[Dynamic model of seasonal breeding rodent pest population controlled with short-acting sterilant].
Liu, Han-wu; Jin, Zhen; Zhang, Feng-qin; Li, Qiu-ying
2013-04-01
Rodent pests bring great damage to human beings, while rodenticide and sterilant can be used to control the pests. After ingesting sterilant, rodent pests lose their fertility, but in some cases, the sterile individuals may gain their fertility again, produce offspring, and enlarge population size. In this paper, the dynamic models of rodent pest population under lethal control and shortacting contraception control were formulated, and, with the prerequisite of the seasonal breeding of rodent pest population, the models were used to regularly analyze their behaviors and the effects of the contraception rate, lethal rate, control interval, and sterilant valid period on the dynamics of the pest population. The results showed that larger contraception rate and lethal rate and shorter control interval could have better control effect, making the controlled population become smaller and even died out. Short-acting sterilant limited the control effect. At the later period of breeding season, the rodent pest population controlled with short-acting sterilant would have a weak recovery.
Pest control of aphids depends on landscape complexity and natural enemy interactions
Reineking, Björn; Seo, Bumsuk; Steffan-Dewenter, Ingolf
2015-01-01
Aphids are a major concern in agricultural crops worldwide, and control by natural enemies is an essential component of the ecological intensification of agriculture. Although the complexity of agricultural landscapes is known to influence natural enemies of pests, few studies have measured the degree of pest control by different enemy guilds across gradients in landscape complexity. Here, we use multiple natural-enemy exclosures replicated in 18 fields across a gradient in landscape complexity to investigate (1) the strength of natural pest control across landscapes, measured as the difference between pest pressure in the presence and in the absence of natural enemies; (2) the differential contributions of natural enemy guilds to pest control, and the nature of their interactions across landscapes. We show that natural pest control of aphids increased up to six-fold from simple to complex landscapes. In the absence of pest control, aphid population growth was higher in complex than simple landscapes, but was reduced by natural enemies to similar growth rates across all landscapes. The effects of enemy guilds were landscape-dependent. Particularly in complex landscapes, total pest control was supplied by the combined contribution of flying insects and ground-dwellers. Birds had little overall impact on aphid control. Despite evidence for intraguild predation of flying insects by ground-dwellers and birds, the overall effect of enemy guilds on aphid control was complementary. Understanding pest control services at large spatial scales is critical to increase the success of ecological intensification schemes. Our results suggest that, where aphids are the main pest of concern, interactions between natural enemies are largely complementary and lead to a strongly positive effect of landscape complexity on pest control. Increasing the availability of seminatural habitats in agricultural landscapes may thus benefit not only natural enemies, but also the effectiveness of aphid natural pest control. PMID:26734497
Pest control of aphids depends on landscape complexity and natural enemy interactions.
Martin, Emily A; Reineking, Björn; Seo, Bumsuk; Steffan-Dewenter, Ingolf
2015-01-01
Aphids are a major concern in agricultural crops worldwide, and control by natural enemies is an essential component of the ecological intensification of agriculture. Although the complexity of agricultural landscapes is known to influence natural enemies of pests, few studies have measured the degree of pest control by different enemy guilds across gradients in landscape complexity. Here, we use multiple natural-enemy exclosures replicated in 18 fields across a gradient in landscape complexity to investigate (1) the strength of natural pest control across landscapes, measured as the difference between pest pressure in the presence and in the absence of natural enemies; (2) the differential contributions of natural enemy guilds to pest control, and the nature of their interactions across landscapes. We show that natural pest control of aphids increased up to six-fold from simple to complex landscapes. In the absence of pest control, aphid population growth was higher in complex than simple landscapes, but was reduced by natural enemies to similar growth rates across all landscapes. The effects of enemy guilds were landscape-dependent. Particularly in complex landscapes, total pest control was supplied by the combined contribution of flying insects and ground-dwellers. Birds had little overall impact on aphid control. Despite evidence for intraguild predation of flying insects by ground-dwellers and birds, the overall effect of enemy guilds on aphid control was complementary. Understanding pest control services at large spatial scales is critical to increase the success of ecological intensification schemes. Our results suggest that, where aphids are the main pest of concern, interactions between natural enemies are largely complementary and lead to a strongly positive effect of landscape complexity on pest control. Increasing the availability of seminatural habitats in agricultural landscapes may thus benefit not only natural enemies, but also the effectiveness of aphid natural pest control.
Towards integrated pest management in red clover seed production.
Lundin, Ola; Rundlöf, Maj; Smith, Henrik G; Bommarco, Riccardo
2012-10-01
The development of integrated pest management is hampered by lack of information on how insect pest abundances relate to yield losses, and how pests are affected by control measures. In this study, we develop integrated pest management tactics for Apion spp. weevils (Coleoptera: Brentidae) in seed production of red clover, Trifolium pratense L. We tested a method to forecast pest damage, quantified the relationship between pest abundance and yield, and evaluated chemical and biological pest control in 29 Swedish red clover fields in 2008 and 2011. Pest inflorescence abundance, which had a highly negative effect on yield, could be predicted with pan trap catches of adult pests. In 2008, chemical control with typically one application of pyrethroids was ineffective both in decreasing pest abundances and in increasing yields. In 2011, when chemical control included applications of the neonicotinoid thiacloprid, pest abundances decreased and yields increased considerably in treated field zones. A post hoc analysis indicated that using pyrethroids in addition to thiacloprid was largely redundant. Infestation rates by parasitoids was higher and reached average levels of around 40% in insecticide treated field zones in 2011, which is a level of interest for biological pest control. Based on the data presented, an economic threshold for chemical control is developed, and guidelines are provided on minimum effective chemical pest control.
Lipman, Stefan A; Burt, Sara A
2017-01-01
Pests in the home are a health risk because they can be vectors for infectious disease, contribute to allergies and cause damage to buildings. The aims of this study were to record which categories of pests were reported in homes and to use a social cognition model, the health belief model, to investigate which psychological factors influence householders' intentions to control pests. An online questionnaire was completed by 413 respondents between 11 September and 31 November 2015. A large majority of respondents reported pests in or around their home within the previous year. The prevalences were: flying insects 98%, crawling insects 85%, rodents 62%, birds 58%, and moles 20%. Regression analysis for the health belief model revealed that perceiving greater benefits and fewer barriers to pest control and expecting severe consequences of zoonotic infections predicted higher intention to control pests. Intentions towards pest control were not influenced by perceiving oneself as susceptible to catching a disease from pests or health motivation (striving towards a healthy lifestyle). Intentions to engage in pest control were lower for households reporting bird prevalence. The findings suggest that interventions aimed at improving the effectiveness of domestic pest control should focus on increasing the benefits that individuals associate with effective pest control, lowering barriers, and on underlining the severity of the diseases that pests may carry.
Lipman, Stefan A.
2017-01-01
Pests in the home are a health risk because they can be vectors for infectious disease, contribute to allergies and cause damage to buildings. The aims of this study were to record which categories of pests were reported in homes and to use a social cognition model, the health belief model, to investigate which psychological factors influence householders’ intentions to control pests. An online questionnaire was completed by 413 respondents between 11 September and 31 November 2015. A large majority of respondents reported pests in or around their home within the previous year. The prevalences were: flying insects 98%, crawling insects 85%, rodents 62%, birds 58%, and moles 20%. Regression analysis for the health belief model revealed that perceiving greater benefits and fewer barriers to pest control and expecting severe consequences of zoonotic infections predicted higher intention to control pests. Intentions towards pest control were not influenced by perceiving oneself as susceptible to catching a disease from pests or health motivation (striving towards a healthy lifestyle). Intentions to engage in pest control were lower for households reporting bird prevalence. The findings suggest that interventions aimed at improving the effectiveness of domestic pest control should focus on increasing the benefits that individuals associate with effective pest control, lowering barriers, and on underlining the severity of the diseases that pests may carry. PMID:29284047
Microbial control of arthropod pests of tropical tree fruits.
Dolinski, Claudia; Lacey, Lawrence A
2007-01-01
A multitude of insects and mites attack fruit crops throughout the tropics. The traditional method for controlling most of these pests is the application of chemical pesticides. Growing concern on the negative environmental effects has encouraged the development of alternatives. Inundatively and inoculatively applied microbial control agents (virus, bacteria, fungi, and entomopathogenic nematodes) have been developed as alternative control methods of a wide variety of arthropods including tropical fruit pests. The majority of the research and applications in tropical fruit agroecosystems has been conducted in citrus, banana, coconut, and mango. Successful microbial control initiatives of citrus pests and mites have been reported. Microbial control of arthropod pests of banana includes banana weevil, Cosmopolites sordidus Germar (Coleoptera: Curculionidae) (with EPNs and fungi) among others Oryctes rhinoceros (L.) is one of the most important pests of coconut and one of the most successful uses of non-occluded virus for classical biological control. Key pests of mango that have been controlled with microbial control agents include fruit flies (Diptera: Tephritidae) (with EPNs and fungi), and other pests. Also successful is the microbial control of arthropod pests of guava, papaya and pineapple. The challenge towards a broader application of entomopathogens is the development of successful combinations of entomopathogens, predators, and parasitoids along with other interventions to produce effective and sustainable pest management.
Vertebrate Pest Control. Sale Publication 4077.
ERIC Educational Resources Information Center
Stimmann, M. W.; Clark, Dell O.
This guide gives descriptions of common vertebrate pests and guidelines for using some common pesticides. The pests discussed are rats, mice, bats, moles, muskrats, ground squirrels, and gophers. Information is given for each pest on the type of damage the pest can do, the habitat and biology of the pest, and the most effective control methods.…
ERIC Educational Resources Information Center
Extension Service (USDA), Washington, DC.
This manual is designed to assist pest control operators to prepare for certification under the Michigan Pesticide Control Act of 1976. The primary focus of this publication is on home, institutional, and structural pest control. The ten sections included describe: (1) Insect control; (2) Rodent control; (3) Special situation pest control; (4)…
Introduction to 2009 Symposium on Alternative Methods of Controlling Pests and Diseases
USDA-ARS?s Scientific Manuscript database
Numerous pests and diseases limit potato productivity, and control of weeds, insects and pathogens remains a costly part of potato production. Although conventional agrichemical pest control is amazingly effective, interest in non-synthetic chemical and integrated methods of pest management is drive...
Safe, Effective Use of Pesticides, A Manual for Commercial Applicators: Aquatic Pest Control.
ERIC Educational Resources Information Center
Extension Service (USDA), Washington, DC.
This manual is intended to assist pesticide applicators in the area of aquatic pest control meet the requirements of the Michigan Department of Agriculture for certification. The Environmental Protection Agency (EPA) Aquatic Pest Control Guide served as a basis for this manual. The six sections presented describe: (1) Aquatic pest control; (2)…
Allee effects in tritrophic food chains: some insights in pest biological control.
Costa, Michel Iskin da S; Dos Anjos, Lucas
2016-12-01
Release of natural enemies to control pest populations is a common strategy in biological control. However, its effectiveness is supposed to be impaired, among other factors, by Allee effects in the biological control agent and by the fact that introduced pest natural enemies interact with some native species of the ecosystem. In this work, we devise a tritrophic food chain model where the assumptions previously raised are proved correct when a hyperpredator attacks the introduced pest natural enemy by a functional response type 2 or 3. Moreover, success of pest control is shown to be related to the release of large amounts (i.e., inundative releases) of natural enemies. © The authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
Pest Control in the School Environment: Adopting Integrated Pest Management.
ERIC Educational Resources Information Center
Environmental Protection Agency, Washington, DC. Office of Pesticide Programs.
As the public becomes more aware of the health and environmental risks pesticides may pose, its interest in seeking the use of equally effective alternative pest control methods increases. School administrators and other persons who have pest control decision-making responsibilities for school buildings and grounds can use this guide to become…
Nonrandom extinction patterns can modulate pest control service decline.
Karp, Daniel S; Moeller, Holly V; Frishkoff, Luke O
2013-06-01
Changes in biodiversity will mediate the consequences of agricultural intensification and expansion for ecosystem services. Regulating services, like pollination and pest control, generally decline with species loss. In nature, however, relationships between service provision and species richness are not always strong, partially because anthropogenic disturbances purge species from communities in nonrandom orders. The same traits that make for effective service providers may also confer resistance or sensitivity to anthropogenic disturbances, which may either temper or accelerate declines in service provision with species loss. We modeled a community of predators interacting with insect pest prey, and identified the contexts in which pest control provision was most sensitive to species loss. We found pest populations increased rapidly when functionally unique and dietary-generalist predators were lost first, with up to 20% lower pest control provision than random loss. In general, pest abundance increased most in the scenarios that freed more pest species from predation. Species loss also decreased the likelihood that the most effective service providers were present. In communities composed of species with identical traits, predators were equally effective service providers and, when competing predators went extinct, remaining community members assumed their functional roles. In more realistic trait-diverse communities, predators differed in pest control efficacy, and remaining predators could not fully compensate for the loss of their competitors, causing steeper declines in pest control provision with predator species loss. These results highlight diet breadth in particular as a key predictor of service provision, as it affects both the way species respond to and alter their environments. More generally, our model provides testable hypotheses for predicting how nonrandom species loss alters relationships between biodiversity and pest control provision.
The ABCs of Non-Toxic Pest Control.
ERIC Educational Resources Information Center
Cooper, Susan
1990-01-01
Although chemical-intensive pest control methods have proven reasonably effective, a growing awareness of health and environmental risks associated with pesticides has sharpened public interest in safer alternatives. An integrated pest management approach reduces risks from pests while minimizing human exposure and reducing the toxicity of applied…
9 CFR 416.2 - Establishment grounds and facilities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... ACT SANITATION § 416.2 Establishment grounds and facilities. (a) Grounds and pest control. The grounds... place a pest management program to prevent the harborage and breeding of pests on the grounds and within establishment facilities. Pest control substances used must be safe and effective under the conditions of use...
9 CFR 416.2 - Establishment grounds and facilities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... ACT SANITATION § 416.2 Establishment grounds and facilities. (a) Grounds and pest control. The grounds... place a pest management program to prevent the harborage and breeding of pests on the grounds and within establishment facilities. Pest control substances used must be safe and effective under the conditions of use...
9 CFR 416.2 - Establishment grounds and facilities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... ACT SANITATION § 416.2 Establishment grounds and facilities. (a) Grounds and pest control. The grounds... place a pest management program to prevent the harborage and breeding of pests on the grounds and within establishment facilities. Pest control substances used must be safe and effective under the conditions of use...
Zhao, ZiHua; Shi, PeiJian; Men, XingYuan; Ouyang, Fang; Ge, Feng
2013-08-01
The relationship between crop richness and predator-prey interactions as they relate to pest-natural enemy systems is a very important topic in ecology and greatly affects biological control services. The effects of crop arrangement on predator-prey interactions have received much attention as the basis for pest population management. To explore the internal mechanisms and factors driving the relationship between crop richness and pest population management, we designed an experimental model system of a microlandscape that included 50 plots and five treatments. Each treatment had 10 repetitions in each year from 2007 to 2010. The results showed that the biomass of pests and their natural enemies increased with increasing crop biomass and decreased with decreasing crop biomass; however, the effects of plant biomass on the pest and natural enemy biomass were not significant. The relationship between adjacent trophic levels was significant (such as pests and their natural enemies or crops and pests), whereas non-adjacent trophic levels (crops and natural enemies) did not significantly interact with each other. The ratio of natural enemy/pest biomass was the highest in the areas of four crop species that had the best biological control service. Having either low or high crop species richness did not enhance the pest population management service and lead to loss of biological control. Although the resource concentration hypothesis was not well supported by our results, high crop species richness could suppress the pest population, indicating that crop species richness could enhance biological control services. These results could be applied in habitat management aimed at biological control, provide the theoretical basis for agricultural landscape design, and also suggest new methods for integrated pest management.
A Framework for Identifying Selective Chemical Applications for IPM in Dryland Agriculture
Umina, Paul A.; Jenkins, Sommer; McColl, Stuart; Arthur, Aston; Hoffmann, Ary A.
2015-01-01
Shifts to Integrated Pest Management (IPM) in agriculture are assisted by the identification of chemical applications that provide effective control of pests relative to broad-spectrum pesticides but have fewer negative effects on natural enemy (beneficial) groups that assist in pest control. Here, we outline a framework for identifying such applications and apply this framework to field trials involving the crop establishment phase of Australian dryland cropping systems. Several chemicals, which are not presently available to farmers in Australia, were identified as providing moderate levels of pest control and seedling protection, with the potential to be less harmful to beneficial groups including predatory mites, predatory beetles and ants. This framework highlights the challenges involved in chemically controlling pests while maintaining non-target populations when pest species are present at damaging levels. PMID:26694469
Tang, Sanyi; Liang, Juhua; Tan, Yuanshun; Cheke, Robert A
2013-01-01
Impulsive differential equations (hybrid dynamical systems) can provide a natural description of pulse-like actions such as when a pesticide kills a pest instantly. However, pesticides may have long-term residual effects, with some remaining active against pests for several weeks, months or years. Therefore, a more realistic method for modelling chemical control in such cases is to use continuous or piecewise-continuous periodic functions which affect growth rates. How to evaluate the effects of the duration of the pesticide residual effectiveness on successful pest control is key to the implementation of integrated pest management (IPM) in practice. To address these questions in detail, we have modelled IPM including residual effects of pesticides in terms of fixed pulse-type actions. The stability threshold conditions for pest eradication are given. Moreover, effects of the killing efficiency rate and the decay rate of the pesticide on the pest and on its natural enemies, the duration of residual effectiveness, the number of pesticide applications and the number of natural enemy releases on the threshold conditions are investigated with regard to the extent of depression or resurgence resulting from pulses of pesticide applications and predator releases. Latin Hypercube Sampling/Partial Rank Correlation uncertainty and sensitivity analysis techniques are employed to investigate the key control parameters which are most significantly related to threshold values. The findings combined with Volterra's principle confirm that when the pesticide has a strong effect on the natural enemies, repeated use of the same pesticide can result in target pest resurgence. The results also indicate that there exists an optimal number of pesticide applications which can suppress the pest most effectively, and this may help in the design of an optimal control strategy.
Integrated Pest Management in a Predator-Prey System with Allee Effects.
Costa, M I S; dos Anjos, L
2015-08-01
A commonly used biocontrol strategy to control invasive pests with Allee effects consists of the deliberate introduction of natural enemies. To enhance the effectiveness of this strategy, several tactics of control of invasive species (e.g., mass-trapping, manual removal of individuals, and pesticide spraying) are combined so as to impair pest outbreaks. This combination of strategies to control pest species dynamics are usually named integrated pest management (IPM). In this work, we devise a predator-prey dynamical model in order to assess the influence of the intensity of chemical killing on the success of an IPM. The biological and mathematical framework presented in this study can also be analyzed in the light of species conservation and food web dynamics theory.
Dynamic complexities in a pest control model with birth pulse and harvesting
NASA Astrophysics Data System (ADS)
Goel, A.; Gakkhar, S.
2016-04-01
In this paper, an impulsive model is discussed for an integrated pest management approach comprising of chemical and mechanical controls. The pesticides and harvesting are used to control the stage-structured pest population. The mature pest give birth to immature pest in pulses at regular intervals. The pest is controlled by spraying chemical pesticides affecting immature as well as mature pest. The harvesting of both immature and mature pest further reduce the pest population. The discrete dynamical system obtained from stroboscopic map is analyzed. The threshold conditions for stability of pest-free state as well as non-trivial period-1 solution is obtained. The effect of pesticide spray timing and harvesting on immature as well as mature pest are shown. Finally, by numerical simulation with MATLAB, the dynamical behaviors of the model is found to be complex. Above the threshold level there is a characteristic sequence of bifurcations leading to chaotic dynamics. Route to chaos is found to be period-doubling. Period halving bifurcations are also observed.
NASA Astrophysics Data System (ADS)
Liang, Juhua; Tang, Sanyi; Cheke, Robert A.
2016-07-01
Pest resistance to pesticides is usually managed by switching between different types of pesticides. The optimal switching time, which depends on the dynamics of the pest population and on the evolution of the pesticide resistance, is critical. Here we address how the dynamic complexity of the pest population, the development of resistance and the spraying frequency of pulsed chemical control affect optimal switching strategies given different control aims. To do this, we developed novel discrete pest population growth models with both impulsive chemical control and the evolution of pesticide resistance. Strong and weak threshold conditions which guarantee the extinction of the pest population, based on the threshold values of the analytical formula for the optimal switching time, were derived. Further, we addressed switching strategies in the light of chosen economic injury levels. Moreover, the effects of the complex dynamical behaviour of the pest population on the pesticide switching times were also studied. The pesticide application period, the evolution of pesticide resistance and the dynamic complexity of the pest population may result in complex outbreak patterns, with consequent effects on the pesticide switching strategies.
USDA-ARS?s Scientific Manuscript database
If appropriately applied, biological control offers one of the most promising, environmentally sound, and sustainable control tactics for arthropod pests and weeds for application as part of an integrated pest management (IPM) approach. Public support for biological control as one of the preferred m...
Impact of Release Rates on the Effectiveness of Augmentative Biological Control Agents
Crowder, David W.
2007-01-01
To access the effect of augmentative biological control agents, 31 articles were reviewed that investigated the impact of release rates of 35 augmentative biological control agents on the control of 42 arthropod pests. In 64% of the cases, the release rate of the biological control agent did not significantly affect the density or mortality of the pest insect. Results where similar when parasitoidsor predators were utilized as the natural enemy. Within any order of natural enemy, there were more cases where release rates did not affect augmentative biological control than cases where release rates were significant. There were more cases in which release rates did not affect augmentative biological control when pests were from the orders Hemiptera, Acari, or Diptera, but not with pests from the order Lepidoptera. In most cases, there was an optimal release rate that produced effective control of a pest species. This was especially true when predators were used as a biological control agent. Increasing the release rate above the optimal rate did not improve control of the pest and thus would be economically detrimental. Lower release rates were of ten optimal when biological control was used in conjunction with insecticides. In many cases, the timing and method of biological control applications were more significant factors impacting the effectiveness of biological control than the release rate. Additional factors that may limit the relative impact of release rates include natural enemy fecundity, establishment rates, prey availability, dispersal, and cannibalism. PMID:20307240
Tsukamoto, Yumiko; Maeda, Yumi; Tamura, Toshiki; Mukai, Tetsu; Mitarai, Satoshi; Yamamoto, Saburo; Makino, Masahiko
2016-12-07
Enhancement of the T cell-stimulating ability of Mycobacterium bovis BCG (BCG) is necessary to develop an effective tuberculosis vaccine. For this purpose, we introduced the PEST-HSP70-major membrane protein-II (MMPII)-PEST fusion gene into ureC-gene depleted recombinant (r) BCG to produce BCG-PEST. The PEST sequence is involved in the proteasomal processing of antigens. BCG-PEST secreted the PEST-HSP70-MMPII-PEST fusion protein and more efficiently activated human monocyte-derived dendritic cells (DCs) in terms of phenotypic changes and cytokine productions than an empty-vector-introduced BCG or HSP70-MMPII gene-introduced ureC gene-depleted BCG (BCG-DHTM). Autologous human naïve CD8 + T cells and naïve CD4 + T cells were effectively activated by BCG-PEST and produced IFN-γ in an antigen-specific manner through DCs. These T cell activations were closely associated with phagosomal maturation and intraproteasomal protein degradation in antigen-presenting cells. Furthermore, BCG-PEST produced long-lasting memory-type T cells in C57BL/6 mice more efficiently than control rBCGs. Moreover, a single subcutaneous injection of BCG-PEST more effectively reduced the multiplication of subsequent aerosol-challenged Mycobacterium tuberculosis of the standard H37Rv strain and clinically isolated Beijing strain in the lungs than control rBCGs. The vaccination effect of BCG-PEST lasted for at least 6months. These results indicate that BCG-PEST may be able to efficiently control the spread of tuberculosis in human. Copyright © 2016 Elsevier Ltd. All rights reserved.
Castle, Steven; Naranjo, Steven E
2009-12-01
Integrated Pest Management (IPM) is considered the central paradigm of insect pest management and is often characterized as a comprehensive use of multiple control tactics to reduce pest status while minimizing economic and environmental costs. As the principal precursor of IPM, the integrated control concept formulated the economic theory behind pest management decisions and specified an applied methodology for carrying out pest control. Sampling, economic thresholds and selective insecticides were three of the critical elements of that methodology and are now considered indispensable to the goals of IPM. We examine each of these elements in the context of contemporaneous information as well as accumulated experience and knowledge required for their skillful implementation in an IPM program. We conclude that while IPM is principally about integrating control tactics into an effective and sustainable approach to pest control, this overarching goal can only be achieved through well-trained practitioners, knowledgeable of the tenets conceived in the integrated control concept that ultimately yield informed pest management. (c) 2009 Society of Chemical Industry.
Safe, Effective Use of Pesticides, A Manual for Commercial Applicators: Vegetable Pests.
ERIC Educational Resources Information Center
Cress, D.; And Others
This manual is intended to assist pesticide applicators in vegetable crops prepare for certification under the Michigan Pesticide Control Act of 1976. The primary focus of this publication is on vegetable pest control. The three sections presented describe: (1) Insect pests of vegetable crops; (2) Weed pests of vegetable crops; and (3) Causes of…
Dynamic complexities in a pest control model with birth pulse and harvesting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goel, A., E-mail: goelanju23@gmail.com; Gakkhar, S., E-mail: sungkfma@iitr.ernet.in
In this paper, an impulsive model is discussed for an integrated pest management approach comprising of chemical and mechanical controls. The pesticides and harvesting are used to control the stage-structured pest population. The mature pest give birth to immature pest in pulses at regular intervals. The pest is controlled by spraying chemical pesticides affecting immature as well as mature pest. The harvesting of both immature and mature pest further reduce the pest population. The discrete dynamical system obtained from stroboscopic map is analyzed. The threshold conditions for stability of pest-free state as well as non-trivial period-1 solution is obtained. Themore » effect of pesticide spray timing and harvesting on immature as well as mature pest are shown. Finally, by numerical simulation with MATLAB, the dynamical behaviors of the model is found to be complex. Above the threshold level there is a characteristic sequence of bifurcations leading to chaotic dynamics. Route to chaos is found to be period-doubling. Period halving bifurcations are also observed.« less
ERIC Educational Resources Information Center
Extension Service (USDA), Washington, DC.
This manual is intended to assist pesticide applicators in the area of ornamental and turf pest control prepare for certification under the Michigan Pesticide Control Act of 1976. The three sections presented describe: (1) Ornamentals; (2) Turfgrass; and (3) Pest Control. Section one discusses the diagnostic chart for plant problems, non-pest…
Effect of non-crop vegetation types on conservation biological control of pests in olive groves
Cayuela, Luis; Gurr, Geoff M.; Campos, Mercedes
2013-01-01
Conservation biological control (CBC) is an environmentally sound potential alternative to the use of chemical insecticides. It involves modifications of the environment to promote natural enemy activity on pests. Despite many CBC studies increasing abundance of natural enemies, there are far fewer demonstrations of reduced pest density and very little work has been conducted in olive crops. In this study we investigated the effects of four forms of non-crop vegetation on the abundance of two important pests: the olive psyllid (Euphyllura olivina) and the olive moth (Prays oleae). Areas of herbaceous vegetation and areas of woody vegetation near olive crops, and smaller patches of woody vegetation within olive groves, decreased pest abundance in the crop. Inter-row ground covers that are known to increase the abundance of some predators and parasitoids had no effect on the pests, possibly as a result of lack of synchrony between pests and natural enemies, lack of specificity or intra-guild predation. This study identifies examples of the right types of diversity for use in conservation biological control in olive production systems. PMID:23904994
Behavior-based control of insect crop pests
USDA-ARS?s Scientific Manuscript database
Manipulation of insect behaviour can provide the foundation for effective strategies for control of insect crop pests. A detailed understanding of life cycles and the behavioural repertoires of insect pests is essential for development of this approach. A variety of strategies have been developed ...
Ikegawa, Yusuke; Himuro, Chihiro
2017-05-21
The sterile insect technique (SIT) is a genetic pest control method wherein mass-reared sterile insects are periodically released into the wild, thereby impeding the successful reproduction of fertile pests. In Okinawa Prefecture, Japan, the SIT has been implemented to eradicate the West Indian sweet potato weevil Euscepes postfasciatus (Fairmaire), which is a flightless agricultural pest of sweet potatoes. It is known that E. postfasciatus is much less mobile than other insects to which the SIT has been applied. However, previous theoretical studies have rarely examined effects of low mobility of target pests and variation in the spatiotemporal evenness of sterile insect releases. To theoretically examine the effects of spatiotemporal evenness on the regional eradication of less mobile pests, we constructed a simple two-patch population model comprised of a pest and sterile insect moving between two habitats, and numerically simulated different release strategies (varying the number of released sterile insects and release intervals). We found that spatially biased releases allowed the pest to spatially escape from the sterile insect, and thus intensively lowered its controllability. However, we showed that the temporally counterbalancing spatially biased releases by swapping the number of released insects in the two habitats at every release (called temporal balancing) could greatly mitigate this negative effect and promote the controllability. We also showed that the negative effect of spatiotemporally biased releases was a result of the limited mobility of the target insect. Although directed dispersal of the insects in response to habitats of differing quality could lower the controllability in the more productive habitat, the temporal balancing could promote and eventually maximize the controllability as released insects increased. Copyright © 2017 Elsevier Ltd. All rights reserved.
Complementarity among natural enemies enhances pest suppression.
Dainese, Matteo; Schneider, Gudrun; Krauss, Jochen; Steffan-Dewenter, Ingolf
2017-08-15
Natural enemies have been shown to be effective agents for controlling insect pests in crops. However, it remains unclear how different natural enemy guilds contribute to the regulation of pests and how this might be modulated by landscape context. In a field exclusion experiment in oilseed rape (OSR), we found that parasitoids and ground-dwelling predators acted in a complementary way to suppress pollen beetles, suggesting that pest control by multiple enemies attacking a pest during different periods of its occurrence in the field improves biological control efficacy. The density of pollen beetle significantly decreased with an increased proportion of non-crop habitats in the landscape. Parasitism had a strong effect on pollen beetle numbers in landscapes with a low or intermediate proportion of non-crop habitats, but not in complex landscapes. Our results underline the importance of different natural enemy guilds to pest regulation in crops, and demonstrate how biological control can be strengthened by complementarity among natural enemies. The optimization of natural pest control by adoption of specific management practices at local and landscape scales, such as establishing non-crop areas, low-impact tillage, and temporal crop rotation, could significantly reduce dependence on pesticides and foster yield stability through ecological intensification in agriculture.
Safe, Effective Use of Pesticides, A Manual for Commercial Applicators: Fruit Pest Control.
ERIC Educational Resources Information Center
Brunner, J.; And Others
This manual is intended to assist pesticide applicators prepare for certification under the Michigan Pesticide Control Act of 1976. The primary focus of this publication is on fruit pest control. Sections included are: (1) Causes of fruit diseases; (2) Fruit fungicides and bactericides; (3) Insect and mite pests; (4) Insecticides and miticides;…
Greco, Nancy M; Sánchez, Norma E; Liljesthröm, Gerardo G
2005-01-01
Neoseiulus californicus (McGregor) is a promising agent for successful Tetranychus urticae Koch control through conservation techniques, in strawberry crops in La Plata (Buenos Aires, Argentina). In prey-predator interaction, initial relative densities have an important effect on system dynamics. The economic threshold level (ETL) used for this pest in the present study was 50 active mites per leaflet. In our laboratory experiments, initial T. urticae to N. californicus ratio had a significant effect on the population abundance of T. urticae at a 7-day period. When pest/predator ratio was 5/1 (at initial pest densities from 5 to 15 females/leaflet) the final number of active T. urticae/leaflet was significantly lower than the ETL, while at 20 females/leaflet this number did not differ from the ETL. At 7.5/1 ratio, the final number of active T. urticae/leaflet, at initial pest densities from 5 to 15 females/leaflet, reached the ETL without surpassing it. At 10/1 and 15/1 ratios, pest densities exceeded the ETL only at 15 initial T. urticae/leaflet. Most greenhouse and field observations were consistent with the predictions of a graphical model based on experimental results. This predator was very effective in limiting pest densities at a 7-day period and within the range of pest-predator ratios and absolute densities used in this study. Conservation of N. californicus promoting favorable pest/predator ratios may result in early control of T. urticae.
The Pesticide Problem: Is Any Amount Safe?
ERIC Educational Resources Information Center
Cooper, Susan
1991-01-01
Discusses the use of integrated pest management to foster a safe school environment free from pesticides. This effective, environmentally sound system minimizes human exposure and reduces the toxicity of materials used to control pests. Parents, teachers, and students can educate themselves to improve school pest control practices. (SM)
Is Ground Cover Vegetation an Effective Biological Control Enhancement Strategy against Olive Pests?
Paredes, Daniel; Cayuela, Luis; Gurr, Geoff M.; Campos, Mercedes
2015-01-01
Ground cover vegetation is often added or allowed to generate to promote conservation biological control, especially in perennial crops. Nevertheless, there is inconsistent evidence of its effectiveness, with studies reporting positive, nil or negative effects on pest control. This might arise from differences between studies at the local scale (e.g. orchard management and land use history), the landscape context (e.g. presence of patches of natural or semi-natural vegetation near the focal orchard), or regional factors, particularly climate in the year of the study. Here we present the findings from a long-term regional monitoring program conducted on four pest species (Bactrocera oleae, Prays oleae, Euphyllura olivina, Saissetia oleae) in 2,528 olive groves in Andalusia (Spain) from 2006 to 2012. Generalized linear mixed effect models were used to analyze the effect of ground cover on different response variables related to pest abundance, while accounting for variability at the local, landscape and regional scales. There were small and inconsistent effects of ground cover on the abundance of pests whilst local, landscape and regional variability explained a large proportion of the variability in pest response variables. This highlights the importance of local and landscape-related variables in biological control and the potential effects that might emerge from their interaction with practices, such as groundcover vegetation, implemented to promote natural enemy activity. The study points to perennial vegetation close to the focal crop as a promising alternative strategy for conservation biological control that should receive more attention. PMID:25646778
Elicitors aboveground: an alternative for control of a belowground pest
USDA-ARS?s Scientific Manuscript database
Plant defense pathways mediate multitrophic interactions above and belowground. Understanding the effects of these pathways on pests and natural enemies above and belowground holds great potential for designing effective control strategies. Here we investigate the effects of aboveground stimulation ...
Spatial variability in ecosystem services: simple rules for predator-mediated pest suppression.
Bianchi, F J J A; Schellhorn, N A; Buckley, Y M; Possingham, H P
2010-12-01
Agricultural pest control often relies on the ecosystem services provided by the predators of pests. Appropriate landscape and habitat management for pest control services requires an understanding of insect dispersal abilities and the spatial arrangement of source habitats for pests and their predators. Here we explore how dispersal and habitat configuration determine the locations where management actions are likely to have the biggest impact on natural pest control. The study focuses on the early colonization phase before predator reproduction takes place and when pest populations in crops are still relatively low. We developed a spatially explicit simulation model in which pest populations grow exponentially in pest patches and predators disperse across the landscape from predator patches. We generated 1000 computer-simulated landscapes in which the performance of four typical but different predator groups as biological control agents was evaluated. Predator groups represented trait combinations of poor and good dispersal ability and density-independent and density-dependent aggregation responses toward pests. Case studies from the literature were used to inform the parameterization of predator groups. Landscapes with a small nearest-neighbor distance between pest and predator patches had the lowest mean pest density at the landscape scale for all predator groups, but there can be high variation in pest density between the patches within these landscapes. Mobile and strongly aggregating predators provide the best pest suppression in the majority of landscape types. Ironically, this result is true except in landscapes with small nearest-neighbor distances between pest and predator patches. The pest control potential of mobile predators can best be explained by the mean distance between a pest patch and all predator patches in the landscape, whereas for poorly dispersing predators the distance between a pest patch and the nearest predator patch is the best explanatory variable. In conclusion, the spatial arrangement of source habitats for natural enemies of agricultural pest species can have profound effects on their potential to colonize crops and suppress pest populations.
Peterson, Julie A.; Ode, Paul J.; Oliveira-Hofman, Camila; Harwood, James D.
2016-01-01
Crop plants exhibit a wide diversity of defensive traits and strategies to protect themselves from damage by herbivorous pests and disease. These defensive traits may be naturally occurring or artificially selected through crop breeding, including introduction via genetic engineering. While these traits can have obvious and direct impacts on herbivorous pests, many have profound effects on higher trophic levels, including the natural enemies of herbivores. Multi-trophic effects of host plant resistance have the potential to influence, both positively and negatively, biological control. Plant defense traits can influence both the numerical and functional responses of natural enemies; these interactions can be semiochemically, plant toxin-, plant nutrient-, and/or physically mediated. Case studies involving predators, parasitoids, and pathogens of crop pests will be presented and discussed. These diverse groups of natural enemies may respond differently to crop plant traits based on their own unique biology and the ecological niches they fill. Genetically modified crop plants that have been engineered to express transgenic products affecting herbivorous pests are an additional consideration. For the most part, transgenic plant incorporated protectant (PIP) traits are compatible with biological control due to their selective toxicity to targeted pests and relatively low non-target impacts, although transgenic crops may have indirect effects on higher trophic levels and arthropod communities mediated by lower host or prey number and/or quality. Host plant resistance and biological control are two of the key pillars of integrated pest management; their potential interactions, whether they are synergistic, complementary, or disruptive, are key in understanding and achieving sustainable and effective pest management. PMID:27965695
Peterson, Julie A; Ode, Paul J; Oliveira-Hofman, Camila; Harwood, James D
2016-01-01
Crop plants exhibit a wide diversity of defensive traits and strategies to protect themselves from damage by herbivorous pests and disease. These defensive traits may be naturally occurring or artificially selected through crop breeding, including introduction via genetic engineering. While these traits can have obvious and direct impacts on herbivorous pests, many have profound effects on higher trophic levels, including the natural enemies of herbivores. Multi-trophic effects of host plant resistance have the potential to influence, both positively and negatively, biological control. Plant defense traits can influence both the numerical and functional responses of natural enemies; these interactions can be semiochemically, plant toxin-, plant nutrient-, and/or physically mediated. Case studies involving predators, parasitoids, and pathogens of crop pests will be presented and discussed. These diverse groups of natural enemies may respond differently to crop plant traits based on their own unique biology and the ecological niches they fill. Genetically modified crop plants that have been engineered to express transgenic products affecting herbivorous pests are an additional consideration. For the most part, transgenic plant incorporated protectant (PIP) traits are compatible with biological control due to their selective toxicity to targeted pests and relatively low non-target impacts, although transgenic crops may have indirect effects on higher trophic levels and arthropod communities mediated by lower host or prey number and/or quality. Host plant resistance and biological control are two of the key pillars of integrated pest management; their potential interactions, whether they are synergistic, complementary, or disruptive, are key in understanding and achieving sustainable and effective pest management.
USDA-ARS?s Scientific Manuscript database
Conservation biological control can be an effective tactic for minimizing insect-induced damage to agricultural production. The most effective manner of applying CBC is through an Integrated Pest Management (IPM) strategy, combining many tactics including cultural controls, pest sampling, the use of...
The Trojan female technique: a novel, effective and humane approach for pest population control.
Gemmell, Neil J; Jalilzadeh, Aidin; Didham, Raphael K; Soboleva, Tanya; Tompkins, Daniel M
2013-12-22
Humankind's ongoing battle with pest species spans millennia. Pests cause or carry disease, damage or consume food crops and other resources, and drive global environmental change. Conventional approaches to pest management usually involve lethal control, but such approaches are costly, of varying efficiency and often have ethical issues. Thus, pest management via control of reproductive output is increasingly considered an optimal solution. One of the most successful such 'fertility control' strategies developed to date is the sterile male technique (SMT), in which large numbers of sterile males are released into a population each generation. However, this approach is time-consuming, labour-intensive and costly. We use mathematical models to test a new twist on the SMT, using maternally inherited mitochondrial (mtDNA) mutations that affect male, but not female reproductive fitness. 'Trojan females' carrying such mutations, and their female descendants, produce 'sterile-male'-equivalents under natural conditions over multiple generations. We find that the Trojan female technique (TFT) has the potential to be a novel humane approach for pest control. Single large releases and relatively few small repeat releases of Trojan females both provided effective and persistent control within relatively few generations. Although greatest efficacy was predicted for high-turnover species, the additive nature of multiple releases made the TFT applicable to the full range of life histories modelled. The extensive conservation of mtDNA among eukaryotes suggests this approach could have broad utility for pest control.
A meta-analysis of crop pest and natural enemy response to landscape complexity.
Chaplin-Kramer, Rebecca; O'Rourke, Megan E; Blitzer, Eleanor J; Kremen, Claire
2011-09-01
Many studies in recent years have investigated the relationship between landscape complexity and pests, natural enemies and/or pest control. However, no quantitative synthesis of this literature beyond simple vote-count methods yet exists. We conducted a meta-analysis of 46 landscape-level studies, and found that natural enemies have a strong positive response to landscape complexity. Generalist enemies show consistent positive responses to landscape complexity across all scales measured, while specialist enemies respond more strongly to landscape complexity at smaller scales. Generalist enemy response to natural habitat also tends to occur at larger spatial scales than for specialist enemies, suggesting that land management strategies to enhance natural pest control should differ depending on whether the dominant enemies are generalists or specialists. The positive response of natural enemies does not necessarily translate into pest control, since pest abundances show no significant response to landscape complexity. Very few landscape-scale studies have estimated enemy impact on pest populations, however, limiting our understanding of the effects of landscape on pest control. We suggest focusing future research efforts on measuring population dynamics rather than static counts to better characterise the relationship between landscape complexity and pest control services from natural enemies. © 2011 Blackwell Publishing Ltd/CNRS.
Albrecht, Matthias
2016-01-01
Insect pollination and pest control are pivotal functions sustaining global food production. However, they have mostly been studied in isolation and how they interactively shape crop yield remains largely unexplored. Using controlled field experiments, we found strong synergistic effects of insect pollination and simulated pest control on yield quantity and quality. Their joint effect increased yield by 23%, with synergistic effects contributing 10%, while their single contributions were 7% and 6%, respectively. The potential economic benefit for a farmer from the synergistic effects (12%) was 1.8 times greater than their individual contributions (7% each). We show that the principal underlying mechanism was a pronounced pest-induced reduction in flower lifetime, resulting in a strong reduction in the number of pollinator visits a flower receives during its lifetime. Our findings highlight the importance of non-additive interactions among ecosystem services (ES) when valuating, mapping or predicting them and reveal fundamental implications for ecosystem management and policy aimed at maximizing ES for sustainable agriculture. PMID:26865304
Sutter, Louis; Albrecht, Matthias
2016-02-10
Insect pollination and pest control are pivotal functions sustaining global food production. However, they have mostly been studied in isolation and how they interactively shape crop yield remains largely unexplored. Using controlled field experiments, we found strong synergistic effects of insect pollination and simulated pest control on yield quantity and quality. Their joint effect increased yield by 23%, with synergistic effects contributing 10%, while their single contributions were 7% and 6%, respectively. The potential economic benefit for a farmer from the synergistic effects (12%) was 1.8 times greater than their individual contributions (7% each). We show that the principal underlying mechanism was a pronounced pest-induced reduction in flower lifetime, resulting in a strong reduction in the number of pollinator visits a flower receives during its lifetime. Our findings highlight the importance of non-additive interactions among ecosystem services (ES) when valuating, mapping or predicting them and reveal fundamental implications for ecosystem management and policy aimed at maximizing ES for sustainable agriculture. © 2016 The Author(s).
Assessing the integrated pest management practices of southeastern US ornamental nursery operations.
LeBude, Anthony V; White, Sarah A; Fulcher, Amy F; Frank, Steve; Klingeman Iii, William E; Chong, Juang-Horng; Chappell, Matthew R; Windham, Alan; Braman, Kris; Hale, Frank; Dunwell, Winston; Williams-Woodward, Jean; Ivors, Kelly; Adkins, Craig; Neal, Joe
2012-09-01
The Southern Nursery Integrated Pest Management (SNIPM) working group surveyed ornamental nursery crop growers in the southeastern United States to determine their pest management practices. Respondents answered questions about monitoring practices for insects, diseases and weeds, prevention techniques, intervention decisions, concerns about IPM and educational opportunities. Survey respondents were categorized into three groups based on IPM knowledge and pest management practices adopted. The three groups differed in the use of standardized sampling plans for scouting pests, in monitoring techniques, e.g. sticky cards, phenology and growing degree days, in record-keeping, in the use of spot-spraying and in the number of samples sent to a diagnostic clinic for identification and management recommendation. Stronger emphasis is needed on deliberate scouting techniques and tools to monitor pest populations to provide earlier pest detection and greater flexibility of management options. Most respondents thought that IPM was effective and beneficial for both the environment and employees, but had concerns about the ability of natural enemies to control insect pests, and about the availability and effectiveness of alternatives to chemical controls. Research and field demonstration is needed for selecting appropriate natural enemies for augmentative biological control. Two groups utilized cooperative extension almost exclusively, which would be an avenue for educating those respondents. Copyright © 2012 Society of Chemical Industry.
In-Field Habitat Management to Optimize Pest Control of Novel Soil Communities in Agroecosystems
Pearsons, Kirsten A.
2017-01-01
The challenge of managing agroecosystems on a landscape scale and the novel structure of soil communities in agroecosystems both provide reason to focus on in-field management practices, including cover crop adoption, reduced tillage, and judicial pesticide use, to promote soil community diversity. Belowground and epigeal arthropods, especially exotic generalist predators, play a significant role in controlling insect pests, weeds, and pathogens in agroecosystems. However, the preventative pest management tactics that dominate field-crop production in the United States do not promote biological control. In this review, we argue that by reducing disturbance, mitigating the effects of necessary field activities, and controlling pests within an Integrated Pest Management framework, farmers can facilitate the diversity and activity of native and exotic arthropod predators. PMID:28783074
In-Field Habitat Management to Optimize Pest Control of Novel Soil Communities in Agroecosystems.
Pearsons, Kirsten A; Tooker, John F
2017-08-05
The challenge of managing agroecosystems on a landscape scale and the novel structure of soil communities in agroecosystems both provide reason to focus on in-field management practices, including cover crop adoption, reduced tillage, and judicial pesticide use, to promote soil community diversity. Belowground and epigeal arthropods, especially exotic generalist predators, play a significant role in controlling insect pests, weeds, and pathogens in agroecosystems. However, the preventative pest management tactics that dominate field-crop production in the United States do not promote biological control. In this review, we argue that by reducing disturbance, mitigating the effects of necessary field activities, and controlling pests within an Integrated Pest Management framework, farmers can facilitate the diversity and activity of native and exotic arthropod predators.
Native intra- and inter-specific reactions may cause the paradox of pest control with harvesting.
Seno, Hiromi
2010-05-01
We analyse a general time-discrete mathematical model of host-parasite population dynamics with harvesting, in which the host can be regarded as a pest. We harvest a portion of the host population at a moment in each year. Our model involves the density effect on the host population. We investigate the condition in which the harvesting of the host results in a paradoxical increase of its equilibrium population size. Our results imply that for a family of pest-enemy systems, the paradox of pest control could be caused essentially by the interspecific relationship and the intraspecific density effect.
Slowing and Combating Pest Resistance to Pesticides
Pesticides can be used to control a variety of pests, such as insects, weeds, rodents, bacteria, fungi, etc. Over time many pesticides have gradually lost effectiveness because pests develop resistance. Learn what EPA is doing to address resistance issues.
ERIC Educational Resources Information Center
Cowles, Kathleen Letcher; And Others
Integrated Pest Management (IPM) is a decision-making approach to pest control that has been used successfully on farms, city parks, offices, homes, and schools. IPM programs help individuals decide when treatments are necessary, where treatment would be most helpful, and what combinations of tactics would be most effective, safe, and inexpensive…
Linking human behavior to environmental effects using a case study of urban rodent control
Pest control is common practice in many land use activities worldwide. Although often inadvertent, pest control can affect non-target species, sometimes fatally. Using social survey data about residential rodent control behavior in two areas in California, we applied a framewor...
Dowling, Damian K; Tompkins, Daniel M; Gemmell, Neil J
2015-10-01
Pest species represent a major ongoing threat to global biodiversity. Effective management approaches are required that regulate pest numbers, while minimizing collateral damage to nontarget species. The Trojan Female Technique (TFT) was recently proposed as a prospective approach to biological pest control. The TFT draws on the evolutionary hypothesis that maternally inherited mitochondrial genomes are prone to the accumulation of male, but not female, harming mutations. These mutations could be harnessed to provide trans-generational fertility-based control of pest species. A candidate TFT mutation was recently described in the fruit fly, Drosophila melanogaster, which confers male-only sterility in the specific isogenic nuclear background in which it is maintained. However, applicability of the TFT relies on mitochondrial mutations whose male-sterilizing effects are general across nuclear genomic contexts. We test this assumption, expressing the candidate TFT-mutation bearing haplotype alongside a range of nuclear backgrounds and comparing its fertility in males, relative to that of control haplotypes. We document consistently lower fertility for males harbouring the TFT mutation, in both competitive and noncompetitive mating contexts, across all nuclear backgrounds screened. This indicates that TFT mutations conferring reduced male fertility can segregate within populations and could be harnessed to facilitate this novel form of pest control.
Dowling, Damian K; Tompkins, Daniel M; Gemmell, Neil J
2015-01-01
Pest species represent a major ongoing threat to global biodiversity. Effective management approaches are required that regulate pest numbers, while minimizing collateral damage to nontarget species. The Trojan Female Technique (TFT) was recently proposed as a prospective approach to biological pest control. The TFT draws on the evolutionary hypothesis that maternally inherited mitochondrial genomes are prone to the accumulation of male, but not female, harming mutations. These mutations could be harnessed to provide trans-generational fertility-based control of pest species. A candidate TFT mutation was recently described in the fruit fly, Drosophila melanogaster, which confers male-only sterility in the specific isogenic nuclear background in which it is maintained. However, applicability of the TFT relies on mitochondrial mutations whose male-sterilizing effects are general across nuclear genomic contexts. We test this assumption, expressing the candidate TFT-mutation bearing haplotype alongside a range of nuclear backgrounds and comparing its fertility in males, relative to that of control haplotypes. We document consistently lower fertility for males harbouring the TFT mutation, in both competitive and noncompetitive mating contexts, across all nuclear backgrounds screened. This indicates that TFT mutations conferring reduced male fertility can segregate within populations and could be harnessed to facilitate this novel form of pest control. PMID:26495040
Berec, Luděk; Maxin, Daniel
2012-06-01
Sterilizing pathogens are commonly assumed not to affect longevity of infected individuals, and if they do then negatively. Examples abound, however, of species in which the absence of reproduction actually increases life expectancy. This happens because by decreasing the energy outlay on reproduction individuals with lowered reproduction can live longer. Alternatively, fertile individuals are more susceptible to predators or parasitoids if the latter can capitalize on mating signals of the former. Here we develop and analyze an SI epidemiological model to explore whether and to what extent does such a life expectancy prolongation due to sterilizing pathogens affect host dynamics. In particular, we are interested in an added value of increased life expectancy on the possibility of successful pest control, that is, the effect of increased lifespan and hence increased potential of the infected individuals to spread the disease on pest control effectiveness. We show that although the parameter range in which we observe an effect of increased lifespan of the sterilized individuals is not large, the effect itself can be significant. In particular, the increase in pest control effectiveness can be very dramatic when disease transmission efficiency is close to birth rate, mortality rate of susceptibles is relatively high (i.e., the species is relatively short-lived), and sterilization efficiency is relatively high. Our results thus characterize pathogens that are promising candidates for an effective pest control and that might possibly be engineered if not occurring naturally.
Possible impact of radar on pest management operations
NASA Technical Reports Server (NTRS)
Rainey, R. C.
1979-01-01
Radar in making and maintaining contact with the most important populations of major pests in different stages of flight is presented. The desert locust and the African armyworm are discussed in understanding problems and developing a more effective control of pests.
Assessment of methods for methyl iodide emission reduction and pest control using a simulation model
USDA-ARS?s Scientific Manuscript database
Various methods have been developed to reduce atmospheric emissions from the agricultural use of highly volatile pesticides and mitigate their adverse environmental effects. The effectiveness of various methods on emissions reduction and pest control was assessed using simulation model in this study...
Landscape changes have greater effects than climate changes on six insect pests in China.
Zhao, Zihua; Sandhu, Hardev S; Ouyang, Fang; Ge, Feng
2016-06-01
In recent years, global changes are the major causes of frequent, widespread outbreaks of pests in mosaic landscapes, which have received substantial attention worldwide. We collected data on global changes (landscape and climate) and economic damage caused by six main insect pests during 1951-2010 in China. Landscape changes had significant effects on all six insect pests. Pest damage increased significantly with increasing arable land area in agricultural landscapes. However, climate changes had no effect on damage caused by pests, except for the rice leaf roller (Cnaphalocrocis medinalis Guenee) and armyworm (Mythimna separate (Walker)), which caused less damage to crops with increasing mean temperature. Our results indicate that there is slight evidence of possible offset effects of climate changes on the increasing damage from these two agricultural pests. Landscape changes have caused serious outbreaks of several species, which suggests the possibility of the use of landscape design for the control of pest populations through habitat rearrangement. Landscape manipulation may be used as a green method to achieve sustainable pest management with minimal use of insecticides and herbicides.
High effectiveness of tailored flower strips in reducing pests and crop plant damage.
Tschumi, Matthias; Albrecht, Matthias; Entling, Martin H; Jacot, Katja
2015-09-07
Providing key resources to animals may enhance both their biodiversity and the ecosystem services they provide. We examined the performance of annual flower strips targeted at the promotion of natural pest control in winter wheat. Flower strips were experimentally sown along 10 winter wheat fields across a gradient of landscape complexity (i.e. proportion non-crop area within 750 m around focal fields) and compared with 15 fields with wheat control strips. We found strong reductions in cereal leaf beetle(CLB) density (larvae: 40%; adults of the second generation: 53%) and plant damage caused by CLB (61%) in fields with flower strips compared with control fields. Natural enemies of CLB were strongly increased in flower strips and in part also in adjacent wheat fields. Flower strip effects on natural enemies, pests and crop damage were largely independent of landscape complexity(8-75% non-crop area). Our study demonstrates a high effectiveness of annual flower strips in promoting pest control, reducing CLB pest levels below the economic threshold. Hence, the studied flower strip offers a viable alternative to insecticides. This highlights the high potential of tailored agri-environment schemes to contribute to ecological intensification and may encourage more farmers to adopt such schemes.
Aquatic Pest Control. Manual 99.
ERIC Educational Resources Information Center
Missouri Univ., Columbia. Agricultural Experiment Station.
This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in the aquatic pest control category. The text discusses various water use situations; aquatic weed identification; herbicide use and effects; and aquatic insects and their control. (CS)
The Effect of Farmers' Decisions on Pest Control with Bt Crops: A Billion Dollar Game of Strategy.
Milne, Alice E; Bell, James R; Hutchison, William D; van den Bosch, Frank; Mitchell, Paul D; Crowder, David; Parnell, Stephen; Whitmore, Andrew P
2015-12-01
A farmer's decision on whether to control a pest is usually based on the perceived threat of the pest locally and the guidance of commercial advisors. Therefore, farmers in a region are often influenced by similar circumstances, and this can create a coordinated response for pest control that is effective at a landscape scale. This coordinated response is not intentional, but is an emergent property of the system. We propose a framework for understanding the intrinsic feedback mechanisms between the actions of humans and the dynamics of pest populations and demonstrate this framework using the European corn borer, a serious pest in maize crops. We link a model of the European corn borer and a parasite in a landscape with a model that simulates the decisions of individual farmers on what type of maize to grow. Farmers chose whether to grow Bt-maize, which is toxic to the corn borer, or conventional maize for which the seed is cheaper. The problem is akin to the snow-drift problem in game theory; that is to say, if enough farmers choose to grow Bt maize then because the pest is suppressed an individual may benefit from growing conventional maize. We show that the communication network between farmers' and their perceptions of profit and loss affects landscape scale patterns in pest dynamics. We found that although adoption of Bt maize often brings increased financial returns, these rewards oscillate in response to the prevalence of pests.
The Effect of Farmers’ Decisions on Pest Control with Bt Crops: A Billion Dollar Game of Strategy
Hutchison, William D.; van den Bosch, Frank; Mitchell, Paul D.; Crowder, David; Parnell, Stephen; Whitmore, Andrew P.
2015-01-01
A farmer’s decision on whether to control a pest is usually based on the perceived threat of the pest locally and the guidance of commercial advisors. Therefore, farmers in a region are often influenced by similar circumstances, and this can create a coordinated response for pest control that is effective at a landscape scale. This coordinated response is not intentional, but is an emergent property of the system. We propose a framework for understanding the intrinsic feedback mechanisms between the actions of humans and the dynamics of pest populations and demonstrate this framework using the European corn borer, a serious pest in maize crops. We link a model of the European corn borer and a parasite in a landscape with a model that simulates the decisions of individual farmers on what type of maize to grow. Farmers chose whether to grow Bt-maize, which is toxic to the corn borer, or conventional maize for which the seed is cheaper. The problem is akin to the snow-drift problem in game theory; that is to say, if enough farmers choose to grow Bt maize then because the pest is suppressed an individual may benefit from growing conventional maize. We show that the communication network between farmers’ and their perceptions of profit and loss affects landscape scale patterns in pest dynamics. We found that although adoption of Bt maize often brings increased financial returns, these rewards oscillate in response to the prevalence of pests. PMID:26720851
Pest Pest-specific Information (by name) Pest Control Tips Integrated Pest Management (IPM) Fact Sheets National Pesticide Information Center 1.800.858.7378 npic@ace.orst.edu We're open from 8:00AM to 12 Plants Pest Control Identify Your Pest Learn About Your Pest Control Your Pest Integrated Pest Management
When ecosystem services interact: crop pollination benefits depend on the level of pest control
Lundin, Ola; Smith, Henrik G.; Rundlöf, Maj; Bommarco, Riccardo
2013-01-01
Pollination is a key ecosystem service which most often has been studied in isolation although effects of pollination on seed set might depend on, and interact with, other services important for crop production. We tested three competing hypotheses on how insect pollination and pest control might jointly affect seed set: independent, compensatory or synergistic effects. For this, we performed a cage experiment with two levels of insect pollination and simulated pest control in red clover (Trifolium pratense L.) grown for seed. There was a synergistic interaction between the two services: the gain in seed set obtained when simultaneously increasing pollination and pest control outweighed the sum of seed set gains obtained when increasing each service separately. This study shows that interactions can alter the benefits obtained from service-providing organisms, and this needs to be considered to properly manage multiple ecosystem services. PMID:23269852
Environmental Engineering Approaches toward Sustainable Management of Spider Mites.
Suzuki, Takeshi
2012-10-26
Integrated pest management (IPM), which combines physical, biological, and chemical control measures to complementary effect, is one of the most important approaches to environmentally friendly sustainable agriculture. To expand IPM, we need to develop new pest control measures, reinforce existing measures, and investigate interactions between measures. Continued progress in the development of environmental control technologies and consequent price drops have facilitated their integration into plant production and pest control. Here I describe environmental control technologies for the IPM of spider mites through: (1) the disturbance of photoperiod-dependent diapause by artificial light, which may lead to death in seasonal environments; (2) the use of ultraviolet radiation to kill or repel mites; and (3) the use of water vapor control for the long-term cold storage of commercially available natural enemies. Such environmental control technologies have great potential for the efficient control of spider mites through direct physical effects and indirect effects via natural enemies.
Environmental Engineering Approaches toward Sustainable Management of Spider Mites
Suzuki, Takeshi
2012-01-01
Integrated pest management (IPM), which combines physical, biological, and chemical control measures to complementary effect, is one of the most important approaches to environmentally friendly sustainable agriculture. To expand IPM, we need to develop new pest control measures, reinforce existing measures, and investigate interactions between measures. Continued progress in the development of environmental control technologies and consequent price drops have facilitated their integration into plant production and pest control. Here I describe environmental control technologies for the IPM of spider mites through: (1) the disturbance of photoperiod-dependent diapause by artificial light, which may lead to death in seasonal environments; (2) the use of ultraviolet radiation to kill or repel mites; and (3) the use of water vapor control for the long-term cold storage of commercially available natural enemies. Such environmental control technologies have great potential for the efficient control of spider mites through direct physical effects and indirect effects via natural enemies. PMID:26466730
Javaid, Shaista; Naz, Sehrish; Amin, Imran; Jander, Georg; Ul-Haq, Zaheer; Mansoor, Shahid
2018-03-19
Sucking pests pose a serious agricultural challenge, as available transgenic technologies such as Bacillus thuringiensis crystal toxins (Bt) are not effective against them. One approach is to produce fusion protein toxins for the control of these pests. Two protein toxins, Hvt (ω-atracotoxin from Hadronyche versuta) and onion leaf lectin, were translationally fused to evaluate the negative effects of fusion proteins on Phenacoccus solenopsis (mealybug), a phloem-feeding insect pest. Hvt was cloned both N-terminally (HL) and then C-terminally (LH) in the fusion protein constructs, which were expressed transiently in Nicotiana tabacum using a Potato Virus X (PVX) vector. The HL fusion protein was found to be more effective against P. solenopsis, with an 83% mortality rate, as compared to the LH protein, which caused 65% mortality. Hvt and lectin alone caused 42% and 45%, respectively, under the same conditions. Computational studies of both fusion proteins showed that the HL protein is more stable than the LH protein. Together, these results demonstrate that translational fusion of two insecticidal proteins improved the insecticidal activity relative to each protein individually and could be expressed in transgenic plants for effective control of sucking pests.
Farkas, Timothy E
2015-01-01
An important modern goal of plant science research is to develop tools for agriculturalists effective at curbing yield losses to insect herbivores, but resistance evolution continuously threatens the efficacy of pest management strategies. The high-dose/refuge strategy has been employed with some success to curb pest adaptation, and has been shown to be most effective when fitness costs (fitness trade-offs) of resistance are high. Here, I use eco-evolutionary reasoning to demonstrate the general importance of fitness trade-offs for pest control, showing that strong fitness trade-offs mitigate the threat of pest adaptation, even if adaptation were to occur. I argue that novel pest management strategies evoking strong fitness trade-offs are the most likely to persist in the face of unbridled pest adaptation, and offer the manipulation of crop colours as a worked example of one potentially effective strategy against insect herbivores. PMID:26495038
Farkas, Timothy E
2015-10-01
An important modern goal of plant science research is to develop tools for agriculturalists effective at curbing yield losses to insect herbivores, but resistance evolution continuously threatens the efficacy of pest management strategies. The high-dose/refuge strategy has been employed with some success to curb pest adaptation, and has been shown to be most effective when fitness costs (fitness trade-offs) of resistance are high. Here, I use eco-evolutionary reasoning to demonstrate the general importance of fitness trade-offs for pest control, showing that strong fitness trade-offs mitigate the threat of pest adaptation, even if adaptation were to occur. I argue that novel pest management strategies evoking strong fitness trade-offs are the most likely to persist in the face of unbridled pest adaptation, and offer the manipulation of crop colours as a worked example of one potentially effective strategy against insect herbivores.
Sublethal effects in pest management: a surrogate species perspective on fruit fly control
USDA-ARS?s Scientific Manuscript database
Tephritid fruit flies are economically important orchard pests globally. While much effort has focused on controlling individual species with a combination of pesticides and biological control, less attention has been paid to managing assemblages of species. Although several tephritid species may co...
Tang, Sanyi; Tang, Guangyao; Cheke, Robert A
2010-05-21
Many factors including pest natural enemy ratios, starting densities, timings of natural enemy releases, dosages and timings of insecticide applications and instantaneous killing rates of pesticides on both pests and natural enemies can affect the success of IPM control programmes. To address how such factors influence successful pest control, hybrid impulsive pest-natural enemy models with different frequencies of pesticide sprays and natural enemy releases were proposed and analyzed. With releasing both more or less frequent than the sprays, a stability threshold condition for a pest eradication periodic solution is provided. Moreover, the effects of times of spraying pesticides (or releasing natural enemies) and control tactics on the threshold condition were investigated with regard to the extent of depression or resurgence resulting from pulses of pesticide applications. Multiple attractors from which the pest population oscillates with different amplitudes can coexist for a wide range of parameters and the switch-like transitions among these attractors showed that varying dosages and frequencies of insecticide applications and the numbers of natural enemies released are crucial. To see how the pesticide applications could be reduced, we developed a model involving periodic releases of natural enemies with chemical control applied only when the densities of the pest reached the given Economic Threshold. The results indicate that the pest outbreak period or frequency largely depends on the initial densities and the control tactics. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Current situation of pests targeted by Bt crops in Latin America.
Blanco, C A; Chiaravalle, W; Dalla-Rizza, M; Farias, J R; García-Degano, M F; Gastaminza, G; Mota-Sánchez, D; Murúa, M G; Omoto, C; Pieralisi, B K; Rodríguez, J; Rodríguez-Maciel, J C; Terán-Santofimio, H; Terán-Vargas, A P; Valencia, S J; Willink, E
2016-06-01
Transgenic crops producing Bacillus thuringiensis- (Bt) insecticidal proteins (Bt crops) have provided useful pest management tools to growers for the past 20 years. Planting Bt crops has reduced the use of synthetic insecticides on cotton, maize and soybean fields in 11 countries throughout Latin America. One of the threats that could jeopardize the sustainability of Bt crops is the development of resistance by targeted pests. Governments of many countries require vigilance in measuring changes in Bt-susceptibility in order to proactively implement corrective measures before Bt-resistance is widespread, thus prolonging the usefulness of Bt crops. A pragmatic approach to obtain information on the effectiveness of Bt-crops is directly asking growers, crop consultants and academics about Bt-resistance problems in agricultural fields, first-hand information that not necessarily relies on susceptibility screens performed in laboratories. This type of information is presented in this report. Problematic pests of cotton and soybeans in five Latin American countries currently are effectively controlled by Bt crops. Growers that plant conventional (non-Bt) cotton or soybeans have to spray synthetic insecticides against multiple pests that otherwise are controlled by these Bt crops. A similar situation has been observed in six Latin American countries where Bt maize is planted. No synthetic insecticide applications are used to control corn pests because they are controlled by Bt maize, with the exception of Spodoptera frugiperda. While this insect in some countries is still effectively controlled by Bt maize, in others resistance has evolved and necessitates supplemental insecticide applications and/or the use of Bt maize cultivars that express multiple Bt proteins. Partial control of S. frugiperda in certain countries is due to its natural tolerance to the Bt bacterium. Of the 31 pests targeted and controlled by Bt crops in Latin America, only S. frugiperda has shown tolerance to certain Bt proteins in growers' fields, the most reliable indication of the status of Bt-susceptibility in most of the American continent. Copyright © 2016 Elsevier Inc. All rights reserved.
Nuke 'Em! Library Pest Control Using a Microwave.
ERIC Educational Resources Information Center
Brezner, Jerome; Luner, Philip
1989-01-01
Discusses the threats to books and periodicals posed by such insects as book lice, termites, cockroaches, silverfish, firebrats, and beetles; reviews past methods of pest control; and describes a technique for insect control using microwaves. The results of tests of microwave effects on publications are reported, necessary precautions are…
Zhao, Zi-Hua; Zhang, Rong; He, Da-Han; Wang, Fang; Zhang, Ting-Ting; Zhang, Zong-Shan
2009-04-01
In the risk assessment of pests, both the community structure and the environmental factors should be considered at the same time, because of their mutual effects on the outbreak of disaster pests. This paper established a comprehensive assessment system, including 2 sub-systems, 5 respects, and 14 indices. In the meanwhile, risk assessment indices and experience formula were used to analyze the risk degree of pests in Lycium barbarum fields under different managements. It was found that using risk assessment indices and experience formula could obtain similar results. In abandoned field, Aceria palida, Aphis sp., and Paratrioza sinica were the frequent disaster pests, Lema decempunctata, Neoceratitis asiatica, Jaapiella sp., and Phthorimaea sp. were the incidental disaster pests, and Psylliodes obscurofaciata and Phthorimaea sp. were general pests. In organic field, the frequent disaster pests were the same species as those in abandoned field, while P. indicus, Jaapiella sp. and Phthorimaea sp. were the incidental disaster pests. In chemical control field, A. palida, Aphis sp., P. sinica, and P. indicus were the frequent disaster pests, while Jaapiella sp. and Phthorimaea sp. were the incidental disaster pests. Optimal 5 separations most fitted the division of pest sub-communities in L. barbarum fields, which were infancy period (from March 28 to April 15), outbreak I period (from April 15 to July 18), dormancy period (from July 18 to September 8), outbreak II period (from September 8 to October 15), and recession period (after October 15). The matrix of correlation coefficient showed that the dynamics of pests in L. barbarum fields under different managements were significantly correlated with each other, suggesting that the dynamics of pest populations was similar in different L. barbarum fields, which had two population establishment stages and one exponential growth stage in every year. The optimal controlling stages were from late infancy period to early and middle outbreak I periods, and from late dormancy period to early outbreak II period, which were very critical for pest control.
Bridging conventional and molecular genetics of sorghum insect resistance
USDA-ARS?s Scientific Manuscript database
Sustainable production of sorghum, Sorghum bicolor (L.) Moench, depends on effective control of insect pests as they continue to compete with humans for the sorghum crop. Insect pests are major constraint in sorghum production, and nearly 150 insect species are serious pests of this crop worldwide,...
Integrated Pest Management (IPM)
National Pesticide Information Center 1.800.858.7378 npic@ace.orst.edu We're open from 8:00AM to 12 Plants Pest Control Identify Your Pest Learn About Your Pest Control Your Pest Integrated Pest Management Home Page Pest Control Integrated Pest Management (IPM) Related Topics: Using Pesticides Around Pets
Calvo, F J; Torres-Ruiz, A; Velázquez-González, J; Rodríguez-Leyva, E; Lomeli-Flores, J R
2018-04-02
Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) and Bactericera cockerelli Sulcer (Hemiptera: Psyllidae) are important pests in tomato, and the mirid Dicyphus hesperus Knight (Heteroptera: Miridae) has been shown as an effective predator of both pests. Although the predator was able to suppress populations of both pests, the remaining levels could still exceed tolerable levels. Thus, we here hypothesized whether the combination of D. hesperus with the specialist parasitoids Eretmocerus eremicus Rose y Zolnerowich (Hymenoptera: Aphelinidae) (whitefly) and Tamarixia triozae (Burks) (Hymenoptera: Eulophidae) (psyllid) would result in better pest control on a greenhouse scale. For that, we conducted a trial in which we compared the results against B. tabaci and B. cockerelli in greenhouses treated with D. hesperus alone or the predator in combination with the specialist parasitoids. The results showed that the predator was able to establish and suppress B. tabaci and B. cockerelli in tomato, but the addition of the specialist parasitoids resulted in better and more cost-effective pest control. Implementation of this method would therefore increase the robustness and reliability of biocontrol-based integrated pest management programmes for tomato crops, over methods based exclusively on D. hesperus release.
Definition of Verifiable School IPM
EPA is promoting use of verifiable school IPM. This is an activity that includes several elements with documentation, including pest identification, action thresholds, monitoring, effective pest control.
High effectiveness of tailored flower strips in reducing pests and crop plant damage
Tschumi, Matthias; Albrecht, Matthias; Entling, Martin H.; Jacot, Katja
2015-01-01
Providing key resources to animals may enhance both their biodiversity and the ecosystem services they provide. We examined the performance of annual flower strips targeted at the promotion of natural pest control in winter wheat. Flower strips were experimentally sown along 10 winter wheat fields across a gradient of landscape complexity (i.e. proportion non-crop area within 750 m around focal fields) and compared with 15 fields with wheat control strips. We found strong reductions in cereal leaf beetle (CLB) density (larvae: 40%; adults of the second generation: 53%) and plant damage caused by CLB (61%) in fields with flower strips compared with control fields. Natural enemies of CLB were strongly increased in flower strips and in part also in adjacent wheat fields. Flower strip effects on natural enemies, pests and crop damage were largely independent of landscape complexity (8–75% non-crop area). Our study demonstrates a high effectiveness of annual flower strips in promoting pest control, reducing CLB pest levels below the economic threshold. Hence, the studied flower strip offers a viable alternative to insecticides. This highlights the high potential of tailored agri-environment schemes to contribute to ecological intensification and may encourage more farmers to adopt such schemes. PMID:26311668
USDA-ARS?s Scientific Manuscript database
In agricultural settings, examples of effective control strategies using repellent chemicals in integrated pest management (IPM) are relatively scarce compared to those using attractants. This may be partly due to a poor understanding of how repellents affect insect behavior once they are deployed. ...
Nitric oxide fumigation for postharvest pest control
USDA-ARS?s Scientific Manuscript database
Nitric oxide fumigation is effective against all arthropod pests at various life stages tested. Nine insect pests at various life stages and bulb mites were subjected to nitric oxide fumigation treatments under ultralow oxygen conditions of =50 ppm O2 in 1.9L glass jars as fumigation chambers. The ...
USDA-ARS?s Scientific Manuscript database
With the expansion of transgenic Bt cotton cultivation in the southeast US, stink bugs, particularly Nezara viridula and Euschistus servus [Hemiptera: Pentatomidae], have become serious cotton pests, resulting in continued high insecticide use. Whereas Bt cotton provides effective control of the ca...
Ornamental, Shade Tree, and Turf Pest Control Manual.
ERIC Educational Resources Information Center
Bowman, James S.; And Others
This document provides the information needed to meet the standards for pesticide applicator certification. Section one deals with the identification of pests and the diagnosis of pest damage. Section two provides an introduction to weed characteristics and herbicide usage. The application, formulation, effects and safety of herbicides in general…
Pesticide Vendors in the Informal Sector: Trading Health for Income.
Rother, Hanna-Andrea
2016-08-01
South African low-income communities face many challenges (e.g., insufficient housing, poor service delivery, and abject poverty); additionally, a silent challenge of pest infestation plagues these areas resulting in disease risks, nuisances, and stigma. Consequently, an enterprising urban informal sector business has emerged providing residents with highly toxic, effective, cheap, and illegal "street pesticides." These pesticides pose acute and chronic health risks for vendors and residents. The economic opportunity provided by the high demand for effective and cheap pest control results in the high risk of health effects being traded for income. Current measures to control and "regulate" the massive street pesticide sales result in toxic stockpiles and government's "turning a blind eye." Solutions will only be achieved through open dialog identifying and developing non-toxic pest control strategies while ensuring vendors' income; and relevant stakeholder recognition that pest infestation is a social and environmental health determinant needing acknowledgement in different government policies. © The Author(s) 2016.
Temporal dynamics of the arthropod community in pear orchards intercropped with aromatic plants.
Beizhou, Song; Jie, Zhang; Jinghui, Hu; Hongying, Wu; Yun, Kong; Yuncong, Yao
2011-09-01
Increasing attention has been paid to enhancing biological control through habitat management in agricultural systems for enhanced pest management. Pest management benefits can be realised by intercropping, which can increase natural enemy abundance and, in turn, reduce pest abundance. In this study, the composition and temporal dynamics of arthropod communities in pear orchards when intercropped with aromatic plants were investigated, and the effectiveness and applicability of aromatic plants as intercrops for enhancing insect control were assessed. When compared with natural grasses or clean tillage, intercropping significantly reduced pest abundance and increased the ratio of natural enemies to pests. Intercropping also shortened the occurrence duration and depressed the incidence peak in annual dynamics curves of the pest subcommunity and the arthropod community, mainly because of the repellent effects of aromatic plants. Equally important, intercropping significantly reduced the numbers of major pests, such as Psylla chinensis, Aphis citricola and Pseudococcus comstocki, while their incidence period was delayed to varying degrees, and the numbers of their dominant natural enemies (Coccinella septempunctata, Phytoseiulus persimilis and Chrysoperla sinica) increased. Intercropping with aromatic plants led to a considerable improvement in arthropod pest management by enhancing the activity of the beneficial arthropod community within the pear orchard ecosystem. Copyright © 2011 Society of Chemical Industry.
USDA-ARS?s Scientific Manuscript database
Lepidoptera are among the most severe pests of food and fibre crops in the world and are mainly controlled using broad spectrum insecticides. This does not lead to sustainable control and farmers are demanding alternative control tools which are both effective and friendly to the environment. The st...
Benefits of Bt cotton counterbalanced by secondary pests? Perceptions of ecological change in China.
Zhao, Jennifer H; Ho, Peter; Azadi, Hossein
2011-02-01
In the past, scientific research has predicted a decrease in the effectiveness of Bt cotton due to the rise of secondary and other sucking pests. It is suspected that once the primary pest is brought under control, secondary pests have a chance to emerge due to the lower pesticide applications in Bt cotton cultivars. Studies on this phenomenon are scarce. This article furnishes empirical evidence that farmers in China perceive a substantial increase in secondary pests after the introduction of Bt cotton. The research is based on a survey of 1,000 randomly selected farm households in five provinces in China. We found that the reduction in pesticide use in Bt cotton cultivars is significantly lower than that reported in research elsewhere. This is consistent with the hypothesis suggested by recent studies that more pesticide sprayings are needed over time to control emerging secondary pests, such as aphids, spider mites, and lygus bugs. Apart from farmers' perceptions of secondary pests, we also assessed their basic knowledge of Bt cotton and their perceptions of Bt cotton in terms of its strengths and shortcomings (e.g., effectiveness, productivity, price, and pesticide use) in comparison with non-transgenic cotton.
Gene Disruption Technologies Have the Potential to Transform Stored Product Insect Pest Control.
Perkin, Lindsey C; Adrianos, Sherry L; Oppert, Brenda
2016-09-19
Stored product insects feed on grains and processed commodities manufactured from grain post-harvest, reducing the nutritional value and contaminating food. Currently, the main defense against stored product insect pests is the pesticide fumigant phosphine. Phosphine is highly toxic to all animals, but is the most effective and economical control method, and thus is used extensively worldwide. However, many insect populations have become resistant to phosphine, in some cases to very high levels. New, environmentally benign and more effective control strategies are needed for stored product pests. RNA interference (RNAi) may overcome pesticide resistance by targeting the expression of genes that contribute to resistance in insects. Most data on RNAi in stored product insects is from the coleopteran genetic model, Tribolium castaneum, since it has a strong RNAi response via injection of double stranded RNA (dsRNA) in any life stage. Additionally, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology has been suggested as a potential resource for new pest control strategies. In this review we discuss background information on both gene disruption technologies and summarize the advances made in terms of molecular pest management in stored product insects, mainly T. castaneum, as well as complications and future needs.
Wheat (Triticum aestivum L.)-based intercropping systems for biological pest control.
Lopes, Thomas; Hatt, Séverin; Xu, Qinxuan; Chen, Julian; Liu, Yong; Francis, Frédéric
2016-12-01
Wheat (Triticum aestivum L.) is one of the most cultivated crops in temperate climates. As its pests are mainly controlled with insecticides that are harmful to the environment and human health, alternative practices such as intercropping have been studied for their potential to promote biological control. Based on the published literature, this study aimed to review the effect of wheat-based intercropping systems on insect pests and their natural enemies. Fifty original research papers were obtained from a systematic search of the peer-reviewed literature. Results from a vote-counting analysis indicated that, in the majority of studies, pest abundance was significantly reduced in intercropping systems compared with pure stands. However, the occurrence of their natural enemies as well as predation and parasitism rates were not significantly increased. The country where the studies took place, the type of intercropping and the crop that was studied in the association had significant effects on these results. These findings show that intercropping is a viable practice to reduce insecticide use in wheat production systems. Nevertheless, other practices could be combined with intercropping to favour natural enemies and enhance pest control. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
A modelling methodology to assess the effect of insect pest control on agro-ecosystems.
Wan, Nian-Feng; Ji, Xiang-Yun; Jiang, Jie-Xian; Li, Bo
2015-04-23
The extensive use of chemical pesticides for pest management in agricultural systems can entail risks to the complex ecosystems consisting of economic, ecological and social subsystems. To analyze the negative and positive effects of external or internal disturbances on complex ecosystems, we proposed an ecological two-sidedness approach which has been applied to the design of pest-controlling strategies for pesticide pollution management. However, catastrophe theory has not been initially applied to this approach. Thus, we used an approach of integrating ecological two-sidedness with a multi-criterion evaluation method of catastrophe theory to analyze the complexity of agro-ecosystems disturbed by the insecticides and screen out the best insect pest-controlling strategy in cabbage production. The results showed that the order of the values of evaluation index (RCC/CP) for three strategies in cabbage production was "applying frequency vibration lamps and environment-friendly insecticides 8 times" (0.80) < "applying trap devices and environment-friendly insecticides 9 times" (0.83) < "applying common insecticides 14 times" (1.08). The treatment "applying frequency vibration lamps and environment-friendly insecticides 8 times" was considered as the best insect pest-controlling strategy in cabbage production in Shanghai, China.
Microbial management of arthropod pests of tea: current state and prospects.
Roy, Somnath; Muraleedharan, Narayanannair
2014-06-01
Sustainable tea cultivation will rely increasingly on alternatives to conventional chemical insecticides for pest management that are environment-friendly and reduce the amount of pesticide residues in made tea. Entomopathogens can provide effective control, conserve biodiversity, and serve as alternatives to chemical insecticides under several conditions. Due to their specificity for insects, these pathogens including viruses, bacteria, and fungi are ideal candidates for incorporation in the integrated pest management strategies for tea where their effects on other natural enemies will be minimal. Biological and ecological characteristics of several dominant natural entomopathogenic microorganisms have been well documented throughout the tea-growing countries particularly China, Japan, and India. But research to convert them to microbial insecticide formulations for tea pest control by evolving suitable techniques for production, standardization, formulation, and application has not progressed well except in Japan and China to some extent. Increased use of microbial control will depend on a variety of factors including improvements in the pathogens' virulence, formulation, delivery, etc. and an increased awareness of their attributes by growers and the general public. In this review, we provide an overview of microbial control of the key insect pests of tea and also the scope for future studies for their better utilization.
A modelling methodology to assess the effect of insect pest control on agro-ecosystems
Wan, Nian-Feng; Ji, Xiang-Yun; Jiang, Jie-Xian; Li, Bo
2015-01-01
The extensive use of chemical pesticides for pest management in agricultural systems can entail risks to the complex ecosystems consisting of economic, ecological and social subsystems. To analyze the negative and positive effects of external or internal disturbances on complex ecosystems, we proposed an ecological two-sidedness approach which has been applied to the design of pest-controlling strategies for pesticide pollution management. However, catastrophe theory has not been initially applied to this approach. Thus, we used an approach of integrating ecological two-sidedness with a multi-criterion evaluation method of catastrophe theory to analyze the complexity of agro-ecosystems disturbed by the insecticides and screen out the best insect pest-controlling strategy in cabbage production. The results showed that the order of the values of evaluation index (RCC/CP) for three strategies in cabbage production was “applying frequency vibration lamps and environment-friendly insecticides 8 times” (0.80) < “applying trap devices and environment-friendly insecticides 9 times” (0.83) < “applying common insecticides 14 times” (1.08). The treatment “applying frequency vibration lamps and environment-friendly insecticides 8 times” was considered as the best insect pest-controlling strategy in cabbage production in Shanghai, China. PMID:25906199
Hanson, Lee H.; Manion, Patrick J.
1980-01-01
The sterility method of pest control could be an effective tool in the sea lamprey (Petromyzon marinus) control program in the Great Lakes. Some of the requirements for its successful application have been met. A field study demonstrated that the release of male sea lampreys, sterilized by the injection of 100 mg/kg of P,P-bis(1-aziridinyl)-N-methylphosphinothioic amide (bisazir), will reduce the number of viable larvae produced. The actual reduction in reproductive success that occurred was directly related to the ratio of sterile to normal males in the population. The technique can be used in many ways in an integrated control program and has considerable potential for the more effective control of the sea lamprey. Eradication is a distinct possibility.Key words: sea lamprey, Petromyzon marinus; pest control, fish control, sterile-male technique, sterilization, chemosterilants, bisazir, Great Lakes
Evaluating mustard and arugula volatiles and refuge plants for sustainable control of insect pests
USDA-ARS?s Scientific Manuscript database
Whiteflies and aphids are important insect pests in vegetable crops. To mitigate the use of chemical insecticides, “push-pull” strategies can be used as components of sustainable or cultural pest management. We conducted laboratory olfactometer or odor detecting tests to measure the effects of arugu...
Pest Control For Container-Grown Longleaf Pine
Scott Enebak; Bill Carey
2002-01-01
Several insect, weed, and disease pests are discussed that have been observed affecting container-grown longleaf pine (Pinus palustris Mill.) seedlings. The available tools to minimize the effects of these pests are limited to a few select insecticides, herbicides, and fungicides. Extreme care should be taken to ensure that the chemical chosen is...
A Dynamical Analysis of a Piecewise Smooth Pest Control SI Model
NASA Astrophysics Data System (ADS)
Liu, Bing; Liu, Wanbo; Tao, Fennmei; Kang, Baolin; Cong, Jiguang
In this paper, we propose a piecewise smooth SI pest control system to model the process of spraying pesticides and releasing infectious pests. We assume that the pest population consists of susceptible pests and infectious pests, and that the disease spreads horizontally between pests. We take the susceptible pest as the control index on whether to implement chemical control and biological control strategies. Based on the theory of Filippov system, the sliding-mode domain and conditions for the existence of real equilibria, virtual equilibria, pseudo-equilibrium and boundary equilibria are given. Further, we show the global stability of real equilibria (or boundary equilibria) and pseudo-equilibrium. Our results can provide theoretical guidance for the problem of pest control.
Prevention methods for pest control and their use in Poland.
Matyjaszczyk, Ewa
2015-04-01
Prevention methods can still be a cost-effective and efficient tool for pest control. Rational use of prevention methods is a feasible way to reduce dependency on chemical protection in agriculture. Costs, workload and farmers' awareness are key issues, however. In Poland, crop rotation is used as a method for pest control only to a limited extent owing to the high share of cereals in the crop structure. The choice of resistant varieties is satisfactory, but farmers should make use of qualified seed material more often. Liming is recommended on the majority of farms on account of widespread soil acidity. Favourable aspects as regards the prevention of pest development are biodiversity and the popularity of prevention cultivation techniques. © 2014 Society of Chemical Industry.
Opportunity to use native nematodes for pest control
USDA-ARS?s Scientific Manuscript database
We have surveyed wild cranberry bogs in WI and found three isolates of native nematodes. We have been testing these nematodes as potential biological control agents in for cranberry insect pests including sparganothis fruitworm and flea beetle. The nematodes seem to be effective at finding and killi...
Lourenço, Adriano M; Haddi, Khalid; Ribeiro, Bergman M; Corrêia, Roberto F T; Tomé, Hudson V V; Santos-Amaya, Oscar; Pereira, Eliseu J G; Guedes, Raul N C; Santos, Gil R; Oliveira, Eugênio E; Aguiar, Raimundo W S
2018-05-08
Although the cultivation of transgenic plants expressing toxins of Bacillus thuringiensis (Bt) represents a successful pest management strategy, the rapid evolution of resistance to Bt plants in several lepidopteran pests has threatened the sustainability of this practice. By exhibiting a favorable safety profile and allowing integration with pest management initiatives, plant essential oils have become relevant pest control alternatives. Here, we assessed the potential of essential oils extracted from a Neotropical plant, Siparuna guianensis Aublet, for improving the control and resistance management of key lepidopteran pests (i.e., Spodoptera frugiperda and Anticarsia gemmatalis). The essential oil exhibited high toxicity against both lepidopteran pest species (including an S. frugiperda strain resistant to Cry1A.105 and Cry2Ab Bt toxins). This high insecticidal activity was associated with necrotic and apoptotic effects revealed by in vitro assays with lepidopteran (but not human) cell lines. Furthermore, deficits in reproduction (e.g., egg-laying deterrence and decreased egg viability), larval development (e.g., feeding inhibition) and locomotion (e.g., individual and grouped larvae walking activities) were recorded for lepidopterans sublethally exposed to the essential oil. Thus, by similarly and efficiently controlling lepidopteran strains susceptible and resistant to Bt toxins, the S. guianensis essential oil represents a promising management tool against key lepidopteran pests.
Integrated pest management in western flower thrips: past, present and future.
Mouden, Sanae; Sarmiento, Kryss Facun; Klinkhamer, Peter Gl; Leiss, Kirsten A
2017-05-01
Western flower thrips (WFT) is one of the most economically important pest insects of many crops worldwide. Recent EU legislation has caused a dramatic shift in pest management strategies, pushing for tactics that are less reliable on chemicals. The development of alternative strategies is therefore an issue of increasing urgency. This paper reviews the main control tactics in integrated pest management (IPM) of WFT, with the focus on biological control and host plant resistance as areas of major progress. Knowledge gaps are identified and innovative approaches emphasised, highlighting the advances in 'omics' technologies. Successful programmes are most likely generated when preventive and therapeutic strategies with mutually beneficial, cost-effective and environmentally sound foundations are incorporated. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Safe, Effective Use of Pesticides, A Manual for Commercial Applicators: Public Health Pest Control.
ERIC Educational Resources Information Center
Extension Service (USDA), Washington, DC.
This manual is designed to assist public health pest control officials in meeting the certification required under the Michigan Pesticide Control Act of 1976. The four sections included describe: (1) Insects of public health significance in Michigan; (2) Other arthropods that affect man; (3) Swimmers' itch parasite and snail host; and (4)…
Integrated pest management models and their dynamical behaviour.
Tang, Sanyi; Xiao, Yanni; Chen, Lansun; Cheke, Robert A
2005-01-01
Two impulsive models of integrated pest management (IPM) strategies are proposed, one with fixed intervention times and the other with these unfixed. The first model allows natural enemies to survive but under some conditions may lead to extinction of the pest. We use a simple prey-dependent consumption model with fixed impulsive effects and show that there exists a globally stable pest-eradication periodic solution when the impulsive period is less than certain critical values. The effects of pest resistance to pesticides are also studied. The second model is constructed in the light of IPM practice such that when the pest population reaches the economic injury level (EIL), a combination of biological, cultural, and chemical tactics that reduce pests to tolerable levels is invoked. Using analytical methods, we show that there exists an orbitally asymptotically stable periodic solution with a maximum value no larger than the given Economic Threshold (ET). The complete expression for this periodic solution is given and the ET is evaluated for given parameters. We also show that in some cases control costs can be reduced by replacing IPM interventions at unfixed times with periodic interventions. Further, we show that small perturbations of the system do not affect the existence and stability of the periodic solution. Thus, we provide the first demonstration using mathematical models that an IPM strategy is more effective than classical control methods.
Procedures of laboratory nitric oxide fumigation for pest control
USDA-ARS?s Scientific Manuscript database
Nitric oxide (NO) is a newly discovered fumigant and has the potential to be a safe and effective alternative for postharvest pest control. As NO reacts with oxygen spontaneously to produce nitrogen dioxide, NO fumigation must be conducted under ultralow oxygen (ULO) atmosphere and therefore has com...
USDA-ARS?s Scientific Manuscript database
The use of entomopathogenic nematodes in the biological control of soil insect pests is hampered by the costly and inadequate application techniques. As a possible solution we evaluated an encapsulation approach that offers effective application and may possibly attract the pest by adding attractant...
Summary Factsheets for Pesticide Permittees
Summaries of the 2016 Pesticide General Permit (PGP) requirements and provisions covering mosquito and other flying insect pest control; weed and algae pest control; animal pest control; and forest canopy pest control.
Reddy, Gadi V P
2011-08-01
Studies were conducted on experimental cabbage plantings in 2009 and on experimental and commercial plantings in 2010, comparing farmers' current chemical standard pesticide practices with an integrated pest management (IPM) program based on the use of neem (Aza-Direct) and DiPel (Bacillus thuringiensis). In experimental plantings, the IPM program used six or eight applications of neem and DiPel on a rotational basis. The standard-practice treatments consisted of six or eight applications of carbaryl and malathion or control treatment. The IPM treatments reduced pest populations and damage, resulting in a better yield than with the standard chemical or control treatment. When IPM treatment included three applications of neem plus three applications of DiPel (on a rotational basis in experimental fields), it again reduced the pest population and damage and produced a better yield than the standard practice. The lower input costs of the IPM program resulted in better economic returns in both trials. The IPM components neem and DiPel are suitable for use in an IPM program for managing insect pests on cabbage (Brassica spp.). Copyright © 2011 Society of Chemical Industry.
IPM for fresh-market lettuce production in the desert southwest: the produce paradox.
Palumbo, John C; Castle, Steven J
2009-12-01
In the 'Integrated Control Concept', Stern et al. emphasized that, although insecticides are necessary for agricultural production, they should only be used as a last resort and as a complement to biological control. They argued that selective insecticide use should only be attempted after it has been determined that insect control with naturally occurring biotic agents is not capable of preventing economic damage. However, they concluded their seminal paper by emphasizing that integrated control will not work where natural enemies are inadequate or where economic thresholds are too low to rely on biological control. Thus, it is no surprise that insect control in high-value, fresh-market lettuce crops grown in the desert southwest have relied almost exclusively on insecticides to control a complex of mobile, polyphagous pests. Because lettuce and leafy greens are short-season annual crops with little or no tolerance for insect damage or contamination, biological control is generally considered unacceptable. High expectations from consumers for aesthetically appealing produce free of pesticide residues further forces vegetable growers to use chemical control tactics that are not only effective but safe. Consequently, scientists have been developing integrated pest management (IPM) programs for lettuce that are aimed at reducing the economic, occupational and dietary risks associated with chemical controls of the past. Most of these programs have drawn upon the integrated control concept and promote the importance of understanding the agroecosystem, and the need to sample for pest status and use action thresholds for cost-effective insect control. More recently, pest management programs have implemented newly developed, reduced-risk chemistries that are selectively efficacious against key pests. This paper discusses the influence that the integrated control concept, relative to zero-tolerance market standards and other constraints, has had on the adoption of pest management in desert lettuce crops. (c) 2009 Society of Chemical Industry.
ERIC Educational Resources Information Center
Stockdale, Harold J., Ed.; And Others
This manual provides information needed to meet specific standards for certification as a pesticide applicator. The first section discusses general and household pest control and is concerned with parasitic pests and man, stored product pests, and irritating vertebrates. Section two is devoted to identifying and controlling structural pests such…
The most effective strategy for controlling pests in your lawn and garden may be to combine methods in an approach known as Integrated Pest Management. See videos and find tips for implementing IPM at your residence.
USDA-ARS?s Scientific Manuscript database
The Mediterranean fruit fly, Ceratitis capitata, is one of the most serious pests of fruit crops world-wide. During the last decades, area-wide pest management (AW-IPM) approaches with a sterile insect technique (SIT) component have been used to control populations of this pest in an effective and e...
Sterile-Insect Methods for Control of Mosquito-Borne Diseases: An Analysis
Benedict, Mark; Bellini, Romeo; Clark, Gary G.; Dame, David A.; Service, Mike W.; Dobson, Stephen L.
2010-01-01
Abstract Effective vector control, and more specifically mosquito control, is a complex and difficult problem, as illustrated by the continuing prevalence (and spread) of mosquito-transmitted diseases. The sterile insect technique and similar methods control certain agricultural insect pest populations in a species-specific, environmentally sound, and effective manner; there is increased interest in applying this approach to vector control. Such an approach, like all others in use and development, is not a one-size-fits-all solution, and will be more appropriate in some situations than others. In addition, the proposed release of pest insects, and more so genetically modified pest insects, is bound to raise questions in the general public and the scientific community as to such a method's efficacy, safety, and sustainability. This article attempts to address these concerns and indicate where sterile-insect methods are likely to be useful for vector control. PMID:19725763
Skirvin, D J; de Courcy Williams, M
1999-06-01
The influence of plant species on the population dynamics of the spider mite pest, Tetranychus urticae, and its predator, Phytoseiulus persimilis, was examined as a prerequisite to effective biological control on ornamental nursery stock. Experiments have been done to investigate how the development, fecundity and movement of T. urticae, and the movement of P. persimilis were affected by plant species. A novel experimental method, which incorporates plant structure, was used to investigate the functional response of P. persimilis. Development times for T. urticae were consistent with published data and did not differ with plant species in a biologically meaningful way. Plant species was shown to have a major influence on fecundity (P < 0.001) and movement of the pest mite (P < 0.01), but no influence on the movement of the predator. The movement of both pest and predator was shown to be related to the density of the adult pest mites on the plant (P < 0.001). Plant structure affected the functional response, particularly in relation to the ability of the predator to locate prey at low densities. The impact of these findings on the effective use of biological control on ornamental nursery stock is discussed.
Effects of effluent water on the abundance of cowpea insect pests.
Tiroesele, Bamphitlhi; Sitwane, Monametsi; Obopile, M; Ullah, Muhammad Irfan; Ali, Sajjad
2017-10-03
Botswana experiences low and unreliable rainfall. Thus, the use of effluent water in agriculture is increasingly important. Insect damage is the major constraint for cowpea grain production in the most cowpea-producing lands. We investigated the effects of effluent water on insect pest abundance on cowpea (Vigna unguiculata) under field conditions. The experiment was laid out in a randomized complete block design with 100, 75, 50, and 25% of effluent water and 0% (control-clean tap water) treatments. Treatments with 100% effluent water resulted in a significant increase in insect pest populations as compared with the control. These results show that the use of effluent water to irrigate crops may increase incidence, abundance, and damage caused by insect pests possibly by decreasing plant vigor. The use of effluent water in agriculture should be addressed in a wise way.
Safe, Effective Use of Pesticides, A Manual for Commercial Applicators: Right-of-Way Pest Control.
ERIC Educational Resources Information Center
Extension Service (USDA), Washington, DC.
This manual is intended to assist pesticide applicators who are engaged in right-of-way pest control to meet the requirements of the Michigan Department of Agriculture for certification. While the majority of material in this guide pertains to vegetation management, the guide also addresses right-of-way insect and fungus control. An introduction…
Aketarawong, Nidchaya; Chinvinijkul, Suksom; Orankanok, Watchreeporn; Guglielmino, Carmela Rosalba; Franz, Gerald; Malacrida, Anna Rodolfa; Thanaphum, Sujinda
2011-01-01
The oriental fruit fly, Bactrocera dorsalis (Hendel), is a key pest that causes reduction of the crop yield within the international fruit market. Fruit flies have been suppressed by two Area-Wide Integrated Pest Management programs in Thailand using Sterile Insect Technique (AW-IPM-SIT) since the late 1980s and the early 2000s. The projects' planning and evaluation usually rely on information from pest status, distribution, and fruit infestation. However, the collected data sometimes does not provide enough detail to answer management queries and public concerns, such as the long term sterilization efficacy of the released fruit fly, skepticism about insect migration or gene flow across the buffer zone, and the re-colonisation possibility of the fruit fly population within the core area. Established microsatellite DNA markers were used to generate population genetic data for the analysis of the fruit fly sampling from several control areas, and non-target areas, as well as the mass-rearing facility. The results suggested limited gene flow (m < 0.100) across the buffer zones between the flies in the control areas and flies captured outside. In addition, no genetic admixture was revealed from the mass-reared colony flies from the flies within the control area, which supports the effectiveness of SIT. The control pests were suppressed to low density and showed weak bottleneck footprints although they still acquired a high degree of genetic variation. Potential pest resurgence from fragmented micro-habitats in mixed fruit orchards rather than pest incursion across the buffer zone has been proposed. Therefore, a suitable pest control effort, such as the SIT program, should concentrate on the hidden refuges within the target area.
A cascade of destabilizations: Combining Wolbachia and Allee effects to eradicate insect pests.
Blackwood, Julie C; Vargas, Roger; Fauvergue, Xavier
2018-01-01
The management of insect pests has long been dominated by the use of chemical insecticides, with the aim of instantaneously killing enough individuals to limit their damage. To minimize unwanted consequences, environmentally friendly approaches have been proposed that utilize biological control and take advantage of intrinsic demographic processes to reduce pest populations. We address the feasibility of a novel pest management strategy based on the release of insects infected with Wolbachia, which causes cytoplasmic incompatibilities in its host population, into a population with a pre-existing Allee effect. We hypothesize that the transient decline in population size caused by a successful invasion of Wolbachia can bring the population below its Allee threshold and, consequently, trigger extinction. We develop a stochastic population model that accounts for Wolbachia-induced cytoplasmic incompatibilities in addition to an Allee effect arising from mating failures at low population densities. Using our model, we identify conditions under which cytoplasmic incompatibilities and Allee effects successfully interact to drive insect pest populations towards extinction. Based on our results, we delineate control strategies based on introductions of Wolbachia-infected insects. We extend this analysis to evaluate control strategies that implement successive introductions of two incompatible Wolbachia strains. Additionally, we consider methods that combine Wolbachia invasion with mating disruption tactics to enhance the pre-existing Allee effect. We demonstrate that Wolbachia-induced cytoplasmic incompatibility and the Allee effect act independently from one another: the Allee effect does not modify the Wolbachia invasion threshold, and cytoplasmic incompatibilities only have a marginal effect on the Allee threshold. However, the interaction of these two processes can drive even large populations to extinction. The success of this method can be amplified by the introduction of multiple Wolbachia cytotypes as well as the addition of mating disruption. Our study extends the existing literature by proposing the use of Wolbachia introductions to capitalize on pre-existing Allee effects and consequently eradicate insect pests. More generally, it highlights the importance of transient dynamics, and the relevance of manipulating a cascade of destabilizatons for pest management. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Effects of land use on bird populations and pest control services on coffee farms
Railsback, Steven F.; Johnson, Matthew D.
2014-01-01
Global increases in both agriculture and biodiversity awareness raise a key question: Should cropland and biodiversity habitat be separated, or integrated in mixed land uses? Ecosystem services by wildlife make this question more complex. For example, birds benefit agriculture by preying on pest insects, but other habitat is needed to maintain the birds. Resulting land use questions include what areas and arrangements of habitat support sufficient birds to control pests, whether this pest control offsets the reduced cropland, and the comparative benefits of “land sharing” (i.e., mixed cropland and habitat) vs. “land sparing” (i.e., separate areas of intensive agriculture and habitat). Such questions are difficult to answer using field studies alone, so we use a simulation model of Jamaican coffee farms, where songbirds suppress the coffee berry borer (CBB). Simulated birds select habitat and prey in five habitat types: intact forest, trees (including forest fragments), shade coffee, sun coffee, and unsuitable habitat. The trees habitat type appears to be especially important, providing efficient foraging and roosting sites near coffee plots. Small areas of trees (but not forest alone) could support a sufficient number of birds to suppress CBB in sun coffee; the degree to which trees are dispersed within coffee had little effect. In simulations without trees, shade coffee supported sufficient birds to offset its lower yield. High areas of both trees and shade coffee reduced pest control because CBB was less often profitable prey. Because of the pest control service provided by birds, land sharing was predicted to be more beneficial than land sparing in this system. PMID:24711377
Effects of land use on bird populations and pest control services on coffee farms.
Railsback, Steven F; Johnson, Matthew D
2014-04-22
Global increases in both agriculture and biodiversity awareness raise a key question: Should cropland and biodiversity habitat be separated, or integrated in mixed land uses? Ecosystem services by wildlife make this question more complex. For example, birds benefit agriculture by preying on pest insects, but other habitat is needed to maintain the birds. Resulting land use questions include what areas and arrangements of habitat support sufficient birds to control pests, whether this pest control offsets the reduced cropland, and the comparative benefits of "land sharing" (i.e., mixed cropland and habitat) vs. "land sparing" (i.e., separate areas of intensive agriculture and habitat). Such questions are difficult to answer using field studies alone, so we use a simulation model of Jamaican coffee farms, where songbirds suppress the coffee berry borer (CBB). Simulated birds select habitat and prey in five habitat types: intact forest, trees (including forest fragments), shade coffee, sun coffee, and unsuitable habitat. The trees habitat type appears to be especially important, providing efficient foraging and roosting sites near coffee plots. Small areas of trees (but not forest alone) could support a sufficient number of birds to suppress CBB in sun coffee; the degree to which trees are dispersed within coffee had little effect. In simulations without trees, shade coffee supported sufficient birds to offset its lower yield. High areas of both trees and shade coffee reduced pest control because CBB was less often profitable prey. Because of the pest control service provided by birds, land sharing was predicted to be more beneficial than land sparing in this system.
Structure-Based Discovery of Nonpeptide Allatostatin Analogues for Pest Control.
Huang, Shan-Shan; Chen, Shan-Shan; Zhang, Hong-Ling; Yang, Han; Yang, Hui-Juan; Ren, Yu-Jie; Kai, Zhen-Peng
2018-04-11
FGLamide allatostatins (ASTs) are regarded as possible insecticide candidates, although their lack of in vivo effects, rapid degradation, poor water solubility, and high production costs preclude their practical use in pest control. In contrast to previous research, the C-terminal tripeptide (FGLa) was selected as the lead compound in this study. Five nonpeptide AST analogues (2-amino-1-[3-oxo-3-(substituted-anilino)propyl]pyridinium nitrate derivatives) were designed on the basis of the structure-activity relationship and docking results of FGLa. All of the nonpeptide analogues (S1-S5) were more potent against juvenile-hormone (JH) biosynthesis than the lead compound. They significantly inhibited the biosynthesis of JH in vivo following injection. A pest-control application demonstrated that S1 and S3 have larvicidal effects following oral administration (the IC 50 values were 0.020 and 0.0016 mg/g, respectively). The good oral toxicities and excellent water solubilities of S1 and S3 suggest that they have considerable potential as insecticides for pest management.
Integrated pest management in an urban community: a successful partnership for prevention.
Brenner, Barbara L; Markowitz, Steven; Rivera, Maribel; Romero, Harry; Weeks, Matthew; Sanchez, Elizabeth; Deych, Elena; Garg, Anjali; Godbold, James; Wolff, Mary S; Landrigan, Philip J; Berkowitz, Gertrud
2003-10-01
Pesticides, applied in large quantities in urban communities to control cockroaches, pose potential threats to health, especially to children, who have proportionately greater exposures and unique, developmentally determined vulnerabilities. Integrated pest management (IPM) relies on nonchemical tools--cleaning of food residues, removal of potential nutrients, and sealing cracks and crevices. Least toxic pesticides are used sparingly. To evaluate IPM's effectiveness, the Mount Sinai Children's Environmental Health and Disease Prevention Research Center, in partnership with two community health centers in East Harlem, New York City (NY, USA), undertook a prospective intervention trial. Families (n = 131) enrolled when mothers came to the centers for prenatal care. Household cockroach infestation was measured by glue traps at baseline and 6 months afterward. The intervention group received individually tailored IPM education, repairs, least-toxic pest control application, and supplies, with biweekly pest monitoring for 2 months and monthly for 4 months. The control group, residing in East Harlem and demographically and socioeconomically similar to the intervention group, received an injury prevention intervention. The proportion of intervention households with cockroaches declined significantly after 6 months (from 80.5 to 39.0%). Control group levels were essentially unchanged (from 78.1 to 81.3%). The cost, including repairs, of individually tailored IPM was equal to or lower than traditional chemically based pest control. These findings demonstrate that individually tailored IPM can be successful and cost-effective in an urban community.
Integrated pest management in an urban community: a successful partnership for prevention.
Brenner, Barbara L; Markowitz, Steven; Rivera, Maribel; Romero, Harry; Weeks, Matthew; Sanchez, Elizabeth; Deych, Elena; Garg, Anjali; Godbold, James; Wolff, Mary S; Landrigan, Philip J; Berkowitz, Gertrud
2003-01-01
Pesticides, applied in large quantities in urban communities to control cockroaches, pose potential threats to health, especially to children, who have proportionately greater exposures and unique, developmentally determined vulnerabilities. Integrated pest management (IPM) relies on nonchemical tools--cleaning of food residues, removal of potential nutrients, and sealing cracks and crevices. Least toxic pesticides are used sparingly. To evaluate IPM's effectiveness, the Mount Sinai Children's Environmental Health and Disease Prevention Research Center, in partnership with two community health centers in East Harlem, New York City (NY, USA), undertook a prospective intervention trial. Families (n = 131) enrolled when mothers came to the centers for prenatal care. Household cockroach infestation was measured by glue traps at baseline and 6 months afterward. The intervention group received individually tailored IPM education, repairs, least-toxic pest control application, and supplies, with biweekly pest monitoring for 2 months and monthly for 4 months. The control group, residing in East Harlem and demographically and socioeconomically similar to the intervention group, received an injury prevention intervention. The proportion of intervention households with cockroaches declined significantly after 6 months (from 80.5 to 39.0%). Control group levels were essentially unchanged (from 78.1 to 81.3%). The cost, including repairs, of individually tailored IPM was equal to or lower than traditional chemically based pest control. These findings demonstrate that individually tailored IPM can be successful and cost-effective in an urban community. PMID:14527845
USDA-ARS?s Scientific Manuscript database
Insect pest control programs incorporating the sterile insect technique (SIT) rely on the mass production and release of sterilized insects to reduce the wild-type population through infertile matings. Most effective programs release only males to avoid any crop damage caused by female fruit flies o...
USDA-ARS?s Scientific Manuscript database
Area-wide pest management (AWPM) is recommended to control urban mosquitoes, such as Aedes albopictus, which limit outdoor activities. While several evaluations of effectiveness exist, information on costs is lacking. Economic evaluation of such a program is important to help inform policy makers an...
USDA-ARS?s Scientific Manuscript database
Demographic models are a powerful means of identifying vulnerable life stages of pest species and assessing the potential effectiveness of various management approaches in reducing pest population growth and spread. In a biological control context, such models can be used to focus foreign explorati...
USDA-ARS?s Scientific Manuscript database
Pentomopathogenic nematodes may be more capable of controlling soil pests when they are harbored by desiccated cadavers. A small-scale system was developed from a modified crop seed planter to effectively deliver desiccated nematode-infected cadavers into the soil. The system mainly consists of a me...
Kass, Daniel; McKelvey, Wendy; Carlton, Elizabeth; Hernandez, Marta; Chew, Ginger; Nagle, Sean; Garfinkel, Robin; Clarke, Brian; Tiven, Julius; Espino, Christian; Evans, David
2009-01-01
Background Cockroaches and mice, which are common in urban homes, are sources of allergens capable of triggering asthma symptoms. Traditional pest control involves the use of scheduled applications of pesticides by professionals as well as pesticide use by residents. In contrast, integrated pest management (IPM) involves sanitation, building maintenance, and limited use of least toxic pesticides. Objectives We implemented and evaluated IPM compared with traditional practice for its impact on pests, allergens, pesticide use, and resident satisfaction in a large urban public housing authority. Methods We assigned IPM or control status to 13 buildings in five housing developments, and evaluated conditions at baseline, 3 months, and 6 months in 280 apartments in Brooklyn and Manhattan, in New York City (New York). We measured cockroach and mouse populations, collected cockroach and mouse urinary protein allergens in dust, and interviewed residents. All statistical models controlled for baseline levels of pests or allergens. Results Compared with controls, apartments receiving IPM had significantly lower counts of cockroaches at 3 months and greater success in reducing or sustaining low counts of cockroaches at both 3 and 6 months. IPM was associated with lower cockroach allergen levels in kitchens at 3 months and in beds and kitchens at 6 months. Pesticide use was reduced in IPM relative to control apartments. Residents of IPM apartments also rated building services more positively. Conclusions In contrast to previous IPM studies, which involved extensive cleaning, repeat visits, and often extensive resident education, we found that an easily replicable single IPM visit was more effective than the regular application of pesticides alone in managing pests and their consequences. PMID:19672400
Krauss, Jochen; Gallenberger, Iris; Steffan-Dewenter, Ingolf
2011-01-01
Organic farming is one of the most successful agri-environmental schemes, as humans benefit from high quality food, farmers from higher prices for their products and it often successfully protects biodiversity. However there is little knowledge if organic farming also increases ecosystem services like pest control. We assessed 30 triticale fields (15 organic vs. 15 conventional) and recorded vascular plants, pollinators, aphids and their predators. Further, five conventional fields which were treated with insecticides were compared with 10 non-treated conventional fields. Organic fields had five times higher plant species richness and about twenty times higher pollinator species richness compared to conventional fields. Abundance of pollinators was even more than one-hundred times higher on organic fields. In contrast, the abundance of cereal aphids was five times lower in organic fields, while predator abundances were three times higher and predator-prey ratios twenty times higher in organic fields, indicating a significantly higher potential for biological pest control in organic fields. Insecticide treatment in conventional fields had only a short-term effect on aphid densities while later in the season aphid abundances were even higher and predator abundances lower in treated compared to untreated conventional fields. Our data indicate that insecticide treatment kept aphid predators at low abundances throughout the season, thereby significantly reducing top-down control of aphid populations. Plant and pollinator species richness as well as predator abundances and predator-prey ratios were higher at field edges compared to field centres, highlighting the importance of field edges for ecosystem services. In conclusion organic farming increases biodiversity, including important functional groups like plants, pollinators and predators which enhance natural pest control. Preventative insecticide application in conventional fields has only short-term effects on aphid densities but long-term negative effects on biological pest control. Therefore conventional farmers should restrict insecticide applications to situations where thresholds for pest densities are reached. PMID:21611171
Krauss, Jochen; Gallenberger, Iris; Steffan-Dewenter, Ingolf
2011-01-01
Organic farming is one of the most successful agri-environmental schemes, as humans benefit from high quality food, farmers from higher prices for their products and it often successfully protects biodiversity. However there is little knowledge if organic farming also increases ecosystem services like pest control. We assessed 30 triticale fields (15 organic vs. 15 conventional) and recorded vascular plants, pollinators, aphids and their predators. Further, five conventional fields which were treated with insecticides were compared with 10 non-treated conventional fields. Organic fields had five times higher plant species richness and about twenty times higher pollinator species richness compared to conventional fields. Abundance of pollinators was even more than one-hundred times higher on organic fields. In contrast, the abundance of cereal aphids was five times lower in organic fields, while predator abundances were three times higher and predator-prey ratios twenty times higher in organic fields, indicating a significantly higher potential for biological pest control in organic fields. Insecticide treatment in conventional fields had only a short-term effect on aphid densities while later in the season aphid abundances were even higher and predator abundances lower in treated compared to untreated conventional fields. Our data indicate that insecticide treatment kept aphid predators at low abundances throughout the season, thereby significantly reducing top-down control of aphid populations. Plant and pollinator species richness as well as predator abundances and predator-prey ratios were higher at field edges compared to field centres, highlighting the importance of field edges for ecosystem services. In conclusion organic farming increases biodiversity, including important functional groups like plants, pollinators and predators which enhance natural pest control. Preventative insecticide application in conventional fields has only short-term effects on aphid densities but long-term negative effects on biological pest control. Therefore conventional farmers should restrict insecticide applications to situations where thresholds for pest densities are reached.
Assessment of methods for methyl iodide emission reduction and pest control using a simulation model
NASA Astrophysics Data System (ADS)
Luo, Lifang; Ashworth, Daniel J.; Šimunek, Jirka; Xuan, Richeng; Yates, Scott R.
2013-02-01
The increasing registration of the fumigant methyl iodide within the USA has led to more concerns about its toxicity to workers and bystanders. Emission mitigation strategies are needed to protect the public and environmental health while providing effective pest control. The effectiveness of various methods on emissions reduction and pest control was assessed using a process-based mathematical model in this study. Firstly, comparisons between the simulated and laboratory measured emission fluxes and cumulative emissions were made for methyl iodide (MeI) under four emission reduction treatments: 1) control, 2) using soil with high organic matter content (HOM), 3) being covered by virtually impermeable film (VIF), and 4) irrigating soil surface following fumigation (Irrigation). Then the model was extended to simulate a broader range of emission reduction strategies for MeI, including 5) being covered by high density polyethylene (HDPE), 6) increasing injection depth from 30 cm to 46 cm (Deep), 7) HDPE + Deep, 8) adding a reagent at soil surface (Reagent), 9) Reagent + Irrigation, and 10) Reagent + HDPE. Furthermore, the survivability of three types of soil-borne pests (citrus nematodes [Tylenchulus semipenetrans], barnyard seeds [Echinochloa crus-galli], fungi [Fusarium oxysporum]) was also estimated for each scenario. Overall, the trend of the measured emission fluxes as well as total emission were reasonably reproduced by the model for treatments 1 through 4. Based on the numerical simulation, the ranking of effectiveness in total emission reduction was VIF (82.4%) > Reagent + HDPE (73.2%) > Reagent + Irrigation (43.0%) > Reagent (23.5%) > Deep + HDPE (19.3%) > HOM (17.6%) > Deep (13.0%) > Irrigation (11.9%) > HDPE (5.8%). The order for pest control efficacy suggests, VIF had the highest pest control efficacy, followed by Deep + HDPE, Irrigation, Reagent + Irrigation, HDPE, Deep, Reagent + HDPE, Reagent, and HOM. Therefore, VIF is the optimal method disregarding the cost of the film since it maximizes efficacy while minimizing volatility losses. Otherwise, the integrated methods such as Deep + HDPE and Reagent + Irrigation, are recommended.
USDA-ARS?s Scientific Manuscript database
Nitric oxide (NO) has been demonstrated as an effective fumigant against various insect pests on postharvest products under ultralow oxygen (ULO) conditions. NO showed efficacy against all life stages of insect pests with varied fumigation time and temperature, and had feasible cost-effectiveness to...
Effects of temperature and modified atmospheres on diapausing 5th instar codling moth metabolism
USDA-ARS?s Scientific Manuscript database
Diapausing 5th instars of codling moth, Cydia pomonella, are serious quarantine pests of in-shell walnuts. Previous research indicates that heat treatments in combination with high concentrations of carbon dioxide and low concentrations of oxygen may be effective for controlling this pest in walnuts...
Pest control agents, such as juvenile hormone analogues (JHA), have been developed to limit effects on non-target organisms that co-inhabit insect pest habitats. Rhithropanopeus harrisii, an estuarine xanthid crab, was used to observe the impacts of the JHA, fenoxycarb, on the pa...
Demirozer, Ozan; Tyler-Julian, Kara; Funderburk, Joe; Leppla, Norm; Reitz, Stuart
2012-12-01
The spread of the western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), resulted in the worldwide destabilization of established integrated pest management programs for many crops. Efforts to control the pest and the thrips-vectored tospoviruses with calendar applications of broad-spectrum insecticides have been unsuccessful. The result has been a classic '3-R' situation: resistance to numerous insecticides; resurgence of the western flower thrips populations as a result of natural predators and native competitor thrips being eliminated; replacement by various other pests. This paper reports on integrated pest management programs for fruiting vegetables that are effective, economical, ecologically sound and sustainable. The components include the following: define pest status (economic thresholds); increase biotic resistance (natural enemies and competition); integrate preventive and therapeutic tactics (scouting, ultraviolet-reflective technologies, biological control, compatible insecticides, companion plants and fertility); vertically integrate the programs with other pests; continually communicate latest science-based management tactics with end-users. These programs have been widely implemented in Florida and have significantly improved the management of western flower thrips and thrips-transmitted viruses. Copyright © 2012 Society of Chemical Industry.
Hopper, Keith R
2003-01-01
During 1999-2001, ARS scientists published over 100 papers on more than 30 species of insect pest and 60 species of predator and parasitoid. These papers address issues crucial to the three strategies of biological control: conservation, augmentation and introduction. Conservation biological control includes both conserving extant populations of natural enemies by using relatively non-toxic pesticides and increasing the abundance of natural enemies in crops by providing or improving refuges for population growth and dispersal into crops. ARS scientists have been very active in determining the effects of pesticides on beneficial arthropods and in studying movement of natural enemies from refuges into crops. Augmentation involves repeated releases of natural enemies in the field, which can be inoculative or inundative. Inoculative releases are used to initiate self-propagating populations at times or in places where they would be slow to colonize. ARS scientists have studied augmentative biological control of a variety of pest insects. The targets are mostly pests in annual crops or other ephemeral habitats, where self-reproducing populations of natural enemies are not sufficiently abundant early enough to keep pest populations in check. ARS research in augmentative biological control centers on methods for rearing large numbers of healthy, effective natural enemies and for releasing them where and when they are needed at a cost less than the value of the reduction in damage to the crop. ARS scientists have researched various aspects of introductions of exotic biological control agents against a diversity of pest insects. The major issues in biological control introductions are accurate identification and adequate systematics of both natural enemies and target pests, exploration for natural enemies, predicting the success of candidates for introduction and the likelihood of non-target impacts, quarantine and rearing methods, and post-introduction evaluation of establishment, control and non-target impacts. ARS scientists have published research on several general issues in biological control. Among the most important are the mechanisms affecting mate- and host-finding and host specificity.
Industrial and Institutional Pest Control. Sale Publication 4073.
ERIC Educational Resources Information Center
Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.
This guide gives information needed to meet Environmental Protection Agency standards on industrial and institutional pest control, and to help prepare for certification. It gives descriptions and pictures of general insect pests, parasitic pests of man, occasional invaders, wood-destroying pests, stored product pests, vertebrates, and weeds. The…
Furlan, Lorenzo; Kreutzweiser, David
2015-01-01
Neonicotinoid insecticides are widely used for control of insect pests around the world and are especially pervasive in agricultural pest management. There is a growing body of evidence indicating that the broad-scale and prophylactic uses of neonicotinoids pose serious risks of harm to beneficial organisms and their ecological function. This provides the impetus for exploring alternatives to neonicotinoid insecticides for controlling insect pests. We draw from examples of alternative pest control options in Italian maize production and Canadian forestry to illustrate the principles of applying alternatives to neonicotinoids under an integrated pest management (IPM) strategy. An IPM approach considers all relevant and available information to make informed management decisions, providing pest control options based on actual need. We explore the benefits and challenges of several options for management of three insect pests in maize crops and an invasive insect pest in forests, including diversifying crop rotations, altering the timing of planting, tillage and irrigation, using less sensitive crops in infested areas, applying biological control agents, and turning to alternative reduced risk insecticides. Continued research into alternatives is warranted, but equally pressing is the need for information transfer and training for farmers and pest managers and the need for policies and regulations to encourage the adoption of IPM strategies and their alternative pest control options.
ERIC Educational Resources Information Center
Green, Thomas A., Ed.
This guide presents Integrated Pest Management (IPM) practice standards for educational facilities to help schools become certified in providing effective and safe pest control. The guide is divided into two parts with three modules each for both buildings and grounds. The first module addresses building the IPM foundation to meet all legal…
Biology and Control of Insect and Related Pests of Livestock in Wyoming. MP-23.
ERIC Educational Resources Information Center
Lloyd, John E.
This document provides information that a potential insecticide applicator can utilize to safely and effectively control insects and related pests of livestock. The first section of the manual discusses the general methods of preparation and application of insecticides. The second section concerns itself with the recognition of insect problems,…
USDA-ARS?s Scientific Manuscript database
Households’ behaviors can both mitigate and measure the spread of urban mosquitos. Beginning in 2009, a comprehensive area-wide pest management (AWPM) project to control Aedes albopictus was implemented in 4 areas in Monmouth and Mercer Counties, New Jersey. Including other activities, the project f...
USDA-ARS?s Scientific Manuscript database
Households’ behaviors can both mitigate and measure the spread of urban mosquito species. Beginning in 2009, an area-wide pest management (AWPM) project to control Ae. Albopictus was implemented in 6 areas in Monmouth and Mercer counties, NJ. Including other activities, the project focused on increa...
Wolff, Jonci N.; Tompkins, Daniel M.; Gemmell, Neil J.; Dowling, Damian K.
2016-01-01
Pest species pose major challenges to global economies, ecosystems, and health. Unfortunately, most conventional approaches to pest control remain costly, and temporary in effect. As such, a heritable variant of the Sterile Insect Technique (SIT) was proposed, based on the introduction of mitochondrial DNA mutations into pest populations, which impair male fertility but have no effects on females. Evidence for this “Trojan Female Technique” (TFT) was recently provided, in the form of a mutation in the mitochondrial cytochrome b gene (mt:Cyt-b) of Drosophila melanogaster which reduces male fertility across diverse nuclear backgrounds. However, recent studies have shown that the magnitude of mitochondrial genetic effects on the phenotype can vary greatly across environments, with mtDNA polymorphisms commonly entwined in genotype-by-environment (G × E) interactions. Here we test whether the male-sterilizing effects previously associated with the mt:Cyt-b mutation are consistent across three thermal and three nuclear genomic contexts. The effects of this mutation were indeed moderated by the nuclear background and thermal environment, but crucially the fertility of males carrying the mutation was invariably reduced relative to controls. This mutation thus constitutes a promising candidate for the further development of the TFT. PMID:27443488
Wolff, Jonci N; Tompkins, Daniel M; Gemmell, Neil J; Dowling, Damian K
2016-07-21
Pest species pose major challenges to global economies, ecosystems, and health. Unfortunately, most conventional approaches to pest control remain costly, and temporary in effect. As such, a heritable variant of the Sterile Insect Technique (SIT) was proposed, based on the introduction of mitochondrial DNA mutations into pest populations, which impair male fertility but have no effects on females. Evidence for this "Trojan Female Technique" (TFT) was recently provided, in the form of a mutation in the mitochondrial cytochrome b gene (mt:Cyt-b) of Drosophila melanogaster which reduces male fertility across diverse nuclear backgrounds. However, recent studies have shown that the magnitude of mitochondrial genetic effects on the phenotype can vary greatly across environments, with mtDNA polymorphisms commonly entwined in genotype-by-environment (G × E) interactions. Here we test whether the male-sterilizing effects previously associated with the mt:Cyt-b mutation are consistent across three thermal and three nuclear genomic contexts. The effects of this mutation were indeed moderated by the nuclear background and thermal environment, but crucially the fertility of males carrying the mutation was invariably reduced relative to controls. This mutation thus constitutes a promising candidate for the further development of the TFT.
Roubinet, Eve; Birkhofer, Klaus; Malsher, Gerard; Staudacher, Karin; Ekbom, Barbara; Traugott, Michael; Jonsson, Mattias
2017-06-01
The suppression of agricultural pests by natural enemies, including generalist arthropod predators, is an economically important regulating ecosystem service. Besides pests, generalist predators may also consume non-pest extraguild and intraguild prey, which can affect their impact on pest populations. This may either reduce the impact of generalist predators on pest populations, because they are diverted from pest predation, or increase it, as it helps them survive periods of low pest availability. However, the availability of pest prey and alternative, non-pest prey can vary over the crop growing season and between farming systems, potentially affecting predator-prey interactions and the levels of biological control. We have limited information about how farming systems and environmental variation over the crop growing season influence predator diets. This limits our ability to predict the importance of generalist predators as natural enemies of agricultural pests. Here we utilize molecular gut content analyses to assess detection frequencies of extra- and intraguild prey DNA in generalist predator communities in replicated organically and conventionally managed cereal fields at two key periods of the cropping season for aphid biological control. This is done in order to understand how farming system, crop season, prey availability and predator community composition determine the composition of predator diets. Aphid pests and decomposers (springtails) were equally important prey for generalist predators early in the growing season. Later in the season, the importance of aphid prey increased with increasing aphid densities while springtail predation rates were positively correlated to abundance of this prey at both early and late crop growth stages. Intraguild predation was unidirectional: carabids fed on spiders, whereas spiders rarely fed on carabids. Carabids had higher detection frequencies for the two most common spider families in organically compared to conventionally managed fields. Our study documents that predation by generalist predator communities on aphid pests increases with pest numbers independently of their generally widespread consumption of alternative, non-pest prey. Therefore, conservation strategies in agricultural fields could promote biological control services by promoting high levels of alternative non-pest prey for generalist predator communities. © 2017 by the Ecological Society of America.
Roy, Lise; Bouvier, Jean-Charles; Lavigne, Claire; Galès, Mathieu; Buronfosse, Thierry
2013-08-01
Pesticide applications have a strong impact on biodiversity in agroecosystems. The present study aimed to assess the impact of pest control strategies on the arthropodofauna of Parus major nests built within nestboxes installed in orchards. Unlike many studied groups, these arthropod communities are not in direct contact with pesticide sprays (on account of their being sheltered by nestboxes) and are also unable to move away from the treated area. In this pilot study, we estimated the prevalence and the taxonomic and ecological diversities of arthropodofauna sampled in the nests and assessed the extent to which the whole and nest-specific arthropodofauna were affected by pest control strategies. Sixteen different insect and arachnid Primary Taxonomic Groups (PTGs, order level or below) were found in nests. The best represented PTGs (≥10% occurrence in years 2007 and 2008) were Psocoptera (Insecta, detritivorous/saprophagous), detritivorous/saprophagous Astigmata (Acari) and hematophagous Mesostigmata (Acari). Pest control strategies had a large impact on the prevalence of arthropods in nests, with higher proportions of nests hosting arthropods in organic orchards than in conventional orchards and with intermediate proportions in nests in Integrated Pest Management orchards. In contrast, pest control strategies had no significant effect on the composition of the arthropod communities when only nests hosting nidicolous arthropods were considered.
33 CFR 274.6 - Division/district pest control programs.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Division/district pest control..., DEPARTMENT OF DEFENSE PEST CONTROL PROGRAM FOR CIVIL WORKS PROJECTS Project Operation § 274.6 Division/district pest control programs. (a) Guides. Referenced technical manuals, and Engineer Circulars issued...
33 CFR 274.6 - Division/district pest control programs.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Division/district pest control..., DEPARTMENT OF DEFENSE PEST CONTROL PROGRAM FOR CIVIL WORKS PROJECTS Project Operation § 274.6 Division/district pest control programs. (a) Guides. Referenced technical manuals, and Engineer Circulars issued...
33 CFR 274.6 - Division/district pest control programs.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Division/district pest control..., DEPARTMENT OF DEFENSE PEST CONTROL PROGRAM FOR CIVIL WORKS PROJECTS Project Operation § 274.6 Division/district pest control programs. (a) Guides. Referenced technical manuals, and Engineer Circulars issued...
33 CFR 274.6 - Division/district pest control programs.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Division/district pest control..., DEPARTMENT OF DEFENSE PEST CONTROL PROGRAM FOR CIVIL WORKS PROJECTS Project Operation § 274.6 Division/district pest control programs. (a) Guides. Referenced technical manuals, and Engineer Circulars issued...
Connecting scales: achieving in-field pest control from areawide and landscape ecology studies.
Schellhorn, Nancy A; Parry, Hazel R; Macfadyen, Sarina; Wang, Yongmo; Zalucki, Myron P
2015-02-01
Areawide management has a long history of achieving solutions that target pests, however, there has been little focus on the areawide management of arthropod natural enemies. Landscape ecology studies that show a positive relationship between natural enemy abundance and habitat diversity demonstrate landscape-dependent pest suppression, but have not yet clearly linked their findings to pest management or to the suite of pests associated with crops that require control. Instead the focus has often been on model systems of single pest species and their natural enemies. We suggest that management actions to capture pest control from natural enemies may be forth coming if: (i) the suite of response and predictor variables focus on pest complexes and specific management actions; (ii) the contribution of "the landscape" is identified by assessing the timing and numbers of natural enemies immigrating and emigrating to and from the target crop, as well as pests; and (iii) pest control thresholds aligned with crop development stages are the benchmark to measure impact of natural enemies on pests, in turn allowing for comparison between study regions, and generalizations. To achieve pest control we will need to incorporate what has been learned from an ecological understanding of model pest and natural enemy systems and integrate areawide landscape management with in-field pest management. © 2014 Institute of Zoology, Chinese Academy of Sciences.
Perceived damage and areas of needed research for wildlife pests of California agriculture.
Baldwin, Roger A; Salmon, Terrell P; Schmidt, Robert H; Timm, Robert M
2014-06-01
Many wildlife species cause extensive damage to a variety of agricultural commodities in California, with estimates of damage in the hundreds of millions annually. Given the limited availability of resources to solve all human-wildlife conflicts, we should focus management efforts on issues that provide the greatest benefit to agricultural commodities in California. This survey provides quantitative data on research needs to better guide future efforts in developing more effective, practical and appropriate methods for managing these species. We found that ground squirrels, pocket gophers, birds, wild pigs, coyotes and voles were the most common agricultural wildlife pest species in California. The damage caused by these species could be quite high, but varied by agricultural commodity. For most species, common forms of damage included loss of crop production and direct death of the plant, although livestock depredation was the greatest concern for coyotes. Control methods used most frequently and those deemed most effective varied by pest species, although greater advancements in control methods were listed as a top research priority for all species. Collectively, the use of toxicants, biocontrol and trapping were the most preferred methods for control, but this varied by species. In general, integrated pest management practices were used to control wildlife pests, with a special preference for those approaches that were efficacious and quick and inexpensive to apply. This information and survey design should be useful in establishing research and management priorities for wildlife pest species in California and other similar regions. © 2013 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.
USDA-ARS?s Scientific Manuscript database
Hermetic storage is of interest to farmers and warehouse managers as a method to control insect pests in small storage facilities. To develop improved understanding of effects of hermetic storage on insect pest activity and mortality over time, oxygen levels, acoustic signals, and observations of vi...
Wolff, Jonci Nikolai; Gemmell, Neil J; Tompkins, Daniel M; Dowling, Damian K
2017-05-03
Pests are a global threat to biodiversity, ecosystem function, and human health. Pest control approaches are thus numerous, but their implementation costly, damaging to non-target species, and ineffective at low population densities. The Trojan Female Technique (TFT) is a prospective self-perpetuating control technique that is species-specific and predicted to be effective at low densities. The goal of the TFT is to harness naturally occurring mutations in the mitochondrial genome that impair male fertility while having no effect on females. Here, we provide proof-of-concept for the TFT, by showing that introduction of a male fertility-impairing mtDNA haplotype into replicated populations of Drosophila melanogaster causes numerical population suppression, with the magnitude of effect positively correlated with its frequency at trial inception. Further development of the TFT could lead to establishing a control strategy that overcomes limitations of conventional approaches, with broad applicability to invertebrate and vertebrate species, to control environmental and economic pests.
Responses of Crop Pests and Natural Enemies to Wildflower Borders Depends on Functional Group.
McCabe, Ellie; Loeb, Gregory; Grab, Heather
2017-07-25
Increased homogeneity of agricultural landscapes in the last century has led to a loss of biodiversity and ecosystem services. However, management practices such as wildflower borders offer supplementary resources to many beneficial arthropods. There is evidence that these borders can increase beneficial arthropod abundance, including natural enemies of many pests. However, this increase in local habitat diversity can also have effects on pest populations, and these effects are not well-studied. In this study, we investigated how wildflower borders affect both natural enemies and pests within an adjacent strawberry crop. Significantly more predators were captured in strawberry plantings with wildflower borders versus plantings without wildflowers, but this effect depended on sampling method. Overall, herbivore populations were lower in plots with a wildflower border; however, responses to wildflower borders varied across specific pest groups. Densities of Lygus lineolaris (Tarnished Plant Bug), a generalist pest, increased significantly in plots that had a border, while Stelidota geminata (Strawberry Sap Beetle) decreased in strawberry fields with a wildflower border. These results suggest that wildflower borders may support the control of some pest insects; however, if the pest is a generalist and can utilize the resources of the wildflower patch, their populations may increase within the crop.
Green, Paul W C; Davis, Aaron P; Cossé, Allard A; Vega, Fernando E
2015-11-04
Pests and pathogens threaten coffee production worldwide and are difficult to control using conventional methods, such as insecticides. We review the literature on the chemistry of coffee, concentrating on compounds most commonly reported from Coffea arabica and Coffea canephora. Differences in chemistry can distinguish coffee species and varieties, and plants grown under different biogeographic conditions exhibit different chemotypes. A number of chemical groups, such as alkaloids and caffeoylquinic acids, are known to be insecticidal, but most studies have investigated their effects on coffee quality and flavor. More research is required to bridge this gap in knowledge, so that coffee can be bred to be more resistant to pests. Furthermore, we report on some pesticidal plants that have been used for control of coffee pests. Locally sourced pesticidal plants have been underutilized and offer a sustainable alternative to conventional insecticides and could be used to augment breeding for resilience of coffee plants.
Myths, models and mitigation of resistance to pesticides.
Hoy, M A
1998-01-01
Resistance to pesticides in arthropod pests is a significant economic, ecological and public health problem. Although extensive research has been conducted on diverse aspects of pesticide resistance and we have learned a great deal during the past 50 years, to some degree the discussion about 'resistance management' has been based on 'myths'. One myth involves the belief that we can manage resistance. I will maintain that we can only attempt to mitigate resistance because resistance is a natural evolutionary response to environmental stresses. As such, resistance will remain an ongoing dilemma in pest management and we can only delay the onset of resistance to pesticides. 'Resistance management' models and tactics have been much discussed but have been tested and deployed in practical pest management programmes with only limited success. Yet the myth persists that better models will provide a 'solution' to the problem. The reality is that success in using mitigation models is limited because these models are applied to inappropriate situations in which the critical genetic, ecological, biological or logistic assumptions cannot be met. It is difficult to predict in advance which model is appropriate to a particular situation; if the model assumptions cannot be met, applying the model sometimes can increase the rate of resistance development rather than slow it down. Are there any solutions? I believe we already have one. Unfortunately, it is not a simple or easy one to deploy. It involves employing effective agronomic practices to develop and maintain a healthy crop, monitoring pest densities, evaluating economic injury levels so that pesticides are applied only when necessary, deploying and conserving biological control agents, using host-plant resistance, cultural controls of the pest, biorational pest controls, and genetic control methods. As a part of a truly multi-tactic strategy, it is crucial to evaluate the effect of pesticides on natural enemies in order to preserve them in the cropping system. Sometimes, pesticide-resistant natural enemies are effective components of this resistance mitigation programme. Another name for this resistance mitigation model is integrated pest management (IPM). This complex model was outlined in some detail nearly 40 years ago by V. M. Stern and colleagues. To deploy the IPM resistance mitigation model, we must admit that pest management and resistance mitigation programmes are not sustainable if based on a single-tactic strategy. Delaying resistance, whether to traditional pesticides or to transgenic plants containing toxin genes from Bacillus thuringiensis, will require that we develop multi-tactic pest management programmes that incorporate all appropriate pest management approaches. Because pesticides are limited resources, and their loss can result in significant social and economic costs, they should be reserved for situations where they are truly needed--as tools to subdue an unexpected pest population outbreak. Effective multi-tactic IPM programmes delay resistance (= mitigation) because the number and rates of pesticide applications will be reduced. PMID:10021775
USDA-ARS?s Scientific Manuscript database
The sterile insect technique is a proven effective control tactic against lepidopteran pests when applied in an area-wide integrated pest management programme. The construction of insect mass-rearing facilities requires considerable investment and moth control strategies that include the use of ster...
ERIC Educational Resources Information Center
Craig, W. S., Comp.; And Others
This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in the ornamental and turf pest control category. The text discusses pest control of ornamental plants, lawn diseases, and lawn weeds and their control. (CS)
Effects of protein tyrosine phosphatase-PEST are reversed by Akt in T cells.
Arimura, Yutaka; Shimizu, Kazuhiko; Koyanagi, Madoka; Yagi, Junji
2014-12-01
T cell activation is regulated by a balance between phosphorylation and dephosphorylation that is under the control of kinases and phosphatases. Here, we examined the role of a non-receptor-type protein tyrosine phosphatase, PTP-PEST, using retrovirus-mediated gene transduction into murine T cells. Based on observations of vector markers (GFP or Thy1.1), exogenous PTP-PEST-positive CD4(+) T cells appeared within 2 days after gene transduction; the percentage of PTP-PEST-positive cells tended to decrease during a resting period in the presence of IL-2 over the next 2 days. These vector markers also showed much lower expression intensities, compared with control cells, suggesting a correlation between the percent reduction and the low marker expression intensity. A catalytically inactive PTP-PEST mutant also showed the same tendency, and stepwise deletion mutants gradually lost their ability to induce the above phenomenon. On the other hand, these PTP-PEST-transduced cells did not have an apoptotic phenotype. No difference in the total cell numbers was found in the wells of a culture plate containing VEC- and PTP-PEST-transduced T cells. Moreover, serine/threonine kinase Akt, but not the anti-apoptotic molecules Bcl-2 and Bcl-XL, reversed the phenotype induced by PTP-PEST. We discuss the novel mechanism by which Akt interferes with PTP-PEST. Copyright © 2014 Elsevier Inc. All rights reserved.
Harvey-Samuel, Tim; Morrison, Neil I; Walker, Adam S; Marubbi, Thea; Yao, Ju; Collins, Hilda L; Gorman, Kevin; Davies, T G Emyr; Alphey, Nina; Warner, Simon; Shelton, Anthony M; Alphey, Luke
2015-07-16
Development and evaluation of new insect pest management tools is critical for overcoming over-reliance upon, and growing resistance to, synthetic, biological and plant-expressed insecticides. For transgenic crops expressing insecticidal proteins from the bacterium Bacillus thuringiensis ('Bt crops') emergence of resistance is slowed by maintaining a proportion of the crop as non-Bt varieties, which produce pest insects unselected for resistance. While this strategy has been largely successful, multiple cases of Bt resistance have now been reported. One new approach to pest management is the use of genetically engineered insects to suppress populations of their own species. Models suggest that released insects carrying male-selecting (MS) transgenes would be effective agents of direct, species-specific pest management by preventing survival of female progeny, and simultaneously provide an alternative insecticide resistance management strategy by introgression of susceptibility alleles into target populations. We developed a MS strain of the diamondback moth, Plutella xylostella, a serious global pest of crucifers. MS-strain larvae are reared as normal with dietary tetracycline, but, when reared without tetracycline or on host plants, only males will survive to adulthood. We used this strain in glasshouse-cages to study the effect of MS male P. xylostella releases on target pest population size and spread of Bt resistance in these populations. Introductions of MS-engineered P. xylostella males into wild-type populations led to rapid pest population decline, and then elimination. In separate experiments on broccoli plants, relatively low-level releases of MS males in combination with broccoli expressing Cry1Ac (Bt broccoli) suppressed population growth and delayed the spread of Bt resistance. Higher rates of MS male releases in the absence of Bt broccoli were also able to suppress P. xylostella populations, whereas either low-level MS male releases or Bt broccoli alone did not. These results support theoretical modeling, indicating that MS-engineered insects can provide a powerful pest population suppressing effect, and could effectively augment current Bt resistance management strategies. We conclude that, subject to field confirmation, MS insects offer an effective and versatile control option against P. xylostella and potentially other pests, and may reduce reliance on and protect insecticide-based approaches, including Bt crops.
Leaving A Mark: A Comparison Arthropod Protein Marking Protocols
USDA-ARS?s Scientific Manuscript database
Knowledge of arthropod pest and natural enemy disperal patterns is needed for effective and environmentally benign pest control. The most common tactics used to monitor arthropod dispersal patterns include mark-release-recapture (MRR) and mark-capture methodologies. Both methods require the applica...
A theoretical approach on controlling agricultural pest by biological controls.
Mondal, Prasanta Kumar; Jana, Soovoojeet; Kar, T K
2014-03-01
In this paper we propose and analyze a prey-predator type dynamical system for pest control where prey population is treated as the pest. We consider two classes for the pest namely susceptible pest and infected pest and the predator population is the natural enemy of the pest. We also consider average delay for both the predation rate i.e. predation to the susceptible pest and infected pest. Considering a subsystem of original system in the absence of infection, we analyze the existence of all possible non-negative equilibria and their stability criteria for both the subsystem as well as the original system. We present the conditions for transcritical bifurcation and Hopf bifurcation in the disease free system. The theoretical evaluations are demonstrated through numerical simulations.
National Pesticide Information Center 1.800.858.7378 npic@ace.orst.edu We're open from 8:00AM to 12 Plants Pest Control Identify Your Pest Learn About Your Pest Control Your Pest Integrated Pest Management Home Page Emergency Resources Related Topics: Pesticide Incidents Recognition and Management of
Sanon, Antoine; Ba, Niango M; Binso-Dabire, Clementine L; Pittendrigh, Barry R
2010-02-01
The biopesticide Spinosad controls many insect pests of stored-food products. Laboratory and field trials were carried out to determine the efficacy of this pesticide against the cowpea weevil, Callosobruchus maculatus (F.) (Coleoptera: Bruchidae), the main storage pest of cowpea, Vigna unguiculata, Walp, in West Africa. In the laboratory, Spinosad caused high mortality of adult C. maculatus and decreased the number of eggs laid by females. Spinosad, however, was less toxic in the 24 h treatment to C. maculatus than deltamethrin, an insecticide commonly used in Burkina Faso to control this insect. In "on-farm" experiments, Spinosad was effective in controlling C. maculatus. After 6 mo of storage, the number of insects emerging from cowpeas seeds was reduced by >80% by coating seeds with Spinosad but only by 43% by coating with deltamethrin. Less than 20% of the seeds were perforated in the Spinosad treatment compared with 29% for deltamethrin. Spinosad controlled C. maculatus throughout the 6 mo of cowpea storage whereas deltamethrin failed to control C. maculatus after 3 mo of storage. Spinosad has the potential to be more effective in controlling C. maculatus than deltamethrin.
The insect ecdysone receptor is a good potential target for RNAi-based pest control.
Yu, Rong; Xu, Xinping; Liang, Yongkang; Tian, Honggang; Pan, Zhanqing; Jin, Shouheng; Wang, Na; Zhang, Wenqing
2014-01-01
RNA interference (RNAi) has great potential for use in insect pest control. However, some significant challenges must be overcome before RNAi-based pest control can become a reality. One challenge is the proper selection of a good target gene for RNAi. Here, we report that the insect ecdysone receptor (EcR) is a good potential target for RNAi-based pest control in the brown planthopper Nilaparvata lugens, a serious insect pest of rice plants. We demonstrated that the use of a 360 bp fragment (NlEcR-c) that is common between NlEcR-A and NlEcR-B for feeding RNAi experiments significantly decreased the relative mRNA expression levels of NlEcR compared with those in the dsGFP control. Feeding RNAi also resulted in a significant reduction in the number of offspring per pair of N. lugens. Consequently, a transgenic rice line expressing NlEcR dsRNA was constructed by Agrobacterium- mediated transformation. The results of qRT-PCR showed that the total copy number of the target gene in all transgenic rice lines was 2. Northern blot analysis showed that the small RNA of the hairpin dsNlEcR-c was successfully expressed in the transgenic rice lines. After newly hatched nymphs of N. lugens fed on the transgenic rice lines, effective RNAi was observed. The NlEcR expression levels in all lines examined were decreased significantly compared with the control. In all lines, the survival rate of the nymphs was nearly 90%, and the average number of offspring per pair in the treated groups was significantly less than that observed in the control, with a decrease of 44.18-66.27%. These findings support an RNAi-based pest control strategy and are also important for the management of rice insect pests.
Bt maize and integrated pest management--a European perspective.
Meissle, Michael; Romeis, Jörg; Bigler, Franz
2011-09-01
The European corn borer (Ostrinia nubilalis), the Mediterranean corn borer (Sesamia nonagrioides) and the western corn rootworm (Diabrotica virgifera virgifera) are the main arthropod pests in European maize production. Practised pest control includes chemical control, biological control and cultural control such as ploughing and crop rotation. A pest control option that is available since 1996 is maize varieties that are genetically engineered (GE) to produce insecticidal compounds. GE maize varieties available today express one or several genes from Bacillus thuringiensis (Bt) that target corn borers or corn rootworms. Incentives to growing Bt maize are simplified farm operations, high pest control efficiency, improved grain quality and ecological benefits. Limitations include the risk of resistance evolution in target pest populations, risk of secondary pest outbreaks and increased administration to comply with licence agreements. Growers willing to plant Bt maize in the European Union (EU) often face the problem that authorisation is denied. Only one Bt maize transformation event (MON810) is currently authorised for commercial cultivation, and some national authorities have banned cultivation. Spain is the only EU member state where Bt maize adoption levels are currently delivering farm income gains near full potential levels. In an integrated pest management (IPM) context, Bt maize can be regarded as a preventive (host plant resistance) or a responsive pest control measure. In any case, Bt maize is a highly specific tool that efficiently controls the main pests and allows combination with other preventive or responsive measures to solve other agricultural problems including those with secondary pests. Copyright © 2011 Society of Chemical Industry.
Lepidopteran HMG-CoA reductase is a potential selective target for pest control
Li, Yuan-mei; Huang, Juan; Tobe, Stephen S.
2017-01-01
As a consequence of the negative impacts on the environment of some insecticides, discovery of eco-friendly insecticides and target has received global attention in recent years. Sequence alignment and structural comparison of the rate-limiting enzyme HMG-CoA reductase (HMGR) revealed differences between lepidopteran pests and other organisms, which suggested insect HMGR could be a selective insecticide target candidate. Inhibition of JH biosynthesis in vitro confirmed that HMGR inhibitors showed a potent lethal effect on the lepidopteran pest Manduca sexta, whereas there was little effect on JH biosynthesis in Apis mellifera and Diploptera punctata. The pest control application of these inhibitors demonstrated that they can be insecticide candidates with potent ovicidal activity, larvicidal activity and insect growth regulatory effects. The present study has validated that Lepidopteran HMGR can be a potent selective insecticide target, and the HMGR inhibitors (especially type II statins) could be selective insecticide candidates and lead compounds. Furthermore, we demonstrated that sequence alignment, homology modeling and structural comparison may be useful for determining potential enzymes or receptors which can be eco-friendly pesticide targets. PMID:28133568
Lepidopteran HMG-CoA reductase is a potential selective target for pest control.
Li, Yuan-Mei; Kai, Zhen-Peng; Huang, Juan; Tobe, Stephen S
2017-01-01
As a consequence of the negative impacts on the environment of some insecticides, discovery of eco-friendly insecticides and target has received global attention in recent years. Sequence alignment and structural comparison of the rate-limiting enzyme HMG-CoA reductase (HMGR) revealed differences between lepidopteran pests and other organisms, which suggested insect HMGR could be a selective insecticide target candidate. Inhibition of JH biosynthesis in vitro confirmed that HMGR inhibitors showed a potent lethal effect on the lepidopteran pest Manduca sexta , whereas there was little effect on JH biosynthesis in Apis mellifera and Diploptera punctata . The pest control application of these inhibitors demonstrated that they can be insecticide candidates with potent ovicidal activity, larvicidal activity and insect growth regulatory effects. The present study has validated that Lepidopteran HMGR can be a potent selective insecticide target, and the HMGR inhibitors (especially type II statins) could be selective insecticide candidates and lead compounds. Furthermore, we demonstrated that sequence alignment, homology modeling and structural comparison may be useful for determining potential enzymes or receptors which can be eco-friendly pesticide targets.
Okonya, Joshua Sikhu; Mwanga, Robert Om; Syndikus, Katja; Kroschel, Jürgen
2014-01-01
Insect pests are among the most important constraints limiting sweetpotato (Ipomoea batatas) production in Africa. However, there is inadequate information about farmers' knowledge, perceptions and practices in the management of key insect pests. This has hindered development of effective pest management approaches for smallholder farmers. A standard questionnaire was used to interview individual sweetpotato farmers (n = 192) about their perception and management practices regarding insect pests in six major sweetpotato producing districts of Uganda. The majority (93%) of farmers perceived insect pests to be a very serious problem. With the exception of Masindi and Wakiso districts where the sweetpotato butterfly (Acraea acerata) was the number one constraint, sweetpotato weevils (Cylas puncticollis and C. brunneus) were ranked as the most important insect pests. Insecticide use in sweetpotato fields was very low being highest (28-38% of households) in districts where A. acerata infestation is the biggest problem. On average, 65% and 87% of the farmers took no action to control A. acerata and Cylas spp., respectively. Farmers were more conversant with the presence of and damage by A. acerata than of Cylas spp. as they thought that Cylas spp. root damage was brought about by a prolonged dry season. Different levels of field resistance (ability of a variety to tolerate damage) of sweetpotato landraces to A. acerata (eight landraces) and Cylas spp. (six landraces) were reported by farmers in all the six districts. This perceived level of resistance to insect damage by landraces needs to be investigated. To improve farmers' capabilities for sweetpotato insect pest management, it is crucial to train them in the basic knowledge of insect pest biology and control.
Soil management shapes ecosystem service provision and trade-offs in agricultural landscapes.
Tamburini, Giovanni; De Simone, Serena; Sigura, Maurizia; Boscutti, Francesco; Marini, Lorenzo
2016-08-31
Agroecosystems are principally managed to maximize food provisioning even if they receive a large array of supporting and regulating ecosystem services (ESs). Hence, comprehensive studies investigating the effects of local management and landscape composition on the provision of and trade-offs between multiple ESs are urgently needed. We explored the effects of conservation tillage, nitrogen fertilization and landscape composition on six ESs (crop production, disease control, soil fertility, water quality regulation, weed and pest control) in winter cereals. Conservation tillage enhanced soil fertility and pest control, decreased water quality regulation and weed control, without affecting crop production and disease control. Fertilization only influenced crop production by increasing grain yield. Landscape intensification reduced the provision of disease and pest control. We also found tillage and landscape composition to interactively affect water quality regulation and weed control. Under N fertilization, conventional tillage resulted in more trade-offs between ESs than conservation tillage. Our results demonstrate that soil management and landscape composition affect the provision of several ESs and that soil management potentially shapes the trade-offs between them. © 2016 The Author(s).
ERIC Educational Resources Information Center
Kahn, M. S.; Hoffman, W. M.
This manual is designed for those who seek certification as pesticide applicators for industrial, institutional, structural, and health-related pest control. It is divided into six sections covering general pest control, wood-destroying organisms, bird control, fumigation, rodent control, and industrial weed control. The manual gives information…
Formentini, M A; Alves, L F A; Schapovaloff, M E
2016-01-01
Gyropsylla spegazziniana (Paraguay tea ampul) is one of the most important pests of Paraguay tea plants, and prohibition of synthetic insecticide use for control of this pest has led to the search for alternative methods. This laboratory study aimed to compare different control strategies for G. spegazziniana, utilizing a commercial neem seed oil product. Paraguay tea seedlings were treated with neem oil solution both pre- and post-infestation with 5th instar nymphs. The systemic action of neem oil was also evaluated by treating plant soil with the neem oil solution, followed by transfer of the insects to plants 24 h post-treatment. Spray treatments were effective against the pest, especially post-infestation (80% mortality), demonstrating the potential of neem oil for control of the Paraguay tea ampul. No significant effects were observed with respect to systemic activity.
Bueno, A F; Paula-Moraes, S V; Gazzoni, D L; Pomari, A F
2013-10-01
Increasing global demands for food underline the need for higher crop yields. The relatively low costs of the most commonly used insecticides in combination with increasing soybean market prices led growers and technical advisors to debate the adequacy of recommended economic thresholds (ETs). The adoption of ETs and pest sampling has diminished in Brazil, leading to excessive pesticide use on soybean. The reduced efficacy of natural biological control, faster pest resurgence, and environment contamination are among the side-effects of pesticide abuse. To address these problems and maximize agricultural production, pest control programs must be guided by a proper integrated pest management (IPM) approach, including the ET concept. Therefore, the most appropriate time to initiate insecticide spraying in soybean is indicated by the available ETs which are supported by experiments over the last 40 years in different edapho-climatic conditions and regions with distinct soybean cultivars. Published scientific data indicate that preventive insecticide use is an expensive and harmful use of chemicals that increases the negative impact of pesticides in agroecosystems. However, the established ETs are for a limited number of species (key pests), and they only address the use of chemicals. There is a lack of information regarding secondary pests and other control strategies in addition to insecticides. It is clear then that much progress is still needed to improve ETs for pest management decisions. Nevertheless, using the current ETs provides a basis for reducing the use of chemicals in agriculture without reducing yields and overall production, thereby improving sustainability.
Enhancing Integrated Pest Management in GM Cotton Systems Using Host Plant Resistance
Trapero, Carlos; Wilson, Iain W.; Stiller, Warwick N.; Wilson, Lewis J.
2016-01-01
Cotton has lost many ancestral defensive traits against key invertebrate pests. This is suggested by the levels of resistance to some pests found in wild cotton genotypes as well as in cultivated landraces and is a result of domestication and a long history of targeted breeding for yield and fiber quality, along with the capacity to control pests with pesticides. Genetic modification (GM) allowed integration of toxins from a bacteria into cotton to control key Lepidopteran pests. Since the mid-1990s, use of GM cotton cultivars has greatly reduced the amount of pesticides used in many cotton systems. However, pests not controlled by the GM traits have usually emerged as problems, especially the sucking bug complex. Control of this complex with pesticides often causes a reduction in beneficial invertebrate populations, allowing other secondary pests to increase rapidly and require control. Control of both sucking bug complex and secondary pests is problematic due to the cost of pesticides and/or high risk of selecting for pesticide resistance. Deployment of host plant resistance (HPR) provides an opportunity to manage these issues in GM cotton systems. Cotton cultivars resistant to the sucking bug complex and/or secondary pests would require fewer pesticide applications, reducing costs and risks to beneficial invertebrate populations and pesticide resistance. Incorporation of HPR traits into elite cotton cultivars with high yield and fiber quality offers the potential to further reduce pesticide use and increase the durability of pest management in GM cotton systems. We review the challenges that the identification and use of HPR against invertebrate pests brings to cotton breeding. We explore sources of resistance to the sucking bug complex and secondary pests, the mechanisms that control them and the approaches to incorporate these defense traits to commercial cultivars. PMID:27148323
Pest Control and Related Orchard Practices in Commercial Fruit Plantings. Circular 1151.
ERIC Educational Resources Information Center
Ries, S. M.; And Others
This circular brings together suggestions from the Illinois Agricultural Experiment Station and the Illinois State Natural History Survey relating to orchard practices and pest control. It provides some basic steps in pest control and discusses some specific orchard pests such as grasshoppers, mites, mice, and rabbits. In addition, it gives some…
Opportunities for microbial control of pulse crop pests
USDA-ARS?s Scientific Manuscript database
The insect pest complex in U.S. pulse crops is almost an “orphan” in terms of developed microbial control agents that the grower can use. There are almost no registered microbial pest control agents (MPCA) for the different pulse pests. In some cases a microbial is registered for use against specifi...
USDA-ARS?s Scientific Manuscript database
Augmentation biocontrol is a commercially viable pest management tactic in enclosed glasshouse environments, but is far less effective in open-field agriculture where newly released enemies rapidly disperse from release sites. We tested the potential for behavior-modifying semiochemicals to increase...
Golden, Gilad; Quinn, Elazar; Shaaya, Eli; Kostyukovsky, Moshe; Poverenov, Elena
2018-04-01
One of the most significant contributors to the global food crisis is grain loss during storage, mainly caused by pest insects. Currently, there are two main methods used for insect pest control: fumigation and grain protection using contact insecticides. As some chemical insecticides can harm humans and the environment, there is a global tendency to reduce their use by finding alternative eco-friendly approaches. In this study, the natural pest-managing agent pulegone was encapsulated into coarse and nano emulsions. The emulsions were characterized using spectroscopic and microscopic methods and their stability and pulegone release ability were examined. The insecticidal activity of the prepared formulations against two stored product insects, rice weevil (Sitophilus oryzae L.) and red flour beetle (Tribolium castaneum Herbst), was demonstrated. The nano emulsion-based formulation offered significant advantages and provided powerful bioactivity, with high (> 90%) mortality rates for as long as 5 weeks for both insects, whereas coarse emulsions showed high efficacy for only 1 week. The developed pulegone-based nano emulsions could serve as a model for an effective alternative method for pest control. Although pulegone is from a natural source, toxicological studies should be performed before the widespread application of pulegone or pulegone-containing essential oils to dry food products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
The Management of Insect Pests in Australian Cotton: An Evolving Story.
Wilson, Lewis J; Whitehouse, Mary E A; Herron, Grant A
2018-01-07
The Australian cotton industry progressively embraced integrated pest management (IPM) to alleviate escalating insecticide resistance issues. A systems IPM approach was used with core principles that were built around pest ecology/biology and insecticide resistance management; together, these were integrated into a flexible, year-round approach that facilitated easy incorporation of new science, strategies, and pests. The approach emphasized both strategic and tactical elements to reduce pest abundance and rationalize decisions about pest control, with insecticides as a last resort. Industry involvement in developing the approach was vital to embedding IPM within the farming system. Adoption of IPM was facilitated by the introduction of Bt cotton, availability of selective insecticides, economic validation, and an industry-wide extension campaign. Surveys indicate IPM is now embedded in industry, confirming the effectiveness of an industry-led, backed-by-science approach. The amount of insecticide active ingredient applied per hectare against pests has also declined dramatically. Though challenges remain, pest management has transitioned from reactively attempting to eradicate pests from fields to proactively managing them year-round, considering the farm within the wider landscape.
Khandelwal, Neha; Barbole, Ranjit S; Banerjee, Shashwat S; Chate, Govind P; Biradar, Ankush V; Khandare, Jayant J; Giri, Ashok P
2016-12-15
One of the most vital supports to sustain human life on the planet earth is the agriculture system that has been constantly challenged in terms of yield. Crop losses due to insect pest attack even after excessive use of chemical pesticides, are major concerns for humanity and environment protection. By the virtue of unique properties possessed by micro and nano-structures, their implementation in Agri-biotechnology is largely anticipated. Hence, traditional pest management strategies are now forestalling the potential of micro and nanotechnology as an effective and viable approach to alleviate problems pertaining to pest control. These technological innovations hold promise to contribute enhanced productivity by providing novel agrochemical agents and delivery systems. Application of these systems engages to achieve: i) control release of agrochemicals, ii) site-targeted delivery of active ingredients to manage specific pests, iii) reduced pesticide use, iv) detection of chemical residues, v) pesticide degradation, vi) nucleic acid delivery and vii) to mitigate post-harvest damage. Applications of micro and nano-technology are still marginal owing to the perception of low economic returns, stringent regulatory issues involving safety assessment and public awareness over their uses. In this review, we highlight the potential application of micro and nano-materials with a major focus on effective pest management strategies including safe handling of pesticides. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wolff, Jonci Nikolai; Gemmell, Neil J; Tompkins, Daniel M; Dowling, Damian K
2017-01-01
Pests are a global threat to biodiversity, ecosystem function, and human health. Pest control approaches are thus numerous, but their implementation costly, damaging to non-target species, and ineffective at low population densities. The Trojan Female Technique (TFT) is a prospective self-perpetuating control technique that is species-specific and predicted to be effective at low densities. The goal of the TFT is to harness naturally occurring mutations in the mitochondrial genome that impair male fertility while having no effect on females. Here, we provide proof-of-concept for the TFT, by showing that introduction of a male fertility-impairing mtDNA haplotype into replicated populations of Drosophila melanogaster causes numerical population suppression, with the magnitude of effect positively correlated with its frequency at trial inception. Further development of the TFT could lead to establishing a control strategy that overcomes limitations of conventional approaches, with broad applicability to invertebrate and vertebrate species, to control environmental and economic pests. DOI: http://dx.doi.org/10.7554/eLife.23551.001 PMID:28467301
Clemmons, Elizabeth A; Taylor, Douglas K
2016-11-01
Pests that infest stored food products are an important problem worldwide. In addition to causing loss and consumer rejection of products, these pests can elicit allergic reactions and perhaps spread disease-causing microorganisms. Booklice (Liposcelis spp.), grain mites (Acarus siro), and flour beetles (Tribolium spp.) are common stored-product pests that have previously been identified in our laboratory animal facility. These pests traditionally are described as harmless to our animals, but their presence can be cause for concern in some cases. Here we discuss the biology of these species and their potential effects on human and animal health. Occupational health risks are covered, and common monitoring and control methods are summarized.
Forest Pest Control. Sale Publication 4072.
ERIC Educational Resources Information Center
Stimmann, M. W., Ed.
The forest pests discussed in this guide are weeds, insects, diseases, and vertebrates. The guide gives information about types of forests, characteristics of common forest pests, pest control methods, pesticides and application equipment used in forestry, and environmental and human hazards. (Author/BB)
Warburton, Bruce; Gormley, Andrew M
2015-01-01
Internationally, invasive vertebrate species pose a significant threat to biodiversity, agricultural production and human health. To manage these species a wide range of tools, including traps, are used. In New Zealand, brushtail possums (Trichosurus vulpecula), stoats (Mustela ermine), and ship rats (Rattus rattus) are invasive and there is an ongoing demand for cost-effective non-toxic methods for controlling these pests. Recently, traps with multiple-capture capability have been developed which, because they do not require regular operator-checking, are purported to be more cost-effective than traditional single-capture traps. However, when pest populations are being maintained at low densities (as is typical of orchestrated pest management programmes) it remains uncertain if it is more cost-effective to use fewer multiple-capture traps or more single-capture traps. To address this uncertainty, we used an individual-based spatially explicit modelling approach to determine the likely maximum animal-captures per trap, given stated pest densities and defined times traps are left between checks. In the simulation, single- or multiple-capture traps were spaced according to best practice pest-control guidelines. For possums with maintenance densities set at the lowest level (i.e. 0.5/ha), 98% of all simulated possums were captured with only a single capacity trap set at each site. When possum density was increased to moderate levels of 3/ha, having a capacity of three captures per trap caught 97% of all simulated possums. Results were similar for stoats, although only two potential captures per site were sufficient to capture 99% of simulated stoats. For rats, which were simulated at their typically higher densities, even a six-capture capacity per trap site only resulted in 80% kill. Depending on target species, prevailing density and extent of immigration, the most cost-effective strategy for pest control in New Zealand might be to deploy several single-capture traps rather than investing in fewer, but more expense, multiple-capture traps.
ERIC Educational Resources Information Center
Grady County Board of Education, Cairo, GA.
This curriculum guide presents methods to disseminate information to students interested in dealing with pests, or who have concerns about the environmental impacts of modern pest control methods. Options are encouraged for pest control methods using a combination of natural, biological, cultural, and chemical means of control. Specifically…
Citizen's Guide to Pest Control and Pesticide Safety
Teaches consumers how to control pests, choose, use, store, and dispose pesticides safely, reduce exposure when others use pesticides, prevent pesticide poisoning, handle an emergency, and how to choose a pest control company.
Increasing use of pyrethroids in Canadian households: should we be concerned?
van Balen, Erna C; Wolansky, Marcelo J; Kosatsky, Tom
2012-11-07
Pyrethroids are a class of plant-derived insecticides and their man-made analogues that are increasingly applied in Canada as first choice for pest control in many agricultural and residential settings. Their popularity is partly due to their alleged safety compared to the older organochlorine and organophosphate insecticides. Application of pyrethroids is expanding because of recent increases in the level of pest infestations--such as bed bugs--and the decreased susceptibility of target species to many pest control products. Pyrethroid residues have been documented in homes, child care centres and food. While pyrethroids are considered of low health risk for humans, their increased use is of concern. Our current understanding of the adverse effects of pyrethroids derives mainly from studies of short-term effects in laboratory animals, case reports of self- and accidental poisonings, and high-dose occupational exposures, for which the levels and formulations of pyrethroid products differ from those relevant for long-term exposure in the general population. The available data suggest that the reproductive and nervous systems, endocrine signalling pathways, and early childhood development may be targets for adverse effects in the case of repeated exposure to pyrethroid formulations. Given uncertainty about the existence of long-term health effects of exposure to pyrethroids, particularly under realistic scenarios, we should be cautious when promoting pyrethroid products as safe methods for pest control.
Apple orchard pest control strategies affect bird communities in southeastern France.
Bouvier, Jean-Charles; Ricci, Benoît; Agerberg, Julia; Lavigne, Claire
2011-01-01
Birds are regarded as appropriate biological indicators of how changes in agricultural practices affect the environment. They are also involved in the biocontrol of pests. In the present study, we provide an assessment of the impact of pest control strategies on bird communities in apple orchards in southeastern France. We compared the structure (abundance, species richness, and diversity) of breeding bird communities in 15 orchards under conventional or organic pest control over a three-year period (2003-2005). Pest control strategies and their evolution over time were characterized by analyzing farmers' treatment schedules. The landscape surrounding the orchards was characterized using a Geographic Information System. We observed 30 bird species overall. Bird abundance, species richness, and diversity were all affected by pest control strategies, and were highest in organic orchards and lowest in conventional orchards during the three study years. The pest control strategy affected insectivores more than granivores. We further observed a tendency for bird communities in integrated pest management orchards to change over time and become increasingly different from communities in organic orchards, which also corresponded to changes in treatment schedules. These findings indicate that within-orchard bird communities may respond quickly to changes in pesticide use and may, in turn, influence biocontrol of pests by birds. © 2010 SETAC.
USDA-ARS?s Scientific Manuscript database
Navel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae), is a highly polyphagous economic pest of almond, pistachio, and walnut crops in California orchards. Although management of this pest has typically been through a combination of cultural control and insecticide sprays, increas...
Biodiversity, ecosystem functioning, and classical biological control.
Evans, Edward W
Increasing concern over worldwide loss of biodiversity has led ecologists to focus intently on how ecosystem functioning may depend on diversity. In applied entomology, there is longstanding interest in the issue, especially as regards the importance of natural enemy diversity for pest control. Here I review parallels in interest, conceptual framework, and conclusions concerning biodiversity as it affects ecosystem functioning in general and classical biological control in particular. Whereas the former focuses on implications of loss of diversity, the latter focuses on implications of increase in diversity as additional species of natural enemies are introduced to novel communities in new geographic regions for insect pest and weed control. Many field studies now demonstrate that ecosystem functioning, e.g., as reflected in primary productivity, is enhanced and stabilized over time by high diversity as the community increases in its efficiency in exploiting available resources. Similarly, there is growing field support for the generalization that increasing species and functional diversity of natural enemies leads to increasing pest suppression. Nonetheless a central concern of classical biological control in particular, as it seeks to minimize non-target effects, remains as to whether one or a few species of natural enemies can provide sufficient pest control.
Information on Pests in Schools and Their Control
Pests such as insects, rodents, fungi, and weeds can affect the school environment and the people who work and learn there. These pests can cause human health problems, and structural and plant damage. Know what pests you face before deciding on control.
Combination of Methoprene and Controlled Aeration to Manage Insects in Stored Wheat.
Liu, Samuel S; Arthur, Frank H; VanGundy, Douglas; Phillips, Thomas W
2016-06-17
A commercial formulation of the insect growth regulator methoprene was applied to wheat stored in small bins either alone or in combination with controlled aeration of the bins, to lower grain temperature for insect pest management of stored wheat. Grain temperatures were monitored and modified by a computer-controlled thermocouple system that also activated the aeration system at programmed set-points to move cool ambient air through the grain mass to lower grain temperature. Results from sampling insect populations in experimental storage bins along with laboratory mortality bioassays of insects placed on wheat taken from the bins over the course of the storage period showed that methoprene was very effective in controlling infestation by the externally-feeding stored grain insects Plodia interpunctella (Hübner), the Indian meal moth Tribolium castaneum (Herbst), the red flour beetle, Cryptolestes ferrugineus (Stephens), the rusty grain beetle, and also for the internal-feeding pest Rhyzopertha dominica( Fauvel), the lesser grain borer. Methoprene did not give good control of the internal-feeding pest Sitophilus oryzae (L.), the rice weevil. Aeration alone was somewhat effective in suppressing insect population development, while methoprene alone or when combined with aeration greatly enhanced insect control. Commercial grain grading for industry quality standards at the end of the storage period confirmed the impact of insect suppression on maintaining high quality of the stored wheat. This field experiment shows that methoprene combined with aeration to cool grain can be effective for pest management of stored wheat in the southern plains of the United States of America.
Ecologically sustainable chemical recommendations for agricultural pest control?
Thomson, Linda J; Hoffmann, Ary A
2007-12-01
Effective pest control remains an essential part of food production, and it is provided both by chemicals and by natural enemies within agricultural ecosystems. These methods of control are often in conflict because of the negative impact of chemicals on natural enemies. There are already well-established approaches such as those provided by the International Organization for Biological and Integrated Control-Pesticides and Beneficial Organisms for testing, collecting, and publishing information on responses of natural enemies to chemicals based on laboratory responses of specific organisms; however, these tests do not assess the cumulative impact of chemical inputs across an entire season or consider impacts on the complex communities of natural enemies that can provide effective pest control on a farm. Here, we explore the potential of different approaches for assessing the impact of chemicals on agricultural ecosystems and we propose a simple metric for sustainable chemical use on farms that minimizes overall impact on beneficial groups. We suggest ways in which the effectiveness of metrics can be extended to include persistence and habitat features. Such metrics can assist farmers in developing targets for sustainable chemical use as demonstrated in the viticultural industry.
Sublethal and hormesis effects of imidacloprid on the soybean aphid Aphis glycines.
Qu, Yanyan; Xiao, Da; Li, Jinyu; Chen, Zhou; Biondi, Antonio; Desneux, Nicolas; Gao, Xiwu; Song, Dunlun
2015-04-01
The soybean aphid, Aphis glycines Matsumura, is a major pest in soybean crop. Current management of this pest relies mainly on insecticides applications, and the neonicotinoid imidacloprid has been proposed as an effective insecticide to control A. glycines in soybean field. Imidacloprid at lethal concentrations not only exerts acute toxicity to A. glycines, but also cause various biological changes when aphids are chronically exposed to lower concentrations. In this study, we assessed the effects of a low-lethal (0.20 mg L(-1)) and two sublethal (0.05 and 0.10 mg L(-1)) imidacloprid concentrations on various A. glycines life history traits. Aphid exposure to 0.20 mg L(-1) imidacloprid caused slower juvenile development, shorter reproductive period, and reduced adult longevity, fecundity and total lifespan. Stimulatory effects, i.e. hormesis, on reproduction and immature development duration were observed in aphids exposed to the lower sublethal imidacloprid concentrations. Consequently, the net reproduction rate (R 0) was significantly higher than in the control aphids. These findings stress the importance of the actual imidacloprid concentration in its toxicological properties on A. glycines. Therefore, our results would be useful for assessing the overall effects of imidacloprid on A. glycines and for optimizing integrated pest management programs targeting this pest.
Spider Communities and Biological Control in Native Habitats Surrounding Greenhouses.
Cotes, Belén; González, Mónica; Benítez, Emilio; De Mas, Eva; Clemente-Orta, Gemma; Campos, Mercedes; Rodríguez, Estefanía
2018-03-14
The promotion of native vegetation as a habitat for natural enemies, which could increase their abundance and fitness, is especially useful in highly simplified settings such as Mediterranean greenhouse landscapes. Spiders as generalist predators may also be involved in intra-guild predation. However, the niche complementarity provided by spiders as a group means that increased spider diversity may facilitate complementary control actions. In this study, the interactions between spiders, the two major horticultural pests, Bemisia tabaci and Frankliniella occidentalis , and their naturally occurring predators and parasitoids were evaluated in a mix of 21 newly planted shrubs selected for habitat management in a highly disturbed horticultural system. The effects of all factors were evaluated using redundancy analysis (RDA) and the generalized additive model (GAM) to assess the statistical significance of abundance of spiders and pests. The GAM showed that the abundance of both pests had a significant effect on hunter spider's abundance, whereas the abundance of B. tabaci , but not F. occidentalis , affected web-weavers' abundance. Ordination analysis showed that spider abundance closely correlated with that of B. tabaci but not with that of F. occidentalis , suggesting that complementarity occurs, and thereby probability of biocontrol, with respect to the targeted pest B. tabaci , although the temporal patterns of the spiders differed from those of F. occidentalis . Conservation strategies involving the establishment of these native plants around greenhouses could be an effective way to reduce pest populations outdoors.
Biddinger, David J; Leslie, Timothy W; Joshi, Neelendra K
2014-06-01
We developed new integrated pest management programs for eastern U.S. peaches with minimal use of organophosphates. From 2002-2005, we assessed the ecological impacts of these reduced-risk programs versus grower standard conventional programs that still relied primarily on the use of organophosphorous and carbamate insecticides. Using a split-plot design replicated at four commercial Pennsylvania peach orchards, we quantified pesticide rates, environmental impact, and arthropod community response. We used Environmental Impact Quotient (EIQ) analysis based on the growers' pesticide records from each orchard to calculate seasonal cumulative EIQ field ratings for all years. Ecological effects of the reduced-risk and conventional program were also measured as the abundance and diversity of nontarget arthropod predators, parasitoids, and selected pest taxa. Pesticide inputs and EIQ values were substantially lower in reduced-risk programs compared with conventional spray programs. Arthropod arrays differed significantly between pest management programs: most beneficial predator and parasitoid taxa were positively associated with the reduced-risk program and negatively associated with the standard grower program. Regardless of the pest management program, we observed significant differences in species arrays in the peach tree canopy compared with the ground cover of the orchards, but the arthropod community did not differ among the field sites or based on distance from the edge of the orchard. We conclude that reduced-risk programs not only provide control comparable with that of conventional programs, but they also reduce negative environmental effects while conserving key arthropod biological control agents within eastern U.S. peach orchards.
Orłowski, Grzegorz; Karg, Jerzy; Karg, Grzegorz
2014-01-01
Farming activity severely impacts the invertebrate food resources of farmland birds, with direct mortality to populations of above-ground arthropods thorough mechanical damage during crop harvests. In this study we assessed the effects of phenological periods, including the timing of harvest, on the composition and biomass of prey consumed by three species of aerial insectivorous birds. Common Swifts Apus apus, Barn Swallows Hirundo rustica and House Martins Delichon urbica breed sympatrically and most of their diet is obtained from agricultural sources of invertebrate prey, especially from oil-seed rape crops. We categorized invertebrate prey into six functional groups, including oil-seed rape pests; pests of other arable crops; other crop-provisioned taxa; coprophilous taxa; and taxa living in non-crop and mixed crop/non-crop habitats. Seasonality impacted functional groups differently, but the general direction of change (increase/decrease) of all groups was consistent as indexed by prey composition of the three aerial insectivores studied here. After the oil-seed rape crop harvest (mid July), all three species exhibited a dietary shift from oil-seed rape insect pests to other aerial invertebrate prey groups. However, Common Switfts also consumed a relative large quantity of oil-seed rape insect pests in the late summer (August), suggesting that they could reduce pest insect emigration beyond the host plant/crop. Since these aerially foraging insectivorous birds operate in specific conditions and feed on specific pest resources unavailable to foliage/ground foraging avian predators, our results suggest that in some crops like oil-seed rape cultivations, the potential integration of the insectivory of aerial foraging birds into pest management schemes might provide economic benefits. We advise further research into the origin of airborne insects and the role of aerial insectivores as agents of the biological control of crop insect pests, especially the determination of depredation rates and the cascading effects of insectivory on crop damage and yield.
Morris, Jonathan R; Vandermeer, John; Perfecto, Ivette
2015-01-01
Species' functional traits are an important part of the ecological complexity that determines the provisioning of ecosystem services. In biological pest control, predator response to pest density variation is a dynamic trait that impacts the provision of this service in agroecosystems. When pest populations fluctuate, farmers relying on biocontrol services need to know how natural enemies respond to these changes. Here we test the effect of variation in coffee berry borer (CBB) density on the biocontrol efficiency of a keystone ant species (Azteca sericeasur) in a coffee agroecosystem. We performed exclosure experiments to measure the infestation rate of CBB released on coffee branches in the presence and absence of ants at four different CBB density levels. We measured infestation rate as the number of CBB bored into fruits after 24 hours, quantified biocontrol efficiency (BCE) as the proportion of infesting CBB removed by ants, and estimated functional response from ant attack rates, measured as the difference in CBB infestation between branches. Infestation rates of CBB on branches with ants were significantly lower (71%-82%) than on those without ants across all density levels. Additionally, biocontrol efficiency was generally high and did not significantly vary across pest density treatments. Furthermore, ant attack rates increased linearly with increasing CBB density, suggesting a Type I functional response. These results demonstrate that ants can provide robust biological control of CBB, despite variation in pest density, and that the response of predators to pest density variation is an important factor in the provision of biocontrol services. Considering how natural enemies respond to changes in pest densities will allow for more accurate biocontrol predictions and better-informed management of this ecosystem service in agroecosystems.
Morris, Jonathan R.; Vandermeer, John; Perfecto, Ivette
2015-01-01
Species’ functional traits are an important part of the ecological complexity that determines the provisioning of ecosystem services. In biological pest control, predator response to pest density variation is a dynamic trait that impacts the provision of this service in agroecosystems. When pest populations fluctuate, farmers relying on biocontrol services need to know how natural enemies respond to these changes. Here we test the effect of variation in coffee berry borer (CBB) density on the biocontrol efficiency of a keystone ant species (Azteca sericeasur) in a coffee agroecosystem. We performed exclosure experiments to measure the infestation rate of CBB released on coffee branches in the presence and absence of ants at four different CBB density levels. We measured infestation rate as the number of CBB bored into fruits after 24 hours, quantified biocontrol efficiency (BCE) as the proportion of infesting CBB removed by ants, and estimated functional response from ant attack rates, measured as the difference in CBB infestation between branches. Infestation rates of CBB on branches with ants were significantly lower (71%-82%) than on those without ants across all density levels. Additionally, biocontrol efficiency was generally high and did not significantly vary across pest density treatments. Furthermore, ant attack rates increased linearly with increasing CBB density, suggesting a Type I functional response. These results demonstrate that ants can provide robust biological control of CBB, despite variation in pest density, and that the response of predators to pest density variation is an important factor in the provision of biocontrol services. Considering how natural enemies respond to changes in pest densities will allow for more accurate biocontrol predictions and better-informed management of this ecosystem service in agroecosystems. PMID:26562676
Pest persistence and eradication conditions in a deterministic model for sterile insect release.
Gordillo, Luis F
2015-01-01
The release of sterile insects is an environment friendly pest control method used in integrated pest management programmes. Difference or differential equations based on Knipling's model often provide satisfactory qualitative descriptions of pest populations subject to sterile release at relatively high densities with large mating encounter rates, but fail otherwise. In this paper, I derive and explore numerically deterministic population models that include sterile release together with scarce mating encounters in the particular case of species with long lifespan and multiple matings. The differential equations account separately the effects of mating failure due to sterile male release and the frequency of mating encounters. When insects spatial spread is incorporated through diffusion terms, computations reveal the possibility of steady pest persistence in finite size patches. In the presence of density dependence regulation, it is observed that sterile release might contribute to induce sudden suppression of the pest population.
Lucia, Alejandro; Toloza, Ariel Ceferino; Guzmán, Eduardo; Ortega, Francisco; Rubio, Ramón G
2017-01-01
Essential oil components (EOCs) are molecules with interesting application in pest control, these have been evaluated against different insect pest from more than 100 years, but their practical use is rather limited. Thus, the enhancement of their bioavailability and manageability due to their dispersion in water can open new perspective for the preparation of formulations for the control of insect pest. In this work, we studied the encapsulation of different monoterpenes in a poloxamer shell in order to prepare aqueous formulations that can be used for the development of platforms used in pest control. Micellar systems containing a 5 wt% of poloxamer 407 and 1.25 wt% of the different monoterpenes were prepared. Dynamic Light Scattering (DLS) experiments were carried out to characterize the dispersion of the EOCs in water. The pediculicidal activity of these micellar systems was tested on head lice using an ex vivo immersion test. The poloxamers allowed the dispersion of EOCs in water due to their encapsulation inside the hydrophobic core of the copolymer micelles. From this study, we concluded that it is possible to make stable micellar systems containing water (>90 wt%), 1.25 wt% of different monoterpenes and a highly safe polymer (5wt% Poloxamer 407). These formulations were effective against head lice with mortality ranging from 30 to 60%, being the most effective emulsions those containing linalool, 1,8-cineole, α -terpineol, thymol, eugenol, geraniol and nonyl alcohol which lead to mortalities above 50%. Since these systems showed good pediculicidal activity and high physicochemical stability, they could be a new route for the green fabrication of biocompatible and biosustainable insecticide formulations.
Guzmán, Eduardo; Ortega, Francisco; Rubio, Ramón G.
2017-01-01
Background Essential oil components (EOCs) are molecules with interesting application in pest control, these have been evaluated against different insect pest from more than 100 years, but their practical use is rather limited. Thus, the enhancement of their bioavailability and manageability due to their dispersion in water can open new perspective for the preparation of formulations for the control of insect pest. In this work, we studied the encapsulation of different monoterpenes in a poloxamer shell in order to prepare aqueous formulations that can be used for the development of platforms used in pest control. Methods Micellar systems containing a 5 wt% of poloxamer 407 and 1.25 wt% of the different monoterpenes were prepared. Dynamic Light Scattering (DLS) experiments were carried out to characterize the dispersion of the EOCs in water. The pediculicidal activity of these micellar systems was tested on head lice using an ex vivo immersion test. Results The poloxamers allowed the dispersion of EOCs in water due to their encapsulation inside the hydrophobic core of the copolymer micelles. From this study, we concluded that it is possible to make stable micellar systems containing water (>90 wt%), 1.25 wt% of different monoterpenes and a highly safe polymer (5wt% Poloxamer 407). These formulations were effective against head lice with mortality ranging from 30 to 60%, being the most effective emulsions those containing linalool, 1,8-cineole, α-terpineol, thymol, eugenol, geraniol and nonyl alcohol which lead to mortalities above 50%. Discussion Since these systems showed good pediculicidal activity and high physicochemical stability, they could be a new route for the green fabrication of biocompatible and biosustainable insecticide formulations. PMID:28439460
General Pest Control - Industrial. Manual 95.
ERIC Educational Resources Information Center
Missouri Univ., Columbia. Agricultural Experiment Station.
This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in the general pest control category. The text discusses general, parasitic and miscellaneous pests such as ants, ticks, and spiders; fabric, wood-destroying, and grain pests such as beetles, termites, and…
Bingsohn, L; Knorr, E; Billion, A; Narva, K E; Vilcinskas, A
2017-02-01
RNA interference (RNAi) is a promising alternative strategy for ecologically friendly pest management. However, the identification of RNAi candidate genes is challenging owing to the absence of laboratory strains and the seasonality of most pest species. Tribolium castaneum is a well-established model, with a strong and robust RNAi response, which can be used as a high-throughput screening platform to identify potential RNAi target genes. Recently, the cactus gene was identified as a sensitive RNAi target for pest control. To explore whether the spectrum of promising RNAi targets can be expanded beyond those found by random large-scale screening, to encompass others identified using targeted knowledge-based approaches, we constructed a Cactus interaction network. We tested nine genes in this network and found that the delivery of double-stranded RNA corresponding to fusilli and cactin showed lethal effects. The silencing of cactin resulted in 100% lethality at every developmental stage from the larva to the adult. The knockdown of pelle, Dorsal-related immunity factor and short gastrulation reduced or even prevented egg hatching in the next generation. The combination of such targets with lethal and parental RNAi effects can now be tested against different pest species in field studies. © 2016 The Royal Entomological Society.
Zhang, Wei; Swinton, Scott M
2012-04-15
By suppressing pest populations, natural enemies provide an important ecosystem service that maintains the stability of agricultural ecosystems systems and potentially mitigates producers' pest control costs. Integrating natural control services into decisions about pesticide-based control has the potential to significantly improve the economic efficiency of pesticide use, with socially desirable outcomes. Two gaps have hindered the incorporation of natural enemies into pest management decision rules: (1) insufficient knowledge of pest and predator population dynamics and (2) lack of a decision framework for the economic tradeoffs among pest control options. Using a new intra-seasonal, dynamic bioeconomic optimization model, this study assesses how predation by natural enemies contributes to profit-maximizing pest management strategies. The model is applied to the management of the invasive soybean aphid, the most significant serious insect threat to soybean production in North America. The resulting lower bound estimate of the value of natural pest control ecosystem services was estimated at $84 million for the states of Illinois, Indiana, Iowa, Michigan and Minnesota in 2005. Copyright © 2011 Elsevier Ltd. All rights reserved.
Dutka, Alexandrea; McNulty, Alison; Williamson, Sally M
2015-01-01
There is currently a great deal of concern about population declines in pollinating insects. Many potential threats have been identified which may adversely affect the behaviour and health of both honey bees and bumble bees: these include pesticide exposure, and parasites and pathogens. Whether biological pest control agents adversely affect bees has been much less well studied: it is generally assumed that biological agents are safer for wildlife than chemical pesticides. The aim of this study was to test whether entomopathogenic nematodes sold as biological pest control products could potentially have adverse effects on the bumble bee Bombus terrestris. One product was a broad spectrum pest control agent containing both Heterorhabditis sp. and Steinernema sp., the other product was specifically for weevil control and contained only Steinernema kraussei. Both nematode products caused ≥80% mortality within the 96 h test period when bees were exposed to soil containing entomopathogenic nematodes at the recommended field concentration of 50 nematodes per cm(2) soil. Of particular concern is the fact that nematodes from the broad spectrum product could proliferate in the carcasses of dead bees, and therefore potentially infect a whole bee colony or spread to the wider environment.
USDA-ARS?s Scientific Manuscript database
Oryzacystatins I and II (OCI and OCII) show potential for controlling pests that utilize cysteine proteinases for protein digestion. To strengthen individual inhibitory range and achieve an additive effect in the overall efficiency of these proteins against pests, both cystatin genes were co-express...
7 CFR 319.40-8 - Processing at facilities operating under compliance agreements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... plant pests from the facility, requirements to ensure the processing method effectively destroys plant pests, and the requirements for the application of chemical materials in accordance with part 305 of... and Budget under control number 0579-0049) [60 FR 27674, May 25, 1995, as amended at 69 FR 52418, Aug...
7 CFR 319.40-8 - Processing at facilities operating under compliance agreements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... plant pests from the facility, requirements to ensure the processing method effectively destroys plant pests, and the requirements for the application of chemical materials in accordance with part 305 of... and Budget under control number 0579-0049) [60 FR 27674, May 25, 1995, as amended at 69 FR 52418, Aug...
7 CFR 319.40-8 - Processing at facilities operating under compliance agreements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... plant pests from the facility, requirements to ensure the processing method effectively destroys plant pests, and the requirements for the application of chemical materials in accordance with part 305 of... and Budget under control number 0579-0049) [60 FR 27674, May 25, 1995, as amended at 69 FR 52418, Aug...
Effect of Methyl Salicylate-Based Lures on Beneficial and Pest Arthropods in Strawberry
USDA-ARS?s Scientific Manuscript database
Methyl salicylate (MeSA) is a common herbivore-induced plant volatile that, when applied to crops, has the potential to enhance natural enemy abundance and pest control. The impacts of MeSA in the strawberry system were unknown and examined in this study. Strawberry plots contained no lures (contr...
Pesticides used against Cydia pomonella disrupt biological control of secondary pests of apple
USDA-ARS?s Scientific Manuscript database
The effects of codling moth management programs on secondary pests of apple were examined from 2008 to 2011 in five replicated large-plot trials. The orchards were chosen for a history of Eriosoma lanigerum and tetranychid mite outbreaks. Programs covered the first, second, or both generations of C....
Minimal Pruning and Reduced Plant Protection Promote Predatory Mites in Grapevine
Pennington, Theresa; Kraus, Christian; Alakina, Ekatarina; Entling, Martin H.; Hoffmann, Christoph
2017-01-01
Improving natural pest control by promoting high densities of predatory mites (Acari: Phytoseiidae) is an effective way to prevent damage by pest mites (e.g., Eriophyidae, Tetranychidae) and other arthropod taxa that can cause serious damage to vineyards. Here, we investigate the influence of innovative management on predatory mite densities. We compare (i) full versus reduced fungicide applications and (ii) minimal pruning versus a traditional trellis pruning system in four fungus-resistant grapevine varieties. As predatory mites also feed on fungus mycelium, we assessed fungal infection of grapevine leaves in the experimental vineyard. Predatory mites were significantly more abundant in both minimal pruning and under reduced plant protection. Increases in predatory mites appeared to be independent of fungal infection, suggesting mostly direct effects of reduced fungicides and minimal pruning. In contrast to predatory mites, pest mites did not increase under innovative management. Thus, conditions for natural pest control are improved in fungus-resistant grapevines and under minimal pruning, which adds to other advantages such as environmental safety and reduced production cost. PMID:28820436
Biocontrol of fouling pests: Effect of diversity, identity and density of control agents.
Atalah, Javier; Newcombe, Emma M; Zaiko, Anastasija
2016-04-01
Augmentative biocontrol, using native natural enemies, has been suggested as a promising tool to control marine biofouling pests on artificial structures. However, there are still important knowledge gaps to be addressed before biocontrol can be considered as a management tool. In a field experiment on floating marine structures we examined intra- and interspecific consumer interactions among biocontrol agents on different surface orientations. We tested the effect of identity, density and diversity of three invertebrates (the 11-arm seastar Coscinasterias muricata, the sea urchin Evechinus chloroticus and the gastropod Cook's turban Cookia sulcata) to reduce established biofouling and to prevent fouling growth on defouled surfaces. High densities of biocontrol agents were not more effective at fouling control (cover and biomass) than low densities. Nor did multi-species treatments function more effectively than mono-specific ones. However, biocontrol agent identity was important, with the 11-arm seastar and Cook's turban being the most effective at fouling reduction and prevention, respectively. Surface orientation had a strong effect on the effectiveness of control agents, with the best results obtained on vertical compared to diagonal and underside surfaces. This study confirmed the potential of biocontrol as a management tool for marine pest, indicating that identity is more important than richness and density of control agents. It also highlighted the limitations of this approach on diagonal and underside surfaces, where control agents have limited retention ability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Training for Certification: Ornamental & Turf Pest Control.
ERIC Educational Resources Information Center
Mississippi State Univ., State College. Cooperative Extension Service.
This Cooperative Extension Service publication from Mississippi State University is a training guide for commercial pesticide applicators. Focusing on ornamental and turf plant pest control, this publication examines the control of plant diseases, insects, and weeds. The contents are divided into a section on ornamental pest control and one on…
Crowder, David W; Carrière, Yves
2009-12-07
Genetically modified (GM) crops are used extensively worldwide to control diploid agricultural insect pests that reproduce sexually. However, future GM crops will likely soon target haplodiploid and parthenogenetic insects. As rapid pest adaptation could compromise these novel crops, strategies to manage resistance in haplodiploid and parthenogenetic pests are urgently needed. Here, we developed models to characterize factors that could delay or prevent the evolution of resistance to GM crops in diploid, haplodiploid, and parthenogenetic insect pests. The standard strategy for managing resistance in diploid pests relies on refuges of non-GM host plants and GM crops that produce high toxin concentrations. Although the tenets of the standard refuge strategy apply to all pests, this strategy does not greatly delay the evolution of resistance in haplodiploid or parthenogenetic pests. Two additional factors are needed to effectively delay or prevent the evolution of resistance in such pests, large recessive or smaller non-recessive fitness costs must reduce the fitness of resistance individuals in refuges (and ideally also on GM crops), and resistant individuals must have lower fitness on GM compared to non-GM crops (incomplete resistance). Recent research indicates that the magnitude and dominance of fitness costs could be increased by using specific host-plants, natural enemies, or pathogens. Furthermore, incomplete resistance could be enhanced by engineering desirable traits into novel GM crops. Thus, the sustainability of GM crops that target haplodiploid or parthenogenetic pests will require careful consideration of the effects of reproductive mode, fitness costs, and incomplete resistance.
Mensah, Robert K.; Young, Alison; Rood-England, Leah
2015-01-01
Entomopathogenic fungi, when used as a microbial control agent against cotton pests, such as Helicoverpa spp., may have the potential to establish and spread in the environment and to have an impact on both pests and beneficial insects. Information on the effect of entomopathogenic fungi on pests and beneficial insects is crucial for a product to be registered as a biopesticide. The effect of the entomopathogenic fungus BC 639 (Aspergillus sp.) against Helicoverpa spp. and beneficial insects (mostly predatory insects) was studied in the laboratory and in cotton field trials. The results show that when Helicoverpa spp. second instar larvae were exposed to increasing concentrations (from 102 to 109) of the entomopathogenic fungus BC 639, the optimum dose required to kill over 50% of the insects was 1.0 × 107 spores/mL. In the field trials, the number of Helicoverpa spp. per metre on plots treated with 1.0 or 0.50 L/ha of BC 639 was the same as on plots treated with the recommended rate of the commercial insecticide, Indoxacarb. However, when plots were treated with 0.25 L/ha of BC 639, this was not as effective at controlling Helicoverpa spp. as 1.0 or 0.5 L/ha BC 639 or Indoxacarb. BC 639 had less effect on predatory insects when applied at lower rates (0.50 and 0.25 L/ha) than at higher rates (1.0 L/ha). Thus, BC 639 was more selective against predators when applied at lower rates than at the higher rate, but was also more selective than Indoxacarb. Thus, the ability of BC 639 to control Helicoverpa spp. effectively with a minimal effect on predatory insects indicates its potential for enhancing integrated pest management programs and to sustain cotton production. PMID:26463189
Greenhouse Studies of Thiamethoxam Effects on Pea Leaf Weevil, Sitona lineatus
Cárcamo, Héctor; Herle, Carolyn; Hervet, Vincent
2012-01-01
The pea leaf weevil, Sitona lineatus L. (Coleoptera: Curculionidae), has recently emerged as an important pest of field peas in the Canadian prairies. Systemic seed-coated insecticides may provide a tool for the integrated pest management of this pest. Therefore, several controlled assays were performed in order to determine effects of a recently registered neonicotinoid, (thiamethoxam) on S. lineatus damage to foliage, weevil mortality, fertility, egg viability, larval mortality, and root nodule damage. Foliage damage was reduced by thiamethoxam relative to untreated controls during the seedling stage (2nd–5th nodes), but weevil adult mortality was only 15–30%. Fertility was reduced substantially through an extra seven-day delay in the preoviposition period and reduced egg-laying rate during the first 20 days of the study (92% lower than controls). Overall egg viability was lower in females fed foliage grown from thiamethoxamtreated seeds. Larval survivorship and nodule damage were also lower, but only when eggs were added to treated plants at the 2nd node stage. When eggs were added late, at the 5th node stage, thiamethoxam had no effect on larval survivorship or nodule damage. The results of this study led to the conclusion that seed treatments such as thiamethoxam have potential to be used as tools that will aid in the integrated pest management of S. lineatus, especially in combination with other methods such as biocontrol and trap crops. PMID:23461362
Mansoor, Muhammad Mudassir; Afzal, Muhammad; Raza, Abu Bakar M.; Akram, Zeeshan; Waqar, Adil; Afzal, Muhammad Babar Shahzad
2014-01-01
Chrysoperla carnea (Stephens) is an important biological control agent currently being used in many integrated pest management (IPM) programs to control insect pests. The effect of post-treatment temperature on insecticide toxicity of a spinosyn (spinosad), pyrethroid (lambda cyhalothrin), organophosphate (chlorpyrifos) and new chemistry (acetamiprid) to C. carnea larvae was investigated under laboratory conditions. Temperature coefficients of each insecticide tested were evaluated. From 20 to 40 °C, toxicity of lambda cyhalothrin and spinosad decreased by 2.15- and 1.87-fold while toxicity of acetamiprid and chlorpyrifos increased by 2.00 and 1.79-fold, respectively. The study demonstrates that pesticide effectiveness may vary according to environmental conditions. In cropping systems where multiple insecticide products are used, attention should be given to temperature variation as a key factor in making pest management strategies safer for biological control agents. Insecticides with a negative temperature coefficient may play a constructive role to conserve C. carnea populations. PMID:25972753
Mansoor, Muhammad Mudassir; Afzal, Muhammad; Raza, Abu Bakar M; Akram, Zeeshan; Waqar, Adil; Afzal, Muhammad Babar Shahzad
2015-05-01
Chrysoperla carnea (Stephens) is an important biological control agent currently being used in many integrated pest management (IPM) programs to control insect pests. The effect of post-treatment temperature on insecticide toxicity of a spinosyn (spinosad), pyrethroid (lambda cyhalothrin), organophosphate (chlorpyrifos) and new chemistry (acetamiprid) to C. carnea larvae was investigated under laboratory conditions. Temperature coefficients of each insecticide tested were evaluated. From 20 to 40 °C, toxicity of lambda cyhalothrin and spinosad decreased by 2.15- and 1.87-fold while toxicity of acetamiprid and chlorpyrifos increased by 2.00 and 1.79-fold, respectively. The study demonstrates that pesticide effectiveness may vary according to environmental conditions. In cropping systems where multiple insecticide products are used, attention should be given to temperature variation as a key factor in making pest management strategies safer for biological control agents. Insecticides with a negative temperature coefficient may play a constructive role to conserve C. carnea populations.
Identification and Control of Common Insect Pests of Ornamental Shrubs and Trees.
ERIC Educational Resources Information Center
Gesell, Stanley G.
This agriculture extension service publication from Pennsylvania State University introduces the identification and control of common ornamental insect pests. For each of the insects or insect groups (i.e. aphids) identified in this publication, information on host plants, pest description, and damage caused by the pest is given. Also a calendar…
Peptidergic control of a fruit crop pest: the spotted-wing drosophila, Drosophila suzukii
USDA-ARS?s Scientific Manuscript database
Neuropeptides play an important role in the regulation of feeding in insects and offer potential targets for the development of new chemicals to control insect pests. A pest that has attracted much recent attention is the highly invasive Drosophila suzukii, a polyphagous pest that can cause serious...
Dutto, Moreno; Rubbiani, Maristella
2011-01-01
Pest control in urban settings is a public health issue that is often overlooked and left to the discretion of those who participate in pest control operations. In this article the authors aim to analyse and provide guidelines regarding liability in the use of pesticides and safety standards that must be adopted during pest control operations in confined areas or open spaces in urban or domestic settings.
ERIC Educational Resources Information Center
Schulze, Terry L.; Kriner, Ray R.
This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in the public health pest control category. The text discusses invertebrate pests such as cockroaches, lice, fleas, and mites, vertebrate pests; and plant pests such as poison ivy and ragweed. A study guide…
The effect of crop protection strategy on pest and beneficials incidence in protected crops.
Lourenço, I; Rodrigues, S; Figueiredo, E; Godinho, M C; Marques, C; Amaro, F; Mexia, A
2002-01-01
This study took place in the Oeste region from 1996-1999 and it intended to analyse if the crop protection strategy followed by the farmer influenced the arthropod incidence and the natural control in protected vegetable crops under Mediterranean conditions. The observations were made fortnightly (Autumn/Winter) or weekly (Spring/Summer) in 30-60 plants/parcel (1 plant/35 m2) in order to evaluate incidences. Samples of pests and natural enemies were collected for systematic identification in two greenhouses for each protection strategy (traditional chemical control (TCC), integrated pest management (IPM) and pest control allowed in organic farming (OF)) in lettuce, tomato, green beans and cucumber. Data on incidence of mites, aphids, caterpillars, leafminers, whiteflies, thrips and respective natural enemies were registered as well as phytosanitary treatments performed (farmers' information and/or in loco traces). The leafminers were the pest whose incidence more often presented significant statistical differences between the studied protection strategies. In relation to this pest, the main results obtained were: a higher feeding punctures incidence in TCC than in IPM; higher incidence of adults, mines and feeding punctures in TCC than in OF; and a higher mines' incidence in IPM than in OF. Both in TCC and IPM high percentages of plants with mines were found although without an adult proportional presence. In the first case this was due to the repeatedly phytosanitary treatments applied; in the second case it was due to the natural control, since in IPM and OF greenhouses the collected larvae were mostly parasitized or dead. In spite of the fact these two strategies have as final result a similar mines and adults incidence, their production and environmental costs are quite different. Significant differences at the beneficials' population level between TCC greenhouses and IPM or OF greenhouses were found. As the farmers did no biological treatments these differences are related to different levels of beneficial populations due to different secondary effects of the pesticides applied.
Zhang, Han; Breeze, Tom; Bailey, Alison; Garthwaite, David; Harrington, Richard; Potts, Simon G
2017-01-01
Oilseed rape (Brassica napus) is an important combinable break crop in the UK, which is largely protected from arthropod pests by insecticidal chemicals. Despite ongoing debate regarding the use of neonicotinoids, the dominant seed treatment ingredients used for this crop, there is little publicly available data comparing the efficacy of insecticides in controlling key arthropod pests or comparing the impacts on non-target species and the wider environment. To provide an insight into these matters, a UK-wide expert survey targeting agronomists and entomologists was conducted from March to June 2015. Based on the opinions of 90 respondents, an average of 20% yield loss caused by the key arthropod pests was expected to have occurred in the absence of insecticide treatments. Relatively older chemical groups were perceived to have lower efficacy for target pests than newer ones, partly due to the development of insecticide resistance. Without neonicotinoid seed treatments, a lack of good control for cabbage stem flea beetle was perceived. Wide spectrum foliar insecticide sprays were perceived to have significantly greater negative impacts than seed treatments on users' health, natural enemies, pollinators, soil and water, and many foliar active ingredients have had potential risks for non-target arthropod species in UK oilseed rape fields for the past 25 years. Overall, 72% of respondents opposed the neonicotinoid restriction, while 10% supported it. Opposition and support of the restriction were largely based on concerns for pollinators and the wider environment, highlighting the uncertainty over the side effects of neonicotinoid use. More people from the government and research institutes leaned towards neutrality over the issue, compared to those directly involved in growing the crop. Neonicotinoid restriction was expected to result in greater effort and expenditure on pest control and lower production (0-1 t/ha less). Alternatives for future oilseed rape protection were then discussed.
Breeze, Tom; Bailey, Alison; Garthwaite, David; Harrington, Richard; Potts, Simon G.
2017-01-01
Oilseed rape (Brassica napus) is an important combinable break crop in the UK, which is largely protected from arthropod pests by insecticidal chemicals. Despite ongoing debate regarding the use of neonicotinoids, the dominant seed treatment ingredients used for this crop, there is little publicly available data comparing the efficacy of insecticides in controlling key arthropod pests or comparing the impacts on non-target species and the wider environment. To provide an insight into these matters, a UK-wide expert survey targeting agronomists and entomologists was conducted from March to June 2015. Based on the opinions of 90 respondents, an average of 20% yield loss caused by the key arthropod pests was expected to have occurred in the absence of insecticide treatments. Relatively older chemical groups were perceived to have lower efficacy for target pests than newer ones, partly due to the development of insecticide resistance. Without neonicotinoid seed treatments, a lack of good control for cabbage stem flea beetle was perceived. Wide spectrum foliar insecticide sprays were perceived to have significantly greater negative impacts than seed treatments on users’ health, natural enemies, pollinators, soil and water, and many foliar active ingredients have had potential risks for non-target arthropod species in UK oilseed rape fields for the past 25 years. Overall, 72% of respondents opposed the neonicotinoid restriction, while 10% supported it. Opposition and support of the restriction were largely based on concerns for pollinators and the wider environment, highlighting the uncertainty over the side effects of neonicotinoid use. More people from the government and research institutes leaned towards neutrality over the issue, compared to those directly involved in growing the crop. Neonicotinoid restriction was expected to result in greater effort and expenditure on pest control and lower production (0–1 t/ha less). Alternatives for future oilseed rape protection were then discussed. PMID:28076392
Warming and drought combine to increase pest insect fitness on urban trees
Frank, Steven D.
2017-01-01
Urban habitats are characterized by impervious surfaces, which increase temperatures and reduce water availability to plants. The effects of these conditions on herbivorous insects are not well understood, but may provide insight into future conditions. Three primary hypotheses have been proposed to explain why multiple herbivorous arthropods are more abundant and damaging in cities, and support has been found for each. First, less complex vegetation may reduce biological control of pests. Second, plant stress can increase plant quality for pests. And third, urban warming can directly increase pest fitness and abundance. These hypotheses are not mutually exclusive, and the effects of temperature and plant stress are particularly related. Thus, we test the hypothesis that urban warming and drought stress combine to increase the fitness and abundance of the scale insect, Melanaspis tenebricosa, an urban tree pest that is more abundant in urban than rural areas of the southeastern U.S. We did this by manipulating drought stress across an existing mosaic of urban warming. We found support for the additive effect of temperature and drought stress such that female embryo production and body size increased with temperature and was greater on drought-stressed than watered trees. This study provides further evidence that drivers of pest insect outbreaks act in concert, rather than independently, and calls for more research that manipulates multiple abiotic factors related to urbanization and climate change to predict their effects on ecological interactions. As cities expand and the climate changes, warmer temperatures and drought conditions may become more widespread in the native range of this pest. These changes have direct physiological benefits for M. tenebricosa, and potentially other pests, that may increase their fitness and abundance in urban and natural forests. PMID:28278206
Yu, Jungeun; Zanotti, Stefano; Schilling, Lauren; Schoenherr, Chris; Economides, Aris N; Sanjay, Archana; Canalis, Ernesto
2018-06-01
Mice harboring Notch2 mutations replicating Hajdu-Cheney syndrome (Notch2 tm1.1ECan ) have osteopenia and exhibit an increase in splenic marginal zone B cells with a decrease in follicular B cells. Whether the altered B-cell allocation is responsible for the osteopenia of Notch2 tm1.1ECan mutants is unknown. To determine the effect of NOTCH2 activation in B cells on splenic B-cell allocation and skeletal phenotype, a conditional-by-inversion (COIN) Hajdu-Cheney syndrome allele of Notch2 (Notch2 [ΔPEST]COIN ) was used. Cre recombination generates a permanent Notch2 ΔPEST allele expressing a transcript for which sequences coding for the proline, glutamic acid, serine, and threonine-rich (PEST) domain are replaced by a stop codon. CD19-Cre drivers were backcrossed into Notch2 [ΔPEST]COIN/[ΔPEST]COIN to generate CD19-specific Notch2 ΔPEST/ΔPEST mutants and control Notch2 [ΔPEST]COIN/[ΔPEST]COIN littermates. There was an increase in marginal zone B cells and a decrease in follicular B cells in the spleen of CD19 Cre/WT ;Notch2 ΔPEST/ΔPEST mice, recapitulating the splenic phenotype of Notch2 tm1.1ECan mice. The effect was reproduced when the NOTCH1 intracellular domain was induced in CD19-expressing cells (CD19 Cre/WT ;Rosa Notch1/WT mice). However, neither CD19 Cre/WT ;Notch2 ΔPEST/ΔPEST nor CD19 Cre/WT ;Rosa Notch1/WT mice had a skeletal phenotype. Moreover, splenectomies in Notch2 tm1.1ECan mice did not reverse their osteopenic phenotype. In conclusion, Notch2 activation in CD19-expressing cells determines B-cell allocation in the spleen but has no skeletal consequences. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Training for Certification: Forest Pest Control.
ERIC Educational Resources Information Center
Parker, Robert C., Comp.
This Cooperative Extension Service publication from Mississippi State University is a training guide for commercial pesticide applicators. Focusing on forest pest control, this publication examines plant and animal pest control practices for southern tree species. Contents include: (1) identification of insects, diseases, and weed tree species;…
7 CFR 301.1 - Purpose and scope.
Code of Federal Regulations, 2011 CFR
2011-01-01
... articles, means of conveyance, plants, plant products, biological control organisms, plant pests, or... biological control organism, plant pest, or noxious weed within the United States. The only exceptions to..., plant products, biological control organisms, plant pests, or noxious weeds that are in addition to the...
7 CFR 301.1 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... articles, means of conveyance, plants, plant products, biological control organisms, plant pests, or... biological control organism, plant pest, or noxious weed within the United States. The only exceptions to..., plant products, biological control organisms, plant pests, or noxious weeds that are in addition to the...
Extension Has Key Role in "Pest" Management
ERIC Educational Resources Information Center
Bay, Ovid
1972-01-01
This article describes the Department of Agriculture's new program which provides a combination of biological and cultural pest control techniques in combination with chemicals, as well as long-range pest control research. (Author/JB)
Kathage, Jonas; Castañera, Pedro; Alonso-Prados, José Luis; Gómez-Barbero, Manuel; Rodríguez-Cerezo, Emilio
2018-01-01
In 2013, the European Commission restricted the use of three neonicotinoids (clothianidin, imidacloprid and thiamethoxam) and the pyrazole fipronil, which are widely used to control early-season pests. Here, we used original farm survey data to examine the impact of the restrictions on pest management practices in eight regional case studies including maize, oilseed rape and sunflower in seven European Union (EU) countries. In four case studies, farmers switched to using untreated seeds as no alternative seed treatments were available. In three case studies, farmers switched to using unrestricted neonicotinoid- or pyrethroid-treated seeds. In five case studies, farmers increased the use of soil or foliar treatments, with pyrethroids as the principal insecticide class. Other changes in pest management practices ranged from increased sowing density to more frequent scouting for pests. Many farmers perceived that the time, cost and amount of insecticides required to protect crops increased, along with pest pressure. Alternative seed treatments were mostly perceived as being less effective than the restricted seed treatments. Farmers generally relied on alternative seed treatments or more soil/foliar treatments in the first growing season after the restrictions took effect. Further study is required to assess the effectiveness and sustainability of these alternatives compared with the restricted insecticides. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Bt crops benefit natural enemies to control non-target pests
Tian, Jun-Ce; Yao, Ju; Long, Li-Ping; Romeis, Jörg; Shelton, Anthony M.
2015-01-01
Crops producing insecticidal crystal (Cry) proteins from Bacillus thuringiensis (Bt) control important lepidopteran pests. However, pests such as aphids not susceptible to Cry proteins may require other integrated pest management (IPM) tactics, including biological control. We fed aphids on Bt and non-Bt plants and analyzed the Bt protein residue in aphids and compared the effects of Bt plants and a pyrethroid, lambda-cyhalothrin, on the performance of three natural enemies (predators: Coleomegilla maculata and Eupeodes americanus; parasitoid Aphidius colemani) of the green peach aphid, Myzus persicae. No Bt protein residues in aphids were detected and no significant differences were recorded in the performance of pyrethroid-resistant aphids that fed on Bt broccoli expressing Cry1Ab or Cry1C, or on non-Bt broccoli plants treated or not treated with the pyrethroid. This indicated the aphids were not affected by the Cry proteins or the pyrethroid, thus removing any effect of prey quality. Tri-trophic experiments demonstrated that no C. maculata and E. americanus survived consumption of pyrethroid-treated aphids and that ovipositional behavior of A. colemani was impaired when provided with pyrethroid-treated aphids. In contrast, natural enemies were not affected when fed aphids reared on Bt broccoli, thus demonstrating the safety of these Bt plants for IPM. PMID:26559133
Bt crops benefit natural enemies to control non-target pests.
Tian, Jun-Ce; Yao, Ju; Long, Li-Ping; Romeis, Jörg; Shelton, Anthony M
2015-11-12
Crops producing insecticidal crystal (Cry) proteins from Bacillus thuringiensis (Bt) control important lepidopteran pests. However, pests such as aphids not susceptible to Cry proteins may require other integrated pest management (IPM) tactics, including biological control. We fed aphids on Bt and non-Bt plants and analyzed the Bt protein residue in aphids and compared the effects of Bt plants and a pyrethroid, lambda-cyhalothrin, on the performance of three natural enemies (predators: Coleomegilla maculata and Eupeodes americanus; parasitoid Aphidius colemani) of the green peach aphid, Myzus persicae. No Bt protein residues in aphids were detected and no significant differences were recorded in the performance of pyrethroid-resistant aphids that fed on Bt broccoli expressing Cry1Ab or Cry1C, or on non-Bt broccoli plants treated or not treated with the pyrethroid. This indicated the aphids were not affected by the Cry proteins or the pyrethroid, thus removing any effect of prey quality. Tri-trophic experiments demonstrated that no C. maculata and E. americanus survived consumption of pyrethroid-treated aphids and that ovipositional behavior of A. colemani was impaired when provided with pyrethroid-treated aphids. In contrast, natural enemies were not affected when fed aphids reared on Bt broccoli, thus demonstrating the safety of these Bt plants for IPM.
Development of Bt Rice and Bt Maize in China and Their Efficacy in Target Pest Control
Liu, Qingsong; Hallerman, Eric; Peng, Yufa; Li, Yunhe
2016-01-01
Rice and maize are important cereal crops that serve as staple foods, feed, and industrial material in China. Multiple factors constrain the production of both crops, among which insect pests are an important one. Lepidopteran pests cause enormous yield losses for the crops annually. In order to control these pests, China plays an active role in development and application of genetic engineering (GE) to crops, and dozens of GE rice and GE maize lines expressing insecticidal proteins from the soil bacterium Bacillus thuringiensis (Bt) have been developed. Many lines have entered environmental release, field testing, and preproduction testing, and laboratory and field experiments have shown that most of the Bt rice and Bt maize lines developed in China exhibited effective control of major target lepidopteran pests on rice (Chilo suppressalis, Scirpophaga incertulas, and Cnaphalocrocis medinalis) and maize (Ostrinia furnacalis), demonstrating bright prospects for application. However, none of these Bt lines has yet been commercially planted through this writing in 2016. Challenges and perspectives for development and application of Bt rice and maize in China are discussed. This article provides a general context for colleagues to learn about research and development of Bt crops in China, and may shed light on future work in this field. PMID:27763554
Development of Bt Rice and Bt Maize in China and Their Efficacy in Target Pest Control.
Liu, Qingsong; Hallerman, Eric; Peng, Yufa; Li, Yunhe
2016-10-18
Rice and maize are important cereal crops that serve as staple foods, feed, and industrial material in China. Multiple factors constrain the production of both crops, among which insect pests are an important one. Lepidopteran pests cause enormous yield losses for the crops annually. In order to control these pests, China plays an active role in development and application of genetic engineering (GE) to crops, and dozens of GE rice and GE maize lines expressing insecticidal proteins from the soil bacterium Bacillus thuringiensis ( Bt ) have been developed. Many lines have entered environmental release, field testing, and preproduction testing, and laboratory and field experiments have shown that most of the Bt rice and Bt maize lines developed in China exhibited effective control of major target lepidopteran pests on rice ( Chilo suppressalis , Scirpophaga incertulas , and Cnaphalocrocis medinalis ) and maize ( Ostrinia furnacalis ), demonstrating bright prospects for application. However, none of these Bt lines has yet been commercially planted through this writing in 2016. Challenges and perspectives for development and application of Bt rice and maize in China are discussed. This article provides a general context for colleagues to learn about research and development of Bt crops in China, and may shed light on future work in this field.
Zinyemba, Cliff; Archer, Emma; Rother, Hanna-Andrea
2018-01-01
Pesticides represent a potential public health hazard of note in farming communities. Accumulating evidence indicates that some pesticides used in agriculture act as hormone disrupters, with the potential to result in chronic health effects. Despite such a growing evidence base, pesticides remain the preferred method of pest control in agriculture worldwide. In many parts of Sub-Saharan Africa, usage is on the increase. This qualitative study assessed changes in the usage of pesticides by Zimbabwean smallholder cotton farmers in the past 30 years. Farmers reported an increase in the usage of pesticides, specifically insecticides, since the early 1980s. An increase in pest populations was also reported. The findings suggested a bi-directional causal relationship between the increase in pest population and the increase in pesticide use. Factors which emerged to have collectively impacted on the changes include climate variability, limited agency on the part of farmers, power dynamics involving the government and private cotton companies and farmers' perceptions and practices. An Integrated Pest Management Policy for Zimbabwe is recommended to facilitate integration of chemical controls with a broad range of other pest control tactics. Continuous farmer education and awareness raising is further recommended, since farmers' perceptions can influence their practices.
Archer, Emma; Rother, Hanna-Andrea
2018-01-01
Pesticides represent a potential public health hazard of note in farming communities. Accumulating evidence indicates that some pesticides used in agriculture act as hormone disrupters, with the potential to result in chronic health effects. Despite such a growing evidence base, pesticides remain the preferred method of pest control in agriculture worldwide. In many parts of Sub-Saharan Africa, usage is on the increase. This qualitative study assessed changes in the usage of pesticides by Zimbabwean smallholder cotton farmers in the past 30 years. Farmers reported an increase in the usage of pesticides, specifically insecticides, since the early 1980s. An increase in pest populations was also reported. The findings suggested a bi-directional causal relationship between the increase in pest population and the increase in pesticide use. Factors which emerged to have collectively impacted on the changes include climate variability, limited agency on the part of farmers, power dynamics involving the government and private cotton companies and farmers’ perceptions and practices. An Integrated Pest Management Policy for Zimbabwe is recommended to facilitate integration of chemical controls with a broad range of other pest control tactics. Continuous farmer education and awareness raising is further recommended, since farmers’ perceptions can influence their practices. PMID:29746510
Souza, Cleiton Martins; Davidson, Dominique; Rhee, Inmoo; Gratton, Jean-Philippe; Davis, Elaine C.; Veillette, André
2012-01-01
Protein-tyrosine phosphatase (PTP)-PEST (PTPN12) is ubiquitously expressed. It is essential for normal embryonic development and embryonic viability in mice. Herein we addressed the involvement of PTP-PEST in endothelial cell functions using a combination of genetic and biochemical approaches. By generating primary endothelial cells from an inducible PTP-PEST-deficient mouse, we found that PTP-PEST is not needed for endothelial cell differentiation and proliferation or for the control of endothelial cell permeability. Nevertheless, it is required for integrin-mediated adhesion and migration of endothelial cells. PTP-PEST-deficient endothelial cells displayed increased tyrosine phosphorylation of Cas, paxillin, and Pyk2, which were previously also implicated in integrin functions. By eliminating PTP-PEST in endothelial cells in vivo, we obtained evidence that expression of PTP-PEST in endothelial cells is required for normal vascular development and embryonic viability. Therefore, PTP-PEST is a key regulator of integrin-mediated functions in endothelial cells seemingly through its capacity to control Cas, paxillin, and Pyk2. This function explains at least in part the essential role of PTP-PEST in embryonic development and viability. PMID:23105101
Host race evolution in Schizaphis graminum (Hemiptera: Aphididae): nuclear DNA sequences
USDA-ARS?s Scientific Manuscript database
The greenbug aphid, Schizaphis graminum (Rondani) was introduced into the US in the late 1880s and it established quickly as a pest on wheat, oat and barley. Sorghum was also a host, but it was not until 1968 that greenbug became a serious pest on it. The most effective control method is the plant...
USDA-ARS?s Scientific Manuscript database
BACKGROUND: Biopesticides containing Cry insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) are effective against many lepidopteran pests, but there is a lack of Bt-based pesticides to efficiently control important coleopteran pests. Based on the reported increase of Bt toxin olig...
Preliminary study of the effect of gamma irradiation on the vase life of Iridaceae Hollandica
NASA Astrophysics Data System (ADS)
Dennis, S.; Fisher, L.; Ware, C.; Giraldo, C. H. C.
2018-03-01
The vase life of irises (Iridaceae Hollandica 'Telstar') was determined before and after gamma irradiation in the Missouri S&T Research Reactor (MSTR) at 20, 80, 457, 1060, and 1473 Gy. It was determined that vase life improves by as much as 7% for the 20 Gy irradiation. At about 100 Gy the vase life is comparable to non-irradiated flowers. Unfortunately pest control requires 200-300 Gy. At 457 Gy the vase life is about 15% shorter, and it gets worse at higher doses (30% lower vase life at 1 kGy). Gamma irradiation of irises can be a viable method of pest control, but the irradiation dose should be kept as low as possible while still achieving the phytosanitary objectives depending on the type of pest to control.
Control of Vertebrate Pests of Forest Trees, Ornamentals, and Turf. Revised Copy.
ERIC Educational Resources Information Center
Wingard, Robert G.; Studholme, Clinton R.
This agriculture extension service publication from Pennsylvania State University discusses the control of vertebrate pests of urban and suburban ornamentals and turf. Specific pests described are blackbirds, chipmunks, moles, rabbits, and European starlings. Identification, habits, economic importance, and control methods ranging from poisoning…
PTP-PEST controls EphA3 activation and ephrin-induced cytoskeletal remodelling.
Mansour, Mariam; Nievergall, Eva; Gegenbauer, Kristina; Llerena, Carmen; Atapattu, Lakmali; Hallé, Maxime; Tremblay, Michel L; Janes, Peter W; Lackmann, Martin
2016-01-15
Eph receptors and their corresponding membrane-bound ephrin ligands regulate cell positioning and establish tissue patterns during embryonic and oncogenic development. Emerging evidence suggests that assembly of polymeric Eph signalling clusters relies on cytoskeletal reorganisation and underlies regulation by protein tyrosine phosphatases (PTPs). PTP-PEST (also known as PTPN12) is a central regulator of actin cytoskeletal dynamics. Here, we demonstrate that an N-terminal fragment of PTP-PEST, generated through an ephrinA5-triggered and spatially confined cleavage mediated by caspase-3, attenuates EphA3 receptor activation and its internalisation. Isolation of EphA3 receptor signalling clusters within intact plasma membrane fragments obtained by detergent-free cell fractionation reveals that stimulation of cells with ephrin triggers effective recruitment of this catalytically active truncated form of PTP-PEST together with key cytoskeletal and focal adhesion proteins. Importantly, modulation of actin polymerisation using pharmacological and dominant-negative approaches affects EphA3 phosphorylation in a similar manner to overexpression of PTP-PEST. We conclude that PTP-PEST regulates EphA3 activation both by affecting cytoskeletal remodelling and through its direct action as a PTP controlling EphA3 phosphorylation, indicating its multifaceted regulation of Eph signalling. © 2016. Published by The Company of Biologists Ltd.
A decade of a thrips invasion in China: lessons learned.
Wu, Shengyong; Tang, Liangde; Zhang, Xingrui; Xing, Zhenlong; Lei, Zhongren; Gao, Yulin
2017-10-11
The Western flower thrips, Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) is an invasive polyphagous pest with an expanding global range that damages a wide variety of crops. F. occidentalis was first reported in China from Yunnan province during 2000, and has rapidly expanded its range since then. It is currently distributed across at least 10 provinces in China and has become a particularly devastating pest, causing substantial damage and economic losses. At present, the still heavy reliance on frequent use of insecticides for control of F. occidentalis, has lead to a series of ecological problems stemming from insecticide resistance, interspecific displacement and non-target effects. Thus, integrated pest management (IPM) programmes, multiple complementary tactics, including preventive tactics, biological controls, and judicious use of insecticides will likely provide a viable IPM strategy for control of F. occidentalis in the near future. This review provides an overview for information gained during the 10+ years since the invasion of F. occidentalis into China, reviews lessons that have been learned enhancing our overall understanding of the biology and ecology of F. occidentalis and discusses IPM practices relative to this widespread invasive insect pest.
Asymmetric public goods game cooperation through pest control.
Reeves, T; Ohtsuki, H; Fukui, S
2017-12-21
Cooperation in a public goods game has been studied extensively to find the conditions for sustaining the commons, yet the effect of asymmetry between agents has been explored very little. Here we study a game theoretic model of cooperation for pest control among farmers. In our simple model, each farmer has a paddy of the same size arranged adjacently on a line. A pest outbreak occurs at an abandoned paddy at one end of the line, directly threatening the frontier farmer adjacent to it. Each farmer pays a cost of his or her choice to an agricultural collective, and the total sum held by the collective is used for pest control, with success probability increasing with the sum. Because the farmers' incentives depend on their distance from the pest outbreak, our model is an asymmetric public goods game. We derive each farmer's cost strategy at the Nash equilibrium. We find that asymmetry among farmers leads to a few unexpected outcomes. The individual costs at the equilibrium do not necessarily increase with how much the future is valued but rather show threshold behavior. Moreover, an increase in the number of farmers can sometimes paradoxically undermine pest prevention. A comparison with a symmetric public goods game model reveals that the farmer at the greatest risk pays a disproportionate amount of cost in the asymmetric game, making the use of agricultural lands less sustainable. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Defining terms for proactive management of resistance to Bt crops and pesticides.
Tabashnik, Bruce E; Mota-Sanchez, David; Whalon, Mark E; Hollingworth, Robert M; Carrière, Yves
2014-04-01
Evolution of pest resistance to pesticides is an urgent global problem with resistance recorded in at least 954 species of pests, including 546 arthropods, 218 weeds, and 190 plant pathogens. To facilitate understanding and management of resistance, we provide definitions of 50 key terms related to resistance. We confirm the broad, long-standing definition of resistance, which is a genetically based decrease in susceptibility to a pesticide, and the definition of "field-evolved resistance," which is a genetically based decrease in susceptibility to a pesticide in a population caused by exposure to the pesticide in the field. The impact of field-evolved resistance on pest control can vary from none to severe. We define "practical resistance" as field-evolved resistance that reduces pesticide efficacy and has practical consequences for pest control. Recognizing that resistance is not "all or none" and that intermediate levels of resistance can have a continuum of effects on pest control, we describe five categories of field-evolved resistance and use them to classify 13 cases of field-evolved resistance to five Bacillus thuringiensis (Bt) toxins in transgenic corn and cotton based on monitoring data from five continents for nine major pest species. We urge researchers to publish and analyze their resistance monitoring data in conjunction with data on management practices to accelerate progress in determining which actions will be most useful in response to specific data on the magnitude, distribution, and impact of resistance.
Beyond insects: current status, achievements and future perspectives of RNAi in mite pests.
Niu, Jinzhi; Shen, Guangmao; Christiaens, Olivier; Smagghe, Guy; He, Lin; Wang, Jinjun
2018-05-11
Mites comprise a group of key agricultural pests on a wide range of crops. They cause harm through feeding on the plant and transferring dangerous pathogens, and the rapid evolution of pesticide resistance in mites highlights the need for novel control methods. Currently, RNA interference (RNAi) shows a great potential for insect pest control. Here, we review the literature associated with RNAi in mite pests. We discuss different target genes and RNAi efficiency in various mite species, a promising Varroa control program through RNAi, the synergy of RNAi with plant defense mechanisms and microorganisms, and the current understandings of systemic movement of dsRNA. Based on this, we can conclude that there is a clear potential for an RNAi-based mite control application but further research on several aspects is needed, including: (i) the factors influencing the RNAi efficiency, (ii) the mechanism of environmental RNAi and cross-kingdom dsRNA trafficking, (iii) the mechanism of possible systemic and parental RNAi, and (iv) non-target effects, specifically in predatory mites, should be considered during the RNAi target selection. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Held, D W; Potter, D A; Gates, R S; Anderson, R G
2001-04-01
Incidental transport of arthropods on plant material can be a significant mode of pest entry into greenhouses. We evaluated the use of controlled atmosphere treatments as a potential way to eliminate arthropod pests on plant propagules (i.e., cuttings or small rooted plants). Lethal exposures to CO2 or N2 were determined for common greenhouse pests including fungus gnat larvae, Bradysia sp.; green peach aphid, Myzus persicae (Sulzer); sweetpotato whitefly, Bemisia sp.; twospotted spider mite, Tetranychus urticae Koch; and western flower thrips, Frankliniella occidentalis (Pergande). We also studied the effect of pest species, life stage, and presence or absence of plants on efficacy of modified atmosphere treatments. Finally, effects of modified atmospheres on plant quality were evaluated for several bedding plant species including begonia, Begonia semperflorens-cultorum Hort. 'Cocktail Series', chrysanthemum, Dendranthema grandiflora Tzvelev., geranium, Pelargonium X hortorum L.H. Bailey, and impatiens, Impatiens wallerana Hook f., and among cultivars of geranium and chrysanthemum. Exposure for 12-18 h to >99% N2 or CO2 caused complete mortality of aphids, mites, thrips, and whiteflies. Fungus gnat larvae were more tolerant of hypoxic conditions. Adult mites and eggs were equally susceptible. For most pests, there was no difference in response to atmospheres modified by CO2 or N2. However, there was variation in response among plant species and cultivars, with effects ranging from delayed flowering to mortality. Despite the possibility of adverse effects on some plants, this work indicates that use of modified atmospheres has potential to eliminate arthropod pests on plant propagules before they are introduced into greenhouses.
Macfadyen, Sarina; Nash, Michael A.
2017-01-01
Background Pesticide application is the dominant control method for arthropod pests in broad-acre arable systems. In Australia, organophosphate pesticides are often applied either prophylactically, or reactively, including at higher concentrations, to control crop establishment pests such as false wireworms and earth mite species. Organophosphates are reported to be disruptive to beneficial species, such as natural enemies, but this has not been widely assessed in Australian systems. Neither has the risk that secondary outbreaks may occur if the natural enemy community composition or function is altered. Methods We examine the abundance of ground-dwelling invertebrate communities in an arable field over successive seasons under rotation; barley, two years of wheat, then canola. Two organophosphates (chlorpyrifos and methidathion) were initially applied at recommended rates. After no discernible impact on target pest species, the rate for chlorpyrifos was doubled to elicit a definitive response to a level used at establishment when seedling damage is observed. Invertebrates were sampled using pitfalls and refuge traps throughout the experiments. We applied measures of community diversity, principal response curves and multiple generalised linear modelling techniques to understand the changes in pest and natural enemy communities. Results There was large variability due to seasonality and crop type. Nevertheless, both pest (e.g., mites and aphids) and natural enemy (e.g., predatory beetles) invertebrate communities were significantly affected by application of organophosphates. When the rate of chlorpyrifos was increased there was a reduction in the number of beetles that predate on slug populations. Slugs displayed opposite trends to many of the other target pests, and actually increased in numbers under the higher rates of chlorpyrifos in comparison to the other treatments. Slug numbers in the final rotation of canola resulted in significant yield loss regardless of pesticide application. Discussion Organophosphates are a cost-effective tool to control emergent pests in broad-acre arable systems in Australia. We found risks associated with prophylactic application in fields under rotation between different crop types and significant changes to the community of pests and natural enemy. Disrupting key predators reduced effective suppression of other pests, such as slugs, and may lead to secondary outbreaks when rotating with susceptible crops such as canola. Such non-target impacts are rarely documented when studies focus on single-species, rather than community assessments. This study represents a single demonstration of how pesticide application can lead to secondary outbreaks and reinforces the need for studies that include a longer temporal component to understand this process further. PMID:29302395
[A New Pest of Amomum villosum in Xishuangbanna].
Peng, Jian-min; Wang, Yan-fang; Zhang, Li-xia; Li, Rong-ying; Ma, Xiao-jun
2015-11-01
To report a new pest of Amomum villosum and its distribution, occurrence regularity and damage situation, in order to provide reference for its control. Reared the pest larvae, observed the morphological characters, and made a preliminary investigation on its distribution, occurrence regularity and damage situation. Through macroscopic examination, the pest was identified as Anisodera rugulosa, which distributed in the main producing areas of Amomum villosum in Xishuangbanna, the pest larvae ate the inside of Amomum villosum fruit, which made the fruit formed holes, more seriously, it made the whole fruit rot black. The pest causes the fruit yield reduction of Amomum villosum. Pest control work needs to be carry out as soon as possible.
Recombinant entomopathogenic agents: a review of biotechnological approaches to pest insect control.
Karabörklü, Salih; Azizoglu, Ugur; Azizoglu, Zehra Busra
2017-12-18
Although the use of chemical pesticides has decreased in recent years, it is still a common method of pest control. However, chemical use leads to challenging problems. The harm caused by these chemicals and the length of time that they will remain in the environment is of great concern to the future and safety of humans. Therefore, developing new pest control agents that are safer and environmentally compatible, as well as assuring their widespread use is important. Entomopathogenic agents are microorganisms that play an important role in the biological control of pest insects and are eco-friendly alternatives to chemical control. They consist of viruses (non-cellular organisms), bacteria (prokaryotic organisms), fungi and protists (eukaryotic organisms), and nematodes (multicellular organisms). Genetic modification (recombinant technology) provides potential new methods for developing entomopathogens to manage pests. In this review, we focus on the important roles of recombinant entomopathogens in terms of pest insect control, placing them into perspective with other views to discuss, examine and evaluate the use of entomopathogenic agents in biological control.
Castañera, Pedro; Alonso‐Prados, José Luis; Gómez‐Barbero, Manuel; Rodríguez‐Cerezo, Emilio
2017-01-01
Abstract BACKGROUND In 2013, the European Commission restricted the use of three neonicotinoids (clothianidin, imidacloprid and thiamethoxam) and the pyrazole fipronil, which are widely used to control early‐season pests. Here, we used original farm survey data to examine the impact of the restrictions on pest management practices in eight regional case studies including maize, oilseed rape and sunflower in seven European Union (EU) countries. RESULTS In four case studies, farmers switched to using untreated seeds as no alternative seed treatments were available. In three case studies, farmers switched to using unrestricted neonicotinoid‐ or pyrethroid‐treated seeds. In five case studies, farmers increased the use of soil or foliar treatments, with pyrethroids as the principal insecticide class. Other changes in pest management practices ranged from increased sowing density to more frequent scouting for pests. Many farmers perceived that the time, cost and amount of insecticides required to protect crops increased, along with pest pressure. Alternative seed treatments were mostly perceived as being less effective than the restricted seed treatments. CONCLUSION Farmers generally relied on alternative seed treatments or more soil/foliar treatments in the first growing season after the restrictions took effect. Further study is required to assess the effectiveness and sustainability of these alternatives compared with the restricted insecticides. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:28842940
Training for Certification: Demonstration & Research Pest Control.
ERIC Educational Resources Information Center
Mississippi State Univ., State College. Cooperative Extension Service.
This Cooperative Extension Service publication from Mississippi State University is a training guide for commercial pesticide applicators. Focusing on agricultural pest control, this publication includes a full range of topics from uses of pesticides for agricultural animal pest control to the toxicity of common pesticides to fish and bees.…
7 CFR 623.13 - Wetlands reserve plan of operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... program, including, but not limited to: (i) measures to control noxious weeds and insect pests in order to comply with applicable Federal, or State noxious weed and pest control laws; and (ii) measures to control other specified species of weeds, insects or pests; (3) Specify compatible land uses for personal...
7 CFR 623.13 - Wetlands reserve plan of operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... program, including, but not limited to: (i) Measures to control noxious weeds and insect pests in order to comply with applicable Federal, or State noxious weed and pest control laws; and (ii) Measures to control other specified species of weeds, insects or pests; (3) Specify compatible land uses for personal...
7 CFR 623.13 - Wetlands reserve plan of operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... program, including, but not limited to: (i) measures to control noxious weeds and insect pests in order to comply with applicable Federal, or State noxious weed and pest control laws; and (ii) measures to control other specified species of weeds, insects or pests; (3) Specify compatible land uses for personal...
Apply Pesticides Correctly, A Guide for Commercial Applicators: Aquatic Pest Control.
ERIC Educational Resources Information Center
Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.
This guide presents information needed to meet the requirements for pesticide applicator certification. The first part deals with recognition and control of aquatic pests such as aquatic weeds, fish and other vertebrates. Environmental concerns in aquatic pest control are discussed in the second section. (CS)
Code of Federal Regulations, 2013 CFR
2013-07-01
... pest control program at all civil works projects. It also presents guidance for the preparation and submission of an annual pest control summary report. ... Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE PEST...
Code of Federal Regulations, 2010 CFR
2010-07-01
... pest control program at all civil works projects. It also presents guidance for the preparation and submission of an annual pest control summary report. ... Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE PEST...
Code of Federal Regulations, 2012 CFR
2012-07-01
... pest control program at all civil works projects. It also presents guidance for the preparation and submission of an annual pest control summary report. ... Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE PEST...
Code of Federal Regulations, 2011 CFR
2011-07-01
... pest control program at all civil works projects. It also presents guidance for the preparation and submission of an annual pest control summary report. ... Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE PEST...
Code of Federal Regulations, 2014 CFR
2014-07-01
... pest control program at all civil works projects. It also presents guidance for the preparation and submission of an annual pest control summary report. ... Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE PEST...
Weaver ant role in cashew orchards in Vietnam.
Peng, Renkang; Lan, La Pham; Christian, Keith
2014-08-01
Cashew (Anacardium occidentale L.) is a very important source of income for more than 200,000 farmer households in Vietnam. The present cashew productivity in Vietnam is low and unstable, and pest damage is partly responsible for this. Cashew farmers rely on pesticides to minimize the damage, resulting in adverse impacts on farm environment and farmers' health. Weaver ants (Oecophylla spp) are effective biocontrol agents of a range of cashew insect pests in several cashew-growing countries, and these ants are widely distributed in Vietnam. The aim of this study is to evaluate the potential of weaver ants in cashew orchards in Vietnam. Field surveys and field experiment were conducted in five cashew orchards from July 2006 to January 2008 in Binh Phuoc, Dong Nai, and Ba Ria Vung Tau provinces, Vietnam. Based on the field surveys, the most important pests that damage flushing foliar and floral shoots and young cashew fruits and nuts were mosquito bugs, brown shoot borers, blue shoot borers, and fruit-nut borers. The damage caused by each of these pests was significantly lower on trees with weaver ants compared with trees without the ants, showing that the ants were able to keep these pest damages under the control threshold. Regular monitoring of the field experiment showed that weaver ants were similar to insecticides for controlling mosquito bugs, blue shoot borers, fruit-nut borers, leaf rollers, and leaf miners. Aphids did not become major pests in plot with weaver ants. To manage insect pest assemblage in cashew orchards, an integrated pest management using weaver ants as a major component is discussed.
Rebaudo, François; Dangles, Olivier
2011-10-01
Worldwide, the theory and practice of agricultural extension system have been dominated for almost half a century by Rogers' "diffusion of innovation theory". In particular, the success of integrated pest management (IPM) extension programs depends on the effectiveness of IPM information diffusion from trained farmers to other farmers, an important assumption which underpins funding from development organizations. Here we developed an innovative approach through an agent-based model (ABM) combining social (diffusion theory) and biological (pest population dynamics) models to study the role of cooperation among small-scale farmers to share IPM information for controlling an invasive pest. The model was implemented with field data, including learning processes and control efficiency, from large scale surveys in the Ecuadorian Andes. Our results predict that although cooperation had short-term costs for individual farmers, it paid in the long run as it decreased pest infestation at the community scale. However, the slow learning process placed restrictions on the knowledge that could be generated within farmer communities over time, giving rise to natural lags in IPM diffusion and applications. We further showed that if individuals learn from others about the benefits of early prevention of new pests, then educational effort may have a sustainable long-run impact. Consistent with models of information diffusion theory, our results demonstrate how an integrated approach combining ecological and social systems would help better predict the success of IPM programs. This approach has potential beyond pest management as it could be applied to any resource management program seeking to spread innovations across populations.
Chellaiah, Meenakshi A; Schaller, Michael D
2009-08-01
PTP-PEST is involved in the regulation of sealing ring formation in osteoclasts. In this article, we have shown a regulatory role for PTP-PEST on dephosphorylation of c-Src at Y527 and phosphorylation at Y418 in the catalytic site. Activation of Src in osteoclasts by over-expression of PTP-PEST resulted in the phosphorylation of cortactin at Y421 and WASP at Y294. Also enhanced as a result, is the interaction of Src, cortactin, and Arp2 with WASP. Moreover, the number of osteoclasts displaying sealing ring and bone resorbing activity was increased in response to PTP-PEST over-expression as compared with control osteoclasts. Cells expressing constitutively active-Src (527YDeltaF) simulate the effects mediated by PTP-PEST. Treatment of osteoclasts with a bisphosphonate alendronate or a potent PTP inhibitor PAO decreased the activity and phosphorylation of Src at Y418 due to reduced dephosphorylation state at Y527. Therefore, Src-mediated phosphorylation of cortactin and WASP as well as the formation of WASP.cortactin.Arp2 complex and sealing ring were reduced in these osteoclasts. Similar effects were observed in osteoclasts treated with an Src inhibitor PP2. We have shown that bisphosphonates could modulate the function of osteoclasts by inhibiting downstream signaling mediated by PTP-PEST/Src, in addition to its effect on the inhibition of the post-translational modification of small GTP-binding proteins such as Rab, Rho, and Rac as shown by others. The promising effects of the inhibitors PP2 and PAO on osteoclast function suggest a therapeutic approach for patients with bone metastases and osteoporosis as an alternative to bisphosphonates.
Entomological Opportunities and Challenges for Sustainable Viticulture in a Global Market.
Daane, Kent M; Vincent, Charles; Isaacs, Rufus; Ioriatti, Claudio
2018-01-07
Viticulture has experienced dramatic global growth in acreage and value. As the international exchange of goods has increased, so too has the market demand for sustainably produced products. Both elements redefine the entomological challenges posed to viticulture and have stimulated significant advances in arthropod pest control programs. Vineyard managers on all continents are increasingly combating invasive species, resulting in the adoption of novel insecticides, semiochemicals, and molecular tools to support sustainable viticulture. At the local level, vineyard management practices consider factors such as the surrounding natural ecosystem, risk to fish populations, and air quality. Coordinated multinational responses to pest invasion have been highly effective and have, for example, resulted in eradication of the moth Lobesia botrana from California vineyards, a pest found in 2009 and eradicated by 2016. At the global level, the shared pests and solutions for their suppression will play an increasing role in delivering internationally sensitive pest management programs that respond to invasive pests, climate change, novel vector and pathogen relationships, and pesticide restrictions.
A Guide to Major Insects, Diseases, Air Pollution, Injury, and Chemical Injury of Sycamore
J.D. Solomon; A. Dan Wilson; N.M. Schiff
1999-01-01
This booklet will help nurserymen, forest woodland managers, pest control operators, and homeowners to identify and control pest problems on sycamore trees. The major insect and disease pests of sycamores in the Eastern United Stats are emphasized. Descriptions and illustrations of the pests and the damage they cause are provided to aid in identification. Brief notes...
Natural products for pest control: an analysis of their role, value and future.
Gerwick, B Clifford; Sparks, Thomas C
2014-08-01
Natural products (NPs) have long been used as pesticides and have broadly served as a source of inspiration for a great many commercial synthetic organic fungicides, herbicides and insecticides that are in the market today. In light of the continuing need for new tools to address an ever-changing array of fungal, weed and insect pests, NPs continue to be a source of models and templates for the development of new pest control agents. Interestingly, an examination of the literature suggests that NP models exist for many of the pest control agents that were discovered by other means, suggesting that, had circumstances been different, these NPs could have served as inspiration for the discovery of a great many more of today's pest control agents. Here, an attempt is made to answer questions regarding the existence of an NP model for existing classes of pesticides and what is needed for the discovery of new NPs and NP models for pest control agents. © 2014 Society of Chemical Industry.
Controlling Household Pests. Home and Garden Bulletin No. 96.
ERIC Educational Resources Information Center
Department of Agriculture, Washington, DC.
Reviewed are good housekeeping practices for eliminating and preventing the return of common household pests. Each category of pest is described individually including a description of their habits, the damage they do, and approved methods of control. (SL)
Clemmons, Elizabeth A; Taylor, Douglas K
2016-01-01
Pests that infest stored food products are an important problem worldwide. In addition to causing loss and consumer rejection of products, these pests can elicit allergic reactions and perhaps spread disease-causing microorganisms. Booklice (Liposcelis spp.), grain mites (Acarus siro), and flour beetles (Tribolium spp.) are common stored-product pests that have previously been identified in our laboratory animal facility. These pests traditionally are described as harmless to our animals, but their presence can be cause for concern in some cases. Here we discuss the biology of these species and their potential effects on human and animal health. Occupational health risks are covered, and common monitoring and control methods are summarized. PMID:27931310
Hoddle, Mark S.; Warner, Keith; Steggall, John; Jetter, Karen M.
2014-01-01
Advances in scientific disciplines that support classical biological control have provided “new tools” that could have important applications for biocontrol programs for some long-established invasive arthropod pests. We suggest that these previously unavailable tools should be used in biological control programs targeting “legacy pests”, even if they have been targets of previously unsuccessful biocontrol projects. Examples of “new tools” include molecular analyses to verify species identities and likely geographic area of origin, climate matching and ecological niche modeling, preservation of natural enemy genetic diversity in quarantine, the use of theory from invasion biology to maximize establishment likelihoods for natural enemies, and improved understanding of the interactions between natural enemy and target pest microbiomes. This review suggests that opportunities exist for revisiting old pest problems and funding research programs using “new tools” for developing biological control programs for “legacy pests” could provide permanent suppression of some seemingly intractable pest problems. As a case study, we use citricola scale, Coccus pseudomagnoliarum, an invasive legacy pest of California citrus, to demonstrate the potential of new tools to support a new classical biological control program targeting this insect. PMID:26463063
50 CFR 35.7 - Control of wildfires, insects, pest plants, and disease.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., and disease. 35.7 Section 35.7 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE... MANAGEMENT General Rules § 35.7 Control of wildfires, insects, pest plants, and disease. To the extent necessary, the Director shall prescribe measures to control wildfires, insects, pest plants, and disease to...
50 CFR 35.7 - Control of wildfires, insects, pest plants, and disease.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., and disease. 35.7 Section 35.7 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE... MANAGEMENT General Rules § 35.7 Control of wildfires, insects, pest plants, and disease. To the extent necessary, the Director shall prescribe measures to control wildfires, insects, pest plants, and disease to...
50 CFR 35.7 - Control of wildfires, insects, pest plants, and disease.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., and disease. 35.7 Section 35.7 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE... MANAGEMENT General Rules § 35.7 Control of wildfires, insects, pest plants, and disease. To the extent necessary, the Director shall prescribe measures to control wildfires, insects, pest plants, and disease to...
50 CFR 35.7 - Control of wildfires, insects, pest plants, and disease.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., and disease. 35.7 Section 35.7 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE... MANAGEMENT General Rules § 35.7 Control of wildfires, insects, pest plants, and disease. To the extent necessary, the Director shall prescribe measures to control wildfires, insects, pest plants, and disease to...
50 CFR 35.7 - Control of wildfires, insects, pest plants, and disease.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., and disease. 35.7 Section 35.7 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE... MANAGEMENT General Rules § 35.7 Control of wildfires, insects, pest plants, and disease. To the extent necessary, the Director shall prescribe measures to control wildfires, insects, pest plants, and disease to...
33 CFR 274.6 - Division/district pest control programs.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., DEPARTMENT OF DEFENSE PEST CONTROL PROGRAM FOR CIVIL WORKS PROJECTS Project Operation § 274.6 Division... from time to time, will be used as guides in selecting the type of chemicals and the method of application in the control of vegetation and pests at civil works projects. (b) Responsibilities and reports...
Transport and fate of methyl iodide a its pest control in soils
USDA-ARS?s Scientific Manuscript database
For fumigants, information on transport and fate, as well as pest control, is needed to develop management practices with the fewest human and environmental health risks while offering sufficient pest control efficacy. For this purpose, a 2-D soil chamber (60 cm wide, 60 cm long, and 6 cm thick) wit...
Do Refuge Plants Favour Natural Pest Control in Maize Crops?
Quispe, Reinaldo; Mazón, Marina; Rodríguez-Berrío, Alexander
2017-01-01
The use of non-crop plants to provide the resources that herbivorous crop pests’ natural enemies need is being increasingly incorporated into integrated pest management programs. We evaluated insect functional groups found on three refuges consisting of five different plant species each, planted next to a maize crop in Lima, Peru, to investigate which refuge favoured natural control of herbivores considered as pests of maize in Peru, and which refuge plant traits were more attractive to those desirable enemies. Insects occurring in all the plants, including the maize crop itself, were sampled weekly during the crop growing cycle, from February to June 2011. All individuals collected were identified and classified into three functional groups: herbivores, parasitoids, and predators. Refuges were compared based on their effectiveness in enhancing the populations of predator and parasitoid insects of the crop enemies. Refuges A and B were the most effective, showing the highest richness and abundance of both predators and parasitoids, including several insect species that are reported to attack the main insect pests of maize (Spodoptera frugiperda and Rhopalosiphum maidis), as well as other species that serve as alternative hosts of these natural enemies. PMID:28718835
Pang, Yuan-Ping; Brimijoin, Stephen; Ragsdale, David W; Zhu, Kun Yan; Suranyi, Robert
2012-04-01
Insect pests are responsible for human suffering and financial losses worldwide. New and environmentally safe insecticides are urgently needed to cope with these serious problems. Resistance to current insecticides has resulted in a resurgence of insect pests, and growing concerns about insecticide toxicity to humans discourage the use of insecticides for pest control. The small market for insecticides has hampered insecticide development; however, advances in genomics and structural genomics offer new opportunities to develop insecticides that are less dependent on the insecticide market. This review summarizes the literature data that support the hypothesis that an insect-specific cysteine residue located at the opening of the acetylcholinesterase active site is a promising target site for developing new insecticides with reduced off-target toxicity and low propensity for insect resistance. These data are used to discuss the differences between targeting the insect-specific cysteine residue and targeting the ubiquitous catalytic serine residue of acetylcholinesterase from the perspective of reducing off-target toxicity and insect resistance. Also discussed is the prospect of developing cysteine-targeting anticholinesterases as effective and environmentally safe insecticides for control of disease vectors, crop damage, and residential insect pests within the financial confines of the present insecticide market.
Pang, Yuan-Ping; Brimijoin, Stephen; Ragsdale, David W; Zhu, Kun Yan; Suranyi, Robert
2012-01-01
Insect pests are responsible for human suffering and financial losses worldwide. New and environmentally safe insecticides are urgently needed to cope with these serious problems. Resistance to current insecticides has resulted in a resurgence of insect pests, and growing concerns about insecticide toxicity to humans discourage the use of insecticides for pest control. The small market for insecticides has hampered insecticide development; however, advances in genomics and structural genomics offer new opportunities to develop insecticides that are less dependent on the insecticide market. This review summarizes the literature data that support the hypothesis that an insect-specific cysteine residue located at the opening of the acetylcholinesterase active site is a promising target site for developing new insecticides with reduced off-target toxicity and low propensity for insect resistance. These data are used to discuss the differences between targeting the insect-specific cysteine residue and targeting the ubiquitous catalytic serine residue of acetylcholinesterase from the perspective of reducing off-target toxicity and insect resistance. Also discussed is the prospect of developing cysteine-targeting anticholinesterases as effective and environmentally safe insecticides for control of disease vectors, crop damage, and residential insect pests within the financial confines of the present insecticide market. PMID:22280344
Matyjaszczyk, Ewa
2015-09-01
Products containing microorganisms (bacteria, fungi and viruses) can be used in plant production as an intervention as well as a prevention method for pest control. Their utilisation is strictly in line with the principles of integrated pest management, provided that they are effective and safe. The rules of registration of microorganisms for crop production in the European Union differ, depending on whether they are placed on the market as plant protection products or not. For over 20 years, uniform rules for registration of plant protection products have been in force. Currently, 36 microorganisms marked up to the strain are approved for use in pest control in the Community. The decision concerning market placement of plant protection products containing approved microorganisms is issued for each member state separately. The approaches to market placement of other products with microorganisms differ within the EU, ranging from a complete lack of requirements to long and costly registration procedures. © 2015 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Petrovskii, Sergei; Petrovskaya, Natalia; Bearup, Daniel
2014-09-01
Pest insects pose a significant threat to food production worldwide resulting in annual losses worth hundreds of billions of dollars. Pest control attempts to prevent pest outbreaks that could otherwise destroy a sward. It is good practice in integrated pest management to recommend control actions (usually pesticides application) only when the pest density exceeds a certain threshold. Accurate estimation of pest population density in ecosystems, especially in agro-ecosystems, is therefore very important, and this is the overall goal of the pest insect monitoring. However, this is a complex and challenging task; providing accurate information about pest abundance is hardly possible without taking into account the complexity of ecosystems' dynamics, in particular, the existence of multiple scales. In the case of pest insects, monitoring has three different spatial scales, each of them having their own scale-specific goal and their own approaches to data collection and interpretation. In this paper, we review recent progress in mathematical models and methods applied at each of these scales and show how it helps to improve the accuracy and robustness of pest population density estimation.
Scaling up our understanding of non-consumptive effects in insect systems
Hermann, Sara L.; Landis, Douglas A.
2017-04-06
Here, non-consumptive effects (NCEs) of predators on prey is an important topic in insect ecology with potential applications for pest management. NCEs are changes in prey behavior and physiology that aid in predation avoidance. While NCEs can have positive outcomes for prey survival there may also be negative consequences including increased stress and reduced growth. These effects can cascade through trophic systems influencing ecosystem function. Most NCEs have been studied at small spatial and temporal scales. However, recent studies show promise for the potential to manipulate NCEs for pest management. We suggest the next frontier for NCE studies includes manipulatingmore » the landscape of fear to improve pest control, which requires scaling-up to field and landscape levels, over ecologically relevant time frames.« less
Scaling up our understanding of non-consumptive effects in insect systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermann, Sara L.; Landis, Douglas A.
Here, non-consumptive effects (NCEs) of predators on prey is an important topic in insect ecology with potential applications for pest management. NCEs are changes in prey behavior and physiology that aid in predation avoidance. While NCEs can have positive outcomes for prey survival there may also be negative consequences including increased stress and reduced growth. These effects can cascade through trophic systems influencing ecosystem function. Most NCEs have been studied at small spatial and temporal scales. However, recent studies show promise for the potential to manipulate NCEs for pest management. We suggest the next frontier for NCE studies includes manipulatingmore » the landscape of fear to improve pest control, which requires scaling-up to field and landscape levels, over ecologically relevant time frames.« less
Weinberg, Justine Lew; Bunin, Lisa J; Das, Rupali
2009-01-01
In 2005, the California Department of Public Health, Occupational Health Branch (OHB) investigated an incident of pesticide exposure and identified 27 vineyard workers who became ill due to drift of cyfluthrin, a pesticide being applied to a neighboring orange field to control katydids. Another pest, citrus thrips, was also present in the field. We investigated safer alternatives for katydid and thrips control to prevent illness due to pesticide exposure and used the industrial hygiene hierarchy of controls to prioritize the control methods. OHB evaluated factors that contributed to pesticide exposure and identified safer alternatives by conducting literature reviews on katydid and thrips control, drift prevention technology, and other relevant topics, and by interviewing integrated pest management advisors, conventional and organic growers, equipment manufacturers, county agricultural commissioners, pest control advisors, regulatory agencies, and others. We prioritized methods using the industrial hygiene hierarchy of controls. We identified safer pest control practices that incorporated hazard elimination, chemical substitution, engineering controls, and administrative controls, including employer policies and government regulations.
Ashraf, Misbah; Farooq, Muhammad; Shakeel, Muhammad; Din, Naima; Hussain, Shahbaz; Saeed, Nadia; Shakeel, Qaiser; Rajput, Nasir Ahmed
2017-12-01
The stored grain insects cause great damage to grains under storage conditions. Synthetic insecticides and fumigants are considered as key measures to control these stored grain insect pests. However, the major issue with these chemicals is grain contamination with chemical residues and development of resistance by insect pests to these chemicals. Biological control is considered as a potential alternative to chemical control especially with the use of pathogens, alone or in combination with selective insecticides. The present study was conducted to evaluate the synergism of Metarhizium anisopliae with diatomaceous earth (DE) and thiamethoxam against four insect pests on the stored wheat grains. In the first bioassay, the M. anisopliae was applied at 1.4 × 10 4 and 1.4 × 10 6 conidia/ml alone and in integration with two concentrations (250 and 500 ppm) of tested DE. The tested fungus when combined with DE and thiamethoxam possessed synergistic impact as compared to their individual efficacy. Adult mortality increased with respect to increased exposure interval and doses. In the second bioassay, M. anisopliae was applied at 1.4 × 10 4 conidia/ml individually and in combination with three concentrations (0.50, 0.75, and 1.00 ppm) of thiamethoxam. Results concluded that M. anisopliae integrated with DE and thiamethoxam provides more effective control of stored grain insect pests.
Chidawanyika, Frank; Mudavanhu, Pride; Nyamukondiwa, Casper
2012-11-09
The current changes in global climatic regimes present a significant societal challenge, affecting in all likelihood insect physiology, biochemistry, biogeography and population dynamics. With the increasing resistance of many insect pest species to chemical insecticides and an increasing organic food market, pest control strategies are slowly shifting towards more sustainable, ecologically sound and economically viable options. Biologically based pest management strategies present such opportunities through predation or parasitism of pests and plant direct or indirect defense mechanisms that can all be important components of sustainable integrated pest management programs. Inevitably, the efficacy of biological control systems is highly dependent on natural enemy-prey interactions, which will likely be modified by changing climates. Therefore, knowledge of how insect pests and their natural enemies respond to climate variation is of fundamental importance in understanding biological insect pest management under global climate change. Here, we discuss biological control, its challenges under climate change scenarios and how increased global temperatures will require adaptive management strategies to cope with changing status of insects and their natural enemies.
Machado, Vilmar; Rodríguez-García, María Juliana; Sánchez-García, Francisco Javier; Galan, Jose
2014-01-01
The relationship between humans and the insect pests of cultivated plants may be considered to be an indirect coevolutionary process, i.e., an arms race. Over time, humans have developed several strategies to minimize the negative impacts of insects on agricultural production. However, insects have made adaptive responses via the evolution of resistance to insecticides, and more recently against Bacillus thuriengiensis. Thus, we need to continuously invest resources in the development of new strategies for crop protection. Recent advances in genomics have demonstrated the possibility of a new weapon or strategy in this war, i.e., gene silencing, which involves blocking the expression of specific genes via mRNA inactivation. In the last decade, several studies have demonstrated the effectiveness of this strategy in the control of different species of insects. However, several technical difficulties need to be overcome to transform this potential into reality, such as the selection of target genes, the concentration of dsRNA, the nucleotide sequence of the dsRNA, the length of dsRNA, persistence in the insect body, and the life stage of the target species where gene silencing is most efficient. This study analyzes several aspects related to the use of gene silencing in pest control and it includes an overview of the inactivation process, as well as the problems that need to be resolved to transform gene silencing into an effective pest control method.
Bardin, Marc; Ajouz, Sakhr; Comby, Morgane; Lopez-Ferber, Miguel; Graillot, Benoît; Siegwart, Myriam; Nicot, Philippe C.
2015-01-01
The durability of a control method for plant protection is defined as the persistence of its efficacy in space and time. It depends on (i) the selection pressure exerted by it on populations of plant pathogens and (ii) on the capacity of these pathogens to adapt to the control method. Erosion of effectiveness of conventional plant protection methods has been widely studied in the past. For example, apparition of resistance to chemical pesticides in plant pathogens or pests has been extensively documented. The durability of biological control has often been assumed to be higher than that of chemical control. Results concerning pest management in agricultural systems have shown that this assumption may not always be justified. Resistance of various pests to one or several toxins of Bacillus thuringiensis and apparition of resistance of the codling moth Cydia pomonella to the C. pomonella granulovirus have, for example, been described. In contrast with the situation for pests, the durability of biological control of plant diseases has hardly been studied and no scientific reports proving the loss of efficiency of biological control agents against plant pathogens in practice has been published so far. Knowledge concerning the possible erosion of effectiveness of biological control is essential to ensure a durable efficacy of biological control agents on target plant pathogens. This knowledge will result in identifying risk factors that can foster the selection of strains of plant pathogens resistant to biological control agents. It will also result in identifying types of biological control agents with lower risk of efficacy loss, i.e., modes of action of biological control agents that does not favor the selection of resistant isolates in natural populations of plant pathogens. An analysis of the scientific literature was then conducted to assess the potential for plant pathogens to become resistant to biological control agents. PMID:26284088
Wiederholt, Ruscena; Bagstad, Kenneth J.; McCracken, Gary F.; Diffendorfer, Jay E.; Loomis, John B.; Semmens, Darius J.; Russell, Amy L.; Sansone, Chris; LaSharr, Kelsie; Cryan, Paul; Reynoso, Claudia; Medellin, Rodrigo A.; Lopez-Hoffman, Laura
2017-01-01
Given rapid changes in agricultural practice, it is critical to understand how alterations in ecological, technological, and economic conditions over time and space impact ecosystem services in agroecosystems. Here, we present a benefit transfer approach to quantify cotton pest-control services provided by a generalist predator, the Mexican free-tailed bat (Tadarida brasiliensis mexicana), in the southwestern United States. We show that pest-control estimates derived using (1) a compound spatial–temporal model – which incorporates spatial and temporal variability in crop pest-control service values – are likely to exhibit less error than those derived using (2) a simple-spatial model (i.e., a model that extrapolates values derived for one area directly, without adjustment, to other areas) or (3) a simple-temporal model (i.e., a model that extrapolates data from a few points in time over longer time periods). Using our compound spatial–temporal approach, the annualized pest-control value was \\$12.2 million, in contrast to an estimate of \\$70.1 million (5.7 times greater), obtained from the simple-spatial approach. Using estimates from one year (simple-temporal approach) revealed large value differences (0.4 times smaller to 2 times greater). Finally, we present a detailed protocol for valuing pest-control services, which can be used to develop robust pest-control transfer functions for generalist predators in agroecosystems.
1978 Insect Pest Management Guide: Field and Forage Crops. Circular 899.
ERIC Educational Resources Information Center
Illinois Univ., Urbana. Cooperative Extension Service.
This circular lists suggested uses of insecticides for the control of field crop pests. Suggestions are given for selection, dosage and application of insecticides to control pests in field corn, alfalfa and clover, small grains, soybeans and grain sorghum. (CS)
Termite Pest Control - Industrial. Manual 96.
ERIC Educational Resources Information Center
Missouri Univ., Columbia. Agricultural Experiment Station.
This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in the termite pest control category. The text discusses general pests, especially ants, and wood-destroying organisms such as termites, beetles, and fungi. (CS)
Public Health Pest Control Category Manual.
ERIC Educational Resources Information Center
Bowman, James S.; Turmel, Jon P.
This manual provides information needed to meet the standards for pesticide applicator certification. It presents pest control guidelines for those organisms of public health significance. Fact sheets with line drawings discuss pests such as cockroaches, bedbugs, lice, ants, beetles, bats, birds, and rodents. (CS)
Kraiss, Heidi; Cullen, Eileen M
2008-06-01
Aphis glycines Matsumura, an invasive insect pest in North American soybeans, is fed upon by a key biological control agent, Harmonia axyridis Pallas. Although biological control is preferentially relied upon to suppress insect pests in organic agriculture, approved insecticides, such as neem, are periodically utilized to reduce damaging pest populations. The authors evaluated direct spray treatments of two neem formulations, azadirachtin and neem seed oil, under controlled conditions for effects on survivorship, development time and fecundity in A. glycines and H. axyridis. Both azadirachtin and neem seed oil significantly increased aphid nymphal mortality (80 and 77% respectively) while significantly increasing development time of those surviving to adulthood. First-instar H. axyridis survival to adulthood was also significantly reduced by both neem formulations, while only azadirachtin reduced third-instar survivorship. Azadirachtin increased H. axyridis development time to adult when applied to both instars, while neem oil only increased time to adult when applied to first instar. Neither neem formulation affected the fecundity of either insect. Results are discussed within the context of future laboratory and field studies aimed at clarifying if neem-derived insecticides can be effectively integrated with biological control for soybean aphid management in organic soybeans. Copyright (c) 2008 Society of Chemical Industry.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-27
... application of the pesticide is made directly to waters of the United States to control pests that are present in the water, and when the application of the pesticide is made to control pests that are over... irrigation ditches requiring pest control. 113110 Timber Tract The operation of Operations. timber tracts for...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirajuddin, Nur Tasmiah, E-mail: nurtasmiah@yahoo.com; Anggraeni, Tjandra, E-mail: nurtasmiah@yahoo.com
Crocidolomia pavonana is one of the most prominent pest that cause damage to vegetables especially Brassicaceae such us cabbage, broccoli, mustard greens and turnips, these vegetable have been widely consumed and cultivated in Indonesia. The invation of this pest might created high risk of cultivated failure. Enviromentally pest control efforts by utilizing biological control agents such us biopesticides of plants and entomopathogenic fungi have been carried out, but the work was relatively long and strongly influenced by environmental factors. The purpose of this study was to combine biopesticide of Mirabilis jalapa and entomopathogenic fungi Beauveria bassiana to look at mortalitymore » of C. pavonana larvae observing by histological incision and scanning electron microscope. Concentration treatments of extracts M. jalapa was (control; 0,1; 0,2; 0,4 and 0,8 gr/ml) and the result showed that the effective concentration was 0,8 g/ml which affect significantly (P<0,05) in reduce pupa weight, improve pupasi time, lowering percentage of emergence imago and improve the long phase of pupa which differ significantly with control. The combination of biopesticides proved to accelerate the mortality of larvae. Histological incision observed at hour 24, 48, 72 and 96, where the biggest damage occurred at hour 96. Observation by scanning electron microscope showed fungus spores that attach to the body surface of larvae subsequently penetrate into the body. Thus the combination use of biopesticides M. jalapa and fungi B. bassiana, can be used as an alternative pest control C. pavonana.« less
NASA Astrophysics Data System (ADS)
Sirajuddin, Nur Tasmiah; Anggraeni, Tjandra
2014-03-01
Crocidolomia pavonana is one of the most prominent pest that cause damage to vegetables especially Brassicaceae such us cabbage, broccoli, mustard greens and turnips, these vegetable have been widely consumed and cultivated in Indonesia. The invation of this pest might created high risk of cultivated failure. Enviromentally pest control efforts by utilizing biological control agents such us biopesticides of plants and entomopathogenic fungi have been carried out, but the work was relatively long and strongly influenced by environmental factors. The purpose of this study was to combine biopesticide of Mirabilis jalapa and entomopathogenic fungi Beauveria bassiana to look at mortality of C. pavonana larvae observing by histological incision and scanning electron microscope. Concentration treatments of extracts M. jalapa was (control; 0,1; 0,2; 0,4 and 0,8 gr/ml) and the result showed that the effective concentration was 0,8 g/ml which affect significantly (P<0,05) in reduce pupa weight, improve pupasi time, lowering percentage of emergence imago and improve the long phase of pupa which differ significantly with control. The combination of biopesticides proved to accelerate the mortality of larvae. Histological incision observed at hour 24, 48, 72 and 96, where the biggest damage occurred at hour 96. Observation by scanning electron microscope showed fungus spores that attach to the body surface of larvae subsequently penetrate into the body. Thus the combination use of biopesticides M. jalapa and fungi B. bassiana, can be used as an alternative pest control C. pavonana.
Wilby, Andrew; Sutton, Peter; Wäckers, Felix
2017-01-01
Flower strips are commonly recommended to boost biodiversity and multiple ecosystem services (e.g., pollination and pest control) on farmland. However, significant knowledge gaps remain regards the extent to which they deliver on these aims. Here, we tested the efficacy of flower strips that targeted different subsets of beneficial arthropods (pollinators and natural enemies) and their ecosystem services in cider apple orchards. Treatments included mixes that specifically targeted: (1) pollinators (‘concealed-nectar plants’); (2) natural enemies (‘open-nectar plants’); or (3) both groups concurrently (i.e., ‘multi-functional’ mix). Flower strips were established in alleyways of four orchards and compared to control alleyways (no flowers). Pollinator (e.g., bees) and natural enemy (e.g., parasitoid wasps, predatory flies and beetles) visitation to flower strips, alongside measures of pest control (aphid colony densities, sentinel prey predation), and fruit production, were monitored in orchards over two consecutive growing seasons. Targeted flower strips attracted either pollinators or natural enemies, whereas mixed flower strips attracted both groups in similar abundance to targeted mixes. Natural enemy densities on apple trees were higher in plots containing open-nectar plants compared to other treatments, but effects were stronger for non-aphidophagous taxa. Predation of sentinel prey was enhanced in all flowering plots compared to controls but pest aphid densities and fruit yield were unaffected by flower strips. We conclude that ‘multi-functional’ flower strips that contain flowering plant species with opposing floral traits can provide nectar and pollen for both pollinators and natural enemies, but further work is required to understand their potential for improving pest control services and yield in cider apple orchards. PMID:28930157
Campbell, Alistair John; Wilby, Andrew; Sutton, Peter; Wäckers, Felix
2017-09-20
Flower strips are commonly recommended to boost biodiversity and multiple ecosystem services (e.g., pollination and pest control) on farmland. However, significant knowledge gaps remain regards the extent to which they deliver on these aims. Here, we tested the efficacy of flower strips that targeted different subsets of beneficial arthropods (pollinators and natural enemies) and their ecosystem services in cider apple orchards. Treatments included mixes that specifically targeted: (1) pollinators ('concealed-nectar plants'); (2) natural enemies ('open-nectar plants'); or (3) both groups concurrently (i.e., 'multi-functional' mix). Flower strips were established in alleyways of four orchards and compared to control alleyways (no flowers). Pollinator (e.g., bees) and natural enemy (e.g., parasitoid wasps, predatory flies and beetles) visitation to flower strips, alongside measures of pest control (aphid colony densities, sentinel prey predation), and fruit production, were monitored in orchards over two consecutive growing seasons. Targeted flower strips attracted either pollinators or natural enemies, whereas mixed flower strips attracted both groups in similar abundance to targeted mixes. Natural enemy densities on apple trees were higher in plots containing open-nectar plants compared to other treatments, but effects were stronger for non-aphidophagous taxa. Predation of sentinel prey was enhanced in all flowering plots compared to controls but pest aphid densities and fruit yield were unaffected by flower strips. We conclude that 'multi-functional' flower strips that contain flowering plant species with opposing floral traits can provide nectar and pollen for both pollinators and natural enemies, but further work is required to understand their potential for improving pest control services and yield in cider apple orchards.
War, Abdul R; Murugesan, Surya; Boddepalli, Venkata N; Srinivasan, Ramasamy; Nair, Ramakrishnan M
2017-01-01
Mungbean [ Vigna radiata (L.) R. Wilczek var. radiata ] is an important pulse crop in Asia, and is consumed as dry seeds and as bean sprouts. It is an excellent source of digestible protein. Bruchids [ Callosobruchus chinensis (L.) and Callosobruchus maculatus (F.)] are the important pests of mungbean and cause damage in the field and in storage. Bruchid infestation reduces the nutritional and market value of the grain and renders seeds unfit for human consumption, agricultural and commercial uses. These pests are controlled mainly by fumigation with highly toxic chemicals such as carbon disulfide, phosphene, and methyl bromide, or by dusting with several other insecticides, which leave residues on the grain, thus, threatening food safety. Some plant-based extracts have been found useful in controlling bruchids, but are not fully successful due to their short-term activity, rapid degradability, and potentially negative effect on seed germination. Although some wild sources of bruchid resistance in mungbean have been reported, which have been used to develop bruchid- resistant lines, undesirable genetic linkages threaten the proper exploitation of genetic diversity from wild germplasm into commercial cultivars. Further, biotype variation in bruchids has rendered some mungbean lines susceptible that otherwise would have been resistant to the pest. Host plant resistance is a cost-effective and a safe alternative to control bruchids in mungbean and is associated with morphological, biochemical, and molecular traits. These traits affect insect growth and development, thereby, reduce the yield losses by the pests. Understanding the defense mechanisms against insect pests could be utilized in exploiting these traits in crop breeding. This review discusses different traits in mungbean involved in defense against bruchids and their utility in pest management. We also highlight the breeding constraints for developing bruchid-resistant mungbean and how can these constraints be minimized. We further highlight the importance of supporting conventional breeding techniques by molecular techniques such as molecular markers linked to bruchid resistance.
War, Abdul R.; Murugesan, Surya; Boddepalli, Venkata N.; Srinivasan, Ramasamy; Nair, Ramakrishnan M.
2017-01-01
Mungbean [Vigna radiata (L.) R. Wilczek var. radiata] is an important pulse crop in Asia, and is consumed as dry seeds and as bean sprouts. It is an excellent source of digestible protein. Bruchids [Callosobruchus chinensis (L.) and Callosobruchus maculatus (F.)] are the important pests of mungbean and cause damage in the field and in storage. Bruchid infestation reduces the nutritional and market value of the grain and renders seeds unfit for human consumption, agricultural and commercial uses. These pests are controlled mainly by fumigation with highly toxic chemicals such as carbon disulfide, phosphene, and methyl bromide, or by dusting with several other insecticides, which leave residues on the grain, thus, threatening food safety. Some plant-based extracts have been found useful in controlling bruchids, but are not fully successful due to their short-term activity, rapid degradability, and potentially negative effect on seed germination. Although some wild sources of bruchid resistance in mungbean have been reported, which have been used to develop bruchid- resistant lines, undesirable genetic linkages threaten the proper exploitation of genetic diversity from wild germplasm into commercial cultivars. Further, biotype variation in bruchids has rendered some mungbean lines susceptible that otherwise would have been resistant to the pest. Host plant resistance is a cost-effective and a safe alternative to control bruchids in mungbean and is associated with morphological, biochemical, and molecular traits. These traits affect insect growth and development, thereby, reduce the yield losses by the pests. Understanding the defense mechanisms against insect pests could be utilized in exploiting these traits in crop breeding. This review discusses different traits in mungbean involved in defense against bruchids and their utility in pest management. We also highlight the breeding constraints for developing bruchid-resistant mungbean and how can these constraints be minimized. We further highlight the importance of supporting conventional breeding techniques by molecular techniques such as molecular markers linked to bruchid resistance. PMID:28676807
Applications of biological control in resistant host-pathogen systems.
White, Steven M; White, K A Jane
2005-09-01
Insect pest species can have devastating effects on crops. Control of these insect pests is usually achieved by using chemical insecticides. However, there has been much cause for concern with their overuse. Consequently, research has been carried out into alternative forms of control, in particular biological control methods. Recent laboratory studies have indicated that these natural forms of control can induce resistant strains of insect pest. In this paper we present a discrete-time host-pathogen model to describe the interaction between a host (insect species) that can develop a resistant strain and a pathogen (biological control) that can be externally applied to the system. For this model we use a single-state variable for the host population. We show that the proportion of resistance in the population impacts on the viability of the host population. Moreover, when the host population does persist, we explore the interaction between host susceptibility and host population levels. The different scenarios which arise are explained ecologically in terms of trade-offs in intrinsic growth rates, disease susceptibility and intraspecific host competition for the resistant subclass.
Schuldiner-Harpaz, Tarryn; Coll, Moshe
2017-05-01
Plant-provided food supplements can influence biological pest control by omnivorous predators in two counteracting ways: they can (i) enhance predator populations, but (ii) reduce pest consumption by individual predators. Yet the majority of studies address only one of these aspects. Here, we first tested the influence of canola (Brassica napus L.) pollen supplements on the life history of two ladybeetle species: Hoppodamia variegata (Goeze) and Coccinella septempunctata (L.). We then developed a theoretical model to simulate total pest consumption in the presence and absence of pollen supplements. Supplementing a prey diet with canola pollen increased H. variegata larval survival from 50 to 82%, and C. septempunctata female oviposition by 1.6-fold. Model simulations revealed a greater benefit of pollen supplements when relying on C. septempunctata for pest suppression than on H. variegata. For these two predators, the tested pollen serves as an essential supplement to a diet of prey. However, the benefit of a mixed prey-pollen diet was not always sufficient to overcome individual decrease in pest consumption. Taken together, our study highlights the importance of addressing both positive and negative roles of plant-provided food supplements in considering the outcome for biological control efforts that rely on omnivorous predators. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
The need to implement the landscape of fear within rodent pest management strategies.
Krijger, Inge M; Belmain, Steven R; Singleton, Grant R; Groot Koerkamp, Peter Wg; Meerburg, Bastiaan G
2017-12-01
Current reactive pest management methods have serious drawbacks such as the heavy reliance on chemicals, emerging genetic rodenticide resistance and high secondary exposure risks. Rodent control needs to be based on pest species ecology and ethology to facilitate the development of ecologically based rodent management (EBRM). An important aspect of EBRM is a strong understanding of rodent pest species ecology, behaviour and spatiotemporal factors. Gaining insight into the behaviour of pest species is a key aspect of EBRM. The landscape of fear (LOF) is a mapping of the spatial variation in the foraging cost arising from the risk of predation, and reflects the levels of fear a prey species perceives at different locations within its home range. In practice, the LOF maps habitat use as a result of perceived fear, which shows where bait or traps are most likely to be encountered and used by rodents. Several studies have linked perceived predation risk of foraging animals with quitting-harvest rates or giving-up densities (GUDs). GUDs have been used to reflect foraging behaviour strategies of predator avoidance, but to our knowledge very few papers have directly used GUDs in relation to pest management strategies. An opportunity for rodent control strategies lies in the integration of the LOF of rodents in EBRM methodologies. Rodent management could be more efficient and effective by concentrating on those areas where rodents perceive the least levels of predation risk. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Vargas, Roger I.; Piñero, Jaime C.; Leblanc, Luc
2015-01-01
Fruit flies (Diptera: Tephritidae) are among the most economically important pest species in the world, attacking a wide range of fruits and fleshy vegetables throughout tropical and sub-tropical areas. These species are such devastating crop pests that major control and eradication programs have been developed in various parts of the world to combat them. The array of control methods includes insecticide sprays to foliage and soil, bait-sprays, male annihilation techniques, releases of sterilized flies and parasitoids, and cultural controls. During the twenty first century there has been a trend to move away from control with organophosphate insecticides (e.g., malathion, diazinon, and naled) and towards reduced risk insecticide treatments. In this article we present an overview of 73 pest species in the genus Bactrocera, examine recent developments of reduced risk technologies for their control and explore Integrated Pest Management (IPM) Programs that integrate multiple components to manage these pests in tropical and sub-tropical areas. PMID:26463186
The effectiveness of Penicillium sp. mixed with silica nanoparticles in controlling Myzus persicae
NASA Astrophysics Data System (ADS)
Hersanti, Hidayat, Syarif; Susanto, Agus; Virgiawan, Regi; Joni, I. Made
2018-02-01
Myzus persicae is one of the major potato plant pests, and also a vector of potato viruses. This pest may cause low quality as well as quantity of potato production. Entomopathogenic fungi can be used to control M. persicae. Penicillium sp. and has been reported as pathogenic to many insect pests. However, it was not that effective in controlling M. persicae. To increase its effectiveness, it can be mixed with plant micro nutrients such as silica, which also protects plants from biotic stress. This experiment was aimed to study the effect of applications of the mixture of Penicillium sp.+ nanosilica in various concentrations on the mortality of M. persicae. There were 8 treatments i.e., applications of single Penicillium sp, single nanosilica 1, 3, and 5 %, and the mixture of Penicillium sp.+ nanosilica 1, 3, and 5 %, and a control (without Penicillium sp.and nanosilica). Each cabbage plant grown in the greenhouse was infested with 20 Penicillium sp. instar II-III, and sprayed according to the treatments. Mortality of M. persicae was assessed after five days of application. The results showed that application of the mixture of Penicillium sp.106spora/ml+nanosilica 5%, and single nanosilica 5% increased the mortality of M. persicae. The mortalities were 37.5%, and 32.5% respectively, compared with 12.5% mortality on the treatment of single Penicillium sp.
Boddupally, Dayakar; Tamirisa, Srinath; Gundra, Sivakrishna Rao; Vudem, Dashavantha Reddy; Khareedu, Venkateswara Rao
2018-05-31
To evolve rice varieties resistant to different groups of insect pests a fusion gene, comprising DI and DII domains of Bt Cry1Ac and carbohydrate binding domain of garlic lectin (ASAL), was constructed. Transgenic rice lines were generated and evaluated to assess the efficacy of Cry1Ac::ASAL fusion protein against three major pests, viz., yellow stem borer (YSB), leaf folder (LF) and brown planthopper (BPH). Molecular analyses of transgenic plants revealed stable integration and expression of the fusion gene. In planta insect bioassays on transgenics disclosed enhanced levels of resistance compared to the control plants. High insect mortality of YSB, LF and BPH was observed on transgenics compared to that of control plants. Furthermore, honeydew assays revealed significant decreases in the feeding ability of BPH on transgenic plants as compared to the controls. Ligand blot analysis, using BPH insects fed on cry1Ac::asal transgenic rice plants, revealed a modified receptor protein-binding pattern owing to its ability to bind to additional receptors in insects. The overall results authenticate that Cry1Ac::ASAL protein is endowed with remarkable entomotoxic effects against major lepidopteran and hemipteran insects. As such, the fusion gene appears promising and can be introduced into various other crops to control multiple insect pests.
Li, Guoping; Feng, Hongqiang; Chen, Peiyu; Wu, Shaoying; Liu, Bing; Qiu, Feng
2010-08-01
Transgenic cotton has shown great promise for the control of target pest insects; however, frequent outbreaks of nontarget pest mirids has been recorded in recent years in northern China. To test the hypothesis that transgenic cotton contributes to nontarget pest outbreaks, we studied the impact of transgenic Bt cottons (both Bt and Bt + CpTI) on the fitness of nontarget pest Adelphocoris suturalis Jakovlev. No significant differences were detected between population densities of A. suturalis in unsprayed nontransgenic cottons and in unsprayed transgenic Bt cottons in 2007, 2008, and 2009. No difference in preferred oviposition site or egg production was detected between transgenic and nontransgenic cottons in both free choice and no choice tests. No difference in life table parameters was detected for A. suturalis between Bt cottons and nontransgenic cottons. All these results indicated that transgenic crops did not contribute to the nontarget pest outbreaks when being compared with their parental lines. The possible reasons for intensified pest status of A. suturalis, such as decrease of pesticide application, deficient natural enemies, and area-wide shift of cotton varieties, were discussed.
A comparative study of integrated pest management strategies based on impulsive control.
Páez Chávez, Joseph; Jungmann, Dirk; Siegmund, Stefan
2018-12-01
The paper presents a comprehensive numerical study of mathematical models used to describe complex biological systems in the framework of integrated pest management. Our study considers two specific ecosystems that describe the application of control mechanisms based on pesticides and natural enemies, implemented in an impulsive and periodic manner, due to which the considered models belong to the class of impulsive differential equations. The present work proposes a numerical approach to study such type of models in detail, via the application of path-following (continuation) techniques for nonsmooth dynamical systems, via the novel continuation platform COCO (Dankowicz and Schilder). In this way, a detailed study focusing on the influence of selected system parameters on the effectiveness of the pest control scheme is carried out for both ecological scenarios. Furthermore, a comparative study is presented, with special emphasis on the mechanisms upon which a pest outbreak can occur in the considered ecosystems. Our study reveals that such outbreaks are determined by the presence of a branching point found during the continuation analysis. The numerical investigation concludes with an in-depth study of the state-dependent pesticide mortality considered in one of the ecological scenarios.
Petrovskii, Sergei; Petrovskaya, Natalia; Bearup, Daniel
2014-09-01
Pest insects pose a significant threat to food production worldwide resulting in annual losses worth hundreds of billions of dollars. Pest control attempts to prevent pest outbreaks that could otherwise destroy a sward. It is good practice in integrated pest management to recommend control actions (usually pesticides application) only when the pest density exceeds a certain threshold. Accurate estimation of pest population density in ecosystems, especially in agro-ecosystems, is therefore very important, and this is the overall goal of the pest insect monitoring. However, this is a complex and challenging task; providing accurate information about pest abundance is hardly possible without taking into account the complexity of ecosystems' dynamics, in particular, the existence of multiple scales. In the case of pest insects, monitoring has three different spatial scales, each of them having their own scale-specific goal and their own approaches to data collection and interpretation. In this paper, we review recent progress in mathematical models and methods applied at each of these scales and show how it helps to improve the accuracy and robustness of pest population density estimation. Copyright © 2014 Elsevier B.V. All rights reserved.
Dashora, Kavya; Roy, Somnath; Nagpal, Akanksha; Roy, Sudipta Mukhopadhyay; Flood, Julie; Prasad, Anjali Km; Khetarpal, Ravinder; Neave, Suzanne; Muraleedharan, N
2017-03-01
Bacillus thuringiensis (Bt) is a soil bacterium that forms spores containing crystals comprising one or more Cry or Cyt proteins having potential and specific insecticidal activity. Different strains of Bt produce different types of toxins, affecting a narrow taxonomic group of insects. Therefore, it is used in non-chemical pest management, including inherent pest resistance through GM crops. The specificity of action of Bt toxins reduces the concern of adverse effects on non-target species, a concern which remains with chemical insecticides as well. To make use of Bt more sustainable, new strains expressing novel toxins are actively being sought globally. Since Bt is successfully used against many pests including the lepidopteran pests in different crop groups, the insecticidal activity against Samia cynthia (Drury) (Eri silkworm) and Antheraea assamensis Helfer (Muga silkworm) becomes a concern in the state of Assam in India which is a predominantly tea- and silk-producing zone. Though Bt can be used as an effective non-chemical approach for pest management for tea pests in the same geographical region, yet, it may potentially affect the silk industry which depends on silkworm. There is a need to identify the potentially lethal impact (through evaluating their mortality potential) of local Bt strains on key silkworm species in North Eastern India. This will allow the use of existing Bt for which the silkworms have natural resistance. Through this review, the authors aim to highlight recent progress in the use of Bt and its insecticidal toxins in tea pest control and the potential sensitivity for tea- and silk-producing zone of Assam in India.
Apply Pesticides Correctly, A Guide for Commercial Applicators: Agricultural Pest Control -- Animal.
ERIC Educational Resources Information Center
Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.
This guide contains basic information to meet specific standards for pesticide applicators. The text is concerned with the common pests of agricultural animals such as flies, ticks, bots, lice and mites. Methods for controlling these pests and appropriate pesticides are discussed. (CS)
Companion and refuge plants to control insect pests
USDA-ARS?s Scientific Manuscript database
Introduction: The sweetpotato whitefly, Bemisia tabaci and aphids are major pests of crops in the southeast USA. An environmentally-friendly management strategy is “push-pull” technology which combines the use of repellent (“push”) and trap crops (“pull”) for insect pest control. The repellent crop,...
Prospects for repellent in pest control: current developments and future challenges
USDA-ARS?s Scientific Manuscript database
The overall interest for environmentally safe pest control methods and the increased frequency of insecticide resistance in pest populations have stimulated research on insect repellents in the recent decades in medical and agricultural entomology. However, there remains a great deal of work to be ...
Agricultural Plant Pest Control. Manual 93.
ERIC Educational Resources Information Center
Missouri Univ., Columbia. Agricultural Experiment Station.
This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides for the agricultural plant pest control category. The text discusses the insect pests including caterpillars, beetles, and soil inhabiting insects; diseases and nematodes; and weeds. Consideration is given…
Development of Semiochemical Based Control Programs for Arthropod Pests of Honeybees
USDA-ARS?s Scientific Manuscript database
In recent years the apiculture industry has experienced serious problems from serious invasions by exotic pests including Varroa destructor and the Small hive beetle, Aethina tumida. Control of these pests is difficult and problematic because Honey bees are extremely sensitive to pesticides and the...
Crop pests and predators exhibit inconsistent responses to surrounding landscape composition
USDA-ARS?s Scientific Manuscript database
Ecosystem-service models are increasingly implemented in diverse decision-making contexts, from land-use planning to corporate risk management. Though widely valued, biological control of crop pests is rarely considered in such decisions in part because suitable pest-control models do not exist. Her...
NASA Astrophysics Data System (ADS)
Tyson, Rebecca C.
2014-09-01
Successful food production results in the delivery to market of beautiful produce, free of damage from insects. All of that produce however, is an excellent and plentiful food source, and nature has evolved a multitude of insects that compete with humans for access. There exist a number of management strategies to combat pests, including traditional crop rotation and companion planting techniques, as well as more sophisticated techniques including mating disruption using pheromones and the application of chemical sprays. Chemical sprays are extremely effective, and are in widespread use around the globe [1,12,20]. Indeed, pesticides are the dominant form of pest management in current use [10,20].
Analysis of sustainable pest control using a pesticide and a screened refuge.
Ringland, John; George, Prasanth
2011-05-01
We describe and analyze a 'screened refuge' technique for indefinitely sustaining control of insect pests using transgenic pesticidal crops or an applied pesticide, even when resistance is not recessive. The screen is a physical barrier that restricts pest movement. In a deterministic discrete-time model of the use of this technique, we obtain asymptotic analytical formulas for the two important equilibria of the system in terms of the refuge size and the pest fitnesses, mutation rates, and mobility out of and into the refuge. One of the equilibria is stable and is the point at which the pest population is controlled. The other is a saddle whose stable manifold bounds the basin of attraction of the former: its location provides a measure of the tolerance of the control mechanism to perturbations in the resistant allele density.
Carrillo-Perdomo, Estefanía; Jiménez-Arias, David; Aller, Ángel; Borges, Andrés A
2016-05-01
Snails and slugs are terrestrial gastropods representing an important biotic stress that adversely affects crop yields. These pests are typically controlled with molluscicides, which produce pollution and toxicity and further induce the evolution of resistance mechanisms, making pest management even more challenging. In our work, we have assessed the efficacy of two different plant defence activators, menadione sodium bisulphite (MSB) and 1,2,3-benzothiadiazole-7-thiocarboxylic acid S-methyl ester (BTH), as inducers of resistance mechanisms of the model plant for defence, Solanum lycopersicum, against the generalist mollusc Theba grasseti (Helicidae). The study was designed to test the feeding behaviour and choice of snails, and also to analyse the expression profile of different genes specifically involved in defence against herbivores and wounds. Our data suggest that, through the downregulation of the terpene volatile genes and the production of proteinase inhibitors, treated MSB plants may be less apparent to herbivores that use herbivore-induced plant volatiles for host location. By contrast, BTH was not effective in the treatment of the pest, probably owing to an antagonistic effect derived from the induction of both salicylic-acid-dependent and jasmonic-acid-dependent pathways. This information is crucial to determine the genetic basis of the choice of terrestrial gastropod herbivores in tomato, providing valuable insight into how the plant defence activators could control herbivore pests in plants. Our work not only reports for the first time the interaction between tomato and a mollusc pest but also presents the action of two plant defence inductors that seems to produce opposed responses by inducing resistance mechanisms through different defence pathways. © 2015 Society of Chemical Industry.
Guerrieri, Emilio; Giorgini, Massimo; Cascone, Pasquale; Carpenito, Simona; van Achterberg, Cees
2016-01-01
Drosophila suzukii (Matsumura), commonly known as Spotted Wing Drosophila (SWD), is a worldwide serious economic threat to the production of berries and stone fruits. The chemical control widely used against this pest is often not able to preventing yield losses because wild flora offers an abundance of fruits to D. suzukii where the pest is able to reproduce and from where it recolonizes neighbouring cultivated fields. Alternatively, within Integrated Pest Management protocols for D. suzukii, biological control could play a key role by reducing its populations particularly in non-cultivated habitats, thus increasing the effectiveness and reducing the side negative effects of other management strategies. Because of the scarcity and of the low efficiency of autochthonous parasitoids in the new invaded territories, in the last few years, a number of surveys started in the native area of D. suzukii to find parasitoid species to be evaluated in quarantine structures and eventually released in the field, following a classical biological control approach. This paper reports the results of these surveys carried out in South Korea and for the first time in China. Among the parasitoids collected, those belonging to the genus Asobara Foerster resulted dominant both by number and species diversity. By combining morphological characters and the mitochondrial COI gene as a molecular marker, we identified seven species of Asobara, of which two associated with D. suzukii, namely A. japonica and A leveri, and five new to science, namely Asobara brevicauda, A. elongata, A mesocauda, A unicolorata, A. triangulata. Our findings offer new opportunity to find effective parasitoids to be introduced in classical biological control programmes in the territories recently invaded by D. suzukii.
Economic and physical determinants of the global distributions of crop pests and pathogens
Bebber, Daniel P; Holmes, Timothy; Smith, David; Gurr, Sarah J
2014-01-01
Crop pests and pathogens pose a significant and growing threat to food security, but their geographical distributions are poorly understood. We present a global analysis of pest and pathogen distributions, to determine the roles of socioeconomic and biophysical factors in determining pest diversity, controlling for variation in observational capacity among countries. Known distributions of 1901 pests and pathogens were obtained from CABI. Linear models were used to partition the variation in pest species per country amongst predictors. Reported pest numbers increased with per capita gross domestic product (GDP), research expenditure and research capacity, and the influence of economics was greater in micro-organisms than in arthropods. Total crop production and crop diversity were the strongest physical predictors of pest numbers per country, but trade and tourism were insignificant once other factors were controlled. Islands reported more pests than mainland countries, but no latitudinal gradient in species richness was evident. Country wealth is likely to be a strong indicator of observational capacity, not just trade flow, as has been interpreted in invasive species studies. If every country had US levels of per capita GDP, then 205 ± 9 additional pests per country would be reported, suggesting that enhanced investment in pest observations will reveal the hidden threat of crop pests and pathogens. PMID:24517626
A repellent net as a new technology to protect cabbage crops.
Martin, T; Palix, R; Kamal, A; Delétré, E; Bonafos, R; Simon, S; Ngouajio, M
2013-08-01
Floating row covers or insect-proof nets with fine mesh are effective at protecting vegetable crops against aphids but negatively impact plant health, especially under warm conditions. Furthermore, in control of cabbage insect pests, aphid parasitoids cannot enter the fine-mesh nets, leading to frequent aphid outbreaks. To surmount these difficulties, a 40-mesh-size repellent net treated with alphacypermethrin was studied in laboratory and field tests. Results showed both irritant and repellent effects of the alphacypermethrin-treated net on Myzus persicae (Sulzer) (Hemiptera: Aphididae) and its parasitoid Aphidius colemani (Haliday) (Hymenoptera: Braconidae). Under field conditions, there were no pests on cabbage protected with the repellent net. The repellent net allowed combining a visual and repellent barrier against aphids. Because of this additive effect, repellent nets allowed covering cabbage permanently with adequate protection against all pests.
The need to implement the landscape of fear within rodent pest management strategies
Belmain, Steven R; Singleton, Grant R; Groot Koerkamp, Peter WG; Meerburg, Bastiaan G
2017-01-01
Abstract Current reactive pest management methods have serious drawbacks such as the heavy reliance on chemicals, emerging genetic rodenticide resistance and high secondary exposure risks. Rodent control needs to be based on pest species ecology and ethology to facilitate the development of ecologically based rodent management (EBRM). An important aspect of EBRM is a strong understanding of rodent pest species ecology, behaviour and spatiotemporal factors. Gaining insight into the behaviour of pest species is a key aspect of EBRM. The landscape of fear (LOF) is a mapping of the spatial variation in the foraging cost arising from the risk of predation, and reflects the levels of fear a prey species perceives at different locations within its home range. In practice, the LOF maps habitat use as a result of perceived fear, which shows where bait or traps are most likely to be encountered and used by rodents. Several studies have linked perceived predation risk of foraging animals with quitting‐harvest rates or giving‐up densities (GUDs). GUDs have been used to reflect foraging behaviour strategies of predator avoidance, but to our knowledge very few papers have directly used GUDs in relation to pest management strategies. An opportunity for rodent control strategies lies in the integration of the LOF of rodents in EBRM methodologies. Rodent management could be more efficient and effective by concentrating on those areas where rodents perceive the least levels of predation risk. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:28556521
Pheromone-based pest management in china: past, present and future prospects
USDA-ARS?s Scientific Manuscript database
Semiochemical-based pest management technology has been widely used to monitor and control insect pests in agricultural, forestry, and public health sectors in the western world. It became a popular tool in the early 1970s with tremendous efforts in developing environment-friendly control technologi...
New developments in bait stations for control of pest Tephritids
USDA-ARS?s Scientific Manuscript database
Bait stations are being developed and tested as alternatives to broadcast pesticide application for control of a number of pest insects. This is an attract-and-kill pest management approach. With the development of female-targeted food-based synthetic attractants for tephritid fruit flies, a numbe...
Apply Pesticides Correctly, A Guide for Commercial Applicators: Food Processing Pest Control.
ERIC Educational Resources Information Center
Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.
This guide contains basic information to meet specific standards for pesticide applicators. Characteristics, life cycles and habits of pests such as roaches, beetles, flies, ants and rodents are discussed. Additionally, pest control measures, especially by application of aerosols, dusts, baits, fumigants or vapors, is presented. (CS)
Codimension-1 Sliding Bifurcations of a Filippov Pest Growth Model with Threshold Policy
NASA Astrophysics Data System (ADS)
Tang, Sanyi; Tang, Guangyao; Qin, Wenjie
A Filippov system is proposed to describe the stage structured nonsmooth pest growth with threshold policy control (TPC). The TPC measure is represented by the total density of both juveniles and adults being chosen as an index for decisions on when to implement chemical control strategies. The proposed Filippov system can have three pieces of sliding segments and three pseudo-equilibria, which result in rich sliding mode bifurcations and local sliding bifurcations including boundary node (boundary focus, or boundary saddle) and tangency bifurcations. As the threshold density varies the model exhibits the interesting global sliding bifurcations sequentially: touching → buckling → crossing → sliding homoclinic orbit to a pseudo-saddle → crossing → touching bifurcations. In particular, bifurcation of a homoclinic orbit to a pseudo-saddle with a figure of eight shape, to a pseudo-saddle-node or to a standard saddle-node have been observed for some parameter sets. This implies that control outcomes are sensitive to the threshold level, and hence it is crucial to choose the threshold level to initiate control strategy. One more sliding segment (or pseudo-equilibrium) is induced by the total density of a population guided switching policy, compared to only the juvenile density guided policy, implying that this control policy is more effective in terms of preventing multiple pest outbreaks or causing the density of pests to stabilize at a desired level such as an economic threshold.
Models for integrated pest control and their biological implications.
Tang, Sanyi; Cheke, Robert A
2008-09-01
Successful integrated pest management (IPM) control programmes depend on many factors which include host-parasitoid ratios, starting densities, timings of parasitoid releases, dosages and timings of insecticide applications and levels of host-feeding and parasitism. Mathematical models can help us to clarify and predict the effects of such factors on the stability of host-parasitoid systems, which we illustrate here by extending the classical continuous and discrete host-parasitoid models to include an IPM control programme. The results indicate that one of three control methods can maintain the host level below the economic threshold (ET) in relation to different ET levels, initial densities of host and parasitoid populations and host-parasitoid ratios. The effects of host intrinsic growth rate and parasitoid searching efficiency on host mean outbreak period can be calculated numerically from the models presented. The instantaneous pest killing rate of an insecticide application is also estimated from the models. The results imply that the modelling methods described can help in the design of appropriate control strategies and assist management decision-making. The results also indicate that a high initial density of parasitoids (such as in inundative releases) and high parasitoid inter-generational survival rates will lead to more frequent host outbreaks and, therefore, greater economic damage. The biological implications of this counter intuitive result are discussed.
Insecticides for suppression of Nylanderia fulva
USDA-ARS?s Scientific Manuscript database
Nylanderia fulva (Mayr) is an invasive ant that is a serious pest in the southern United States. Pest control operators and homeowners are challenged to manage pest populations below acceptable thresholds. Contact and bait insecticides are key components of an Integrated Pest Management (IPM) strate...
Liu, Yonglei; Wang, Yinglong; Shu, Changlong; Lin, Kejian; Song, Fuping; Bravo, Alejandra; Soberón, Mario; Zhang, Jie
2018-02-01
Genetically modified crops that express insecticidal Bacillus thuringiensis (Bt) proteins have become a primary approach for control of lepidopteran (moth) and coleopteran (beetle) pests that feed by chewing the plants. However, the sap-sucking insects (Hemiptera) are not particularly susceptible to Bt toxins. In this study, we describe two Cry toxins (Cry64Ba and Cry64Ca) from Bt strain 1012 that showed toxicity against two important hemipteran rice pests, Laodelphax striatellus and Sogatella furcifera Both of these proteins contain an ETX/MTX2 domain and share common sequence features with the β-pore-forming toxins. Coexpression of cry64Ba and cry64Ca genes in the acrystalliferous Bt strain HD73 - resulted in high insecticidal activity against both hemipteran pests. No toxicity was observed on other pests such as Ostrinia furnacalis , Plutella xylostella , or Colaphellus bowringi Also, no hemolytic activity or toxicity against cancer cells was detected. Binding assays showed specific binding of the Cry64Ba/Cry64Ca toxin complex to brush border membrane vesicles isolated from L. striatellus Cry64Ba and Cry64Ca are Bt Cry toxins highly effective against hemipteran pests and could provide a novel strategy for the environmentally friendly biological control of rice planthoppers in transgenic plants. IMPORTANCE In Asia, rice is an important staple food, whose production is threatened by rice planthoppers. To date, no effective Bacillus thuringiensis (Bt) protein has been shown to have activity against rice planthoppers. We cloned two Bt toxin genes from Bt strain 1012 that showed toxicity against small brown planthoppers ( Laodelphax striatellus ) and white-backed planthoppers ( Sogatella furcifera ). To our knowledge, the proteins encoded by the cry64Ba and cry64Ca genes are the most efficient insecticidal Bt Cry proteins with activity against hemipteran insects reported so far. Cry64Ba and Cry64Ca showed no toxicity against some lepidopteran or coleopteran pests. These two proteins should be able to be used for integrated hemipteran pest management. Copyright © 2018 American Society for Microbiology.
Swanepoel, Lourens H; Swanepoel, Corrie M; Brown, Peter R; Eiseb, Seth J; Goodman, Steven M; Keith, Mark; Kirsten, Frikkie; Leirs, Herwig; Mahlaba, Themb'alilahlwa A M; Makundi, Rhodes H; Malebane, Phanuel; von Maltitz, Emil F; Massawe, Apia W; Monadjem, Ara; Mulungu, Loth S; Singleton, Grant R; Taylor, Peter J; Soarimalala, Voahangy; Belmain, Steven R
2017-01-01
Rodent pests are especially problematic in terms of agriculture and public health since they can inflict considerable economic damage associated with their abundance, diversity, generalist feeding habits and high reproductive rates. To quantify rodent pest impacts and identify trends in rodent pest research impacting on small-holder agriculture in the Afro-Malagasy region we did a systematic review of research outputs from 1910 to 2015, by developing an a priori defined set of criteria to allow for replication of the review process. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We reviewed 162 publications, and while rodent pest research was spatially distributed across Africa (32 countries, including Madagascar), there was a disparity in number of studies per country with research biased towards four countries (Tanzania [25%], Nigeria [9%], Ethiopia [9%], Kenya [8%]) accounting for 51% of all rodent pest research in the Afro-Malagasy region. There was a disparity in the research themes addressed by Tanzanian publications compared to publications from the rest of the Afro-Malagasy region where research in Tanzania had a much more applied focus (50%) compared to a more basic research approach (92%) in the rest of the Afro-Malagasy region. We found that pest rodents have a significant negative effect on the Afro-Malagasy small-holder farming communities. Crop losses varied between cropping stages, storage and crops and the highest losses occurred during early cropping stages (46% median loss during seedling stage) and the mature stage (15% median loss). There was a scarcity of studies investigating the effectiveness of various management actions on rodent pest damage and population abundance. Our analysis highlights that there are inadequate empirical studies focused on developing sustainable control methods for rodent pests and rodent pests in the Africa-Malagasy context is generally ignored as a research topic.
Swanepoel, Corrie M.; Brown, Peter R.; Eiseb, Seth J.; Goodman, Steven M.; Keith, Mark; Kirsten, Frikkie; Leirs, Herwig; Mahlaba, Themb’alilahlwa A. M.; Makundi, Rhodes H.; Malebane, Phanuel; von Maltitz, Emil F.; Massawe, Apia W.; Monadjem, Ara; Mulungu, Loth S.; Singleton, Grant R.; Taylor, Peter J.; Soarimalala, Voahangy; Belmain, Steven R.
2017-01-01
Rodent pests are especially problematic in terms of agriculture and public health since they can inflict considerable economic damage associated with their abundance, diversity, generalist feeding habits and high reproductive rates. To quantify rodent pest impacts and identify trends in rodent pest research impacting on small-holder agriculture in the Afro-Malagasy region we did a systematic review of research outputs from 1910 to 2015, by developing an a priori defined set of criteria to allow for replication of the review process. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We reviewed 162 publications, and while rodent pest research was spatially distributed across Africa (32 countries, including Madagascar), there was a disparity in number of studies per country with research biased towards four countries (Tanzania [25%], Nigeria [9%], Ethiopia [9%], Kenya [8%]) accounting for 51% of all rodent pest research in the Afro-Malagasy region. There was a disparity in the research themes addressed by Tanzanian publications compared to publications from the rest of the Afro-Malagasy region where research in Tanzania had a much more applied focus (50%) compared to a more basic research approach (92%) in the rest of the Afro-Malagasy region. We found that pest rodents have a significant negative effect on the Afro-Malagasy small-holder farming communities. Crop losses varied between cropping stages, storage and crops and the highest losses occurred during early cropping stages (46% median loss during seedling stage) and the mature stage (15% median loss). There was a scarcity of studies investigating the effectiveness of various management actions on rodent pest damage and population abundance. Our analysis highlights that there are inadequate empirical studies focused on developing sustainable control methods for rodent pests and rodent pests in the Africa-Malagasy context is generally ignored as a research topic. PMID:28358899
Blacket, Mark J; Malipatil, Mali B; Semeraro, Linda; Gillespie, Peter S; Dominiak, Bernie C
2017-04-01
Understanding the relationship between incursions of insect pests and established populations is critical to implementing effective control. Studies of genetic variation can provide powerful tools to examine potential invasion pathways and longevity of individual pest outbreaks. The major fruit fly pest in eastern Australia, Queensland fruit fly Bactrocera tryoni (Froggatt), has been subject to significant long-term quarantine and population reduction control measures in the major horticulture production areas of southeastern Australia, at the species southern range limit. Previous studies have employed microsatellite markers to estimate gene flow between populations across this region. In this study, we used an independent genetic marker, mitochondrial DNA (mtDNA) sequences, to screen genetic variation in established and adjacent outbreak populations in southeastern Australia. During the study period, favorable environmental conditions resulted in multiple outbreaks, which appeared genetically distinctive and relatively geographically localized, implying minimal dispersal between simultaneous outbreaks. Populations in established regions were found to occur over much larger areas. Screening mtDNA (female) lineages proved to be an effective alternative genetic tool to assist in understanding fruit fly population dynamics and provide another possible molecular method that could now be employed for better understanding of the ecology and evolution of this and other pest species.
Rodriguez-Saona, Cesar; Wanumen, Andrea Carolina; Salamanca, Jordano; Holdcraft, Robert; Kyryczenko-Roth, Vera
2016-04-15
Laboratory and extended laboratory bioassays were conducted to determine the residual toxicities of various insecticides against two key pests of cranberries, Sparganothis sulfureana and Choristoneura parallela (Lepidoptera: Tortricidae), and their non-target effects on the predatory Orius insidiosus (Hemiptera: Anthocoridae). The effects of nine insecticides with different modes of action on S. sulfureana and Ch. parallela eggs, larvae, and adults were tested in the laboratory, while the efficacy of a post-bloom application on larval mortality and mass of these pests and on adult O. insidiosus was evaluated in extended laboratory experiments. The organophosphate chlorpyrifos and the spinosyn spinetoram provided long-lasting (seven-day) control against all stages of both pests. The growth regulator methoxyfenozide and the diamides chlorantraniliprole and cyantraniliprole had strong (1-7 days) larvicidal, particularly on young larvae, and growth inhibitory activity, but only the diamides were adulticidal. Among neonicotinoids, acetamiprid had stronger ovicidal and adulticidal activity than thiamethoxam, showing within-insecticide class differences in toxicities; however, both were weak on larvae. Lethality of novaluron and indoxacarb was inconsistent, varying depending on species and stage. Chlorpyrifos was most toxic to O. insidiosus. These results show species- and stage-specific toxicities, and greater compatibility with biological control, of the newer reduced-risk classes of insecticides than older chemistries.
[Health risks from pest control products].
Pieper, C; Holthenrich, D; Schneider, H
2014-05-01
According to European biocide legislation, pest control products require assessment and authorization by the responsible national or European authorities. Biocidal products can only be authorized if they have no unacceptable effects on human health. The health risk assessment performed for authorization comprises (a) the derivation of reference values for the active substances and substances of concern contained in the biocidal product and (b) an exposure assessment. These parameters are required for risk characterization. No unacceptable health risks are expected if the determined exposure is less than the relevant reference value. In addition, the toxicological information is used for classification of the biocidal product. The assessment may, where necessary, result in specific conditions for use or other restrictions aimed at minimizing risk. The risk to human health from pest control products is mainly based on the toxicological properties of their active substances. Commonly, the coformulants used in pest control products are of less concern than the active substances (e.g., food ingredients and animal feed products). For example, most rodenticides belong to the group of anticoagulants, which are also effective in humans. Regarding intoxications through insecticides, the group of pyrethroids is of particular importance. Fumigants containing metal phosphides, hydrogen cyanide, or sulfuryl difluoride are particularly toxic. This toxicity is linked to the high acute inhalation toxicity of the gaseous active substances themselves or, in the case of phosphides, of the released gas phosphane. The aim of health risk assessment for the authorization of biocidal products is to ensure their safe application for users and all other persons involved, assuming an adequate and label-compliant use.
Zhu, Zhan-Fei; Cheng, Jia; Lu, Xiu-Li; Li, Xin; Ge, Lin-Quan; Fang, Ji-Chao; Wu, Jin-Cai
2014-09-01
The pesticide-induced stimulation of reproduction in pests is one of the most important mechanisms of pest resurgence. There have been numerous reports on the insecticide-induced stimulation of reproduction. However, the relationship between pesticide application method and pest resurgence (stimulation of reproduction) has received little attention. Here, we studied the effect of two treatment methods, triazophos (TZP) and jinggangmycin (JGM), on the protein content in the ovaries and fat bodies of the brown planthopper (BPH) Nilaparvata lugens Stål. The results showed that pesticide treatment methods significantly affected the protein content in the ovaries and fat bodies of BPH. In addition, grand means (means of main effect) of the protein content at 2 and 3 days after emergence (2 and 3 DAE) for foliar sprays was significantly higher than that observed after topical treatments, which increased by 23.9% (from 1.42 to 1.76) and 8.82% (from 4.42 to 4.81), respectively. No significant differences on the protein content in the ovaries and fat bodies for the JGM topical treatment were observed compared with controls. However, the protein content for JGM foliar sprays was significantly higher than that for the controls. The protein contents in both topical and spray treatments of TZP were significantly higher than those of the controls. Ovarian protein is mainly yolk protein. There is a positive correlation between ovarian protein content and the number of eggs laid. These findings show that foliar spray of the pesticides promotes the resurgence of BPH. Therefore, the foliar spray of some pesticides, such as JGM, should be avoided for the control of pests, which is the sideeffects of the fungicide on non-target insect pests' occurrence. Copyright © 2014 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Cowles, Kathleen Letcher
Integrated Pest Management (IPM), a decision-making approach to pest control, is designed to help individuals decide if pest suppression treatments are necessary, when they should be initiated, where they should be applied, and what strategy/mix of tatics to use. IPM combines a variety of approaches with which to manage pests, including human…
Bagny Beilhe, Leïla; Piou, Cyril; Tadu, Zéphirin; Babin, Régis
2018-06-06
The use of ants for biological control of insect pests was the first reported case of conservation biological control. Direct and indirect community interactions between ants and pests lead to differential spatial pattern. We investigated spatial interactions between mirids, the major cocoa pest in West Africa and numerically dominant ant species, using bivariate point pattern analysis to identify potential biological control agents. We assume that potential biological control agents should display negative spatial interactions with mirids considering their niche overlap. The mirid/ant data were collected in complex cacao-based agroforestry systems sampled in three agroecological areas over a forest-savannah gradient in Cameroon. Three species, Crematogaster striatula Emery (Hymenoptera: Formicidae), Crematogaster clariventris Mayr (Hymenoptera: Formicidae), and Oecophylla longinoda Latreille (Hymenoptera: Formicidae) with high predator and aggressive behaviors were identified as dominant and showed negative spatial relationships with mirids. The weaver ant, O. longinoda was identified as the only potential biological control agent, considering its ubiquity in the plots, the similarity in niche requirements, and the spatial segregation with mirids resulting probably from exclusion mechanisms. Combining bivariate point pattern analysis to good knowledge of insect ecology was an effective method to identify a potentially good biological control agent.
Bashir, Oumar; Claverie, Jerome P; Lemoyne, Pierre; Vincent, Charles
2016-01-01
Bacillus thuringiensis ( B. t. ) based formulations have been widely used to control lepidopteran pests in agriculture and forestry. One of their weaknesses is their short residual activity when sprayed in the field. Using Pickering emulsions, mixtures of spores and crystals from three B. t. serovars were successfully encapsulated in colloïdosomal microparticles (50 μm) using innocuous chemicals (acrylic particles, sunflower oil, iron oxide nanoparticles, ethanol and water). A pH trigger mechanism was incorporated within the particles so that B. t. release occurred only at pH > 8.5 which corresponds to the midgut pH of the target pests. Laboratory assays performed on Trichoplusia ni ( T. ni ) larvae demonstrated that the microencapsulation process did not impair B. t. bioactivity. The best formulations were field-tested on three key lepidopteran pests that attack Brassica crops, i.e., the imported cabbageworm, the cabbage looper and the diamondback moth. After 12 days, the mean number of larvae was significantly lower in microencapsulated formulations than in a commercial B. t. formulation, and the effect of microencapsulated formulations was comparable to a chemical pesticide (lambda-cyhalothrin). Therefore, colloïdosomal microcapsule formulations successfully extend the bioactivity of B. t. for the management of lepidopteran pests of Brassica crops.
Elzen, Gary W; Hardee, Dick D
2003-01-01
Insecticide resistance has developed within many classes of pesticide, and over 500 species of insects and mites are resistant to one or more insecticides. Insecticide resistance and the consequent losses of food and fiber caused by failure to control insect and mite pests causes economic losses of several billion dollars worldwide each year. It is the goal of insect resistance management (IRM) to preserve useful pesticides by slowing, preventing or reversing development of resistance in pests. Important aspects of this goal are understanding the development of resistance and monitoring to determine ways to prevent its development. We describe programs specific to missions of the US Department of Agriculture, Agricultural Research Service, which are designed to characterize insecticide resistance in insects and mites with the goal of managing pests in an ecologically acceptable manner. Resistance management of cotton, potatoes, vegetables, melons, ornamentals, greenhouse crops, corn, stored grains, livestock, honeybees and mites, as well as management of transgenic crops are evaluated. We conclude that IRM is a vital part of stewardship of any pest management product and must be a combined effort of manufacturers, growers, consultants, extension services and grower organizations, working closely with regulators, to achieve logistically and economically feasible systems that prolong the effectiveness of all pest-control products.
33 CFR 274.7 - Authorization of pesticide use.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., DEPARTMENT OF DEFENSE PEST CONTROL PROGRAM FOR CIVIL WORKS PROJECTS Project Operation § 274.7 Authorization... unexpected outbreak of a pest requires control measures which are not according to the registered use, such... Engineer. An emergency will be deemed to exist when: (1) A pest outbreak has or is about to occur and no...
ERIC Educational Resources Information Center
Illinois Univ., Urbana. Cooperative Extension Service.
This circular lists suggested uses of insecticides for the control of pests by commercial vegetable farmers. Suggestions are given for selection, dosage and application of insecticides to control pests of cabbage and related crops, beans, cucumbers and other vine crops, tomatoes, potatoes, peppers, corn, and onions. (CS)
Understanding and controlling nonnative forest pests in the South
Donald A. Duerr; James H. Miller
2005-01-01
lnvasive nonnative forest pests are multiplying and spreading in every forest type in the Southern United States, The costs of controlling these pests have become extremely high, and the damage they cause to ecosystem composition, structure, and function continues to increase. Plants imported for potential release for forage, crops, soil reclamation, and ornamental...
USDA-ARS?s Scientific Manuscript database
Insect pests and food-borne fungi and their associated toxic metabolites cause significant losses in stored food products. Plant-derived essential oils (EOs) can control the growth and proliferation of insect and fungal pests. Plant EOs are environmentally friendly and non-toxic, and their applicati...
Ornamental and Turf Pest Control. Bulletin 764.
ERIC Educational Resources Information Center
Bowyer, Timothy H.; And Others
This manual gives descriptions of and methods for control of diseases and insect pests of ornamental plants, weeds, and diseases and insect pests of turf plants. Included are diseases caused by fungi such as cankers, leaf galls, and rust; diseases caused by bacteria such as bacterial blight and crown gall; and diseases caused by nematodes and…
Landscape simplification reduces classical biological control and crop yield.
Grab, Heather; Danforth, Bryan; Poveda, Katja; Loeb, Greg
2018-03-01
Agricultural intensification resulting in the simplification of agricultural landscapes is known to negatively impact the delivery of key ecosystem services such as the biological control of crop pests. Both conservation and classical biological control may be influenced by the landscape context in which they are deployed; yet studies examining the role of landscape structure in the establishment and success of introduced natural enemies and their interactions with native communities are lacking. In this study, we investigated the relationship between landscape simplification, classical and conservation biological control services and importantly, the outcome of these interactions for crop yield. We showed that agricultural simplification at the landscape scale is associated with an overall reduction in parasitism rates of crop pests. Additionally, only introduced parasitoids were identified, and no native parasitoids were found in crop habitat, irrespective of agricultural landscape simplification. Pest densities in the crop were lower in landscapes with greater proportions of semi-natural habitats. Furthermore, farms with less semi-natural cover in the landscape and consequently, higher pest numbers, had lower yields than farms in less agriculturally dominated landscapes. Our study demonstrates the importance of landscape scale agricultural simplification in mediating the success of biological control programs and highlights the potential risks to native natural enemies in classical biological control programs against native insects. Our results represent an important contribution to an understanding of the landscape-mediated impacts on crop yield that will be essential to implementing effective policies that simultaneously conserve biodiversity and ecosystem services. © 2018 by the Ecological Society of America.
PsOr1, a potential target for RNA interference-based pest management.
Zhao, Y Y; Liu, F; Yang, G; You, M S
2011-02-01
Insect pests cause billions of dollars in agricultural losses, and attempts to kill them have resulted in growing threats from insecticide resistance, dietary pesticide pollution and environmental destruction. New approaches to control refractory insect pests are therefore needed. The host-plant preferences of insect pests rely on olfaction and are mediated via a seven transmembrane-domain odorant receptor (Or) family. The present study reports the cloning and characterization of PsOr1, the first candidate member of the Or gene family from Phyllotreta striolata, a devastating beetle pest that causes damage worldwide. PsOr1 is remarkably well conserved with respect to other insect orthologues, including DmOr83b from Drosophila melanogaster. These insect orthologues form an essential non-conventional Or sub-family and may play an important and generalized role in insect olfaction. We designed double-stranded (ds) RNA directly against the PsOr1 gene and exploited RNA interference (RNAi) to control P. striolata. The chemotactic behavioural measurements showed that adult beetles were unable to sense the attractant or repellent odour stimulus after microinjection of dsRNA against PsOr1. Reverse Transcription (RT)-PCR analysis showed specific down-regulation of mRNA transcript levels for this gene. Furthermore, host-plant preference experiments confirmed that silencing PsOr1 by RNAi treatment impaired the host-plant preferences of P. striolata for cruciferous vegetables. These results demonstrate that this insect control approach of using RNAi to target PsOr1 and its orthologues might be effective in blocking host-plant-seeking behaviours in diverse insect pests. The results also support the theory that this unique receptor type plays an essential general role in insect olfaction. © 2010 Fujian Agriculture and Forestry University. Insect Molecular Biology © 2010 The Royal Entomological Society.
Li, Zhuo; Wan, Guijun; Wang, Long; Parajulee, Megha N; Zhao, Zihua; Chen, Fajun
2018-07-01
The widespread planting of insect-resistant crops has caused a dramatic shift in agricultural landscapes, thus raising concerns about the potential impact on both target and non-target pests worldwide. In this study, we examined the potential effects of six seed mixture ratios of insect-resistance dominance [100% (R100), 95% (S05R95), 90% (S10R90), 80% (S20R80), 60% (S40R60), and 0% (S100)] on target and non-target pests in a 2-year field trial in southern China. The occurrence of the target pests Nilaparvata lugens and Sogatella furcifera decreased with an increase in the ratio of resistant rice, and mixture ratios with ≥90% resistant rice significantly increased the pest suppression efficiency, with the lowest occurrences of the non-target pests Sesamia inferens, Chilo suppressalis and Cnaphalocrocis medinalis for S100 and S10R90 seed mixture ratios. Furthermore, there were no significant differences in the 1000-grain dry weight and grain yield between R100 and other treatments with ≥80% resistant seeds in the mixture (S20R80, S10R90 and S05R95). S10R90 produced a good yield and provided the most effective control of both target and non-target pests, with the potential to significantly reduce the application of chemical pesticides for integrated pest management in paddy fields. It is further presumed that the strategy of seed mixture with resistant and susceptible rice would be advantageous for rice yield stability. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Encapsulation of plant oils in porous starch microspheres
USDA-ARS?s Scientific Manuscript database
Natural plant products such as essential oils have gained interest for use in pest control in place of synthetic pesticides because of their low environmental impact. Essential oils can be effective in controlling parasitic mites that infest honeybee colonies but effective encapsulants are needed to...
Deng, Lingling; Xu, Muqi; Cao, Hong; Dai, Jiayin
2008-11-01
The toxicological effects of buprofezin, an insect growth regulator, on the fecundity, development, and pest control potential of the wolf spider Pirata piratoides (Schenkel) (Araneae: Lycosidae) were investigated in the laboratory. It was shown that buprofezin had low toxicity to P. piratoides and that the median lethal dosage (LD(50)) 48 h and 10% lethal dosage (LD(10)) after topical application for female spiders were 653 and 316 mg buprofezin/mg fresh weight of spider, respectively. Buprofezin significantly reduced the percent hatching of spiders' eggs but had only a slight effect on egg production. No negative effects on the development and growth were observed. However, spider predation rates were strongly affected: Insecticide-treated females predated on fewer prey than the controls, and their predation rate did not recover even 5 days after insecticide application. This indicated that their pest control potential might be influenced by buprofezin, and the use of buprofezin in biological control of insects is discussed.
Herbivory, Predation, and Biological Control.
ERIC Educational Resources Information Center
Murphy, Terence M.; And Others
1992-01-01
Authors describe a set of controlled ecosystems that can be used to demonstrate the effects of herbivory on the health and growth of a plant population and of predation on the growth of a primary consumer population. The system also shows the effectiveness of biological pest control measures in a dramatic way. The construction of the ecosystems is…
Global warming and house fly control: direct effects and biodiversity concerns.
USDA-ARS?s Scientific Manuscript database
House flies are major pests of human and animal health throughout the world and are among the most difficult to control. Effective fly management relies on a balance of sanitation, insecticide use, and biological control. Climate change could upset that balance in favor of the fly unless pro-activ...
Economic and physical determinants of the global distributions of crop pests and pathogens.
Bebber, Daniel P; Holmes, Timothy; Smith, David; Gurr, Sarah J
2014-05-01
Crop pests and pathogens pose a significant and growing threat to food security, but their geographical distributions are poorly understood. We present a global analysis of pest and pathogen distributions, to determine the roles of socioeconomic and biophysical factors in determining pest diversity, controlling for variation in observational capacity among countries. Known distributions of 1901 pests and pathogens were obtained from CABI. Linear models were used to partition the variation in pest species per country amongst predictors. Reported pest numbers increased with per capita gross domestic product (GDP), research expenditure and research capacity, and the influence of economics was greater in micro-organisms than in arthropods. Total crop production and crop diversity were the strongest physical predictors of pest numbers per country, but trade and tourism were insignificant once other factors were controlled. Islands reported more pests than mainland countries, but no latitudinal gradient in species richness was evident. Country wealth is likely to be a strong indicator of observational capacity, not just trade flow, as has been interpreted in invasive species studies. If every country had US levels of per capita GDP, then 205 ± 9 additional pests per country would be reported, suggesting that enhanced investment in pest observations will reveal the hidden threat of crop pests and pathogens. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Options for pest and disease control in organic pecan
USDA-ARS?s Scientific Manuscript database
Although organic pecans typically command a higher wholesale and retail price, their production presents a unique set of challenges. Among these are issues of pest and disease management - it is not simply a modification of the conventional, pest and disease management paradigm. Despite these pest ...
Vegetable Crop Pests. MEP 311.
ERIC Educational Resources Information Center
Kantzes, James G.; And Others
As part of a cooperative extension service series by the University of Maryland, this publication introduces the identification and control of common agricultural pests of vegetable crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the categories of insects,…
Economic value of biological control in integrated pest management of managed plant systems.
Naranjo, Steven E; Ellsworth, Peter C; Frisvold, George B
2015-01-07
Biological control is an underlying pillar of integrated pest management, yet little focus has been placed on assigning economic value to this key ecosystem service. Setting biological control on a firm economic foundation would help to broaden its utility and adoption for sustainable crop protection. Here we discuss approaches and methods available for valuation of biological control of arthropod pests by arthropod natural enemies and summarize economic evaluations in classical, augmentative, and conservation biological control. Emphasis is placed on valuation of conservation biological control, which has received little attention. We identify some of the challenges of and opportunities for applying economics to biological control to advance integrated pest management. Interaction among diverse scientists and stakeholders will be required to measure the direct and indirect costs and benefits of biological control that will allow farmers and others to internalize the benefits that incentivize and accelerate adoption for private and public good.
Williams, Megan K.; Barr, Dana B.; Camann, David E.; Cruz, Linda A.; Carlton, Elizabeth J.; Borjas, Mejico; Reyes, Andria; Evans, Dave; Kinney, Patrick L.; Whitehead, Ralph D.; Perera, Frederica P.; Matsoanne, Stephen; Whyatt, Robin M.
2006-01-01
Background We previously reported widespread insecticide exposure during pregnancy among inner-city women from New York City. Here we report on a pilot intervention using integrated pest management (IPM) to reduce pest infestations and residential insecticide exposures among pregnant New York City African-American and Latina women (25 intervention and 27 control homes). Methods The IPM consisted of professional cleaning, sealing of pest entry points, application of low-toxicity pesticides, and education. Cockroach infestation levels and 2-week integrated indoor air samples were collected at baseline and one month postintervention. The insecticides detected in the indoor air samples were also measured in maternal and umbilical cord blood collected at delivery. Results Cockroach infestations decreased significantly (p = 0.016) after the intervention among intervention cases but not control households. Among the intervention group, levels of piperonyl butoxide (a pyrethroid synergist) were significantly lower in indoor air samples after the intervention (p = 0.016). Insecticides were detected in maternal blood samples collected at delivery from controls but not from the intervention group. The difference was significant for trans-permethrin (p = 0.008) and of borderline significance (p = 0.1) for cis-permethrin and 2-isopropoxyphenol (a propoxur metabolite). Conclusion To our knowledge, this is the first study to use biologic dosimeters of prenatal pesticide exposure for assessing effectiveness of IPM. These pilot data suggest that IPM is an effective strategy for reducing pest infestation levels and the internal dose of insecticides during pregnancy. PMID:17107853
Cocco, Arturo; Muscas, Enrico; Mura, Alessandra; Iodice, Andrea; Savino, Francesco; Lentini, Andrea
2018-05-08
Although mating disruption is increasingly being used to control the worldwide grapevine pest vine mealybug, Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae), its mode of action remains unclear. A three-year field experiment was carried out to investigate the effects of mating disruption on the development and reproduction of the vine mealybug. The influence of mating disruption applied over consecutive years on the pest population density was also evaluated. The percentage of ovipositing females was significantly reduced in disrupted plots by 18.8-66.2%, depending on the year. The absence of ovipositing females in disrupted plots in the autumn of the second and third year indicates the effectiveness of mating disruption throughout the whole growing season. Mating disruption consistently prolonged the pre-oviposition period in all years by up to 12.5 days. Our findings provide new insights into the mechanisms underlying the pheromone-based control of the vine mealybug and indicate that the reduction of the pest population density is due to both a decrease and delay in female mating. In addition, the population density of vine mealybugs under mating disruption decreased over years, indicating that consecutive applications of this control strategy would significantly increase the effectiveness of controlling the vine mealybug by mating disruption. This article is protected by copyright. All rights reserved.
Blus, Lawrence J.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John
1995-01-01
the discovery of the insecticidal properties of DDT, which led to its subsequent use in pest control,w as hailed as a tremendous scientiffic achievement. Initial success with DDT in controlling human health pests during World War II, and subsequent success in agricultural pest control, stimulated the synthesis and development of related organochlorine pestidices; their use increased exponentially following the war.1 At first, evidence slowly accumulated that nearly all of these compounds were having widespread adverse effects on nontarget organisms. Later, a veritable mountain of evidence was amassed relating to their toxicity, persistence, and lipophilic characteristics, which resulted in accumulation of residues, mortality, lowered reproductive success, and decline - even extirpation - of certain populations of wildlife.2,3 Ecotoxicological data for organochlorine pesticides are limited in much of the world because most research has been conducted in relatively few countries. It is likely that no other group of contaminants of anthropogenic origin has exacted such a heavy toll on the environment as have the organochlorine pesticide.
Holyoke, Caleb W; Cordova, Daniel; Zhang, Wenming; Barry, James D; Leighty, Robert M; Dietrich, Robert F; Rauh, James J; Pahutski, Thomas F; Lahm, George P; Tong, My-Hanh Thi; Benner, Eric A; Andreassi, John L; Smith, Rejane M; Vincent, Daniel R; Christianson, Laurie A; Teixeira, Luis A; Singh, Vineet; Hughes, Kenneth A
2017-04-01
As the world population grows towards 9 billion by 2050, it is projected that food production will need to increase by 60%. A critical part of this growth includes the safe and effective use of insecticides to reduce the estimated 20-49% loss of global crop yields owing to pests. The development of new insecticides will help to sustain this protection and overcome insecticide resistance. A novel class of mesoionic compounds has been discovered, with exceptional insecticidal activity on a range of Hemiptera and Lepidoptera. These compounds bind to the orthosteric site of the nicotinic acetylcholine receptor and result in a highly potent inhibitory action at the receptor with minimal agonism. The synthesis, biological activity, optimization and mode of action will be discussed. Triflumezopyrim insect control will provide a powerful tool for control of hopper species in rice throughout Asia. Dicloromezotiaz can provide a useful control tool for lepidopteran pests, with an underexploited mode of action among these pests. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Adaptive release of natural enemies in a pest-natural enemy system with pesticide resistance.
Liang, Juhua; Tang, Sanyi; Cheke, Robert A; Wu, Jianhong
2013-11-01
Integrated pest management options such as combining chemical and biological control are optimal for combating pesticide resistance, but pose questions if a pest is to be controlled to extinction. These questions include (i) what is the relationship between the evolution of pesticide resistance and the number of natural enemies released? (ii) How does the cumulative number of natural enemies dying affect the number of natural enemies to be released? To address these questions, we developed two novel pest-natural enemy interaction models incorporating the evolution of pesticide resistance. We investigated the number of natural enemies to be released when threshold conditions for the extinction of the pest population in two different control tactics are reached. Our results show that the number of natural enemies to be released to ensure pest eradication in the presence of increasing pesticide resistance can be determined analytically and depends on the cumulative number of dead natural enemies before the next scheduled release time.
ERIC Educational Resources Information Center
Cowles, Kathleen Letcher
Integrated Pest Management (IPM), a decision-making approach to pest control, is designed to help individuals decide if pest suppression treatments are necessary, when they should be initiated, where they should be applied, and what strategy and mix of tactics to use. IPM combines a variety of approaches with which to manage pests. These include…
Citizen's Guide to Pesticides.
ERIC Educational Resources Information Center
Environmental Protection Agency, Washington, DC. Office of Pesticide Programs.
This guide provides suggestions on pest control and safety rules for pesticide use at home. Pest prevention may be possible by modification of pest habitat: removal of food and water sources, removal or destruction of pest shelter and breeding sites, and good horticultural practices that reduce plant stress. Nonchemical alternatives to pesticides…
ERIC Educational Resources Information Center
Weaver, Leslie O.; And Others
As part of a cooperative extension service series by the University of Maryland this publication introduces the identification and control of common agricultural pests of fruit crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the categories of insects, weeds,…
78 FR 70257 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-25
... introduction of a pest. The International Plant Protection Convention (IPPC) defines ``official control'' as... management of regulated non-quarantine pests. Need and Use of the Information: To obtain a program's...' management of pests in the plants for planting where the pest is maintained below a level that can affect...
Field and Forage Crop Pests. MEP 310.
ERIC Educational Resources Information Center
Morgan, Omar, D.; And Others
As part of a cooperative extension service series by the University of Maryland, this publication introduces the identification and control of common agricultural pests that can be found in field and forage crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the…
Urban Pest Management. Selected Readings.
ERIC Educational Resources Information Center
Cowles, Kathleen Letcher, Comp.; And Others
These readings provide basic background information on urban integrated pest management and the development of Integrated Pest Management (IPM) programs for the control of rodents, cockroaches, and head lice. IPM is a decision-making process for deciding if pest supprssion treatments are needed, when they should be initiated, where they should be…
Mass trapping for Anastrepha suspensa
USDA-ARS?s Scientific Manuscript database
Mass trapping has been found to be highly effective for control of pest fruit flies when populations are low and a highly effective lure is available for the target species. Successful population control through mass trapping is an indicator that attract-and-kill bait stations may be equally succes...
Pesticide Applicator Certification Training, Manual No. 1a: Agricultural Pest Control. a. Plant.
ERIC Educational Resources Information Center
Allen, W. A.; And Others
This manual provides information needed to meet the minimum standards for certification as an applicator of pesticides in the agricultural plant pest control category. Adapted for the State of Virginia, the text discusses: (1) the basics of insecticides; (2) insect pests; (3) selection and calibration of applicator equipment; and (4) the proper…
USDA-ARS?s Scientific Manuscript database
Invasion of the Americas by the horn fly, H. irritans, has resulted in control issues throughout the continent. Insecticide resistance is a major complicating factor with efforts to manage this pest. Stakeholder focus groups identified the horn fly as the top priority arthropod pest affecting cattle...
Zamek, Ashley L.; Spinner, Jennifer E.; Micallef, Jessica L.; Gurr, Geoff M.; Reynolds, Olivia L.
2012-01-01
This review draws together available information on the biology, methods for study, and culturing of hymenopteran parasitoids of the Queensland fruit fly, Bactrocera tryoni, and assesses prospects for improving biological control of this serious pest. Augmentative release of the native and naturalised Australian parasitoids, especially the braconid Diachasmimorpha tryoni, may result in better management of B. tryoni in some parts of Australia. Mass releases are an especially attractive option for areas of inland eastern Australia around the Fruit Fly Exclusion Zone that produces B. tryoni-free fruits for export. Diachasmimorpha tryoni has been successful in other locations such as Hawaii for the biological control of other fruit fly species. Biological control could contribute to local eradication of isolated outbreaks and more general suppression and/or eradication of the B. tryoni population in endemic areas. Combining biological control with the use of sterile insect technique offers scope for synergy because the former is most effective at high pest densities and the latter most economical when the pest becomes scarce. Recommendations are made on methods for culturing and study of four B. tryoni parasitoids present in Australia along with research priorities for optimising augmentative biological control of B. tryoni. PMID:26466726
Sun, Kaibiao; Zhang, Tonghua; Tian, Yuan
2016-09-01
This work presents a pest control predator-prey model, where rate of change in prey density follows a scaling law with exponent less than one and the control is by an integrated management strategy. The aim is to investigate the change in system dynamics and determine a pest control level with minimum control price. First, the dynamics of the proposed model without control is investigated by taking the exponent as an index parameter. And then, to determine the frequency of spraying chemical pesticide and yield releases of the predator, the existence of the order-1 periodic orbit of the control system is discussed in cases. Furthermore, to ensure a certain robustness of the adopted control, i.e., for an inaccurately detected species density or a deviation, the control system could be stabilized at the order-1 periodic orbit, the stability of the order-1 periodic orbit is verified by an stability criterion for a general semi-continuous dynamical system. In addition, to minimize the total cost input in pest control, an optimization problem is formulated and the optimum pest control level is obtained. At last, the numerical simulations with a specific model are carried out to complement the theoretical results. Copyright © 2016 Elsevier Inc. All rights reserved.
Robinson, Cathy J; Whitehead, Peter
2003-10-01
Government agencies responsible for pest animal management often assume that their views and assumptions about the benefits of control are widely shared, especially if these pests are exotics. This was certainly the case when tens of thousands of feral Asian water buffalo (Bubalus bubalis) were to be culled in Australia's Kakadu National Park as part of a national Brucellosis and Tuberculosis Eradication Campaign (BTEC). Implementation of the campaign sparked considerable dispute between officials and aboriginal and non-aboriginal interests about the risks posed by buffalo relative to their value as a potential resource. Drawing upon a variety of written and oral sources relating to the era of buffalo control in Kakadu, this paper critically analyzes the way in which detriment caused by buffalo was appraised and managed under the BTEC program. In particular, the paper focuses the ways in which the BTEC program affected aboriginal people in Kakadu, who view buffalo as a source of customary and economic benefit as well as a source of change on their lands. The paper then considers what lessons can be learned from the BTEC for the development of sensible feral management objectives and strategies. It is argued that effective management of feral animals such as buffalo will require environmental managers to engage with local people and involve them in the definition and management of pest animal damage and methods of control.
Model of two infectious diseases in nettle caterpillar population
NASA Astrophysics Data System (ADS)
Firdausi, F. Z.; Nuraini, N.
2016-04-01
Palm oil is a vital commodity to the economy of Indonesia. The area of oil palm plantations in Indonesia has increased from year to year. However, the effectiveness of palm oil production is reduced by pest infestation. One of the pest which often infests oil palm plantations is nettle caterpillar. The pest control used in this study is biological control, viz. biological agents given to oil palm trees. This paper describes a mathematical model of two infectious diseases in nettle caterpillar population. The two infectious diseases arise due to two biological agents, namely Bacillus thuringiensis bacterium and parasite which usually attack nettle caterpillars. The derivation of the model constructed in this paper is obtained from ordinary differential equations without time delay. The equilibrium points are analyzed. Two of three equilibrium points are stable if the Routh-Hurwitz criteria are fulfilled. In addition, this paper also presents the numerical simulation of the model which has been constructed.
Training for Certification: Aquatic Pest Control.
ERIC Educational Resources Information Center
Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.
This Cooperative Extension Service publication from Mississippi State University is a training guide for commercial applicators. Weed control, vertebrate pest control, and environmental considerations and restrictions are the three major parts of the document. The weed control section discusses non-pesticide, mechanical, and biological control as…
Provides basic information on integrated pest management in schools, including information on the components of an IPM program and guidance on how to get started. Includes identification and control of pests, educational resources, and contact information
Stuart, Alexander M; Prescott, Colin V; Singleton, Grant R
2014-06-01
Reduction of vegetation height is recommended as a management strategy for controlling rodent pests of rice in South-east Asia, but there are limited field data to assess its effectiveness. The breeding biology of the main pest species of rodent in the Philippines, Rattus tanezumi, suggests that habitat manipulation in irrigated rice-coconut cropping systems may be an effective strategy to limit the quality and availability of their nesting habitat. The authors imposed a replicated manipulation of vegetation cover in adjacent coconut groves during a single rice-cropping season, and added artificial nest sites to facilitate capture and culling of young. Three trapping sessions in four rice fields (two treatments, two controls) adjacent to coconut groves led to the capture of 176 R. tanezumi, 12 Rattus exulans and seven Chrotomys mindorensis individuals. There was no significant difference in overall abundance between crop stages or between treatments, and there was no treatment effect on damage to tillers or rice yield. Only two R. tanezumi were caught at the artificial nest sites. Habitat manipulation to reduce the quality of R. tanezumi nesting habitat adjacent to rice fields is not effective as a lone rodent management tool in rice-coconut cropping systems. © 2013 Society of Chemical Industry.
Gulzar, Asim; Wright, Denis J
2015-11-01
The assessment of sub-lethal effects is important to interpret the overall insecticide efficacy in controlling insect pest populations. In addition to the lethal effect, sub-lethal effects may also occur in exposed insects. Vegetative insecticidal proteins (Vips) have shown a broad spectrum of insecticidal activity against many insect pest species. In this study the sub-lethal effects of the Bacillus thuringiensis vegetative insecticidal toxin Vip3A on the development and reproduction of Heliothis virescens F. and Plutella xylostella L. were evaluated in the laboratory. The results indicated that the sub-lethal concentration of Vip3A increased the duration of the larval and pupal stages as compared with the control treatment for both species. The percent pupation and percent adult emergence were significantly lower for Vip3A-treated insects. The proportion of pairs that produced eggs and the longevity of adults were not significantly different between treatments. H. virescens and P. xylostella treated with Vip3A showed an 11 and 17 % decrease in their intrinsic rate of increase (rm) respectively compared with untreated insects. The results from this study will be helpful to develop the strategy to incorporate Vip 3A containing crops in an integrated pest management programme.
Ornamental, Turf and Nursery Pests. MEP 308.
ERIC Educational Resources Information Center
Morgan, Omar D.; And Others
As part of a cooperative extension service series by the University of Maryland, this publication introduces the identification and control of common turf and plant pests that can be found in the urban environment. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests such as…
Procedures of Laboratory Fumigation for Pest Control with Nitric Oxide Gas.
Liu, Yong-Biao; Yang, Xiangbing; Masuda, Tiffany
2017-11-24
Nitric oxide (NO) is a newly discovered fumigant for postharvest pest control. This paper provides detailed protocols for conducting NO fumigation on fresh products and procedures for residue analysis and product quality evaluation. An airtight fumigation chamber containing fresh fruit and vegetables is first flushed with nitrogen (N2) to establish an ultralow oxygen (ULO) environment followed by injection of NO. The fumigation chamber is then kept at a low temperature of 2 - 5 °C for a specified time period necessary to kill a target pest to complete a fumigation treatment. At the end of a fumigation treatment, the fumigation chamber is flushed with N2 to dilute NO prior to opening the chamber to ambient air to prevent the reaction between NO and O2, which produces NO2 and may damage delicate fresh products. At different times after NO fumigation, NO2 in headspace and nitrate and nitrite in liquid samples were measured as residues. Product quality was evaluated after 2 weeks of post-treatment cold storage to determine effects of NO fumigation on product quality. Keeping O2 from reacting with NO is critical to NO fumigation and is an important part of the protocols. Measuring NO levels is challenging and a practical solution is provided. Possible protocol modifications are also suggested for measuring NO levels in the fumigation chambers as well as residues. NO fumigation has the potential to be a practical alternative to methyl bromide fumigation for postharvest pest control on fresh and stored products. This publication is intended to assist other researchers in conducting NO fumigation research for postharvest pest control and accelerating the development of NO fumigation for practical applications.
Procedures of Laboratory Fumigation for Pest Control with Nitric Oxide Gas
Liu, Yong-Biao; Yang, Xiangbing; Masuda, Tiffany
2017-01-01
Nitric oxide (NO) is a newly discovered fumigant for postharvest pest control. This paper provides detailed protocols for conducting NO fumigation on fresh products and procedures for residue analysis and product quality evaluation. An airtight fumigation chamber containing fresh fruit and vegetables is first flushed with nitrogen (N2) to establish an ultralow oxygen (ULO) environment followed by injection of NO. The fumigation chamber is then kept at a low temperature of 2 - 5 °C for a specified time period necessary to kill a target pest to complete a fumigation treatment. At the end of a fumigation treatment, the fumigation chamber is flushed with N2 to dilute NO prior to opening the chamber to ambient air to prevent the reaction between NO and O2, which produces NO2 and may damage delicate fresh products. At different times after NO fumigation, NO2 in headspace and nitrate and nitrite in liquid samples were measured as residues. Product quality was evaluated after 2 weeks of post-treatment cold storage to determine effects of NO fumigation on product quality. Keeping O2 from reacting with NO is critical to NO fumigation and is an important part of the protocols. Measuring NO levels is challenging and a practical solution is provided. Possible protocol modifications are also suggested for measuring NO levels in the fumigation chambers as well as residues. NO fumigation has the potential to be a practical alternative to methyl bromide fumigation for postharvest pest control on fresh and stored products. This publication is intended to assist other researchers in conducting NO fumigation research for postharvest pest control and accelerating the development of NO fumigation for practical applications. PMID:29286372
ERIC Educational Resources Information Center
Gentile, A. G.; Scanlon, D. T.
This manual is designed by the Massachusetts Cooperative Extension Service as a guide for the control of the most common insects and related pests of floricultural crops grown commercially in glass and plastic houses in Massachusetts. The publication consists of two sections. The first section presents a description of the major pests of…
Insect management in deciduous orchard ecosystems: Habitat manipulation
NASA Astrophysics Data System (ADS)
Tedders, W. L.
1983-01-01
Current literature pertaining to habitat manipulation of deciduous fruit and nut orchards for pest control is reviewed. The hypothesis of pesticide-induced pest problems in deciduous orchards as well as the changing pest population dynamics of deciduous orchards is discussed An experimental habitat manipulation program for pecans, utilizing vetch cover crops to enhance lady beetle populations for pecan aphid control is presented
Sycamore Pests: A Guide to Major Insects, Diseases, and Air Pollution
T. H. Filer; J. D. Solomon; F. I. McCracken; F. L. Oliveria; R. Lewis; M. J. Weiss; T. J. Rogers
1977-01-01
This booklet will help nurserymen, forest woodland managers and homeowners to identify and control pest problems. Major insects and diseases are illustrated. Brief mention is made of other pests of local or sporadic concern. A list of registered chemical controls is included. This list is subject to change as new chemicals are approved. Revisions will be made available...
USDA-ARS?s Scientific Manuscript database
Pest control managers can benefit from using mathematical approaches, particularly models, when implementing area-wide pest control programs that include sterile insect technique (SIT), especially when these are used to calculate required rates of sterile releases to result in suppression or eradica...
Dhingra, Swaran; Walia, Suresh; Kumar, Jitendra; Singh, Shivendra; Singh, Gyanendra; Parmar, Balraj S
2008-11-01
BACKGROUND Unlike synthetic pesticides, azadirachtin-based neem pesticides are environmentally friendly and are well known for their diverse pest control properties. Their use is, however, limited by the instability of azadirachtin, necessitating application at short intervals. The efficacy of relatively stable tetrahydroazadirachtin-A, therefore, needed to be established under field conditions. Azadirachtin-A (Aza-A), its stable derivative tetrahydroazadirachtin-A (THA) and other neem pesticides have been evaluated for their field efficacy against major insect pests of okra, Abelmoschus esculentus (L.) Moench., during summer (kharif) 2003 and 2004. The optimum doses of Aza-A and THA against the fruit borer, Earias vittella F., were also established. Reductions in population of whitefly, Bemisia tabaci (Genn.), and leafhopper (jassid), Amrasca biguttulla biguttulla Ishida, after application of THA or endosulfan was evident up to 10 days after treatment (DAT), whereas with Aza-A and NeemAzal (NZ) the effect was observed up to 7 DAT only. Endosulfan and THA also caused higher reduction in the larvae of shoot and fruit borer E. vittella and E. insulana Boisd., and recorded the highest yields of 4600 and 4180 kg ha(-1). The efficacy of THA (0.05 g L(-1) emulsion) was comparable with that of 0.5 g L(-1) endosulfan emulsion in reducing fruit borer infestation, the reduction over the control being 86.0 and 87.3%, 84.9 and 94.1% and 90.2 and 92.6% at first, second and third picking. THA 0.02 g L(-1) and Aza-A 0.05 g L(-1) were on a par. Laboratory-made neem oil emulsifiable concentrate was the least effective, but was superior to untreated check. Three consecutive sprays of THA, a neem-based biopesticide, and endosulfan have been found to be superior in controlling field pests of okra to Aza-A and NZ, which were on a par. THA thus holds potential as a component of pest management strategies against okra pests. Copyright (c) 2008 Society of Chemical Industry.
Complex Dynamics of an Impulsive Control System in which Predator Species Share a Common Prey
NASA Astrophysics Data System (ADS)
Pei, Yongzhen; Liu, Shaoying; Li, Changguo
2009-06-01
In an ecosystem, multiple predator species often share a common prey and the interactions between the predators are neutral. In view of this fact, we propose a three-species prey-predator system with the functional responses and impulsive controls to model the process of pest management. It is proved that the system has a locally stable pest-eradication periodic solution under the assumption that the impulsive period is less than some critical value. In particular, two single control strategies (biological control alone or chemical control alone) are proposed. Finally, we compare three pest control strategies and find that if we choose narrow-spectrum pesticides that are targeted to a specific pest’s life cycle to kill the pest, then the combined strategy is preferable. Numerical results show that our system has complex dynamics including period-doubling bifurcation, quasi-periodic oscillation, chaos, intermittency and crises.
1976 Commercial Vegetable Pest Control Guide.
ERIC Educational Resources Information Center
MacNab, A. A.; And Others
This guide contains pest control information for commercial vegetable production. It was prepared for agricultural supply dealers, extension agents, fieldmen, and growers. It gives general precautions, information on seed treatment, growing disease-free seedlings and transplants, general soil insect control, general weed control, and spraying…
MALDI-TOF MS Profiling-Advances in Species Identification of Pests, Parasites, and Vectors.
Murugaiyan, Jayaseelan; Roesler, Uwe
2017-01-01
Invertebrate pests and parasites of humans, animals, and plants continue to cause serious diseases and remain as a high treat to agricultural productivity and storage. The rapid and accurate species identification of the pests and parasites are needed for understanding epidemiology, monitoring outbreaks, and designing control measures. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling has emerged as a rapid, cost effective, and high throughput technique of microbial species identification in modern diagnostic laboratories. The development of soft ionization techniques and the release of commercial pattern matching software platforms has resulted in the exponential growth of applications in higher organisms including parasitology. The present review discusses the proof-of-principle experiments and various methods of MALDI MS profiling in rapid species identification of both laboratory and field isolates of pests, parasites and vectors.
MALDI-TOF MS Profiling-Advances in Species Identification of Pests, Parasites, and Vectors
Murugaiyan, Jayaseelan; Roesler, Uwe
2017-01-01
Invertebrate pests and parasites of humans, animals, and plants continue to cause serious diseases and remain as a high treat to agricultural productivity and storage. The rapid and accurate species identification of the pests and parasites are needed for understanding epidemiology, monitoring outbreaks, and designing control measures. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling has emerged as a rapid, cost effective, and high throughput technique of microbial species identification in modern diagnostic laboratories. The development of soft ionization techniques and the release of commercial pattern matching software platforms has resulted in the exponential growth of applications in higher organisms including parasitology. The present review discusses the proof-of-principle experiments and various methods of MALDI MS profiling in rapid species identification of both laboratory and field isolates of pests, parasites and vectors. PMID:28555175
Karthiba, Loganathan; Saveetha, Kandasamy; Suresh, Seetharaman; Raguchander, Thiruvengadam; Saravanakumar, Duraisamy; Samiyappan, Ramasamy
2010-05-01
The biological control of plant pests and diseases using a single organism has been reported to give inconsistent and poor performance. To improve the efficacy, bioformulations were developed possessing mixtures of bioagents. Bioformulations combining Pseudomonas fluorescens Migula strains Pf1 and AH1 and Beauveria bassiana (Balsamo) Vuill. isolate B2 were developed and tested for their efficacy against leaffolder pest and sheath blight disease on rice under glasshouse and field conditions. The combination of Pf1, AH1 and B2 effectively reduced the incidence of leaffolder insect and sheath blight disease on rice compared with other treatments. An in vitro assay of leaffolder preference to rice leaf tissues treated with Pf1 + AH1 + B2 biformulation showed variation from normal growth and development of leaffolder larvae. Plants treated with the Pf1 + AH1 + B2 combination showed a greater accumulation of enzymes, lipoxygenase and chitinase activity against leaffolder insect compared with other treatments. Similarly, the plants showed a higher accumulation of defence enzymes, peroxidase and polyphenol oxidase activity against sheath blight pathogen in Pf1 + AH1 + B2 treatment compared with the untreated control. The bioformulation mixture attracted the natural enemy population of leaffolder under field conditions. In addition, a significant increase in rice grain yield was observed in Pf1 + AH1 + B2 treatment compared with the untreated control. The combination of P. fluorescens strains and B. bassiana isolate effectively reduced the incidence of leaffolder insect and sheath blight disease on rice plants and showed the possibility of controlling both pest and disease using a single bioformulation.
Pest Control in the School Environment:Adopting Integrated Pest Management
Learn about establishing a school IPM program, including developing an official IPM policy statement, setting roles for participants and pest management objectives, inspecting sites, setting action threshold, applying IPM strategies and evaluating results.
Nicetic; Watson, D M; Beattie, G A; Meats, A; Zheng, J
2001-01-01
From 1995 to 1999, four experiments were conducted on greenhouse roses to assess the effectiveness of the nC24 petroleum spray oil (PSO), D-C-Tron Plus, against two-spotted mite, Tetranychus urticae Koch (Acarina: Tetranychidae), and to determine how the oil could be most efficiently and effectively used in combination with the predatory mite Phytoseiulus persimilis Athias-Henriot (Acarina: Phytoseiidae) in an integrated pest management program. The results showed that 0.5% PSO applied fortnightly to roses gave excellent protection from T urticae infestation when the mite population was not already established. However, PSO applied after roses were infested with T. urticae above the economic threshold only stabilised populations without reducing them below that threshold. Populations of P. persimilis in the upper and lower canopies were unchanged after two sprays of PSO at 7-day intervals, and application of PSO to the upper canopy was as effective in controlling T. urticae in the presence of P persimilis as spraying the entire plant. Combining PSO with P. persimilis gave better control of T. urticae than using P. persimilis alone. The most cost-effective use of PSO in the presence of P. persimilis is, therefore, to apply spray only to the upper canopy. This will not affect control of powdery mildew with PSO. Comparison of a control program for T urticae based on the monitored use of synthetic miticides with that based on calendar application of PSO revealed that both gave equally effective control. The benefits of combining PSO and P. persimilis in an integrated pest management program for T. urticae on roses over a program based on synthetic fungicides are discussed.
Valles, Steven M.; Oi, David H.; Yu, Fahong; Tan, Xin-Xing; Buss, Eileen A.
2012-01-01
Background Nylanderia pubens (Forel) is an invasive ant species that in recent years has developed into a serious nuisance problem in the Caribbean and United States. A rapidly expanding range, explosive localized population growth, and control difficulties have elevated this ant to pest status. Professional entomologists and the pest control industry in the United States are urgently trying to understand its biology and develop effective control methods. Currently, no known biological-based control agents are available for use in controlling N. pubens. Methodology and Principal Findings Metagenomics and pyrosequencing techniques were employed to examine the transcriptome of field-collected N. pubens colonies in an effort to identify virus infections with potential to serve as control agents against this pest ant. Pyrosequencing (454-platform) of a non-normalized N. pubens expression library generated 1,306,177 raw sequence reads comprising 450 Mbp. Assembly resulted in generation of 59,017 non-redundant sequences, including 27,348 contigs and 31,669 singlets. BLAST analysis of these non-redundant sequences identified 51 of potential viral origin. Additional analyses winnowed this list of potential viruses to three that appear to replicate in N. pubens. Conclusions Pyrosequencing the transcriptome of field-collected samples of N. pubens has identified at least three sequences that are likely of viral origin and, in which, N. pubens serves as host. In addition, the N. pubens transcriptome provides a genetic resource for the scientific community which is especially important at this early stage of developing a knowledgebase for this new pest. PMID:22384082
Molnár, Sándor; López, Inmaculada; Gámez, Manuel; Garay, József
2016-03-01
The paper is aimed at a methodological development in biological pest control. The considered one pest two-agent system is modelled as a verticum-type system. Originally, linear verticum-type systems were introduced by one of the authors for modelling certain industrial systems. These systems are hierarchically composed of linear subsystems such that a part of the state variables of each subsystem affect the dynamics of the next subsystem. Recently, verticum-type system models have been applied to population ecology as well, which required the extension of the concept a verticum-type system to the nonlinear case. In the present paper the general concepts and technics of nonlinear verticum-type control systems are used to obtain biological control strategies in a two-agent system. For the illustration of this verticum-type control, these tools of mathematical systems theory are applied to a dynamic model of interactions between the egg and larvae populations of the sugarcane borer (Diatraea saccharalis) and its parasitoids: the egg parasitoid Trichogramma galloi and the larvae parasitoid Cotesia flavipes. In this application a key role is played by the concept of controllability, which means that it is possible to steer the system to an equilibrium in given time. In addition to a usual linearization, the basic idea is a decomposition of the control of the whole system into the control of the subsystems, making use of the verticum structure of the population system. The main aim of this study is to show several advantages of the verticum (or decomposition) approach over the classical control theoretical model (without decomposition). For example, in the case of verticum control the pest larval density decreases below the critical threshold value much quicker than without decomposition. Furthermore, it is also shown that the verticum approach may be better even in terms of cost effectiveness. The presented optimal control methodology also turned out to be an efficient tool for the "in silico" analysis of the cost-effectiveness of different biocontrol strategies, e.g. by answering the question how far it is cost-effective to speed up the reduction of the pest larvae density, or along which trajectory this reduction should be carried out. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
[Effect of transgenic insect-resistant rice on biodiversity].
Zhang, Lei; Zhu, Zhen
2011-05-01
Rice is the most important food crops in maintaining food security in China. The loss of China's annual rice production caused by pests is over ten million tons. Present studies showed that the transgenic insect-resistant rice can substantially reduce the application amount of chemical pesticides. In the case of no pesticide use, the pest density in transgenic rice field is significantly lower than that in non-transgenic field, and the neutral insects and natural enemies of pests increased significantly, indicating that the ecological environment and biodiversity toward the positive direction. The gene flow frequency from transgenic rice is dramatically reduced with the distance increases, reaching less than 0.01% at the distance of 6.2 m. Application of transgenic insect-resistant rice in China has an important significance for ensuring food security, maintaining sustainable agricultural development, and protecting the ecological environment and biodiversity. This review summarized the research progress in transgenic insect-resistant rice and its effect on biodiversity. The research directions and development trends of crop pest controlling in future are discussed. These help to promote better use of transgenic insect-resistant rice.
Exploitation of insect vibrational signals reveals a new method of pest management.
Eriksson, Anna; Anfora, Gianfranco; Lucchi, Andrea; Lanzo, Francesco; Virant-Doberlet, Meta; Mazzoni, Valerio
2012-01-01
Food production is considered to be the main source of human impact on the environment and the concerns about detrimental effects of pesticides on biodiversity and human health are likely to lead to an increasingly restricted use of chemicals in agriculture. Since the first successful field trial, pheromone based mating disruption enabled sustainable insect control, which resulted in reduced levels of pesticide use. Organic farming is one of the fastest growing segments of agriculture and with the continuously growing public concern about use of pesticides, the main remaining challenge in increasing the safety of the global food production is to identify appropriate alternative mating disruption approaches for the numerous insect pests that do not rely on chemical communication. In the present study, we show for the first time that effective mating disruption based on substrate-borne vibrational signals can be achieved in the field. When disruptive vibrational signals were applied to grapevine plants through a supporting wire, mating frequency of the leafhopper pest Scaphoideus titanus dropped to 9 % in semi-field conditions and to 4 % in a mature vineyard. The underlying mechanism of this environmentally friendly pest-control tactic is a masking of the vibrational signals used in mate recognition and location. Because vibrational communication is widespread in insects, mating disruption using substrate vibrations can transform many open field and greenhouse based farming systems.
Rodriguez-Saona, Cesar; Wanumen, Andrea Carolina; Salamanca, Jordano; Holdcraft, Robert; Kyryczenko-Roth, Vera
2016-01-01
Laboratory and extended laboratory bioassays were conducted to determine the residual toxicities of various insecticides against two key pests of cranberries, Sparganothis sulfureana and Choristoneura parallela (Lepidoptera: Tortricidae), and their non-target effects on the predatory Orius insidiosus (Hemiptera: Anthocoridae). The effects of nine insecticides with different modes of action on S. sulfureana and Ch. parallela eggs, larvae, and adults were tested in the laboratory, while the efficacy of a post-bloom application on larval mortality and mass of these pests and on adult O. insidiosus was evaluated in extended laboratory experiments. The organophosphate chlorpyrifos and the spinosyn spinetoram provided long-lasting (seven-day) control against all stages of both pests. The growth regulator methoxyfenozide and the diamides chlorantraniliprole and cyantraniliprole had strong (1–7 days) larvicidal, particularly on young larvae, and growth inhibitory activity, but only the diamides were adulticidal. Among neonicotinoids, acetamiprid had stronger ovicidal and adulticidal activity than thiamethoxam, showing within-insecticide class differences in toxicities; however, both were weak on larvae. Lethality of novaluron and indoxacarb was inconsistent, varying depending on species and stage. Chlorpyrifos was most toxic to O. insidiosus. These results show species- and stage-specific toxicities, and greater compatibility with biological control, of the newer reduced-risk classes of insecticides than older chemistries. PMID:27092527
Li, Tengchao; Chen, Jie; Fan, Xiaobin; Chen, Weiwen; Zhang, Wenqing
2017-07-01
Two RNA silencing pathways in insects are known to exist that are mediated by short interfering RNAs (siRNAs) and microRNAs (miRNAs), which have been hypothesised to be promising methods for insect pest control. However, a comparison between miRNA and siRNA in pest control is still unavailable, particularly in targeting chitin synthase gene A (CHSA). The dsRNA for Nilaparvata lugens CHSA (dsNlCHSA) and the microR-2703 (miR-2703) mimic targeting NlCHSA delivered via feeding affected the development of nymphs, reduced their chitin content and led to lethal phenotypes. The protein level of NlCHSA was downregulated after female adults were injected with dsNlCHSA or the miR-2703 mimic, but there were no significant differences in vitellogenin (NlVg) expression or in total oviposition relative to the control group. However, 90.68 and 46.13% of the eggs laid by the females injected with dsNlCHSA and miR-2703 mimic were unable to hatch, respectively. In addition, a second-generation miRNA and RNAi effect on N. lugens was observed. Ingested miR-2703 seems to be a good option for killing N. lugens nymphs, while NlCHSA may be a promising target for RNAi-based pest management. These findings provide important evidence for applications of small non-coding RNAs (snRNAs) in insect pest management. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Selection of Beauveria isolates pathogenic to adults of Nilaparvata lugens
Li, Maoye; Li, Shiguang; Xu, Amei; Lin, Huafeng; Chen, Dexin; Wang, Hui
2014-01-01
Abstract The brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae), is a destructive invasive pest and has become one of the most economically-important rice pests in China. Effective control measures are desperately needed. Entomopathogenic fungi, such as Beauveria bassiana (Balsamo-Crivelli) Vuillemin (Hypocreales: Clavicipitaceae) and B. brongniartii (Saccardo), have shown great potential for the management of some sucking pest species. In this study, to explore alternative strategies for sustainable control of the sucking pest population, nine isolates of Beauveria from different pests were bioassayed under the concentrated standard spray of 1000 conidia/mm 2 in laboratory. The cumulative mortalities of adults ranged from 17.2 to 79.1% 10 days after inoculation. The virulence among all tested isolates exhibited significant differences (at p = 0.05). The highest virulent isolate was Bb09, which killed 79.1% of the treated insects and had a median lethal time of 5.5 days. Its median lethal concentration values were estimated as 134 conidia/mm 2 on day 10. The chitinase activities of nine isolates were also assayed. The results showed that the chitinase activity (18.7 U/mg) of isolate Bbr09 was the highest among all tested isolates. The biological characteristics of these strains, including growth rate, sporulation, and germination rate, were further investigated. The results showed that strain Bbr09 exhibited the best biological characteristics with relatively higher hyphal growth rate, the highest spore production, and the fastest spore germination. The isolate of Bbr09 had strong pathogenicity and exhibited great potential for sustainable control of N . lugens . PMID:25373179
Mallqui, K S Vilca; Vieira, J L; Guedes, R N C; Gontijo, L M
2014-04-01
Insecticides can have lethal or sublethal effects upon targeted pest species, and sublethal effects may even favor pest outbreaks if insecticide-induced hormesis occurs. Hormesis is a biphasic dose-response of a given chemical compound that is stimulatory at low doses and toxic at high doses. The former response may result from the disruption of animal homeostasis leading to trade-off shifts between basic ecophysiological processes. A growing interest in the use of biorational insecticides, such as azadirachtin to control stored-product pests, raises concerns about potential sublethal effects. In this study, we explored the hypothesis that azadirachtin can negatively impact the reproductive capacity of the Mexican bean weevil, Zabrotes subfasciatus (Boheman) (Chrysomelidae: Bruchinae), a key pest of stored beans. In addition, we investigated whether adults of this species could compensate for any sublethal effect that might have affected any of their reproductive parameters by adjusting the allocation of its reproductive efforts. The results showed that females of Z. subfasciatus increased fecundity daily to compensate for azadirachtin-induced decreased longevity. In addition, a stage-structured matrix study revealed that populations of Z. subfasciatus engendered from females exposed to azadirachtin exhibited a higher rate of population increase (r) and a higher net reproductive rate (R(o)). Finally, a projection matrix analysis showed notably higher densities along the generations for azadirachtin-exposed Z. subfasciatus populations. Thus, our study provides empirical evidence for the capacity of Z. subfasciatus to adapt to sublethal effects caused by biorational insecticides; consequently, this study highlights the importance of understanding this phenomenon when devising pest management strategies.
Bug Off: A Guide for Integrated Pest Management in Granville Schools.
ERIC Educational Resources Information Center
2001
This guide describes options for the Granville schools when dealing with pests. It is based on Integrated Pest Management (IPM), a philosophy that employs safe and practical pest control methods. The guide can be used to incorporate IPM philosophy into the school systems. The first section provides the environmental context for an interest in…
Han, Ruizhen; He, Yong; Liu, Fei
2012-01-01
This paper presents a feasibility study on a real-time in field pest classification system design based on Blackfin DSP and 3G wireless communication technology. This prototype system is composed of remote on-line classification platform (ROCP), which uses a digital signal processor (DSP) as a core CPU, and a host control platform (HCP). The ROCP is in charge of acquiring the pest image, extracting image features and detecting the class of pest using an Artificial Neural Network (ANN) classifier. It sends the image data, which is encoded using JPEG 2000 in DSP, to the HCP through the 3G network at the same time for further identification. The image transmission and communication are accomplished using 3G technology. Our system transmits the data via a commercial base station. The system can work properly based on the effective coverage of base stations, no matter the distance from the ROCP to the HCP. In the HCP, the image data is decoded and the pest image displayed in real-time for further identification. Authentication and performance tests of the prototype system were conducted. The authentication test showed that the image data were transmitted correctly. Based on the performance test results on six classes of pests, the average accuracy is 82%. Considering the different live pests' pose and different field lighting conditions, the result is satisfactory. The proposed technique is well suited for implementation in field pest classification on-line for precision agriculture.
CRISPR/Cas9 based mutation reveals Argonaute 1 is essential for pigmentation in Ostrinia furnacalis.
You, Lang; Bi, Hong-Lun; Wang, Yao-Hui; Li, Xiao-Wei; Chen, Xi-En; Li, Zhi-Qian
2018-06-25
Ostrinia furnacalis (Lepidoptera: Pyralidae) is one of the most destructive agricultural pests in Asia. Traditional pest-management methods include sex pheromone capture, transgenic crops that produce Bacillus thuringiensis toxin, and pesticides. Although these strategies control pest populations effectively, they also causes negative side effects, including dramatically increased pesticide resistance, severe pollution, and hazard for human health. Recently developed genome editing tools provide new prospect for pest management and have been used in several species successfully. However, few examples have been reported in the agricultural pest O. furnacalis since lacking the genomic information. In this report, we identified only one transcript of O. furnacalis Argonaute 1 (OfAgo1) gene from the genome and cloned the open reading frame (ORF). OfAgo1 presented the maximum expression at the embryo stage or in the fat body during the larval stages. To understand its function, an OfAgo1 mutant was constructed using the Clustered Regularly Interspaced Short Palindromic Repeat/RNA-guided Cas9 nuclease (CRISPR/Cas9). Mutagenesis of OfAgo1 disrupted cuticle pigmentation by down-regulating miRNAs and pigmentation related genes. This is the first report for the cloning and functional analysis of OfAgo1, revealing a role of OfAgo1 in cuticle pigmentation. The current report also established a CRISPR/Cas9 system in O. furnacalis, providing a new insight for pest management. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Fowler, Harold G.; Pagani, Maria Inez; da Silva, Osvaldo Aulino; Forti, Luis Carlos; da Silva, Virgilio Pereira; de Vasconcelos, Heraldo Luis
1989-11-01
Leaf-cutting ants of the genera Acromyrmex and Atta are considered the principal polyphagous pests of the Neotropics Although some members of these genera are of economic importance, have a broad geographic distribution, and are extremely good colonizers, others are endemic and closely interact with native ecosystems. Control is generally practiced against any colony, irrespective of its taxonomic status. Indiscriminate control coupled with habitat destruction threatens endemic species with extinction, and, through habitat simplification, favors other pest species. As nests of Atta are large, having several square meters of nest surface, the endemic taxa can be easily used as environmental indicators for natural ecosystems Likewise, the pest species can be used to detect environmental disturbance As these ants are keystone species and easily identified by nonspecialists, efforts should be made to integrate these into viable conservation programs
Differential impacts of six insecticides on a mealybug and its coccinellid predator.
Barbosa, Paulo R R; Oliveira, Martin D; Barros, Eduardo M; Michaud, J P; Torres, Jorge B
2018-01-01
Broad-spectrum insecticides may disrupt biological control and cause pest resurgence due to their negative impacts on natural enemies. The preservation of sustainable pest control in agroecosystems requires parallel assessments of insecticide toxicity to target pests and their key natural enemies. In the present study, the leaf dipping method was used to evaluate the relative toxicity of six insecticides to the striped mealybug, Ferrisia dasylirii (Cockerell) (Hemiptera: Pseudococcidae) and its predator, Tenuisvalvae notata (Mulsant) (Coleoptera: Coccinellidae). Three neurotoxic insecticides, lambda-cyhalothrin, methidathion and thiamethoxam, caused complete mortality of both pest and predator when applied at their highest field rates. In contrast, lufenuron, pymetrozine and pyriproxyfen caused moderate mortality of third-instar mealybug nymphs, and exhibited low or no toxicity to either larvae or adults of the lady beetle. At field rates, lufenuron and pymetrozine had negligible effects on prey consumption, development or reproduction of T. notata, but adults failed to emerge from pupae when fourth instar larvae were exposed to pyriproxyfen. In addition, pyriproxyfen caused temporary sterility; T. notata females laid non-viable eggs for three days after exposure, but recovered egg fertility thereafter. Our results indicate that the three neurotoxic insecticides can potentially control F. dasylirii, but are hazardous to its natural predator. In contrast, lufenuron and pymetrozine appear compatible with T. notata, although they appear less effective against the mealybug. Although the acute toxicity of pyriproxyfen to T. notata was low, some pupal mortality and reduced egg fertility suggest that this material could impede the predator's numerical response to mealybug populations. Copyright © 2017 Elsevier Inc. All rights reserved.
Sparagano, O; Khallaayoune, K; Duvallet, G; Nayak, S; George, D
2013-11-01
Resistance to conventional synthetic pesticides has been widely reported in ticks, parasitic mites and other pests of veterinary and medical significance. New and novel approaches to manage these pests are therefore needed to ensure efficient control programmes that can be implemented now and in the future. Recent research in this area has focused on the pesticidal potential of plant essential oils. These products are attractive as pesticide candidates on the grounds of low mammalian toxicity, short environmental persistence and complex chemistries (limiting the development of pest resistance against them). Although issues may exist concerning reliability in efficacy of essential oils, these may be overcome by identifying and developing bioactive oil components for use in pest management. In the current work, three such components (terpenes) found in essential oils (eugenol, geraniol and citral) were tested against the poultry red mite Dermanyssus gallinae. All provided 100% mortality in toxicity tests when undiluted. Even at 1% of this dose, eugenol was 20% effective against experimental pest populations, although the remaining terpenes were largely ineffective at this concentration. © 2013 Blackwell Verlag GmbH.
Temperature Alters the Response to Insecticides in Drosophila suzukii (Diptera: Drosophilidae).
Saeed, Nadia; Tonina, Lorenzo; Battisti, Andrea; Mori, Nicola
2018-05-28
Drosophila suzukii Matsumura (Diptera: Drosophilidae) is an invasive pest in Europe and is a major threat to the soft fruit industry. Because of an ample temperature range, the pest spans from low to high elevation crops in mountain areas of the Southern Alps. Starting from field observations on the variable efficacy of insecticides under different temperatures, experiments were designed to test the efficacy of chemical families of insecticides available against this pest. Pyrethroids and spynosins proved to be the most effective under all temperature conditions (14, 22, and 30°C) in all assays. Organophosphates and neonicotinoids showed significantly lower efficacy at low temperatures, indicating that they are not suitable to protect crops under those conditions. The management of the pest in cold habitats, which are suitable for the cultivation of high-quality berries as for example in mountain farming systems, is constrained by a limited number of molecules available for fruit protection. Temperature has to be considered among factors affecting the decision-making process for the choice of registered formulations to be used in pest control.
Aquatic Pest Control. Sale Publication 4071.
ERIC Educational Resources Information Center
Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.
The information in this manual applies to control of aquatic pests in recreational waters, agricultural reservoirs, ornamental ponds, coastal bays, estuaries and channels, and drinking water reservoirs. Mechanical, cultural, biological, and chemical control methods are discussed. The majority of the material is devoted to weed control in static…
2008-05-29
Plant Health Inspection Service / Animal Damage Control Memorandum of Agreement on Animal Damage Control, April 19905 (am) Army Regulation 40-905...Services shall manage vertebrate pests in accordance with the DoD-USDA/Animal and Plant Health Inspection Service / Animal Damage Control MOA (Reference
Schmidt-Jeffris, Rebecca A; Nault, Brian A
2016-12-01
Many vegetable insect pests are managed using neonicotinoid and pyrethroid insecticides. Unfortunately, these insecticides are toxic to many bees and natural enemies and no longer control some pests that have developed resistance. Anthranilic diamide insecticides provide systemic control of many herbivorous arthropod pests, but exhibit low toxicity to beneficial arthropods and mammals, and may be a promising alternative to neonicotinoids and pyrethroids. Anthranilic diamides may be delivered to vegetable crops via seed, in-furrow, or foliar treatments; therefore, it would be desirable to identify which application method provides high levels of pest control while minimizing the amount of active ingredient. As a case study, chlorantraniliprole and cyantraniliprole applied via the methods listed above were evaluated for managing seedcorn maggot, Delia platura (Meigen) (Diptera: Anthomyiidae), and European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), in snap bean. Chlorantraniliprole and cyantraniliprole delivered as seed and in-furrow treatments reduced D. platura damage to the same level as the standard neonicotinoid seed treatment. Both diamides applied via all three methods significantly reduced O. nubilalis damage, but only the foliar application provided similar control as the standard pyrethroid spray. Results from laboratory bioassays revealed that both diamides applied as seed and in-furrow treatments caused high O. nubilalis neonate mortality up to 44 d after application. While the diamides provided equivalent control of these pests as the neonicotinoid and pyrethroid standards when applied in the same manner, chlorantraniliprole delivered as a seed treatment showed the most promise for managing both pests. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Lax, Alan R; Osbrink, Weste L A
2003-01-01
The Formosan subterranean termite, Coptotermes formosanus Shiraki is currently one of the most destructive pests in the USA. It is estimated to cost consumers over US dollars 1 billion annually for preventative and remedial treatment and to repair damage caused by this insect. The mission of the Formosan Subterranean Termite Research Unit of the Agricultural Research Service is to demonstrate the most effective existing termite management technologies, integrate them into effective management systems, and provide fundamental problem-solving research for long-term, safe, effective and environmentally friendly new technologies. This article describes the epidemiology of the pest and highlights the research accomplished by the Agricultural Research Service on area-wide management of the termite and fundamental research on its biology that might provide the basis for future management technologies. Fundamental areas that are receiving attention are termite detection, termite colony development, nutrition and foraging, and the search for biological control agents. Other fertile areas include understanding termite symbionts that may provide an additional target for control. Area-wide management of the termite by using population suppression rather than protection of individual structures has been successful; however, much remains to be done to provide long-term sustainable population control. An educational component of the program has provided reliable information to homeowners and pest-control operators that should help slow the spread of this organism and allow rapid intervention in those areas which it infests.
Holt, J; Leach, A W; Johnson, S; Tu, D M; Nhu, D T; Anh, N T; Quinlan, M M; Whittle, P J L; Mengersen, K; Mumford, J D
2018-02-01
The production of an agricultural commodity involves a sequence of processes: planting/growing, harvesting, sorting/grading, postharvest treatment, packing, and exporting. A Bayesian network has been developed to represent the level of potential infestation of an agricultural commodity by a specified pest along an agricultural production chain. It reflects the dependency of this infestation on the predicted level of pest challenge, the anticipated susceptibility of the commodity to the pest, the level of impact from pest control measures as designed, and any variation from that due to uncertainty in measure efficacy. The objective of this Bayesian network is to facilitate agreement between national governments of the exporters and importers on a set of phytosanitary measures to meet specific phytosanitary measure requirements to achieve target levels of protection against regulated pests. The model can be used to compare the performance of different combinations of measures under different scenarios of pest challenge, making use of available measure performance data. A case study is presented using a model developed for a fruit fly pest on dragon fruit in Vietnam; the model parameters and results are illustrative and do not imply a particular level of fruit fly infestation of these exports; rather, they provide the most likely, alternative, or worst-case scenarios of the impact of measures. As a means to facilitate agreement for trade, the model provides a framework to support communication between exporters and importers about any differences in perceptions of the risk reduction achieved by pest control measures deployed during the commodity production chain. © 2017 Society for Risk Analysis.
Overuse or underuse? An observation of pesticide use in China.
Zhang, Chao; Hu, Ruifa; Shi, Guanming; Jin, Yanhong; Robson, Mark G; Huang, Xusheng
2015-12-15
Pesticide use has experienced a dramatic increase worldwide, especially in China, where a wide variety of pesticides are used in large amounts by farmers to control crop pests. While Chinese farmers are often criticized for pesticide overuse, this study shows the coexistence of overuse and underuse of pesticide based on the survey data of pesticide use in rice, cotton, maize, and wheat production in three provinces in China. A novel index amount approach is proposed to convert the amount of multiple pesticides used to control the same pest into an index amount of a referenced pesticide. We compare the summed index amount with the recommended dosage range of the referenced pesticide to classify whether pesticides are overused or underused. Using this new approach, the following main results were obtained. Pesticide overuse and underuse coexist after examining a total of 107 pesticides used to control up to 54 crop pests in rice, cotton, maize, and wheat production. In particular, pesticide overuse in more than half of the total cases for 9 crop pest species is detected. In contrast, pesticide underuse accounts for more than 20% of the total cases for 11 pests. We further indicate that the lack of knowledge and information on pesticide use and pest control among Chinese farmers may cause the coexistence of pesticide overuse and underuse. Our analysis provides indirect evidence that the commercialized agricultural extension system in China probably contributes to the coexistence of overuse and underuse. To improve pesticide use, it is urgent to reestablish the monitoring and forecasting system regarding pest control in China. Copyright © 2015 Elsevier B.V. All rights reserved.
Pesticides, A Scientists' Institute for Public Information Workbook.
ERIC Educational Resources Information Center
Dahlsten, Donald L.; And Others
This collection of articles emphasizes the need for care in the use of chemical pesticides. Economic and ecological implications of pest control are discussed, and data are given on the effectiveness and side effects of chemical insecticides. Alternative methods of control are proposed. The part that can be played by the public in decision making…
USDA-ARS?s Scientific Manuscript database
Background. The house fly, Musca domestica L., is an important pest of animal agriculture. Effective fly management requires integration of manure management, mass trapping, biological control, and selective insecticide use. Insecticidal control of house flies is difficult due to the rapidity of res...
APHIS (PPQ) exotic pest detection
David R. Lance
2003-01-01
The legally mandated responsibilities of APHIS Plant Protection and Quarantine (PPQ) include: (1) Protect American agriculture from foreign plant pest introduction and establishment, (2) facilitate export of American agricultural products, and (3) control or eradicate pests as authorized by legislation and regulation.
Effect of Adventitious Carbon on the Environmental Degradation of SiC/BN/SiC Composites
NASA Technical Reports Server (NTRS)
Ogbuji, L. U. J. T.; Yun, H. M.; DiCarlo, J.
2002-01-01
Pesting remains a major obstacle to the application of SiC/SiC composites in engine service and selective degradation of the boron nitride interphase at intermediate temperatures is of primary concern. However, significant progress has been made on interphase improvement recently and we now know more about the phenomenon and ways to suppress it. By screening SiC/BN/SiC materials through characterization of strength and microstructures after exposure in a burner rig, some factors that control pesting in these composites have been determined. A key precaution is careful control of elemental carbon presence in the interphase region.
O'Reilly, Andrias O; Williamson, Martin S; González-Cabrera, Joel; Turberg, Andreas; Field, Linda M; Wallace, B A; Davies, T G Emyr
2014-03-01
The pyrethroid insecticides are a very successful group of compounds that target invertebrate voltage-gated sodium channels and are widely used in the control of insects, ticks and mites. It is well established that some pyrethroids are good insecticides whereas others are more effective as acaricides. This species specificity is advantageous for controlling particular pest(s) in the presence of another non-target invertebrate, for example controlling the Varroa mite in honeybee colonies. We applied in silico techniques to compare the voltage-gated sodium channels of insects versus ticks and mites and their interactions with a range of pyrethroids and DDT analogues. We identified a single amino acid difference within the pyrethroid binding pocket of ticks/mites that may have significant impact on the effectiveness of pyrethroids as acaricides. Other individual amino acid differences within the binding pocket in distinct tick and mite species may provide a basis for future acaricidal selectivity. Three-dimensional modelling of the pyrethroid/DDT receptor site has led to a new hypothesis to explain the preferential binding of acaricidal pyrethroids to the sodium channels of ticks/mites. This is important for understanding pyrethroid selectivity and the potential effects of mutations that can give rise to resistance to pyrethroids in commercially-important pest species. © 2013 Society of Chemical Industry.
He, Yuxian; Zhao, Jianwei; Zheng, Yu; Weng, Qiyong; Biondi, Antonio; Desneux, Nicolas; Wu, Kongming
2013-01-01
The tobacco whitefly Bemisia tabaci is one of the most devastating pests worldwide. Current management of B. tabaci relies upon the frequent applications of insecticides. In addition to direct mortality by typical acute toxicity (lethal effect), insecticides may also impair various key biological traits of the exposed insects through physiological and behavioral sublethal effects. Identifying and characterizing such effects could be crucial for understanding the global effects of insecticides on the pest and therefore for optimizing its management in the crops. We assessed the effects of sublethal and low-lethal concentrations of four widely used insecticides on the fecundity, honeydew excretion and feeding behavior of B. tabaci adults. The probing activity of the whiteflies feeding on treated cotton seedlings was recorded by an Electrical Penetration Graph (EPG). The results showed that imidacloprid and bifenthrin caused a reduction in phloem feeding even at sublethal concentrations. In addition, the honeydew excretions and fecundity levels of adults feeding on leaf discs treated with these concentrations were significantly lower than the untreated ones. While, sublethal concentrations of chlorpyrifos and carbosulfan did not affect feeding behavior, honeydew excretion and fecundity of the whitefly. We demonstrated an antifeedant effect of the imidacloprid and bifenthrin on B. tabaci, whereas behavioral changes in adults feeding on leaves treated with chlorpyrifos and carbosulfan were more likely caused by the direct effects of the insecticides on the insects' nervous system itself. Our results show that aside from the lethal effect, the sublethal concentration of imidacloprid and bifenthrin impairs the phloem feeding, i.e. the most important feeding trait in a plant protection perspective. Indeed, this antifeedant property would give these insecticides potential to control insect pests indirectly. Therefore, the behavioral effects of sublethal concentrations of imidacloprid and bifenthrin may play an important role in the control of whitefly pests by increasing the toxicity persistence in treated crops. PMID:23494876
NASA Astrophysics Data System (ADS)
Teng, Qing; Hu, Xue-Feng; Luo, Fan; Cao, Ming-Yang
2014-05-01
Frogs in paddy fields become less and less due to applying large amounts of pesticides and human hunting for a long time, which causes the aggravation of rice pests and diseases. A field experiment was carried out in the suburb of Shanghai to study the effects of artificially raising frogs and putting frequency oscillation pest-killing lamps in paddy fields on the prevention of rice pests and diseases. The field experiment includes three treatments. Treatment I: 150 frogs, each 20 g in weight, per 100 m2 were put in the fields; Treatment II: a frequency oscillation pest-killing lamp was put in the fields; Treatment III: no frogs and pest-killing lamps were put in the fields. All the experimental fields were operated based on the organic faming system. The amount of organic manure, 7500 kg/hm2, was applied to the fields as base fertilizer before sowing in early June, 2013. No any chemical fertilizers and pesticides were used during the entire period of rice growth. Each treatment is in triplicate and each plot is 67 m2 in area. The results are as follows: (1) During the entire growth period, the incidences of rice pests and diseases with Treatment I and II are significantly lower than those with CK (Treatment III). The incidence of chilo suppressalis with Treatment I, II and III is 0, 0.46% and 1.69%, respectively; that of cnaphalocrocis medinalis is 7.67%, 6.62% and 10.10%, respectively; that of rice sheath blight is 0, 11.11% and 5.43%, respectively; that of rice planthopper is 4.25 per hill, 5.75 per hill and 11 per hill, respectively. (2) The grain yield of the three treatments is significantly different. That of Treatment I, II and III is 5157.73 kg/hm2, 4761.60 kg/hm2 and 3645.14kg/hm2 on average, respectively. (3) Affected by frog activities, the contents of NH4-N, available P and available K in the soil with Treatment I are significantly raised. All the above suggest that artificially raising frogs in paddy fields could effectively prevent rice pests and diseases, especially reduce the incidences of rice sheath blight and chilo suppressalis, and setting pest-killing lamps could also effectively control rice pests, but not rice sheath blight, which contribute to the increase of grain yield largely. Moreover, the activity of frogs in paddy fields could improve soil fertility and increase bio-diversity. Acknowledgements: This work was supported by the National Natural Science Foundation of China (No. 41130526).
USDA-ARS?s Scientific Manuscript database
An integrated pest control program requires an in-depth understanding of the compatibility of all control strategies used. In Wisconsin commercial cranberry production, early-season control strategies may include either a broad-spectrum insecticide application or a corresponding spring flood, along ...
Plant parasite control and soil fauna diversity.
Lavelle, Patrick; Blouin, Manuel; Boyer, Johnny; Cadet, Patrice; Laffray, Daniel; Pham-Thi, Anh-Thu; Reversat, Georges; Settle, William; Zuily, Yasmine
2004-07-01
The use of pesticides to control plant parasites and diseases has generated serious problems of public health and environmental quality, leading to the promotion of alternative Integrated Pest Management strategies that tend to rely more on natural processes and the active participation of farmers as observers and experimenters in their own fields. We present three case studies that point at different options provided by locally available populations of soil organisms, the maintenance of diverse populations of pests or increased resistance of plants to pest attacks by their interactions with earthworms and other useful soil organisms. These examples demonstrate the diversity of options offered by the non-planned agro-ecosystem diversity in pest control and the need to identify management options that maintain this biodiversity.
A Practical Guide to Management of Common Pests in Schools. Integrated Pest Management.
ERIC Educational Resources Information Center
Illinois State Dept. of Public Health, Springfield.
This 3-part manual is designed to assist school officials understand the principles of Integrated Pest Management and aid them in implementing those principles into a comprehensive pest control program in their facilities. Developed for Illinois, this guide can be applied in part or in total to other areas of the country. Part 1 explains what an…
Understanding the side effects of classical biological control
Dean Pearson
2008-01-01
Classical biological control involves the use of imported natural enemies to suppress or control populations of the target pest species below an economically or ecologically relevant threshold. Biological control is a useful tool for mitigating the impacts of exotic invasive plants; however, its application is not without risk (see Carruthers and DâAntonio...
Saeed, Qamar; Ahmad, Faheem; Saeed, Shafqat
2017-06-01
Spodoptera exigua (Hübner) is a polyphagous pest that shifts its population to different hosts during its life cycle to receive nutritive advantages. Therefore, demographic evaluation of alternate hosts is important for effective pest management. Here, we have evaluated castor (Ricinus communis L.), cauliflower (Brassica oleracea L.), cotton (Gossypium hirsutum L.), okra (Abelmoschus esculentus L.), and spinach (Spinacia oleracea L.) for growth, survival, and population development of S. exigua. Development of early populations of S. exigua is best supported on castor where earlier instars had least mortalities (10%) compared with spinach (36%), although later instars and pupae had significantly higher mortalities (20.8%) on it. Spinach and okra, on the other hand, promote larval survivals in later instars. Little or no differences in stadia lengths were observed during early development of larvae and, interestingly, the longevity of female moths increased significantly when reared on castor, cauliflower, and spinach (12.3, 11.3, and 11.7 d, respectively), resulting into significantly higher fecundity. The survival curves of all five populations have clearly demonstrated a steep early decline in larval numbers when reared on okra and only 60% larvae could survive. These findings conclude that S. exigua when fed on spinach was greatly disadvantaged in terms of growth and development; hence, the pest's field population can be opportunistically controlled by spraying adjacent spinach fields. In addition, the results highlight the vulnerable stages in pest's life cycle in the field where we can apply integrated control strategies for its effective management. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Prabhukarthikeyan, Rathinam; Saravanakumar, Duraisamy; Raguchander, Thiruvengadam
2014-11-01
Most of the approaches for biocontrol of pests and diseases have used a single biocontrol agent as antagonist to a single pest or pathogen. This accounts for the inconsistency in the performance of biocontrol agents. The development of a bioformulation possessing a mixture of bioagents could be a viable option for the management of major pests and diseases in crop plants. A bioformulation containing a mixture of Beauveria bassiana (B2) and Bacillus subtilis (EPC8) was tested against Fusarium wilt and fruit borer in tomato under glasshouse and field conditions. The bioformulation with B2 and EPC8 isolates effectively reduced the incidence of Fusarium wilt (Fusarium oxysporum f. sp. lycopersici) and fruit borer (Helicoverpa armigera) under glasshouse and field conditions compared with the individual application of B2 and EPC8 isolates and control treatments. In vitro studies showed a higher larval mortality of H. armigera when fed with B2 + EPC8-treated leaves. Further, plants treated with the B2 + EPC8 combination showed a greater accumulation of defence enzymes such as lipoxygenase, peroxidase and polyphenol oxidase against wilt pathogen and fruit borer pest than the other treatments. Moreover, a significant increase in growth parameters and yield was observed in tomato plants treated with B2 + EPC8 compared with the individual bioformulations and untreated control. The combined application of Beauveria and Bacillus isolates B2 and EPC8 effectively reduced wilt disease and fruit borer attack in tomato plants. Results show the possibility of synchronous management of tomato fruit borer pest and wilt disease in a sustainable manner. © 2013 Society of Chemical Industry.
Ribonucleic acid interference (RNAi) and control of citrus pests
USDA-ARS?s Scientific Manuscript database
Ribonucleic acid interference, RNAi, applications and function are described for the non-scientist to bring a better understanding of how this emerging technology is providing environmentally friendly, non-transgenic, insect pest control. ...
Biological control of livestock pests : Parasitoids
USDA-ARS?s Scientific Manuscript database
House flies, Musca domestica L., and stable flies, Stomoxys calcitrans (L.), are common pests on livestock, poultry, and equine facilities. Biological control of filth flies with pupal parasitoids can be used in conjunction with other control methods as part of an integrated fly management program. ...
Microbial control of structural insect pests
USDA-ARS?s Scientific Manuscript database
Three major pest groups affecting urban structures, ants, termites, and peridomestic cockroaches, are potentially the most amenable for the development of microbial controls. It is not only because of their economic importance, but their biology and ecology make them more susceptible to control by e...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-03
... data on plant pests, noxious weeds, and biological control agents, which may be used to control plant..., eradicate, suppress, control, prevent, or retard the spread of plant pests and noxious weeds that are new to...
Effects of Foliar Insecticides on Leaf-Level Spectral Reflectance of Soybean.
Alves, Tavvs M; Marston, Zachary P; MacRae, Ian V; Koch, Robert L
2017-12-05
Pest-induced changes in plant reflectance are crucial for the development of pest management programs using remote sensing. However, it is unknown if plant reflectance data is also affected by foliar insecticides applied for pest management. Our study assessed the effects of foliar insecticides on leaf reflectance of soybean. A 2-yr field trial and a greenhouse trial were conducted using randomized complete block and completely randomized designs, respectively. Treatments consisted of an untreated check, a new systemic insecticide (sulfoxaflor), and two representatives of the most common insecticide classes used for soybean pest management in the north-central United States (i.e., λ-cyhalothrin and chlorpyrifos). Insecticides were applied at labeled rates recommended for controlling soybean aphid; the primary insect pest in the north-central United States. Leaf-level reflectance was measured using ground-based spectroradiometers. Sulfoxaflor affected leaf reflectance at some red and blue wavelengths but had no effect at near-infrared or green wavelengths. Chlorpyrifos affected leaf reflectance at some green, red, and near-infrared wavelengths but had no effect at blue wavelengths. λ-cyhalothrin had the least effect on spectral reflectance among the insecticides, with changes to only a few near-infrared wavelengths. Our results showing immediate and delayed effects of foliar insecticides on soybean reflectance indicate that application of some insecticides may confound the use of remote sensing for detection of not only insects but also plant diseases, nutritional and water deficiencies, and other crop stressors. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Right-of-Way Pest Control. Sale Publication 4075.
ERIC Educational Resources Information Center
Stimmann, M. W., Ed.
This manual discusses weed control to be applied to such areas as roads, airports, railroads, electric utilities, waterways; and trails. Included is information about types of weeds, methods of weed control, safe and effective use of herbicides, and application equipment. Some topics included are: (1) selective and nonselective herbicides; (2)…
Keeping NCI at Frederick Pest-Free—Doug Vaughn | Poster
Nuisance critters and creepy crawlers aren’t a problem at the National Cancer Institute (NCI) at Frederick, and that’s largely thanks to the efforts of Douglas Vaughn, the institution’s pest controller. Endearingly known to some staff as “Doug the Bug Guy,” Vaughn has been doing pest control for 39 years, 22 of which have been at NCI at Frederick. However, he doesn’t just
NASA Astrophysics Data System (ADS)
Huang, Jikun; Zhou, Ke; Zhang, Wei; Deng, Xiangzheng; van der Werf, Wopke; Lu, Yanhui; Wu, Kongming; Rosegrant, Mark W.
2018-06-01
Little empirical evidence on the economic value of biological control of pests at farm level is available to improve economic decision-making by farmers and policy makers. Using insect sampling and household survey in an integrated bio-economic analysis framework, this paper studies farmers’ crop management practices in cotton in the North China Plain, and estimates the marginal value of natural enemies and costs of chemical insecticides to farmers. Ladybeetles (mainly Harmonia axyridis, Propylea japonica, and Coccinella septempunctata), the dominant natural enemy group that controls the primary pest (aphid) in cotton in our study area, provide a significant economic benefit that is unknown to the farmers. Even at the current high levels of insecticide use, an additional ladybeetle provides an economic benefit of 0.05 CNY (almost USD 0.01) to farmers. The use of broad-spectrum insecticides by farmers is alarmingly excessive, not only undermining farmers’ cotton profitability but also inducing social costs as well as disruption of the natural pest suppression system. Doubling current ladybeetle density in cotton field could gain an estimated USD 300 million for cotton farmers in China, providing a strong economic case for policies to move the pest control system towards a more ecologically-based regime, with positive consequences for farm income and environmental health. With rising use of biological control service provided by natural enemies such as ladybeetles in cotton fields, significant falls in farmers’ insecticide use would be expected, which could raise the value of ladybeetles and other natural enemies even further. The results indicate that there is an urgent need to rationalize inputs and move forward to improved agro-ecosystem management in smallholder farming system. Raising knowledge and awareness on the costs and value of biological pest control versus insecticides among farmers and policy makers and having effective extension service, are priorities towards achieving a more ecologically-based approach to crop protection on smallholder farms.
Goane, L; Casmuz, A; Salas, H; Willink, E; Mangeaud, A; Valladares, G
2015-12-01
Studies on insect natural enemies and their effects on host populations are of immense practical value in pest management. Predation and parasitism on a citrus pest, the leafminer Phyllocnistis citrella Stainton, were evaluated by sampling over 3 years in four locations within a world leading lemon producing area in Northwest Argentina. Both mortality factors showed seasonal trends consistent across locations, with predation exerting earlier and more sustained pressure than parasitism, which showed wider seasonal variations. The dominant parasitoids, native Cirrospilus neotropicus and introduced Ageniaspis citricola, showed different seasonal trends: C. neotropicus was dominant in spring whereas A. citricola superseded it in autumn and winter. Although parasitism rates were relatively low, the native C. neotropicus revealed favourable features as potential control agent, by showing density-dependence, parasitism rates comparable with those of the specific A. citricola during part of the cycle, and earlier synchronization with the host. The study provides highly relevant information for a sustainable management of this worldwide pest, for which biological control is considered the best long-term option.
Baculoviruses appear to be effective alternatives to chemical pest control. To date deleterious effects on other components of the ecosystem have not been demonstrated. However, safety testing recommended for registration utilize protocols developed for chemical pesticides. Safet...
7 CFR 330.202 - Consideration of applications for permits to move plant pests.
Code of Federal Regulations, 2011 CFR
2011-01-01
...; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY PRODUCTS; GARBAGE Movement of Plant Pests § 330.202... Budget under control number 0579-0054) [24 FR 10825, Dec. 29, 1959, as amended at 48 FR 57466, Dec. 30...
Jandricic, Sarah E; Wraight, Stephen P; Gillespie, Dave R; Sanderson, John P
2016-12-14
The aphidophagous midge Aphidoletes aphidimyza (Diptera: Cecidomyiidae) is used in biological control programs against aphids in many crops. Short-term trials with this natural enemy demonstrated that that females prefer to oviposit among aphids colonizing the new growth of plants, leading to differential attack rates for aphid species that differ in their within-plant distributions. Thus, we hypothesized that biological control efficacy could be compromised when more than one aphid species is present. We further hypothesized that control outcomes may be different at different crop stages if aphid species shift their preferred feeding locations. Here, we used greenhouse trials to determine biological control outcomes using A. aphidimyza under multi-prey conditions and at different crop stages. At all plant stages, aphid species had a significant effect on the number of predator eggs laid. More eggs were found on M. persicae versus A. solani -infested plants, since M. persicae consistently colonized plant meristems across plant growth stages. This translated to higher numbers of predatory larvae on M. periscae -infested plants in two out of our three experiments, and more consistent control of this pest (78%-95% control across all stages of plant growth). In contrast, control of A. solani was inconsistent in the presence of M. persicae , with 36%-80% control achieved. An additional experiment demonstrated control of A. solani by A. aphidimyza was significantly greater in the absence of M. persicae than in its presence. Our study illustrates that suitability of a natural enemy for pest control may change over a crop cycle as the position of prey on the plant changes, and that prey preference based on within-plant prey location can negatively influence biological control programs in systems with pest complexes. Careful monitoring of the less-preferred pest and its relative position on the plant is suggested.
Control of the peachtree borer using beneficial nematodes
USDA-ARS?s Scientific Manuscript database
The peachtree borer, Synanthedon exitiosa, is a major pest of peaches and other stone fruits. Our research indicates that entomopathogenic nematodes, also known as beneficial nematodes, can be used effectively to control the insect. We conducted replicated experiments in randomized block designs ov...
Mall, David; Larsen, Ashley E; Martin, Emily A
2018-01-05
Transforming modern agriculture towards both higher yields and greater sustainability is critical for preserving biodiversity in an increasingly populous and variable world. However, the intensity of agricultural practices varies strongly between crop systems. Given limited research capacity, it is crucial to focus efforts to increase sustainability in the crop systems that need it most. In this study, we investigate the match (or mismatch) between the intensity of pesticide use and the availability of knowledge on the ecosystem service of natural pest control across various crop systems. Using a systematic literature search on pest control and publicly available pesticide data, we find that pest control literature is not more abundant in crops where insecticide input per hectare is highest. Instead, pest control literature is most abundant, with the highest number of studies published, in crops with comparatively low insecticide input per hectare but with high world harvested area. These results suggest that a major increase of interest in agroecological research towards crops with high insecticide input, particularly cotton and horticultural crops such as citrus and high value-added vegetables, would help meet knowledge needs for a timely ecointensification of agriculture.
Larsen, Ashley E.
2018-01-01
Transforming modern agriculture towards both higher yields and greater sustainability is critical for preserving biodiversity in an increasingly populous and variable world. However, the intensity of agricultural practices varies strongly between crop systems. Given limited research capacity, it is crucial to focus efforts to increase sustainability in the crop systems that need it most. In this study, we investigate the match (or mismatch) between the intensity of pesticide use and the availability of knowledge on the ecosystem service of natural pest control across various crop systems. Using a systematic literature search on pest control and publicly available pesticide data, we find that pest control literature is not more abundant in crops where insecticide input per hectare is highest. Instead, pest control literature is most abundant, with the highest number of studies published, in crops with comparatively low insecticide input per hectare but with high world harvested area. These results suggest that a major increase of interest in agroecological research towards crops with high insecticide input, particularly cotton and horticultural crops such as citrus and high value-added vegetables, would help meet knowledge needs for a timely ecointensification of agriculture. PMID:29304005
Lima, Debora B; Melo, José Wagner S; Guedes, Nelsa Maria P; Gontijo, Lessando M; Guedes, Raul Narciso C; Gondim, Manoel Guedes C
2015-01-01
Synthetic pesticide use has been the dominant form of pest control since the 1940s. However, biopesticides are emerging as sustainable pest control alternatives, with prevailing use in organic agricultural production systems. Foremost among botanical biopesticides is the limonoid azadirachtin, whose perceived environmental safety has come under debate and scrutiny in recent years. Coconut production, particularly organic coconut production, is one of the agricultural systems in which azadirachtin is used as a primary method of pest control for the management of the invasive coconut mite, Aceria guerreronis Keifer (Acari: Eriophyidae). The management of this mite species also greatly benefits from predation by Neoseiulus baraki (Athias-Henriot) (Acari: Phytoseiidae). Here, we assessed the potential behavioral impacts of azadirachtin on the coconut mite predator, N. baraki. We explored the effects of this biopesticide on overall predator activity, female searching time, and mating behavior and fecundity. Azadirachtin impairs the overall activity of the predator, reducing it to nearly half; however, female searching was not affected. In contrast, mating behavior was compromised by azadirachtin exposure particularly when male predators were exposed to the biopesticide. Consequently, predator fecundity was also compromised by azadirachtin, furthering doubts about its environmental safety and selectivity towards biological control agents.
Numa, S; Rodríguez, L; Rodríguez, D; Coy-Barrera, E
2015-01-01
One of the main pests of commercial rose crops in Colombia is the phytophagous mite Tetranychus urticae Koch. To manage this pest, synthetic chemicals have traditionally been used, some of which are well known to be potentially toxic to the environment and humans. Therefore, alternative strategies for pest management in greenhouse crops have been developed in recent years, including biological control with natural enemies such as parasitoids, predators and entomopathogenic microorganisms as well as chemical control using plant extracts. Such extracts have shown toxicity to insects, which has positioned them as a common alternative in programs of integrated pest management. The objective of this study was to evaluate the effect of an unfractionated ethanolic extract of Cnidoscolus aconitifolius leaves on adult females of T. urticae under laboratory conditions. The extract was chemically characterized by recording its metabolic profile via liquid chromatography coupled to mass spectrometry, along with tentative metabolite identification. The immersion technique and direct application to rose leaves were used to evaluate the effects of seven doses (10-2,000 µg/mL) of the ethanol extract of C. aconitifolius leaves on T. urticae females under laboratory conditions. The mortality and oviposition of individuals were recorded at 24, 48 and 72 h. It was found that the C. aconitifolius leaf extract reduced fertility and increased mortality in a dose-dependent manner. The main metabolites identified included flavonoid- and sesquiterpene-type compounds, in addition to chromone- and xanthone-type compounds as minor constituents with potential acaricidal effects.
NASA Astrophysics Data System (ADS)
Malard, J. J.; Rojas, M.; Adamowski, J. F.; Anandaraja, N.; Tuy, H.; Melgar-Quiñonez, H.
2016-12-01
While several well-validated crop growth models are currently widely used, very few crop pest models of the same caliber have been developed or applied, and pest models that take trophic interactions into account are even rarer. This may be due to several factors, including 1) the difficulty of representing complex agroecological food webs in a quantifiable model, and 2) the general belief that pesticides effectively remove insect pests from immediate concern. However, pests currently claim a substantial amount of harvests every year (and account for additional control costs), and the impact of insects and of their trophic interactions on agricultural crops cannot be ignored, especially in the context of changing climates and increasing pressures on crops across the globe. Unfortunately, most integrated pest management frameworks rely on very simple models (if at all), and most examples of successful agroecological management remain more anecdotal than scientifically replicable. In light of this, there is a need for validated and robust agroecological food web models that allow users to predict the response of these webs to changes in management, crops or climate, both in order to predict future pest problems under a changing climate as well as to develop effective integrated management plans. Here we present Tiko'n, a Python-based software whose API allows users to rapidly build and validate trophic web agroecological models that predict pest dynamics in the field. The programme uses a Bayesian inference approach to calibrate the models according to field data, allowing for the reuse of literature data from various sources and reducing the need for extensive field data collection. We apply the model to the cononut black-headed caterpillar (Opisina arenosella) and associated parasitoid data from Sri Lanka, showing how the modeling framework can be used to rapidly develop, calibrate and validate models that elucidate how the internal structures of food webs determine their behaviour and allow users to evaluate different integrated management options.
Shrestha, Utsala; Augé, Robert M.; Butler, David M.
2016-01-01
Anaerobic soil disinfestation (ASD) is a proven but relatively new strategy to control soil borne pests of horticultural crops through anaerobic decomposition of organic soil amendments. The ASD technique has primarily been used to control soil borne pathogens; however, this technique has also shown potential to control plant parasitic nematodes and weeds. ASD can utilize a broad range of carbon (C) amendments and optimization may improve efficacy across environments. In this context, a meta-analysis using a random-effects model was conducted to determine effect sizes of the ASD effect on soil borne pathogens (533 studies), plant parasitic nematodes (91 studies), and weeds (88 studies) compared with unamended controls. Yield response to ASD was evaluated (123 studies) compared to unamended and fumigated controls. We also examined moderator variables for environmental conditions and amendments to explore the impact of these moderators on ASD effectiveness on pests and yield. Across all pathogen types with the exception of Sclerotinia spp., ASD studies show suppression of bacterial, oomycete and fungal pathogens (59 to 94%). Pathogen suppression was effective under all environmental conditions (50 to 94%) and amendment types (53 to 97%), except when amendments were applied at rates less than 0.3 kg m-2. The ASD effect ranged from 15 to 56% for nematode suppression and 32 to 81% for weed suppression, but these differences were not significant. Significant nematode moderators included study type, soil type, sampling depth, incubation period, and use of mixed amendments. Weed suppression due to ASD showed significant heterogeneity for all environmental conditions, confirming that these studies do not share a common effect size. Total crop yield was not reduced by ASD when compared to a fumigant control and yield was significantly higher (30%) compared to an unamended control, suggesting ASD as a feasible option to maintain yield without chemical soil fumigants. We conclude ASD is effective against soil borne pathogens and while not conclusive due to a limited number of studies, we expect the same for nematodes and weeds given observed effect sizes. Findings should assist researchers in exploring ASD efficacy in particular environmental conditions and allow for development of standard treatment protocols. PMID:27617017
Response of pest control by generalist predators to local-scale plant diversity: a meta-analysis.
Dassou, Anicet Gbèblonoudo; Tixier, Philippe
2016-02-01
Disentangling the effects of plant diversity on the control of herbivores is important for understanding agricultural sustainability. Recent studies have investigated the relationships between plant diversity and arthropod communities at the landscape scale, but few have done so at the local scale. We conducted a meta-analysis of 32 papers containing 175 independent measures of the relationship between plant diversity and arthropod communities. We found that generalist predators had a strong positive response to plant diversity, that is, their abundance increased as plant diversity increased. Herbivores, in contrast, had an overall weak and negative response to plant diversity. However, specialist and generalist herbivores differed in their response to plant diversity, that is, the response was negative for specialists and not significant for generalists. While the effects of scale remain unclear, the response to plant diversity tended to increase for specialist herbivores, but decrease for generalist herbivores as the scale increased. There was no clear effect of scale on the response of generalist predators to plant diversity. Our results suggest that the response of herbivores to plant diversity at the local scale is a balance between habitat and trophic effects that vary according to arthropod specialization and habitat type. Synthesis and applications. Positive effects of plant diversity on generalist predators confirm that, at the local scale, plant diversification of agroecosystems is a credible and promising option for increasing pest regulation. Results from our meta-analysis suggest that natural control in plant-diversified systems is more likely to occur for specialist than for generalist herbivores. In terms of pest management, our results indicate that small-scale plant diversification (via the planting of cover crops or intercrops and reduced weed management) is likely to increase the control of specialist herbivores by generalist predators.
RNAi at work: Targeting invertebrate pests and beneficial organisms' diseases
USDA-ARS?s Scientific Manuscript database
Invertebrates present two types of large scale RNAi application opportunities: pest control and beneficial insect health. The former involves the introduction of sustainable applications to keep pest populations low, and the latter represents the challenge of keeping beneficial organisms healthy. RN...
USDA-ARS?s Scientific Manuscript database
The spread of the western flower thrips Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) resulted in the worldwide destabilization of established integrated pest management programs for many crops. Efforts to control the pest and the thrips-vectored tospoviruses with calendar applicat...
Opit, George P; Perret, Jamis; Holt, Kiffnie; Nechols, James R; Margolies, David C; Williams, Kimberly A
2009-02-01
Efficacy, costs, and impact on crop salability of various biological and chemical control strategies for Tetranychus urticae Koch (Acari: Tetranychidae) were evaluated on mixed plantings of impatiens, Impatiens wallerana Hook.f (Ericales: Balsaminaceae), and ivy geranium, Pelargonium peltatum (1.) L'Hér. Ex Aiton (Geraniales: Geraniaceae), cultivars in commercial greenhouses. Chemical control consisting of the miticide bifenazate (Floramite) was compared with two biological control strategies using the predatory mite Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae). Treatments were 1) a single, early application of bifenazate; 2) a single, early release of predatory mites at a 1:4 predator:pest ratio based on leaf samples to estimate pest density; 3) a weekly release of predatory mites at numbers based on the area covered by the crop; and 4) an untreated control. T. urticae populations were monitored for 3 wk after the earliest treatment. When plants were ready for market, their salability was estimated. Bifenazate and density-based P. persimilis treatments effectively reduced T. urticae numbers starting 1 wk after plants had been treated, whereas the scheduled, area-based P. persimilis treatment had little or no effect. The percentage of flats that could be sold at the highest market wholesale price ranged from 15 to 33%, 44 to 86%, 84 to 95%, and 92 to 100%, in the control, weekly area-based P. persimilis, bifenazate, and single density-based P. persimilis treatments, respectively. We have shown that in commercial greenhouse production of herbaceous ornamental bedding plants, estimating pest density to determine the appropriate number of predators to release is as effective and offers nearly the same economic benefit as prophylactic use of pesticides.
Khosravi, Roya; Sendi, Jalal Jalali; Ghadamyari, Mohammad; Yezdani, Elham
2011-01-01
The lesser mulberry pyralid, Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) is a monophagous and dangerous pest of mulberry that has been recently observed in Guilan province, northern Iran. In this study, the crude methanol extract of sweet wormwood Artemisia annua L. (Asterales: Asteracaea) was investigated on toxicity, biological and physiological characteristics of this pest under controlled conditions (24 ± 1 °C, 75 ± 5% RH, and 16:8 L:D photoperiod). The effect of acute toxicity and sublethal doses on physiological characteristics was performed by topical application. The LC50 and LC20 values on fourth instar larvae were calculated as 0.33 and 0.22 gram leaf equivalent/ mL, respectively. The larval duration of fifth instar larvae in LC50 treatment was prolonged (5.8 ± 0.52 days) compared with the control group (4.26 ± 0.29 days). However larval duration was reduced in the LC20 treatment. The female adult longevity in the LC50 dose was the least (4.53 ± 0.3 days), while longevity among controls was the highest (9.2 ± 0.29 days). The mean fecundity of adults after larval treatment with LC50 was recorded as 105.6 ± 16.84 eggs/female, while the control was 392.74 ± 22.52 eggs/female. The percent hatchability was reduced in all treatments compared with the control. The effect of extract in 0.107, 0.053, 0.026 and 0.013 gle/mL on biochemical characteristics of this pest was also studied. The activity of α-amylase and protease 48 hours post—treatment was significantly reduced compared with the control. Similarly lipase, esterase, and glutathione S-transferase activity were significantly affected by A. annua extract. PMID:22239100
NASA Astrophysics Data System (ADS)
Liu, Bing; Teng, Zhidong; Chen, Lansun
2006-08-01
According to biological and chemical control strategy for pest control, we investigate the dynamic behavior of a Holling II functional response predator-prey system concerning impulsive control strategy-periodic releasing natural enemies and spraying pesticide at different fixed times. By using Floquet theorem and small amplitude perturbation method, we prove that there exists a stable pest-eradication periodic solution when the impulsive period is less than some critical value. Further, the condition for the permanence of the system is also given. Numerical results show that the system we consider can take on various kinds of periodic fluctuations and several types of attractor coexistence and is dominated by periodic, quasiperiodic and chaotic solutions, which implies that the presence of pulses makes the dynamic behavior more complex. Finally, we conclude that our impulsive control strategy is more effective than the classical one if we take chemical control efficiently.
Flight Synchrony among the Major Moth Pests of Cranberries in the Upper Midwest, USA.
Steffan, Shawn A; Singleton, Merritt E; Sojka, Jayne; Chasen, Elissa M; Deutsch, Annie E; Zalapa, Juan E; Guédot, Christelle
2017-02-26
The cranberry fruitworm ( Acrobasis vaccinii Riley), sparganothis fruitworm ( Sparganothis sulfureana Clemens), and blackheaded fireworm ( Rhopobota naevana Hübner) are historically significant pests of cranberries ( Vaccinium macrocarpon Aiton) in the Upper Midwest (Wisconsin), USA. Their respective natural histories are well documented but correlations between developmental benchmarks (e.g., larval eclosion) and degree-day accruals are not yet known. Treatment timings are critical to the optimization of any given control tactic, and degree-day accrual facilitates optimization by quantifying the developmental status of pest populations. When key developmental benchmarks in the pest life cycle are linked to degree-days, real-time weather data can be used to predict precise treatment timings. Here, we provide the degree-day accumulations associated with discrete biological events (i.e., initiation of flight and peak flight) for the three most consistent moth pests of cranberries in Wisconsin. Moths were trapped each spring and summer from 2003 to 2011. To characterize flight dynamics and average timing of flight initiation, pheromone-baited trap-catch data were tallied for all three pest species within each of seven growing seasons. These flight dynamics were then associated with the corresponding degree-day accumulations generated using the cranberry plant's developmental thresholds. Finally, models were fit to the data in order to determine the peak flight of each species. The initiation of the spring flight among all three moth species was highly synchronous, aiding in the timing of control tactics; however, there were substantial differences in the timing of peak flight among the moth species. Characterization of the relationship between temperature and pest development allows pest management professionals to target specific life stages, improving the efficacy of any given pest control tactic.
Thrips advisor: exploiting thrips-induced defences to combat pests on crops.
Steenbergen, Merel; Abd-El-Haliem, Ahmed; Bleeker, Petra; Dicke, Marcel; Escobar-Bravo, Rocio; Cheng, Gang; Haring, Michel A; Kant, Merijn R; Kappers, Iris; Klinkhamer, Peter G L; Leiss, Kirsten A; Legarrea, Saioa; Macel, Mirka; Mouden, Sanae; Pieterse, Corné M J; Sarde, Sandeep J; Schuurink, Robert C; De Vos, Martin; Van Wees, Saskia C M; Broekgaarden, Colette
2018-04-09
Plants have developed diverse defence mechanisms to ward off herbivorous pests. However, agriculture still faces estimated crop yield losses ranging from 25% to 40% annually. These losses arise not only because of direct feeding damage, but also because many pests serve as vectors of plant viruses. Herbivorous thrips (Thysanoptera) are important pests of vegetable and ornamental crops worldwide, and encompass virtually all general problems of pests: they are highly polyphagous, hard to control because of their complex lifestyle, and they are vectors of destructive viruses. Currently, control management of thrips mainly relies on the use of chemical pesticides. However, thrips rapidly develop resistance to these pesticides. With the rising demand for more sustainable, safer, and healthier food production systems, we urgently need to pinpoint the gaps in knowledge of plant defences against thrips to enable the future development of novel control methods. In this review, we summarize the current, rather scarce, knowledge of thrips-induced plant responses and the role of phytohormonal signalling and chemical defences in these responses. We describe concrete opportunities for breeding resistance against pests such as thrips as a prototype approach for next-generation resistance breeding.
Control of Vertebrate Pests of Agricultural Crops.
ERIC Educational Resources Information Center
Wingard, Robert G.; Studholme, Clinton R.
This agriculture extension service publication of Pennsylvania State University discusses the damage from and control of vertebrate pests. Specific discussions describe the habits, habitat, and various control measures for blackbirds and crows, deer, meadow and pine mice, European starlings, and woodchucks. Where confusion with non-harmful species…
ERIC Educational Resources Information Center
Arizona Univ., Tucson. Cooperative Extension Service.
This manual supplies information helpful to individuals wishing to become certified in public health pest control. It is designed as a technical reference for vector control workers and as preparatory material for structural applicators of restricted use pesticides to meet the General Standards of Competency required of commercial applicators. The…
Tang, Sanyi; Cheke, Robert A
2005-03-01
A state-dependent impulsive model is proposed for integrated pest management (IPM). IPM involves combining biological, mechanical, and chemical tactics to reduce pest numbers to tolerable levels after a pest population has reached its economic threshold (ET). The complete expression of an orbitally asymptotically stable periodic solution to the model with a maximum value no larger than the given ET is presented, the existence of which implies that pests can be controlled at or below their ET levels. We also prove that there is no periodic solution with order larger than or equal to three, except for one special case, by using the properties of the LambertW function and Poincare map. Moreover, we show that the existence of an order two periodic solution implies the existence of an order one periodic solution. Various positive invariant sets and attractors of this impulsive semi-dynamical system are described and discussed. In particular, several horseshoe-like attractors, whose interiors can simultaneously contain stable order 1 periodic solutions and order 2 periodic solutions, are found and the interior structure of the horseshoe-like attractors is discussed. Finally, the largest invariant set and the sufficient conditions which guarantee the global orbital and asymptotic stability of the order 1 periodic solution in the meaningful domain for the system are given using the Lyapunov function. Our results show that, in theory, a pest can be controlled such that its population size is no larger than its ET by applying effects impulsively once, twice, or at most, a finite number of times, or according to a periodic regime. Moreover, our theoretical work suggests how IPM strategies could be used to alter the levels of the ET in the farmers' favour.
Choosing a Pest Control Company
If you have a pest control problem that you do not want to handle on your own, you may decide to turn to a professional applicator. Before you choose a company, get answers to the questions in this fact sheet.
Forest Pest Control. Manual 94.
ERIC Educational Resources Information Center
Missouri Univ., Columbia. Agricultural Experiment Station.
This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in forest pest control. The text discusses disease problems, insects, and herbicide use in both established forests and nurseries. (CS)
Natural biological control of pest mites in Brazilian sun coffee agroecosystems.
Teodoro, Adenir V; Sarmento, Renato A; Rêgo, Adriano S; da Graça S Maciel, Anilde
2010-06-01
Coffee is one of the leading commodities in tropical America. Although plantations are usually established under a canopy of trees in most producing countries in the region, Brazilian coffee is mostly produced under full sun conditions. Such simple, single-crop agroecosystems with intensive agrochemical inputs often suffer with pests like mites. Predatory mites of the family Phytoseiidae are the main natural enemies associated with pest mites in the field. However, these beneficial arthropods struggle to survive in intensive agroecosystems such as coffee monocultures due to unfavorable microclimatic conditions, widespread pesticide use, and lack of alternative food (pollen, nectar). Conservation biological control uses a range of management strategies to sustain and enhance populations of indigenous natural enemies such as predatory mites. We discuss here conservation biological control as a strategy to improve biological control of pest mites by native predatory mites in Brazilian coffee monocultures as well as some related patents.
Evolution of Stored-Product Entomology: Protecting the World Food Supply.
Hagstrum, David W; Phillips, Thomas W
2017-01-31
Traditional methods of stored-product pest control were initially passed from generation to generation. Ancient literature and archaeology reveal hermetic sealing, burning sulfur, desiccant dusts, and toxic botanicals as early control methods. Whereas traditional nonchemical methods were subsequently replaced by synthetic chemicals, other traditional methods were improved and integrated with key modern pesticides. Modern stored-product integrated pest management (IPM) makes decisions using knowledge of population dynamics and threshold insect densities. IPM programs are now being fine-tuned to meet regulatory and market standards. Better sampling methods and insights from life histories and ecological studies have been used to optimize the timing of pest management. Over the past 100 years, research on stored-product insects has shifted from being largely concentrated within 10 countries to being distributed across 65 countries. Although the components of IPM programs have been well researched, more research is needed on how these components can be combined to improve effectiveness and assure the security of postharvest food as the human population increases.
USDA-ARS?s Scientific Manuscript database
Trichogramma are used worldwide as biological control against insect pests, attacking eggs of over 200 species. Eggs of Spodoptera litura, Corcyra cephalonica, Plutella xylostella and Helicoverpa armigera were tested to consider the effect of temperature and radiation on parasitization, emergence of...
After biocontrol: assessing indirect effects of insect releases
Julie S. Denslow; Carla M. D' Antonio
2005-01-01
Development of biological control agents for weeds has been motivated by the need to reduce the abundance and distribution of a pest plant where chemical and mechanical control were not cost effective. Primary objectives have been direct reduction in abundance of the target and, secondarily, the increase of desirable species. Recently, wildland weeds have become a...
Biological control of livestock pests: Pathogens
USDA-ARS?s Scientific Manuscript database
Interest in biological methods for livestock and poultry pest management is largely motivated by the development of resistance to most of the available synthetic pesticides by the major pests. There also has been a marked increase in organic systems, and those that promote animal welfare by reducing...
SPUR: Moving San Diego, California Schools toward Integrated Pest Management.
ERIC Educational Resources Information Center
Taylor, Sharon
1991-01-01
The preparation of a report, slide show, and brochure to promote awareness of the hazards of toxic pest control for school pest management personnel in the San Diego Unified School District is discussed. The future plans of the coalition are proposed. (CW)
Pheromone-Based Pest Management in China: Past, Present, and Future Prospects.
Cui, Gen Zhong; Zhu, Junwei Jerry
2016-07-01
Semiochemical-based pest management technology has been widely used to monitor and control insect pests in agricultural, forestry, and public health sectors in the western world. It became a popular tool in the early 1970s with tremendous efforts in developing environment-friendly control technologies for the integrated pest management. However, in China, similar research lagged 15 to 20 years and was not initiated until the late 1980s. In this review, we present the early history of pheromone research that has led to the current practical applications in China, particularly in the development of pheromone-based pest management products. We also provide information regarding the current status of pheromone-based product manufacturing, marketing, and regulatory issues related to local semiochemical industries, which may be useful to other international companies interested in pursuing business in China. In addition, we share some research topics that represent new directions of the present pheromone research to explore novel tools for advancing semiochemical-based pest management in China.
Gopal, Murali; Gupta, Alka; Thomas, George V
2006-10-01
During vermicomposting of coconut leaves by the earthworm Eudrilus sp., Oryctes rhinoceros L. (rhinoceros beetle), an insect pest of palms, was found to breed in the decomposing organic material. Metarhizium anisopliae var. major was tried as a biocontrol agent for management of this pest. The effect of pathogen at spore loads of 10(3), 10(4) and 10(5) per 10 g of substrate was tested in laboratory on Eudrilus sp. kept with O. rhinoceros grubs and on Eudrilus sp. alone for the pathogenic capability of the fungus on the pest and its possible toxicity towards the vermin. The efficacy of the entomopathogen was also tested in the field in vermicomposting tanks. In laboratory bioassay, 100% mycosis of O. rhinoceros grubs could be obtained while the entomopathogen had no toxic effect on the earthworms. There was a positive change in the number and weight of the earthworms on treatment with M. anisopliae. In the field, application of M. anisopliae reduced O. rhinoceros grubs in the vermicomposting tanks upto an extent of 72%. In conclusion, M. anisopliae could effectively control O. rhinoceros in vermicomposting sites and was non-hazardous to the vermicomposting process as well as the Eudrilus sp.
Ren, Lili; Chen, Fang; Feng, Yuqian
2016-01-01
Ginkgo biloba is a typical relic plant that rarely suffers from pest hazards. This study analyzed the pattern of G. biloba pest hazards in Beijing; tested the antifeedant activity of G. biloba extracts, including ginkgo flavonoids, ginkgolide, and bilobalide, against Hyphantria cunea larvae; determined the activities of glutathione transferase (GSTs), acetylcholinesterase (AChE), carboxylesterase (CarE) and mixed-functional oxidase (MFO), in larvae after feeding on these G. biloba secondary metabolites; and screened for effective botanical antifeedants in the field. In this study, no indicators of insect infestation were found for any of the examined leaves of G. biloba; all tested secondary metabolites showed significant antifeedant activity and affected the activity of the four larval detoxifying enzymes. Ginkgolide had the highest antifeedant activity and the most significant effect on the detoxifying enzymes (P<0.05). Spraying leaves with G. biloba extracts or ginkgolide both significantly repelled H. cunea larvae in the field (P<0.05), although the former is more economical and practical. This study investigated the antifeedant activity of G. biloba secondary metabolites against H. cunea larvae, and the results provide new insights into the mechanism of G. biloba pest resistance. This study also developed new applications of G. biloba secondary metabolites for effective pest control. PMID:27214257
Pan, Long; Ren, Lili; Chen, Fang; Feng, Yuqian; Luo, Youqing
2016-01-01
Ginkgo biloba is a typical relic plant that rarely suffers from pest hazards. This study analyzed the pattern of G. biloba pest hazards in Beijing; tested the antifeedant activity of G. biloba extracts, including ginkgo flavonoids, ginkgolide, and bilobalide, against Hyphantria cunea larvae; determined the activities of glutathione transferase (GSTs), acetylcholinesterase (AChE), carboxylesterase (CarE) and mixed-functional oxidase (MFO), in larvae after feeding on these G. biloba secondary metabolites; and screened for effective botanical antifeedants in the field. In this study, no indicators of insect infestation were found for any of the examined leaves of G. biloba; all tested secondary metabolites showed significant antifeedant activity and affected the activity of the four larval detoxifying enzymes. Ginkgolide had the highest antifeedant activity and the most significant effect on the detoxifying enzymes (P<0.05). Spraying leaves with G. biloba extracts or ginkgolide both significantly repelled H. cunea larvae in the field (P<0.05), although the former is more economical and practical. This study investigated the antifeedant activity of G. biloba secondary metabolites against H. cunea larvae, and the results provide new insights into the mechanism of G. biloba pest resistance. This study also developed new applications of G. biloba secondary metabolites for effective pest control.
Control of pecan weevil with microbial biopesticides
USDA-ARS?s Scientific Manuscript database
The pecan weevil, Curculio caryae (Horn), is a key pest of pecans. Due to regulatory and environmental concerns, effective alternatives to broad spectrum chemical insecticides for C. caryae control must be sought for pecan production in conventional and organic systems. We explored the use of microb...
Martins, Júlio C; Picanço, Marcelo C; Silva, Ricardo S; Gonring, Alfredo Hr; Galdino, Tarcísio Vs; Guedes, Raul Nc
2018-01-01
The spatial distribution of insects is due to the interaction between individuals and the environment. Knowledge about the within-field pattern of spatial distribution of a pest is critical to planning control tactics, developing efficient sampling plans, and predicting pest damage. The leaf miner Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is the main pest of tomato crops in several regions of the world. Despite the importance of this pest, the pattern of spatial distribution of T. absoluta on open-field tomato cultivation remains unknown. Therefore, this study aimed to characterize the spatial distribution of T. absoluta in 22 commercial open-field tomato cultivations with plants at the three phenological development stages by using geostatistical analysis. Geostatistical analysis revealed that there was strong evidence for spatially dependent (aggregated) T. absoluta eggs in 19 of the 22 sample tomato cultivations. The maps that were obtained demonstrated the aggregated structure of egg densities at the edges of the crops. Further, T. absoluta was found to accomplish egg dispersal along the rows more frequently than it does between rows. Our results indicate that the greatest egg densities of T. absoluta occur at the edges of tomato crops. These results are discussed in relation to the behavior of T. absoluta distribution within fields and in terms of their implications for improved sampling guidelines and precision targeting control methods that are essential for effective pest monitoring and management. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Livingston, George; Hack, Lindsey; Steinmann, Kimberly P; Grafton-Cardwell, Elizabeth E; Rosenheim, Jay A
2018-05-28
Experimental approaches to studying the consequences of pesticide use, including impacts on beneficial insects, are vital; however, they can be limited in scale and realism. We show that an ecoinformatics approach that leverages existing data on pesticides, pests, and beneficials across multiple fields can provide complementary insights. We do this using a multi-year dataset (2002-2013) on pesticide applications and density estimates of two pests, citrus thrips (Scirtothrips citri (Moulton [Thysanoptera: Thripidae])) and citrus red mites (Panonychus citri McGregor [Acari: Tetranychidae]), and a natural enemy (Euseius spp. predatory mites) collected from citrus groves in the San Joaquin Valley of California. Using correlative analyses, we investigated the long-term consequences of pesticide use on S. citri and P. citri population densities to evaluate the hypothesis that the pest status of these species is largely due to the disruption of natural biological control-i.e., these are induced pests. We also evaluated short-term pesticide efficacy (suppression of citrus thrips and citrus red mite populations immediately post-application) and asked if it was correlated with the suppression of Euseius predator populations. Although the short-term efficacy of different pesticides varied significantly, our dataset does not suggest that the use of citrus pesticides suppressed Euseius densities or worsened pest problems. We also find that there is no general trade-off between pesticide efficacy and pesticide risk to Eusieus, such that highly effective and minimally disruptive compounds were available to citrus growers during the studied time period.
Tri-trophic insecticidal effects of African plants against cabbage pests.
Amoabeng, Blankson W; Gurr, Geoff M; Gitau, Catherine W; Nicol, Helen I; Munyakazi, Louis; Stevenson, Phil C
2013-01-01
Botanical insecticides are increasingly attracting research attention as they offer novel modes of action that may provide effective control of pests that have already developed resistance to conventional insecticides. They potentially offer cost-effective pest control to smallholder farmers in developing countries if highly active extracts can be prepared simply from readily available plants. Field cage and open field experiments were conducted to evaluate the insecticidal potential of nine common Ghanaian plants: goat weed, Ageratum conyzoides (Asteraceae), Siam weed, Chromolaena odorata (Asteraceae), Cinderella weed, Synedrella nodiflora (Asteraceae), chili pepper, Capsicum frutescens (Solanaceae), tobacco, Nicotiana tabacum (Solanaceae) cassia, Cassia sophera (Leguminosae), physic nut, Jatropha curcas (Euphorbiaceae), castor oil plant, Ricinus communis (Euphorbiaceae) and basil, Ocimum gratissimum (Lamiaceae). In field cage experiments, simple detergent and water extracts of all botanical treatments gave control of cabbage aphid, Brevicoryne brassicae and diamondback moth, Plutella xylostella, equivalent to the synthetic insecticide Attack® (emamectin benzoate) and superior to water or detergent solution. In open field experiments in the major and minor rainy seasons using a sub-set of plant extracts (A. conyzoides, C. odorata, S. nodiflora, N. tabacum and R. communis), all controlled B. brassicae and P. xylostella more effectively than water control and comparably with or better than Attack®. Botanical and water control treatments were more benign to third trophic level predators than Attack®. Effects cascaded to the first trophic level with all botanical treatments giving cabbage head weights, comparable to Attack® in the minor season. In the major season, R. communis and A conyzoides treatment gave lower head yields than Attack® but the remaining botanicals were equivalent or superior to this synthetic insecticide. Simply-prepared extracts from readily-available Ghanaian plants give beneficial, tri-trophic benefits and merit further research as an inexpensive plant protection strategy for smallholder farmers in West Africa.
Tri-Trophic Insecticidal Effects of African Plants against Cabbage Pests
Amoabeng, Blankson W.; Gurr, Geoff M.; Gitau, Catherine W.; Nicol, Helen I.; Stevenson, Phil C.
2013-01-01
Botanical insecticides are increasingly attracting research attention as they offer novel modes of action that may provide effective control of pests that have already developed resistance to conventional insecticides. They potentially offer cost-effective pest control to smallholder farmers in developing countries if highly active extracts can be prepared simply from readily available plants. Field cage and open field experiments were conducted to evaluate the insecticidal potential of nine common Ghanaian plants: goat weed, Ageratum conyzoides (Asteraceae), Siam weed, Chromolaena odorata (Asteraceae), Cinderella weed, Synedrella nodiflora (Asteraceae), chili pepper, Capsicum frutescens (Solanaceae), tobacco, Nicotiana tabacum (Solanaceae) cassia, Cassia sophera (Leguminosae), physic nut, Jatropha curcas (Euphorbiaceae), castor oil plant, Ricinus communis (Euphorbiaceae) and basil, Ocimum gratissimum (Lamiaceae). In field cage experiments, simple detergent and water extracts of all botanical treatments gave control of cabbage aphid, Brevicoryne brassicae and diamondback moth, Plutella xylostella, equivalent to the synthetic insecticide Attack® (emamectin benzoate) and superior to water or detergent solution. In open field experiments in the major and minor rainy seasons using a sub-set of plant extracts (A. conyzoides, C. odorata, S. nodiflora, N. tabacum and R. communis), all controlled B. brassicae and P. xylostella more effectively than water control and comparably with or better than Attack®. Botanical and water control treatments were more benign to third trophic level predators than Attack®. Effects cascaded to the first trophic level with all botanical treatments giving cabbage head weights, comparable to Attack® in the minor season. In the major season, R. communis and A conyzoides treatment gave lower head yields than Attack® but the remaining botanicals were equivalent or superior to this synthetic insecticide. Simply-prepared extracts from readily-available Ghanaian plants give beneficial, tri-trophic benefits and merit further research as an inexpensive plant protection strategy for smallholder farmers in West Africa. PMID:24205287
Residual Acute Toxicity of Some Modern Insecticides Toward Two Mirid Predators of Tomato Pests.
Wanumen, Andrea C; Carvalho, Geraldo A; Medina, Pilar; Viñuela, Elisa; Adán, Ángeles
2016-03-31
The successful integration of chemical and biological control strategies for crop pests depends on a thorough evaluation of the effects of pesticides on the natural enemies of pests. A case-by-case review is difficult to achieve because of the many combinations of pests, natural enemies, and crops that need to be tested. Within this framework, we tested and compared seven insecticides representative of four different modes of action (MoAs) groups on closely related predators (Miridae): flubendiamide, spirotetramat, metaflumizone, and sulfoxaflor onNesidiocoris tenuisReuter and flubendiamide, spiromesifen, indoxacarb, and imidacloprid onMacrolophus basicornis(Stal). We follow the standardized methodology of the International Organization for Biological Control, a sequential testing exposure scheme. The lethal effect of each insecticide was evaluated in adults after three days of contact with treated surfaces in the laboratory, extended laboratory, and semifield tests (inert substrate, tomato leaves, and tomato plant as the treated surface, respectively). Flubendiamide, spiromesifen, and spirotetramat were classified as harmless (class 1), metaflumizone was slightly harmful (class 2) but persistent, indoxacarb was harmless (class 1), and sulfoxaflor and imidacloprid were toxic (class 4) and exhibited a long residual activity. Our results suggest similarities in the acute toxicities of insecticides from the same MoA group on related species of natural enemies. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Gumus, Arife; Karagoz, Mehmet; Shapiro-Ilan, David; Hazir, Selcuk
2015-09-01
As a new application approach, we tested the efficacy of releasing live insect hosts that were pre-infected with entomopathogenic nematodes against insect pests living in cryptic habitats. We hypothesized that the pre-infected hosts could carry the next generation of emerging nematode infective juveniles to hard-to-reach target sites, and thereby facilitate enhanced control in cryptic habitats. Thus, the infected hosts act as "living insect bombs" against the target pest. We tested this approach using two model insect pests: a chestnut tree pest, the goat moth Cossus cossus (Lepidiptera: Cossidae), and a lawn caterpillar, Spodoptera cilium (Lepidoptera: Noctuidae). One pest is considered hard-to-reach via aqueous spray (C. cossus) and the other is more openly exposed in the environment (S. cilium). C. cossus and S. cilium studies were conducted in chestnut logs and Bermudagrass arenas, respectively. The living bomb approach was compared with standard nematode application in aqueous spray and controls (without nematode application); Steinernema carpocapsae (Rize isolate) was used in all experiments. The percentage larval mortality of C. cossus was 86% in the living insect bomb treatment, whereas, all other treatments and controls exhibited less than 4% mortality. The new approach (living bomb) was equally successful as standard aqueous application for the control of S. cilium larvae. Both methods exhibited more than 90% mortality in the turfgrass arena. Our new approach showed an immense potential to control insect pests living in hard-to-reach cryptic habitats. Copyright © 2015 Elsevier Inc. All rights reserved.
Back to the future: total system management (organic, sustainable)
USDA-ARS?s Scientific Manuscript database
Many soil disinfestation programs are implemented prior to crop cultivation due to the paucity of therapeutic interventions for controlling soilborne pests. In the 1950’s a proliferation of chemical control options ushered in an era of soilborne pest control based upon a single or limited group of ...
Code of Federal Regulations, 2011 CFR
2011-01-01
... article, means of conveyance, plant, biological control organism, plant pest, noxious weed, or plant... prevent the introduction or dissemination of a biological control organism, plant pest, or noxious weed...) The provisions in this part apply whether the controls over arrival, temporary stay, unloading...
RNA interference of tubulin genes has lethal effects in Mythimna separate.
Wang, Jin-da; Wang, Ya-Ru; Wang, Yong-Zhi; Wang, Wei-Zhong; Wang, Rong; Gao, San-Ji
2018-05-23
RNAi (RNA interference) is a technology for silencing expression of target genes via sequence-specific double-stranded RNA (dsRNA). Recently, dietary introduction of bacterially expressed dsRNA has shown great potential in the field of pest management. Identification of potential candidate genes for RNAi is the first step in this application. The oriental armyworm, Mythimna separata Walker (Lepidoptera: Noctuidae) is a polyphagous, migratory pest, and outbreaks have led to severe crop damage in China. In the present study, two tubulin genes were chosen as target genes because of their crucial role in insect development. Both Msα-tubulin and Msβ-tubulin genes are expressed across all life stages and are highly expressed in the head and epidermis. Feeding of bacterially expressed dsRNA of Msα-tubulin and Msβ-tubulin to third-instar larvae knocked down target mRNAs. A lethal phenotype was observed with knockdown of Msα-tubulin and Msβ-tubulin concurrent with reduction in body weight. Bacterially expressed dsRNA can be used to control M. separata, and tubulin genes could be effective candidate genes for an RNAi-based control strategy of this pest. Copyright © 2017. Published by Elsevier B.V.
Li, Beixing; Li, Hua; Pang, Xiuyu; Cui, Kaidi; Lin, Jin; Liu, Feng; Mu, Wei
2018-03-01
Agricultural researchers have always been pursuing synergistic technique for pest control. To evaluate the combined effects of quaternary ammonium compounds (QACs) and indoxacarb, their independent and joint toxicities to two insects, Spodoptera exigua and Agrotis ipsilon, and the aquatic organism, Daphnia magna, were determined. Results showed that all of five tested QACs increased the toxicity of indoxacarb to S. exigua and A. ipsilon. Both of benzyldimethyltetradecylammonium chloride (TDBAC) and benzododecinium chloride (DDBAC) exhibited significantly increased toxicities to S. exigua with synergic ratios of 11.59 and 6.55, while that to A. ipsilon were 2.60 and 3.45, respectively. When exposed to binary mixtures of QACs and indoxacarb, there was synergism on D. magna when using additive index and concentration addition methods, but only TDBAC, STAC and ODDAC showed synergistic effect in the equivalent curve method. The results indicate that the surfactants can be used as the synergists of indoxacarb in the control of Lepidoptera pests. However, their environmental risks should not be neglected owing to the high toxicity of all mixtures of indoxacarb and five QACs to D. magna. Copyright © 2017 Elsevier Inc. All rights reserved.
Khabir, Z H; Sadeghi, S E; Hanifeh, S; Eivazi, A
2009-01-15
This study was carried out in order to distinguish the effect of agroforestry system (combination of agriculture and forestry) on pests and natural enemy's population in poplar research station. Wood is one of the first substances that naturally was used for a long period of time. Forage is an important production of natural resources too. Some factors such as proper lands deficit, lack of economy, pest and disease attacks and faced production of these materials with serious challenges. Agroforestry is a method for decrease of the mentioned problems. The stands of poplar had have planted by complete randomized design with 4 treatments (stand distance) of poplar/alfalfa include 3x4, 3x6.7, 3x8, 3x10 m and 2 control treatments, alfalfa and poplar. The results showed that Chaitophorus populeti had the highest density in poplar and 3x10 m treatments. Monosteira unicostata is another insect pest that had most density in 3x10 m treatment. And alfalfa had high density of Chrysoperla carnea. The density of Coccinella septempunctata, were almost equal in all treatments.
A total system approach to sustainable pest management
Lewis, W. J.; van Lenteren, J. C.; Phatak, Sharad C.; Tumlinson, J. H.
1997-01-01
A fundamental shift to a total system approach for crop protection is urgently needed to resolve escalating economic and environmental consequences of combating agricultural pests. Pest management strategies have long been dominated by quests for “silver bullet” products to control pest outbreaks. However, managing undesired variables in ecosystems is similar to that for other systems, including the human body and social orders. Experience in these fields substantiates the fact that therapeutic interventions into any system are effective only for short term relief because these externalities are soon “neutralized” by countermoves within the system. Long term resolutions can be achieved only by restructuring and managing these systems in ways that maximize the array of “built-in” preventive strengths, with therapeutic tactics serving strictly as backups to these natural regulators. To date, we have failed to incorporate this basic principle into the mainstream of pest management science and continue to regress into a foot race with nature. In this report, we establish why a total system approach is essential as the guiding premise of pest management and provide arguments as to how earlier attempts for change and current mainstream initiatives generally fail to follow this principle. We then draw on emerging knowledge about multitrophic level interactions and other specific findings about management of ecosystems to propose a pivotal redirection of pest management strategies that would honor this principle and, thus, be sustainable. Finally, we discuss the potential immense benefits of such a central shift in pest management philosophy. PMID:9356432
Han, Ruizhen; He, Yong; Liu, Fei
2012-01-01
This paper presents a feasibility study on a real-time in field pest classification system design based on Blackfin DSP and 3G wireless communication technology. This prototype system is composed of remote on-line classification platform (ROCP), which uses a digital signal processor (DSP) as a core CPU, and a host control platform (HCP). The ROCP is in charge of acquiring the pest image, extracting image features and detecting the class of pest using an Artificial Neural Network (ANN) classifier. It sends the image data, which is encoded using JPEG 2000 in DSP, to the HCP through the 3G network at the same time for further identification. The image transmission and communication are accomplished using 3G technology. Our system transmits the data via a commercial base station. The system can work properly based on the effective coverage of base stations, no matter the distance from the ROCP to the HCP. In the HCP, the image data is decoded and the pest image displayed in real-time for further identification. Authentication and performance tests of the prototype system were conducted. The authentication test showed that the image data were transmitted correctly. Based on the performance test results on six classes of pests, the average accuracy is 82%. Considering the different live pests’ pose and different field lighting conditions, the result is satisfactory. The proposed technique is well suited for implementation in field pest classification on-line for precision agriculture. PMID:22736996
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-24
... pests, noxious weeds, and biological control agents, which may be used to control plant pests or noxious... detect, in collaboration with the National Plant Diagnostic Network and the U.S. Department of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... with good agricultural and pest control practices to control insect pests of stored raw whole grains... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1101 Parasitic (parasitoid) and...
Code of Federal Regulations, 2012 CFR
2012-07-01
... with good agricultural and pest control practices to control insect pests of stored raw whole grains... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1101 Parasitic (parasitoid) and...
Coccinellids and the Modern Pest Management
ERIC Educational Resources Information Center
Hodek, Ivo
1970-01-01
Discusses the concept of integrated pest control combining chemical and biological methods. Describes many examples of the successful use of coccinellids beetles to control other insects. Cites ecological and physiological research studies related to predator prey relationships involving coccinellids. (EB)
Code of Federal Regulations, 2014 CFR
2014-07-01
... with good agricultural and pest control practices to control insect pests of stored raw whole grains... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1101 Parasitic (parasitoid) and...
Code of Federal Regulations, 2013 CFR
2013-07-01
... with good agricultural and pest control practices to control insect pests of stored raw whole grains... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1101 Parasitic (parasitoid) and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... with good agricultural and pest control practices to control insect pests of stored raw whole grains... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1101 Parasitic (parasitoid) and...
Integrated Insect Control May Alter Pesticide Use Pattern
ERIC Educational Resources Information Center
Worthy, Ward
1973-01-01
Discusses the use of predators, parasites, bacteria, viruses, hormones, pheromones, and sterile-male release and insect-resistance imparting techniques in pest control. Concludes with comments from chemical pesticide companies as popular attitudes toward the integrated pest management. (CC)
Pupin, Francine; Bikoba, Veronique; Biasi, William B; Pedroso, Gabriel M; Ouyang, Yuling; Grafton-Cardwell, Elizabeth E; Mitcham, Elizabeth J
2013-12-01
The postharvest control of arthropod pests is a challenge that the California citrus industry must overcome when exporting fruit overseas. Currently, methyl bromide fumigation is used to control postharvest pests on exported citrus, but it may soon be unavailable because of use restrictions and cost of this health-hazard ozone-depleting chemical. Ethyl formate is a natural plant volatile and possible alternative to methyl bromide in postharvest insect control. The objectives of this study were 1) to evaluate the mortality of third instar California red scale [Aonidiella aurantii (Maskell)] (Hemiptera: Diaspididae) and adult western flower thrips [Frankliniella occidentalis (Pergande)] (Thysanoptera: Thripidae) under a wide range of ethyl formate concentrations, 2) to determine the ethyl formate concentration required to reach a Probit 9 level of control for both pests, and 3) to test the effects of ethyl formate fumigation on the quality of navel oranges [Citrus sinensis (L.) Osbeck] and lemons [Citrus limon (L.) Burman f.] at 24 h after fumigation, and at different time periods to simulate shipping plus storage (5 wk at 5 degrees C), and shipping, storage, handling, and shelf-life (5 wk at 5 degrees C, plus 5 d at 15 degrees C, and 2 d at 20 degrees C). The results indicate that ethyl formate is a promising alternative to methyl bromide for the California citrus industry, because of successful control of adult western flower thips and third instar California red scale and no deleterious effect on fruit quality at any of the evaluated periods and quality parameters.
Keeping NCI at Frederick Pest-Free—Doug Vaughn | Poster
Nuisance critters and creepy crawlers aren’t a problem at the National Cancer Institute (NCI) at Frederick, and that’s largely thanks to the efforts of Douglas Vaughn, the institution’s pest controller. Endearingly known to some staff as “Doug the Bug Guy,” Vaughn has been doing pest control for 39 years, 22 of which have been at NCI at Frederick. However, he doesn’t just handle bugs, and he isn’t the average exterminator.