liver disease. Liver biopsy remains the gold standard for evaluating the degree of hepatic necroinflammation and fibrosis; however, several non-invasive investigations, such as serum biomarkers, have been developed to establish the diagnosis and also to evaluate treatment response. There has been a substantial development of non-invasive risk scores, biomarker panels, and radiological modalities to identify at risk patients with NAFLD without recourse to liver biopsy on a routine basis. Examples include combination of serum markers like NAFLD fibrosis score (NFS), BARD score, fibrometer, FIB4, and non-invasive tools like fibroscan which assess fibrosis in patients with NAFLD. Other markers of fibrosis that have been evaluated include high-sensitivity C-reactive protein, plasma pentraxin 3, interleukin-6, and cytokeratin-18. This review focuses on the methods currently available in daily clinical practice in hepatology and touches briefly on the potential future markers under investigation. PMID:25755423
Maity, Abhijit; Banik, Gourab D; Ghosh, Chiranjit; Som, Suman; Chaudhuri, Sujit; Daschakraborty, Sunil B; Ghosh, Shibendu; Ghosh, Barnali; Raychaudhuri, Arup K; Pradhan, Manik
2014-03-01
A residual gas analyzer (RGA) coupled with a high vacuum chamber is described for the non-invasive diagnosis of the Helicobacter pylori (H. pylori) infection through ¹³C-urea breath analysis. The present RGA-based mass spectrometry (MS) method is capable of measuring high-precision ¹³CO₂ isotope enrichments in exhaled breath samples from individuals harboring the H. pylori infection. The system exhibited 100% diagnostic sensitivity, and 93% specificity alongside positive and negative predictive values of 95% and 100%, respectively, compared with invasive endoscopy-based biopsy tests. A statistically sound diagnostic cut-off value for the presence of H. pylori was determined to be 3.0‰ using a receiver operating characteristic curve analysis. The diagnostic accuracy and validity of the results are also supported by optical off-axis integrated cavity output spectroscopy measurements. The δ¹³(DOB)C‰ values of both methods correlated well (R² = 0.9973 at 30 min). The RGA-based instrumental setup described here is simple, robust, easy-to-use and more portable and cost-effective compared to all other currently available detection methods, thus making it a new point-of-care medical diagnostic tool for the purpose of large-scale screening of the H. pylori infection in real time. The RGA-MS technique should have broad applicability for ¹³C-breath tests in a wide range of biomedical research and clinical diagnostics for many other diseases and metabolic disorders.
Wireless brain-machine interface using EEG and EOG: brain wave classification and robot control
NASA Astrophysics Data System (ADS)
Oh, Sechang; Kumar, Prashanth S.; Kwon, Hyeokjun; Varadan, Vijay K.
2012-04-01
A brain-machine interface (BMI) links a user's brain activity directly to an external device. It enables a person to control devices using only thought. Hence, it has gained significant interest in the design of assistive devices and systems for people with disabilities. In addition, BMI has also been proposed to replace humans with robots in the performance of dangerous tasks like explosives handling/diffusing, hazardous materials handling, fire fighting etc. There are mainly two types of BMI based on the measurement method of brain activity; invasive and non-invasive. Invasive BMI can provide pristine signals but it is expensive and surgery may lead to undesirable side effects. Recent advances in non-invasive BMI have opened the possibility of generating robust control signals from noisy brain activity signals like EEG and EOG. A practical implementation of a non-invasive BMI such as robot control requires: acquisition of brain signals with a robust wearable unit, noise filtering and signal processing, identification and extraction of relevant brain wave features and finally, an algorithm to determine control signals based on the wave features. In this work, we developed a wireless brain-machine interface with a small platform and established a BMI that can be used to control the movement of a robot by using the extracted features of the EEG and EOG signals. The system records and classifies EEG as alpha, beta, delta, and theta waves. The classified brain waves are then used to define the level of attention. The acceleration and deceleration or stopping of the robot is controlled based on the attention level of the wearer. In addition, the left and right movements of eye ball control the direction of the robot.
Huang, Chenyu; Ogawa, Rei; Hyakusoku, Hiko
2014-08-01
The current skin graft fixation methods for digits, including the Kirschner wire insertion technique, can be limited by inadequate or excessive fixation and complications such as infection or secondary injuries. Therefore, the external wire-frame fixation method was invented and used for skin grafting of digits. This study aimed to investigate external wire-frame fixation of digital skin grafts as a non-invasive alternative to the K-wire insertion method. In 2005-2012, 15 patients with burn scar contractures on the hand digits received a skin graft that was then fixed with an external wire frame. The intra-operative time needed to make the wire frame, the postoperative time to frame and suture removal, the graft survival rate, the effect of contracture release and the complications were recorded. In all cases, the contracture release was 100%. The complete graft survival rate was 98.6%. Four patients had epithelial necrosis in <5% of the total area. There were no other complications such as pressure ulcer or hypoxia of fingers. External wire-frame fixation is simple, minimally invasive and a custom-made technique for skin grafting of the fingers. It was designed for its potential benefits and the decreased risk it poses to patients with scar contractures on their fingers. It can be implemented in three phases of grafting, does not affect the epiphyseal line or subsequent finger growth and is suitable for children with multi-digit involvement. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.
Determining the numbers of a landscape architect species (Tapirus terrestris), using footprints.
Moreira, Danielle O; Alibhai, Sky K; Jewell, Zoe C; da Cunha, Cristina J; Seibert, Jardel B; Gatti, Andressa
2018-01-01
As a landscape architect and a major seed disperser, the lowland tapir ( Tapirus terrestris ) is an important indicator of the ecological health of certain habitats. Therefore, reliable data regarding tapir populations are fundamental in understanding ecosystem dynamics, including those associated with the Atlantic Forest in Brazil. Currently, many population monitoring studies use invasive tagging with radio or satellite/Global Positioning System (GPS) collars. These techniques can be costly and unreliable, and the immobilization required carries physiological risks that are undesirable particularly for threatened and elusive species such as the lowland tapir. We collected data from one of the last regions with a viable population of lowland tapir in the south-eastern Atlantic Forest, Brazil, using a new non-invasive method for identifying species, the footprint identification technique (FIT). We identified the minimum number of tapirs in the study area and, in addition, we observed that they have overlapping ranges. Four hundred and forty footprints from 46 trails collected from six locations in the study area in a landscape known to contain tapir were analyzed, and 29 individuals were identified from these footprints. We demonstrate a practical application of FIT for lowland tapir censusing. Our study shows that FIT is an effective method for the identification of individuals of a threatened species, even when they lack visible natural markings on their bodies. FIT offers several benefits over other methods, especially for tapir management. As a non-invasive method, it can be used to census or monitor species, giving rapid feedback to managers of protected areas.
Jiang, Wan-Sheng; Qin, Tao; Wang, Wei-Ying; Zhao, Ya-Peng; Shu, Shu-Sen; Song, Wei-Hong; Chen, Xiao-Yong; Yang, Jun-Xing
2016-09-18
Biological invasion is a pervasive negative force of global change, especially in its effects on sensitive freshwater ecosystems. Even protected areas are usually not immune. Ptychobarbus chungtienensis is a threatened freshwater fish now almost confined to Bita Lake, in the Shangri-La region of Yunnan province, China. Its existence is threatened by the introduction of non-native weatherfishes (Misgurnus anguillicaudatus and Paramisgurnus dabryanus) by an unusual method known as 'prayer animal release'. Periodic surveys revealed the ratio of invasive weatherfishes to P. chungtienensis has been increasing since the former species was first recorded from the lake in August, 2009. Ptychobarbus chungtienensis shows low genetic diversity in the relict Lake Bita population. Weatherfishes, however, have highly successful survival strategies. The degree of dietary overlap between the species is alarming and perhaps critical if food is found to be a limiting factor.
Jeon, Min Ji; Song, Dong Eun; Jung, Chan Kwon; Kim, Won Gu; Kwon, Hyemi; Lee, Yu-Mi; Sung, Tae-Yon; Yoon, Jong Ho; Chung, Ki-Wook; Hong, Suck Joon; Baek, Jung Hwan; Lee, Jeong Hyun; Kim, Tae Yong; Shong, Young Kee; Kim, Won Bae
2016-01-01
Background The follicular variant of papillary thyroid cancer (FVPTC), especially the encapsulated non-invasive subtype, is a controversial entity. Recent study suggested using ‘non-invasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP)’ for these indolent carcinomas. We evaluated the impact of reclassification from non-invasive encapsulated FVPTCs (EFVPTCs) to NIFTPs in the diagnosis of thyroid nodules with architectural atypia. Methods We reviewed 1301 thyroid nodules with architectural atypia in core needle biopsy (CNB) specimens obtained from March 2012 to February 2013. Nodules were classified into atypia of undetermined significance with architectural atypia (AUS-A, 984, 76%) or follicular neoplasm/suspicious for a follicular neoplasm (FN/SFN, 317, 24%). Among them, diagnostic surgery was performed in 384 nodules (30%). Results In total, 160 nodules (42%) presented final malignant diagnoses including 39 non-invasive encapsulated FVPTCs (10%). The malignancy rate was estimated to be 7–35% in AUS-A nodules and 28–49% in FN/SFN nodules. After reclassification, the malignancy rate was much decreased and estimated to be 5–24% in AUS-A nodules, and 23–39% in FN/SFN nodules. Thyroid nodules with final malignant diagnoses were significantly more likely to have a FN/SFN CNB diagnosis, malignant US features and concomitant nuclear atypia in CNB specimens. However, these factors could not differentiate NIFTPs from other malignancies. Conclusions After reclassification of non-invasive EFVPTCs to NIFTPs, the malignancy rate of thyroid nodules with architectural atypia in CNB specimens was decreased. However, there were no preoperative factors differentiating other malignancies from NIFTPs. The presence of malignant US features or concomitant nuclear atypia might help clinicians deciding diagnostic surgery but, these features also might indicate NIFTPs. PMID:27936121
Fidalgo, L E; López-Beceiro, A M; Vila-Pastor, M; Martínez-Carrasco, C; Barreiro-Vázquez, J D; Pérez, J M
2015-03-01
This study was conducted to assess the reliability of computed tomography (CT) for diagnosing bot fly infestations by Cephenemyia stimulator (Clark) (Diptera: Oestridae) in roe deer (Capreolus capreolus L.) (Artiodactyla: Cervidae). For this purpose, the heads of 30 animals were analysed, firstly by CT and then by necropsy, which was used as the reference standard method. The prevalence values obtained by both methods were identical; the prevalence of infestation was 40.0% overall, and was higher in males (45.5%) than in females (25.0%). These results highlight the usefulness of CT as an alternative or non-invasive method for diagnosing cephenemyiosis in live-captured roe deer and in hunting trophies or museum collections that cannot be destroyed or damaged. © 2014 The Royal Entomological Society.
Hohenauer, Erich; Clarys, Peter; Baeyens, Jean-Pierre; Clijsen, Ron
2017-01-01
Fast recovery after strenuous exercise is important in sports and is often studied via cryotherapy applications. Cryotherapy has a significant vasoconstrictive effect, which seems to be the leading factor in its effectiveness. The resulting enhanced recovery can be measured by using both objective and subjective parameters. Two commonly measured subjective characteristics of recovery are delayed-onset muscle soreness (DOMS) and ratings of perceived exertion (RPE). Two important objective recovery characteristics are countermovement jump (CMJ) performance and peak power output (PPO). Here, we provide a detailed protocol to induce muscular exhaustion of the frontal thighs with a self-paced, 3 x 30 countermovement jump protocol (30-s rest between each set). This randomized controlled trial protocol explains how to perform local cryotherapy cuff application (+ 8 °C for 20 min) and thermoneutral cuff application (+ 32 °C for 20 min) on both thighs as two possible post-exercise recovery modalities. Finally, we provide a non-invasive protocol to measure the effects of these two recovery modalities on subjective (i.e., DOMS of both frontal thighs and RPE) and objective recovery (i.e., CMJ and PPO) characteristics 24, 48, and 72 h post-application. The advantage of this method is that it provides a tool for researchers or coaches to induce muscular exhaustion, without using any expensive devices; to implement local cooling strategies; and to measure both subjective and objective recovery, without using invasive methods. Limitations of this protocol are that the 30 s rest period between sets is very short, and the cardiovascular demand is very high. Future studies may find the assessment of maximum voluntary contractions to be a more sensitive assessment of muscular exhaustion compared to CMJs. PMID:28654037
Pulsed Phase Lock Loop Device for Monitoring Intracranial Pressure During Space Flight
NASA Technical Reports Server (NTRS)
Ueno, Toshiaki; Macias, Brandon R.; Yost, William T.; Hargens, Alan R.
2003-01-01
We have developed an ultrasonic device to monitor ICP waveforms non-invasively from cranial diameter oscillations using a NASA-developed pulsed phase lock loop (PPLL) technique. The purpose of this study was to attempt to validate the PPLL device for reliable recordings of ICP waveforms and analysis of ICP dynamics in vivo. METHODS: PPLL outputs were recorded in patients during invasive ICP monitoring at UCSD Medical Center (n=10). RESULTS: An averaged linear regression coefficient between ICP and PPLL waveform data during one cardiac cycle in all patients is 0.88 +/- 0.02 (mean +/- SE). Coherence function analysis indicated that ICP and PPLL waveforms have high correlation in the lst, 2nd, and 3rd harmonic waves associated with a cardiac cycle. CONCLUSIONS: PPLL outputs represent ICP waveforms in both frequency and time domains. PPLL technology enables in vivo evaluation of ICP dynamics non-invasively, and can acquire continuous ICP waveforms during spaceflight because of compactness and non-invasive nature.
Procopet, Bogdan
2017-01-01
Abstract The concept of ‘cirrhosis’ is evolving and it is now clear that compensated and decompensated cirrhosis are completely different in terms of prognosis. Furthermore, the term ‘advanced chronic liver disease (ACLD)’ better reflects the continuum of histological changes occurring in the liver, which continue to progress even after cirrhosis has developed, and might regress after removing the etiological factor causing the liver disease. In compensated ACLD, portal hypertension marks the progression to a stage with higher risk of clinical complication and requires an appropriate evaluation and treatment. Invasive tests to diagnose cirrhosis (liver biopsy) and portal hypertension (hepatic venous pressure gradient measurement and endoscopy) remain of crucial importance in several difficult clinical scenarios, but their need can be reduced by using different non-invasive tests in standard cases. Among non-invasive tests, the accepted use, major limitations and major benefits of serum markers of fibrosis, elastography and imaging methods are summarized in the present review. PMID:28533906
Miller, Joseph T; Hui, Cang; Thornhill, Andrew; Gallien, Laure; Le Roux, Johannes J; Richardson, David M
2016-12-30
For a plant species to become invasive it has to progress along the introduction-naturalization-invasion (INI) continuum which reflects the joint direction of niche breadth. Identification of traits that correlate with and drive species invasiveness along the continuum is a major focus of invasion biology. If invasiveness is underlain by heritable traits, and if such traits are phylogenetically conserved, then we would expect non-native species with different introduction status (i.e. position along the INI continuum) to show phylogenetic signal. This study uses two clades that contain a large number of invasive tree species from the genera Acacia and Eucalyptus to test whether geographic distribution and a novel phylogenetic conservation method can predict which species have been introduced, became naturalized, and invasive. Our results suggest that no underlying phylogenetic signal underlie the introduction status for both groups of trees, except for introduced acacias. The more invasive acacia clade contains invasive species that have smoother geographic distributions and are more marginal in the phylogenetic network. The less invasive eucalyptus group contains invasive species that are more clustered geographically, more centrally located in the phylogenetic network and have phylogenetic distances between invasive and non-invasive species that are trending toward the mean pairwise distance. This suggests that highly invasive groups may be identified because they have invasive species with smoother and faster expanding native distributions and are located more to the edges of phylogenetic networks than less invasive groups. Published by Oxford University Press on behalf of the Annals of Botany Company.
Rice, William L.; Firdous, Shamaraz; Gupta, Sharad; Hunter, Martin; Foo, Cheryl Wong Po; Wang, Yongzhong; Kim, Hyeon Joo; Kaplan, David L.; Georgakoudi, Irene
2009-01-01
Designing biomaterial scaffolds remains a major challenge in tissue engineering. Key to this challenge is improved understanding of the relationships between the scaffold properties and its degradation kinetics, as well as the cell interactions and the promotion of new matrix deposition. Here we present the use of non-linear spectroscopic imaging as a non-invasive method to characterize not only morphological, but also structural aspects of silkworm silk fibroin-based biomaterials, relying entirely on endogenous optical contrast. We demonstrate that two photon excited fluorescence and second harmonic generation are sensitive to the hydration, overall β sheet content and molecular orientation of the sample. Thus, the functional content and high resolution afforded by these non-invasive approaches offer promise for identifying important connections between biomaterial design and functional engineered tissue development. The strategies described also have broader implications for understanding and tracking the remodeling of degradable biomaterials under dynamic conditions both in vitro and in vivo. PMID:18291520
Non-invasive estimation of dissipation from non-equilibrium fluctuations in chemical reactions.
Muy, S; Kundu, A; Lacoste, D
2013-09-28
We show how to extract an estimate of the entropy production from a sufficiently long time series of stationary fluctuations of chemical reactions. This method, which is based on recent work on fluctuation theorems, is direct, non-invasive, does not require any knowledge about the underlying dynamics and is applicable even when only partial information is available. We apply it to simple stochastic models of chemical reactions involving a finite number of states, and for this case, we study how the estimate of dissipation is affected by the degree of coarse-graining present in the input data.
Laryngeal closure impedes non-invasive ventilation at birth.
Crawshaw, Jessica R; Kitchen, Marcus J; Binder-Heschl, Corinna; Thio, Marta; Wallace, Megan J; Kerr, Lauren T; Roehr, Charles C; Lee, Katie L; Buckley, Genevieve A; Davis, Peter G; Flemmer, Andreas; Te Pas, Arjan B; Hooper, Stuart B
2018-03-01
Non-invasive ventilation is sometimes unable to provide the respiratory needs of very premature infants in the delivery room. While airway obstruction is thought to be the main problem, the site of obstruction is unknown. We investigated whether closure of the larynx and epiglottis is a major site of airway obstruction. We used phase contrast X-ray imaging to visualise laryngeal function in spontaneously breathing premature rabbits immediately after birth and at approximately 1 hour after birth. Non-invasive respiratory support was applied via a facemask and images were analysed to determine the percentage of the time the glottis and the epiglottis were open. Immediately after birth, the larynx is predominantly closed, only opening briefly during a breath, making non-invasive intermittent positive pressure ventilation (iPPV) ineffective, whereas after lung aeration, the larynx is predominantly open allowing non-invasive iPPV to ventilate the lung. The larynx and epiglottis were predominantly closed (open 25.5%±1.1% and 17.1%±1.6% of the time, respectively) in pups with unaerated lungs and unstable breathing patterns immediately after birth. In contrast, the larynx and the epiglottis were mostly open (90.5%±1.9% and 72.3%±2.3% of the time, respectively) in pups with aerated lungs and stable breathing patterns irrespective of time after birth. Laryngeal closure impedes non-invasive iPPV at birth and may reduce the effectiveness of non-invasive respiratory support in premature infants immediately after birth. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Nagle, Anna S; Speich, John E; De Wachter, Stefan G; Ghamarian, Peter P; Le, David M; Colhoun, Andrew F; Ratz, Paul H; Barbee, Robert W; Klausner, Adam P
2017-06-01
The purpose of this investigation was to develop a non-invasive, objective, and unprompted method to characterize real-time bladder sensation. Volunteers with and without overactive bladder (OAB) were prospectively enrolled in a preliminary accelerated hydration study. Participants drank 2L Gatorade-G2® and recorded real-time sensation (0-100% scale) and standardized verbal sensory thresholds using a novel, touch-screen "sensation meter." 3D bladder ultrasound images were recorded throughout fillings for a subset of participants. Sensation data were recorded for two consecutive complete fill-void cycles. Data from 14 normal and 12 OAB participants were obtained (ICIq-OAB-5a = 0 vs. ≥3). Filling duration decreased in fill2 compared to fill1, but volume did not significantly change. In normals, adjacent verbal sensory thresholds (within fill) showed no overlap, and identical thresholds (between fill) were similar, demonstrating effective differentiation between degrees of %bladder capacity. In OAB, within-fill overlaps and between-fill differences were identified. Real-time %capacity-sensation curves left shifted from fill1 to fill2 in normals, consistent with expected viscoelastic behavior, but unexpectedly right shifted in OAB. 3D ultrasound volume data showed that fill rates started slowly and ramped up with variable end points. This study establishes a non-invasive means to evaluate real-time bladder sensation using a two-fill accelerated hydration protocol and a sensation meter. Verbal thresholds were inconsistent in OAB, and the right shift in OAB %capacity-sensation curve suggests potential biomechanical and/or sensitization changes. This methodology could be used to gain valuable information on different forms of OAB in a completely non-invasive way. © 2016 Wiley Periodicals, Inc.
Two risk score models for predicting incident Type 2 diabetes in Japan.
Doi, Y; Ninomiya, T; Hata, J; Hirakawa, Y; Mukai, N; Iwase, M; Kiyohara, Y
2012-01-01
Risk scoring methods are effective for identifying persons at high risk of Type 2 diabetes mellitus, but such approaches have not yet been established in Japan. A total of 1935 subjects of a derivation cohort were followed up for 14 years from 1988 and 1147 subjects of a validation cohort independent of the derivation cohort were followed up for 5 years from 2002. Risk scores were estimated based on the coefficients (β) of Cox proportional hazards model in the derivation cohort and were verified in the validation cohort. In the derivation cohort, the non-invasive risk model was established using significant risk factors; namely, age, sex, family history of diabetes, abdominal circumference, body mass index, hypertension, regular exercise and current smoking. We also created another scoring risk model by adding fasting plasma glucose levels to the non-invasive model (plus-fasting plasma glucose model). The area under the curve of the non-invasive model was 0.700 and it increased significantly to 0.772 (P < 0.001) in the plus-fasting plasma glucose model. The ability of the non-invasive model to predict Type 2 diabetes was comparable with that of impaired glucose tolerance, and the plus-fasting plasma glucose model was superior to it. The cumulative incidence of Type 2 diabetes was significantly increased with elevating quintiles of the sum scores of both models in the validation cohort (P for trend < 0.001). We developed two practical risk score models for easily identifying individuals at high risk of incident Type 2 diabetes without an oral glucose tolerance test in the Japanese population. © 2011 The Authors. Diabetic Medicine © 2011 Diabetes UK.
Sensor system for non-invasive optical carboxy-and methemoglobin determination
NASA Astrophysics Data System (ADS)
Timm, Ulrich; Gewiss, Helge; Kraitl, Jens; Brock, Beate; Ewald, Hartmut
2017-02-01
The pulse oximetry is a non-invasive method to monitor the oxygen saturation and is clinically used for many years. However this technology has some limitations. In case of the presence of dysfunctional hemoglobin derivatives as carboxyhemoglobin (COHb) or methemoglobin (MetHb) the readings of the pulse oximeter are distorted. This erroneous diagnosis of the patient's status can result in a life threatening situation. This paper will describe a sensor system for noninvasive determination of carboxy- and methemoglobin.
Wei, Hui; Xu, Jialin; Quan, Guoming; Zhang, Jiaen; Qin, Zhong
2017-02-01
Plant invasion has been reported to affect a mass of soil ecological processes and functions, although invasion effects are often context-, species- and ecosystem- specific. This study was conducted to explore potential impacts of Praxelis clematidea invasion on contents of total and available soil nitrogen (N) and microbial N transformations in a tropical savanna. Soil samples were collected from the surface and sub-surface layers in plots with non-, slight, or severe P. clematidea invasion in Hainan Province of southern China, which remains less studied, and analyzed for contents of the total and available N fractions and microbial N transformations. Results showed that total N content significantly increased in the surface soil but trended to decrease in the sub-surface soil in the invaded plots relative to the non-invaded control. Slight invasion significantly increased soil alkali-hydrolysable N content in the two soil layers. Soil net N mineralization rate was not significantly changed in both the soil layers, although soil microbial biomass N was significantly higher in plots with severe invasion than the control. There was no significant difference in content of soil N fractions between plots with slight and severe invasion. Our results suggest that invasion of P. clematidea promotes soil N accumulation in the surface soil layer, which is associated with increased microbial biomass N. However, the invasion-induced ecological impacts did not increase with further invasion. Significantly higher microbial biomass N was maintained in plots with severe invasion, implying that severe P. clematidea invasion may accelerate nutrient cycling in invaded ecosystems.
Bridging the gaps between non-invasive genetic sampling and population parameter estimation
Francesca Marucco; Luigi Boitani; Daniel H. Pletscher; Michael K. Schwartz
2011-01-01
Reliable estimates of population parameters are necessary for effective management and conservation actions. The use of genetic data for captureÂrecapture (CR) analyses has become an important tool to estimate population parameters for elusive species. Strong emphasis has been placed on the genetic analysis of non-invasive samples, or on the CR analysis; however,...
Rapid and direct screening of H:C ratio in Archean kerogen via microRaman Spectroscopy
NASA Astrophysics Data System (ADS)
Ferralis, N.; Matys, E. D.; Allwood, A.; Knoll, A. H.; Summons, R. E.
2015-12-01
Rapid evaluation of the preservation of biosignatures in ancient kerogens is essential for the evaluation of the usability of Earth analogues as proxies of Martian geological materials. No single, non-destructive and non-invasive technique currently exists to rapidly determine such state of preservation of the organic matter in relation to its geological and mineral environment. Due to its non-invasive nature, microRaman spectroscopy is emerging as a candidate technique for the qualitative determination maturity of organic matter, by correlating Raman spectral features and aromatic carbon cluster size. Here we will present a novel quantitative method in which before-neglected Raman spectral features are correlated directly and with excellent accuracy with the H:C ratio. In addition to providing a chemical justification of the found direct correlation, we will show its applicability and predictive capabilities in evaluating H:C in Archean kerogens. This novel method opens new opportunities for the use of Raman spectroscopy and mapping. This includes the non-invasively determination of kerogen preservation and microscale chemical diversity within a particular Earth analogue, to be potentially extended to evaluate Raman spectra acquired directly on Mars.
Imaging mechanical properties of hepatic tissue by magnetic resonance elastography
NASA Astrophysics Data System (ADS)
Yin, Meng; Rouviere, Olivier; Burgart, Lawrence J.; Fidler, Jeff L.; Manduca, Armando; Ehman, Richard L.
2006-03-01
PURPOSE: To assess the feasibility of a modified phase-contrast MRI technique (MR Elastography) for quantitatively assessing the mechanical properties of hepatic tissues by imaging propagating acoustic shear waves. MATERIALS AND METHODS: Both phantom and human studies were performed to develop and optimize a practical imaging protocol by visualizing and investigating the diffraction field of shear waves generated from pneumatic longitudinal drivers. The effects of interposed ribs in a transcostal approach were also investigated. A gradient echo MRE pulse sequence was adapted for shear wave imaging in the liver during suspended respiration, and then tested to measure hepatic shear stiffness in 13 healthy volunteers and 1 patient with chronic liver disease to determine the potential of non-invasively detecting liver fibrosis. RESULTS: Phantom studies demonstrate that longitudinal waves generated by the driver are mode-converted to shear waves in a distribution governed by diffraction principles. The transcostal approach was determined to be the most effective method for generating shear waves in human studies. Hepatic stiffness measurements in the 13 normal volunteers demonstrated a mean value of 2.0+/-0.2kPa. The shear stiffness measurement in the patient was much higher at 8.5kPa. CONCLUSION: MR Elastography of the liver shows promise as a method to non-invasively detect and characterize diffuse liver disease, potentially reducing the need for biopsy to diagnose hepatic fibrosis.
"SINCE I MUST PLEASE THOSE BELOW": HUMAN SKELETAL REMAINS RESEARCH AND THE LAW.
Holland, Thomas D
2015-01-01
The ethics of non-invasive scientific research on human skeletal remains are poorly articulated and lack a single, definitive analogue in western law. Laws governing invasive research on human fleshed remains, as well as bio-ethical principles established for research on living subjects, provide effective models for the establishment of ethical guidelines for non-invasive research on human skeletal remains. Specifically, non-invasive analysis of human remains is permissible provided that the analysis and collection of resulting data (1) are accomplished with respect for the dignity of the individual, (2) do not violate the last-known desire of the deceased, (3) do not adversely impact the right of the next of kin to perform a ceremonious and decent disposal of the remains, and (4) do not unduly or maliciously violate the privacy interests of the next of kin.
Atalah, Javier; Hopkins, Grant A.; Forrest, Barrie M.
2013-01-01
Augmentative biocontrol aims to control established pest populations through enhancement of their indigenous enemies. To our knowledge, this approach has not been applied at an operational scale in natural marine habitats, in part because of the perceived risk of adverse non-target effects on native ecosystems. In this paper, we focus on the persistence, spread and non-target effects of the sea urchin Evechinus chloroticus when used as biocontrol agent to eradicate an invasive kelp from Fiordland, New Zealand. Rocky reef macrobenthic assemblages were monitored over 17 months in areas where the indigenous algal canopy was either removed or left intact prior to the translocation of a large number of urchins (>50 ind.·m−2). Urchin densities in treated areas significantly declined ∼9 months after transplant, and began spreading to adjacent sites. At the end of the 17-month study, densities had declined to ∼5 ind.·m−2. Compared to controls, treatment sites showed persistent shifts from kelp forest to urchin barrens, which were accompanied by significant reductions in taxa richness. Although these non-target effects were pronounced, they were considered to be localised and reversible, and arguably outweigh the irreversible and more profound ecological impacts associated with the establishment of an invasive species in a region of high conservation value. Augmentative biocontrol, used in conjunction with traditional control methods, represents a promising tool for the integrated management of marine pests. PMID:24260376
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donnelley, Martin, E-mail: martin.donnelley@adelaide.edu.au; Farrow, Nigel; Parsons, David
Cystic fibrosis (CF) is caused by a gene defect that compromises the ability of the mucociliary transit (MCT) system to clear the airways of debris and pathogens. To directly characterise airway health and the effects of treatments we have developed a synchrotron X-ray microscopy method that non-invasively measures the local rate and patterns of MCT behaviour. Although the nasal airways of CF mice exhibit the CF pathophysiology, there is evidence that nasal MCT is not altered in CF mice1. The aim of this experiment was to determine if our non-invasive local airway health assessment method could identify differences in nasalmore » MCT rate between normal and CF mice, information that is potentially lost in bulk MCT measurements. Experiments were performed on the BL20XU beamline at the SPring-8 Synchrotron in Japan. Mice were anaesthetized, a small quantity of micron-sized marker particles were delivered to the nose, and images of the nasal airways were acquired for 15 minutes. The nasal airways were treated with hypertonic saline or mannitol to increase surface hydration and MCT. Custom software was used to locate and track particles and calculate individual and bulk MCT rates. No statistically significant differences in MCT rate were found between normal and CF mouse nasal airways or between treatments. However, we hope that the improved sensitivity provided by this technique will accelerate the ability to identify useful CF lung disease-modifying interventions in small animal models, and enhance the development and efficacy of proposed new therapies.« less
Human breath metabolomics using an optimized non-invasive exhaled breath condensate sampler.
Zamuruyev, Konstantin O; Aksenov, Alexander A; Pasamontes, Alberto; Brown, Joshua F; Pettit, Dayna R; Foutouhi, Soraya; Weimer, Bart C; Schivo, Michael; Kenyon, Nicholas J; Delplanque, Jean-Pierre; Davis, Cristina E
2016-12-22
Exhaled breath condensate (EBC) analysis is a developing field with tremendous promise to advance personalized, non-invasive health diagnostics as new analytical instrumentation platforms and detection methods are developed. Multiple commercially-available and researcher-built experimental samplers are reported in the literature. However, there is very limited information available to determine an effective breath sampling approach, especially regarding the dependence of breath sample metabolomic content on the collection device design and sampling methodology. This lack of an optimal standard procedure results in a range of reported results that are sometimes contradictory. Here, we present a design of a portable human EBC sampler optimized for collection and preservation of the rich metabolomic content of breath. The performance of the engineered device is compared to two commercially available breath collection devices: the RTube ™ and TurboDECCS. A number of design and performance parameters are considered, including: condenser temperature stability during sampling, collection efficiency, condenser material choice, and saliva contamination in the collected breath samples. The significance of the biological content of breath samples, collected with each device, is evaluated with a set of mass spectrometry methods and was the primary factor for evaluating device performance. The design includes an adjustable mass-size threshold for aerodynamic filtering of saliva droplets from the breath flow. Engineering an inexpensive device that allows efficient collection of metalomic-rich breath samples is intended to aid further advancement in the field of breath analysis for non-invasive health diagnostic. EBC sampling from human volunteers was performed under UC Davis IRB protocol 63701-3 (09/30/2014-07/07/2017).
NASA Astrophysics Data System (ADS)
Donnelley, Martin; Morgan, Kaye; Farrow, Nigel; Siu, Karen; Parsons, David
2016-01-01
Cystic fibrosis (CF) is caused by a gene defect that compromises the ability of the mucociliary transit (MCT) system to clear the airways of debris and pathogens. To directly characterise airway health and the effects of treatments we have developed a synchrotron X-ray microscopy method that non-invasively measures the local rate and patterns of MCT behaviour. Although the nasal airways of CF mice exhibit the CF pathophysiology, there is evidence that nasal MCT is not altered in CF mice1. The aim of this experiment was to determine if our non-invasive local airway health assessment method could identify differences in nasal MCT rate between normal and CF mice, information that is potentially lost in bulk MCT measurements. Experiments were performed on the BL20XU beamline at the SPring-8 Synchrotron in Japan. Mice were anaesthetized, a small quantity of micron-sized marker particles were delivered to the nose, and images of the nasal airways were acquired for 15 minutes. The nasal airways were treated with hypertonic saline or mannitol to increase surface hydration and MCT. Custom software was used to locate and track particles and calculate individual and bulk MCT rates. No statistically significant differences in MCT rate were found between normal and CF mouse nasal airways or between treatments. However, we hope that the improved sensitivity provided by this technique will accelerate the ability to identify useful CF lung disease-modifying interventions in small animal models, and enhance the development and efficacy of proposed new therapies.
Gall, Carolin; Silvennoinen, Katri; Granata, Giuseppe; de Rossi, Francesca; Vecchio, Fabrizio; Brösel, Doreen; Bola, Michał; Sailer, Michael; Waleszczyk, Wioletta J; Rossini, Paolo M; Tatlisumak, Turgut; Sabel, Bernhard A
2015-07-01
Occipital stroke often leads to visual field loss, for which no effective treatment exists. Little is known about the potential of non-invasive electric current stimulation to ameliorate visual functions in patients suffering from unilateral occipital stroke. One reason is the traditional thinking that visual field loss after brain lesions is permanent. Since evidence is available documenting vision restoration by means of vision training or non-invasive electric current stimulation future studies should also consider investigating recovery processes after visual cortical strokes. Here, protocols of repetitive transorbital alternating current stimulation (rtACS) and transcranial direct current stimulation (tDCS) are presented and the European consortium for restoration of vision (REVIS) is introduced. Within the consortium different stimulation approaches will be applied to patients with unilateral occipital strokes resulting in homonymous hemianopic visual field defects. The aim of the study is to evaluate effects of current stimulation of the brain on vision parameters, vision-related quality of life, and physiological parameters that allow concluding about the mechanisms of vision restoration. These include EEG-spectra and coherence measures, and visual evoked potentials. The design of stimulation protocols involves an appropriate sham-stimulation condition and sufficient follow-up periods to test whether the effects are stable. This is the first application of non-invasive current stimulation for vision rehabilitation in stroke-related visual field deficits. Positive results of the trials could have far-reaching implications for clinical practice. The ability of non-invasive electrical current brain stimulation to modulate the activity of neuronal networks may have implications for stroke rehabilitation also in the visual domain. Copyright © 2015 Elsevier Inc. All rights reserved.
For biomonitoring efforts aimed at early detection of aquatic invasive species (AIS), the ability to detect rare individuals is key and requires accurate species level identification to maintain a low occurrence probability of non-detection errors (failure to detect a present spe...
Enhancing the estimation of blood pressure using pulse arrival time and two confounding factors.
Baek, Hyun Jae; Kim, Ko Keun; Kim, Jung Soo; Lee, Boreom; Park, Kwang Suk
2010-02-01
A new method of blood pressure (BP) estimation using multiple regression with pulse arrival time (PAT) and two confounding factors was evaluated in clinical and unconstrained monitoring situations. For the first analysis with clinical data, electrocardiogram (ECG), photoplethysmogram (PPG) and invasive BP signals were obtained by a conventional patient monitoring device during surgery. In the second analysis, ECG, PPG and non-invasive BP were measured using systems developed to obtain data under conditions in which the subject was not constrained. To enhance the performance of BP estimation methods, heart rate (HR) and arterial stiffness were considered as confounding factors in regression analysis. The PAT and HR were easily extracted from ECG and PPG signals. For arterial stiffness, the duration from the maximum derivative point to the maximum of the dicrotic notch in the PPG signal, a parameter called TDB, was employed. In two experiments that normally cause BP variation, the correlation between measured BP and the estimated BP was investigated. Multiple-regression analysis with the two confounding factors improved correlation coefficients for diastolic blood pressure and systolic blood pressure to acceptable confidence levels, compared to existing methods that consider PAT only. In addition, reproducibility for the proposed method was determined using constructed test sets. Our results demonstrate that non-invasive, non-intrusive BP estimation can be obtained using methods that can be applied in both clinical and daily healthcare situations.
Alempijevic, Tamara; Zec, Simon; Nikolic, Vladimir; Veljkovic, Aleksandar; Stojanovic, Zoran; Matovic, Vera; Milosavljevic, Tomica
2017-01-31
Accurate clinical assessment of liver fibrosis is essential and the aim of our study was to compare and combine hemodynamic Doppler ultrasonography, liver stiffness by transient elastography, and non-invasive serum biomarkers with the degree of fibrosis confirmed by liver biopsy, and thereby to determine the value of combining non-invasive method in the prediction significant liver fibrosis. We included 102 patients with chronic liver disease of various etiology. Each patient was evaluated using Doppler ultrasonography measurements of the velocity and flow pattern at portal trunk, hepatic and splenic artery, serum fibrosis biomarkers, and transient elastography. These parameters were then input into a multilayer perceptron artificial neural network with two hidden layers, and used to create models for predicting significant fibrosis. According to METAVIR score, clinically significant fibrosis (≥F2) was detected in 57.8% of patients. A model based only on Doppler parameters (hepatic artery diameter, hepatic artery systolic and diastolic velocity, splenic artery systolic velocity and splenic artery Resistance Index), predicted significant liver fibrosis with a sensitivity and specificity of75.0% and 60.0%. The addition of unrelated non-invasive tests improved the diagnostic accuracy of Doppler examination. The best model for prediction of significant fibrosis was obtained by combining Doppler parameters, non-invasive markers (APRI, ASPRI, and FIB-4) and transient elastography, with a sensitivity and specificity of 88.9% and 100%. Doppler parameters alone predict the presence of ≥F2 fibrosis with fair accuracy. Better prediction rates are achieved by combining Doppler variables with non-invasive markers and liver stiffness by transient elastography.
Modeling species invasions in Ecopath with Ecosim: an evaluation using Laurentian Great Lakes models
Langseth, Brian J.; Rogers, Mark; Zhang, Hongyan
2012-01-01
Invasive species affect the structure and processes of ecosystems they invade. Invasive species have been particularly relevant to the Laurentian Great Lakes, where they have played a part in both historical and recent changes to Great Lakes food webs and the fisheries supported therein. There is increased interest in understanding the effects of ecosystem changes on fisheries within the Great Lakes, and ecosystem models provide an essential tool from which this understanding can take place. A commonly used model for exploring fisheries management questions within an ecosystem context is the Ecopath with Ecosim (EwE) modeling software. Incorporating invasive species into EwE models is a challenging process, and descriptions and comparisons of methods for modeling species invasions are lacking. We compared four methods for incorporating invasive species into EwE models for both Lake Huron and Lake Michigan based on the ability of each to reproduce patterns in observed data time series. The methods differed in whether invasive species biomass was forced in the model, the initial level of invasive species biomass at the beginning of time dynamic simulations, and the approach to cause invasive species biomass to increase at the time of invasion. The overall process of species invasion could be reproduced by all methods, but fits to observed time series varied among the methods and models considered. We recommend forcing invasive species biomass when model objectives are to understand ecosystem impacts in the past and when time series of invasive species biomass are available. Among methods where invasive species time series were not forced, mediating the strength of predator–prey interactions performed best for the Lake Huron model, but worse for the Lake Michigan model. Starting invasive species biomass at high values and then artificially removing biomass until the time of invasion performed well for both models, but was more complex than starting invasive species biomass at low values. In general, for understanding the effect of invasive species on future fisheries management actions, we recommend initiating invasive species biomass at low levels based on the greater simplicity and realism of the method compared to others.
Cooper-Knock, Johnathan; Ahmedzai, Sam H; Shaw, Pamela
2011-11-01
Sialorrhoea is a recognized complication of bulbar amyotrophic lateral sclerosis (ALS) that leads to an increased risk of potentially harmful aspiration and often prevents patients from tolerating non-invasive ventilation (NIV). A case of treatment-resistant sialorrhoea in bulbar ALS is described where subcutaneous glycopyrrolate was effective without significant side-effects. The patient went on to markedly increase the length of time she could tolerate NIV each night.
González, Eduardo; Sher, Anna A.; Anderson, Robert M.; Bay, Robin F.; Bean, Daniel W.; Bissonnete, Gabriel J.; Cooper, David J.; Dohrenwend, Kara; Eichhorst, Kim D.; El Waer, Hisham; Kennard, Deborah K.; Harms-Weissinger, Rebecca; Henry, Annie L.; Makarick, Lori J.; Ostoja, Steven M.; Reynolds, Lindsay V.; Robinson, W. Wright; Shafroth, Patrick B.; Tabacchi, Erich
2017-01-01
Control of invasive species within ecosystems may induce secondary invasions of non-target invaders replacing the first alien. We used four plant species listed as noxious by local authorities in riparian systems to discern whether 1) the severity of these secondary invasions was related to the control method applied to the first alien; and 2) which species that were secondary invaders persisted over time. In a collaborative study by 16 research institutions, we monitored plant species composition following control of non-native Tamarix trees along southwestern U.S. rivers using defoliation by an introduced biocontrol beetle, and three physical removal methods: mechanical using saws, heavy machinery, and burning in 244 treated and 79 untreated sites across six U.S. states. Physical removal favored secondary invasions immediately after Tamarix removal (0–3 yrs.), while in the biocontrol treatment, secondary invasions manifested later (> 5 yrs.). Within this general trend, the response of weeds to control was idiosyncratic; dependent on treatment type and invader. Two annual tumbleweeds that only reproduce by seed (Bassia scoparia and Salsola tragus) peaked immediately after physical Tamarix removal and persisted over time, even after herbicide application. Acroptilon repens, a perennial forb that vigorously reproduces by rhizomes, and Bromus tectorum, a very frequent annual grass before removal that only reproduces by seed, were most successful at biocontrol sites, and progressively spread as the canopy layer opened. These results demonstrate that strategies to control Tamarix affect secondary invasions differently among species and that time since disturbance is an important, generally overlooked, factor affecting response.
Biomechanics of subcellular structures by non-invasive Brillouin microscopy
NASA Astrophysics Data System (ADS)
Antonacci, Giuseppe; Braakman, Sietse
2016-11-01
Cellular biomechanics play a pivotal role in the pathophysiology of several diseases. Unfortunately, current methods to measure biomechanical properties are invasive and mostly limited to the surface of a cell. As a result, the mechanical behaviour of subcellular structures and organelles remains poorly characterised. Here, we show three-dimensional biomechanical images of single cells obtained with non-invasive, non-destructive Brillouin microscopy with an unprecedented spatial resolution. Our results quantify the longitudinal elastic modulus of subcellular structures. In particular, we found the nucleoli to be stiffer than both the nuclear envelope (p < 0.0001) and the surrounding cytoplasm (p < 0.0001). Moreover, we demonstrate the mechanical response of cells to Latrunculin-A, a drug that reduces cell stiffness by preventing cytoskeletal assembly. Our technique can therefore generate valuable insights into cellular biomechanics and its role in pathophysiology.
NASA Astrophysics Data System (ADS)
Gillies, D.; Gamal, W.; Downes, A.; Reinwald, Y.; Yang, Y.; El Haj, A.; Bagnaninchi, P. O.
2017-02-01
There is an unmet need in tissue engineering for non-invasive, label-free monitoring of cell mechanical behaviour in their physiological environment. Here, we describe a novel optical coherence phase microscopy (OCPM) set-up which can map relative cell mechanical behaviour in monolayers and 3D systems non-invasively, and in real-time. 3T3 and MCF-7 cells were investigated, with MCF-7 demonstrating an increased response to hydrostatic stimulus indicating MCF-7 being softer than 3T3. Thus, OCPM shows the ability to provide qualitative data on cell mechanical behaviour. Quantitative measurements of 6% agarose beads have been taken with commercial Cell Scale Microsquisher system demonstrating that their mechanical properties are in the same order of magnitude of cells, indicating that this is an appropriate test sample for the novel method described.
High intensity focused ultrasound (HIFU) in tumor therapy.
Sequeiros, Roberto Blanco; Joronen, Kirsi; Komar, Gaber; Koskinen, Seppo K
HIFU (high intensity focused ultrasound) is a method in which high-frequency ultrasound is focused on a tissue in order to achieve a thermal effect and the subsequent percutaneously ablation, or tissue modulation. HIFU is non-invasive and results in an immediate tissue destruction effect corresponding to surgery, either percutaneously or through body cavities. HIFU can be utilized in the treatment of both benign and malignant tumors. In neurological diseases, focused HIFU can be used in the treatment of disorders of the basal ganglia.
Superficial and muscle-invasive bladder cancer: principles of management for outcomes assessments.
Parekh, Dipen J; Bochner, Bernard H; Dalbagni, Guido
2006-12-10
Bladder cancer is a heterogeneous disease. Non-muscle-invasive bladder cancer embraces a spectrum of tumors with varying degrees of clinical behavior. Transurethral resection remains the surgical mainstay for the treatment of non-muscle-invasive bladder cancer. In an attempt to decrease the recurrence or progression rate, intravesical chemotherapy or immunotherapy is also used. Radical cystectomy with bilateral pelvic lymph node dissection remains the gold standard for treating muscle-invasive bladder cancer. Over the last decade, the orthotopic neobladder has gained widespread popularity as the preferred mode of urinary diversion in both males and females with similar oncologic and functional outcomes. Well-designed trials with effective chemotherapy have shown a beneficial role for neoadjuvant chemotherapy.
NASA Astrophysics Data System (ADS)
Alex, Aneesh; Li, Airong; Men, Jing; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao
2016-03-01
Electrical stimulation is the clinical standard for cardiac pacing. Although highly effective in controlling cardiac rhythm, the invasive nature, non-specificity to cardiac tissues and possible tissue damage limits its applications. Optogenetic pacing of the heart is a promising alternative, which is non-invasive and more specific, has high spatial and temporal precision, and avoids the shortcomings in electrical stimulation. Drosophila melanogaster, which is a powerful model organism with orthologs of nearly 75% of human disease genes, has not been studied for optogenetic pacing in the heart. Here, we developed a non-invasive integrated optical pacing and optical coherence microscopy (OCM) imaging system to control the heart rhythm of Drosophila at different developmental stages using light. The OCM system is capable of providing high imaging speed (130 frames/s) and ultrahigh imaging resolutions (1.5 μm and 3.9 μm for axial and transverse resolutions, respectively). A light-sensitive pacemaker was developed in Drosophila by specifically expressing the light-gated cation channel, channelrhodopsin-2 (ChR2) in transgenic Drosophila heart. We achieved non-invasive and specific optical control of the Drosophila heart rhythm throughout the fly's life cycle (larva, pupa, and adult) by stimulating the heart with 475 nm pulsed laser light. Heart response to stimulation pulses was monitored non-invasively with OCM. This integrated non-invasive optogenetic control and in vivo imaging technique provides a novel platform for performing research studies in developmental cardiology.
Effects of invasive plants on arthropods.
Litt, Andrea R; Cord, Erin E; Fulbright, Timothy E; Schuster, Greta L
2014-12-01
Non-native plants have invaded nearly all ecosystems and represent a major component of global ecological change. Plant invasions frequently change the composition and structure of vegetation communities, which can alter animal communities and ecosystem processes. We reviewed 87 articles published in the peer-reviewed literature to evaluate responses of arthropod communities and functional groups to non-native invasive plants. Total abundance of arthropods decreased in 62% of studies and increased in 15%. Taxonomic richness decreased in 48% of studies and increased in 13%. Herbivorous arthropods decreased in response to plant invasions in 48% of studies and increased in 17%, likely due to direct effects of decreased plant diversity. Predaceous arthropods decreased in response to invasive plants in 44% of studies, which may reflect indirect effects due to reductions in prey. Twenty-two percent of studies documented increases in predators, which may reflect changes in vegetation structure that improved mobility, survival, or web-building for these species. Detritivores increased in 67% of studies, likely in response to increased litter and decaying vegetation; no studies documented decreased abundance in this functional group. Although many researchers have examined effects of plant invasions on arthropods, sizeable information gaps remain, specifically regarding how invasive plants influence habitat and dietary requirements. Beyond this, the ability to predict changes in arthropod populations and communities associated with plant invasions could be improved by adopting a more functional and mechanistic approach. Understanding responses of arthropods to invasive plants will critically inform conservation of virtually all biodiversity and ecological processes because so many organisms depend on arthropods as prey or for their functional roles, including pollination, seed dispersal, and decomposition. Given their short generation times and ability to respond rapidly to ecological change, arthropods may be ideal targets for restoration and conservation activities. © 2014 Society for Conservation Biology.
Non-invasive collection and analysis of semen in wild macaques.
Thomsen, Ruth
2014-04-01
Assessments of primate male fertility via semen analyses are so far restricted to captivity. This study describes a non-invasive method to collect and analyse semen in wild primates, based on fieldwork with Yakushima macaques (Macaca fuscata yakui). Over nine mating seasons between 1993 and 2010, 128 masturbatory ejaculations were recorded in 21 males of 5 study troops, and in 11 non-troop males. In 55%, ejaculate volume was directly estimated, and in 37%, pH-value, sperm vitality, numbers, morphology and swimming velocity could also be determined. This approach of assessing semen production rates and individual male fertility can be applied to other primate taxa, in particular to largely terrestrial populations where males masturbate frequently, such as macaques and baboons. Furthermore, since explanations of male reproductive skew in non-human primate populations have until now ignored the potential role of semen quality, the method presented here will also help to answer this question.
Trojan Horse Strategy for Non-invasive Interference of Clock Gene in the Oyster Crassostrea gigas.
Payton, Laura; Perrigault, Mickael; Bourdineaud, Jean-Paul; Marcel, Anjara; Massabuau, Jean-Charles; Tran, Damien
2017-08-01
RNA interference is a powerful method to inhibit specific gene expression. Recently, silencing target genes by feeding has been successfully carried out in nematodes, insects, and small aquatic organisms. A non-invasive feeding-based RNA interference is reported here for the first time in a mollusk bivalve, the pacific oyster Crassostrea gigas. In this Trojan horse strategy, the unicellular alga Heterocapsa triquetra is the food supply used as a vector to feed oysters with Escherichia coli strain HT115 engineered to express the double-stranded RNA targeting gene. To test the efficacy of the method, the Clock gene, a central gene of the circadian clock, was targeted for knockout. Results demonstrated specific and systemic efficiency of the Trojan horse strategy in reducing Clock mRNA abundance. Consequences of Clock disruption were observed in Clock-related genes (Bmal, Tim1, Per, Cry1, Cry2, Rev.-erb, and Ror) and triploid oysters were more sensitive than diploid to the interference. This non-invasive approach shows an involvement of the circadian clock in oyster bioaccumulation of toxins produced by the harmful alga Alexandrium minutum.
Wang, Ophelia; Zachmann, Luke J; Sesnie, Steven E; Olsson, Aaryn D; Dickson, Brett G
2014-01-01
Prioritizing areas for management of non-native invasive plants is critical, as invasive plants can negatively impact plant community structure. Extensive and multi-jurisdictional inventories are essential to prioritize actions aimed at mitigating the impact of invasions and changes in disturbance regimes. However, previous work devoted little effort to devising sampling methods sufficient to assess the scope of multi-jurisdictional invasion over extensive areas. Here we describe a large-scale sampling design that used species occurrence data, habitat suitability models, and iterative and targeted sampling efforts to sample five species and satisfy two key management objectives: 1) detecting non-native invasive plants across previously unsampled gradients, and 2) characterizing the distribution of non-native invasive plants at landscape to regional scales. Habitat suitability models of five species were based on occurrence records and predictor variables derived from topography, precipitation, and remotely sensed data. We stratified and established field sampling locations according to predicted habitat suitability and phenological, substrate, and logistical constraints. Across previously unvisited areas, we detected at least one of our focal species on 77% of plots. In turn, we used detections from 2011 to improve habitat suitability models and sampling efforts in 2012, as well as additional spatial constraints to increase detections. These modifications resulted in a 96% detection rate at plots. The range of habitat suitability values that identified highly and less suitable habitats and their environmental conditions corresponded to field detections with mixed levels of agreement. Our study demonstrated that an iterative and targeted sampling framework can address sampling bias, reduce time costs, and increase detections. Other studies can extend the sampling framework to develop methods in other ecosystems to provide detection data. The sampling methods implemented here provide a meaningful tool when understanding the potential distribution and habitat of species over multi-jurisdictional and extensive areas is needed for achieving management objectives.
Wang, Ophelia; Zachmann, Luke J.; Sesnie, Steven E.; Olsson, Aaryn D.; Dickson, Brett G.
2014-01-01
Prioritizing areas for management of non-native invasive plants is critical, as invasive plants can negatively impact plant community structure. Extensive and multi-jurisdictional inventories are essential to prioritize actions aimed at mitigating the impact of invasions and changes in disturbance regimes. However, previous work devoted little effort to devising sampling methods sufficient to assess the scope of multi-jurisdictional invasion over extensive areas. Here we describe a large-scale sampling design that used species occurrence data, habitat suitability models, and iterative and targeted sampling efforts to sample five species and satisfy two key management objectives: 1) detecting non-native invasive plants across previously unsampled gradients, and 2) characterizing the distribution of non-native invasive plants at landscape to regional scales. Habitat suitability models of five species were based on occurrence records and predictor variables derived from topography, precipitation, and remotely sensed data. We stratified and established field sampling locations according to predicted habitat suitability and phenological, substrate, and logistical constraints. Across previously unvisited areas, we detected at least one of our focal species on 77% of plots. In turn, we used detections from 2011 to improve habitat suitability models and sampling efforts in 2012, as well as additional spatial constraints to increase detections. These modifications resulted in a 96% detection rate at plots. The range of habitat suitability values that identified highly and less suitable habitats and their environmental conditions corresponded to field detections with mixed levels of agreement. Our study demonstrated that an iterative and targeted sampling framework can address sampling bias, reduce time costs, and increase detections. Other studies can extend the sampling framework to develop methods in other ecosystems to provide detection data. The sampling methods implemented here provide a meaningful tool when understanding the potential distribution and habitat of species over multi-jurisdictional and extensive areas is needed for achieving management objectives. PMID:25019621
Delgado San Martin, J A; Worthington, P; Yates, J W T
2015-04-01
Subcutaneous tumour xenograft volumes are generally measured using callipers. This method is susceptible to inter- and intra-observer variability and systematic inaccuracies. Non-invasive 3D measurement using ultrasound and magnetic resonance imaging (MRI) have been considered, but require immobilization of the animal. An infrared-based 3D time-of-flight (3DToF) camera was used to acquire a depth map of tumour-bearing mice. A semi-automatic algorithm based on parametric surfaces was applied to estimate tumour volume. Four clay mouse models and 18 tumour-bearing mice were assessed using callipers (applying both prolate spheroid and ellipsoid models) and 3DToF methods, and validated using tumour weight. Inter-experimentalist variability could be up to 25% in the calliper method. Experimental results demonstrated good consistency and relatively low error rates for the 3DToF method, in contrast to biased overestimation using callipers. Accuracy is currently limited by camera performance; however, we anticipate the next generation 3DToF cameras will be able to support the development of a practical system. Here, we describe an initial proof of concept for a non-invasive, non-immobilized, morphology-independent, economical and potentially more precise tumour volume assessment technique. This affordable technique should maximize the datapoints per animal, by reducing the numbers required in experiments and reduce their distress. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Methods and apparatus for multi-parameter acoustic signature inspection
Diaz, Aaron A [Richland, WA; Samuel, Todd J [Pasco, WA; Valencia, Juan D [Kennewick, WA; Gervais, Kevin L [Richland, WA; Tucker, Brian J [Pasco, WA; Kirihara, Leslie J [Richland, WA; Skorpik, James R [Kennewick, WA; Reid, Larry D [Benton City, WA; Munley, John T [Benton City, WA; Pappas, Richard A [Richland, WA; Wright, Bob W [West Richland, WA; Panetta, Paul D [Richland, WA; Thompson, Jason S [Richland, WA
2007-07-24
A multiparameter acoustic signature inspection device and method are described for non-invasive inspection of containers. Dual acoustic signatures discriminate between various fluids and materials for identification of the same.
Atassi, Nazem; Cudkowicz, Merit E; Schoenfeld, David A
2011-07-01
A few studies suggest that non-invasive ventilation (1) and gastric tube (G-tube) may have a positive impact on survival but the effect on functional decline is unclear. Confounding by indication may have produced biased estimates of the benefit seen in some of these retrospective studies. The objective of this study was to evaluate the effects of G-tube and NIV on survival and functional decline using advanced statistical models that adjust for confounding by indications. A database of 331 subjects enrolled in previous clinical trials in ALS was available for analysis. Marginal structural models (MSM) were used to compare the mortality hazards and ALSFRS-R slopes between treatment and non-treatment groups, after adjusting for confounding by indication. Results showed that the placement of a G-tube was associated with an additional 1.42 units/month decline in the ALSFRS-R slope (p < 0.0001) and increased mortality hazard of 0.28 (p = 0.02). The use of NIV had no significant effect on ALSFRS-R decline or mortality. In conclusion, marginal structural models can be used to adjust for confounding by indication in retrospective ALS studies. G-tube placement could be followed by a faster rate of functional decline and increased mortality. Our results may suffer from some of the limitations of retrospective analyses.
Pre-Analytical Conditions in Non-Invasive Prenatal Testing of Cell-Free Fetal RHD
Rieneck, Klaus; Krog, Grethe Risum; Nielsen, Leif Kofoed; Tabor, Ann; Dziegiel, Morten Hanefeld
2013-01-01
Background Non-invasive prenatal testing of cell-free fetal DNA (cffDNA) in maternal plasma can predict the fetal RhD type in D negative pregnant women. In Denmark, routine antenatal screening for the fetal RhD gene (RHD) directs the administration of antenatal anti-D prophylaxis only to women who carry an RhD positive fetus. Prophylaxis reduces the risk of immunization that may lead to hemolytic disease of the fetus and the newborn. The reliability of predicting the fetal RhD type depends on pre-analytical factors and assay sensitivity. We evaluated the testing setup in the Capital Region of Denmark, based on data from routine antenatal RHD screening. Methods Blood samples were drawn at gestational age 25 weeks. DNA extracted from 1 mL of plasma was analyzed for fetal RHD using a duplex method for exon 7/10. We investigated the effect of blood sample transportation time (n = 110) and ambient outdoor temperatures (n = 1539) on the levels of cffDNA and total DNA. We compared two different quantification methods, the delta Ct method and a universal standard curve. PCR pipetting was compared on two systems (n = 104). Results The cffDNA level was unaffected by blood sample transportation for up to 9 days and by ambient outdoor temperatures ranging from -10°C to 28°C during transport. The universal standard curve was applicable for cffDNA quantification. Identical levels of cffDNA were observed using the two automated PCR pipetting systems. We detected a mean of 100 fetal DNA copies/mL at a median gestational age of 25 weeks (range 10–39, n = 1317). Conclusion The setup for real-time PCR-based, non-invasive prenatal testing of cffDNA in the Capital Region of Denmark is very robust. Our findings regarding the transportation of blood samples demonstrate the high stability of cffDNA. The applicability of a universal standard curve facilitates easy cffDNA quantification. PMID:24204719
Selita A. Ammondt; Creighton M. Litton; Lisa M. Ellsworth; James K. Leary
2012-01-01
How does a highly degraded Hawaiian tropical dry lowland ecosystem dominated by the non-native invasive Megathyrsus maximus (guinea grass) respond to different restoration treatments (three native species outplanting treatments; four native broadcast seed treatments)? What effect do restoration treatments have on invasive and native species...
Multi-frequency bioimpedance in equine muscle assessment.
Harrison, Adrian Paul; Elbrønd, Vibeke Sødring; Riis-Olesen, Kiwa; Bartels, Else Marie
2015-03-01
Multi-frequency BIA (mfBIA) equipment has been shown to be a non-invasive and reliable method to assess a muscle as a whole or at fibre level. In the equine world this may be the future method of assessment of training condition or of muscle injury. The aim of this study was to test if mfBIA reliably can be used to assess the condition of a horse's muscles in connection with health assessment, injury and both training and re-training. mfBIA measurements was carried out on 10 'hobby' horses and 5 selected cases with known anamnesis. Impedance, resistance, reactance, phase angle, centre frequency, membrane capacitance and both extracellular and intracellular resistance were measured. Platinum electrodes in connection with a conductance paste were used to accommodate the typical BIA frequencies and to facilitate accurate measurements. Use of mfBIA data to look into the effects of myofascial release treatment was also demonstrated. Our findings indicate that mfBIA provides a non-invasive, easily measurable and very precise assessment of the state of muscles in horses. This study also shows the potential of mfBIA as a diagnostic tool as well as a tool to monitor effects of treatment e.g. myofascial release therapy and metabolic diseases, respectively.
Non-invasive water-table imaging with joint DC-resistivity/microgravity/hydrologic-model inversion
NASA Astrophysics Data System (ADS)
Kennedy, J.; Macy, J. P.
2017-12-01
The depth of the water table, and fluctuations thereof, is a primary concern in hydrology. In riparian areas, the water table controls when and where vegetation grows. Fluctuations in the water table depth indicate changes in aquifer storage and variation in ET, and may also be responsible for the transport and degradation of contaminants. In the latter case, installation of monitoring wells is problematic because of the potential to create preferential flow pathways. We present a novel method for non-invasive water table monitoring using combined DC resistivity and repeat microgravity data. Resistivity profiles provide spatial resolution, but a quantifiable relation between resistivity changes and aquifer-storage changes depends on a petrophysical relation (typically, Archie's Law), with additional parameters and therefore uncertainty. Conversely, repeat microgravity data provide a direct, quantifiable measurement of aquifer-storage change but lack depth resolution. We show how these two geophysical measurements, together with an unsaturated-zone flow model (Hydrogeosphere), effectively constrain the water table position and help identify groundwater-flow model parameters. A demonstration of the method is made using field data collected during the historic 2014 pulse flow in the Colorado River Delta, which shows that geophysical data can effectively constrain a coupled surface-water/groundwater model used to simulate the potential for riparian vegetation germination and recruitment.
Radio frequency energy for non-invasive and minimally invasive skin tightening.
Mulholland, R Stephen
2011-07-01
This article reviews the non-invasive and minimally invasive options for skin tightening, focusing on peer-reviewed articles and presentations and those technologies with the most proven or promising RF non-excisional skin-tightening results for excisional surgeons. RF has been the mainstay of non-invasive skin tightening and has emerged as the "cutting edge" technology in the minimally invasive skin-tightening field. Because these RF skin-tightening technologies are capital equipment purchases with a significant cost associated, this article also discusses some business issues and models that have proven to work in the plastic surgeon's office for non-invasive and minimally invasive skin-tightening technologies. Copyright © 2011 Elsevier Inc. All rights reserved.
Studying Cracking and Oil Invasion in Porous Medium During Drying
NASA Astrophysics Data System (ADS)
Jin, Qiu
We study two interesting phenomena occurred during the evaporation of solvent in porous medium: first, the cracking behavior; and second, the expanding mechanism and the collecting methods of the non-evaporative phase. In the first part of this thesis, we visualize the cracking behavior of colloidal suspensions during drying by a confocal microscope. We develop an effective method which can completely eliminate cracking during drying: by adding emulsion droplets into colloidal suspensions, we can systematically decrease the amount of cracking, and eliminate it completely above a critical droplet concentration. We also find another effect that the emulsion droplets can bring: it varies the speed of air invasion and provides a powerful method to adjust drying rate. Besides, we investigate the samples' fundamental mechanical properties with a rheometer and clarify the underlying physical mechanism for the decreasing of crack amounts. With the effective control over cracking and drying rate, our study may find important applications in many drying and cracking related industrial processes. In the second part of the thesis, we conduct a study on the expanding mechanism and collecting methods of the non-evaporative phase in porous medium, which is inspired by a practical pollution problem that occurs when oil spills to the sandy beach. We build a system in a smaller scale to mimic the practical pollution and investigate the distribution change of the polluting phase as the flushing cycle increases. We find an obvious expansion of the polluting phase after several flushing cycles in both hydrophilic and hydrophobic porous media, but with different distributions and expanding behaviors. We explained this difference by analyzing the pressure distribution in the system at the pore level. Finally, we develop two methods to concentrate the polluting phase in some particular regions, which is beneficial to collect and solve the practical pollution problem.
Fluorescence imaging of tryptophan and collagen cross-links to evaluate wound closure ex vivo
NASA Astrophysics Data System (ADS)
Wang, Ying; Ortega-Martinez, Antonio; Farinelli, Bill; Anderson, R. R.; Franco, Walfre
2016-02-01
Wound size is a key parameter in monitoring healing. Current methods to measure wound size are often subjective, time-consuming and marginally invasive. Recently, we developed a non-invasive, non-contact, fast and simple but robust fluorescence imaging (u-FEI) method to monitor the healing of skin wounds. This method exploits the fluorescence of native molecules to tissue as functional and structural markers. The objective of the present study is to demonstrate the feasibility of using variations in the fluorescence intensity of tryptophan and cross-links of collagen to evaluate proliferation of keratinocyte cells and quantitate size of wound during healing, respectively. Circular dermal wounds were created in ex vivo human skin and cultured in different media. Two serial fluorescence images of tryptophan and collagen cross-links were acquired every two days. Histology and immunohistology were used to validate correlation between fluorescence and epithelialization. Images of collagen cross-links show fluorescence of the exposed dermis and, hence, are a measure of wound area. Images of tryptophan show higher fluorescence intensity of proliferating keratinocytes forming new epithelium, as compared to surrounding keratinocytes not involved in epithelialization. These images are complementary since collagen cross-links report on structure while tryptophan reports on function. HE and immunohistology show that tryptophan fluorescence correlates with newly formed epidermis. We have established a fluorescence imaging method for studying epithelialization processes during wound healing in a skin organ culture model, our approach has the potential to provide a non-invasive, non-contact, quick, objective and direct method for quantitative measurements in wound healing in vivo.
2011-09-01
M. Wolfe. 2004. The evolution of an invasive plant : An experimental study with Silene latifolia. Ecology 85(11):3035-42. Blossey, B., and R...Notzold. 1995. Evolution of increased competitive ability in invasive nonindigenous plants : A hypothesis. Journal of Ecology 83(5):887-9. Bottoms, R. M... interactions between salt marsh plants : Effects of salinity, sediment and waterlogging. Journal of Ecology 88(3):492-505. Hyder, S. Z., and S. Yasmin
Y.A. Kapetanakos; I.J. Lovette; T.E. Katzner
2014-01-01
Southeast Asian vultures have been greatly reduced in range and population numbers, but it is challenging to use traditional tagging and monitoring techniques to track changes in their populations. Genotypes derived from non-invasively collected feather samples provide an alternative and effective means to 'capture' individual vultures for mark-recapture...
Dumitru Salajanu; Dennis Jacobs
2010-01-01
Forest inventory and analysis data are used to monitor the presence and extent of certain non-native invasive species. Effective control of its spread requires quality spatial distribution information. There is no clear consensus why some ecosystems are more favorable to non-native species. The objective of this study is to evaluate the reelative contribution of geo-...
Assessing the impact of thermal acclimation on physiological condition in the zebrafish model.
Vergauwen, Lucia; Knapen, Dries; Hagenaars, An; De Boeck, Gudrun; Blust, Ronny
2013-01-01
The zebrafish has become a valuable vertebrate model organism in a wide range of scientific disciplines, but current information concerning the physiological temperature response of adult zebrafish is rather scarce. In this study, zebrafish were experimentally acclimated for 28 days to 18, 26 or 34 °C and a suite of non-invasive and invasive methods was applied to determine the thermal dependence of zebrafish physiological condition. With decreasing temperature, the metabolic rate of zebrafish decreased, as shown by the decreasing oxygen uptake and ammonia excretion rates, limiting the critical swimming speed, probably due to a decreased muscle fibre power output. In response to exercise, fuel stores were mobilized to the liver as shown by the increased hepatosomatic index, liver total absolute energetic value and liver carbohydrate concentration but due to the low metabolic rate they could not be adequately addressed to power swimming activity at 18 °C. Conversely, the increased metabolic performance at high temperature came with an increased metabolic cost resulting in decreased energy status reflected particularly well by the non-invasive condition factor and invasive measures of carcass protein concentration, carcass total absolute energetic value and liver carbohydrate concentration. We showed that the combined measurement of the relative condition factor and critical swimming speed is a powerful non-invasive tool for long-term follow-up studies. Invasive methods were redundant for measuring general energy status but they provided detailed information concerning metabolic reorganization. With this study we proved that the usefulness of the zebrafish as a model organism can easily be expanded to include physiological studies and we provided a reference dataset for the selection of measures of physiological responses for future studies using the zebrafish.
NASA Astrophysics Data System (ADS)
Peng, Dong-qing; Zhu, Li-li; Li, Zhi-fang; Li, Hui
2017-09-01
Absorption coefficient of biological tissue is an important parameter in biomedicine, but its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique and internal light irradiation of cylindrical diffusing fiber (CDF) to quantify the target optical absorption coefficient. Absorption coefficients for ink absorbers are firstly determined through photoacoustic and spectrophotometric measurements at the same excitation, which demonstrates the feasibility of this method. Also, the optical absorption coefficients of ink absorbers with several concentrations are measured. Finally, the two-dimensional scanning photoacoustic image is obtained. Optical absorption coefficient measurement and simultaneous photoacoustic imaging of absorber non-invasively are the typical characteristics of the method. This method can play a significant role for non-invasive determination of blood oxygen saturation, the absorption-based imaging and therapy.
Feltracco, Paolo; Serra, Eugenio; Barbieri, Stefania; Persona, Paolo; Rea, Federico; Loy, Monica; Ori, Carlo
2009-01-01
Temporary graft dysfunction with gas exchange abnormalities is a common finding during the postoperative course of a lung transplant and is often determined by the post-reimplantation syndrome. Supportive measures including oxygen by mask, inotropes, diuretics, and pulmonary vasodilators are usually effective in non-severe post-reimplantation syndromes. However, in less-responsive clinical pictures, tracheal intubation with positive pressure ventilation, or non-invasive positive pressure ventilation (NIV), is necessary. We report on the clinical course of two patients suffering from refractory hypoxemia due to post-reimplantation syndrome treated with NIV in the prone and Trendelenburg positions. NIV was well tolerated and led to resolution of atelectactic areas and dishomogeneous lung infiltrates. Repeated turning from supine to prone under non invasive ventilation determined a stable improvement of gas exchange and prevented a more invasive approach. Even though NIV in the prone position has not yet entered into clinical practice, it could be an interesting option to achieve a better match between ventilation and perfusion. This technique, which we successfully applied in lung transplantation, can be easily extended to other lung diseases with non-recruitable dorso-basal areas.
Phan, Quoc-Hung; Lo, Yu-Lung
2017-06-26
A differential Mueller matrix polarimetry technique is proposed for obtaining non-invasive (NI) measurements of the glucose concentration on the human fingertip. The feasibility of the proposed method is demonstrated by detecting the optical rotation angle and depolarization index of tissue phantom samples containing de-ionized water (DI), glucose solutions with concentrations ranging from 0~500 mg/dL and 2% lipofundin. The results show that the extracted optical rotation angle increases linearly with an increasing glucose concentration, while the depolarization index decreases. The practical applicability of the proposed method is demonstrated by measuring the optical rotation angle and depolarization index properties of the human fingertips of healthy volunteers.
Non-invasive imaging methods applied to neo- and paleo-ontological cephalopod research
NASA Astrophysics Data System (ADS)
Hoffmann, R.; Schultz, J. A.; Schellhorn, R.; Rybacki, E.; Keupp, H.; Gerden, S. R.; Lemanis, R.; Zachow, S.
2014-05-01
Several non-invasive methods are common practice in natural sciences today. Here we present how they can be applied and contribute to current topics in cephalopod (paleo-) biology. Different methods will be compared in terms of time necessary to acquire the data, amount of data, accuracy/resolution, minimum/maximum size of objects that can be studied, the degree of post-processing needed and availability. The main application of the methods is seen in morphometry and volumetry of cephalopod shells. In particular we present a method for precise buoyancy calculation. Therefore, cephalopod shells were scanned together with different reference bodies, an approach developed in medical sciences. It is necessary to know the volume of the reference bodies, which should have similar absorption properties like the object of interest. Exact volumes can be obtained from surface scanning. Depending on the dimensions of the study object different computed tomography techniques were applied.
St. Pierre, Tim G.; House, Michael J.; Bangma, Sander J.; Pang, Wenjie; Bathgate, Andrew; Gan, Eng K.; Ayonrinde, Oyekoya T.; Bhathal, Prithi S.; Clouston, Andrew; Olynyk, John K.; Adams, Leon A.
2016-01-01
Background and Aims Validation of non-invasive methods of liver fat quantification requires a reference standard. However, using standard histopathology assessment of liver biopsies is problematical because of poor repeatability. We aimed to assess a stereological method of measuring volumetric liver fat fraction (VLFF) in liver biopsies and to use the method to validate a magnetic resonance imaging method for measurement of VLFF. Methods VLFFs were measured in 59 subjects (1) by three independent analysts using a stereological point counting technique combined with the Delesse principle on liver biopsy histological sections and (2) by three independent analysts using the HepaFat-Scan® technique on magnetic resonance images of the liver. Bland Altman statistics and intraclass correlation (IC) were used to assess the repeatability of each method and the bias between the methods of liver fat fraction measurement. Results Inter-analyst repeatability coefficients for the stereology and HepaFat-Scan® methods were 8.2 (95% CI 7.7–8.8)% and 2.4 (95% CI 2.2–2.5)% VLFF respectively. IC coefficients were 0.86 (95% CI 0.69–0.93) and 0.990 (95% CI 0.985–0.994) respectively. Small biases (≤3.4%) were observable between two pairs of analysts using stereology while no significant biases were observable between any of the three pairs of analysts using HepaFat-Scan®. A bias of 1.4±0.5% VLFF was observed between the HepaFat-Scan® method and the stereological method. Conclusions Repeatability of the stereological method is superior to the previously reported performance of assessment of hepatic steatosis by histopathologists and is a suitable reference standard for validating non-invasive methods of measurement of VLFF. PMID:27501242
Nagata, E; de Toledo, A; Oho, T
2011-02-01
Oral viridans group streptococci are the major commensal bacteria of the supragingival oral biofilm and have been detected in human atheromatous plaque. Atherosclerosis involves an ongoing inflammatory response, reportedly involving chronic infection caused by multiple pathogens. The aim of this study was to examine the invasion of human aortic endothelial cells (HAECs) by oral viridans group streptococci and the subsequent cytokine production by viable invaded HAECs. The invasion of HAECs by bacteria was examined using antibiotic protection assays and was visualized by confocal scanning laser microscopy. The inhibitory effects of catalase and cytochalasin D on the invasion of HAECs were also examined. The production of cytokines by invaded or infected HAECs was determined using enzyme-linked immunosorbent assays, and a real-time polymerase chain reaction method was used to evaluate the expression of cytokine messenger RNA. The oral streptococci tested were capable of invading HAECs. The number of invasive bacteria increased with the length of the co-culture period. After a certain co-culture period, some organisms were cytotoxic to the HAECs. Catalase and cytochalasin D inhibited the invasion of HAECs by the organism. HAECs invaded by Streptococcus mutans Xc, Streptococcus gordonii DL1 (Challis), Streptococcus gordonii ATCC 10558 and Streptococcus salivarius ATCC 13419 produced more cytokine(s) (interleukin-6, interleukin-8, monocyte chemoattractant protein-1) than non-invaded HAECs. The HAECs invaded by S. mutans Xc produced the largest amounts of cytokines, and the messenger RNA expression of cytokines by invaded HAECs increased markedly compared with that by non-invaded HAECs. These results suggest that oral streptococci may participate in the pathogenesis of atherosclerosis. © 2010 John Wiley & Sons A/S.
Invasive candidiasis: future directions in non-culture based diagnosis.
Posch, Wilfried; Heimdörfer, David; Wilflingseder, Doris; Lass-Flörl, Cornelia
2017-09-01
Delayed initial antifungal therapy is associated with high mortality rates caused by invasive candida infections, since accurate detection of the opportunistic pathogenic yeast and its identification display a diagnostic challenge. diagnosis of candida infections relies on time-consuming methods such as blood cultures, serologic and histopathologic examination. to allow for fast detection and characterization of invasive candidiasis, there is a need to improve diagnostic tools. trends in diagnostics switch to non-culture-based methods, which allow specified diagnosis within significantly shorter periods of time in order to provide early and appropriate antifungal treatment. Areas covered: within this review comprise novel pathogen- and host-related testing methods, e.g. multiplex-PCR analyses, T2 magnetic resonance, fungus-specific DNA microarrays, microRNA characterization or analyses of IL-17 as biomarker for early detection of invasive candidiasis. Expert commentary: Early recognition and diagnosis of fungal infections is a key issue for improved patient management. As shown in this review, a broad range of novel molecular based tests for the detection and identification of Candida species is available. However, several assays are in-house assays and lack standardization, clinical validation as well as data on sensitivity and specificity. This underscores the need for the development of faster and more accurate diagnostic tests.
Daher, Céline; Pimenta, Vanessa; Bellot-Gurlet, Ludovic
2014-11-01
The compositions of ancient varnishes are mainly determined destructively by separation methods coupled to mass spectrometry. In this study, a methodology for non-invasive quantitative analyses of varnishes by vibrational spectroscopies is proposed. For that, experimental simplified varnishes of colophony and linseed oil were prepared according to 18th century traditional recipes with an increasing mass concentration ratio of colophony/linseed oil. FT-Raman and IR analyses using ATR and non-invasive reflectance modes were done on the "pure" materials and on the different mixtures. Then, a new approach involving spectral decomposition calculation was developed considering the mixture spectra as a linear combination of the pure materials ones, and giving a relative amount of each component. Specific spectral regions were treated and the obtained results show a good accuracy between the prepared and calculated amounts of the two compounds. We were thus able to detect and quantify from 10% to 50% of colophony in linseed oil using non-invasive techniques that can also be conducted in situ with portable instruments when it comes to museum varnished objects and artifacts. Copyright © 2014 Elsevier B.V. All rights reserved.
Minden, V.; Jacobi, J.D.; Porembski, S.; Boehmer, H.J.
2010-01-01
Questions: Does the invasive alien Hedychium gardnerianum (1) replace native understory species, (2) suppress natural regeneration of native plant species, (3) increase the invasiveness of other non-native plants and (4) are native forests are able to recover after removal of H. gardnerianum. Location: A mature rainforest in Hawai'i Volcanoes National Park on the island of Hawai'i (about 1200 m. a.s.l.; precipitation approximately 2770mm yr-1). Study sites included natural plots without effects of alien plants, ginger plots with a H. gardnerianum-domimted herb layer and cleared plots treated with herbicide to remove alien plants. Methods: Counting mature trees, saplings and seedlings of native and alien plant species. Using nonparametric H-tests to compare impact of H. gardnerianum on the structure of different sites. Results: Results confirmed the hypothesis that H. gardnerianum has negative effects on natural forest dynamics. Lower numbers of native tree seedlings and saplings were found on ginger-dominated plots. Furthermore, H. gardnerianum did not show negative effects on the invasive alien tree species Psidium cattleianum. Conclusions: This study reveals that where dominance of H. gardnerianum persists, regeneration of the forest by native species will be inhibited. Furthermore, these areas might experience invasion by P. cattleianum, resulting in displacement of native canopy species in the future, leading to a change in forest structure and loss of other species dependent on natural rainforest, such as endemic birds. However, if H. gardnerianum is removed the native Hawaiian forest is likely to regenerate and regain its natural structure. ?? 2009 International Association for Vegetation Science.
Oluwalana, Claire; Howie, Stephen R C; Secka, Ousman; Ideh, Readon C; Ebruke, Bernard; Sambou, Sana; Erskine, James; Lowe, Yamundow; Corrah, Tumani; Adegbola, Richard A
2013-07-01
Haemophilus influenzae type b (Hib) conjugate vaccine was first introduced in Africa in The Gambia in 1997 as a primary 3-dose course in infancy with no booster, and was followed by the disappearance of invasive Hib disease by 2002. A cluster of cases detected non-systematically in post-infant children in 2005-2006 raised the question of the need for a booster dose. The objective of this study was to determine the incidence of invasive Hib disease in Gambian children 14 years after the introduction of Hib conjugate vaccine. This hospital-based clinical and microbiological Hib disease surveillance in 3 hospitals in the western region of The Gambia was undertaken between October 2007 and December 2010 applying the same methods used in a previous Hib vaccine effectiveness study in 1997-2002. The annual incidences of Hib meningitis and all invasive Hib disease in children aged <5 years remained below 5 cases per 100,000 children during 2008-2010. The median age of patients with any invasive Hib disease was 5 months. Hib conjugate vaccination as a primary 3-dose course in The Gambia remains highly effective in controlling invasive Hib disease, and current data do not support the introduction of a booster dose. Copyright © 2013. Published by Mosby, Inc.
Non Invasive Sensors for Monitoring the Efficiency of AC Electrical Rotating Machines
Zidat, Farid; Lecointe, Jean-Philippe; Morganti, Fabrice; Brudny, Jean-François; Jacq, Thierry; Streiff, Frédéric
2010-01-01
This paper presents a non invasive method for estimating the energy efficiency of induction motors used in industrial applications. This method is innovative because it is only based on the measurement of the external field emitted by the motor. The paper describes the sensors used, how they should be placed around the machine in order to decouple the external field components generated by both the air gap flux and the winding end-windings. The study emphasizes the influence of the eddy currents flowing in the yoke frame on the sensor position. A method to estimate the torque from the external field use is proposed. The measurements are transmitted by a wireless module (Zig-Bee) and they are centralized and stored on a PC computer. PMID:22163631
Non invasive sensors for monitoring the efficiency of AC electrical rotating machines.
Zidat, Farid; Lecointe, Jean-Philippe; Morganti, Fabrice; Brudny, Jean-François; Jacq, Thierry; Streiff, Frédéric
2010-01-01
This paper presents a non invasive method for estimating the energy efficiency of induction motors used in industrial applications. This method is innovative because it is only based on the measurement of the external field emitted by the motor. The paper describes the sensors used, how they should be placed around the machine in order to decouple the external field components generated by both the air gap flux and the winding end-windings. The study emphasizes the influence of the eddy currents flowing in the yoke frame on the sensor position. A method to estimate the torque from the external field use is proposed. The measurements are transmitted by a wireless module (Zig-Bee) and they are centralized and stored on a PC computer.
Maggi, Roberto; Viscardi, Valentina; Furukawa, Toshiyuki; Brignole, Michele
2010-11-01
We thought to evaluate feasibility of continuous non-invasive blood pressure monitoring during procedures of interventional electrophysiology. We evaluated continuous non-invasive finger blood pressure (BP) monitoring by means of the Nexfin device in 22 patients (mean age 70 ± 24 years), undergoing procedures of interventional electrophysiology, in critical situations of hypotension caused by tachyarrhythmias or by intermittent incremental ventricular temporary pacing till to the maximum tolerated systolic BP fall (mean 61 ± 14 mmHg per patient at a rate of 195 ± 37 bpm). In all patients, Nexfin was able to detect immediately, at the onset of tachyarrythmia, the changes in BP and recorded reliable waveforms. The quality of the signal was arbitrarily classified as excellent in 11 cases, good in 10 cases, and sufficient in 1 case. In basal conditions, calibrations of the signal occurred every 49.2 ± 24.3 s and accounted for 4% of total monitoring time; during tachyarrhythmias their frequency increased to one every 12.7 s and accounted for 19% of total recording duration. A linear correlation for a range of BP values from 41 to 190 mmHg was found between non-invasive and intra-arterial BP among a total of 1055 beats from three patients who underwent simultaneous recordings with both methods (coefficient of correlation of 0.81, P < 0.0001). In conclusion, continuous non-invasive BP monitoring is feasible in the clinical practise of an interventional electrophysiology laboratory without the need of utilization of an intra-arterial BP line.
Invasion speed is affected by geographical variation in the strength of Allee effects
Patrick C. Tobin; Stephanie L. Whitmire; Derek M. Johnson; Ottar N. Bjornstad; Andrew M. Liebhold
2007-01-01
Allee effects can play a critical role in slowing or preventing the establishment of low density founder populations of non-indigenous species. Similarly, the spread of established invaders into new habitats can be influenced by the degree to which small founder populations ahead of the invasion front are suppressed through Allee effects. We develop an approach to use...
Dietze, Klaas; Tucakov, Anna; Engel, Tatjana; Wirtz, Sabine; Depner, Klaus; Globig, Anja; Kammerer, Robert; Mouchantat, Susan
2017-01-05
Non-invasive sampling techniques based on the analysis of oral fluid specimen have gained substantial importance in the field of swine herd management. Methodological advances have a focus on endemic viral diseases in commercial pig production. More recently, these approaches have been adapted to non-invasive sampling of wild boar for transboundary animal disease detection for which these effective population level sampling methods have not been available. In this study, a rope-in-a-bait based oral fluid sampling technique was tested to detect classical swine fever virus nucleic acid shedding from experimentally infected domestic pigs. Separated in two groups treated identically, the course of the infection was slightly differing in terms of onset of the clinical signs and levels of viral ribonucleic acid detection in the blood and oral fluid. The technique was capable of detecting classical swine fever virus nucleic acid as of day 7 post infection coinciding with the first detection in conventional oropharyngeal swab samples from some individual animals. Except for day 7 post infection in the "slower onset group", the chances of classical swine fever virus nucleic acid detection in ropes were identical or higher as compared to the individual sampling. With the provided evidence, non-invasive oral fluid sampling at group level can be considered as additional cost-effective detection tool in classical swine fever prevention and control strategies. The proposed methodology is of particular use in production systems with reduced access to veterinary services such as backyard or scavenging pig production where it can be integrated in feeding or baiting practices.
(1)H nuclear magnetic resonance (NMR) as a tool to measure dehydration in mice.
Li, Matthew; Vassiliou, Christophoros C; Colucci, Lina A; Cima, Michael J
2015-08-01
Dehydration is a prevalent pathology, where loss of bodily water can result in variable symptoms. Symptoms can range from simple thirst to dire scenarios involving loss of consciousness. Clinical methods exist that assess dehydration from qualitative weight changes to more quantitative osmolality measurements. These methods are imprecise, invasive, and/or easily confounded, despite being practiced clinically. We investigate a non-invasive, non-imaging (1)H NMR method of assessing dehydration that attempts to address issues with existing clinical methods. Dehydration was achieved by exposing mice (n = 16) to a thermally elevated environment (37 °C) for up to 7.5 h (0.11-13% weight loss). Whole body NMR measurements were made using a Bruker LF50 BCA-Analyzer before and after dehydration. Physical lean tissue, adipose, and free water compartment approximations had NMR values extracted from relaxation data through a multi-exponential fitting method. Changes in before/after NMR values were compared with clinically practiced metrics of weight loss (percent dehydration) as well as blood and urine osmolality. A linear correlation between tissue relaxometry and both animal percent dehydration and urine osmolality was observed in lean tissue, but not adipose or free fluids. Calculated R(2) values for percent dehydration were 0.8619 (lean, P < 0.0001), 0.5609 (adipose, P = 0.0008), and 0.0644 (free fluids, P = 0.3445). R(2) values for urine osmolality were 0.7760 (lean, P < 0.0001), 0.5005 (adipose, P = 0.0022), and 0.0568 (free fluids, P = 0.3739). These results suggest that non-imaging (1)H NMR methods are capable of non-invasively assessing dehydration in live animals. Copyright © 2015 John Wiley & Sons, Ltd.
Mercante, Beniamina; Rangon, Claire-Marie
2018-01-01
Neuromodulation, thanks to intrinsic and extrinsic brain feedback loops, seems to be the best way to exploit brain plasticity for therapeutic purposes. In the past years, there has been tremendous advances in the field of non-pharmacological modulation of brain activity. This review of different neurostimulation techniques will focus on sites and mechanisms of both transcutaneous vagus and trigeminal nerve stimulation. These methods are scientifically validated non-invasive bottom-up brain modulation techniques, easily implemented from the outer ear. In the light of this, auricles could transpire to be the most affordable target for non-invasive manipulation of central nervous system functions. PMID:29361732
A theoretical analysis of the Allee effect in wind-pollinated cordgrass plant invasions.
Murphy, James T; Johnson, Mark P
2015-12-01
A new individual-based model is presented for investigating an important group of invasive plant species, from the genus Spartina, that threaten biodiversity in coastal and intertidal habitats around the world. The role of pollen limitation in influencing the early development of an invasion is explored in order to gain a greater understanding of the mechanistic basis for an apparent Allee effect (causal relationship between population size/density and mean individual fitness) observed in populations of invasive Spartina species. The model is used to explore how various factors such as atmospheric stability, wind direction/speed, pollen characteristics and spatial structure of the population affect the overall invasion dynamics and reproductive success. Comparisons were also made between invasive species of Spartina (S. alterniflora, S. anglica) and a non-invasive species (S. foliosa), showing a reduced Allee effect was associated with invasion success. Furthermore, the conclusions drawn here may give insights into some of the fundamental processes affecting the growth and population dynamics of other invasive wind-pollinated plants. Copyright © 2015 Elsevier Inc. All rights reserved.
Ma, Hongyan; Bryers, James D.
2012-01-01
Biofilms cause much of all human microbial infections. Attempts to eradicate biofilm-based infections rely on disinfectants and antibiotics. Unfortunately, biofilm bacteria are significantly less responsive to antibiotic stressors than their planktonic counterparts. Sublethal doses of antibiotics can actually enhance biofilm formation. Here, we have developed a non-invasive microscopic image analyses to quantify plasmid conjugation within a developing biofilm. Corroborating destructive samples were analyzed by a cultivation-independent flow cytometry analysis and a selective plate count method to cultivate transconjugants. Increases in substrate loading altered biofilm 3-D architecture and subsequently affected the frequency of plasmid conjugation (decreases at least two times) in the absence of any antibiotic selective pressure. More importantly, donor populations in biofilms exposed to a sublethal dose of kanamycin exhibited enhanced transfer efficiency of plasmids containing the kanamycin resistance gene, up to tenfold. However, when stressed with a different antibiotic, imipenem, transfer of plasmids containing the kanR+ gene was not enhanced. These preliminary results suggest biofilm bacteria “sense” antibiotics to which they are resistant, which enhances the spread of that resistance. Confocal scanning microscopy coupled with our non-invasive image analysis was able to estimate plasmid conjugative transfer efficiency either averaged over the entire biofilm landscape or locally with individual biofilm clusters. PMID:22669634
Maroju, Pranay Amruth; Yadav, Sonu; Kolipakam, Vishnupriya; Singh, Shweta; Qureshi, Qamar; Jhala, Yadvendradev
2016-02-09
Non-invasive sampling has opened avenues for the genetic study of elusive species, which has contributed significantly to their conservation. Where field based identity of non-invasive sample is ambiguous (e.g. carnivore scats), it is essential to establish identity of the species through molecular approaches. A cost effective procedure to ascertain species identity is to use species specific primers (SSP) for PCR amplification and subsequent resolution through agarose gel electrophoresis. However, SSPs if ill designed can often cross amplify non-target sympatric species. Herein we report the problem of cross amplification with currently published SSPs, which have been used in several recent scientific articles on tigers (Panthera tigris) and leopards (Panthera pardus) in India. Since these papers form pioneering research on which future work will be based, an early rectification is required so as to not propagate this error further. We conclusively show cross amplification of three of the four SSPs, in sympatric non-target species like tiger SSP amplifying leopard and striped hyena (Hyaena hyaena), and leopard SSP amplifying tiger, lion (Panthera leo persica) and clouded leopard (Neofelis nebulosa), with the same product size. We develop and test a non-cross-amplifying leopard specific primer pair within the mitochondrial cytochrome b region. We also standardize a duplex PCR method to screen tiger and leopard samples simultaneously in one PCR reaction to reduce cost and time. These findings suggest the importance of an often overlooked preliminary protocol of conclusive identification of species from non-invasive samples. The cross amplification of published primers in conspecifics suggests the need to revisit inferences drawn by earlier work.
Direct measurement of sub-surface mass change using the variable-baseline gravity gradient method
Kennedy, Jeffrey; Ferré, Ty P.A.; Güntner, Andreas; Abe, Maiko; Creutzfeldt, Benjamin
2014-01-01
Time-lapse gravity data provide a direct, non-destructive method to monitor mass changes at scales from cm to km. But, the effectively infinite spatial sensitivity of gravity measurements can make it difficult to isolate the signal of interest. The variable-baseline gravity gradient method, based on the difference of measurements between two gravimeters, is an alternative to the conventional approach of individually modeling all sources of mass and elevation change. This approach can improve the signal-to-noise ratio for many applications by removing the contributions of Earth tides, loading, and other signals that have the same effect on both gravimeters. At the same time, this approach can focus the support volume within a relatively small user-defined region of the subsurface. The method is demonstrated using paired superconducting gravimeters to make for the first time a large-scale, non-invasive measurement of infiltration wetting front velocity and change in water content above the wetting front.
NASA Astrophysics Data System (ADS)
Lancaster, Gemma; Stefanovska, Aneta; Pesce, Margherita; Marco Vezzoni, Gian; Loggini, Barbara; Pingitore, Raffaele; Ghiara, Fabrizio; Barachini, Paolo; Cervadoro, Gregorio; Romanelli, Marco; Rossi, Marco
2015-08-01
Skin malignant melanoma is a highly angiogenic cancer, necessitating early diagnosis for positive prognosis. The current diagnostic standard of biopsy and histological examination inevitably leads to many unnecessary invasive excisions. Here, we propose a non-invasive method of identification of melanoma based on blood flow dynamics. We consider a wide frequency range from 0.005-2 Hz associated with both local vascular regulation and effects of cardiac pulsation. Combining uniquely the power of oscillations associated with individual physiological processes we obtain a marker which distinguishes between melanoma and atypical nevi with sensitivity of 100% and specificity of 90.9%. The method reveals valuable functional information about the melanoma microenvironment. It also provides the means for simple, accurate, in vivo distinction between malignant melanoma and atypical nevi, and may lead to a substantial reduction in the number of biopsies currently undertaken.
Chieh, J J; Hong, C Y
2011-08-01
Although magnetic nanoparticles (MNPs) have been widely applied to animals in biomedicine, MNPs within animals should be examined in real time, in vivo, and without bio-damaged possibility to evaluate whether the bio-function of MNPs is valid or to further controls the biomedicinal process because of accompanying complex problems such as MNPs distribution and MNPs biodegradation. The non-invasive and high-sensitivity scanning detection of MNPs in animals using ac susceptometry based on a high-T(c) superconducting quantum interference device (SQUID) is presented. The non-invasive results and biopsy results show good agreement, and two gold-standard biomedicine methods, Prussian blue stain and inductively coupled plasma, prove the magnetic results. This confirms that the future clinical diagnosis of bio-functional MNPs could be operated by using scanning SQUID biosusceptometry as conveniently as an ultrasonic probe.
Hepatic steatosis and fibrosis: Non-invasive assessment
Karanjia, Rustam N; Crossey, Mary M E; Cox, I Jane; Fye, Haddy K S; Njie, Ramou; Goldin, Robert D; Taylor-Robinson, Simon D
2016-01-01
Chronic liver disease is a major cause of morbidity and mortality worldwide and usually develops over many years, as a result of chronic inflammation and scarring, resulting in end-stage liver disease and its complications. The progression of disease is characterised by ongoing inflammation and consequent fibrosis, although hepatic steatosis is increasingly being recognised as an important pathological feature of disease, rather than being simply an innocent bystander. However, the current gold standard method of quantifying and staging liver disease, histological analysis by liver biopsy, has several limitations and can have associated morbidity and even mortality. Therefore, there is a clear need for safe and non-invasive assessment modalities to determine hepatic steatosis, inflammation and fibrosis. This review covers key mechanisms and the importance of fibrosis and steatosis in the progression of liver disease. We address non-invasive imaging and blood biomarker assessments that can be used as an alternative to information gained on liver biopsy. PMID:28018096
Fukasawa, Keita; Miyashita, Tadashi; Hashimoto, Takuma; Tatara, Masaya; Abe, Shintaro
2013-12-22
Invasive species and anthropogenic habitat alteration are major drivers of biodiversity loss. When multiple invasive species occupy different trophic levels, removing an invasive predator might cause unexpected outcomes owing to complex interactions among native and non-native prey. Moreover, external factors such as habitat alteration and resource availability can affect such dynamics. We hypothesized that native and non-native prey respond differently to an invasive predator, habitat alteration and bottom-up effects. To test the hypothesis, we used Bayesian state-space modelling to analyse 8-year data on the spatio-temporal patterns of two endemic rat species and the non-native black rat in response to the continual removal of the invasive small Indian mongoose on Amami Island, Japan. Despite low reproductive potentials, the endemic rats recovered better after mongoose removal than did the black rat. The endemic species appeared to be vulnerable to predation by mongooses, whose eradication increased the abundances of the endemic rats, but not of the black rat. Habitat alteration increased the black rat's carrying capacity, but decreased those of the endemic species. We propose that spatio-temporal monitoring data from eradication programmes will clarify the underlying ecological impacts of land-use change and invasive species, and will be useful for future habitat management.
NASA Astrophysics Data System (ADS)
Balakin, B. V.; Adamsen, T. C. H.; Chang, Y.-F.; Kosinski, P.; Hoffmann, A. C.
2017-01-01
Positron emission particle tracking (PEPT) is a novel experimental technique for non-invasive inspection of industrial fluid/particle flows. The method is based on the dynamic positioning of a positron-emitting, flowing object (particle) performed through the sensing of annihilation events and subsequent numerical treatment to determine the particle position. The present paper shows an integrated overview of PEPT studies which were carried out using a new PET scanner in the Bergen University Hospital to study multiphase flows in different geometric configurations.
NASA Astrophysics Data System (ADS)
Mycek, Mary-Ann; Urayama, Paul; Zhong, Wei; Sloboda, Roger D.; Dragnev, Konstantin H.; Dmitrovsky, Ethan
2003-10-01
Tissue fluorescence spectroscopy and imaging are being investigated as potential methods for non-invasive detection of pre-neoplastic change in the lung and other organ systems. A substantial contribution to tissue fluorescence is known to arise from endogenous cellular fluorophores. Using steady-state and time-resolved fluorescence spectroscopy and imaging, we characterized the endogenous fluorescence properties of immortalized and carcinogen-transformed human bronchial epithelial cells. Non-invasive sensing of endogenous molecular biomarkers associated with human bronchial pre-neoplasia will be discussed.
NASA Astrophysics Data System (ADS)
Lappa, Alexander V.; Kulikovskiy, Artem N.; Busarov, Oleg G.
2014-03-01
The paper presents a new method for distant non-destructive determination of concentration of light absorbing admixtures in turbid media. In particular, it is intended for non-invasive in vivo control of accumulation in patient tissues of various biochemicals introduced to the patients for chemotherapy, photodynamic therapy or diagnostics. It is require that the admixture absorption spectrum should have a clearly marked peak in the wavelength region where the pure medium one varies regularly. Fluorescence of admixtures is not required. The method uses the local diffuse reflectance spectroscopy with optical fiber probe including one emitting and two reading There are several features in the method: the value to be determined is absolute concentration of admixtures; the method needs no calibration measurements on phantoms; it needs no reference measurements on sample with zero admixture concentration; it uses a two parametric kinetic light propagation model and original algorithms to resolve direct and inverse tasks of radiation transport theory. Experimental testing passed with tissue equivalent phantoms and different admixtures, including a chlorine photosensitizer, showed accuracy under 10% in all cases.
Lee, Matthew M Y; Petrie, Mark C; Rocchiccioli, Paul; Simpson, Joanne; Jackson, Colette; Brown, Ammani; Corcoran, David; Mangion, Kenneth; McEntegart, Margaret; Shaukat, Aadil; Rae, Alan; Hood, Stuart; Peat, Eileen; Findlay, Iain; Murphy, Clare; Cormack, Alistair; Bukov, Nikolay; Balachandran, Kanarath; Papworth, Richard; Ford, Ian; Briggs, Andrew; Berry, Colin
2016-01-01
Introduction There is an evidence gap about how to best treat patients with prior coronary artery bypass grafts (CABGs) presenting with non-ST segment elevation acute coronary syndromes (NSTE-ACS) because historically, these patients were excluded from pivotal randomised trials. We aim to undertake a pilot trial of routine non-invasive management versus routine invasive management in patients with NSTE-ACS with prior CABG and optimal medical therapy during routine clinical care. Our trial is a proof-of-concept study for feasibility, safety, potential efficacy and health economic modelling. We hypothesise that a routine invasive approach in patients with NSTE-ACS with prior CABG is not superior to a non-invasive approach with optimal medical therapy. Methods and analysis 60 patients will be enrolled in a randomised clinical trial in 4 hospitals. A screening log will be prospectively completed. Patients not randomised due to lack of eligibility criteria and/or patient or physician preference and who give consent will be included in a registry. We will gather information about screening, enrolment, eligibility, randomisation, patient characteristics and adverse events (including post-discharge). The primary efficacy outcome is the composite of all-cause mortality, rehospitalisation for refractory ischaemia/angina, myocardial infarction and hospitalisation for heart failure. The primary safety outcome is the composite of bleeding, stroke, procedure-related myocardial infarction and worsening renal function. Health status will be assessed using EuroQol 5 Dimensions (EQ-5D) assessed at baseline and 6 monthly intervals, for at least 18 months. Trial registration number NCT01895751 (ClinicalTrials.gov). PMID:27110377
Health technology assessment of non-invasive interventions for weight loss and body shape in Iran
Nojomi, Marzieh; Moradi-Lakeh, Maziar; Velayati, Ashraf; Naghibzadeh-Tahami, Ahmad; Dadgostar, Haleh; Ghorabi, Gholamhossein; Moradi-Joo, Mohammad; Yaghoubi, Mohsen
2016-01-01
Background: The burden of obesity and diet-related chronic diseases is increasing in Iran, and prevention and treatment strategies are needed to address this problem. The aim of this study was to determine the outcome, cost, safety and cost-consequence of non-invasive weight loss interventions in Iran. Methods: We performed a systematic review to compare non-invasive interventions (cryolipolysis and radiofrequency/ ultrasonic cavitation) with semi-invasive (lipolysis) and invasive (liposuction). A sensitive electronic searching was done to find available interventional studies. Reduction of abdomen circumference (cm), reduction in fat layer thickness (%) and weight reduction (kg) were outcomes of efficacy. Meta-analysis with random models was used for pooling efficacy estimates among studies with the same follow-up duration. Average cost per intervention was estimated based on the capital, maintenance, staff, consumable and purchase costs. Results: Of 3,111 studies identified in our reviews, 13 studies assessed lipolysis, 10 cryolipolysis and 8 considered radiofrequency. Nine studies with the same follow-up duration in three different outcome group were included in meta-analysis. Radiofrequency showed an overall pooled estimate of 2.7 cm (95% CI; 2.3-3.1) of mean reduction in circumference of abdomen after intervention. Pooled estimate of reduction in fat layer thickness was 78% (95% CI; 73%-83%) after Lipolysis and a pooled estimate of weight loss was 3.01 kg (95% CI; 2.3-3.6) after lipousuction. The cost analysis revealed no significant differences between the costs of these interventions. Conclusion: The present study showed that non-invasive interventions appear to have better clinical efficacy, specifically in the body shape measurement, and less cost compared to invasive intervention (liposuction) PMID:27390717
Cuong, Nguyen Ngoc; Luu, Vu Dang; Tuan, Tran Anh; Linh, Le Tuan; Hung, Kieu Dinh; Ngoc, Vo Truong Nhu; Sharma, Kulbhushan; Pham, Van Huy; Chu, Dinh-Toi
2018-06-01
Digital subtractional angiography (DSA) is the standard method for diagnosis, assessment and management of arteriovenous malformation in the brain. Conventional DSA (cDSA) is an invasive imaging modality that is often indicated before interventional treatments (embolization, open surgery, gamma knife). Here, we aimed to compare this technique with a non-invasive MR angiography (MRI DSA) for brain arteriovenous malformation (bAVM). Fourteen patients with ruptured brain AVM underwent embolization treatment pre-operation. Imaging was performed for all patients using MRI (1.5 T). After injecting contrast Gadolinium, dynamic MRI was performed with 40 phases, each phase of a duration of 1.2 s and having 70 images. The MRI results were independently assessed by experienced radiologist blinded to the cDSA. The AVM nidus was depicted in all patients using cDSA and MRI DSA; there was an excellent correlation between these techniques in terms of the maximum diameter and Spetzler Martin grading. Of the fourteen patients, the drainage vein was depicted in 13 by both cDSA and MRI DSA showing excellent correlation between the techniques used. MRI DSA is a non-invasive imaging modality that can give the images in dynamic view. It can be considered as an adjunctive method with cDSA to plan the strategy treatment for bAVM. Copyright © 2018 Elsevier B.V. All rights reserved.
Objective methods for the assessment of the spinal and supraspinal effects of opioids.
Fischer, Iben W; Hansen, Tine M; Lelic, Dina; Brokjaer, Anne; Frøkjær, Jens; Christrup, Lona L; Olesen, Anne E
2017-01-01
Opioids are potent analgesics. Opioids exert effects after interaction with opioid receptors. Opioid receptors are present in the peripheral- and central nervous system (CNS), but the analgesic effects are primarily mediated via receptors in the CNS. Objective methods for assessment of opioid effects may increase knowledge on the CNS processes responsible for analgesia. The aim of this review was to provide an overview of the most common objective methods for assessment of the spinal and supraspinal effects of opioids and discuss their advantages and limitations. The literature search was conducted in Pub Med (http://www.ncbi.nlm.nih.gov/pubmed) from November 2014 to June 2016, using free-text terms: "opioid", "morphine" and "oxycodone" combined with the terms "pupillometry," "magnetic resonance spectroscopy," "fMRI," "BOLD," "PET," "pharmaco-EEG", "electroencephalogram", "EEG," "evoked potentials," and "nociceptive reflex". Only original articles published in English were included. For assessment of opioid effects at the supraspinal level, the following methods are evaluated: pupillometry, proton magnetic resonance spectroscopy, functional resonance magnetic imaging (fMRI), positron emission tomography (PET), spontaneous electroencephalogram (EEG) and evoked potentials (EPs). Pupillometry is a non-invasive tool used in research as well as in the clinical setting. Proton magnetic resonance spectroscopy has been used for the last decades and it is a non-invasive technique for measurement of in vivo brain metabolite concentrations. fMRI has been a widely used non-invasive method to estimate brain activity, where typically from the blood oxygen level-dependent (BOLD) signal. PET is a nuclear imaging technique based on tracing radio labeled molecules injected into the blood, where receptor distribution, density and activity in the brain can be visualized. Spontaneous EEG is typically quantified in frequency bands, power spectrum and spectral edge frequency. EPs are brain responses (assessed by EEG) to a predefined number of short phasic stimuli. EPs are quantified by their peak latencies and amplitudes, power spectrum, scalp topographies and brain source localization. For assessment of opioid effects at the spinal level, the following methods are evaluated: the nociceptive withdrawal reflex (NWR) and spinal EPs. The nociceptive withdrawal reflex can be recorded from all limbs, but it is standard to record the electromyography signal at the biceps femoris muscle after stimulation of the ipsilateral sural nerve; EPs can be recorded from the spinal cord and are typically recorded after stimulation of the median nerve at the wrist. The presented methods can all be used as objective methods for assessing the centrally mediated effects of opioids. Advantages and limitations should be considered before implementation in drug development, future experimental studies as well as in clinical settings. In conclusion, pupillometry is a sensitive measurement of opioid receptor activation in the CNS and from a practical and economical perspective it may be used as a biomarker for opioid effects in the CNS. However, if more detailed information is needed on opioid effects at different levels of the CNS, then EEG, fMRI, PET and NWR have the potential to be used. Finally, it is conceivable that information from different methods should be considered together for complementary information. Copyright © 2016 Scandinavian Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Klemes, Jan; Kotzianova, Adela; Pokorny, Marek; Mojzes, Peter; Novak, Jindrich; Sukova, Lada; Demuth, Jaroslav; Vesely, Jaroslav; Sasek, Ladislav; Velebny, Vladimir
2017-11-01
Non-invasive optical diagnostic methods allow important information about studied systems to be obtained in a non-destructive way. Complete diagnosis requires information about the chemical composition as well as the morphological structure of a sample. We report on the development of an opto-mechanical probe that combines Raman spectroscopy (RS) and optical coherence tomography (OCT), two methods that provide all the crucial information needed for a non-invasive diagnosis. The aim of this paper is to introduce the technical design, construction and optimization of a dual opto-mechanical probe combining two in-house developed devices for confocal RS and OCT. The unique benefit of the probe is a gradual acquisition of OCT and RS data, which allows to use the acquired OCT images to pinpoint locations of interest for RS measurements. The parameters and the correct functioning of the probe were verified by RS scanning of various samples (silicon wafer and ex vivo tissue) based on their OCT images - lateral as well as depth scanning was performed. Both the OCT and RS systems were developed, optimized and tested with the ultimate aim of verifying the functionality of the probe. Picture: Schematic illustration and visualization of the developed RS-OCT probe. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zeng, Tao; Mott, Christopher; Mollicone, Daniel; Sanford, Larry D.
2012-01-01
The current standard for monitoring sleep in rats requires labor intensive surgical procedures and the implantation of chronic electrodes which have the potential to impact behavior and sleep. With the goal of developing a non-invasive method to determine sleep and wakefulness, we constructed a non-contact monitoring system to measure movement and respiratory activity using signals acquired with pulse Doppler radar and from digitized video analysis. A set of 23 frequency and time-domain features were derived from these signals and were calculated in 10 s epochs. Based on these features, a classification method for automated scoring of wakefulness, non-rapid eye movement sleep (NREM) and REM in rats was developed using a support vector machine (SVM). We then assessed the utility of the automated scoring system in discriminating wakefulness and sleep by comparing the results to standard scoring of wakefulness and sleep based on concurrently recorded EEG and EMG. Agreement between SVM automated scoring based on selected features and visual scores based on EEG and EMG were approximately 91% for wakefulness, 84% for NREM and 70% for REM. The results indicate that automated scoring based on non-invasively acquired movement and respiratory activity will be useful for studies requiring discrimination of wakefulness and sleep. However, additional information or signals will be needed to improve discrimination of NREM and REM episodes within sleep. PMID:22178621
Improving methods to evaluate the impacts of plant invasions: lessons from 40 years of research
Stricker, Kerry Bohl; Hagan, Donald; Flory, S. Luke
2015-01-01
Methods used to evaluate the ecological impacts of biological invasions vary widely from broad-scale observational studies to removal experiments in invaded communities and experimental additions in common gardens and greenhouses. Different methods provide information at diverse spatial and temporal scales with varying levels of reliability. Thus, here we provide a synthetic and critical review of the methods used to evaluate the impacts of plant invasions and provide recommendations for future research. We review the types of methods available and report patterns in methods used, including the duration and spatial scale of studies and plant functional groups examined, from 410 peer-reviewed papers published between 1971 and 2011. We found that there has been a marked increase in papers published on plant invasion impacts since 2003 and that more than half of all studies employed observational methods while <5 % included predictive modelling. Most of the studies were temporally and spatially restricted with 51 % of studies lasting <1 year and almost half of all studies conducted in plots or mesocosms <1 m2. There was also a bias in life form studied: more than 60 % of all studies evaluated impacts of invasive forbs and graminoids while <16 % focused on invasive trees. To more effectively quantify invasion impacts, we argue that longer-term experimental research and more studies that use predictive modelling and evaluate impacts of invasions on ecosystem processes and fauna are needed. Combining broad-scale observational studies with experiments and predictive modelling may provide the most insight into invasion impacts for policy makers and land managers seeking to reduce the effects of plant invasions. PMID:25829379
Neuroprotective therapies in glaucoma: II. Genetic nanotechnology tools.
Nafissi, Nafiseh; Foldvari, Marianna
2015-01-01
Neurotrophic factor genome engineering could have many potential applications not only in the deeper understanding of neurodegenerative disorders but also in improved therapeutics. The fields of nanomedicine, regenerative medicine, and gene/cell-based therapy have been revolutionized by the development of safer and efficient non-viral technologies for gene delivery and genome editing with modern techniques for insertion of the neurotrophic factors into clinically relevant cells for a more sustained pharmaceutical effect. It has been suggested that the long-term expression of neurotrophic factors is the ultimate approach to prevent and/or treat neurodegenerative disorders such as glaucoma in patients who do not respond to available treatments or are at the progressive stage of the disease. Recent preclinical research suggests that novel neuroprotective gene and cell therapeutics could be promising approaches for both non-invasive neuroprotection and regenerative functions in the eye. Several progenitor and retinal cell types have been investigated as potential candidates for glaucoma neurotrophin therapy either as targets for gene therapy, options for cell replacement therapy, or as vehicles for gene delivery. Therefore, in parallel with deeper understanding of the specific protective effects of different neurotrophic factors and the potential therapeutic cell candidates for glaucoma neuroprotection, the development of non-invasive and highly specific gene delivery methods with safe and effective technologies to modify cell candidates for life-long neuroprotection in the eye is essential before investing in this field.
Cardim, Danilo; Tajsic, Tamara; Bulman, Michael; Lavinio, Andrea; Gupta, Arun; Hutchinson, Peter J. A.; Czosnyka, Marek
2017-01-01
Background The invasive nature of the current methods for monitoring of intracranial pressure (ICP) has prevented their use in many clinical situations. Several attempts have been made to develop methods to monitor ICP non-invasively. The aim of this study is to assess the relationship between ultrasound-based non-invasive ICP (nICP) and invasive ICP measurement in neurocritical care patients. Methods and findings This was a prospective, single-cohort observational study of patients admitted to a tertiary neurocritical care unit. Patients with brain injury requiring invasive ICP monitoring were considered for inclusion. nICP was assessed using optic nerve sheath diameter (ONSD), venous transcranial Doppler (vTCD) of straight sinus systolic flow velocity (FVsv), and methods derived from arterial transcranial Doppler (aTCD) on the middle cerebral artery (MCA): MCA pulsatility index (PIa) and an estimator based on diastolic flow velocity (FVd). A total of 445 ultrasound examinations from 64 patients performed from 1 January to 1 November 2016 were included. The median age of the patients was 53 years (range 37–64). Median Glasgow Coma Scale at admission was 7 (range 3–14), and median Glasgow Outcome Scale was 3 (range 1–5). The mortality rate was 20%. ONSD and FVsv demonstrated the strongest correlation with ICP (R = 0.76 for ONSD versus ICP; R = 0.72 for FVsv versus ICP), whereas PIa and the estimator based on FVd did not correlate with ICP significantly. Combining the 2 strongest nICP predictors (ONSD and FVsv) resulted in an even stronger correlation with ICP (R = 0.80). The ability to detect intracranial hypertension (ICP ≥ 20 mm Hg) was highest for ONSD (area under the curve [AUC] 0.91, 95% CI 0.88–0.95). The combination of ONSD and FVsv methods showed a statistically significant improvement of AUC values compared with the ONSD method alone (0.93, 95% CI 0.90–0.97, p = 0.01). Major limitations are the heterogeneity and small number of patients included in this study, the need for specialised training to perform and interpret the ultrasound tests, and the variability in performance among different ultrasound operators. Conclusions Of the studied ultrasound nICP methods, ONSD is the best estimator of ICP. The novel combination of ONSD ultrasonography and vTCD of the straight sinus is a promising and easily available technique for identifying critically ill patients with intracranial hypertension. PMID:28742869
Long-term effects of burn severity on non-native plant cover
USDA-ARS?s Scientific Manuscript database
Effects of burn severity on non-native plant invasion post-fire is of great concern to managers and researchers, especially given predicted increases in large, high severity fires. However, little else is known about long-term (>10 year) vegetation recovery and non-native plant persistence. We anal...
Lee, Joonnyong; Sohn, JangJay; Park, Jonghyun; Yang, SeungMan; Lee, Saram; Kim, Hee Chan
2018-06-18
Non-invasive continuous blood pressure monitors are of great interest to the medical community due to their value in hypertension management. Recently, studies have shown the potential of pulse pressure as a therapeutic target for hypertension, but not enough attention has been given to non-invasive continuous monitoring of pulse pressure. Although accurate pulse pressure estimation can be of direct value to hypertension management and indirectly to the estimation of systolic blood pressure, as it is the sum of pulse pressure and diastolic blood pressure, only a few inadequate methods of pulse pressure estimation have been proposed. We present a novel, non-invasive blood pressure and pulse pressure estimation method based on pulse transit time and pre-ejection period. Pre-ejection period and pulse transit time were measured non-invasively using electrocardiogram, seismocardiogram, and photoplethysmogram measured from the torso. The proposed method used the 2-element Windkessel model to model pulse pressure with the ratio of stroke volume, approximated by pre-ejection period, and arterial compliance, estimated by pulse transit time. Diastolic blood pressure was estimated using pulse transit time, and systolic blood pressure was estimated as the sum of the two estimates. The estimation method was verified in 11 subjects in two separate conditions with induced cardiovascular response and the results were compared against a reference measurement and values obtained from a previously proposed method. The proposed method yielded high agreement with the reference (pulse pressure correlation with reference R ≥ 0.927, diastolic blood pressure correlation with reference R ≥ 0.854, systolic blood pressure correlation with reference R ≥ 0.914) and high estimation accuracy in pulse pressure (mean root-mean-squared error ≤ 3.46 mmHg) and blood pressure (mean root-mean-squared error ≤ 6.31 mmHg for diastolic blood pressure and ≤ 8.41 mmHg for systolic blood pressure) over a wide range of hemodynamic changes. The proposed pulse pressure estimation method provides accurate estimates in situations with and without significant changes in stroke volume. The proposed method improves upon the currently available systolic blood pressure estimation methods by providing accurate pulse pressure estimates.
ERIC Educational Resources Information Center
Krach, Soren; Hartje, Wolfgang
2006-01-01
The Wada test is at present the method of choice for preoperative assessment of patients who require surgery close to cortical language areas. It is, however, an invasive test with an attached morbidity risk. By now, an alternative to the Wada test is to combine a lexical word generation paradigm with non-invasive imaging techniques. However,…
Thymectomy in Myasthenia Gravis
Aydin, Yener; Ulas, Ali Bilal; Mutlu, Vahit; Colak, Abdurrahim; Eroglu, Atilla
2017-01-01
In recent years, thymectomy has become a widespread procedure in the treatment of myasthenia gravis (MG). Likelihood of remission was highest in preoperative mild disease classification (Osserman classification 1, 2A). In absence of thymoma or hyperplasia, there was no relationship between age and gender in remission with thymectomy. In MG treatment, randomized trials that compare conservative treatment with thymectomy have started, recently. As with non-randomized trials, remission with thymectomy in MG treatment was better than conservative treatment with only medication. There are four major methods for the surgical approach: transcervical, minimally invasive, transsternal, and combined transcervical transsternal thymectomy. Transsternal approach with thymectomy is the accepted standard surgical approach for many years. In recent years, the incidence of thymectomy has been increasing with minimally invasive techniques using thoracoscopic and robotic methods. There are not any randomized, controlled studies which are comparing surgical techniques. However, when comparing non-randomized trials, it is seen that minimally invasive thymectomy approaches give similar results to more aggressive approaches. PMID:28416933
Seegers, Joachim; Vos, Marc A.; Flevari, Panagiota; Willems, Rik; Sohns, Christian; Vollmann, Dirk; Lüthje, Lars; Kremastinos, Dimitrios T.; Floré, Vincent; Meine, Mathias; Tuinenburg, Anton; Myles, Rachel C.; Simon, Dirk; Brockmöller, Jürgen; Friede, Tim; Hasenfuß, Gerd; Lehnart, Stephan E.; Zabel, Markus
2012-01-01
Aims The EUTrigTreat clinical study has been designed as a prospective multicentre observational study and aims to (i) risk stratify patients with an implantable cardioverter defibrillator (ICD) for mortality and shock risk using multiple novel and established risk markers, (ii) explore a link between repolarization biomarkers and genetics of ion (Ca2+, Na+, K+) metabolism, (iii) compare the results of invasive and non-invasive electrophysiological (EP) testing, (iv) assess changes of non-invasive risk stratification tests over time, and (v) associate arrythmogenomic risk through 19 candidate genes. Methods and results Patients with clinical ICD indication are eligible for the trial. Upon inclusion, patients will undergo non-invasive risk stratification, including beat-to-beat variability of repolarization (BVR), T-wave alternans, T-wave morphology variables, ambient arrhythmias from Holter, heart rate variability, and heart rate turbulence. Non-invasive or invasive programmed electrical stimulation will assess inducibility of ventricular arrhythmias, with the latter including recordings of monophasic action potentials and assessment of restitution properties. Established candidate genes are screened for variants. The primary endpoint is all-cause mortality, while one of the secondary endpoints is ICD shock risk. A mean follow-up of 3.3 years is anticipated. Non-invasive testing will be repeated annually during follow-up. It has been calculated that 700 patients are required to identify risk predictors of the primary endpoint, with a possible increase to 1000 patients based on interim risk analysis. Conclusion The EUTrigTreat clinical study aims to overcome current shortcomings in sudden cardiac death risk stratification and to answer several related research questions. The initial patient recruitment is expected to be completed in July 2012, and follow-up is expected to end in September 2014. Clinicaltrials.gov identifier: NCT01209494. PMID:22117037
Illera, Juan-Carlos; Silván, Gema; Cáceres, Sara; Carbonell, Maria-Dolores; Gerique, Cati; Martínez-Fernández, Leticia; Munro, Coralie; Casares, Miguel
2014-01-01
Monitoring ovarian cycles through hormonal analysis is important in order to improve breeding management of captive elephants, and non-invasive collection techniques are particularly interesting for this purpose. However, there are some practical difficulties in collecting proper samples, and easier and more practical methods may be an advantage for some institutions and/or some animals. This study describes the development and validation of an enzymeimmunoassay (EIA) for progestins in salivary samples of African elephants, Loxodonta africana. Weekly urinary and salivary samples from five non-pregnant elephant cows aged 7-12 years were obtained for 28 weeks and analyzed using EIA. Both techniques correlated positively (r = 0.799; P < 0.001), and the cycle characteristics obtained were identical. The results clearly show that ovarian cycles can be monitored by measuring progestins from salivary samples in the African elephant. This is a simple and non-invasive method that may be a practical alternative to other sampling methods used in the species. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Sun, Huimin; Meng, Yaoyong; Zhang, Pingli; Li, Yajing; Li, Nan; Li, Caiyun; Guo, Zhiyou
2017-09-01
The age determination of bloodstains is an important and immediate challenge for forensic science. No reliable methods are currently available for estimating the age of bloodstains. Here we report a method for determining the age of bloodstains at different storage temperatures. Bloodstains were stored at 37 °C, 25 °C, 4 °C, and -20 °C for 80 d. Bloodstains were measured using Raman spectroscopy at various time points. The principal component and a back propagation artificial neural network model were then established for estimating the age of the bloodstains. The results were ideal; the square of correlation coefficient was up to 0.99 (R 2 > 0.99) and the root mean square error of the prediction at lowest reached 55.9829 h. This method is real-time, non-invasive, non-destructive and highly efficiency. It may well prove that Raman spectroscopy is a promising tool for the estimation of the age of bloodstains.
NASA Astrophysics Data System (ADS)
Nikitin, Maxim; Yuriev, Mikhail; Brusentsov, Nikolai; Vetoshko, Petr; Nikitin, Petr
2010-12-01
Quantitative detection of magnetic nanoparticles (MP) in vivo is very important for various biomedical applications. Our original detection method based on non-linear MP magnetization has been modified for non-invasive in vivo mapping of the MP distribution among different organs of rats. A novel highly sensitive room-temperature device equipped with an external probe has been designed and tested for quantification of MP within 20-mm depth from the animal skin. Results obtained by external in vivo scanning of rats by the probe and ex vivo MP quantification in different organs of rats well correlated. The method allows long-term in vivo study of MP evolution, clearance and redistribution among different organs of the animal. Experiments showed that dynamics in vivo strongly depend on MP characteristics (size, material, coatings, etc.), site of injection and dose. The developed detection method combined with the magnetic nanolabels can substitute the radioactive labeling in many applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jin Woo; Chung, Jin Wook, E-mail: chungjw@snu.ac.kr; Cho, Yun Ku
PurposeTo assess the safety and effectiveness of transarterial chemoembolization (TACE) of patients who have hepatocellular carcinomas (HCCs) with central bile duct invasion.Materials and MethodsThe institutional review board approved this retrospective study and waived informed consent. Fifty-three patients, initially treated with TACE for HCCs with central bile duct invasion from January 1999 to September 2012, were included. Clinical, laboratory, and survival data were reviewed. Complications and hospitalization length were evaluated using the χ{sup 2} test, Fisher’s exact test, and logistic regression analysis. Survival was analyzed using the Kaplan–Meier method with log-rank test and Cox proportional hazard model.ResultsSeven patients experienced TACE-related major complications (severemore » post-embolization syndrome in 3, non-fatal sepsis in 3, and secondary bacterial peritonitis in 1). The overall major complication rate was 13.2 %, but there were no permanent adverse sequelae or deaths within 30 days. Serum total bilirubin ≥3.0 mg/dL was the only significant risk factor for long hospitalization [hazard ratio (HR) = 4.341, p = .022]. The median survival was 12.2 months. Extrahepatic metastasis (HR = 6.145, p < .001), international normalized ratio (PT-INR) ≥1.20 (HR = 4.564, p < .001), vascular invasion (HR = 3.484, p = .001), and intermediate tumor enhancement (HR = 2.417, p = .019) were significantly associated with shorter survival.ConclusionTACE can be a safe and effective treatment for patients who have HCCs with central bile duct invasion. In particular, long-term survival can be expected if patients have strongly enhancing tumors without poor prognostic factors such as extrahepatic metastasis, PT-INR prolongation, and vascular invasion.« less
Lifting the veil on the dynamics of neuronal activities evoked by transcranial magnetic stimulation
Li, Bingshuo; Virtanen, Juha P; Oeltermann, Axel; Schwarz, Cornelius; Giese, Martin A; Ziemann, Ulf
2017-01-01
Transcranial magnetic stimulation (TMS) is a widely used non-invasive tool to study and modulate human brain functions. However, TMS-evoked activity of individual neurons has remained largely inaccessible due to the large TMS-induced electromagnetic fields. Here, we present a general method providing direct in vivo electrophysiological access to TMS-evoked neuronal activity 0.8–1 ms after TMS onset. We translated human single-pulse TMS to rodents and unveiled time-grained evoked activities of motor cortex layer V neurons that show high-frequency spiking within the first 6 ms depending on TMS-induced current orientation and a multiphasic spike-rhythm alternating between excitation and inhibition in the 6–300 ms epoch, all of which can be linked to various human TMS responses recorded at the level of spinal cord and muscles. The advance here facilitates a new level of insight into the TMS-brain interaction that is vital for developing this non-invasive tool to purposefully explore and effectively treat the human brain. PMID:29165241
Biosensors for Non-Invasive Detection of Celiac Disease Biomarkers in Body Fluids.
Pasinszki, Tibor; Krebsz, Melinda
2018-06-16
Celiac disease is a chronic gluten-initiated autoimmune disorder that predominantly damages the mucosa of the small intestine in genetically-susceptible individuals. It affects a large and increasing number of the world’s population. The diagnosis of this disease and monitoring the response of patients to the therapy, which is currently a life-long gluten-free diet, require the application of reliable, rapid, sensitive, selective, simple, and cost-effective analytical tools. Celiac disease biomarker detection in full blood, serum, or plasma offers a non-invasive way to do this and is well-suited to being the first step of diagnosis. Biosensors provide a novel and alternative way to perform conventional techniques in biomarker sensing, in which electrode material and architecture play important roles in achieving sensitive, selective, and stable detection. There are many opportunities to build and modify biosensor platforms using various materials and detection methods, and the aim of the present review is to summarize developments in this field.
Sun, Lan; Singh, Seema; Joo, Michael; Vega-Sanchez, Miguel; Ronald, Pamela; Simmons, Blake A; Adams, Paul; Auer, Manfred
2016-01-01
Cellulose microfibrils represent the major scaffold of plant cell walls. Different packing and orientation of the microfibrils at the microscopic scale determines the macroscopic properties of cell walls and thus affect their functions with a profound effect on plant survival. We developed a polarized Raman microspectroscopic method to determine cellulose microfibril orientation within rice plant cell walls. Employing an array of point measurements as well as area imaging and subsequent Matlab-assisted data processing, we were able to characterize the distribution of cellulose microfibril orientation in terms of director angle and anisotropy magnitude. Using this approach we detected differences between wild type rice plants and the rice brittle culm mutant, which shows a more disordered cellulose microfibril arrangement, and differences between different tissues of a wild type rice plant. This novel non-invasive Raman imaging approach allows for quantitative assessment of cellulose fiber orientation in cell walls of herbaceous plants, an important advancement in cell wall characterization. © 2015 Wiley Periodicals, Inc.
Skin temperature reveals the intensity of acute stress
Herborn, Katherine A.; Graves, James L.; Jerem, Paul; Evans, Neil P.; Nager, Ruedi; McCafferty, Dominic J.; McKeegan, Dorothy E.F.
2015-01-01
Acute stress triggers peripheral vasoconstriction, causing a rapid, short-term drop in skin temperature in homeotherms. We tested, for the first time, whether this response has the potential to quantify stress, by exhibiting proportionality with stressor intensity. We used established behavioural and hormonal markers: activity level and corticosterone level, to validate a mild and more severe form of an acute restraint stressor in hens (Gallus gallus domesticus). We then used infrared thermography (IRT) to non-invasively collect continuous temperature measurements following exposure to these two intensities of acute handling stress. In the comb and wattle, two skin regions with a known thermoregulatory role, stressor intensity predicted the extent of initial skin cooling, and also the occurrence of a more delayed skin warming, providing two opportunities to quantify stress. With the present, cost-effective availability of IRT technology, this non-invasive and continuous method of stress assessment in unrestrained animals has the potential to become common practice in pure and applied research. PMID:26434785
Skin temperature reveals the intensity of acute stress.
Herborn, Katherine A; Graves, James L; Jerem, Paul; Evans, Neil P; Nager, Ruedi; McCafferty, Dominic J; McKeegan, Dorothy E F
2015-12-01
Acute stress triggers peripheral vasoconstriction, causing a rapid, short-term drop in skin temperature in homeotherms. We tested, for the first time, whether this response has the potential to quantify stress, by exhibiting proportionality with stressor intensity. We used established behavioural and hormonal markers: activity level and corticosterone level, to validate a mild and more severe form of an acute restraint stressor in hens (Gallus gallus domesticus). We then used infrared thermography (IRT) to non-invasively collect continuous temperature measurements following exposure to these two intensities of acute handling stress. In the comb and wattle, two skin regions with a known thermoregulatory role, stressor intensity predicted the extent of initial skin cooling, and also the occurrence of a more delayed skin warming, providing two opportunities to quantify stress. With the present, cost-effective availability of IRT technology, this non-invasive and continuous method of stress assessment in unrestrained animals has the potential to become common practice in pure and applied research. Copyright © 2015 Elsevier Inc. All rights reserved.
Beale, David J.; Jones, Oliver A. H.; Karpe, Avinash V.; Dayalan, Saravanan; Oh, Ding Yuan; Kouremenos, Konstantinos A.; Ahmed, Warish; Palombo, Enzo A.
2016-01-01
The application of metabolomics to biological samples has been a key focus in systems biology research, which is aimed at the development of rapid diagnostic methods and the creation of personalized medicine. More recently, there has been a strong focus towards this approach applied to non-invasively acquired samples, such as saliva and exhaled breath. The analysis of these biological samples, in conjunction with other sample types and traditional diagnostic tests, has resulted in faster and more reliable characterization of a range of health disorders and diseases. As the sampling process involved in collecting exhaled breath and saliva is non-intrusive as well as comparatively low-cost and uses a series of widely accepted methods, it provides researchers with easy access to the metabolites secreted by the human body. Owing to its accuracy and rapid nature, metabolomic analysis of saliva and breath (known as salivaomics and breathomics, respectively) is a rapidly growing field and has shown potential to be effective in detecting and diagnosing the early stages of numerous diseases and infections in preclinical studies. This review discusses the various collection and analyses methods currently applied in two of the least used non-invasive sample types in metabolomics, specifically their application in salivaomics and breathomics research. Some of the salient research completed in this field to date is also assessed and discussed in order to provide a basis to advocate their use and possible future scientific directions. PMID:28025547
Noninvasive assessment of arterial function in children: clinical applications
Aggoun, Y; Beghetti, M
2002-01-01
Non invasive methods to assess arterial function are widely used in adults. The development and progression of arterial vascular disease is a multifactorial process that can start early in life, thus even in a pediatric population. Risk factors for cardiovascular disease mediate their effects by altering the structure, properties and function of wall and endothelial components of the arterial blood vessels. The ability to detect and monitor sub-clinical damage, representing the cumulative and integrated influence of risk factors in impairing arterial wall integrity, holds potential to further refine cardiovascular risk stratification and enable early intervention to prevent or attenuate disease progression. Measurements that provide more direct information in relation to changes in arterial wall integrity clearly hold predictive and therapeutic potential. The aim of this current review will be to describe the non-invasive procedure used in children to investigate the mechanical properties of a great elastic artery, the common carotid, and the endothelial function of the brachial artery. The accuracy of recording noninvasively the blood pressure wave contour along the arterial tree has been improved by the technique of applanation tonometry. The results obtained with these methods in previous studies are described. PMID:22368620
Semiserin, V A; Khritinin, D F; Maev, I V; Karakozov, A T; Eremin, M N; Olenicheva, E L
2012-01-01
In this paper is synthesized current and recent data on the problem of metabolic syndrome (MS) in combination with toxic liver injury (CCI). Statistical parameters of the last 15 years, the dynamics of alimentary-constitutional obesity (ABC) in patients from the officers contracted service of Defense Ministry of Russia are reflected. Two-year experience in the application of modern non-invasive methods of diagnosis of liver fibrosis with a reflection of its dynamics on the background of complex treatment of patients with MS in conjunction with the Chamber on the example of 57 patients is shown. Paid great attention to psychological and emotional adjustment of patients with ABC, given the complex survey design and treatment in violation of motivational and behavioral responses. High clinical efficiency of combination drug therapy of MS and CCI, the diagnostic value of modern non-invasive methods of diagnosis of hepatic fibrosis are reliably performed. Technique of elastography significantly improves the liver clinical evaluation of the effectiveness of the therapy, allows for early detect the presence of the initial degree of hepatic fibrosis, choose the optimal treatment regimen and to evaluate the results dynamically.
Comas, Carmina; Echevarria, Mónica; Rodríguez, M Angeles; Prats, Pilar; Rodríguez, Ignacio; Serra, Bernat
2015-07-01
To evaluate non-invasive prenatal testing (NIPT) of cell-free DNA (cfDNA) as a screening method for major chromosomal anomalies (CA) in a clinical setting. From January to December 2013, Panorama™ test or Harmony™ prenatal test were offered as advanced NIPT, in addition to first-trimester combined screening in singleton pregnancies. The cohort included 333 pregnant women with a mean maternal age (MA) of 37 years who underwent testing at a mean gestational age of 14.6 weeks. Eighty-four percent were low-risk pregnancies. Results were provided in 97.3% of patients at a mean reporting time of 12.9 calendar days. Repeat sampling was performed in six cases and results were obtained in five of them. No results were provided in four cases. Four cases of Down syndrome were detected and there was one discordant result of Turner syndrome. We found no statistical differences between commercial tests except in reporting time, fetal fraction and MA. The cfDNA fraction was statistically associated with test type, maternal weight, BMI and log βhCG levels. NIPT has the potential to be a highly effective screening method for major CA in a clinical setting.
Non-invasive neuroimaging using near-infrared light
NASA Technical Reports Server (NTRS)
Strangman, Gary; Boas, David A.; Sutton, Jeffrey P.
2002-01-01
This article reviews diffuse optical brain imaging, a technique that employs near-infrared light to non-invasively probe the brain for changes in parameters relating to brain function. We describe the general methodology, including types of measurements and instrumentation (including the tradeoffs inherent in the various instrument components), and the basic theory required to interpret the recorded data. A brief review of diffuse optical applications is included, with an emphasis on research that has been done with psychiatric populations. Finally, we discuss some practical issues and limitations that are relevant when conducting diffuse optical experiments. We find that, while diffuse optics can provide substantial advantages to the psychiatric researcher relative to the alternative brain imaging methods, the method remains substantially underutilized in this field.
Cho, Hongsik; Bhatti, Fazal-Ur-Rehman; Yoon, Tae Won; Hasty, Karen A.; Stuart, John M.; Yi, Ae-Kyung
2016-01-01
Detection and intervention at an early stage is a critical factor to impede arthritis progress. Here we present a non-invasive method to detect inflammatory changes in joints of arthritic mice. Inflammation was monitored by dual fluorescence optical imaging for near-infrared fluorescent (750F) matrix-metalloproteinase activatable agent and allophycocyanin-conjugated anti-mouse CD11b. Increased intensity of allophycocyanin (indication of macrophage accumulation) and 750F (indication of matrix-metalloproteinase activity) showed a biological relationship with the arthritis severity score and the histopathology score of arthritic joints. Our results demonstrate that this method can be used to detect early stages of arthritis with minimum intervention in small animal models. PMID:27231625
Solinas, Marta; Massi, Paola; Cinquina, Valentina; Valenti, Marta; Bolognini, Daniele; Gariboldi, Marzia; Monti, Elena; Rubino, Tiziana; Parolaro, Daniela
2013-01-01
In the present study, we found that CBD inhibited U87-MG and T98G cell proliferation and invasiveness in vitro and caused a decrease in the expression of a set of proteins specifically involved in growth, invasion and angiogenesis. In addition, CBD treatment caused a dose-related down-regulation of ERK and Akt prosurvival signaling pathways in U87-MG and T98G cells and decreased hypoxia inducible factor HIF-1α expression in U87-MG cells. Taken together, these results provide new insights into the antitumor action of CBD, showing that this cannabinoid affects multiple tumoral features and molecular pathways. As CBD is a non-psychoactive phytocannabinoid that appears to be devoid of side effects, our results support its exploitation as an effective anti-cancer drug in the management of gliomas. PMID:24204703
NASA Astrophysics Data System (ADS)
Strzępowicz, Anna; Łyskowski, Mikołaj; Ziętek, Jerzy; Tomecka-Suchoń, Sylwia
2018-03-01
The GPR surveying method belongs to non-invasive and quick geophysical methods, applied also in archaeological prospection. It allows for detecting archaeological artefacts buried under historical layers, and also those which can be found within buildings of historical value. Most commonly, just as in this particular case, it is used in churches, where other non-invasive localisation methods cannot be applied. In a majority of cases, surveys bring about highly positive results, enabling the site and size of a specific object to be indicated. A good example are the results obtained from the measurements carried out in the Basilica of Holy Trinity, belonging to the Dominican Monastery in Krakow. They allowed for confirming the location of the already existing crypts and for indicating so-far unidentified objects.
Measurement of breast volume using body scan technology(computer-aided anthropometry).
Veitch, Daisy; Burford, Karen; Dench, Phil; Dean, Nicola; Griffin, Philip
2012-01-01
Assessment of breast volume is an important tool for preoperative planning in various breast surgeries and other applications, such as bra development. Accurate assessment can improve the consistency and quality of surgery outcomes. This study outlines a non-invasive method to measure breast volume using a whole body 3D laser surface anatomy scanner, the Cyberware WBX. It expands on a previous publication where this method was validated against patients undergoing mastectomy. It specifically outlines and expands the computer-aided anthropometric (CAA) method for extracting breast volumes in a non-invasive way from patients enrolled in a breast reduction study at Flinders Medical Centre, South Australia. This step-by-step description allows others to replicate this work and provides an additional tool to assist them in their own clinical practice and development of designs.
Non-Invasive Pneumothorax Detector
2012-04-01
AD_________________ Award Number: W81XWH-09-2-0092 TITLE: Non-Invasive Pneumothorax Detector...REPORT TYPE Final 3. DATES COVERED 27 July 2009 – 31 August 2011 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Non-Invasive Pneumothorax ...that form the scope of work support the development and clinical testing of a non-invasive pneumothorax detector. Goal and objectives are reflected in
Snowpack, fire, and forest disturbance: interactions affect montane invasions by non-native shrubs.
Stevens, Jens T; Latimer, Andrew M
2015-06-01
Montane regions worldwide have experienced relatively low plant invasion rates, a trend attributed to increased climatic severity, low rates of disturbance, and reduced propagule pressure relative to lowlands. Manipulative experiments at elevations above the invasive range of non-native species can clarify the relative contributions of these mechanisms to montane invasion resistance, yet such experiments are rare. Furthermore, global climate change and land use changes are expected to cause decreases in snowpack and increases in disturbance by fire and forest thinning in montane forests. We examined the importance of these factors in limiting montane invasions using a field transplant experiment above the invasive range of two non-native lowland shrubs, Scotch broom (Cytisus scoparius) and Spanish broom (Spartium junceum), in the rain-snow transition zone of the Sierra Nevada of California. We tested the effects of canopy closure, prescribed fire, and winter snow depth on demographic transitions of each species. Establishment of both species was most likely at intermediate levels of canopy disturbance, but at this intermediate canopy level, snow depth had negative effects on winter survival of seedlings. We used matrix population models to show that an 86% reduction in winter snowfall would cause a 2.8-fold increase in population growth rates in Scotch broom and a 3.5-fold increase in Spanish broom. Fall prescribed fire increased germination rates, but decreased overall population growth rates by reducing plant survival. However, at longer fire return intervals, population recovery between fires is likely to keep growth rates high, especially under low snowpack conditions. Many treatment combinations had positive growth rates despite being above the current invasive range, indicating that propagule pressure, disturbance, and climate can all strongly affect plant invasions in montane regions. We conclude that projected reductions in winter snowpack and increases in forest disturbance are likely to increase the risk of invasion from lower elevations. © 2014 John Wiley & Sons Ltd.
Non-invasive primate head restraint using thermoplastic masks
Drucker, Caroline B.; Carlson, Monica L.; Toda, Koji; DeWind, Nicholas K.; Platt, Michael L.
2015-01-01
Background The success of many neuroscientific studies depends upon adequate head fixation of awake, behaving animals. Typically, this is achieved by surgically affixing a head-restraint prosthesis to the skull. New Method Here we report the use of thermoplastic masks to non-invasively restrain monkeys’ heads. Mesh thermoplastic sheets become pliable when heated and can then be molded to an individual monkey’s head. After cooling, the custom mask retains this shape indefinitely for day-to-day use. Results We successfully trained rhesus macaques (Macaca mulatta) to perform cognitive tasks while wearing thermoplastic masks. Using these masks, we achieved a level of head stability sufficient for high-resolution eye-tracking and intracranial electrophysiology. Comparison with Existing Method Compared with traditional head-posts, we find that thermoplastic masks perform at least as well during infrared eye-tracking and single-neuron recordings, allow for clearer magnetic resonance image acquisition, enable freer placement of a transcranial magnetic stimulation coil, and impose lower financial and time costs on the lab. Conclusions We conclude that thermoplastic masks are a viable non-invasive form of primate head restraint that enable a wide range of neuroscientific experiments. PMID:26112334
NON-INVASIVE EVALUATION OF NERVE CONDUCTION IN SMALL DIAMETER FIBERS IN THE RAT.
Zotova, Elena G; Arezzo, Joseph C
2013-01-01
A novel non-invasive technique was applied to measure velocity within slow conducting axons in the distal extreme of the sciatic nerve (i.e., digital nerve) in a rat model. The technique is based on the extraction of rectified multiple unit activity (MUA) from in vivo whole nerve compound responses. This method reliably identifies compound action potentials in thinly myelinated fibers conducting at a range of 9-18 m/s (Aδ axons), as well as in a subgroup of unmylinated C fibers conducting at approximately 1-2 m/s. The sensitivity of the method to C-fiber conduction was confirmed by the progressive decrement of the responses in the 1-2 m/s range over a 20-day period following the topical application of capsaicin (ANOVA p <0.03). Increasing the frequency of applied repetitive stimulation over a range of 0.75 Hz to 6.0 Hz produced slowing of conduction and a significant decrease in the magnitude of the compound C-fiber response (ANOVA p <0.01). This technique offers a unique opportunity for the non-invasive, repeatable, and quantitative assessment of velocity in the subsets of Aδ and C fibers in parallel with evaluation of fast nerve conduction.
Non-invasive diagnosis of liver fibrosis and cirrhosis
Lurie, Yoav; Webb, Muriel; Cytter-Kuint, Ruth; Shteingart, Shimon; Lederkremer, Gerardo Z
2015-01-01
The evaluation and follow up of liver fibrosis and cirrhosis have been traditionally performed by liver biopsy. However, during the last 20 years, it has become evident that this “gold-standard” is imperfect; even according to its proponents, it is only “the best” among available methods. Attempts at uncovering non-invasive diagnostic tools have yielded multiple scores, formulae, and imaging modalities. All are better tolerated, safer, more acceptable to the patient, and can be repeated essentially as often as required. Most are much less expensive than liver biopsy. Consequently, their use is growing, and in some countries the number of biopsies performed, at least for routine evaluation of hepatitis B and C, has declined sharply. However, the accuracy and diagnostic value of most, if not all, of these methods remains controversial. In this review for the practicing physician, we analyze established and novel biomarkers and physical techniques. We may be witnessing in recent years the beginning of the end of the first phase for the development of non-invasive markers. Early evidence suggests that they might be at least as good as liver biopsy. Novel experimental markers and imaging techniques could produce a dramatic change in diagnosis in the near future. PMID:26556987
Multi-class SVM model for fMRI-based classification and grading of liver fibrosis
NASA Astrophysics Data System (ADS)
Freiman, M.; Sela, Y.; Edrei, Y.; Pappo, O.; Joskowicz, L.; Abramovitch, R.
2010-03-01
We present a novel non-invasive automatic method for the classification and grading of liver fibrosis from fMRI maps based on hepatic hemodynamic changes. This method automatically creates a model for liver fibrosis grading based on training datasets. Our supervised learning method evaluates hepatic hemodynamics from an anatomical MRI image and three T2*-W fMRI signal intensity time-course scans acquired during the breathing of air, air-carbon dioxide, and carbogen. It constructs a statistical model of liver fibrosis from these fMRI scans using a binary-based one-against-all multi class Support Vector Machine (SVM) classifier. We evaluated the resulting classification model with the leave-one out technique and compared it to both full multi-class SVM and K-Nearest Neighbor (KNN) classifications. Our experimental study analyzed 57 slice sets from 13 mice, and yielded a 98.2% separation accuracy between healthy and low grade fibrotic subjects, and an overall accuracy of 84.2% for fibrosis grading. These results are better than the existing image-based methods which can only discriminate between healthy and high grade fibrosis subjects. With appropriate extensions, our method may be used for non-invasive classification and progression monitoring of liver fibrosis in human patients instead of more invasive approaches, such as biopsy or contrast-enhanced imaging.
In vitro inhibition of Eimeria tenella invasion of epithelial cells by phytochemicals.
Burt, S A; Tersteeg-Zijderveld, M H G; Jongerius-Gortemaker, B G M; Vervelde, L; Vernooij, J C M
2013-01-31
Resistance to coccidiostats and possible future restrictions on their use raise the need for alternative methods of reducing coccidiosis in poultry. The aim of this study was to evaluate the effect of selected phytochemicals on Eimeria tenella sporozoite invasion in vitro. Four phytochemicals were selected on the basis that they reduce the virulence of Eimeria spp. and/or provide immune modulatory benefits to host cells: betaine, carvacrol, curcumin and Echinacea purpurea extract (EP). Madin-Darby bovine kidney (MDBK) cells were covered by medium containing phytochemicals at the highest concentration which was non-toxic to the cells. Salinomycin 50 μg/ml was positive control; negative control was medium only. E. tenella (Houghton strain) sporozoites were added to wells and after incubation for 2, 4 or 20 h at 37°C, cells were fixed and stained with hematoxylin-eosin. Ten evenly spaced fields per well were photographed and the percentage of cells invaded by sporozoites was calculated and normalized to the control. At 2h, carvacrol, curcumin and EP showed a significantly lower percentage of sporozoite invasion than the untreated control; in contrast, betaine treatment represented a significantly higher invasion percentage. Combining carvacrol with EP inhibited E. tenella invasion more effectively than applying the compounds individually, but the further addition of curcumin did not reduce invasion further. In conclusion, this study shows that invasion of MDBK epithelial cells by E. tenella sporozoites is inhibited in the presence of carvacrol, curcumin, or EP and enhanced by betaine. There may be potential for developing these phytochemicals as anti-coccidial feed or water additives for poultry. Copyright © 2012 Elsevier B.V. All rights reserved.
Methanogenic activity tests by Infrared Tunable Diode Laser Absorption Spectroscopy.
Martinez-Cruz, Karla; Sepulveda-Jauregui, Armando; Escobar-Orozco, Nayeli; Thalasso, Frederic
2012-10-01
Methanogenic activity (MA) tests are commonly carried out to estimate the capability of anaerobic biomass to treat effluents, to evaluate anaerobic activity in bioreactors or natural ecosystems, or to quantify inhibitory effects on methanogenic activity. These activity tests are usually based on the measurement of the volume of biogas produced by volumetric, pressure increase or gas chromatography (GC) methods. In this study, we present an alternative method for non-invasive measurement of methane produced during activity tests in closed vials, based on Infrared Tunable Diode Laser Absorption Spectroscopy (MA-TDLAS). This new method was tested during model acetoclastic and hydrogenotrophic methanogenic activity tests and was compared to a more traditional method based on gas chromatography. From the results obtained, the CH(4) detection limit of the method was estimated to 60 ppm and the minimum measurable methane production rate was estimated to 1.09(.)10(-3) mg l(-1) h(-1), which is below CH(4) production rate usually reported in both anaerobic reactors and natural ecosystems. Additionally to sensitivity, the method has several potential interests compared to more traditional methods among which short measurements time allowing the measurement of a large number of MA test vials, non-invasive measurements avoiding leakage or external interferences and similar cost to GC based methods. It is concluded that MA-TDLAS is a promising method that could be of interest not only in the field of anaerobic digestion but also, in the field of environmental ecology where CH(4) production rates are usually very low. Copyright © 2012 Elsevier B.V. All rights reserved.
25-gauge fibered-needle for label-free fluorescence analysis of breast masses: a first in vivo study
NASA Astrophysics Data System (ADS)
Toullec, Alexis; Mathieu, Marie-Christine; Benoit, Charlotte; Farcy, René; Tourasse, Christophe; Boisserie-Lacroix, Martine; Fontaine-Aupart, Marie-Pierre; Delaloge, Suzette; Balleyguier, Corinne
2018-02-01
Breast lesions diagnosis and characterization need additional cost-effective techniques to avoid unnecessary invasive procedures, such as core needle biopsies, in the case of benign tumors. Endogenous fluorescence is an effective method to highlight in situ metabolic and/or structural changes between cancerous and non-cancerous lesions. In this context, we developed an original set-up, consisting of a 405 nm laser diode transmitting light through a 25 Gauge (0.45 mm x 50mm) 14° sharp fibered needle to excite intranodular fluorophores around the needle tip and providing real-time labelfree fluorescence spectral analysis of lesions from 450 nm to 650 nm. The objective was to help radiologists to classify suspicious masses in vivo and in real-time within the lesion. We reported the results of spectral differences between 14 invasive lobular carcinomas and 6 intraductal papilloma enrolled in a clinical study.
NASA Astrophysics Data System (ADS)
Pearson, H. C.; Srinivasan, M.
2016-02-01
Documented changes in regional abundance and distribution of marine mammals may be driven by climate, ecosystem, and human-induced variations, operating synergistically or individually on different time scales. However, long-term but fine-scale data on animal ranging and foraging patterns are needed to fully understand the mechanism and magnitude of such changes and if/how top predators such as marine mammals are adapting. This is particularly important for dolphins, for which non-invasive, longer duration tags are needed to track their daily and weekly movement patterns in concert with changes in prey. As part of an ongoing study on dusky dolphins (Lagenorhynchus obscurus) in Kaikoura, New Zealand, we are developing a short-term, non-invasive suction-cup tagging method for collecting high resolution data on dolphin foraging and ranging behavior. This is an advancement in the field of animal telemetry as few published studies have tested non-invasive suction-cup tagging methods on small (< 2 m) delphinids, and even fewer report successful deployments. During austral summer 2013-14 and austral winter 2014, we spent 149 h over 31 d searching for and observing dusky dolphins. Of 71 tagging attempts made, 49% (n = 35) were "sticks" (i.e., the tag adhered to the dolphin). The longest tag attachment time was 357 min. Dive depths tended to increase throughout the day, reaching maximum daytime dive depths of c.a. 25 m. This is consistent with dolphin behavior off Kaikoura, as individuals feed mainly at night on mesopelagic organisms. Most (92%, n = 46) dolphins exhibited low-level responses to tagging, indicating this to be an appropriate species on which to continue tagging efforts. Successful trials will facilitate application of the system to other small delphinids. Tagging data collected can be integrated with climate and oceanographic data derived from satellite sensors and other monitoring programs to produce a comprehensive picture of dolphin behavioral ecology.
Pre-analytical conditions in non-invasive prenatal testing of cell-free fetal RHD.
Clausen, Frederik Banch; Jakobsen, Tanja Roien; Rieneck, Klaus; Krog, Grethe Risum; Nielsen, Leif Kofoed; Tabor, Ann; Dziegiel, Morten Hanefeld
2013-01-01
Non-invasive prenatal testing of cell-free fetal DNA (cffDNA) in maternal plasma can predict the fetal RhD type in D negative pregnant women. In Denmark, routine antenatal screening for the fetal RhD gene (RHD) directs the administration of antenatal anti-D prophylaxis only to women who carry an RhD positive fetus. Prophylaxis reduces the risk of immunization that may lead to hemolytic disease of the fetus and the newborn. The reliability of predicting the fetal RhD type depends on pre-analytical factors and assay sensitivity. We evaluated the testing setup in the Capital Region of Denmark, based on data from routine antenatal RHD screening. Blood samples were drawn at gestational age 25 weeks. DNA extracted from 1 mL of plasma was analyzed for fetal RHD using a duplex method for exon 7/10. We investigated the effect of blood sample transportation time (n = 110) and ambient outdoor temperatures (n = 1539) on the levels of cffDNA and total DNA. We compared two different quantification methods, the delta Ct method and a universal standard curve. PCR pipetting was compared on two systems (n = 104). The cffDNA level was unaffected by blood sample transportation for up to 9 days and by ambient outdoor temperatures ranging from -10 °C to 28 °C during transport. The universal standard curve was applicable for cffDNA quantification. Identical levels of cffDNA were observed using the two automated PCR pipetting systems. We detected a mean of 100 fetal DNA copies/mL at a median gestational age of 25 weeks (range 10-39, n = 1317). The setup for real-time PCR-based, non-invasive prenatal testing of cffDNA in the Capital Region of Denmark is very robust. Our findings regarding the transportation of blood samples demonstrate the high stability of cffDNA. The applicability of a universal standard curve facilitates easy cffDNA quantification.
Cost-effectiveness of minimally invasive sacroiliac joint fusion.
Cher, Daniel J; Frasco, Melissa A; Arnold, Renée Jg; Polly, David W
2016-01-01
Sacroiliac joint (SIJ) disorders are common in patients with chronic lower back pain. Minimally invasive surgical options have been shown to be effective for the treatment of chronic SIJ dysfunction. To determine the cost-effectiveness of minimally invasive SIJ fusion. Data from two prospective, multicenter, clinical trials were used to inform a Markov process cost-utility model to evaluate cumulative 5-year health quality and costs after minimally invasive SIJ fusion using triangular titanium implants or non-surgical treatment. The analysis was performed from a third-party perspective. The model specifically incorporated variation in resource utilization observed in the randomized trial. Multiple one-way and probabilistic sensitivity analyses were performed. SIJ fusion was associated with a gain of approximately 0.74 quality-adjusted life years (QALYs) at a cost of US$13,313 per QALY gained. In multiple one-way sensitivity analyses all scenarios resulted in an incremental cost-effectiveness ratio (ICER) <$26,000/QALY. Probabilistic analyses showed a high degree of certainty that the maximum ICER for SIJ fusion was less than commonly selected thresholds for acceptability (mean ICER =$13,687, 95% confidence interval $5,162-$28,085). SIJ fusion provided potential cost savings per QALY gained compared to non-surgical treatment after a treatment horizon of greater than 13 years. Compared to traditional non-surgical treatments, SIJ fusion is a cost-effective, and, in the long term, cost-saving strategy for the treatment of SIJ dysfunction due to degenerative sacroiliitis or SIJ disruption.
Al-Gallab, Musa I; Naddaf, Louai A; Kanan, Mohamad R
2009-04-01
Evaluation of the intravesical instillation of doxorubicin for its effect on disease recurrence for patients with non-invasive bladder tumour. The study was performed at Al Assad University Hospital in Lattakia, Syria and included patients with non-invasive bladder tumours who were managed with transurethral resection and induction and maintenance therapy with intravesical doxorubicin. They were followed up by cystoscopy every 3 months for 2 years and every 6 months thereafter with special emphasis on recurrence rates. The study included 85 patients with non-invasive bladder tumours: 23 with non-invasive papillary carcinoma (Stage Ta), 62 with tumour invading subepithelial connective tissue (Stage T1). Twelve patients had well differentiated tumours (Grade 1), 48 had moderately differentiated (Grade 2), 25 had poorly differentiated (Grade 3) tumours. The total recurrence rate was 23%. The rates of recurrence were 56% in Grade 3 and 0% in Grade 1. The recurrence rate was 41% in patients with large tumours versus 17% in those with small tumours; 44% in those with multiple tumours compared to 18% in those with solitary tumours; 30% of Stage Ta tumours recurred and 21% of Stage T1 tumours. In short term follow-up, our rate of recurrence was 23%. Adjuvant intravesical doxorubicin was shown to reduce the recurrence of superficial bladder cancer. Tumour grade, size and number were shown to be prognostic factors for recurrence.
Lee, Henry; Reusser, Deborah A; Olden, Julian D; Smith, Scott S; Graham, Jim; Burkett, Virginia; Dukes, Jeffrey S; Piorkowski, Robert J; McPhedran, John
2008-06-01
Changes in temperature, precipitation, and other climatic drivers and sea-level rise will affect populations of existing native and non-native aquatic species and the vulnerability of aquatic environments to new invasions. Monitoring surveys provide the foundation for assessing the combined effects of climate change and invasions by providing baseline biotic and environmental conditions, although the utility of a survey depends on whether the results are quantitative or qualitative, and other design considerations. The results from a variety of monitoring programs in the United States are available in integrated biological information systems, although many include only non-native species, not native species. Besides including natives, we suggest these systems could be improved through the development of standardized methods that capture habitat and physiological requirements and link regional and national biological databases into distributed Web portals that allow drawing information from multiple sources. Combining the outputs from these biological information systems with environmental data would allow the development of ecological-niche models that predict the potential distribution or abundance of native and non-native species on the basis of current environmental conditions. Environmental projections from climate models can be used in these niche models to project changes in species distributions or abundances under altered climatic conditions and to identify potential high-risk invaders. There are, however, a number of challenges, such as uncertainties associated with projections from climate and niche models and difficulty in integrating data with different temporal and spatial granularity. Even with these uncertainties, integration of biological and environmental information systems, niche models, and climate projections would improve management of aquatic ecosystems under the dual threats of biotic invasions and climate change.
Lee, Henry; Reusser, Deborah A.; Olden, Julian D.; Smith, Scott S.; Graham, Jim; Burkett, Virginia; Dukes, Jeffrey S.; Piorkowski, Robert J.; Mcphedran, John
2008-01-01
Changes in temperature, precipitation, and other climatic drivers and sea-level rise will affect populations of existing native and non-native aquatic species and the vulnerability of aquatic environments to new invasions. Monitoring surveys provide the foundation for assessing the combined effects of climate change and invasions by providing baseline biotic and environmental conditions, although the utility of a survey depends on whether the results are quantitative or qualitative, and other design considerations. The results from a variety of monitoring programs in the United States are available in integrated biological information systems, although many include only non-native species, not native species. Besides including natives, we suggest these systems could be improved through the development of standardized methods that capture habitat and physiological requirements and link regional and national biological databases into distributed Web portals that allow drawing information from multiple sources. Combining the outputs from these biological information systems with environmental data would allow the development of ecological-niche models that predict the potential distribution or abundance of native and non-native species on the basis of current environmental conditions. Environmental projections from climate models can be used in these niche models to project changes in species distributions or abundances under altered climatic conditions and to identify potential high-risk invaders. There are, however, a number of challenges, such as uncertainties associated with projections from climate and niche models and difficulty in integrating data with different temporal and spatial granularity. Even with these uncertainties, integration of biological and environmental information systems, niche models, and climate projections would improve management of aquatic ecosystems under the dual threats of biotic invasions and climate change
Non-invasive sex assessment in bovine semen by Raman spectroscopy
NASA Astrophysics Data System (ADS)
De Luca, A. C.; Managó, S.; Ferrara, M. A.; Rendina, I.; Sirleto, L.; Puglisi, R.; Balduzzi, D.; Galli, A.; Ferraro, P.; Coppola, G.
2014-05-01
X- and Y-chromosome-bearing sperm cell sorting is of great interest, especially for animal production management systems and genetic improvement programs. Here, we demonstrate an optical method based on Raman spectroscopy to separate X- and Y-chromosome-bearing sperm cells, overcoming many of the limitations associated with current sex-sorting protocols. A priori Raman imaging of bull spermatozoa was utilized to select the sampling points (head-neck region), which were then used to discriminate cells based on a spectral classification model. Main variations of Raman peaks associated with the DNA content were observed together with a variation due to the sex membrane proteins. Next, we used principal component analysis to determine the efficiency of our device as a cell sorting method. The results (>90% accuracy) demonstrated that Raman spectroscopy is a powerful candidate for the development of a highly efficient, non-invasive, and non-destructive tool for sperm sexing.
Brain Stimulation in Alzheimer's Disease.
Chang, Chun-Hung; Lane, Hsien-Yuan; Lin, Chieh-Hsin
2018-01-01
Brain stimulation techniques can modulate cognitive functions in many neuropsychiatric diseases. Pilot studies have shown promising effects of brain stimulations on Alzheimer's disease (AD). Brain stimulations can be categorized into non-invasive brain stimulation (NIBS) and invasive brain stimulation (IBS). IBS includes deep brain stimulation (DBS), and invasive vagus nerve stimulation (VNS), whereas NIBS includes transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), electroconvulsive treatment (ECT), magnetic seizure therapy (MST), cranial electrostimulation (CES), and non-invasive VNS. We reviewed the cutting-edge research on these brain stimulation techniques and discussed their therapeutic effects on AD. Both IBS and NIBS may have potential to be developed as novel treatments for AD; however, mixed findings may result from different study designs, patients selection, population, or samples sizes. Therefore, the efficacy of NIBS and IBS in AD remains uncertain, and needs to be further investigated. Moreover, more standardized study designs with larger sample sizes and longitudinal follow-up are warranted for establishing a structural guide for future studies and clinical application.
Adler, Andreas; Geiger, Sebastian; Keil, Anne; Bias, Harald; Schatz, Philipp; deVos, Theo; Dhein, Jens; Zimmermann, Mathias; Tauber, Rudolf; Wiedenmann, Bertram
2014-10-17
Despite strong recommendations for colorectal cancer (CRC) screening, participation rates are low. Understanding factors that affect screening choices is essential to developing future screening strategies. Therefore, this study assessed patient willingness to use non-invasive stool or blood based screening tests after refusing colonoscopy. Participants were recruited during regular consultations. Demographic, health, psychological and socioeconomic factors were recorded. All subjects were advised to undergo screening by colonoscopy. Subjects who refused colonoscopy were offered a choice of non-invasive tests. Subjects who selected stool testing received a collection kit and instructions; subjects who selected plasma testing had a blood draw during the office visit. Stool samples were tested with the Hb/Hp Complex Elisa test, and blood samples were tested with the Epi proColon® 2.0 test. Patients who were positive for either were advised to have a diagnostic colonoscopy. 63 of 172 subjects were compliant to screening colonoscopy (37%). 106 of the 109 subjects who refused colonoscopy accepted an alternative non-invasive method (97%). 90 selected the Septin9 blood test (83%), 16 selected a stool test (15%) and 3 refused any test (3%). Reasons for blood test preference included convenience of an office draw, overall convenience and less time consuming procedure. 97% of subjects refusing colonoscopy accepted a non-invasive screening test of which 83% chose the Septin9 blood test. The observation that participation can be increased by offering non-invasive tests, and that a blood test is the preferred option should be validated in a prospective trial in the screening setting.
[Are non-invasive tests going to replace liver biopsy for diagnosis of liver fibrosis?].
Restellini, Sophie; Spahr, Laurent
2012-06-27
Liver fibrosis is associated with chronic liver diseases, and may evolve into cirrhosis that may be complicated by liver failure and portal hypertension. Detection and quantification of liver fibrosis is a key point in the follow-up of patients with chronic liver diseases. Liver biopsy is the gold standard method to assess and quantify fibrosis, but its invasiveness is a limiting factor in everyday clinical practice. Non invasive markers using either biological or radiological parameters have been developed and may decrease the need for liver biopsy in some cases. However, information is limited to fibrosis, and cut-offs values and diagnostic accuracies for significant fibrosis may vary according to the etiology of liver disease. Liver biopsy allows the assessment of intermediate stages of fibrosis and describes accompanying lesions.
Larson, Diane L.; Rabie, Paul A.; Droege, Sam; Larson, Jennifer L.; Haar, Milton
2016-01-01
The majority of pollinating insects are generalists whose lifetimes overlap flowering periods of many potentially suitable plant species. Such generality is instrumental in allowing exotic plant species to invade pollination networks. The particulars of how existing networks change in response to an invasive plant over the course of its phenology are not well characterized, but may shed light on the probability of long-term effects on plant-pollinator interactions and the stability of network structure. Here we describe changes in network topology and modular structure of infested and non-infested networks during the flowering season of the generalist non-native flowering plant, Cirsium arvense in mixed-grass prairie at Badlands National Park, South Dakota, USA. Objectives were to compare network-level effects of infestation as they propagate over the season in infested and non-infested (with respect to C. arvense) networks. We characterized plant-pollinator networks on 5 non-infested and 7 infested 1-ha plots during 4 sample periods that collectively covered the length of C. arvense flowering period. Two other abundantly-flowering invasive plants were present during this time: Melilotus officinalis had highly variable floral abundance in both C. arvense-infested and non-infested plots andConvolvulus arvensis, which occurred almost exclusively in infested plots and peaked early in the season. Modularity, including roles of individual species, and network topology were assessed for each sample period as well as in pooled infested and non-infested networks. Differences in modularity and network metrics between infested and non-infested networks were limited to the third and fourth sample periods, during flower senescence of C. arvenseand the other invasive species; generality of pollinators rose concurrently, suggesting rewiring of the network and a lag effect of earlier floral abundance. Modularity was lower and number of connectors higher in infested networks, whether they were assessed in individual sample periods or pooled into infested and non-infested networks over the entire blooming period of C.arvense. Connectors typically did not reside within the same modules as C. arvense, suggesting that effects of the other invasive plants may also influence the modularity results, and that effects of infestation extend to co-flowering native plants. We conclude that the presence of abundantly flowering invasive species is associated with greater network stability due to decreased modularity, but whether this is advantageous for the associated native plant-pollinator communities depends on the nature of perturbations they experience.
The role of hybridization in facilitating tree invasion
2017-01-01
Abstract Hybridization events can generate additional genetic diversity upon which natural selection can act and at times enhance invasiveness of the species. Invasive tree species are a growing ecological concern worldwide, and some of these invasions involve hybridization events pre- or post-introduction. There are 20 hybrid invasive tree taxa in 15 genera (11 plant families) discussed here. When reported, abundance of hybrids comprised 10–100 % of an invasion, the remainder being parental taxa. In seven hybrid taxa, researchers identified phenotypes that may make hybrids better invaders. Twelve hybrid tree taxa involved introgression and more hybrids involved all non-native taxa than native × non-native taxa. Three hybrid tree taxa were the result of intentional crosses, and all hybrid taxa involved intentional introduction of either one or more parental taxon or the hybrid itself. The knowledge gaps present in some hybrid tree taxa can weaken our effectiveness in predicting and controlling invasions, as hybrids can add a level of complexity to an invasion by being morphologically cryptic, causing genetic pollution of a native parental taxon, presenting novel genotypes for which there may not be coevolved biological control agents, or evolving adaptive traits through increased genetic variation. PMID:28028055
Abraham, Jose K; Sullivan, Shawn; Ranganathan, Sridhar
2011-01-01
Sleep has profound effects on the physical and mental well-being of an individual. The National Institutes of Health (NIH) Sleep Disorder Research Plan gives particular emphasis to non-invasive sleep monitoring methods. Older adults experience sleep fragmentation due to sleep disorders. Unobtrusive non-contact monitoring can be the only realistic solution for long term home-based sleep monitoring. The demand for a low-cost and non-invasive sleep monitoring system for in-home use is more than before due to an increasingly stressful life style. Cost and complexity of current sensor elements hinder the development of low-cost sleep monitoring devices for in-home use. This paper presents the design, development and implementation of a low-cost and disposable pressure sensor mat that could be useful for in-home sleep and movement monitoring applications. The sensor mat design is based on a compressible foam sandwiched between two orthogonal arrays of cPaper capacitance sensors. A low-cost conducting paper has been developed for use as the capacitance sensor electrode. Typical mat design uses a 3 mm thick foam with 5 mm row/column grid array shows that it has a measurement resolution of 0.1 PSI pressure. The resolution can be controlled by both modifying properties of the conducting paper and the foam. Since this pressure mat design is based on low-cost paper, the sensor electrodes are disposable or semi-durable and hence it is ideal for the use in point-of-care physiological monitoring, pervasive healthcare and consumer electronic devices.
Bembich, Stefano; Demarini, Sergio; Clarici, Andrea; Massaccesi, Stefano; Grasso, Domenico Loenardo
2011-12-01
The Wada test is usually used for pre-surgical assessment of language lateralization. Considering its invasiveness and risk of complications, alternative methods have been proposed but they are not always applicable to non-cooperative patients. In this study we explored the possibility of using optical topography (OT)--a multichannel near-infrared system--for non-invasive assessment of hemispheric language dominance during passive listening. Cortical activity was monitored in a sample of healthy, adult Italian native speakers, all right-handed. We assessed changes in oxy-haemoglobin concentration in temporal, parietal and posterior frontal lobes during a passive listening of bi-syllabic words and vowel-consonant-vowel syllables lasting less then 3 minutes. Activated channels were identified by t tests. Left hemisphere showed significant activity only during the passive listening of bi-syllabic words. Specifically, the superior temporal gyrus, the supramarginal gyrus and the posterior inferior parietal lobe were activated. During passive listening of bi-syllabic words, right handed healthy adults showed a significant activation in areas already known to be involved in speech comprehension. Although more research is needed, OT proved to be a promising alternative to the Wada test for non-invasive assessment of hemispheric language lateralization, even if using a particularly brief trial, which has been designed for future applications with non-cooperative subjects.
[Transcranial magnetic stimulation and motor cortex stimulation in neuropathic pain].
Mylius, V; Ayache, S S; Teepker, M; Kappus, C; Kolodziej, M; Rosenow, F; Nimsky, C; Oertel, W H; Lefaucheur, J P
2012-12-01
Non-invasive and invasive cortical stimulation allows the modulation of therapy-refractory neuropathic pain. High-frequency repetitive transcranial magnetic stimulation (rTMS) of the contralateral motor cortex yields therapeutic effects at short-term and predicts the benefits of epidural motor cortex stimulation (MCS). The present article summarizes the findings on application, mechanisms and therapeutic effects of cortical stimulation in neuropathic pain.
Roberts, Calum T; Kortekaas, Rebecca; Dawson, Jennifer A; Manley, Brett J; Owen, Louise S; Davis, Peter G
2016-05-01
Heating and humidification of inspired gases is routine during neonatal non-invasive respiratory support. However, little is known about the temperature and humidity delivered to the upper airway. The International Standards Organization (ISO) specifies that for all patients with an artificial airway humidifiers should deliver ≥33 g/m(3) absolute humidity (AH). We assessed the oropharyngeal temperature and humidity during different non-invasive support modes in a neonatal manikin study. Six different modes of non-invasive respiratory support were applied at clinically relevant settings to a neonatal manikin, placed in a warmed and humidified neonatal incubator. Oropharyngeal temperature and relative humidity (RH) were assessed using a thermohygrometer. AH was subsequently calculated. Measured temperature and RH varied between devices. Bubble and ventilator continuous positive airway pressure (CPAP) produced temperatures >34°C and AH >38 g/m(3). Variable flow CPAP resulted in lower levels of AH than bubble or ventilator CPAP, and AH decreased with higher gas flow. High-flow (HF) therapy delivered by Optiflow Junior produced higher AH with higher gas flow, whereas with Vapotherm HF the converse was true. Different non-invasive devices deliver inspiratory gases of variable temperature and humidity. Most AH levels were above the ISO recommendation; however, with some HF and variable flow CPAP devices at higher gas flow this was not achieved. Clinicians should be aware of differences in the efficacy of heating and humidification when choosing modes of non-invasive respiratory support. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
2014-01-01
Background Saussurea lappa (SL) has been used as a traditional herbal medicine to treat abdominal pain and tenesmus, and has been suggested to possess various biological activities, including anti-tumor, anti-ulcer, anti-inflammatory, anti-viral, and cardiotonic activities. The effect of SL on breast cancer metastasis, however, is unknown. Cell migration and invasion are crucial in neoplastic metastasis. Matrix metalloproteinase-9 (MMP-9), which degrades the extracellular matrix, is a major component in cancer cell invasion. Methods Cell viability was examined by MTT assay, whereas cell motility was measured by invasion assay. Western blot, Real-time PCR, and Zymography assays were used to investigate the inhibitory effects of ESL on matrix metalloproteinase-9 (MMP-9) expression level in MCF-7 cells. EMSA confirmed the inhibitory effects of ESL on DNA binding of NF- κB in MCF-7 cells. Results Cells threated with various concentrations of Saussurea lappa (ESL) for 24 h. Concentrations of 2 or 4 μM did not lead to a significant change in cell viability or morphology. Therefore, subsequent experiments utilized the optimal non-toxic concentration (2 or 4 μM) of ESL. In this study, we investigated the inhibitory effect of ethanol extract of ESL on MMP-9 expression and cell invasion in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MCF-7 cells. ESL inhibited the TPA-induced transcriptional activation of nuclear factor-kappa B (NF-κB). However, this result obtained that ESL did not block the TPA-induced phosphorylation of the kinases: p38, ERK, and JNK. Therefore, ELS-mediated inhibition of TPA-induced MMP-9 expression and cell invasion involves the suppression of NF-kB pathway in MCF-7 cells. Conclusions These results indicate that ELS-mediated inhibition of TPA-induced MMP-9 expression and cell invasion involves the suppression of NF-kB pathway in MCF-7 cells. Thus, ESL has potential for controlling breast cancer invasiveness in vitro. PMID:24885456
Roon, David A.; Waits, L.P.; Kendall, K.C.
2005-01-01
Non-invasive genetic sampling (NGS) is becoming a popular tool for population estimation. However, multiple NGS studies have demonstrated that polymerase chain reaction (PCR) genotyping errors can bias demographic estimates. These errors can be detected by comprehensive data filters such as the multiple-tubes approach, but this approach is expensive and time consuming as it requires three to eight PCR replicates per locus. Thus, researchers have attempted to correct PCR errors in NGS datasets using non-comprehensive error checking methods, but these approaches have not been evaluated for reliability. We simulated NGS studies with and without PCR error and 'filtered' datasets using non-comprehensive approaches derived from published studies and calculated mark-recapture estimates using CAPTURE. In the absence of data-filtering, simulated error resulted in serious inflations in CAPTURE estimates; some estimates exceeded N by ??? 200%. When data filters were used, CAPTURE estimate reliability varied with per-locus error (E??). At E?? = 0.01, CAPTURE estimates from filtered data displayed < 5% deviance from error-free estimates. When E?? was 0.05 or 0.09, some CAPTURE estimates from filtered data displayed biases in excess of 10%. Biases were positive at high sampling intensities; negative biases were observed at low sampling intensities. We caution researchers against using non-comprehensive data filters in NGS studies, unless they can achieve baseline per-locus error rates below 0.05 and, ideally, near 0.01. However, we suggest that data filters can be combined with careful technique and thoughtful NGS study design to yield accurate demographic information. ?? 2005 The Zoological Society of London.
Jiang, Jie; Geng, Guojun; Yu, Xiuyi; Liu, Hongming; Gao, Jing; An, Hanxiang; Cai, Chengfu; Li, Ning; Shen, Dongyan; Wu, Xiaoqiang; Zheng, Lisheng; Mi, Yanjun; Yang, Shuyu
2016-01-01
Non-small-cell lung cancer (NSCLC) is an aggressive malignancy and long-term survival remains unsatisfactory for patients with metastatic and recurrent disease. Repurposing the anti-malarial drug dihydroartemisinin (DHA) has been proved to possess potent antitumor effect on various cancers. However, the effects of DHA in preventing the invasion of NSCLC cells have not been studied. In the present study, we determined the inhibitory effects of DHA on invasion and migration and the possible mechanisms involved using A549 and H1975 cells. DHA inhibited in vitro migration and invasion of NSCLC cells even in low concentration with little cytotoxicity. Additionally, low concentration DHA also inhibited Warburg effect in NSCLC cells. Mechanically, DHA negatively regulates NF-κB signaling to inhibit the GLUT1 translocation. Blocking the NF-κB signaling largely abolishes the inhibitory effects of DHA on the translocation of GLUT1 to the plasma membrane and the Warburg effect. Furthermore, GLUT1 knockdown significantly decreased the inhibition of invasion, and migration by DHA. Our results suggested that DHA can inhibit metastasis of NSCLC by targeting glucose metabolism via inhibiting NF-κB signaling pathway and DHA may deserve further investigation in NSCLC treatment. PMID:27895313
Non-invasive biophysical measurement of travelling waves in the insect inner ear
2017-01-01
Frequency analysis in the mammalian cochlea depends on the propagation of frequency information in the form of a travelling wave (TW) across tonotopically arranged auditory sensilla. TWs have been directly observed in the basilar papilla of birds and the ears of bush-crickets (Insecta: Orthoptera) and have also been indirectly inferred in the hearing organs of some reptiles and frogs. Existing experimental approaches to measure TW function in tetrapods and bush-crickets are inherently invasive, compromising the fine-scale mechanics of each system. Located in the forelegs, the bush-cricket ear exhibits outer, middle and inner components; the inner ear containing tonotopically arranged auditory sensilla within a fluid-filled cavity, and externally protected by the leg cuticle. Here, we report bush-crickets with transparent ear cuticles as potential model species for direct, non-invasive measuring of TWs and tonotopy. Using laser Doppler vibrometry and spectroscopy, we show that increased transmittance of light through the ear cuticle allows for effective non-invasive measurements of TWs and frequency mapping. More transparent cuticles allow several properties of TWs to be precisely recovered and measured in vivo from intact specimens. Our approach provides an innovative, non-invasive alternative to measure the natural motion of the sensilla-bearing surface embedded in the intact inner ear fluid. PMID:28573026
Non-invasive, transient determination of the core temperature of a heat-generating solid body
Anthony, Dean; Sarkar, Daipayan; Jain, Ankur
2016-01-01
While temperature on the surface of a heat-generating solid body can be easily measured using a variety of methods, very few techniques exist for non-invasively measuring the temperature inside the solid body as a function of time. Measurement of internal temperature is very desirable since measurement of just the surface temperature gives no indication of temperature inside the body, and system performance and safety is governed primarily by the highest temperature, encountered usually at the core of the body. This paper presents a technique to non-invasively determine the internal temperature based on the theoretical relationship between the core temperature and surface temperature distribution on the outside of a heat-generating solid body as functions of time. Experiments using infrared thermography of the outside surface of a thermal test cell in a variety of heating and cooling conditions demonstrate good agreement of the predicted core temperature as a function of time with actual core temperature measurement using an embedded thermocouple. This paper demonstrates a capability to thermally probe inside solid bodies in a non-invasive fashion. This directly benefits the accurate performance prediction and control of a variety of engineering systems where the time-varying core temperature plays a key role. PMID:27804981
Non-invasive, transient determination of the core temperature of a heat-generating solid body
NASA Astrophysics Data System (ADS)
Anthony, Dean; Sarkar, Daipayan; Jain, Ankur
2016-11-01
While temperature on the surface of a heat-generating solid body can be easily measured using a variety of methods, very few techniques exist for non-invasively measuring the temperature inside the solid body as a function of time. Measurement of internal temperature is very desirable since measurement of just the surface temperature gives no indication of temperature inside the body, and system performance and safety is governed primarily by the highest temperature, encountered usually at the core of the body. This paper presents a technique to non-invasively determine the internal temperature based on the theoretical relationship between the core temperature and surface temperature distribution on the outside of a heat-generating solid body as functions of time. Experiments using infrared thermography of the outside surface of a thermal test cell in a variety of heating and cooling conditions demonstrate good agreement of the predicted core temperature as a function of time with actual core temperature measurement using an embedded thermocouple. This paper demonstrates a capability to thermally probe inside solid bodies in a non-invasive fashion. This directly benefits the accurate performance prediction and control of a variety of engineering systems where the time-varying core temperature plays a key role.
Sakudo, Akikazu; Kato, Yukiko Hakariya; Kuratsune, Hirohiko; Ikuta, Kazuyoshi
2009-10-01
After blood donation, in some individuals having polycythemia, dehydration causes anemia. Although the hematocrit (Ht) level is closely related to anemia, the current method of measuring Ht is performed after blood drawing. Furthermore, the monitoring of Ht levels contributes to a healthy life. Therefore, a non-invasive test for Ht is warranted for the safe donation of blood and good quality of life. A non-invasive procedure for the prediction of hematocrit levels was developed on the basis of a chemometric analysis of visible and near-infrared (Vis-NIR) spectra of the thumbs using portable spectrophotometer. Transmittance spectra in the 600- to 1100-nm region from thumbs of Japanese volunteers were subjected to a partial least squares regression (PLSR) analysis and leave-out cross-validation to develop chemometric models for predicting Ht levels. Ht levels of masked samples predicted by this model from Vis-NIR spectra provided a coefficient of determination in prediction of 0.6349 with a standard error of prediction of 3.704% and a detection limit in prediction of 17.14%, indicating that the model is applicable for normal and abnormal value in Ht level. These results suggest portable Vis-NIR spectrophotometer to have potential for the non-invasive measurement of Ht levels with a combination of PLSR analysis.
Kudomi, Nobuyuki; Maeda, Yukito; Yamamoto, Hiroyuki; Yamamoto, Yuka; Hatakeyama, Tetsuhiro; Nishiyama, Yoshihiro
2018-05-01
CBF, OEF, and CMRO 2 images can be quantitatively assessed using PET. Their image calculation requires arterial input functions, which require invasive procedure. The aim of the present study was to develop a non-invasive approach with image-derived input functions (IDIFs) using an image from an ultra-rapid O 2 and C 15 O 2 protocol. Our technique consists of using a formula to express the input using tissue curve with rate constants. For multiple tissue curves, the rate constants were estimated so as to minimize the differences of the inputs using the multiple tissue curves. The estimated rates were used to express the inputs and the mean of the estimated inputs was used as an IDIF. The method was tested in human subjects ( n = 24). The estimated IDIFs were well-reproduced against the measured ones. The difference in the calculated CBF, OEF, and CMRO 2 values by the two methods was small (<10%) against the invasive method, and the values showed tight correlations ( r = 0.97). The simulation showed errors associated with the assumed parameters were less than ∼10%. Our results demonstrate that IDIFs can be reconstructed from tissue curves, suggesting the possibility of using a non-invasive technique to assess CBF, OEF, and CMRO 2 .
Buchs, Galit; Maidenbaum, Shachar; Levy-Tzedek, Shelly; Amedi, Amir
2015-01-01
Purpose: To visually perceive our surroundings we constantly move our eyes and focus on particular details, and then integrate them into a combined whole. Current visual rehabilitation methods, both invasive, like bionic-eyes and non-invasive, like Sensory Substitution Devices (SSDs), down-sample visual stimuli into low-resolution images. Zooming-in to sub-parts of the scene could potentially improve detail perception. Can congenitally blind individuals integrate a ‘visual’ scene when offered this information via different sensory modalities, such as audition? Can they integrate visual information –perceived in parts - into larger percepts despite never having had any visual experience? Methods: We explored these questions using a zooming-in functionality embedded in the EyeMusic visual-to-auditory SSD. Eight blind participants were tasked with identifying cartoon faces by integrating their individual components recognized via the EyeMusic’s zooming mechanism. Results: After specialized training of just 6–10 hours, blind participants successfully and actively integrated facial features into cartooned identities in 79±18% of the trials in a highly significant manner, (chance level 10% ; rank-sum P < 1.55E-04). Conclusions: These findings show that even users who lacked any previous visual experience whatsoever can indeed integrate this visual information with increased resolution. This potentially has important practical visual rehabilitation implications for both invasive and non-invasive methods. PMID:26518671
Depth discrimination in acousto-optic cerebral blood flow measurement simulation
NASA Astrophysics Data System (ADS)
Tsalach, A.; Schiffer, Z.; Ratner, E.; Breskin, I.; Zeitak, R.; Shechter, R.; Balberg, M.
2016-03-01
Monitoring cerebral blood flow (CBF) is crucial, as inadequate perfusion, even for relatively short periods of time, may lead to brain damage or even death. Thus, significant research efforts are directed at developing reliable monitoring tools that will enable continuous, bed side, simple and cost-effective monitoring of CBF. All existing non invasive bed side monitoring methods, which are mostly NIRS based, such as Laser Doppler or DCS, tend to underestimate CBF in adults, due to the indefinite effect of extra-cerebral tissues on the obtained signal. If those are to find place in day to day clinical practice, the contribution of extra-cerebral tissues must be eliminated and data from the depth (brain) should be extracted and discriminated. Recently, a novel technique, based on ultrasound modulation of light was developed for non-invasive, continuous CBF monitoring (termed ultrasound-tagged light (UTL or UT-NIRS)), and shown to correlate with readings of 133Xe SPECT and laser Doppler. We have assembled a comprehensive computerized simulation, modeling this acousto-optic technique in a highly scattering media. Using the combination of light and ultrasound, we show how depth information may be extracted, thus distinguishing between flow patterns taking place at different depths. Our algorithm, based on the analysis of light modulated by ultrasound, is presented and examined in a computerized simulation. Distinct depth discrimination ability is presented, suggesting that using such method one can effectively nullify the extra-cerebral tissues influence on the obtained signals, and specifically extract cerebral flow data.
Invasive pulmonary aspergillosis: current diagnostic methodologies and a new molecular approach.
Moura, S; Cerqueira, L; Almeida, A
2018-05-13
The fungus Aspergillus fumigatus is the main pathogenic agent responsible for invasive pulmonary aspergillosis. Immunocompromised patients are more likely to develop this pathology due to a decrease in the immune system's defense capacity. Despite of the low occurrence of invasive pulmonary aspergillosis, this pathology presents high rates of mortality, mostly due to late and unspecific diagnosis. Currently, the diagnostic methods used to detect this fungal infection are conventional mycological examination (direct microscopic examination, histological examination, and culture), imaging, non-culture-based tests for the detection of galactomannan, β(1,3)-glucan and an extracellular glycoprotein, and molecular tests based on PCR. However, most of these methods do not detect the species A. fumigatus; they only allow the identification of genus Aspergillus. The development of more specific detection methods is of extreme importance. Fluorescent in situ hybridization-based molecular methods can be a good alternative to achieve this purpose. In this review, it is intended to point out that most of the methods used for the diagnosis of invasive pulmonary aspergillosis do not allow to detect the fungus at the species level and that fluorescence in situ hybridization-based molecular method will be a promising approach in the A. fumigatus detection.
NASA Astrophysics Data System (ADS)
Tripathi, Anjan Kumar
Electrically charged particles are found in a wide range of applications ranging from electrostatic powder coating, mineral processing, and powder handling to rain-producing cloud formation in atmospheric turbulent flows. In turbulent flows, particle dynamics is influenced by the electric force due to particle charge generation. Quantifying particle charges in such systems will help in better predicting and controlling particle clustering, relative motion, collision, and growth. However, there is a lack of noninvasive techniques to measure particle charges. Recently, a non-invasive method for particle charge measurement using in-line Digital Holographic Particle Tracking Velocimetry (DHPTV) technique was developed in our lab, where charged particles to be measured were introduced to a uniform electric field, and their movement towards the oppositely charged electrode was deemed proportional to the amount of charge on the particles (Fan Yang, 2014 [1]). However, inherent speckle noise associated with reconstructed images was not adequately removed and therefore particle tracking data was contaminated. Furthermore, particle charge calculation based on particle deflection velocity neglected the particle drag force and rebound effect of the highly charged particles from the electrodes. We improved upon the existing particle charge measurement method by: 1) hologram post processing, 2) taking drag force into account in charge calculation, 3) considering rebound effect. The improved method was first fine-tuned through a calibration experiment. The complete method was then applied to two different experiments, namely conduction charging and enclosed fan-driven turbulence chamber, to measure particle charges. In all three experiments conducted, the particle charge was found to obey non-central t-location scale family of distribution. It was also noted that the charge distribution was insensitive to the change in voltage applied between the electrodes. The range of voltage applied where reliable particle charges can be measured was also quantified by taking into account the rebound effect of highly charged particles. Finally, in the enclosed chamber experiment, it was found that using carbon conductive coating on the inner walls of the chamber minimized the charge generation inside the chamber when glass bubble particles were used. The value of electric charges obtained in calibration experiment through the improved method was found to have the same order as reported in the existing work (Y.C Ahn et al. 2004 [2]), indicating that the method is indeed effective.
Nonoperative options for management of residual stones after cholecystostomy in high-risk patients
NASA Astrophysics Data System (ADS)
Reed, David M.; Daye, S. S.; Lincer, R. M.
1993-05-01
Cholecystostomy is frequently performed to obtain control of sepsis in high risk patients with acute cholecystitis. Retained stones in the gallbladder may cause future clinical problems. We present two patients with cholecystostomy tubes managed non-operatively. A review of other reported methods for stone extraction or destruction is also presented. Knowledge of safe and effective techniques for removal of these stones, using minimally invasive techniques is useful to the general surgeon.
Cortical-Cortical Interactions and Sensory Information Processing in Autism
2011-04-01
Titan T-1 FDM (StrataSys, Inc., Eden Prairie, MN). All housing and mechanism components and assemblies were solid m odeled prior to fabri cation...tissue that is suspected to be diseased or injured. While this method is invasive, it is nevertheless quite effective as a means of putting one piece...been afflicted by trauma, disease and/or injury in a similar manner. For this reason, we hypothesized that we could develop novel means to “non
Hilton, Paul; Armstrong, Natalie; Brennand, Catherine; Howel, Denise; Shen, Jing; Bryant, Andrew; Tincello, Douglas G; Lucas, Malcolm G; Buckley, Brian S; Chapple, Christopher R; Homer, Tara; Vale, Luke; McColl, Elaine
2015-02-01
The position of invasive urodynamic testing in the diagnostic pathway for urinary incontinence (UI) is unclear. Systematic reviews have called for further trials evaluating clinical utility, although a preliminary feasibility study was considered appropriate. To inform the decision whether or not to proceed to a definitive randomised trial of invasive urodynamic testing compared with clinical assessment with non-invasive tests, prior to surgery in women with stress UI (SUI) or stress predominant mixed UI (MUI). A mixed-methods study comprising a pragmatic multicentre randomised pilot trial; economic evaluation; survey of clinicians' views about invasive urodynamic testing; qualitative interviews with clinicians and trial participants. Urogynaecology, female urology and general gynaecology units in Newcastle, Leicester, Swansea, Sheffield, Northumberland, Gateshead and South Tees. Trial recruits were women with SUI or stress predominant MUI who were considering surgery after unsuccessful conservative treatment. Relevant clinicians completed two online surveys. Subsets of survey respondents and trial participants took part in separate qualitative interview studies. Pilot trial participants were randomised to undergo clinical assessment with non-invasive tests (control arm); or assessment as controls, plus invasive urodynamic testing (intervention arm). Confirmation that units can identify and recruit eligible women; acceptability of investigation strategies and data collection tools; acquisition of outcome data to determine the sample size for a definitive trial. The proposed primary outcome for the definitive trial was International Consultation on Incontinence Modular Questionnaire (ICIQ) Female Lower Urinary Tract Symptoms (ICIQ-FLUTS) (total score) 6 months after surgery or the start of non-surgical treatment; secondary outcomes included: ICIQ-FLUTS (subscales); ICIQ Urinary Incontinence Short Form; ICIQ Lower Urinary Tract Symptoms Quality of Life; Urogenital Distress Inventory; EuroQol-5D; costs, quality-adjusted life-years (QALYs) and incremental cost per QALY, Short Form 12; 3-day bladder diary. Of 284 eligible women, 222 (78%) were recruited; 165/219 (75%) returned questionnaires at baseline and 125/200 (63%) who were sent questionnaires at follow-up. There were few missing data items in returned questionnaires, with individual outcome scales calculable for 81%-94%. Most women underwent surgery; management plans were changed in 19 (19%) participants following invasive urodynamic testing. Participant Costs Questionnaires were returned by 53% 6 months after treatment; complete data to undertake cost-utility analysis were available in 27% (intervention) and 47% (control). While insufficient to recommend changes in practice, the results suggest further research would be valuable. All clinicians responding to the survey had access to invasive urodynamic testing, and most saw it as essential prior to surgery in women with SUI with or without other symptoms; nevertheless, 70% considered the research question underlying INVESTIGATE important and most were willing to randomise patients in a definitive trial. Participants interviewed were positive about the trial and associated documentation; the desire of some women to avoid invasive urodynamic testing contrasted with opinions expressed by clinicians through both survey and interview responses. All elements of a definitive trial and economic evaluation were rehearsed; several areas for protocol modification were identified. Such a trial would require to 400-900 participants, depending on the difference in primary outcome sought. A definitive trial of invasive urodynamic testing versus clinical assessment prior to surgery for SUI or stress predominant MUI should be undertaken. Current Controlled Trials ISRCTN71327395. The National Institute for Health Research Health Technology Assessment programme.
Raman spectroscopic studies on exfoliated cells of oral and cervix
NASA Astrophysics Data System (ADS)
Hole, Arti; Sahu, Aditi; Shaikh, Rubina; Tyagi, Gunjan; Murali Krishna, C.
2018-01-01
Visual inspection followed by biopsy is the standard procedure for cancer diagnosis. Due to invasive nature of the current diagnostic methods, patients are often non-compliant. Hence, it is necessary to explore less invasive and rapid methods for early detection. Exfoliative cytology is a simple, rapid, and less invasive technique. It is thus well accepted by patients and is suitable for routine applications in population screening programs. Raman spectroscopy (RS) has been increasingly explored for disease diagnosis in the recent past. In vivo RS has previously shown promise in management of both oral and cervix cancers. In vivo applications require on-site instrumentation and stringent experimental conditions. Hence, RS of less invasive samples like exfoliated cells has been explored, as this facilitates collection at multiple screening centers followed by analysis at a centralized facility. In the present study, efficacy of Raman spectroscopy in classification of 15 normal and 29 abnormal oral exfoliated cells specimens and 28 normal and 38 abnormal cervix specimens were explored. Spectra were acquired by Raman microprobe (HE 785, Horiba-Jobin-Yvon, France) from several areas to span the pellet. Spectral acquisition parameters were: microscopic objective: 40X, power: 40 mW, acquisition time: 15 s and average: 3. PCA and PC-LDA of pre-processed spectra was carried out on a 4-model system of normal and tumor of both cervix and oral specimens. Leave-one-out-cross-validation findings indicate 73 % correct classification. Findings suggest RS of exfoliated cells may serve as a patient-friendly, non-invasive, rapid and objective method for management of cervix and oral cancers.
NASA Astrophysics Data System (ADS)
Salinas, F. S.; Lancaster, J. L.; Fox, P. T.
2009-06-01
Transcranial magnetic stimulation (TMS) delivers highly localized brain stimulations via non-invasive externally applied magnetic fields. This non-invasive, painless technique provides researchers and clinicians with a unique tool capable of stimulating both the central and peripheral nervous systems. However, a complete analysis of the macroscopic electric fields produced by TMS has not yet been performed. In this paper, we addressed the importance of the secondary E-field created by surface charge accumulation during TMS using the boundary element method (BEM). 3D models were developed using simple head geometries in order to test the model and compare it with measured values. The effects of tissue geometry, size and conductivity were also investigated. Finally, a realistically shaped head model was used to assess the effect of multiple surfaces on the total E-field. Secondary E-fields have the greatest impact at areas in close proximity to each tissue layer. Throughout the head, the secondary E-field magnitudes typically range from 20% to 35% of the primary E-field's magnitude. The direction of the secondary E-field was generally in opposition to the primary E-field; however, for some locations, this was not the case (i.e. going from high to low conductivity tissues). These findings show that realistically shaped head geometries are important for accurate modeling of the total E-field.
Guissart, Claire; Debant, Vanessa; Desgeorges, Marie; Bareil, Corinne; Raynal, Caroline; Toga, Caroline; Pritchard, Victoria; Koenig, Michel; Claustres, Mireille; Vincent, Marie-Claire
2015-02-01
Analysis of circulating cell-free fetal DNA (cffDNA) in maternal plasma is very promising for early diagnosis of monogenic diseases. However, this approach is not yet available for routine use and remains technically challenging because of the low concentration of cffDNA, which is swamped by the overwhelming maternal DNA. To make clinical applications more readily accessible, we propose a new approach based on mutant enrichment with 3'-modified oligonucleotides (MEMO) PCR along with real-time PCR to selectively amplify from the maternal blood the paternally inherited fetal allele that is not present in the maternal genome. The first proof of concept of this strategy was displayed for cystic fibrosis by the accuracy of our detection of the p.Gly542* mutation used as the initial developmental model. Subsequently, a retrospective study of plasmas originating from two pregnant women carrying a fetus with private mutation confirmed the effectiveness of our method. We confirmed the presence of cffDNA in the studied samples by the identification of a tri-allelic DNA profile using a miniSTR kit. This new non-invasive prenatal diagnosis test offers numerous advantages over current methods: it is simple, cost effective, time efficient and does not require complex equipment or bioinformatics settings. Moreover, our assays for different private mutations demonstrate the viability of this approach in clinical settings for monogenic disorders.
Quality of life in patients with muscle invasive and non-muscle invasive bladder cancer.
Singer, S; Ziegler, C; Schwalenberg, T; Hinz, A; Götze, H; Schulte, T
2013-05-01
Compared to the literature on other malignancies, data on quality of life (QoL) in bladder cancer are sparse. This study sought answers to the following questions: In what QoL domains do patients with bladder cancer differ from the general population? Do patients with radical cystectomy differ in QoL compared to those who received conservative treatment? Do patients with neobladder generally have better QoL compared to patients with other diversion methods? At the beginning of inpatient rehabilitation, N = 823 patients with bladder cancer were assessed. Data of a representative community sample (N = 2037) were used for comparison. The questionnaire EORTC QLQ-C30 was used to measure QoL. Multivariate linear regression models were computed to investigate differences between groups. Patients with both non-muscle invasive and muscle invasive bladder cancer reported significantly more problems and worse functioning than the general population. Radiotherapy is associated with clinically relevant more pain, dyspnoea, constipation, appetite loss and decreased social functioning while chemotherapy is associated more with dyspnoea. Cystectomy patients reported more fatigue, appetite loss and decreased role functioning. Male patients ≥70 years with conduit experienced more sleep and emotional problems. These effects of urinary diversion were not observed in women and younger patients. Patients with bladder cancer experience various QoL concerns at the beginning of inpatient rehabilitation. These problems can partly be explained by the type of treatment the patients receive. Type of urinary diversion is relevant for QoL in subgroups of patients.
2018-02-15
models and approaches are also valid using other invasive and non - invasive technologies. Finally, we illustrate and experimentally evaluate this...2017 Project Outline q Pattern formation diversity in wild microbial societies q Experimental and mathematical analysis methodology q Skeleton...chemotaxis, nutrient degradation, and the exchange of amino acids between cells. Using both quantitative experimental methods and several theoretical
Alison C. Dibble; Robert H. White; Patricia K. Lebow
2007-01-01
In the north-eastern United States, invasive plants alter forest fuels, but their combustion characteristics are largely unknown. We assessed unground samples of foliage and twigs in the cone calorimeter for 21 non-invasive, native species, paired with 21 invasive species (18 non-native). Variables included sustained ignition, peak heat release rate, total heat release...
Inukai, Yasuto; Saito, Kei; Sasaki, Ryoki; Tsuiki, Shota; Miyaguchi, Shota; Kojima, Sho; Masaki, Mitsuhiro; Otsuru, Naofumi; Onishi, Hideaki
2016-01-01
Transcranial direct current stimulation (tDCS) is a representative non-invasive brain stimulation method (NIBS). tDCS increases cortical excitability not only in healthy individuals, but also in stroke patients where it contributes to motor function improvement. Recently, two additional types of transcranial electrical stimulation (tES) methods have been introduced that may also prove beneficial for stimulating cortical excitability; these are transcranial random noise stimulation (tRNS) and transcranial alternating current stimulation (tACS). However, comparison of tDCS with tRNS and tACS, in terms of efficacy in cortical excitability alteration, has not been reported thus far. We compared the efficacy of the three different tES methods for increasing cortical excitability using the same subject population and same current intensity. Fifteen healthy subjects participated in this study. Similar stimulation patterns (1.0 mA and 10 min) were used for the three conditions of stimulation (tDCS, tRNS, and tACS). Cortical excitability was explored via single-pulse TMS elicited motor evoked potentials (MEPs). Compared with pre-measurements, MEPs significantly increased with tDCS, tACS, and tRNS ( p < 0.05). Compared with sham measurements, significant increases in MEPs were also observed with tRNS and tACS ( p < 0.05), but not with tDCS. In addition, a significant correlation of the mean stimulation effect was observed between tRNS and tACS ( p = 0.019, r = 0.598). tRNS induced a significant increase in MEP compared with the Pre or Sham at all time points. tRNS resulted in the largest significant increase in MEPs. These findings suggest that tRNS is the most effective tES method and should be considered as part of a treatment plan for improving motor function in stroke patients.
Kapitanov, Georgi I; Ayati, Bruce P; Martin, James A
2017-01-01
Osteoarthritis (OA) is a disease characterized by degeneration of joint cartilage. It is associated with pain and disability and is the result of either age and activity related joint wear or an injury. Non-invasive treatment options are scarce and prevention and early intervention methods are practically non-existent. The modeling effort presented in this article is constructed based on an emerging biological hypothesis-post-impact oxidative stress leads to cartilage cell apoptosis and hence the degeneration observed with the disease. The objective is to quantitatively describe the loss of cell viability and function in cartilage after an injurious impact and identify the key parameters and variables that contribute to this phenomenon. We constructed a system of differential equations that tracks cell viability, mitochondrial function, and concentrations of reactive oxygen species (ROS), adenosine triphosphate (ATP), and glycosaminoglycans (GAG). The system was solved using MATLAB and the equations' parameters were fit to existing data using a particle swarm algorithm. The model fits well the available data for cell viability, ATP production, and GAG content. Local sensitivity analysis shows that the initial amount of ROS is the most important parameter. The model we constructed is a viable method for producing in silico studies and with a few modifications, and data calibration and validation, may be a powerful predictive tool in the search for a non-invasive treatment for post-traumatic osteoarthritis.
Soil modification by invasive plants: Effects on native and invasive species of mixed-grass prairies
Jordan, N.R.; Larson, D.L.; Huerd, S.C.
2008-01-01
Invasive plants are capable of modifying attributes of soil to facilitate further invasion by conspecifics and other invasive species. We assessed this capability in three important plant invaders of grasslands in the Great Plains region of North America: leafy spurge (Euphorbia esula), smooth brome (Bromus inermis) and crested wheatgrass (Agropyron cristatum). In a glasshouse, these three invasives or a group of native species were grown separately through three cycles of growth and soil conditioning in both steam-pasteurized and non-pasteurized soils, after which we assessed seedling growth in these soils. Two of the three invasive species, Bromus and Agropyron, exhibited significant self-facilitation via soil modification. Bromus and Agropyron also had significant facilitative effects on other invasives via soil modification, while Euphorbia had significant antagonistic effects on the other invasives. Both Agropyron and Euphorbia consistently suppressed growth of two of three native forbs, while three native grasses were generally less affected. Almost all intra- and interspecific effects of invasive soil conditioning were dependent upon presence of soil biota from field sites where these species were successful invaders. Overall, these results suggest that that invasive modification of soil microbiota can facilitate plant invasion directly or via 'cross-facilitation' of other invasive species, and moreover has potential to impede restoration of native communities after removal of an invasive species. However, certain native species that are relatively insensitive to altered soil biota (as we observed in the case of the forb Linum lewisii and the native grasses), may be valuable as 'nurse'species in restoration efforts. ?? 2007 Springer Science+Business Media B.V.
Johnson, Christopher S; Frei, Christopher R; Metersky, Mark L; Anzueto, Antonio R; Mortensen, Eric M
2014-01-27
Mortality after pneumonia in immunocompromised patients is higher than for immunocompetent patients. The use of non-invasive mechanical ventilation for patients with severe pneumonia may provide beneficial outcomes while circumventing potential complications associated with invasive mechanical ventilation. The aim of our study was to determine if the use of non-invasive mechanical ventilation in elderly immunocompromised patients with pneumonia is associated with higher all-cause mortality. In this retrospective cohort study, data were obtained from the Department of Veterans Affairs administrative databases. We included veterans age ≥65 years who were immunocompromised and hospitalized due to pneumonia. Multilevel logistic regression analysis was used to determine the relationship between the use of invasive versus non-invasive mechanical ventilation and 30-day and 90-day mortality. Of 1,946 patients in our cohort, 717 received non-invasive mechanical ventilation and 1,229 received invasive mechanical ventilation. There was no significant association between all-cause 30-day mortality and non-invasive versus invasive mechanical ventilation in our adjusted model (odds ratio (OR) 0.85, 95% confidence interval (CI) 0.66-1.10). However, those patients who received non-invasive mechanical ventilation had decreased 90-day mortality (OR 0.66, 95% CI 0.52-0.84). Additionally, receipt of guideline-concordant antibiotics in our immunocompromised cohort was significantly associated with decreased odds of 30-day mortality (OR 0.31, 95% CI 0.24-0.39) and 90-day mortality (OR 0.41, 95% CI 0.31-0.53). Our findings suggest that physicians should consider the use of non-invasive mechanical ventilation, when appropriate, for elderly immunocompromised patients hospitalized with pneumonia.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-28
... these tools, including additional herbicides and application methods to increase treatment effectiveness... organisms than previously approved herbicides and higher effectiveness on particular invasive plants. Thus... examples demonstrate why additional herbicides, methods, and protocols are needed to improve treatment...
Non invasive tools for the diagnosis of liver cirrhosis.
Soresi, Maurizio; Giannitrapani, Lydia; Cervello, Melchiorre; Licata, Anna; Montalto, Giuseppe
2014-12-28
Liver cirrhosis (LC), the end stage of many forms of chronic hepatitis of different etiologies is a diffuse process characterized by fibrosis and the conversion of normal liver architecture into structurally abnormal nodules surrounded by annular fibrosis. This chronic progressive clinical condition, leads to liver cell failure and portal hypertension, which can favour the onset of hepatocellular carcinoma. Defining the phase of the natural history is crucial for therapeutic choice and prognosis. Liver biopsy is currently considered the best available standard of reference but it has some limits, so alternative tools have been developed to substitute liver biopsy when assessing liver fibrosis. Serum markers offer a cost-effective alternative to liver biopsy being less invasive and theoretically without complications. They can be classified into direct and indirect markers which may be used alone or in combination to produce composite scores. Diagnostic imaging includes a number of instruments and techniques to estimate liver fibrosis and cirrhosis like ultrasound (US), US Doppler, contrast enhanced US and Elastography. US could be used for the diagnosis of advanced LC while is not able to evaluate progression of fibrosis, in this case Elastography is more reliable. This review aims to revise the most recent data from the literature about non invasive methods useful in defining liver fibrosis.
Non invasive tools for the diagnosis of liver cirrhosis
Soresi, Maurizio; Giannitrapani, Lydia; Cervello, Melchiorre; Licata, Anna; Montalto, Giuseppe
2014-01-01
Liver cirrhosis (LC), the end stage of many forms of chronic hepatitis of different etiologies is a diffuse process characterized by fibrosis and the conversion of normal liver architecture into structurally abnormal nodules surrounded by annular fibrosis. This chronic progressive clinical condition, leads to liver cell failure and portal hypertension, which can favour the onset of hepatocellular carcinoma. Defining the phase of the natural history is crucial for therapeutic choice and prognosis. Liver biopsy is currently considered the best available standard of reference but it has some limits, so alternative tools have been developed to substitute liver biopsy when assessing liver fibrosis. Serum markers offer a cost-effective alternative to liver biopsy being less invasive and theoretically without complications. They can be classified into direct and indirect markers which may be used alone or in combination to produce composite scores. Diagnostic imaging includes a number of instruments and techniques to estimate liver fibrosis and cirrhosis like ultrasound (US), US Doppler, contrast enhanced US and Elastography. US could be used for the diagnosis of advanced LC while is not able to evaluate progression of fibrosis, in this case Elastography is more reliable. This review aims to revise the most recent data from the literature about non invasive methods useful in defining liver fibrosis. PMID:25561782
Girault, C.; Chevron, V.; Richard, J. C.; Daudenthun, I.; Pasquis, P.; Leroy, J.; Bonmarchand, G.
1997-01-01
BACKGROUND: A study was undertaken to investigate the effects of non- invasive assist-control ventilation (ACV) by nasal mask on respiratory physiological parameters and comfort in acute on chronic respiratory failure (ACRF). METHODS: Fifteen patients with chronic obstructive pulmonary disease (COPD) were prospectively and randomly assigned to two non-invasive ventilation (NIV) sequences in spontaneous breathing (SB) and ACV mode. ACV settings were always optimised and therefore subsequently adjusted according to patient's tolerance and air leaks. RESULTS: ACV significantly decreased all the total inspiratory work of breathing (WOBinsp) parameters, pressure time product, and oesophageal pressure variation in comparison with SB mode. The ACV mode also resulted in a significant reduction in surface diaphragmatic electromyographic activity to 36% of the control values and significantly improved the breathing pattern. SB did not change the arterial blood gas tensions from baseline values whereas ACV significantly improved both the PaO2 from a mean (SD) of 8.45 (2.95) kPa to 13.31 (2.15) kPa, PaCO2 from 9.52 (1.61) kPa to 7.39 (1.39) kPa, and the pH from 7.32 (0.03) to 7.40 (0.07). The respiratory comfort was significantly lower with ACV than with SB. CONCLUSIONS: This study shows that the clinical benefit of non-invasive ACV in the management of ACRF in patients with COPD results in a reduced inspiratory muscle activity providing an improvement in breathing pattern and gas exchange. Despite respiratory discomfort, the muscle rest provided appears sufficient when ACV settings are optimised. PMID:9337827
Laser Bioeffects Resulting from Non-Linear Interactions of Ultrashort Pulses with Biological Systems
2004-07-01
project Saher Maswadi, Ph.D. (Postdoctoral Fellow) 100% on project Manuscripts submitted/published: Glickman RD. Phototoxicity to the retina...with Dr. Saher Maswadi, the AFOSR- supported postdoctoral fellow in my laboratory, we have implemented a non-invasive method for measuring absolute
Background/Question/Methods Non-native species pose one of the greatest threats to native biodiversity. The literature provides plentiful empirical and anecdotal evidence of this phenomenon; however, such evidence is limited to local or regional scales. Employing geospatial analy...
NASA Astrophysics Data System (ADS)
Sato, Kiyomi; Miyazawa, Shota; Funamizu, Hideki; Yuasa, Tomonori; Nishidate, Izumi; Aizu, Yoshihisa
2017-04-01
Skin measurements based on spectral reflectance are widely studied in the fields of medical care and cosmetics. It has the advantage that several skin properties can be estimated in the non-invasive and non-contacting manner. In this study, we demonstrate the color reproduction of human skin by spectral reflectance using RGB images and the Wiener estimation method.
A device for the collection of submandibular saliva.
Hanning, Sara; Motoi, Lidia; Medlicott, Natalie; Swindells, Stephen
2012-03-01
The objective of this study was to describe the construction of a non-invasive device for the collection of submandibular saliva. Preliminary tests were carried out on saliva collected from a single donor in order to determine whether the rheological properties of submandibular saliva collected using the device were comparable to whole saliva collected using the expectoration (or 'spit') method. The device collected a lower quantity of saliva than that collected using the expectoration method. Stimulated saliva collected using the device had a pH close to that of unstimulated saliva because the sealed collection unit in the device minimised contamination. Saliva exhibited shear-thinning behaviour regardless of the method of collection, although that collected using the device was more viscous. The viscoelasticity of saliva collected using the two methods was different, probably as a result of differences in composition. This difference was greater with stimulated saliva. Despite the discrepancies between whole saliva and submandibular saliva, the device provides a non-invasive method for the collection of high-quality saliva over extended periods.
Humair, Franziska; Kueffer, Christoph; Siegrist, Michael
2014-01-01
Horticultural trade is recognized as an important vector in promoting the introduction and dispersal of harmful non-native plant species. Understanding horticulturists' perceptions of biotic invasions is therefore important for effective species risk management. We conducted a large-scale survey among horticulturists in Switzerland (N = 625) to reveal horticulturists' risk and benefit perceptions from ornamental plant species, their attitudes towards the regulation of non-native species, as well as the factors decisive for environmental risk perceptions and horticulturists' willingness to engage in risk mitigation behavior. Our results suggest that perceived familiarity with a plant species had a mitigating effect on risk perceptions, while perceptions of risk increased if a species was perceived to be non-native. However, perceptions of the non-native origin of ornamental plant species were often not congruent with scientific classifications. Horticulturists displayed positive attitudes towards mandatory trade regulations, particularly towards those targeted against known invasive species. Participants also expressed their willingness to engage in risk mitigation behavior. Yet, positive effects of risk perceptions on the willingness to engage in risk mitigation behavior were counteracted by perceptions of benefits from selling non-native ornamental species. Our results indicate that the prevalent practice in risk communication to emphasize the non-native origin of invasive species can be ineffective, especially in the case of species of high importance to local industries and people. This is because familiarity with these plants can reduce risk perceptions and be in conflict with scientific concepts of non-nativeness. In these cases, it might be more effective to focus communication on well-documented environmental impacts of harmful species.
Humair, Franziska; Kueffer, Christoph; Siegrist, Michael
2014-01-01
Horticultural trade is recognized as an important vector in promoting the introduction and dispersal of harmful non-native plant species. Understanding horticulturists' perceptions of biotic invasions is therefore important for effective species risk management. We conducted a large-scale survey among horticulturists in Switzerland (N = 625) to reveal horticulturists' risk and benefit perceptions from ornamental plant species, their attitudes towards the regulation of non-native species, as well as the factors decisive for environmental risk perceptions and horticulturists' willingness to engage in risk mitigation behavior. Our results suggest that perceived familiarity with a plant species had a mitigating effect on risk perceptions, while perceptions of risk increased if a species was perceived to be non-native. However, perceptions of the non-native origin of ornamental plant species were often not congruent with scientific classifications. Horticulturists displayed positive attitudes towards mandatory trade regulations, particularly towards those targeted against known invasive species. Participants also expressed their willingness to engage in risk mitigation behavior. Yet, positive effects of risk perceptions on the willingness to engage in risk mitigation behavior were counteracted by perceptions of benefits from selling non-native ornamental species. Our results indicate that the prevalent practice in risk communication to emphasize the non-native origin of invasive species can be ineffective, especially in the case of species of high importance to local industries and people. This is because familiarity with these plants can reduce risk perceptions and be in conflict with scientific concepts of non-nativeness. In these cases, it might be more effective to focus communication on well-documented environmental impacts of harmful species. PMID:25003195
Scattering of the field of a multi-element phased array by human ribs
NASA Astrophysics Data System (ADS)
Gélat, P.; ter Haar, G.; Saffari, N.
2012-03-01
The efficacy of high intensity focused ultrasound (HIFU) for the non-invasive treatment of cancer has been demonstrated for a range of different cancers including those of the liver, kidney, prostate and breast. As a non-invasive focused therapy, HIFU offers considerable advantages over other techniques such as chemotherapy and surgical resection, in terms of invasiveness and risk of harmful side effects. Despite its advantages, however, there are a number of significant challenges currently hindering its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the ribcage to induce tissue necrosis at the required foci whilst minimising the formation of side lobes. Multielement random arrays are currently showing great promise in overcoming the limitations of single-element transducers. Nevertheless, successfully treating a patient for liver tumours requires a thorough understanding of the way in which the ultrasonic pressure field from a HIFU array is scattered by the ribcage. A mesh of quadratic pressure patches was generated using CT scan data for ribs nine to twelve on the right side. A boundary element approach based on a Generalised Minimal Residual (GMRES) implementation of the Burton-Miller formulation was used, in conjunction with phase conjugation techniques to focus the field of a 256-element random HIFU array past the ribs at both intercostal and transcostal treatment locations. This method has the advantage of accounting for full effects of scattering and diffraction in three dimensions under continuous wave excitation.
Faget, Marc; Nagel, Kerstin A.; Walter, Achim; Herrera, Juan M.; Jahnke, Siegfried; Schurr, Ulrich; Temperton, Vicky M.
2013-01-01
Background There is a large body of literature on competitive interactions among plants, but many studies have only focused on above-ground interactions and little is known about root–root dynamics between interacting plants. The perspective on possible mechanisms that explain the outcome of root–root interactions has recently been extended to include non-resource-driven mechanisms (as well as resource-driven mechanisms) of root competition and positive interactions such as facilitation. These approaches have often suffered from being static, partly due to the lack of appropriate methodologies for in-situ non-destructive root characterization. Scope Recent studies show that interactive effects of plant neighbourhood interactions follow non-linear and non-additive paths that are hard to explain. Common outcomes such as accumulation of roots mainly in the topsoil cannot be explained solely by competition theory but require a more inclusive theoretical, as well as an improved methodological framework. This will include the question of whether we can apply the same conceptual framework to crop versus natural species. Conclusions The development of non-invasive methods to dynamically study root–root interactions in vivo will provide the necessary tools to study a more inclusive conceptual framework for root–root interactions. By following the dynamics of root–root interactions through time in a whole range of scenarios and systems, using a wide variety of non-invasive methods, (such as fluorescent protein which now allows us to separately identify the roots of several individuals within soil), we will be much better equipped to answer some of the key questions in root physiology, ecology and agronomy. PMID:23378521
Castro, Nadia P; Osório, Cynthia ABT; Torres, César; Bastos, Elen P; Mourão-Neto, Mário; Soares, Fernando A; Brentani, Helena P; Carraro, Dirce M
2008-01-01
Introduction Ductal carcinoma in situ (DCIS) of the breast includes a heterogeneous group of preinvasive tumors with uncertain evolution. Definition of the molecular factors necessary for progression to invasive disease is crucial to determining which lesions are likely to become invasive. To obtain insight into the molecular basis of DCIS, we compared the gene expression pattern of cells from the following samples: non-neoplastic, pure DCIS, in situ component of lesions with co-existing invasive ductal carcinoma, and invasive ductal carcinoma. Methods Forty-one samples were evaluated: four non-neoplastic, five pure DCIS, 22 in situ component of lesions with co-existing invasive ductal carcinoma, and 10 invasive ductal carcinoma. Pure cell populations were isolated using laser microdissection. Total RNA was purified, DNase treated, and amplified using the T7-based method. Microarray analysis was conducted using a customized cDNA platform. The concept of molecular divergence was applied to classify the sample groups using analysis of variance followed by Tukey's test. Results Among the tumor sample groups, cells from pure DCIS exhibited the most divergent molecular profile, consequently identifying cells from in situ component of lesions with co-existing invasive ductal carcinoma as very similar to cells from invasive lesions. Additionally, we identified 147 genes that were differentially expressed between pure DCIS and in situ component of lesions with co-existing invasive ductal carcinoma, which can discriminate samples representative of in situ component of lesions with co-existing invasive ductal carcinoma from 60% of pure DCIS samples. A gene subset was evaluated using quantitative RT-PCR, which confirmed differential expression for 62.5% and 60.0% of them using initial and partial independent sample groups, respectively. Among these genes, LOX and SULF-1 exhibited features that identify them as potential participants in the malignant process of DCIS. Conclusions We identified new genes that are potentially involved in the malignant transformation of DCIS, and our findings strongly suggest that cells from the in situ component of lesions with co-existing invasive ductal carcinoma exhibit molecular alterations that enable them to invade the surrounding tissue before morphological changes in the lesion become apparent. PMID:18928525
NASA Astrophysics Data System (ADS)
Zhang, Jitao; Wu, Chen; Raghunathan, Raksha; Larin, Kirill V.; Scarcelli, Giuliano
2017-02-01
Embryos undergo dramatic changes in size, shape, and mechanical properties during development, which is regulated by both genetic and environmental factors. Quantifying mechanical properties of different embryonic tissues may represent good metrics for the embryonic health and proper development. Alternations and structure coupled with biomechanical information may provide a way for early diagnosis and drug treatment of various congenital diseases. Many methods have been developed to determine the mechanical properties of the embryo, such as atomic force microscopy (AFM), ultrasound elastography (UE), and optical coherent elastography (OCE). However, AFM is invasive and time-consuming. While UE and OCE are both non-invasive methods, the spatial resolutions are limited to mm to sub-mm, which is not enough to observe the details inside the embryo. Brillouin microscopy can potentially enable non-invasive measurement of the mechanical properties of a sample by measuring the spectra of acoustically induced light scattering therein. It has fast speed ( 0.1 second per point) and high resolution (sub-micron), and thus has been widely investigated for biomedical application, such as single cell and tissue. In this work, we utilized this technique to characterize the mechanical property of an embryo. A 2D elasticity imaging of the whole body of an E8 embryo was acquired by a Brillouin microscopy, and the stiffness changes between different organs (such as brain, heart, and spine) were shown. The elasticity maps were correlated with structural information provided by OCT.
Bhat, Mamatha; Tazari, Mahmood; Sebastiani, Giada
2017-01-01
Recurrent fibrosis after liver transplantation (LT) impacts on long-term graft and patient survival. We performed a meta-analysis to compare the accuracy of non-invasive methods to diagnose significant recurrent fibrosis (stage F2-F4) following LT. Studies comparing serum fibrosis biomarkers, namely AST-to-platelet ratio index (APRI), fibrosis score 4 (FIB-4), or transient elastography (TE) with liver biopsy in LT recipients were systematically identified through electronic databases. In the meta-analysis, we calculated the weighted pooled odds ratio and used a fixed effect model, as there was no significant heterogeneity between studies. Eight studies were included for APRI, four for FIB-4, and twelve for TE. The mean prevalence of significant liver fibrosis was 37.4%. The summary odds ratio was significantly higher for TE (21.17, 95% CI confidence interval 14.10-31.77, p = 1X10-30) as compared to APRI (9.02, 95% CI 5.79-14.07; p = 1X10-30) and FIB-4 (7.08, 95% CI 4.00-12.55; p = 1.93X10-11). In conclusion, TE performs best to diagnose recurrent fibrosis in LT recipients. APRI and FIB-4 can be used as an estimate of significant fibrosis at centres where TE is not available. Longitudinal assessment of fibrosis by means of these non-invasive tests may reduce the need for liver biopsy.
Jordá Aragón, Carlos; Peñalver Cuesta, Juan Carlos; Mancheño Franch, Nuria; de Aguiar Quevedo, Karol; Vera Sempere, Francisco; Padilla Alarcón, José
2015-09-07
Survival studies of non-small cell lung cancer (NSCLC) are usually based on the Kaplan-Meier method. However, other factors not covered by this method may modify the observation of the event of interest. There are models of cumulative incidence (CI), that take into account these competing risks, enabling more accurate survival estimates and evaluation of the risk of death from other causes. We aimed to evaluate these models in resected early-stage NSCLC patients. This study included 263 patients with resected NSCLC whose diameter was ≤ 3 cm without node involvement (N0). Demographic, clinical, morphopathological and surgical variables, TNM classification and long-term evolution were analysed. To analyse CI, death by another cause was considered to be competitive event. For the univariate analysis, Gray's method was used, while Fine and Gray's method was employed for the multivariate analysis. Mortality by NSCLC was 19.4% at 5 years and 14.3% by another cause. Both curves crossed at 6.3 years, and probability of death by another cause became greater from this point. In multivariate analysis, cancer mortality was conditioned by visceral pleural invasion (VPI) (P=.001) and vascular invasion (P=.020), with age>50 years (P=.034), smoking (P=.009) and the Charlson index ≥ 2 (P=.000) being by no cancer. By the method of CI, VPI and vascular invasion conditioned cancer death in NSCLC >3 cm, while non-tumor causes of long-term death were determined. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.
Vassallo, I; Zinn, P; Lai, M; Rajakannu, P; Hamou, M-F; Hegi, M E
2016-01-07
Glioblastoma is the most aggressive primary brain tumor in adults and due to the invasive nature cannot be completely removed. The WNT inhibitory factor 1 (WIF1), a secreted inhibitor of WNTs, is systematically downregulated in glioblastoma and acts as strong tumor suppressor. The aim of this study was the dissection of WIF1-associated tumor-suppressing effects mediated by canonical and non-canonical WNT signaling. We found that WIF1 besides inhibiting the canonical WNT pathway selectively downregulates the WNT/calcium pathway associated with significant reduction of p38-MAPK (p38-mitogen-activated protein kinase) phosphorylation. Knockdown of WNT5A, the only WNT ligand overexpressed in glioblastoma, phenocopied this inhibitory effect. WIF1 expression inhibited cell migration in vitro and in an orthotopic brain tumor model, in accordance with the known regulatory function of the WNT/Ca(2+) pathway on migration and invasion. In search of a mediator for this function differential gene expression profiles of WIF1-expressing cells were performed. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a long non-coding RNA and key positive regulator of invasion, emerged as the top downregulated gene. Indeed, knockdown of MALAT1 reduced migration in glioblastoma cells, without effect on proliferation. Hence, loss of WIF1 enhances the migratory potential of glioblastoma through WNT5A that activates the WNT/Ca(2+) pathway and MALAT1. These data suggest the involvement of canonical and non-canonical WNT pathways in glioblastoma promoting key features associated with this deadly disease, proliferation on one hand and invasion on the other. Successful targeting will require a dual strategy affecting both canonical and non-canonical WNT pathways.
Climate warming increases biological control agent impact on a non-target species
Lu, Xinmin; Siemann, Evan; He, Minyan; Wei, Hui; Shao, Xu; Ding, Jianqing
2015-01-01
Climate change may shift interactions of invasive plants, herbivorous insects and native plants, potentially affecting biological control efficacy and non-target effects on native species. Here, we show how climate warming affects impacts of a multivoltine introduced biocontrol beetle on the non-target native plant Alternanthera sessilis in China. In field surveys across a latitudinal gradient covering their full distributions, we found beetle damage on A. sessilis increased with rising temperature and plant life history changed from perennial to annual. Experiments showed that elevated temperature changed plant life history and increased insect overwintering, damage and impacts on seedling recruitment. These results suggest that warming can shift phenologies, increase non-target effect magnitude and increase non-target effect occurrence by beetle range expansion to additional areas where A. sessilis occurs. This study highlights the importance of understanding how climate change affects species interactions for future biological control of invasive species and conservation of native species. PMID:25376303
Climate warming increases biological control agent impact on a non-target species.
Lu, Xinmin; Siemann, Evan; He, Minyan; Wei, Hui; Shao, Xu; Ding, Jianqing
2015-01-01
Climate change may shift interactions of invasive plants, herbivorous insects and native plants, potentially affecting biological control efficacy and non-target effects on native species. Here, we show how climate warming affects impacts of a multivoltine introduced biocontrol beetle on the non-target native plant Alternanthera sessilis in China. In field surveys across a latitudinal gradient covering their full distributions, we found beetle damage on A. sessilis increased with rising temperature and plant life history changed from perennial to annual. Experiments showed that elevated temperature changed plant life history and increased insect overwintering, damage and impacts on seedling recruitment. These results suggest that warming can shift phenologies, increase non-target effect magnitude and increase non-target effect occurrence by beetle range expansion to additional areas where A. sessilis occurs. This study highlights the importance of understanding how climate change affects species interactions for future biological control of invasive species and conservation of native species. © 2014 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.
Electro-gene transfer to skin using a noninvasive multielectrode array
Guo, Siqi; Donate, Amy; Basu, Gaurav; Lundberg, Cathryn; Heller, Loree; Heller, Richard
2011-01-01
Because of its large surface area and easy access for both delivery and monitoring, the skin is an attractive target for gene therapy for cutaneous diseases, vaccinations and several metabolic disorders. The critical factors for DNA delivery to the skin by electroporation (EP) are effective expression levels and minimal or no tissue damage. Here, we evaluated the non-invasive multielectrode array (MEA) for gene electrotransfer. For these studies we utilized a guinea pig model, which has been shown to have a similar thickness and structure to human skin. Our results demonstrate significantly increased gene expression 2 to 3 logs above injection of plasmid DNA alone over 15 days. Furthermore, gene expression could be enhanced by increasing the size of the treatment area. Transgene expressing cells were observed exclusively in the epidermal layer of the skin. In contrast to caliper or plate electrodes, skin EP with the MEA greatly reduced muscle twitching and resulted in minimal and completely recoverable skin damage. These results suggest EP with the MEA can be an efficient and non-invasive skin delivery method with less adverse side effects than other EP delivery systems and promising clinical applications. PMID:21262290
MARCKS promotes invasion and is associated with biochemical recurrence in prostate cancer
Dorris, Emma; O'Neill, Amanda; Hanrahan, Karen; Treacy, Ann; Watson, R. William
2017-01-01
Background Overtreatment of low-grade prostate cancer is a recognised problem for clinicians and patients. However, under-treatment runs the risk of missing the opportunity for cure in those who could benefit. Identification of new biomarkers of disease progression, including metastases, is required to better stratify and appropriately treat these patients. The ability to predict if prostate cancer will recur is an important clinical question that would impact treatment options for patients. Studies in other cancers have associated MARCKS with metastasis. Methods Tissue microarrays of local prostatectomy samples from a cohort of biochemical recurrent and non-biochemical recurrent tumours were assayed for MARCKS protein expression. Prostate cancer cell lines were transfected with siRNA targeting MARCKS or a control and functional endpoints of migration, invasion, proliferation, viability and apoptosis were measured. Actin was visualised by fluorescent microscopy and evidence of a cadherin switch and activation of the AKT pathway were assayed. Results MARCKS was upregulated in biochemical recurrent patients compared to non-biochemical recurrent. Knockdown of MARCKS reduced migration and invasion of prostate cancer cells, reduced MMP9 mRNA expression, as well as decreasing cell spreading and increased cell:cell adhesion in prostate cancer cell colonies. Knockdown of MARCKS had no effect on proliferation, viability or apoptosis of the prostate cancer cells. Conclusions In conclusion, MARCKS promotes migration and invasion and is associated with biochemical recurrence in localised prostate cancer tumours. The mechanisms by which this occurs have yet to be fully elucidated but lack of a cadherin switch indicates it is not via epithelial-to-mesenchymal transition. Actin rearrangement indicates that MARCKS promotes invasion through regulating the architecture of the cell. PMID:29069765
Matić, Ivana Z; Aljancić, Ivana; Vajs, Vlatka; Jadranin, Milka; Gligorijević, Nevenka; Milosavljević, Slobodan; Juranić, Zorica D
2013-09-01
Helichrysum zivojinii Cernjavski & Soska is an endemic plant species that grows in the National Park Galicica in Macedonia. Five extracts were isolated as fractions from the aerial parts of the plant: a n-hexane extract (1), a dichloromethane extract (2), an ethyl-acetate extract (3), a n-butanol extract (4) and a methanol extract (5). A dose-dependent cytotoxic activity of the extracts on MDA-MB-231 and EA.hy926 cells was observed. Extracts exhibited more pronounced cytotoxic actions on MDA-MB-231 cells than on EA.hy926 cells. The n-hexane extract (1), at a non-toxic concentration, exhibited an inhibitory effect on the migration as well the invasiveness of MDA-MB-231 cells. The dichloromethane extract (2), at a non-toxic concentration, demonstrated inhibition of MDA-MB-231 cells invasion. Each of the five extracts applied at non-toxic concentrations inhibited migration of EA.hy926 cells. The prominent inhibitory effect of the n-hexane extract on EA.hy926 cells migration was associated with a notable anti-angiogenic action of this extract. The other four tested extracts demonstrated mild anti-angiogenic activity. Our data highlight the prominent anticancer potential of n-hexane (1) and dichloromethane (2) extracts, which could be attributed to their very pronounced and selective cytotoxic activities as well as their anti-invasive and anti-angiogenic properties.
NASA Astrophysics Data System (ADS)
Rybynok, V. O.; Kyriacou, P. A.
2007-10-01
Diabetes is one of the biggest health challenges of the 21st century. The obesity epidemic, sedentary lifestyles and an ageing population mean prevalence of the condition is currently doubling every generation. Diabetes is associated with serious chronic ill health, disability and premature mortality. Long-term complications including heart disease, stroke, blindness, kidney disease and amputations, make the greatest contribution to the costs of diabetes care. Many of these long-term effects could be avoided with earlier, more effective monitoring and treatment. Currently, blood glucose can only be monitored through the use of invasive techniques. To date there is no widely accepted and readily available non-invasive monitoring technique to measure blood glucose despite the many attempts. This paper challenges one of the most difficult non-invasive monitoring techniques, that of blood glucose, and proposes a new novel approach that will enable the accurate, and calibration free estimation of glucose concentration in blood. This approach is based on spectroscopic techniques and a new adaptive modelling scheme. The theoretical implementation and the effectiveness of the adaptive modelling scheme for this application has been described and a detailed mathematical evaluation has been employed to prove that such a scheme has the capability of extracting accurately the concentration of glucose from a complex biological media.