NASA Technical Reports Server (NTRS)
Nakajima, Teruyuki; King, Michael D.; Spinhirne, James D.; Radke, Lawrence F.
1991-01-01
A multispectral scanning radiometer has been used to obtain measurements of the reflection function of marine stratocumulus clouds at 0.75 micron and at 1.65 and 2.16 microns. These observations were obtained from the NASA ER-2 aircraft as part of the FIRE, conducted off the coast of southern California during July 1987. Multispectral images of the reflection function were used to derive the optical thickness and the effective particle radius of stratiform cloud layers on four days. In addition to the radiation measurements, in situ microphysical measurements were obtained from an aircraft. In this paper, the remote sensing results are compared with in situ observations, which show a good spatial correlation for both optical thickness and effective radius. These comparisons further show systematic differences between remote sensing and in situ values, with a tendency for remote sensing to overestimate the effective radius by about 2-3 microns, independent of particle radius. The optical thickness, in contrast, is somewhat overestimated for small optical thicknesses and underestimated for large optical thicknesses. An introduction of enhanced gaseous absorption at a wavelength of 2.16 microns successfully explains some of these observed discrepancies.
Correction of Rayleigh Scattering Effects in Cloud Optical Thickness Retrievals
NASA Technical Reports Server (NTRS)
Wang, Meng-Hua; King, Michael D.
1997-01-01
We present results that demonstrate the effects of Rayleigh scattering on the 9 retrieval of cloud optical thickness at a visible wavelength (0.66 Am). The sensor-measured radiance at a visible wavelength (0.66 Am) is usually used to infer remotely the cloud optical thickness from aircraft or satellite instruments. For example, we find that without removing Rayleigh scattering effects, errors in the retrieved cloud optical thickness for a thin water cloud layer (T = 2.0) range from 15 to 60%, depending on solar zenith angle and viewing geometry. For an optically thick cloud (T = 10), on the other hand, errors can range from 10 to 60% for large solar zenith angles (0-60 deg) because of enhanced Rayleigh scattering. It is therefore particularly important to correct for Rayleigh scattering contributions to the reflected signal from a cloud layer both (1) for the case of thin clouds and (2) for large solar zenith angles and all clouds. On the basis of the single scattering approximation, we propose an iterative method for effectively removing Rayleigh scattering contributions from the measured radiance signal in cloud optical thickness retrievals. The proposed correction algorithm works very well and can easily be incorporated into any cloud retrieval algorithm. The Rayleigh correction method is applicable to cloud at any pressure, providing that the cloud top pressure is known to within +/- 100 bPa. With the Rayleigh correction the errors in retrieved cloud optical thickness are usually reduced to within 3%. In cases of both thin cloud layers and thick ,clouds with large solar zenith angles, the errors are usually reduced by a factor of about 2 to over 10. The Rayleigh correction algorithm has been tested with simulations for realistic cloud optical and microphysical properties with different solar and viewing geometries. We apply the Rayleigh correction algorithm to the cloud optical thickness retrievals from experimental data obtained during the Atlantic Stratocumulus Transition Experiment (ASTEX) conducted near the Azores in June 1992 and compare these results to corresponding retrievals obtained using 0.88 Am. These results provide an example of the Rayleigh scattering effects on thin clouds and further test the Rayleigh correction scheme. Using a nonabsorbing near-infrared wavelength lambda (0.88 Am) in retrieving cloud optical thickness is only applicable over oceans, however, since most land surfaces are highly reflective at 0.88 Am. Hence successful global retrievals of cloud optical thickness should remove Rayleigh scattering effects when using reflectance measurements at 0.66 Am.
Effect of cell thickness on the electrical and optical properties of thin film silicon solar cell
NASA Astrophysics Data System (ADS)
Zaki, A. A.; El-Amin, A. A.
2017-12-01
In this work Electrical and optical properties of silicon thin films with different thickness were measured. The thickness of the Si films varied from 100 to 800 μm. The optical properties of the cell were studied at different thickness. A maximum achievable current density (MACD) generated by a planar solar cell, was measured for different values of the cell thickness which was performed by using photovoltaic (PV) optics method. It was found that reducing the values of the cell thickness improves the open-circuit voltage (VOC) and the fill factor (FF) of the solar cell. The optical properties were measured for thin film Si (TF-Si) at different thickness by using the double beam UV-vis-NIR spectrophotometer in the wavelength range of 300-2000 nm. Some of optical parameters such as refractive index with dispersion relation, the dispersion energy, the oscillator energy, optical band gap energy were calculated by using the spectra for the TF-Si with different thickness.
Light extinction by aerosols during summer air pollution
NASA Technical Reports Server (NTRS)
Kaufman, Y. J.; Fraser, R. S.
1983-01-01
In order to utilize satellite measurements of optical thickness over land for estimating aerosol properties during air pollution episodes, the optical thickness was measured from the surface and investigated. Aerosol optical thicknesses have been derived from solar transmission measurements in eight spectral bands within the band lambda 440-870 nm during the summers of 1980 and 1981 near Washington, DC. The optical thicknesses for the eight bands are strongly correlated. It was found that first eigenvalue of the covariance matrix of all observations accounts for 99 percent of the trace of the matrix. Since the measured aerosol optical thickness was closely proportional to the wavelength raised to a power, the aerosol size distribution derived from it is proportional to the diameter (d) raised to a power for the range of diameters between 0.1 to 1.0 micron. This power is insensitive to the total optical thickness. Changes in the aerosol optical thickness depend on several aerosol parameters, but it is difficult to identify the dominant one. The effects of relative humidity and accumulation mode concentration on the optical thickness are analyzed theoretically, and compared with the measurements.
Jeong, Jae Hoon; Choi, Yun Jeong; Park, Ki Ho; Kim, Dong Myung; Jeoung, Jin Wook
2016-01-01
To evaluate the effect of multiple covariates on the diagnostic performance of the Cirrus high-definition optical coherence tomography (HD-OCT) for glaucoma detection. A prospective case-control study was performed and included 173 recently diagnosed glaucoma patients and 63 unaffected individuals from the Macular Ganglion Cell Imaging Study. Regression analysis of receiver operating characteristic were conducted to evaluate the influence of age, spherical equivalent, axial length, optic disc size, and visual field index on the macular ganglion cell-inner plexiform layer (GCIPL) and peripapillary retinal nerve fiber layer (RNFL) measurements. Disease severity, as measured by visual field index, had a significant effect on the diagnostic performance of all Cirrus HD-OCT parameters. Age, axial length and optic disc size were significantly associated with diagnostic accuracy of average peripapillary RNFL thickness, whereas axial length had a significant effect on the diagnostic accuracy of average GCIPL thickness. Diagnostic performance of the Cirrus HD-OCT may be more accurate in the advanced stages of glaucoma than at earlier stages. A smaller optic disc size was significantly associated with improved the diagnostic ability of average RNFL thickness measurements; however, GCIPL thickness may be less affected by age and optic disc size.
The MODIS Aerosol Algorithm, Products and Validation
NASA Technical Reports Server (NTRS)
Remer, L. A.; Kaufman, Y. J.; Tanre, D.; Mattoo, S.; Chu, D. A.; Martins, J. V.; Li, R.-R.; Ichoku, C.; Levy, R. C.; Kleidman, R. G.
2003-01-01
The MODerate resolution Imaging Spectroradiometer (MODIS) aboard both NASA's Terra and Aqua satellites is making near global daily observations of the earth in a wide spectral range. These measurements are used to derive spectral aerosol optical thickness and aerosol size parameters over both land and ocean. The aerosol products available over land include aerosol optical thickness at three visible wavelengths, a measure of the fraction of aerosol optical thickness attributed to the fine mode and several derived parameters including reflected spectral solar flux at top of atmosphere. Over ocean, the aerosol optical thickness is provided in seven wavelengths from 0.47 microns to 2.13 microns. In addition, quantitative aerosol size information includes effective radius of the aerosol and quantitative fraction of optical thickness attributed to the fine mode. Spectral aerosol flux, mass concentration and number of cloud condensation nuclei round out the list of available aerosol products over the ocean. The spectral optical thickness and effective radius of the aerosol over the ocean are validated by comparison with two years of AERONET data gleaned from 133 AERONET stations. 8000 MODIS aerosol retrievals colocated with AERONET measurements confirm that one-standard deviation of MODIS optical thickness retrievals fall within the predicted uncertainty of delta tauapproximately equal to plus or minus 0.03 plus or minus 0.05 tau over ocean and delta tay equal to plus or minus 0.05 plus or minus 0.15 tau over land. 271 MODIS aerosol retrievals co-located with AERONET inversions at island and coastal sites suggest that one-standard deviation of MODIS effective radius retrievals falls within delta r_eff approximately equal to 0.11 microns. The accuracy of the MODIS retrievals suggests that the product can be used to help narrow the uncertainties associated with aerosol radiative forcing of global climate.
NASA Astrophysics Data System (ADS)
Pandithurai, G.; Takamura, T.; Yamaguchi, J.; Miyagi, K.; Takano, T.; Ishizaka, Y.; Dipu, S.; Shimizu, A.
2009-07-01
The effect of increased aerosol concentrations on the low-level, non-precipitating, ice-free stratus clouds is examined using a suite of surface-based remote sensing systems. Cloud droplet effective radius and liquid water path are retrieved using cloud radar and microwave radiometer. Collocated measurements of aerosol scattering coefficient, size distribution and cloud condensation nuclei (CCN) concentrations were used to examine the response of cloud droplet size and optical thickness to increased CCN proxies. During the episodic events of increase in aerosol accumulation-mode volume distribution, the decrease in droplet size and increase in cloud optical thickness is observed. The indirect effect estimates are made for both droplet effective radius and cloud optical thickness for different liquid water path ranges and they range 0.02-0.18 and 0.005-0.154, respectively. Data are also categorized into thin and thick clouds based on cloud geometric thickness (Δz) and estimates show IE values are relatively higher for thicker clouds.
NASA Technical Reports Server (NTRS)
Ding, Jiachen; Yang, Ping; Kattawar, George W.; King, Michael D.; Platnick, Steven; Meyer, Kerry G.
2017-01-01
Similarity relations applied to ice cloud radiance calculations are theoretically analyzed and numerically validated. If t(1v) and t(1vg) are conserved where t is optical thickness, v the single-scattering albedo, and g the asymmetry factor, it is possible that substantially different phase functions may give rise to similar radiances in both conservative and non-conservative scattering cases, particularly in the case of large optical thicknesses. In addition to theoretical analysis, this study uses operational ice cloud optical thickness retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) Level 2 Collection5 (C5) and Collection 6 (C6) cloud property products to verify radiative similarity relations. It is found that, if the MODIS C5 and C6 ice cloud optical thickness values are multiplied by their respective (1wg)factors, the resultant products referred to as the effective optical thicknesses become similar with their ratio values around unity. Furthermore, the ratios of the C5 and C6 ice cloud effective optical thicknesses display an angular variation pattern similar to that of the corresponding ice cloud phase function ratios. The MODIS C5 and C6 values of ice cloud similarity parameter, defined as [(1w)(1(exp. 1/2)wg)]12, also tend to be similar.
Yan, Wei; Yang, Yanlong; Tan, Yu; Chen, Xun; Li, Yang; Qu, Junle; Ye, Tong
2018-01-01
Stimulated emission depletion microscopy (STED) is one of far-field optical microscopy techniques that can provide sub-diffraction spatial resolution. The spatial resolution of the STED microscopy is determined by the specially engineered beam profile of the depletion beam and its power. However, the beam profile of the depletion beam may be distorted due to aberrations of optical systems and inhomogeneity of specimens’ optical properties, resulting in a compromised spatial resolution. The situation gets deteriorated when thick samples are imaged. In the worst case, the sever distortion of the depletion beam profile may cause complete loss of the super resolution effect no matter how much depletion power is applied to specimens. Previously several adaptive optics approaches have been explored to compensate aberrations of systems and specimens. However, it is hard to correct the complicated high-order optical aberrations of specimens. In this report, we demonstrate that the complicated distorted wavefront from a thick phantom sample can be measured by using the coherent optical adaptive technique (COAT). The full correction can effectively maintain and improve the spatial resolution in imaging thick samples. PMID:29400356
Effects of fixture rotation on coating uniformity for high-performance optical filter fabrication
NASA Astrophysics Data System (ADS)
Rubin, Binyamin; George, Jason; Singhal, Riju
2018-04-01
Coating uniformity is critical in fabricating high-performance optical filters by various vacuum deposition methods. Simple and planetary rotation systems with shadow masks are used to achieve the required uniformity [J. B. Oliver and D. Talbot, Appl. Optics 45, 13, 3097 (2006); O. Lyngnes, K. Kraus, A. Ode and T. Erguder, in `Method for Designing Coating Thickness Uniformity Shadow Masks for Deposition Systems with a Planetary Fixture', 2014 Technical Conference Proceedings, Optical Coatings, August 13, 2014, DOI: 10.14332/svc14.proc.1817.]. In this work, we discuss the effect of rotation pattern and speed on thickness uniformity in an ion beam sputter deposition system. Numerical modeling is used to determine statistical distribution of random thickness errors in coating layers. The relationship between thickness tolerance and production yield are simulated theoretically and demonstrated experimentally. Production yields for different optical filters produced in an ion beam deposition system with planetary rotation are presented. Single-wavelength and broadband optical monitoring systems were used for endpoint monitoring during filter deposition. Limitations of thickness tolerances that can be achieved in systems with planetary rotation are shown. Paths for improving production yield in an ion beam deposition system are described.
Simple approach for high-contrast optical imaging and characterization of graphene-based sheets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, I.; Pelton, M.; Piner, R.
2007-12-01
A simple optical method is presented for identifying and measuring the effective optical properties of nanometer-thick, graphene-based materials, based on the use of substrates consisting of a thin dielectric layer on silicon. High contrast between the graphene-based materials and the substrate is obtained by choosing appropriate optical properties and thickness of the dielectric layer. The effective refractive index and optical absorption coefficient of graphene oxide, thermally reduced graphene oxide, and graphene are obtained by comparing the predicted and measured contrasts.
Dzhongova, Elitsa; Harwood, Colin R; Thennadil, Suresh N
2011-11-01
In order to determine the bulk optical properties of a Bacillus subtilis culture during growth phase we investigated the effect of sample thickness on measurements taken with different measurement configurations, namely total diffuse reflectance and total diffuse transmittance. The bulk optical properties were extracted by inverting the measurements using the radiative transfer theory. While the relationship between reflectance and biomass changes with sample thickness and the intensity (absorbance) levels vary significantly for both reflectance and transmittance measurements, the extracted optical properties show consistent behavior in terms of both the relationship with biomass and magnitude. This observation indicates the potential of bulk optical properties for building models that could be more easily transferable compared to those built using raw measurements.
Jeong, Jae Hoon; Choi, Yun Jeong; Park, Ki Ho; Kim, Dong Myung
2016-01-01
Purpose To evaluate the effect of multiple covariates on the diagnostic performance of the Cirrus high-definition optical coherence tomography (HD-OCT) for glaucoma detection. Methods A prospective case-control study was performed and included 173 recently diagnosed glaucoma patients and 63 unaffected individuals from the Macular Ganglion Cell Imaging Study. Regression analysis of receiver operating characteristic were conducted to evaluate the influence of age, spherical equivalent, axial length, optic disc size, and visual field index on the macular ganglion cell-inner plexiform layer (GCIPL) and peripapillary retinal nerve fiber layer (RNFL) measurements. Results Disease severity, as measured by visual field index, had a significant effect on the diagnostic performance of all Cirrus HD-OCT parameters. Age, axial length and optic disc size were significantly associated with diagnostic accuracy of average peripapillary RNFL thickness, whereas axial length had a significant effect on the diagnostic accuracy of average GCIPL thickness. Conclusions Diagnostic performance of the Cirrus HD-OCT may be more accurate in the advanced stages of glaucoma than at earlier stages. A smaller optic disc size was significantly associated with improved the diagnostic ability of average RNFL thickness measurements; however, GCIPL thickness may be less affected by age and optic disc size. PMID:27490718
Huang, David; Chopra, Vikas; Lu, Ake Tzu-Hui; Tan, Ou; Francis, Brian; Varma, Rohit
2012-01-01
Purpose. To determine the relationship between retinal nerve fiber layer (RNFL) thickness, optic disc size, and image magnification. Methods. The cohort consisted of 196 normal eyes of 101 participants in the Advanced Imaging for Glaucoma Study (AIGS), a multicenter, prospective, longitudinal study to develop advanced imaging technologies for glaucoma diagnosis. Scanning laser tomography was used to measure disc size. Optical coherence tomography (OCT) was used to perform circumpapillary RNFL thickness measurements using the standard fixed 3.46-mm nominal scan diameter. A theoretical model of magnification effects was developed to relate RNFL thickness (overall average) with axial length and magnification. Results. Multivariate regression showed no significant correlation between RNFL thickness and optic disc area (95% confidence interval [CI] = −0.9 to 4.1 μm/mm2, P = 0.21). Linear regression showed that RNFL thickness depended significantly on axial length (slope = −3.1 μm/mm, 95% CI = −4.9 to −1.3, P = 0.001) and age (slope = −0.3 μm/y, 95% CI = −0.5 to −0.2, P = 0.0002). The slope values agreed closely with the values predicted by the magnification model. Conclusions. There is no significant association between RNFL thickness and optic disc area. Previous publications that showed such an association may have been biased by the effect of axial length on fundus image magnification and, therefore, both measured RNFL thickness and apparent disc area. The true diameter of the circumpapillary OCT scan is larger for a longer eye (more myopic eye), leading to a thinner RNFL measurement. Adjustment of measured RNFL thickness by axial length, in addition to age, may lead to a tighter normative range and improve the detection of RNFL thinning due to glaucoma. PMID:22743319
Vizzeri, Gianmarco; Bowd, Christopher; Medeiros, Felipe A; Weinreb, Robert N; Zangwill, Linda M
2008-08-01
Misalignment of the Stratus optical coherence tomograph scan circle placed by the operator around the optic nerve head (ONH) during each retinal nerve fiber layer (RNFL) examination can affect the instrument reproducibility and its theoretical ability to detect true structural changes in the RNFL thickness over time. We evaluated the effect of scan circle placement on RNFL measurements. Observational clinical study. Sixteen eyes of 8 normal participants were examined using the Stratus optical coherence tomograph Fast RNFL thickness acquisition protocol (software version 4.0.7; Carl Zeiss Meditec, Dublin, CA). Four consecutive images were taken by the same operator with the circular scan centered on the optic nerve head. Four images each with the scan displaced superiorly, inferiorly, temporally, and nasally were also acquired. Differences in average and sectoral RNFL thicknesses were determined. For the centered scans, the coefficients of variation (CV) and the intraclass correlation coefficient for the average RNFL thickness measured were calculated. When the average RNFL thickness of the centered scans was compared with the average RNFL thickness of the displaced scans individually using analysis of variance with post-hoc analysis, no difference was found between the average RNFL thickness of the nasally (105.2 microm), superiorly (106.2 microm), or inferiorly (104.1 microm) displaced scans and the centered scans (106.4 microm). However, a significant difference (analysis of variance with Dunnett's test: F=8.82, P<0.0001) was found between temporally displaced scans (115.8 microm) and centered scans. Significant differences in sectoral RNFL thickness measurements were found between centered and each displaced scan. The coefficient of variation for average RNFL thickness was 1.75% and intraclass correlation coefficient was 0.95. In normal eyes, average RNFL thickness measurements are robust and similar with significant superior, inferior, and nasal scan displacement, but average RNFL thickness is greater when scans are displaced temporally. Parapapillary scan misalignment produces significant changes in RNFL assessment characterized by an increase in measured RNFL thickness in the quadrant in which the scan is closer to the disc, and a significant decrease in RNFL thickness in the quadrant in which the scan is displaced further from the optic disc.
Thick lens chromatic effective focal length variation versus bending
NASA Astrophysics Data System (ADS)
Sparrold, Scott
2017-11-01
Longitudinal chromatic aberration (LCA) can limit the optical performance in refractive optical systems. Understanding a singlet's chromatic change of effective focal leads to insights and methods to control LCA. Long established, first order theory, shows the chromatic change in focal length for a zero thickness lens is proportional to it's focal length divided by the lens V number or inverse dispersion. This work presents the derivation of an equation for a thick singlet's chromatic change in effective focal length as a function of center thickness, t, dispersion, V, index of refraction, n, and the Coddington shape factor, K. A plot of bending versus chromatic focal length variation is presented. Lens thickness does not influence chromatic variation of effective focal length for a convex plano or plano convex lens. A lens's center thickness'influence on chromatic focal length variation is more pronounced for lower indices of refraction.
NASA Technical Reports Server (NTRS)
Wen, Guo-Yong; Marshak, Alexander; Cahalan, Robert F.
2004-01-01
Aerosol amount in clear regions of a cloudy atmosphere is a critical parameter in studying the interaction between aerosols and clouds. Since the global cloud cover is about 50%, cloudy scenes are often encountered in any satellite images. Aerosols are more or less transparent, while clouds are extremely reflective in the visible spectrum of solar radiation. The radiative transfer in clear-cloudy condition is highly three- dimensional (3D). This paper focuses on estimating the 3D effects on aerosol optical thickness retrievals using Monte Carlo simulations. An ASTER image of cumulus cloud fields in the biomass burning region in Brazil is simulated in this study. The MODIS products (i-e., cloud optical thickness, particle effective radius, cloud top pressure, surface reflectance, etc.) are used to construct the cloud property and surface reflectance fields. To estimate the cloud 3-D effects, we assume a plane-parallel stratification of aerosol properties in the 60 km x 60 km ASTER image. The simulated solar radiation at the top of the atmosphere is compared with plane-parallel calculations. Furthermore, the 3D cloud radiative effects on aerosol optical thickness retrieval are estimated.
Graphene based resonance structure to enhance the optical pressure between two planar surfaces.
Hassanzadeh, Abdollah; Azami, Darya
2015-12-28
To enhance the optical pressure on a thin dielectric sample, a resonance structure using graphene layers coated over a metal film on a high index prism sputtered with MgF2 was theoretically analyzed. The number of graphene layers and the thicknesses of metal and MgF2 films were optimized to achieve the highest optical pressure on the sample. Effects of three different types of metals on the optical pressure were investigated numerically. In addition, simulations were carried out for samples with various thicknesses. Our numerical results show that the optical pressure increased by more than five orders of magnitude compared to the conventional metal-film-base resonance structure. The highest optical pressure was obtained for 10 layers of graphene deposited on 29-nm thick Au film and 650 nm thickness of MgF2 at 633nm wavelength, The proposed graphene based resonance structure can open new possibilities for optical tweezers, nanomechnical devices and surface plasmon based sensing and imaging techniques.
NASA Astrophysics Data System (ADS)
Tripathi, Ravi P.; Zulfequar, M.; Khan, Shamshad A.
2018-04-01
Our aim is to study the thickness dependent effects on structure, electrical and optical properties of Se85In12Bi3 nanochalcogenide thin films. Bulk alloy of Se85In12Bi3 was synthesized by melt-quenching technique. The amorphous as well as glassy nature of Se85In12Bi3 chalcogenide was confirmed by non-isothermal Differential Scanning Calorimetry (DSC) measurements. The nanochalcogenide thin films of thickness 30, 60 and 90 nm were prepared on glass/Si wafer substrate using Physical Vapour Condensation Technique (PVCT). From XRD studies it was found that thin films have amorphous texture. The surface morphology and particle size of films were studied by Field Emission Scanning Electron Microscope (FESEM). From optical studies, different optical parameters were estimated for Se85In12Bi3 thin films at different thickness. It was found that the absorption coefficient (α) and extinction coefficient (k) increases with photon energy and decreases with film thickness. The optical absorption process followed the rule of indirect transitions and optical band gap were found to be increase with film thickness. The value of Urbach energy (Et) and steepness parameter (σ) were also calculated for different film thickness. For electrical studies, dc-conductivity measurement was done at different temperature and activation energy (ΔEc) were determined and found to be increase with film thickness.
NASA Astrophysics Data System (ADS)
Liu, Guannan; Liu, Dong
2018-06-01
An improved inverse reconstruction model with consideration of self-absorption effect for the temperature distribution and concentration fields of soot and metal-oxide nanoparticles in nanofluid fuel flames was proposed based on the flame emission spectrometry. The effects of self-absorption on the temperature profile and concentration fields were investigated for various measurement errors, flame optical thicknesses and detecting lines numbers. The model neglecting the self-absorption caused serious reconstruction errors especially in the nanofluid fuel flames with large optical thicknesses, while the improved model was used to successfully recover the temperature distribution and concentration fields of soot and metal-oxide nanoparticles for the flames regardless of the optical thickness. Through increasing detecting lines number, the reconstruction accuracy can be greatly improved due to more flame emission information received by the spectrometer. With the adequate detecting lines number, the estimations for the temperature distribution and concentration fields of soot and metal-oxide nanoparticles in flames with large optical thicknesses were still satisfying even from the noisy radiation intensities with signal to noise ratio (SNR) as low as 46 dB. The results showed that the improved reconstruction model was effective and robust to concurrently retrieve the temperature distribution and volume fraction fields of soot and metal-oxide nanoparticles for the exact and noisy data in nanofluid fuel sooting flames with different optical thicknesses.
The effect of spatial resolution upon cloud optical property retrievals. I - Optical thickness
NASA Technical Reports Server (NTRS)
Feind, Rand E.; Christopher, Sundar A.; Welch, Ronald M.
1992-01-01
High spectral and spatial resolution Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery is used to study the effects of spatial resolution upon fair weather cumulus cloud optical thickness retrievals. As a preprocessing step, a variation of the Gao and Goetz three-band ratio technique is used to discriminate clouds from the background. The combination of the elimination of cloud shadow pixels and using the first derivative of the histogram allows for accurate cloud edge discrimination. The data are progressively degraded from 20 m to 960 m spatial resolution. The results show that retrieved cloud area increases with decreasing spatial resolution. The results also show that there is a monotonic decrease in retrieved cloud optical thickness with decreasing spatial resolution. It is also demonstrated that the use of a single, monospectral reflectance threshold is inadequate for identifying cloud pixels in fair weather cumulus scenes and presumably in any inhomogeneous cloud field. Cloud edges have a distribution of reflectance thresholds. The incorrect identification of cloud edges significantly impacts the accurate retrieval of cloud optical thickness values.
NASA Astrophysics Data System (ADS)
Wang, Shuping; Shibahara, Nanae; Kuramashi, Daishi; Okawa, Shinpei; Kakuta, Naoto; Okada, Eiji; Maki, Atsushi; Yamada, Yukio
2010-07-01
In order to investigate the effects of anatomical variation in human heads on the optical mapping of brain activity, we perform simulations of optical mapping by solving the photon diffusion equation for layered-models simulating human heads using the finite element method (FEM). Particularly, the effects of the spatial variations in the thicknesses of the skull and cerebrospinal fluid (CSF) layers on mapping images are investigated. Mapping images of single active regions in the gray matter layer are affected by the spatial variations in the skull and CSF layer thicknesses, although the effects are smaller than those of the positions of the active region relative to the data points. The increase in the skull thickness decreases the sensitivity of the images to active regions, while the increase in the CSF layer thickness increases the sensitivity in general. The images of multiple active regions are also influenced by their positions relative to the data points and by their depths from the skin surface.
Turan-Vural, Ece; Halili, Elvin; Serin, Didem
2014-06-01
We aimed to evaluate the efficacy of topical ketorolac 0.5 % solution and oral acetazolamide 250 mg/day delivery during the first month after uneventful phacoemulsification surgery by measuring the macular thickness using optical coherence tomography. Our nonmasked randomized prospective study comprised 87 eyes of 80 patients. Complete follow-up was achieved on 84 eyes of 77 eligible patients. Postoperatively, the patients were divided into three groups. One group received ketorolac 0.5 %, the other group received acetazolamide 250 mg/day, and the control group was given no agent. Macular thickness and volume were measured at 1 week and 1 month after surgery by optical coherence tomography. Foveal thickness, parafoveal thickness, and perifoveal thickness were determined to be significantly elevated at postoperative 1 week and 1 month in the control group. Foveal, perifoveal, and parafoveal volumes were also significantly high at postoperative week 1 and month 1 in the control group. There was no significant difference between the ketorolac and acetazolamide groups. The correlation analysis between best-corrected visual acuity, and volume and thickness revealed a negative correlation in the acetazolamide group. Use of acetazolamide after cataract surgery is as effective as ketorolac on macular thickness and volume.
Cloud-radiation interactions - Effects of cirrus optical thickness feedbacks
NASA Technical Reports Server (NTRS)
Somerville, Richard C. J.; Iacobellis, Sam
1987-01-01
The paper is concerned with a cloud-radiation feedback mechanism which may be an important component of the climate changes expected from increased atmospheric concentrations of carbon dioxide and other trace greenhouse gases. A major result of the study is that cirrus cloud optical thickness feedbacks may indeed tend to increase the surface warming due to trace gas increases. However, the positive feedback from cirrus appears to be generally weaker than the negative effects due to lower clouds. The results just confirm those of earlier research indicating that the net effect of cloud optical thickness feedbacks may be a negative feedback which may substantially (by a factor of about 2) reduce the surface warming due to the doubling of CO2, even in the presence of cirrus clouds.
Magneto-optical Kerr rotation and color in ultrathin lossy dielectric
NASA Astrophysics Data System (ADS)
Zhang, Jing; Wang, Hai; Qu, Xin; Zhou, Yun song; Li, Li na
2017-05-01
Ultra-thin optical coating comprising nanometer-thick silicon absorbing films on iron substrates can display strong optical interference effects. A resonance peak of ∼1.6^\\circ longitudinal Kerr rotation with the silicon thickness of ∼47 \\text{nm} was found at the wavelength of 660 nm. The optical properties of silicon thin films were well controlled by the sputtering power. Non-iridescence color exhibition and Kerr rotation enhancement can be manipulated and encoded individually.
Retinal thickness changes after phacoemulsification
Pardianto, Gede; Moeloek, Nila; Reveny, Julia; Wage, Sutarman; Satari, Imsyah; Sembiring, Rosita; Srisamran, Nuttamon
2013-01-01
Purpose To determine the effect of phacoemulsification on macular volume and thickness using spectral domain optical coherence tomography examinations. Methods Twenty-seven eyes of 27 subjects who underwent phacoemulsification were studied. All nine areas of the macula were examined by spectral domain optical coherence tomography preoperatively and 2 months postoperatively. Effective phacoemulsification time and absolute phacoemulsification time were also recorded. Results There were statistically significant differences in macular thickness between preoperative and postoperative spectral domain optical coherence tomography examinations in nine areas including macular volume. In the paracentral macular area, the thickness of three quadrants significantly increased (superior P=0.015; temporal P=0.001; and nasal P=0.023). Peripheral macular thickness also increased significantly in the superior (P=0.05) and temporal macular areas (P<0.001). The macular volume increased significantly after phacoemulsification (P<0.001). There were no correlations between absolute/effective phacoemulsification time and macular cellular structures (P>0.05), but a significant correlation (P=0.011) was found between absolute phacoemulsification time and change in macular volume. Conclusion Macular thickness changes in the nasal, superior, and temporal quadrants of the paracentral area and the superior and temporal quadrants of the peripheral area, as well as macular volume, may be used as detailed biomarkers to measure the effects of intraocular pressure fluctuations and maneuvers in phacoemulsification intraocular surgeries. PMID:24235812
Thickness and microstructure effects in the optical and electrical properties of silver thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Guowen, E-mail: gding@intermolecular.com; Clavero, César; Schweigert, Daniel
The optical and electrical response of metal thin films approaching thicknesses in the range of the electron mean free path is highly affected by electronic scattering with the interfaces and defects. Here, we present a theoretical and experimental study on how thickness and microstructure affect the properties of Ag thin films. We are able to successfully model the electrical resistivity and IR optical response using a thickness dependent electronic scattering time. Remarkably, the product of electronic scattering time and resistivity remains constant regardless of the thickness (τx ρ = C), with a value of 59 ± 2 μΩ cm ⋅more » fs for Ag films in the investigated range from 3 to 74 nm. Our findings enable us to develop a theoretically framework that allows calculating the optical response of metal thin films in the IR by using their measured thickness and resistivity. An excellent agreement is found between experimental measurements and predicted values. This study also shows the theoretical lower limit for emissivity in Ag thin films according to their microstructure and thickness. Application of the model presented here will allow rapid characterization of the IR optical response of metal thin films, with important application in a broad spectrum of fundamental and industrial applications, including optical coatings, low-emissivity windows and semiconductor industry.« less
Cost effective flat plate photovoltaic modules using light trapping
NASA Technical Reports Server (NTRS)
Bain, C. N.; Gordon, B. A.; Knasel, T. M.; Malinowski, R. L.
1981-01-01
Work in optical trapping in 'thick films' is described to form a design guide for photovoltaic engineers. A thick optical film can trap light by diffusive reflection and total internal reflection. Light can be propagated reasonably long distances compared with layer thicknesses by this technique. This makes it possible to conduct light from inter-cell and intra-cell areas now not used in photovoltaic modules onto active cell areas.
NASA Astrophysics Data System (ADS)
Matinfar, Mehdi D.; Salehi, Jawad A.
2009-11-01
In this paper we analytically study and evaluate the performance of a Spectral-Phase-Encoded Optical CDMA system for different parameters such as the user's code length and the number of users in the network. In this system an advanced receiver structure in which the Second Harmonic Generation effect imposed in a thick crystal is employed as the nonlinear pre-processor prior to the conventional low speed photodetector. We consider ASE noise of the optical amplifiers, effective in low power conditions, besides the multiple access interference (MAI) noise which is the dominant source of noise in any OCDMA communications system. We use the results of the previous work which we analyzed the statistical behavior of the thick crystals in an optically amplified digital lightwave communication system to evaluate the performance of the SPE-OCDMA system with thick crystals receiver structure. The error probability is evaluated using Saddle-Point approximation and the approximation is verified by Monte-Carlo simulation.
NASA Astrophysics Data System (ADS)
El-Gendy, Y. A.
2017-12-01
Tin monoxide (SnO) films of different thickness have been deposited onto glass substrates at vacuum pressure of ∼ 8 × 10-6 mbar using an e-beam evaporation system. A hot probe test revealed that the deposited films showed p-type conduction. The structure characterization and phase purity of the deposited films was confirmed using X-ray diffraction (XRD) and Raman spectroscopy. The optical transmission and reflection spectra of the deposited films recorded in the wavelength range 190-2500 nm were used to calculate the optical constants employing the Murmann's exact equations. The refractive index dispersion was adequately described by the well-known effective-single-oscillator model proposed by Wemple-DiDomenico, whereby the dispersion parameters were calculated. The nonlinear refractive index and nonlinear optical susceptibility of the deposited films were successfully evaluated using the Miller empirical relations. The lattice dielectric constant and the carrier concentration to the effective mass ratio were also calculated as a function of film thickness using the Spitzer and Fan model. The variation of the optical band gap of the deposited films as a function of film thickness was also presented.
Microelectromechanical system pressure sensor integrated onto optical fiber by anodic bonding.
Saran, Anish; Abeysinghe, Don C; Boyd, Joseph T
2006-03-10
Optical microelectromechanical system pressure sensors based on the principle of Fabry-Perot interferometry have been developed and fabricated using the technique of silicon-to-silicon anodic bonding. The pressure sensor is then integrated onto an optical fiber by a novel technique of anodic bonding without use of any adhesives. In this anodic bonding technique we use ultrathin silicon of thickness 10 microm to bond the optical fiber to the sensor head. The ultrathin silicon plays the role of a stress-reducing layer, which helps the bonding of an optical fiber to silicon having conventional wafer thickness. The pressure-sensing membrane is formed by 8 microm thick ultrathin silicon acting as a membrane, thus eliminating the need for bulk silicon etching. The pressure sensor integrated onto an optical fiber is tested for static response, and experimental results indicate degradation in the fringe visibility of the Fabry-Perot interferometer. This effect was mainly due to divergent light rays from the fiber degrading the fringe visibility. This effect is demonstrated in brief by an analytical model.
Baseline Maritime Aerosol: Methodology to Derive the Optical Thickness and Scattering Properties
NASA Technical Reports Server (NTRS)
Kaufman, Yoram J.; Smirnov, Alexander; Holben, Brent N.; Dubovik, Oleg; Einaudi, Franco (Technical Monitor)
2001-01-01
Satellite Measurements of the global distribution of aerosol and their effect on climate should be viewed in respect to a baseline aerosol. In this concept, concentration of fine mode aerosol particles is elevated above the baseline by man-made activities (smoke or urban pollution), while coarse mode by natural processes (e.g. dust or sea-spray). Using 1-3 years of measurements in 10 stations of the Aerosol Robotic network (ACRONET we develop a methodology and derive the optical thickness and properties of this baseline aerosol for the Pacific and Atlantic Oceans. Defined as the median for periods of stable optical thickness (standard deviation < 0.02) during 2-6 days, the median baseline aerosol optical thickness over the Pacific Ocean is 0.052 at 500 am with Angstrom exponent of 0.77, and 0.071 and 1.1 respectively, over the Atlantic Ocean.
Aviation effects on already-existing cirrus clouds
Tesche, Matthias; Achtert, Peggy; Glantz, Paul; Noone, Kevin J.
2016-01-01
Determining the effects of the formation of contrails within natural cirrus clouds has proven to be challenging. Quantifying any such effects is necessary if we are to properly account for the influence of aviation on climate. Here we quantify the effect of aircraft on the optical thickness of already-existing cirrus clouds by matching actual aircraft flight tracks to satellite lidar measurements. We show that there is a systematic, statistically significant increase in normalized cirrus cloud optical thickness inside mid-latitude flight tracks compared with adjacent areas immediately outside the tracks. PMID:27327838
Aviation effects on already-existing cirrus clouds.
Tesche, Matthias; Achtert, Peggy; Glantz, Paul; Noone, Kevin J
2016-06-21
Determining the effects of the formation of contrails within natural cirrus clouds has proven to be challenging. Quantifying any such effects is necessary if we are to properly account for the influence of aviation on climate. Here we quantify the effect of aircraft on the optical thickness of already-existing cirrus clouds by matching actual aircraft flight tracks to satellite lidar measurements. We show that there is a systematic, statistically significant increase in normalized cirrus cloud optical thickness inside mid-latitude flight tracks compared with adjacent areas immediately outside the tracks.
Thickness dependent optical and electrical properties of CdSe thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purohit, A., E-mail: anuradha.purohit34@gmail.com; Chander, S.; Nehra, S. P.
2016-05-06
The effect of thickness on the optical and electrical properties of CdSe thin films is investigated in this paper. The films of thickness 445 nm, 631 nm and 810 nm were deposited on glass and ITO coated glass substrates using thermal evaporation technique. The deposited thin films were thermally annealed in air atmosphere at temperature 100°C and were subjected to UV-Vis spectrophotometer and source meter for optical and electrical analysis respectively. The absorption coefficient is observed to increase with photon energy and found maximum in higher photon energy region. The extinction coefficient and refractive index are also calculated. The electrical analysis shows thatmore » the electrical resistivity is observed to be decreased with thickness.« less
O'Brien, Daniel B; Massari, Aaron M
2015-01-14
In the field of vibrational sum frequency generation spectroscopy (VSFG) applied to organic thin film systems, a significant challenge to data analysis is in the accurate description of optical interference effects. Herein, we provide experimental evidence that a model recently developed in our lab provides an accurate description of this phenomenon. We studied the organic small molecule N,N'-dioctyl-3,4,9,10-perylenedicarboximide vapor deposited as a thickness gradient on silicon wafer substrates with two oxide thicknesses and two surface preps. VSFG data were obtained using the ssp and the sps polarization combinations in the imide carbonyl stretching region as a function of organic thickness. In this first of two reports, the data are modeled and interpreted within the ubiquitous electric dipole approximation for VSFG. The intrinsic sample responses are parameterized during the fitting routines while optical interference effects are simply calculated from the model using known refractive indices, thin film thicknesses, and beam angles. The results indicate that the thin film model provides a good description of optical interferences, indicating that interfacial terms are significant. Inconsistencies between the fitting results within the bounds of the electric dipole response motivate deliberation for additional effects to be considered in the second report.
NASA Astrophysics Data System (ADS)
Fischer, D.; Hertwig, A.; Beck, U.; Negendank, D.; Lohse, V.; Kormunda, M.; Esser, N.
2017-11-01
In this study, thickness related changes of the optical properties of doped tin oxide were studied. Two different sets of samples were prepared. The first set was doped with iron or nickel on silicon substrate with thicknesses of 29-56 nm, the second was iron doped on gold/glass substrate with 1.6-6.3 nm. The optical constants were determined by using spectral ellipsometry (SE) followed by modelling of the dielectric function with an oscillator model using Gaussian peaks. The analysis of the optical constants shows a dependence of the refraction and the absorption on the thickness of the doped tin oxide coating. In addition to the tin oxide absorption in the UV, one additional absorption peak was found in the near-IR/red which is related to plasmonic effects due to the doping. This peak shifts from the near-IR to the red part of the visible spectrum and becomes stronger by reducing the thickness, probably due to the formation of metal nanoparticles in this layer. These results were found for two different sets of samples by using the same optical model. Afterwards the second sample set was tested in the Surface Plasmon Resonance Enhanced Ellipsometric (SPREE) gas measurement with CO gas. It was found that the thickness has significant influence on the sensitivity and thus the adsorption of the CO gas. By increasing the thickness from 1.6 nm to 5.1 nm, the sensing ability is enhanced due to a higher coverage of the surface with the over coating. This is explained by the high affinity of CO molecules to the incorporated Fe-nanoparticles in the tin oxide coating. By increasing the thickness further to 6.3 nm, the sensing ability drops because the layer disturbs the SPR sensing effect too much.
NASA Astrophysics Data System (ADS)
Gilliot, Mickaël; Hadjadj, Aomar
2015-08-01
Nano-granular ZnO layers have been grown using a sol-gel synthesis and spin-coating deposition process. Thin films with thicknesses ranging from 15 to 150 nm have been obtained by varying the number of deposition cycles and prepared with different synthesis conditions. Morphologies and optical properties have been carefully investigated by joint spectroscopic ellipsometry and atomic force microscopy. A correlation between the evolution of optical properties and grains morphology has been observed. It is shown that both synthesis temperature and concentration similarly allow us to change the correlated growth and properties evolution rate. Thickness variation associated to choice of synthesis parameters could be a useful way to tune morphology and optical properties of the nanostructured ZnO layers.
Knight, O'Rese J; Girkin, Christopher A; Budenz, Donald L; Durbin, Mary K; Feuer, William J
2012-03-01
To determine the effect of race, demographic, and ocular variables on optic nerve head and retinal nerve fiber layer (RNFL) thickness measurements using spectral-domain optical coherence tomography. In a cross-sectional observational study, 284 normal subjects aged 18 to 84 years were evaluated at 7 sites using Cirrus HD-OCT. Disc area, rim area, average cup-disc ratio, vertical cup-disc ratio, cup volume, and average, temporal, superior, nasal, and inferior RNFL thicknesses were calculated. The main outcome measures were associations between Cirrus HD-OCT optic nerve head and RNFL measurements and age, sex, and race. The 284 subjects self-identified as being of European (122), Chinese (63), African (51), or Hispanic (35) descent. After adjusting for the effect of age, there was a statistically significant difference among racial groups for all optic nerve head and RNFL parameters (all P ≤ .005) except rim area (P = .22). Rim area, average cup-disc ratio, vertical cup-disc ratio, and cup volume were moderately associated with disc area (r(2) = 0.15, 0.33, 0.33, and 0.37, respectively). After a linear adjustment for disc area, there was no statistically significant difference among racial groups for any optic nerve head parameter. Individuals of European descent had thinner RNFL measurements except in the temporal quadrant. There are racial differences in optic disc area, average cup-disc ratio, vertical cup-disc ratio, cup volume, and RNFL thickness as measured by Cirrus HD-OCT. These differences should be considered when using Cirrus HD-OCT to assess for glaucomatous damage in differing population groups.
Knight, O’Rese J.; Girkin, Christopher A.; Budenz, Donald L.; Durbin, Mary K.; Feuer, William J.
2017-01-01
Objective To determine the effect of race, demographic, and ocular variables on optic nerve head and retinal nerve fiber layer (RNFL) thickness measurements using spectral-domain optical coherence tomography. Methods In a cross-sectional observational study, 284 normal subjects aged 18 to 84 years were evaluated at 7 sites using Cirrus HD-OCT. Disc area, rim area, average cup-disc ratio, vertical cup-disc ratio, cup volume, and average, temporal, superior, nasal, and inferior RNFL thicknesses were calculated. The main outcome measures were associations between Cirrus HD-OCT optic nerve head and RNFL measurements and age, sex, and race. Results The 284 subjects self-identified as being of European (122), Chinese (63), African (51), or Hispanic (35) descent. After adjusting for the effect of age, there was a statistically significant difference among racial groups for all optic nerve head and RNFL parameters (all P≤.005) except rim area (P=.22). Rim area, average cup-disc ratio, vertical cup-disc ratio, and cup volume were moderately associated with disc area (r2=0.15, 0.33, 0.33, and 0.37, respectively). After a linear adjustment for disc area, there was no statistically significant difference among racial groups for any optic nerve head parameter. Individuals of European descent had thinner RNFL measurements except in the temporal quadrant. Conclusions There are racial differences in optic disc area, average cup-disc ratio, vertical cup-disc ratio, cup volume, and RNFL thickness as measured by Cirrus HD-OCT. These differences should be considered when using Cirrus HD-OCT to assess for glaucomatous damage in differing population groups. PMID:22411660
Hua, Zanmei; Fang, Qiuyun; Sha, Xiangyin; Yang, Ruiming; Hong, Zuopeng
2015-03-01
Glaucoma is an eye disease that can lead to irreversible optic nerve damage and cause blindness. Optical coherence tomography (OCT) allows an early diagnosis of glaucoma by the measurements of the retinal nerve fiber and optic disc parameters. A retrospective study was designed to analyze the effects of the measurement of the retinal nerve fiber layer (RNFL) thickness and the optic disc tomography by spectral-domain OCT on the early diagnosis of suspected glaucoma and primary open angle glaucoma (POAG). This was a clinical case-control study. The RNFL thickness around the optic disc and optic disk tomographic parameters of the control (n = 51, 98 eyes), suspected glaucoma (n = 81, 146 eyes), and POAG groups (n = 55, 106 eyes) were measured by OCT. The parameters included superior, inferior, nasal and temporal mean RNFL thickness, disc area (DA), cup area (CA), rim area (RA), disc volume (DV), cup volume (CV), rim volume (RV), cup/disc area ratio (CA/DA), rim/disc area ratio (RA/DA), cup/disc volume ratio (CV/DV) and rim/disc volume ratio (RV/DV). Superior, nasal, and mean RNFL parameters, DA, CA,RA, DV, CV, CA/DA, RA/DA, CV/DV and RV/DV significantly differed among three groups by single-factorial ANOVA. Inferior and temporal RNFL thickness significantly differed between the control and POAG groups. No significant difference was observed in RV among three groups. In the POAG group, the maximum area under the ROC curve (AROC) of mean RNFL thickness was 0.845. The maximum AROC of optic disk parameters was RA/DA (0.998), followed by CA/DA (0.997). The AROC of CA, RA, CV, and DV were all > 0.900. OCT may serve as a useful diagnostic modality in distinguishing suspected glaucoma from POAG.
Thermo-Optical Properties of Thin-Film TiO2–Al2O3 Bilayers Fabricated by Atomic Layer Deposition
Ali, Rizwan; Saleem, Muhammad Rizwan; Pääkkönen, Pertti; Honkanen, Seppo
2015-01-01
We investigate the optical and thermo-optical properties of amorphous TiO2–Al2O3 thin-film bilayers fabricated by atomic layer deposition (ALD). Seven samples of TiO2–Al2O3 bilayers are fabricated by growing Al2O3 films of different thicknesses on the surface of TiO2 films of constant thickness (100 nm). Temperature-induced changes in the optical refractive indices of these thin-film bilayers are measured by a variable angle spectroscopic ellipsometer VASE®. The optical data and the thermo-optic coefficients of the films are retrieved and calculated by applying the Cauchy model and the linear fitting regression algorithm, in order to evaluate the surface porosity model of TiO2 films. The effects of TiO2 surface defects on the films’ thermo-optic properties are reduced and modified by depositing ultra-thin ALD-Al2O3 diffusion barrier layers. Increasing the ALD-Al2O3 thickness from 20 nm to 30 nm results in a sign change of the thermo-optic coefficient of the ALD-TiO2. The thermo-optic coefficients of the 100 nm-thick ALD-TiO2 film and 30 nm-thick ALD-Al2O3 film in a bilayer are (0.048 ± 0.134) × 10−4 °C−1 and (0.680 ± 0.313) × 10−4 °C−1, respectively, at a temperature T = 62 °C.
FIBER AND INTEGRATED OPTICS: Waveguide characteristics of real optical strip waveguides
NASA Astrophysics Data System (ADS)
Shmal'ko, A. V.; Frolov, V. V.
1990-01-01
A study is reported of the influence of the parameters of real thin-film optical strip waveguides on their waveguide characteristics (propagation constants, localization of the mode field, etc.) allowing for the presence of transition layers in a transverse cross section of the base planar waveguide, for the real geometry of this section (which is nearly trapezoidal), and for the thickness of the guiding strip. Analytic expressions are obtained for the optical confinement coefficient and the effective mode format of a weakly guiding symmetric strip waveguide. It is shown that the coefficient representing the fundamental E11x(y) mode is practically independent of the relative thickness t /h (h is the thickness of the base planar waveguide) of the guiding strip provided t /h>=0.5. The corrections to the normalized effective refractive indices of the base planar and strip waveguides are found in order to allow for the real geometry and for the refractive index profile in the strip waveguide.
NASA Technical Reports Server (NTRS)
Bi, Lei; Yang, Ping; Liu, Chao; Yi, Bingqi; Baum, Bryan A.; Van Diedenhoven, Bastiaan; Iwabuchi, Hironobu
2014-01-01
A fundamental problem in remote sensing and radiative transfer simulations involving ice clouds is the ability to compute accurate optical properties for individual ice particles. While relatively simple and intuitively appealing, the conventional geometric-optics method (CGOM) is used frequently for the solution of light scattering by ice crystals. Due to the approximations in the ray-tracing technique, the CGOM accuracy is not well quantified. The result is that the uncertainties are introduced that can impact many applications. Improvements in the Invariant Imbedding T-matrix method (II-TM) and the Improved Geometric-Optics Method (IGOM) provide a mechanism to assess the aforementioned uncertainties. The results computed by the II-TMþIGOM are considered as a benchmark because the IITM solves Maxwell's equations from first principles and is applicable to particle size parameters ranging into the domain at which the IGOM has reasonable accuracy. To assess the uncertainties with the CGOM in remote sensing and radiative transfer simulations, two independent optical property datasets of hexagonal columns are developed for sensitivity studies by using the CGOM and the II-TMþIGOM, respectively. Ice cloud bulk optical properties obtained from the two datasets are compared and subsequently applied to retrieve the optical thickness and effective diameter from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. Additionally, the bulk optical properties are tested in broadband radiative transfer (RT) simulations using the general circulation model (GCM) version of the Rapid Radiative Transfer Model (RRTMG) that is adopted in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM, version 5.1). For MODIS retrievals, the mean bias of uncertainties of applying the CGOM in shortwave bands (0.86 and 2.13 micrometers) can be up to 5% in the optical thickness and as high as 20% in the effective diameter, depending on cloud optical thickness and effective diameter. In the MODIS infrared window bands centered at 8.5, 11, and 12 micrometers biases in the optical thickness and effective diameter are up to 12% and 10%, respectively. The CGOM-based simulation errors in ice cloud radiative forcing calculations are on the order of 10Wm(exp 2).
NASA Astrophysics Data System (ADS)
Chaluvadi, S. K.; Perna, P.; Ajejas, F.; Camarero, J.; Pautrat, A.; Flament, S.; Méchin, L.
2017-10-01
We investigate the in-plane magnetic anisotropy in La0.67Sr0.33MnO3 thin films grown on SrTiO3 (001) substrate using angular dependent room temperature Vectorial Magneto-Optical Kerr Magnetometry. The experimental data reveals that the magnetic anisotropy symmetry landscape significantly changes depending upon the strain and thickness. At low film thickness (12 and 25 nm) the dominant uniaxial anisotropy is due to interface effects, step edges due to mis-cut angle of SrTiO3 substrate. At intermediate thickness, the magnetic anisotropy presents a competition between magnetocrystalline (biaxial) and substrate step induced (uniaxial) anisotropy. Depending upon their relative strengths, a profound biaxial or uniaxial or mixed anisotropy is favoured. Above the critical thickness, magnetocrystalline anisotropy dominates all other effects and shows a biaxial anisotropy.
NASA Astrophysics Data System (ADS)
Franta, Daniel; Franta, Pavel; Vohánka, Jiří; Čermák, Martin; Ohlídal, Ivan
2018-05-01
Optical measurements of transmittance in the far infrared region performed on crystalline silicon wafers exhibit partially coherent interference effects appropriate for the determination of thicknesses of the wafers. The knowledge of accurate spectral and temperature dependencies of the optical constants of crystalline silicon in this spectral region is crucial for the determination of its thickness and vice versa. The recently published temperature dependent dispersion model of crystalline silicon is suitable for this purpose. Because the linear thermal expansion of crystalline silicon is known, the temperatures of the wafers can be determined with high precision from the evolution of the interference patterns at elevated temperatures.
NASA Astrophysics Data System (ADS)
Kim, Jae-Ho; Seong, Tae-Yeon; Ahn, Kyung-Jun; Chung, Kwun-Bum; Seok, Hae-Jun; Seo, Hyeong-Jin; Kim, Han-Ki
2018-05-01
We report the characteristics of Sn-doped In2O3 (ITO) films intended for use as transparent conducting electrodes; the films were prepared via a five-generation, in-line type, cylindrical, rotating magnetron sputtering (CRMS) system as a function of film thickness. By using a rotating cylindrical ITO target with high usage (∼80%), we prepared high conductivity, transparent ITO films on five-generation size glass. The effects of film thickness on the electrical, optical, morphological, and structural properties of CRMS-grown ITO films are investigated in detail to correlate the thickness and performance of ITO films. The preferred orientation changed from the (2 2 2) to the (4 0 0) plane with increasing thickness of ITO is attributed to the stability of the (4 0 0) plane against resputtering during the CRMS process. Based on X-ray diffraction, surface field emission scanning electron microscopy, and cross-sectional transmission electron microscopy, we suggest a possible mechanism to explain the preferred orientation and effects of film thickness on the performance of CRMS-grown ITO films.
NASA Technical Reports Server (NTRS)
Vermote, E.; Elsaleous, N.; Kaufman, Y. J.; Dutton, E.
1994-01-01
An operational stratospheric correction scheme used after the Mount Pinatubo (Phillipines) eruption (Jun. 1991) is presented. The stratospheric aerosol distribution is assumed to be only variable with latitude. Each 9 days the latitudinal distribution of the optical thickness is computed by inverting radiances observed in the NOAA AVHRR channel 1 (0.63 micrometers) and channel 2 (0.83 micrometers) over the Pacific Ocean. This radiance data set is used to check the validity of model used for inversion by checking consistency of the optical thickness deduced from each channel as well as optical thickness deduced from different scattering angles. Using the optical thickness profile previously computed and radiative transfer code assuming Lambertian boundary condition, each pixel of channel 1 and 2 are corrected prior to computation of NDVI (Normalized Difference Vegetation Index). Comparison between corrected, non corrected, and years prior to Pinatubo eruption (1989 to 1990) NDVI composite, shows the necessity and the accuracy of the operational correction scheme.
NASA Astrophysics Data System (ADS)
Reddy, P. R. Sekhar; Janardhanam, V.; Jyothi, I.; Harsha, Cirandur Sri; Reddy, V. Rajagopal; Lee, Sung-Nam; Won, Jonghan; Choi, Chel-Jong
2018-02-01
Effects of the thickness of copper phthalocyanine (CuPc) film (2, 5, 10, 15, 20, 30 and 40 nm) on the surface morphology, optical and electrical properties of Au/CuPc/n-Si heterojunction have been investigated. The optical band gap of CuPc film was increased with increase in the thickness of the CuPc film. The electrical properties of the Au/n-Si Schottky junction and Au/CuPc/n-Si heterojunctions were characterized by current-voltage ( I-V) and capacitance-voltage ( C-V) measurements. The barrier height, ideality factor and series resistance were estimated based on the I-V, Cheung's and Norde's methods. The barrier heights increased with increasing CuPc interlayer thickness up to 15 nm and remained constant for thickness above 20 nm, associated with the incapability of the generated carriers to reach the interface. The discrepancy in the barrier heights obtained from I-V and C-V measurements indicates the presence of barrier inhomogeneity at the interface as evidenced by higher ideality factor values. It can be concluded that the electrical properties of Au/n-Si Schottky junction can be significantly altered with the variation of CuPc thickness as interlayer.
NASA Technical Reports Server (NTRS)
Grund, Christian John; Eloranta, Edwin W.
1990-01-01
Cirrus clouds reflect incoming solar radiation and trap outgoing terrestrial radiation; therefore, accurate estimation of the global energy balance depends upon knowledge of the optical and physical properties of these clouds. Scattering and absorption by cirrus clouds affect measurements made by many satellite-borne and ground based remote sensors. Scattering of ambient light by the cloud, and thermal emissions from the cloud can increase measurement background noise. Multiple scattering processes can adversely affect the divergence of optical beams propagating through these clouds. Determination of the optical thickness and the vertical and horizontal extent of cirrus clouds is necessary to the evaluation of all of these effects. Lidar can be an effective tool for investigating these properties. During the FIRE cirrus IFO in Oct. to Nov. 1986, the High Spectral Resolution Lidar (HSRL) was operated from a rooftop site on the campus of the University of Wisconsin at Madison, Wisconsin. Approximately 124 hours of fall season data were acquired under a variety of cloud optical thickness conditions. Since the IFO, the HSRL data set was expanded by more than 63.5 hours of additional data acquired during all seasons. Measurements are presented for the range in optical thickness and backscattering phase function of the cirrus clouds, as well as contour maps of extinction corrected backscatter cross sections indicating cloud morphology. Color enhanced images of range-time indicator (RTI) displays a variety of cirrus clouds with approximately 30 sec time resolution are presented. The importance of extinction correction on the interpretation of cloud height and structure from lidar observations of optically thick cirrus are demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thakur, Anjna, E-mail: anjna56@gmail.com; Thakur, Priya; Yadav, Kamlesh, E-mail: kamlesh.yadav001@gmail.com
2016-05-06
In this paper, poly (ethyl methacrylate) (PEMA) and (PEMA){sub 0.85}/(ZnO){sub 0.15} nanocomposite films for 2, 3, 4 and 5 minutes have been deposited by spray pyrolysis technique on indium tin oxide (ITO) coated substrate. The effect of thickness of the film on the morphological and optical properties of PEMA and (PEMA){sub 0.85}/(ZnO){sub 0.15} nanocomposite films are studied. The morphological and optical properties of pure PEMA and (PEMA){sub 0.85}/(ZnO){sub 0.15} nanocomposite films are compared. The field emission scanning electron microscopy (FESEM) shows that as the thickness of film increases, uniformity of films increases. It is found from UV-Visible spectra that themore » energy band gap decreases with increasing the deposition time and refractive index increases with increasing the thickness of the film. The band gap of the nanocomposites is found less than the pure polymer film and opposite trend is observed for refractive index. The optical absorption of PEMA/ZnO nanocomposite films is higher than pure PEMA film. The thickness of the nanocomposite film plays a significant role in the tunability of the optical properties.« less
Optical and structural properties of indium doped bismuth selenide thin films
NASA Astrophysics Data System (ADS)
Pavagadhi, Himanshu; Vyas, S. M.; Patel, Piyush; Patel, Vimal; Patel, Jaydev; Jani, M. P.
2015-08-01
In: Bi2Se3 crystals were grown by Bridgman method at a growth velocity of 0.5cm/h with temperature gradient of 650 C/cm in our laboratory. The thin films of In:Bi2se3 were grown on amorphous substrate (glass) at a room temperature under a pressure of 10-4Pa by thermal evaporation technique. Thin film were deposited at various thicknesses and optical absorption spectrum of such thin films, obtain in wave no. range 300 to 2600 cm-1. The optical energy gap calculated from this data were found to be inverse function of square of thickness, particularly for thickness about 1800 Å or less. This dependence is explained in terms of quantum size effect. For thicker films, the bandgap is found to be independent of film thickness. For the surface stud of the as grown thin film by using AFM, which shows continuous film with some step height and surface roughness found in terms of few nm and particle size varies with respect to thickness.
Gabriele, Michelle L.; Ishikawa, Hiroshi; Wollstein, Gadi; Bilonick, Richard A.; Townsend, Kelly A.; Kagemann, Larry; Wojtkowski, Maciej; Srinivasan, Vivek J.; Fujimoto, James G.; Duker, Jay S.; Schuman, Joel S.
2009-01-01
PURPOSE To investigate the effect on optical coherence tomography (OCT) retinal nerve fiber layer (RNFL) thickness measurements of varying the standard 3.4-mm-diameter circle location. METHODS The optic nerve head (ONH) region of 17 eyes of 17 healthy subjects was imaged with high-speed, ultrahigh-resolution OCT (hsUHR-OCT; 501 × 180 axial scans covering a 6 × 6-mm area; scan time, 3.84 seconds) for a comprehensive sampling. This method allows for systematic simulation of the variable circle placement effect. RNFL thickness was measured on this three-dimensional dataset by using a custom-designed software program. RNFL thickness was resampled along a 3.4-mm-diameter circle centered on the ONH, then along 3.4-mm circles shifted horizontally (x-shift), vertically (y-shift) and diagonally up to ±500 µm (at 100-µm intervals). Linear mixed-effects models were used to determine RNFL thickness as a function of the scan circle shift. A model for the distance between the two thickest measurements along the RNFL thickness circular profile (peak distance) was also calculated. RESULTS RNFL thickness tended to decrease with both positive and negative x- and y-shifts. The range of shifts that caused a decrease greater than the variability inherent to the commercial device was greater in both nasal and temporal quadrants than in the superior and inferior ones. The model for peak distance demonstrated that as the scan moves nasally, the RNFL peak distance increases, and as the circle moves temporally, the distance decreases. Vertical shifts had a minimal effect on peak distance. CONCLUSIONS The location of the OCT scan circle affects RNFL thickness measurements. Accurate registration of OCT scans is essential for measurement reproducibility and longitudinal examination (ClinicalTrials.gov number, NCT00286637). PMID:18515577
NASA Astrophysics Data System (ADS)
Ghosh, S.; Osborne, S.; Smith, M. H.
The stratocumulus cloud widely studied during the ACE-2 (Aerosol Characterisation Experiment-2) campaign was contaminated on certain days with European pollution. This led to some modification of the aerosol and the cloud properties and forms the basis of this observational and modelling study. Model results showed that much of the pH levels for the ammonium sulphate based droplets ranged between 4-6 indicating that sulphate production was effected predominantly by hydrogen peroxide and to some extent, when the pH was above 5.5, by ozone causing a very substantial increase in the total amount of sulphate. Our paper has also examined the alteration of the radiative properties induced by SO2 pollution. Under clean conditions (26 June 1997) the optical thickness was the lowest with the largest droplet effective diameters. Under the most polluted conditions (18 July 1997) when the SO2 level was the maximum the optical thickness was the high- est with the lowest droplet effective diameter. The following day (19 July) was less polluted with lower SO2 concentration and the optical depth and the effective diame- ters were in between the two. For the most polluted case the geometric cloud thickness was also the largest, and our sensitivity studies performed over 4 horizontal sectional runs showed that the droplet number concentrations changed considerably, and since the cloud thickness and the LWC did not vary much over these sections, the overall optical properties did not show much horizontal variablity.
Ten Years of Cloud Optical and Microphysical Retrievals from MODIS
NASA Technical Reports Server (NTRS)
Platnick, Steven; King, Michael D.; Wind, Galina; Hubanks, Paul; Arnold, G. Thomas; Amarasinghe, Nandana
2010-01-01
The MODIS cloud optical properties algorithm (MOD06/MYD06 for Terra and Aqua MODIS, respectively) has undergone extensive improvements and enhancements since the launch of Terra. These changes have included: improvements in the cloud thermodynamic phase algorithm; substantial changes in the ice cloud light scattering look up tables (LUTs); a clear-sky restoral algorithm for flagging heavy aerosol and sunglint; greatly improved spectral surface albedo maps, including the spectral albedo of snow by ecosystem; inclusion of pixel-level uncertainty estimates for cloud optical thickness, effective radius, and water path derived for three error sources that includes the sensitivity of the retrievals to solar and viewing geometries. To improve overall retrieval quality, we have also implemented cloud edge removal and partly cloudy detection (using MOD35 cloud mask 250m tests), added a supplementary cloud optical thickness and effective radius algorithm over snow and sea ice surfaces and over the ocean, which enables comparison with the "standard" 2.1 11m effective radius retrieval, and added a multi-layer cloud detection algorithm. We will discuss the status of the MOD06 algorithm and show examples of pixellevel (Level-2) cloud retrievals for selected data granules, as well as gridded (Level-3) statistics, notably monthly means and histograms (lD and 2D, with the latter giving correlations between cloud optical thickness and effective radius, and other cloud product pairs).
NASA Technical Reports Server (NTRS)
Meyer, Kerry; Platnick, Steven
2012-01-01
Clouds, aerosols, and their interactions are widely considered to be key uncertainty components in our current understanding of the Earth's atmosphere and radiation budget. The work presented here is focused on the quasi-permanent marine boundary layer . (MBL) clouds off the southern Atlantic coast of Africa and the effects on MODIS cloud optical property retrievals (MOD06) of an overlying absorbing smoke layer. During much of August and September, a persistent smoke layer resides over this region, produced from extensive biomass burning throughout the southern African savanna. The resulting absorption, which increases with decreasing wavelength, potentially introduces biases into the MODIS cloud optical property retrievals of the underlying MBL clouds. This effect is more pronounced in the cloud optical thickness retrievals, which over ocean are derived from the wavelength channel centered near 0.86 micron (effective particle size retrievals are derived from the longer-wavelength near-IR channels at 1.6, 2.1, and 3.7 microns). Here, the spatial distributions of the scalar statistics of both the cloud and aerosol layers are first determined from the CALIOP 5 km layer products. Next, the MOD06 look-up tables (LUTs) are adjusted by inserting an absorbing smoke layer of varying optical thickness over the cloud. Retrievals are subsequently performed for a subset of MODIS pixels collocated with the CALIOP ground track, using smoke optical thickness from the CALIOP 5km aerosol layer product to select the appropriate LUT. The resulting differences in cloud optical property retrievals due to the inclusion of the smoke layer in the LUTs will be examined. In addition, the direct radiative forcing of this smoke layer will be investigated from the perspective of the cloud optical property retrieval differences.
FIBER AND INTEGRATED OPTICS: Optimization of optical film waveguides
NASA Astrophysics Data System (ADS)
Adamson, P. V.
1990-10-01
Theoretical investigations were made of the possibility of optimization of the effective thickness, of the optical confinement factor Γ1, and of the birefringence of a planar dielectric waveguide as a function of the waveguide parameter V and the waveguide asymmetry. For a given value of V it is possible to ensure higher values of Γ1, for an asymmetric waveguide than for a symmetric one. An approximate expression is proposed for the factor Γ1, of an asymmetric waveguide directly in terms of its thickness and the refractive indices of the layers.
Non-imaging ray-tracing for sputtering simulation with apodization
NASA Astrophysics Data System (ADS)
Ou, Chung-Jen
2018-04-01
Although apodization patterns have been adopted for the analysis of sputtering sources, the analytical solutions for the film thickness equations are yet limited to only simple conditions. Empirical formulations for thin film sputtering lacking the flexibility in dealing with multi-substrate conditions, a suitable cost-effective procedure is required to estimate the film thickness distribution. This study reports a cross-discipline simulation program, which is based on discrete particle Monte-Carlo methods and has been successfully applied to a non-imaging design to solve problems associated with sputtering uniformity. Robustness of the present method is first proved by comparing it with a typical analytical solution. Further, this report also investigates the overall all effects cause by the sizes of the deposited substrate, such that the determination of the distance between the target surface and the apodization index can be complete. This verifies the capability of the proposed method for solving the sputtering film thickness problems. The benefit is that an optical thin film engineer can, using the same optical software, design a specific optical component and consider the possible coating qualities with thickness tolerance, during the design stage.
Non-imaging ray-tracing for sputtering simulation with apodization
NASA Astrophysics Data System (ADS)
Ou, Chung-Jen
2018-06-01
Although apodization patterns have been adopted for the analysis of sputtering sources, the analytical solutions for the film thickness equations are yet limited to only simple conditions. Empirical formulations for thin film sputtering lacking the flexibility in dealing with multi-substrate conditions, a suitable cost-effective procedure is required to estimate the film thickness distribution. This study reports a cross-discipline simulation program, which is based on discrete particle Monte-Carlo methods and has been successfully applied to a non-imaging design to solve problems associated with sputtering uniformity. Robustness of the present method is first proved by comparing it with a typical analytical solution. Further, this report also investigates the overall all effects cause by the sizes of the deposited substrate, such that the determination of the distance between the target surface and the apodization index can be complete. This verifies the capability of the proposed method for solving the sputtering film thickness problems. The benefit is that an optical thin film engineer can, using the same optical software, design a specific optical component and consider the possible coating qualities with thickness tolerance, during the design stage.
Thickness-dependence of optical constants for Ta2O5 ultrathin films
NASA Astrophysics Data System (ADS)
Zhang, Dong-Xu; Zheng, Yu-Xiang; Cai, Qing-Yuan; Lin, Wei; Wu, Kang-Ning; Mao, Peng-Hui; Zhang, Rong-Jun; Zhao, Hai-bin; Chen, Liang-Yao
2012-09-01
An effective method for determining the optical constants of Ta2O5 thin films deposited on crystal silicon (c-Si) using spectroscopic ellipsometry (SE) measurement with a two-film model (ambient-oxide-interlayer-substrate) was presented. Ta2O5 thin films with thickness range of 1-400 nm have been prepared by the electron beam evaporation (EBE) method. We find that the refractive indices of Ta2O5 ultrathin films less than 40 nm drop with the decreasing thickness, while the other ones are close to those of bulk Ta2O5. This phenomenon was due to the existence of an interfacial oxide region and the surface roughness of the film, which was confirmed by the measurement of atomic force microscopy (AFM). Optical properties of ultrathin film varying with the thickness are useful for the design and manufacture of nano-scaled thin-film devices.
Tuning nonlinear optical absorption properties of WS₂ nanosheets.
Long, Hui; Tao, Lili; Tang, Chun Yin; Zhou, Bo; Zhao, Yuda; Zeng, Longhui; Yu, Siu Fung; Lau, Shu Ping; Chai, Yang; Tsang, Yuen Hong
2015-11-14
To control the optical properties of two-dimensional (2D) materials is a long-standing goal, being of both fundamental and technological significance. Tuning nonlinear optical absorption (NOA) properties of 2D transition metal dichalcogenides in a cost effective way has emerged as an important research topic because of its possibility to custom design NOA properties, implying enormous applications including optical computers, communications, bioimaging, and so on. In this study, WS2 with different size and thickness distributions was fabricated. The results demonstrate that both NOA onset threshold, F(ON), and optical limiting threshold, F(OL), of WS2 under the excitation of a nanosecond pulsed laser can be tuned over a wide range by controlling its size and thickness. The F(ON) and F(OL) show a rapid decline with the decrease of size and thickness. Due to the edge and quantum confinement effect, WS2 quantum dots (2.35 nm) exhibit the lowest F(ON) (0.01 J cm(-2)) and F(OL) (0.062 J cm(-2)) among all the samples, which are comparable to the lowest threshold achieved in graphene based materials, showing great potential as NOA materials with tunable properties.
Hong, Seung Woo; Lee, Seung Bum; Jee, Dong-Hyun; Ahn, Myung Douk
2016-09-01
The purpose of study was to measure the diagnostic utility of interocular retinal nerve fiber layer (RNFL) symmetry and interocular RNFL thickness comparison. Both eyes of 103 normal subjects and 106 glaucoma patients (31 patients with early glaucoma and 75 patients with moderate to severe glaucoma) received comprehensive ophthalmologic evaluation including visual field testing and optic disc scanning using optical coherence tomography. RNFL thickness values for 256 measurement points were rearranged according to a new reference line connecting the optic disc center and the foveola. The interocular RNFL thickness symmetry value and absolute and fractional interocular difference in RNFL thickness were calculated and compared between groups. Area under the receiver operating characteristic curves (AUROCs) were calculated and compared. Among the parameters reflecting whole RNFL status, the corrected interocular RNFL thickness symmetry exhibited the largest AUROCs at all glaucoma stages. RNFL thickness and absolute and fractional interocular difference in RNFL thickness exhibited largest AUROC in the inferotemporal area, regardless of glaucoma stage. In the early glaucoma group, absolute and fractional interocular RNFL thickness differences in the temporal and superotemporal areas exhibited equal to or larger AUROCs than RNFL thickness. The AUROCs for RNFL thickness were greater than those for absolute and fractional interocular RNFL thickness differences in the moderate to severe glaucoma group except in the nasal and temporal area. The corrected interocular RNFL thickness symmetry value is an effective diagnostic tool for glaucoma. Interocular comparison of RNFL thickness has good diagnostic performance and gives information about the RNFL beyond just the RNFL thickness itself.
NASA Technical Reports Server (NTRS)
Coddington, O. M.; Pilewskie, P.; Redemann, J.; Platnick, S.; Russell, P. B.; Schmidt, K. S.; Gore, W. J.; Livingston, J.; Wind, G.; Vukicevic, T.
2010-01-01
Haywood et al. (2004) show that an aerosol layer above a cloud can cause a bias in the retrieved cloud optical thickness and effective radius. Monitoring for this potential bias is difficult because space ]based passive remote sensing cannot unambiguously detect or characterize aerosol above cloud. We show that cloud retrievals from aircraft measurements above cloud and below an overlying aerosol layer are a means to test this bias. The data were collected during the Intercontinental Chemical Transport Experiment (INTEX-A) study based out of Portsmouth, New Hampshire, United States, above extensive, marine stratus cloud banks affected by industrial outflow. Solar Spectral Flux Radiometer (SSFR) irradiance measurements taken along a lower level flight leg above cloud and below aerosol were unaffected by the overlying aerosol. Along upper level flight legs, the irradiance reflected from cloud top was transmitted through an aerosol layer. We compare SSFR cloud retrievals from below ]aerosol legs to satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) in order to detect an aerosol ]induced bias. In regions of small variation in cloud properties, we find that SSFR and MODIS-retrieved cloud optical thickness compares within the uncertainty range for each instrument while SSFR effective radius tend to be smaller than MODIS values (by 1-2 microns) and at the low end of MODIS uncertainty estimates. In regions of large variation in cloud properties, differences in SSFR and MODIS ]retrieved cloud optical thickness and effective radius can reach values of 10 and 10 microns, respectively. We include aerosols in forward modeling to test the sensitivity of SSFR cloud retrievals to overlying aerosol layers. We find an overlying absorbing aerosol layer biases SSFR cloud retrievals to smaller effective radii and optical thickness while nonabsorbing aerosols had no impact.
Herodotou, Stephania; Treharne, Robert E.; Durose, Ken; Tatlock, Gordon J.; Potter, Richard J.
2015-01-01
Transparent conducting oxides (TCOs), with high optical transparency (≥85%) and low electrical resistivity (10−4 Ω·cm) are used in a wide variety of commercial devices. There is growing interest in replacing conventional TCOs such as indium tin oxide with lower cost, earth abundant materials. In the current study, we dope Zr into thin ZnO films grown by atomic layer deposition (ALD) to target properties of an efficient TCO. The effects of doping (0–10 at.% Zr) were investigated for ~100 nm thick films and the effect of thickness on the properties was investigated for 50–250 nm thick films. The addition of Zr4+ ions acting as electron donors showed reduced resistivity (1.44 × 10−3 Ω·cm), increased carrier density (3.81 × 1020 cm−3), and increased optical gap (3.5 eV) with 4.8 at.% doping. The increase of film thickness to 250 nm reduced the electron carrier/photon scattering leading to a further reduction of resistivity to 7.5 × 10−4 Ω·cm and an average optical transparency in the visible/near infrared (IR) range up to 91%. The improved n-type properties of ZnO: Zr films are promising for TCO applications after reaching the targets for high carrier density (>1020 cm−3), low resistivity in the order of 10−4 Ω·cm and high optical transparency (≥85%). PMID:28793633
Inference of Ice Cloud Properties from High-spectral Resolution Infrared Observations. Appendix 4
NASA Technical Reports Server (NTRS)
Huang, Hung-Lung; Yang, Ping; Wei, Heli; Baum, Bryan A.; Hu, Yongxiang; Antonelli, Paolo; Ackerman, Steven A.
2005-01-01
The theoretical basis is explored for inferring the microphysical properties of ice crystal from high-spectral resolution infrared observations. A radiative transfer model is employed to simulate spectral radiances to address relevant issues. The extinction and absorption efficiencies of individual ice crystals, assumed as hexagonal columns for large particles and droxtals for small particles, are computed from a combination of the finite- difference time-domain (FDTD) technique and a composite method. The corresponding phase functions are computed from a combination of FDTD and an improved geometric optics method (IGOM). Bulk scattering properties are derived by averaging the single- scattering properties of individual particles for 30 particle size distributions developed from in situ measurements and for additional four analytical Gamma size distributions for small particles. The non-sphericity of ice crystals is shown to have a significant impact on the radiative signatures in the infrared (IR) spectrum; the spherical particle approximation for inferring ice cloud properties may result in an overest&ation of the optical thickness and an inaccurate retrieval of effective particle size. Furthermore, we show that the error associated with the use of the Henyey-Greenstein phase function can be as larger as 1 K in terms of brightness temperature for larger particle effective size at some strong scattering wavenumbers. For small particles, the difference between the two phase functions is much less, with brightness temperatures generally differing by less than 0.4 K. The simulations undertaken in this study show that the slope of the IR brightness temperature spectrum between 790-960/cm is sensitive to the effective particle size. Furthermore, a strong sensitivity of IR brightness temperature to cloud optical thickness is noted within the l050-1250/cm region. Based on this spectral feature, a technique is presented for the simultaneous retrieval of the visible optical thickness and effective particle size from high spectral resolution infrared data under ice cloudy con&tion. The error analysis shows that the uncertainty of the retrieved optical thickness and effective particle size has a small range of variation. The error for retrieving particle size in conjunction with an uncertainty of 5 K in cloud'temperature, or a surface temperature uncertainty of 2.5 K, is less than 15%. The corresponding e m r in the uncertainty of optical thickness is within 5-2096, depending on the value of cloud optical thickness. The applicability of the technique is demonstrated using the aircraft-based High- resolution Interferometer Sounder (HIS) data from the Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) in 1996 and the First ISCCP Regional Experiment - Arctic Clouds Experiment (FIRE-ACE) in 1998.
NASA Astrophysics Data System (ADS)
Boers, R.; van Weele, M.; van Meijgaard, E.; Savenije, M.; Siebesma, A. P.; Bosveld, F.; Stammes, P.
2015-01-01
Time series of visibility and aerosol optical thickness for the Netherlands have been constructed for 1956-2100 based on observations and aerosol mass scenarios. Aerosol optical thickness from 1956 to 2013 has been reconstructed by converting time series of visibility to visible extinction which in turn are converted to aerosol optical thickness using an appropriate scaling depth. The reconstruction compares closely with remote sensing observations of aerosol optical thickness between 1960 and 2013. It appears that aerosol optical thickness was relatively constant over the Netherlands in the years 1955-1985. After 1985, visibility has improved, while at the same time aerosol optical thickness has decreased. Based on aerosol emission scenarios for the Netherlands three aerosol types have been identified: (1) a constant background consisting of sea salt and mineral dust, (2) a hydrophilic anthropogenic inorganic mixture, and (3) a partly hydrophobic mixture of black carbon (BC) and organic aerosols (OAs). A reduction in overall aerosol concentration turns out to be the most influential factor in the reduction in aerosol optical thickness. But during 1956-1985, an upward trend in hydrophilic aerosols and associated upward trend in optical extinction has partly compensated the overall reduction in optical extinction due to the reduction in less hydrophilic BC and OAs. A constant optical thickness ensues. This feature highlights the influence of aerosol hygroscopicity on time-varying signatures of atmospheric optical properties. Within the hydrophilic inorganic aerosol mixture there is a gradual shift from sulfur-based (1956-1985) to a nitrogen-based water aerosol chemistry (1990 onwards) but always modulated by the continual input of sodium from sea salt. From 2013 to 2100, visibility is expected to continue its increase, while at the same time optical thickness is foreseen to continue to decrease. The contribution of the hydrophilic mixture to the aerosol optical thickness will increase from 30% to 35% in 1956 to more than 70% in 2100. At the same time the contribution of black and organic aerosols will decrease by more than 80%.
Strain-induced optical band gap variation of SnO 2 films
Rus, Stefania Florina; Ward, Thomas Zac; Herklotz, Andreas
2016-06-29
In this paper, thickness dependent strain relaxation effects are utilized to study the impact of crystal anisotropy on the optical band gap of epitaxial SnO 2 films grown by pulsed laser deposition on (0001)-oriented sapphire substrates. An X-ray diffraction analysis reveals that all films are under tensile biaxial in-plane strain and that strain relaxation occurs with increasing thickness. Variable angle spectroscopic ellipsometry shows that the optical band gap of the SnO 2 films continuously increases with increasing film thickness. This increase in the band gap is linearly related to the strain state of the films, which indicates that the mainmore » origin of the band gap change is strain relaxation. The experimental observation is in excellent agreement with results from density functional theory for biaxial in-plane strain. Our research demonstrates that strain is an effective way to tune the band gap of SnO 2 films and suggests that strain engineering is an appealing route to tailor the optical properties of oxide semiconductors.« less
NASA Astrophysics Data System (ADS)
Gersch, Alan; A'Hearn, M. F.
2012-05-01
We have adapted the Coupled Escape Probability method of radiative transfer calculations for use in asymmetrical spherical situations and applied it to modeling molecular emission spectra of potentially optically thick cometary comae. Recent space missions (e.g. Deep Impact & EPOXI) have provided spectra from comets of unprecedented spatial resolution of the regions of the coma near the nucleus, where the coma may be optically thick. Currently active missions (e.g. Rosetta) and hopefully more in the future will continue the trend and demonstrate the need for better modeling of comae with optical depth effects included. Here we present a brief description of our model and results of interest for cometary studies, especially for space based observations. Although primarily motivated by the need for comet modeling, our (asymmetric spherical) radiative transfer model could be used for studying other astrophysical phenomena as well.
NASA Astrophysics Data System (ADS)
Lappalainen, Jyrki; Lantto, Vilho; Frantti, Johannes; Hiltunen, Jussi
2006-06-01
Microstructure, film orientation, and optical transmission spectra of polycrystalline Nd-modified Pb(ZrxTi1-x)O3 films were studied as a function of film thickness. Pulsed laser deposition was used for the fabrication of films with thickness from 80to465nm on single-crystal MgO(100) substrates. Raman spectroscopy, x-ray diffraction, and spectrophotometry measurements were utilized in the film characterization. With the decreasing film thickness, films first oriented with c axis perpendicular to film surface, and then, after some critical thickness, changed to a-axis orientation. At the same time, compressive stress increased up to 1.3GPa and a clear blueshift of the optical absorption edge was found in transmission spectra.
NASA Astrophysics Data System (ADS)
Pensia, R. K.; Sutar, D. L.; Sharma, S.
2018-05-01
The Jeans instability of self-gravitating optically thick quantum plasma is reanalyzed in the framework of viscosity, black body radiation and modify ohms law. The usual magnetohydrodynamic (MHD) equation is used for the present configuration with black body radiation, viscosity, electrical resistivity and quantum corrections. A general dispersion relation is obtained with the help of linearized perturbation equations. It is found that the quantum correction has stabilizing effect on the system. The instability of system is discussed for various cases as our interest.
Prediction of the limit of detection of an optical resonant reflection biosensor.
Hong, Jongcheol; Kim, Kyung-Hyun; Shin, Jae-Heon; Huh, Chul; Sung, Gun Yong
2007-07-09
A prediction of the limit of detection of an optical resonant reflection biosensor is presented. An optical resonant reflection biosensor using a guided-mode resonance filter is one of the most promising label-free optical immunosensors due to a sharp reflectance peak and a high sensitivity to the changes of optical path length. We have simulated this type of biosensor using rigorous coupled wave theory to calculate the limit of detection of the thickness of the target protein layer. Theoretically, our biosensor has an estimated ability to detect thickness change approximately the size of typical antigen proteins. We have also investigated the effects of the absorption and divergence of the incident light on the detection ability of the biosensor.
Assessment of PLIF-Based Heat Release Rate Markers using DNS of Highly Turbulent Premixed Flames
NASA Astrophysics Data System (ADS)
Zhao, Xinyu; Zhang, Peiyu; Wabel, Timothy; Steinberg, Adam; Wang, Haiou; Hawkes, Evatt
2017-11-01
Planar Laser Induced Fluorescence (PLIF) remains the most common measurement tool for describing turbulent flame topologies. However, the interpretation of the images obtained from such experiments can be obscured due to various experimental constraints, such as the finite laser thickness, the application of intensifier, etc. Synthetic-PLIF images are constructed in this study to understand the effects of various experimental reality using direct numerical simulations. Two DNS databases of highly turbulent premixed methane flames are employed, to generate the synthetic PLIF images. The thickness of the laser sheet and optical blur parameters are systematically varied to study their effects on the implied reactive layer thickness, topological correspondence with heat release rates, as well as the resolved scales of the flames. It is found that the optical blur can have a significant influence on the measured layer thickness, and significant discrepancy between the DNS and the synthetic PLIF arises when the laser thickness is approximately twice the size of the reactive layers.
Chen, Kun-Neng; Yang, Cheng-Fu; Wu, Chia-Ching; Chen, Yu-Hsin
2017-02-24
We investigated the structural, optical, and electrical properties of amorphous IGZO/silver/amorphous IGZO (α-IGZO/Ag/α-IGZO) triple-layer structures that were deposited at room temperature on Eagle XG glass and flexible polyethylene terephthalate substrates through the sputtering method. Thin Ag layers with different thicknesses were inserted between two IGZO layers to form a triple-layer structure. Ag was used because of its lower absorption and resistivity. Field emission scanning electron microscopy measurements of the triple-layer structures revealed that the thicknesses of the Ag layers ranged from 13 to 41 nm. The thickness of the Ag layer had a large effect on the electrical and optical properties of the electrodes. The optimum thickness of the Ag metal thin film could be evaluated according to the optical transmittance, electrical conductivity, and figure of merit of the electrode. This study demonstrates that the α-IGZO/Ag/α-IGZO triple-layer transparent electrode can be fabricated with low sheet resistance (4.2 Ω/□) and high optical transmittance (88.1%) at room temperature without postannealing processing on the deposited thin films.
Liu, Langechuan; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua; Jiang, Hao
2014-01-01
Purpose: Active matrix flat-panel imagers (AMFPIs) incorporating thick, segmented scintillators have demonstrated order-of-magnitude improvements in detective quantum efficiency (DQE) at radiotherapy energies compared to systems based on conventional phosphor screens. Such improved DQE values facilitate megavoltage cone-beam CT (MV CBCT) imaging at clinically practical doses. However, the MV CBCT performance of such AMFPIs is highly dependent on the design parameters of the scintillators. In this paper, optimization of the design of segmented scintillators was explored using a hybrid modeling technique which encompasses both radiation and optical effects. Methods: Imaging performance in terms of the contrast-to-noise ratio (CNR) and spatial resolution of various hypothetical scintillator designs was examined through a hybrid technique involving Monte Carlo simulation of radiation transport in combination with simulation of optical gain distributions and optical point spread functions. The optical simulations employed optical parameters extracted from a best fit to measurement results reported in a previous investigation of a 1.13 cm thick, 1016 μm pitch prototype BGO segmented scintillator. All hypothetical designs employed BGO material with a thickness and element-to-element pitch ranging from 0.5 to 6 cm and from 0.508 to 1.524 mm, respectively. In the CNR study, for each design, full tomographic scans of a contrast phantom incorporating various soft-tissue inserts were simulated at a total dose of 4 cGy. Results: Theoretical values for contrast, noise, and CNR were found to be in close agreement with empirical results from the BGO prototype, strongly supporting the validity of the modeling technique. CNR and spatial resolution for the various scintillator designs demonstrate complex behavior as scintillator thickness and element pitch are varied—with a clear trade-off between these two imaging metrics up to a thickness of ∼3 cm. Based on these results, an optimization map indicating the regions of design that provide a balance between these metrics was obtained. The map shows that, for a given set of optical parameters, scintillator thickness and pixel pitch can be judiciously chosen to maximize performance without resorting to thicker, more costly scintillators. Conclusions: Modeling radiation and optical effects in thick, segmented scintillators through use of a hybrid technique can provide a practical way to gain insight as to how to optimize the performance of such devices in radiotherapy imaging. Assisted by such modeling, the development of practical designs should greatly facilitate low-dose, soft tissue visualization employing MV CBCT imaging in external beam radiotherapy. PMID:24877827
Tissue thickness calculation in ocular optical coherence tomography
Alonso-Caneiro, David; Read, Scott A.; Vincent, Stephen J.; Collins, Michael J.; Wojtkowski, Maciej
2016-01-01
Thickness measurements derived from optical coherence tomography (OCT) images of the eye are a fundamental clinical and research metric, since they provide valuable information regarding the eye’s anatomical and physiological characteristics, and can assist in the diagnosis and monitoring of numerous ocular conditions. Despite the importance of these measurements, limited attention has been given to the methods used to estimate thickness in OCT images of the eye. Most current studies employing OCT use an axial thickness metric, but there is evidence that axial thickness measures may be biased by tilt and curvature of the image. In this paper, standard axial thickness calculations are compared with a variety of alternative metrics for estimating tissue thickness. These methods were tested on a data set of wide-field chorio-retinal OCT scans (field of view (FOV) 60° x 25°) to examine their performance across a wide region of interest and to demonstrate the potential effect of curvature of the posterior segment of the eye on the thickness estimates. Similarly, the effect of image tilt was systematically examined with the same range of proposed metrics. The results demonstrate that image tilt and curvature of the posterior segment can affect axial tissue thickness calculations, while alternative metrics, which are not biased by these effects, should be considered. This study demonstrates the need to consider alternative methods to calculate tissue thickness in order to avoid measurement error due to image tilt and curvature. PMID:26977367
Choroidal thickness in Chinese patients with non-arteritic anterior ischemic optic neuropathy.
Jiang, Libin; Chen, Lanlan; Qiu, Xiujuan; Jiang, Ran; Wang, Yaxing; Xu, Liang; Lai, Timothy Y Y
2016-08-31
Non-arteritic anterior ischemic optic neuropathy (NA-AION) is one of the most common types of ischemic optic neuropathy. Several recent studies suggested that abnormalities of choroidal thickness might be associated with NA-AION. The main objective of this case-control study was to evaluate whether choroidal thickness is an ocular risk factor for the development of NA-AION by evaluating the peripapillary and subfoveal choroidal thicknesses in affected Chinese patients. Forty-four Chinese patients with unilateral NA-AION were recruited and compared with 60 eyes of 60 normal age and refractive-error matched control subjects. Peripapillary and subfoveal choroidal thicknesses were measured by enhanced depth imaging optical coherence tomography. Choroidal thicknesses of eyes with NA-AION and unaffected fellow eyes were compared with normal controls. Choroidal thicknesses of NA-AION eyes with or without optic disc edema were also compared. The correlation between choroidal thickness and retinal nerve fiber layer (RNFL) thickness, logMAR best-corrected visual acuity (BCVA), and the mean deviation (MD) of Humphrey static perimetry in NA-AION eyes were analyzed. The peripapillary choroidal thicknesses at the nasal, nasal inferior and temporal inferior segments in NA-AION eyes with optic disc edema were significantly thicker compared with that of normal subjects (P < 0.05). There was no significant difference in the choroidal thicknesses between the unaffected fellow eyes of NA-AION patients and normal eyes of healthy controls; or between the NA-AION eyes with resolved optic disc edema and normal eyes (all P > 0.05). No significant correlation between choroidal thickness and RNFL thickness, logMAR BCVA and perimetry MD was found in eyes affected by NA-AION (all P > 0.05). Increase in peripapillary choroid thickness in some segments was found in NA-ION eyes with optic disc edema. However, our findings do not support the hypothesis that choroidal thickness is abnormal in Chinese patients with NA-AION compared with normal subjects with similar age and refractive error status.
Experimental investigations of elastohydrodynamic lubrication
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Dowson, D.
1983-01-01
Various experimental studies of elastohydrodynamic lubrication have been reviewed. The various types of machines used in these investigations, such as the disc, two and four ball, crossed-cylinders, and crossed-axes rolling disc machine, are described. The measurement of the most important parameters, such as film shape, film thickness, pressure, temperature, and traction, is considered. Determination of the film thickness is generally the most important of these effects since it dictates the extent to which the asperities on opposing surfaces can come into contact and thus has a direct bearing on wear and fatigue failure of the contacting surfaces. Several different techniques for measuring film thickness have been described, including electrical resistance, capacitance, X-ray, optical interferometry, laser beam diffraction, strain gage, and spring dynamometer methods. An attempt has been made to describe the basic concepts and limitations of each of these techniques. These various methods have been used by individual researchers, but there is no universally acceptable technique for measuring elastohydrodynamic film thickness. Capacitance methods have provided most of the reliable data for nominal line or rectangular conjunctions, but optical interferometry has proved to be the most effective procedure for elliptical contacts. Optical interferometry has the great advantage that it reveals not only the film thickness, but also details of the film shape over the complete area of the conjunction.
NASA Astrophysics Data System (ADS)
Zhou, Yongbo; Sun, Xuejin; Mielonen, Tero; Li, Haoran; Zhang, Riwei; Li, Yan; Zhang, Chuanliang
2018-01-01
For inhomogeneous cirrus clouds, cloud optical thickness (COT) and effective diameter (De) provided by the Moderate Resolution Imaging Spectrometer (MODIS) Collection 6 cloud products are associated with errors due to the single habit assumption (SHA), independent pixel assumption (IPA), photon absorption effect (PAE), and plane-parallel assumption (PPA). SHA means that every cirrus cloud is assumed to have the same shape habit of ice crystals. IPA errors are caused by three-dimensional (3D) radiative effects. PPA and PAE errors are caused by cloud inhomogeneity. We proposed a method to single out these different errors. These errors were examined using the Spherical Harmonics Discrete Ordinate Method simulations done for the MODIS 0.86 μm and 2.13 μm bands. Four midlatitude and tropical cirrus cases were studied. For the COT retrieval, the impacts of SHA and IPA were especially large for optically thick cirrus cases. SHA errors in COT varied distinctly with scattering angles. For the De retrieval, SHA decreased De under most circumstances. PAE decreased De for optically thick cirrus cases. For the COT and De retrievals, the dominant error source was SHA for overhead sun whereas for oblique sun, it could be any of SHA, IPA, and PAE, varying with cirrus cases and sun-satellite viewing geometries. On the domain average, the SHA errors in COT (De) were within -16.1%-42.6% (-38.7%-2.0%), whereas the 3-D radiative effects- and cloud inhomogeneity-induced errors in COT (De) were within -5.6%-19.6% (-2.9%-8.0%) and -2.6%-0% (-3.7%-9.8%), respectively.
Thermal mirror spectrometry: An experimental investigation of optical glasses
NASA Astrophysics Data System (ADS)
Zanuto, V. S.; Herculano, L. S.; Baesso, M. L.; Lukasievicz, G. V. B.; Jacinto, C.; Malacarne, L. C.; Astrath, N. G. C.
2013-03-01
The Thermal mirror technique relies on measuring laser-induced nanoscale surface deformation of a solid sample. The amplitude of the effect is directly dependent on the optical absorption and linear thermal expansion coefficients, and the time evolution depends on the heat diffusion properties of the sample. Measurement of transient signals provide direct access to thermal, optical and mechanical properties of the material. The theoretical models describing this effect can be formulated for very low optical absorbing and for absorbing materials. In addition, the theories describing the effect apply for semi-infinite and finite samples. In this work, we apply the Thermal mirror technique to measure physical properties of optical glasses. The semi-infinite and finite models are used to investigate very low optical absorbing glasses. The thickness limit for which the semi-infinite model retrieves the correct values of the thermal diffusivity and amplitude of the transient is obtained using the finite description. This procedure is also employed on absorbing glasses, and the semi-infinite Beer-Lambert law model is used to analyze the experimental data. The experimental data show the need to use the finite model for samples with very low bulk absorption coefficients and thicknesses L < 1.5 mm. This analysis helped to establish limit values of thickness for which the semi-infinite model for absorbing materials could be used, L > 1.0 mm in this case. In addition, the physical properties of the samples were calculated and absolute values derived.
NASA Astrophysics Data System (ADS)
Jalili, S.; Hajakbari, F.; Hojabri, A.
2018-03-01
Silver (Ag) nanolayers were deposited on nickel oxide (NiO) thin films by DC magnetron sputtering. The thickness of Ag layers was in range of 20-80 nm by variation of deposition time between 10 and 40 s. X-ray diffraction results showed that the crystalline properties of the Ag/NiO films improved by increasing the Ag film thickness. Also, atomic force microscopy and field emission scanning electron microscopy images demonstrated that the surface morphology of the films was highly affected by film thickness. The film thickness and the size of particles change by elevating the Ag deposition times. The composition of films was determined by Rutherford back scattering spectroscopy. The transmission of light was gradually reduced by augmentation of Ag films thickness. Furthermore; the optical band gap of the films was also calculated from the transmittance spectra.
Correction Factor for Gaussian Deconvolution of Optically Thick Linewidths in Homogeneous Sources
NASA Technical Reports Server (NTRS)
Kastner, S. O.; Bhatia, A. K.
1999-01-01
Profiles of optically thick, non-Gaussian emission line profiles convoluted with Gaussian instrumental profiles are constructed, and are deconvoluted on the usual Gaussian basis to examine the departure from accuracy thereby caused in "measured" linewidths. It is found that "measured" linewidths underestimate the true linewidths of optically thick lines, by a factor which depends on the resolution factor r congruent to Doppler width/instrumental width and on the optical thickness tau(sub 0). An approximating expression is obtained for this factor, applicable in the range of at least 0 <= tau(sub 0) <= 10, which can provide estimates of the true linewidth and optical thickness.
Seo, Sam; Lee, Chong Eun; Jeong, Jae Hoon; Park, Ki Ho; Kim, Dong Myung; Jeoung, Jin Wook
2017-03-11
To determine the influences of myopia and optic disc size on ganglion cell-inner plexiform layer (GCIPL) and peripapillary retinal nerve fiber layer (RNFL) thickness profiles obtained by spectral domain optical coherence tomography (OCT). One hundred and sixty-eight eyes of 168 young myopic subjects were recruited and assigned to one of three groups according to their spherical equivalent (SE) values and optic disc area. All underwent Cirrus HD-OCT imaging. The influences of myopia and optic disc size on the GCIPL and RNFL thickness profiles were evaluated by multiple comparisons and linear regression analysis. Three-dimensional surface plots of GCIPL and RNFL thickness corresponding to different combinations of myopia and optic disc size were constructed. Each of the quadrant RNFL thicknesses and their overall average were significantly thinner in high myopia compared to low myopia, except for the temporal quadrant (all Ps ≤0.003). The average and all-sectors GCIPL were significantly thinner in high myopia than in moderate- and/or low-myopia (all Ps ≤0.002). The average OCT RNFL thickness was correlated significantly with SE (0.81 μm/diopter, P < 0.001), axial length (-1.44 μm/mm, P < 0.001), and optic disc area (5.35 μm/mm 2 , P < 0.001) by linear regression analysis. As for the OCT GCIPL parameters, average GCIPL thickness showed a significant correlation with SE (0.84 μm/diopter, P < 0.001) and axial length (-1.65 μm/mm, P < 0.001). There was no significant correlation of average GCIPL thickness with optic disc area. Three-dimensional curves showed that larger optic discs were associated with increased average RNFL thickness and that more-myopic eyes were associated with decreased average GCIPL and RNFL thickness. Myopia can significantly affect GCIPL and RNFL thickness profiles, and optic disc size has a significant influence on RNFL thickness. The current OCT maps employed in the evaluation of glaucoma should be analyzed in consideration of refractive status and optic disc size.
NASA Technical Reports Server (NTRS)
Lee, Joonsuk; Yang, Ping; Dessler, Andrew E.; Baum, Bryan A.; Platnick, Steven
2005-01-01
Cloud microphysical and optical properties are inferred from the bidirectional reflectances simulated for a single-layered cloud consisting of an external mixture of ice particles and liquid droplets. The reflectances are calculated with a rigorous discrete ordinates radiative transfer model and are functions of the cloud effective particle size, the cloud optical thickness, and the values of the ice fraction in the cloud (i.e., the ratio of ice water content to total water content). In the present light scattering and radiative transfer simulations, the ice fraction is assumed to be vertically homogeneous; the habit (shape) percentage as a function of ice particle size is consistent with that used for the Moderate Resolution Imaging Spectroradiometer (MODIS) operational (Collection 4 and earlier) cloud products; and the surface is assumed to be Lambertian with an albedo of 0.03. Furthermore, error analyses pertaining to the inference of the effective particle sizes and optical thicknesses of mixed-phase clouds are performed. Errors are calculated with respect to the assumption of a cloud containing solely liquid or ice phase particles. The analyses suggest that the effective particle size inferred for a mixed-phase cloud can be underestimated (or overestimated) if pure liquid phase (or pure ice phase) is assumed for the cloud, whereas the corresponding cloud optical thickness can be overestimated (or underestimated).
NASA Astrophysics Data System (ADS)
Okamura, Rintaro; Iwabuchi, Hironobu; Schmidt, K. Sebastian
2017-12-01
Three-dimensional (3-D) radiative-transfer effects are a major source of retrieval errors in satellite-based optical remote sensing of clouds. The challenge is that 3-D effects manifest themselves across multiple satellite pixels, which traditional single-pixel approaches cannot capture. In this study, we present two multi-pixel retrieval approaches based on deep learning, a technique that is becoming increasingly successful for complex problems in engineering and other areas. Specifically, we use deep neural networks (DNNs) to obtain multi-pixel estimates of cloud optical thickness and column-mean cloud droplet effective radius from multispectral, multi-pixel radiances. The first DNN method corrects traditional bispectral retrievals based on the plane-parallel homogeneous cloud assumption using the reflectances at the same two wavelengths. The other DNN method uses so-called convolutional layers and retrieves cloud properties directly from the reflectances at four wavelengths. The DNN methods are trained and tested on cloud fields from large-eddy simulations used as input to a 3-D radiative-transfer model to simulate upward radiances. The second DNN-based retrieval, sidestepping the bispectral retrieval step through convolutional layers, is shown to be more accurate. It reduces 3-D radiative-transfer effects that would otherwise affect the radiance values and estimates cloud properties robustly even for optically thick clouds.
NASA Technical Reports Server (NTRS)
Oreopoulos, Lazaros
2004-01-01
The MODIS Level-3 optical thickness and effective radius cloud product is a gridded l deg. x 1 deg. dataset that is derived from aggregation and subsampling at 5 km of 1 km, resolution Level-2 orbital swath data (Level-2 granules). This study examines the impact of the 5 km subsampling on the mean, standard deviation and inhomogeneity parameter statistics of optical thickness and effective radius. The methodology is simple and consists of estimating mean errors for a large collection of Terra and Aqua Level-2 granules by taking the difference of the statistics at the original and subsampled resolutions. It is shown that the Level-3 sampling does not affect the various quantities investigated to the same degree, with second order moments suffering greater subsampling errors, as expected. Mean errors drop dramatically when averages over a sufficient number of regions (e.g., monthly and/or latitudinal averages) are taken, pointing to a dominance of errors that are of random nature. When histograms built from subsampled data with the same binning rules as in the Level-3 dataset are used to reconstruct the quantities of interest, the mean errors do not deteriorate significantly. The results in this paper provide guidance to users of MODIS Level-3 optical thickness and effective radius cloud products on the range of errors due to subsampling they should expect and perhaps account for, in scientific work with this dataset. In general, subsampling errors should not be a serious concern when moderate temporal and/or spatial averaging is performed.
Design, fabrication, and testing of duralumin zoom mirror with variable thickness
NASA Astrophysics Data System (ADS)
Hui, Zhao; Xie, Xiaopeng; Xu, Liang; Ding, Jiaoteng; Shen, Le; Liu, Meiying; Gong, Jie
2016-10-01
Zoom mirror is a kind of active optical component that can change its curvature radius dynamically. Normally, zoom mirror is used to correct the defocus and spherical aberration caused by thermal lens effect to improve the beam quality of high power solid-state laser since that component was invented. Recently, the probable application of zoom mirror in realizing non-moving element optical zoom imaging in visible band has been paid much attention. With the help of optical leveraging effect, the slightly changed local optical power caused by curvature variation of zoom mirror could be amplified to generate a great alteration of system focal length without moving elements involved in, but in this application the shorter working wavelength and higher surface figure accuracy requirement make the design and fabrication of such a zoom mirror more difficult. Therefore, the key to realize non-moving element optical zoom imaging in visible band lies in zoom mirror which could provide a large enough saggitus variation while still maintaining a high enough surface figure. Although the annular force based actuation could deform a super-thin mirror having a constant thickness to generate curvature variation, it is quite difficult to maintain a high enough surface figure accuracy and this phenomenon becomes even worse when the diameter and the radius-thickness ratio become bigger. In this manuscript, by combing the pressurization based actuation with a variable thickness mirror design, the purpose of obtaining large saggitus variation and maintaining quite good surface figure accuracy at the same time could be achieved. A prototype zoom mirror with diameter of 120mm and central thickness of 8mm is designed, fabricated and tested. Experimental results demonstrate that the zoom mirror having an initial surface figure accuracy superior to 1/50λ could provide at least 21um saggitus variation and after finishing the curvature variation its surface figure accuracy could still be superior to 1/20λ, which proves that the effectiveness of the theoretical design.
NASA Astrophysics Data System (ADS)
Shinbo, Kazunari; Uno, Akihiro; Hirakawa, Ryo; Baba, Akira; Ohdaira, Yasuo; Kato, Keizo; Kaneko, Futao
2013-05-01
In this study, we fabricated a novel quartz-crystal-microbalance (QCM)/optical-waveguide hybrid sensor. An in situ observation of a lead phthalocyanine (PbPc) thin-film deposition was conducted during vacuum evaporation, and the effectiveness of the sensor was demonstrated. The film thickness was obtained from the QCM frequency, and the optical absorption of the film was observed by optical waveguide spectroscopy using part of the QCM substrate without the electrode. The film absorption depends on the polarization direction, substrate temperature and deposition rate, owing to aggregate formation. The thickness dependence of the absorption property was also investigated.
Surface roughness of Saturn's rings and ring particles inferred from thermal phase curves
NASA Astrophysics Data System (ADS)
Morishima, Ryuji; Turner, Neal J.; Spilker, Linda
2017-10-01
We analyze thermal phase curves of all the main rings of Saturn (the A, B, C rings, and the Cassini division) measured by both the far-IR and mid-IR detectors of the Cassini Composite InfraRed Spectrometer (CIRS). All the rings show temperature increases toward zero phase angle, known as an opposition effect or thermal beaming. For the C ring and Cassini division, which have low optical depths, intra-particle shadowing is considered the dominant mechanism causing the effect. On the other hand, the phase curves of the optically thick B and A rings steepen significantly with decreasing absolute solar elevation angle from 21° to 14°, suggesting inter-particle shadowing plays an important role in these rings. We employ an analytic roughness model to estimate the degrees of surface roughness of the rings or ring particles. For optically thin rings, an isolated particle covered by spherical segment craters is employed while for the thick rings we approximate a packed particle layer as a slab covered by craters. The particles in the thin rings are found to have generally rough surfaces, except in the middle C ring. Across the C ring, the optical depth correlates with the degree of surface roughness. This may indicate that surface roughness comes mainly from particle clumping, while individual particles have rather smooth surfaces. For the optically thick rings, the surface roughness of the particle layer is found to be moderate. The modeled phase curves of optically thick rings are shallow if the phase angle change is primarily due to change of observer azimuthal angle. On the other hand, the phase curves are steep if the phase angle change is due to change of observer elevation angle, as inter-particle shadows become visible at higher observer elevation. In addition, the area of shadowed facets increases with decreasing solar elevation angle. These combined effects explain the large seasonal change of the phase curve steepness observed for the thick rings. The degrees of surface roughness inferred from the thermal phase curves are generally less than those from the phase curves in visible light. This is probably explained by different roughness scales seen in thermal and visible light.
Zhang, Jun; Zeng, Jie; Wang, Bo; Wang, Wen-juan; Liang, Da-kai; Liu, Xiao-ying
2016-03-01
Aiming at meeting the need of aluminum corrosion monitoring in aerospace field, a pre-load type fiber grating corrosion sensor based on an aluminum thin tube structure is proposed. The corrosion sensor of aluminum alloy structure in-service monitoring mechanism is studied, a theoretical model about the relation of FBG reflection spectral characteristics and aluminum thickness variation is also obtained. Optical fiber grating corrosion monitoring test system based on the capillary structure of aluminum alloy is constructed by acid-base environment. The problem of cross sensitivity of temperature and strain is solved by configuring an optical fiber grating which is not affected by strain and only sensitive to temperature inside the aluminum alloy tube. The results shows that he aluminum tube packaging design not only can sense the effects of corrosion on the mechanical properties, but also can interference shielding effect of corrosion on the tube optical fiber sensing device. With the deepening of the metal tube corrosion and aluminum alloy tube thickness gradually thinning, fiber grating reflective spectrum gradually shift to the short wavelength and the wall thickness and the grating center wavelength offset has a good monotonic relation. These characteristics can provide useful help to further research corrosion online monitoring based on optic fiber sensor.
Some constraints on a greenhouse atmosphere for Triton
NASA Technical Reports Server (NTRS)
Nolan, Michael C.; Lunine, Jonathan I.
1988-01-01
The possibility that a thick atmosphere exists around Neptune's satellite Triton is examined. The IR optical depth in the gray atmosphere approximation is computed for a range of possible surface compositions, albedos, and gravities. It is found that a self-sustaining optically-thick atmosphere is possible if molecular nitrogen and/or hydrogen are present. It is suggested that bimodal behavior of Triton's atmosphere is possible as seasonal effects and volatile distribution alter the distribution of thermal emission.
NASA Astrophysics Data System (ADS)
Miller, W. F.; Kato, S.; Rose, F. G.; Sun-Mack, S.
2009-12-01
Under the NASA Energy and Water Cycle System (NEWS) program, cloud and aerosol properties derived from CALIPSO, CloudSat, and MODIS data then matched to the CERES footprint are used for irradiance profile computations. Irradiance profiles are included in the publicly available product, CCCM. In addition to the MODIS and CALIPSO generated aerosol, aerosol optical thickness is calculated over ocean by processing MODIS radiance through the Stowe-Ignatov algorithm. The CERES cloud mask and properties algorithm are use with MODIS radiance to provide additional cloud information to accompany the actively sensed data. The passively sensed data is the only input to the standard CERES radiative flux products. The combined information is used as input to the NASA Langley Fu-Liou radiative transfer model to determine vertical profiles and Top of Atmosphere shortwave and longwave flux for pristine, all-sky, and aerosol conditions for the special data product. In this study, the three sources of aerosol optical thickness will be compared directly and their influence on the calculated and measured TOA fluxes. Earlier studies indicate that the largest uncertainty in estimating direct aerosol forcing using aerosol optical thickness derived from passive sensors is caused by cloud contamination. With collocated CALIPSO data, we are able to estimate frequency of occurrence of cloud contamination, effect on the aerosol optical thickness and direct radiative effect estimates.
Effects of coating thickness on high power metal coated fibre lasers
NASA Astrophysics Data System (ADS)
Daniel, Jae M. O.; Simakov, Nikita; Hemming, Alexander; Clarkson, W. Andrew; Haub, John
2017-03-01
We investigate the effects of coating thickness on the scattering losses of metal coated active fibre. A range of low numerical aperture metal coated optical fibres are placed in etchant solutions whilst measuring propagation loss as a function of time. By utilising concurrent coating diameter measurements, we are able to correlate propagation losses with coating thickness. Experimentally we find a monotonic dependence on coating thickness and scattering loss. We present the results of this work, providing useful parameters for high power metal coated fibre laser designs.
NASA Astrophysics Data System (ADS)
Sedrpooshan, Mehran; Ahmadvand, Hossein; Ranjbar, Mehdi; Salamati, Hadi
2018-06-01
CoPd alloy thin films with different thicknesses and Co/Pd ratios have been deposited on Si (100) substrate by pulsed laser deposition (PLD). The magnetic properties were investigated by using the magneto-optical Kerr effect (MOKE) in both longitudinal and polar geometries. The results show that the films with thickness in the range of 6-24 nm, deposited at a low substrate temperature of 200 °C, are mostly magnetized in the plane of film. Higher deposition temperature forces the magnetic easy axis to orient in the perpendicular direction of the films.
NASA Astrophysics Data System (ADS)
Teh, Yen Chin; Saif, Ala'eddin A.; Azhar Zahid Jamal, Zul; Poopalan, Prabakaran
2017-11-01
Ba0.9Gd0.1TiO3 thin films have been fabricated on SiO2/Si and fused silica by sol-gel method. The films are prepared through a spin coating process and annealed at 900 °C to obtain crystallized films. The effect of film thickness on the microstructure and optical band gap has been investigated using X-ray diffractometer, atomic force microscope and ultraviolet-visible spectroscopy, respectively. XRD patterns confirm that the films crystallized with tetragonal phase perovskite structure. The films surface morphology is analysed through amplitude parameter analysis to find out that the grain size and surface roughness are increased with the increase of films thickness. The transmittance and absorbance spectra reveal that all films exhibit high absorption in UV region. The evaluated optical band gap is obtained in the range of 3.67 - 3.78 eV and is found to be decreased as the thickness increase.
The Community Cloud retrieval for CLimate (CC4CL) - Part 2: The optimal estimation approach
NASA Astrophysics Data System (ADS)
McGarragh, Gregory R.; Poulsen, Caroline A.; Thomas, Gareth E.; Povey, Adam C.; Sus, Oliver; Stapelberg, Stefan; Schlundt, Cornelia; Proud, Simon; Christensen, Matthew W.; Stengel, Martin; Hollmann, Rainer; Grainger, Roy G.
2018-06-01
The Community Cloud retrieval for Climate (CC4CL) is a cloud property retrieval system for satellite-based multispectral imagers and is an important component of the Cloud Climate Change Initiative (Cloud_cci) project. In this paper we discuss the optimal estimation retrieval of cloud optical thickness, effective radius and cloud top pressure based on the Optimal Retrieval of Aerosol and Cloud (ORAC) algorithm. Key to this method is the forward model, which includes the clear-sky model, the liquid water and ice cloud models, the surface model including a bidirectional reflectance distribution function (BRDF), and the "fast" radiative transfer solution (which includes a multiple scattering treatment). All of these components and their assumptions and limitations will be discussed in detail. The forward model provides the accuracy appropriate for our retrieval method. The errors are comparable to the instrument noise for cloud optical thicknesses greater than 10. At optical thicknesses less than 10 modeling errors become more significant. The retrieval method is then presented describing optimal estimation in general, the nonlinear inversion method employed, measurement and a priori inputs, the propagation of input uncertainties and the calculation of subsidiary quantities that are derived from the retrieval results. An evaluation of the retrieval was performed using measurements simulated with noise levels appropriate for the MODIS instrument. Results show errors less than 10 % for cloud optical thicknesses greater than 10. Results for clouds of optical thicknesses less than 10 have errors up to 20 %.
NASA Technical Reports Server (NTRS)
Wen, Guoyong; Marshak, Alexander; Cahalan, Robert F.; Remer, Lorraine A.; Kleidman, Richard G.
2007-01-01
3D aerosol-cloud interaction is examined by analyzing two images containing cumulus clouds in biomass burning regions in Brazil. The research consists of two parts. The first part focuses on identifying 3D clo ud impacts on the reflectance of pixel selected for the MODIS aerosol retrieval based purely on observations. The second part of the resea rch combines the observations with radiative transfer computations to identify key parameters in 3D aerosol-cloud interaction. We found that 3D cloud-induced enhancement depends on optical properties of nearb y clouds as well as wavelength. The enhancement is too large to be ig nored. Associated biased error in 1D aerosol optical thickness retrie val ranges from 50% to 140% depending on wavelength and optical prope rties of nearby clouds as well as aerosol optical thickness. We caution the community to be prudent when applying 1D approximations in comp uting solar radiation in dear regions adjacent to clouds or when usin g traditional retrieved aerosol optical thickness in aerosol indirect effect research.
120nm resolution in thick samples with structured illumination and adaptive optics
NASA Astrophysics Data System (ADS)
Thomas, Benjamin; Sloan, Megan; Wolstenholme, Adrian J.; Kner, Peter
2014-03-01
μLinear Structured Illumination Microscopy (SIM) provides a two-fold increase over the diffraction limited resolution. SIM produces excellent images with 120nm resolution in tissue culture cells in two and three dimensions. For SIM to work correctly, the point spread function (PSF) and optical transfer function (OTF) must be known, and, ideally, should be unaberrated. When imaging through thick samples, aberrations will be introduced into the optical system which will reduce the peak intensity and increase the width of the PSF. This will lead to reduced resolution and artifacts in SIM images. Adaptive optics can be used to correct the optical wavefront restoring the PSF to its unaberrated state, and AO has been used in several types of fluorescence microscopy. We demonstrate that AO can be used with SIM to achieve 120nm resolution through 25m of tissue by imaging through the full thickness of an adult C. elegans roundworm. The aberrations can be corrected over a 25μm × 45μm field of view with one wavefront correction setting, demonstrating that AO can be used effectively with widefield superresolution techniques.
Optically transparent frequency selective surfaces on flexible thin plastic substrates
NASA Astrophysics Data System (ADS)
Dewani, Aliya A.; O'Keefe, Steven G.; Thiel, David V.; Galehdar, Amir
2015-02-01
A novel 2D simple low cost frequency selective surface was screen printed on thin (0.21 mm), flexible transparent plastic substrate (relative permittivity 3.2). It was designed, fabricated and tested in the frequency range 10-20 GHz. The plane wave transmission and reflection coefficients agreed with numerical modelling. The effective permittivity and thickness of the backing sheet has a significant effect on the frequency characteristics. The stop band frequency reduced from 15GHz (no backing) to 12.5GHz with polycarbonate. The plastic substrate thickness beyond 1.8mm has minimal effect on the resonant frequency. While the inner element spacing controls the stop-band frequency, the substrate thickness controls the bandwidth. The screen printing technique provided a simple, low cost FSS fabrication method to produce flexible, conformal, optically transparent and bio-degradable FSS structures which can find their use in electromagnetic shielding and filtering applications in radomes, reflector antennas, beam splitters and polarizers.
Retinal nerve fiber layer changes after LASIK evaluated with optical coherence tomography.
Dementyev, Dmitriy D; Kourenkov, Vyacheslav V; Rodin, Alexander S; Fadeykina, Tatyana L; Diaz Martines, Tatyana E
2005-01-01
To determine whether the increase in intraocular pressure (IOP) during LASIK suction can induce a decrease in retinal nerve fiber layer thickness assessed by optical coherence tomography (OCT). Nineteen patients (38 eyes) were enrolled in the study. Intraocular pressure was normal at all pre- and postoperative examinations. Retinal nerve fiber layer thickness was measured using OCT-3 Stratus prior to and 1 week and 3 months after LASIK. Laser in situ keratomileusis was performed using the Bausch & Lomb Hansatome microkeratome and the NIDEK EC-5000 excimer laser. Optical coherence tomography mean retinal nerve fiber layer thickness values before and after LASIK were compared using the Student paired t test. Mean patient age was 27.8 years (range: 18 to 33 years). Mean preoperative spherical equivalent refractive error was -4.9 diopters (D) (range: -2.0 to -8.5 D). Mean time of microkeratome suction was 30 seconds (range: 20 to 50 seconds). Preoperatively, the mean retinal nerve fiber layer thickness obtained by OCT was 104.2+/-9.0 microm; at 1 week postoperatively the mean thickness was 101.9+/-6.9 microm, and 106.7+/-6.1 microm at 3 months postoperatively. Mean retinal nerve fiber layer thicknesses obtained by OCT were not significantly different between preoperative and 1 week and 3 months after LASIK (P > or = .05). Laser in situ keratomileusis performed on young myopic patients does not have a significant effect on retinal nerve fiber layer thickness determined by OCT. Further studies are required to reveal the risk of possible optic nerve or retinal nerve fiber layer damage by elevated IOP during LASIK.
Chen, Kun-Neng; Yang, Cheng-Fu; Wu, Chia-Ching; Chen, Yu-Hsin
2017-01-01
We investigated the structural, optical, and electrical properties of amorphous IGZO/silver/amorphous IGZO (α-IGZO/Ag/α-IGZO) triple-layer structures that were deposited at room temperature on Eagle XG glass and flexible polyethylene terephthalate substrates through the sputtering method. Thin Ag layers with different thicknesses were inserted between two IGZO layers to form a triple-layer structure. Ag was used because of its lower absorption and resistivity. Field emission scanning electron microscopy measurements of the triple-layer structures revealed that the thicknesses of the Ag layers ranged from 13 to 41 nm. The thickness of the Ag layer had a large effect on the electrical and optical properties of the electrodes. The optimum thickness of the Ag metal thin film could be evaluated according to the optical transmittance, electrical conductivity, and figure of merit of the electrode. This study demonstrates that the α-IGZO/Ag/α-IGZO triple-layer transparent electrode can be fabricated with low sheet resistance (4.2 Ω/□) and high optical transmittance (88.1%) at room temperature without postannealing processing on the deposited thin films. PMID:28772586
Duman, R; Yavas, G F; Veliyev, I; Dogan, M; Duman, R
2018-05-10
The aim was to assess the ganglion cell complex (GCC) thickness, retinal nerve fiber layer (RNFL) thickness and optic disk features in the affected eyes (AE) and unaffected fellow eyes (FE) of subjects with unilateral nonarteritic anterior ischemic optic neuropathy (NAION) and to compare with healthy control eyes (CE) using spectral domain-optical coherence tomography (SD-OCT). This study included 28 patients and age, sex and refraction-matched 28 control subjects. Mean GCC thickness and peripapillary RNFL thickness in four quadrants measured by cirrus SD-OCT were evaluated in both AE and FE of patients and CE. In addition, optic disk measurements obtained with OCT were evaluated. Mean GCC thickness was significantly lower in AE compared with both FE and CE (P < 0.001), and mean GCC thickness in FE was significantly lower than CE (P = 0.022). In addition, mean RNFL thickness in superior and nasal quadrants significantly decreased in FE compared with CE (P = 0.020 and 0.010, respectively). Furthermore, AE had significantly greater optic disk cupping compared with both FE and CE (P < 0.001). GCC and RNFL thickness decreased significantly at late stages of NAION, in both AE and FE compared with CE, suggesting that some subclinical structural changes may occur in FE despite lack of obvious visual symptoms. In addition, there was no significant difference in optic disk features between the CE and FE. And significantly greater optic disk cupping in the AE compared with both FE and CE supports the acquired enlargement of cupping after the onset of NAION.
Jhanji, Vishal; Yang, Bingzhi; Yu, Marco; Ye, Cong; Leung, Christopher K S
2013-11-01
To compare corneal thickness and corneal elevation using swept source optical coherence tomography and slit scanning topography. Prospective study. 41 normal and 46 keratoconus subjects. All eyes were imaged using swept source optical coherence tomography and slit scanning tomography during the same visit. Mean corneal thickness and best-fit sphere measurements were compared between the instruments. Agreement of measurements between swept source optical coherence tomography and scanning slit topography was analyzed. Intra-rater reproducibility coefficient and intraclass correlation coefficient were evaluated. In normal eyes, central corneal thickness measured by swept source optical coherence tomography was thinner compared with slit scanning topography (p < 0.0001) and ultrasound pachymetry (p = < .0001). Ultrasound pachymetry readings had better 95% limits of agreement with swept source optical coherence tomography than slit scanning topography. In keratoconus eyes, central corneal thickness was thinner on swept source optical coherence tomography than slit scanning topography (p = 0.081) and ultrasound pachymetry (p = 0.001). There were significant differences between thinnest corneal thickness, and, anterior and posterior best-fit sphere measurements between both instruments (p < 0.05 for all). Overall, reproducibility coefficients and intraclass correlation coefficients were significantly better with swept source optical coherence tomography for measurement of central corneal thickness, anterior best-fit sphere and, posterior best-fit sphere (all p < 0.001). Corneal thickness and elevation measurements were significantly different between swept source optical coherence tomography and slit scanning topography. With better reproducibility coefficients and intraclass correlation coefficients, swept source optical coherence tomography may provide a reliable alternative for measurement of corneal parameters. © 2013 The Authors. Clinical and Experimental Ophthalmology © 2013 Royal Australian and New Zealand College of Ophthalmologists.
Savini, G; Zanini, M; Carelli, V; Sadun, A A; Ross-Cisneros, F N; Barboni, P
2005-04-01
To investigate the correlation between retinal nerve fibre layer (RNFL) thickness and optic nerve head (ONH) size in normal white subjects by means of optical coherence tomography (OCT). 54 eyes of 54 healthy subjects aged between 15 and 54 underwent peripapillary RNFL thickness measurement by a series of three circular scans with a 3.4 mm diameter (Stratus OCT, RNFL Thickness 3.4 acquisition protocol). ONH analysis was performed by means of six radial scans centred on the optic disc (Stratus OCT, Fast Optic Disc acquisition protocol). The mean RNFL values were correlated with the data obtained by ONH analysis. The superior, nasal, and inferior quadrant RNFL thickness showed a significant correlation with the optic disc area (R = 0.3822, p = 0.0043), (R = 0.3024, p = 0.026), (R = 0.4048, p = 0.0024) and the horizontal disc diameter (R = 0.2971, p = 0.0291), (R = 0.2752, p = 0.044), (R = 0.3970, p = 0.003). The superior and inferior quadrant RNFL thickness was also positively correlated with the vertical disc diameter (R = 0.3774, p = 0.0049), (R = 0.2793, p = 0.0408). A significant correlation was observed between the 360 degrees average RNFL thickness and the optic disc area and the vertical and horizontal disc diameters of the ONH (R = 0.4985, p = 0.0001), (R = 0.4454, p = 0.0007), (R = 0.4301, p = 0.0012). RNFL thickness measurements obtained by Stratus OCT increased significantly with an increase in optic disc size. It is not clear if eyes with large ONHs show a thicker RNFL as a result of an increased amount of nerve fibres or to the shorter distance between the circular scan and the optic disc edge.
Measurements of material properties for solar cells. [aluminum film and KAPTON
NASA Technical Reports Server (NTRS)
Castle, J. G., Jr.
1978-01-01
Measurements on two candidate materials for space flight are reported. The observed optical transmittance of aluminum films vapor deposited on fused quartz showed anomalously high transmittance thru 400 A and 600 A and showed an effective skin depth of 110 A in the latter part of the 1000 A thickness. KAPTON films are shown by their optical transmission spectra to have an energy gap for electron excitation of approximately 2.5 eV, which value depends on the thickness as manufactured. The resistance of KAPTON film to ionizing radiation is described by their optical spectra and their electron spin resonance spectra.
The effect of TiO2 phase on the surface plasmon resonance of silver thin film
NASA Astrophysics Data System (ADS)
Hong, Ruijin; Jing, Ming; Tao, Chunxian; Zhang, Dawei
2016-10-01
A series of silver films with various thicknesses were deposited on TiO2 covered silica substrates by magnetron sputtering at room temperature. The effects of TiO2 phase on the structure, optical properties and surface plasmon resonance of silver thin films were investigated by x-ray diffraction, optical absorption and Raman scattering measurements, respectively. By adjusting the silver layer thickness, the resonance wavelength shows a redshift, which is due to a change in the electromagnetic field coupling strength from the localized surface plasmons excited between the silver thin film and TiO2 layer. Raman scattering measurement results showed that optical absorption plays an important role in surface plasmon enhancement, which is also related to different crystal phase.
Park, Bum Jun; Furst, Eric M
2014-09-23
We present the optical trapping forces that are generated when a single laser beam strongly focuses on a coated dielectric microsphere. On the basis of geometrical optics approximation (GOA), in which a particle intercepts all of the rays that make up a single laser beam, we calculate the trapping forces with varying coating thickness and refractive index values. To increase the optical trapping efficiency, the refractive index (n(b)) of the coating is selected such that n(a) < n(b) < n(c), where na and nc are the refractive indices of the medium and the core material, respectively. The thickness of the coating also increases trapping efficiency. Importantly, we find that trapping forces for the coated particles are predominantly determined by two rays: the incident ray and the first refracted ray to the medium.
Dhakal, Krishna P; Duong, Dinh Loc; Lee, Jubok; Nam, Honggi; Kim, Minsu; Kan, Min; Lee, Young Hee; Kim, Jeongyong
2014-11-07
We performed a nanoscale confocal absorption spectral imaging to obtain the full absorption spectra (over the range 1.5-3.2 eV) within regions having different numbers of layers and studied the variation of optical transition depending on the atomic thickness of the MoS2 film. Three distinct absorption bands corresponding to A and B excitons and a high-energy background (BG) peak at 2.84 eV displayed a gradual redshift as the MoS2 film thickness increased from the monolayer, to the bilayer, to the bulk MoS2 and this shift was attributed to the reduction of the gap energy in the Brillouin zone at the K-point as the atomic thickness increased. We also performed n-type chemical doping of MoS2 films using reduced benzyl viologen (BV) and the confocal absorption spectra modified by the doping showed a strong dependence on the atomic thickness: A and B exciton peaks were greatly quenched in the monolayer MoS2 while much less effect was shown in larger thickness and the BG peak either showed very small quenching for 1 L MoS2 or remained constant for larger thicknesses. Our results indicate that confocal absorption spectral imaging can provide comprehensive information on optical transitions of microscopic size intrinsic and doped two-dimensional layered materials.
Evanescent Field Based Photoacoustics: Optical Property Evaluation at Surfaces
Goldschmidt, Benjamin S.; Rudy, Anna M.; Nowak, Charissa A.; Tsay, Yowting; Whiteside, Paul J. D.; Hunt, Heather K.
2016-01-01
Here, we present a protocol to estimate material and surface optical properties using the photoacoustic effect combined with total internal reflection. Optical property evaluation of thin films and the surfaces of bulk materials is an important step in understanding new optical material systems and their applications. The method presented can estimate thickness, refractive index, and use absorptive properties of materials for detection. This metrology system uses evanescent field-based photoacoustics (EFPA), a field of research based upon the interaction of an evanescent field with the photoacoustic effect. This interaction and its resulting family of techniques allow the technique to probe optical properties within a few hundred nanometers of the sample surface. This optical near field allows for the highly accurate estimation of material properties on the same scale as the field itself such as refractive index and film thickness. With the use of EFPA and its sub techniques such as total internal reflection photoacoustic spectroscopy (TIRPAS) and optical tunneling photoacoustic spectroscopy (OTPAS), it is possible to evaluate a material at the nanoscale in a consolidated instrument without the need for many instruments and experiments that may be cost prohibitive. PMID:27500652
NASA Technical Reports Server (NTRS)
Fauchez, Thomas; Platnick, Steven; Meyer, Kerry; Cornet, Celine; Szczap, Frederic; Varnai, Tamas
2017-01-01
This paper presents a study on the impact of cirrus cloud heterogeneities on MODIS simulated thermal infrared (TIR) brightness temperatures (BTs) at the top of the atmosphere (TOA) as a function of spatial resolution from 50 meters to 10 kilometers. A realistic 3-D (three-dimensional) cirrus field is generated by the 3DCLOUD model (average optical thickness of 1.4, cloudtop and base altitudes at 10 and 12 kilometers, respectively, consisting of aggregate column crystals of D (sub eff) equals 20 microns), and 3-D thermal infrared radiative transfer (RT) is simulated with the 3DMCPOL (3-D Monte Carlo Polarized) code. According to previous studies, differences between 3-D BT computed from a heterogenous pixel and 1-D (one-dimensional) RT computed from a homogeneous pixel are considered dependent at nadir on two effects: (i) the optical thickness horizontal heterogeneity leading to the plane-parallel homogeneous bias (PPHB); and the (ii) horizontal radiative transport (HRT) leading to the independent pixel approximation error (IPAE). A single but realistic cirrus case is simulated and, as expected, the PPHB mainly impacts the low-spatial resolution results (above approximately 250 meters), with averaged values of up to 5-7 K (thousand), while the IPAE mainly impacts the high-spatial resolution results (below approximately 250 meters) with average values of up to 1-2 K (thousand). A sensitivity study has been performed in order to extend these results to various cirrus optical thicknesses and heterogeneities by sampling the cirrus in several ranges of parameters. For four optical thickness classes and four optical heterogeneity classes, we have found that, for nadir observations, the spatial resolution at which the combination of PPHB and HRT effects is the smallest, falls between 100 and 250 meters. These spatial resolutions thus appear to be the best choice to retrieve cirrus optical properties with the smallest cloud heterogeneity-related total bias in the thermal infrared. For off-nadir observations, the average total effect is increased and the minimum is shifted to coarser spatial resolutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, J.; Zhao, D. G., E-mail: dgzhao@red.semi.ac.cn; Jiang, D. S.
2015-02-07
The optical and structural properties of InGaN/GaN multi-quantum wells (MQWs) with different thicknesses of low temperature grown GaN cap layers are investigated. It is found that the MQW emission energy red-shifts and the peak intensity decreases with increasing GaN cap layer thickness, which may be partly caused by increased floating indium atoms accumulated at quantum well (QW) surface. They will result in the increased interface roughness, higher defect density, and even lead to a thermal degradation of QW layers. An extra growth interruption introduced before the growth of GaN cap layer can help with evaporating the floating indium atoms, andmore » therefore is an effective method to improve the optical properties of high indium content InGaN/GaN MQWs.« less
Effects of clouds on the surface shortwave radiation at a rural inland mid-latitude site
NASA Astrophysics Data System (ADS)
Salgueiro, Vanda; Costa, Maria João; Silva, Ana Maria; Bortoli, Daniele
2016-09-01
Seven years (2003-2010) of measured shortwave (SW) irradiances were used to obtain estimates of the 10 min averaged effective cloud optical thickness (ECOT) and of the shortwave cloud radiative effect (CRESW) at the surface in a mid-latitude site (Évora - south of Portugal), and its seasonal variability is presented. The ECOT, obtained using transmittance measurements at 415 nm, was compared with the correspondent MODIS cloud optical thickness (MODIS COT) for non-precipitating water clouds and cloud fractions higher than 0.25. This comparison showed that the ECOT represents well the cloud optical thickness over the study area. The CRESW, determined for two SW broadband ranges (300-1100 nm; 285-2800 nm), was normalized (NCRESW) and related with the obtained ECOT. A logarithmic relation between NCRESW and ECOT was found for both SW ranges, presenting lower dispersion for overcast-sky situations than for partially cloudy-sky situations. The NCRESW efficiency (NCRESW per unit of ECOT) was also related with the ECOT for overcast-sky conditions. The relation found is parameterized by a power law function showing that NCRESW efficiency decreases as the ECOT increases, approaching one for ECOT values higher than about 50.
NASA Astrophysics Data System (ADS)
Rinnerbauer, V.; Schmidegg, K.; Hohage, M.; Sun, L. D.; Flores-Camacho, J. M.; Zeppenfeld, P.
2009-06-01
We have used reflectance difference spectroscopy (RDS) and its extension, azimuth-dependent RDS (ADRDS), to study the properties of sputtered and evaporated nickel films on biaxially oriented poly(ethylene terephtalate) (PET) films in a roll to roll web-coating process. From the full set of ADRDS spectra we extract and analyze both the intrinsic RDS spectra and the azimuthal orientation of the effective optical anisotropy of the samples. From the latter, contributions to the RDS spectra arising from the nickel layer and the PET substrate with different orientations of the optical eigenaxes can be inferred. We find an attenuation of the characteristic RDS signal of the PET substrate with increasing nickel film thickness which is in good agreement with the theoretical prediction. For film thicknesses above 20 nm another contribution to the RDS signal attributed to the optical anisotropy of the deposited nickel layers can be observed. Its strength depends on the deposition method, and is considerably larger for evaporated films than for sputtered ones. With increasing nickel film thickness, the azimuthal orientation of the sample anisotropy changes from the initial value of the PET substrate by about 20° toward the machine direction of the foil. We demonstrate that RDS is also a valuable tool for inline monitoring in the roll to roll process, as the attenuation of the RDS signal, under proper consideration of the orientation of the effective anisotropy, is a function of the film thickness and characteristic for the deposited material.
Retrieval of subvisual cirrus cloud optical thickness from limb-scatter measurements
NASA Astrophysics Data System (ADS)
Wiensz, J. T.; Degenstein, D. A.; Lloyd, N. D.; Bourassa, A. E.
2013-01-01
We present a technique for estimating the optical thickness of subvisual cirrus clouds detected by OSIRIS (Optical Spectrograph and Infrared Imaging System), a limb-viewing satellite instrument that measures scattered radiances from the UV to the near-IR. The measurement set is composed of a ratio of limb radiance profiles at two wavelengths that indicates the presence of cloud-scattering regions. Cross-sections and phase functions from an in situ database are used to simulate scattering by cloud-particles. With appropriate configurations discussed in this paper, the SASKTRAN successive-orders of scatter radiative transfer model is able to simulate accurately the in-cloud radiances from OSIRIS. Configured in this way, the model is used with a multiplicative algebraic reconstruction technique (MART) to retrieve the cloud extinction profile for an assumed effective cloud particle size. The sensitivity of these retrievals to key auxiliary model parameters is shown, and it is shown that the retrieved extinction profile, for an assumed effective cloud particle size, models well the measured in-cloud radiances from OSIRIS. The greatest sensitivity of the retrieved optical thickness is to the effective cloud particle size. Since OSIRIS has an 11-yr record of subvisual cirrus cloud detections, the work described in this manuscript provides a very useful method for providing a long-term global record of the properties of these clouds.
Effect of chemical structure on film-forming properties of seed oils
USDA-ARS?s Scientific Manuscript database
The film thickness of seven seed oils and two petroleum-based oils of varying chemical structures, was investigated by the method of optical interferometry under pure rolling conditions, and various combinations of entrainment speed (u), load, and temperature. The measured film thickness (h measured...
Characterization on Smart Optics Using Ellipsometry
NASA Technical Reports Server (NTRS)
Song, Kyo D.
2002-01-01
Recently, NASA Langley Research Center developed a smart active optical concept to filter narrow band pass or to control optical intensity. To characterize developed smart optics materials, we have measured thickness and reflection properties of the materials using a WVASE32 ellipsometry. This project allowed us to: (1) prepare the smart optical materials for measurement of thickness and optical properties at NASA Langley Research Center; (2) measure thickness and optical properties of the smart optical materials; (3) evaluate the measured properties in terms of applications for narrow band-pass filters. The outcomes of this research provide optical properties and physical properties of the smart optics on a selected spectral range. The applications of this development were used for field-controlled spectral smart filters.
Multiscale solutions of radiative heat transfer by the discrete unified gas kinetic scheme
NASA Astrophysics Data System (ADS)
Luo, Xiao-Ping; Wang, Cun-Hai; Zhang, Yong; Yi, Hong-Liang; Tan, He-Ping
2018-06-01
The radiative transfer equation (RTE) has two asymptotic regimes characterized by the optical thickness, namely, optically thin and optically thick regimes. In the optically thin regime, a ballistic or kinetic transport is dominant. In the optically thick regime, energy transport is totally dominated by multiple collisions between photons; that is, the photons propagate by means of diffusion. To obtain convergent solutions to the RTE, conventional numerical schemes have a strong dependence on the number of spatial grids, which leads to a serious computational inefficiency in the regime where the diffusion is predominant. In this work, a discrete unified gas kinetic scheme (DUGKS) is developed to predict radiative heat transfer in participating media. Numerical performances of the DUGKS are compared in detail with conventional methods through three cases including one-dimensional transient radiative heat transfer, two-dimensional steady radiative heat transfer, and three-dimensional multiscale radiative heat transfer. Due to the asymptotic preserving property, the present method with relatively coarse grids gives accurate and reliable numerical solutions for large, small, and in-between values of optical thickness, and, especially in the optically thick regime, the DUGKS demonstrates a pronounced computational efficiency advantage over the conventional numerical models. In addition, the DUGKS has a promising potential in the study of multiscale radiative heat transfer inside the participating medium with a transition from optically thin to optically thick regimes.
Chamorro, E; Bonnin-Arias, C; Pérez-Carrasco, M J; Alvarez-Rementería, L; Villa-Collar, C; Armadá-Maresca, F; Sánchez-Ramos, C
2014-04-01
To study the use of optical coherence tomography (OCT), for measuring the macular thickness variations produced over time in elderly pseudophakic subjects implanted with a clear intraocular lens (IOL) in one eye, and a yellow IOL in the other eye. Macular thickness measurements were obtained in the 36 eyes of 18 subjects over 65 years, with cataracts surgically removed from both eyes and implanted with different absorbance (clear and yellow) IOLs in 2 separate surgeries. Stratus-OCT was used to determine the macular thickness in 2 sessions with 5 years of difference. After 5 years of follow-up, the eyes implanted with clear IOLs revealed a significant decrease in macular thickness. However, in eyes implanted with yellow IOLs the macular thickness remained stable. The mean overall decrease in macular thickness in eyes implanted with clear IOLs was 5 ± 8 μm (P=.02), and foveal thickness reduction was 10 ± 17 μm (P=.02). The macular thickness changes produced in eyes implanted with a yellow IOL differ from those with a clear IOL. These observation point to a possible protective effect of yellow IOL against the harmful effects of light in elderly pseudophakic subjects. However, studies with a longer follow-up are still needed to confirm that the protection provided by this IOL model is clinically significant. Copyright © 2010 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.
Kim, Min Su; Kim, Do Yeob; Kim, Sung-O; Leem, Jae-Young
2013-05-01
ZnO nanorods were grown on the Mg0.2Zn0.8O seed layers with different thickness by hydrothermal method. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) were carried out to investigate the effects of the Mg0.2Zn0.8O seed layer thickness on the structural and the optical properties of the ZnO nanorods. The residual stress in the Mg0.2Zn0.8O seed layers was depended on the thickness while the texture coefficient of the Mg0.2Zn0.8O seed layers was not affected significantly. The smaller full width at half maximum (FWHM) of the ZnO (002) diffraction and near-band-edge emission (NBE) peak and the larger average grain size were observed from the ZnO nanorods grown on the Mg0.2Zn0.8O seed layers with 5 layers (thickness of 350 nm), which indicate the enhancement the structural and the optical properties of the ZnO nanorods.
NASA Astrophysics Data System (ADS)
Uluta, K.; Deer, D.; Skarlatos, Y.
2006-08-01
The electrical conductivity and absorption coefficient of amorphous indium oxide thin films, thermally evaporated on glass substrates at room temperature, were evaluated. For direct transitions the variation of the optical band gap with thickness was determined and this variation was supposed to appear due to the variation of localized gap states, whereas the variation of conductivity with thickness was supposed to be due to the variation of carrier concentration. We attribute the variation of absorption coefficient with thickness to the variation of optical band gap energy rather than optical interference.
NASA Astrophysics Data System (ADS)
Girouard, Peter D.
The microwave, optical, and electro-optic properties of epitaxial barium titanate thin films grown on (100) MgO substrates and photonic crystal electro-optic modulators fabricated on these films were investigated to demonstrate the applicability of these devices for telecommunication and data networks. The electrical and electro-optical properties were characterized up to modulation frequencies of 50 GHz, and the optical properties of photonic crystal waveguides were determined for wavelengths spanning the optical C band between 1500 and 1580 nm. Microwave scattering parameters were measured on coplanar stripline devices with electrode gap spacings between 5 and 12 mum on barium titanate films with thicknesses between 230 and 680 nm. The microwave index and device characteristic impedance were obtained from the measurements. Larger (lower) microwave indices (impedances) were obtained for devices with narrower electrode gap spacings and on thicker films. Thinner film devices have both lower index mismatch between the co-propagating microwave and optical signals and lower impedance mismatch to a 50O system, resulting in a larger predicted electro-optical 3 dB bandwidth. This was experimentally verified with electro-optical frequency response measurements. These observations were applied to demonstrate a record high 28 GHz electro-optic bandwidth measured for a BaTiO3 conventional ridge waveguide modulator having 1mm long electrodes and 12 mum gap spacing on a 260nm thick film. The half-wave voltage and electro-optic coefficients of barium titanate modulators were measured for films having thicknesses between 260 and 500 nm. The half-wave voltage was directly measured at low frequencies using a polarizer-sample-compensator-analyzer setup by over-driving waveguide integrated modulators beyond their linear response regime. Effective in-device electro-optic coefficients were obtained from the measured half-wave voltages. The effective electro-optic coefficients were found to increase with both applied electrical dc bias and with film thickness. A record low 0.39V ˙ cm (0.45V ˙ cm) voltage-length product was measured for barium titanate modulators operating at telecommunication wavelengths on a device with 5 ?m electrode gap spacing on a 500nm thick film modulated at a frequency of 100 Hz (1 MHz). This measured voltage-length product is more than a factor of 5 lower than that reported for state-of-the-art silicon conventional waveguide modulators. The electro-optical characterization of BaTiO3 films revealed a trade-off that exists for traveling wave BaTiO3 modulators: lower voltages are obtained in thicker film devices with narrow electrode gap spacing while larger bandwidths are obtained in thinner film devices with wider electrode gap spacing. These findings were supported by calculations of the film thickness dependent half-wave voltage and electro-optic bandwidth. In order to demonstrate modulators having simultaneously low voltage operation and high electro-optic bandwidth, photonic crystal waveguide modulators with large group index were investigated through theory and experiment. The theory for slow light phase delay in linear optical materials was extended for second order nonlinear optical materials. This theory was incorporated into a detailed model for predicting photonic crystal modulator performance in terms of voltage-length product and electro-optic bandwidth. Modeling shows that barium titanate photonic crystal modulators with sub-millimeter length, sub-volt operation, and greater than 40 GHz electro-optic bandwidth are achievable in a single device. Two types of photonic crystal waveguides (PC) on BaTiO3 films were designed, fabricated, and characterized: waveguides with hexagonal lattice symmetry and waveguides with hexagonal symmetry having a line defect oriented in the direction of light propagation. Excellent agreement was obtained between the simulated and measured transmission for hexagonal lattice PC waveguides. An extinction of 20 dB was measured across a 9.9 nm stop band edge, yielding a record large band edge sharpness of 2 dB/nm for all photonic crystal waveguides on ferroelectric films. A 12-fold enhancement of the electro-optic coefficient was measured via optical spectral analysis in a line defect BaTiO3 modulator, yielding an effective electro-optic coefficient of 900 pm/V in the photonic crystal region at a modulation frequency of 10 GHz. This enhancement was demonstrated over a 48 nm range, demonstrating the wideband operation of these devices.
NASA Technical Reports Server (NTRS)
King, Michael D.
2005-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. It achieved its final orbit and began Earth observations on February 24, 2000 for Terra and June 24, 2002 for Aqua. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate change studies, climate modeling, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. We will describe the various cloud properties being analyzed on a global basis from both Terra and Aqua. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the world.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven
2005-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18,1999 and Aqua spacecraft on May 4, 2002. It achieved its final orbit and began Earth observations on February 24, 2000 for Terra and June 24, 2002 for Aqua. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate change studies, climate modeling, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. We will describe the various cloud properties being analyzed on a global basis from both Terra and Aqua. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the world.
Graphene-based multilayer resonance structure to enhance the optical pressure on a Mie particle
NASA Astrophysics Data System (ADS)
Hassanzadeh, Abdollah; Mohammadnezhad, Mohammadbagher
2016-04-01
We theoretically investigate the optical force exerted on a Mie dielectric particle in the evanescent field of a graphene-based resonance multilayer structure using the arbitrary beam theory and the theory of multilayer films. The resonance structure consists of several thin films including a dielectric film (MgF2), a metal film (silver or gold), and several graphene layers which are located on a prism base. The effects of the metal film thickness and the number of graphene layers on the optical force are numerically investigated. The thickness of the metal layer and the number of graphene layers are optimized to reach the highest optical force. The numerical results show that an optimized composition of graphene and gold leads to a higher optical force compared to that of the graphene and silver. The optical force was enhanced resonantly by four orders of magnitude for the resonance structure containing graphene and a gold film and by three orders of magnitude for the structure containing graphene and a silver film compared to other similar resonance structures. We hope that the results presented in this paper can provide an excellent means of improving the optical manipulation of particles and enable the provision of effective optical tweezers, micromotors, and microaccelelators.
Surface roughness of Saturn's rings and ring particles inferred from thermal phase curves
NASA Astrophysics Data System (ADS)
Morishima, Ryuji; Turner, Neal; Spilker, Linda
2017-10-01
We analyze thermal phase curves of all the main rings of Saturn (the A, B, C rings, and the Cassini division) measured by both the far-IR and mid-IR detectors of the Cassini Composite InfraRed Spectrometer (CIRS). All the rings show temperature increases toward zero phase angle, known as an opposition effect or thermal beaming. For the C ring and Cassini division, which have low optical depths, intra-particle shadowing is considered the dominant mechanism causing the effect. On the other hand, the phase curves of the optically thick B and A rings steepen significantly with decreasing absolute solar elevation angle from 21° to 14°, suggesting inter-particle shadowing plays an important role in these rings. We employ an analytic roughness model to estimate the degrees of surface roughness of the rings or ring particles. For optically thin rings, an isolated particle covered by spherical segment craters is employed while for the thick rings we approximate a packed particle layer as a slab covered by craters. The particles in the thin rings are found to have generally rough surfaces, except in the middle C ring. Across the C ring, the optical depth correlates with the degree of surface roughness. This may indicate that surface roughness comes mainly from particle clumping, while individual particles have rather smooth surfaces. For the optically thick rings, the surface roughness of the particle layer is found to be moderate. The modeled phase curves of optically thick rings are shallow if the phase angle change is primarily due to change of observer azimuthal angle. On the other hand, the phase curves are steep if the phase angle change is due to change of observer elevation angle, as inter-particle shadows become visible at higher observer elevation. In addition, the area of shadowed facets increases with decreasing solar elevation angle. These combined effects explain the large seasonal change of the phase curve steepness observed for the thick rings. The degrees of surface roughness inferred from the thermal phase curves are generally less than those from the phase curves in visible light. This is probably explained by different roughness scales seen in thermal and visible light or by dilution of thermal phase curve steepnesses due to particle motion.
NASA Astrophysics Data System (ADS)
Meyer, K.; Platnick, S. E.; Zhang, Z.
2013-12-01
Clouds, aerosols, and their interactions are widely considered to be key uncertainty components in our current understanding of the Earth's atmosphere and radiation budget. The work presented here is focused on the quasi-permanent marine boundary layer (MBL) clouds over the southeastern Atlantic Ocean, which underlie a near-persistent smoke layer produced from extensive biomass burning throughout the southern African savanna during austral winter. The absorption of the above-cloud smoke layer, which increases with decreasing wavelength, can introduce biases into the standard MODIS cloud optical and microphysical property retrievals of the underlying MBL clouds. This effect is more pronounced in the cloud optical thickness retrievals, which over ocean are derived from the wavelength channel centered near 0.86 μm (effective particle size retrievals are derived from the short and mid-wave IR channels at 1.6, 2.1, and 3.7 μm). Here, a new method is introduced to simultaneously retrieve the above-cloud smoke aerosol optical depth (AOD) and the unbiased cloud optical thickness (COT) and effective radius (CER) using multiple MODIS spectral channels in the visible and near- and shortwave-infrared. Preliminary retrieval results are shown, as are comparisons with other A-Train sensors.
NASA Astrophysics Data System (ADS)
Meyer, K.; Platnick, S. E.; Zhang, Z.
2014-12-01
Clouds, aerosols, and their interactions are widely considered to be key uncertainty components in our current understanding of the Earth's atmosphere and radiation budget. The work presented here is focused on the quasi-permanent marine boundary layer (MBL) clouds over the southeastern Atlantic Ocean, which underlie a near-persistent smoke layer produced from extensive biomass burning throughout the southern African savanna during austral winter. The absorption of the above-cloud smoke layer, which increases with decreasing wavelength, can introduce biases into imager-based cloud optical and microphysical property retrievals of the underlying MBL clouds. This effect is more pronounced for cloud optical thickness retrievals, which are typically derived from the visible or near-IR wavelength channels (effective particle size retrievals are derived from short and mid-wave IR channels that are less affected by aerosol absorption). Here, a new method is introduced to simultaneously retrieve the above-cloud smoke aerosol optical depth (AOD) and the unbiased cloud optical thickness (COT) and effective radius (CER) using multiple spectral channels in the visible and near- and shortwave-IR. The technique has been applied to MODIS, and retrieval results and statistics, as well as comparisons with other A-Train sensors, are shown.
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Lee, Kyu-Tae; Yang, Ping; Lau, William K. M. (Technical Monitor)
2002-01-01
Based on the single-scattering optical properties that are pre-computed using an improve geometric optics method, the bulk mass absorption coefficient, single-scattering albedo, and asymmetry factor of ice particles have been parameterized as a function of the mean effective particle size of a mixture of ice habits. The parameterization has been applied to compute fluxes for sample clouds with various particle size distributions and assumed mixtures of particle habits. Compared to the parameterization for a single habit of hexagonal column, the solar heating of clouds computed with the parameterization for a mixture of habits is smaller due to a smaller cosingle-scattering albedo. Whereas the net downward fluxes at the TOA and surface are larger due to a larger asymmetry factor. The maximum difference in the cloud heating rate is approx. 0.2 C per day, which occurs in clouds with an optical thickness greater than 3 and the solar zenith angle less than 45 degrees. Flux difference is less than 10 W per square meters for the optical thickness ranging from 0.6 to 10 and the entire range of the solar zenith angle. The maximum flux difference is approximately 3%, which occurs around an optical thickness of 1 and at high solar zenith angles.
Optical Thickness and Effective Radius Retrievals of Liquid Water Clouds over Ice and Snow Surface
NASA Technical Reports Server (NTRS)
Platnick, S.; King, M. D.; Tsay, S.-C.; Arnold, G. T.; Gerber, H.; Hobbs, P. V.; Rangno, A.
1999-01-01
Cloud optical thickness and effective radius retrievals from solar reflectance measurements traditionally depend on a combination of spectral channels that are absorbing and non-absorbing for liquid water droplets. Reflectances in non-absorbing channels (e.g., 0.67, 0.86 micrometer bands) are largely dependent on cloud optical thickness, while longer wavelength absorbing channels (1.6, 2.1, and 3.7 micrometer window bands) provide cloud particle size information. Retrievals are complicated by the presence of an underlying ice/snow surface. At the shorter wavelengths, sea ice is both bright and highly variable, significantly increasing cloud retrieval uncertainty. However, reflectances at the longer wavelengths are relatively small and may be comparable to that of dark open water. Sea ice spectral albedos derived from Cloud Absorption Radiometer (CAR) measurements during April 1992 and June 1995 Arctic field deployments are used to illustrate these statements. A modification to the traditional retrieval technique is devised. The new algorithm uses a combination of absorbing spectral channels for which the snow/ice albedo is relatively small. Using this approach, preliminary retrievals have been made with the MODIS Airborne Simulator (MAS) imager flown aboard the NASA ER-2 during FIRE-ACE. Data from coordinated ER-2 and University of Washington CV-580 aircraft observations of liquid water stratus clouds on June 3 and June 6, 1998 have been examined. Size retrievals are compared with in situ cloud profile measurements of effective radius made with the CV-580 PMS FSSP probe, and optical thickness retrievals are compared with extinction profiles derived from the Gerber Scientific "g-meter" probe. MAS retrievals are shown to be in good agreement with the in situ measurements.
NASA Technical Reports Server (NTRS)
Fox, Robert; Prins, Elaine Mae; Feltz, Joleen M.
2001-01-01
In recent years, modeling and analysis efforts have suggested that the direct and indirect radiative effects of both anthropogenic and natural aerosols play a major role in the radiative balance of the earth and are an important factor in climate change calculations. The direct effects of aerosols on radiation and indirect effects on cloud properties are not well understood at this time. In order to improve the characterization of aerosols within climate models it is important to accurately parameterize aerosol forcing mechanisms at the local, regional, and global scales. This includes gaining information on the spatial and temporal distribution of aerosols, transport regimes and mechanisms, aerosol optical thickness, and size distributions. Although there is an expanding global network of ground measurements of aerosol optical thickness and size distribution at specific locations, satellite data must be utilized to characterize the spatial and temporal extent of aerosols and transport regimes on regional and global scales. This study was part of a collaborative effort to characterize aerosol radiative forcing over the Atlantic basin associated with the following three major aerosol components in this region: urban/sulfate, Saharan dust, and biomass burning. In-situ ground measurements obtained by a network of sun photometers during the Smoke Clouds and Radiation Experiment in Brazil (SCAR-B) and the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) were utilized to develop, calibrate, and validate a Geostationary Operational Environmental Satellite (GOES)-8 aerosol optical thickness (AOT) product. Regional implementation of the GOES-8 AOT product was used to augment point source measurements to gain a better understanding of the spatial and temporal distributions of Atlantic basin aerosols during SCAR-B and TARFOX.
A model for microwave emission from vegetation-covered fields
NASA Technical Reports Server (NTRS)
Mo, T.; Choudhury, B. J.; Schmugge, T. J.; Wang, J. R.; Jackson, T. J.
1982-01-01
The measured brightness temperatures over vegetation-covered fields are simulated by a radiative transfer model which treats the vegetation as a uniform canopy with a constant temperature, over a moist soil which emits polarized microwave radiation. The analytic formula for the microwave emission has four parameters: roughness height, polarization mixing factor, effective canopy optical thickness, and single scattering albedo. A good representation has been obtained with the model for both the horizontally and vertically polarized brightness temperatures at 1.4 and 5 GHz frequencies, over fields covered with grass, soybean and corn. A directly proportional relation is found between effective canopy optical thickness and the amount of water present in the vegetation canopy. The effective canopy single scattering albedo depends on vegetation type.
Effects of cirrus composition on atmospheric radiation budgets
NASA Technical Reports Server (NTRS)
Kinne, Stefan; Liou, Kuo-Nan
1988-01-01
A radiative transfer model that can be used to determine the change in solar and infrared fluxes caused by variations in the composition of cirrus clouds was used to investigate the importance of particle size and shape on the radiation budget of the Earth-atmosphere system. Even though the cloud optical thickness dominates the radiative properties of ice clouds, the particle size and nonsphericity of ice crystals are also important in calculations of the transfer of near-IR solar wavelengths. Results show that, for a given optical thickness, ice clouds composed of larger particles would produce larger greenhouse effects than those composed of smaller particles. Moreover, spherical particles with equivalent surface areas, frequently used for ice crystal clouds, would lead to an overestimation of the greenhouse effect.
NASA Technical Reports Server (NTRS)
Otterman, J.; Susskind, J.; Dalu, G.; Kratz, D.; Goldberg, I. L.
1992-01-01
The impact of water-emission anisotropy on remotedly sensed long-wave data has been studied. Water emission is formulated from a calm body for a facile computation of radiative transfer in the atmosphere. The error stemming from the blackbody assumption are calculated for cases of a purely absorbing or a purely scattering atmosphere taking the optical properties of the atmosphere as known. For an absorbing atmosphere, the errors in the sea-surface temperature (SST) are found to be always reduced and be the same whether measurements are made from space or at any level of the atmosphere. The inferred optical thickness tau of an absorbing layer can be in error under the blackbody assumption by a delta tau of 0.01-0.08, while the inferred optical thickness of a scattering layer can be in error by a larger amount, delta tau of 0.03-0.13. It is concluded that the error delta tau depends only weakly on the actual optical thickness and the viewing angle, but is rather sensitive to the wavelength of the measurement.
NASA Astrophysics Data System (ADS)
Kumar, A.; Pensia, R. K.
2018-05-01
This paper deals with the effect of rotation on the gravitational instability of optically thick magnetized quantum plasma in the presence of radiation. By using linearized perturbation equations of the problem, general dispersion relation is obtained which is reduced for longitudinal and transverse modes of propagation. For each mode, the problem is analyzed for two cases, when the direction of axis of rotation is parallel or perpendicular to the direction of magnetic field. Rotation parameter is found to modify the Jeans criterion of instability and expression for Jeans wavelength for transverse mode, when the axis of rotation is along the direction of magnetic field and it has stabilizing effect on the system. Magnetic field, radiation pressure and quantum correction also found to have stabilizing effect.
NASA Astrophysics Data System (ADS)
Melnikova, Irina; Gatebe, Charles K.
2018-07-01
Past strategies for retrieving cloud optical properties from remote sensing assumed significant limits for desired parameters such as semi-infinite optical thickness, single scattering albedo equaling unity (non-absorbing scattering), absence of spectral dependence of the optical thickness, etc., and only one optical parameter could be retrieved (either optical thickness or single scattering albedo). Here, we demonstrate a new method based on asymptotic theory for thick atmospheres, and the presence of a diffusion domain within the clouds that does not put restrictions and makes it possible to get two or even three optical parameters (optical thickness, single scattering albedo and phase function asymmetry parameter) for every wavelength independently. We applied this method to measurements of angular distribution of solar radiation above, inside and below clouds, obtained with NASA's Cloud Absorption Radiometer (CAR) over two cases of marine stratocumulus clouds; first case, offshore of Namibia and the second case, offshore of California. The observational and retrieval errors are accounted for by regularization, which allows stable and smooth solutions. Results show good potential for parameterization of the shortwave radiative properties (reflection, transmission, radiative divergence and heating rate) of water clouds.
NASA Astrophysics Data System (ADS)
Chander, Subhash; Dhaka, M. S.
2016-10-01
The thickness and physical properties of electron beam vacuum evaporated CdZnTe thin films have been optimized in the present work. The films of thickness 300 nm and 400 nm were deposited on ITO coated glass substrates and subjected to different characterization tools like X-ray diffraction (XRD), UV-Vis spectrophotometer, source meter and scanning electron microscopy (SEM) to investigate the structural, optical, electrical and surface morphological properties respectively. The XRD results show that the as-deposited CdZnTe thin films have zinc blende cubic structure and polycrystalline in nature with preferred orientation (111). Different structural parameters are also evaluated and discussed. The optical study reveals that the optical transition is found to be direct and energy band gap is decreased for higher thickness. The transmittance is found to increase with thickness and red shift observed which is suitable for CdZnTe films as an absorber layer in tandem solar cells. The current-voltage characteristics of deposited films show linear behavior in both forward and reverse directions as well as the conductivity is increased for higher film thickness. The SEM studies show that the as-deposited CdZnTe thin films are found to be homogeneous, uniform, small circle-shaped grains and free from crystal defects. The experimental results confirm that the film thickness plays an important role to optimize the physical properties of CdZnTe thin films for tandem solar cell applications as an absorber layer.
In situ measurements of thin films in bovine serum lubricated contacts using optical interferometry.
Vrbka, Martin; Křupka, Ivan; Hartl, Martin; Návrat, Tomáš; Gallo, Jiří; Galandáková, Adéla
2014-02-01
The aim of this study is to consider the relevance of in situ measurements of bovine serum film thickness in the optical test device that could be related to the function of the artificial hip joint. It is mainly focussed on the effect of the hydrophobicity or hydrophilicity of the transparent surface and the effect of its geometry. Film thickness measurements were performed using ball-on-disc and lens-on-disc configurations of optical test device as a function of time. Chromatic interferograms were recorded with a high-speed complementary metal-oxide semiconductor digital camera and evaluated with thin film colorimetric interferometry. It was clarified that a chromium layer covering the glass disc has a hydrophobic behaviour which supports the adsorption of proteins contained in the bovine serum solution, thereby a thicker lubricating film is formed. On the contrary, the protein film formation was not observed when the disc was covered with a silica layer having a hydrophilic behaviour. In this case, a very thin lubricating film was formed only due to the hydrodynamic effect. Metal and ceramic balls have no substantial effect on lubricant film formation although their contact surfaces have relatively different wettability. It was confirmed that conformity of contacting surfaces and kinematic conditions has fundamental effect on bovine serum film formation. In the ball-on-disc configuration, the lubricant film is formed predominantly due to protein aggregations, which pass through the contact zone and increase the film thickness. In the more conformal ball-on-lens configuration, the lubricant film is formed predominantly due to hydrodynamic effect, thereby the film thickness is kept constant during measurement.
NASA Astrophysics Data System (ADS)
Zhang, Mi; Xu, Maji; Li, Mingkai; Zhang, Qingfeng; Lu, Yinmei; Chen, Jingwen; Li, Ming; Dai, Jiangnan; Chen, Changqing; He, Yunbin
2017-11-01
A series of a-plane SnO2 films with thickness between 2.5 nm and 1436 nm were grown epitaxially on c-sapphire by pulsed laser deposition (PLD), to allow a detailed probe into the structure evolution and optical band gap modulation of SnO2 with growing thickness. All films exhibit excellent out-of-plane ordering (lowest (200) rocking-curve half width ∼0.01°) with an orientation of SnO2(100) || Al2O3(0001), while three equivalent domains that are rotated by 120° with one another coexist in-plane with SnO2[010] || Al2O3 [11-20]. Initially the SnO2(100) film assumes a two-dimensional (2D) layer-by-layer growth mode with atomically smooth surface (minimum root-mean-square roughness of 0.183 nm), and endures compressive strain along both c and a axes as well as mild tensile strain along the b-axis. With increasing thickness, transition from the 2D to 3D island growth mode takes place, leading to formation of various defects to allow relief of the stress and thus relaxation of the film towards bulk SnO2. More interestingly, with increasing thickness from nm to μm, the SnO2 films present a non-monotonic V-shaped variation in the optical band gap energy. While the band gap of SnO2 films thinner than 6.1 nm increases rapidly with decreasing film thickness due to the quantum size effect, the band gap of thicker SnO2 films broadens almost linearly with increasing film thickness up to 374 nm, as a result of the strain effect. The present work sheds light on future design of SnO2 films with desired band gap for particular applications by thickness control and strain engineering.
NASA Technical Reports Server (NTRS)
Sundqvist, Jon O.; Owocki, Stanley P.; Cohen, David H.; Leutenegger, Maurice A.; Townsend, Richard H. D.
2002-01-01
We present a generalised formalism for treating the porosity-associated reduction in continuum opacity that occurs when individual clumps in a stochastic medium become optically thick. As in previous work, we concentrate on developing bridging laws between the limits of optically thin and thick clumps. We consider geometries resulting in either isotropic or anisotropic effective opacity, and, in addition to an idealised model in which all clumps have the same local overdensity and scale, we also treat an ensemble of clumps with optical depths set by Markovian statistics. This formalism is then applied to the specific case of bound-free absorption of X- rays in hot star winds, a process not directly affected by clumping in the optically thin limit. We find that the Markov model gives surprisingly similar results to those found previously for the single clump model, suggesting that porous opacity is not very sensitive to details of the assumed clump distribution function. Further, an anisotropic effective opacity favours escape of X-rays emitted in the tangential direction (the venetian blind effect), resulting in a bump of higher flux close to line centre as compared to profiles computed from isotropic porosity models. We demonstrate how this characteristic line shape may be used to diagnose the clump geometry, and we confirm previous results that for optically thick clumping to significantly influence X-ray line profiles, very large porosity lengths, defined as the mean free path between clumps, are required. Moreover, we present the first X-ray line profiles computed directly from line-driven instability simulations using a 3-D patch method, and find that porosity effects from such models also are very small. This further supports the view that porosity has, at most, a marginal effect on X-ray line diagnostics in O stars, and therefore that these diagnostics do indeed provide a good clumping insensitive method for deriving O star mass-loss rates.
NASA Technical Reports Server (NTRS)
Sundqvist, Jon O.; Owocki, Stanley P.; Cohen, David H.; Leutenegger, Maurice A.
2011-01-01
We present a generalised formalism for treating the porosity-associated reduction in continuum opacity that occurs when individual clumps in a stochastic medium become optically thick. As in previous work, we concentrate on developing bridging laws between the limits of optically thin and thick clumps. We consider geometries resulting in either isotropic or anisotropic effective opacity, and, in addition to an idealised model in which all clumps have the same local overdensity and scale, we also treat an ensemble of clumps with optical depths set by Markovian statistics. This formalism is then applied to the specific case of bound-free absorption of X- rays in hot star winds, a process not directly affected by clumping in the optically thin limit. We find that the Markov model gives surprisingly similar results to those found previously for the single clump model, suggesting that porous opacity is not very sensitive to details of the assumed clump distribution function. Further, an anisotropic effective opacity favours escape of X-rays emitted in the tangential direction (the venetian blind effect), resulting in a bump of higher flux close to line centre as compared to profiles computed from isotropic porosity models. We demonstrate how this characteristic line shape may be used to diagnose the clump geometry, and we confirm previous results that for optically thick clumping to significantly influence X-ray line profiles, very large porosity lengths, defined as the mean free path between clumps, are required. Moreover, we present the first X-ray line profiles computed directly from line-driven instability simulations using a 3-D patch method, and find that porosity effects from such models also are very small. This further supports the view that porosity has, at most, a marginal effect on X-ray line diagnostics in O stars, and therefore that these diagnostics do indeed provide a good clumping insensitive method for deriving O star mass-loss rates.
NASA Astrophysics Data System (ADS)
Li, Fei; Zhou, Xiaodong; Feng, Wanxiang; Fu, Botao; Yao, Yugui
2018-04-01
Recently, two-dimensional (2D) GaS and GaSe nanosheets were successfully fabricated and the measured electronic, mechanical, and optoelectronic properties are excellent. Here, using the first-principles density functional theory, we investigate the magnetic, optical, and magneto-optical (MO) Kerr and Faraday effects in hole-doped GaS and GaSe multilayers. GaS and GaSe monolayers (MLs) manifest ferromagnetic ground states by introducing even a small amount of hole doping, whereas the magnetism in GaS and GaSe multilayers are significantly different under hole doping. Our results show that ferromagnetic states can be easily established in GaS bilayers and trilayers under proper hole doping, however, most of GaSe multilayers are more favorable to nonmagnetic states. The magnetic moments in GaS multilayers are weakened remarkably with the increasing of thin film thickness and are negligible more than three MLs. This leads to the thickness dependence of MO Kerr and Faraday effects. Furthermore, the MO effects strongly depend on the doping concentration and therefore are electrically controllable by adjusting the number of holes via gate voltage. The substrate effects on the MO properties are also discussed. Combining the unique MO and other interesting physical properties make GaS and GaSe a superior 2D material platform for semiconductor MO and spintronic nanodevices.
NASA Astrophysics Data System (ADS)
Shekhar, Himanshu; Tzabari, Lior; Solomeshch, Olga; Tessler, Nir
2016-10-01
We have investigated the influence of the active layer thickness on the balance of the internal mechanisms affecting the efficiency of copper phthalocyanine - fullerene (C60) based vacuum deposited bulk heterojunction organic photocell. We fabricated a range of devices for which we varied the thickness of the active layer from 40 to 120 nm and assessed their performance using optical and electrical characterization techniques. As reported previously for phthalocyanine:C60, the performance of the device is highly dependent on the active layer thickness and of all the thicknesses we tried, the 40 nm thin active layer device showed the best solar cell characteristic parameters. Using the transfer matrix based optical model, which includes interference effects, we calculated the optical power absorbed in the active layers for the entire absorption band, and we found that this cannot explain the trend with thickness. Measurement of the cell quantum efficiency as a function of light intensity showed that the relative weight of the device internal processes changes when going from 40 nm to 120 nm thick active layer. Electrical modeling of the device, which takes different internal processes into account, allowed to quantify the changes in the processes affecting the generation - recombination balance. Sub gap external quantum efficiency and morphological analysis of the surface of the films agree with the model's result. We found that as the thickness grows the density of charge transfer states and of dark carriers goes up and the uniformity in the vertical direction is reduced.
Anomalous Faraday effect of a system with extraordinary optical transmittance.
Khanikaev, Alexander B; Baryshev, Alexander V; Fedyanin, Andrey A; Granovsky, Alexander B; Inoue, Mitsuteru
2007-05-28
It is shown theoretically that the Faraday rotation becomes anomalously large and exhibits extraordinary behavior near the frequencies of the extraordinary optical transmittance through optically thick perforated metal film with holes filled with a magneto-optically active material. This phenomenon is explained as result of strong confinement of the evanescent electromagnetic field within magnetic material, which occurs due to excitation of the coupled plasmon-polaritons on the opposite surfaces of the film.
Vision-based surface defect inspection for thick steel plates
NASA Astrophysics Data System (ADS)
Yun, Jong Pil; Kim, Dongseob; Kim, KyuHwan; Lee, Sang Jun; Park, Chang Hyun; Kim, Sang Woo
2017-05-01
There are several types of steel products, such as wire rods, cold-rolled coils, hot-rolled coils, thick plates, and electrical sheets. Surface stains on cold-rolled coils are considered defects. However, surface stains on thick plates are not considered defects. A conventional optical structure is composed of a camera and lighting module. A defect inspection system that uses a dual lighting structure to distinguish uneven defects and color changes by surface noise is proposed. In addition, an image processing algorithm that can be used to detect defects is presented in this paper. The algorithm consists of a Gabor filter that detects the switching pattern and employs the binarization method to extract the shape of the defect. The optics module and detection algorithm optimized using a simulator were installed at a real plant, and the experimental results conducted on thick steel plate images obtained from the steel production line show the effectiveness of the proposed method.
Cordeiro, Daniela Valença; Lima, Verônica Castro; Castro, Dinorah P; Castro, Leonardo C; Pacheco, Maria Angélica; Lee, Jae Min; Dimantas, Marcelo I; Prata, Tiago Santos
2011-01-01
To evaluate the influence of optic disc size on the diagnostic accuracy of macular ganglion cell complex (GCC) and conventional peripapillary retinal nerve fiber layer (pRNFL) analyses provided by spectral domain optical coherence tomography (SD-OCT) in glaucoma. Eighty-two glaucoma patients and 30 healthy subjects were included. All patients underwent GCC (7 × 7 mm macular grid, consisting of RNFL, ganglion cell and inner plexiform layers) and pRNFL thickness measurement (3.45 mm circular scan) by SD-OCT. One eye was randomly selected for analysis. Initially, receiver operating characteristic (ROC) curves were generated for different GCC and pRNFL parameters. The effect of disc area on the diagnostic accuracy of these parameters was evaluated using a logistic ROC regression model. Subsequently, 1.5, 2.0, and 2.5 mm(2) disc sizes were arbitrarily chosen (based on data distribution) and the predicted areas under the ROC curves (AUCs) and sensitivities were compared at fixed specificities for each. Average mean deviation index for glaucomatous eyes was -5.3 ± 5.2 dB. Similar AUCs were found for the best pRNFL (average thickness = 0.872) and GCC parameters (average thickness = 0.824; P = 0.19). The coefficient representing disc area in the ROC regression model was not statistically significant for average pRNFL thickness (-0.176) or average GCC thickness (0.088; P ≥ 0.56). AUCs for fixed disc areas (1.5, 2.0, and 2.5 mm(2)) were 0.904, 0.891, and 0.875 for average pRNFL thickness and 0.834, 0.842, and 0.851 for average GCC thickness, respectively. The highest sensitivities - at 80% specificity for average pRNFL (84.5%) and GCC thicknesses (74.5%) - were found with disc sizes fixed at 1.5 mm(2) and 2.5 mm(2). Diagnostic accuracy was similar between pRNFL and GCC thickness parameters. Although not statistically significant, there was a trend for a better diagnostic accuracy of pRNFL thickness measurement in cases of smaller discs. For GCC analysis, an inverse effect was observed.
Effect of Indium nano-sandwiching on the structural and optical performance of ZnSe films
NASA Astrophysics Data System (ADS)
Al Garni, S. E.; Qasrawi, A. F.
In the current study, we attempted to explore the effects of the Indium nanosandwiching on the mechanical and optical properties of the physically evaporated ZnSe thin films by means of X-ray diffractions and ultraviolet spectrophotometry techniques. While the thickness of each layer of ZnSe was fixed at 1.0 μm, the thickness of the nanosandwiched Indium thin films was varied in the range of 25-100 nm. It was observed that the as grown ZnSe films exhibits cubic and hexagonal nature of crystallization as those of the ZnSe powders before the film deposition. The cubic phases weighs ∼70% of the structure. The analysis of this phases revealed that there is a systematic variation process presented by the decreasing of; the lattice constant, compressing strain, stress, stacking faults and dislocation intensity and increasing grain size resulted from increasing the Indium layer thickness in the range of 50-100 nm. In addition, the nanosandwiching of Indium between two layers of ZnSe is observed to enhance the absorbability of the ZnSe. Particularly, at incident photon energy of 2.38 eV the absorbability of the ZnSe films which are sandwiched with 100 nm Indium is increased by 13.8 times. Moreover, increasing the thickness of the Indium layer shrinks the optical energy band gap. These systematic variations in mechanical and optical properties are assigned to the better recrystallization process that is associated with Indium insertion which in turn allows total internal energy redistribution in the ZnSe films through the enlargement of grains.
NASA Technical Reports Server (NTRS)
Platnick, S.; Li, J. Y.; King, M. D.; Gerber, H.; Hobbs, P. V.
1999-01-01
Cloud optical thickness and effective radius retrievals from solar reflectance measurements are traditionally implemented using a combination of spectral channels that are absorbing and non-absorbing for water particles. Reflectances in non-absorbing channels (e.g., 0.67, 0.86, 1.2 micron spectral window bands) are largely dependent on cloud optical thickness, while longer wavelength absorbing channels (1.6, 2. 1, and 3.7 micron window bands) provide cloud particle size information. Cloud retrievals over ice and snow surfaces present serious difficulties. At the shorter wavelengths, ice is bright and highly variable, both characteristics acting to significantly increase cloud retrieval uncertainty. In contrast, reflectances at the longer wavelengths are relatively small and may be comparable to that of dark open water. A modification to the traditional cloud retrieval technique is devised. The new algorithm uses only a combination of absorbing spectral channels for which the snow/ice albedo is relatively small. Using this approach, retrievals have been made with the MODIS Airborne Simulator (MAS) imager flown aboard the NASA ER-2 from May - June 1998 during the Arctic FIRE-ACE field deployment. Data from several coordinated ER-2 and University of Washington CV-580 in situ aircraft observations of liquid water stratus clouds are examined. MAS retrievals of optical thickness, droplet effective radius, and liquid water path are shown to be in good agreement with the in situ measurements. The initial success of the technique has implications for future operational satellite cloud retrieval algorithms in polar and wintertime regions.
Shin, Il-Hwan; Lee, Woo-Hyuk; Lee, Jong-Joo; Jo, Young-Joon; Kim, Jung-Yeul
2018-02-01
To determine the repeatability of measuring the thickness of the central macula, retinal nerve fiber layer, and ganglion cell-inner plexiform layer (GC-IPL) using spectral domain optical coherence tomography (Cirrus HD-OCT) in eyes with age-related macular degeneration. One hundred and thirty-four eyes were included. The measurement repeatability was assessed by an experienced examiner who performed two consecutive measurements using a 512 × 128 macular cube scan and a 200 × 200 optic disk cube scan. To assess changes in macular morphology in patients with age-related macular degeneration, the patients were divided into the following three groups according to the central macular thickness (CMT): A group, CMT < 200 μm; B group, 200 μm ≤ CMT < 300 μm; and C group, CMT > 300 μm. Measurement repeatability was assessed using test-retest variability, a coefficient of variation, and an intraclass correlation coefficient. The mean measurement repeatability for the central macular, retinal nerve fiber layer, and GC-IPL thickness was high in the B group. The mean measurement repeatability for both the central macula and retinal nerve fiber layer thickness was high in the A and C groups, but was lower for the GC-IPL thickness. The measurement repeatability for GC-IPL thickness was high in the B group, but low in the A group and in the C group. The automated measurement repeatability for GC-IPL thickness was significantly lower in patients with age-related macular degeneration with out of normal CMT range. The effect of changes in macular morphology should be considered when analyzing GC-IPL thicknesses in a variety of ocular diseases.
NASA Astrophysics Data System (ADS)
Brake, Joshua; Jang, Mooseok; Yang, Changhuei
2016-03-01
The optical opacity of biological tissue has long been a challenge in biomedical optics due to the strong scattering nature of tissue in the optical regime. While most conventional optical techniques attempt to gate out multiply scattered light and use only unscattered light, new approaches in the field of wavefront shaping exploit the time reversible symmetry of optical scattering in order to focus light inside or through scattering media. While these approaches have been demonstrated effectively on static samples, it has proven difficult to apply them to dynamic biological samples since even small changes in the relative positions of the scatterers within will cause the time symmetry that wavefront shaping relies upon to decorrelate. In this paper we investigate the decorrelation curves of acute rat brain slices for thicknesses in the range 1-3 mm (1/e decorrelation time on the order of seconds) using multi-speckle diffusing wave spectroscopy (MSDWS) and compare the results with theoretical predictions. The results of this study demonstrate that the 1/L^2 relationship between decorrelation time and thickness predicted by diffusing wave spectroscopy provides a good rule of thumb for estimating how the decorrelation of a sample will change with increasing thickness. Understanding this relationship will provide insight to guide the future development of biophotonic wavefront shaping tools by giving an estimate of how fast wavefront shaping systems need to operate to overcome the dynamic nature of biological samples.
Kanamori, Akiyasu; Nakamura, Makoto; Matsui, Noriko; Nagai, Azusa; Nakanishi, Yoriko; Kusuhara, Sentaro; Yamada, Yuko; Negi, Akira
2004-12-01
To analyze retinal nerve fiber layer (RNFL) thickness in eyes with band atrophy by use of optical coherence tomography (OCT) and to evaluate the ability of OCT to detect this characteristic pattern of RNFL loss. Cross-sectional, retrospective study. Thirty-four eyes of 18 patients with bitemporal hemianopia caused by optic chiasm compression by chiasmal tumors were studied. All eyes were divided into 3 groups according to visual field loss grading after Goldmann perimetry. Retinal nerve fiber layer thickness measurements with OCT. Retinal nerve fiber layer thickness around the optic disc was measured by OCT (3.4-mm diameter circle). Calculation of the changes in OCT parameters, including the horizontal (nasal + temporal quadrant RNFL thickness) and vertical values (superior + inferior quadrant RNFL thickness) was based on data from 160 normal eyes. Comparison between the 3 visual field grading groups was done with the analysis of variance test. The receiver operating characteristic (ROC) curve for the horizontal and vertical value were calculated, and the areas under the curve (AUC) were compared. Retinal nerve fiber layer thickness in eyes with band atrophy decreased in all OCT parameters. The reduction rate in average and temporal RNFL thickness and horizontal value was correlated with visual field grading. The AUC of horizontal value was 0.970+/-0.011, which was significantly different from AUC of vertical value (0.903+/-0.022). The degree of RNFL thickness reduction correlated with that of visual field defects. Optical coherence tomography was able to identify the characteristic pattern of RNFL loss in these eyes.
NASA Astrophysics Data System (ADS)
Pokatilov, E. P.; Nika, D. L.; Askerov, A. S.; Zincenco, N. D.; Balandin, A. A.
2007-12-01
nanometer scale thickness by taking into account multiple quantized electron subbands and the confined optical phonon dispersion. It was shown that the inter-subband electronic transitions play an important role in limiting the electron mobility in the heterostructures when the energy separation between one of the size-quantized excited electron subbands and the Fermi energy becomes comparable to the optical phonon energy. The latter leads to the oscillatory dependence of the electron mobility on the thickness of the heterostructure conduction channel layer. This effect is observable at room temperature and over a wide range of the carrier densities. The developed formalism and calculation procedure are readily applicable to other material systems. The described effect can be used for fine-tuning the confined electron and phonon states in the nanoscale heterostructures in order to achieve performance enhancement of the nanoscale electronic and optoelectronic devices.
Effects of various applied voltages on physical properties of TiO2 nanotubes by anodization method
NASA Astrophysics Data System (ADS)
Hoseinzadeh, T.; Ghorannevis, Z.; Ghoranneviss, M.; Sari, A. H.; Salem, M. K.
2017-09-01
Three steps anodization process is used to synthesize highly ordered and uniform multilayered titanium oxide (TiO2) nanotubes and effect of different anodization voltages are studied on their physical properties such as structural, morphological and optical. The crystalized structure of the synthesized tubes is investigated by X-ray diffractometer analysis. To study the morphology of the tubes, field emission scanning electron microscopy is used, which showed that the wall thicknesses and the diameters of the tubes are affected by the different anodization voltages. Moreover, optical studies performed by diffuse reflection spectra suggested that band gap of the TiO2 nanotubes are also changed by applying different anodization voltages. In this study using physical investigations, an optimum anodization voltage is obtained to synthesize the uniform crystalized TiO2 nanotubes with suitable diameter, wall thickness and optical properties.
NASA Astrophysics Data System (ADS)
Zhang, Le; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa
2013-05-01
By using current-voltage (I-V) measurements and optical modulation spectroscopy, we investigated the dependence of the carrier behaviour on the film thickness of the buried pentacene layer in C60/pentacene ambipolar double-layer organic field-effect transistors (OFETs). It was found that the buried pentacene layer not only acted as a hole transport layer, but also accounted for the properties of the C60/pentacene interface. The hole and electron behaviour exhibited different thickness dependence on the buried pentacene layer, implying the presence of the spatially separated conduction paths. It was suggested that the injected holes transported along the pentacene/gate dielectric interface, which were little affected by the buried pentacene layer thickness or the upper C60 layer; while, the injected electrons accumulated at the C60/pentacene interface, which were sensitive to the interfacial conditions or the buried pentacene layer. Furthermore, it was suggested that the enhanced surface roughness of the buried pentacene layer was responsible for the observed electron behaviour, especially when dpent>10 nm.
NASA Technical Reports Server (NTRS)
Xie, Yu; Minnis, Patrick; Hu, Yong X.; Kattawar, George W.; Yang, Ping
2008-01-01
Spherical or spheroidal air bubbles are generally trapped in the formation of rapidly growing ice crystals. In this study the single-scattering properties of inhomogeneous ice crystals containing air bubbles are investigated. Specifically, a computational model based on an improved geometric-optics method (IGOM) has been developed to simulate the scattering of light by randomly oriented hexagonal ice crystals containing spherical or spheroidal air bubbles. A combination of the ray-tracing technique and the Monte Carlo method is used. The effect of the air bubbles within ice crystals is to smooth the phase functions, diminish the 22deg and 46deg halo peaks, and substantially reduce the backscatter relative to bubble-free particles. These features vary with the number, sizes, locations and shapes of the air bubbles within ice crystals. Moreover, the asymmetry factors of inhomogeneous ice crystals decrease as the volume of air bubbles increases. Cloud reflectance lookup tables were generated at wavelengths 0.65 m and 2.13 m with different air-bubble conditions to examine the impact of the bubbles on retrieving ice cloud optical thickness and effective particle size. The reflectances simulated for inhomogeneous ice crystals are slightly larger than those computed for homogenous ice crystals at a wavelength of 0.65 microns. Thus, the retrieved cloud optical thicknesses are reduced by employing inhomogeneous ice cloud models. At a wavelength of 2.13 microns, including air bubbles in ice cloud models may also increase the reflectance. This effect implies that the retrieved effective particle sizes for inhomogeneous ice crystals are larger than those retrieved for homogeneous ice crystals, particularly, in the case of large air bubbles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, Sumanta; Fan, W. J., E-mail: ewjfan@ntu.edu.sg; Zhang, D. H.
2016-04-14
The effect of lateral size and vertical thickness of CdSe and CdS nanoplatelets (NPLs) on their electronic structure and optical properties are investigated using an effective-mass envelope function theory based on the 8-band k ⋅ p model with valence force field considerations. Volumetrically larger NPLs have lower photon emission energy due to limited quantum confinement, but a greater transition matrix element (TME) due to larger electron-hole wavefunction overlap. The optical gain characteristics depend on several factors such as TME, Fermi factor, carrier density, NPL dimensions, material composition, and dephasing rate. There is a red shift in the peak position, moremore » so with an increase in thickness than lateral size. For an increasing carrier density, the gain spectrum undergoes a slight blue shift due to band filling effect. For a fixed carrier density, the Fermi factor is higher for volumetrically larger NPLs and so is the difference between the quasi-Fermi level separation and the effective bandgap. The transparency injection carrier density (and thus input current density threshold) is dimension dependent and falls for volumetrically larger NPLs, as they can attain the requisite exciton count for transparency with a relatively lower density. Between CdSe and CdS, CdSe has lower emission energy due to smaller bandgap, but a higher TME due to lower effective mass. CdS, however, has a higher so hole contribution due to a lower spin-orbit splitting energy. Both CdSe and CdS NPLs are suitable candidates for short-wavelength LEDs and lasers in the visible spectrum, but CdSe is expected to exhibit better optical performance.« less
Threshold thickness for applying diffusion equation in thin tissue optical imaging
NASA Astrophysics Data System (ADS)
Zhang, Yunyao; Zhu, Jingping; Cui, Weiwen; Nie, Wei; Li, Jie; Xu, Zhenghong
2014-08-01
We investigated the suitability of the semi-infinite model of the diffusion equation when using diffuse optical imaging (DOI) to image thin tissues with double boundaries. Both diffuse approximation and Monte Carlo methods were applied to simulate light propagation in the thin tissue model with variable optical parameters and tissue thicknesses. A threshold value of the tissue thickness was defined as the minimum thickness in which the semi-infinite model exhibits the same reflected intensity as that from the double-boundary model and was generated as the final result. In contrast to our initial hypothesis that all optical properties would affect the threshold thickness, our results show that only absorption coefficient is the dominant parameter and the others are negligible. The threshold thickness decreases from 1 cm to 4 mm as the absorption coefficient grows from 0.01 mm-1 to 0.2 mm-1. A look-up curve was derived to guide the selection of the appropriate model during the optical diagnosis of thin tissue cancers. These results are useful in guiding the development of the endoscopic DOI for esophageal, cervical and colorectal cancers, among others.
Photovoltaic device having light transmitting electrically conductive stacked films
Weber, Michael F.; Tran, Nang T.; Jeffrey, Frank R.; Gilbert, James R.; Aspen, Frank E.
1990-07-10
A light transmitting electrically conductive stacked film, useful as a light transmitting electrode, including a first light transmitting electrically conductive layer, having a first optical thickness, a second light transmitting layer, having a second optical thickness different from the optical thickness of the first layer, and an electrically conductive metallic layer interposed between and in initimate contact with the first and second layers.
NASA Astrophysics Data System (ADS)
Onifer, A. J.; Gayley, K. G.
2003-06-01
The optically thick character of Wolf-Rayet winds implies that stellar continuum photons are multiply scattered, as a result of both free electron opacity and overlapping wind-broadened spectral lines. This allows the wind to accumulate a substantial excess in momentum flux relative to the driving radiation field, as is observationally required. Nevertheless, sustaining such a high degree of multiple scattering requires not only a large optical depth spatially but also substantial spectral blanketing. The latter is difficult to maintain when redistribution during scattering allows radiative flux to shift preferentially into spectral regions with fewer lines, since then the channels carrying much of the flux are also the least well blanketed. This paper parameterizes the potential severity of this effect in simple terms, using a generalization of the Rosseland mean treated in the Sobolev approximation. We show that our approach provides an informative starting point for characterizing and conceptualizing nongray effects in optically thick supersonic flows.
Optic nerve head cupping in glaucomatous and non-glaucomatous optic neuropathy.
Fard, Masoud Aghsaei; Moghimi, Sasan; Sahraian, Alireza; Ritch, Robert
2018-05-23
Enlargement of optic disc cupping is seen both in glaucoma and in neurological disorders. We used enhanced depth imaging with spectral-domain optical coherence tomography to differentiate glaucoma from non-glaucomatous optic neuropathy. The optic discs were scanned in this prospective comparative study, and the lamina cribrosa (LC) thickness and anterior laminar depth (ALD) in the central, superior and inferior optic nerve head, and peripapillary choroidal thicknesses, were measured. There were 31 eyes of 31 patients with severe glaucoma and 33 eyes of 19 patients with non-glaucomatous cupping. Eyes of 29 healthy controls were also enrolled. There was no significant difference in the cup-to-disc ratio and in the average peripapillary nerve fibre layer thickness between the glaucoma and non-glaucomatous cupping groups (p>0.99). The average peripapillary choroidal thickness was thinner in glaucoma eyes than in the control eyes after adjusting for age and axial length. Glaucomatous and non-glaucomatous eyes had greater ALD and thinner LC than the control eyes (p<0.001 for both). ALDs of glaucoma eyes were deeper than non-glaucomatous eyes (p=0.01 for central ALD) when age, axial length and peripapillary choroidal thickness were included in the linear mixed model. Prelaminar thickness and LC thickness of glaucoma eyes were not different from non-glaucomatous eyes after adjusting. Deeper ALD was observed in glaucoma than non-glaucomatous cupping after adjusting for choroidal thickness. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Properties of thin silver films with different thickness
NASA Astrophysics Data System (ADS)
Zhao, Pei; Su, Weitao; Wang, Reng; Xu, Xiaofeng; Zhang, Fengshan
2009-01-01
In order to investigate optical properties of silver films with different film thickness, multilayer composed of thin silver film sandwiched between ZnS films are sputtered on the float glass. The crystal structures, optical and electrical properties of films are characterized by various techniques, such as X-ray diffraction (XRD), spectrum analysis, etc. The optical constants of thin silver film are calculated by fitting the transmittance ( T) and reflectance ( R) spectrum of the multilayer. Electrical and optical properties of silver films thinner than 6.2 nm exhibit sharp change. However, variation becomes slow as film thickness is larger than 6.2 nm. The experimental results indicate that 6.2 nm is the optimum thickness for properties of silver.
Electro-optic device with gap-coupled electrode
Deri, Robert J.; Rhodes, Mark A.; Bayramian, Andrew J.; Caird, John A.; Henesian, Mark A.; Ebbers, Christopher A.
2013-08-20
An electro-optic device includes an electro-optic crystal having a predetermined thickness, a first face and a second face. The electro-optic device also includes a first electrode substrate disposed opposing the first face. The first electrode substrate includes a first substrate material having a first thickness and a first electrode coating coupled to the first substrate material. The electro-optic device further includes a second electrode substrate disposed opposing the second face. The second electrode substrate includes a second substrate material having a second thickness and a second electrode coating coupled to the second substrate material. The electro-optic device additionally includes a voltage source electrically coupled to the first electrode coating and the second electrode coating.
The influence of sea fog inhomogeneity on its microphysical characteristics retrieval
NASA Astrophysics Data System (ADS)
Hao, Zengzhou; Pan, Delu; Gong, Fang; He, Xianqiang
2008-10-01
A study on the effect of sea fog inhomogeneity on its microphysical parameters retrieval is presented. On the condition that the average liquid water content is linear vertically and the power spectrum spectral index sets 2.0, we generate a 3D sea fog fields by controlling the total liquid water contents greater than 0.04g/m3 based on the iterative method for generating scaling log-normal random field with an energy spectrum and a fragmentized cloud algorithm. Based on the fog field, the radiance at the wavelengths of 0.67 and 1.64 μm are simulated with 3D radiative transfer model SHDOM, and then the fog optical thickness and effective particle radius are simultaneously retrieved using the generic look-up-table AVHRR cloud algorithm. By comparing those fog optical thickness and effective particle radius, the influence of sea fog inhomogeneity on its properties retrieval is discussed. It exhibits the system bias when inferring sea fog physical properties from satellite measurements based on the assumption of plane parallel homogeneous atmosphere. And the bias depends on the solar zenith angel. The optical thickness is overrated while the effective particle radius is under-estimated at two solar zenith angle 30° and 60°. Those results show that it is necessary for sea fog true characteristics retrieval to develop a new algorithm using the 3D radiative transfer.
Structural and optical behavior due to thermal effects in end-pumped Yb:YAG disk lasers.
Sazegari, Vahid; Milani, Mohammad Reza Jafari; Jafari, Ahmad Khayat
2010-12-20
We employ a Monte Carlo ray-tracing code along with the ANSYS package to predict the optical and structural behavior in end-pumped CW Yb:YAG disk lasers. The presence of inhomogeneous temperature, stress, and strain distributions is responsible for many deleterious effects for laser action through disk fracture, strain-induced birefringence, and thermal lensing. The thermal lensing, in turn, results in the optical phase distortion in solid-state lasers. Furthermore, the dependence of optical phase distortion on variables such as the heat transfer coefficient, the cooling fluid temperature, and crystal thickness is discussed.
Optical Properties of Cu2O Electrodeposited on FTO Substrates: Effects of Cl Concentration
NASA Astrophysics Data System (ADS)
Bouderbala, Ibrahim Yaacoub; Herbadji, Abdelmadjid; Mentar, Loubna; Beniaiche, Abdelkrim; Azizi, Amor
2018-03-01
In this study, cuprous oxide (Cu2O) nanostructures were deposited via electrochemical route from aqueous solution containing different concentrations of copper chloride (CuCl2). The effect of chloride (Cl- ) ions on structural and optical properties was studied. Photocurrent results show that the type of conduction of these nanostructures is affected by adding Cl- ions and changed from p-type to n-type conduction. The x-ray diffraction (XRD) shows that our samples were pure Cu2O with a preferential orientation along the (111) direction. The intensity of (111) peak increases with the increase of Cl- concentration. The optical characterization of Cu2O was studied by analyzing the transmission spectrum measured in normal incidence in the range of 300-1100 nm. The thickness and the refractive index of Cu2O nanostructures were determined using different methods. The optical gap energy ( E g) and associated Urbach energy ( E u) were also calculated. Effectively, the optical gap was estimated from Tauc extrapolation; it was found that it decreases from 2.02 eV to 1.85 eV with the increase in CuCl2 concentration; on the other hand, the thickness of the layers increases from 267 nm to 300 nm.
Spatial frequency domain spectroscopy of two layer media
NASA Astrophysics Data System (ADS)
Yudovsky, Dmitry; Durkin, Anthony J.
2011-10-01
Monitoring of tissue blood volume and oxygen saturation using biomedical optics techniques has the potential to inform the assessment of tissue health, healing, and dysfunction. These quantities are typically estimated from the contribution of oxyhemoglobin and deoxyhemoglobin to the absorption spectrum of the dermis. However, estimation of blood related absorption in superficial tissue such as the skin can be confounded by the strong absorption of melanin in the epidermis. Furthermore, epidermal thickness and pigmentation varies with anatomic location, race, gender, and degree of disease progression. This study describes a technique for decoupling the effect of melanin absorption in the epidermis from blood absorption in the dermis for a large range of skin types and thicknesses. An artificial neural network was used to map input optical properties to spatial frequency domain diffuse reflectance of two layer media. Then, iterative fitting was used to determine the optical properties from simulated spatial frequency domain diffuse reflectance. Additionally, an artificial neural network was trained to directly map spatial frequency domain reflectance to sets of optical properties of a two layer medium, thus bypassing the need for iteration. In both cases, the optical thickness of the epidermis and absorption and reduced scattering coefficients of the dermis were determined independently. The accuracy and efficiency of the iterative fitting approach was compared with the direct neural network inversion.
NASA Astrophysics Data System (ADS)
Love, Steven P.; Davis, Anthony B.; Rohde, Charles A.; Tellier, Larry; Ho, Cheng
2002-09-01
At most optical wavelengths, laser light in a cloud lidar experiment is not absorbed but merely scattered out of the beam, eventually escaping the cloud via multiple scattering. There is much information available in this light scattered far from the input beam, information ignored by traditional 'on-beam' lidar. Monitoring these off-beam returns in a fully space- and time-resolved manner is the essence of our unique instrument, Wide Angle Imaging Lidar (WAIL). In effect, WAIL produces wide-field (60-degree full-angle) 'movies' of the scattering process and records the cloud's radiative Green functions. A direct data product of WAIL is the distribution of photon path lengths resulting from multiple scattering in the cloud. Following insights from diffusion theory, we can use the measured Green functions to infer the physical thickness and optical depth of the cloud layer, and, from there, estimate the volume-averaged liquid water content. WAIL is notable in that it is applicable to optically thick clouds, a regime in which traditional lidar is reduced to ceilometry. Here we present recent WAIL data on various clouds and discuss the extension of WAIL to full diurnal monitoring by means of an ultra-narrow magneto-optic atomic line filter for daytime measurements.
An, Jae Seok; Jang, Ha Jun; Park, Cheol Young; Youn, Hongseok; Lee, Jong Ho; Heo, Gi-Seok; Choi, Bum Ho; Lee, Choong Hun
2015-10-01
Inorganic/organic hybrid thin film encapsulation layers consist of a thin Al2O3 layer together with polymer material. We have investigated optical properties of thin film encapsulation layers for top-emission flexible organic light-emitting diodes. The transmittance of hybrid thin film encapsulation layers and the electroluminescent spectrum of organic light-emitting diodes that were passivated by hybrid organic/inorganic thin film encapsulation layers were also examined as a function of the thickness of inorganic Al203 and monomer layers. The number of interference peaks, their intensity, and their positions in the visible range can be controlled by varying the thickness of inorganic Al2O3 layer. On the other hand, changing the thickness of monomer layer had a negligible effect on the optical properties. We also verified that there is a trade-off between transparency in the visible range and the permeation of water vapor in hybrid thin film encapsulation layers. As the number of dyads decreased, optical transparency improved while the water vapor permeation barrier was degraded. Our study suggests that, in top-emission organic light-emitting diodes, the thickness of each thin film encapsulation layer, in particular that of the inorganic layer, and the number of dyads should be controlled for highly efficient top-emission flexible organic light-emitting diodes.
View angle dependence of cloud optical thicknesses retrieved by MODIS
NASA Technical Reports Server (NTRS)
Marshak, Alexander; Varnai, Tamas
2005-01-01
This study examines whether cloud inhomogeneity influences the view angle dependence of MODIS cloud optical thickness (tau) retrieval results. The degree of cloud inhomogeneity is characterized through the local gradient in 11 microns brightness temperature. The analysis of liquid phase clouds in a one year long global dataset of Collection 4 MODIS data reveals that while optical thickness retrievals give remarkably consistent results for all view directions if clouds are homogeneous, they give much higher tau-values for oblique views than for overhead views if clouds are inhomogeneous and the sun is fairly oblique. For solar zenith angles larger than 55deg, the mean optical thickness retrieved for the most inhomogeneous third of cloudy pixels is more than 30% higher for oblique views than for overhead views. After considering a variety of possible scenarios, the paper concludes that the most likely reason for the increase lies in three-dimensional radiative interactions that are not considered in current, one-dimensional retrieval algorithms. Namely, the radiative effect of cloud sides viewed at oblique angles seems to contribute most to the enhanced tau-values. The results presented here will help understand cloud retrieval uncertainties related to cloud inhomogeneity. They complement the uncertainty estimates that will start accompanying MODIS cloud products in Collection 5 and may eventually help correct for the observed view angle dependent biases.
Bai, Yuqiang; Nichols, Jason J
2017-05-01
The thickness of tear film has been investigated under both invasive and non-invasive methods. While invasive methods are largely historical, more recent noninvasive methods are generally based on optical approaches that provide accurate, precise, and rapid measures. Optical microscopy, interferometry, and optical coherence tomography (OCT) have been developed to characterize the thickness of tear film or certain aspects of the tear film (e.g., the lipid layer). This review provides an in-depth overview on contemporary optical techniques used in studying the tear film, including both advantages and limitations of these approaches. It is anticipated that further developments of high-resolution OCT and other interferometric methods will enable a more accurate and precise measurement of the thickness of the tear film and its related dynamic properties. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lee, Haeng-Jin; Kang, Tae-Seen; Kwak, Baek-Soo; Jo, Young-Joon; Kim, Jung-Yeul
2017-08-01
To evaluate the effects of panretinal photocoagulation on spectral domain optical coherence tomography measurements in diabetic retinopathy by comparing the thicknesses of the central macula, retinal nerve fiber layer, and ganglion cell layer, we used a Cirrus HD OCT® (Carl Zeiss Meditec, Dublin, CA, USA) in normal and diabetic retinopathy cohorts. We analyzed patients who visited our retinal clinic between May 2013 and July 2014. The patients were classified into four groups: normal (Group A), diabetes without diabetic retinopathy (Group B), severe nonproliferative or proliferative diabetic retinopathy (Group C), and at least 3 years after panretinal photocoagulation treatment (Group D). The mean thicknesses of the macula, retinal nerve fiber layer, and ganglion cell layer in each group were compared by measuring a macular cube 512 × 128 scan and an optic disc cube 200 × 200 scan twice. In total, 154 patients were enrolled. The mean thickness of the central macula in groups A to D was 257.2, 256.8, 257.4, and 255.6 µm, respectively, and did not differ significantly. The mean thickness of the RNFL in group A to D was 96.8, 96.5, 97.2, and 92.8 µm, respectively, and was significantly lower in group D (decreased in the inferior, superior, and nasal sectors, but increased in the temporal). The mean thickness of the ganglion cell layer was also significantly lower in group D (A, 84.5 µm; B, 84.4 µm; C, 82.5 µm; D, 78.5 µm). The mean thicknesses of the retinal nerve fiber and ganglion cell layers were decreased significantly in eyes with diabetic eye disease treated with panretinal photocoagulation compared to normal or eyes with diabetic eye disease that had not been laser-treated. Laser treatment might have altered the thickness of the inner layer of the retina, and such changes should be considered in diabetic retinopathy patients after panretinal photocoagulation treatment.
[Infinite optical thickness of dentine porcelain of IPS E.max A color series].
Sun, Ting; Shao, Long-quan; Yi, Yuan-fu; Deng, Bin; Wen, Ning; Zhang, Wei-wei
2011-02-01
To determine the infinite optical thickness of dentine porcelain of IPS E.max A color series. Cylindrical dentine porcelain specimens of the IPS E.max A color series were prepared with a diameter of 13 mm and thickness of 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 mm. The chromatic value of all the specimens was determined with CM-5 spectrometer against standard black and white background. The chromatic aberration (deltaE) was calculated by regression equation. The infinite optical thickness of dentine porcelain of the IPS E.max A color series ranged from 2.341 to 3.333 mm for a deltaE of 1.0, and from 2.064 to 2.904 mm for a deltaE of 1.5. As the chromaticity or thickness increased, the influence by the background color decreased, and the color of specimens became gradually close to the intrinsic color. The thickness of the background dentine porcelain specimens must exceed its infinite optical thickness to represent the intrinsic color and avoid the influence by the extrinsic color.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Menzel, W. Paul; Ackerman, Steven A.; Remer, Lorraine A.
2006-01-01
Remote sensing of cloud and aerosol optical properties is routinely obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites. Instruments that are being used to enhance our ability to characterize the global distribution of cloud and aerosol properties include well-calibrated multispectral radiometers that measure in the visible, near-infrared, and thermal infrared. The availability of thermal channels to enhance detection of cloud when estimating aerosol properties is an important improvement. In this paper, we describe the radiative properties of clouds as currently determined from satellites (cloud fraction, optical thickness, cloud top pressure, and cloud particle effective radius) and highlight the global/regional cloud microphysical properties currently available for assessing climate variability and forcing. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective particle radius for selected geographical locations around the world. In addition, we will illustrate the radiative and microphysical properties of aerosol particles (in cloud free regions) that are currently available from space-based observations, and show the latitudinal distribution of aerosol optical properties over both land and ocean surfaces.
Extreme IR absorption in group IV-SiGeSn core-shell nanowires
NASA Astrophysics Data System (ADS)
Attiaoui, Anis; Wirth, Stephan; Blanchard-Dionne, André-Pierre; Meunier, Michel; Hartmann, J. M.; Buca, Dan; Moutanabbir, Oussama
2018-06-01
Sn-containing Si and Ge (Ge1-y-xSixSny) alloys are an emerging family of semiconductors with the potential to impact group IV material-based devices. These semiconductors provide the ability to independently engineer both the lattice parameter and bandgap, which holds the premise to develop enhanced or novel photonic and electronic devices. With this perspective, we present detailed investigations of the influence of Ge1-y-xSixSny layers on the optical properties of Si and Ge based heterostructures and nanowires. We found that by adding a thin Ge1-y-xSixSny capping layer on Si or Ge greatly enhances light absorption especially in the near infrared range, leading to an increase in short-circuit current density. For the Ge1-y-xSixSny structure at thicknesses below 30 nm, a 14-fold increase in the short-circuit current is observed with respect to bare Si. This enhancement decreases by reducing the capping layer thickness. Conversely, decreasing the shell thickness was found to improve the short-circuit current in Si/Ge1-y-xSixSny and Ge/Ge1-y-xSixSny core/shell nanowires. The optical absorption becomes very important by increasing the Sn content. Moreover, by exploiting an optical antenna effect, these nanowires show extreme light absorption, reaching an enhancement factor, with respect to Si or Ge nanowires, on the order of 104 in Si/Ge0.84Si0.04Sn0.12 and 12 in Ge/Ge0.84Si0.04Sn0.12. Furthermore, we analyzed the optical response after the addition of a dielectric layer of Si3N4 to the Si/Ge1-y-xSixSny core-shell nanowire and found approximatively a 50% increase in the short-circuit current density for a dielectric layer of thickness equal to 45 nm and both a core radius and a shell thickness greater than 40 nm. The core-shell optical antenna benefits from a multiplication of enhancements contributed by leaky mode resonances in the semiconductor part and antireflection effects in the dielectric part.
Monte Carlo modeling (MCML) of light propagation in skin layers for detection of fat thickness
NASA Astrophysics Data System (ADS)
Nilubol, Chonnipa; Treerattrakoon, Kiatnida; Mohammed, Waleed S.
2010-05-01
Nowadays, most activities require lesser physical actions, which could ultimately lead to accumulation of excessive body fat. The main roles of body fat are to store energy and acts as various kinds of insulators for the body. The thickness of fat layers can be measured to indicate fat-body weight ratio. Exceeding the body-mass index (BMI) could lead to many illnesses regarding obesity. Consequently, many studies have proposed various principles and techniques to measure the amount of fat within one's body. In this paper, infrared interactance in skin layers is studied for investigation of the influence of fat thickness upon photon travelling pattern in skin tissues using Monte Carlo model (MCML). Photon propagation is numerically simulated in simplified multi-layered tissues. The optical coefficients of each skin layers are accounted for different traveling paths of photons that move through random motion. The thickness of fat layer is varied, and changing in optical parameters is observed. Then the statistically obtained data are computed and analyzed for the effect of the fat layer upon reflection percentage using different wavelengths. The calculations have shown increment in the slope of change of reflection percentage versus fat thickness, when using infrared compare to visible light. This technique can be used to construct a mobile device that is capable of measuring the volume fraction of melanin and blood in the epidermis layer and dermis layer, to calculate for the necessary optical coefficients that would be necessary for measurement of fat thickness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaeffel, J.A.; Mullinix, B.R.; Ranson, W.F.
An experimental technique to simulate and evaluate the effects of high concentrations of x-rays resulting from a nuclear detonation on missile structures is presented. Data from 34 tests are included to demonstrate the technique. The effects of variations in the foil thickness, capacitor voltage, and plate thickness on the total impulse and maximum strain in the structure were determined. The experimental technique utilizes a high energy capacitor discharge unit to explode an aluminum foil on the surface of the structure. The structural response is evaluated by optical methods using the grid slope deflection method. The fringe patterns were recorded usingmore » a high-speed framing camera. The data were digitized using an optical comparator with an x-y table. The analysis was performed on a CDC 6600 computer.« less
Ice Cloud Optical Thickness and Extinction Estimates from Radar Measurements.
NASA Astrophysics Data System (ADS)
Matrosov, Sergey Y.; Shupe, Matthew D.; Heymsfield, Andrew J.; Zuidema, Paquita
2003-11-01
A remote sensing method is proposed to derive vertical profiles of the visible extinction coefficients in ice clouds from measurements of the radar reflectivity and Doppler velocity taken by a vertically pointing 35-GHz cloud radar. The extinction coefficient and its vertical integral, optical thickness τ, are among the fundamental cloud optical parameters that, to a large extent, determine the radiative impact of clouds. The results obtained with this method could be used as input for different climate and radiation models and for comparisons with parameterizations that relate cloud microphysical parameters and optical properties. An important advantage of the proposed method is its potential applicability to multicloud situations and mixed-phase conditions. In the latter case, it might be able to provide the information on the ice component of mixed-phase clouds if the radar moments are dominated by this component. The uncertainties of radar-based retrievals of cloud visible optical thickness are estimated by comparing retrieval results with optical thicknesses obtained independently from radiometric measurements during the yearlong Surface Heat Budget of the Arctic Ocean (SHEBA) field experiment. The radiometric measurements provide a robust way to estimate τ but are applicable only to optically thin ice clouds without intervening liquid layers. The comparisons of cloud optical thicknesses retrieved from radar and from radiometer measurements indicate an uncertainty of about 77% and a bias of about -14% in the radar estimates of τ relative to radiometric retrievals. One possible explanation of the negative bias is an inherently low sensitivity of radar measurements to smaller cloud particles that still contribute noticeably to the cloud extinction. This estimate of the uncertainty is in line with simple theoretical considerations, and the associated retrieval accuracy should be considered good for a nonoptical instrument, such as radar. This paper also presents relations between radar-derived characteristic cloud particle sizes and effective sizes used in models. An average relation among τ, cloud ice water path, and the layer mean value of cloud particle characteristic size is also given. This relation is found to be in good agreement with in situ measurements. Despite a high uncertainty of radar estimates of extinction, this method is useful for many clouds where optical measurements are not available because of cloud multilayering or opaqueness.
NASA Technical Reports Server (NTRS)
Sako, Masao
2003-01-01
Radiative transfer effects due to overlapping X-ray lines in a high-temperature, optically thick, highly ionized medium are investigated. One particular example, in which the O VIII Lyalpha doublet (2(sup 2) P(sub 1/2,3/2)-1(sup 2) S(sub 1/2) coincides in frequency with the N VII Lyzeta lines (7(sup 2) P(sub 1/2,3/2)-1(sup 2) S(sub 1/2) is studied in detail to illustrate the effects on the properties of the emergent line spectrum. We solve the radiative transfer equation to study the energy transport of resonance-line radiation in a static, infinite, plane-parallel geometry, which is used to compute the destruction/escape probabilities for each of the lines for various total optical thicknesses of the medium, as well as destruction probabilities by sources of underlying photoelectric opacity. It is found that a large fraction of the O vIII Lyalpha line radiation can be destroyed by N VII, which can result in a reversal of the O VIII Lyalpha/N VII Lyalpha line intensity ratio similar to what may be seen under nonsolar abundances. Photoelectric absorption by ionized carbon and nitrogen can also subsequently increase the emission-line intensities of these ions. We show that line ratios, which are directly proportional to the abundance ratios in optically thin plasmas, are not good indicators of the true CNO abundances. Conversely, global spectral modeling that assumes optically thin conditions may yield incorrect abundance estimates when compared with observations, especially if the optical depth is large. Other potentially important overlapping lines and continua in the X-ray band are also identified, and their possible relevance to recent high-resolution spectroscopic observations with Chandra and XMM-Newton are briefly discussed.
The Effect of Gravity Axis Orientation on the Growth of Phthalocyanine Thin Films
NASA Technical Reports Server (NTRS)
Pearson, Earl F.
1996-01-01
Experimentally, many of the functions of electrical circuits have been demonstrated using optical circuits and, in theory, all of these functions may be accomplished using optical devices made of nonlinear optical materials. Actual construction of nonlinear optical devices is one of the most active areas in all optical research being done at this time. Physical vapor transport (PVT) is a promising technique for production of thin films of a variety of organic and inorganic materials. Film optical quality, orientation of microcrystals, and thickness depends critically on type of material, pressure of buffer gas and temperature of deposition. An important but understudied influence on film characteristics is the effect of gravity-driven buoyancy. Frazier, Hung, Paley, Penn and Long have recently reported mathematical modelling of the vapor deposition process and tested the predictions of the model on the thickness of films grown by PVT of 6-(2-methyl-4-nitroanilino)-2,4-hexadiyn-l-ol (DAMNA). In an historic experiment, Debe, et. al. offered definitive proof that copper phthalocyanine films grown in a low gravity environment are denser and more ordered than those grown at 1 g. This work seeks to determine the influence on film quality of gravity driven buoyancy in the low pressure PVT film growth of metal-free phthalocyanine.
NASA Astrophysics Data System (ADS)
Colston, Gerard; Myronov, Maksym
2017-11-01
Cubic silicon carbide (3C-SiC) offers an alternative wide bandgap semiconductor to conventional materials such as hexagonal silicon carbide (4H-SiC) or gallium nitride (GaN) for the detection of UV light and can offer a closely lattice matched virtual substrate for subsequent GaN heteroepitaxy. As 3C-SiC can be heteroepitaxially grown on silicon (Si) substrates its optical properties can be manipulated by controlling the thickness and doping concentrations. The optical properties of 3C-SiC epilayers have been characterized by measuring the transmission of light through suspended membranes. Decreasing the thickness of the 3C-SiC epilayers is shown to shift the absorbance edge to lower wavelengths, a result of the indirect bandgap nature of silicon carbide. This property, among others, can be exploited to fabricate very low-cost, tuneable 3C-SiC based UV photodetectors. This study investigates the effect of thickness and doping concentration on the optical properties of 3C-SiC epilayers grown at low temperatures by a standard Si based growth process. The results demonstrate the potential photonic applications of 3C-SiC and its heterogeneous integration into the Si industry.
ELLIPSOMETRY OF ELECTROCHEMICAL SURFACE LAYERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muller, R.H.
1977-06-01
Ellipsometry is concerned with the analysis and interpretation of changes in the state of polarization caused by reflection. The technique has found increasing interest in recent years for the measurement of thin films because it is unusually sensitive, disturbs the object minimally and can be applied to surfaces contained in any optically transparent medium. Film thicknesses amenable to measurement range from fractional monoatomic coverage to microscopic thicknesses. The measurement of changes in the state of polarization of light due to reflection provides an unusually sensitive tool for observing surface layers in any optically transparent environment. A fast, self-compensating ellipsometer hasmore » been used to observe the electrochemical formation of reacted surface layers. The optical effect of mass-transport boundary layers and component imperfections have been taken into account in the interpretation of results.« less
NASA Astrophysics Data System (ADS)
Smolyanskii, A. S.; Kozlova, N. V.; Zheltova, A. V.; Aksyutina, A. S.; Shvedov, A. S.; Lakeev, S. G.
2015-07-01
Light scattering and interference patterns are studied in the optical absorption spectra of nuclear filters based on polyethylene terephthalate fi lms modifi ed by dry aerosol deposition of silver nano- and microparticles. Surface plasmon polaritons and localized plasmons formed by the passage of light through porous silver films are found to have an effect on the diffraction and interference modes. The thickness of silver nano- and microparticle coatings on the surface of the nuclear fi lters was determined from the shift in the interference patterns in the optical absorption spectra of the modified nuclear filters relative to the original nuclear filters. A correlation was found between the estimated coating thickness and the average surface roughness of the nuclear filters modified by layers of silver nano- and microparticles.
NASA Astrophysics Data System (ADS)
Kokolakis, Athanasios; Zacharakis, Giannis; Krasagakis, Konstantin; Lasithiotakis, Konstantinos; Favicchio, Rosy; Spiliopoulos, George; Giannikaki, Elpida; Ripoll, Jorge; Tosca, Androniki
2012-06-01
Discrimination of benign and malignant melanocytic lesions is a major issue in clinical dermatology. Assessment of the thickness of melanoma is critical for prognosis and treatment selection. We aimed to evaluate a novel optical computed tomography (optical-CT) system as a tool for three-dimensional (3-D) imaging of melanocytic lesions and its ability to discriminate benign from malignant melanocytic lesions while simultaneously determining the thickness of invasive melanoma. Seventeen melanocytic lesions, one hemangioma, and normal skin were assessed immediately after their excision by optical-CT and subsequently underwent histopathological examination. Tomographic reconstructions were performed with a back-propagation algorithm calculating a 3-D map of the total attenuation coefficient (AC). There was a statistically significant difference between melanomas, dysplastic nevi, and non-dysplastic nevi, as indicated by Kruskal-Wallis test. Median AC values were higher for melanomas compared with dysplastic and non-dysplastic nevi. No statistically significant difference was observed when thickness values obtained by optical-CT were compared with histological thickness using a Wilcoxon sighed rank test. Our results suggest that optical-CT can be important for the immediate prehistological evaluation of biopsies, assisting the physician for a rapid assessment of malignancy and of the thickness of a melanocytic lesion.
Optical contrast for identifying the thickness of two-dimensional materials
NASA Astrophysics Data System (ADS)
Bing, Dan; Wang, Yingying; Bai, Jing; Du, Ruxia; Wu, Guoqing; Liu, Liyan
2018-01-01
One of the most intriguing properties of two-dimensional (2D) materials is their thickness dependent properties. A quick and precise technique to identify the layer number of 2D materials is therefore highly desirable. In this review, we will introduce the basic principle of using optical contrast to determine the thickness of 2D material and also its advantage as compared to other modern techniques. Different 2D materials, including graphene, graphene oxide, transitional metal dichalcogenides, black phosphorus, boron nitride, have been used as examples to demonstrate the capability of optical contrast methods. A simple and more efficient optical contrast image technique is also emphasized, which is suitable for quick and large-scale thickness identification. We have also discussed the factors that could affect the experimental results of optical contrast, including incident light angle, anisotropic nature of materials, and also the twisted angle between 2D layers. Finally, we give perspectives on future development of optical contrast methods for the study and application of 2D materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazemi, Sanaz, E-mail: s.nazemi@ut.ac.ir, E-mail: pourfath@ut.ac.ir; Soleimani, Ebrahim Asl; Pourfath, Mahdi, E-mail: s.nazemi@ut.ac.ir, E-mail: pourfath@ut.ac.ir
2016-04-14
Due to their tunable properties, silicon nano-crystals (NC) are currently being investigated. Quantum confinement can generally be employed for size-dependent band-gap tuning at dimensions smaller than the Bohr radius (∼5 nm for silicon). At the nano-meter scale, however, increased surface-to-volume ratio makes the surface effects dominant. Specifically, in Si-SiO{sub 2} core-shell semiconductor NCs the interfacial transition layer causes peculiar electronic and optical properties, because of the co-existence of intermediate oxidation states of silicon (Si{sup n+}, n = 0–4). Due to the presence of the many factors involved, a comprehensive understanding of the optical properties of these NCs has not yet been achieved. Inmore » this work, Si-SiO{sub 2} NCs with a diameter of 1.1 nm and covered by amorphous oxide shells with thicknesses between 2.5 and 4.75 Å are comprehensively studied, employing density functional theory calculations. It is shown that with increased oxide shell thickness, the low-energy part of the optical transition spectrum of the NC is red shifted and attenuated. Moreover, the absorption coefficient is increased in the high-energy part of the spectrum which corresponds to SiO{sub 2} transitions. Structural examinations indicate a larger compressive stress on the central silicon cluster with a thicker oxide shell. Examination of the local density of states reveals the migration of frontier molecular orbitals from the oxide shell into the silicon core with the increase of silica shell thickness. The optical and electrical properties are explained through the analysis of the density of states and the spatial distribution of silicon sub-oxide species.« less
Controlling the optical parameters of self-assembled silver films with wetting layers and annealing
NASA Astrophysics Data System (ADS)
Ciesielski, Arkadiusz; Skowronski, Lukasz; Trzcinski, Marek; Szoplik, Tomasz
2017-11-01
We investigated the influence of presence of Ni and Ge wetting layers as well as annealing on the permittivity of Ag films with thicknesses of 20, 35 and 65 nm. Most of the research on thin silver films deals with very small (<20 nm) or relatively large (≥50 nm) thicknesses. We studied the transition region (around 30 nm) from charge percolation pathways to fully continuous films and compared the values of optical parameters among silver layers with at least one fixed attribute (thickness, wetting and capping material, post-process annealing). Our study, based on atomic force microscopy, ellipsometric and X-ray photoelectron spectroscopy measurements, shows that utilizing a wetting layer is comparable to increasing the thickness of the silver film. Both operations decrease the roughness-to-thickness ratio, thus decreasing the scattering losses and both narrow the Lorentz-shaped interband transition peak. However, while increasing silver thickness increases absorption on the free carriers, the use of wetting layers influences the self-assembled internal structure of silver films in such a way, that the free carrier absorption decreases. Wetting layers also introduce additional contributions from effects like segregation or diffusion, which evolve in time and due to annealing.
Fiber Optic Magnetic Field Sensors Using Metallic Glass Coatings.
NASA Astrophysics Data System (ADS)
Wang, Yu.
1990-01-01
In this thesis we have investigated the use of a magnetostrictive material with a single-mode optical fiber for detecting weak magnetic fields. The amorphous alloy Metglas^circler 2605SC (Fe_{81}B_ {13.5}Si_{3.5} C_2) was chosen as the magnetostrictive material because of the combination of its large magnetostriction and small magnetic anisotropy field among all available metals. For efficient coupling between the magnetostrictive material and the optical fiber, the magnetostrictive material was directly deposited onto the single-mode optical fiber. The coated fibers were used as the sensing element in the fiber optic magnetic field sensor (FOMS). Very high quality thick metallic glass films of the Metglas 2605 SC have been deposited using triode-magneton sputtering. This is the first time such material has been successfully deposited onto an optical fiber or onto any other substrate. The films were also deposited onto glass slides to allow the study of the magnetic properties of the film. The thicknesses of these films were 5-15 mum. The magnetic property of primary interest for our sensor application is the induced longitudinal magnetostrictive strain. However, the other magnetic properties such as magnetic anisotropy, surface and bulk coercivities, magnetic homogeneity and magnetization all affect the magnetostrictive response of the material. We have used ferromagnetic resonance (FMR) at microwave frequencies to study the magnetic anisotropy and homogeneity; vibrating sample magnetometry (VSM) to study the bulk magnetic hysteresis responses and coercivity; and the longitudinal magneto-optic kerr effect (LMOKE) to study the surface magnetic hysteresis responses and coercivity. The isothermalmagnetic annealing effect on these properties has also been studied in detail. The fiber optic magnetic field sensor constructed using the metallic-glass-coated fiber was tested. An electronic feedback control loop using a PZT cylinder was constructed for stabilizing the sensor operation. Magnetic field detection at different dither frequencies was studied in detail. The estimated minimum detectable magnetic field was about 3 times 10^{-7 } Oe. A simplified elastic model was used for the theoretical calculation of the phase shift induced in a metallic-glass -coated optical fiber with a longitudinal applied magnetic field. The phase shift as a function of coating thickness was calculated, and the experimental results at certain thicknesses were compared with the calculation. The frequency response of the FOMS was also studied in some detail. Three different configurations were used for the study of the frequency response. The results indicate that the resonances observed in the FOMS are most likely related to the mechanical resonance of the optical fiber.
Cirrus cloud retrieval with MSG/SEVIRI using artificial neural networks
NASA Astrophysics Data System (ADS)
Strandgren, Johan; Bugliaro, Luca; Sehnke, Frank; Schröder, Leon
2017-09-01
Cirrus clouds play an important role in climate as they tend to warm the Earth-atmosphere system. Nevertheless their physical properties remain one of the largest sources of uncertainty in atmospheric research. To better understand the physical processes of cirrus clouds and their climate impact, enhanced satellite observations are necessary. In this paper we present a new algorithm, CiPS (Cirrus Properties from SEVIRI), that detects cirrus clouds and retrieves the corresponding cloud top height, ice optical thickness and ice water path using the SEVIRI imager aboard the geostationary Meteosat Second Generation satellites. CiPS utilises a set of artificial neural networks trained with SEVIRI thermal observations, CALIOP backscatter products, the ECMWF surface temperature and auxiliary data. CiPS detects 71 and 95 % of all cirrus clouds with an optical thickness of 0.1 and 1.0, respectively, that are retrieved by CALIOP. Among the cirrus-free pixels, CiPS classifies 96 % correctly. With respect to CALIOP, the cloud top height retrieved by CiPS has a mean absolute percentage error of 10 % or less for cirrus clouds with a top height greater than 8 km. For the ice optical thickness, CiPS has a mean absolute percentage error of 50 % or less for cirrus clouds with an optical thickness between 0.35 and 1.8 and of 100 % or less for cirrus clouds with an optical thickness down to 0.07 with respect to the optical thickness retrieved by CALIOP. The ice water path retrieved by CiPS shows a similar performance, with mean absolute percentage errors of 100 % or less for cirrus clouds with an ice water path down to 1.7 g m-2. Since the training reference data from CALIOP only include ice water path and optical thickness for comparably thin clouds, CiPS also retrieves an opacity flag, which tells us whether a retrieved cirrus is likely to be too thick for CiPS to accurately derive the ice water path and optical thickness. By retrieving CALIOP-like cirrus properties with the large spatial coverage and high temporal resolution of SEVIRI during both day and night, CiPS is a powerful tool for analysing the temporal evolution of cirrus clouds including their optical and physical properties. To demonstrate this, the life cycle of a thin cirrus cloud is analysed.
Geometrical shape design of nanophotonic surfaces for thin film solar cells.
Nam, W I; Yoo, Y J; Song, Y M
2016-07-11
We present the effect of geometrical parameters, particularly shape, on optical absorption enhancement for thin film solar cells based on crystalline silicon (c-Si) and gallium arsenide (GaAs) using a rigorous coupled wave analysis (RCWA) method. It is discovered that the "sweet spot" that maximizes efficiency of solar cells exists for the design of nanophotonic surfaces. For the case of ultrathin, rod array is practical due to the effective optical resonances resulted from the optimum geometry whereas parabola array is viable for relatively thicker cells owing to the effective graded index profile. A specific value of thickness, which is the median value of other two devices tailored by rod and paraboloid, is optimized by truncated shape structure. It is therefore worth scanning the optimum shape of nanostructures in a given thickness in order to achieve high performance.
Optical pendulum effect in one-dimensional diffraction-thick porous silicon based photonic crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novikov, V. B., E-mail: vb.novikov@physics.msu.ru; Svyakhovskiy, S. E.; Maydykovskiy, A. I.
We present the realization of the multiperiodic optical pendulum effect in 1D porous silicon photonic crystals (PhCs) under dynamical Bragg diffraction in the Laue scheme. The diffraction-thick PhC contained 360 spatial periods with a large variation of the refractive index of adjacent layers of 0.4. The experiments reveal switching of the light leaving the PhC between the two spatial directions, which correspond to Laue diffraction maxima, as the fundamental wavelength or polarization of the incident light is varied. A similar effect can be achieved when the temperature of the sample or the intensity of the additional laser beam illuminating themore » crystal are changed. We show that in our PhC structures, the spectral period of the pendulum effect is down to 5 nm, while the thermal period is about 10 °C.« less
Dagi, Linda R; Tiedemann, Laura M; Heidary, Gena; Robson, Caroline D; Hall, Amber M; Zurakowski, David
2014-12-01
Detecting and monitoring optic neuropathy in patients with craniosynostosis is a clinical challenge due to limited cooperation, and subjective measures of visual function. The purpose of this study was to appraise the correlation of peripapillary retinal nerve fiber layer (RNFL) thickness measured by spectral-domain ocular coherence tomography (SD-OCT) with indication of optic neuropathy based on fundus examination. The medical records of all patients with craniosynostosis presenting for ophthalmic evaluation during 2013 were retrospectively reviewed. The following data were abstracted from the record: diagnosis, historical evidence of elevated intracranial pressure, current ophthalmic evaluation and visual field results, and current peripapillary RNFL thickness. A total of 54 patients were included (mean age, 10.6 years [range, 2.4-33.8 years]). Thirteen (24%) had evidence of optic neuropathy based on current fundus examination. Of these, 10 (77%) demonstrated either peripapillary RNFL elevation and papilledema or depression with optic atrophy. Sensitivity for detecting optic atrophy was 88%; for papilledema, 60%; and for either form of optic neuropathy, 77%. Specificity was 94%, 90%, and 83%, respectively. Kappa agreement was substantial for optic atrophy (κ = 0.73) and moderate for papilledema (κ = 0.39) and for either form of optic neuropathy (κ = 0.54). Logistic regression indicated that peripapillary RNFL thickness was predictive of optic neuropathy (P < 0.001). Multivariable analysis demonstrated that RNFL thickness measurements were more sensitive at detecting optic neuropathy than visual field testing (likelihood ratio = 10.02; P = 0.002). Sensitivity and specificity of logMAR visual acuity in detecting optic neuropathy were 15% and 95%, respectively. Peripapillary RNFL thickness measured by SD-OCT provides adjunctive evidence for identifying optic neuropathy in patients with craniosynostosis and appears more sensitive at detecting optic atrophy than papilledema. Copyright © 2014 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.
Kim, Seokhan; Na, Jihoon; Kim, Myoung Jin; Lee, Byeong Ha
2008-04-14
We propose and demonstrate novel methods that enable simultaneous measurements of the phase index, the group index, and the geometrical thickness of an optically transparent object by combining optical low-coherence interferometer and confocal optics. The low-coherence interferometer gives information relating the group index with the thickness, while the confocal optics allows access to the phase index related with the thickness of the sample. To relate these, two novel methods were devised. In the first method, the dispersion-induced broadening of the low-coherence envelop signal was utilized, and in the second method the frequency derivative of the phase index was directly obtained by taking the confocal measurements at several wavelengths. The measurements were made with eight different samples; B270, CaF2, two of BK7, two of fused silica, cover glass, and cigarette cover film. The average measurement errors of the first and the second methods were 0.123% and 0.061% in the geometrical thickness, 0.133% and 0.066% in the phase index, and 0.106% and 0.057% in the group index, respectively.
The Effects of Accretion Disk Thickness on the Black Hole Reflection Spectrum
NASA Astrophysics Data System (ADS)
Taylor, Corbin; Reynolds, Christopher S.
2018-01-01
Despite being the gravitational engines that power galactic-scale winds and mega parsec-scale jets in active galaxies, black holes are remarkably simple objects, typically being fully described by their angular momenta (spin) and masses. The modelling of AGN X-ray reflection spectra has proven fruitful in estimating the spin of AGN, as well as giving insight into their accretion histories and into the properties of plasmas in the strong gravity regime. However, current models make simplifying assumptions about the geometry of the reflecting material in the accretion disk and the irradiating X-ray corona, approximating the disk as an optically thick, infinitely thin disk of material in the orbital plane. We present results from the new relativistic raytracing suite, Fenrir, that explore the effects that disk thickness may have on the reflection spectrum and the accompanying reverberation signatures. Approximating the accretion disk as an optically thick, geometrically thin, radiation pressure dominated disk (Shakura & Sunyaev 1973), one finds that the disk geometry is non-negligible in many cases, with significant changes in the broad Fe K line profile. Finally, we explore the systematic errors inherent in other contemporary models that approximate that disk as having negligible vertical extent.
NASA Astrophysics Data System (ADS)
Hong, Ruijin; Ji, Jialin; Tao, Chunxian; Zhang, Dawei
2016-10-01
Au/ZnO/Ag sandwich structure films were fabricated by DC magnetron sputter at room temperature. The tunability of the surface plasmon resonance wavelength was realized by varying the thickness of ZnO thin film. The effects of ZnO layer on the optical properties of Au/ZnO/Au thin films were investigated by optical absorption and Raman scattering measurements. It has been found that both the surface plasmon resonance frequency and SERS can be controlled by adjusting the thickness of ZnO layer due to the coupling of metal and semiconductor.
Theoretical study of ZnS/CdS bi-layer for thin-film CdTe solar cell
NASA Astrophysics Data System (ADS)
Mohamed, H. A.; Mohamed, A. S.; Ali, H. M.
2018-05-01
The performance of CdTe solar cells is strongly limited by the thickness of CdS window layer. A higher short-circuit current density might be achieved by decreasing the thickness of CdS layer as a result of reducing the absorption losses that take place in this layer. However, it is difficult to obtain uniform and pin-hole free CdS layers thinner than 50 nm. This problem can be solved through increasing the band gap of the window layer by adding a wide band gap semiconductor such as ZnS. In this work, bi-layer ZnS/CdS film was studied as an improved window layer of ITO/ZnS/CdS/CdTe solar cell. The total thickness of ZnS/CdS layer was taken about 60 nm. The effect of optical losses due to reflection at different interfaces in the cell and absorption in ITO, ZnS, CdS as well as the recombination loss have been studied. Finally, the effects of the recombination losses in the space-charge region and the reflectivity from the back contact were taken into accounts. The results revealed that the optical losses of 23% were achieved at 60 nm thickness of CdS and theses losses minimized to 18% when ZnS layer of 30 nm thickness was added to CdS layer. The minimum optical and recombination losses of about 26% were obtained at 1 ns of electron life-time and ∼0.4 μm width of the space-charge region. The maximum efficiency of 18.5% was achieved for ITO/CdS/CdTe cell and the efficiency increased up to 20% for ITO/ZnS/CdS/CdTe cell.
Turan, Kadriye Erkan; Sekeroglu, Hande Taylan; Baytaroglu, Ata; Bezci, Figen; Karahan, Sevilay
2018-01-01
To (a) determine the normative values for optical coherence tomography (OCT) parameters such as central macular thickness, retinal nerve fiber layer thickness, and choroidal thickness in healthy children; (b) investigate the relationships of these parameters with axial length, central corneal thickness, refractive errors, and intraocular pressure; and (c) determine interexaminer agreement for choroidal thickness measurements. In this cross-sectional study, 120 healthy children aged 8-15 years underwent detailed ophthalmological examination and OCT measurements. Choroidal thickness was measured at three separate locations by two independent examiners. The mean global retinal nerve fiber layer thickness was 98.75 ± 9.45 μm (79.0-121.0). The mean central macular thickness was 232.29 ± 29.37 μm (190.0-376.0). The mean subfoveal choroidal thickness obtained by examiner 1 was 344.38 ± 68.83 μm and that obtained by examiner 2 was 344.04 ± 68.92 μm. Interexaminer agreement was between 99.6%-99.8% for choroidal thickness at three separate locations. Central macular thickness increased with axial length (r=0.245, p=0.007). Choroidal thickness increased with age (r=0.291, p=0.001) and decreased with axial length (r=-0.191, p=0.037). Global retinal nerve fiber layer thickness decreased with axial length (r=-0.247, p=0.007) and increased with central corneal thickness (r=0.208, p=0.022). Global retinal nerve fiber layer thickness positively correlated with choroidal thickness (r=0.354, p<0.001). Global retinal nerve fiber layer thickness (r=0.223, p=0.014) and choroidal thickness (r=0.272, p=0.003) increased with the spherical equivalent (D). Optical coherence tomography parameters showed a wide range of variability in children. Retinal nerve fiber layer thickness, central macular thickness, and choroidal thickness were found to be either inter-related or correlated with age, central corneal thickness, axial length, and refractive errors. Furthermore, manual measurements of choroidal thickness showed high interexaminer agreement. Because normative values for optical coherence tomography parameters differed in children, the measurements should be interpreted according to an age-appropriate database.
Lamina Cribrosa Changes after Laser In Situ Keratomileusis in Myopic Eyes
Lee, Soomin; Choi, Da-Ye Diana; Lim, Dong Hui; Chung, Tae Young; Han, Jong Chul
2018-01-01
Purpose To determine deep optic nerve head structure changes after transient intraocular pressure elevation during laser in situ keratomileusis (LASIK) for myopia. Methods Enhanced depth imaging-optical coherence tomography was performed in each myopic eye that underwent LASIK surgery. Enhanced depth imaging-optical coherence tomography images were created at postoperative 1 day, 1 week, 2 weeks, and 1 month. Lamina cribrosa (LC) thickness, LC depth and prelaminar thickness at the superior, middle and inferior portions of the optic nerve head were measured by two investigators. Results Forty eyes in 40 patients were included in the present study. During follow-up, there were no significant differences in prelaminar thickness or LC depth. The LC demonstrated increased thickness at postoperative 1 day at all three locations (superior, middle, and inferior) (p < 0.001, p < 0.001, p < 0.001, respectively). However, no significant changes were observed at postoperative 1 week, 2 weeks, and 1 month. Conclusions The LC thickness could increase at 1 day after LASIK surgery. However, the thickness will gradually return to baseline morphology. Temporary intraocular pressure increase during LASIK does not appear to induce irreversible LC thickness changes. PMID:29611373
Lamina Cribrosa Changes after Laser In Situ Keratomileusis in Myopic Eyes.
Lee, Soomin; Choi, Da Ye Diana; Lim, Dong Hui; Chung, Tae Young; Han, Jong Chul; Kee, Changwon
2018-04-01
To determine deep optic nerve head structure changes after transient intraocular pressure elevation during laser in situ keratomileusis (LASIK) for myopia. Enhanced depth imaging-optical coherence tomography was performed in each myopic eye that underwent LASIK surgery. Enhanced depth imaging-optical coherence tomography images were created at postoperative 1 day, 1 week, 2 weeks, and 1 month. Lamina cribrosa (LC) thickness, LC depth and prelaminar thickness at the superior, middle and inferior portions of the optic nerve head were measured by two investigators. Forty eyes in 40 patients were included in the present study. During follow-up, there were no significant differences in prelaminar thickness or LC depth. The LC demonstrated increased thickness at postoperative 1 day at all three locations (superior, middle, and inferior) (p < 0.001, p < 0.001, p < 0.001, respectively). However, no significant changes were observed at postoperative 1 week, 2 weeks, and 1 month. The LC thickness could increase at 1 day after LASIK surgery. However, the thickness will gradually return to baseline morphology. Temporary intraocular pressure increase during LASIK does not appear to induce irreversible LC thickness changes. © 2018 The Korean Ophthalmological Society.
Optical quality in central serous chorioretinopathy.
Lee, Kyungmin; Sohn, Joonhong; Choi, Jong Gil; Chung, Sung Kun
2014-12-02
To assess optical quality and intraocular scattering using the Optical Quality Analysis System (OQAS) in central serous chorioretinopathy (CSC) and to determine the effects of retinal changes on optical quality. This was a prospective, case-control study. Participants were 29 patients with diagnosis of CSC. The control group consisted of the patients' unaffected eyes. Initial logMAR visual acuity, central macular thickness (by spectral domain optical coherence tomography), and optical quality parameters including modulation transfer function (MTF) cutoff frequency, Strehl (2-dimensional) ratio, and OQAS values at 100%, 20%, and 9% contrast levels were investigated. Objective scattering index (OSI) at 4.0-mm pupil size was assessed in both eyes by using the OQAS. After 3 months of treatment, which included observation and focal laser or injections of antivascular endothelial growth factor, every CSC-affected eye was followed. Main outcome measures were differences between clinical parameters of the CSC-affected eye and those of the control eye and changes in those parameters according to the clinical course of CSC over 3 months. In CSC-affected eyes, the MTF cutoff was significantly reduced (P = 0.01), and OSI was significantly increased (P = 0.03). As macular thickness decreased, OSI decreased but did not become normalized compared to the control eye, nor was it statistically significantly correlated with central macular thickness change. Retinal change affected optical quality and intraocular scatter. Therefore, when the severity of a cataract is assessed using the OQAS, retinal status should be considered when interpreting OQAS values. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Effect of Reduced Meal Frequency during Ramadan Fasting on Retinal and Choroidal Thickness.
Ersan, Ismail; Tufan, Hasan Ali; Arikan, Sedat; Kara, Selcuk; Gencer, Baran; Hondur, Ahmet Murat
2017-01-01
To evaluate the effects of Ramadan fasting on central foveal thickness (CFT) and subfoveal choroidal thickness (SFCT) in healthy individuals using enhanced depth imaging optical coherence tomography (EDI-OCT). The EDI-OCT scans of 42 healthy individuals obtained after about 12 hours of fasting on at least the twenty-first consecutive day of fasting were compared to scans of the same patients taken one month after the last day they had fasted. CFT values were similar for both time periods (p > 0.05). The SFCT was significantly higher after consecutive fasting days towards the end of Ramadan, compared to the SFCT after one month of no fasting (one month after Ramadan ended) (p < 0.001). Ramadan fasting may lead to a significant increase in subfoveal choroidal thickness without affecting the central foveal thickness.
Electrically tunable coherent optical absorption in graphene with ion gel.
Thareja, Vrinda; Kang, Ju-Hyung; Yuan, Hongtao; Milaninia, Kaveh M; Hwang, Harold Y; Cui, Yi; Kik, Pieter G; Brongersma, Mark L
2015-03-11
We demonstrate electrical control over coherent optical absorption in a graphene-based Salisbury screen consisting of a single layer of graphene placed in close proximity to a gold back reflector. The screen was designed to enhance light absorption at a target wavelength of 3.2 μm by using a 600 nm-thick, nonabsorbing silica spacer layer. An ionic gel layer placed on top of the screen was used to electrically gate the charge density in the graphene layer. Spectroscopic reflectance measurements were performed in situ as a function of gate bias. The changes in the reflectance spectra were analyzed using a Fresnel based transfer matrix model in which graphene was treated as an infinitesimally thin sheet with a conductivity given by the Kubo formula. The analysis reveals that a careful choice of the ionic gel layer thickness can lead to optical absorption enhancements of up to 5.5 times for the Salisbury screen compared to a suspended sheet of graphene. In addition to these absorption enhancements, we demonstrate very large electrically induced changes in the optical absorption of graphene of ∼3.3% per volt, the highest attained so far in a device that features an atomically thick active layer. This is attributable in part to the more effective gating achieved with the ion gel over the conventional dielectric back gates and partially by achieving a desirable coherent absorption effect linked to the presence of the thin ion gel that boosts the absorption by 40%.
NASA Astrophysics Data System (ADS)
Pfeiffer, K.; Schulz, U.; Tünnermann, A.; Szeghalmi, A.
2017-02-01
Antireflective coatings are essential to improve transmittance of optical elements. Most research and development of AR coatings has been reported on a wide variety of plane optical surfaces; however, antireflection is also necessary on nonplanar optical surfaces. Physical vapor deposition (PVD), a common method for optical coatings, often results in thickness gradients on strongly curved surfaces, leading to a failure of the desired optical function. In this work, optical thin films of tantalum pentoxide, aluminum oxide and silicon dioxide were prepared by atomic layer deposition (ALD), which is based on self-limiting surface reactions. The results demonstrate that ALD optical layers can be deposited on both vertical and horizontal substrate surfaces with uniform thicknesses and the same optical properties. A Ta2O5/Al2O3/ SiO2 multilayer AR coating (400-700 nm) was successfully applied to a curved aspheric glass lens with a diameter of 50 mm and a center thickness of 25 mm.
Synthesis and characterization study of n-Bi2O3/p-Si heterojunction dependence on thickness
NASA Astrophysics Data System (ADS)
Al-Maiyaly, Bushra K. H.; Hussein, Bushra H.; Salih, Ayad A.; Shaban, Auday H.; Mahdi, Shatha H.; Khudayer, Iman H.
2018-05-01
In this work, Bi2O3 was deposited as a thin film of different thickness (400, 500, and 600 ±20 nm) by using thermal oxidation at 573 K with ambient oxygen of evaporated bismuth (Bi) thin films in a vacuum on glass substrate and on Si wafer to produce n-Bi2O3/p-Si heterojunction. The effect of thickness on the structural, electrical, surface and optical properties of Bi2O3 thin films was studied. XRD analysis reveals that all the as deposited Bi2O3 films show polycrystalline tetragonal structure, with preferential orientation in the (201) direction, without any change in structure due to increase of film thickness. AFM and SEM images are used to investigate the influences of film thickness on surface properties. The optical measurement were taken for the wave length range (400-1100) nm showed that the nature of the optical transition has been direct allowed with average band gap energies varies in the range of (2.9-2.25) eV with change thickness parameter. The extent and nature of transmittance, absorbance, reflectance and optimized band gap of the material assure to utilize it for photovoltaic applications. Hall measurements showed that all the films are n-type. The electrical properties of n-Bi2O3/p-Si heterojunction (HJ) were obtained by I-V (dark and illuminated) and C-V measurement at frequency (10 MHz) at different thickness. The ideality factor saturation current density, depletion width, built-in potential and carrier concentration are characterized under different thickness. The results show these HJ were of abrupt type. The photovoltaic measurements short-circuit current density, open-circuit voltage, fill factor and efficiencies are determined for all samples. Finally thermal oxidation allowed fabrication n-Bi2O3/p-Si heterojunction with different thickness for solar cell application.
The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals
Mudd, G. W.; Molas, M. R.; Chen, X.; Zólyomi, V.; Nogajewski, K.; Kudrynskyi, Z. R.; Kovalyuk, Z. D.; Yusa, G.; Makarovsky, O.; Eaves, L.; Potemski, M.; Fal’ko, V. I.; Patanè, A.
2016-01-01
The electronic band structure of van der Waals (vdW) layered crystals has properties that depend on the composition, thickness and stacking of the component layers. Here we use density functional theory and high field magneto-optics to investigate the metal chalcogenide InSe, a recent addition to the family of vdW layered crystals, which transforms from a direct to an indirect band gap semiconductor as the number of layers is reduced. We investigate this direct-to-indirect bandgap crossover, demonstrate a highly tuneable optical response from the near infrared to the visible spectrum with decreasing layer thickness down to 2 layers, and report quantum dot-like optical emissions distributed over a wide range of energy. Our analysis also indicates that electron and exciton effective masses are weakly dependent on the layer thickness and are significantly smaller than in other vdW crystals. These properties are unprecedented within the large family of vdW crystals and demonstrate the potential of InSe for electronic and photonic technologies. PMID:28008964
The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals.
Mudd, G W; Molas, M R; Chen, X; Zólyomi, V; Nogajewski, K; Kudrynskyi, Z R; Kovalyuk, Z D; Yusa, G; Makarovsky, O; Eaves, L; Potemski, M; Fal'ko, V I; Patanè, A
2016-12-23
The electronic band structure of van der Waals (vdW) layered crystals has properties that depend on the composition, thickness and stacking of the component layers. Here we use density functional theory and high field magneto-optics to investigate the metal chalcogenide InSe, a recent addition to the family of vdW layered crystals, which transforms from a direct to an indirect band gap semiconductor as the number of layers is reduced. We investigate this direct-to-indirect bandgap crossover, demonstrate a highly tuneable optical response from the near infrared to the visible spectrum with decreasing layer thickness down to 2 layers, and report quantum dot-like optical emissions distributed over a wide range of energy. Our analysis also indicates that electron and exciton effective masses are weakly dependent on the layer thickness and are significantly smaller than in other vdW crystals. These properties are unprecedented within the large family of vdW crystals and demonstrate the potential of InSe for electronic and photonic technologies.
Synthesis and characterization of CdTe nanostructures grown by RF magnetron sputtering method
NASA Astrophysics Data System (ADS)
Akbarnejad, Elaheh; Ghoranneviss, Mahmood; Hantehzadeh, Mohammad Reza
2017-08-01
In this paper, we synthesize Cadmium Telluride nanostructures by radio frequency (RF) magnetron sputtering system on soda lime glass at various thicknesses. The effect of CdTe nanostructures thickness on crystalline, optical and morphological properties has been studied by means of X-ray diffraction (XRD), UV-VIS-NIR spectrophotometry, field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM), respectively. The XRD parameters of CdTe nanostructures such as microstrain, dislocation density, and crystal size have been examined. From XRD analysis, it could be assumed that increasing deposition time caused the formation of the wurtzite hexagonal structure of the sputtered films. Optical properties of the grown nanostructures as a function of film thickness have been observed. All the films indicate more than 60% transmission over a wide range of wavelengths. The optical band gap values of the films have obtained in the range of 1.62-1.45 eV. The results indicate that an RF sputtering method succeeded in depositing of CdTe nanostructures with high purity and controllable physical properties, which is appropriate for photovoltaic and nuclear detector applications.
NASA Astrophysics Data System (ADS)
Li, Cheng; Peng, Xiaobin; Liu, Qianwen; Gan, Xin; Lv, Ruitao; Fan, Shangchun
2017-02-01
Thickness measurement plays an important role for characterizing optomechanical behaviors of graphene. From the view of graphene-based Fabry-Perot (F-P) sensors, a simple, nondestructive and in situ method of determining the thickness of nanothick graphene membranes was demonstrated by using optical fiber F-P interference. Few-layer/multilayer graphene sheets were suspendedly adhered onto the endface of a ferrule with a 125 µm inner diameter by van der Waals interactions to construct micro F-P cavities. Along with the Fresnel’s law and complex index of refraction of the membrane working as a light reflector of an F-P interferometer, the optical reflectivity of graphene was modeled to investigate the effects of light wavelength and temperature. Then the average thickness of graphene membranes were extracted by F-P interference demodulation, and yielded a very strong cross-correlation coefficient of 99.95% with the experimental results observed by Raman spectrum and atomic force microscope. The method could be further extended for determining the number of layers of other 2D materials.
NASA Astrophysics Data System (ADS)
Minnis, Patrick; Yost, Chris R.; Sun-Mack, Sunny; Chen, Yan
2008-06-01
The difference between cloud-top altitude Z top and infrared effective radiating height Z eff for optically thick ice clouds is examined using April 2007 data taken by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and the Moderate-Resolution Imaging Spectroradiometer (MODIS). For even days, the difference ΔZ between CALIPSO Z top and MODIS Z eff is 1.58 +/- 1.26 km. The linear fit between Z top and Z eff , applied to odd-day data, yields a difference of 0.03 +/- 1.21 km and can be used to estimate Z top from any infrared-based Z eff for thick ice clouds. Random errors appear to be due primarily to variations in cloud ice-water content (IWC). Radiative transfer calculations show that ΔZ corresponds to an optical depth of ~1, which based on observed ice-particle sizes yields an average cloud-top IWC of ~0.015 gm-3, a value consistent with in situ measurements. The analysis indicates potential for deriving cloud-top IWC using dual-satellite data.
Structural and optical properties of CuS thin films deposited by Thermal co-evaporation
NASA Astrophysics Data System (ADS)
Sahoo, A. K.; Mohanta, P.; Bhattacharyya, A. S.
2015-02-01
Copper sulfide (CuS) thin films with thickness 100, 150 and 200 nm have been deposited on glass substrates by thermal co-evaporation of Copper and Sulphur. The effect of CuS film thickness on the structural and optical properties have investigated and discussed. Structural and optical investigations of the films were carried out by X-ray diffraction, atomic force microscopy, high-resolution transmission electron microscopy and UV spectroscopy. XRD and selected area electron diffraction conforms that polycrystalline in nature with hexagonal crystal structure. AFM studies revealed a smooth surface morphology with root mean-square roughness values increases from 24 nm to 42 nm as the film thickness increase from 100 nm to 200 nm. AFM image showed that grain size increases with thickness of film increases and good agreement with the calculated from full width half maximum of the X-ray diffraction peak using Scherrer's formula and Williamson-Hall plot. The absorbance of the thin films were absorbed decreases with wavelength through UV-visible regions but showed a increasing in the near-infrared regions. The reflectance spectra also showed lower reflectance peak (25% to 32%) in visible region and high reflectance peak (49 % to 54 %) in near-infrared region. These high absorbance films made them for photo-thermal conversion of solar energy.
NASA Astrophysics Data System (ADS)
Gifford, Erika; Wang, Z.; Ramachandran, S.; Heflin, J. R.
2007-09-01
Ionic self-assembled multilayers (ISAMs) adsorbed on long period fiber gratings (LPGs) can serve as an inexpensive, robust, portable, biosensor platform. The ISAM technique is a layer-by-layer deposition technique that creates thin films on the nanoscale level. The combination of ISAMs with LPGs yields exceptional sensitivity of the optical fiber transmission spectrum. We have shown theoretically that the resonant wavelength shift for a thin-film coated LPG can be caused by the variation of the film's refractive index and/or the variation of the thickness of the film. We have experimentally demonstrated that the deposition of nm-thick ISAM films on LPGs induces shifts in the resonant wavelength of > 1.6 nm per nm of thin film. It has also been shown that the sensitivity of the LPG to the thickness of the ISAM film increases with increased film thickness. We have further demonstrated that ISAM-coated LPGs can function effectively as biosensors by using the biotin-streptavidin system and by using the Bacillus anthracis (Anthrax) antibody- PA (Protective Antigen) system. Experiments have been successfully performed in both air and solution, which illustrates the versatility of the biosensor. The results confirm that ISAM-LPGs yield a reusable, thermally-stable, and robust platform for designing and building efficient optical biosensors.
Thick Prelaminar Tissue Decreases Lamina Cribrosa Visibility.
Lucy, Katie A; Wang, Bo; Schuman, Joel S; Bilonick, Richard A; Ling, Yun; Kagemann, Larry; Sigal, Ian A; Grulkowski, Ireneusz; Liu, Jonathan J; Fujimoto, James G; Ishikawa, Hiroshi; Wollstein, Gadi
2017-03-01
Evaluation of the effect of prelaminar tissue thickness on visualization of the lamina cribrosa (LC) using optical coherence tomography (OCT). The optic nerve head (ONH) region was scanned using OCT. The quality of visible LC microstructure was assessed subjectively using a grading system and objectively by analyzing the signal intensity of each scan's superpixel components. Manual delineations were made separately and in 3-dimensions quantifying prelaminar tissue thickness, analyzable regions of LC microstructure, and regions with a visible anterior LC (ALC) boundary. A linear mixed effect model quantified the association between tissue thickness and LC visualization. A total of 17 healthy, 27 glaucoma suspect, and 47 glaucomatous eyes were included. Scans with thicker average prelaminar tissue measurements received worse grading scores (P = 0.007), and superpixels with low signal intensity were associated significantly with regions beneath thick prelaminar tissue (P < 0.05). The average prelaminar tissue thickness in regions of scans where the LC was analyzable (214 μm) was significantly thinner than in regions where the LC was not analyzable (569 μm; P < 0.001). Healthy eyes had significantly thicker average prelaminar tissue measurements than glaucoma or glaucoma suspect eyes (both P < 0.001), and glaucoma suspect eyes had significantly thicker average prelaminar tissue measurements than glaucoma eyes (P = 0.008). Significantly more of the ALC boundary was visible in glaucoma eyes (63% of ONH) than in healthy eyes (41%; P = 0.005). Thick prelaminar tissue was associated with impaired visualization of the LC. Healthy subjects generally had thicker prelaminar tissue, which potentially could create a selection bias against healthy eyes when comparing LC structures.
Ackermann, Philipp; Brachert, Maike; Albrecht, Philipp; Ringelstein, Marius; Finis, David; Geerling, Gerd; Aktas, Orhan; Guthoff, Rainer
2017-07-01
A characteristic disease pattern may be reflected by retinal layer thickness changes in non-arteritic anterior ischaemic optic neuropathy measured using spectraldomain optical coherence tomography. Retinal layer segmentation is enabled by advanced software. In this study, retinal layer thicknesses in acute and chronic non-arteritic anterior ischaemic optic neuropathy were compared. A single-centre cross-sectional analysis was used. A total of 27 patients (20 age-matched healthy eyes) were included: 14 with acute (<7 days) and 13 patients with chronic non-arteritic anterior ischaemic optic neuropathy. Macular volume and 12° peripapillary ring optical coherence tomography scans were used. The peripapillary thicknesses of the following layers were determined by manual segmentation: retinal nerve fibres, ganglion cells + inner plexiform layer, inner nuclear layer + outer plexiform layer, outer nuclear layer + inner segments of the photoreceptors and outer segments of the photoreceptors to Bruch's membrane. Macular retinal layer thicknesses were automatically determined in volume cubes centred on the fovea. Peripapillary retinal swelling in acute nonarteritic anterior ischaemic optic neuropathy was attributable to retinal nerve fibre layer, ganglion cell layer/inner plexiform layer and outer nuclear layer/segments of the photoreceptors thickening. In chronic cases, peripapillary retinal nerve fibre layer, macular ganglion cell layer and inner plexiform layer thinning were observed. In acute non-arteritic anterior ischaemic optic neuropathy, the inner and outer peripapillary retinal layers are affected by thickness changes. In chronic cases, atrophy of the ganglion cells and their axons and dendrites is evident by inner retinal layer thinning. © 2017 Royal Australian and New Zealand College of Ophthalmologists.
The acute effect of pseudoephedrine on choroidal thickness.
Ovet, G; Alpfidan, I; Sakarya, Y; Sakarya, R; Ozcimen, M; Göktaş, S; Erdoğan, E
2016-01-01
To investigate the acute effects of pseudoephedrine (PE) on choroidal thickness in healthy young patients. Fifty patients with nasal and sinus congestion who were prescribed 60 mg oral PE at the otolaryngology department were recruited for this study. The enhanced depth imaging (EDI) optic coherence tomography (OCT) (Spectralis OCT; Heidelberg Engineering, Heidelberg, Germany) choroidal thickness measurements were performed at baseline and 1, 3 and 6 hours at 7 points. The right eyes of 50 healthy subjects (22 women and 28 men) were included in this study. The mean choroidal thickness at fovea was 293.12 μm, 279.80 μm, 295.80 μm, and 294.52 μm at baseline, 1, 3 and 6 hours respectively. A significant reduction in choroidal thickness versus baseline was observed at all points at 1 hour. The choroidal thickness decreased 1 hour after oral administration of PE and returned to baseline thickness at 3 hours. We suppose that this transient decrease might be associated with vasoconstriction due to activation of sympathetic alpha adrenoceptors.
Choroidal thickness in traumatic optic neuropathy.
Lee, Ju-Yeun; Eo, Doo-Ri; Park, Kyung-Ah; Oh, Sei Yeul
2017-12-01
To examine the choroidal thickness in patients with indirect traumatic optic neuropathy (TON) Methods: Patients with unilateral traumatic optic neuropathy over a period of 4 years were included in this study. Horizontal and vertical enhanced-depth imaging (EDI) from spectral-domain optical coherence tomography (SD-OCT) scans of the fovea were obtained in patients with unilateral TON within 2 weeks of injury. The main outcome measure was the choroidal thickness at nine locations. The choroidal thickness was compared between affected and unaffected eyes in the TON group, and the mean difference in the choroidal thickness in both eyes was compared between TON and control groups. A total of 16 patients and 20 control subjects were included. The choroidal thickness at horizontal, vertical and average subfoveal, inner temporal, and outer inferior locations was significantly thicker (13-23%) in affected eyes than in unaffected fellow eyes (p = 0.042, 0.046, 0.024, 0.013, 0.018, and 0.027, respectively). The mean difference value between choroidal thickness measurements in both eyes was significantly larger in the TON group than in the control group at the horizontal, vertical and average subfoveal, inner temporal, inner nasal, inner superior, inner inferior, and outer superior locations (p = 0.001, 0.011, <0.001, 0.001, 0.033, 0.014, 0.011, and 0.014, respectively). The choroidal thickness at subfoveal locations showed no statistical difference between TON and control eyes (p > 0.05). Eyes affected by TON showed a regionally thicker choroid than unaffected fellow eye. This thick choroid might be due to impaired blood circulation and vascular remodeling of the optic nerve head and choroid. These results help to better understand the pathophysiology of TON.
Adiabatic passage in photon-echo quantum memories
NASA Astrophysics Data System (ADS)
Demeter, Gabor
2013-11-01
Photon-echo-based quantum memories use inhomogeneously broadened, optically thick ensembles of absorbers to store a weak optical signal and employ various protocols to rephase the atomic coherences for information retrieval. We study the application of two consecutive, frequency-chirped control pulses for coherence rephasing in an ensemble with a “natural” inhomogeneous broadening. Although propagation effects distort the two control pulses differently, chirped pulses that drive adiabatic passage can rephase atomic coherences in an optically thick storage medium. Combined with spatial phase-mismatching techniques to prevent primary echo emission, coherences can be rephased around the ground state to achieve secondary echo emission with close to unit efficiency. Potential advantages over similar schemes working with π pulses include greater potential signal fidelity, reduced noise due to spontaneous emission, and better capability for the storage of multiple memory channels.
NASA Technical Reports Server (NTRS)
Yang, Ye; Soyemi, Olusola O.; Landry, Michelle R.; Soller, Babs R.
2005-01-01
The influence of fat thickness on the diffuse reflectance spectra of muscle in the near infrared (NIR) region is studied by Monte Carlo simulations of a two-layer structure and with phantom experiments. A polynomial relationship was established between the fat thickness and the detected diffuse reflectance. The influence of a range of optical coefficients (absorption and reduced scattering) for fat and muscle over the known range of human physiological values was also investigated. Subject-to-subject variation in the fat optical coefficients and thickness can be ignored if the fat thickness is less than 5 mm. A method was proposed to correct the fat thickness influence. c2005 Optical Society of America.
Longitudinal analysis of progression in glaucoma using spectral-domain optical coherence tomography.
Wessel, Julia M; Horn, Folkert K; Tornow, Ralf P; Schmid, Matthias; Mardin, Christian Y; Kruse, Friedrich E; Juenemann, Anselm G; Laemmer, Robert
2013-05-01
To compare the longitudinal loss of RNFL thickness measurements by SD-OCT in healthy individuals and glaucoma patients with or without progression concerning optic disc morphology. A total of 62 eyes, comprising 38 glaucomatous eyes with open angle glaucoma and 24 healthy controls, were included in the study (Erlangen Glaucoma Registry, NTC00494923). All patients were investigated annually over a period of 3 years by Spectralis SD-OCT measuring peripapillary RNFL thickness. By masked comparative analysis of photographs, the eyes were classified into nonprogressive and progressive glaucoma cases. Longitudinal loss of RNFL thickness was compared with morphological changes of optic disc morphology. Mixed model analysis of annual OCT scans revealed an estimated annual decrease of the RNFL thickness by 2.12 μm in glaucoma eyes with progression, whereas glaucoma eyes without progression in optic disc morphology lost 1.18 μm per year in RNFL thickness (P = 0.002). The rate of change in healthy eyes was 0.60 μm and thereby also significantly lower than in glaucoma eyes with progression (P < 0.001). The intrasession variability of three successive measurements without head repositioning was 1.5 ± 0.7 μm. The loss of mean RNFL thickness exceeded the intrasession variability in 60% of nonprogressive eyes, and in 85% of progressive eyes after 3 years. LONGITUDINAL MEASUREMENTS OF RNFL THICKNESS USING SD-OCT SHOW A MORE PRONOUNCED REDUCTION OF RNFL THICKNESS IN PATIENTS WITH PROGRESSION COMPARED WITH PATIENTS WITHOUT PROGRESSION IN GLAUCOMATOUS OPTIC DISC CHANGES. (www.clinicaltrials.gov number, NTC00494923.).
Influence of ground level SO2 on the diffuse to direct irradiance ratio in the middle ultraviolet
NASA Technical Reports Server (NTRS)
Klenk, K. F.; Green, A. E. S.
1977-01-01
The dependence of the ratio of the diffuse to direct irradiances at the ground were examined for a wavelength of 315.1 nm. A passive remote sensing method based on ratio measurements for obtaining the optical thickness of SO2 in the vertical column was proposed. If, in addition to the ratio measurements, the SO2 density at the ground is determining using an appropriate point-sampling technique then some inference on the vertical extent of SO2 can be drawn. An analytic representation is presented of the ratio for a wide range of SO2 and aerosol optical thicknesses and solar zenith angles which can be inverted algebraically to give the SO2 optical thickness in terms of the measured ratio, aerosol optical thickness and solar zenith angle.
Optical characterization of nanoporous AAO sensor substrate
NASA Astrophysics Data System (ADS)
Kassu, Aschalew; Farley, Carlton W.; Sharma, Anup
2014-05-01
Nanoporous anodic aluminum oxide (AAO) has been investigated as an ideal and cost-effective chemical and biosensing platform. In this paper, we report the optical properties of periodic 100 micron thick nanoporous anodic alumina membranes with uniform and high density cylindrical pores penetrating the entire thickness of the substrate, ranging in size from 18 nm to 150 nm in diameter and pore periods from 44 nm to 243 nm. The surface geometry of the top and bottom surface of each membrane is studied using atomic force microscopy. The optical properties including transmittance, reflectance, and absorbance spectra on both sides of each substrate are studied and found to be symmetrical. It is observed that, as the pore size increases, the peak resonance intensity in transmittance decreases and in absorbance increases. The effects of the pore sizes on the optical properties of the bare nanoporous membranes and the benefit of using arrays of nanohole arrays with varying hole size and periodicity as a chemical sensing platform is also discussed. To characterize the optical sensing technique, transmittance and reflectance measurements of various concentrations of a standard chemical adsorbed on the bare nanoporous substrates are investigated. The preliminary results presented here show variation in transmittance and reflectance spectra with the concentration of the chemical used or the amount of the material adsorbed on the surface of the substrate.
Seasonal Bias of Retrieved Ice Cloud Optical Properties Based on MISR and MODIS Measurements
NASA Astrophysics Data System (ADS)
Wang, Y.; Hioki, S.; Yang, P.; Di Girolamo, L.; Fu, D.
2017-12-01
The precise estimation of two important cloud optical and microphysical properties, cloud particle optical thickness and cloud particle effective radius, is fundamental in the study of radiative energy budget and hydrological cycle. In retrieving these two properties, an appropriate selection of ice particle surface roughness is important because it substantially affects the single-scattering properties. At present, using a predetermined ice particle shape without spatial and temporal variations is a common practice in satellite-based retrieval. This approach leads to substantial uncertainties in retrievals. The cloud radiances measured by each of the cameras of the Multi-angle Imaging SpectroRadiometer (MISR) instrument are used to estimate spherical albedo values at different scattering angles. By analyzing the directional distribution of estimated spherical albedo values, the degree of ice particle surface roughness is estimated. With an optimal degree of ice particle roughness, cloud optical thickness and effective radius are retrieved based on a bi-spectral shortwave technique in conjunction with two Moderate Resolution Imaging Spectroradiometer (MODIS) bands centered at 0.86 and 2.13 μm. The seasonal biases of retrieved cloud optical and microphysical properties, caused by the uncertainties in ice particle roughness, are investigated by using one year of MISR-MODIS fused data.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Remer, Lorraine A.; Kaufman, Yoram J.
2004-01-01
Remote sensing of cloud and aerosol optical properties is routinely obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites. Techniques that are being used to enhance our ability to characterize the global distribution of cloud and aerosol properties include well-calibrated multispectral radiometers that rely on visible, near-infrared, and thermal infrared channels. The availability of thermal channels to aid in cloud screening for aerosol properties is an important additional piece of information that has not always been incorporated into sensor designs. In this paper, we describe the radiative properties of clouds as currently determined from satellites (cloud fraction, optical thickness, cloud top pressure, and cloud effective radius), and highlight the global and regional cloud microphysical properties currently available for assessing climate variability and forcing. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the world. In addition, we will illustrate the radiative and microphysical properties of aerosol particles that are currently available from space-based observations, and show selected cases in which aerosol particles are observed to modify the cloud optical properties.
NASA Astrophysics Data System (ADS)
Zhao, Y.-G.; Wu, A.; Lu, H.-L.; Chang, S.; Lu, W.-K.; Ho, S. T.; van der Boom, M. E.; Marks, T. J.
2001-07-01
Traveling-wave electro-optic modulators based on chromophoric self-assembled superlattices (SASs) possessing intrinsically polar microstructures have been designed and fabricated. Although the thickness of the SAS layer is only ˜150 nm, a π-phase shift is clearly observed. From the measured Vπ value, the effective electro-optic coefficient of the SAS film is determined to be ˜21.8 pm/V at an input wavelength of 1064 nm.
NASA Astrophysics Data System (ADS)
Pal, Dipayan; Singhal, Jaya; Mathur, Aakash; Singh, Ajaib; Dutta, Surjendu; Zollner, Stefan; Chattopadhyay, Sudeshna
2017-11-01
Atomic Layer Deposition technique was used to grow high quality, very low roughness, crystalline, Zinc Oxide (ZnO) thin films on silicon (Si) and fused quartz (SiO2) substrates to study the optical properties. Spectroscopic ellipsometry results of ZnO/Si system, staggered type-II quantum well, demonstrate that there is a significant drop in the magnitudes of both the real and imaginary parts of complex dielectric constants and in near-band gap absorption along with a blue shift of the absorption edge with decreasing film thickness at and below ∼20 nm. Conversely, UV-vis absorption spectroscopy of ZnO/SiO2, thin type-I quantum well, consisting of a narrower-band gap semiconductor grown on a wider-band gap (insulator) substrate, shows the similar thickness dependent blue-shift of the absorption edge but with an increase in the magnitude of near-band gap absorption with decreasing film thickness. Thickness dependent blue shift, energy vs. 1/d2, in two different systems, ZnO/Si and ZnO/SiO2, show a difference in their slopes. The observed phenomena can be consistently explained by the corresponding exciton (or carrier/s) deconfinement and confinement effects at the ZnO/Si and ZnO/SiO2 interface respectively, where Tanguy-Elliott amplitude pre-factor plays the key role through the electron-hole overlap factor at the interface.
Olivares, José; Crespillo, Miguel L; Caballero-Calero, Olga; Ynsa, María D; García-Cabañes, Angel; Toulemonde, Marcel; Trautmann, Christina; Agulló-López, Fernando
2009-12-21
Heavy mass ions, Kr and Xe, having energies in the approximately 10 MeV/amu range have been used to produce thick planar optical waveguides at the surface of lithium niobate (LiNbO3). The waveguides have a thickness of 40-50 micrometers, depending on ion energy and fluence, smooth profiles and refractive index jumps up to 0.04 (lambda = 633 nm). They propagate ordinary and extraordinary modes with low losses keeping a high nonlinear optical response (SHG) that makes them useful for many applications. Complementary RBS/C data provide consistent values for the partial amorphization and refractive index change at the surface. The proposed method is based on ion-induced damage caused by electronic excitation and essentially differs from the usual implantation technique using light ions (H and He) of MeV energies. It implies the generation of a buried low-index layer (acting as optical barrier), made up of amorphous nanotracks embedded into the crystalline lithium niobate crystal. An effective dielectric medium approach is developed to describe the index profiles of the waveguides. This first test demonstration could be extended to other crystalline materials and could be of great usefulness for mid-infrared applications.
Shastry, Tejas A; Balla, Itamar; Bergeron, Hadallia; Amsterdam, Samuel H; Marks, Tobin J; Hersam, Mark C
2016-11-22
Two-dimensional transition metal dichalcogenides (TMDCs) have recently attracted attention due to their superlative optical and electronic properties. In particular, their extraordinary optical absorption and semiconducting band gap have enabled demonstrations of photovoltaic response from heterostructures composed of TMDCs and other organic or inorganic materials. However, these early studies were limited to devices at the micrometer scale and/or failed to exploit the unique optical absorption properties of single-layer TMDCs. Here we present an experimental realization of a large-area type-II photovoltaic heterojunction using single-layer molybdenum disulfide (MoS 2 ) as the primary absorber, by coupling it to the organic π-donor polymer PTB7. This TMDC-polymer heterojunction exhibits photoluminescence intensity that is tunable as a function of the thickness of the polymer layer, ultimately enabling complete quenching of the TMDC photoluminescence. The strong optical absorption in the TMDC-polymer heterojunction produces an internal quantum efficiency exceeding 40% for an overall cell thickness of less than 20 nm, resulting in exceptional current density per absorbing thickness in comparison to other organic and inorganic solar cells. Furthermore, this work provides insight into the recombination processes in type-II TMDC-polymer heterojunctions and thus provides quantitative guidance to ongoing efforts to realize efficient TMDC-based solar cells.
NASA Astrophysics Data System (ADS)
Shen, Yuecheng; Liu, Yan; Ma, Cheng; Wang, Lihong V.
2016-08-01
Optical phase conjugation (OPC)-based wavefront shaping techniques focus light through or within scattering media, which is critically important for deep-tissue optical imaging, manipulation, and therapy. However, to date, the sample thickness in OPC experiments has been limited to only a few millimeters. Here, by using a laser with a long coherence length and an optimized digital OPC system that can safely deliver more light power, we focused 532-nm light through tissue-mimicking phantoms up to 9.6 cm thick, as well as through ex vivo chicken breast tissue up to 2.5 cm thick. Our results demonstrate that OPC can be achieved even when photons have experienced on average 1000 scattering events. The demonstrated penetration of nearly 10 cm (˜100 transport mean free paths) has never been achieved before by any optical focusing technique, and it shows the promise of OPC for deep-tissue noninvasive optical imaging, manipulation, and therapy.
Optical-mechanical properties of diseased cells measured by interferometry
NASA Astrophysics Data System (ADS)
Shaked, Natan T.; Bishitz, Y.; Gabai, H.; Girshovitz, P.
2013-04-01
Interferometric phase microscopy (IPM) enables to obtain quantitative optical thickness profiles of transparent samples, including live cells in-vitro, and track them in time with sub-nanometer accuracy without any external labeling, contact or force application on the sample. The optical thickness measured by IPM is a multiplication between the cell integral refractive index differences and its physical thickness. Based on the time-dependent optical thickness profile, one can generate the optical thickness fluctuation map. For biological cells that are adhered to the surface, the variance of the physical thickness fluctuations in time is inversely proportional to the spring factor indicating on cell stiffness, where softer cells are expected fluctuating more than more rigid cells. For homogenous refractive index cells, such as red blood cells, we can calculate a map indicating on the cell stiffness per each spatial point on the cell. Therefore, it is possible to obtain novel diagnosis and monitoring tools for diseases changing the morphology and the mechanical properties of these cells such as malaria, certain types of anaemia and thalassemia. For cells with a complex refractive-index structure, such as cancer cells, decoupling refractive index and physical thickness is not possible in single-exposure mode. In these cases, we measure a closely related parameter, under the assumption that the refractive index does not change much within less than a second of measurement. Using these techniques, we lately found that cancer cells fluctuate significantly more than healthy cells, and that metastatic cancer cells fluctuate significantly more than primary cancer cells.
NASA Technical Reports Server (NTRS)
Wood, V. E.; Busch, J. R.; Verber, C. M.
1982-01-01
Optical waveguide Luneburg lenses of arsenic trisulfide glass are described. The lenses are formed by thermal evaporation of As2S3 through suitably placed masks onto the surface of LiNbO3:Ti indiffused waveguides. The lenses are designed for input apertures up to 1 cm and for speeds of f/5 or better. They are designed to focus the TM sub 0 guided mode of a beam of wavelength, external to the guide, of 633 nm. The refractive index of the As2S3 films and the changes induced in the refractive index by exposure to short wavelength light were measured. Some correlation between film thickness and optical properties was noted. The short wavelength photosensitivity was used to shorten the lens focal length from the as deposited value. Lenses of rectangular shape, as viewed from above the guide, as well as conventional circular Luneburg lenses, were made. Measurements made on the lenses include thickness profile, general optical quality, focal length, quality of focal spot, and effect of ultraviolet irradiation on optical properties.
Characteristic morphological and frictional changes in sputtered MoS/sub 2 films
NASA Technical Reports Server (NTRS)
Spalvins, T.
1984-01-01
Three microstructural growth stages of sputtered MoS2 films were identified with respect to film thickness: (1) ridge formation during nucleation, (2) an equiaxed transition zone, and (3) a columnar-fiber-like structure. Each of these growth stages are characterized in terms of microcrystallite size, shape, and orientation. The effective lubricating film thickness is established in terms of the microstructural growth stages during sliding experiments. The film has a tendency to break up within the columnar zone. Actual lubrication is performed by the remaining film which is 0.18 to 0.22 microns thick. Also a visual screening is proposed to evaluate the integrity of the as-sputtered MoS2 film. The lubricating properties are identified with respect to optical changes before and after wiping. The orientation of the microcrystallites are responsible for the optical reflective changes observed.
Park, Kyung-Ah; Kim, Yoon-Duck; Woo, Kyung In
2018-06-01
The purpose of our study was to assess changes in peripapillary retinal nerve fiber layer (RNFL) thickness after orbital wall decompression in eyes with dysthyroid optic neuropathy (DON). We analyzed peripapillary optical coherence tomography (OCT) images (Cirrus HD-OCT) from controls and patients with DON before and 1 and 6 months after orbital wall decompression. There was no significant difference in mean preoperative peripapillary retinal nerve fiber layer thickness between eyes with DON and controls. The superior and inferior peripapillary RNFL thickness decreased significantly 1 month after decompression surgery compared to preoperative values (p = 0.043 and p = 0.022, respectively). The global average, superior, temporal, and inferior peripapillary RNFL thickness decreased significantly 6 months after decompression surgery compared to preoperative values (p = 0.015, p = 0.028, p = 0.009, and p = 0.006, respectively). Patients with greater preoperative inferior peripapillary RNFL thickness tended to have better postoperative visual acuity at the last visit (p = 0.024, OR = 0.926). Our data revealed a significant decrease in peripapillary RNFL thickness postoperatively after orbital decompression surgery in patients with DON. We also found that greater preoperative inferior peripapillary RNFL thickness was associated with better visual outcomes. We suggest that RNFL thickness can be used as a prognostic factor for DON before decompression surgery.
Kosc, Tanya Z.; Marshall, Kenneth L.; Jacobs, Stephen D.
2004-12-07
Composite or layered flakes having a plurality of layers of different materials, which may be dielectric materials, conductive materials, or liquid crystalline materials suspended in a fluid host and subjected to an electric field, provide optical effects dependent upon the angle or orientation of the flakes in the applied electric field. The optical effects depend upon the composition and thickness of the layers, producing reflectance, interference, additive and/or subtractive color effects. The composition of layered flakes may also be selected to enhance and/or alter the dielectric properties of flakes, whereby flake motion in an electric field is also enhanced and/or altered. The devices are useful as active electro-optical displays, polarizers, filters, light modulators, and wherever controllable polarizing, reflecting and transmissive optical properties are desired.
NASA Astrophysics Data System (ADS)
Liu, Cheng; Zhang, Jing
2018-02-01
Optical polarization from AlGaN quantum well (QW) is crucial for realizing high-efficiency deep-ultraviolet (UV) light-emitting diodes (LEDs) because it determines the light emission patterns and light extraction mechanism of the devices. As the Al-content of AlGaN QW increases, the valence bands order changes and consequently the light polarization switches from transverse-electric (TE) to transverse-magnetic (TM) owing to the different sign and the value of the crystal field splitting energy between AlN (-169meV) and GaN (10meV). Several groups have reported that the ordering of the bands and the TE/TM crossover Al-content could be influenced by the strain state and the quantum confinement from the AlGaN QW system. In this work, we investigate the influence of QW thickness on the optical polarization switching point from AlGaN QW with AlN barriers by using 6-band k•p model. The result presents a decreasing trend of the critical Al-content where the topmost valence band switches from heave hole (HH) to crystal field spilt-off (CH) with increasing QW thicknesses due to the internal electric field and the strain state from the AlGaN QW. Instead, the TE- and TM-polarized spontaneous emission rates switching Al-content rises first and falls later because of joint consequence of the band mixing effect and the Quantum Confined Stark Effect. The reported optical polarization from AlGaN QW emitters in the UV spectral range is assessed in this work and the tendency of the polarization switching point shows great consistency with the theoretical results, which deepens the understanding of the physics from AlGaN QW UV LEDs.
Howansky, Adrian; Peng, Boyu; Lubinsky, Anthony R; Zhao, Wei
2017-03-01
Pulse height spectroscopy has been used by investigators to deduce the imaging properties of scintillators. Pulse height spectra (PHS) are used to compute the Swank factor, which describes the variation in scintillator light output per x-ray interaction. The spread in PHS measured below the K-edge is related to the optical component of the Swank factor, i.e., variations in light escape efficiency from different depths of x-ray interaction in the scintillator, denoted ε¯(z). Optimizing scintillators for medical imaging applications requires understanding of these optical properties, as they determine tradeoffs between parameters such as x-ray absorption, light yield, and spatial resolution. This work develops a model for PHS acquisition such that the effect of measurement uncertainty can be removed. This method allows ε¯(z) to be quantified on an absolute scale and permits more accurate estimation of the optical Swank factor of scintillators. The pulse height spectroscopy acquisition chain was modeled as a linear system of stochastic gain stages. Analytical expressions were derived for signal and noise propagation through the PHS chain, accounting for deterministic and stochastic aspects of x-ray absorption, scintillation, and light detection with a photomultiplier tube. The derived expressions were used to calculate PHS of thallium-doped cesium iodide (CsI) scintillators using parameters that were measured, calculated, or known from literature. PHS were measured at 25 and 32 keV of CsI samples designed with an optically reflective or absorptive backing, with or without a fiber-optic faceplate (FOP), and with thicknesses ranging from 150-1000 μm. Measured PHS were compared with calculated PHS, then light escape model parameters were varied until measured and modeled results reached agreement. Resulting estimates of ε¯(z) were used to calculate each scintillator's optical Swank factor. For scintillators of the same optical design, only minor differences in light escape efficiency were observed between samples with different thickness. As thickness increased, escape efficiency decreased by up to 20% for interactions furthest away from light collection. Optical design (i.e., backing and FOP) predominantly affected the magnitude and relative variation in ε¯(z). Depending on interaction depth and scintillator thickness, samples with an absorptive backing and FOP were estimated to yield 4.1-13.4 photons/keV. Samples with a reflective backing and FOP yielded 10.4-18.4 keV -1 , while those with a reflective backing and no FOP yielded 29.5-52.0 keV -1 . Optical Swank factors were approximately 0.9 and near-unity in samples featuring an absorptive or reflective backing, respectively. This work uses a modeling approach to remove the noise introduced by the measurement apparatus from measured PHS. This method allows absolute quantification of ε¯(z) and more accurate estimation of the optical Swank factor of scintillators. The method was applied to CsI scintillators with different thickness and optical design, and determined that optical design more strongly affects ε¯(z) and Swank factor than differences in CsI thickness. Despite large variations in ε¯(z) between optical designs, the Swank factor of all evaluated samples is above 0.9. Information provided by this methodology can help validate Monte Carlo simulations of structured CsI and optimize scintillator design for x-ray imaging applications. © 2016 American Association of Physicists in Medicine.
Howansky, Adrian; Peng, Boyu; Lubinsky, Anthony R.; Zhao, Wei
2017-01-01
Purpose Pulse height spectroscopy has been used by investigators to deduce the imaging properties of scintillators. Pulse height spectra (PHS) are used to compute the Swank factor, which describes the variation in scintillator light output per x-ray interaction. The spread in PHS measured below the K-edge is related to the optical component of the Swank factor, i.e. variations in light escape efficiency from different depths of x-ray interaction in the scintillator, denoted ε̄(z). Optimizing scintillators for medical imaging applications requires understanding of these optical properties, as they determine tradeoffs between parameters such as x-ray absorption, light yield, and spatial resolution. This work develops a model for PHS acquisition such that the effect of measurement uncertainty can be removed. This method allows ε̄(z) to be quantified on an absolute scale and permits more accurate estimation of the optical Swank factor of scintillators. Methods The pulse height spectroscopy acquisition chain was modeled as a linear system of stochastic gain stages. Analytical expressions were derived for signal and noise propagation through the PHS chain, accounting for deterministic and stochastic aspects of x-ray absorption, scintillation, and light detection with a photomultiplier tube. The derived expressions were used to calculate PHS of thallium-doped cesium iodide (CsI) scintillators using parameters that were measured, calculated, or known from literature. PHS were measured at 25 and 32 keV of CsI samples designed with an optically-reflective or absorptive backing, with or without a fiber-optic faceplate (FOP), and with thicknesses ranging from 150–1000 μm. Measured PHS were compared with calculated PHS, then light escape model parameters were varied until measured and modeled results reached agreement. Resulting estimates of ε̄(z) were used to calculate each scintillator’s optical Swank factor. Results For scintillators of the same optical design, only minor differences in light escape efficiency were observed between samples with different thickness. As thickness increased, escape efficiency decreased by up to 20% for interactions furthest away from light collection. Optical design (i.e. backing and FOP) predominantly affected the magnitude and relative variation in ε̄(z). Depending on interaction depth and scintillator thickness, samples with an absorptive backing and FOP were estimated to yield 4.1–13.4 photons/keV. Samples with a reflective backing and FOP yielded 10.4–18.4 keV−1, while those with a reflective backing and no FOP yielded 29.5–52.0 keV−1. Optical Swank factors were approximately 0.9 and near-unity in samples featuring an absorptive or reflective backing, respectively. Conclusions This work uses a modeling approach to remove the noise introduced by the measurement apparatus from measured PHS. This method allows absolute quantification of ε̄(z) and more accurate estimation of the optical Swank factor of scintillators. The method was applied to CsI scintillators with different thickness and optical design, and determined that optical design more strongly affects ε̄(z) and Swank factor than differences in CsI thickness. Despite large variations in ε̄(z) between optical designs, the Swank factor of all evaluated samples is above 0.9. Information provided by this methodology can help validate Monte Carlo simulations of structured CsI and optimize scintillator design for x-ray imaging applications. PMID:28039881
Pires, Laís A; Novais, Pollyanna M R; Araújo, Vinícius D; Pegoraro, Luiz F
2017-01-01
Reproducing the characteristics of natural teeth in ceramic crowns remains a complex and difficult process. The purpose of this in vitro study was to evaluate the effect of the substrate, cement, type, and thickness of the ceramic on the resulting color of a lithium disilicate ceramic. Forty ceramic disks were prepared from IPS e.max Press LT (low translucency) and HO (high opacity) in 2 different thicknesses (1.5 and 2 mm). The LT groups were composed of monolithic ceramic disks, and the HO groups were composed of disks fabricated with a 0.5-mm thickness combined with a 1- or 1.5-mm veneering ceramic thickness. Disks made of composite resin (R) and alloy (A) were used as substrate structures. The resin cement used was Variolink II. Color was measured with a spectrophotometer and expressed in CIELAB coordinates. Color differences (ΔE) were calculated. The data were analyzed with ANOVA and the Tukey HSD test (α=.05). When the ΔE of ceramic disks with both substrates, with and without cement, were compared, the lowest value (3) was obtained for ceramic HO with a 2-mm thickness/alloy substrate/without cement; the highest value (10) was obtained for ceramic LT with a1.5-mm thickness/alloy substrate/with cement. This difference was statistically significant. When the effect of cement on the ΔE of ceramics in both substrates was compared, the lowest value (1.1) occurred with ceramic HO with a 1.5-mm thickness/resin substrate, and the highest was observed for ceramic LT with a 1.5-mm thickness/alloy substrate (6.4). This difference was statistically significant. The substrate color, type and thickness of ceramic, and presence of the cement significantly influenced the resulting optical color. The ΔE values of cemented HO ceramics were lower than that of the LT ceramic. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Retrieval of the atmospheric compounds using a spectral optical thickness information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ioltukhovski, A.A.
A spectral inversion technique for retrieval of the atmospheric gases and aerosols contents is proposed. This technique based upon the preliminary measurement or retrieval of the spectral optical thickness. The existence of a priori information about the spectral cross sections for some of the atmospheric components allows to retrieve the relative contents of these components in the atmosphere. Method of smooth filtration makes possible to estimate contents of atmospheric aerosols with known cross sections and to filter out other aerosols; this is done independently from their relative contribution to the optical thickness.
Agarwal, Prakashchand; Sathyan, P; Saini, VK
2014-01-01
ABSTRACT Aim: To compare the difference of retinal macular thickness and macular volume using optical coherence tomography (OCT) in primary open angle glaucoma (POAG) patients with the normal subjects. Materials and methods: This observational case control study included primary open angle glaucoma (POAG) patients (n = 124 eyes) and healthy subjects in the control group (n = 124 eyes). All subjects underwent detailed history, general and systemic exami -nation. Complete ocular examination included best corrected visual acuity (BCVA), slit lamp examination, intraocular pressure (IOP), central corneal thickness, gonioscopy, dilated fundus biomicroscopy. Field analysis was done by white on white Humphrey Field Analyzer (Carl Zeiss). Optical coherence tomography imaging of macular area was performed using Stratus OCT (OCT 3, Version 4, Carl Zeiss Inc, Dublin, California, USA). In both these groups, parameters analyzed were macular thickness, inner macular thicknesses (IMT), outer macular thicknesses (OMT), central macular thick ness (CMT) and total macular volume (TMV). Results: The POAG group had significantly decreased values of TMV, OMT and IMT, compared to control group, while there was no difference in CMT, presumably due to absence of ganglion cells in the central part. Thus, macular thickness and volume parameters may be used for making the diagnosis of glaucoma especially in patients with abnormalities of disc. Conclusion: Macular thickness parameters correlated well with the diagnosis of glaucoma. How to cite this article: Sharma A, Agarwal P, Sathyan P, Saini VK. Macular Thickness Variability in Primary Open Angle Glaucoma Patients using Optical Coherence Tomography. J Current Glau Prac 2014;8(1):10-14. PMID:26997801
NASA Technical Reports Server (NTRS)
Cusano, C.; Wedeven, L. D.
1981-01-01
The effects of artificially produced dents and grooves on the elastohydrodynamic (EHD) film thickness profile in a sliding point contact were investigated by means of optical interferometry. The defects, formed on the surface of a highly polished ball, were held stationary at various locations within and in the vicinity of the contact region while the disk was rotating. It is shown that the defects, having a geometry similar to what can be expected in practice, can dramatically change the film thickness which exists when no defects are present in or near the contact. This change in film thickness is mainly a function of the position of the defects in the inlet region, the geometry of the defects, the orientation of the defects in the case of grooves, and the depth of the defect relative to the central film thickness.
Wissel, Tobias; Stüber, Patrick; Wagner, Benjamin; Bruder, Ralf; Schweikard, Achim; Ernst, Floris
2016-04-01
Patient immobilization and X-ray-based imaging provide neither a convenient nor a very accurate way to ensure low repositioning errors or to compensate for motion in cranial radiotherapy. We therefore propose an optical tracking device that exploits subcutaneous structures as landmarks in addition to merely spatial registration. To develop such head tracking algorithms, precise and robust computation of these structures is necessary. Here, we show that the tissue thickness can be predicted with high accuracy and moreover exploit local neighborhood information within the laser spot grid on the forehead to further increase this estimation accuracy. We use statistical learning with Support Vector Regression and Gaussian Processes to learn a relationship between optical backscatter features and an MR tissue thickness ground truth. We compare different kernel functions for the data of five different subjects. The incident angle of the laser on the forehead as well as local neighborhoods is incorporated into the feature space. The latter represent the backscatter features from four neighboring laser spots. We confirm that the incident angle has a positive effect on the estimation error of the tissue thickness. The root-mean-square error falls even below 0.15 mm when adding the complete neighborhood information. This prior knowledge also leads to a smoothing effect on the reconstructed skin patch. Learning between different head poses yields similar results. The partial overlap of the point clouds makes the trade-off between novel information and increased feature space dimension obvious and hence feature selection by e.g., sequential forward selection necessary.
NASA Technical Reports Server (NTRS)
Kaufman, Yoram J.; Tanre, Didier; Einaudi, Franco (Technical Monitor)
2001-01-01
Atmospheric aerosols have a complex internal chemical composition and optical properties. Therefore it is difficult to model their impact on redistribution and absorption of solar radiation, and the consequent impact on atmospheric dynamics and climate. The use in climate models of isolated aerosol parameters retrieved from satellite data (e.g. optical thickness) may result in inconsistent calculations, if the model assumptions differ from these of the satellite retrieval schemes. Here we suggest a strategy to assess the direct impact of aerosol on the radiation budget at the top and bottom of the atmosphere using satellite and ground based measurements of the spectral solar radiation scattered by the aerosol. This method ensures consistent use of the satellite data and increases its accuracy. For Kaufman and Tanre: Strategy for aerosol direct forcing anthropogenic aerosol in the fine mode (e.g. biomass burning smoke and urban pollution) consistent use of satellite derived optical thickness can yield the aerosol impact on the spectral solar flux with accuracy an order of magnitude better than the optical thickness itself. For example, a simulated monthly average smoke optical thickness of 0.5 at 0.55 microns (forcing of 40-50 W/sq m) derived with an error of 20%, while the forcing can be measured directly with an error of only 0-2 W/sq m. Another example, the effect of large dust particles on reflection of solar flux can be derived three times better than retrievals of optical thickness. Since aerosol impacts not only the top of the atmosphere but also the surface irradiation, a combination of satellite and ground based measurements of the spectral flux, can be the most direct mechanism to evaluate the aerosol effect on climate and assimilate it in climate models. The strategy is applied to measurements from SCAR-B and the Tarfox experiments. In SCAR-B aircraft spectral data are used to derive the 24 hour radiative forcing of smoke at the top of the atmosphere of (Delta)F(sub 24hr)/(Delta)tau = - 25 +/- 5 W/sq m. Ground based data give forcing at the surface of (Delta)F(sub 24hr)/(Delta)taur = -80 +/- 5 W/sq m. In TARFOX a mixture of maritime and regional pollution aerosol resulted in a varied forcing at the top of the atmosphere, (Delta)F(sub 24hr)/(Delta)tau, between -26 W/sq 2 and -50 W/sq m depending on mixture of coarse and accumulation modes, for Angstrom exponents of 1.0 and 0.2 respectively.
Demel, Anja; Feilke, Katharina; Wolf, Martin; Poets, Christian F; Franz, Axel R
2014-01-01
Near-infrared spectroscopy (NIRS) is increasingly used in neonatal intensive care. We investigated the impact of skin, bone, and cerebrospinal fluid (CSF) layer thickness in term and preterm infants on absorption-(μa) and/or reduced scattering coefficients (μs') measured by multidistance frequency-domain (FD)-NIRS. Transcranial ultrasound was performed to measure the layer thicknesses. Correlations were only statistically significant for μa at 692 nm with bone thickness and μs' at 834 nm with skin thickness. There is no evidence that skin, bone, or CSF thickness have an important effect on μa and μs'. Layer thicknesses of skin, bone, and CSF in the range studied do not seem to affect cerebral oxygenation measurements by multidistance FD-NIRS significantly.
Malik, Rizwan; Belliveau, Anne C; Sharpe, Glen P; Shuba, Lesya M; Chauhan, Balwantray C; Nicolela, Marcelo T
2016-06-01
Ruling out glaucoma in myopic eyes often poses a diagnostic challenge because of atypical optic disc morphology and visual field defects that can mimic glaucoma. We determined whether neuroretinal rim assessment based on Bruch's membrane opening (BMO), rather than conventional optic disc margin (DM)-based assessment or retinal nerve fiber layer (RNFL) thickness, yielded higher diagnostic accuracy in myopic patients with glaucoma. Case-control, cross-sectional study. Myopic patients with glaucoma (n = 56) and myopic normal controls (n = 74). Myopic subjects with refraction error greater than -2 diopters (D) (spherical equivalent) and typical myopic optic disc morphology, with and without glaucoma, were recruited from a glaucoma clinic and a local optometry practice. The final classification of myopic glaucoma or myopic control was based on consensus assessment by 3 clinicians of visual fields and optic disc photographs. Participants underwent imaging with confocal scanning laser tomography for measurement of DM rim area (DM-RA) and with spectral domain optical coherence tomography (SD OCT) for quantification of a BMO-based neuroretinal rim parameter, minimum rim width (BMO-MRW), and RNFL thickness. Sensitivity of DM-RA, BMO-MRW, and RNFL thickness at a fixed specificity of 90% and partial area under the curves (pAUCs) for global and sectoral parameters for specificities ≥90%. Sensitivities at 90% specificity were 30% for DM-RA and 71% for both BMO-MRW and RNFL thickness. The pAUC was higher for the BMO-MRW compared with DM-RA (P < 0.001), but similar to RNFL thickness (P > 0.5). Sectoral values of BMO-MRW tended to have a higher, but nonsignificant, pAUC across all sectors compared with RNFL thickness. Bruch's membrane opening MRW is more sensitive than DM-RA and similar to RNFL thickness for the identification of glaucoma in myopic eyes and offers a valuable diagnostic tool for patients with glaucoma with myopic optic discs. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Ni, Zhigang; Mou, Shenghong; Zhou, Tong; Cheng, Zhiyuan
2018-05-01
A color-modulating optical coating display based on phase change materials (PCM) and indium tin oxide (ITO) is fabricated and analyzed. We demonstrate that altering the thickness of top-ITO in this PCM-based display device can effectively change color. The significant role of the top-ITO layer in the thin-film interference in this multilayer system is confirmed by experiment as well as simulation. The ternary-color modulation of devices with only 5 nano thin layer of phase change material is achieved. Furthermore, simulation work demonstrates that a stirringly broader color gamut can be obtained by introducing the control of the top-ITO thickness.
Dereci, Selim; Koca, Tuğba; Akçam, Mustafa; Türkyilmaz, Kemal
2015-07-01
We investigated the peripapillary retinal nerve fiber layer thickness with optical coherence tomography in epileptic children receiving valproic acid monotherapy. The study was conducted on children aged 8-16 years who were undergoing valproic acid monotherapy for epilepsy. The study group comprised a total of 40 children who met the inclusion criteria and 40 healthy age- and sex-matched children as a control group. Children with at least a 1-year history of epilepsy and taking 10-40 mg/kg/day treatment were included in the study. Peripapillary retinal nerve fiber layer thickness measurements were performed using Cirrus HD optical coherence tomography. All children and parents were informed about the study and informed consent was obtained from the parents of all the participants. The study group included 21 girls and 19 boys with a mean age of 10.6 ± 2.3 years. According to the results of optical coherence tomography measurements, the mean peripapillary retinal nerve fiber layer thickness was 91.6 ± 9.7 in the patient group and 95.5 ± 7.4 μm in the control group (P < 0.05). The superior peripapillary retinal nerve fiber layer thickness was 112.0 ± 13.2 in the patient group and 120.0 ± 14.7 μm in the control group (P < 0.02). According to the results of both measurements, the peripapillary retinal nerve fiber layer thickness was significantly lower in the patient group. Neither color vision loss nor visual field examination abnormality could be documented. According to the optical coherence tomography measurements, the average and superior peripapillary retinal nerve fiber layer thicknesses were thinner in patients with epilepsy who were receiving valproic acid monotherapy compared with healthy children. This situation can lead to undesirable results in terms of eye health. New studies are needed to investigate whether these findings are the result of epilepsy or can be attributed to valproic acid and whether there are adverse effects of valproic acid later in life. Copyright © 2015 Elsevier Inc. All rights reserved.
Digital Thickness Measurement of a Transparent Plastic Orthodontic Device
NASA Astrophysics Data System (ADS)
Kim, Yoon-Hwan; Rhim, Sung-Han
2018-05-01
A transparent orthodontic device is used to move the teeth to the final calibration position to form a proper set of teeth. Because the uniform thickness of the device plays an important role in tooth positioning, the accuracy of the device's thickness profile is important for effective orthodontic treatment. However, due to the complexity of the device's geometry and the transparency of the device's material, measuring the complete thickness profile has been difficult. In the present study, a new optical scanning method to measure the thickness profile of transparent plastic orthodontic devices is proposed and evaluated by using scanning electron microscopy (SEM). The error of the new measurement method is less than ±18 μm. The new method can be used to measure the thickness of non-specific, multi-curved, transparent orthodontic devices.
Nanoparticles based fiber optic SPR sensor
NASA Astrophysics Data System (ADS)
Shah, Kruti; Sharma, Navneet K.
2018-05-01
Localized surface plasmon resonance based fiber optic sensor using platinum nanoparticles is proposed and theoretically analyzed. Increase in thickness of nanoparticles layer increases the sensitivity of sensor. 50 nm thick platinum nanoparticles layer based sensor reveals highest sensitivity.
Rushford, Michael C.
2002-01-01
An optical monitoring instrument monitors etch depth and etch rate for controlling a wet-etching process. The instrument provides means for viewing through the back side of a thick optic onto a nearly index-matched interface. Optical baffling and the application of a photoresist mask minimize spurious reflections to allow for monitoring with extremely weak signals. A Wollaston prism enables linear translation for phase stepping.
NASA Astrophysics Data System (ADS)
Qarony, Wayesh; Hossain, Mohammad I.; Jovanov, Vladislav; Knipp, Dietmar; Tsang, Yuen Hong
2018-03-01
The partial decoupling of electronic and optical properties of organic solar cells allows for realizing solar cells with increased short circuit current and energy conversion efficiency. The proposed device consists of an organic solar cell conformally prepared on the surface of an array of single and double textured pyramids. The device geometry allows for increasing the optical thickness of the organic solar cell, while the electrical thickness is equal to the nominal thickness of the solar cell. By increasing the optical thickness of the solar cell, the short circuit current is distinctly increased. The quantum efficiency and short circuit current are determined using finite-difference time-domain simulations of the 3D solar cell structure. The influence of different solar cell designs on the quantum efficiency and short circuit current is discussed and optimal device dimensions are proposed.
NASA Technical Reports Server (NTRS)
Soulas, George C.
2001-01-01
The results of performance tests with thick-accelerator-grid (TAG) ion optics are presented. TAG ion optics utilize a 50 percent thicker accelerator grid to double ion optics' service life. NSTAR ion optics were also tested to provide a baseline performance for comparison. Impingement-limited total voltages for the TAG ion optics were only 0 to 15 V higher than those of the NSTAR ion optics. Electron backstreaming limits for the TAG ion optics were 3 to 9 V higher than those for the NSTAR optics due to the increased accelerator grid thickness for the TAG ion optics. Screen grid ion transparencies for the TAG ion optics were only about 2 percent lower than those for the NSTAR optics, reflecting the lower physical screen grid open area fraction of the TAG ion optics. Accelerator currents for the TAG ion optics were 19 to 43 percent greater than those for the NSTAR ion optics due, in part, to a sudden increase in accelerator current during TAG ion optics' performance tests for unknown reasons and to the lower-than-nominal accelerator aperture diameters. Beam divergence half-angles that enclosed 95 percent of the total beam current and beam divergence thrust correction factors for the TAG ion optics were within 2 degrees and 1 percent, respectively, of those for the NSTAR ion optics.
Photorefractive keratectomy in the cat eye: biological and optical outcomes
Nagy, Lana J.; MacRae, Scott; Yoon, Geunyoung; Wyble, Matthew; Wang, Jianhua; Cox, Ian; Huxlin, Krystel R.
2007-01-01
PURPOSE To quantify optical and biomechanical properties of the feline cornea before and after photorefractive keratectomy (PRK) and assess the relative contribution of different biological factors to refractive outcome. SETTING Dept. Ophthalmology, University of Rochester, Rochester, New York, U.S.A. METHODS Adult cats underwent 6D myopic or 4D hyperopic PRK over 6 or 8mm optical zones (OZ). Pre- and post-operative wavefront aberrations were measured, along with intraocular pressure, corneal hysteresis (CH), corneal resistance factor (CRF), axial length, corneal thickness and radii of curvature. Finally, post-mortem imunohistochemistry for Vimentin and α-smooth muscle actin was performed. RESULTS PRK changed ocular defocus, increased higher order aberrations and induced myofibroblast differentiation in cats. However, the intended defocus corrections were only achieved with 8mm OZs. Long-term flattening of the epithelial and stromal surfaces was noted following myopic, but nor hyperopic PRKs. Feline intraocular pressure was unaltered by PRK, but CH and CRF decreased. Over the ensuing 6 months, ocular aberrations and intraocular pressure remained stable, while central corneal thickness, CH and CRF increased back towards normal levels. CONCLUSIONS Cat corneas exhibited optical, histological and biomechanical reactions to PRK that resembled those previously described in humans, especially when optical zone size was normalized to total corneal area. However, cats exhibited significant stromal regeneration, causing a return to pre-operative corneal thickness, CH and CRF without significant regression of optical changes induced by the surgery. Thus, the principal effects of laser refractive surgery on ocular wavefront aberrations can be achieved in spite of clear, inter-species differences in corneal biology. PMID:17531702
Yang, Liu; Qu, Yuanzhen; Lu, Wen; Liu, Fengjun
2016-07-03
BACKGROUND The aim of this study was to compare the differences in macular ganglion cell complex (GCC) and peripapillary retinal nerve fiber layer (pRNFL) in child and adult patients with primary craniopharyngioma by Fourier-domain optical coherence tomography (FD-OCT) and to evaluate their significance in the diagnosis of primary craniopharyngioma. MATERIAL AND METHODS Ninety-six participants were divided into 3 groups: 32 in the child craniopharyngioma group (CCG) and 32 in the adult craniopharyngioma group (ACG) who were treated in Beijing Tiantan Hospital between November 2013 and October 2014, and 32 in the normal group (NG). All subjects were scanned by FD-OCT to map GCC and pRNFL thicknesses. Spearman correlation coefficient was used to assess the correlation between GCC and pRNFL thickness, and pRNFL thickness and optic nerve head (ONH) parameters, including horizontal cup-disc ratio (HCDR), vertical cup-disc ratio (VCDR), optic disc area (ODA), and cup area (CA), respectively. RESULTS The correlation between GCC and pRNFL thickness in the CCG was slightly stronger compared with the ACG. A significant difference in GCC thickness was observed among the CCG, ACG, and NG. Although the pRNFL thickness in both the CCG and ACG was significantly higher than that in NG, no significant difference in pRNFL thickness was detected between the 2 craniopharyngioma groups. The average, superior, and inferior pRNFL thicknesses were negatively correlated with VCDR in the CCG (in double eyes) and ACG (only in left eyes). CONCLUSIONS GCC was more sensitive than pRNFL in detecting optic nerve damage in the eyes of craniopharyngioma patients. A thinner pRNFL was especially correlated with VCDR in child craniopharyngioma patients.
Yang, Liu; Qu, Yuanzhen; Lu, Wen; Liu, Fengjun
2016-01-01
Background The aim of this study was to compare the differences in macular ganglion cell complex (GCC) and peripapillary retinal nerve fiber layer (pRNFL) in child and adult patients with primary craniopharyngioma by Fourier-domain optical coherence tomography (FD-OCT) and to evaluate their significance in the diagnosis of primary craniopharyngioma. Material/Methods Ninety-six participants were divided into 3 groups: 32 in the child craniopharyngioma group (CCG) and 32 in the adult craniopharyngioma group (ACG) who were treated in Beijing Tiantan Hospital between November 2013 and October 2014, and 32 in the normal group (NG). All subjects were scanned by FD-OCT to map GCC and pRNFL thicknesses. Spearman correlation coefficient was used to assess the correlation between GCC and pRNFL thickness, and pRNFL thickness and optic nerve head (ONH) parameters, including horizontal cup-disc ratio (HCDR), vertical cup-disc ratio (VCDR), optic disc area (ODA), and cup area (CA), respectively. Results The correlation between GCC and pRNFL thickness in the CCG was slightly stronger compared with the ACG. A significant difference in GCC thickness was observed among the CCG, ACG, and NG. Although the pRNFL thickness in both the CCG and ACG was significantly higher than that in NG, no significant difference in pRNFL thickness was detected between the 2 craniopharyngioma groups. The average, superior, and inferior pRNFL thicknesses were negatively correlated with VCDR in the CCG (in double eyes) and ACG (only in left eyes). Conclusions GCC was more sensitive than pRNFL in detecting optic nerve damage in the eyes of craniopharyngioma patients. A thinner pRNFL was especially correlated with VCDR in child craniopharyngioma patients. PMID:27372909
NASA Astrophysics Data System (ADS)
Zahran, H. Y.; Yahia, I. S.; Alamri, F. H.
2017-05-01
Pyronin Y dye (PY) is a kind of xanthene derivatives. Thin films of pyronin Y were deposited onto highly cleaned glass substrates using low-cost/spin coating technique. The structure properties of pyronin Y thin films with different thicknesses were investigated by using X-ray diffraction (XRD) and atomic force microscope (AFM). PY thin films for all the studied thicknesses have an amorphous structure supporting the short range order of the grain size. AFM supports the nanostructure with spherical/clusters morphologies of the investigated thin films. The optical constants of pyronin Y thin films for various thicknesses were studied by using UV-vis-NIR spectrophotometer in the wavelength range 350-2500 nm. The transmittance T(λ), reflectance R(λ) spectral and absorbance (abs(λ)) were obtained for all film thicknesses at room temperature and the normal light incident. These films showed a high transmittance in the wide scale wavelengths. For different thicknesses of the studied thin films, the optical band gaps were determined and their values around 2 eV. Real and imaginary dielectric constants, dissipation factor and the nonlinear optical parameters were calculated in the wavelengths to the range 300-2500 nm. The pyronin Y is a new organic semiconductor with a good optical absorption in UV-vis regions and it is suitable for nonlinear optical applications.
Mancuso, J. Jacob; Halaney, David L.; Elahi, Sahar; Ho, Derek; Wang, Tianyi; Ouyang, Yongjian; Dijkstra, Jouke; Milner, Thomas E.; Feldman, Marc D.
2014-01-01
Abstract. We sought to elucidate the mechanisms underlying two common intravascular optical coherence tomography (IV-OCT) artifacts that occur when imaging metallic stents: “merry-go-rounding” (MGR), which is an increase in strut arc length (SAL), and “blooming,” which is an increase in the strut reflection thickness (blooming thickness). Due to uncontrollable variables that occur in vivo, we performed an in vitro assessment of MGR and blooming in stented vessel phantoms. Using Xience V and Driver stents, we examined the effects of catheter offset, intimal strut coverage, and residual blood on SAL and blooming thickness in IV-OCT images. Catheter offset and strut coverage both caused minor MGR, while the greatest MGR effect resulted from light scattering by residual blood in the vessel lumen, with 1% hematocrit (Hct) causing a more than fourfold increase in SAL compared with saline (p<0.001). Residual blood also resulted in blooming, with blooming thickness more than doubling when imaged in 0.5% Hct compared with saline (p<0.001). We demonstrate that a previously undescribed mechanism, light scattering by residual blood in the imaging field, is the predominant cause of MGR. Light scattering also results in blooming, and a newly described artifact, three-dimensional-MGR, which results in “ghost struts” in B-scans. PMID:25545341
Measuring Thicknesses of Coatings on Metals
NASA Technical Reports Server (NTRS)
Cotty, Glenn M., Jr.
1986-01-01
Digital light sensor and eddy-current sensor measure thickness without contact. Surface of Coating reflects laser beam to optical sensor. Position of reflected spot on sensor used by microcomputer to calculate coating thickness. Eddy-current sensor maintains constant distance between optical sensor and metal substrate. When capabilities of available components fully exploited, instrument measures coatings from 0.001 to 6 in. (0.0025 to 15 cm) thick with accuracy of 1 part in 4,000. Instrument readily incorporated in automatic production and inspection systems. Used to inspect thermal-insulation layers, paint, and protective coatings. Also used to control application of coatings to preset thicknesses.
Thermodynamic and cloud parameter retrieval using infrared spectral data
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Smith, William L., Sr.; Liu, Xu; Larar, Allen M.; Huang, Hung-Lung A.; Li, Jun; McGill, Matthew J.; Mango, Stephen A.
2005-01-01
High-resolution infrared radiance spectra obtained from near nadir observations provide atmospheric, surface, and cloud property information. A fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. The retrieval algorithm is presented along with its application to recent field experiment data from the NPOESS Airborne Sounding Testbed - Interferometer (NAST-I). The retrieval accuracy dependence on cloud properties is discussed. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with an accuracy of approximately 1.0 km. Preliminary NAST-I retrieval results from the recent Atlantic-THORPEX Regional Campaign (ATReC) are presented and compared with coincident observations obtained from dropsondes and the nadir-pointing Cloud Physics Lidar (CPL).
Safrani, Avner; Abdulhalim, Ibrahim
2011-06-20
Longitudinal spatial coherence (LSC) is determined by the spatial frequency content of an optical beam. The use of lenses with a high numerical aperture (NA) in full-field optical coherence tomography and a narrowband light source makes the LSC length much shorter than the temporal coherence length, hence suggesting that high-resolution 3D images of biological and multilayered samples can be obtained based on the low LSC. A simplified model is derived, supported by experimental results, which describes the expected interference output signal of multilayered samples when high-NA lenses are used together with a narrowband light source. An expression for the correction factor for the layer thickness determination is found valid for high-NA objectives. Additionally, the method was applied to a strongly scattering layer, demonstrating the potential of this method for high-resolution imaging of scattering media.
The Partition Between Terminal Speed and Mass Loss: Thin, Thick, and Rotating Line-Driven Winds
NASA Astrophysics Data System (ADS)
Gayley, K. G.; Onifer, A. J.
2003-01-01
Steady-state supersonic line-driven winds are important contributors to wind-blown bubbles in star forming regions. The key input to the bubble in the energy-conserving phase is the wind kinetic-energy flux, which involves both the mass-loss rate and the terminal speed. However, these quantities are themselves self-consistent parameters of the line-driving process, so relate to each other and to the resulting wind optical depth. This complex interrelation between optical depth, mass-loss, and wind speed lies at the heart of line-driven wind theory. Drawing on the successes and insights of ``CAK'' theory, I will convey a simplified view of how to unite these processes using the concept of effective opacity, with attention to the ramifications for nonspherical nebular and wind-blown structures. Recent extensions to nongray optically thick environments such as Wolf-Rayet winds and supernovae are also discussed.
Multiplexed Holographic Optical Data Storage In Thick Bacteriorhodopsin Films
NASA Technical Reports Server (NTRS)
Downie, John D.; Timucin, Dogan A.; Gary, Charles K.; Ozcan, Meric; Smithey, Daniel T.; Crew, Marshall
1998-01-01
The optical data storage capacity of photochromic bacteriorhodopsin films is investigated by means of theoretical calculations, numerical simulations, and experimental measurements on sequential recording of angularly multiplexed diffraction gratings inside a thick D85N BR film.
New possibilities for tuning ultrathin cobalt film magnetic properties by a noble metal overlayer.
Kisielewski, M; Maziewski, A; Tekielak, M; Wawro, A; Baczewski, L T
2002-08-19
Complementary multiscale magneto-optical studies based on the polar Kerr effect are carried out on an ultrathin cobalt wedge covered with a silver wedge and subsequently with the Au thick layer. A few monolayers of Ag are found to have a substantial effect on magnetic anisotropy, the coercivity field, and Kerr rotation. The silver overlayer thickness-driven magnetic reorientation from easy axis to easy plane generates a new type of 90 degrees magnetic wall for cobalt thicknesses between 1.3 and 1.8 nm. The tuning of the wall width in a wide range is possible. Tailoring of the overlayer structure can be used for ultrathin film magnetic patterning.
Thick Prelaminar Tissue Decreases Lamina Cribrosa Visibility
Lucy, Katie A.; Wang, Bo; Schuman, Joel S.; Bilonick, Richard A.; Ling, Yun; Kagemann, Larry; Sigal, Ian A.; Grulkowski, Ireneusz; Liu, Jonathan J.; Fujimoto, James G.; Ishikawa, Hiroshi; Wollstein, Gadi
2017-01-01
Purpose Evaluation of the effect of prelaminar tissue thickness on visualization of the lamina cribrosa (LC) using optical coherence tomography (OCT). Methods The optic nerve head (ONH) region was scanned using OCT. The quality of visible LC microstructure was assessed subjectively using a grading system and objectively by analyzing the signal intensity of each scan's superpixel components. Manual delineations were made separately and in 3-dimensions quantifying prelaminar tissue thickness, analyzable regions of LC microstructure, and regions with a visible anterior LC (ALC) boundary. A linear mixed effect model quantified the association between tissue thickness and LC visualization. Results A total of 17 healthy, 27 glaucoma suspect, and 47 glaucomatous eyes were included. Scans with thicker average prelaminar tissue measurements received worse grading scores (P = 0.007), and superpixels with low signal intensity were associated significantly with regions beneath thick prelaminar tissue (P < 0.05). The average prelaminar tissue thickness in regions of scans where the LC was analyzable (214 μm) was significantly thinner than in regions where the LC was not analyzable (569 μm; P < 0.001). Healthy eyes had significantly thicker average prelaminar tissue measurements than glaucoma or glaucoma suspect eyes (both P < 0.001), and glaucoma suspect eyes had significantly thicker average prelaminar tissue measurements than glaucoma eyes (P = 0.008). Significantly more of the ALC boundary was visible in glaucoma eyes (63% of ONH) than in healthy eyes (41%; P = 0.005). Conclusions Thick prelaminar tissue was associated with impaired visualization of the LC. Healthy subjects generally had thicker prelaminar tissue, which potentially could create a selection bias against healthy eyes when comparing LC structures. PMID:28324116
Optical caliper with compensation for specimen deflection and method
Bernacki, B.E.
1997-12-09
An optical non-contact profilometry system and method provided by an optical caliper with matched optical sensors that are arranged conjugate to each other so that the surface profile and thickness of an article can be measured without using a fixed reference surface and while permitting the article to deflect in space within the acquisition range of the optical sensors. The output signals from the two optical sensors are algebraically added to compensate for any such deflection of the article and provide a so compensated signal, the balance and sign of which provides a measurement of the actual thickness of the article at the optical sensors. 2 figs.
Optical caliper with compensation for specimen deflection and method
Bernacki, Bruce E.
1997-01-01
An optical non-contact profilometry system and method provided by an optical caliper with matched optical sensors that are arranged conjugate to each other so that the surface profile and thickness of an article can be measured without using a fixed reference surface and while permitting the article to deflect in space within the acquisition range of the optical sensors. The output signals from the two optical sensors are algebraically added to compensate for any such deflection of the article and provide a so compensated signal, the balance and sign of which provides a measurement of the actual thickness of the article at the optical sensors.
NASA Astrophysics Data System (ADS)
Loka, Chadrasekhar; Lee, Kee-Sun
2017-09-01
The dielectric-metal-dielectric tri-layer films have attracted much attention by virtue of their low-cost and high quality device performance as a transparent conductive electrode. Here, we report the deposition of Cr doped Ag films sandwiched between thin TiO2 layers and investigation on the surface microstructure, optical and electrical properties depending on the thickness of the Ag(Cr). The activation energy (1.18 eV) for grain growth of Ag was calculated from the Arrhenius plot using the law Dn -D0n = kt , which was comparable to the bulk diffusion of Ag. This result indicated the grain growth of Ag was effectively retarded by the Cr addition, which was presumed to related with blocking the surface and grain boundary diffusion due to Cr segregation. Based on thermal stability of Cr added Ag film, we deposited TiO2/Ag(Cr)/TiO2 (TAT) multilayer thin films and with a 10 nm thick Ag(Cr), the TAT films showed high optical transmittance in the visible region (94.2%), low electrical resistivity (8.66 × 10-5 Ω cm), and hence the high figure of merit 57.15 × 10-3 Ω-1 was achieved. The high transmittance of the TAT film was believed to be attributed to the low optical loss due to a reduction in the Ag layer thickness, the surface plasmon effect, and the electron scattering reduced by the Ag layer with a low electrical resistivity.
An Analytical Model for the Evolution of the Protoplanetary Disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khajenabi, Fazeleh; Kazrani, Kimia; Shadmehri, Mohsen, E-mail: f.khajenabi@gu.ac.ir
We obtain a new set of analytical solutions for the evolution of a self-gravitating accretion disk by holding the Toomre parameter close to its threshold and obtaining the stress parameter from the cooling rate. In agreement with the previous numerical solutions, furthermore, the accretion rate is assumed to be independent of the disk radius. Extreme situations where the entire disk is either optically thick or optically thin are studied independently, and the obtained solutions can be used for exploring the early or the final phases of a protoplanetary disk evolution. Our solutions exhibit decay of the accretion rate as amore » power-law function of the age of the system, with exponents −0.75 and −1.04 for optically thick and thin cases, respectively. Our calculations permit us to explore the evolution of the snow line analytically. The location of the snow line in the optically thick regime evolves as a power-law function of time with the exponent −0.16; however, when the disk is optically thin, the location of the snow line as a function of time with the exponent −0.7 has a stronger dependence on time. This means that in an optically thin disk inward migration of the snow line is faster than an optically thick disk.« less
NASA Technical Reports Server (NTRS)
Kaufman, Y. J.; Tanre, D.; Holben, B. N.; Markham, B.; Gitelson, A.
1992-01-01
The compositing technique used to derive global vegetation index (NDVI) from the NOAA AVHRR radiances reduces the residual effect of water vapor and aerosol on the NDVI. The reduction in the atmospheric effect is shown using a comprehensive measured data set for desert conditions, and a simulation for grass with continental aerosol. A statistical analaysis of the probability of occurrence of aerosol optical thickness and precipitable water vapor measured in different climatic regimes is used for this simulation. It is concluded that for a long compositing period (e.g., 27 days), the residual aerosol optical thickness and precipitable water vapor are usually too small to be corrected. For a 9-day compositing, the residual average aerosol effect may be about twice the correction uncertainty. For Landsat TM or Earth Observing System Moderate Resolution Imaging Spectrometer (EOS-MODIS) data, the newly defined atmospherically resistant vegetation index (ARVI) is more promising than possible direct atmospheric correction schemes, except for heavy desert dust conditions.
Wasyluk, Jaromir T; Jankowska-Lech, Irmina; Terelak-Borys, Barbara; Grabska-Liberek, Iwona
2012-03-01
We compared the parameters of retinal nerve fibre layer in patients with advanced glaucoma with the use of different OCT (Optical Coherence Tomograph) devices in relation to analogical measurements performed with GDx VCC (Nerve Fiber Analyzer with Variable Corneal Compensation) scanning laser polarimetry. Study subjects had advanced primary open-angle glaucoma, previously treated conservatively, diagnosed and confirmed by additional examinations (visual field, ophthalmoscopy of optic nerve, gonioscopy), A total of 10 patients were enrolled (9 women and 1 man), aged 18-70 years of age. Nineteen eyes with advanced glaucomatous neuropathy were examined. 1) Performing a threshold perimetry Octopus, G2 strategy and ophthalmoscopy of optic nerve to confirm the presence of advanced primary open-angle glaucoma; 2) performing a GDx VCC scanning laser polarimetry of retinal nerve fibre layer; 3) measuring the retinal nerve fibre layer thickness with 3 different optical coherence tomographs. The parameters of the retinal nerve fibre layer thickness are highly correlated between the GDx and OCT Stratus and 3D OCT-1000 devices in mean retinal nerve fibre layer thickness, retinal nerve fibre layer thickness in the upper sector, and correlation of NFI (GDx) with mean retinal nerve fibre layer thickness in OCT examinations. Absolute values of the retinal nerve fibre layer thickness (measured in µm) differ significantly between GDx and all OCT devices. Examination with OCT devices is a sensitive diagnostic method of glaucoma, with good correlation with the results of GDx scanning laser polarimetry of the patients.
Effect of stratospheric aerosol layers on the TOMS/SBUV ozone retrieval
NASA Technical Reports Server (NTRS)
Torres, O.; Ahmad, Zia; Pan, L.; Herman, J. R.; Bhartia, P. K.; Mcpeters, R.
1994-01-01
An evaluation of the optical effects of stratospheric aerosol layers on total ozone retrieval from space by the TOMS/SBUV type instruments is presented here. Using the Dave radiative transfer model we estimate the magnitude of the errors in the retrieved ozone when polar stratospheric clouds (PSC's) or volcanic aerosol layers interfere with the measurements. The largest errors are produced by optically thick water ice PSC's. Results of simulation experiments on the effect of the Pinatubo aerosol cloud on the Nimbus-7 and Meteor-3 TOMS products are presented.
Polypeptide multilayer films on colloidal particles: an in situ electro-optical study.
Radeva, Tsetska; Kamburova, Kamelia
2007-04-15
The buildup of poly(L-glutamic acid) (PGA) and poly(L-lysine) (PLL) multilayers on beta-FeOOH colloidal particles was investigated by means of electro-optics and electrophoresis. The films were built at different (acidic) pH in the absence of salt. We found that the thickness of the film grows linearly when the fully charged PLL (at pH 5.5) is combined with almost fully charged PGA (at pH 6.5), with a thickness of about 2 nm per single layer. When the fully charged PLL is combined with weakly charged PGA (at pH 4.5), the film thickness increases exponentially with the number of deposited layers. The thickness of the exponentially growing film increases to 300 nm after deposition of 16 layers. The exponential film growth is attributed to the ability of the PLL to diffuse "in" and "out" of the film bulk at each deposition step. The variation in the electrical polarizability of the film-coated particles was also monitored as a function of the number of adsorbed layers. The result reveals that the PLL chains, which can diffuse into the film bulk, have no measurable contribution to the electro-optical effect of the films terminated with PLL. It is only due to the polarization of counterions of the PLL adsorbed on the film surface.
Atmospheric Science Data Center
2018-06-20
... V1 Level: L2 Platform: DEEP SPACE CLIMATE OBSERVATORY Instrument: Enhanced Polychromatic ... assuming ice phase Cloud Optical Thickness – assuming liquid phase EPIC Cloud Mask Oxygen A-band Cloud Effective Height (in ...
NASA Astrophysics Data System (ADS)
Dong, Guobo; Zhang, Ming; Wang, Mei; Li, Yingzi; Gao, Fangyuan; Yan, Hui; Diao, Xungang
2014-07-01
CuAlO2 films with different thickness were prepared by the radio frequency magnetron sputtering technique. The structural, electrical and optical properties of CuAlO2 were studied by X-ray diffraction, atomic force microscope, UV-Vis double-beam spectrophotometer and Hall measurements. The results indicate that the single phase hexagonal CuAlO2 is formed and the average grain size of CuAlO2 films increases with increasing film thickness. The results also exhibit that the lowering of bandgap and the increase of electrical conductivity of CuAlO2 films with the increase of their thickness, which are attributed to the improvement of the grain size and the anisotropic electrical property. According to the electrical and optical properties, the biggest figure of merit is achieved for the CuAlO2 film with the appropriate thickness of 165 nm.
Almahmoud, Safieh; Vahdati, Nader; Rostron, Paul
2018-01-01
A monitoring solution was developed for detection of material loss in metals such as carbon steel using the force generated by permanent magnets in addition to the optical strain sensing technology. The working principle of the sensing system is related to the change in thickness of a steel plate, which typically occurs due to corrosion. As thickness decreases, the magnetostatic force between the magnet and the steel structure also decreases. This, in turn, affects the strain measured using the optical fiber. The sensor prototype was designed and built after verifying its sensitivity using a numerical model. The prototype was tested on steel plates of different thicknesses to establish the relationship between the metal thickness and measured strain. The results of experiments and numerical models demonstrate a strong relationship between the metal thickness and the measured strain values. PMID:29518006
Coherent control of optical polarization effects in metamaterials
Mousavi, Seyedmohammad A.; Plum, Eric; Shi, Jinhui; Zheludev, Nikolay I.
2015-01-01
Processing of photonic information usually relies on electronics. Aiming to avoid the conversion between photonic and electronic signals, modulation of light with light based on optical nonlinearity has become a major research field and coherent optical effects on the nanoscale are emerging as new means of handling and distributing signals. Here we demonstrate that in slabs of linear material of sub-wavelength thickness optical manifestations of birefringence and optical activity (linear and circular birefringence and dichroism) can be controlled by a wave coherent with the wave probing the polarization effect. We demonstrate this in proof-of-principle experiments for chiral and anisotropic microwave metamaterials, where we show that the large parameter space of polarization characteristics may be accessed at will by coherent control. Such control can be exerted at arbitrarily low intensities, thus arguably allowing for fast handling of electromagnetic signals without facing thermal management and energy challenges. PMID:25755071
Effect of molecular anisotropy on backscattered ultraviolet radiance.
Ahmad, Z; Bhartia, P K
1995-12-20
The effect of molecular anisotropy on backscattered UV (BUV) radiances is computed by accounting for it in both Rayleigh optical thickness and the scattering-phase matrix. If the effect of molecular anisotropy is included only in the optical thickness and not in the phase matrix, then for high sun (θ(0) ∼ 0°), the nadir radiance (I(0)) leaving the top of the atmosphere is approximately 1.8% higher than the radiance (I(op)) computed with the effect included in the phase matrix. For very low sun (θ(0) > 80°), I(0) is approximately 2.3% lower than I(op). For off-nadir radiances the relative increase (decrease) depends on both the local zenith angle as well as the azimuth angle. Also, an increase in the surface reflectivity decreases the effect of molecular anisotropy on the upwelling radiances. Exclusion of the anisotropy factor in the Rayleigh-phase matrix has very little effect (<1%) on ozone retrieval from the BUV-type instruments. This is because of the ratio technique used in the retrieval algorithm, which practically cancels out the anisotropy effect.
NASA Technical Reports Server (NTRS)
Ye, B.; DelGenio, A. D.
1999-01-01
Areally extensive, optically thick anvil clouds associated with mesoscale convective clusters dominate the shortwave cloud forcing in the tropics and provide longwave forcing comparable to that of thin cirrus. Changes in the cover and optical thickness of tropical anvils as climate warms can regulate the sign of cloud feedback. As a prelude to the study of MMCR data from the ARM TWP sites, we analyze ISCCP-derived radiative characteristics of anvils observed in the tropical west Pacific during the TOGA-COARE IOP. Anvils with radius greater than 100 km were identified and tracked from inception to decay using the Machado-Rossow algorithm. Corresponding environmental conditions just prior to the start of the convectove event were diagnosed using the Lin-Johnson objective analysis product. Small clusters (100-200 km radius) are observed to have a broad range of optical thicknesses (10-50), while intermediate optical thickness clusters are observed to range in size from 100 km to almost 1000 km. Large-size clusters appear to be favored by strong pre-storm large scale upward motion throughout the troposphere, moist low-to-midlevel relative humidities, environments with slightly higher CAPE than those for smaller clusters, and strong front-to-rear flow. Optically thick anvils are favored in situations of strong low-level moisture convergence and strong upper-level shear.
Example MODIS Global Cloud Optical and Microphysical Properties: Comparisons between Terra and Aqua
NASA Technical Reports Server (NTRS)
Hubanks, P. A.; Platnick, S.; King, M. D.; Ackerman, S. A.; Frey, R. A.
2003-01-01
MODIS observations from the NASA EOS Terra spacecraft (launched in December 1999, 1030 local time equatorial crossing) have provided a unique data set of Earth observations. With the launch of the NASA Aqua spacecraft in May 2002 (1330 local time), two MODIS daytime (sunlit) and nighttime observations are now available in a 24 hour period, allowing for some measure of diurnal variability. We report on an initial analysis of several operational global (Level-3) cloud products from the two platforms. The MODIS atmosphere Level-3 products, which include clear-sky and aerosol products in addition to cloud products, are available as three separate files providing daily, eight-day, and monthly aggregations; each temporal aggregation is spatially aggregated to a 1 degree grid. The files contain approximately 600 statisitical datasets (from simple means and standard deviations to 1 - and 2-dimensional histograms). Operational cloud products include detection (cloud fraction), cloud-top properties, and daytimeonly cloud optical thickness and particle effective radius for both water and ice clouds. We will compare example global Terra and Aqua cloud fraction, optical thickness, and effective radius aggregations.
Adjustable bipod flexures for mounting mirrors in a space telescope.
Kihm, Hagyong; Yang, Ho-Soon; Moon, Il Kweon; Yeon, Jeong-Heum; Lee, Seung-Hoon; Lee, Yun-Woo
2012-11-10
A new mirror mounting technique applicable to the primary mirror in a space telescope is presented. This mounting technique replaces conventional bipod flexures with flexures having mechanical shims so that adjustments can be made to counter the effects of gravitational distortion of the mirror surface while being tested in the horizontal position. Astigmatic aberration due to the gravitational changes is effectively reduced by adjusting the shim thickness, and the relation between the astigmatism and the shim thickness is investigated. We tested the mirror interferometrically at the center of curvature using a null lens. Then we repeated the test after rotating the mirror about its optical axis by 180° in the horizontal setup, and searched for the minimum system error. With the proposed flexure mount, the gravitational stress at the adhesive coupling between the mirror and the mount is reduced by half that of a conventional bipod flexure for better mechanical safety under launch loads. Analytical results using finite element methods are compared with experimental results from the optical interferometer. Vibration tests verified the mechanical safety and optical stability, and qualified their use in space applications.
NASA Astrophysics Data System (ADS)
Yan, Yong; Li, Shasha; Ou, Yufeng; Ji, Yaxin; Yu, Zhou; Liu, Lian; Yan, Chuanpeng; Zhang, Yong; Zhao, Yong
2014-11-01
Crystalline In2Se3 films were fabricated by magnetron sputtering from a sintered In2Se3-compound target and the effects of the deposition parameters, including the working pressure and deposition time, on the phase composition, structure, morphology, and optical properties were clarified. Single-phase κ-In2Se3 was prepared at 4.0 Pa, but γ-In2Se3 was recognized when the working pressure was lower than 4.0 Pa. The optical transmittance of the films decreased to 45% and the optical band gap varied from 2.9 to 2.0 eV with increasing film thickness from 80 to 967 nm. Metal-semiconductor-metal (MSM) photodetectors based on γ-In2Se3 thin films with various thicknesses were also fabricated. The result of photosensitivity research on such MSM photodetectors suggests that it may be impossible to fabricate wide-absorption-range MSM devices by just using a single material ( γ-In2Se3) because of spatial potential fluctuations in the layers. [Figure not available: see fulltext.
Nishi, Tomo; Ueda, Tetsuo; Mizusawa, Yuutaro; Semba, Kentaro; Shinomiya, Kayo; Mitamura, Yoshinori; Sakamoto, Taiji; Ogata, Nahoko
2017-01-01
The purpose of this study was to determine the effect of optical correction on the best-corrected visual acuity (BCVA) and subfoveal choroidal thickness (CT) in the eyes of children with anisohypermetropic amblyopia. Twenty-four anisohypermetropic amblyopic eyes and their fellow eyes of 24 patients and twenty-three eyes of 23 age-matched control children were studied. After one year of optical correction, the BCVA in the anisohypermetropic amblyopic eyes was significantly improved. Before the treatment, the mean subfoveal CT in the amblyopic eyes was 351.9 ± 59.4 μm which was significantly thicker than that of control eyes at 302.4 ± 63.2 μm. After the treatment, the amount of change in the subfoveal CT in the amblyopic and fellow eyes was greater than that in the control eyes. The amblyopic and fellow eyes with thicker choroids had a greater thinning of the choroid whereas eyes with thinner choroids had a greater thickening of the choroid. We conclude that wearing corrective lenses improves the visual acuity, and induces changes of the subfoveal CT in eyes with anisohypermetropic amblyopia.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, S.; Gray, M. A.; Hubanks, P. A.
2004-01-01
The Moderate Resolution Imaging Spectroradiometer (MODE) was developed by NASA and launched onboard the Terra spacecraft on December 18,1999 and the Aqua spacecraft on April 26,2002. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from each polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 pm with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). In this paper, we describe the radiative properties of clouds as currently determined from satellites (cloud fraction, optical thickness, cloud top pressure, and cloud effective radius), and highlight the global and regional cloud microphysical properties currently available for assessing climate variability and forcing. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the globe.
NASA Technical Reports Server (NTRS)
Kaufman, Yoram; Tanre, Didier; Remer, Lorraine; Holben, Brent; Lau, William K.-M. (Technical Monitor)
2001-01-01
The MODIS instrument was launched on the NASA Terra satellite in Dec. 1999. Since last Oct., the sensor and the aerosol algorithm reached maturity and provide global daily retrievals of aerosol optical thickness and properties. MODIS has 36 spectral channels in the visible to IR with resolution down to 250 m. This allows accurate cloud screening and multi-spectral aerosol retrievals. We derive the aerosol optical thickness over the ocean and most of the land areas, distinguishing between fine (mainly man-made aerosol) and coarse aerosol particles. The information is more precise over the ocean where we derive also the effective radius and scattering asymmetry parameter of the aerosol. New methods to derive the aerosol single scattering albedo are also being developed. These measurements are use to track different aerosol sources, transport and the radiative forcing at the top and bottom of the atmosphere. The AErosol RObotic NETwork of ground based radiometers is used for global validation of the satellite derived optical thickness, size parameters and single scattering albedo and measure additional aerosol parameters that cannot be derived from space.
NASA Technical Reports Server (NTRS)
Wang, Zhien; Heymsfield, Gerald M.; Li, Lihua; Heymsfield, Andrew J.
2005-01-01
An algorithm to retrieve optically thick ice cloud microphysical property profiles is developed by using the GSFC 9.6 GHz ER-2 Doppler Radar (EDOP) and the 94 GHz Cloud Radar System (CRS) measurements aboard the high-altitude ER-2 aircraft. In situ size distribution and total water content data from the CRYSTAL-FACE field campaign are used for the algorithm development. To reduce uncertainty in calculated radar reflectivity factors (Ze) at these wavelengths, coincident radar measurements and size distribution data are used to guide the selection of mass-length relationships and to deal with the density and non-spherical effects of ice crystals on the Ze calculations. The algorithm is able to retrieve microphysical property profiles of optically thick ice clouds, such as, deep convective and anvil clouds, which are very challenging for single frequency radar and lidar. Examples of retrieved microphysical properties for a deep convective clouds are presented, which show that EDOP and CRS measurements provide rich information to study cloud structure and evolution. Good agreement between IWPs derived from an independent submillimeter-wave radiometer, CoSSIR, and dual-wavelength radar measurements indicates accuracy of the IWC retrieved from the two-frequency radar algorithm.
Disordered animal multilayer reflectors and the localization of light
Jordan, T. M.; Partridge, J. C.; Roberts, N. W.
2014-01-01
Multilayer optical reflectors constructed from ‘stacks’ of alternating layers of high and low refractive index dielectric materials are present in many animals. For example, stacks of guanine crystals with cytoplasm gaps occur within the skin and scales of fish, and stacks of protein platelets with cytoplasm gaps occur within the iridophores of cephalopods. Common to all these animal multilayer reflectors are different degrees of random variation in the thicknesses of the individual layers in the stack, ranging from highly periodic structures to strongly disordered systems. However, previous discussions of the optical effects of such thickness disorder have been made without quantitative reference to the propagation of light within the reflector. Here, we demonstrate that Anderson localization provides a general theoretical framework to explain the common coherent interference and optical properties of these biological reflectors. Firstly, we illustrate how the localization length enables the spectral properties of the reflections from more weakly disordered ‘coloured’ and more strongly disordered ‘silvery’ reflectors to be explained by the same physical process. Secondly, we show how the polarization properties of reflection can be controlled within guanine–cytoplasm reflectors, with an interplay of birefringence and thickness disorder explaining the origin of broadband polarization-insensitive reflectivity. PMID:25339688
Thickness Measurement, Rate Control And Automation In Thin Film Coating Technology
NASA Astrophysics Data System (ADS)
Pulker, H. K.
1983-11-01
There are many processes known for fabricating thin films/1, 2.Among them the group of physical vapor deposition processes comprising evaporation, sputtering and ion plating has received special attention.Especially evaporation but also the other PVD techniques are widely used to deposit various single and multilayer coatings for optical and electrical thin film applications/3,4/.A large number of parameters is important in obtaining the required film properties in a reproducible manner when depositing thin films by such processes.Amongst the many are the film thickness, the condensation rate,the substrate temperature,as well as the qualitative and the quantitative composition of the residual gas of primary importance.First of all the film thickness is a dimension which enters in practically all equations used to characterize a thin film. However,when discussing film thickness,definitions are required since there one has to distinguish between various types of thicknesses e.g.geometrical thickness,mass thickness and optical thickness.The geometrical thickness,often also called physical thickness,is defined as the step height between the substrate surface and the film surface.This step height multiplied by the refractive index of the film is termed the optical thickness and is expressed generally in integer multiples of fractional parts of a desired wavelength.The mass thickness finally is defined as the film mass per unit area obtained by weighing.Knowing the density and the optical data of a thin film its mass thickness can be converted into the corresponding geometrical as well as optical thickness.However,with ultrathin films ranging between a few and several atomic or molecular "layers"the concept of a film thickness may become senseless since often no closed film exists of such minor deposits.Although film thickness is a length,the measurement of it can,obviously,not be accomplished with conventional methods for length determinations but requires special methods.The great efforts made to overcome this problem led to a remarkable number of different,often highly sophisticated film thickness measuring methods reviewed in various articles such ase.g./5,6/.With some of the methods,it is possible to carry out measurement under vacuum during and after the film formation other determinations have to be undertaken outside the deposition chamber only after the film has been produced.Many of the methods cannot be employed for all film substances,and there are varying limits as regards the range of thickness and measuring accuracy.Furthermore, with these methods the film to be measured is often specially prepared or dissolved during measurement and therefore becomes useless for additional investigations or applications.If only those methods which can be employed during the film deposition are considered,then the very large number of methods is considerably reduced.Insitu measurements,however,are highly desired since many basic investigations and practically all industrial applications require a precise knowledge of thefilm thickness at any instant to enable termination of the deposition process at the predetermined right moment.Apartfrom few exceptions in practical film deposition only optical measuring units andmass determination monitors are used.
Influence of interface layer on optical properties of sub-20 nm-thick TiO2 films
NASA Astrophysics Data System (ADS)
Shi, Yue-Jie; Zhang, Rong-Jun; Li, Da-Hai; Zhan, Yi-Qiang; Lu, Hong-Liang; Jiang, An-Quan; Chen, Xin; Liu, Juan; Zheng, Yu-Xiang; Wang, Song-You; Chen, Liang-Yao
2018-02-01
The sub-20 nm ultrathin titanium dioxide (TiO2) films with tunable thickness were deposited on Si substrates by atomic layer deposition (ALD). The structural and optical properties were acquired by transmission electron microscopy, atomic force microscopy and spectroscopic ellipsometry. Afterwards, a constructive and effective method of analyzing interfaces by applying two different optical models consisting of air/TiO2/Ti x Si y O2/Si and air/effective TiO2 layer/Si, respectively, was proposed to investigate the influence of interface layer (IL) on the analysis of optical constants and the determination of band gap of TiO2 ultrathin films. It was found that two factors including optical constants and changing components of the nonstoichiometric IL could contribute to the extent of the influence. Furthermore, the investigated TiO2 ultrathin films of 600 ALD cycles were selected and then annealed at the temperature range of 400-900 °C by rapid thermal annealing. Thicker IL and phase transition cause the variation of optical properties of TiO2 films after annealing and a shorter electron relaxation time reveals the strengthened electron-electron and electron-phonon interactions in the TiO2 ultrathin films at high temperature. The as-obtained results in this paper will play a role in other studies of high dielectric constants materials grown on Si substrates and in the applications of next generation metal-oxide-semiconductor devices.
Goos-Hänchen effect on Si thin films with spherical and cylindrical pores
NASA Astrophysics Data System (ADS)
Olaya, Cherrie May; Garcia, Wilson O.; Hermosa, Nathaniel
2018-02-01
We examine the effects on the spatial and angular Goos-Hanchen (GH) beam shifts of spherical and cylindrical pores in a thin film. In our calculations, a p-polarized light is incident on a 1-μm thick porous silicon (Si) thin film on a Si substrate. The beam shifts are within the measurement range of usual optical detectors. Our results show that a technique based on GH shift can be used to determine the porosity and pore structure of thin films at a given thickness.
Effect of temperature on optical properties of PMMA/SiO2 composite thin film
NASA Astrophysics Data System (ADS)
Soni, Gyanesh; Srivastava, Subodh; Soni, Purushottam; Kalotra, Pankaj; Vijay, Y. K.
2018-05-01
Effect of temperature on PMMA/SiO2 composites thin films were investigated. Nanocomposite flexible thin films of 60 µm thicknesses with different loading of SiO2 nanoparticles were prepared using solution casting method. SEM images show that SiO2 nanoparticles are distributed uniformly in PMMA matrix without any lumps on the surface, and PMMA/SiO2 nano composite thin films had a smoother and regular morphology. UV-Vis and optical band gap measurements revealed that both the concentration of SiO2 nanoparticles and temperature affect the optical properties of the composite thin film in comparison to the pure PMMA film.
Lee, Kyungmin; Chung, Heeyoung; Park, Youngsuk
2014-01-01
Purpose To determine if short term effects of intravitreal anti-vascular endothelial growth factor or steroid injection are correlated with fluid turbidity, as detected by spectral domain optical coherence tomography (SD-OCT) in diabetic macular edema (DME) patients. Methods A total of 583 medical records were reviewed and 104 cases were enrolled. Sixty eyes received a single intravitreal bevacizumab injection (IVB) on the first attack of DME and 44 eyes received triamcinolone acetonide treatment (IVTA). Intraretinal fluid turbidity in DME patients was estimated with initialintravitreal SD-OCT and analyzed with color histograms from a Photoshop program. Central macular thickness and visual acuity using a logarithm from the minimum angle of resolution chart, were assessed at the initial period and 2 months after injections. Results Visual acuity and central macular thickness improved after injections in both groups. In the IVB group, visual acuity and central macular thickness changed less as the intraretinal fluid became more turbid. In the IVTA group, visual acuity underwent less change while central macular thickness had a greater reduction (r = -0.675, p = 0.001) as the intraretinal fluid was more turbid. Conclusions IVB and IVTA injections were effective in reducing central macular thickness and improving visual acuity in DME patients. Further, fluid turbidity, which was detected by SD-OCT may be one of the indexes that highlight the influence of the steroid-dependent pathogenetic mechanism. PMID:25120338
Lee, Kyungmin; Chung, Heeyoung; Park, Youngsuk; Sohn, Joonhong
2014-08-01
To determine if short term effects of intravitreal anti-vascular endothelial growth factor or steroid injection are correlated with fluid turbidity, as detected by spectral domain optical coherence tomography (SD-OCT) in diabetic macular edema (DME) patients. A total of 583 medical records were reviewed and 104 cases were enrolled. Sixty eyes received a single intravitreal bevacizumab injection (IVB) on the first attack of DME and 44 eyes received triamcinolone acetonide treatment (IVTA). Intraretinal fluid turbidity in DME patients was estimated with initial intravitreal SD-OCT and analyzed with color histograms from a Photoshop program. Central macular thickness and visual acuity using a logarithm from the minimum angle of resolution chart, were assessed at the initial period and 2 months after injections. Visual acuity and central macular thickness improved after injections in both groups. In the IVB group, visual acuity and central macular thickness changed less as the intraretinal fluid became more turbid. In the IVTA group, visual acuity underwent less change while central macular thickness had a greater reduction (r = -0.675, p = 0.001) as the intraretinal fluid was more turbid. IVB and IVTA injections were effective in reducing central macular thickness and improving visual acuity in DME patients. Further, fluid turbidity, which was detected by SD-OCT may be one of the indexes that highlight the influence of the steroid-dependent pathogenetic mechanism.
Xu, Man; Wachters, Arthur J H; van Deelen, Joop; Mourad, Maurice C D; Buskens, Pascal J P
2014-03-10
We present a systematic study of the effect of variation of the zinc oxide (ZnO) and copper indium gallium (di)selenide (CIGS) layer thickness on the absorption characteristics of CIGS solar cells using a simulation program based on finite element method (FEM). We show that the absorption in the CIGS layer does not decrease monotonically with its layer thickness due to interference effects. Ergo, high precision is required in the CIGS production process, especially when using ultra-thin absorber layers, to accurately realize the required thickness of the ZnO, cadmium sulfide (CdS) and CIGS layer. We show that patterning the ZnO window layer can strongly suppress these interference effects allowing a higher tolerance in the production process.
NASA Astrophysics Data System (ADS)
Kafle, Madhav; Kapadi, Ramesh K.; Joshi, Leela Pradhan; Rajbhandari, Armila; Subedi, Deepak P.; Gyawali, Gobinda; Lee, Soo W.; Adhikari, Rajendra; Kafle, Bhim P.
2017-07-01
The dependence of the structural, optical and electrical properties of the FTO thin films on the film thickness (276 nm - 546 nm), calcination environment, and low temperature plasma treatment were examined. The FTO thin films, prepared by spray pyrolysis, were calcinated under air followed by either further heat treatment under N2 gas or treatment in low temperature atmospheric plasma. The samples before and after calcination under N2, and plasma treatment will be represented by Sair, SN2 and SPl, respectively, hereafter. The thin films were characterized by measuring the XRD spectra, SEM images, optical transmittance and reflectance, and sheet resistance of the films before and after calcination in N2 environment or plasma treatment. The presence of sharp and narrow multiple peaks in XRD spectra hint us that the films were highly crystalline (polycrystalline). The samples Sair with the thickness of 471 nm showed as high as 92 % transmittance in the visible range. Moreover, from the tauc plot, the optical bandgap Eg values of the Sair found to be noticeably lower than that of the samples SN2. Very surprisingly, the electrical sheet resistance (Rsh) found to decrease following the trend as Rshair > RshN2 > RshPl. The samples exposed to plasma found to possess the lowest RshPl (for film with thickness 546 nm, the RshPl was 17 Ω /sq.).
NASA Astrophysics Data System (ADS)
Buckley, Darragh; McCormack, Robert; O'Dwyer, Colm
2017-04-01
The angle-resolved reflectance of high crystalline quality, c-axis oriented ZnO and AZO single and periodic quasi-superlattice (QSL) spin-coated TFT channels materials are presented. The data is analysed using an adapted model to accurately determine the spectral region for optical thickness and corresponding reflectance. The optical thickness agrees very well with measured thickness of 1-20 layered QSL thin films determined by transmission electron microscopy if the reflectance from lowest interference order is used. Directional reflectance for single layers or homogeneous QSLs of ZnO and AZO channel materials exhibit a consistent degree of anti-reflection characteristics from 30 to 60° (~10-12% reflection) for thickness ranging from ~40 nm to 500 nm. The reflectance of AZO single layer thin films is <10% from 30 to 75° at 514.5 nm, and <6% at 632.8 nm from 30-60°. The data show that ZnO and AZO with granular or periodic substructure behave optically as dispersive, continuous thin films of similar thickness, and angle-resolved spectral mapping provides a design rule for transparency or refractive index determination as a function of film thickness, substructure (dispersion) and viewing angle.
The Infrared & Electro-Optical Systems Handbook. Emerging Systems and Technologies, Volume 8
1993-01-01
usually associated with turbulence in the intervening path or to significant nonuniformities in com- position or temperature of the air within the field of...cause beam quality to be less than perfect. Coatings on the mirrors can also be nonuniform , leading to further OPD effects. Resonator misalignment...despite an undesired spherical error). Coatings can be nonuniform in their thickness. This thickness nonuniform - ity is equivalent to a mirror fabrication
Easily Processed Host-Guest Polymer Systems with High-Tg Characteristics (First-year Report)
2012-05-01
manner such that the effective electro- optical coefficient is maximized. Unfortunately, relaxation of the chromophore in the host polymer leads to...polished stainless steel facing plates (0.25 in thickness, McMaster ) and window molds cut from aluminum stock (1 mm thickness, McMaster ). Both facing...plasticization from the chromophore. Both chromophores resulted in substantial red-shifted absorption compared to a sample prepared in virgin PMMA. We expect
Masking technique for coating thickness control on large and strongly curved aspherical optics.
Sassolas, B; Flaminio, R; Franc, J; Michel, C; Montorio, J-L; Morgado, N; Pinard, L
2009-07-01
We discuss a method to control the coating thickness deposited onto large and strongly curved optics by ion beam sputtering. The technique uses an original design of the mask used to screen part of the sputtered materials. A first multielement mask is calculated from the measured two-dimensional coating thickness distribution. Then, by means of an iterative process, the final mask is designed. By using such a technique, it has been possible to deposit layers of tantalum pentoxide having a high thickness gradient onto a curved substrate 500 mm in diameter. Residual errors in the coating thickness profile are below 0.7%.
Huang, Jehn-Yu; Pekmezci, Melike; Mesiwala, Nisreen; Kao, Andrew; Lin, Shan
2011-02-01
To evaluate the capability of the optic disc, peripapillary retinal nerve fiber layer (P-RNFL), macular inner retinal layer (M-IRL) parameters, and their combination obtained by Fourier-domain optical coherent tomography (OCT) in differentiating a glaucoma suspect from perimetric glaucoma. Two hundred and twenty eyes from 220 patients were enrolled in this study. The optic disc morphology, P-RNFL, and M-IRL were assessed by the Fourier-domain OCT (RTVue OCT, Model RT100, Optovue, Fremont, CA). A linear discriminant function was generated by stepwise linear discriminant analysis on the basis of OCT parameters and demographic factors. The diagnostic power of these parameters was evaluated with receiver operating characteristic (ROC) curve analysis. The diagnostic power in the clinically relevant range (specificity ≥ 80%) was presented as the partial area under the ROC curve (partial AROC). The individual OCT parameter with the largest AROC and partial AROC in the high specificity (≥ 80%) range were cup/disc vertical ratio (AROC = 0.854 and partial AROC = 0.142) for the optic disc parameters, average thickness (AROC = 0.919 and partial AROC = 0.147) for P-RNFL parameters, inferior hemisphere thickness (AROC = 0.871 and partial AROC = 0.138) for M-IRL parameters, respectively. The linear discriminant function further enhanced the ability in detecting perimetric glaucoma (AROC = 0.970 and partial AROC = 0.172). Average P-RNFL thickness is the optimal individual OCT parameter to detect perimetric glaucoma. Simultaneous evaluation on disc morphology, P-RNFL, and M-IRL thickness can improve the diagnostic accuracy in diagnosing glaucoma.
Near-zero IR transmission of VO2 thin films deposited on Si substrate
NASA Astrophysics Data System (ADS)
Zhang, Chunzi; Koughia, Cyril; Li, Yuanshi; Cui, Xiaoyu; Ye, Fan; Shiri, Sheida; Sanayei, Mohsen; Wen, Shi-Jie; Yang, Qiaoqin; Kasap, Safa
2018-05-01
Vanadium dioxide (VO2) thin films of different thickness have been deposited on Si substrates by using DC magnetron sputtering. The effects of substrate pre-treatment by means of seeding (spin coating and ultrasonic bathing) and biasing on the structure and optical properties were investigated. Seeding results in a smaller grain size in the oxide film, whereas biasing results in square-textured crystals. VO2 thin films of 150 nm thick show a near-zero IR transmission in switched state. Especially, the 150 nm thick VO2 thin film with seeding treatment shows an enhanced switching efficiency.
Influence of PEG coating on optical and thermal response of gold nanoshperes and nanorods
NASA Astrophysics Data System (ADS)
Chen, Qin; Ren, Yatao; Qi, Hong; Ruan, Liming
2018-06-01
PEGylation is widely applied as a surface modification method for nanoparticles in biomedical applications to improve their biological properties, including biocompatibility and immunogenicity. In most of its biomedical applications, nanoparticles are served as optical or thermal contrast agents. Therefore, the impact of poly (ethylene glycol) (PEG) coating thickness on the optical and thermal properties of nanoparticles needs to be further investigated. In the present work, we studied two kinds of commonly used nanoparticles, including nanosphere and nanorod. The temperature and electric fields are obtained for nanoparticles with different PEG coating thicknesses. It is found that the change of PEG coating thickness on gold nanospheres only has impact on the absolute value of maximum absorption and scattering efficiencies, which barely influences the LSPR wavelength λmax and other optical and thermal characteristics. In contrast, for nanorod, the maximum efficiencies are barely influenced by the variation of PEG coating thickness. On the other hand, the localized surface plasmon resonance wavelength has an evident red shift with the increasing of PEG coating thickness. The maximum absorption efficiency is a way to evaluate the energy dissipation rate, which decides the scale of the heat source induced by nanoparticles. These findings are crucial for the accurate prediction of optical and thermal properties of nanoparticles in biomedical application. The present work also presents a possible way to manipulate the optical and thermal behaviors of nanoparticles in the application of biomedicine without changing the morphology of nanoparticles.
Fracture Probability of MEMS Optical Devices for Space Flight Applications
NASA Technical Reports Server (NTRS)
Fettig, Rainer K.; Kuhn, Jonathan L.; Moseley, S. Harvey; Kutyrev, Alexander S.; Orloff, Jon
1999-01-01
A bending fracture test specimen design is presented for thin elements used in optical devices for space flight applications. The specimen design is insensitive to load position, avoids end effect complications, and can be used to measure strength of membranes less than 2 microns thick. The theoretical equations predicting stress at failure are presented, and a detailed finite element model is developed to validate the equations for this application. An experimental procedure using a focused ion beam machine is outlined, and results from preliminary tests of 1.9 microns thick single crystal silicon are presented. These tests are placed in the context of a methodology for the design and evaluation of mission critical devices comprised of large arrays of cells.
NASA Astrophysics Data System (ADS)
Mohamed, S. H.; Ali, H. M.
2011-01-01
Structural, optical, and photoluminescence investigations of ZnS capped with CdSe films prepared by electron beam evaporation are presented. X-ray diffraction analysis revealed that the ZnS/CdSe nanoparticles films contain cubic cadmium selenide and hexagonal zinc sulfide crystals and the ZnS grain sizes increased with increasing ZnS thickness. The refractive index was evaluated in terms of envelope method, which has been suggested by Swanepoel in the transparent region. The refractive index values were found to increase with increasing ZnS thickness. However, the optical band gap and the extinction coefficient were decreased with increasing ZnS thickness. Photoluminescence (PL) investigations revealed the presence of two broad emission bands. The ZnS thickness significantly influenced the PL intensities.
Park, Kwangwook; Kang, Seokjin; Ravindran, Sooraj; ...
2016-12-26
Double-hetero structure lateral composition modulated (LCM) GaInP and sandwiched LCM GaInP having the same active layer thickness were grown and their optical properties were compared. Sandwiched LCM GaInP showed robust optical properties due to periodic potential nature of the LCM structure, and the periodicity was undistorted even for thickness far beyond the critical layer thickness. A thick LCM GaInP structure with undistorted potential that could preserve the properties of native LCM structure was possible by stacking thin LCM GaInP structures interspaced with strain compensating GaInP layers. Furthermore, the sandwiched structure could be beneficial in realizing the LCM structure embedded highmore » efficiency solar cells.« less
Validation of MODIS Aerosol Retrieval Over Ocean
NASA Technical Reports Server (NTRS)
Remer, Lorraine A.; Tanre, Didier; Kaufman, Yoram J.; Ichoku, Charles; Mattoo, Shana; Levy, Robert; Chu, D. Allen; Holben, Brent N.; Dubovik, Oleg; Ahmad, Ziauddin;
2001-01-01
The MODerate resolution Imaging Spectroradiometer (MODIS) algorithm for determining aerosol characteristics over ocean is performing with remarkable accuracy. A two-month data set of MODIS retrievals co-located with observations from the AErosol RObotic NETwork (AERONET) ground-based sunphotometer network provides the necessary validation. Spectral radiation measured by MODIS (in the range 550 - 2100 nm) is used to retrieve the aerosol optical thickness, effective particle radius and ratio between the submicron and micron size particles. MODIS-retrieved aerosol optical thickness at 660 nm and 870 nm fall within the expected uncertainty, with the ensemble average at 660 nm differing by only 2% from the AERONET observations and having virtually no offset. MODIS retrievals of aerosol effective radius agree with AERONET retrievals to within +/- 0.10 micrometers, while MODIS-derived ratios between large and small mode aerosol show definite correlation with ratios derived from AERONET data.
The effect of electromagnetically induced transparency in a potassium nanocell
NASA Astrophysics Data System (ADS)
Sargsyan, A.; Amiryan, A.; Leroy, C.; Vartanyan, T. A.; Sarkisyan, D.
2017-07-01
The effect of electromagnetically induced transparency (EIT) has been experimentally implemented for the first time for the (4 S 1/2-4 P 1/2-4 S 1/2) Λ-system of potassium atom levels in a nanocell with a 770-nm-thick column of atomic vapor. It is shown that, at such a small thickness of the vapor column, the EIT resonance can be observed only when the coupling-laser frequency is in exact resonance with the frequency of the corresponding atomic transition. The EIT resonance disappears even if the coupling-laser frequency differs slightly (by 50 MHz) from that of the corresponding atomic transition, which is due to the high thermal velocity of K atoms. The EIT resonance and related velocity selective optical pumping resonances caused by optical pumping (formed by the coupling) can be simultaneously recorded because of the small ( 462 MHz) hyperfine splitting of the lower 4 S 1/2 level.
Aleman, Tomas S.; Huang, Jiayan; Garrity, Sean T.; Carter, Stuart B.; Aleman, Wendy D.; Ying, Gui-shuang; Tamhankar, Madhura A.
2014-01-01
Purpose To study the relationship between the appearance of the optic nerve and the retinal nerve fiber layer (RNFL) thickness determined by spectral domain optical coherence tomography (OCT). Methods Records from patients with spectral domain-OCT imaging in a neuro-ophthalmology practice were reviewed. Eyes with glaucoma/glaucoma suspicion, macular/optic nerve edema, pseudophakia, and with refractive errors > 6D were excluded. Optic nerve appearance by slit lamp biomicroscopy was related to the RNFL thickness by spectral domain-OCT and to visual field results. Results Ninety-one patients (176 eyes; mean age: 49 ± 15 years) were included. Eighty-three eyes (47%) showed optic nerve pallor; 89 eyes (50.6%) showed RNFL thinning (sectoral or average peripapillary). Average peripapillary RNFL thickness in eyes with pallor (mean ± SD = 76 ± 17 μm) was thinner compared to eyes without pallor (91 ± 14 μm, P < 0.001). Optic nerve pallor predicted RNFL thinning with a sensitivity of 69% and a specificity of 75%. Optic nerve appearance predicted RNFL thinning (with a sensitivity and specificity of 81%) when RNFL had thinned by ∼ 40%. Most patients with pallor had RNFL thinning with (66%) or without (25%) visual field loss; the remainder had normal RNFL and fields (5%) or with visual field abnormalities (4%). Conclusions Optic nerve pallor as a predictor of RNFL thinning showed fair sensitivity and specificity, although it is optimally sensitive/specific only when substantial RNFL loss has occurred. Translational Relevance Finding an acceptable relationship between the optic nerve appearance by ophthalmoscopy and spectral domain-OCT RNFL measures will help the clinician's interpretation of the information provided by this technology, which is gaining momentum in neuro-ophthalmic research. PMID:25374773
Zhang, Rongxiao; Glaser, Adam K.; Andreozzi, Jacqueline; Jiang, Shudong; Jarvis, Lesley A.; Gladstone, David J.; Pogue, Brian W.
2017-01-01
This study’s goal was to determine how Cherenkov radiation emission observed in radiotherapy is affected by predictable factors expected in patient imaging. Factors such as tissue optical properties, radiation beam properties, thickness of tissues, entrance/exit geometry, curved surface effects, curvature and imaging angles were investigated through Monte Carlo simulations. The largest physical cause of variation of the correlation factor between of Cherenkov emission and dose was the entrance/exit geometry (~50%). The largest human tissue effect was from different optical properties (~45%). Beyond these, clinical beam energy varies the correlation factor significantly (~20% for x-ray beams), followed by curved surfaces (~15% for x-ray beams and ~8% for electron beams), and finally, the effect of field size (~5% for x-ray beams). Other investigated factors which caused variations less than 5% were tissue thicknesses and source to surface distance. The effect of non-Lambertian emission was negligible for imaging angles smaller than 60 degrees. The spectrum of Cherenkov emission tends to blue-shift along the curved surface. A simple normalization approach based on the reflectance image was experimentally validated by imaging a range of tissue phantoms, as a first order correction for different tissue optical properties. PMID:27507213
The Case for Optically Thick High-Velocity Broad-Line Region Gas in Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Snedden, Stephanie A.; Gaskell, C. Martin
2007-11-01
A combined analysis of the profiles of the main broad quasar emission lines in both Hubble Space Telescope and optical spectra shows that while the profiles of the strong UV lines are quite similar, there is frequently a strong increase in the Lyα/Hα ratio in the high-velocity gas. We show that the suggestion that the high-velocity gas is optically thin presents many problems. We show that the relative strengths of the high-velocity wings arise naturally in an optically thick BLR component. An optically thick model successfully explains the equivalent widths of the lines, the Lyα/Hα ratios and flatter Balmer decrements in the line wings, the strengths of C III] and the λ1400 blend, and the strong variability in flux of high-velocity, high-ionization lines (especially He II and He I).
Effect of pupillary dilatation on glaucoma assessments using optical coherence tomography
Smith, Michael; Frost, Andrew; Graham, Christopher Mark; Shaw, Steven
2007-01-01
Aims To examine the effect of pupillary dilatation on the reliability of retinal nerve fibre layer (RNFL) and optic nerve head (ONH) assessments using Stratus OCT in a glaucoma clinic. Methods Observational study of 38 patients attending a glaucoma clinic. The “fast optic disc” and “fast RNFL thickness” programs on Stratus OCT were used to measure the RNFL thickness and ONH cup to disc ratio (CDR). Two scans were done before dilatation and two after dilatation with tropicamide 1% drops. The mean values and reproducibility before and after dilatation were compared, along with the quality of scans as indicated by the “signal strength” score. Results In nine patients (23.7%) no images were obtained undilated but after dilatation examination was possible in all patients. Inability to obtain an undilated scan was associated with smaller pupil size and increasing cataract. The scan quality, as judged by the signal strength score, was higher dilated than undilated for both RNFL thickness (p = 0.011) and ONH CDR (p = 0.007). Reproducibility was higher with dilated scans for RNFL thickness but not for ONH CDR. There were significant differences between the dilated and undilated examinations for three of the five RNFL thickness variables and two of the three ONH CDR categories. Conclusions Acquisition of high quality OCT images was not possible without pupillary dilatation in about 25% of the patients. The dilated scans were more reproducible and of higher quality than the undilated scans. The two methods of examination do not appear to be interchangeable, suggesting that in follow up examinations the pupil should be in the same condition as at baseline. Pupillary dilatation is recommended before glaucoma assessments using Stratus OCT. PMID:17556429
Engineering optical properties of gold-coated nanoporous anodic alumina for biosensing
NASA Astrophysics Data System (ADS)
Hernández-Eguía, Laura P.; Ferré-Borrull, Josep; Macias, Gerard; Pallarès, Josep; Marsal, Lluís F.
2014-08-01
The effect in the Fabry-Pérot optical interferences of nanoporous anodic alumina films coated with gold is studied as a function of the porosity and of the gold thickness by means of reflectance spectroscopy. Samples with porosities between 14 and 70% and gold thicknesses (10 and 20 nm) were considered. The sputtering of gold on the nanoporous anodic alumina (NAA) films results in an increase of the fringe intensity of the oscillations in the spectra resulting from Fabry-Pérot interferences in the porous layer, with a reduction in the maximum reflectance in the UV-visible region. For the thicker gold layer, sharp valleys appear in the near-infrared (IR) range that can be useful for accurate spectral shift measurements in optical biosensing. A theoretical model for the optical behavior has also been proposed. The model shows a very good agreement with the experimental measurements, what makes it useful for design and optimization of devices based on this material. This material capability is enormous for using it as an accurate and sensitive optical sensor, since gold owns a well-known surface chemistry with certain molecules, most of them biomolecules.
NASA Astrophysics Data System (ADS)
Mok, Tat M.; O'Leary, Stephen K.
2007-12-01
Using a model for the optical spectrum associated with hydrogenated amorphous silicon, explicitly taking into account fundamental experimental limitations encountered, we theoretically determine the dependence of the Tauc and Cody optical gaps associated with hydrogenated amorphous silicon on the thickness of the film. We compare these results with that obtained from experiment. We find that the curvature in the Tauc plot plays a significant role in influencing the determination of the Tauc optical gap associated with hydrogenated amorphous silicon, thus affirming an earlier hypothesis of Cody et al. We also find that the spectral dependence of the refractive index plays an important role in influencing the determination of the Cody optical gap. It is thus clear that care must be exercised when drawing conclusions from the dependence of the Tauc and Cody optical gaps associated with hydrogenated amorphous silicon on the thickness of the film.
Mrugacz, Malgorzata; Bakunowicz-Lazarczyk, Alina
2005-01-01
The aim of this study was to quantitatively assess and compare the thickness of the retinal nerve fiber layer (RNFL) in normal and glaucomatous eyes of children using the optical coherence tomograph. The mean RNFL thickness of normal eyes (n=26) was compared with that of glaucomatous eyes (n=26). The eyes were classified into diagnostic groups based on conventional ophthalmological physical examination, Humphrey 30-2 visual fields, stereoscopic optic nerve head photography, and optical coherence tomography. The mean RNFL was significantly thinner in glaucomatous eyes than in normal eyes: 95+/-26.3 and 132+/-24.5 microm, respectively. More specifically, the RNFL was significantly thinner in glaucomatous eyes than in normal eyes in the inferior quadrant: 87+/-23.5 and 122+/-24.2 microm, respectively. The mean and inferior quadrant RFNL thicknesses as measured by the optical coherence tomograph showed a statistically significant correlation with glaucoma. Optical coherence tomography may contribute to tracking of juvenile glaucoma progression. Copyright (c) 2005 S. Karger AG, Basel.
Wasyluk, Jaromir T.; Jankowska-Lech, Irmina; Terelak-Borys, Barbara; Grabska-Liberek, Iwona
2012-01-01
Summary Background We compared the parameters of retinal nerve fibre layer in patients with advanced glaucoma with the use of different OCT (Optical Coherence Tomograph) devices in relation to analogical measurements performed with GDx VCC (Nerve Fiber Analyzer with Variable Corneal Compensation) scanning laser polarimetry. Material/Methods Study subjects had advanced primary open-angle glaucoma, previously treated conservatively, diagnosed and confirmed by additional examinations (visual field, ophthalmoscopy of optic nerve, gonioscopy), A total of 10 patients were enrolled (9 women and 1 man), aged 18–70 years of age. Nineteen eyes with advanced glaucomatous neuropathy were examined. 1) Performing a threshold perimetry Octopus, G2 strategy and ophthalmoscopy of optic nerve to confirm the presence of advanced primary open-angle glaucoma; 2) performing a GDx VCC scanning laser polarimetry of retinal nerve fibre layer; 3) measuring the retinal nerve fibre layer thickness with 3 different optical coherence tomographs. Results The parameters of the retinal nerve fibre layer thickness are highly correlated between the GDx and OCT Stratus and 3D OCT-1000 devices in mean retinal nerve fibre layer thickness, retinal nerve fibre layer thickness in the upper sector, and correlation of NFI (GDx) with mean retinal nerve fibre layer thickness in OCT examinations. Absolute values of the retinal nerve fibre layer thickness (measured in μm) differ significantly between GDx and all OCT devices. Conclusions Examination with OCT devices is a sensitive diagnostic method of glaucoma, with good correlation with the results of GDx scanning laser polarimetry of the patients. PMID:22367131
Internally Consistent MODIS Estimate of Aerosol Clear-Sky Radiative Effect Over the Global Oceans
NASA Technical Reports Server (NTRS)
Remer, Lorraine A.; Kaufman, Yoram J.
2004-01-01
Modern satellite remote sensing, and in particular the MODerate resolution Imaging Spectroradiometer (MODIS), offers a measurement-based pathway to estimate global aerosol radiative effects and aerosol radiative forcing. Over the Oceans, MODIS retrieves the total aerosol optical thickness, but also reports which combination of the 9 different aerosol models was used to obtain the retrieval. Each of the 9 models is characterized by a size distribution and complex refractive index, which through Mie calculations correspond to a unique set of single scattering albedo, assymetry parameter and spectral extinction for each model. The combination of these sets of optical parameters weighted by the optical thickness attributed to each model in the retrieval produces the best fit to the observed radiances at the top of the atmosphere. Thus the MODIS Ocean aerosol retrieval provides us with (1) An observed distribution of global aerosol loading, and (2) An internally-consistent, observed, distribution of aerosol optical models that when used in combination will best represent the radiances at the top of the atmosphere. We use these two observed global distributions to initialize the column climate model by Chou and Suarez to calculate the aerosol radiative effect at top of the atmosphere and the radiative efficiency of the aerosols over the global oceans. We apply the analysis to 3 years of MODIS retrievals from the Terra satellite and produce global and regional, seasonally varying, estimates of aerosol radiative effect over the clear-sky oceans.
Efficient optical analysis of surface texture combinations for silicon solar cells
NASA Astrophysics Data System (ADS)
Tucher, Nico; Eisenlohr, Johannes; Kiefel, Peter; Gebrewold, Habtamu; Höhn, Oliver; Hauser, Hubert; Müller, Claas; Goldschmidt, Jan Christoph; Bläsi, Benedikt
2016-04-01
Surface textures can significantly improve anti-reflective and light trapping properties of silicon solar cells. Combining standard pyramidal front side textures with scattering or diffractive rear side textures has the potential to further increase the light path length inside the silicon and thereby increase the solar cell efficiency. In this work we introduce the OPTOS (Optical Properties of Textured Optical Sheets) simulation formalism and apply it to the modelling of silicon solar cells with different surface textures at front and rear side. OPTOS is a matrix-based method that allows for the computationally-efficient calculation of non-coherent light propagation within textured solar cells, featuring multiple textures that may operate in different optical regimes. After calculating redistribution matrices for each individual surface texture with the most appropriate technique, optical properties like angle dependent reflectance, transmittance or absorptance can be determined via matrix multiplications. Using OPTOS, we demonstrate for example that the integration of a diffractive grating at the rear side of solar cells with random pyramids at the front results in an absorptance gain that corresponds to a photocurrent density enhancement of 0.73 mA/cm2 for a 250 μm thick cell. The re-usability of matrices enables the investigation of different solar cell thicknesses within minutes. For thicknesses down to 50 μm the simulated gain increases up to 1.22 mA/cm2. The OPTOS formalism is furthermore not restricted with respect to the number of textured interfaces. By combining two or more textured sheets to effective interfaces, it is possible to optically model a complete photovoltaic module including EVA and potentially textured glass layers with one calculation tool.
JPRS Report, Science & Technology, China, High-Power Laser and Particle Beams
1992-07-29
Thickness Nonuniformities on Polarization, Optical Image Properties of Laser, Beacon Light [Xiong Shengming, Zhang Yundong] 39 Effects of Phasing...superconducting cavity and an optical cathode high-intensity injector was presented with the objective of increasing the brightness of an FEL or...design was then revised and made simpler and more practical. The new design stresses safety and the ultrahigh-vacuum requirement associated with the Nb
Nicolela, Marcelo T; Soares, Adael S; Carrillo, Monica M; Chauhan, Balwantray C; LeBlanc, Raymond P; Artes, Paul H
2006-05-01
To evaluate optic disc topography changes after intraocular pressure (IOP) modulation in patients with glaucoma. Twenty-three patients with glaucoma were studied. Three mean optic disc topography images were obtained with the Heidelberg Retina Tomograph II at baseline and weeks 1, 2, 4, and 8 (visits 1, 2, 3, 4, and 5, respectively). Topical medications were discontinued in the study eye after visit 1 and resumed after visit 4 but maintained in the contralateral control eye. Central corneal thickness was measured at the last visit. Topographic changes were determined by stereometric parameters (rim area and mean cup depth) and at discrete topographic locations using the Topographic Change Analysis program (from the Heidelberg Retina Tomograph II). In the study eyes, IOP increased significantly (5.4 mm Hg at visit 4; P<.001) after withdrawal of topical medications but returned to baseline levels after resuming medications; no statistically significant topographic changes, however, were observed. Moreover, no relationship between change in IOP and stereometric parameters was observed. Central corneal thickness was not associated with changes in optic disc topography induced by IOP modulation. In patients with glaucoma, significant but relatively moderate IOP increases and decreases on the order of 5 mm Hg did not appear to have an effect on optic disc topography.
Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics.
Kocaoglu, Omer P; Cense, Barry; Jonnal, Ravi S; Wang, Qiang; Lee, Sangyeol; Gao, Weihua; Miller, Donald T
2011-08-15
Early detection of axonal tissue loss in retinal nerve fiber layer (RNFL) is critical for effective treatment and management of diseases such as glaucoma. This study aims to evaluate the capability of ultrahigh-resolution optical coherence tomography with adaptive optics (UHR-AO-OCT) for imaging the RNFL axonal bundles (RNFBs) with 3×3×3μm(3) resolution in the eye. We used a research-grade UHR-AO-OCT system to acquire 3°×3° volumes in four normal subjects and one subject with an arcuate retinal nerve fiber layer defect (n=5; 29-62years). Cross section (B-scans) and en face (C-scan) slices extracted from the volumes were used to assess visibility and size distribution of individual RNFBs. In one subject, we reimaged the same RNFBs twice over a 7month interval and compared bundle width and thickness between the two imaging sessions. Lastly we compared images of an arcuate RNFL defect acquired with UHR-AO-OCT and commercial OCT (Heidelberg Spectralis). Individual RNFBs were distinguishable in all subjects at 3° retinal eccentricity in both cross-sectional and en face views (width: 30-50μm, thickness: 10-15μm). At 6° retinal eccentricity, RNFBs were distinguishable in three of the five subjects in both views (width: 30-45μm, thickness: 20-40μm). Width and thickness RNFB measurements taken 7months apart were strongly correlated (p<0.0005). Mean difference and standard deviation of the differences between the two measurement sessions were -0.1±4.0μm (width) and 0.3±1.5μm (thickness). UHR-AO-OCT outperformed commercial OCT in terms of clarity of the microscopic retina. To our knowledge, these are the first measurements of RNFB cross section reported in the living human eye. Copyright © 2011 Elsevier Ltd. All rights reserved.
Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics
Kocaoglu, Omer P.; Cense, Barry; Jonnal, Ravi S.; Wang, Qiang; Lee, Sangyeol; Gao, Weihua; Miller, Donald T.
2011-01-01
Early detection of axonal tissue loss in retinal nerve fiber layer (RNFL) is critical for effective treatment and management of diseases such as glaucoma. This study aims to evaluate the capability of ultrahigh-resolution optical coherence tomography with adaptive optics (UHR-AO-OCT) for imaging the RNFL axonal bundles (RNFBs) with 3×3×3 μm3 resolution in the eye. We used a research-grade UHR-AO-OCT system to acquire 3°×3° volumes in four normal subjects and one subject with an arcuate retinal nerve fiber layer defect (n=5; 29–62yrs). Cross section (B-scans) and en face (C-scan) slices extracted from the volumes were used to assess visibility and size distribution of individual RNFBs. In one subject, we reimaged the same RNFBs twice over a seven month interval and compared bundle width and thickness between the two imaging sessions. Lastly we compared images of an arcuate RNFL defect acquired with UHR-AO-OCT and commercial OCT (Heidelberg Spectralis). Individual RNFBs were distinguishable in all subjects at 3° retinal eccentricity in both cross-sectional and en face views (width: 30–50μm, thickness: 10–15μm). At 6° retinal eccentricity, RNFBs were distinguishable in three of the five subjects in both views (width: 30–45μm, thickness: 20–40μm). Width and thickness RNFB measurements taken seven months apart were strongly correlated (p<0.0005). Mean difference and standard deviation of the differences between the two measurement sessions were −0.1±4.0 μm (width) and 0.3±1.5 μm (thickness). UHR-AO-OCT outperformed commercial OCT in terms of clarity of the microscopic retina. To our knowledge, these are the first measurements of RNFB cross section reported in the living human eye. PMID:21722662
Analysis of reflectance spectra of UV-absorbing aerosol scenes measured by SCIAMACHY
NASA Astrophysics Data System (ADS)
de Graaf, M.; Stammes, P.; Aben, E. A. A.
2007-01-01
Reflectance spectra from 280-1750 nm of typical desert dust aerosol (DDA) and biomass burning aerosol (BBA) scenes over oceans are presented, measured by the space-borne spectrometer Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY). DDA and BBA are both UV-absorbing aerosols, but their effect on the top-of-atmosphere (TOA) reflectance is different due to differences in the way mineral aerosols and smoke reflect and absorb radiation. Mineral aerosols are typically large, inert particles, found in warm, dry continental air. Smoke particles, on the other hand, are usually small particles, although often clustered, chemically very active and highly variable in composition. Moreover, BBA are hygroscopic and over oceans BBA were invariably found in cloudy scenes. TOA reflectance spectra of typical DDA and BBA scenes were analyzed, using radiative transfer simulations, and compared. The DDA spectrum was successfully simulated using a layer with a bimodal size distribution of mineral aerosols in a clear sky. The spectrum of the BBA scene, however, was determined by the interaction between cloud droplets and smoke particles, as is shown by simulations with a model of separate aerosol and cloud layers and models with internally and externally mixed aerosol/cloud layers. The occurrence of clouds in smoke scenes when sufficient water vapor is present usually prevents the detection of optical properties of these aerosol plumes using space-borne sensors. However, the Absorbing Aerosol Index (AAI), a UV color index, is not sensitive to scattering aerosols and clouds and can be used to detect these otherwise obscured aerosol plumes over clouds. The amount of absorption of radiation can be expressed using the absorption optical thickness. The absorption optical thickness in the DDA case was 0.42 (340 nm) and 0.14 (550 nm) for an aerosol layer of optical thickness 1.74 (550 nm). In the BBA case the absorption optical thickness was 0.18 (340 nm) and 0.10 (550 nm) for an aerosol/cloud layer of optical thickness 20.0 (550 nm). However, this reduced the cloud albedo by about 0.2 (340 nm) and 0.15 (550 nm). This method can be an important tool to estimate the global impact of absorption of shortwave radiation by smoke and industrial aerosols inside clouds.
Optical interconnects based on VCSELs and low-loss silicon photonics
NASA Astrophysics Data System (ADS)
Aalto, Timo; Harjanne, Mikko; Karppinen, Mikko; Cherchi, Matteo; Sitomaniemi, Aila; Ollila, Jyrki; Malacarne, Antonio; Neumeyr, Christian
2018-02-01
Silicon photonics with micron-scale Si waveguides offers most of the benefits of submicron SOI technology while avoiding most of its limitations. In particular, thick silicon-on-insulator (SOI) waveguides offer 0.1 dB/cm propagation loss, polarization independency, broadband single-mode (SM) operation from 1.2 to >4 µm wavelength and ability to transmit high optical powers (>1 W). Here we describe the feasibility of Thick-SOI technology for advanced optical interconnects. With 12 μm SOI waveguides we demonstrate efficient coupling between standard single-mode fibers, vertical-cavity surface-emitting lasers (VCSELs) and photodetectors (PDs), as well as wavelength multiplexing in small footprint. Discrete VCSELs and PDs already support 28 Gb/s on-off keying (OOK), which shows a path towards 50-100 Gb/s bandwidth per wavelength by using more advanced modulation formats like PAM4. Directly modulated VCSELs enable very power-efficient optical interconnects for up to 40 km distance. Furthermore, with 3 μm SOI waveguides we demonstrate extremely dense and low-loss integration of numerous optical functions, such as multiplexers, filters, switches and delay lines. Also polarization independent and athermal operation is demonstrated. The latter is achieved by using short polymer waveguides to compensate for the thermo-optic effect in silicon. New concepts for isolator integration and polarization rotation are also explained.
NASA Astrophysics Data System (ADS)
Swamy, R.; Vippa, P.; Rajagopalan, H.; Titus, J.; Thakur, M.; Sen, A.
2005-03-01
We report quadratic electro-optic effect and electroabsorption measurements in a novel nano-optical material based on the nonconjugated conductive polymer, iodine-doped poly(ethylenepyrrolediyl) derivative. Such effect has been recently reported in doped polyisoprene [1]. The measurement was made at 633 nm using field-induced birefringence. A modulation of 0.1% was observed for a field of 0.66 V/micron (film thickness 0.3 micron). The change in refractive index, δn, is 3.35x10-4 and the Kerr constant is 1.2x10-9 m/V^2 which is about 125 times that of nitrobenzene. Modulation due to electroabsorption was 0.05%. The exceptionally large electro-optic effect is most likely due to the specific structure and quantum confinement within a nanometer volume. In contrast, nonlinearity in a conjugated polymer is known to decrease upon iodine doping. [1] Thakur, Swamy and Titus, Macromolecules, Vol.37, 2677, (2004).
Noncontact optical measurement of lens capsule thickness ex vivo
NASA Astrophysics Data System (ADS)
Ziebarth, Noel M.; Manns, Fabrice; Uhlhorn, Stephen; Parel, Jean-Marie
2004-07-01
Purpose: To design a non-contact optical system to measure lens capsule thickness in cadaver eyes. Methods: The optical system uses a 670nm laser beam delivered to a single-mode fiber coupler. The output of the fiber coupler is focused onto the tissue using an aspheric lens (NA=0.68) mounted on a motorized translation stage. Light reflected from the sample is collected by the fiber coupler and sent to a silicon photodiode connected to a power meter. Peaks in the power signal are detected when the focal point of the aspheric lens coincides with the capsule boundaries. The capsule thickness is proportional to the distance between successive peaks. Anterior and posterior lens capsule thickness measurements were performed on 13 human, 10 monkey, and 34 New Zealand white rabbit lenses. The cadaver eyes were prepared for optical measurements by bonding a PMMA ring on the sclera. The posterior pole was sectioned, excess vitreous was removed, and the eye was placed on a Teflon slide. The cornea and iris were then sectioned. After the experiments, the lenses were excised, placed in 10% buffered formalin, and prepared for histology. Results: Central anterior lens capsule thickness was 9.4+/-2.9μm (human), 11.2+/-6.6μm (monkey), and 10.3+/-3.6μm (rabbit) optically and 14.9+/-1.6μm (human), 17.7+/-4.9μm (monkey), and 12.6+/-2.3μm (rabbit) histologically. The values for the central posterior capsule were 9.4+/-2.9μm (human), 6.6+/-2.5μm (monkey), and 7.9+/-2.3μm (rabbit) optically and 4.6+/-1.4μm (human), 4.5+/-1.2μm (monkey), and 5.7+/-1.7μm (rabbit) histologically. Conclusions: This study demonstrates that a non-contact optical system can successfully measure lens capsule thickness in cadaver eyes.
Optical zoom lens module using MEMS deformable mirrors for portable device
NASA Astrophysics Data System (ADS)
Lu, Jia-Shiun; Su, Guo-Dung J.
2012-10-01
The thickness of the smart phones in today's market is usually below than 10 mm, and with the shrinking of the phone volume, the difficulty of its production of the camera lens has been increasing. Therefore, how to give the imaging device more functionality in the smaller space is one of the interesting research topics for today's mobile phone companies. In this paper, we proposed a thin optical zoom system which is combined of micro-electromechanical components and reflective optical architecture. By the adopting of the MEMS deformable mirrors, we can change their radius of curvature to reach the optical zoom in and zoom out. And because we used the all-reflective architecture, so this system has eliminated the considerable chromatic aberrations in the absence of lenses. In our system, the thickness of the zoom system is about 11 mm. The smallest EFL (effective focal length) is 4.61 mm at a diagonal field angle of 52° and f/# of 5.24. The longest EFL of the module is 9.22 mm at a diagonal field angle of 27.4 with f/# of 5.03.°
Peripapillary Retinoschisis in Glaucoma Patients
Bayraktar, Serife; Cebeci, Zafer; Kabaalioglu, Melis; Ciloglu, Serife; Kir, Nur; Izgi, Belgin
2016-01-01
Purpose. To investigate peripapillary retinoschisis and its effect on retinal nerve fiber layer (RNFL) thickness measurements by using spectral-domain optical coherence tomography (SD-OCT) in glaucomatous eyes. Methods. Circumpapillary RNFL (cpRNFL) B-scan images of 940 glaucoma patients (Group 1) and 801 glaucoma-suspect patients (Group 2) obtained by SD-OCT were reviewed. The structural and clinical characteristics of the retinoschisis were investigated. The RNFL thickness measurements taken at the time of retinoschisis diagnosis and at the follow-up visits were also compared. Results. Twenty-nine retinoschisis areas were found in 26 of the 940 glaucoma patients (3.1%) in Group 1 and seven areas were found in 801 patients (0.87%) in Group 2. In glaucomatous eyes, the retinoschisis was attached to the optic disc and overlapped with the RNFL defect. At the time of retinoschisis, the RNFL thickness was statistically greater in the inferior temporal quadrant when compared with the follow-up scans (p < 0.001). No macular involvement or retinal detachment was observed. Conclusion. The present study investigated 33 peripapillary retinoschisis patients. Increase in RNFL thickness measurements was observed at the time of retinoschisis. It is important to examine the cpRNFL B-scan images of glaucoma patients so that the RNFL thickness is not overestimated. PMID:27069674
NASA Astrophysics Data System (ADS)
Melnikova, I.; Mukai, S.; Vasilyev, A.
Data of remote measurements of reflected radiance with the POLDER instrument on board of ADEOS satellite are used for retrieval of the optical thickness, single scattering albedo and phase function parameter of cloudy and clear atmosphere. The method of perceptron neural network that from input values of multiangle radiance and Solar incident angle allows to obtain surface albedo, the optical thickness, single scattering albedo and phase function parameter in case of clear sky. Two last parameters are determined as optical average for atmospheric column. The calculation of solar radiance with using the MODTRAN-3 code with taking into account multiple scattering is accomplished for neural network learning. All mentioned parameters were randomly varied on the base of statistical models of possible measured parameters variation. Results of processing one frame of remote observation that consists from 150,000 pixels are presented. The methodology elaborated allows operative determining optical characteristics as cloudy as clear atmosphere. Further interpretation of these results gives the possibility to extract the information about total contents of atmospheric aerosols and absorbing gases in the atmosphere and create models of the real cloudiness An analytical method of interpretation that based on asymptotic formulas of multiple scattering theory is applied to remote observations of reflected radiance in case of cloudy pixel. Details of the methodology and error analysis were published and discussed earlier. Here we present results of data processing of pixel size 6x6 km In many studies the optical thickness is evaluated earlier in the assumption of the conservative scattering. But in case of true absorption in clouds the large errors in parameter obtained are possible. The simultaneous retrieval of two parameters at every wavelength independently is the advantage comparing with earlier studies. The analytical methodology is based on the transfer theory asymptotic formula inversion for optically thick stratus clouds. The model of horizontally infinite layer is considered. The slight horizontal heterogeneity is approximately taken into account. Formulas containing only the measured values of two-direction radiance and functions of solar and view angles were derived earlier. The 6 azimuth harmonics of reflection function are taken into account. The simple approximation of the cloud top boarder heterogeneity is used. The clouds, projecting upper the cloud top plane causes the increase of diffuse radiation in the incident flux. It is essential for calculation of radiative characteristics, which depends on lighting conditions. Escape and reflection functions describe this dependence for reflected radiance and local albedo of semi-infinite medium - for irradiance. Thus the functions depending on solar incident angle is to replace by their modifications. Firstly optical thickness of every pixel is obtained with simple formula assuming conservative scattering for all available view directions. Deviations between obtained values may be taken as a measure of the cloud top deviation from the plane. The special parameter is obtained, which takes into account the shadowing effect. Then single scattering albedo and optical thickness (with the true absorption assuming) are obtained for pairs of view directions with equal optical thickness. After that the averaging of values obtained and relative error evaluation is accomplished for all viewing directions of every pixel. The procedure is repeated for all wavelengths and pixels independently.
Sezgin Akcay, Betul Ilkay; Gunay, Betul Onal; Kardes, Esra; Unlu, Cihan; Ergin, Ahmet
2017-01-01
To assess the effect of low, moderate, and high myopia on the thickness of the retinal nerve fiber layer (RNFL) and Ganglion cell complex (GCC) measured by Spectral Domain Optical Coherence Tomography (SD-OCT) in non-glaucomatous subjects. The subjects were divided into three groups: low (n = 81, 35.6%), moderate (n = 79, 34.8%), and highly myopic eyes (n = 67, 29.5%). The RNFL thickness profile, including the average, superior, nasal, inferior, and temporal quadrant and each of the eight directional thicknesses, was measured. GCC parameters, including the average, superior, and inferior values, the focal loss volume (FLV), and the global loss volume (GLV), were measured. The correlation between the OCT measurements and the axial length was evaluated. The average, superior, inferior, and nasal RNFL thicknesses of low and moderate myopic eyes were found to be significantly higher than those of highly myopic eyes. The temporal RNFL thicknesses were not different among the three groups. The average, superior, and inferior ganglion cell complex values of low and moderate myopic eyes were significantly higher than those of highly myopic eyes. The FLV and GLV of low and moderate myopic eyes were significantly higher than those of highly myopic eyes (p = 0.001 for all). In the moderate and high myopia groups, the average RNFL thickness and GCC thickness were both negatively correlated with the axial length. Highly myopic subjects tend to have thinner RNFL and GCC thicknesses than subjects with low and moderate myopia.
NASA Astrophysics Data System (ADS)
Li, Zhi-Yue; Yang, Hao-Zhi; Chen, Sheng-Chi; Lu, Ying-Bo; Xin, Yan-Qing; Yang, Tian-Lin; Sun, Hui
2018-05-01
Nitrogen-doped indium tin zinc oxide (ITZO:N) thin film transistors (TFTs) were deposited on SiO2 (200 nm)/p-Si〈1 0 0〉 substrates by RF magnetron sputtering at room temperature. The structural, chemical compositions, surface morphology, optical and electrical properties as a function of the active layer thickness were investigated. As the active layer thickness increases, Zn content decreases and In content increases gradually. Meanwhile, Sn content is almost unchanged. When the thickness of the active layer is more than 45 nm, the ITZO:N films become crystallized and present a crystal orientation along InN(0 0 2) plan. No matter what the thickness is, ITZO:N films always display a high transmittance above 80% in the visible region. Their optical band gaps fluctuate between 3.4 eV and 3.62 eV. Due to the dominance of low interface trap density and high carrier concentration, ITZO:N TFT shows enhanced electrical properties as the active layer thickness is 35 nm. Its field-effect mobility, on/off radio and sub-threshold swing are 17.53 cm2 V‑1 · s‑1, 106 and 0.36 V/dec, respectively. These results indicate that the suitable thickness of the active layer can enhance the quality of ITZO:N films and decrease the defects density of ITZO:N TFT. Thus, the properties of ITZO:N TFT can be optimized by adjusting the thickness of the active layer.
Optical Properties of Al-Doped ZnO Films in the Infrared Region and Their Absorption Applications
NASA Astrophysics Data System (ADS)
Zheng, Hua; Zhang, Rong-Jun; Li, Da-Hai; Chen, Xin; Wang, Song-You; Zheng, Yu-Xiang; Li, Meng-Jiao; Hu, Zhi-Gao; Dai, Ning; Chen, Liang-Yao
2018-05-01
The optical properties of aluminum-doped zinc oxide (AZO) thin films were calculated rapidly and accurately by point-by-point analysis from spectroscopic ellipsometry (SE) data. It was demonstrated that there were two different physical mechanisms, i.e., the interfacial effect and crystallinity, for the thickness-dependent permittivity in the visible and infrared regions. In addition, there was a blue shift for the effective plasma frequency of AZO when the thickness increased, and the effective plasma frequency did not exist for AZO ultrathin films (< 25 nm) in the infrared region, which demonstrated that AZO ultrathin films could not be used as a negative index metamaterial. Based on detailed permittivity research, we designed a near-perfect absorber at 2-5 μm by etching AZO-ZnO alternative layers. The alternative layers matched the phase of reflected light, and the void cylinder arrays extended the high absorption range. Moreover, the AZO absorber demonstrated feasibility and applicability on different substrates.
Variable Refractive Index Effects on Radiation in Semitransparent Scattering Multilayered Regions
NASA Technical Reports Server (NTRS)
Siegel, R.; Spuckler, C. M.
1993-01-01
A simple set of equations is derived for predicting the temperature distribution and radiative energy flow in a semitransparent layer consisting of an arbitrary number of laminated sublayers that absorb, emit, and scatter radiation. Each sublayer can have a different refractive index and optical thickness. The plane composite region is heated on each exterior side by a different amount of incident radiation. The results are for the limiting case where heat conduction within the layers is very small relative to radiative transfer, and is neglected. The interfaces are assumed diffuse, and all interface reflections are included in the analysis. The thermal behavior is readily calculated from the analytical expressions that are obtained. By using many sublayers, expressions provide the temperature distribution and heat flow for a diffusing medium with a continually varying refractive index, including internal reflection effects caused by refractive index gradients. Temperature and heat flux results are given to show the effect of variations in refractive index and optical thickness through the multilayer laminate.
Variable Refractive Index Effects on Radiation in Semitransparent Scattering Multilayered Regions
NASA Technical Reports Server (NTRS)
Siegel, R.; Spuckler, C. M.
1993-01-01
A simple set of equations is derived for predicting the temperature distribution and radiative energy flow in a semitransparent layer consisting of an arbitrary number of laminated sublayers that absorb, emit, and scatter radiation. Each sublayer can have a different refractive index and optical thickness. The plane composite region is heated on each exterior side by a different amount of incident radiation. The results are for the limiting case where heat conduction within the layers is very small relative to radiative transfer, and is neglected. The interfaces are assumed diffuse, and all interface reflections are included in the analysis. The thermal behavior is readily calculated from the analytical expressions that are obtained. By using many sublayers, the analytical expressions provide the temperature distribution and heat flow for a diffusing medium with a continuously varying refractive index, including internal reflection effects caused by refractive index gradients. Temperature and heat flux results are given to show the effect of variations in refractive index and optical thickness through the multilayer laminate.
Magnetic Phase Transition in Ion-Irradiated Ultrathin CoN Films via Magneto-Optic Faraday Effect.
Su, Chiung-Wu; Chang, Yen-Chu; Chang, Sheng-Chi
2013-11-15
The magnetic properties of 1 nm thick in-plane anisotropic Co ultrathin film on ZnO(0001) were investigated through successive 500 eV nitrogen-ion sputtering. Magneto-optical Faraday effects were used to observe the evolution of the ion-irradiated sample in longitudinal and perpendicular magnetic fields. The ferromagnetic phase of the initial in-plane anisotropic fcc β-Co phase transformation to β-Co(N) phase was terminated at paramagnetic CoN x phase. In-plane anisotropy with weak out-of-plane anisotropy of the Co/ZnO sample was initially observed in the as-grown condition. In the sputtering process, the N⁺ ions induced simultaneous sputtering and doping. An abrupt spin reorientation behavior from in-plane to out-of-plane was found under prolonged sputtering condition. The existence of perpendicular anisotropy measured from the out-of-plane Faraday effect may be attributed to the co-existence of residual β-Co and Co₄N exchange bonding force by the gradual depletion of Co-N thickness.
Satellite measurement of aerosol mass over land
NASA Technical Reports Server (NTRS)
Fraser, R. S.; Kaufman, Y. J.; Mahoney, R. L.
1984-01-01
The estimation of aerosol optical thickness and mass from satellite observations over land is demonstrated using data from the GOES Visible/IR Spin-Scan Radiometer for the eastern U.S. The post-launch calibration technique is described; the algorithm used to derive optical thickness from the radiance of scattered sunlight (by means of a radiative-transfer model in which the optical characteristics of the aerosol are assumed) is presented; and data on aerosol S for July 31, 1980 are analyzed. The results are presented in a series of graphs and maps and compared with ground-based data. The errors in the optical thickness and columnar mass are estimated as 15 and 40 percent, respectively, and the need for independent-data-set validation of satellite-based mass, transport, and divergence values is indicated.
Optical characterization of Mg-doped ZnO thin films deposited by RF magnetron sputtering technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Satyendra Kumar; Tripathi, Shweta; Hazra, Purnima
2016-05-06
This paper reports the in-depth analysis on optical characteristics of magnesium (Mg) doped zinc oxide (ZnO) thin films grown on p-silicon (Si) substrates by RF magnetron sputtering technique. The variable angle ellipsometer is used for the optical characterization of as-deposited thin films. The optical reflectance, transmission spectra and thickness of as-deposited thin films are measured in the spectral range of 300-800 nm with the help of the spectroscopic ellipsometer. The effect of Mg-doping on optical parameters such as optical bandgap, absorption coefficient, absorbance, extinction coefficient, refractive Index and dielectric constant for as-deposited thin films are extracted to show its application inmore » optoelectronic and photonic devices.« less
Gender variations in the optical properties of skin in murine animal models
NASA Astrophysics Data System (ADS)
Calabro, Katherine; Curtis, Allison; Galarneau, Jean-Rene; Krucker, Thomas; Bigio, Irving J.
2011-01-01
Gender is identified as a significant source of variation in optical reflectance measurements on mouse skin, with variation in the thickness of the dermal layer being the key explanatory variable. For three different mouse strains, the thickness values of the epidermis, dermis, and hypodermis layers, as measured by histology, are correlated to optical reflectance measurements collected with elastic scattering spectroscopy (ESS). In all three strains, males are found to have up to a 50% increase in dermal thickness, resulting in increases of up to 80% in reflectance values and higher observed scattering coefficients, as compared to females. Collagen in the dermis is identified as the primary source of these differences due to its strong scattering nature; increased dermal thickness leads to a greater photon path length through the collagen, as compared to other layers, resulting in a larger scattering signal. A related increase in the observed absorption coefficient in females is also observed. These results emphasize the importance of considering gender during experimental design in studies that involve photon interaction with mouse skin. The results also elucidate the significant impact that relatively small thickness changes can have on observed optical measurements in layered tissue.
The Effect of Core and Veneering Design on the Optical Properties of Polyether Ether Ketone.
Zeighami, S; Mirmohammadrezaei, S; Safi, M; Falahchai, S M
2017-12-01
This study aimed to evaluate the effect of core shade and core and veneering thickness on color parameters and translucency of polyether ether ketone (PEEK). Sixty PEEK discs (0.5 and 1 mm in thickness) with white and dentine shades were veneered with A2 shade indirect composite resin with 0.5, 1 and 1.5 mm thickness (n=5). Cores without the veneering material served as controls for translucency evaluation. Color parameters were measured by a spectroradiometer. Color difference (ΔE₀₀) and translucency parameters (TP) were computed. Data were analyzed using one-way ANOVA and Tukey's test (for veneering thickness) and independent t-test (for core shade and thickness) via SPSS 20.0 (p⟨0.05). Regarding the veneering thickness, white cores of 0.5 mm thickness showed significant differences in all color parameters. In white cores of 1 mm thickness and dentine cores of 0.5 and 1 mm thickness, there were statistically significant differences only in L∗, a∗ and h∗. The mean TP was significantly higher in all white cores of 1 mm thickness than dentine cores of 1 mm. Considering ΔE₀₀=3.7 as clinically unacceptable, only three groups had higher mean ΔE₀₀ values. Core shade, core thickness, and the veneering thickness affected the color and translucency of PEEK restorations. Copyright© 2017 Dennis Barber Ltd.
Shin, Hye-Young; Park, Hae-Young Lopilly; Jung, Younhea; Choi, Jin-A; Park, Chan Kee
2014-10-01
To compare the initial visual field (VF) defect pattern and the spectral-domain optical coherence tomography (OCT) parameters and investigate the effects of distinct types of optic disc damage on the diagnostic performance of these OCT parameters in early glaucoma. Retrospective, observational study. A total of 138 control eyes and 160 eyes with early glaucoma were enrolled. The glaucomatous eyes were subdivided into 4 groups according to the type of optic disc damage: focal ischemic (FI) group, myopic (MY) group, senile sclerotic (SS) group, and generalized enlargement (GE) group. The values of total deviation (TD) maps were analyzed, and superior-inferior (S-I) differences of TD were calculated. The optic nerve head (ONH) parameters, peripapillary retinal nerve fiber layer (pRNFL), and ganglion cell-inner plexiform layer (GCIPL) thicknesses were measured. Comparison of diagnostic ability using area under the receiver operating characteristic curves (AUCs). The S-I and central S-I difference of the FI group were larger than those of the GE group. The rim area of the SS group was larger than those of the 3 other groups, and the vertical cup-to-disc ratio (CDR) of the GE group was larger than that of the MY group. In addition, the minimum and inferotemporal GCIPL thicknesses of the FI group were smaller than those of the GE group. The AUC of the rim area (0.89) was lower than that of the minimum GCIPL (0.99) in the SS group, and the AUC of the vertical CDR (0.90) was lower than that of the minimum GCIPL (0.99) in the MY group. Furthermore, the AUCs of the minimum GCIPL thicknesses of the FI and MY group were greater than those of the average pRNFL thickness for detecting glaucoma, as opposed to the SS and GE. The OCT parameters differed among the 4 groups on the basis of the distinct optic disc appearance and initial glaucomatous damage pattern. Clinicians should be aware that the diagnostic capability of OCT parameters could differ according to the type of optic disc damage in early glaucoma. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hammad, Ahmed H.; Abdel-wahab, M. Sh.; Vattamkandathil, Sajith; Ansari, Akhalakur Rahman
2018-07-01
Hexagonal nanocrystallites of ZnO in the form of thin films were prepared by radio frequency sputtering technique. X-ray diffraction analysis reveals two prominent diffraction planes (002) and (103) at diffraction angles around 34.3 and 62.8°, respectively. The crystallite size increases through (103) plane from 56.1 to 64.8 Å as film thickness changed from 31 nm up to 280 nm while crystallites growth through (002) increased from 124 to 136 Å as film thickness varies from 31 to 107 nm and dropped to 115.8 Å at thickness 280 nm. The particle shape changes from spherical to longitudinal form. The particle size is 25 nm for films of thickness below 107 nm and increases at higher thicknesses (134 and 280 nm) from 30 to 40 nm, respectively. Optical band gap is deduced to be direct with values varied from 3.22 to 3.28 eV and the refractive index are evaluated based on the optical band values according to Moss, Ravindra-Srivastava, and Dimitrov-Sakka models. All refractive index models gave values around 2.3.
Hydrogen Gas Sensing Characteristics of Nanostructured NiO Thin Films Synthesized by SILAR Method
NASA Astrophysics Data System (ADS)
Karaduman, Irmak; Çorlu, Tugba; Yıldırım, M. Ali; Ateş, Aytunç; Acar, Selim
2017-07-01
Nanostructured NiO thin films have been synthesized by a facile, low-cost successive ionic layer adsorption and reaction (SILAR) method, and the effects of the film thickness on their hydrogen gas sensing properties investigated. The samples were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD) analysis, and energy-dispersive x-ray analysis. The XRD results revealed that the crystallinity improved with increasing thickness, exhibiting polycrystalline structure. SEM studies showed that all the films covered the glass substrate well. According to optical absorption measurements, the optical bandgap decreased with increasing film thickness. The gas sensing properties of the nanostructured NiO thin films were studied as a function of operating temperature and gas concentration. The samples showed good sensing performance of H2 gas with high response. The maximum response was 75% at operating temperature of 200°C for hydrogen gas concentration of 40 ppm. These results demonstrate that nanostructured NiO thin films synthesized by the SILAR method have potential for application in hydrogen detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Guang-hao; Bai, Yu-hang; Cui, Guo-xin
2016-07-15
Ferroelectric domain inversion and its effect on the stability of lithium niobate thin films on insulator (LNOI) are experimentally characterized. Two sets of specimens with different thicknesses varying from submicron to microns are selected. For micron thick samples (∼28 μm), domain structures are achieved by pulsed electric field poling with electrodes patterned via photolithography. No domain structure deterioration has been observed for a month as inspected using polarizing optical microscopy and etching. As for submicron (540 nm) films, large-area domain inversion is realized by scanning a biased conductive tip in a piezoelectric force microscope. A graphic processing method is takenmore » to evaluate the domain retention. A domain life time of 25.0 h is obtained and possible mechanisms are discussed. Our study gives a direct reference for domain structure-related applications of LNOI, including guiding wave nonlinear frequency conversion, nonlinear wavefront tailoring, electro-optic modulation, and piezoelectric devices.« less
Mugdha, Kumari; Kaur, Apjit; Sinha, Neha; Saxena, Sandeep
2016-01-01
AIM To evaluate retinal nerve fiber layer (RNFL) thickness profile in patients of thyroid ophthalmopathy with no clinical signs of optic nerve dysfunction. METHODS A prospective, case-control, observational study conducted at a tertiary care centre. Inclusion criteria consisted of patients with eyelid retraction in association with any one of: biochemical thyroid dysfunction, exophthalmos, or extraocular muscle involvement; or thyroid dysfunction in association with either exophthalmos or extra-ocular muscle involvement; or a clinical activity score (CAS)>3/7. Two measurements of RNFL thickness were done for each eye, by Cirrus HD-optical coherence tomography 6mo apart. RESULTS Mean age of the sample was 38.75y (range 13-70y) with 18 males and 22 females. Average RNFL thickness at first visit was 92.06±12.44 µm, significantly lower than control group (101.28±6.64 µm) (P=0.0001). Thickness of inferior quadrant decreased from 118.2±21.27 µm to 115.0±22.27 µm after 6mo (P=0.02). There was no correlation between the change in CAS and RNFL thickness. CONCLUSION Decreased RNFL thickness is an important feature of thyroid orbitopathy, which is an inherent outcome of compressive optic neuropathy of any etiology. Subclinical RNFL damage continues in the absence of clinical activity of the disease. RNFL evaluation is essential in Grave's disease and active intervention may be warranted in the presence of significant damage. PMID:27990368
THOR: Cloud Thickness from Off beam Lidar Returns
NASA Technical Reports Server (NTRS)
Cahalan, Robert F.; McGill, Matthew; Kolasinski, John; Varnai, Tamas; Yetzer, Ken
2004-01-01
Conventional wisdom is that lidar pulses do not significantly penetrate clouds having optical thickness exceeding about tau = 2, and that no returns are detectable from more than a shallow skin depth. Yet optically thicker clouds of tau much greater than 2 reflect a larger fraction of visible photons, and account for much of Earth s global average albedo. As cloud layer thickness grows, an increasing fraction of reflected photons are scattered multiple times within the cloud, and return from a diffuse concentric halo that grows around the incident pulse, increasing in horizontal area with layer physical thickness. The reflected halo is largely undetected by narrow field-of-view (FoV) receivers commonly used in lidar applications. THOR - Thickness from Off-beam Returns - is an airborne wide-angle detection system with multiple FoVs, capable of observing the diffuse halo, detecting wide-angle signal from which physical thickness of optically thick clouds can be retrieved. In this paper we describe the THOR system, demonstrate that the halo signal is stronger for thicker clouds, and validate physical thickness retrievals for clouds having z > 20, from NASA P-3B flights over the Department of Energy/Atmospheric Radiation Measurement/Southern Great Plains site, using the lidar, radar and other ancillary ground-based data.
Automated pharmaceutical tablet coating layer evaluation of optical coherence tomography images
NASA Astrophysics Data System (ADS)
Markl, Daniel; Hannesschläger, Günther; Sacher, Stephan; Leitner, Michael; Khinast, Johannes G.; Buchsbaum, Andreas
2015-03-01
Film coating of pharmaceutical tablets is often applied to influence the drug release behaviour. The coating characteristics such as thickness and uniformity are critical quality parameters, which need to be precisely controlled. Optical coherence tomography (OCT) shows not only high potential for off-line quality control of film-coated tablets but also for in-line monitoring of coating processes. However, an in-line quality control tool must be able to determine coating thickness measurements automatically and in real-time. This study proposes an automatic thickness evaluation algorithm for bi-convex tables, which provides about 1000 thickness measurements within 1 s. Beside the segmentation of the coating layer, optical distortions due to refraction of the beam by the air/coating interface are corrected. Moreover, during in-line monitoring the tablets might be in oblique orientation, which needs to be considered in the algorithm design. Experiments were conducted where the tablet was rotated to specified angles. Manual and automatic thickness measurements were compared for varying coating thicknesses, angles of rotations, and beam displacements (i.e. lateral displacement between successive depth scans). The automatic thickness determination algorithm provides highly accurate results up to an angle of rotation of 30°. The computation time was reduced to 0.53 s for 700 thickness measurements by introducing feasibility constraints in the algorithm.
Feghhi, Mostafa; Farrahi, Fereydoun; Abbaspour, Mohammadreza; Takhtaeian, Akbar
2014-01-01
Purpose: To evaluate the effect of oral calcium dobesilate (Doxium) on macular thickness in clinically significant macular edema (CSME). Methods: Overall, 71 eyes of 40 patients with non-proliferative diabetic retinopathy and clinically significant macular edema were included. All patients were received laser treatment for macular edema. Coherence optical tomography was used to determine the retinal thickness. Patients were randomized into two groups: group A received three Doxium capsule daily and group B received three placebo capsule daily for six months. Results: The mean macular thickness before and after treatment in the group A was 340 and 257 micrometers respectively (24.5% reduced), and in the group B was 336 micrometers and 263 micrometers respectively (21.5% reduced). Macular thickness significantly decreased after treatment in both groups and the reduction in group A is higher but the difference of reduction between the two groups was not statistically significant (P>0.05). Conclusion: In respect to the effect of adding oral Doxium to Laser Photocoagulation on the macular thickness in patients with diabetic macular edema, this study showed no statistically significant difference between Doxium and placebo. PMID:25436194
Photorefractive keratectomy in the cat eye: biological and optical outcomes.
Nagy, Lana J; MacRae, Scott; Yoon, Geunyoung; Wyble, Matthew; Wang, Jianhua; Cox, Ian; Huxlin, Krystel R
2007-06-01
To quantify optical and biomechanical properties of the feline cornea before and after photorefractive keratectomy (PRK) and assess the relative contribution of different biological factors to refractive outcome. Department of Ophthalmology, University of Rochester, Rochester, New York, USA. Adult cats had 6.0 diopter (D) myopic or 4.0 D hyperopic PRK over 6.0 or 8.0 mm optical zones (OZ). Preoperative and postoperative wavefront aberrations were measured, as were intraocular pressure (IOP), corneal hysteresis, the corneal resistance factor, axial length, corneal thickness, and radii of curvature. Finally, postmortem immunohistochemistry for vimentin and alpha-smooth muscle actin was performed. Photorefractive keratectomy changed ocular defocus, increased higher-order aberrations, and induced myofibroblast differentiation in cats. However, the intended defocus corrections were only achieved with 8.0 mm OZs. Long-term flattening of the epithelial and stromal surfaces was noted after myopic, but not after hyperopic, PRK. The IOP was unaltered by PRK; however, corneal hysteresis and the corneal resistance factor decreased. Over the ensuing 6 months, ocular aberrations and the IOP remained stable, while central corneal thickness, corneal hysteresis, and the corneal resistance factor increased toward normal levels. Cat corneas exhibited optical, histological, and biomechanical reactions to PRK that resembled those previously described in humans, especially when the OZ size was normalized to the total corneal area. However, cats exhibited significant stromal regeneration, causing a return to preoperative corneal thickness, corneal hysteresis and the corneal resistance factor without significant regression of optical changes induced by the surgery. Thus, the principal effects of laser refractive surgery on ocular wavefront aberrations can be achieved despite clear interspecies differences in corneal biology.
Development of a non-invasive LED based device for adipose tissue thickness measurements in vivo
NASA Astrophysics Data System (ADS)
Volceka, K.; Jakovels, D.; Arina, Z.; Zaharans, J.; Kviesis, E.; Strode, A.; Svampe, E.; Ozolina-Moll, L.; Butnere, M. M.
2012-06-01
There are a number of techniques for body composition assessment in clinics and in field-surveys, but in all cases the applied methods have advantages and disadvantages. High precision imaging methods are available, though expensive and non-portable, however, the methods devised for the mass population, often suffer from the lack of precision. Therefore, the development of a safe, mobile, non-invasive, optical method that would be easy to perform, precise and low-cost, but also would offer an accurate assessment of subcutaneous adipose tissue (SAT) both in lean and in obese persons is required. Thereof, the diffuse optical spectroscopy is advantageous over the aforementioned techniques. A prototype device using an optical method for measurement of the SAT thickness in vivo has been developed. The probe contained multiple LEDs (660nm) distributed at various distances from the photo-detector which allow different light penetration depths into the subcutaneous tissue. The differences of the reflected light intensities were used to create a non-linear model, and the computed values were compared with the corresponding thicknesses of SAT, assessed by B-mode ultrasonography. The results show that with the optical system used in this study, accurate results of different SAT thicknesses can be obtained, and imply a further potential for development of multispectral optical system to observe changes of SAT thickness as well as to determine the percentage of total body fat.
NASA Astrophysics Data System (ADS)
Meyer, Kerry; Platnick, Steven; Zhang, Zhibo
2015-06-01
The regional haze over the southeast (SE) Atlantic Ocean induced by biomass burning in southern Africa can be problematic for passive imager-based retrievals of the underlying quasi-permanent marine boundary layer (MBL) clouds and for estimates of top-of-atmosphere (TOA) aerosol direct radiative effect (DRE). Here an algorithm is introduced to simultaneously retrieve above-cloud aerosol optical thickness (AOT), the cloud optical thickness (COT), and cloud effective particle radius (CER) of the underlying MBL clouds while also providing pixel-level estimates of retrieval uncertainty. This approach utilizes reflectance measurements at six Moderate Resolution Imaging Spectroradiometer (MODIS) channels from the visible to the shortwave infrared. Retrievals are run under two aerosol model assumptions on 8 years (2006-2013) of June-October Aqua MODIS data over the SE Atlantic, from which a regional cloud and above-cloud aerosol climatology is produced. The cloud retrieval methodology is shown to yield COT and CER consistent with those from the MODIS operational cloud product (MOD06) when forcing AOT to zero, while the full COT-CER-AOT retrievals that account for the above-cloud aerosol attenuation increase regional monthly mean COT and CER by up to 9% and 2%, respectively. Retrieved AOT is roughly 3 to 5 times larger than the collocated 532 nm Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) retrievals, though closer agreement is observed with the CALIOP 1064 nm retrievals, a result consistent with previous case study analyses. Regional cloudy-sky above-cloud aerosol DRE calculations are also performed that illustrate the importance of the aerosol model assumption and underlying cloud retrievals.
Akkaya, Serkan; Küçük, Bekir; Doğan, Hatice Karaköse; Can, Ertuğrul
2018-06-01
To compare the lamina cribrosa thickness and anterior lamina cribrosa depth between patients with and without diabetes mellitus and to investigate the effect of metabolic control and duration of diabetes mellitus on lamina cribrosa thickness and anterior lamina cribrosa depth using enhanced depth imaging spectral-domain optical coherence tomography. A total of 70 patients were enrolled in this cross-sectional study and were divided into the diabetes and control groups. Intraocular pressure, circumpapillary retinal nerve fibre layer thickness, anterior lamina cribrosa depth and lamina cribrosa thickness were compared between the groups. In the control group, the mean intraocular pressure was 14.6 ± 3.1 (mean ± standard deviation) mmHg, mean circumpapillary retinal nerve fibre layer thickness was 105.41 ± 5.86 μm, mean anterior lamina cribrosa depth was 420.3 ± 90.2 μm and mean lamina cribrosa thickness was 248.5 ± 5.4 μm. In the diabetes group, the mean intraocular pressure was 13.9 ± 2.2 mmHg, mean circumpapillary retinal nerve fibre layer thickness was 101.37 ± 10.97 μm, mean anterior lamina cribrosa depth was 351.4 ± 58.6 μm and mean lamina cribrosa thickness was 271.6 ± 33.9 μm. Lamina cribrosa thickness was significantly higher ( p < 0.001) and anterior lamina cribrosa depth was significantly lower ( p = 0.003) in the diabetes group. There was no statistical difference between the groups with regard to age, spherical equivalent, axial length, circumpapillary retinal nerve fibre layer thickness and intraocular pressure ( p = 0.69, 0.26, 0.47, 0.06 and 0.46, respectively). Lamina cribrosa thickness and anterior lamina cribrosa depth were not significantly correlated with duration of diabetes mellitus (lamina cribrosa thickness: r = -0.078, p = 0.643; anterior lamina cribrosa depth: r = -0.062, p = 0.710) or HbA1c levels (lamina cribrosa thickness: r = -0.078, p = 0.596; anterior lamina cribrosa depth: r = -0.228, p = 0.169). The results of this study showed that the optical coherence tomography measurement of lamina cribrosa revealed thicker and more anteriorly positioned lamina cribrosa for patients with diabetes mellitus compared with those for healthy controls.
NASA Astrophysics Data System (ADS)
Bonnie, F.; Arnold, M. D.; Smith, G. B.; Gentle, A. R.
2013-09-01
The optical resonances that occur in nanostructured metal layers are modulated in thin film stacks if the nanostructured layer is separated from a reflecting conducting layer by various thicknesses of thin dielectric. We have measured and modeled the optical response of interacting silver layers, with alumina spacer thickness ranging from a few nm to 50 nm, for s- and p-polarized incident light, and a range of incident angles. Standard thin film models, including standard effective medium models for the nanostructured layer, will break down for spacer thickness below a critical threshold. For example, with polarisation in the film plane and some nano-islands, it may occur at around 10 nm depending on spacer refractive index. Of particular interest here are novel effects observed with the onset of percolation in the nanolayer. Hot spot effects can be modified by nearby mirrors. Other modes to consider include (a) a two-particle mode involving a particle and its mirror image (b) A Fano resonance from hybridisation of localized and de-localised plasmon modes (c) a Babinet's core-(partial) shell particle with metal core-dielectric shell in metal (d) spacing dependent phase modulation (e) the impact of field gradients induced by the mirror at the nano-layer.
Soler García, A; Padilla Parrado, F; Figueroa-Ortiz, L C; González Gómez, A; García-Ben, A; García-Ben, E; García-Campos, J M
2016-01-01
Quantitative assessment of macular and nerve fibre layer thickness in multiple sclerosis patients with regard to expanded disability status scale (EDSS) and presence or absence of previous optic neuritis episodes. We recruited 62 patients with multiple sclerosis (53 relapsing-remitting and 9 secondary progressive) and 12 disease-free controls. All patients underwent an ophthalmological examination, including quantitative analysis of the nerve fibre layer and macular thickness using optical coherence tomography. Patients were classified according to EDSS as A (lower than 1.5), B (between 1.5 and 3.5), and C (above 3.5). Mean nerve fibre layer thickness in control, A, B, and C groups was 103.35±12.62, 99.04±14.35, 93.59±15.41, and 87.36±18.75μm respectively, with statistically significant differences (P<.05). In patients with no history of optic neuritis, history of episodes in the last 3 to 6 months, or history longer than 6 months, mean nerve fibre layer thickness was 99.25±13.71, 93.92±13.30 and 80.07±15.91μm respectively; differences were significant (P<.05). Mean macular thickness in control, A, B, and C groups was 220.01±12.07, 217.78±20.02, 217.68±20.77, and 219.04±24.26μm respectively. Differences were not statistically significant. The mean retinal nerve fibre layer thickness in multiple sclerosis patients is related to the EDSS level. Patients with previous optic neuritis episodes have a thinner retinal nerve fibre layer than patients with no history of these episodes. Mean macular thickness is not correlated to EDSS level. Copyright © 2014 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Topcu-Yilmaz, Pinar; Akyurek, Nesibe; Erdogan, Erkan
2018-06-23
The purpose of this study was to evaluate the macular choroidal thickness in obese children with and without insulin resistance (IR). Thirty-six patients with obesity and 26 healthy volunteers were included in this cross-sectional study. The choroidal thickness was measured with enhanced depth imaging optical coherence tomography (EDI-OCT) at the fovea and at positions 500 μm, 1000 μm, 1500 μm nasal and temporal to the fovea. The choroidal thickness measurements of the groups were compared and the correlation between the homeostasis model assessment of insulin resistance (HOMA-IR) and choroidal thickness values was evaluated. The average choroidal thickness in the obese group was significantly lower than that of controls at locations 1000 μm (303.31±58.52 vs. 340.58±69.47, p=0.026) and 1500 μm (284.14±65.06 vs. 336.85±71.37, p=0.004) temporal to the fovea. A subgroup analysis depending on the presence of IR revealed that the choroidal thickness measurements at all positions were thinner in obese children without IR compared to children with IR and healthy controls. This thinning reached a statistical significance at locations 500 μm temporal, 1000 μm temporal and 1500 μm temporal to the fovea (p=0.03, p=0.009 and p=0.006; respectively). There was a moderate correlation between the choroidal thickness measurements and HOMA-IR values (r-values between 0.37 and 0.48; p<0.05). Our results suggest that obesity and IR may have an influence on the choroidal thickness in children. Longitudinal studies will clarify whether these choroidal changes are progressive and are a sign of microvascular dysfunction in childhood obesity.
Lee, Ju-Yeun; Han, Jinu; Seo, Jeong Gi; Park, Kyung-Ah; Oh, Sei Yeul
2018-04-26
To evaluate the diagnostic value of macular ganglion cell-inner plexiform layer (mGCIPL) thickness versus peripapillary retinal nerve fibre layer (pRNFL) thickness for the early detection of ethambutol-induced optic neuropathy (EON). Twenty-eight eyes of 15 patients in the EON group and 100 eyes of 53 healthy subjects in the control group were included. All patients with EON demonstrated the onset of visual symptoms within 3 weeks. Diagnostic power for pRNFL and mGCIPL thicknesses measured by Cirrus spectral-domain optical coherence tomography was assessed by area under the receiver operating characteristic (AUROC) curves and sensitivity. All of the mGCIPL thickness measurements were thinner in the EON group than in the control group in early EON (p<0.001). All of pRNFL thicknesses except inferior RNFL showed AUROC curves above 0.5, and all of the mGCIPL thicknesses showed AUROC curves above 0.5. The AUROC of the average mGCIPL (0.812) thickness was significantly greater than that of the average pRNFL (0.507) thickness (p<0.001). Of all the mGCIPL-related parameters considered, the minimum thickness showed the greatest AUROC value (0.863). The average mGCIPL thickness showed a weak correlation with visual field pattern standard deviations (r 2 =0.158, p<0.001). In challenging cases of EON, the mGCIPL thickness has better diagnostic performance in detecting early-onset EON as compared with using pRNFL thickness. Among the early detection ability of mGCIPL thickness, minimum GCIPL thickness has high diagnostic ability. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Roberts, Kenneth F; Artes, Paul H; O'Leary, Neil; Reis, Alexandre S C; Sharpe, Glen P; Hutchison, Donna M; Chauhan, Balwantray C; Nicolela, Marcelo T
2012-08-01
To examine peripapillary choroidal thickness in healthy controls and in patients with glaucoma who have focal, diffuse, and sclerotic optic disc damage. Healthy controls (n=92) and patients with glaucoma who have focal (n=34), diffuse (n=35), and sclerotic (n=34) optic disc damage were imaged with spectral-domain optical coherence tomography (12° circular scan protocol centered on optic nerve head). Peripapillary choroidal thickness was measured as the distance between the automatically segmented retinal pigment epithelium/Bruch's membrane and the manually outlined interface between the posterior choroid and the anterior border of the sclera in eyes in which the anterior scleral border was visible over more than 85% of the scan circumference. The anterior scleral border was visible in 76 controls (83%) and 89 patients (86%). Peripapillary choroidal thickness in healthy controls decreased linearly with age (-11 μm/decade; P.001; r2=0.16), with a predicted value of 137 μm at age 70 years (95% prediction interval, 62-212 μm). While this value was similar in patients with focal and diffuse optic disc damage (126 and 130 μm, respectively; P=.22 compared with controls), it was approximately 30% lower in patients with sclerotic optic disc damage (96 μm; P.001 compared with controls). The peripapillary choroid of patients with glaucoma who have sclerotic optic disc damage was approximately 25% to 30% thinner compared with that in patients with focal and diffuse optic disc damage and with that in healthy controls. The role of the choroid in the pathophysiology of sclerotic glaucomatous optic disc damage needs further investigation.
PAH 8μm Emission as a Diagnostic of HII Region Optical Depth
NASA Astrophysics Data System (ADS)
Oey, M. S.; Lopez-Hernandez, J.; Kellar, J. A.; Pellegrini, E. W.; Gordon, Karl D.; Jameson, Katherine; Li, Aigen; Madden, Suzanne C.; Meixner, Margaret; Roman-Duval, Julia; Bot, Caroline; Rubio, Monica; Tielens, A. G. G. M.
2017-01-01
PAHs are easily destroyed by Lyman continuum radiation and so in optically thick Stromgren spheres, they tend to be found only on the periphery of HII regions, rather than in the central volume. We therefore expect that in HII regions that are optically thin to ionizing radiation, PAHs would be destroyed beyond the primary nebular structure. Using data from the Spitzer SAGE survey of the Magellanic Clouds, we test whether 8 μm emission can serve as a diagnostic of optical depth in HII regions. We find that 8 μm emission does provide valuable constraints in the Large Magellanic Cloud, where objects identified as optically thick by their atomic ionization structure have 6 times higher median 8 μm surface brightness than optically thin objects. However, in the Small Magellanic Cloud, this differentiation is not observed. This appears to be caused by extremely low PAH production in this low-metallicity environment, such that any differentiation between optically thick and thin objects is washed out by stochastic variations, likely driven by the interplay between dust production and UV destruction. Thus, PAH emission is sensitive to nebular optical depth only at higher metallicities.
Structural, optical and photo-catalytic activity of nanocrystalline NiO thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Ghamdi, Attieh A.; Abdel-wahab, M. Sh., E-mail: mshabaan90@yahoo.com; Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef
2016-03-15
Highlights: • Synthesis of nanocrystalline NiO thin films with different thicknesses using DC magnetron sputtering technique. • Effect of film thickness and particle size on photo-catalytic degradation of methyl green dye under UV light was studied. • The deposited NiO thin films are efficient, stable and possess high photo-catalytic activity upon reuse. - Abstract: Physical deposition of nanocrystalline nickel oxide (NiO) thin films with different thickness 30, 50 and 80 nm have been done on glass substrate by DC magnetron sputtering technique and varying the deposition time from 600, 900 to 1200 s. The results of surface morphology and opticalmore » characterization of these films obtained using different characterization techniques such as X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), photoluminescence (PL) and UV–vis spectrophotometry provide important information like formation of distinct nanostructures in different films and its effect on their optical band gap which has decreased from 3.74 to 3.37 eV as the film thickness increases. Most importantly these films have shown very high stability and a specialty to be recycled without much loss of their photo-catalytic activity, when tested as photo-catalysts for the degradation of methyl green dye (MG) from the wastewater under the exposure of 18 W energy of UV lamp.« less
Bassi, Shikha Talwar; Mohana, Kuppuswamy Parthasarthy
2014-12-01
To compare the spectral domain optical coherence tomography (SD-OCT) findings of the optic disc and the peripapillary retina of patients with a true papilledema and pseudopapilledema with and without optic nerve head drusen (ONHD). Retrospective Case Control Study. Peripapillary retinal nerve fiber layer (PPRNFL) thickness as depicted by SD-OCT of 94 eyes of 66 patients with papilledema (30 eyes), pseudopapiledema (31 eyes), and normal controls (33 eyes) was analyzed. The mean RNFL thickness, total retinal thickness (TRT) at a superior and inferior edge of the disc and the quadrant wise topography of increased RNFL were compared in all three groups. Sensitivity, specificity, and area under the receiver operating characteristic curve (AROC) were calculated for all the parameters. The median RNFL thickness was 185.4 (129.5-349.3 μm), 122.3 (109-156.3 μm) and 91.62 ± 7 μm in papilledema, pseudopapilledema, and controls, respectively. Papilledema group had thicker PPRNFL in all quadrants except temporal quadrant. TRT was thicker in papilledema and pseudopapilledema compared to controls. ONHD could be directly visualized as high reflective clumps in the sub-retinal space or the RNFL in 30 eyes. Increased RNFL thickness in all four quadrants was noted 43.3% in papilledema and 9.7% in pseudopapilledema. Normal RNFL thickness in all four quadrants was noted in 0% in papilledema and 32.3% in pseudopapilledema. Nasal RNFL had the highest AROC (0.792) indicating high diagnostic ability to differentiate papilledema from pseudopapilledema. SD-OCT can be used as a tool to differentiate between papilledema and pseudopapilledema.
NASA Astrophysics Data System (ADS)
Chang, R. C.; Li, T. C.; Lin, C. W.
2012-02-01
Various thickness metallic interlayers to improve the opto-electric and mechanical properties of aluminum-doped zinc oxide (AZO) thin films deposited on flexible polyethylene terephtalate (PET) substrates are studied. The effects of the interlayers on the resistance and transmittance of the AZO thin films are discussed. The result shows that the metallic interlayers effectively improve the electric resistance but reduce the optical transmittance of the AZO thin films. These phenomena become more obvious as the interlayer thickness increases. However, the AZO with an aluminum interlayer still behaves an acceptable transmittance. Moreover, mechanical tests indicate that the aluminum interlayer increases the hardness and modulus, and reduce the residual stress of the AZO thin films. In contrast, the silver and copper interlayers decrease the AZO's mechanical properties. Comparing to those without any interlayer, the results show that the best interlayer is the 6 nm thick aluminum film.
Rebolleda, Gema; Pérez-Sarriegui, Ane; Díez-Álvarez, Laura; De Juan, Victoria; Muñoz-Negrete, Francisco J
2018-06-01
To compare the optic nerve head morphology among primary open-angle glaucoma, non-arteritic anterior ischemic optic neuropathy eyes, their fellow healthy eyes and control eyes, using spectral-domain optical coherence tomography with enhanced depth imaging. Observational cross-sectional study including 88 eyes of 68 patients. In this study, 23 non-arteritic anterior ischemic optic neuropathy eyes, 17 fellow unaffected eyes, 25 primary open-angle glaucoma eyes, and 23 age-matched control eyes were included. Peripapillary retinal nerve fiber layer thickness and optic disk area were evaluated. Bruch's membrane opening diameter, optic cup depth, anterior lamina cribrosa depth, and prelaminar tissue thickness were assessed. Non-arteritic anterior ischemic optic neuropathy and primary open-angle glaucoma eyes had similar visual field mean deviation and peripapillary retinal nerve fiber layer thickness (P = 0.6 and P = 0.56, respectively). Bruch's membrane opening diameter was significantly larger in primary open-angle glaucoma eyes than in control eyes (P = 0.02). Lamina cribrosa and disk cup were deeper in eyes with primary open-angle glaucoma than both control and non-arteritic anterior ischemic optic neuropathy eyes (P < 0.001). Prelaminar tissue thickness was significantly thinner in primary open-angle glaucoma eyes than in non-arteritic anterior ischemic optic neuropathy eyes (P < 0.001). Lamina cribrosa was shallower in both non-arteritic anterior ischemic optic neuropathy and unaffected fellow eyes compared to healthy eyes (P < 0.001 and P = 0.04, respectively). No differences were found in the optic disk area. A forward lamina cribrosa placement and not a smaller disk could be involved in the pathogenesis of non-arteritic anterior ischemic optic neuropathy. A significantly larger Bruch's membrane opening diameter was found in primary open-angle glaucoma eyes compared with control eyes. This issue has clinical implications because Bruch's membrane opening has been considered a stable reference for disk-related measures.
The Effects of Accretion Disk Geometry on AGN Reflection Spectra
NASA Astrophysics Data System (ADS)
Taylor, Corbin James; Reynolds, Christopher S.
2017-08-01
Despite being the gravitational engines that power galactic-scale winds and mega parsec-scale jets in active galaxies, black holes are remarkably simple objects, typically being fully described by their angular momenta (spin) and masses. The modelling of AGN X-ray reflection spectra has proven fruitful in estimating the spin of AGN, as well as giving insight into their accretion histories and the properties of plasmas in the strong gravity regime. However, current models make simplifying assumptions about the geometry of the reflecting material in the accretion disk and the irradiating X-ray corona, approximating the disk as an optically thick, infinitely thin disk of material in the orbital plane. We present results from the new relativistic raytracing suite, Fenrir, that explore the effects that disk thickness may have on the reflection spectrum and the accompanying reverberation signatures. Approximating the accretion disk as an optically thick, geometrically thin, radiation pressure dominated disk (Shakura & Sunyaev 1973), one finds that the disk geometry is non-negligible in many cases, with significant changes in the broad Fe K line profile. Finally, we explore the systematic errors inherent in approximating the disk as being infinitely thin when modeling reflection spectrum, potentially biasing determinations of black hole and corona properties.
Zucchiatti, Ilaria; Cicinelli, Maria V; Parodi, Maurizio Battaglia; Pierro, Luisa; Gagliardi, Marco; Accardo, Agostino; Bandello, Francesco
2017-07-01
To analyze the changes in ganglion cell complex and peripapillary retinal nerve fiber layer thickness, in central macular thickness and choroidal thickness on spectral domain optical coherence tomography in patients with neovascular age-related macular degeneration treated with intravitreal ranibizumab injections. All consecutive patients with untreated neovascular age-related macular degeneration received loading phase of three monthly intravitreal ranibizumab, followed by retreatments on a pro re nata protocol for 12 months. changes in ganglion cell complex and retinal nerve fiber layer at the end of follow-up. Secondary outcome: changes in best-corrected visual acuity, central macular thickness, and choroidal thickness at the end of follow-up. Choroidal thickness was measured at 500 μm, 1000 μm, and 1,500 μm intervals nasally, temporally, superiorly, and inferiorly to the fovea, respectively, on horizontal and vertical line scans centered on the fovea. Twenty-four eyes were included. Ganglion cell complex and peripapillary retinal nerve fiber layer thickness did not show statistically significant changes through 12 months (55.6 ± 18.5 and 81.9 ± 9.9 μm at baseline, 52.7 ± 19.3 and 84.6 ± 15.5 μm at month 12, P > 0.05). Central macular thickness showed progressive decrease from baseline to month 12, with maximum reduction at month 3 (P < 0.001). Statistically significant reduction in choroidal thickness was registered in the nasal 500, 1000, and 1,500 μm from the fovea, corresponding to the papillomacular region (from 169.6 ± 45.3 to 153.9 ± 46.9, P < 0.001). Intravitreal ranibizumab injections did not affect retinal nerve fiber layer and ganglion cell complex thickness in 1-year follow-up. Choroidal thickness in papillomacular area and central macular thickness was significantly reduced at the end of treatment. Further studies, with larger sample, longer follow-up, and greater number of injections, are warranted.
The effect of the MgO buffer layer thickness on magnetic anisotropy in MgO/Fe/Cr/MgO buffer/MgO(001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozioł-Rachwał, Anna, E-mail: a.koziolrachwal@aist.go.jp; AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Kraków; Nozaki, Takayuki
2016-08-28
The relationship between the magnetic properties and MgO buffer layer thickness d was studied in epitaxial MgO/Fe(t)/Cr/MgO(d) layers grown on MgO(001) substrate in which the Fe thickness t ranged from 0.4 nm to 1.1 nm. For 0.4 nm ≤ t ≤ 0.7 nm, a non-monotonic coercivity dependence on the MgO buffer thickness was shown by perpendicular magneto-optic Kerr effect magnetometry. For thicker Fe films, an increase in the buffer layer thickness resulted in a spin reorientation transition from perpendicular to the in-plane magnetization direction. Possible origins of these unusual behaviors were discussed in terms of the suppression of carbon contamination at the Fe surface and changes inmore » the magnetoelastic anisotropy in the system. These results illustrate a method to control magnetic anisotropy in MgO/Fe/Cr/MgO(d) via an appropriate choice of MgO buffer layer thickness d.« less
Process effects resulting from an increased BARC thickness
NASA Astrophysics Data System (ADS)
Eakin, Ronald J.; Detweiler, Shangting F.; Stagaman, Gregory J.; Tesauro, Mark R.; Spak, Mark A.; Dammel, Ralph R.
1997-07-01
Process improvements attributed to the use of bottom anti- reflective coatings (B.A.R.C.s) are well documented. As our experience with these materials improves, so does our understanding of additional optimization. Recent supplier experiments suggest an increase in the thickness of AZR BARLiTM (bottom anti-reflective layer i-line) solution to reduce photoresist swing curve ratios. Also, changes in thin film stack on common substrates can adversely affect the degree of photoresist reflective notching. It is therefore of extreme importance to determine optimum thickness(es) of a B.A.R.C. material to ensure maximum process potential. We document several process effects in the conversion of a SRAM test device (0.38 - 0.45 micrometers) from a 650 angstrom to a 2000 angstrom BARLiTM film thickness using conventional i-line photolithography. Critical dimension (CD) uniformity and depth of focus (DOF) are evaluated. Defect density between the two processes are compared before and after etch employing optical metrology and electrical test structures. Sensitivity of overlay as a function of BARLiTM film thickness is investigated as well.
Effect of QW thickness and numbers on performance characteristics of deep violet InGaN MQW lasers
NASA Astrophysics Data System (ADS)
Alahyarizadeh, Gh.; Amirhoseiny, M.; Hassan, Z.
2015-03-01
The performance characteristics of deep violet indium gallium nitride (InGaN) multiquantum well (MQW) laser diodes (LDs) with an emission wavelength of around 390 nm have been investigated using the integrated system engineering technical computer aided design (ISE-TCAD) software. A comparative study on the effect of quantum well (QW) thickness and number on electrical and optical performance of deep violet In0.082Ga0.918N/GaN MQW LDs have been carried out. The simulation results showed that the highest slope efficiency and external differential quantum efficiency (DQE), as well as the lowest threshold current are obtained when the number of wells is two. The different QW thickness values of 2.2, 2.5, 2.8, 3 and 3.2 nm were compared and the best results were achieved for 2.5 nm QW thickness. The radiative recombination rate decreases with increasing QW thickness because of decreasing electron and hole carrier densities in wells. By increasing QW thickness, output power decreases and threshold current increases.
Indium oxide based fiber optic SPR sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, Sarika; Sharma, Navneet K., E-mail: navneetk.sharma@jiit.ac.in
2016-05-06
Surface plasmon resonance based fiber optic sensor using indium oxide layer is presented and theoretically studied. It has been found that with increase in thickness of indium oxide layer beyond 170 nm, the sensitivity of SPR sensor decreases. 170 nm thick indium oxide layer based SPR sensor holds maximum sensitivity.
Thickness and topographic inspection of RPG contact lenses by optical triangulation
NASA Astrophysics Data System (ADS)
Costa, Manuel F. M.
2001-06-01
Optical triangulation as a non-destructive test method extensively proved its usefulness on the dimensional and topographic inspection of a large range of objects and surfaces. In this communication the issue of microtopographic and thickness inspection of hard contact lenses (RPG) is addressed. The use of optical triangulation is discussed based on the results of the application of our MICROTOP.03.MFC microtopographer to this kind of tasks will be presented.
Tsao, Yu-Chia; Tsai, Woo-Hu; Shih, Wen-Ching; Wu, Mu-Shiang
2013-01-01
An optical fiber sensor based on surface plasmon resonance (SPR) is proposed for monitoring the thickness of deposited nano-thin films. A side-polished multimode SPR optical fiber sensor with an 850 nm-LD is used as the transducing element for real-time monitoring of the deposited TiO2 thin films. The SPR optical fiber sensor was installed in the TiO2 sputtering system in order to measure the thickness of the deposited sample during TiO2 deposition. The SPR response declined in real-time in relation to the growth of the thickness of the TiO2 thin film. Our results show the same trend of the SPR response in real-time and in spectra taken before and after deposition. The SPR transmitted intensity changes by approximately 18.76% corresponding to 50 nm of deposited TiO2 thin film. We have shown that optical fiber sensors utilizing SPR have the potential for real-time monitoring of the SPR technology of nanometer film thickness. The compact size of the SPR fiber sensor enables it to be positioned inside the deposition chamber, and it could thus measure the film thickness directly in real-time. This technology also has potential application for monitoring the deposition of other materials. Moreover, in-situ real-time SPR optical fiber sensor technology is in inexpensive, disposable technique that has anti-interference properties, and the potential to enable on-line monitoring and monitoring of organic coatings. PMID:23881144
Tsao, Yu-Chia; Tsai, Woo-Hu; Shih, Wen-Ching; Wu, Mu-Shiang
2013-07-23
An optical fiber sensor based on surface plasmon resonance (SPR) is proposed for monitoring the thickness of deposited nano-thin films. A side-polished multimode SPR optical fiber sensor with an 850 nm-LD is used as the transducing element for real-time monitoring of the deposited TiO2 thin films. The SPR optical fiber sensor was installed in the TiO2 sputtering system in order to measure the thickness of the deposited sample during TiO2 deposition. The SPR response declined in real-time in relation to the growth of the thickness of the TiO2 thin film. Our results show the same trend of the SPR response in real-time and in spectra taken before and after deposition. The SPR transmitted intensity changes by approximately 18.76% corresponding to 50 nm of deposited TiO2 thin film. We have shown that optical fiber sensors utilizing SPR have the potential for real-time monitoring of the SPR technology of nanometer film thickness. The compact size of the SPR fiber sensor enables it to be positioned inside the deposition chamber, and it could thus measure the film thickness directly in real-time. This technology also has potential application for monitoring the deposition of other materials. Moreover, in-situ real-time SPR optical fiber sensor technology is in inexpensive, disposable technique that has anti-interference properties, and the potential to enable on-line monitoring and monitoring of organic coatings.
NASA Astrophysics Data System (ADS)
Dunklin, Jeremy R.; Bodinger, Carter; Forcherio, Gregory T.; Keith Roper, D.
2017-01-01
Plasmonic nanoparticles embedded in polymer films enhance optoelectronic properties of photovoltaics, sensors, and interconnects. This work examined optical extinction of polymer films containing randomly dispersed gold nanoparticles (AuNP) with negligible Rayleigh scattering cross-sections at particle separations and film thicknesses less than (sub-) to greater than (super-) the localized surface plasmon resonant (LSPR) wavelength, λLSPR. Optical extinction followed opposite trends in sub- and superwavelength films on a per nanoparticle basis. In ˜70-nm-thick polyvinylpyrrolidone films containing 16 nm AuNP, measured resonant extinction per particle decreased as particle separation decreased from ˜130 to 76 nm, consistent with trends from Maxwell Garnett effective medium theory and coupled dipole approximation. In ˜1-mm-thick polydimethylsiloxane films containing 16-nm AuNP, resonant extinction per particle plateaued at particle separations ≥λLSPR, then increased as particle separation radius decreased from ˜514 to 408 nm. Contributions from isolated particles, interparticle interactions and heterogeneities in sub- and super-λLSPR films containing AuNP at sub-λLSPR separations were examined. Characterizing optoplasmonics of thin polymer films embedded with plasmonic NP supports rational development of optoelectronic, biomedical, and catalytic activity using these nanocomposites.
Enamel Thickness before and after Orthodontic Treatment Analysed in Optical Coherence Tomography
Koprowski, Robert; Safranow, Krzysztof; Woźniak, Krzysztof
2017-01-01
Despite the continuous development of materials and techniques of adhesive bonding, the basic procedure remains relatively constant. The technique is based on three components: etching substance, adhesive system, and composite material. The use of etchants during bonding orthodontic brackets carries the risk of damage to the enamel. Therefore, the article examines the effect of the manner of enamel etching on its thickness before and after orthodontic treatment. The study was carried out in vitro on a group of 80 teeth. It was divided into two subgroups of 40 teeth each. The procedure of enamel etching was performed under laboratory conditions. In the first subgroup, the classic method of enamel etching and the fifth-generation bonding system were used. In the second subgroup, the seventh-generation (self-etching) bonding system was used. In both groups, metal orthodontic brackets were fixed and the enamel was cleaned with a cutter fixed on the micromotor after their removal. Before and after the treatment, two-dimensional optical coherence tomography scans were performed. The enamel thickness was assessed on the two-dimensional scans. The average enamel thickness in both subgroups was not statistically significant. PMID:28243604
Electrostatic ion thruster optics calculations
NASA Technical Reports Server (NTRS)
Whealton, John H.; Kirkman, David A.; Raridon, R. J.
1992-01-01
Calculations have been performed which encompass both a self-consistent ion source extraction plasma sheath and the primary ion optics including sheath and electrode-induced aberrations. Particular attention is given to the effects of beam space charge, accelerator geometry, and properties of the downstream plasma sheath on the position of the electrostatic potential saddle point near the extractor electrode. The electron blocking potential blocking is described as a function of electrode thickness and secondary plasma processes.
Physical-mathematical model of optical radiation interaction with biological tissues
NASA Astrophysics Data System (ADS)
Kozlovska, Tetyana I.; Kolisnik, Peter F.; Zlepko, Sergey M.; Titova, Natalia V.; Pavlov, Volodymyr S.; Wójcik, Waldemar; Omiotek, Zbigniew; Kozhambardiyeva, Miergul; Zhanpeisova, Aizhan
2017-08-01
Remote photoplethysmography (PPG) imaging is an optical technique to remotely assess the local coetaneous microcirculation. In this paper, we present a model and supporting experiments confirming the contribution of skin inhomogeneity to the morphology of PPG waveforms. The physical-mathematical model of distribution of optical radiation in biological tissues was developed. It allows determining the change of intensity of optical radiation depending on such parameters as installation angle of the sensor, biological tissue thickness and the wavelength. We obtained graphics which represent changes of the optical radiation intensity that is registered by photodetector depending on installation angle of the sensor, biological tissue thickness and the extinction coefficient.
Ashraf, Mohammed; Souka, Ahmed; Adelman, Ron A
2017-09-01
To study the effect of the vitreomacular interface on various wet age-related macular degeneration (AMD) characteristics including the size and type of choroidal neovascularization (CNV), choroidal thickness, and activity of the CNV. This was a retrospective observational cross-sectional study. The study included 43 patients (51 eyes) with treatment-naive age-related macular degeneration. Twenty-six patients with wet AMD in one eye and dry AMD in the other eye were included in a paired-eye analysis. Patients underwent optical coherence tomography examination using Heidelberg Spectralis (spectral domain optical coherence tomography) at presentation to determine the type of CNV and the vitreomacular status. In addition, various parameters were measured including the choroidal thickness and horizontal width and vertical height measurements of the CNV. There was no correlation between the height, width, activity or type of the CNV, and the presence or absence of vitreomacular adhesion. The mean choroidal thickness (using enhanced depth imaging) in cases with vitreomacular adhesion was 272.57 μm compared with 197.32 μm in cases with no vitreomacular adhesion, a statistically significant difference (P = 0.003). In the paired-eye study (21 patients), there was no significant difference between the eyes with wet AMD and dry AMD with regard to vitreomacular status or the choroidal thickness. In a subgroup analysis, patients with Type 1 CNV had a significantly higher percentage of vitreomacular adhesion compared with the other eye with dry AMD (P = 0.034). In conclusion, the vitreomacular interface does seem to be associated with an increased choroidal thickness in cases of wet AMD. Furthermore, the association between the vitreomacular interface and wet AMD is more significant for Type 1 CNV.
Fortune, Brad; Reynaud, Juan; Cull, Grant; Burgoyne, Claude F.; Wang, Lin
2014-01-01
Purpose To evaluate the effect of age on optic nerve axon counts, spectral-domain optical coherence tomography (SDOCT) scan quality, and peripapillary retinal nerve fiber layer thickness (RNFLT) measurements in healthy monkey eyes. Methods In total, 83 healthy rhesus monkeys were included in this study (age range: 1.2–26.7 years). Peripapillary RNFLT was measured by SDOCT. An automated algorithm was used to count 100% of the axons and measure their cross-sectional area in postmortem optic nerve tissue samples (N = 46). Simulation experiments were done to determine the effects of optical changes on measurements of RNFLT. An objective, fully-automated method was used to measure the diameter of the major blood vessel profiles within each SDOCT B-scan. Results Peripapillary RNFLT was negatively correlated with age in cross-sectional analysis (P < 0.01). The best-fitting linear model was RNFLT(μm) = −0.40 × age(years) + 104.5 μm (R2 = 0.1, P < 0.01). Age had very little influence on optic nerve axon count; the result of the best-fit linear model was axon count = −1364 × Age(years) + 1,210,284 (R2 < 0.01, P = 0.74). Older eyes lost the smallest diameter axons and/or axons had an increased diameter in the optic nerve of older animals. There was an inverse correlation between age and SDOCT scan quality (R = −0.65, P < 0.0001). Simulation experiments revealed that approximately 17% of the apparent cross-sectional rate of RNFLT loss is due to reduced scan quality associated with optical changes of the aging eye. Another 12% was due to thinning of the major blood vessels. Conclusions RNFLT declines by 4 μm per decade in healthy rhesus monkey eyes. This rate is approximately three times faster than loss of optic nerve axons. Approximately one-half of this difference is explained by optical degradation of the aging eye reducing SDOCT scan quality and thinning of the major blood vessels. Translational Relevance Current models used to predict retinal ganglion cell losses should be reconsidered. PMID:24932430
Selective colors reflection from stratified aragonite calcium carbonate plates of mollusk shells.
Lertvachirapaiboon, Chutiparn; Parnklang, Tewarak; Pienpinijtham, Prompong; Wongravee, Kanet; Thammacharoen, Chuchaat; Ekgasit, Sanong
2015-08-01
An interaction between the incident light and the structural architecture within the shell of Asian green mussel (Perna viridis) induces observable pearlescent colors. In this paper, we investigate the influence of the structural architecture on the expressed colors. After a removal of the organic binder, small flakes from crushed shells show vivid rainbow reflection under an optical microscope. An individual flake expresses vivid color under a bright-field illumination while become transparent under a dark-field illumination. The expressed colors of the aragonite flakes are directly associated with its structural architecture. The flakes with aragonite thickness of 256, 310, and 353 nm, respectively, appear blue, green, and red under an optical microscope. The spectral simulation corroborates the experimentally observed optical effects as the flakes with thicker aragonite layers selectively reflected color with longer wavelengths. Flakes with multiple aragonite thicknesses expressed multi-color as the upper aragonite layers allow reflected colors from the lower layers to be observed. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bao, Yi; Valipour, Mahdi; Meng, Weina; Khayat, Kamal H.; Chen, Genda
2017-08-01
This study develops a delamination detection system for smart ultra-high-performance concrete (UHPC) overlays using a fully distributed fiber optic sensor. Three 450 mm (length) × 200 mm (width) × 25 mm (thickness) UHPC overlays were cast over an existing 200 mm thick concrete substrate. The initiation and propagation of delamination due to early-age shrinkage of the UHPC overlay were detected as sudden increases and their extension in spatial distribution of shrinkage-induced strains measured from the sensor based on pulse pre-pump Brillouin optical time domain analysis. The distributed sensor is demonstrated effective in detecting delamination openings from microns to hundreds of microns. A three-dimensional finite element model with experimental material properties is proposed to understand the complete delamination process measured from the distributed sensor. The model is validated using the distributed sensor data. The finite element model with cohesive elements for the overlay-substrate interface can predict the complete delamination process.
Li, Song-Lin; Miyazaki, Hisao; Song, Haisheng; Kuramochi, Hiromi; Nakaharai, Shu; Tsukagoshi, Kazuhito
2012-08-28
We demonstrate the possibility in quantifying the Raman intensities for both specimen and substrate layers in a common stacked experimental configuration and, consequently, propose a general and rapid thickness identification technique for atomic-scale layers on dielectric substrates. Unprecedentedly wide-range Raman data for atomically flat MoS(2) flakes are collected to compare with theoretical models. We reveal that all intensity features can be accurately captured when including optical interference effect. Surprisingly, we find that even freely suspended chalcogenide few-layer flakes have a stronger Raman response than that from the bulk phase. Importantly, despite the oscillating intensity of specimen spectrum versus thickness, the substrate weighted spectral intensity becomes monotonic. Combined with its sensitivity to specimen thickness, we suggest this quantity can be used to rapidly determine the accurate thickness for atomic layers.
Taylor, Graham J.; Venkatesan, Guru A.; Collier, C. Patrick; ...
2015-08-05
In this study, thickness and tension are important physical parameters of model cell membranes. However, traditional methods to measure these quantities require multiple experiments using separate equipment. This work introduces a new multi-step procedure for directly accessing in situ multiple physical properties of droplet interface bilayers (DIB), including specific capacitance (related to thickness), lipid monolayer tension in the Plateau-Gibbs border, and bilayer tension. The procedure employs a combination of mechanical manipulation of bilayer area followed by electrowetting of the capacitive interface to examine the sensitivities of bilayer capacitance to area and contact angle to voltage, respectively. These data allow formore » determining the specific capacitance of the membrane and surface tension of the lipid monolayer, which are then used to compute bilayer thickness and tension, respectively. The use of DIBs affords accurate optical imaging of the connected droplets in addition to electrical measurements of bilayer capacitance, and it allows for reversibly varying bilayer area. After validating the accuracy of the technique with diphytanoyl phosphatidylcholine (DPhPC) DIBs in hexadecane, the method is applied herein to quantify separately the effects on membrane thickness and tension caused by varying the solvent in which the DIB is formed and introducing cholesterol into the bilayer. Because the technique relies only on capacitance measurements and optical images to determine both thickness and tension, this approach is specifically well-suited for studying the effects of peptides, biomolecules, natural and synthetic nanoparticles, and other species that accumulate within membranes without altering bilayer conductance.« less
NASA Technical Reports Server (NTRS)
Norton, P. W.; Zimmermann, P. H.; Briggs, R. J.; Hartle, N. M.
1986-01-01
Large-area, HgCdTe MW photovoltaic detectors have been developed for the NASA-HALOE instrument scheduled for operation on the Upper Atmospheric Research Satellite. The photodiodes will be TE-cooled and were designed to operate in the 5.1-5.4 micron band at 185 K to measure nitric oxide concentrations in the atmosphere. The active area required 15 micron thick devices and a full backside common contact. Reflections from the backside contact doubled the effective thickness of the detectors. Optical interference from reflections was eliminated with a dual layer front surface A/R coating. Bakeout reliability was optimized by having Au metallization for both n and p interconnects. Detailed performance data and a model for the optical stack are presented.
NASA Technical Reports Server (NTRS)
Bahethi, O. P.; Fraser, R. S.
1975-01-01
Computations of the intensity, flux, degree of polarization, and the positions of neutral points are presented for models of the terrestrial gaseous and hazy atmospheres by incorporating the molecular anisotropy due to air in the Rayleigh scattering optical thickness and phase matrix. Molecular anisotropy causes significant changes in the intensity, flux and the degree of polarization of the scattered light. The positions of neutral points do not change significantly. When the Rayleigh scattering optical thickness is kept constant and the molecular anisotropy factor is included only in the Rayleigh phase matrix, the flux does not change and the intensity and positions of neutron points change by a small amount. The changes in the degree of polarization are still significant.
Ristić, Davor; Rasoloniaina, Alphonse; Chiappini, Andrea; Féron, Patrice; Pelli, Stefano; Conti, Gualtiero Nunzi; Ivanda, Mile; Righini, Giancarlo C; Cibiel, Gilles; Ferrari, Maurizio
2013-09-09
Coatings of spherical optical microresonators are widely employed for different applications. Here the effect of the thickness of a homogeneous coating layer on the coupling of light from a tapered fiber to a coated microsphere has been studied. Spherical silica microresonators were coated using a 70SiO(2)- 30HfO(2) glass doped with 0.3 mol% Er(3+) ions. The coupling of a 1480 nm pump laser inside the sphere has been assessed using a tapered optical fiber and observing the 1530-1580 nm Er(3+) emission outcoupled to the same tapered fiber. The measurements were done for different coating thicknesses and compared with theoretical calculations to understand the relationship of the detected signal with the whispering gallery mode electric field profiles.
NASA Technical Reports Server (NTRS)
Yang, Yuekui; Marshak, Alexander; Chiu, J. Christine; Wiscombe, Warren J.; Palm, Stephen P.; Davis, Anthony B.; Spangenberg, Douglas A.; Nguyen, Louis; Spinhirne, James D.; Minnis, Patrick
2008-01-01
Laser beams emitted from the Geoscience Laser Altimeter System (GLAS), as well as other space-borne laser instruments, can only penetrate clouds to a limit of a few optical depths. As a result, only optical depths of thinner clouds (< about 3 for GLAS) are retrieved from the reflected lidar signal. This paper presents a comprehensive study of possible retrievals of optical depth of thick clouds using solar background light and treating GLAS as a solar radiometer. To do so we first calibrate the reflected solar radiation received by the photon-counting detectors of GLAS' 532 nm channel, which is the primary channel for atmospheric products. The solar background radiation is regarded as a noise to be subtracted in the retrieval process of the lidar products. However, once calibrated, it becomes a signal that can be used in studying the properties of optically thick clouds. In this paper, three calibration methods are presented: (I) calibration with coincident airborne and GLAS observations; (2) calibration with coincident Geostationary Operational Environmental Satellite (GOES) and GLAS observations of deep convective clouds; (3) calibration from the first principles using optical depth of thin water clouds over ocean retrieved by GLAS active remote sensing. Results from the three methods agree well with each other. Cloud optical depth (COD) is retrieved from the calibrated solar background signal using a one-channel retrieval. Comparison with COD retrieved from GOES during GLAS overpasses shows that the average difference between the two retrievals is 24%. As an example, the COD values retrieved from GLAS solar background are illustrated for a marine stratocumulus cloud field that is too thick to be penetrated by the GLAS laser. Based on this study, optical depths for thick clouds will be provided as a supplementary product to the existing operational GLAS cloud products in future GLAS data releases.
Cloud Thickness from Offbeam Returns (THOR) Validation Campaign on NASA's P3B Over the ARM/SGP
NASA Technical Reports Server (NTRS)
Cahalan, R. F.; Kolasinski, J.; McGill, M.; Lau, William K. M. (Technical Monitor)
2002-01-01
Physical thickness of a cloud layer, sometimes multiple cloud layers, is a crucial controller of solar heating of the Earth- atmosphere system, which drives the convective processes that produce storm systems. Yet clouds of average optical thickness are opaque to conventional lidar, so their thickness is well estimated only by combining a lidar above and another below cloud, or a radar and lidar on the same side, dual facilities not widely available. Here we report initial observations of a new airborne multiple field of view lidar, capable of determining physical thickness of cloud layers from time signatures of off-beam returns from a I kHz micropulse lidar at 540 rim. For a single layer, the time delay of light returning from the outer diffuse halo of light surrounding the beam entry point, relative to the time delay at beam center, determines the cloud physical thickness. The delay combined with the pulse stretch gives the optical thickness. This halo method requires cloud optical thickness exceeding 2, and improves with cloud thickness, thus complimenting conventional lidar, which cannot penetrate thick clouds. Results are presented from March 25, 2002, when THOR flew a butterfly pattern over the ARM site at 8.3 km, above a thin ice cloud at 5 km, and a thick boundary-layer stratus deck with top at 1.3 km, as shown by THOR channel 1, and a base at about 0.3 km as shown by the ground-based MPL. Additional information is included in the original extended abstract.
Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging
Cua, Michelle; Wahl, Daniel J.; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J.; Jian, Yifan; Sarunic, Marinko V.
2016-01-01
Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems. PMID:27599635
Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging.
Cua, Michelle; Wahl, Daniel J; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J; Jian, Yifan; Sarunic, Marinko V
2016-09-07
Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems.
NASA Astrophysics Data System (ADS)
Ames, A.; Bruni, R.; Cotroneo, V.; Johnson-Wilke, R.; Kester, T.; Reid, P.; Romaine, S.; Tolier-McKinstry, S.; Wilke, R. H. T.
2015-09-01
Adjustable X-ray optics represent a potential enabling technology for simultaneously achieving large effective area and high angular resolution for future X-ray Astronomy missions. The adjustable optics employ a bimorph mirror composed of a thin (1.5 μm) film of piezoelectric material deposited on the back of a 0.4 mm thick conical mirror segment. The application of localized electric fields in the piezoelectric material, normal to the mirror surface, result in localized deformations in mirror shape. Thus, mirror fabrication and mounting induced figure errors can be corrected, without the need for a massive reaction structure. With this approach, though, film stresses in the piezoelectric layer, resulting from deposition, crystallization, and differences in coefficient of thermal expansion, can distort the mirror. The large relative thickness of the piezoelectric material compared to the glass means that even 100MPa stresses can result in significant distortions. We have examined compensating for the piezoelectric processing related distortions by the deposition of controlled stress chromium/iridium films on the front surface of the mirror. We describe our experiments with tuning the product of the chromium/iridium film stress and film thickness to balance that resulting from the piezoelectric layer. We also evaluated the repeatability of this deposition process, and the robustness of the iridium coating.
Sui, Mao; Li, Ming-Yu; Kunwar, Sundar; Pandey, Puran; Zhang, Quanzhen; Lee, Jihoon
2017-01-01
Metallic nanostructures (NSs) have been widely adapted in various applications and their physical, chemical, optical and catalytic properties are strongly dependent on their surface morphologies. In this work, the morphological and optical evolution of self-assembled Pt nanostructures on c-plane sapphire (0001) is demonstrated by the control of annealing temperature and dwelling duration with the distinct thickness of Pt films. The formation of Pt NSs is led by the surface diffusion, agglomeration and surface and interface energy minimization of Pt thin films, which relies on the growth parameters such as system temperature, film thickness and annealing duration. The Pt layer of 10 nm shows the formation of overlaying NPs below 650°C and isolated Pt nanoparticles above 700°C based on the enhanced surface diffusion and Volmer-Weber growth model whereas larger wiggly nanostructures are formed with 20 nm thick Pt layers based on the coalescence growth model. The morphologies of Pt nanostructures demonstrate a sharp distinction depending on the growth parameters applied. By the control of dwelling duration, the gradual transition from dense Pt nanoparticles to networks-like and large clusters is observed as correlated to the Rayleigh instability and Ostwald ripening. The various Pt NSs show a significant distinction in the reflectance spectra depending on the morphology evolution: i.e. the enhancement in UV-visible and NIR regions and the related optical properties are discussed in conjunction with the Pt NSs morphology and the surface coverage.
Effect of annealing over optoelectronic properties of graphene based transparent electrodes
NASA Astrophysics Data System (ADS)
Yadav, Shriniwas; Kaur, Inderpreet
2016-04-01
Graphene, an atom-thick two dimensional graphitic material have led various fundamental breakthroughs in the field of science and technology. Due to their exceptional optical, physical and electrical properties, graphene based transparent electrodes have shown several applications in organic light emitting diodes, solar cells and thin film transistors. Here, we are presenting effect of annealing over optoelectronic properties of graphene based transparent electrodes. Graphene based transparent electrodes have been prepared by wet chemical approach over glass substrates. After fabrication, these electrodes tested for optical transmittance in visible region. Sheet resistance was measured using four probe method. Effect of thermal annealing at 200 °C was studied over optical and electrical performance of these electrodes. Optoelectronic performance was judged from ratio of direct current conductivity to optical conductivity (σdc/σopt) as a figure of merit for transparent conductors. The fabricated electrodes display good optical and electrical properties. Such electrodes can be alternatives for doped metal oxide based transparent electrodes.
NASA Astrophysics Data System (ADS)
Narayanan, Ananthakrishnan; Thakur, Mrinal
2009-03-01
Quadratic electro-optic effect in a novel nonconjugated conductive polymer, iodine-doped polynorbornene has been measured using field-induced birefringence at 633 nm. The electrical conductivity^1 of polynorbornene increases by twelve orders of magnitude to about 0.01 S/cm upon doping with iodine. The electro-optic measurement has been made in a film doped at the medium doping-level. The electro-optic modulation signal was recorded using a lock-in amplifier for various applied ac voltages (4 kHz) and the quadratic dependence of the modulation on the applied voltage was observed. A modulation of about 0.01% was observed for an applied electric field of 3 V/micron for a 100 nm thick film The Kerr coefficient as determined is about 1.77x10-11m/V^2. This exceptionally large quadratic electro-optic effect has been attributed to the confinement of this charge-transfer system within a sub-nanometer dimension. 1. A. Narayanan, A. Palthi and M. Thakur, J. Macromol. Sci. -- PAC, accepted.
We present a simple approach to estimating ground-level fine particle (PM2.5, particles smaller than 2.5 um in diameter) concentration using global atmospheric chemistry models and aerosol optical thickness (AOT) measurements from the Multi- angle Imaging SpectroRadiometer (MISR)...
NASA Astrophysics Data System (ADS)
Behzad, Somayeh
2017-06-01
The full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory has been used to study effects of strain and thickness on the electronic and optical properties of two-dimensional GaN. The band gap of monolayer and bilayer GaN under compressive in-plane strain change from indirect to direct with bond length shortening. Also, the semiconductor to semimetal transition occurs for monolayer and bilayer GaN under in-plane tensile strain with bond length elongation. It is found that the tensile and compressive strains cause the red and blue shifts in the optical spectra, respectively, for both monolayer and bilayer GaN. Applying the perpendicular strain on the bilayer GaN by decreasing the inter layer distance leads to the shift of valence band maximum towards the Γ point in the band structure and shift of peak positions and variation of peak intensities in ε2(ω) spectrum. The results show that the n-layer GaN has an indirect band gap for n < 16. The results suggest that monolayer and multilayer GaN are good candidates for application in optoelectronics and flexible electronics.
Polishability of thin electrolytic and electroless NiP layers
NASA Astrophysics Data System (ADS)
Kinast, Jan; Beier, Matthias; Gebhardt, Andreas; Risse, Stefan; Tünnermann, Andreas
2015-10-01
Ultra-precise metal optics are key components of sophisticated scientific instrumentation in astronomy and space applications, covering a wide spectral range. Especially for applications in the visible or ultra-violet spectral ranges, a low roughness of the optics is required. Therefore, a polishable surface is necessary. State of the art is an amorphous nickel-phosphorus (NiP) layer, which enables several polishing techniques achieving a roughness of <1 nm RMS. Typically, these layers are approximately 30 μm to 60 μm thick. Deposited on Al6061, the bimetallic effect leads to a restricted operational temperature, caused by different coefficients of thermal expansion of Al6061 and NiP. Thinner NiP layers reduce the bimetallic effect. Hence, the possible operating temperature range. A deterministic shape correction via Magnetorheological Finishing of the substrate Al6061 leads to low shape deviations prior to the NiP deposition. This allows for depositing thin NiP-layers, which are polishable via a chemical mechanical polishing technique aiming at ultra-precise metal optics. The present article shows deposition processes and polishability of electroless and electrolytic NiP layers with thicknesses between 1 μm and 10 μm.
Chirped quantum cascade laser induced rapid passage signatures in an optically thick gas
NASA Astrophysics Data System (ADS)
Northern, J. H.; Ritchie, G. A. D.; Smakman, E. P.; van Helden, J. H.; Walker, R. J.; Duxbury, G.
2011-01-01
We report observations of rapid passage signals induced in samples of N2O and CH4 present in a multipass cell with an optical path length of 5 m. The effect of laser power and chirp rate upon the signals has been studied by utilising two different chirped quantum cascade lasers operating around 8 μm. The rapid passage signals exhibit an increasing delay in the switch from absorption to emission as a function of increased gas pressure (up to 8 Torr of gas). By comparing a selection of transitions in N2O and CH4, we show that, unlike ammonia, this `pressure shift' is independent of the transition dipole moment, spectroscopic branch probed and laser chirp rate. As the transition dipole moment is much larger in nitrous oxide than methane, we believe that this indicates that N2O-N2O collisions are more efficient at removing coherence from the polarised sample than CH4-CH4 collisions. We have also observed this pressure shift in a short path length of 40 cm, although with a much reduced value, indicating that propagation effects are important in this optically thick minimally damped system.
MULTIPLICITY OF NOVA ENVELOPE SOLUTIONS AND OCCURRENCE OF OPTICALLY THICK WINDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Mariko; Hachisu, Izumi
2009-07-10
We revisit the occurrence condition of optically thick winds reported by Kato in 1985 and Kato and Hachisu in 1989 who mathematically examined nova envelope solutions with an old opacity and found that optically thick winds are accelerated only in massive white dwarfs (WDs) of {approx}>0.9 M{sub sun}. With the OPAL opacity we find that the optically thick wind occurs for {approx}>0.6 M{sub sun} WDs and that the occurrence of winds depends not only on the WD mass but also on the ignition mass. When the ignition mass is larger than a critical value, winds are suppressed by a density-inversionmore » layer. Such a static solution can be realized in WDs of mass {approx}0.6-0.7 M{sub sun}. We propose that sequences consisting only of static solutions correspond to slow evolutions in symbiotic novae like PU Vul because PU Vul shows no indication of strong winds in a long-lasted flat peak followed by a very slow decline in its light curve.« less
NASA Astrophysics Data System (ADS)
Prepelita, P.; Filipescu, M.; Stavarache, I.; Garoi, F.; Craciun, D.
2017-12-01
Using a fast and eco-friendly deposition method, ITO thin films with different thicknesses (0.5 μm-0.7 μm) were deposited on glass substrates by radio frequency magnetron sputtering technique. A comparative analysis of these oxide films was then carried out. AFM investigations showed that the deposited films were smooth, uniform and having a surface roughness smaller than 10 nm. X-ray diffraction investigations showed that all samples were polycrystalline and the grain sizes of the films, corresponding to (222) cubic reflection, were found to increase with the increasing film thickness. The optical properties, evaluated by UV-VIS-NIR (190-3000 nm) spectrophotometer, evidenced that the obtained thin films were highly transparent, with a transmission coefficient between 90 and 96%, depending on the film thickness. Various methods (Swanepoel and Drude) were employed to appreciate the optimal behaviour of transparent oxide films, in determining the dielectric optical parameters and refractive index dispersion for ITO films exhibiting interference patterns in the optical transmission spectra. The electrical conductivity also increased as the film thickness increased.
NASA Astrophysics Data System (ADS)
Stadnyk, V. Yo.; Andriyevsky, B. V.; Gaba, V. M.; Kogut, Z. A.
2016-06-01
Temperature dependences of optical path difference δΔi and the relative changes in thickness δ l i/ l of TGS crystals doped with L-valine are studied. Temperature dependences of the relative changes in refractive indices δ n i/( n-1) are calculated. The anisotropy coefficients of refractive indices An-1(T) and linear expansion Aα(T) are calculated, and a characteristic minimum of these dependences is found near the phase transition temperature.
Karalezli, Aylin; Eroglu, Fatma Corak; Kivanc, Tulay; Dogan, Rusina
2014-01-01
AIM To assess choroidal thickness in patients with severe obstructive sleep apnea syndrome (OSAS) and compare them with healthy controls, using spectral domain optical coherence tomography (OCT). METHODS In this observational, cross-sectional study, choroidal thicknesses of 23 newly severe OSAS patients and 23 body mass index- age- and sex-matched healthy subjects were measured using a high-speed, high-resolution frequency domain-OCT device (λ=840 nm, 26000 A-scans/s, 5 µm axial resolution). All patients underwent a complete ophthalmic examination before the measurements. OCT measurements were taken at the same time of day (9:00 a.m.), in order to minimize the effects of diurnal variation. RESULTS There was a statistically significant difference in median choroidal thickness between the OSAS patients (201 µm; range 145-237 µm) and the controls (324 µm; range 296-383 µm; P<0.001). There were significant differences at all measurement points (P<0.001 for all). The apnea-hypopnea index (AHI) values were more than 30 in all OSAS patients and the mean AHI was 48.57±6.54. The interexaminer intraclass correlation coefficient (ICC) for the mean choroidal thickness was 0.938 (95%CI, 0.908-0.985) and ICC was greater than 0.90 for all measurement points. CONCLUSION The decreased choroidal thickness of patients with severe OSAS might be related to the the autonomic disregulation associated with this disease. Further studies are needed to evaluate the etiopathologic relationship between choroidal thickness and OSAS. PMID:25540760
Vukusic, P.; Kelly, R.; Hooper, I.
2008-01-01
Broadband optical reflectors generally function through coherent scattering from systems comprising one of three designs: overlapped; chirped; or chaotic multilayer reflectors. For each, the requirement to scatter a broad band of wavelengths is met through the presence of a variation in nanostructural periodicity running perpendicular to the systems' outer surfaces. Consequently, the requisite total thickness of the multilayer can often be in excess of 50 μm. Here, we report the discovery and the microwave-assisted characterization of a natural system that achieves excellent optical broadband reflectivity but that is less than 1 μm thick. This system, found on the wing scales of the butterfly Argyrophorus argenteus, comprises a distinctive variation in periodicity that runs parallel to the reflecting surface, rather than perpendicular to it. In this way, the requirement for an extensively thick system is removed. PMID:19042180
(012)-cut chalcopyrite ZnGeP2 as a high-bandwidth terahertz electro-optic detection crystal
NASA Astrophysics Data System (ADS)
Carnio, B. N.; Greig, S. R.; Firby, C. J.; Zawilski, K. T.; Schunemann, P. G.; Elezzabi, A. Y.
2017-02-01
The detection properties of a chalcopyrite zinc germanium diphosphide (ZnGeP2, ZGP) electro-optic (EO) crystal, having thickness of 1080 μm and cut along the <012> plane, is studied in the terahertz (THz) frequency range. Outstanding phase matching is achieved between the optical probe pulse and the THz frequency components, leading to a large EO detection bandwidth. ZGP has the ability to measure frequencies that are 1.3 and 1.2 times greater than that of ZnTe for crystal thicknesses of 1080 and 500 μm, respectively. Furthermore, the ZGP crystal is able to detect frequency components that are >=4.6 times larger than both ZnSe and GaP (for crystal thicknesses of 1080 μm) and >=2.2 times larger than ZnSe and GaP (for crystal thicknesses of 500 μm).
Magneto-optical microcavity with Au plasmonic layer
NASA Astrophysics Data System (ADS)
Mikhailova, T. V.; Lyashko, S. D.; Tomilin, S. V.; Karavainikov, A. V.; Prokopov, A. R.; Shaposhnikov, A. N.; Berzhansky, V. N.
2017-11-01
Optical and Faraday rotation spectra of magneto-optical microcavity coated with Au plasmonic layer of gradient thickness were investigated theoretically and experimentally. It was shown that the Tamm plasmon-polaritons mode forms near the long-wavelength edge of photonic band gap. The presence of Au coating of thickness of 90.4 nm increase the Faraday rotation at Tamm plasmon-polaritons and cavity resonances in 1.3 and 7 times, respectively. By transfer matrix method it were found that the incorporation of SiO2 buffer layer with a thickness in the range from 155 to 180 nm between microcavity and Au coating leads to the strong coupling between cavity mode and Tamm plasmon-polaritons. In this case, one or two resonances arise in the vicinity of the cavity mode depending on the thickness of plasmonic layer. The Faraday rotation for coupled mode in twice less than the value of rotation for single cavity mode.
NASA Astrophysics Data System (ADS)
Li, Zhongjun; Chen, Shi; Sun, Jiuyu; Li, Xingxing; Qiu, Huaili; Yang, Jinlong
2018-02-01
Coupling interaction between the bottom and top surface electronic states and the influence on transport and optical properties of Bi2Se3 thin films with 1-8 quintuple layers (QLs) have been investigated by first principles calculations. Obvious spatial and thickness dependences of coupling interaction are found by analyzing hybridization of two surface states. In the thin film with a certain thickness, from the outer to inner atomic layers, the coupling interaction exhibits an increasing trend. On the other hand, as thickness increases, the coupling interaction shows a disproportionate decrease trend. Moreover, the system with 3 QLs exhibits stronger interaction than that with 2 QLs. The presence of coupling interaction would suppress destructive interference of surface states and enhance resistance in various degrees. In view of the inversely proportional relation to transport channel width, the resistance of thin films should show disproportionate thickness dependence. This prediction is qualitatively consistent with the transport measurements at low temperature. Furthermore, the optical properties also exhibit obvious thickness dependence. Especially as the thickness increases, the coupling interaction results in red and blue shifts of the multiple-peak structures in low and high energy regions of imaginary dielectric function, respectively. The red shift trend is in agreement with the recent experimental observation and the blue shift is firstly predicted by the present calculation. The present results give a concrete understanding of transport and optical properties in devices based on Bi2Se3 thin films with few QLs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alsultany, Forat H., E-mail: foratusm@gmail.com; Ahmed, Naser M.; Hassan, Z.
A seed/catalyst-free growth of ZnO nanowires (ZnO-NWs) on a glass substrate were successfully fabricated using thermal evaporation technique. These nanowires were grown on ITO seed layers of different thicknesses of 25 and 75 nm, which were deposited on glass substrates by radio frequency (RF) magnetron sputtering. Prior to synthesized ITO nanowires, the sputtered ITO seeds were annealed using the continuous wave (CW) CO2 laser at 450 °C in air for 15 min. The effect of seed layer thickness on the morphological, structural, and optical properties of ZnO-NWs were systematically investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM),more » and UV-Vis spectrophotometer.« less
NASA Astrophysics Data System (ADS)
Ali, H. M.; Mohamed, H. A.; Mohamed, S. H.
2005-08-01
Indium tin oxide (ITO) is widely utilized in numerous industrial applications due to its unique combined properties of transparency to visible light and electrical conductivity. ITO films were deposited on glass substrates by an electron beam evaporation technique at room temperature from bulk samples, with different thicknesses. The film with 1500 Å thick was selected to perform annealing in the temperature range of 200 400 °C and annealing for varying times from 15 to 120 min at 400 °C. The X-ray diffraction of the films was analyzed in order to investigate its dependence on thickness, and annealing. Electrical and optical measurements were also carried out. Transmittance, optical energy gap, refractive index, carrier concentration, thermal emissivity and resistivity were investigated. It was found that the as-deposited films with different thicknesses were highly absorbing and have relatively poor electrical properties. The films become opaque with increasing the film thickness. After thermal annealing, the resistance decreases and a simultaneous variation in the optical transmission occurs. A transmittance value of 85.5% in the IR region and 82% in the visible region of the spectrum and a resistivity of 2.8 × 10-4 Ω Cm were obtained at annealing temperature of 400 °C for 120 min.
Investigation of Electrical and Optical Properties of Highly Transparent TCO/Ag/TCO Multilayer.
Kim, Sunbo; Lee, Jaehyeong; Dao, Vinh Ai; Ahn, Shihyun; Hussain, Shahzada Qamar; Park, Jinjoo; Jung, Junhee; Lee, Chan; Song, Bong-Shik; Choi, Byoungdeog; Lee, Youn-Jung; Iftiquar, S M; Yi, Junsin
2015-03-01
Transparent conductive oxides (TCOs) have been widely used as transparent electrodes for opto-electronic devices, such as solar cells, flat-panel displays, and light-emitting diodes, because of their unique characteristics of high optical transmittance and low electrical resistivity. Among various TCO materials, zinc oxide based films have recently received much attention because they have advantages over commonly used indium and tin-based oxide films. Most TCO films, however, exhibit valleys of transmittance in the wavelength range of 550-700 nm, lowering the average transmittance in the visible region and decreasing short-circuit current (Isc) of solar cells. A TCO/Ag/TCO multi-layer structure has emerged as an attractive alternative because it provides optical characteristics without the valley of transmittance compared with a 100-nm-thick single-layer TCO. In this article, we report the electrical, optical and surface properties of TCO/Ag/TCO. These multi-layers were deposited at room temperature with various Ag film thicknesses from 5 to 15 nm while the thickness of TCO thin film was fixed at 40 nm. The TCO/Ag/TCO multi-layer with a 10-nm-thick Ag film showed optimum transmittance in the visible (400-800 nm) wavelength region. These multi-layer structures have advantages over TCO layers of the same thickness.
NASA Astrophysics Data System (ADS)
Kuzmanoski, M.; Box, M.; Box, G. P.; Schmidt, B.; Russell, P. B.; Redemann, J.; Livingston, J. M.; Wang, J.; Flagan, R. C.; Seinfeld, J. H.
2002-12-01
As part of the ACE-Asia experiment, conducted off the coast of China, Korea and Japan in spring 2001, measurements of aerosol physical, chemical and radiative characteristics were performed aboard the Twin Otter aircraft. Of particular importance for this paper were spectral measurements of aerosol optical thickness obtained at 13 discrete wavelengths, within 354-1558 nm wavelength range, using the AATS-14 sunphotometer. Spectral aerosol optical thickness can be used to obtain information about particle size distribution. In this paper, we use sunphotometer measurements to retrieve size distribution of aerosols during ACE-Asia. We focus on four cases in which layers influenced by different air masses were identified. Aerosol optical thickness of each layer was inverted using two different techniques - constrained linear inversion and multimodal. In the constrained linear inversion algorithm no assumption about the mathematical form of the distribution to be retrieved is made. Conversely, the multimodal technique assumes that aerosol size distribution is represented as a linear combination of few lognormal modes with predefined values of mode radii and geometric standard deviations. Amplitudes of modes are varied to obtain best fit of sum of optical thicknesses due to individual modes to sunphotometer measurements. In this paper we compare the results of these two retrieval methods. In addition, we present comparisons of retrieved size distributions with in situ measurements taken using an aerodynamic particle sizer and differential mobility analyzer system aboard the Twin Otter aircraft.
Influence of corneal hydration on optical coherence elastography
NASA Astrophysics Data System (ADS)
Twa, Michael D.; Vantipalli, Srilatha; Singh, Manmohan; Li, Jiasong; Larin, Kirill V.
2016-03-01
Corneal biomechanical properties are influenced by several factors, including intraocular pressure, corneal thickness, and viscoelastic responses. Corneal thickness is directly proportional to tissue hydration and can influence corneal stiffness, but there is no consensus on the magnitude or direction of this effect. We evaluated the influence of corneal hydration on dynamic surface deformation responses using optical coherence elastography (OCE). Fresh rabbit eyes (n=10) were prepared by removing the corneal epithelium and dropping with 0.9% saline every 5 minutes for 1 hour, followed by 20% dextran solution every 5 minutes for one hour. Corneal thickness was determined from structural OCT imaging and OCE measurements were performed at baseline and every 20 minutes thereafter. Micron-scale deformations were induced at the apex of the corneal tissue using a spatially-focused (150μm) short-duration (<1ms) air-pulse delivery system. These dynamic tissue responses were measured non-invasively with a phase-stabilized swept source OCT system. The tissue surface deformation response (Relaxation Rate: RR) was quantified as the time constant, over which stimulated tissue recovered from the maximum deformation amplitude. Elastic wave group velocity (GV) was also quantified and correlated with change in corneal thickness due to hydration process. Corneal thickness rapidly increased and remained constant following epithelium removal and changed little thereafter. Likewise, corneal stiffness changed little over the first hour and then decreased sharply after Dextran application (thickness: -46% [-315/682 μm] RR: - 24% [-0.7/2.88 ms-1]; GV: -19% [-0.6/3.2 m/s]). Corneal thickness and corneal stiffness (RR) were well correlated (R2 = .66). Corneal biomechanical properties are highly correlated with tissue hydration over a wide range of corneal thickness and these changes in corneal stiffness are quantifiable using OCE.
Optical properties and light irradiance of monolithic zirconia at variable thicknesses.
Sulaiman, Taiseer A; Abdulmajeed, Aous A; Donovan, Terrence E; Ritter, André V; Vallittu, Pekka K; Närhi, Timo O; Lassila, Lippo V
2015-10-01
The aims of this study were to: (1) estimate the effect of polishing on the surface gloss of monolithic zirconia, (2) measure and compare the translucency of monolithic zirconia at variable thicknesses, and (3) determine the effect of zirconia thickness on irradiance and total irradiant energy. Four monolithic partially stabilized zirconia (PSZ) brands; Prettau® (PRT, Zirkonzahn), Bruxzir® (BRX, Glidewell), Zenostar® (ZEN, Wieland), Katana® (KAT, Noritake), and one fully stabilized zirconia (FSZ); Prettau Anterior® (PRTA, Zirkonzahn) were used to fabricate specimens (n=5/subgroup) with different thicknesses (0.5, 0.7, 1.0, 1.2, 1.5, and 2.0mm). Zirconia core material ICE® Zircon (ICE, Zirkonzahn) was used as a control. Surface gloss and translucency were evaluated using a reflection spectrophotometer. Irradiance and total irradiant energy transmitted through each specimen was quantified using MARC® Resin Calibrator. All specimens were then subjected to a standardized polishing method and the surface gloss, translucency, irradiance, and total irradiant energy measurements were repeated. Statistical analysis was performed using two-way ANOVA and post-hoc Tukey's tests (p<0.05). Surface gloss was significantly affected by polishing (p<0.05), regardless of brand and thickness. Translucency values ranged from 5.65 to 20.40 before polishing and 5.10 to 19.95 after polishing. The ranking from least to highest translucent (after polish) was: BRX=ICE=PRT
[Macula study in Stargardt's disease].
Maia, Otacílio de Oliveira; Takahashi, Walter Yukihiko; Arantes, Tiago Eugênio Faria e; Barreto, Raquel Barbosa Paes; Andrade Neto, João Lins de
2008-01-01
To evaluate de macular structural damage in Stargardt's disease by optical coherence tomography, correlating with visual acuity and disease duration. Patients with Stargardt's disease were included and submitted to visual acuity (logMAR) measurement and complementary examinations performed were color fundus photographs, fluorescein angiography and optical coherence tomography. All cases were reexamined for diagnostic confirmation and the duration of symptoms was determined. The control group was composed of the same number of subjects, matched by sex and age, without any ophthalmologic alteration. The sample was composed of 22 patients (44 eyes) with Stargardt's disease, 11 (50%) males and 11 (50%) females. The duration of the disease varied from 3 to 21 years (mean of 11.4 +/- 5.3 years). The groups did not show significant differences in age (p= 0.98) and sex. Concerning the macular thickness in optical coherence tomography, the variation in the study group differed significantly from the control group, presenting smaller values of thickness (p<0.001). There was negative and significant correlation between the duration of disease and the macular thickness assessed by optical coherence tomography (r=-0.57 and p=0.005). There was positive correlation between the duration of the disease and the visual acuity (r=0.50 and p=0.0167) and negative correlation between the visual acuity and the macular thickness in optical coherence tomography (r=-0.83 and p=0.0001). It was evidenced that patients with Stargardt's disease have a thinner macular thickness when compared to normal subjects, and this reduction is related to the duration of symptoms of the disease. Additionally, the thickness and also the duration of the disease influence the visual prognosis of the patients.
Bassi, Shikha Talwar; Mohana, Kuppuswamy Parthasarthy
2014-01-01
Aim: To compare the spectral domain optical coherence tomography (SD-OCT) findings of the optic disc and the peripapillary retina of patients with a true papilledema and pseudopapilledema with and without optic nerve head drusen (ONHD). Study Design: Retrospective Case Control Study. Subjects and Methods: Peripapillary retinal nerve fiber layer (PPRNFL) thickness as depicted by SD-OCT of 94 eyes of 66 patients with papilledema (30 eyes), pseudopapiledema (31 eyes), and normal controls (33 eyes) was analyzed. The mean RNFL thickness, total retinal thickness (TRT) at a superior and inferior edge of the disc and the quadrant wise topography of increased RNFL were compared in all three groups. Sensitivity, specificity, and area under the receiver operating characteristic curve (AROC) were calculated for all the parameters. Results: The median RNFL thickness was 185.4 (129.5–349.3 μm), 122.3 (109–156.3 μm) and 91.62 ± 7 μm in papilledema, pseudopapilledema, and controls, respectively. Papilledema group had thicker PPRNFL in all quadrants except temporal quadrant. TRT was thicker in papilledema and pseudopapilledema compared to controls. ONHD could be directly visualized as high reflective clumps in the sub-retinal space or the RNFL in 30 eyes. Increased RNFL thickness in all four quadrants was noted 43.3% in papilledema and 9.7% in pseudopapilledema. Normal RNFL thickness in all four quadrants was noted in 0% in papilledema and 32.3% in pseudopapilledema. Nasal RNFL had the highest AROC (0.792) indicating high diagnostic ability to differentiate papilledema from pseudopapilledema. Conclusion: SD-OCT can be used as a tool to differentiate between papilledema and pseudopapilledema. PMID:25579359
NASA Technical Reports Server (NTRS)
Fauchez, T.; Platnick, S.; Meyer, K.; Sourdeval, O.; Cornet, C.; Zhang, Z.; Szczap, F.
2016-01-01
This study presents preliminary results on the effect of cirrus heterogeneities on top-of-atmosphere (TOA) simulated radiances or reflectances for MODIS channels centered at 0.86, 2.21, 8.56, 11.01 and 12.03 micrometers , and on cloud optical properties retrieved with a research-level optimal estimation method (OEM). Synthetic cirrus cloud fields are generated using a 3D cloud generator (3DCLOUD) and radiances/reflectances are simulated using a 3D radiative transfer code (3DMCPOL). We find significant differences between the heterogeneity effects on either visible and near-infrared (VNIR) or thermal infrared (TIR) radiances. However, when both wavelength ranges are combined, heterogeneity effects are dominated by the VNIR horizontal radiative transport effect. As a result, small optical thicknesses are overestimated and large ones are underestimated. Retrieved effective diameter are found to be slightly affected, contrarily to retrievals using TIR channels only.
Cao, Ya-nan; Wei, He-li; Dai, Cong-ming; Zhang, Xue-hai
2015-05-01
A study was carried out to retrieve optical thickness and cloud top height of cirrus clouds from the Atmospheric Infrared Sounder (AIRS) high spectral resolution data in 1070~1135 cm-1 IR band using a Combined Atmospheric Radiative Transfer model (CART) by brightness temperature difference between model simulation and AIRS observation. The research is based on AIRS LIB high spectral infrared observation data combined with Moderate Resolution Imaging Spectroradiometer (MODIS) cloud product data. Brightness temperature spectra based, on the retrieved cirrus optical thickness and cloud top height were simulated and compared with brightness temperature spectra of AIRS observation in the 650~1150 cm-1 band. The cirrus optical thickness and cloud top height retrieved were compared with brightness temperature of AIRS for channel 760 (900.56 cm-1, 11. 1 µm) and cirrus reflectance of MODIS cloud product. And cloud top height retrieved was compared with cloud top height from MODIS. Results show that the brightness temperature spectra simulated were basically consistent with AIRS observation under the condition of retrieval in the 650~1150 cm-1 band. It means that CART can be used to simulate AIRS brightness temperature spectra. The retrieved cirrus parameters are consistent with brightness temperature of AIRS for channel 11. 1 µm with low brightness temperature corresponding to large cirrus optical thickness and high cloud top height. And the retrieved cirrus parameters are consistent with cirrus reflectance of MODIS cloud product with high cirrus reflectance corresponding to large cirrus optical thickness and high cloud top height. Correlation coefficient of brightness temperature between retrieved cloud top height and MODIS cloud top height was relatively high. They are mostly located in the range of 8. 5~11.5 km, and their probability distribution trend is approximately identical. CART model is feasible to retrieve cirrus properties, and the retrieval is reliable.
Kattawar, G W; Plass, G N; Hitzfelder, S J
1976-03-01
The complete radiation field including polarization is calculated by the matrix operator method for scattering layers of various optical thicknesses. Results obtained for Rayleigh scattering are compared with those for scattering from a continental haze. Radiances calculated using Stokes vectors show differences as large as 23% compared to the approximate scalar theory of radiative transfer, while the same differences are only of the order of 0.1% for a continental haze phase function. The polarization of the reflected and transmitted radiation is given for a wide range of optical thicknesses of the scattering layer, for various solar zenith angles, and various surface albedos. Two entirely different types of neutral points occur for aerosol phase functions. Rayleigh-like neutral points (RNP) arise from the zero polarization in single scattering that occurs for all phase functions at scattering angles of 0 degrees and 180 degrees . For Rayleigh phase functions, the position of the RNP varies appreciably with the optical thickness of the scattering layer. At low solar elevations there may be four RNP. For a continental haze phase function the position of the RNP in the reflected radiation shows only a small variation with the optical thickness, and the RNP exists in the transmitted radiation only for extremely small optical thicknesses. Another type of neutral point (NRNP) exists for aerosol phase functions. It is associated with the zeros of the single scattered polarization, which occur between the end points of the curve; these are called non-Rayleigh neutral points (NRNP). There may be from zero to four of these neutral points associated with each zero of the single scattering curve. They occur over a range of azimuthal angles, unlike the RNP that are in the principal plane only. The position of these neutral points is given as a function of solar angle and optical thickness.
Combinatorial screening of organic electronic materials: thin film stability
NASA Astrophysics Data System (ADS)
Chattopadhyay, Santanu; Carson Meredith, J.
2005-01-01
Dewetting of thin polymeric semiconducting-insulating (and conducting-insulating) bilayers is a serious fundamental problem facing the fabrication of organic electronic devices such as transistors, light-emitting diodes and supercapacitors. This paper describes a high-throughput characterization method that utilizes orthogonal thickness-gradient libraries of the bilayer components poly(3-octylthiophene) (semiconductor) and poly(styrene) (insulator). The technique allows simultaneous observation of hundreds of combinations of thicknesses and has permitted rapid discovery of a previously-unknown VDW instability transition. We observe that the onset of VDW instability in the PS-P3OT bilayer is a complex function of P3OT thickness that cannot be predicted by Hamaker constant models for free energy. At low P3OT thickness, the semiconductor acts to stabilize the PS insulator. But above a P3OT thickness of 175 nm, this behaviour is switched and P3OT destabilizes the PS. These thickness-dependent effects are correlated very well with dramatic transitions in P3OT optical spectra and the P3OT-AFM tip interaction forces. This unusual behaviour places critical limitations on practical device thicknesses and interfacial combinations, and points to the need for a thin-film stability theory that accounts for thickness-dependent molecular-electronic effects.
Chiral photonic crystals with an anisotropic defect layer.
Gevorgyan, A H; Harutyunyan, M Z
2007-09-01
In the present paper we consider some properties of defect modes in chiral photonic crystals with an anisotropic defect layer. We solved the problem by Ambartsumian's layer addition method. We investigated the influence of the defect layer thickness variation and its location in the chiral photonic crystal (CPC) and also its optical axes orientation, as well as of CPC thickness variation on defect mode properties. Variations of the optical thickness of the defect layer have its impact on the defect mode linewidth and the light accumulation in the defect. We obtain that CPCs lose their base property at certain defect layer thicknesses; namely, they lose their diffraction reflection dependence on light polarization. We also show that the circular polarization handedness changes from right-handed to left-handed if the defect layer location is changed, and therefore, such systems can be used to create sources of elliptically polarized light with tunable ellipticity. Some nonreciprocity properties of such systems are investigated, too. In particular, it is also shown that such a system can work as a practically ideal wide band optical diode for circularly polarized incident light provided the defect layer thickness is properly chosen, and it can work as a narrow band diode at small defect layer thicknesses.
NASA Technical Reports Server (NTRS)
Jeong, Myeong-Jae; Li, Zhanqing
2010-01-01
Aerosol optical thickness (AOT) is one of aerosol parameters that can be measured on a routine basis with reasonable accuracy from Sun-photometric observations at the surface. However, AOT-derived near clouds is fraught with various real effects and artifacts, posing a big challenge for studying aerosol and cloud interactions. Recently, several studies have reported correlations between AOT and cloud cover, pointing to potential cloud contamination and the aerosol humidification effect; however, not many quantitative assessments have been made. In this study, various potential causes of apparent correlations are investigated in order to separate the real effects from the artifacts, using well-maintained observations from the Aerosol Robotic Network, Total Sky Imager, airborne nephelometer, etc., over the Southern Great Plains site operated by the U.S. Department of Energy's Atmospheric Radiation Measurement Program. It was found that aerosol humidification effects can explain about one fourth of the correlation between the cloud cover and AOT. New particle genesis, cloud-processed particles, atmospheric dynamics, and aerosol indirect effects are likely to be contributing to as much as the remaining three fourth of the relationship between cloud cover and AOT.
NASA Technical Reports Server (NTRS)
Turner, Richard M.; Jared, David A.; Sharp, Gary D.; Johnson, Kristina M.
1993-01-01
The use of 2-kHz 64 x 64 very-large-scale integrated circuit/ferroelectric-liquid-crystal electrically addressed spatial light modulators as the input and filter planes of a VanderLugt-type optical correlator is discussed. Liquid-crystal layer thickness variations that are present in the devices are analyzed, and the effects on correlator performance are investigated through computer simulations. Experimental results from the very-large-scale-integrated / ferroelectric-liquid-crystal optical-correlator system are presented and are consistent with the level of performance predicted by the simulations.
Li, Diao; Jussila, Henri; Karvonen, Lasse; Ye, Guojun; Lipsanen, Harri; Chen, Xianhui; Sun, Zhipei
2015-01-01
Black phosphorus (BP) has recently been rediscovered as a new and interesting two-dimensional material due to its unique electronic and optical properties. Here, we study the linear and nonlinear optical properties of BP flakes. We observe that both the linear and nonlinear optical properties are anisotropic and can be tuned by the film thickness in BP, completely different from other typical two-dimensional layered materials (e.g., graphene and the most studied transition metal dichalcogenides). We then use the nonlinear optical properties of BP for ultrafast (pulse duration down to ~786 fs in mode-locking) and large-energy (pulse energy up to >18 nJ in Q-switching) pulse generation in fiber lasers at the near-infrared telecommunication band ~1.5 μm. We observe that the output of our BP based pulsed lasers is linearly polarized (with a degree-of-polarization ~98% in mode-locking, >99% in Q-switching, respectively) due to the anisotropic optical property of BP. Our results underscore the relatively large optical nonlinearity of BP with unique polarization and thickness dependence, and its potential for polarized optical pulse generation, paving the way to BP based nonlinear and ultrafast photonic applications (e.g., ultrafast all-optical polarization switches/modulators, frequency converters etc.). PMID:26514090
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Weidong; Marshak, Alexander; McBride, Patrick J.
2016-12-01
We use the spectrally invariant method to study the variability of cloud optical thickness τ and droplet effective radius reff in transition zones (between the cloudy and clear sky columns) observed from Solar Spectral Flux Radiometer (SSFR) and Shortwave Array Spectroradiometer-Zenith (SASZe) during the Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign. The measurements from the SSFR and the SASZe are different, however inter-instrument differences of self-normalized measurements (divided by their own spectra at a fixed time) are small. The spectrally invariant method approximates the spectra in the cloud transition zone as a linear combination of definitely clear andmore » cloudy spectra, where the coefficients, slope and intercept, character-ize the spectrally invariant properties of the transition zone. Simulation results from the SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer) model demonstrate that (1) the slope of the visible band is positively correlated with the cloud optical thickness τ while the intercept of the near-infrared band has high negative cor-relation with the cloud drop effective radius reff even without the exact knowledge of τ; (2) the above relations hold for all Solar Zenith Angle (SZA) and for cloud-contaminated skies. In observations using redundant measure-ments from SSFR and SASZe, we find that during cloudy-to-clear transitions, (a) the slopes of the visible band de-crease, and (b) the intercepts of the near-infrared band remain almost constant near cloud edges. The findings in simulations and observations suggest that, while the optical thickness decreases during the cloudy-to-clear transition, the cloud drop effective radius does not change when cloud edges are approached. These results sup-port the hypothesis that inhomogeneous mixing dominates near cloud edges in the studied cases.« less
Yang, Weidong; Marshak, Alexander; McBride, Patrick J.; ...
2016-08-11
We use the spectrally invariant method to study the variability of cloud optical thickness τ and droplet effective radius r eff in transition zones (between the cloudy and clear sky columns) observed from Solar Spectral Flux Radiometer (SSFR) and Shortwave Array Spectroradiometer-Zenith (SASZe) during the Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign. The measurements from the SSFR and the SASZe are different, however inter-instrument differences of self-normalized measurements (divided by their own spectra at a fixed time) are small. The spectrally invariant method approximates the spectra in the cloud transition zone as a linear combination of definitely clearmore » and cloudy spectra, where the coefficients, slope and intercept, characterize the spectrally invariant properties of the transition zone. Simulation results from the SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer) model demonstrate that (1) the slope of the visible band is positively correlated with the cloud optical thickness τ while the intercept of the near-infrared band has high negative correlation with the cloud drop effective radius r eff even without the exact knowledge of τ; (2) the above relations hold for all Solar Zenith Angle (SZA) and for cloud-contaminated skies. In observations using redundant measurements from SSFR and SASZe, we find that during cloudy-to-clear transitions, (a) the slopes of the visible band decrease, and (b) the intercepts of the near-infrared band remain almost constant near cloud edges. The findings in simulations and observations suggest that, while the optical thickness decreases during the cloudy-to-clear transition, the cloud drop effective radius does not change when cloud edges are approached. Furthermore, these results support the hypothesis that inhomogeneous mixing dominates near cloud edges in the studied cases.« less
NASA Technical Reports Server (NTRS)
Yang, Weidong; Marshak, Alexander; McBride, Patrick; Chiu, J. Christine; Knyazikhin, Yuri; Schmidt, K. Sebastian; Flynn, Connor; Lewis, Ernie R.; Eloranta, Edwin W.
2016-01-01
We use the spectrally invariant method to study the variability of cloud optical thickness tau and droplet effective radius r(sub eff) in transition zones (between the cloudy and clear sky columns) observed from Solar Spectral Flux Radiometer (SSFR) and Shortwave Array Spectroradiometer-Zenith (SASZe) during the Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign. The measurements from the SSFR and the SASZe are different, however inter-instrument differences of self-normalized measurements (divided by their own spectra at a fixed time) are small. The spectrally invariant method approximates the spectra in the cloud transition zone as a linear combination of definitely clear and cloudy spectra, where the coefficients, slope and intercept, characterize the spectrally invariant properties of the transition zone. Simulation results from the SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer) model demonstrate that (1) the slope of the visible band is positively correlated with the cloud optical thickness t while the intercept of the near-infrared band has high negative correlation with the cloud drop effective radius r(sub eff)even without the exact knowledge of tau; (2) the above relations hold for all Solar Zenith Angle (SZA) and for cloud-contaminated skies. In observations using redundant measurements from SSFR and SASZe, we find that during cloudy-to-clear transitions, (a) the slopes of the visible band decrease, and (b) the intercepts of the near-infrared band remain almost constant near cloud edges. The findings in simulations and observations suggest that, while the optical thickness decreases during the cloudy-to-clear transition, the cloud drop effective radius does not change when cloud edges are approached. These results support the hypothesis that inhomogeneous mixing dominates near cloud edges in the studied cases.
NASA Astrophysics Data System (ADS)
Owocki, Stanley P.; Sundqvist, Jon O.
2018-03-01
We analyse recent 2D simulations of the non-linear evolution of the line-deshadowing instability (LDI) in hot-star winds, to quantify how the associated highly clumped density structure can lead to a `turbulent porosity' reduction in continuum absorption and/or scattering. The basic method is to examine the statistical variations of mass column as a function of path length, and fit these to analytic forms that lead to simple statistical scalings for the associated mean extinction. A key result is that one can characterize porosity effects on continuum transport in terms of a single `turbulent porosity length', found here to scale as H ≈ (fcl - 1)a, where fcl ≡ 〈ρ2〉/〈ρ〉2 is the clumping factor in density ρ, and a is the density autocorrelation length. For continuum absorption or scattering in an optically thick layer, we find the associated effective reduction in opacity scales as ˜ 1/√{1+τ_H}, where τH ≡ κρH is the local optical thickness of this porosity length. For these LDI simulations, the inferred porosity lengths are small, only about a couple per cent of the stellar radius, H ≈ 0.02R*. For continuum processes like bound-free absorption of X-rays that are only marginally optically thick throughout the full stellar wind, this implies τH ≪ 1, and thus that LDI-generated porosity should have little effect on X-ray transport in such winds. The formalism developed here could however be important for understanding the porous regulation of continuum-driven, super-Eddington outflows from luminous blue variables.
NASA Astrophysics Data System (ADS)
Vieira, E. M. F.; Toudert, J.; Rolo, A. G.; Parisini, A.; Leitão, J. P.; Correia, M. R.; Franco, N.; Alves, E.; Chahboun, A.; Martín-Sánchez, J.; Serna, R.; Gomes, M. J. M.
2017-08-01
In this work, we report on the production of regular (SiGe/SiO2)20 multilayer structures by conventional RF-magnetron sputtering, at 350 °C. Transmission electron microscopy, scanning transmission electron microscopy, raman spectroscopy, and x-ray reflectometry measurements revealed that annealing at a temperature of 1000 °C leads to the formation of SiGe nanocrystals between SiO2 thin layers with good multilayer stability. Reducing the nominal SiGe layer thickness (t SiGe) from 3.5-2 nm results in a transition from continuous SiGe crystalline layer (t SiGe ˜ 3.5 nm) to layers consisting of isolated nanocrystals (t SiGe ˜ 2 nm). Namely, in the latter case, the presence of SiGe nanocrystals ˜3-8 nm in size, is observed. Spectroscopic ellipsometry was applied to determine the evolution of the onset in the effective optical absorption, as well as the dielectric function, in SiGe multilayers as a function of the SiGe thickness. A clear blue-shift in the optical absorption is observed for t SiGe ˜ 2 nm multilayer, as a consequence of the presence of isolated nanocrystals. Furthermore, the observed near infrared values of n = 2.8 and k = 1.5 are lower than those of bulk SiGe compounds, suggesting the presence of electronic confinement effects in the nanocrystals. The low temperature (70 K) photoluminescence measurements performed on annealed SiGe/SiO2 nanostructures show an emission band located between 0.7-0.9 eV associated with the development of interface states between the formed nanocrystals and surrounding amorphous matrix.
A design study for an advanced ocean color scanner system. [spaceborne equipment
NASA Technical Reports Server (NTRS)
Kim, H. H.; Fraser, R. S.; Thompson, L. L.; Bahethi, O.
1980-01-01
Along with a colorimetric data analysis scheme, the instrumental parameters which need to be optimized in future spaceborne ocean color scanner systems are outlined. With regard to assessing atmospheric effects from ocean colorimetry, attention is given to computing size parameters of the aerosols in the atmosphere, total optical depth measurement, and the aerosol optical thickness. It is suggested that sensors based on the use of linear array technology will meet hardware objectives.
NASA Astrophysics Data System (ADS)
Hasani, Ebrahim; Raoufi, Davood
2018-04-01
Thermal evaporation is one of the promising methods for depositing CdTe thin films, which can obtain the thin films with the small thickness. In this work, CdTe nanoparticles have deposited on SiO2 substrates such as quartz (crystal) and glass (amorphous) at a temperature (Ts) of 150 °C under a vacuum pressure of 2 × 10‑5 mbar. The thickness of CdTe thin films prepared under vacuum pressure is 100 nm. X-ray diffraction analysis (XRD) results showed the formation of CdTe cubic phase with a strong preferential orientation of (111) crystalline plane on both substrates. The grain size (D) in this orientation obtained about 7.41 and 5.48 nm for quartz and glass respectively. Ultraviolet-visible spectroscopy (UV–vis) measurements indicated the optical band gap about 1.5 and 1.52 eV for CdTe thin films deposited on quartz and glass respectively. Furthermore, to show the effect of annealing temperature on structure and optical properties of CdTe thin films on quartz and glass substrates, the thin films have been annealed at temperatures 50 and 70 °C for one hour. The results of this work indicate that the structure’s parameters and optical properties of CdTe thin films change due to increase in annealing temperature.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Hubanks, Paul; Pincus, Robert
2006-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. It achieved its final orbit and began Earth observations on February 24, 2000 for Terra and June 24, 2002 for Aqua. A comprehensive set of operational algorithms for the retrieval of cloud physical and optical properties (optical thickness, effective particle radius, water path, thermodynamic phase) have recently been updated and are being used in the new "Collection 5" processing stream being produced by the MODIS Adaptive Processing System (MODAPS) at NASA GSFC. All Terra and Aqua data are undergoing Collection 5 reprocessing with an expected completion date by the end of 2006. The archived products from these algorithms include 1 km pixel-level (Level-2) and global gridded Level-3 products. The cloud products have applications in climate change studies, climate modeling, numerical weather prediction, as well as fundamental atmospheric research. In this talk, we will summarize the available Level-3 cloud properties and their associated statistical data sets, and show preliminary Terra and Aqua results from the available Collection 5 reprocessing effort. Anticipated results include the latitudinal distribution of cloud optical and radiative properties for both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the world.
LASE measurements of aerosols and water vapor during TARFOX
NASA Technical Reports Server (NTRS)
Ferrare, Richard A.; Ismail, Syed; Browell, Edward V.; Brackett, Vincent G.; Kooi, Susan A.; Clayton, Marian B.; Melfi, Harvey; Whiteman, David N.; Schwenner, Geary; Evans, Keith D.;
1998-01-01
The TARFOX (Tropospheric Aerosol Radiative Forcing Observational Experiment) intensive field campaign was designed to reduce uncertainties in estimates of the effects of anthropogenic aerosols on climate by measuring direct radiative effects and the optical, physical, and chemical properties of aerosols [1]. TARFOX was conducted off the East Coast of the United States between July 10-31, 1996. Ground, aircraft, and satellite-based sensors measured the sensitivity of radiative fields at various atmospheric levels to aerosol optical properties (i.e., optical thickness, phase function, single-scattering albedo) and to the vertical profile of aerosols. The LASE (Lidar Atmospheric Sensing Experiment) instrument, which was flown on the NASA ER-2 aircraft, measured vertical profiles of total scattering ratio and water vapor during a series of 9 flights. These profiles were used in real-time to help direct the other aircraft to the appropriate altitudes for intensive sampling of aerosol layers. We have subsequently used the LASE aerosol data to derive aerosol backscattering and extinction profiles. Using these aerosol extinction profiles, we derived estimates of aerosol optical thickness (AOT) and compared these with measurements of AOT from both ground and airborne sun photometers and derived from the ATSR-2 (Along Track and Scanning Radiometer 2) sensor on ERS-2 (European Remote Sensing Satellite-2). We also used the water vapor mixing ratio profiles measured simultaneously by LASE to derive precipitable water vapor and compare these to ground based measurements.
African Descent and Glaucoma Evaluation Study (ADAGES)
Girkin, Christopher A.; Sample, Pamela A.; Liebmann, Jeffrey M.; Jain, Sonia; Bowd, Christopher; Becerra, Lida M.; Medeiros, Felipe A.; Racette, Lyne; Dirkes, Keri A.; Weinreb, Robert N.; Zangwill, Linda M.
2010-01-01
Objective To define differences in optic disc, retinal nerve fiber layer, and macular structure between healthy participants of African (AD) and European descent (ED) using quantitative imaging techniques in the African Descent and Glaucoma Evaluation Study (ADAGES). Methods Reliable images were obtained using stereoscopic photography, confocal scanning laser ophthalmoscopy (Heidelberg retina tomography [HRT]), and optical coherence tomography (OCT) for 648 healthy subjects in ADAGES. Findings were compared and adjusted for age, optic disc area, and reference plane height where appropriate. Results The AD participants had significantly greater optic disc area on HRT (2.06 mm2; P<.001) and OCT (2.47 mm2; P<.001) and a deeper HRT cup depth than the ED group (P<.001). Retinal nerve fiber layer thickness was greater in the AD group except within the temporal region, where it was significantly thinner. Central macular thickness and volume were less in the AD group. Conclusions Most of the variations in optic nerve morphologic characteristics between the AD and ED groups are due to differences in disc area. However, differences remain in HRT cup depth, OCT macular thickness and volume, and OCT retinal nerve fiber layer thickness independent of these variables. These differences should be considered in the determination of disease status. PMID:20457974
The Use of Remote Sensing to Resolve the Aerosol Radiative Forcing
NASA Technical Reports Server (NTRS)
Kaufman, Y. J.; Tanre, D.; Remer, Lorraine
1999-01-01
Satellites are used for remote sensing of aerosol optical thickness and optical properties in order to derive the aerosol direct and indirect radiative forcing of climate. Accuracy of the derived aerosol optical thickness is used as a measure of the accuracy in deriving the aerosol radiative forcing. Several questions can be asked to challenge this concept. Is the accuracy of the satellite-derived aerosol direct forcing limited to the accuracy of the measured optical thickness? What are the spectral bands needed to derive the total aerosol forcing? Does most of the direct or indirect aerosol forcing of climate originate from regions with aerosol concentrations that are high enough to be detected from space? What should be the synergism ground-based and space-borne remote sensing to solve the problem? We shall try to answer some of these questions, using AVIRIS airborne measurements and simulations.
Sub-natural width resonances in Cs vapor confined in micrometric thickness optical cell
NASA Astrophysics Data System (ADS)
Cartaleva, S.; Krasteva, A.; Sargsyan, A.; Sarkisyan, D.; Slavov, D.; Vartanyan, T.
2013-03-01
We present here the behavior of Electromagnetically Induced Transparency (EIT), Velocity Selective Optical Pumping (VSOP) resonances and Velocity Selective Excitation (VSE) resonances observed in Cs vapor confined in а micrometric optical cell (MC) with thickness L = 6λ, λ = 852nm. For comparison of behavior of VSE resonance another conventional optical cell with thickness L=2.5 cm is used. Cells are irradiated in orthogonal to their windows directions by probe beam scanned on the Fg = 4 → Fe= 3, 4, 5 set of transitions and pump beam fixed at the Fg = 3 → Fe = 4 transition, on the D2 line of Cs. The enhanced absorption (fluorescence) narrow VSOP resonance at the closed transition transforms into reduced absorption (fluorescence) one with small increase of atomic concentration or light intensity. A striking difference appears between the VSE resonance broadening in L = 6λ and conventional L = 2.5cm cells.
The relative importance of aerosol scattering and absorption in remote sensing
NASA Technical Reports Server (NTRS)
Fraser, R. S.; Kaufman, Y. J.
1983-01-01
The relative importance of aerosol optical thickness and absorption is illustrated through computing radiances for radiative transfer models. The radiance of sunlight reflected from models of the earth-atmosphere system is computed as a function of the aerosol optical thickness and its albedo of single scattering; it is noted that the albedo varies from 0.6 in urban environment to nearly 1 in areas with low graphitic carbon content. The calculations are applied to the example of satellite measurements of biomass. It is found that when surface classifications are made by means of clustering techniques the presence of gradients in the aerosol optical properties results in the dispersion of points in the plot correlating radiances viewed in two different directions. Finally, though such a remote sensing parameter as contrast is weakly affected by aerosol absorption, it is highly dependent on its optical thickness.
Sakamoto, Harumi; Doi, Hisashi; Kobayashi, Equo; Yoneyama, Takayuki; Suzuki, Yoshiaki; Hanawa, Takao
2007-07-01
The objective of this study was to investigate the structure and strength at the bonding interface of a titanium (Ti)-segmented polyurethane (SPU) composite through (3-trimethoxysilyl) propyl methacrylate (gamma-MPS) for artificial organs. The effects of the thickness of the gamma-MPS layer on the shear bonding strength between Ti and SPU were investigated. Ti disks were immersed in various concentrations of gamma-MPS solutions for several immersion times. The depth profiles of elements and the thickness of the gamma-MPS layer were determined by glow discharge optical emission spectroscopy and ellipsometry, respectively. The bonding stress at the Ti/gamma-MPS/SPU interface was evaluated with a shear bonding test. Furthermore, the fractured surface of a Ti-SPU composite was observed by optical microscopy and characterized using X-ray photoelectron spectroscopy. Consequently, the thickness of the gamma-MPS layer was controlled by the concentration of the gamma-MPS solution and immersion time. The shear bonding stress at the interface increased with the increase of the thickness of the gamma-MPS layer. Therefore, the control of the thickness of the gamma-MPS layer is significant to increase the shear bonding stress at the Ti/gamma-MPS/SPU interface. These results are significant to create composites for artificial organs consisting of other metals and polymers. Copyright 2007 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, J. L., E-mail: jlyu@semi.ac.cn; Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083; Key Laboratory of Optoelectronic Materials Chemistry and Physics, Chinese Academy of Sciences, Fuzhou 350002
2015-01-07
The in-plane optical anisotropy (IPOA) in (001)-grown GaAs/AlGaAs quantum wells (QWs) with different well widths varying from 2 nm to 8 nm has been studied by reflectance difference spectroscopy. Ultra-thin InAs layers with thickness ranging from 0.5 monolayer (ML) to 1.5 ML have been inserted at GaAs/AlGaAs interfaces to tune the asymmetry in the QWs. It is demonstrated that the IPOA can be accurately tailored by the thickness of the inserted ultra-thin InAs layer at the interfaces. Strain-induced IPOA has also been extracted by using a stress apparatus. We find that the intensity of the strain-induced IPOA decreases with the thickness ofmore » the inserted InAs layer, while that of the interface-induced IPOA increases with the thickness of the InAs layer. Theoretical calculations based on 6 band k ⋅ p theory have been carried out, and good agreements with experimental results are obtained. Our results demonstrate that, the IPOA of the QWs can be greatly and effectively tuned by inserting an ultra-thin InAs layer with different thicknesses at the interfaces of QWs, which does not significantly influence the transition energies and the transition probability of QWs.« less
Mansouri, Kaweh; Medeiros, Felipe A.; Tatham, Andrew J.; Marchase, Nicholas; Weinreb, Robert N.
2017-01-01
PURPOSE To determine the repeatability of automated retinal and choroidal thickness measurements with swept-source optical coherence tomography (SS OCT) and the frequency and type of scan artifacts. DESIGN Prospective evaluation of new diagnostic technology. METHODS Thirty healthy subjects were recruited prospectively and underwent imaging with a prototype SS OCT instrument. Undilated scans of 54 eyes of 27 subjects (mean age, 35.1 ± 9.3 years) were obtained. Each subject had 4 SS OCT protocols repeated 3 times: 3-dimensional (3D) 6 × 6-mm raster scan of the optic disc and macula, radial, and line scan. Automated measurements were obtained through segmentation software. Interscan repeatability was assessed by intraclass correlation coefficients (ICCs). RESULTS ICCs for choroidal measurements were 0.92, 0.98, 0.80, and 0.91, respectively, for 3D macula, 3D optic disc, radial, and line scans. ICCs for retinal measurements were 0.39, 0.49, 0.71, and 0.69, respectively. Artifacts were present in up to 9% scans. Signal loss because of blinking was the most common artifact on 3D scans (optic disc scan, 7%; macula scan, 9%), whereas segmentation failure occurred in 4% of radial and 3% of line scans. When scans with image artifacts were excluded, ICCs for choroidal thickness increased to 0.95, 0.99, 0.87, and 0.93 for 3D macula, 3D optic disc, radial, and line scans, respectively. ICCs for retinal thickness increased to 0.88, 0.83, 0.89, and 0.76, respectively. CONCLUSIONS Improved repeatability of automated choroidal and retinal thickness measurements was found with the SS OCT after correction of scan artifacts. Recognition of scan artifacts is important for correct interpretation of SS OCT measurements. PMID:24531020
Sahoo, G S; Paul, S; Tripathy, S P; Sharma, S C; Jena, S; Rout, S; Joshi, D S; Bandyopadhyay, T
2014-12-01
Effects of high-dose neutron irradiation on chemical and optical properties of CR-39 were studied using FTIR (Fourier Transform Infrared) and UV-vis (Ultraviolet-Visible) spectroscopy. The primary goal was to find a correlation between the neutron dose and the corresponding changes in the optical and chemical properties of CR-39 resulted from the neutron irradiation. The neutrons were produced by bombarding a thick Be target with 22-MeV protons. In the FTIR spectra, prominent absorbance peaks were observed at 1735cm(-1) (C=O stretching), 1230cm(-1)(C-O-C stretching), and 783cm(-1)(=C-H bending), the intensities of which decreased with increasing neutron dose. The optical absorbance in the visible range increased linearly with the neutron dose. Empirical relations were established to estimate neutron doses from these optical properties. This technique is particularly useful in measuring high doses, where track analysis with an optical microscope is difficult because of track overlapping. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shenoy, Dinesh P.; Jones, Terry J.; Packham, Chris; Lopez-Rodriguez, Enrique
2015-07-01
We present 2-5 μm adaptive optics (AO) imaging and polarimetry of the famous hypergiant stars IRC +10420 and VY Canis Majoris. The imaging polarimetry of IRC +10420 with MMT-Pol at 2.2 μ {m} resolves nebular emission with intrinsic polarization of 30%, with a high surface brightness indicating optically thick scattering. The relatively uniform distribution of this polarized emission both radially and azimuthally around the star confirms previous studies that place the scattering dust largely in the plane of the sky. Using constraints on scattered light consistent with the polarimetry at 2.2 μ {m}, extrapolation to wavelengths in the 3-5 μm band predicts a scattered light component significantly below the nebular flux that is observed in our Large Binocular Telescope/LMIRCam 3-5 μm AO imaging. Under the assumption this excess emission is thermal, we find a color temperature of ˜500 K is required, well in excess of the emissivity-modified equilibrium temperature for typical astrophysical dust. The nebular features of VY CMa are found to be highly polarized (up to 60%) at 1.3 μm, again with optically thick scattering required to reproduce the observed surface brightness. This star’s peculiar nebular feature dubbed the “Southwest Clump” is clearly detected in the 3.1 μm polarimetry as well, which, unlike IRC +10420, is consistent with scattered light alone. The high intrinsic polarizations of both hypergiants’ nebulae are compatible with optically thick scattering for typical dust around evolved dusty stars, where the depolarizing effect of multiple scatters is mitigated by the grains’ low albedos. Observations reported here were obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona.
NASA Astrophysics Data System (ADS)
Lediju Bell, Muyinatu A.; Ostrowski, Anastasia K.; Li, Ke; Kaanzides, Peter; Boctor, Emad
2015-03-01
We previously introduced photoacoustic imaging to detect blood vessels surrounded by bone and thereby eliminate the deadly risk of carotid artery injury during endonasal, transsphenoidal surgeries. Light would be transmitted through an optical fiber attached to the surgical drill, while a transcranial probe placed on the temporal region of the skull receives photoacoustic signals. This work quantifies changes in photoacoustic image contrast as the sphenoid bone is drilled. Frontal bone from a human adult cadaver skull was cut into seven 3 cm x 3 cm chips and sanded to thicknesses ranging 1-4 mm. For 700-940 nm wavelengths, the average optical transmission through these specimens increased from 19% to 44% as bone thickness decreased, with measurements agreeing with Monte Carlo simulations within 5%. These skull specimens were individually placed in the optical pathway of a 3.5 mm diameter, cylindrical, vessel-mimicking photoacoustic target, as the laser wavelength was varied between 700-940 nm. The mean optical insertion loss and photoacoustic image contrast loss due to the bone specimens were 56-80% and 46-79%, respectively, with the majority of change observed when the bone was <=2 mm thick. The decrease in contrast is directly proportional to insertion loss over this thickness range by factors of 0.8-1.1 when multiple wavelengths are considered. Results suggest that this proportional relationship may be used to determine the amount of bone that remains to be drilled when the thickness is 2 mm or less.
Characteristics of color optical shutter with dye-doped polymer network liquid crystal.
Lee, G H; Hwang, K Y; Jang, J E; Jin, Y W; Lee, S Y; Jung, J E
2011-03-01
The optical properties and the theoretical prediction of color optical shutter with dye-doped polymer network liquid crystal (PNLC) were investigated. The view-angle dependence of reflectance according to the bias conditions showed distinctive characteristics, which could be explained from the effects of dye absorption and path length. It was also shown that the thickness dependence of reflectance was strongly influenced by the light-scattering coefficient. Our experimental results matched up well with the theoretical prediction based on the light scattering of liquid crystals in polymer network and the absorption of dichroic dye. This work indicates potential to improve the optical device using dye-doped liquid crystal-polymer composite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewani, Aliya A., E-mail: a.ashraf@griffith.edu.au; O’Keefe, Steven G.; Thiel, David V.
A novel 2D simple low cost frequency selective surface was screen printed on thin (0.21 mm), flexible transparent plastic substrate (relative permittivity 3.2). It was designed, fabricated and tested in the frequency range 10-20 GHz. The plane wave transmission and reflection coefficients agreed with numerical modelling. The effective permittivity and thickness of the backing sheet has a significant effect on the frequency characteristics. The stop band frequency reduced from 15GHz (no backing) to 12.5GHz with polycarbonate. The plastic substrate thickness beyond 1.8mm has minimal effect on the resonant frequency. While the inner element spacing controls the stop-band frequency, the substratemore » thickness controls the bandwidth. The screen printing technique provided a simple, low cost FSS fabrication method to produce flexible, conformal, optically transparent and bio-degradable FSS structures which can find their use in electromagnetic shielding and filtering applications in radomes, reflector antennas, beam splitters and polarizers.« less
NASA Astrophysics Data System (ADS)
Mescher, Jan; Mertens, Adrian; Egel, Amos; Kettlitz, Siegfried W.; Lemmer, Uli; Colsmann, Alexander
2015-07-01
In most future organic photovoltaic applications, such as fixed roof installations, facade or clothing integration, the solar cells will face the sun under varying angles. By a combined simulative and experimental study, we investigate the mutual interdependencies of the angle of light incidence, the absorber layer thickness and the photon harvesting efficiency within a typical organic photovoltaic device. For thin absorber layers, we find a steady decrease of the effective photocurrent towards increasing angles. For 90-140 nm thick absorber layers, however, we observe an effective photocurrent enhancement, exhibiting a maximum yield at angles of incidence of about 50°. Both effects mainly originate from the angle-dependent spatial broadening of the optical interference pattern inside the solar cell and a shift of the absorption maximum away from the metal electrode.
Optimization of the antireflection coating of thin epitaxial crystalline silicon solar cells
Selj, Josefine K.; Young, David; Grover, Sachit
2015-08-28
In this study we use an effective weighting function to include the internal quantum efficiency (IQE) and the effective thickness, Te, of the active cell layer in the optical modeling of the antireflection coating (ARC) of very thin crystalline silicon solar cells. The spectrum transmitted through the ARC is hence optimized for efficient use in the given cell structure and the solar cell performance can be improved. For a 2-μm thick crystalline silicon heterojunction solar cell the optimal thickness of the Indium Tin Oxide (ITO) ARC is reduced by ~8 nm when IQE data and effective thickness are taken intomore » account compared to the standard ARC optimization, using the AM1.5 spectrum only. The reduced ARC thickness will shift the reflectance minima towards shorter wavelengths and hence better match the absorption of very thin cells, where the short wavelength range of the spectrum is relatively more important than the long, weakly absorbed wavelengths. For this cell, we find that the optimal thickness of the ITO starts at 63 nm for very thin (1 μm) active Si layer and then increase with increasing T e until it saturates at 71 nm for T e > 30 μm.« less
NASA Astrophysics Data System (ADS)
Tonny, Kaniz Naila; Rafique, Rosaleena; Sharmin, Afrina; Bashar, Muhammad Shahriar; Mahmood, Zahid Hasan
2018-06-01
Al doped ZnO (AZO) films are fabricated by using sol-gel spin coating method and changes in electrical, optical and structural properties due to variation in film thickness is studied. AZO films provide c-axis orientation along the (002) plane and peak sharpness increased with film thickness is evident from XRD analysis. Conductivity (σ) of AZO films has increased from 2.34 (Siemens/cm) to 20156.27 (Siemens/cm) whereas sheet resistance (Rsh) decreases from 606300 (ohms/sq.) to 2.08 (ohm/sq.) with increase of film thickness from 296 nm to 1030 nm. Optical transmittance (T%) of AZO films is decreased from around 82% to 62% in the visible region. And grain size (D) of AZO thin films has been found to increase from 19.59 nm to 25.25 nm with increase of film thickness. Figure of Merit is also calculated for prepared sample of AZO. Among these four sample of AZO thin films, L-15 sample (having thickness in 895 nm) has provided highest figure of merit which is 5.49*10^-4 (Ω-1).
Lamaignère, Laurent; Gaudfrin, Kévin; Donval, Thierry; Natoli, Jeanyves; Sajer, Jean-Michel; Penninckx, Denis; Courchinoux, Roger; Diaz, Romain
2018-04-30
Forward pump pulses with nanosecond duration are able to generate an acoustic wave via electrostriction through a few centimeters of bulk silica. Part of the incident energy is then scattered back on this sound wave, creating a backward Stokes pulse. This phenomenon known as stimulated Brillouin scattering (SBS) might induce first energy-loss, variable change of the temporal waveform depending on the location in the spatial profile making accurate metrology impossible, and moreover it might also initiate front surface damage making the optics unusable. Experiments performed on thick fused silica optics at 355 nm with single longitudinal mode pulses allowed us to detect, observe and quantify these backward pulses. Experimental results are first compared to theoretical calculations in order to strengthen our confidence in metrology. On this basis a phase-modulator has been implemented on the continuous-wave seeders of the lasers leading to pulses with a wide spectrum that suppress SBS and do not exhibit temporal overshoots that also reduce Kerr effects. The developed set-ups are used to check the reduction of the backward stimulated Brillouin scattering and they allow measuring with accuracy the rear surface damage of thick fused silica optics.
Radial optic neurotomy for ischaemic central vein occlusion
Martínez-Jardón, C S; Meza-de Regil, A; Dalma-Weiszhausz, J; Leizaola-Fernández, C; Morales-Cantón, V; Guerrero-Naranjo, J L; Quiroz-Mercado, H
2005-01-01
Background/aims: Ischaemic central retinal vein occlusion (CRVO) accounts for 20–50% of all CRVO. No treatment has been proved to be effective. The efficacy of radial optic neurotomy (RON) was evaluated in eyes with ischaemic CRVO. Methods: 10 patients with ischaemic CRVO underwent RON. After pars plana vitrectomy, a microvitreoretinal blade was used to incise the scleral ring, cribriform plate, and adjacent sclera at the nasal edge of the optic disc. Best corrected visual acuity (BCVA), intraocular pressure (IOP), fluorescein angiography (FA), multifocal electroretinography (mfERG), and optical coherence tomography (OCT) were measured preoperatively and at 1, 3, and 6 months postoperatively. Results: No visual improvement was noted in the eyes that underwent RON. FA and mfERG showed no increase in retinal perfusion or retinal function postoperatively. Mean macular central thickness changed from 841 (SD 170) μm preoperatively to 162 (SD 34) μm at the sixth postoperative month. One patient had retinal central artery perforation intraoperatively. One patient developed neovascular glaucoma. Conclusion: RON in ischaemic CRVO did not improve visual function (by mfERG) or visual acuity although macular thickness did improve. This technique may be associated with potential risks. Randomised studies are needed to corroborate these results. PMID:15834084
NASA Astrophysics Data System (ADS)
Seraji, Faramarz E.; Toutian, Golnoosh
This paper presents an analysis of the effect of temperature rise and hydrostatic pressure on microbending loss, refractive index change, and stress components of a double-coated optical fiber by considering coating material parameters such as Young's modulus and the Poisson ratio. It is shown that, when temperature rises, the microbending loss and refractive index changes would decrease with increase of thickness of primary coating layer and will increase after passing through a minima. Increase of thickness of secondary coating layer causes the microbending loss and refractive index changes to decrease. We have shown that the temperature rise affecting the fiber makes the microbending loss and refractive index decrease, linearly. At a particular temperature, the microbending loss takes negative values, due to tensile pressure applied on the fiber. The increase of Young's modulus and the Poisson ratio of primary coating would lower the microbending loss and refractive index change whereas in the secondary coating layer, the condition reverses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yeongho; Ban, Keun-Yong, E-mail: kban1@asu.edu; Honsberg, Christiana B.
2015-10-26
The structural and optical properties of ten-stack InAs/GaAsSb quantum dots (QDs) with different spacer layer thicknesses (d{sub s} = 2, 5, 10, and 15 nm) are reported. X-ray diffraction analysis reveals that the strain relaxation of the GaAsSb spacers increases linearly from 0% to 67% with larger d{sub s} due to higher elastic stress between the spacer and GaAs matrix. In addition, the dislocation density in the spacers with d{sub s} = 10 nm is lowest as a result of reduced residual strain. The photoluminescence peak energy from the QDs does not change monotonically with increasing d{sub s} due to the competing effects of decreased compressivemore » strain and weak electronic coupling of stacked QD layers. The QD structure with d{sub s} = 10 nm is demonstrated to have improved luminescence properties and higher carrier thermal stability.« less
PHOTOPHORESIS IN A DILUTE, OPTICALLY THICK MEDIUM AND DUST MOTION IN PROTOPLANETARY DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNally, Colin P.; Hubbard, Alexander, E-mail: cmcnally@nbi.dk, E-mail: ahubbard@amnh.org
2015-11-20
We derive expressions for the photophoretic force on opaque spherical particles in a dilute gas in the optically thick regime where the radiation field is in local thermal equilibrium. Under those conditions, the radiation field has a simple form, leading to well defined analytical approximations for the photophoretic force that also consider both the internal thermal conduction within the particle, and the effects of heat conduction and radiation to the surrounding gas. We derive these results for homogeneous spherical particles; and for the double layered spheres appropriate for modeling solid grains with porous aggregate mantles. Then, as a specific astrophysicalmore » application of these general physical results, we explore the parameter space relevant to the photophoresis driven drift of dust in protoplanetary disks. We show that highly porous silicate grains have sufficiently low thermal conductivities that photophoretic effects, such as significant relative velocities between particles with differing porosity or levitation above the midplane, are expected to occur.« less
NASA Astrophysics Data System (ADS)
Mateos, David; di Sarra, Alcide; Meloni, Daniela; di Biagio, Claudia; Sferlazzo, Damiano M.
2011-08-01
Measurements of UV spectra, total ozone, cloud cover, and cloud optical thickness, obtained at Lampedusa (central Mediterranean), are used to investigate the influence of clouds on the spectral UV irradiance, through the cloud modification factor (CMF), and on five biological processes. The CMF decreases with cloud optical thickness (COT), from about 0.5 for COT˜15 to 0.25 for COT˜45, and decreases with increasing wavelength above 315-320-nm. Observations display an increase in the CMF from 295 to 320-nm, which is related to enhanced absorption by tropospheric ozone due to the long photon path lengths under cloudy conditions. The use of a wavelength independent CMF instead of the experimentally determined spectral curves produces an overestimation of the biological effects of UV irradiance. The overestimation may be as large as 30% for the DNA damage, 20% for vitamin D synthesis, 12% for plant damage, and 8-10% for phytoplankton inhibition and erythema.
Chen, Zhifeng; Yan, Yong; Li, Shufa; Xu, Xiaoguang; Jiang, Yong; Lai, Tianshu
2017-01-01
Spin-wave dynamics in full-Heusler Co2FeAl0.5Si0.5 films are studied using all-optical pump-probe magneto-optical polar Kerr spectroscopy. Backward volume magnetostatic spin-wave (BVMSW) mode is observed in films with thickness ranging from 20 to 100 nm besides perpendicular standing spin-wave (PSSW) mode, and found to be excited more efficiently than the PSSW mode. The field dependence of the effective Gilbert damping parameter appears especial extrinsic origin. The relationship between the lifetime and the group velocity of BVMSW mode is revealed. The frequency of BVMSW mode does not obviously depend on the film thickness, but the lifetime and the effective damping appear to do so. The simultaneous excitation of BVMSW and PSSW in Heusler alloy films as well as the characterization of their dynamic behaviors may be of interest for magnonic and spintronic applications. PMID:28195160
NASA Technical Reports Server (NTRS)
Alterovitz, S. A.; Sieg, R. M.; Yao, H. D.; Snyder, P. G.; Woollam, J. A.; Pamulapati, J.; Bhattacharya, P. K.; Sekula-Moise, P. A.
1991-01-01
Variable-angle spectroscopic ellipsometry was used to estimate the thicknesses of all layers within the optical penetration depth of InGaAs-based modulation doped field effect transistor structures. Strained and unstrained InGaAs channels were made by molecular beam epitaxy (MBE) on InP substrates and by metal-organic chemical vapor deposition on GaAs substrates. In most cases, ellipsometrically determined thicknesses were within 10% of the growth-calibration results. The MBE-made InGaAs strained layers showed large strain effects, indicating a probable shift in the critical points of their dielectric function toward the InP lattice-matched concentration.
Lee, Tae Hee; Choi, Won; Ji, Yong Sok; Yoon, Kyung Chul
2016-05-01
To compare the effects of ketorolac 0.45% and diclofenac 0.1% on macular thickness and volume after uncomplicated cataract surgery. A total of 76 eyes of 76 patients who underwent uncomplicated cataract surgery were included. Patients were treated with either diclofenac 0.1% (38 eyes) or ketorolac 0.45% (38 eyes) after surgery. The macular thickness and volume were obtained with optical coherence tomography (OCT). Central subfield thickness (CST, OCT 1 mm zone), total foveal thickness (TFT, OCT 3 mm zone), total macular thickness (TMT, OCT 6 mm zone), average macular thickness (AMT) and total macular volume (TMV) were compared between the two study groups. No significant differences between groups were found in macular thickness or volume 1 month after cataract surgery. Two months after surgery, the ketorolac group had significantly lower CST, TFT, TMT and AMT than the diclofenac group (p < 0.05 for all). Additionally, 1 and 2 months after surgery, changes from preoperative values in CST (both p = 0.04), AMT (p = 0.02 and p < 0.01, respectively) and TMV (both p = 0.04) were significantly less in the ketorolac group than in the diclofenac group. Following uncomplicated cataract surgery, topical ketorolac 0.45% was more effective than diclofenac 0.1% in preventing increases in macular thickness and volume. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Heat Transfer Modeling and Validation for Optically Thick Alumina Fibrous Insulation
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran
2009-01-01
Combined radiation/conduction heat transfer through unbonded alumina fibrous insulation was modeled using the diffusion approximation for modeling the radiation component of heat transfer in the optically thick insulation. The validity of the heat transfer model was investigated by comparison to previously reported experimental effective thermal conductivity data over the insulation density range of 24 to 96 kg/cu m, with a pressure range of 0.001 to 750 torr (0.1 to 101.3 x 10(exp 3) Pa), and test sample hot side temperature range of 530 to 1360 K. The model was further validated by comparison to thermal conductivity measurements using the transient step heating technique on an insulation sample at a density of 144 kg/cu m over a pressure range of 0.001 to 760 torr, and temperature range of 290 to 1090 K.
NASA Astrophysics Data System (ADS)
Lu, Zenghai; Boadi, Joseph; Danby, Simon; Cork, Michael; Matcher, Stephen J.
2013-03-01
The effects on skin of two commercially available topical creams for the treatment of eczema are quantitatively studied using optical coherence tomography. An archetypal corticosteroid (Betamethasone valerate) is compared with a nonsteroidal anti-inflammatory drug (Tacrolimus monohydrate) via left/right comparisons of the epidermal thickness of volar forearm skin on selected volunteers, at baseline and after 14 days of treatment. In 3 of 4 subjects we confirmed previous observations that corticosteroids produce pronounced physical thinning of the epidermis over timescales of a few weeks. In 3 of 4 subjects we further found that Tacrolimus produced no change in epidermal thickness. In one of 4 subjects we found evidence that the epidermis was actually thickened following treatment using Tacrolimus.
Magnetic stripe domains of [Pt/Co/Cu]{sub 10} multilayer near spin reorientation transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, L.; Liang, J. H.; Xiao, X.
The dependence of magnetic anisotropy, magnetic domain patterns and magnetization reversal processes in [Pt/Co(t{sub Co})/Cu]{sub 10} film stack epitaxied on Cu (111) substrate have been studied as a function of the Co layer thickness t{sub Co}, by magneto-optic polar Kerr magnetometry and microscopy. We find the film undergoes spin reorientation transition from out-of-plane to in-plane as t{sub Co} increases. The SRT thickness is verified by Rotating-field Magneto-Optic Kerr effect method. The film exhibits the stripe domain structures at remanence with the width decreasing while t{sub Co} approaches SRT. As demonstrated by the first order reversal curve measurement, the magnetization reversalmore » process encompasses irreversible domain nucleation, domain annihilation at large field and reversible domain switching near remanence.« less
NASA Astrophysics Data System (ADS)
Sadeghi, Pegah; Safavinejad, Ali
2017-11-01
Radiative entropy generation through a gray absorbing, emitting, and scattering planar medium at radiative equilibrium with diffuse-gray walls is investigated. The radiative transfer equation and radiative entropy generation equations are solved using discrete ordinates method. Components of the radiative entropy generation are considered for two different boundary conditions: two walls are at a prescribed temperature and mixed boundary conditions, which one wall is at a prescribed temperature and the other is at a prescribed heat flux. The effect of wall emissivities, optical thickness, single scattering albedo, and anisotropic-scattering factor on the entropy generation is attentively investigated. The results reveal that entropy generation in the system mainly arises from irreversible radiative transfer at wall with lower temperature. Total entropy generation rate for the system with prescribed temperature at walls remarkably increases as wall emissivity increases; conversely, for system with mixed boundary conditions, total entropy generation rate slightly decreases. Furthermore, as the optical thickness increases, total entropy generation rate remarkably decreases for the system with prescribed temperature at walls; nevertheless, for the system with mixed boundary conditions, total entropy generation rate increases. The variation of single scattering albedo does not considerably affect total entropy generation rate. This parametric analysis demonstrates that the optical thickness and wall emissivities have a significant effect on the entropy generation in the system at radiative equilibrium. Considering the parameters affecting radiative entropy generation significantly, provides an opportunity to optimally design or increase overall performance and efficiency by applying entropy minimization techniques for the systems at radiative equilibrium.
Şahin, Muhammed; Şahin, Alparslan; Kılınç, Faruk; Karaalp, Ümit; Yüksel, Harun; Özkurt, Zeynep Gürsel; Türkcü, Fatih Mehmet; Çaça, İhsan
2018-02-01
To compare the retina ganglion cell complex (GCC) layer and peripapillary nerve fibre layer thickness (pRNFL) in patients with prediabetes and healthy subjects analysed by spectral domain optical coherence tomography (SD-OCT). This cross-sectional and comparative study included prediabetic patients and healthy subjects. All participants underwent SD-OCT measurement of pRNFL thickness, and GCC thickness. A total of 30 eyes of the 30 patients with prediabetes and 30 eyes of 30 controls were included. The overall calculated pRNFL thicknesses were similar between the prediabetic and control subjects. The GCC thickness was significantly lower in all quadrants of the inner macula, and outer nasal quadrant in the prediabetes group when compared to the control group. Our study demonstrated that inner macular GCC thickness was significantly thinner in prediabetic subjects. As a result neurodegeneration may play role in the thinning of GCC.
2012-01-01
We have investigated the characteristics of a silicon oxynitride/silver/silicon oxynitride [SiON/Ag/SiON] multilayer passivation grown using a specially designed roll-to-roll [R2R] sputtering system on a flexible polyethersulfone substrate. Optical, structural, and surface properties of the R2R grown SiON/Ag/SiON multilayer were investigated as a function of the SiON thickness at a constant Ag thickness of 12 nm. The flexible SiON/Ag/SiON multilayer has a high optical transmittance of 87.7% at optimized conditions due to the antireflection and surface plasmon effects in the oxide-metal-oxide structure. The water vapor transmission rate of the SiON/Ag/SiON multilayer is 0.031 g/m2 day at an optimized SiON thickness of 110 nm. This indicates that R2R grown SiON/Ag/SiON is a promising thin-film passivation for flexible organic light-emitting diodes and flexible organic photovoltaics due to its simple and low-temperature process. PMID:22221400
Lee, Seung-Heon; Lu, Jian; Lee, Seung-Jun; Han, Jae-Hyun; Jeong, Chan-Uk; Lee, Seung-Chul; Li, Xian; Jazbinšek, Mojca; Yoon, Woojin; Yun, Hoseop; Kang, Bong Joo; Rotermund, Fabian; Nelson, Keith A; Kwon, O-Pil
2017-08-01
Highly efficient nonlinear optical organic crystals are very attractive for various photonic applications including terahertz (THz) wave generation. Up to now, only two classes of ionic crystals based on either pyridinium or quinolinium with extremely large macroscopic optical nonlinearity have been developed. This study reports on a new class of organic nonlinear optical crystals introducing electron-accepting benzothiazolium, which exhibit higher electron-withdrawing strength than pyridinium and quinolinium in benchmark crystals. The benzothiazolium crystals consisting of new acentric core HMB (2-(4-hydroxy-3-methoxystyryl)-3-methylbenzo[d]thiazol-3-ium) exhibit extremely large macroscopic optical nonlinearity with optimal molecular ordering for maximizing the diagonal second-order nonlinearity. HMB-based single crystals prepared by simple cleaving method satisfy all required crystal characteristics for intense THz wave generation such as large crystal size with parallel surfaces, moderate thickness and high optical quality with large optical transparency range (580-1620 nm). Optical rectification of 35 fs pulses at the technologically very important wavelength of 800 nm in 0.26 mm thick HMB crystal leads to one order of magnitude higher THz wave generation efficiency with remarkably broader bandwidth compared to standard inorganic 0.5 mm thick ZnTe crystal. Therefore, newly developed HMB crystals introducing benzothiazolium with extremely large macroscopic optical nonlinearity are very promising materials for intense broadband THz wave generation and other nonlinear optical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ELLIPSOMETRIC MEASUREMENTS OF THE THERMAL STABILITY OF ALTERNATIVE FUELS
Nash, Leigh; Klettlinger, Jennifer; Vasu, Subith
2017-01-01
Thermal stability is an important characteristic of alternative fuels that must be evaluated before they can be used in aviation engines. Thermal stability refers to the degree to which a fuel breaks down when it is heated prior to combustion. This characteristic is of great importance to the effectiveness of the fuel as a coolant and to the engine’s combustion performance. The thermal stability of Sasol IPK, a synthetic alternative to Jet-A, with varying levels of naphthalene has been studied on aluminum and stainless steel substrates at 300 to 400 °C. This was conducted using a spectroscopic ellipsometer to measure the thickness of deposits left on the heated substrates. Ellipsometry is an optical technique that measures the changes in a light beam’s polarization and intensity after it reflects from a thin film to determine the film’s physical and optical properties. It was observed that, as would be expected, increasing the temperature minimally increased the deposit thickness for a constant concentration of naphthalene on both substrates. The repeatability of these measurements was verified using multiple trials at identical test conditions. Lastly, the effect of increasing the naphthalene concentration at a constant temperature was found to also minimally increase the deposit thickness. PMID:28966427
Optical Characterization of Molecular Contaminant Films
NASA Technical Reports Server (NTRS)
Visentine, James T.
2007-01-01
A semi-empirical method of optical characterization of thin contaminant films on surfaces of optical components has been conceived. The method was originally intended for application to films that become photochemically deposited on such optical components as science windows, lenses, prisms, thinfilm radiators, and glass solar-cell covers aboard spacecraft and satellites in orbit. The method should also be applicable, with suitable modifications, to thin optical films (whether deposited deliberately or formed as contaminants) on optical components used on Earth in the computer microchip laser communications and thin-film industries. The method is expected to satisfy the need for a means of understanding and predicting the reductions in spectral transmittance caused by contaminant films and the consequent deterioration of performances of sensitive optical systems. After further development, this method could become part of the basis of a method of designing optical systems to minimize or compensate for the deleterious effects of contaminant films. In the original outer-space application, these deleterious effects are especially pronounced because after photochemical deposition, the films become darkened by further exposure to solar vacuum ultraviolet (VUV) radiation. In this method, thin contaminant films are theoretically modeled as thin optical films, characterized by known or assumed values of thickness, index of refraction, and absorption coefficient, that form on the outer surfaces of the original antireflection coating on affected optical components. The assumed values are adjusted as needed to make actual spectral transmittance values approximate observed ones as closely as possible and to correlate these values with amounts of VUV radiation to which the optical components have been exposed. In an initial study, the method was applied in correlating measured changes in transmittance of high-purity fused silica photochemically coated with silicone films of various measured thicknesses and exposed to various measured amounts of VUV radiation. In each case, it was found to be possible to select an index of refraction and absorption coefficient that made the ultraviolet, visible, and infrared transmittance changes predicted by the model match the corresponding measured transmittance changes almost exactly.
Investigation of percolation thickness of sputter coated thin NiCr films on clear float glass
NASA Astrophysics Data System (ADS)
Erkan, Selen; Arpat, Erdem; Peters, Sven
2017-11-01
Percolation thickness of reactively sputtered nickel chromium (NiCr) thin films is reported in this study. Nickel-chromium films with the thicknesses in between 1 and 10 nm were deposited on 4 mm clear glass substrate by dc magnetron sputtering. Optical properties such as refractive index, extinction coefficient and also sheet resistance, carrier concentration and mobility of NiCr films were determined by a combination of variable-angle spectroscopic ellipsometry and four point probe measurements. We show both the percolation phenomena in atmosphere and critical percolation thickness for thin NiCr films by both electrical and optical techniques. The two techniques gave consistent results with each other.
Invernizzi, Alessandro; Giardini, Piero; Cigada, Mario; Viola, Francesco; Staurenghi, Giovanni
2015-07-01
We analyzed by swept-source anterior segment optical coherence tomography (SS-ASOCT) the three-dimensional iris morphology in a Caucasian population, and correlated the findings with iris color, iris sectors, subject age, and sex. One eye each from consecutive healthy emmetropic (refractive spherical equivalent ± 3 diopters) volunteers were selected for the study. The enrolled eye underwent standardized anterior segment photography to assess iris color. Iris images were assessed by SS-ASOCT for volume, thickness, width, and pupil size. Sectoral variations of morphometric data among the superior, nasal, inferior, and temporal sectors were recorded. A total of 135 eyes from 57 males and 78 females, age 49 ± 17 years, fulfilled the inclusion criteria. All iris morphometric parameters varied significantly among the different sectors (all P < 0.0001). Iris total volume and thickness were significantly correlated with increasingly darker pigmentation (P < 0.0001, P = 0.0384, respectively). Neither width nor pupil diameter was influenced by iris color. Age did not affect iris volume or thickness; iris width increased and pupil diameter decreased with age (rs = 0.52, rs = -0.58, respectively). There was no effect of sex on iris volume, thickness, or pupil diameter; iris width was significantly greater in males (P = 0.007). Morphology of the iris varied by iris sector, and iris color was associated with differences in iris volume and thickness. Morphological parameter variations associated with iris color, sector, age, and sex can be used to identify pathological changes in suspect eyes. To be effective in clinical settings, construction of iris morphological databases for different ethnic and racial populations is essential.
Optical influence of the type of illuminant, substrates and thickness of ceramic materials.
Volpato, Cláudia Angela Maziero; Monteiro, Sylvio; de Andrada, Mauro Caldeira; Fredel, Márcio Celso; Petter, Carlos Otávio
2009-01-01
The present study is an instrumental evaluation of the optical influence of the type of illuminant, substrate and different thickness on the color of dental ceramics. Thirty ceramic disks were prepared from IPS-Empress and IPS-Empress2 in three different thicknesses (1.5, 2.0 and 2.5mm). Disks made of composite resin; silver-palladium alloy and gold were used as substrates. The disks with a 1.5mm thickness were placed on a neutral gray photographic paper and measured with a spectrophotometer under three illuminants: daylight (D65), incandescent light (A) and fluorescent light (F6). All ceramic disks were combined with the substrate disks and a spectrophotometer was used to measure the coordinates of lightness (L*) and chromaticity (a* and b*). Two-way ANOVA (p<0.05) was used to analyze the combinations of ceramics, substrates and illuminants tested considering the coordinates of lightness (L*) and chromaticity (a* and b*), and also differences of color (DeltaE), lightness (DeltaL*), chromaticity values (Deltaa* and Deltab*). For the illuminants tested, the results present significant differences for coordinates of chromaticity a* and b*, suggesting a metamerism effect. In combination with the substrates, the results present statistical differences in all the tested conditions, especially where there is no ceramic substructure. The presence of discolored tooth remnants or metallic posts and cores can interfere with the desired aesthetic result, based on the selection of color aided by a single luminous source. Thus, the substrate color effect, thickness of the ceramic materials and type of illuminant are important factors to be considered during the clinical application of the ceramic systems.
Klein, Barbara E K; Johnson, Chris A; Meuer, Stacy M; Lee, Kyungmoo; Wahle, Andreas; Lee, Kristine E; Kulkarni, Amruta; Sonka, Milan; Abràmoff, Michael D; Klein, Ronald
2017-04-01
To examine the associations of nerve fiber layer (NFL) thickness with other ocular characteristics in older adults. Participants in the Beaver Dam Eye Study (2008-2010) underwent spectral domain optical coherence tomography (SD-OCT) scans of the optic nerve head, imaging of optic discs, frequency doubling technology (FDT) perimetry, measurement of intraocular pressure (IOP), and an interview concerning their history of glaucoma and use of drops to lower eye pressure. Self-reported histories of glaucoma and the use of drops to lower eye pressure were obtained at follow-up examinations (2014-2016). NFL thickness measured on OCTs varied by location around the optic nerve. Age was associated with mean NFL thickness. Mean NFL was thinnest in eyes with larger cup/disc (C/D) ratios. Horizontal hemifield defects or other optic nerve-field defects were associated with thinner NFL. NFL in persons who reported taking eye drops for high intraocular pressure was thinner compared to those not taking drops. After accounting for the presence of high intraocular pressure, large C/D ratios or hemifield defects, eyes with thinner NFL in the arcades were more likely (OR = 2.3 for 30 micron thinner NFL, p = 0.04) to have incident glaucoma at examination 5 years later. Retinal NFL thickness was associated with a new history of self-reported glaucoma 5 years later. A trial testing the usefulness of NFL as part of a screening battery for predicting glaucoma in those previously undiagnosed might lead to improved case finding and, ultimately, to diminishing the risk of visual field loss.
NASA Astrophysics Data System (ADS)
Junda, Maxwell M.; Karki Gautam, Laxmi; Collins, Robert W.; Podraza, Nikolas J.
2018-04-01
Virtual interface analysis (VIA) is applied to real time spectroscopic ellipsometry measurements taken during the growth of hydrogenated amorphous silicon (a-Si:H) thin films using various hydrogen dilutions of precursor gases and on different substrates during plasma enhanced chemical vapor deposition. A procedure is developed for optimizing VIA model configurations by adjusting sampling depth into the film and the analyzed spectral range such that model fits with the lowest possible error function are achieved. The optimal VIA configurations are found to be different depending on hydrogen dilution, substrate composition, and instantaneous film thickness. A depth profile in the optical properties of the films is then extracted that results from a variation in an optical absorption broadening parameter in a parametric a-Si:H model as a function of film thickness during deposition. Previously identified relationships are used linking this broadening parameter to the overall shape of the optical properties. This parameter is observed to converge after about 2000-3000 Å of accumulated thickness in all layers, implying that similar order in the a-Si:H network can be reached after sufficient thicknesses. In the early stages of growth, however, significant variations in broadening resulting from substrate- and processing-induced order are detected and tracked as a function of bulk layer thickness yielding an optical property depth profile in the final film. The best results are achieved with the simplest film-on-substrate structures while limitations are identified in cases where films have been deposited on more complex substrate structures.
Few-layer 1T‧ MoTe2 as gapless semimetal with thickness dependent carrier transport
NASA Astrophysics Data System (ADS)
Song, Peng; Hsu, Chuanghan; Zhao, Meng; Zhao, Xiaoxu; Chang, Tay-Rong; Teng, Jinghua; Lin, Hsin; Loh, Kian Ping
2018-07-01
Semimetal MoTe2 can be a type II Weyl semimetal in the bulk, but monolayer of this material is predicted to be quantum spin hall insulators. This dramatic change in electronic properties with number of layers is an excellent example of the dimensional effects of quantum transport. However, a detailed experimental study of the carrier transport and band structure of ultrathin semimetal MoTe2 is lacking so far. We performed magneto-transport measurements to study the conduction behavior and quantum phase coherence of 1T‧ MoTe2 as a function of its thickness. We show that due to a unique two-band transport mechanism (synergetic contribution from electron conduction and hole conduction), the conduction behavior of 1T‧ MoTe2 changes from metallic to p-type unipolar, and finally to ambipolar as the thickness decreases, suggesting that this effect can be used in devices by effectively controlling the thickness. Our transport studies, optical measurements and first-principles electronic structure calculations reveal that 1T‧ MoTe2 remains gapless down to a few (~2–3) layers. Despite being gapless, 1T‧ MoTe2 exhibits metal-insulator transition at 3-layer thickness, due to enhanced carrier localization effect.
Kee, Changwon; Cho, Changhwan
2003-06-01
The authors investigated the correlation between visual field defects detected by automated perimetry and the thickness of the retinal nerve fiber layer measured with optical coherence tomography, and examined whether there is a decrease in retinal nerve fiber layer thickness in the apparently normal hemifield of glaucomatous eyes. Forty-one patients with glaucoma and 41 normal control subjects were included in this study. Statistical correlations between the sum of the total deviation of 37 stimuli of each hemifield and the ratio of decrease in retinal nerve fiber layer thickness were evaluated. The statistical difference between the retinal nerve fiber layer thickness of the apparently normal hemifield in glaucomatous eyes and that of the corresponding hemifield in normal subjects was also evaluated. There was a statistically significant correlation in the sum of the total deviation and retinal nerve fiber layer thickness decrease ratio (superior hemifield, P = 0.001; inferior hemifield, P = 0.003). There was no significant decrease in retinal nerve fiber layer thickness in the area that corresponded to the normal visual field in the hemifield defect with respect to the horizontal meridian in glaucomatous eyes (superior side, P = 0.148; inferior side, P = 0.341). Optical coherence tomography was capable of demonstrating and measuring retinal nerve fiber layer abnormalities. No changes in the retinal nerve fiber layer thickness of the apparently normal hemifield were observed in glaucomatous eyes.
Study of interlayer coupling between FePt and FeCoB thin films through MgO spacer layer
NASA Astrophysics Data System (ADS)
Singh, Sadhana; Kumar, Dileep; Gupta, Mukul; Reddy, V. Raghvendra
2017-05-01
Interlayer exchange coupling between hard-FePt and soft-FeCoB magnetic layers has been studied with increasing thickness of insulator MgO spacer layer in FePt/MgO/FeCoB sandwiched structure. A series of the samples were prepared in identical condition using ion beam sputtering method and characterized for their magnetic and structural properties using magneto-optical Kerr effect (MOKE) and X-ray reflectivity measurements. The nature of coupling between FePt and FeCoB was found to be ferromagnetic which decreases exponentially with increasing thickness of MgO layer. At very low thickness of MgO layer, both layers were found strongly coupled thus exhibiting coherent magnetization reversal. At higher thickness, both layers were found decoupled and magnetization reversal occurred at different switching fields. Strong coupling at very low thickness is attributed to pin holes in MgO layer which lead to direct coupling whereas on increasing thickness, coupling may arise due to magneto-static interactions.
Dynamic ultrasound modulated optical tomography by self-referenced photorefractive holography.
Benoit a la Guillaume, Emilie; Bortolozzo, Umberto; Huignard, Jean-Pierre; Residori, Stefania; Ramaz, Francois
2013-02-01
Photorefractive Bi(12)SiO(20) single crystal is used for acousto-optic imaging in thick scattering media in the green part of the spectrum, in an adaptive speckle correlation configuration. Light fields at the output of the scattering sample exhibit typical speckle grains of 1 μm size within the volume of the nonlinear crystal. This heterogeneous illumination induces a complex refractive index structure without applying a reference beam on the crystal, leading to a self-referenced diffraction correlation scheme. We demonstrate that this simple and robust configuration is able to perform axially resolved ultrasound modulated optical tomography of thick scattering media with an improved optical etendue.
Size-effect of oligomeric cholesteric liquid-crystal microlenses on the optical specifications.
Bayon, Chloé; Agez, Gonzague; Mitov, Michel
2015-10-15
In cholesteric liquid-crystalline microlenses, we have studied the role of the microlens size on the focused light intensity and the focal length. We have found that the intensity is maximized by aiming a specific range for the diameter and the thickness of microlenses and that the focal length is adjusted by controlling the diameter and the annealing time of the optical film. Cholesteric microlenses may be used as wavelength-tunable directional light sources in organic soft-matter circuits.
Magnetic and Optical Properties of Submicron-Size Hollow Spheres
Ye, Quan-Lin; Yoshikawa, Hirofumi; Awaga, Kunio
2010-01-01
Magnetic hollow spheres with a controlled diameter and shell thickness have emerged as an important class of magnetic nanomaterials. The confined hollow geometry and pronouncedly curved surfaces induce unique physical properties different from those of flat thin films and solid counterparts. In this paper, we focus on recent progress on submicron-size spherical hollow magnets (e.g., cobalt- and iron-based materials), and discuss the effects of the hollow shape and the submicron size on magnetic and optical properties.
Marks, Daniel L; Oldenburg, Amy L; Reynolds, J Joshua; Boppart, Stephen A
2003-01-10
The resolution of optical coherence tomography (OCT) often suffers from blurring caused by material dispersion. We present a numerical algorithm for computationally correcting the effect of material dispersion on OCT reflectance data for homogeneous and stratified media. This is experimentally demonstrated by correcting the image of a polydimethyl siloxane microfludic structure and of glass slides. The algorithm can be implemented using the fast Fourier transform. With broad spectral bandwidths and highly dispersive media or thick objects, dispersion correction becomes increasingly important.
NASA Astrophysics Data System (ADS)
Marks, Daniel L.; Oldenburg, Amy L.; Reynolds, J. Joshua; Boppart, Stephen A.
2003-01-01
The resolution of optical coherence tomography (OCT) often suffers from blurring caused by material dispersion. We present a numerical algorithm for computationally correcting the effect of material dispersion on OCT reflectance data for homogeneous and stratified media. This is experimentally demonstrated by correcting the image of a polydimethyl siloxane microfludic structure and of glass slides. The algorithm can be implemented using the fast Fourier transform. With broad spectral bandwidths and highly dispersive media or thick objects, dispersion correction becomes increasingly important.
Enhancement of hydrogen gas permeability in electrically aligned MWCNT-PMMA composite membranes.
Kumar, Sumit; Sharma, Anshu; Tripathi, Balram; Srivastava, Subodh; Agrawal, Shweta; Singh, M; Awasthi, Kamlendra; Vijay, Y K
2010-10-01
The multi-walled carbon nanotube (MWCNT) dispersed polymethylmethacrylate (PMMA) composite membranes have been prepared for hydrogen gas permeation application. Composite membranes are characterized by Raman spectroscopy, optical microscopy, X-ray diffraction, electrical measurements and gas permeability measurements. The effect of electric field alignment of MWCNT in PMMA matrix on gas permeation has been studied for hydrogen gas. The permeability measurements indicated that the electrically aligned MWCNT in PMMA has shown almost 2 times higher permeability for hydrogen gas as compare to randomly dispersed MWCNT in PMMA. The enhancement in permeability is explained on the basis of well aligned easy channel provided by MWCNT in electrically aligned sample. The effect of thickness of membrane on the gas permeability also studied and thickness of about 30microm found to be optimum thickness for fast hydrogen gas permeates.
Jonnal, Ravi S; Gorczynska, Iwona; Migacz, Justin V; Azimipour, Mehdi; Zawadzki, Robert J; Werner, John S
2017-09-01
Optical coherence tomography's (OCT) third outer retinal band has been attributed to the zone of interdigitation between RPE cells and cone outer segments. The purpose of this paper is to investigate the structure of this band with adaptive optics (AO)-OCT. Using AO-OCT, images were obtained from two subjects. Axial structure was characterized by measuring band 3 thickness and separation between bands 2 and 3 in segmented cones. Lateral structure was characterized by correlation of band 3 with band 2 and comparison of their power spectra. Band thickness and separation were also measured in a clinical OCT image of one subject. Band 3 thickness ranged from 4.3 to 6.4 μm. Band 2 correlations ranged between 0.35 and 0.41 and power spectra of both bands confirmed peak frequencies that agree with histologic density measurements. In clinical images, band 3 thickness was between 14 and 19 μm. Measurements of AO-OCT of interband distance were lower than our corresponding clinical OCT measurements. Band 3 originates from a structure with axial extent similar to a single surface. Correlation with band 2 suggests an origin within the cone photoreceptor. These two observations indicate that band 3 corresponds predominantly to cone outer segment tips (COST). Conventional OCT may overestimate both the thickness of band 3 and outer segment length.
Jonnal, Ravi S.; Gorczynska, Iwona; Migacz, Justin V.; Azimipour, Mehdi; Zawadzki, Robert J.; Werner, John S.
2017-01-01
Purpose Optical coherence tomography's (OCT) third outer retinal band has been attributed to the zone of interdigitation between RPE cells and cone outer segments. The purpose of this paper is to investigate the structure of this band with adaptive optics (AO)-OCT. Methods Using AO-OCT, images were obtained from two subjects. Axial structure was characterized by measuring band 3 thickness and separation between bands 2 and 3 in segmented cones. Lateral structure was characterized by correlation of band 3 with band 2 and comparison of their power spectra. Band thickness and separation were also measured in a clinical OCT image of one subject. Results Band 3 thickness ranged from 4.3 to 6.4 μm. Band 2 correlations ranged between 0.35 and 0.41 and power spectra of both bands confirmed peak frequencies that agree with histologic density measurements. In clinical images, band 3 thickness was between 14 and 19 μm. Measurements of AO-OCT of interband distance were lower than our corresponding clinical OCT measurements. Conclusions Band 3 originates from a structure with axial extent similar to a single surface. Correlation with band 2 suggests an origin within the cone photoreceptor. These two observations indicate that band 3 corresponds predominantly to cone outer segment tips (COST). Conventional OCT may overestimate both the thickness of band 3 and outer segment length. PMID:28877320
Optical constants of SrF 2 thin films in the 25-780-eV spectral range
Rodriguez-de Marcos, Luis; Larraguert, Juan I.; Aznarez, Jose A.; ...
2013-04-08
The transmittance and the optical constants of SrF 2 thin films, a candidate material for multilayer coatings operating in the extreme ultraviolet and soft x-rays, have been determined in the spectral range of 25–780 eV, in most of which no experimental data were previously available. SrF 2 films of various thicknesses were deposited by evaporation onto room-temperature, thin Al support films, and their transmittance was measured with synchrotron radiation. The transmittance as a function of film thickness was used to calculate the extinction coefficient k at each photon energy. A decrease in density with increasing SrF 2 film thickness wasmore » observed. In the calculation of k, this effect was circumvented by fitting the transmittance versus the product of thickness and density. The real part of the refractive index of SrF 2 films was calculated from k with Kramers-Krönig analysis, for which the measured spectral range was extended both to lower and to higher photon energies with data in the literature combined with interpolations and extrapolations. In conclusion, with the application of f- and inertial sum rules, the consistency of the compiled data was found to be excellent.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokolov, V I; Glebov, V N; Malyutin, A M
2015-09-30
A method based on resonant excitation of waveguide modes with a prism coupler is proposed for measuring the thickness and refractive index of thin-film layers in multilayer dielectric structures. The peculiarities of reflection of TE- and TM-polarised light beams from a structure comprising eleven alternating layers of zinc sulfide (ZnS) and magnesium barium fluoride (MgBaF{sub 4}), whose thicknesses are much less than the wavelength of light, are investigated. Using the mathematical model developed, we have calculated the coefficients of reflection of collimated TE and TM light beams from a multilayer structure and determined the optical constants and thicknesses of themore » structure layers. The refractive indices of the layers, obtained for TE and TM polarisation of incident light, are in good agreement. The thicknesses of ZnS and MgBaF{sub 4} layers, found for different polarisations, coincide with an accuracy of ±1%. Thus, we have demonstrated for the first time that the prism-coupling technique allows one to determine the optical properties of thin-film structures when the number of layers in the structure exceeds ten layers. (integrated optics)« less
Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry
NASA Astrophysics Data System (ADS)
Li, Dahai; Song, Xiongfei; Xu, Jiping; Wang, Ziyi; Zhang, Rongjun; Zhou, Peng; Zhang, Hao; Huang, Renzhong; Wang, Songyou; Zheng, Yuxiang; Zhang, David Wei; Chen, Liangyao
2017-11-01
As a promising candidate for applications in future electronic and optoelectronic devices, MoS2 has been a research focus in recent years. Therefore, investigating its optical properties is of practical significance. Here we synthesized different MoS2 thin films with quantitatively controlled thickness and sizable thickness variation, which is vital to find out the thickness-dependent regularity. Afterwards, several characterization methods, including X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), Raman spectroscopy, photoluminescence (PL), optical absorption spectra, and spectroscopic ellipsometry (SE), were systematically performed to character the optical properties of as-grown samples. Accurate dielectric constants of MoS2 are obtained by fitting SE data using point-by-point method, and precise energies of interband transitions are directly extracted from the Lorentz dispersion model. We assign these energies to different interband electronic transitions between the valence bands and conduction bands in the Brillouin zone. In addition, the intrinsic physical mechanisms existing in observed phenomena are discussed in details. Results derived from this work are reliable and provide a better understanding of MoS2, which can be expected to help people fully employ its potential for wider applications.
Effect analysis of oil paint on the space optical contamination
NASA Astrophysics Data System (ADS)
Lu, Chun-lian; Lv, He; Han, Chun-xu; Wei, Hai-Bin
2013-08-01
The space contamination of spacecraft surface is a hot topic in the spacecraft environment project and environment safeguard for spacecraft. Since the 20th century, many American satellites have had malfunction for space contamination. The space optical systems are usually exposed to the external space environment. The particulate contamination of optical systems will degrade the detection ability. We call the optical damage. It also has a bad influence on the spectral imaging quality of the whole system. In this paper, effects of contamination on spectral imaging were discussed. The experiment was designed to observe the effect value. We used numeral curve fitting to analyze the relationship between the optical damage factor (Transmittance decay factor) and the contamination degree of the optical system. We gave the results of six specific wavelengths from 450 to 700nm and obtained the function of between the optical damage factor and contamination degree. We chose three colors of oil paint to be compared. Through the numeral curve fitting and processing data, we could get the mass thickness for different colors of oil paint when transmittance decreased to 50% and 30%. Some comparisons and research conclusions were given. From the comparisons and researches, we could draw the conclusions about contamination effects of oil paint on the spectral imaging system.
Liaparinos, P F
2015-11-21
X-ray phosphor-based detectors have enormously improved the quality of medical imaging examinations through the optimization of optical diffusion. In recent years, with the development of science and technology in the field of materials, improved powder phosphors require structural and optical properties that contribute to better optical signal propagation. The purpose of this paper was to provide a quantitative and qualitative understanding of the optical absorption characteristics in the assessment of powder phosphor-based detectors (from nano- scale up to micro-scale). Variations on the optical absorption parameters (i.e. the light extinction coefficient [Formula: see text] and the percentage probability of light absorption p%) were evaluated based on Mie calculations examining a wide range of light wavelengths, particle refractive indices and sizes. To model and assess the effects of the aforementioned parameters on optical diffusion, Monte Carlo simulation techniques were employed considering: (i) phosphors of different layer thickness, 100 μm (thin layer) and 300 μm (thick layer), respectively, (ii) light extinction coefficient values, 1, 3 and 6 μm(-1), and (iii) percentage probability of light absorption p% in the range 10(-4)-10(-2). Results showed that the [Formula: see text] coefficient is high for phosphor grains in the submicron scale and for low light wavelengths. At higher wavelengths (above 650 nm), optical quanta follow approximately similar depths until interaction for grain diameter 500 nm and 1 μm. Regarding the variability of the refractive index, high variations of the [Formula: see text] coefficient occurred above 1.6. Furthermore, results derived from Monte Carlo modeling showed that high spatial resolution phosphors can be accomplished by increasing the [Formula: see text] parameter. More specifically, the FWHM was found to decrease (i.e. higher resolution): (i) 4.8% at 100 μm and (ii) 9.5%, at 300 μm layer thickness. This study attempted to examine the role of the optical absorption parameters on optical diffusion studies. A significant outcome of the present investigation was that the improvement of phosphor spatial resolution without decreasing the light collection efficiency too much can be better achieved by increasing the parameter [Formula: see text] rather than the parameter p%.
Higashide, Tomomi; Ohkubo, Shinji; Hangai, Masanori; Ito, Yasuki; Shimada, Noriaki; Ohno-Matsui, Kyoko; Terasaki, Hiroko; Sugiyama, Kazuhisa; Chew, Paul; Li, Kenneth K W; Yoshimura, Nagahisa
2016-01-01
To identify the factors which significantly contribute to the thickness variabilities in macular retinal layers measured by optical coherence tomography with or without magnification correction of analytical areas in normal subjects. The thickness of retinal layers {retinal nerve fiber layer (RNFL), ganglion cell layer plus inner plexiform layer (GCLIPL), RNFL plus GCLIPL (ganglion cell complex, GCC), total retina, total retina minus GCC (outer retina)} were measured by macular scans (RS-3000, NIDEK) in 202 eyes of 202 normal Asian subjects aged 20 to 60 years. The analytical areas were defined by three concentric circles (1-, 3- and 6-mm nominal diameters) with or without magnification correction. For each layer thickness, a semipartial correlation (sr) was calculated for explanatory variables including age, gender, axial length, corneal curvature, and signal strength index. Outer retinal thickness was significantly thinner in females than in males (sr2, 0.07 to 0.13) regardless of analytical areas or magnification correction. Without magnification correction, axial length had a significant positive sr with RNFL (sr2, 0.12 to 0.33) and a negative sr with GCLIPL (sr2, 0.22 to 0.31), GCC (sr2, 0.03 to 0.17), total retina (sr2, 0.07 to 0.17) and outer retina (sr2, 0.16 to 0.29) in multiple analytical areas. The significant sr in RNFL, GCLIPL and GCC became mostly insignificant following magnification correction. The strong correlation between the thickness of inner retinal layers and axial length appeared to result from magnification effects. Outer retinal thickness may differ by gender and axial length independently of magnification correction.
Higashide, Tomomi; Ohkubo, Shinji; Hangai, Masanori; Ito, Yasuki; Shimada, Noriaki; Ohno-Matsui, Kyoko; Terasaki, Hiroko; Sugiyama, Kazuhisa; Chew, Paul; Li, Kenneth K. W.; Yoshimura, Nagahisa
2016-01-01
Purpose To identify the factors which significantly contribute to the thickness variabilities in macular retinal layers measured by optical coherence tomography with or without magnification correction of analytical areas in normal subjects. Methods The thickness of retinal layers {retinal nerve fiber layer (RNFL), ganglion cell layer plus inner plexiform layer (GCLIPL), RNFL plus GCLIPL (ganglion cell complex, GCC), total retina, total retina minus GCC (outer retina)} were measured by macular scans (RS-3000, NIDEK) in 202 eyes of 202 normal Asian subjects aged 20 to 60 years. The analytical areas were defined by three concentric circles (1-, 3- and 6-mm nominal diameters) with or without magnification correction. For each layer thickness, a semipartial correlation (sr) was calculated for explanatory variables including age, gender, axial length, corneal curvature, and signal strength index. Results Outer retinal thickness was significantly thinner in females than in males (sr2, 0.07 to 0.13) regardless of analytical areas or magnification correction. Without magnification correction, axial length had a significant positive sr with RNFL (sr2, 0.12 to 0.33) and a negative sr with GCLIPL (sr2, 0.22 to 0.31), GCC (sr2, 0.03 to 0.17), total retina (sr2, 0.07 to 0.17) and outer retina (sr2, 0.16 to 0.29) in multiple analytical areas. The significant sr in RNFL, GCLIPL and GCC became mostly insignificant following magnification correction. Conclusions The strong correlation between the thickness of inner retinal layers and axial length appeared to result from magnification effects. Outer retinal thickness may differ by gender and axial length independently of magnification correction. PMID:26814541
Optical clearing of articular cartilage: a comparison of clearing agents
NASA Astrophysics Data System (ADS)
Bykov, Alexander; Hautala, Tapio; Kinnunen, Matti; Popov, Alexey; Karhula, Sakari; Saarakkala, Simo; Nieminen, Miika T.; Tuchin, Valery
2015-07-01
Optical clearing technique was applied to the problem of OCT imaging of articular cartilage and subchondral bone. We show that optical clearing significantly enhances visualization of articular cartilage and cartilage-bone interface. The effect of different clearing agents was analyzed. For the clearing, iohexol solution and propylene glycol (PG) were used. Clearing was performed in vitro at room temperature by immersion method. Cylindrical osteochondral samples (d=4.8mm) were drilled from bovine lateral femur and stored in phosphate-buffered saline at -20°C until clearing. Monitoring of clearing process was performed using high-speed spectral-domain OCT system providing axial resolution of 5.8μm at 930nm. Total duration of experiment was 90-100min to ensure saturation of clearing. We have shown that iohexol solution and PG are capable to optically clear articular cartilage enabling reliable characterization of cartilagebone interface with OCT. Being a low osmolarity agent, iohexol provides minimal changes to the thickness of cartilage sample. Clearing saturation time for the cartilage sample with the thickness of 0.9 mm measured with OCT is of 50 min. However, less than 15 min is enough to reliably detect the rear cartilage boundary. Alternatively, PG significantly (60%) reduces the cartilage thickness enabling better visualization of subchondral bone. It was observed that PG has higher clearing rate. The clearing saturation time is of 30 min, however less than 5 min is enough to detect cartilage-bone interface. We conclude that iohexol solution is superior for OCT imaging of cartilage and cartilage-bone interface, while PG suits better for subhondral bone visualization.
In vivo analysis of the iris thickness by spectral domain optical coherence tomography.
Invernizzi, Alessandro; Cigada, Mario; Savoldi, Luisa; Cavuto, Silvio; Fontana, Luigi; Cimino, Luca
2014-09-01
To assess the effectiveness of spectral domain optical coherence tomography (SD-OCT) in providing in vivo measurements of iris thickness in healthy and pathological subjects. 14 healthy volunteers and 14 patients with unilateral Fuchs' uveitis were enrolled in the study. The two groups were comparable for age, gender and race. Each subject underwent complete clinical examination and anterior segment SD-OCT imaging in both eyes. SD-OCT scans of the iris were performed following a cross-sectional pattern. Iris thickness values were obtained using a purposely developed software-based analysis of OCT images. Measurements were carried out twice by two trained independent operators to assess intraobserver and interobserver repeatability. Analysis of iris thickness was conducted in four main quadrants: superior, inferior, nasal and temporal. Iris thickness values from normal subjects were compared with the ones measured in the affected and fellow eyes of patients with Fuchs' uveitis. Iris thickness measurements showed good intraobserver and interobserver repeatability (intraclass correlation coefficient >0.971). Superior and temporal iris sectors showed respectively thickest and thinnest values in all groups. In healthy eyes, iris thickness ranged from 327.92±37.29 μm temporally to 405.25±48.49 μm superiorly. Iris thickness measurements in the affected eyes of Fuchs' uveitis patients ranged from 285.48±56.02 μm temporally to 376.12±60.97 μm superiorly. Multiple comparison analysis showed iris thickness values to be significantly lower in eyes affected by Fuchs' uveitis than both in fellow eyes (p<0.001) of the same patients and in healthy eyes (p=0.0074). SD-OCT is a suitable technique for iris thickness assessment. Thickness analysis must be carried out using a sectorial approach, taking into consideration anatomical variations existing between different iris regions. SD-OCT is a potentially useful tool for detecting iris thickness variations induced by pathological conditions such as Fuchs' uveitis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Sung, Mi-Sun; Kang, Byung-Wan; Kim, Hwang-Gyun; Heo, Hwan; Park, Sang-Woo
2014-08-01
To evaluate the repeatability and diagnostic power of macular ganglion cell complex (mGCC) thickness and peripapillary retinal nerve fiber layer (pRNFL) thickness using a spectral domain-optical coherence tomography in advanced glaucoma. Forty advanced glaucoma patients were enrolled. Patients were divided into 2 groups of 20 patients each, according to the MD between -20 and -10 dB, and <-20 dB. The thickness of mGCC and pRNFL were measured with spectral domain-optical coherence tomography in both the groups. The repeatability of each parameter was assessed in both the groups, and the diagnostic power of each parameter was compared with the normal controls. Comparison of diagnostic power between the pRNFL and mGCC parameters revealed that the area under the receiver operating characteristic curve was not significantly different in patients with advanced glaucoma. The repeatability of pRNFL parameters was similar, irrespective of the severity of glaucoma. However, the repeatability of mGCC parameters became lower as the severity increased in patients with advanced glaucoma. In advanced glaucoma, the measurement of mGCC thickness has similar diagnostic power as the measurement of pRNFL thickness. However, the measurement of mGCC thickness showed a lower repeatability as MD decreased.
NASA Astrophysics Data System (ADS)
Huang, Jinxin; Yuan, Qun; Tankam, Patrice; Clarkson, Eric; Kupinski, Matthew; Hindman, Holly B.; Aquavella, James V.; Rolland, Jannick P.
2015-03-01
In biophotonics imaging, one important and quantitative task is layer-thickness estimation. In this study, we investigate the approach of combining optical coherence tomography and a maximum-likelihood (ML) estimator for layer thickness estimation in the context of tear film imaging. The motivation of this study is to extend our understanding of tear film dynamics, which is the prerequisite to advance the management of Dry Eye Disease, through the simultaneous estimation of the thickness of the tear film lipid and aqueous layers. The estimator takes into account the different statistical processes associated with the imaging chain. We theoretically investigated the impact of key system parameters, such as the axial point spread functions (PSF) and various sources of noise on measurement uncertainty. Simulations show that an OCT system with a 1 μm axial PSF (FWHM) allows unbiased estimates down to nanometers with nanometer precision. In implementation, we built a customized Fourier domain OCT system that operates in the 600 to 1000 nm spectral window and achieves 0.93 micron axial PSF in corneal epithelium. We then validated the theoretical framework with physical phantoms made of custom optical coatings, with layer thicknesses from tens of nanometers to microns. Results demonstrate unbiased nanometer-class thickness estimates in three different physical phantoms.
NASA Astrophysics Data System (ADS)
Jeffery, David J.; Mazzali, Paolo A.
2007-08-01
Giant steps is a technique to accelerate Monte Carlo radiative transfer in optically-thick cells (which are isotropic and homogeneous in matter properties and into which astrophysical atmospheres are divided) by greatly reducing the number of Monte Carlo steps needed to propagate photon packets through such cells. In an optically-thick cell, packets starting from any point (which can be regarded a point source) well away from the cell wall act essentially as packets diffusing from the point source in an infinite, isotropic, homogeneous atmosphere. One can replace many ordinary Monte Carlo steps that a packet diffusing from the point source takes by a randomly directed giant step whose length is slightly less than the distance to the nearest cell wall point from the point source. The giant step is assigned a time duration equal to the time for the RMS radius for a burst of packets diffusing from the point source to have reached the giant step length. We call assigning giant-step time durations this way RMS-radius (RMSR) synchronization. Propagating packets by series of giant steps in giant-steps random walks in the interiors of optically-thick cells constitutes the technique of giant steps. Giant steps effectively replaces the exact diffusion treatment of ordinary Monte Carlo radiative transfer in optically-thick cells by an approximate diffusion treatment. In this paper, we describe the basic idea of giant steps and report demonstration giant-steps flux calculations for the grey atmosphere. Speed-up factors of order 100 are obtained relative to ordinary Monte Carlo radiative transfer. In practical applications, speed-up factors of order ten and perhaps more are possible. The speed-up factor is likely to be significantly application-dependent and there is a trade-off between speed-up and accuracy. This paper and past work suggest that giant-steps error can probably be kept to a few percent by using sufficiently large boundary-layer optical depths while still maintaining large speed-up factors. Thus, giant steps can be characterized as a moderate accuracy radiative transfer technique. For many applications, the loss of some accuracy may be a tolerable price to pay for the speed-ups gained by using giant steps.
Measurement of refractive index of photopolymer for holographic gratings
NASA Astrophysics Data System (ADS)
Watanabe, Eriko; Mizuno, Jun; Fujikawa, Chiemi; Kodate, Kashiko
2007-02-01
We have made attempts to measure directly the small-scale variation of optical path lengths in photopolymer samples. For those with uniform thickness, the measured quantity is supposed to be proportional to the refractive index of the photopolymer. The system is based on a Mach-Zehnder interferometer using phase-locking technique and measures the change in optical path length during the sample is scanned across the optical axis. The spatial resolution is estimated to be 2μm, which is limited by the sample thickness. The path length resolution is estimated to be 6nm, which corresponds to the change in refractive index less than 10 -3 for the sample of 10μm thick. The measurement results showed clearly that the refractive index of photopolymer is not simply proportional to the exposure energy, contrary to the conventional photosensitive materials such as silver halide emulsion and dichromated gelatine. They also revealed the refractive index fluctuation in uniformly exposed photopolymer sample, which explains the milky appearance that sometimes observed in thick samples.
Anti-reflection coating design for metallic terahertz meta-materials
Pancaldi, Matteo; Freeman, Ryan; Hudl, Matthias; ...
2018-01-26
We demonstrate a silicon-based, single-layer anti-reflection coating that suppresses the reflectivity of metals at near-infrared frequencies, enabling optical probing of nano-scale structures embedded in highly reflective surroundings. Our design does not affect the interaction of terahertz radiation with metallic structures that can be used to achieve terahertz near-field enhancement. We have verified the functionality of the design by calculating and measuring the reflectivity of both infrared and terahertz radiation from a silicon/gold double layer as a function of the silicon thickness. We have also fabricated the unit cell of a terahertz meta-material, a dipole antenna comprising two 20-nm thick extendedmore » gold plates separated by a 2 μm gap, where the terahertz field is locally enhanced. We used the time-domain finite element method to demonstrate that such near-field enhancement is preserved in the presence of the anti-reflection coating. Finally, we performed magneto-optical Kerr effect measurements on a single 3-nm thick, 1-μm wide magnetic wire placed in the gap of such a dipole antenna. The wire only occupies 2% of the area probed by the laser beam, but its magneto-optical response can be clearly detected. Our design paves the way for ultrafast time-resolved studies, using table-top femtosecond near-infrared lasers, of dynamics in nano-structures driven by strong terahertz radiation.« less
Anti-reflection coating design for metallic terahertz meta-materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pancaldi, Matteo; Freeman, Ryan; Hudl, Matthias
We demonstrate a silicon-based, single-layer anti-reflection coating that suppresses the reflectivity of metals at near-infrared frequencies, enabling optical probing of nano-scale structures embedded in highly reflective surroundings. Our design does not affect the interaction of terahertz radiation with metallic structures that can be used to achieve terahertz near-field enhancement. We have verified the functionality of the design by calculating and measuring the reflectivity of both infrared and terahertz radiation from a silicon/gold double layer as a function of the silicon thickness. We have also fabricated the unit cell of a terahertz meta-material, a dipole antenna comprising two 20-nm thick extendedmore » gold plates separated by a 2 μm gap, where the terahertz field is locally enhanced. We used the time-domain finite element method to demonstrate that such near-field enhancement is preserved in the presence of the anti-reflection coating. Finally, we performed magneto-optical Kerr effect measurements on a single 3-nm thick, 1-μm wide magnetic wire placed in the gap of such a dipole antenna. The wire only occupies 2% of the area probed by the laser beam, but its magneto-optical response can be clearly detected. Our design paves the way for ultrafast time-resolved studies, using table-top femtosecond near-infrared lasers, of dynamics in nano-structures driven by strong terahertz radiation.« less
Anti-reflection coating design for metallic terahertz meta-materials.
Pancaldi, Matteo; Freeman, Ryan; Hudl, Matthias; Hoffmann, Matthias C; Urazhdin, Sergei; Vavassori, Paolo; Bonetti, Stefano
2018-02-05
We demonstrate a silicon-based, single-layer anti-reflection coating that suppresses the reflectivity of metals at near-infrared frequencies, enabling optical probing of nano-scale structures embedded in highly reflective surroundings. Our design does not affect the interaction of terahertz radiation with metallic structures that can be used to achieve terahertz near-field enhancement. We have verified the functionality of the design by calculating and measuring the reflectivity of both infrared and terahertz radiation from a silicon/gold double layer as a function of the silicon thickness. We have also fabricated the unit cell of a terahertz meta-material, a dipole antenna comprising two 20-nm thick extended gold plates separated by a 2 μm gap, where the terahertz field is locally enhanced. We used the time-domain finite element method to demonstrate that such near-field enhancement is preserved in the presence of the anti-reflection coating. Finally, we performed magneto-optical Kerr effect measurements on a single 3-nm thick, 1-μm wide magnetic wire placed in the gap of such a dipole antenna. The wire only occupies 2% of the area probed by the laser beam, but its magneto-optical response can be clearly detected. Our design paves the way for ultrafast time-resolved studies, using table-top femtosecond near-infrared lasers, of dynamics in nano-structures driven by strong terahertz radiation.
Observed Land Impacts on Clouds, Water Vapor, and Rainfall at Continental Scales
NASA Technical Reports Server (NTRS)
Jin, Menglin; King, Michael D.
2005-01-01
How do the continents affect large-scale hydrological cycles? How important can one continent be to the climate system? To address these questions, 4-years of National Aeronautics and Space Administration (NASA) Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations, Tropical Rainfall Measuring Mission (TRMM) observations, and the Global Precipitation Climatology Project (GPCP) global precipitation analysis, were used to assess the land impacts on clouds, rainfall, and water vapor at continental scales. At these scales, the observations illustrate that continents are integrated regions that enhance the seasonality of atmospheric and surface hydrological parameters. Specifically, the continents of Eurasia and North America enhance the seasonality of cloud optical thickness, cirrus fraction, rainfall, and water vapor. Over land, both liquid water and ice cloud effective radii are smaller than over oceans primarily because land has more aerosol particles. In addition, different continents have similar impacts on hydrological variables in terms of seasonality, but differ in magnitude. For example, in winter, North America and Eurasia increase cloud optical thickness to 17.5 and 16, respectively, while in summer, Eurasia has much smaller cloud optical thicknesses than North America. Such different land impacts are determined by each continent s geographical condition, land cover, and land use. These new understandings help further address the land-ocean contrasts on global climate, help validate global climate model simulated land-atmosphere interactions, and help interpret climate change over land.
NASA Astrophysics Data System (ADS)
Sun, Hong-Tao; Wang, Xiao-Ping; Kou, Zhi-Qi; Wang, Li-Jun; Wang, Jin-Ye; Sun, Yi-Qing
2015-04-01
Highly transparent indium-free composite electrodes of TiO2/Cu/TiO2 are deposited by electron-beam evaporation at room temperature. The effects of Cu thickness and annealing temperature on the electrical and optical properties of the multilayer film are investigated. The critical thickness of Cu mid-layer to form a continuous conducting layer is found to be 11 nm. The multilayer with a mid-Cu thickness of 11 nm is optimized to obtain a resistivity of 7.4×10-5 Ω·cm and an average optical transmittance of 86% in the visible spectral range. The figure of merit of the TiO2/Cu(11 nm)/TiO2 multilayer annealed at 150 °C reaches a minimum resistivity of 5.9×10-5 Ω·cm and an average optical transmittance of 88% in the visible spectral range. The experimental results indicate that TiO2/Cu/TiO2 multilayers can be used as a transparent electrode for solar cell and other display applications. Project supported by the Research Innovation Key Project of Education Committee of Shanghai, China (Grant No. 14ZZ137) and the National Cultivation Fund from University of Shanghai for Science and Technology (Grant No. 14XPM04).
Coman, Laurenţiu; Costescu, Monica; Alecu, Mihail; Coman, Oana Andreia
2014-01-01
The purpose of this study was to evaluate the relationship between central corneal thickness (CCT) and optic disc morphology in normal tension glaucoma (NTG). Patients with NTG underwent eye examination, optic disc imaging with Heildelberg Retina Tomograph II (HRT II) and ultrasound corneal pachymetry. The morphological parameters of the optic discs were used to classify the eyes into four groups: generalized enlargement (GE) type, myopic glaucomatous (MY) type, focal ischemic (FI) type and senile sclerotic (SS) type. A correlation between CCT and optic disc morphology obtained by HRT II was calculated. Multiple comparison and post hoc tests were performed in order to determine the significance of the differences between the four groups. The strongest correlation was between CCT and the parameters of optic disc imaging obtained at HRT II in the GE type of optic disc.
Akçam, H T; Capraz, I Y; Aktas, Z; Batur Caglayan, H Z; Ozhan Oktar, S; Hasanreisoglu, M; Irkec, C
2014-01-01
Purpose To compare both retinal nerve fiber layer thickness and orbital color Doppler ultrasonography parameters in patients with multiple sclerosis (MS) versus healthy controls. Methods This is an observational case–control study. Forty eyes from MS patients and twenty eyes from healthy volunteers were examined. Eyes were classified into three groups as group 1, eyes from MS patients with previous optic neuritis (n=20); group 2, eyes from MS patients without previous optic neuritis (n=20); and group 3, eyes from healthy controls (n=20). Following complete ophthalmologic examination and retinal nerve fiber layer thickness measurement for each group, blood flow velocities of posterior ciliary arteries, central retinal artery, ophthalmic artery, and superior ophthalmic vein were measured. Pourcelot index (resistive index), an indicator of peripheral vascular resistance, was also calculated. The statistical assessment was performed with the assistance of Pearson's Chi-square test, Mann–Whitney U-test, Kruskal–Wallis test, and Spearman's correlation test. Results The studied eyes exposed similar values in terms of intraocular pressure and central corneal thickness, implying no evidence in favor of glaucoma. All nerve fiber layer thickness values, except superior nasal quadrants, in group 1 were found to be significantly thinner than groups 2 and 3. Blood flow velocity and mean resistivity index parameters were similar in all the groups. Conclusions In MS patients, especially with previous optic neuritis, diminished retinal nerve fiber layer thickness was observed. Contrary to several studies in the current literature, no evidence supporting potential vascular origin of ocular involvement in MS was found. PMID:25081285
Villain, Max A; Greenfield, David S
2003-01-01
To assess reproducibility of quadrantic and clock hour sectors of retinal nerve fiber layer thickness in normal eyes using optical coherence tomography. Normal eyes of healthy volunteers meeting eligibility criteria were imaged by two inexperienced operators. Six 360 degrees circular scans with a diameter of 3.4 mm centered on the optic disc were obtained during each scanning session, and a baseline image was formed using 3 high-quality images defined by the software. Images were obtained on three different days within a 4-week period. Variance and coefficient of variation (CV) were calculated for quadrantic and retinal nerve fiber layer clock hour sectors obtained from the baseline image. Five normal eyes were scanned. Intraoperator reproducibility was high. The mean (+/- SD) CV for total retinal nerve fiber layer thickness was 5.3 +/- 3.82% and 4.33 +/- 3.7% for operators 1 and 2, respectively. Interoperator reproducibility was good with statistically similar variance for all quadrantic and clock hour retinal nerve fiber layer parameters (P = .42 to .99). The nasal retinal nerve fiber layer was the most variable sector for both operators (mean CV: 10.42% and 7.83% for operators 1 and 2, respectively). Differences in mean total, nasal, temporal, and superior retinal nerve fiber layer thickness were not statistically significant between operators for all eyes; however, for inferior retinal nerve fiber layer thickness, there was a significant (P = .0007) difference between operators in one eye. Peripapillary retinal nerve fiber layer thickness assessments using optical coherence tomography have good intraoperator and interoperator reproducibility. Inexperienced operators can generate useful measurement data with acceptable levels of variance.
NASA Astrophysics Data System (ADS)
Gorgolis, S.; Giannopoulou, A.; Anastassopoulos, D.; Kounavis, P.
2012-07-01
Photocurrent response, optical absorption, and x-ray diffraction (XRD) measurements in pentacene films grown on glass substrates are performed in order to obtain an insight into the mobile photocarriers generation mechanism. For film thickness of the order of 50 nm and lower, the photocurrent response spectra are found to follow the optical absorption spectra demonstrating the so-called symbatic response. Upon increasing the film thickness, the photoresponse demonstrates a transition to the so-called antibatic response, which is characterized by a maximum and minimum photocurrent for photon energies of minimum and maximum optical absorption, respectively. The experimental results are not in accordance with the model of important surface recombination rate. By taking into account the XRD patterns, the experimental photoresponse spectra can be reproduced by model simulations assuming efficient exciton dissociation at a narrow layer of the order of 20 nm near the pentacene-substrate interface. The simulated spectra are found sensitive to the film thickness, the absolute optical absorption coefficient, and the diffusion exciton length. By comparing the experimental with the simulated spectra, it is deduced that the excitons, which are created by optical excitation in the spectral region of 1.7-2.2 eV, diffuse with a diffusion length of the order of 10-80 nm to the pentacene-substrate interface where efficiently dissociate into mobile charge carriers.
Numerical modelling of high efficiency InAs/GaAs intermediate band solar cell
NASA Astrophysics Data System (ADS)
Imran, Ali; Jiang, Jianliang; Eric, Debora; Yousaf, Muhammad
2018-01-01
Quantum Dots (QDs) intermediate band solar cells (IBSC) are the most attractive candidates for the next generation of photovoltaic applications. In this paper, theoretical model of InAs/GaAs device has been proposed, where we have calculated the effect of variation in the thickness of intrinsic and IB layer on the efficiency of the solar cell using detailed balance theory. IB energies has been optimized for different IB layers thickness. Maximum efficiency 46.6% is calculated for IB material under maximum optical concentration.
Wang, Jui-Kai; Kardon, Randy H.; Kupersmith, Mark J.; Garvin, Mona K.
2012-01-01
Purpose. To develop an automated method for the quantification of volumetric optic disc swelling in papilledema subjects using spectral-domain optical coherence tomography (SD-OCT) and to determine the extent that such volumetric measurements correlate with Frisén scale grades (from fundus photographs) and two-dimensional (2-D) peripapillary retinal nerve fiber layer (RNFL) and total retinal (TR) thickness measurements from SD-OCT. Methods. A custom image-analysis algorithm was developed to obtain peripapillary circular RNFL thickness, TR thickness, and TR volume measurements from SD-OCT volumes of subjects with papilledema. In addition, peripapillary RNFL thickness measures from the commercially available Zeiss SD-OCT machine were obtained. Expert Frisén scale grades were independently obtained from corresponding fundus photographs. Results. In 71 SD-OCT scans, the mean (± standard deviation) resulting TR volumes for Frisén scale 0 to scale 4 were 11.36 ± 0.56, 12.53 ± 1.21, 14.42 ± 2.11, 17.48 ± 2.63, and 21.81 ± 3.16 mm3, respectively. The Spearman's rank correlation coefficient was 0.737. Using 55 eyes with valid Zeiss RNFL measurements, Pearson's correlation coefficient (r) between the TR volume and the custom algorithm's TR thickness, the custom algorithm's RNFL thickness, and Zeiss' RNFL thickness was 0.980, 0.929, and 0.946, respectively. Between Zeiss' RNFL and the custom algorithm's RNFL, and the study's TR thickness, r was 0.901 and 0.961, respectively. Conclusions. Volumetric measurements of the degree of disc swelling in subjects with papilledema can be obtained from SD-OCT volumes, with the mean volume appearing to be roughly linearly related to the Frisén scale grade. Using such an approach can provide a more continuous, objective, and robust means for assessing the degree of disc swelling compared with presently available approaches. PMID:22599584
Biomimetic small scale variable focal length lens unit using synthetic elastomer actuators
NASA Astrophysics Data System (ADS)
Kim, Baek-chul; Chung, Jinah; Lee, Y.; Nam, Jae-Do; Moon, Hyungpil; Choi, Hyouk Ryeol; Koo, J. C.
2011-04-01
Having a combination of a gel-like soft lens, ligaments, and the Ciliary muscles, the human eyes are effectively working for various focal lengths without a complicated group of lens. The simple and compact but effective optical system should deserve numerous attentions from various technical field especially portable information technology device industry. Noting the limited physical space of those deivces, demanding shock durability, and massive volume productivity, the present paper proposes a biomimetic optical lens unit that is organized with a circular silicone lens and an annular dielectric polymer actuator. Unlike the traditional optical lens mechanism that normally acquires a focus by changing its focal distance with moving lens or focal plane. the proposed optical system changes its lens thickness using a annulary connected polymer actuator in order to get image focuses. The proposed biomimetic lens system ensures high shock durability, compact physical dimensions, fast actuations, simple manufacturing process, and low production cost.
Thin randomly aligned hierarchical carbon nanotube arrays as ultrablack metamaterials
NASA Astrophysics Data System (ADS)
De Nicola, Francesco; Hines, Peter; De Crescenzi, Maurizio; Motta, Nunzio
2017-07-01
Ultrablack metamaterials are artificial materials able to harvest all the incident light regardless of wavelength, angle, or polarization. Here, we show the ultrablack properties of randomly aligned hierarchical carbon nanotube arrays with thicknesses below 200 nm. The thin coatings are realized by solution processing and dry-transfer deposition on different substrates. The hierarchical surface morphology of the coatings is biomimetic and provides a large effective area that improves the film optical absorption. Also, such a morphology is responsible for the moth-eye effect, which leads to the omnidirectional and polarization-independent suppression of optical reflection. The films exhibit an emissivity up to 99.36% typical of an ideal black body, resulting in the thinnest ultrablack metamaterial ever reported. Such a material may be exploited for thermal, optical, and optoelectronic devices such as heat sinks, optical shields, solar cells, light and thermal sensors, and light-emitting diodes.
NASA Astrophysics Data System (ADS)
Berthier, S.; Padeletti, G.; Fermo, P.; Bouquillon, A.; Aucouturier, M.; Charron, E.; Reillon, V.
2006-06-01
Luster decoration of medieval and renaissance potteries constitutes one of the most important and sophisticated decoration techniques of the Mediterranean basin. Lusters consist in a thin layer of silver and copper nanocrystals immersed in a dielectric matrix. Different physical phenomena are responsible for the very brilliant and complex colored effect produced by the lusters. On one hand, according to the thickness of the thin layer, interferential effects occur giving rise to a classical iridescent effect. On the other hand, the nanostructure of the metallic compound leads to extra absorption, generally observed in the visible or near infrared, due to an external resonance associated with the excitation of a surface plasmon in the metallic particles. The position of this resonance, and so the color of the film, depends from many parameters, mainly: (1) the relative volume fraction p of the metal inclusions. (2) The mean size of the metal particle. (3) The shape of the particles and (4) the dielectric functions of the constituents. These two phenomena are not independent as the second one greatly affects the dielectric function of the film and, thus, its optical thickness. In this paper, the physical and optical properties of various lusters from Deruta and Gubbio (Italy) of the XVI century are presented. The structure and the composition of the different films have been determined by scanning electron microscope (SEM), ion beam analyses (PIXE and RBS) and low incidence X-ray diffraction. The optical properties have been determined by two different techniques: (a) hemispherical spectroscopic measurements under near-normal incidence; (b) gonioscopic measurements for a given angle of incidence and wavelength. The first one allows the determination of the effective index of refraction of the inhomogeneous layer, and the second one the determination of the bidirectional reflectance distribution function (BRDF) of the material.
El Beltagi, Tarek A; Bowd, Christopher; Boden, Catherine; Amini, Payam; Sample, Pamela A; Zangwill, Linda M; Weinreb, Robert N
2003-11-01
To determine the relationship between areas of glaucomatous retinal nerve fiber layer thinning identified by optical coherence tomography and areas of decreased visual field sensitivity identified by standard automated perimetry in glaucomatous eyes. Retrospective observational case series. Forty-three patients with glaucomatous optic neuropathy identified by optic disc stereo photographs and standard automated perimetry mean deviations >-8 dB were included. Participants were imaged with optical coherence tomography within 6 months of reliable standard automated perimetry testing. The location and number of optical coherence tomography clock hour retinal nerve fiber layer thickness measures outside normal limits were compared with the location and number of standard automated perimetry visual field zones outside normal limits. Further, the relationship between the deviation from normal optical coherence tomography-measured retinal nerve fiber layer thickness at each clock hour and the average pattern deviation in each visual field zone was examined by using linear regression (R(2)). The retinal nerve fiber layer areas most frequently outside normal limits were the inferior and inferior temporal regions. The least sensitive visual field zones were in the superior hemifield. Linear regression results (R(2)) showed that deviation from the normal retinal nerve fiber layer thickness at optical coherence tomography clock hour positions 6 o'clock, 7 o'clock, and 8 o'clock (inferior and inferior temporal) was best correlated with standard automated perimetry pattern deviation in visual field zones corresponding to the superior arcuate and nasal step regions (R(2) range, 0.34-0.57). These associations were much stronger than those between clock hour position 6 o'clock and the visual field zone corresponding to the inferior nasal step region (R(2) = 0.01). Localized retinal nerve fiber layer thinning, measured by optical coherence tomography, is topographically related to decreased localized standard automated perimetry sensitivity in glaucoma patients.
Association of ABO blood groups and Rh factor with retinal and choroidal thickness.
Teberik, Kuddusi; Eski, Mehmet Tahir
2018-06-01
To evaluate if ABO blood group and Rh factor have an effect on retinal and choroidal thickness. This study was designed prospectively. Retinal nerve fiber layer, retinal, and choroidal thicknesses were measured with spectral-domain optical coherence tomography. Retinal and choroidal thickness measurements (one subfoveal, three temporal, and three nasal) were obtained at 500-μm intervals up to 1500 μm with the caliper system. In this study, 109 male and 151 female, 260 individuals in total were included. There were 125 subjects in group A, 29 in group B, 34 in group AB, and 72 in group O. Rh factor was positive in 194 subjects and negative in 66. There was no significant difference between the groups regarding age (p = 0.667). The groups did not show any statistical difference in retinal nerve fiber layer thickness. There was significant difference found for mean retinal thickness at temporal 1000 μm when four groups were compared (p = 0.037). No statistically significant difference was detected for the remaining retinal and choroidal sectoral regions. The groups did not statistically significantly differ concerning Rh factor (p > 0.05). Although we found a significant difference in retinal thickness in the temporal retina between group B with group A and group O, we suggest that both blood group and Rh factor have no effect on retinal and choroidal thickness.
NASA Technical Reports Server (NTRS)
Goguen, Jay D.
1993-01-01
To test the hypothesis that the independent scattering calculation widely used to model radiative transfer in atmospheres and clouds will give a useful approximation to the intensity and linear polarization of visible light scattered from an optically thick surface of transparent particles, laboratory measurements are compared to the independent scattering calculation for a surface of spherical particles with known optical constants and size distribution. Because the shape, size distribution, and optical constants of the particles are known, the independent scattering calculation is completely determined and the only remaining unknown is the net effect of the close packing of the particles in the laboratory sample surface...