NASA Astrophysics Data System (ADS)
Nurul, Islam Md.; Arai, Yoshio; Araki, Wakako
Strain range controlled low-cycle fatigue tests were conducted using ultrasonic method in order to investigate the effect of plastic strain range on the remaining life of austenitic stainless steel SUS316NG before the onset of crack growth in its early stages of fatigue. It was found that the decrease in ultrasonic back-reflection intensity from the surface of the material, caused by the increase in average dislocation density with localized plastic deformation at persistent slip bands (PSBs), starts earlier with increase in the plastic strain range. The amount of decrease in ultrasonic back-reflection before the onset of crack growth increases for larger plastic strain range. The difference in the cumulative plastic strains at the onset of crack growth and at the onset of decrease in the ultrasonic back-reflection remained constant over the range of tested plastic strain. This result can be used to predict the remaining life before the onset of crack growth within the plastic strain range used in this study. In addition, we present and evaluate another method to predict damage evolution involving ultrasound attenuation caused by PSBs.
The Application of Strain Range Partitioning Method to Torsional Creep-Fatigue Interaction
NASA Technical Reports Server (NTRS)
Zamrik, S. Y.
1975-01-01
The method of strain range partitioning was applied to a series of torsional fatigue tests conducted on tubular 304 stainless steel specimens at 1200 F. Creep strain was superimposed on cycling strain, and the resulting strain range was partitioned into four components; completely reversed plastic shear strain, plastic shear strain followed by creep strain, creep strain followed by plastic strain and completely reversed creep strain. Each strain component was related to the cyclic life of the material. The damaging effects of the individual strain components were expressed by a linear life fraction rule. The plastic shear strain component showed the least detrimental factor when compared to creep strain reversed by plastic strain. In the latter case, a reduction of torsional fatigue life in the order of magnitude of 1.5 was observed.
The effect of plastic strain on the evolution of crystallographic texture in Zircaloy-2
NASA Astrophysics Data System (ADS)
Ballinger, R. G.; Lucas, G. E.; Pelloux, R. M.
1984-09-01
The evolution of crystallographic texture during plastic deformation was investigated in Zircaloy-2 using X-ray and metallographic techniques. Inverse pole figures, the resolved fraction of basal poles, and the volume fraction of twinned material, were determined as a function of plastic strain for several strain paths and initial textures at 298 K and 623 K. Incremental transverse platic strain ratios ( R) were mesured as a function of plastic strain. Texture rotation occurs early in the deformation process, after as little as 1.5% plastic strain. For compressive plastic strains, the resolved fraction of basal poles increases in the direction parallel to the strain axis. For tensile plastic strains, the resolved fraction of basal poles decreases in the direction parallel to the strain axis. The rate of change of the resolved fraction of basal poles with plastic strain is a function of the initial resolved fraction of basal poles. The texture rotation can be explained by considering the operation of the principal tensile twinning systems, {101¯2}<1¯011>.
NASA Astrophysics Data System (ADS)
Romanova, V.; Balokhonov, R.; Batukhtina, E.; Shakhidjanov, V.
2015-10-01
Crystal plasticity approaches were adopted to build models accounting for the microstructure and texture observed in different friction stir weld zones. To this end, a numerical investigation of crystallographic texture and grain shape effects on the plastic strain localization in a friction stir weld of an aluminum-base alloy was performed. The presence of texture was found to give rise to pronounced mesoscale plastic strain localization.
Plastic strain is a mixture of avalanches and quasireversible deformations: Study of various sizes
NASA Astrophysics Data System (ADS)
Szabó, Péter; Ispánovity, Péter Dusán; Groma, István
2015-02-01
The size dependence of plastic flow is studied by discrete dislocation dynamical simulations of systems with various amounts of interacting dislocations while the stress is slowly increased. The regions between avalanches in the individual stress curves as functions of the plastic strain were found to be nearly linear and reversible where the plastic deformation obeys an effective equation of motion with a nearly linear force. For small plastic deformation, the mean values of the stress-strain curves obey a power law over two decades. Here and for somewhat larger plastic deformations, the mean stress-strain curves converge for larger sizes, while their variances shrink, both indicating the existence of a thermodynamical limit. The converging averages decrease with increasing size, in accordance with size effects from experiments. For large plastic deformations, where steady flow sets in, the thermodynamical limit was not realized in this model system.
NASA Astrophysics Data System (ADS)
Nguyen, Trung N.; Siegmund, Thomas; Tomar, Vikas; Kruzic, Jamie J.
2017-12-01
Size effects occur in non-uniform plastically deformed metals confined in a volume on the scale of micrometer or sub-micrometer. Such problems have been well studied using strain gradient rate-independent plasticity theories. Yet, plasticity theories describing the time-dependent behavior of metals in the presence of size effects are presently limited, and there is no consensus about how the size effects vary with strain rates or whether there is an interaction between them. This paper introduces a constitutive model which enables the analysis of complex load scenarios, including loading rate sensitivity, creep, relaxation and interactions thereof under the consideration of plastic strain gradient effects. A strain gradient viscoplasticity constitutive model based on the Kocks-Mecking theory of dislocation evolution, namely the strain gradient Kocks-Mecking (SG-KM) model, is established and allows one to capture both rate and size effects, and their interaction. A formulation of the model in the finite element analysis framework is derived. Numerical examples are presented. In a special virtual creep test with the presence of plastic strain gradients, creep rates are found to diminish with the specimen size, and are also found to depend on the loading rate in an initial ramp loading step. Stress relaxation in a solid medium containing cylindrical microvoids is predicted to increase with decreasing void radius and strain rate in a prior ramp loading step.
NASA Technical Reports Server (NTRS)
Paglietti, A.
1982-01-01
At high strain rates the heat produced by plastic deformation can give rise to a rate dependent response even if the material has rate independent constitutive equations. This effect has to be evaluated when interpreting a material test, or else it could erroneously be ascribed to viscosity. A general thermodynamic theory of tensile testing of elastic-plastic materials is given in this paper; it is valid for large strain at finite strain rates. It enables discovery of the parameters governing the thermodynamic strain rate effect, provides a method for proper interpretation of the results of the tests of dynamic plasticity, and suggests a way of planning experiments in order to detect the real contribution of viscosity.
NASA Astrophysics Data System (ADS)
Hartl, D. J.; Lagoudas, D. C.
2009-10-01
The new developments summarized in this work represent both theoretical and experimental investigations of the effects of plastic strain generation in shape memory alloys (SMAs). Based on the results of SMA experimental characterization described in the literature and additional testing described in this work, a new 3D constitutive model is proposed. This phenomenological model captures both the conventional shape memory effects of pseudoelasticity and thermal strain recovery, and additionally considers the initiation and evolution of plastic strains. The model is numerically implemented in a finite element framework using a return mapping algorithm to solve the constitutive equations at each material point. This combination of theory and implementation is unique in its ability to capture the simultaneous evolution of recoverable transformation strains and irrecoverable plastic strains. The consideration of isotropic and kinematic plastic hardening allows the derivation of a theoretical framework capturing the interactions between irrecoverable plastic strain and recoverable strain due to martensitic transformation. Further, the numerical integration of the constitutive equations is formulated such that objectivity is maintained for SMA structures undergoing moderate strains and large displacements. The implemented model has been used to perform 3D analysis of SMA structural components under uniaxial and bending loads, including a case of local buckling behavior. Experimentally validated results considering simultaneous transformation and plasticity in a bending member are provided, illustrating the predictive accuracy of the model and its implementation.
Thermomechanical coupling and dynamic strain ageing in ductile fracture
NASA Astrophysics Data System (ADS)
Delafosse, David
1995-01-01
This work is concerned with plastic deformation at the tip of a ductile tearing crack during propagation. Two kinds of effects are investigated: the thermomechanical coupling at the tip of a mobile ductile crack, and the influence of Dynamic Strain Aging (DSA) on ductile fracture. Three alloys are studied: a nickel based superalloy (N18), a soft carbon steel, and an Al-Li light alloy (2091). The experimental study of the thermo mechanical coupling effects by means of infrared thermography stresses the importance of plastic dissipation in the energy balance of ductile fracture. Numerical simulations involving plastic deformation as the only dissipation mechanism account for the main part of the measured heating. The effects of DSA on ductile tearing are investigated in the 2091 Al-Li alloy. Based on the strain rate/temperature dependence predicted by the standard model of DSA, an experimental procedure is set up for this purpose. Three main effects are evidenced. A maximum in tearing resistance is shown to be associated with the minimum of strain rate sensitivity. Through a simple model, this peak in tearing resistance is attributed to an increase in plastic dissipation as the strain rate sensitivity is decreased. Heterogenous plastic deformation is observed in the crack tip plastic zone. Comparison with uniaxial testing allows us to identify the observed strain heterogeneities as Portevin-Le Chatelier instabilities in the crack tip plastic zone. We perform a simplified numerical analysis of the effect of strain localization on crack tip screening. Finally, small crack propagation instabilities appear at temperatures slightly above that of the tearing resistance peak. These are interpreted as resulting from a positive feed-back between the local heating at the tip of a moving crack and the decrease in tearing resistance with increasing temperature.
Effects of Power-Law Plasticity on Deformation Fields underneath Vickers Indenter
NASA Astrophysics Data System (ADS)
Chollacoop, Nuwong; Srikant, Gollapudi; Ramamurty, Upadrasta
The effects of power-law plasticity (yield strength σy and strain hardening exponent n) on the plastic strain distribution underneath a Vickers indenter was explicitly investigated by recourse to macro- and micro-indentation experiments on heat-treated Al-Zn-Mg alloy. With carefully designed aging profile, Al alloy can achieve similar σy with different n, and vice versa. Using the Vickers tip, the samples were macro-indented, sectioned and micro-indented to construct the sub-surface strain distribution. Thus, the effects of σy and n on stain distribution underneath Vickers indenter were revealed.
NASA Astrophysics Data System (ADS)
Guilhem, Yoann; Basseville, Stéphanie; Curtit, François; Stéphan, Jean-Michel; Cailletaud, Georges
2018-06-01
This paper is dedicated to the study of the influence of surface roughness on local stress and strain fields in polycrystalline aggregates. Finite element computations are performed with a crystal plasticity model on a 316L stainless steel polycrystalline material element with different roughness states on its free surface. The subsequent analysis of the plastic strain localization patterns shows that surface roughness strongly affects the plastic strain localization induced by crystallography. Nevertheless, this effect mainly takes place at the surface and vanishes under the first layer of grains, which implies the existence of a critical perturbed depth. A statistical analysis based on the plastic strain distribution obtained for different roughness levels provides a simple rule to define the size of the affected zone depending on the rough surface parameters.
Gradient-type modeling of the effects of plastic recovery and surface passivation in thin films
NASA Astrophysics Data System (ADS)
Liu, Jinxing; Kah Soh, Ai
2016-08-01
The elasto-plastic responses of thin films subjected to cyclic tension-compression loading and bending are studied, with a focus on Bauschinger and size effects. For this purpose, a model is established by incorporating plastic recovery into the strain gradient plasticity theory we proposed recently. Elastic and plastic parts of strain and strain gradient, which are determined by the elasto-plastic decomposition according to the associative rule, are assumed to have a degree of material-dependent reversibility. Based on the above assumption, a dislocation reversibility-dependent rule is built to describe evolutions of different deformation components under cyclic loadings. Furthermore, a simple strategy is provided to implement the passivated boundary effects by introducing a gradual change to relevant material parameters in the yield function. Based on this theory, both bulge and bending tests under cyclic loading conditions are investigated. By comparing the present predictions with the existing experimental data, it is found that the yield function is able to exhibit the size effect, the Bauschinger effect, the influence of surface passivation and the hysteresis-loop phenomenon. Thus, the proposed model is deemed helpful in studying plastic deformations of micron-scale films.
NASA Astrophysics Data System (ADS)
Nakano, Hayato; Hakoyama, Tomoyuki; Kuwabara, Toshihiko
2017-10-01
Hole expansion forming of a cold rolled steel sheet is investigated both experimentally and analytically to clarify the effects of material models on the predictive accuracy of finite element analyses (FEA). The multiaxial plastic deformation behavior of a cold rolled steel sheet with a thickness of 1.2 mm was measured using a servo-controlled multiaxial tube expansion testing machine for the range of strain from initial yield to fracture. Tubular specimens were fabricated from the sheet sample by roller bending and laser welding. Many linear stress paths in the first quadrant of stress space were applied to the tubular specimens to measure the contours of plastic work in stress space up to a reference plastic strain of 0.24 along with the directions of plastic strain rates. The anisotropic parameters and exponent of the Yld2000-2d yield function (Barlat et al., 2003) were optimized to approximate the contours of plastic work and the directions of plastic strain rates. The hole expansion forming simulations were performed using the different model identifications based on the Yld2000-2d yield function. It is concluded that the yield function best capturing both the plastic work contours and the directions of plastic strain rates leads to the most accurate predicted FEA.
A study of microindentation hardness tests by mechanism-based strain gradient plasticity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Y.; Xue, Z.; Gao, H.
2000-08-01
We recently proposed a theory of mechanism-based strain gradient (MSG) plasticity to account for the size dependence of plastic deformation at micron- and submicron-length scales. The MSG plasticity theory connects micron-scale plasticity to dislocation theories via a multiscale, hierarchical framework linking Taylor's dislocation hardening model to strain gradient plasticity. Here we show that the theory of MSG plasticity, when used to study micro-indentation, indeed reproduces the linear dependence observed in experiments, thus providing an important self-consistent check of the theory. The effects of pileup, sink-in, and the radius of indenter tip have been taken into account in the indentation model.more » In accomplishing this objective, we have generalized the MSG plasticity theory to include the elastic deformation in the hierarchical framework. (c) 2000 Materials Research Society.« less
Correction of the post -- necking true stress -- strain data using instrumented nanoindentation
NASA Astrophysics Data System (ADS)
Romero Fonseca, Ivan Dario
The study of large plastic deformations has been the focus of numerous studies particularly in the metal forming processes and fracture mechanics fields. A good understanding of the plastic flow properties of metallic alloys and the true stresses and true strains induced during plastic deformation is crucial to optimize the aforementioned processes, and to predict ductile failure in fracture mechanics analyzes. Knowledge of stresses and strains is extracted from the true stress-strain curve of the material from the uniaxial tensile test. In addition, stress triaxiality is manifested by the neck developed during the last stage of a tensile test performed on a ductile material. This necking phenomenon is the factor responsible for deviating from uniaxial state into a triaxial one, then, providing an inaccurate description of the material's behavior after the onset of necking. The research of this dissertation is aimed at the development of a correction method for the nonuniform plastic deformation (post-necking) portion of the true stress-strain curve. The correction proposed is based on the well-known relationship between hardness and flow (yield) stress, except that instrumented nanoindentation hardness is utilized rather than conventional macro or micro hardness. Three metals with different combinations of strain hardening behavior and crystal structure were subjected to quasi-static tensile tests: power-law strain hardening low carbon G10180 steel (BCC) and electrolytic tough pitch copper C11000 (FCC), and linear strain hardening austenitic stainless steel S30400 (FCC). Nanoindentation hardness values, measured on the broken tensile specimen, were converted into flow stress values by means of the constraint factor C from Tabor's, the representative plastic strainepsilonr and the post-test true plastic strains measured. Micro Vickers hardness testing was carried out on the sample as well. The constraint factors were 5.5, 4.5 and 4.5 and the representative plastic strains were 0.028, 0.062 and 0.061 for G101800, C11000 and S30400 respectively. The established corrected curves relating post-necking flow stress to true plastic strain turned out to be well represented by a power-law function. Experimental results dictated that a unique single value for C and for epsilonr is not appropriate to describe materials with different plastic behaviors. Therefore, Tabor's equation, along with the representative plastic strain concept, has been misused in the past. The studied materials exhibited different nanohardness and plastic strain distributions due to their inherently distinct elasto-plastic response. The proposed post-necking correction separates out the effect of triaxiality on the uniaxial true stress-strain curve provided that the nanohardness-flow stress relationship is based on uniaxial values of stress. Some type of size effect, due to the microvoids at the tip of the neck, influenced nanohardness measurements. The instrumented nanoindentation technique proved to be a very suitable method to probe elasto-plastic properties of materials such as nanohardness, elastic modulus, and quasi-static strain rate sensitivity among others. Care should be taken when converting nanohardness to Vickers and vice versa due to their different area definition used. Nanohardness to Vickers ratio oscillated between 1.01 and 1.17.
Grain-size-independent plastic flow at ultrahigh pressures and strain rates.
Park, H-S; Rudd, R E; Cavallo, R M; Barton, N R; Arsenlis, A; Belof, J L; Blobaum, K J M; El-dasher, B S; Florando, J N; Huntington, C M; Maddox, B R; May, M J; Plechaty, C; Prisbrey, S T; Remington, B A; Wallace, R J; Wehrenberg, C E; Wilson, M J; Comley, A J; Giraldez, E; Nikroo, A; Farrell, M; Randall, G; Gray, G T
2015-02-13
A basic tenet of material science is that the flow stress of a metal increases as its grain size decreases, an effect described by the Hall-Petch relation. This relation is used extensively in material design to optimize the hardness, durability, survivability, and ductility of structural metals. This Letter reports experimental results in a new regime of high pressures and strain rates that challenge this basic tenet of mechanical metallurgy. We report measurements of the plastic flow of the model body-centered-cubic metal tantalum made under conditions of high pressure (>100 GPa) and strain rate (∼10(7) s(-1)) achieved by using the Omega laser. Under these unique plastic deformation ("flow") conditions, the effect of grain size is found to be negligible for grain sizes >0.25 μm sizes. A multiscale model of the plastic flow suggests that pressure and strain rate hardening dominate over the grain-size effects. Theoretical estimates, based on grain compatibility and geometrically necessary dislocations, corroborate this conclusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croft, M.; National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973; Shukla, V.
Elastic and plastic strain evolution under four-point bending has been studied by synchrotron energy dispersive x-ray diffraction. Measured strain profiles across the specimen thickness showed an increasing linear elastic strain gradient under increasing four-point bending load up to approx2 kN. The bulk elastic modulus of Ti-6Al-4V was determined as 118 GPa. The onset of plastic deformation was found to set in at a total in-plane strain of approx0.008, both under tension and compression. Plastic deformation under bending is initiated in the vicinity of the surface and at a stress of 1100 MPa, and propagates inward, while a finite core regionmore » remains elastically deformed up to 3.67 kN loading. The onset of the plastic regime and the plastic regime itself has been verified by monitoring the line broadening of the (100) peak of alpha-Ti. The effective compression/tension stress-strain curve has been obtained from the scaling collapse of strain profile data taken at seven external load levels. A similar multiple load scaling collapse of the plastic strain variation has also been obtained. The level of precision in strain measurement reported herein was evaluated and found to be 1.5x10{sup -5} or better.« less
NASA Astrophysics Data System (ADS)
Paul, Surajit Kumar
2013-07-01
The microstructure of dual-phase (DP) steels typically consists of a soft ferrite matrix with dispersed islands of hard martensite phase. Due to the composite effect of ferrite and martensite, DP steels exhibit a unique combination of strain hardening, strength and ductility. A microstructure-based micromechanical modeling approach is adopted in this work to capture the tensile and cyclic plastic deformation behavior of DP steel. During tensile straining, strain incompatibility between the softer ferrite matrix and the harder martensite phase arises due to a difference in the flow characteristics of these two phases. Microstructural-level inhomogeneity serves as the initial imperfection, triggering strain incompatibility, strain partitioning and finally shear band localization during tensile straining. The local deformation in the ferrite phase is constrained by adjacent martensite islands, which locally results in stress triaxiality development in the ferrite phase. As the martensite distribution varies within the microstructure, the stress triaxiality also varies in a band within the microstructure. Inhomogeneous stress and strain distribution within the softer ferrite phase arises even during small tensile straining because of material inhomogeneity. The magnitude of cyclic plastic deformation within the softer ferrite phase also varies according to the stress distribution in the first-quarter cycle tensile loading. Accumulation of tensile/compressive plastic strain with number of cycles is noted in different locations within the ferrite phase during both symmetric stress and strain controlled cycling. The basic mode of cyclic plastic deformation in an inhomogeneous material is cyclic strain accumulation, i.e. ratcheting. Microstructural inhomogeneity results in cyclic strain accumulation in the aggregate DP material even in symmetric stress cycling.
NASA Astrophysics Data System (ADS)
Aldakheel, Fadi
2017-11-01
The coupled thermo-mechanical strain gradient plasticity theory that accounts for microstructure-based size effects is outlined within this work. It extends the recent work of Miehe et al. (Comput Methods Appl Mech Eng 268:704-734, 2014) to account for thermal effects at finite strains. From the computational viewpoint, the finite element design of the coupled problem is not straightforward and requires additional strategies due to the difficulties near the elastic-plastic boundaries. To simplify the finite element formulation, we extend it toward the micromorphic approach to gradient thermo-plasticity model in the logarithmic strain space. The key point is the introduction of dual local-global field variables via a penalty method, where only the global fields are restricted by boundary conditions. Hence, the problem of restricting the gradient variable to the plastic domain is relaxed, which makes the formulation very attractive for finite element implementation as discussed in Forest (J Eng Mech 135:117-131, 2009) and Miehe et al. (Philos Trans R Soc A Math Phys Eng Sci 374:20150170, 2016).
NASA Astrophysics Data System (ADS)
Szombathelyi, V.; Krallics, Gy
2014-08-01
The effect of the deformation processes on yield stress, Vickers microhardness and dislocation density were investigated using commercial purity (A1050) and alloyed aluminum (Al 6082). For the evolution of the dislocation density X-ray line profile analysis was used. In the large plastic strain range the variation of mechanical and microstructure evolution of A1050 and of Al 6082 processed by equal channel angular pressing are investigated using route BC and route C. In the plastic strain range up to 3 plane strain compression test was used to evaluate mechanical properties. The hardness and the yield stress showed a sharp increase after the first pass. In the case of A1050 it was found that the two examined routes has not resulted difference in the flow stress. In the case of Al 6082 the effect of the routes on the yield stress is significant. The present results showed that in the comparable plastic strain range higher yield stress values can be achieved by plane strain compression test than by ECAP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Y. F.; Larson, B. C.; Lee, J. H.
Strain gradient effects are commonly modeled as the origin of the size dependence of material strength, such as the dependence of indentation hardness on contact depth and spherical indenter radius. However, studies on the microstructural comparisons of experiments and theories are limited. First, we have extended a strain gradient Mises-plasticity model to its crystal plasticity version and implemented a finite element method to simulate the load-displacement response and the lattice rotation field of Cu single crystals under spherical indentation. The strain gradient simulations demonstrate that the forming of distinct sectors of positive and negative angles in the lattice rotation fieldmore » is governed primarily by the slip geometry and crystallographic orientations, depending only weakly on strain gradient effects, although hardness depends strongly on strain gradients. Second, the lattice rotation simulations are compared quantitatively with micron resolution, three-dimensional X-ray microscopy (3DXM) measurements of the lattice rotation fields under 100mN force, 100 mu m radius spherical indentations in < 111 >, < 110 >, and < 001 > oriented Cu single crystals. Third, noting the limitation of continuum strain gradient crystal plasticity models, two-dimensional discrete dislocation simulation results suggest that the hardness in the nanocontact regime is governed synergistically by a combination of strain gradients and source-limited plasticity. However, the lattice rotation field in the discrete dislocation simulations is found to be insensitive to these two factors but to depend critically on dislocation obstacle densities and strengths.« less
Change and anisotropy of elastic modulus in sheet metals due to plastic deformation
NASA Astrophysics Data System (ADS)
Ishitsuka, Yuki; Arikawa, Shuichi; Yoneyama, Satoru
2015-03-01
In this study, the effect of the plastic deformation on the microscopic structure and the anisotropy of the elastic modulus in the cold-rolled steel sheet (SPCC) is investigated. Various uniaxial plastic strains (0%, 2.5%, 5%, 7.5%, and 10%) are applied to the annealed SPCC plates, then, the specimens for the tensile tests are cut out from them. The elastic moduli in the longitudinal direction and the transverse direction to the direction that are pre-strained are measured by the tensile tests. Cyclic tests are performed to investigate the effects of the internal friction caused by the movable dislocations in the elastic deformation. Also, the movable dislocations are quantified by the boundary tracking for TEM micrographs. In addition, the behaviors of the change of the elastic modulus in the solutionized and thermal aged aluminum alloy (A5052) are measured to investigate the effect on the movable dislocations with the amount of the depositions. As a result in SPCC, the elastic moduli of the 0° and 90° directions decrease more than 10% as 10% prestrain applied. On the other hand, the elastic modulus shows the recovery behavior after the strain aging and the annealing. The movable dislocation and the internal friction show a tendency to increase as the plastic strain increases. The marked anisotropy is not observed in the elastic modulus and the internal friction. The elastic modulus in A5052 with many and few depositions decreases similarly by the plastic deformation. From the above, the movable dislocations affect the elastic modulus strongly without depending on the deposition amount. Moreover, the elastic modulus recovers after the plastic deformation by reducing the effects of them with the strain aging and the heat treatment.
NASA Astrophysics Data System (ADS)
Hatami, M. K.; Pardoen, T.; Lacroix, G.; Berke, P.; Jacques, P. J.; Massart, T. J.
2017-01-01
TRansformation Induced Plasticity (TRIP) is a very effective mechanism to increase the strain hardening capacity of multiphase steels containing a fraction of metastable austenite, leading to both high strength and large uniform elongation. Excellent performances have been reached in the past 20 years, with recent renewed interest through the development of the 3rd generation of high strength steels often involving a TRIP effect. The microstructure and composition optimization is complex due to the interplay of coupled effects on the transformation kinetics and work hardening such as phase stability, size of retained austenite grains, temperature and loading path. In particular, recent studies have shown that the TRIP effect can only be quantitatively captured for realistic microstructures if strain gradient plasticity effects are taken into account, although direct experimental validation of this claim is missing. Here, an original computational averaging scheme is developed for predicting the elastoplastic response of TRIP aided multiphase steels based on a strain gradient plasticity model. The microstructure is represented by an aggregate of many elementary unit cells involving each a fraction of retained austenite with a specified stability. The model parameters, involving the transformation kinetics, are identified based on experimental tensile tests performed at different temperatures. The model is further assessed towards original experiments, involving temperature changes during deformation. A classical size independent plasticity model is shown unable to capture the TRIP effect on the mechanical response. Conversely, the strain gradient formulation properly predicts substantial variations of the strain hardening with deformation and temperature, hence of the uniform elongation in good agreement with the experiments. A parametric study is performed to get more insight on the effect of the material length scale as well as to determine optimum transformation kinetics to reach the highest possible strength-ductility balance. It is shown that the uniform elongation can potentially be increased by 50% or more, paving the way towards future microstructure engineering efforts.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Rajan, Subramaniam; Blackenhorn, Gunther
2015-01-01
The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within commercial transient dynamic finite element codes, several features have been identified as being lacking in the currently available material models that could substantially enhance the predictive capability of the impact simulations. A specific desired feature pertains to the incorporation of both plasticity and damage within the material model. Another desired feature relates to using experimentally based tabulated stress-strain input to define the evolution of plasticity and damage as opposed to specifying discrete input properties (such as modulus and strength) and employing analytical functions to track the response of the material. To begin to address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed for implementation within the commercial code LS-DYNA. The plasticity model is based on extending the Tsai-Wu composite failure model into a strain-hardening based orthotropic plasticity model with a non-associative flow rule. The evolution of the yield surface is determined based on tabulated stress-strain curves in the various normal and shear directions and is tracked using the effective plastic strain. The effective plastic strain is computed by using the non-associative flow rule in combination with appropriate numerical methods. To compute the evolution of damage, a strain equivalent semi-coupled formulation is used, in which a load in one direction results in a stiffness reduction in multiple coordinate directions. A specific laminated composite is examined to demonstrate the process of characterizing and analyzing the response of a composite using the developed model.
Lim, H.; Hale, L. M.; Zimmerman, J. A.; ...
2015-01-05
In this study, we develop an atomistically informed crystal plasticity finite element (CP-FE) model for body-centered-cubic (BCC) α-Fe that incorporates non-Schmid stress dependent slip with temperature and strain rate effects. Based on recent insights obtained from atomistic simulations, we propose a new constitutive model that combines a generalized non-Schmid yield law with aspects from a line tension (LT) model for describing activation enthalpy required for the motion of dislocation kinks. Atomistic calculations are conducted to quantify the non-Schmid effects while both experimental data and atomistic simulations are used to assess the temperature and strain rate effects. The parameterized constitutive equationmore » is implemented into a BCC CP-FE model to simulate plastic deformation of single and polycrystalline Fe which is compared with experimental data from the literature. This direct comparison demonstrates that the atomistically informed model accurately captures the effects of crystal orientation, temperature and strain rate on the flow behavior of siangle crystal Fe. Furthermore, our proposed CP-FE model exhibits temperature and strain rate dependent flow and yield surfaces in polycrystalline Fe that deviate from conventional CP-FE models based on Schmid's law.« less
A finite difference method for off-fault plasticity throughout the earthquake cycle
NASA Astrophysics Data System (ADS)
Erickson, Brittany A.; Dunham, Eric M.; Khosravifar, Arash
2017-12-01
We have developed an efficient computational framework for simulating multiple earthquake cycles with off-fault plasticity. The method is developed for the classical antiplane problem of a vertical strike-slip fault governed by rate-and-state friction, with inertial effects captured through the radiation-damping approximation. Both rate-independent plasticity and viscoplasticity are considered, where stresses are constrained by a Drucker-Prager yield condition. The off-fault volume is discretized using finite differences and tectonic loading is imposed by displacing the remote side boundaries at a constant rate. Time-stepping combines an adaptive Runge-Kutta method with an incremental solution process which makes use of an elastoplastic tangent stiffness tensor and the return-mapping algorithm. Solutions are verified by convergence tests and comparison to a finite element solution. We quantify how viscosity, isotropic hardening, and cohesion affect the magnitude and off-fault extent of plastic strain that develops over many ruptures. If hardening is included, plastic strain saturates after the first event and the response during subsequent ruptures is effectively elastic. For viscoplasticity without hardening, however, successive ruptures continue to generate additional plastic strain. In all cases, coseismic slip in the shallow sub-surface is diminished compared to slip accumulated at depth during interseismic loading. The evolution of this slip deficit with each subsequent event, however, is dictated by the plasticity model. Integration of the off-fault plastic strain from the viscoplastic model reveals that a significant amount of tectonic offset is accommodated by inelastic deformation ( ∼ 0.1 m per rupture, or ∼ 10% of the tectonic deformation budget).
Strain Hardening of Hadfield Manganese Steel
NASA Astrophysics Data System (ADS)
Adler, P. H.; Olson, G. B.; Owen, W. S.
1986-10-01
The plastic flow behavior of Hadfield manganese steel in uniaxial tension and compression is shown to be greatly influenced by transformation plasticity phenomena. Changes in the stress-strain (σ-ɛ) curves with temperature correlate with the observed extent of deformation twinning, consistent with a softening effect of twinning as a deformation mechanism and a hardening effect of the twinned microstructure. The combined effects give upward curvature to the σ-ɛ curve over extensive ranges of plastic strain. A higher strain hardening in compression compared with tension appears to be consistent with the observed texture development. The composition dependence of stacking fault energy computed using a thermodynamic model suggests that the Hadfield composition is optimum for a maximum rate of deformation twinning. Comparisons of the Hadfield steel with a Co-33Ni alloy exhibiting similar twinning kinetics, and an Fe-21Ni-lC alloy deforming by slip indicate no unusual strain hardening at low strains where deformation is controlled by slip, but an unusual amount of structural hardening associated with the twin formation in the Hadfield steel. A possible mechanism of anomalous twin hardening is discussed in terms of modified twinning behavior (pseudotwinning) in nonrandom solid solutions.
Modeling the Hot Ductility of AA6061 Aluminum Alloy After Severe Plastic Deformation
NASA Astrophysics Data System (ADS)
Khamei, A. A.; Dehghani, K.; Mahmudi, R.
2015-05-01
Solutionized AA6061 aluminum alloy was processed by equal-channel angular pressing followed by cold rolling. The hot ductility of the material was studied after severe plastic deformation. The hot tensile tests were carried out in the temperature range of 300-500°C and at the strain rates of 0.0005-0.01 s-1. Depending on the temperature and strain rate, the applied strain level exhibited significant effects on the hot ductility, strain-rate sensitivity, and activation energy. It can be suggested that the possible mechanism dominated the hot deformation during tensile testing is dynamic recovery and dislocation creep. Constitutive equations were developed to model the hot ductility of the severe plastic deformed AA6061 alloy.
Tensile elastic properties of 18:8 chromium-nickel steel as affected by plastic deformation
NASA Technical Reports Server (NTRS)
Mcadam, D J; Mebs, R W
1939-01-01
The relationship between stress and strain, and between stress and permanent set, for 18:8 alloy as affected by prior plastic deformation is discussed. Hysteresis and creep and their effects on the stress-strain and stress-set curves are also considered, as well as the influence of duration of the rest interval after cold work and the influence of plastic deformation on proof stresses, on the modulus of elasticity at zero stress, and on the curvature of the stress-strain line. A constant (c sub 1) is suggested to represent the variation of the modulus of elasticity with stress.
The Portevin–Le Chatelier effect: a review of experimental findings
Yilmaz, Ahmet
2011-01-01
The Portevin–Le Chatelier (PLC) effect manifests itself as an unstable plastic flow during tensile tests of some dilute alloys under certain regimes of strain rate and temperature. The plastic strain becomes localized in the form of bands which move along a specimen gauge in various ways as the PLC effect occurs. Because the localization of strain causes degradation of the inherent structural properties and surface quality of materials, understanding the effect is crucial for the effective use of alloys. The characteristic behaviors of localized strain bands and techniques commonly used to study the PLC effect are summarized in this review. A brief overview of experimental findings, the effect of material properties and test parameters on the PLC effect, and some discussion on the mechanisms of the effect are included. Tests for predicting the early failure of structural materials due to embrittlement induced by the PLC effect are also discussed. PMID:27877450
NASA Astrophysics Data System (ADS)
Hopperstad, O. S.; Børvik, T.; Berstad, T.; Lademo, O.-G.; Benallal, A.
2007-10-01
The constitutive relation proposed by McCormick (1988 Acta Metall. 36 3061-7) for materials exhibiting negative steady-state strain-rate sensitivity and the Portevin-Le Chatelier (PLC) effect is incorporated into an elastic-viscoplastic model for metals with plastic anisotropy. The constitutive model is implemented in LS-DYNA for corotational shell elements. Plastic anisotropy is taken into account by use of the yield criterion Yld2000/Yld2003 proposed by Barlat et al (2003 J. Plast. 19 1297-319) and Aretz (2004 Modelling Simul. Mater. Sci. Eng. 12 491-509). The parameters of the constitutive equations are determined for a rolled aluminium alloy (AA5083-H116) exhibiting negative steady-state strain-rate sensitivity and serrated yielding. The parameter identification is based on existing experimental data. A numerical investigation is conducted to determine the influence of the PLC effect on the onset of necking in uniaxial and biaxial tension for different overall strain rates. The numerical simulations show that the PLC effect leads to significant reductions in the strain to necking for both uniaxial and biaxial stress states. Increased surface roughness with plastic deformation is predicted for strain rates giving serrated yielding in uniaxial tension. It is likely that this is an important reason for the reduced critical strains. The characteristics of the deformation bands (orientation, width, velocity and strain rate) are also studied.
NASA Astrophysics Data System (ADS)
Li, Jing; Zhang, Zhong-ping; Li, Chun-wang
2018-03-01
This paper modified an Armstrong-Frederick-type plasticity model for investigating the stable cyclic deformation behavior of metallic materials with different sensitivity to nonproportional loadings. In the modified model, the nonproportionality factor and nonproportional cyclic hardening coefficient coupled with the Jiang-Sehitoglu incremental plasticity model were used to estimate the stable stress-strain responses of the two materials (1045HR steel and 304 stainless steel) under various tension-torsion strain paths. A new equation was proposed to calculate the nonproportionality factor on the basis of the minimum normal strain range. Procedures to determine the minimum normal strain range were presented for general multiaxial loadings. Then, the modified model requires only the cyclic strain hardening exponent and cyclic strength coefficient to determine the material constants. It is convenient for predicting the stable stress-strain responses of materials in engineering application. Comparisons showed that the modified model can reflect the effect of nonproportional cyclic hardening well.
Physical nature of strain rate sensitivity of metals and alloys at high strain rates
NASA Astrophysics Data System (ADS)
Borodin, E. N.; Gruzdkov, A. A.; Mayer, A. E.; Selyutina, N. S.
2018-04-01
The role of instabilities of plastic flow at plastic deformation of various materials is one of the important cross-disciplinary problems which is equally important in physics, mechanics and material science. The strain rate sensitivities under slow and high strain rate conditions of loading have different physical nature. In the case of low strain rate, the sensitivity arising from the inertness of the defect structures evolution can be expressed by a single parameter characterizing the plasticity mechanism. In our approach, this is the value of the characteristic relaxation time. In the dynamic case, there are additional effects of “high-speed sensitivity” associated with the micro-localization of the plastic flow near the stress concentrators. In the frames of mechanical description, this requires to introduce additional strain rate sensitivity parameters, which is realized in numerous modifications of Johnson–Cook and Zerilli–Armstrong models. The consideration of both these factors is fundamental for an adequate description of the problems of dynamic deformation of highly inhomogeneous metallic materials such as steels and alloys. The measurement of the dispersion of particle velocities on the free surface of a shock-loaded material can be regarded as an experimental expression of the effect of micro-localization. This is also confirmed by our results of numerical simulation of the propagation of shock waves in a two-dimensional formulation and analytical estimations.
Strain Rate Effect on Tensile Flow Behavior and Anisotropy of a Medium-Manganese TRIP Steel
NASA Astrophysics Data System (ADS)
Alturk, Rakan; Hector, Louis G.; Matthew Enloe, C.; Abu-Farha, Fadi; Brown, Tyson W.
2018-06-01
The dependence of the plastic anisotropy on the nominal strain rate for a medium-manganese (10 wt.% Mn) transformation-induced plasticity (TRIP) steel with initial austenite volume fraction of 66% (balance ferrite) has been investigated. The material exhibited yield point elongation, propagative instabilities during hardening, and austenite transformation to α'-martensite either directly or through ɛ-martensite. Uniaxial strain rates within the range of 0.005-500 s-1 along the 0°, 45°, and 90° orientations were selected based upon their relevance to automotive applications. The plastic anisotropy ( r) and normal anisotropy ( r n) indices corresponding to each direction and strain rate were determined using strain fields obtained from stereo digital image correlation systems that enabled both quasistatic and dynamic measurements. The results provide evidence of significant, orientation-dependent strain rate effects on both the flow stress and the evolution of r and r n with strain. This has implications not only for material performance during forming but also for the development of future strain-rate-dependent anisotropic yield criteria. Since tensile data alone for the subject medium-manganese TRIP steel do not satisfactorily determine the microstructural mechanisms responsible for the macroscopic-scale behavior observed on tensile testing, additional tests that must supplement the mechanical test results presented herein are discussed.
Strain Rate Effect on Tensile Flow Behavior and Anisotropy of a Medium-Manganese TRIP Steel
NASA Astrophysics Data System (ADS)
Alturk, Rakan; Hector, Louis G.; Matthew Enloe, C.; Abu-Farha, Fadi; Brown, Tyson W.
2018-04-01
The dependence of the plastic anisotropy on the nominal strain rate for a medium-manganese (10 wt.% Mn) transformation-induced plasticity (TRIP) steel with initial austenite volume fraction of 66% (balance ferrite) has been investigated. The material exhibited yield point elongation, propagative instabilities during hardening, and austenite transformation to α'-martensite either directly or through ɛ-martensite. Uniaxial strain rates within the range of 0.005-500 s-1 along the 0°, 45°, and 90° orientations were selected based upon their relevance to automotive applications. The plastic anisotropy (r) and normal anisotropy (r n) indices corresponding to each direction and strain rate were determined using strain fields obtained from stereo digital image correlation systems that enabled both quasistatic and dynamic measurements. The results provide evidence of significant, orientation-dependent strain rate effects on both the flow stress and the evolution of r and r n with strain. This has implications not only for material performance during forming but also for the development of future strain-rate-dependent anisotropic yield criteria. Since tensile data alone for the subject medium-manganese TRIP steel do not satisfactorily determine the microstructural mechanisms responsible for the macroscopic-scale behavior observed on tensile testing, additional tests that must supplement the mechanical test results presented herein are discussed.
Electromagnetic bonding of plastics to aluminum
NASA Technical Reports Server (NTRS)
Sheppard, A. T.; Silbert, L.
1980-01-01
Electromagnetic curing is used to bond strain gage to aluminum tensile bar. Electromagnetic energy heats only plastic/metal interface by means of skin effect, preventing degradation of heat-treated aluminum. Process can be easily applied to other metals joined by high-temperature-curing plastic adhesives.
Sinuous Flow in Cutting of Metals
NASA Astrophysics Data System (ADS)
Yeung, Ho; Viswanathan, Koushik; Udupa, Anirudh; Mahato, Anirban; Chandrasekar, Srinivasan
2017-11-01
Using in situ high-speed imaging, we unveil details of a highly unsteady plastic flow mode in the cutting of annealed and highly strain-hardening metals. This mesoscopic flow mode, termed sinuous flow, is characterized by repeated material folding, large rotation, and energy dissipation. Sinuous flow effects a very large shape transformation, with local strains of ten or more, and results in a characteristic mushroomlike surface morphology that is quite distinct from the well-known morphologies of metal-cutting chips. Importantly, the attributes of this unsteady flow are also fundamentally different from other well-established unsteady plastic flows in large-strain deformation, like adiabatic shear bands. The nucleation and development of sinuous flow, its dependence on material properties, and its manifestation across material systems are demonstrated. Plastic buckling and grain-scale heterogeneity are found to play key roles in triggering this flow at surfaces. Implications for modeling and understanding flow stability in large-strain plastic deformation, surface quality, and preparation of near-strain-free surfaces by cutting are discussed. The results point to the inadequacy of the widely used shear-zone models, even for ductile metals.
NASA Astrophysics Data System (ADS)
Huang, Maosong; Qu, Xie; Lü, Xilin
2017-11-01
By solving a nonlinear complementarity problem for the consistency condition, an improved implicit stress return iterative algorithm for a generalized over-nonlocal strain softening plasticity was proposed, and the consistent tangent matrix was obtained. The proposed algorithm was embodied into existing finite element codes, and it enables the nonlocal regularization of ill-posed boundary value problem caused by the pressure independent and dependent strain softening plasticity. The algorithm was verified by the numerical modeling of strain localization in a plane strain compression test. The results showed that a fast convergence can be achieved and the mesh-dependency caused by strain softening can be effectively eliminated. The influences of hardening modulus and material characteristic length on the simulation were obtained. The proposed algorithm was further used in the simulations of the bearing capacity of a strip footing; the results are mesh-independent, and the progressive failure process of the soil was well captured.
Cyclic strain rate effects in fatigued face-centred and body-centred cubic metals
NASA Astrophysics Data System (ADS)
Mughrabi, Haël
2013-09-01
The present work deals mainly with the effect and the use of strain rate and temperature changes during cyclic deformation as a means to obtain valuable information on the thermally activated dislocation glide processes, based on the assessment of reversible changes of the thermal effective stress and of transient changes of the athermal stress. The importance of closed-loop testing in true plastic strain control with constant cyclic plastic strain rate throughout the cycle is explained and emphasized, especially with respect to the case of strain rate sensitive materials. Stress responses of face-centred cubic and body-centred cubic (bcc) metals to cyclic strain rate changes are presented to illustrate that the deformation modes of these two classes of materials differ characteristically at temperatures below that the so-called knee temperature of bcc metals. When such tests are performed in cyclic saturation, the temperature and strain rate dependence of bcc metals can be measured very accurately on one and the same specimen, permitting a thorough analysis of thermal activation.
NASA Astrophysics Data System (ADS)
Fu, Liming; Shan, Mokun; Zhang, Daoda; Wang, Huanrong; Wang, Wei; Shan, Aidang
2017-05-01
The microstructures and deformation behavior were studied in a high-temperature annealed high-manganese dual-phase (28 vol pct δ-ferrite and 72 vol pct γ-austenite) transformation-induced plasticity/twinning-induced plasticity (TRIP/TWIP) steel. The results showed that the steel exhibits a special Lüders-like yielding phenomenon at room temperature (RT) and 348 K (75 °C), while it shows continuous yielding at 423 K, 573 K and 673 K (150 °C, 300 °C and 400 °C) deformation. A significant TRIP effect takes place during Lüders-like deformation at RT and 348 K (75 °C) temperatures. Semiquantitative analysis of the TRIP effect on the Lüders-like yield phenomenon proves that a softening effect of the strain energy consumption of strain-induced transformation is mainly responsible for this Lüders-like phenomenon. The TWIP mechanism dominates the 423 K (150 °C) deformation process, while the dislocation glide controls the plasticity at 573 K (300 °C) deformation. The delta-ferrite, as a hard phase in annealed dual-phase steel, greatly affects the mechanical stability of austenite due to the heterogeneous strain distribution between the two phases during deformation. A delta-ferrite-aided TRIP effect, i.e., martensite transformation induced by localized strain concentration of the hard delta-ferrite, is proposed to explain this kind of Lüders-like phenomenon. Moreover, the tensile curve at RT exhibits an upward curved behavior in the middle deformation stage, which is principally attributed to the deformation twinning of austenite retained after Lüders-like deformation. The combination of the TRIP effect during Lüders-like deformation and the subsequent TWIP effect greatly enhances the ductility in this annealed high-manganese dual-phase TRIP/TWIP steel.
NASA Astrophysics Data System (ADS)
Astafurova, Elena; Maier, Galina; Melnikov, Eugene; Koshovkina, Vera; Moskvina, Valentina; Smirnov, Alexander; Bataev, Vladimir
2015-10-01
The effect of hydrogenation on the strain-hardening behavior and the deformation mechanisms of <113>-oriented single crystals of Hadfield steel was investigated under tension at room temperature. The stages of plastic flow and deformation mechanisms for hydrogen-charged specimens are similar to one in hydrogen-free state: slip → slip + single twinning → slip + multiple twinning. Hydrogen alloying favors to mechanical twinning, micro- and macrolocalization of plastic flow.
Local Plasticity of Al Thin Films as Revealed by X-Ray Microdiffraction
NASA Astrophysics Data System (ADS)
Spolenak, R.; Brown, W. L.; Tamura, N.; MacDowell, A. A.; Celestre, R. S.; Padmore, H. A.; Valek, B.; Bravman, J. C.; Marieb, T.; Fujimoto, H.; Batterman, B. W.; Patel, J. R.
2003-03-01
Grain-to-grain interactions dominate the plasticity of Al thin films and establish effective length scales smaller than the grain size. We have measured large strain distributions and their changes under plastic strain in 1.5-μm-thick Al0.5%Cu films using a 0.8-μm-diameter white x-ray probe at the Advanced Light Source. Strain distributions arise not only from the distribution of grain sizes and orientation, but also from the differences in grain shape and from stress environment. Multiple active glide plane domains have been found within single grains. Large grains behave like multiple smaller grains even before a dislocation substructure can evolve.
Numerical Simulation of Pipeline Deformation Caused by Rockfall Impact
Liang, Zheng; Han, Chuanjun
2014-01-01
Rockfall impact is one of the fatal hazards in pipeline transportation of oil and gas. The deformation of oil and gas pipeline caused by rockfall impact was investigated using the finite element method in this paper. Pipeline deformations under radial impact, longitudinal inclined impact, transverse inclined impact, and lateral eccentric impact of spherical and cube rockfalls were discussed, respectively. The effects of impact angle and eccentricity on the plastic strain of pipeline were analyzed. The results show that the crater depth on pipeline caused by spherical rockfall impact is deeper than by cube rockfall impact with the same volume. In the inclined impact condition, the maximum plastic strain of crater caused by spherical rockfall impact appears when incidence angle α is 45°. The pipeline is prone to rupture under the cube rockfall impact when α is small. The plastic strain distribution of impact crater is more uneven with the increasing of impact angle. In the eccentric impact condition, plastic strain zone of pipeline decreases with the increasing of eccentricity k. PMID:24959599
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jiyuan; Zhang, Zicheng, E-mail: zhangzicheng2004@126.com; Manabe, Ken-ichi
Transformation-induced plasticity aided seamless steel tube comprising of ferrite, bainite, and metastable austenite was processed through forging, piercing, cold-drawing, and two-stage heat treatment. T-shape hydroforming is a classic forming method for experimental research and practical production. The current work studied austenite-to-martensite transformation and microcrack initiation and propagation of the tube during T-shape hydroforming using electron backscattering diffraction, scanning electron microscopy, and transmission electron microscopy. The strain distribution in the bcc-phase and fcc-phase was studied by evaluating changes in the average local misorientation. Compared to the compressive stress, metastable austenite with similar strain surrounding or inside the grains transformed easier undermore » tensile loading conditions. The inclusions were responsible for microcrack initiation. The propagation of the cracks is hindered by martensite/austenite constituent due to transformation induced plasticity effect. The volume fraction of untransformed retained austenite decreased with increase in strain implying transformation-induced plasticity effect. - Highlights: • Hydroformed tubes processed via TRIP concept • EBSD provided estimate of micro local strain. • Retained austenite hinders propagation of microcracks.« less
Thermodynamically consistent relations involving plasticity, internal energy and thermal effects.
Schreyer, H L; Maudlin, P J
2005-11-15
Experimental data associated with plastic deformations indicate that the temperature is less than that predicted from dissipation based on plastic work. To obtain reasonable correlation between theoretical and experimental results, the plastic work is often multiplied by a constant beta. This paper provides an alternative thermodynamic framework in which it is proposed that there is an additional internal energy associated with dislocation pile-up or increase in dislocation density. The form of this internal energy follows from experimental data that relates flow stress to dislocation density and to equivalent plastic strain. The result is that beta is not a constant but a derived function. Representative results for beta and temperature as functions of effective plastic strain are provided for both an uncoupled and a coupled thermoplastic theory. In addition to providing features that are believed to be representative of many metals, the formulation can be used as a basis for more advanced theories such as those needed for large deformations and general forms of internal energy.
Closed system of coupling effects in generalized thermo-elastoplasticity
NASA Astrophysics Data System (ADS)
Śloderbach, Z.
2016-05-01
In this paper, the field equations of the generalized coupled thermoplasticity theory are derived using the postulates of classical thermodynamics of irreversible processses. Using the Legendre transformations two new thermodynamics potentials P and S depending upon internal thermodynamic forces Π are introduced. The most general form for all the thermodynamics potentials are assumed instead of the usually used additive form. Due to this assumption, it is possible to describe all the effects of thermomechanical couples and also the elastic-plastic coupling effects observed in such materials as rocks, soils, concretes and in some metalic materials. In this paper not only the usual postulate of existence of a dissipation qupotential (the Gyarmati postulate) is used to derive the velocity equation. The plastic flow constitutive equations have the character of non-associated flow laws even when the Gyarmati postulate is assumed. In general formulation, the plastic strain rate tensor is normal to the surface of the generalized function of plastic flow defined in the the space of internal thermodynamic forces Π but is not normal to the yield surface. However, in general formulation and after the use the Gyarmati postulate, the direction of the sum of the plastic strain rate tensor and the coupled elastic strain rate tensor is normal to the yield surface.
Effects of misalignment on mechanical behavior of metals in creep
NASA Technical Reports Server (NTRS)
Wu, H. C.
1981-01-01
Creep tests were conducted by means of a closed loop servocontrolled materials test system. The strain history prior to creep is carefully monitored. Tests were performed for aluminum alloy 6061-O at 150 C and were monitored by a PDP 11/04 minicomputer at a preset constant plastic strain rate prehistory. The results show that the plastic strain rate prior to creep plays a significant role in creep behavior. The endochronic theory of viscoplasticity was applied to describe the observed creep curves. Intrinsic time and strain rate sensitivity function concepts are employed and modified according to the present observation.
Sang, Mee Kyung; Shrestha, Anupama; Kim, Du-Yeon; Park, Kyungseok; Pak, Chun Ho; Kim, Ki Deok
2013-06-01
We previously developed a sequential screening procedure to select antagonistic bacterial strains against Phytophthora capsici in pepper plants. In this study, we used a modified screening procedure to select effective biocontrol strains against P. capsici; we evaluated the effect of selected strains on Phytophthora blight and anthracnose occurrence and fruit yield in pepper plants under field and plastic house conditions from 2007 to 2009. We selected four potential biocontrol strains (Pseudomonas otitidis YJR27, P. putida YJR92, Tsukamurella tyrosinosolvens YJR102, and Novosphingobium capsulatum YJR107) among 239 bacterial strains. In the 3-year field tests, all the selected strains significantly (P < 0.05) reduced Phytophthora blight without influencing rhizosphere microbial populations; they showed similar or better levels of disease suppressions than in metalaxyl treatment in the 2007 and 2009 tests, but not in the 2008 test. In the 2-year plastic house tests, all the selected strains significantly (P < 0.05) reduced anthracnose incidence in at least one of the test years, but their biocontrol activities were variable. In addition, strains YJR27, YJR92, and YJR102, in certain harvests, increased pepper fruit numbers in field tests and red fruit weights in plastic house tests. Taken together, these results indicate that the screening procedure is rapid and reliable for the selection of potential biocontrol strains against P. capsici in pepper plants. In addition, these selected strains exhibited biocontrol activities against anthracnose, and some of the strains showed plant growth-promotion activities on pepper fruit.
NASA Astrophysics Data System (ADS)
Jing, Lin; Han, Liangliang
2017-12-01
A comprehensive dynamic finite-element simulation method was proposed to study the wheel-rail impact response induced by a single wheel flat based on a 3-D rolling contact model, where the influences of the structural inertia, strain rate effect of wheel-rail materials and thermal stress due to the wheel-rail sliding friction were considered. Four different initial conditions (i.e. pure mechanical loading plus rate-independent, pure mechanical loading plus rate-dependent, thermo-mechanical loading plus rate-independent, and thermo-mechanical loading plus rate-dependent) were involved into explore the corresponding impact responses in term of the vertical impact force, von-Mises equivalent stress, equivalent plastic strain and shear stress. Influences of train speed, flat length and axle load on the flat-induced wheel-rail impact response were discussed, respectively. The results indicate that the maximum thermal stresses are occurred on the tread of the wheel and on the top surface of the middle rail; the strain rate hardening effect contributes to elevate the von-Mises equivalent stress and restrain the plastic deformation; and the initial thermal stress due to the sliding friction will aggravate the plastic deformation of wheel and rail. Besides, the wheel-rail impact responses (i.e. impact force, von-Mises equivalent stress, equivalent plastic strain, and XY shear stress) induced by a flat are sensitive to the train speed, flat length and axle load.
NASA Astrophysics Data System (ADS)
Revil-Baudard, Benoit; Chandola, Nitin; Cazacu, Oana; Barlat, Frédéric
2014-10-01
The Swift phenomenon, which refers to the occurrence of permanent axial deformation during monotonic free-end torsion, has been known for a very long time. While plastic anisotropy is considered to be its main cause, there is no explanation as to why in certain materials irreversible elongation occurs while in others permanent shortening is observed. In this paper, a correlation between Swift effects and the stress-strain behavior in uniaxial tension and compression is established. It is based on an elastic-plastic model that accounts for the combined influence of anisotropy and tension-compression asymmetry. It is shown that, if for a given orientation the uniaxial yield stress in tension is larger than that in compression, the specimen will shorten when twisted about that direction; however, if the yield stress in uniaxial compression is larger than that in uniaxial tension, axial elongation will occur. Furthermore, it is shown that on the basis of a few simple mechanical tests it is possible to predict the particularities of the plastic response in torsion for both isotropic and initially anisotropic materials. Unlike other previous interpretations of the Swift effects, which were mainly based on crystal plasticity and/or texture evolution, it is explained the occurrence of Swift effects at small to moderate plastic strains. In particular, the very good quantitative agreement between model and data for a strongly anisotropic AZ31-Mg alloy confirm the correlation established in this work between tension-compression asymmetry and Swift effects. Furthermore, it is explained why the sign of the axial plastic strains that develop depends on the twisting direction.
NASA Technical Reports Server (NTRS)
Price, J. M.; Steeve, B. E.; Swanson, G. R.
1999-01-01
The analytical prediction of stress, strain, and fatigue life at locations experiencing local plasticity is full of uncertainties. Much of this uncertainty arises from the material models and their use in the numerical techniques used to solve plasticity problems. Experimental measurements of actual plastic strains would allow the validity of these models and solutions to be tested. This memorandum describes how experimental plastic residual strain measurements were used to verify the results of a thermally induced plastic fatigue failure analysis of a space shuttle main engine fuel pump component.
Impact resistance of fiber composites
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Sinclair, J. H.
1982-01-01
Stress-strain curves are obtained for a variety of glass fiber and carbon fiber reinforced plastics in dynamic tension, over the stress-strain range of 0.00087-2070/sec. The test method is of the one-bar block-to-bar type, using a rotating disk or a pendulum as the loading apparatus and yielding accurate stress-strain curves up to the breaking strain. In the case of glass fiber reinforced plastic, the tensile strength, strain to peak impact stress, total strain and total absorbed energy all increase significantly as the strain rate increases. By contrast, carbon fiber reinforced plastics show lower rates of increase with strain rate. It is recommended that hybrid composites incorporating the high strength and rigidity of carbon fiber reinforced plastic with the high impact absorption of glass fiber reinforced plastics be developed for use in structures subjected to impact loading.
NASA Astrophysics Data System (ADS)
Nacif el Alaoui, Reda
Mechanical structure-property relations have been quantified for AISI 4140 steel. under different strain rates and temperatures. The structure-property relations were used. to calibrate a microstructure-based internal state variable plasticity-damage model for. monotonic tension, compression and torsion plasticity, as well as damage evolution. Strong stress state and temperature dependences were observed for the AISI 4140 steel. Tension tests on three different notched Bridgman specimens were undertaken to study. the damage-triaxiality dependence for model validation purposes. Fracture surface. analysis was performed using Scanning Electron Microscopy (SEM) to quantify the void. nucleation and void sizes in the different specimens. The stress-strain behavior exhibited. a fairly large applied stress state (tension, compression dependence, and torsion), a. moderate temperature dependence, and a relatively small strain rate dependence.
Masaki, Kazuo; Kamini, Numbi Ramudu; Ikeda, Hiroko; Iefuji, Haruyuki
2005-01-01
A purified lipase from the yeast Cryptococcus sp. strain S-2 exhibited remote homology to proteins belonging to the cutinase family rather than to lipases. This enzyme could effectively degrade the high-molecular-weight compound polylactic acid, as well as other biodegradable plastics, including polybutylene succinate, poly (ɛ-caprolactone), and poly(3-hydroxybutyrate). PMID:16269800
The strain path dependence of plastic deformation response of AA5754: Experiment and modeling
NASA Astrophysics Data System (ADS)
Pham, Minh-Son; Hu, Lin; Iadicola, Mark; Creuziger, Adam; Rollett, Anthony D.
2013-12-01
This work presents modeling of experiments on a balanced biaxial (BB) pre-strained AA5754 alloy, subsequently reloaded uniaxially along the rolling direction and transverse direction. The material exhibits a complex plastic deformation response during the change in strain path due to 1) crystallographic texture, 2) aging (interactions between dislocations and Mg atoms) and 3) recovery (annihilation and re-arrangement of dislocations). With a BB prestrain of about 5 %, the aging process is dominant, and the yield strength for uniaxially deformed samples is observed to be higher than the flow stress during BB straining. The strain hardening rate after changing path is, however, lower than that for pre-straining. Higher degrees of pre-straining make the dynamic recovery more active. The dynamic recovery at higher strain levels compensates for the aging effect, and results in: 1) a reduction of the yield strength, and 2) an increase in the hardening rate of re-strained specimens along other directions. The yield strength of deformed samples is further reduced if these samples are left at room temperature to let static recovery occur. The synergistic influences of texture condition, aging and recovery processes on the material response make the modeling of strain path dependence of mechanical behavior of AA5754 challenging. In this study, the influence of crystallographic texture is taken into account by incorporating the latent hardening into a visco-plastic self-consistent model. Different strengths of dislocation glide interaction models in 24 slip systems are used to represent the latent hardening. Moreover, the aging and recovery effects are also included into the latent hardening model by considering strong interactions between dislocations and dissolved atom Mg and the microstructural evolution. These microstructural considerations provide a powerful capability to successfully describe the strain path dependence of plastic deformation behavior of AA5754.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, H.; School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287-6106; Prioli, R.
The properties of InAs quantum dots (QDs) have been studied for application in intermediate band solar cells. It is found that suppression of plastic relaxation in the QDs has a significant effect on the optoelectronic properties. Partial capping plus annealing is shown to be effective in controlling the height of the QDs and in suppressing plastic relaxation. A force balancing model is used to explain the relationship between plastic relaxation and QD height. A strong luminescence has been observed from strained QDs, indicating the presence of localized states in the desired energy range. No luminescence has been observed from plasticallymore » relaxed QDs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S. Y.; Sun, Yinan; An, Ke
2010-01-01
Neutron diffraction was employed to investigate the crack-growth retardation phenomenon after a single tensile overload by mapping both one-dimensional and two-dimensional residual-strain distributions around the crack tip in a series of compact-tension specimens representing various crack-growth stages through an overload-induced retardation period. The results clearly show a large compressive residual-strain field near the crack tip immediately after the overload. As the fatigue crack propagates through the overload-induced plastic zone, the compressive residual strains are gradually relaxed, and a new compressive residual-strain field is developed around the propagating crack tip, illustrating that the subsequent fatigue-induced plastic zone grows out of themore » large plastic zone caused by the overloading. The relationship between the overload-induced plastic zone and subsequent fatigue-induced plastic zone, and its influence on the residual-strain distributions in the perturbed plastic zone are discussed.« less
Amplified effect of mild plastic anisotropy on residual stress and strain anisotropy
Prime, Michael B.
2017-07-01
Axisymmetric indentation of a geometrically axisymmetric disk produced residual stresses by non-uniform plastic deformation. The 2024 aluminum plate used to make the disk exhibited mild plastic anisotropy with about 10% lower strength in the transverse direction compared to the rolling and through-thickness directions. Residual stresses and strains in the disk were measured with neutron diffraction, slitting, the contour method, x-ray diffraction and hole drilling. Surprisingly, the residual-stress anisotropy measured in the disk was about 40%, the residual-strain anisotropy was an impressive 100%, and the residual stresses were higher in the weaker direction. The high residual stress anisotropy relative to themore » mild plastic anisotropy and the direction of the highest stress are explained by considering the mechanics of indentation: constraint on deformation provided by the material surrounding the indentation and preferential deformation in the most compliant direction for incremental deformation. By contrast, the much larger anisotropy in residual strain compared to that in residual stress is independent of the fabrication process and is instead explained by considering Hookean elasticity. For Poisson's ratio of 1/3, the relationship simplifies to the residual strain anisotropy equaling the square of the residual stress anisotropy, which matches the observed results (2 ≈ 1.4^2). Furthermore, a lesson from this study is that to accurately predict residual stresses and strains, one must be wary of seemingly reasonable simplifying assumptions such as neglecting mild plastic anisotropy.« less
Amplified effect of mild plastic anisotropy on residual stress and strain anisotropy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prime, Michael B.
Axisymmetric indentation of a geometrically axisymmetric disk produced residual stresses by non-uniform plastic deformation. The 2024 aluminum plate used to make the disk exhibited mild plastic anisotropy with about 10% lower strength in the transverse direction compared to the rolling and through-thickness directions. Residual stresses and strains in the disk were measured with neutron diffraction, slitting, the contour method, x-ray diffraction and hole drilling. Surprisingly, the residual-stress anisotropy measured in the disk was about 40%, the residual-strain anisotropy was an impressive 100%, and the residual stresses were higher in the weaker direction. The high residual stress anisotropy relative to themore » mild plastic anisotropy and the direction of the highest stress are explained by considering the mechanics of indentation: constraint on deformation provided by the material surrounding the indentation and preferential deformation in the most compliant direction for incremental deformation. By contrast, the much larger anisotropy in residual strain compared to that in residual stress is independent of the fabrication process and is instead explained by considering Hookean elasticity. For Poisson's ratio of 1/3, the relationship simplifies to the residual strain anisotropy equaling the square of the residual stress anisotropy, which matches the observed results (2 ≈ 1.4^2). Furthermore, a lesson from this study is that to accurately predict residual stresses and strains, one must be wary of seemingly reasonable simplifying assumptions such as neglecting mild plastic anisotropy.« less
Forming an age hardenable aluminum alloy with intermediate annealing
NASA Astrophysics Data System (ADS)
Wang, Kaifeng; Carsley, John E.; Stoughton, Thomas B.; Li, Jingjing; Zhang, Lianhong; He, Baiyan
2013-12-01
A method to improve formability of aluminum sheet alloys by a two-stage stamping process with intermediate annealing was developed for a non-age hardenable Al-Mg alloy where the annealing heat treatment provided recovery of cold work from the initial stamping and recrystallization of the microstructure to enhance the forming limits of the material. This method was extended to an age hardenable, Al-Mg-Si alloy, which is complicated by the competing metallurgical effects during heat treatment including recovery (softening effect) vs. precipitation (hardening effect). An annealing heat treatment process condition was discovered wherein the stored strain energy from an initial plastic deformation can be sufficiently recovered to enhance formability in a second deformation; however, there is a deleterious effect on subsequent precipitation hardening. The improvement in formability was quantified with uniaxial tensile tests as well as with the forming limit diagram. Since strain-based forming limit curves (FLC) are sensitive to pre-strain history, both stress-based FLCs and polar-effective-plastic-strain (PEPS) FLCs, which are path-independent, were used to evaluate the forming limits after preform annealing. A technique was developed to calculate the stress-based FLC in which a residual-effective-plastic-strain (REPS) was determined by overlapping the hardening curve of the pre-strained and annealed material with that of the simply-annealed- material. After converting the strain-based FLCs using the constant REPS method, it was found that the stress-based FLCs and the PEPS FLCs of the post-annealed materials were quite similar and both tools are applicable for evaluating the forming limits of Al-Mg-Si alloys for a two-step stamping process with intermediate annealing.
Sensitivity of polycrystal plasticity to slip system kinematic hardening laws for Al 7075-T6
Hennessey, Conor; Castelluccio, Gustavo M.; McDowell, David L.
2017-02-01
The prediction of formation and early growth of microstructurally small fatigue cracks requires use of constitutive models that accurately estimate local states of stress, strain, and cyclic plastic strain. However, few research efforts have attempted to systematically consider the sensitivity of overall cyclic stress-strain hysteresis and higher order mean stress relaxation and plastic strain ratcheting responses introduced by the slip system back-stress formulation in crystal plasticity, even for face centered cubic (FCC) crystal systems. This paper explores the performance of two slip system level kinematic hardening models using a finite element crystal plasticity implementation as a User Material Subroutine (UMAT)more » within ABAQUS, with fully implicit numerical integration. The two kinematic hardening formulations aim to reproduce the cyclic deformation of polycrystalline Al 7075-T6 in terms of both macroscopic cyclic stress-strain hysteresis loop shape, as well as ratcheting and mean stress relaxation under strain- or stress-controlled loading with mean strain or stress, respectively. The first formulation is an Armstrong-Frederick type hardening-dynamic recovery law for evolution of the back stress. This approach is capable of reproducing observed deformation under completely reversed uniaxial loading conditions, but overpredicts the rate of cyclic ratcheting and associated mean stress relaxation. The second formulation corresponds to a multiple back stress Ohno-Wang type hardening law with nonlinear dynamic recovery. The adoption of this back stress evolution law greatly improves the capability to model experimental results for polycrystalline specimens subjected to cycling with mean stress or strain. As a result, the relation of such nonlinear dynamic recovery effects are related to slip system interactions with dislocation substructures.« less
Sensitivity of polycrystal plasticity to slip system kinematic hardening laws for Al 7075-T6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hennessey, Conor; Castelluccio, Gustavo M.; McDowell, David L.
The prediction of formation and early growth of microstructurally small fatigue cracks requires use of constitutive models that accurately estimate local states of stress, strain, and cyclic plastic strain. However, few research efforts have attempted to systematically consider the sensitivity of overall cyclic stress-strain hysteresis and higher order mean stress relaxation and plastic strain ratcheting responses introduced by the slip system back-stress formulation in crystal plasticity, even for face centered cubic (FCC) crystal systems. This paper explores the performance of two slip system level kinematic hardening models using a finite element crystal plasticity implementation as a User Material Subroutine (UMAT)more » within ABAQUS, with fully implicit numerical integration. The two kinematic hardening formulations aim to reproduce the cyclic deformation of polycrystalline Al 7075-T6 in terms of both macroscopic cyclic stress-strain hysteresis loop shape, as well as ratcheting and mean stress relaxation under strain- or stress-controlled loading with mean strain or stress, respectively. The first formulation is an Armstrong-Frederick type hardening-dynamic recovery law for evolution of the back stress. This approach is capable of reproducing observed deformation under completely reversed uniaxial loading conditions, but overpredicts the rate of cyclic ratcheting and associated mean stress relaxation. The second formulation corresponds to a multiple back stress Ohno-Wang type hardening law with nonlinear dynamic recovery. The adoption of this back stress evolution law greatly improves the capability to model experimental results for polycrystalline specimens subjected to cycling with mean stress or strain. As a result, the relation of such nonlinear dynamic recovery effects are related to slip system interactions with dislocation substructures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merkle, J.G.
In order to study effects of constraint on fracture toughness, it is important to select the right location within the crack-tip field for investigation. In 1950 Hill postulated that close to a circular notch tip the principal stress directions would be radial and circumferential, so that the plastic slip lines (maximum shear stress trajectories) would be logarithmic spirals. The resulting equation for stress normal to the notch symmetry plane, neglecting strain hardening, was identical to that for the circumferential stress near the bore of an ideally plastic thick-walled hollow cylinder under external radial tension, because the relevant geometries are identical.more » In 1969, Rice and Johnson developed a near crack-tip, plane strain, large-strain rigid-plastic analysis considering strain hardening and assuming an infinitely sharp initial crack tip. Shortly afterwards, Merkle, following Hill's suggestion, proposed an approximate analysis of the stresses and strains ahead of a blunted crack tip on the plane of symmetry, based on a circular blunted crack tip. The analysis amounted to a hollow cylinder analogy, including the effects of strain hardening. The original hollow cylinder analogy was based on small strain theory, and the calculated strain distributions did not agree well with the Rice and Johnson results very near the blunted crack tip. Therefore, the hollow cylinder analogy equations have been rederived, based on large strain theory, and the agreement with the Rice and Johnson results and other more recent numerical results is good. Calculations illustrate the effects of transverse strain on the principal stresses very close to a blunting crack tip and show that, theoretically, a singularity still exists at the tip of a blunting crack. 10 refs., 9 figs.« less
A simplified method for elastic-plastic-creep structural analysis
NASA Technical Reports Server (NTRS)
Kaufman, A.
1984-01-01
A simplified inelastic analysis computer program (ANSYPM) was developed for predicting the stress-strain history at the critical location of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a plasticity hardening model. Creep effects are calculated on the basis of stress relaxation at constant strain, creep at constant stress or a combination of stress relaxation and creep accumulation. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, dwell times at various points in the cycles, different materials and kinematic hardening. Good agreement was found between these analytical results and nonlinear finite element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite element analysis.
A simplified method for elastic-plastic-creep structural analysis
NASA Technical Reports Server (NTRS)
Kaufman, A.
1985-01-01
A simplified inelastic analysis computer program (ANSYPM) was developed for predicting the stress-strain history at the critical location of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a plasticity hardening model. Creep effects are calculated on the basis of stress relaxation at constant strain, creep at constant stress or a combination of stress relaxation and creep accumulation. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, dwell times at various points in the cycles, different materials and kinematic hardening. Good agreement was found between these analytical results and nonlinear finite element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite element analysis.
Sang, Mee Kyung; Shrestha, Anupama; Kim, Du-Yeon; Park, Kyungseok; Pak, Chun Ho; Kim, Ki Deok
2013-01-01
We previously developed a sequential screening procedure to select antagonistic bacterial strains against Phytophthora capsici in pepper plants. In this study, we used a modified screening procedure to select effective biocontrol strains against P. capsici; we evaluated the effect of selected strains on Phytophthora blight and anthracnose occurrence and fruit yield in pepper plants under field and plastic house conditions from 2007 to 2009. We selected four potential biocontrol strains (Pseudomonas otitidis YJR27, P. putida YJR92, Tsukamurella tyrosinosolvens YJR102, and Novosphingobium capsulatum YJR107) among 239 bacterial strains. In the 3-year field tests, all the selected strains significantly (P < 0.05) reduced Phytophthora blight without influencing rhizosphere microbial populations; they showed similar or better levels of disease suppressions than in metalaxyl treatment in the 2007 and 2009 tests, but not in the 2008 test. In the 2-year plastic house tests, all the selected strains significantly (P < 0.05) reduced anthracnose incidence in at least one of the test years, but their biocontrol activities were variable. In addition, strains YJR27, YJR92, and YJR102, in certain harvests, increased pepper fruit numbers in field tests and red fruit weights in plastic house tests. Taken together, these results indicate that the screening procedure is rapid and reliable for the selection of potential biocontrol strains against P. capsici in pepper plants. In addition, these selected strains exhibited biocontrol activities against anthracnose, and some of the strains showed plant growth-promotion activities on pepper fruit. PMID:25288942
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther
2016-01-01
The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased usage in the aerospace and automotive communities. In order to address a series of issues identified by the aerospace community as being desirable to include in a next generation composite impact model, an orthotropic, macroscopic constitutive model incorporating both plasticity and damage suitable for implementation within the commercial LS-DYNA computer code is being developed. The plasticity model is based on extending the Tsai-Wu composite failure model into a strain hardening-based orthotropic plasticity model with a non-associative flow rule. The evolution of the yield surface is determined based on tabulated stress-strain curves in the various normal and shear directions and is tracked using the effective plastic strain. To compute the evolution of damage, a strain equivalent semi-coupled formulation is used in which a load in one direction results in a stiffness reduction in multiple material coordinate directions. A detailed analysis is carried out to ensure that the strain equivalence assumption is appropriate for the derived plasticity and damage formulations that are employed in the current model. Procedures to develop the appropriate input curves for the damage model are presented and the process required to develop an appropriate characterization test matrix is discussed
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther
2016-01-01
The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased usage in the aerospace and automotive communities. In order to address a series of issues identified by the aerospace community as being desirable to include in a next generation composite impact model, an orthotropic, macroscopic constitutive model incorporating both plasticity and damage suitable for implementation within the commercial LS-DYNA computer code is being developed. The plasticity model is based on extending the Tsai-Wu composite failure model into a strain hardening-based orthotropic plasticity model with a non-associative flow rule. The evolution of the yield surface is determined based on tabulated stress-strain curves in the various normal and shear directions and is tracked using the effective plastic strain. To compute the evolution of damage, a strain equivalent semi-coupled formulation is used in which a load in one direction results in a stiffness reduction in multiple material coordinate directions. A detailed analysis is carried out to ensure that the strain equivalence assumption is appropriate for the derived plasticity and damage formulations that are employed in the current model. Procedures to develop the appropriate input curves for the damage model are presented and the process required to develop an appropriate characterization test matrix is discussed.
NASA Astrophysics Data System (ADS)
Said Schicchi, Diego; Hunkel, Martin
2018-03-01
During the last decade, the use of press-hardened components in the automotive industry has grown considerably. The so-called tailored tempering, also known as partial press hardening, employs locally heated tools seeking to obtain bainitic transformations. This leads to (seamless) zones within the formed parts with higher ductility. Due to the intrinsic nature of this process, phase transformations happen under the influence of high loads and in pre-deformed austenite. The austenite pre-strain state and applied stresses affect the kinetics of the bainitic transformation. Moreover, stresses have an additional relevant effect in this process, the so-called transformation plasticity. Linear transformation plasticity models have been successfully used to predict the behavior in the presence of low stresses. Nonetheless, because of the process's severe conditions, these tend to fail. A strong nonlinearity of the transformation plasticity strain is observed for applied stresses above the austenite yield strength. Using thermomechanical tests on sheet specimens of a manganese-boron steel (22MnB5), widely utilized in the industry, the effect on the bainitic transformation of various degrees of deformation in the range of 0 to 18 pct, applied stresses in the range of 0 to 250 MPa and the transformation plasticity effect are investigated in this work.
NASA Astrophysics Data System (ADS)
Said Schicchi, Diego; Hunkel, Martin
2018-06-01
During the last decade, the use of press-hardened components in the automotive industry has grown considerably. The so-called tailored tempering, also known as partial press hardening, employs locally heated tools seeking to obtain bainitic transformations. This leads to (seamless) zones within the formed parts with higher ductility. Due to the intrinsic nature of this process, phase transformations happen under the influence of high loads and in pre-deformed austenite. The austenite pre-strain state and applied stresses affect the kinetics of the bainitic transformation. Moreover, stresses have an additional relevant effect in this process, the so-called transformation plasticity. Linear transformation plasticity models have been successfully used to predict the behavior in the presence of low stresses. Nonetheless, because of the process's severe conditions, these tend to fail. A strong nonlinearity of the transformation plasticity strain is observed for applied stresses above the austenite yield strength. Using thermomechanical tests on sheet specimens of a manganese-boron steel (22MnB5), widely utilized in the industry, the effect on the bainitic transformation of various degrees of deformation in the range of 0 to 18 pct, applied stresses in the range of 0 to 250 MPa and the transformation plasticity effect are investigated in this work.
Effect of Strain Rate on Joint Strength and Failure Mode of Lead-Free Solder Joints
NASA Astrophysics Data System (ADS)
Lin, Jian; Lei, Yongping; Fu, Hanguang; Guo, Fu
2018-03-01
In surface mount technology, the Sn-3.0Ag-0.5Cu solder joint has a shorter impact lifetime than a traditional lead-tin solder joint. In order to improve the impact property of SnAgCu lead-free solder joints and identify the effect of silver content on tensile strength and impact property, impact experiments were conducted at various strain rates on three selected SnAgCu based solder joints. It was found that joint failure mainly occurred in the solder material with large plastic deformation under low strain rate, while joint failure occurred at the brittle intermetallic compound layer without any plastic deformation at a high strain rate. Joint strength increased with the silver content in SnAgCu alloys in static tensile tests, while the impact property of the solder joint decreased with increasing silver content. When the strain rate was low, plastic deformation occurred with failure and the tensile strength of the Sn-3.0Ag-0.5Cu solder joint was higher than that of Sn-0.3Ag-0.7Cu; when the strain rate was high, joint failure mainly occurred at the brittle interface layer and the Sn-0.3Ag-0.7Cu solder joint had a better impact resistance with a thinner intermetallic compound layer.
NASA Astrophysics Data System (ADS)
Peters, Max; Karrech, Ali; Poulet, Thomas; Herwegh, Marco; Regenauer-Lieb, Klaus
2014-05-01
During necking of a mechanically stiffer layer embedded in a weaker matrix, relatively large amounts of strain localize in small areas. As this deformation style appears under distinct geological conditions, necking phenomena, e.g. boudinaged veins, are associated with a variety of deformation modes. So far, there exists rather limited knowledge about the origin of instabilities and their role as precursory structures, i.e. strong localization of elastic energy affecting further plastic deformation (e.g. Regenauer-Lieb & Yuen, 1998; 2004; Karrech et al., 2011a). We applied the finite element solver ABAQUS in order to investigate the 2-D strain distribution in layers including different mechanical material properties during plane strain co-axial deformation. First, linear perturbation analyses were performed in order to evaluate the imperfection sensitivity in the elastic and viscous regimes. We perform a classical modal analysis to determine the natural mode shapes and frequencies of our geological structure during arbitrary vibrations. This analysis aims at detecting the eigenmodes of the geological structure, which are sinusoidal vibrations with geometry specific natural modal shapes and frequencies. The eigenvalues represent the nodal points where the onset of (visco)-elasto-plastic localization can initiate in the structure (Rice, 1977). The eigenmodes, eigenvalues and eigenvectors are highly sensitive to the layer-box' aspect ratio and differences in Young's moduli, or effective viscosity, respectively. Boundary effect-free strain propagation occurs for layer-box aspect ratios smaller than 1:10. Second, these preloading structures were used as seeds for imperfections in elasto-viscoplastic numerical modeling of continuous necking of a coarse-grained mineral layer embedded in a finer-grained matrix (pinch-and-swell type of boudinage), following the thermo-mechanical coupling of grain size evolutions by Herwegh et al. (in press). The evolution of symmetric necks seems to coincide with the transition from dislocation to diffusion creep dominated viscous flow with dramatic grain size reduction and grain growth from swell to neck, respectively, at relatively high extensional strains. Strain propagates from initial stress concentrations in the layer (necks) at an angle of 45° into the matrix, in form of conjugate shear band sets. Preliminary results show that pre-calculated eigenmodes (and corresponding imperfection sizes) amplify these concentrations and lead to a significant reduction of computational time for individual simulations. Moreover, the strain imperfections seeded around the pre-calculated distribution severely change the geometry of necking structures and amount of accommodated plastic strain. We reveal that elastic stress concentrations control localized visco-plastic deformation, which is expressed in the plastic strain energy increase in necking structures. These findings underline the importance of the transient (elasticity and strain hardening) deformation regimes as triggers for plastic deformation and the need for thermodynamics-based (total) energy considerations. REFERENCES Herwegh, M., Poulet, T., Karrech, A. and Regenauer-Lieb, K. (in press). From transient to steady state deformation and grain size: A thermodynamic approach using elasto-visco-plastic numerical modeling. Journal of Geophysical Research. Karrech, A., Regenauer-Lieb, K. and Poulet, T. (2011a). A Damaged visco-plasticity model for pressure and temperature sensitive geomaterials. Journal of Engineering Science 49. Regenauer-Lieb, K., Yuen, D., 1998: Rapid conversion of elastic energy into plastic shear heating during incipient necking of the lithosphere. Geophysical Research Letters, 25. Regenauer-Lieb, K., Yuen, D., 2004. Positive feedback of interacting ductile faults from coupling of equation of state, rheology and thermal-mechanics. Physics of the Earth and Planetary Interiors, 142. Rice, J. R. (1977). The localization of plastic deformation. Theoretical and Applied Mechanics. W. T. Koiter. Amsterdam, North-Holland: 207-220.
Stress Wave Propagation in Viscoelastic-Plastic Rock-Like Materials.
Lang, Liu; Song, Ki-Il; Zhai, Yue; Lao, Dezheng; Lee, Hang-Lo
2016-05-17
Rock-like materials are composites that can be regarded as a mixture composed of elastic, plastic, and viscous components. They exhibit viscoelastic-plastic behavior under a high-strain-rate loading according to element model theory. This paper presents an analytical solution for stress wave propagation in viscoelastic-plastic rock-like materials under a high-strain-rate loading and verifies the solution through an experimental test. A constitutive equation of viscoelastic-plastic rock-like materials was first established, and then kinematic and kinetic equations were then solved to derive the analytic solution for stress wave propagation in viscoelastic-plastic rock-like materials. An experimental test using the SHPB (Split Hopkinson Pressure Bar) for a concrete specimen was conducted to obtain a stress-strain curve under a high-strain-rate loading. Inverse analysis based on differential evolution was conducted to estimate undetermined variables for constitutive equations. Finally, the relationship between the attenuation factor and the strain rate in viscoelastic-plastic rock-like materials was investigated. According to the results, the frequency of the stress wave, viscosity coefficient, modulus of elasticity, and density play dominant roles in the attenuation of the stress wave. The attenuation decreases with increasing strain rate, demonstrating strongly strain-dependent attenuation in viscoelastic-plastic rock-like materials.
Stress Wave Propagation in Viscoelastic-Plastic Rock-Like Materials
Lang, Liu; Song, KI-IL; Zhai, Yue; Lao, Dezheng; Lee, Hang-Lo
2016-01-01
Rock-like materials are composites that can be regarded as a mixture composed of elastic, plastic, and viscous components. They exhibit viscoelastic-plastic behavior under a high-strain-rate loading according to element model theory. This paper presents an analytical solution for stress wave propagation in viscoelastic-plastic rock-like materials under a high-strain-rate loading and verifies the solution through an experimental test. A constitutive equation of viscoelastic-plastic rock-like materials was first established, and then kinematic and kinetic equations were then solved to derive the analytic solution for stress wave propagation in viscoelastic-plastic rock-like materials. An experimental test using the SHPB (Split Hopkinson Pressure Bar) for a concrete specimen was conducted to obtain a stress-strain curve under a high-strain-rate loading. Inverse analysis based on differential evolution was conducted to estimate undetermined variables for constitutive equations. Finally, the relationship between the attenuation factor and the strain rate in viscoelastic-plastic rock-like materials was investigated. According to the results, the frequency of the stress wave, viscosity coefficient, modulus of elasticity, and density play dominant roles in the attenuation of the stress wave. The attenuation decreases with increasing strain rate, demonstrating strongly strain-dependent attenuation in viscoelastic-plastic rock-like materials. PMID:28773500
Tao, Weiwei; Cao, Penghui; Park, Harold S
2018-02-14
The mechanical properties and plastic deformation mechanisms of metal nanowires have been studied intensely for many years. One of the important yet unresolved challenges in this field is to bridge the gap in properties and deformation mechanisms reported for slow strain rate experiments (∼10 -2 s -1 ), and high strain rate molecular dynamics (MD) simulations (∼10 8 s -1 ) such that a complete understanding of strain rate effects on mechanical deformation and plasticity can be obtained. In this work, we use long time scale atomistic modeling based on potential energy surface exploration to elucidate the atomistic mechanisms governing a strain-rate-dependent incipient plasticity and yielding transition for face centered cubic (FCC) copper and silver nanowires. The transition occurs for both metals with both pristine and rough surfaces for all computationally accessible diameters (<10 nm). We find that the yield transition is induced by a transition in the incipient plastic event from Shockley partials nucleated on primary slip systems at MD strain rates to the nucleation of planar defects on non-Schmid slip planes at experimental strain rates, where multiple twin boundaries and planar stacking faults appear in copper and silver, respectively. Finally, we demonstrate that, at experimental strain rates, a ductile-to-brittle transition in failure mode similar to previous experimental studies on bicrystalline silver nanowires is observed, which is driven by differences in dislocation activity and grain boundary mobility as compared to the high strain rate case.
NASA Technical Reports Server (NTRS)
Sanfeliz, Jose G.
1993-01-01
Micromechanical modeling via elastic-plastic finite element analyses were performed to investigate the effects that the residual stresses and the degree of matrix work hardening (i.e., cold-worked, annealed) have upon the behavior of a 9 vol percent, unidirectional W/Cu composite, undergoing tensile loading. The inclusion of the residual stress-containing state as well as the simulated matrix material conditions proved to be significant since the Cu matrix material exhibited plastic deformation, which affected the subsequent tensile response of the composite system. The stresses generated during cooldown to room temperature from the manufacturing temperature were more of a factor on the annealed-matrix composite, since they induced the softened matrix to plastically flow. This event limited the total load-carrying capacity of this matrix-dominated, ductile-ductile type material system. Plastic deformation of the hardened-matrix composite during the thermal cooldown stage was not considerable, therefore, the composite was able to sustain a higher stress before showing any appreciable matrix plasticity. The predicted room temperature, stress-strain response, and deformation stages under both material conditions represented upper and lower bounds characteristic of the composite's tensile behavior. The initial deformation stage for the hardened material condition showed negligible matrix plastic deformation while for the annealed state, its initial deformation stage showed extensive matrix plasticity. Both material conditions exhibited a final deformation stage where the fiber and matrix were straining plastically. The predicted stress-strain results were compared to the experimental, room temperature, tensile stress-strain curve generated from this particular composite system. The analyses indicated that the actual thermal-mechanical state of the composite's Cu matrix, represented by the experimental data, followed the annealed material condition.
Finite element simulations of the Portevin Le Chatelier effect in aluminium alloy
NASA Astrophysics Data System (ADS)
Hopperstad, O. S.; Børvik, T.; Berstad, T.; Benallal, A.
2006-08-01
Finite element simulations of the Portevin-Le Chatelier effect in aluminium alloy 5083-H116 are presented and evaluated against existing experimental results. The constitutive model of McCormick (1988) for materials exhibiting negative steady-state strain-rate sensitivity is incorporated into an elastic-viscoplastic model for large plastic deformations and implemented in LS-DYNA for use with the explicit or implicit solver. Axisymmetric tensile specimens loaded at different strain rates are studied numerically, and it is shown that the model predicts the experimental behaviour with reasonable accuracy; including serrated yielding and propagating bands of localized plastic deformation along the gauge length of the specimen at intermediate strain rates.
NASA Astrophysics Data System (ADS)
Su, R.; Li, L.; Wang, Y. D.; Nie, Z. H.; Ren, Y.; Zhou, X.; Wang, J.
2018-05-01
The distribution of residual lattice strain as a function of depth were carefully investigated by synchrotron-based high energy X-ray diffraction (HEXRD) in TC11 titanium alloy after laser shock peening (LSP). The results presented big compressive residual lattice strains at surface and subsurface, then tensile residual lattice strains in deeper region, and finally close to zero lattice strains in further deep interior with no plastic deformation thereafter. These evolutions in residual lattice strains were attributed to the balance of direct load effect from laser shock wave and the derivative restriction force effect from surrounding material. Significant intergranular stress was evidenced in the processed sample. The intergranular stress exhibited the largest value at surface, and rapidly decreased with depth increase. The magnitude of intergranular stress was proportional to the severity of the plastic deformation caused by LSP. Two shocks generated larger intergranular stress than one shock.
Measurement of large strains in ropes using plastic optical fibers
Williams, Jerry Gene; Smith, David Barton; Muhs, Jeffrey David
2006-02-14
A method for the direct measurement of large strains in ropes in situ using a plastic optical fiber, for example, perfluorocarbon or polymethyl methacrylate and Optical Time-Domain Reflectometer or other light time-of-flight measurement instrumentation. Protective sheaths and guides are incorporated to protect the plastic optical fiber. In one embodiment, a small rope is braided around the plastic optical fiber to impose lateral compressive forces to restrain the plastic optical fiber from slipping and thus experience the same strain as the rope. Methods are described for making reflective interfaces along the length of the plastic optical fiber and to provide the capability to measure strain within discrete segments of the rope. Interpretation of the data allows one to calculate the accumulated strain at any point in time and to determine if the rope has experienced local damage.
Anisotropic Nanomechanics of Boron Nitride Nanotubes: Nanostructured "Skin" Effect
NASA Technical Reports Server (NTRS)
Srivastava, Deepak; Menon, Madhu; Cho, KyeongJae
2000-01-01
The stiffness and plasticity of boron nitride nanotubes are investigated using generalized tight-binding molecular dynamics and ab-initio total energy methods. Due to boron-nitride BN bond buckling effects, compressed zigzag BN nanotubes are found to undergo novel anisotropic strain release followed by anisotropic plastic buckling. The strain is preferentially released towards N atoms in the rotated BN bonds. The tubes buckle anisotropically towards only one end when uniaxially compressed from both. A "skin-effect" model of smart nanocomposite materials is proposed which will localize the structural damage towards the 'skin' or surface side of the material.
NASA Astrophysics Data System (ADS)
Lechartier, Audrey; Martin, Guilhem; Comby, Solène; Roussel-Dherbey, Francine; Deschamps, Alexis; Mantel, Marc; Meyer, Nicolas; Verdier, Marc; Veron, Muriel
2017-01-01
The influence of the martensitic transformation on microscale plastic strain heterogeneity of a duplex stainless steel has been investigated. Microscale strain heterogeneities were measured by digital image correlation during an in situ tensile test within the SEM. The martensitic transformation was monitored in situ during tensile testing by high-energy synchrotron X-ray diffraction. A clear correlation is shown between the plasticity-induced transformation of austenite to martensite and the development of plastic strain heterogeneities at the phase level.
Bernal, Rodrigo A; Aghaei, Amin; Lee, Sangjun; Ryu, Seunghwa; Sohn, Kwonnam; Huang, Jiaxing; Cai, Wei; Espinosa, Horacio
2015-01-14
Silver nanowires are promising components of flexible electronics such as interconnects and touch displays. Despite the expected cyclic loading in these applications, characterization of the cyclic mechanical behavior of chemically synthesized high-quality nanowires has not been reported. Here, we combine in situ TEM tensile tests and atomistic simulations to characterize the cyclic stress-strain behavior and plasticity mechanisms of pentatwinned silver nanowires with diameters thinner than 120 nm. The experimental measurements were enabled by a novel system allowing displacement-controlled tensile testing of nanowires, which also affords higher resolution for capturing stress-strain curves. We observe the Bauschinger effect, that is, asymmetric plastic flow, and partial recovery of the plastic deformation upon unloading. TEM observations and atomistic simulations reveal that these processes occur due to the pentatwinned structure and emerge from reversible dislocation activity. While the incipient plastic mechanism through the nucleation of stacking fault decahedrons (SFDs) is fully reversible, plasticity becomes only partially reversible as intersecting SFDs lead to dislocation reactions and entanglements. The observed plastic recovery is expected to have implications to the fatigue life and the application of silver nanowires to flexible electronics.
Strain-Based Design Methodology of Large Diameter Grade X80 Linepipe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lower, Mark D.
2014-04-01
Continuous growth in energy demand is driving oil and natural gas production to areas that are often located far from major markets where the terrain is prone to earthquakes, landslides, and other types of ground motion. Transmission pipelines that cross this type of terrain can experience large longitudinal strains and plastic circumferential elongation as the pipeline experiences alignment changes resulting from differential ground movement. Such displacements can potentially impact pipeline safety by adversely affecting structural capacity and leak tight integrity of the linepipe steel. Planning for new long-distance transmission pipelines usually involves consideration of higher strength linepipe steels because theirmore » use allows pipeline operators to reduce the overall cost of pipeline construction and increase pipeline throughput by increasing the operating pressure. The design trend for new pipelines in areas prone to ground movement has evolved over the last 10 years from a stress-based design approach to a strain-based design (SBD) approach to further realize the cost benefits from using higher strength linepipe steels. This report presents an overview of SBD for pipelines subjected to large longitudinal strain and high internal pressure with emphasis on the tensile strain capacity of high-strength microalloyed linepipe steel. The technical basis for this report involved engineering analysis and examination of the mechanical behavior of Grade X80 linepipe steel in both the longitudinal and circumferential directions. Testing was conducted to assess effects on material processing including as-rolled, expanded, and heat treatment processing intended to simulate coating application. Elastic-plastic and low-cycle fatigue analyses were also performed with varying internal pressures. Proposed SBD models discussed in this report are based on classical plasticity theory and account for material anisotropy, triaxial strain, and microstructural damage effects developed from test data. The results are intended to enhance SBD and analysis methods for producing safe and cost effective pipelines capable of accommodating large plastic strains in seismically active arctic areas.« less
Thermal Recovery of Plastic Deformation in Dissimilar Metal Weld
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiao, Dongxiao; Yu, Xinghua; Zhang, Wei
Stainless steel has been widely used in challenging environments typical to nuclear power plant structures, due its excellent corrosion resistance. Nickel filler metals containing high chromium concentration, including Alloy 82/182, are used for joining stainless steel to carbon steel components to achieve similar high resistance to stress corrosion cracking. However, the joint usually experience weld metal stress corrosion cracking (SCC), which affects the safety and structural integrity of light water nuclear reactor systems. A primary driving force for SCC is the high tensile residual stress in these welds. Due to large dimension of pressure vessel and limitations in the field,more » non-destructive residual stress measurement is difficult. As a result, finite element modeling has been the de facto method to evaluate the weld residual stresses. Recent studies on this subject from researchers worldwide report different residual stress value in the weldments [5]. The discrepancy is due to the fact that most of investigations ignore or underestimate the thermal recovery in the heat-affect zone or reheated region in the weld. In this paper, the effect of heat treatment on thermal recovery and microhardness is investigated for materials used in dissimilar metal joint. It is found that high equivalent plastic strains are predominately accumulated in the buttering layer, the root pass, and the heat affected zone, which experience multiple welding thermal cycles. The final cap passes, experiencing only one or two welding thermal cycles, exhibit less plastic strain accumulation. Moreover, the experimental residual plastic strains are compared with those predicted using an existing weld thermo-mechanical model with two different strain hardening rules. The importance of considering the dynamic strain hardening recovery due to high temperature exposure in welding is discussed for the accurate simulation of weld residual stresses and plastic strains. In conclsuion, the experimental result reveals that the typical post-buttering heat treatment for residual stress relief may not be adequate to completely eliminate the residual plastic strains in the buttering layer.« less
Giannakas, A; Patsaoura, A; Barkoula, N-M; Ladavos, A
2017-02-10
In the current study a novel reflux-solution blending method is being followed with the introduction of small ethanol volumes into chitosan acetic acid aquatic solution in order to incorporate olive oil and corn oil in chitosan and its organoclay nanocomposites. Ethanol enables the direct interaction of chitosan with oils and results in effective plasticization of chitosan/oil films with remarkable increase of the strain at break from 8% of chitosan and chitosan/oil aquatic samples to app. 22% for chitosan/oil ethanol samples. Compared with olive oil, corn oil is less effective as plasticizer (max strain at break app. 14%). Addition of oils is beneficial for water sorption, water vapor permeability and oxygen permeability response of the obtained films. Barrier properties are further improved after the use of OrgMMT, however OrgMMT results in significant reduction of strain at break of all oil containing samples (app. 8%) acting as stress concentrator upon deformation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tian, Liang; Russell, Alan; Anderson, Iver
2014-01-03
Deformation processed metal–metal composites (DMMCs) are high-strength, high-electrical conductivity composites developed by severe plastic deformation of two ductile metal phases. The extraordinarily high strength of DMMCs is underestimated using the rule of mixture (or volumetric weighted average) of conventionally work-hardened metals. A dislocation-density-based, strain–gradient–plasticity model is proposed to relate the strain-gradient effect with the geometrically necessary dislocations emanating from the interface to better predict the strength of DMMCs. The model prediction was compared with our experimental findings of Cu–Nb, Cu–Ta, and Al–Ti DMMC systems to verify the applicability of the new model. The results show that this model predicts themore » strength of DMMCs better than the rule-of-mixture model. The strain-gradient effect, responsible for the exceptionally high strength of heavily cold worked DMMCs, is dominant at large deformation strain since its characteristic microstructure length is comparable with the intrinsic material length.« less
NASA Astrophysics Data System (ADS)
Shi, Guo-Jie; Wang, Jin-Guo; Hou, Zhao-Yang; Wang, Zhen; Liu, Rang-Su
2017-09-01
The mechanical properties and deformation mechanisms of Au nanowire during the tensile processes at different strain rates are revealed by the molecular dynamics method. It is found that the Au nanowire displays three distinct types of mechanical behaviors when tensioning at low, medium and high strain rates, respectively. At the low strain rate, the stress-strain curve displays a periodic zigzag increase-decrease feature, and the plastic deformation is resulted from the slide of dislocation. The dislocations nucleate, propagate, and finally annihilate in every decreasing stages of stress, and the nanowire always can recover to FCC-ordered structure. At the medium strain rate, the stress-strain curve gently decreases during the plastic process, and the deformation is contributed from sliding and twinning. The dislocations formed in the yield stage do not fully propagate and further escape from the nanowire. At the high strain rate, the stress-strain curve wave-like oscillates during the plastic process, and the deformation is resulted from amorphization. The FCC atoms quickly transform into disordered amorphous structure in the yield stage. The relative magnitude between the loading velocity of strain and the propagation velocity of phonons determines the different deformation mechanisms. The mechanical behavior of Au nanowire is similar to Ni, Cu and Pt nanowires, but their deformation mechanisms are not completely identical with each other.
Effective temperature dynamics of shear bands in metallic glasses
NASA Astrophysics Data System (ADS)
Daub, Eric G.; Klaumünzer, David; Löffler, Jörg F.
2014-12-01
We study the plastic deformation of bulk metallic glasses with shear transformation zone (STZ) theory, a physical model for plasticity in amorphous systems, and compare it with experimental data. In STZ theory, plastic deformation occurs when localized regions rearrange due to applied stress and the density of these regions is determined by a dynamically evolving effective disorder temperature. We compare the predictions of STZ theory to experiments that explore the low-temperature deformation of Zr-based bulk metallic glasses via shear bands at various thermal temperatures and strain rates. By following the evolution of effective temperature with time, strain rate, and temperature through a series of approximate and numerical solutions to the STZ equations, we successfully model a suite of experimentally observed phenomena, including shear-band aging as apparent from slide-hold-slide tests, a temperature-dependent steady-state flow stress, and a strain-rate- and temperature-dependent transition from stick-slip (serrated flow) to steady-sliding (nonserrated flow). We find that STZ theory quantitatively matches the observed experimental data and provides a framework for relating the experimentally measured energy scales to different types of atomic rearrangements.
Patterns and perspectives in applied fracture mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merkle, J.G.
1994-12-31
This lecture begins with a overview of applied fracture mechanics pertinent to safety of pressure vessels. It then progresses to a chronological panorama of experimental and analytical results. To be useful and dependable in safety analysis of real structures, new analysis developments must be physically realistic, which means that they must accurately describe physical cause and effect. Consequently, before mathematical modeling can begin, cause and effect must be established from experimental data. This can be difficult and time consuming, but worth the effort. Accordingly, the theme of this paper is that the search for patterns is constant and vital. Thismore » theme is illustrated by the development of small, single-specimen, fracture toughness testing techniques. It is also illustrated by the development, based on two different published large-strain, elastic-plastic, three-dimensional finite-element analyses, of a hypothesis concerning three-dimensional loss of constraint. When a generalization of Irwin`s thickness-normalized plastic-zone parameter, reaches a value close to 2{pi}, the through-thickness contraction strain at the apex of the near-tip logarithmic-spiral slip-line region becomes the dominant negative strain accommodating crack opening. Because slip lines passing from the midplane to the stress-free side surfaces do not have to curve, once these slip lines are established, stresses near the crack tip are only elevated by strain hardening and constraint becomes significantly relaxed. This hypothesis, based on published three-dimensional elastic-plastic analyses, provides a potentially valuable means for gaining additional insight into constraint effects on fracture toughness by considering the roles played by the plastic strains as well as the stresses that develop near a crack tip.« less
Teeraphatpornchai, T; Nakajima-Kambe, T; Shigeno-Akutsu, Y; Nakayama, M; Nomura, N; Nakahara, T; Uchiyama, H
2003-01-01
Microorganisms isolated from soil samples were screened for their ability to degrade various biodegradable polyester-based plastics. The most active strain, designated as strain TB-13, was selected as the best strain for degrading these plastics. From its phenotypic and genetic characteristics, strain TB-13 was closely related to Paenibacillus amyloyticus. It could degrade poly(lactic acid), poly(butylene succinate), poly(butylene succinate-co-adipate), poly(caprolactone) and poly(ethylene succinate) but not poly(hydroxybutylate-co-valerate). However, it could not utilize these plastics as sole carbon sources. Both protease and esterase activities, which may be involved in the degradation of plastic, were constitutively detected in the culture broth.
NASA Astrophysics Data System (ADS)
Ji, Shude; Yang, Zhanpeng; Wen, Quan; Yue, Yumei; Zhang, Liguo
2018-04-01
Trailing intensive cooling with liquid nitrogen has successfully applied to friction stir welding of 2 mm thick 2060 Al-Li alloy. Welding temperature, plastic strain, residual stress and distortion of 2060 Al-Li alloy butt-joint are compared and discussed between conventional cooling and trailing intensive cooling using experimental and numerical simulation methods. The results reveal that trailing intensive cooling is beneficial to shrink high temperature area, reduce peak temperature and decrease plastic strain during friction stir welding process. In addition, the reduction degree of plastic strain outside weld is smaller than that inside weld. Welding distortion presents an anti-saddle shape. Compared with conventional cooling, the reductions of welding distortion and longitudinal residual stresses of welding joint under intense cooling reach 47.7 % and 23.8 %, respectively.
Features of plastic strain localization at the yield plateau in Hadfield steel single crystals
NASA Astrophysics Data System (ADS)
Barannikova, S. A.; Zuev, L. B.
2008-07-01
Spatiotemporal distributions of local components of the plastic distortion tensor in Hadfield steel single crystals oriented for single twinning have been studied under active tensile straining conditions using the double-exposure speckle photography technique. Features of the macroscopically inhomogeneous strain localization at the yield plateau are considered. Relations between local components of the plastic distortion tensor in the zone of strain localization are analyzed.
Effects of Adiabatic Heating on the High Strain Rate Deformation of Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
Sorini, Chris; Chattopadhyay, Aditi; Goldberg, Robert K.
2017-01-01
Polymer matrix composites (PMCs) are increasingly being used in aerospace structures that are expected to experience complex dynamic loading conditions throughout their lifetime. As such, a detailed understanding of the high strain rate behavior of the constituents, particularly the strain rate, temperature, and pressure dependent polymer matrix, is paramount. In this paper, preliminary efforts in modeling experimentally observed temperature rises due to plastic deformation in PMCs subjected to dynamic loading are presented. To this end, an existing isothermal viscoplastic polymer constitutive formulation is extended to model adiabatic conditions by incorporating temperature dependent elastic properties and modifying the components of the inelastic strain rate tensor to explicitly depend on temperature. It is demonstrated that the modified polymer constitutive model is capable of capturing strain rate and temperature dependent yield as well as thermal softening associated with the conversion of plastic work to heat at high rates of strain. The modified constitutive model is then embedded within a strength of materials based micromechanics framework to investigate the manifestation of matrix thermal softening, due to the conversion of plastic work to heat, on the high strain rate response of a T700Epon 862 (T700E862) unidirectional composite. Adiabatic model predictions for high strain rate composite longitudinal tensile, transverse tensile, and in-plane shear loading are presented. Results show a substantial deviation from isothermal conditions; significant thermal softening is observed for matrix dominated deformation modes (transverse tension and in-plane shear), highlighting the importance of accounting for the conversion of plastic work to heat in the polymer matrix in the high strain rate analysis of PMC structures.
NASA Technical Reports Server (NTRS)
Wang, John T.; Bomarito, Geoffrey F.
2016-01-01
This study implements a plasticity tool to predict the nonlinear shear behavior of unidirectional composite laminates under multiaxial loadings, with an intent to further develop the tool for use in composite progressive damage analysis. The steps for developing the plasticity tool include establishing a general quadratic yield function, deriving the incremental elasto-plastic stress-strain relations using the yield function with associated flow rule, and integrating the elasto-plastic stress-strain relations with a modified Euler method and a substepping scheme. Micromechanics analyses are performed to obtain normal and shear stress-strain curves that are used in determining the plasticity parameters of the yield function. By analyzing a micromechanics model, a virtual testing approach is used to replace costly experimental tests for obtaining stress-strain responses of composites under various loadings. The predicted elastic moduli and Poisson's ratios are in good agreement with experimental data. The substepping scheme for integrating the elasto-plastic stress-strain relations is suitable for working with displacement-based finite element codes. An illustration problem is solved to show that the plasticity tool can predict the nonlinear shear behavior for a unidirectional laminate subjected to multiaxial loadings.
NASA Technical Reports Server (NTRS)
Bray, G. H.; Reynolds, A. P.; Starke, E. A., Jr.
1992-01-01
In ingot metallurgy (IM) alloys, the number of delay cycles following a single tensile overload typically increases from a minimum at an intermediate baseline stress intensity range, Delta-K(B), with decreasing Delta-K(B) approaching threshold and increasing Delta-K(B) approaching unstable fracture to produce a characteristic 'U' shaped curve. Two models have been proposed to explain this behavior. One model is based on the interaction between roughness and plasticity-induced closure, while the other model only utilizes plasticity-induced closure. This article examines these models, using experimental results from constant amplitude and single overload fatigue tests performed on two powder metallurgy (PM) aluminum alloys, AL-905XL and AA 8009. The results indicate that the 'U'-shaped curve is primarily due to plasticity-induced closure, and that the plasticity-induced retardation effect is through-thickness in nature, occurring in both the surface and interior regions. However, the retardation effect is greater at the surface, because the increase in plastic strain at the crack tip and overload plastic zone size are larger in the plane-stress surface regions than in the plane-strain interior regions. These results are not entirely consistent with either of the proposed models.
Effect of tensile twins on the subsequent plastic deformation in rolled Mg-3Al-1Zn alloy
NASA Astrophysics Data System (ADS)
Yoon, Jonghun; Kim, Se-Jong; Lee, Youngseon
2013-12-01
The {101¯2} tensile twins influence plastic flow of magnesium alloys for the subsequent plastic deformation since it contributes to grain refinement and texture hardening between the twinned and untwined regions. This paper investigates the variation of plastic flow of the rolled Mg-3Al-1Zn alloy which is compressed with a small plastic strain at the room temperature to induce the twins in the initial specimen. Subsequent tension and compression along the rolling and transverse direction are conducted with the twin induced specimens in order to examine the effect of the initial tensile twins.
Elastic-plastic finite-element analyses of thermally cycled single-edge wedge specimens
NASA Technical Reports Server (NTRS)
Kaufman, A.
1982-01-01
Elastic-plastic stress-strain analyses were performed for single-edge wedge alloys subjected to thermal cycling in fluidized beds. Three cases (NASA TAZ-8A alloy under one cycling condition and 316 stainless steel alloy under two cycling conditions) were analyzed by using the MARC nonlinear, finite-element computer program. Elastic solutions from MARC showed good agreement with previously reported solutions that used the NASTRAN and ISO3DQ computer programs. The NASA TAZ-8A case exhibited no plastic strains, and the elastic and elastic-plastic analyses gave identical results. Elastic-plastic analyses of the 316 stainless steel alloy showed plastic strain reversal with a shift of the mean stresses in the compressive direction. The maximum equivalent total strain ranges for these cases were 13 to 22 percent greater than that calculated from elastic analyses.
NASA Astrophysics Data System (ADS)
Hubert, Olivier; Lazreg, Said
2017-02-01
A growing interest of automotive industry in the use of high performance steels is observed. These materials are obtained thanks to complex manufacturing processes whose parameters fluctuations lead to strong variations of microstructure and mechanical properties. The on-line magnetic non-destructive monitoring is a relevant response to this problem but it requires fast models sensitive to different parameters of the forming process. The plastic deformation is one of these important parameters. Indeed, ferromagnetic materials are known to be sensitive to stress application and especially to plastic strains. In this paper, a macroscopic approach using the kinematic hardening is proposed to model this behavior, considering a plastic strained material as a two phase system. Relationship between kinematic hardening and residual stress is defined in this framework. Since stress fields are multiaxial, an uniaxial equivalent stress is calculated and introduced inside the so-called magneto-mechanical multidomain modeling to represent the effect of plastic strain. The modeling approach is complemented by many experiments involving magnetic and magnetostrictive measurements. They are carried out with or without applied stress, using a dual-phase steel deformed at different levels. The main interest of this material is that the mechanically hard phase, soft phase and the kinematic hardening can be clearly identified thanks to simple experiments. It is shown how this model can be extended to single phase materials.
Non-linear programming in shakedown analysis with plasticity and friction
NASA Astrophysics Data System (ADS)
Spagnoli, A.; Terzano, M.; Barber, J. R.; Klarbring, A.
2017-07-01
Complete frictional contacts, when subjected to cyclic loading, may sometimes develop a favourable situation where slip ceases after a few cycles, an occurrence commonly known as frictional shakedown. Its resemblance to shakedown in plasticity has prompted scholars to apply direct methods, derived from the classical theorems of limit analysis, in order to assess a safe limit to the external loads applied on the system. In circumstances where zones of plastic deformation develop in the material (e.g., because of the large stress concentrations near the sharp edges of a complete contact), it is reasonable to expect an effect of mutual interaction of frictional slip and plastic strains on the load limit below which the global behaviour is non dissipative, i.e., both slip and plastic strains go to zero after some dissipative load cycles. In this paper, shakedown of general two-dimensional discrete systems, involving both friction and plasticity, is discussed and the shakedown limit load is calculated using a non-linear programming algorithm based on the static theorem of limit analysis. An illustrative example related to an elastic-plastic solid containing a frictional crack is provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghorbanpour, Saeede; Zecevic, Milovan; Kumar, Anil
An elasto-plastic polycrystal plasticity model is developed and applied to an Inconel 718 (IN718) superalloy that was produced by additive manufacturing (AM). The model takes into account the contributions of solid solution, precipitates shearing, and grain size and shape effects into the initial slip resistance. Non-Schmid effects and backstress are also included in the crystal plasticity model for activating slip. The hardening law for the critical resolved shear stress is based on the evolution of dislocation density. In using the same set of material and physical parameters, the model is compared against a suite of compression, tension, and large-strain cyclicmore » mechanical test data applied in different AM build directions. We demonstrate that the model is capable of predicting the particularities of both monotonic and cyclic deformation to large strains of the alloy, including decreasing hardening rate during monotonic loading, the non-linear unloading upon the load reversal, the Bauschinger effect, the hardening rate change during loading in the reverse direction as well as plastic anisotropy and the concomitant microstructure evolution. It is anticipated that the general model developed here can be applied to other multiphase alloys containing precipitates.« less
Ghorbanpour, Saeede; Zecevic, Milovan; Kumar, Anil; ...
2017-09-14
An elasto-plastic polycrystal plasticity model is developed and applied to an Inconel 718 (IN718) superalloy that was produced by additive manufacturing (AM). The model takes into account the contributions of solid solution, precipitates shearing, and grain size and shape effects into the initial slip resistance. Non-Schmid effects and backstress are also included in the crystal plasticity model for activating slip. The hardening law for the critical resolved shear stress is based on the evolution of dislocation density. In using the same set of material and physical parameters, the model is compared against a suite of compression, tension, and large-strain cyclicmore » mechanical test data applied in different AM build directions. We demonstrate that the model is capable of predicting the particularities of both monotonic and cyclic deformation to large strains of the alloy, including decreasing hardening rate during monotonic loading, the non-linear unloading upon the load reversal, the Bauschinger effect, the hardening rate change during loading in the reverse direction as well as plastic anisotropy and the concomitant microstructure evolution. It is anticipated that the general model developed here can be applied to other multiphase alloys containing precipitates.« less
Modeling elasto-viscoplasticity in a consistent phase field framework
Cheng, Tian -Le; Wen, You -Hai; Hawk, Jeffrey A.
2017-05-19
Existing continuum level phase field plasticity theories seek to solve plastic strain by minimizing the shear strain energy. However, rigorously speaking, for thermodynamic consistency it is required to minimize the total strain energy unless there is proof that hydrostatic strain energy is independent of plastic strain which is unfortunately absent. In this work, we extend the phase-field microelasticity theory of Khachaturyan et al. by minimizing the total elastic energy with constraint of incompressibility of plastic strain. We show that the flow rules derived from the Ginzburg-Landau type kinetic equation can be in line with Odqvist's law for viscoplasticity and Prandtl-Reussmore » theory. Free surfaces (external surfaces or internal cracks/voids) are treated in the model. Deformation caused by a misfitting spherical precipitate in an elasto-plastic matrix is studied by large-scale three-dimensional simulations in four different regimes in terms of the matrix: (a) elasto-perfectly-plastic, (b) elastoplastic with linear hardening, (c) elastoplastic with power-law hardening, and (d) elasto-perfectly-plastic with a free surface. The results are compared with analytical/numerical solutions of Lee et al. for (a-c) and analytical solution derived in this work for (d). Additionally, the J integral of a fixed crack is calculated in the phase-field model and discussed in the context of fracture mechanics.« less
Modeling elasto-viscoplasticity in a consistent phase field framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Tian -Le; Wen, You -Hai; Hawk, Jeffrey A.
Existing continuum level phase field plasticity theories seek to solve plastic strain by minimizing the shear strain energy. However, rigorously speaking, for thermodynamic consistency it is required to minimize the total strain energy unless there is proof that hydrostatic strain energy is independent of plastic strain which is unfortunately absent. In this work, we extend the phase-field microelasticity theory of Khachaturyan et al. by minimizing the total elastic energy with constraint of incompressibility of plastic strain. We show that the flow rules derived from the Ginzburg-Landau type kinetic equation can be in line with Odqvist's law for viscoplasticity and Prandtl-Reussmore » theory. Free surfaces (external surfaces or internal cracks/voids) are treated in the model. Deformation caused by a misfitting spherical precipitate in an elasto-plastic matrix is studied by large-scale three-dimensional simulations in four different regimes in terms of the matrix: (a) elasto-perfectly-plastic, (b) elastoplastic with linear hardening, (c) elastoplastic with power-law hardening, and (d) elasto-perfectly-plastic with a free surface. The results are compared with analytical/numerical solutions of Lee et al. for (a-c) and analytical solution derived in this work for (d). Additionally, the J integral of a fixed crack is calculated in the phase-field model and discussed in the context of fracture mechanics.« less
Theoretical Development of an Orthotropic Elasto-Plastic Generalized Composite Material Model
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Harrington, Joseph; Subramanian, Rajan; Blankenhorn, Gunther
2014-01-01
The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within LS-DYNA (Registered), there are several features that have been identified that could improve the predictive capability of a composite model. To address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed and is being implemented into LS-DYNA as MAT_213. A key feature of the improved material model is the use of tabulated stress-strain data in a variety of coordinate directions to fully define the stress-strain response of the material. To date, the model development efforts have focused on creating the plasticity portion of the model. The Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic material model with a non-associative flow rule. The coefficients of the yield function, and the stresses to be used in both the yield function and the flow rule, are computed based on the input stress-strain curves using the effective plastic strain as the tracking variable. The coefficients in the flow rule are computed based on the obtained stress-strain data. The developed material model is suitable for implementation within LS-DYNA for use in analyzing the nonlinear response of polymer composites.
Theoretical Development of an Orthotropic Elasto-Plastic Generalized Composite Material Model
NASA Technical Reports Server (NTRS)
Goldberg, Robert; Carney, Kelly; DuBois, Paul; Hoffarth, Canio; Harrington, Joseph; Rajan, Subramaniam; Blankenhorn, Gunther
2014-01-01
The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within LSDYNA (Livermore Software Technology Corporation), there are several features that have been identified that could improve the predictive capability of a composite model. To address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed and is being implemented into LS-DYNA as MAT_213. A key feature of the improved material model is the use of tabulated stress-strain data in a variety of coordinate directions to fully define the stress-strain response of the material. To date, the model development efforts have focused on creating the plasticity portion of the model. The Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic yield function with a nonassociative flow rule. The coefficients of the yield function, and the stresses to be used in both the yield function and the flow rule, are computed based on the input stress-strain curves using the effective plastic strain as the tracking variable. The coefficients in the flow rule are computed based on the obtained stress-strain data. The developed material model is suitable for implementation within LS-DYNA for use in analyzing the nonlinear response of polymer composites.
NASA Astrophysics Data System (ADS)
Semiatin, S. L.; Fagin, P. N.; Goetz, R. L.; Furrer, D. U.; Dutton, R. E.
2015-09-01
The plastic-flow behavior which controls the formation of bulk residual stresses during final heat treatment of powder-metallurgy (PM), nickel-base superalloys was quantified using conventional (isothermal) stress-relaxation (SR) tests and a novel approach which simulates concurrent temperature and strain transients during cooling following solution treatment. The concurrent cooling/straining test involves characterization of the thermal compliance of the test sample. In turn, this information is used to program the ram-displacement- vs-time profile to impose a constant plastic strain rate during cooling. To demonstrate the efficacy of the new approach, SR tests (in both tension and compression) and concurrent cooling/tension-straining experiments were performed on two PM superalloys, LSHR and IN-100. The isothermal SR experiments were conducted at a series of temperatures between 1144 K and 1436 K (871 °C and 1163 °C) on samples that had been supersolvus solution treated and cooled slowly or rapidly to produce starting microstructures comprising coarse gamma grains and coarse or fine secondary gamma-prime precipitates, respectively. The concurrent cooling/straining tests comprised supersolvus solution treatment and various combinations of subsequent cooling rate and plastic strain rate. Comparison of flow-stress data from the SR and concurrent cooling/straining tests showed some similarities and some differences which were explained in the context of the size of the gamma-prime precipitates and the evolution of dislocation substructure. The magnitude of the effect of concurrent deformation during cooling on gamma-prime precipitation was also quantified experimentally and theoretically.
NASA Astrophysics Data System (ADS)
Sugimoto, Koh-ichi; Hojo, Tomohiko; Mizuno, Yuta
2018-02-01
The effects of fine particle peening conditions on the rotational bending fatigue strength of a vacuum-carburized transformation-induced plasticity-aided martensitic steel with a chemical composition of 0.20 pct C, 1.49 pct Si, 1.50 pct Mn, 0.99 pct Cr, 0.02 pct Mo, and 0.05 pct Nb were investigated for the fabrication of automotive drivetrain parts. The maximum fatigue limit, resulting from high hardness and compressive residual stress in the surface-hardened layer caused by the severe plastic deformation and the strain-induced martensite transformation of the retained austenite during fine particle peening, was obtained by fine particle peening at an arc height of 0.21 mm (N). The high fatigue limit was also a result of the increased martensite fraction and the active plastic relaxation via the strain-induced martensite transformation during fatigue deformation, as well as preferential crack initiation on the surface or at the subsurface.
Elasto-limited plastic analysis of structures for probabilistic conditions
NASA Astrophysics Data System (ADS)
Movahedi Rad, M.
2018-06-01
With applying plastic analysis and design methods, significant saving in material can be obtained. However, as a result of this benefit excessive plastic deformations and large residual displacements might develop, which in turn might lead to unserviceability and collapse of the structure. In this study, for deterministic problem the residual deformation of structures is limited by considering a constraint on the complementary strain energy of the residual forces. For probabilistic problem the constraint for the complementary strain energy of the residual forces is given randomly and critical stresses updated during the iteration. Limit curves are presented for the plastic limit load factors. The results show that these constraints have significant effects on the load factors. The formulations of the deterministic and probabilistic problems lead to mathematical programming which are solved by the use of nonlinear algorithm.
NASA Astrophysics Data System (ADS)
Li, Qingbin; Li, Guang; Wang, Guanglun
2003-12-01
Brittleness of the glass core inside fiber optic sensors limits their practical usage, and therefore they are coated with low-modulus softer protective materials. Protective coatings absorb a portion of the strain, and hence part of the structural strain is sensed. The study reported here corrects for this error through development of a theoretical model to account for the loss of strain in the protective coating of optical fibers. The model considers the coating as an elasto-plastic material and formulates strain transfer coefficients for elastic, elasto-plastic and strain localization phases of coating deformations in strain localization in concrete. The theoretical findings were verified through laboratory experimentation. The experimental program involved fabrication of interferometric optical fiber sensors, embedding within mortar samples and tensile tests in a closed-loop servo-hydraulic testing machine. The elasto-plastic strain transfer coefficients were employed for correction of optical fiber sensor data and results were compared with those of conventional extensometers.
NASA Astrophysics Data System (ADS)
Pesin, A.; Pustovoytov, D.; Shveyova, T.; Vafin, R.
2017-12-01
The level of a shear strain and equivalent strain plays a key role in terms of the possibility of using the asymmetric rolling process as a method of severe plastic deformation. Strain mode (pure shear or simple shear) can affect very strongly on the equivalent strain and the grain refinement of the material. This paper presents the results of FEM simulations and comparison of the equivalent strain in the aluminium alloy 5083 processed by a single-pass equal channel angular pressing (simple shear), symmetric rolling (pure shear) and asymmetric rolling (simultaneous pure and simple shear). The nonlinear effect of rolls speed ratio on the deformation characteristics during asymmetric rolling was found. Extremely high equivalent strain up to e=4.2 was reached during a single-pass asymmetric rolling. The influence of the shear strain on the level of equivalent strain is discussed. Finite element analysis of the deformation characteristics, presented in this study, can be used for optimization of the asymmetric rolling process as a method of severe plastic deformation.
Strain localization and elastic-plastic coupling during deformation of porous sandstone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewers, Thomas A.; Issen, Kathleen A.; Holcomb, David J.
Results of axisymmetric compression tests on weak, porous Castlegate Sandstone (Cretaceous, Utah, USA), covering a range of dilational and compactional behaviors, are examined for localization behavior. Assuming isotropy, bulk and shear moduli evolve as increasing functions of mean stress and Mises equivalent shear stress respectively, and as decreasing functions of work-conjugate plastic strains. Acoustic emissions events located during testing show onset of localization and permit calculation of observed shear and low-angle compaction localization zones, or bands, as localization commences. Total strain measured experimentally partitions into: A) elastic strain with constant moduli, B) elastic strain due to stress dependence of moduli,more » C) elastic strain due to moduli degradation with increasing plastic strain, and D) plastic strain. The third term is the elastic-plastic coupling strain, and though often ignored, contributes significantly to pre-failure total strain for brittle and transitional tests. Constitutive parameters and localization predictions derived from experiments are compared to theoretical predictions. In the brittle regime, predictions of band angles (angle between band normal and maximum compression) demonstrate good agreement with observed shear band angles. Compaction localization was observed in the transitional regime in between shear localization and spatially pervasive compaction, over a small range of mean stresses. In contrast with predictions however, detailed acoustic emissions analyses in this regime show low angle, compaction-dominated but shear-enhanced, localization.« less
Modeling aluminum-lithium alloy welding characteristics
NASA Technical Reports Server (NTRS)
Bernstein, Edward L.
1996-01-01
The purpose of this project was to develop a finite element model of the heat-affected zone in the vicinity of a weld line on a plate in order to determine an accurate plastic strain history. The resulting plastic strain increments calculated by the finite element program were then to be used to calculate the measure of damage D. It was hoped to determine the effects of varying welding parameters, such as beam power, efficiency, and weld speed, and the effect of different material properties on the occurrence of microfissuring. The results were to be compared first to the previous analysis of Inconel 718, and then extended to aluminum 2195.
NASA Astrophysics Data System (ADS)
Jost, Benjamin; Klein, Marcus; Eifler, Dietmar
This paper focuses on the ductile cast iron EN-GJS-600 which is often used for components of combustion engines. Under service conditions, those components are mechanically loaded at different temperatures. Therefore, this investigation targets at the fatigue behavior of EN-GJS-600 at ambient and elevated temperatures. Light and scanning electron microscopic investigations were done to characterize the sphericity of the graphite as well as the ferrite, pearlite and graphite fraction. At elevated temperatures, the consideration of dynamic strain ageing effects is of major importance. In total strain increase, temperature increase and constant total strain amplitude tests, the plastic strain amplitude, the stress amplitude, the change in temperature and the change in electrical resistance were measured. The measured values depend on plastic deformation processes in the bulk of the specimens and at the interfaces between matrix and graphite. The fatigue behavior of EN-GJS-600 is dominated by cyclic hardening processes. The physically based fatigue life calculation "PHYBALSIT" (SIT = strain increase test) was developed for total strain controlled fatigue tests. Only one temperature increase test is necessary to determine the temperature interval of pronounced dynamic strain ageing effects.
Mechanisms of Plastic Deformation in Collagen Networks Induced by Cellular Forces.
Ban, Ehsan; Franklin, J Matthew; Nam, Sungmin; Smith, Lucas R; Wang, Hailong; Wells, Rebecca G; Chaudhuri, Ovijit; Liphardt, Jan T; Shenoy, Vivek B
2018-01-23
Contractile cells can reorganize fibrous extracellular matrices and form dense tracts of fibers between neighboring cells. These tracts guide the development of tubular tissue structures and provide paths for the invasion of cancer cells. Here, we studied the mechanisms of the mechanical plasticity of collagen tracts formed by contractile premalignant acinar cells and fibroblasts. Using fluorescence microscopy and second harmonic generation, we quantified the collagen densification, fiber alignment, and strains that remain within the tracts after cellular forces are abolished. We explained these observations using a theoretical fiber network model that accounts for the stretch-dependent formation of weak cross-links between nearby fibers. We tested the predictions of our model using shear rheology experiments. Both our model and rheological experiments demonstrated that increasing collagen concentration leads to substantial increases in plasticity. We also considered the effect of permanent elongation of fibers on network plasticity and derived a phase diagram that classifies the dominant mechanisms of plasticity based on the rate and magnitude of deformation and the mechanical properties of individual fibers. Plasticity is caused by the formation of new cross-links if moderate strains are applied at small rates or due to permanent fiber elongation if large strains are applied over short periods. Finally, we developed a coarse-grained model for plastic deformation of collagen networks that can be employed to simulate multicellular interactions in processes such as morphogenesis, cancer invasion, and fibrosis. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
[Microfloral study of bull seminal fluid stored at low temperatures].
Korudzhiĭski, N
1979-01-01
Hundred twenty three samples of bull semen fluid frozen at 196 degrees C including 83 plastic ampules, 20 granules and 20 plastic straws obtained from the containers of the insemination stations of 10 farms from the Sofia district were investigated. Two hundred twelve strains were isolated and identified as: Escherichia coli--25 strains, Hafnia--16 strains, Citrobacter, Enterobacter and Proteus mirabilis--9 strains of each. The remaining Gram-negative genera and species were more rarely encountered. Gram positive bacteria: Micrococcus--19 strains, Staphylococcus aureus--17 strains, Staph. epidermidis--15 strains, Bacillus cereus--15 strains, B. subtilis--12 strains. Other representatives of Gram-positive bacteria were also found but in lower percentages. Least bacteria were observed in semen fluid frozen in plastic straws and most--in plastic ampules which were mainly used until recently for cow insemination. It was established that the same bacteria isolated by other authors from fresh sperm were encountered in semen fluid stored at minus temperatures. The conclusion is made that semen fluid stored at low temperature is contaminated with bacteria. It is only natural that these bacteria are introduced in cow genitals by insemination.
Derivation of a variational principle for plane strain elastic-plastic silk biopolymers
NASA Astrophysics Data System (ADS)
He, J. H.; Liu, F. J.; Cao, J. H.; Zhang, L.
2014-01-01
Silk biopolymers, such as spider silk and Bombyx mori silk, behave always elastic-plastically. An elastic-plastic model is adopted and a variational principle for the small strain, rate plasticity problem is established by semi-inverse method. A trial Lagrangian is constructed where an unknown function is included which can be identified step by step.
Impact behaviour of an innovative plasticized poly(vinyl chloride) for the automotive industry
NASA Astrophysics Data System (ADS)
Bernard, C. A.; Bahlouli, N.; Wagner-Kocher, C.; Ahzi, S.; Rémond, Y.
2015-09-01
Plasticized poly(vinyl chloride) (PPVC) is widely used in the automotive industry in the design of structural parts for crashworthiness applications. Thus, it is necessary to study and understand the influence of the mechanical response and mechanical properties of PPVC over a wide range of strain rate, from quasi-static to dynamic loadings. The process is also investigated using different sample thicknesses. In this work, the strain rate effect of a new PPVC is investigated over a wide range of strain rates at three temperatures and for three thicknesses. A modelling of the yield stress is also proposed. The numerical prediction is in good agreement with the experimental results.
Stress and plasticity in Cu thin films
NASA Astrophysics Data System (ADS)
Weihnacht, Volker; Brückner, Winfried
1999-11-01
Aim of the work was to get more detailed knowledge about the processes of plasticity in thin Cu films. For this purpose, stress measurements and microstructural investigations have been done on 535nm thick Cu films on oxidized Si substrates. The film stress was measured by wafer-curvature technique using a home-made laser-optical apparatus. This apparatus allowed four-point bending experiments additionally to thermal cycling. It turned out that applied bending strains even higher than 0.5% did not leave significant plastic strains after relief of bending stress. It is concluded, that the elastic interaction of parallel dislocations at the film-substrate interface may play an important role in strain hardening even after small plastic strains.
NASA Astrophysics Data System (ADS)
Murakoso, Satoko; Kuwabara, Toshihiko
Biaxial tensile tests of austenitic stainless steel sheet (SUS304) 0.2mm thick have been carried out using cruciform specimens. The specimens are loaded under linear stress paths in a servo-controlled biaxial tensile testing machine. Plastic orthotropy remained coaxial with the principal stresses throughout every experiment. The successive contours of plastic work in biaxial stress space changed their shapes progressively, exemplifying differential work hardening. The geometry of the entire family of the work contours and the directions of plastic strain rates have been precisely measured and compared with those calculated using conventional yield functions. Yld2000-2d [Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, D.J., Pourboghrat, F., Choi, S.H. and Chu, E., International Journal of Plasticity, Vol. 19, (2003), pp. 1297-1319.] with an exponent of 6 was capable of reproducing the general trends of the work contours and the directions of plastic strain rates with good accuracy. Furthermore, in order to quantitatively evaluate the Bauschinger effect of the test material, in-plane tension/compression tests are conducted. It was found that the non-dimensional (σ /σu) - Δɛ /(σu/ E) curves measured during unloading almost fall on a single curve and are not affected by the amount of pre-strain, where σ is the current stress during unloading, σu is the stress immediately before unloading, Δɛ (< 0) is the total strain increment during unloading.
1980-08-31
loop generated during the alternate tension-compression fatigue testing of Ti-8A1 alloy at 6000C at a plastic strain amplitude of * 0.5Z...Dependence of peak stress on the number of cycles in the longitudinal orientation of Ti-lOAl-RE alloys deformed in alternate tension-compression at...of cycles in the transverse orientation of Ti-OAl-RE alloys deformed in alternate tension- A compression fatigue at 500 0C at a plastic strain
A strain-mediated corrosion model for bioabsorbable metallic stents.
Galvin, E; O'Brien, D; Cummins, C; Mac Donald, B J; Lally, C
2017-06-01
This paper presents a strain-mediated phenomenological corrosion model, based on the discrete finite element modelling method which was developed for use with the ANSYS Implicit finite element code. The corrosion model was calibrated from experimental data and used to simulate the corrosion performance of a WE43 magnesium alloy stent. The model was found to be capable of predicting the experimentally observed plastic strain-mediated mass loss profile. The non-linear plastic strain model, extrapolated from the experimental data, was also found to adequately capture the corrosion-induced reduction in the radial stiffness of the stent over time. The model developed will help direct future design efforts towards the minimisation of plastic strain during device manufacture, deployment and in-service, in order to reduce corrosion rates and prolong the mechanical integrity of magnesium devices. The need for corrosion models that explore the interaction of strain with corrosion damage has been recognised as one of the current challenges in degradable material modelling (Gastaldi et al., 2011). A finite element based plastic strain-mediated phenomenological corrosion model was developed in this work and was calibrated based on the results of the corrosion experiments. It was found to be capable of predicting the experimentally observed plastic strain-mediated mass loss profile and the corrosion-induced reduction in the radial stiffness of the stent over time. To the author's knowledge, the results presented here represent the first experimental calibration of a plastic strain-mediated corrosion model of a corroding magnesium stent. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Ratcheting fatigue behavior of Zircaloy-2 at room temperature
NASA Astrophysics Data System (ADS)
Rajpurohit, R. S.; Sudhakar Rao, G.; Chattopadhyay, K.; Santhi Srinivas, N. C.; Singh, Vakil
2016-08-01
Nuclear core components of zirconium alloys experience asymmetric stress or strain cycling during service which leads to plastic strain accumulation and drastic reduction in fatigue life as well as dimensional instability of the component. Variables like loading rate, mean stress, and stress amplitude affect the influence of asymmetric loading. In the present investigation asymmetric stress controlled fatigue tests were conducted with mean stress from 80 to 150 MPa, stress amplitude from 270 to 340 MPa and stress rate from 30 to 750 MPa/s to study the process of plastic strain accumulation and its effect on fatigue life of Zircaloy-2 at room temperature. It was observed that with increase in mean stress and stress amplitude accumulation of ratcheting strain was increased and fatigue life was reduced. However, increase in stress rate led to improvement in fatigue life due to less accumulation of ratcheting strain.
Discrete shear-transformation-zone plasticity modeling of notched bars
NASA Astrophysics Data System (ADS)
Kondori, Babak; Amine Benzerga, A.; Needleman, Alan
2018-02-01
Plane strain tension analyses of un-notched and notched bars are carried out using discrete shear transformation zone plasticity. In this framework, the carriers of plastic deformation are shear transformation zones (STZs) which are modeled as Eshelby inclusions. Superposition is used to represent a boundary value problem solution in terms of discretely modeled Eshelby inclusions, given analytically for an infinite elastic medium, and an image solution that enforces the prescribed boundary conditions. The image problem is a standard linear elastic boundary value problem that is solved by the finite element method. Potential STZ activation sites are randomly distributed in the bars and constitutive relations are specified for their evolution. Results are presented for un-notched bars, for bars with blunt notches and for bars with sharp notches. The computed stress-strain curves are serrated with the magnitude of the associated stress-drops depending on bar size, notch acuity and STZ evolution. Cooperative deformation bands (shear bands) emerge upon straining and, in some cases, high stress levels occur within the bands. Effects of specimen geometry and size on the stress-strain curves are explored. Depending on STZ kinetics, notch strengthening, notch insensitivity or notch weakening are obtained. The analyses provide a rationale for some conflicting findings regarding notch effects on the mechanical response of metallic glasses.
Mechanical properties of thin-film materials evaluated from amplitude-dependent internal friction
NASA Astrophysics Data System (ADS)
Nishino, Yoichi
1999-09-01
A method is presented to evaluate the mechanical properties of thin-film materials from measurements of the amplitude-dependent internal friction. According to the constitutive equation, the internal friction in the film can be determined separately from measured damping of the film/substrate composite. The internal friction in aluminum films is dependent on the strain amplitude that is approximately two orders of magnitude higher than that for bulk aluminum. On the basis of the microplasticity theory, the amplitude-dependent internal friction in the film can be converted into the plastic strain as a function of effective stress on dislocation motion. The mechanical responses thus obtained for aluminum films show that the plastic strain of the order of 10-9 increases nonlinearly with increasing stress. These curves tend to shift to a higher stress with decreasing film thickness and also with decreasing temperature, both indicating a suppression of microplastic flow. The microflow stress at a constant level of the plastic strain varies inversely with the film thickness, provided the grain size is larger than the film thickness. The film thickness effect in the microplastic range can be well explained by the bowing of a dislocation segment whose ends are pinned at the film surface and at the film/substrate interface.
NASA Astrophysics Data System (ADS)
Satheesh Kumar, S. S.; Raghu, T.
2015-02-01
Oxygen-free high-conductivity (OFHC) copper samples are severe plastically deformed by cyclic channel die compression (CCDC) technique at room temperature up to an effective plastic strain of 7.2. Effect of straining on variation in electrical conductivity, evolution of deformation stored energy, and recrystallization onset temperatures are studied. Deformation-induced lattice defects are quantified using three different methodologies including x-ray diffraction profile analysis employing Williamson-Hall technique, stored energy based method, and electrical resistivity-based techniques. Compared to other severe plastic deformation techniques, electrical conductivity degrades marginally from 100.6% to 96.6% IACS after three cycles of CCDC. Decrease in recrystallization onset and peak temperatures is noticed, whereas stored energy increases and saturates at around 0.95-1.1J/g after three cycles of CCDC. Although drop in recrystallization activation energy is observed with the increasing strain, superior thermal stability is revealed, which is attributed to CCDC process mechanics. Low activation energy observed in CCDC-processed OFHC copper is corroborated to synergistic influence of grain boundary characteristics and lattice defects distribution. Estimated defects concentration indicated continuous increase in dislocation density and vacancy with strain. Deformation-induced vacancy concentration is found to be significantly higher than equilibrium vacancy concentration ascribed to hydrostatic stress states experienced during CCDC.
High Strain Rate Tensile Testing of Silver Nanowires: Rate-Dependent Brittle-to-Ductile Transition.
Ramachandramoorthy, Rajaprakash; Gao, Wei; Bernal, Rodrigo; Espinosa, Horacio
2016-01-13
The characterization of nanomaterials under high strain rates is critical to understand their suitability for dynamic applications such as nanoresonators and nanoswitches. It is also of great theoretical importance to explore nanomechanics with dynamic and rate effects. Here, we report in situ scanning electron microscope (SEM) tensile testing of bicrystalline silver nanowires at strain rates up to 2/s, which is 2 orders of magnitude higher than previously reported in the literature. The experiments are enabled by a microelectromechanical system (MEMS) with fast response time. It was identified that the nanowire plastic deformation has a small activation volume (<10b(3)), suggesting dislocation nucleation as the rate controlling mechanism. Also, a remarkable brittle-to-ductile failure mode transition was observed at a threshold strain rate of 0.2/s. Transmission electron microscopy (TEM) revealed that along the nanowire, dislocation density and spatial distribution of plastic regions increase with increasing strain rate. Furthermore, molecular dynamic (MD) simulations show that deformation mechanisms such as grain boundary migration and dislocation interactions are responsible for such ductility. Finally, the MD and experimental results were interpreted using dislocation nucleation theory. The predicted yield stress values are in agreement with the experimental results for strain rates above 0.2/s when ductility is pronounced. At low strain rates, random imperfections on the nanowire surface trigger localized plasticity, leading to a brittle-like failure.
Analytical Modeling of the High Strain Rate Deformation of Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos
2003-01-01
The results presented here are part of an ongoing research program to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. State variable constitutive equations originally developed for metals have been modified in order to model the nonlinear, strain rate dependent deformation of polymeric matrix materials. To account for the effects of hydrostatic stresses, which are significant in polymers, the classical 5 plasticity theory definitions of effective stress and effective plastic strain are modified by applying variations of the Drucker-Prager yield criterion. To verify the revised formulation, the shear and tensile deformation of a representative toughened epoxy is analyzed across a wide range of strain rates (from quasi-static to high strain rates) and the results are compared to experimentally obtained values. For the analyzed polymers, both the tensile and shear stress-strain curves computed using the analytical model correlate well with values obtained through experimental tests. The polymer constitutive equations are implemented within a strength of materials based micromechanics method to predict the nonlinear, strain rate dependent deformation of polymer matrix composites. In the micromechanics, the unit cell is divided up into a number of independently analyzed slices, and laminate theory is then applied to obtain the effective deformation of the unit cell. The composite mechanics are verified by analyzing the deformation of a representative polymer matrix composite (composed using the representative polymer analyzed for the correlation of the polymer constitutive equations) for several fiber orientation angles across a variety of strain rates. The computed values compare favorably to experimentally obtained results.
Finite element simulation of the T-shaped ECAP processing of round samples
NASA Astrophysics Data System (ADS)
Shaban Ghazani, Mehdi; Fardi-Ilkhchy, Ali; Binesh, Behzad
2018-05-01
Grain refinement is the only mechanism that increases the yield strength and toughness of the materials simultaneously. Severe plastic deformation is one of the promising methods to refine the microstructure of materials. Among different severe plastic deformation processes, the T-shaped equal channel angular pressing (T-ECAP) is a relatively new technique. In the present study, finite element analysis was conducted to evaluate the deformation behavior of metals during T-ECAP process. The study was focused mainly on flow characteristics, plastic strain distribution and its homogeneity, damage development, and pressing force which are among the most important factors governing the sound and successful processing of nanostructured materials by severe plastic deformation techniques. The results showed that plastic strain is localized in the bottom side of sample and uniform deformation cannot be possible using T-ECAP processing. Friction coefficient between sample and die channel wall has a little effect on strain distributions in mirror plane and transverse plane of deformed sample. Also, damage analysis showed that superficial cracks may be initiated from bottom side of sample and their propagation will be limited due to the compressive state of stress. It was demonstrated that the V shaped deformation zone are existed in T-ECAP process and the pressing load needed for execution of deformation process is increased with friction.
Estimation Model for Magnetic Properties of Stamped Electrical Steel Sheet
NASA Astrophysics Data System (ADS)
Kashiwara, Yoshiyuki; Fujimura, Hiroshi; Okamura, Kazuo; Imanishi, Kenji; Yashiki, Hiroyoshi
Less deterioration in magnetic properties of electrical steel sheets in the process of stamping out iron-core are necessary in order to maintain its performance. First, the influence of plastic strain and stress on magnetic properties was studied by test pieces, in which plastic strain was added uniformly and residual stress was not induced. Because the influence of plastic strain was expressed by equivalent plastic strain, at each equivalent plastic strain state the influence of load stress was investigated. Secondly, elastic limit was determined about 60% of macroscopic yield point (MYP), and it was found to agree with stress limit inducing irreversible deterioration in magnetic properties. Therefore simulation models, where beyond elastic limit plastic deformation begins and magnetic properties are deteriorated steeply, are proposed. Besides considered points in the deformation analysis are strain-rate sensitivity of flow stress, anisotropy under deformation, and influence of stress triaxiality on fracture. Finally, proposed models have been shown to be valid, because magnetic properties of 5mm width rectangular sheets stamped out from non-oriented electrical steel sheet (35A250 JIS grade) can be estimated with good accuracy. It is concluded that the elastic limit must be taken into account in both stamping process simulation and magnetic field calculation.
The effect of hydrogen on the parameters of plastic deformation localization in low carbon steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lunev, Aleksey G., E-mail: agl@ispms.tsc.ru, E-mail: nadjozhkin@ispms.tsc.ru; Nadezhkin, Mikhail V., E-mail: agl@ispms.tsc.ru, E-mail: nadjozhkin@ispms.tsc.ru; Shlyakhova, Galina V., E-mail: shgv@ispms.tsc.ru
2014-11-14
In the present study, the effect of interstitial hydrogen atoms on the mechanical properties and plastic strain localization patterns in tensile tested polycrystals of low-carbon steel Fe-0.07%C has been studied using double exposure speckle photography technique. The main parameters of plastic flow localization at various stages of deformation hardening have been determined in polycrystals of steel electrolytically saturated with hydrogen in a three-electrode electrochemical cell at a controlled constant cathode potential. Also, the effect of hydrogen on changing of microstructure by using optical microscopy has been demonstrated.
NASA Astrophysics Data System (ADS)
Hueckel, T.; Hu, M.
2015-12-01
Crack propagation in a subcritically stressed rock subject to chemically aggressive environment is analyzed and numerically simulated. Chemically induced weakening is often encountered in hydraulic fracturing of low-permeability oil/gas reservoirs and heat reservoirs, during storage of CO2 and nuclear waste corroding canisters, and other circumstances when rock matrix acidizing is involved. Upon acidizing, mineral mass dissolution is substantially enhanced weakening the rock and causing crack propagation and eventually permeability changes in the medium. The crack process zone is modeled mathematically via a chemo-plastic coupling and chemo-elastic coupling model. In plasticity a two-way coupling is postulated between mineral dissolution and a yield limit of rock matrix. The rate of dissolution is described by a rate law, but the mineral mass removal per unit volume is also a function of a variable internal specific surface area, which is in turn affected by the micro-cracking (treated as a plastic strain). The behavior of the rock matrix is modeled as rigid-plastic adding a chemical softening capacity to Cam-Clay model. Adopting the Extended Johnson's approximation of processes around the crack tip, the evolution of the stress field and deformation as a function of the chemically enhanced rock damage is modeled in a simplified way. In addition, chemical reactive transport is made dependent on plastic strain representing micro-cracking. Depending on mechanical and chemical boundary conditions, the area of enhanced chemical softening is near or somewhat away from the crack tip.In elasticity, chemo-mechanical effect is postulated via a chemical volumetric shrinkage strain proportional to mass removal variable, conceived analogously to thermal expansion. Two versions are considered: of constant coefficient of shrinkage and a variable one, coupled to deviatoric strain. Airy Potential approach used for linear elasticity is extended considering an extra term, which is uncoupled or coupled to strain. The later case requires iterations with solution of reactive transport equation. A decrease of stress intensity factor with time of reaction is well reproduced.
Multi-scale Modeling of Plasticity in Tantalum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Hojun; Battaile, Corbett Chandler.; Carroll, Jay
In this report, we present a multi-scale computational model to simulate plastic deformation of tantalum and validating experiments. In atomistic/ dislocation level, dislocation kink- pair theory is used to formulate temperature and strain rate dependent constitutive equations. The kink-pair theory is calibrated to available data from single crystal experiments to produce accurate and convenient constitutive laws. The model is then implemented into a BCC crystal plasticity finite element method (CP-FEM) model to predict temperature and strain rate dependent yield stresses of single and polycrystalline tantalum and compared with existing experimental data from the literature. Furthermore, classical continuum constitutive models describingmore » temperature and strain rate dependent flow behaviors are fit to the yield stresses obtained from the CP-FEM polycrystal predictions. The model is then used to conduct hydro- dynamic simulations of Taylor cylinder impact test and compared with experiments. In order to validate the proposed tantalum CP-FEM model with experiments, we introduce a method for quantitative comparison of CP-FEM models with various experimental techniques. To mitigate the effects of unknown subsurface microstructure, tantalum tensile specimens with a pseudo-two-dimensional grain structure and grain sizes on the order of millimeters are used. A technique combining an electron back scatter diffraction (EBSD) and high resolution digital image correlation (HR-DIC) is used to measure the texture and sub-grain strain fields upon uniaxial tensile loading at various applied strains. Deformed specimens are also analyzed with optical profilometry measurements to obtain out-of- plane strain fields. These high resolution measurements are directly compared with large-scale CP-FEM predictions. This computational method directly links fundamental dislocation physics to plastic deformations in the grain-scale and to the engineering-scale applications. Furthermore, direct and quantitative comparisons between experimental measurements and simulation show that the proposed model accurately captures plasticity in deformation of polycrystalline tantalum.« less
Size effects in olivine control strength in low-temperature plasticity regime
NASA Astrophysics Data System (ADS)
Kumamoto, K. M.; Thom, C.; Wallis, D.; Hansen, L. N.; Armstrong, D. E. J.; Goldsby, D. L.; Warren, J. M.; Wilkinson, A. J.
2017-12-01
The strength of the lithospheric mantle during deformation by low-temperature plasticity controls a range of geological phenomena, including lithospheric-scale strain localization, the evolution of friction on deep seismogenic faults, and the flexure of tectonic plates. However, constraints on the strength of olivine in this deformation regime are difficult to obtain from conventional rock-deformation experiments, and previous results vary considerably. We demonstrate via nanoindentation that the strength of olivine in the low-temperature plasticity regime is dependent on the length-scale of the test, with experiments on smaller volumes of material exhibiting larger yield stresses. This "size effect" has previously been explained in engineering materials as a result of the role of strain gradients and associated geometrically necessary dislocations in modifying plastic behavior. The Hall-Petch effect, in which a material with a small grain size exhibits a higher strength than one with a large grain size, is thought to arise from the same mechanism. The presence of a size effect resolves discrepancies among previous experimental measurements of olivine, which were either conducted using indentation methods or were conducted on polycrystalline samples with small grain sizes. An analysis of different low-temperature plasticity flow laws extrapolated to room temperature reveals a power-law relationship between length-scale (grain size for polycrystalline deformation and contact radius for indentation tests) and yield strength. This suggests that data from samples with large inherent length scales best represent the plastic strength of the coarse-grained lithospheric mantle. Additionally, the plastic deformation of nanometer- to micrometer-sized asperities on fault surfaces may control the evolution of fault roughness due to their size-dependent strength.
A Constitutive Relationship between Crack Propagation and Specific Damping Capacity in Steel
1990-10-01
diagnostic tool for detecting crack growth in structures. The model must be simple to act as a tool, but it must be comprehensive to provide accuracy...strain for static fracture u ECritical strain above which plastic strain occursP EAverage value of the cyclic plastic-strain rangeP E t ln(Ao/AI), true
Non-Contact Acousto-Thermal Signatures of Plastic Deformation in TI-6AL-4V
NASA Astrophysics Data System (ADS)
Welter, J. T.; Malott, G.; Schehl, N.; Sathish, S.; Jata, K. V.; Blodgett, M. P.
2010-02-01
Plastic deformation introduces changes in a material which include increases in: dislocations, strains, residual stress, and yield stress. However, these changes have a very small impact on the material properties such as elastic modulus, conductivity and ultrasonic wave speed. This is due to the fact that interatomic forces govern these properties, and they are not affected by plastic deformation to any large degree. This is evident from the fact that the changes in electrical resistance and ultrasonic velocity in plastically deformed and virgin samples are very small and can only be determined by highly controlled experiments. Except for X-ray diffraction, there are no direct nondestructive methods for measuring strain and the residual stress. This paper presents an application of the non-contact acousto-thermal signature (NCATS) NDE methodology to detect plastic deformation in flat dog bone Ti-6Al-4V samples. Results of the NCATS measurements on samples subjected to incremental amounts of plastic deformation are presented. The maximum temperature attained by the sample due to acoustic excitation is found to be sensitive to the amount of plastic strain. It is observed that the temperature induced by acoustic excitation increases to a peak followed by a decrease to failure. The maximum temperature peak occurs at plastic strains of 12-14%. It is observed that there is a correlation between the peak in maximum temperature rise and the strain at the experimentally determined ultimate tensile strength. A microstructural based explanation for this will be presented. The results are discussed in reference to utilizing this technique for detection and evaluation of plastic deformation.
NASA Astrophysics Data System (ADS)
Vyletel, G. M.; van Aken, D. C.; Allison, J. E.
1995-12-01
The 150 °C cyclic response of peak-aged and overaged 2219/TiC/15p and 2219 Al was examined using fully reversed plastic strain-controlled testing. The cyclic response of peak-aged and overaged particle-reinforced materials showed extensive cyclic softening. This softening began at the commencement of cycling and continued until failure. At a plastic strain below 5 × 103, the unreinforced materials did not show evidence of cyclic softening until approximately 30 pct of the life was consumed. In addition, the degree of cyclic softening (†σ) was significantly lower in the unreinforced microstructures. The cyclic softening in both reinforced and unreinforced materials was attributed to the decomposition of the θ' strengthening precipitates. The extent of the precipitate decomposition was much greater in the composite materials due to the increased levels of local plastic strain in the matrix caused by constrained deformation near the TiC particles.
Jia, Haoling; Zheng, Lili; Li, Weidong; ...
2015-02-18
In this paper, in situ high-energy synchrotron X-ray diffraction experiments and micromechanics-based finite element simulations have been conducted to examine the lattice-strain evolution in metallic-glass-matrix composites (MGMCs) with dendritic crystalline phases dispersed in the metallic-glass matrix. Significant plastic deformation can be observed prior to failure from the macroscopic stress–strain curves in these MGMCs. The entire lattice-strain evolution curves can be divided into elastic–elastic (denoting deformation behavior of matrix and inclusion, respectively), elastic–plastic, and plastic–plastic stages. Characteristics of these three stages are governed by the constitutive laws of the two phases (modeled by free-volume theory and crystal plasticity) and geometric informationmore » (crystalline phase morphology and distribution). The load-partitioning mechanisms have been revealed among various crystalline orientations and between the two phases, as determined by slip strain fields in crystalline phase and by strain localizations in matrix. Finally, implications on ductility enhancement of MGMCs are also discussed.« less
Elevated temperature crack growth
NASA Technical Reports Server (NTRS)
Kim, K. S.; Vanstone, R. H.; Malik, S. N.; Laflen, J. H.
1988-01-01
A study was performed to examine the applicability of path-independent (P-I) integrals to crack growth problems in hot section components of gas turbine aircraft engines. Alloy 718 was used and the experimental parameters included combined temperature and strain cycling, thermal gradients, elastic-plastic strain levels, and mean strains. A literature review was conducted of proposed P-I integrals, and those capable of analyzing hot section component problems were selected and programmed into the postprocessor of a finite element code. Detailed elastic-plastic finite element analyses were conducted to simulate crack growth and crack closure of the test specimen, and to evaluate the P-I integrals. It was shown that the selected P-I integrals are very effective for predicting crack growth for isothermal conditions.
Roles of the plasticity regions of Helicobacter pylori in gastroduodenal pathogenesis.
Yamaoka, Yoshio
2008-05-01
Putative virulence genes of Helicobacter pylori are generally classified into three categories: strain-specific genes, phase-variable genes and genes with variable structures/genotypes. Among these, there has recently been considerable interest in strain-specific genes found outside of the cag pathogenicity island, especially genes in the plasticity regions. Nearly half of the strain-specific genes of H. pylori are located in the plasticity regions in strains 26695 and J99. Strain HPAG1, however, seems to lack a typical plasticity region; instead it has 43 HPAG1-specific genes which are either undetectable or incompletely represented in the genomes of strains 26695 and J99. Recent studies showed that certain genes or combination of genes in this region may play important roles in the pathogenesis of H. pylori-associated gastroduodenal diseases. Most previous studies have focused on the plasticity region in strain J99 (jhp0914-jhp0961) and the jhp0947 gene and the duodenal ulcer promoting (dupA) gene are good candidate markers for gastroduodenal diseases although there are some paradoxical findings. The jhp0947 gene is reported to be associated with an increased risk of both duodenal ulcers and gastric cancers, whereas the dupA gene, which encompasses jhp0917 and jhp0918, is reported to be associated with an increased risk of duodenal ulcers and protection against gastric cancers. In addition, recent studies showed that approximately 10-30 % of clinical isolates possess a 16.3 kb type IV secretion apparatus (tfs3) in the plasticity region. Studies on the plasticity region have only just begun, and further investigation is necessary to elucidate the roles of genes in this region in gastroduodenal pathogenesis.
Roles of the plasticity regions of Helicobacter pylori in gastroduodenal pathogenesis
Yamaoka, Yoshio
2010-01-01
Putative virulence genes of Helicobacter pylori are generally classified into three categories: strain-specific genes, phase-variable genes and genes with variable structures/genotypes. Among these, there has recently been considerable interest in strain-specific genes found outside of the cag pathogenicity island, especially genes in the plasticity regions. Nearly half of the strain-specific genes of H. pylori are located in the plasticity regions in strains 26695 and J99. Strain HPAG1, however, seems to lack a typical plasticity region; instead it has 43 HPAG1-specific genes which are either undetectable or incompletely represented in the genomes of strains 26695 and J99. Recent studies showed that certain genes or combination of genes in this region may play important roles in the pathogenesis of H. pylori-associated gastroduodenal diseases. Most previous studies have focused on the plasticity region in strain J99 (jhp0914–jhp0961) and the jhp0947 gene and the duodenal ulcer promoting (dupA) gene are good candidate markers for gastroduodenal diseases although there are some paradoxical findings. The jhp0947 gene is reported to be associated with an increased risk of both duodenal ulcers and gastric cancers, whereas the dupA gene, which encompasses jhp0917 and jhp0918, is reported to be associated with an increased risk of duodenal ulcers and protection against gastric cancers. In addition, recent studies showed that approximately 10–30% of clinical isolates possess a 16.3 kb type IV secretion apparatus (tfs3) in the plasticity region. Studies on the plasticity region have only just begun, and further investigation is necessary to elucidate the roles of genes in this region in gastroduodenal pathogenesis. PMID:18436586
Silva-Brandão, Karina Lucas; Horikoshi, Renato Jun; Bernardi, Daniel; Omoto, Celso; Figueira, Antonio; Brandão, Marcelo Mendes
2017-10-16
Our main purpose was to evaluate the expression of plastic and evolved genes involved in ecological speciation in the noctuid moth Spodoptera frugiperda, the fall armyworm (FAW); and to demonstrate how host plants might influence lineage differentiation in this polyphagous insect. FAW is an important pest of several crops worldwide, and it is differentiated into host plant-related strains, corn (CS) and rice strains (RS). RNA-Seq and transcriptome characterization were applied to evaluate unbiased genetic expression differences in larvae from the two strains, fed on primary (corn) and alternative (rice) host plants. We consider that genes that are differently regulated by the same FAW strain, as a response to different hosts, are "plastic". Otherwise, differences in gene expression between the two strains fed on the same host are considered constitutive differences. Individual performance parameters (larval and pupal weight) varied among conditions (strains vs. hosts). A total of 3657 contigs was related to plastic response, and 2395 contigs were differentially regulated in the two strains feeding on preferential and alternative hosts (constitutive contigs). Three molecular functions were present in all comparisons, both down- and up-regulated: oxidoreductase activity, metal-ion binding, and hydrolase activity. Metabolization of foreign chemicals is among the key functions involved in the phenotypic variation of FAW strains. From an agricultural perspective, high plasticity in families of detoxifying genes indicates the capacity for a rapid response to control compounds such as insecticides.
Investigation of the plastic fracture of high-strength aluminum alloys
NASA Technical Reports Server (NTRS)
Van Stone, R. H.; Merchant, R. H.; Low, J. R., Jr.
1974-01-01
In a study of plastic fracture in five high-strength aluminum alloys (2014, 2024, 2124, 7075, and 7079), it has been shown that fracture toughness is affected primarily by the size and volume fraction of the larger (2 to 10 microms) second-phase particles. Certain of these particles crack at small plastic strains, nucleating voids which, with further plastic strain, coalesce to cause fracture. Not all second-phase particles crack at small plastic strains, and qualitative analysis of those which are primarily responsible for void nucleation shows that they contain iron or silicon or both. This result suggests that a reduction in the iron and silicon impurity content of the alloys should improve fracture toughness without loss of strength.
Elastic-plastic deformation of a metal-matrix composite coupon with a center slot
NASA Technical Reports Server (NTRS)
Post, D.; Czarnek, R.; Joh, D.; Jo, J.; Guo, Y.
1985-01-01
A comprehensive experimental analysis of deformations of the surface of a metal-matrix specimen is reported. The specimen is a 6-ply 0 + or - 45 sub s boron-aluminum tensile coupon with a central slot. Moire interferometry is used for high-sensitivity whole-field measurements of in-plane displacements. Normal and shear strains are calculated from displacement gradients. Displacement fields are analyzed at various load levels from 15% to 95% of the failure load. Deformations of the boron fibers could be distinguished from those of the matrix. Highly localized plastic slip zones occur tangent to the ends of the slot. Shear strains and concurrent transverse compressive strains in the slip zones reach approximately 10% and 1%, respectively. Upon unloading, elastic recovery in surrounding regions causes a reverse plastic shear strain in the slip zone of about 4%. Longitudinal normal strains on the unslotted ligament peak at the slot boundary at about 1% strain. The strain concentration factor at the end of the slot decreases with load level and the advance of plasticity.
NASA Astrophysics Data System (ADS)
Li, Y.; Robertson, C.
2018-06-01
The influence of irradiation defect dispersions on plastic strain spreading is investigated by means of three-dimensional dislocation dynamics (DD) simulations, accounting for thermally activated slip and cross-slip mechanisms in Fe-2.5%Cr grains. The defect-induced evolutions of the effective screw dislocation mobility are evaluated by means of statistical comparisons, for various defect number density and defect size cases. Each comparison is systematically associated with a quantitative Defect-Induced Apparent Straining Temperature shift (or «ΔDIAT»), calculated without any adjustable parameters. In the investigated cases, the ΔDIAT level associated with a given defect dispersion closely replicates the measured ductile to brittle transition temperature shift (ΔDBTT) due to the same, actual defect dispersion. The results are further analyzed in terms of dislocation-based plasticity mechanisms and their possible relations with the dose-dependent changes of the ductile to brittle transition temperature.
A new formulation of mean stress effects in fatigue
NASA Technical Reports Server (NTRS)
Manson, S. S.; Heidmann, K. R.
1987-01-01
A common method of treating the mean stress effect on fatigue life is to displace the elastic line on a Manson-Coffin-Basquin diagram while retaining the position of the plastic line. Manson and Halford pointed out that this procedure implies that mean stress significantly affects the cyclic stress-strain curve. Actually, however, they showed experimentally and by more general reasoning, that mean stress has little, if any, effect on the cyclic stress-strain curve. Thus, they concluded that it is necessary to displace the plastic line as well as the elastic line in order to keep the cyclic stress-strain curve unaltered. Another way to express the common displacement of the two lines is to keep the lines in place and change the horizontal coordinate to include a term relating to the displacement. Thus, instead of life, 2N sub f, as the horizontal coordinate, a new coordinate can become 2N sub f (1-sigma sub m/sigma sub f) superscript 1/b, thereby displacing both the elastic and plastic lines by an amount (1-sigma sub m/sigma sub f) superscript 1/b where sigma sub m is the mean stress and sigma sub f is the intercept of the elastic line at N sub f = 1/2 cycles and b is the slope of the elastic line.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H.Y.; Mayo, W.E.; Weissmann, S.
A computer-aided X-ray rocking curve analyzer (CARCA) was developed to map and analyze rapidly the distribution of plastic and elastic strains in deformed single crystals. Double-notched silicon crystal, tensile deformed at 800 C, was selected as a model material. For small stresses the interaction effects of the strained plastic zones were negligible. With increased deformation interaction of microplasticity caused modifications of the characteristics of the plastic zones at the notch tips. The microplastic trajectory of the internotch zone outlined the future fracture path at an early stage of deformation. The observed decrease of micrplasticity with depth from the surface ismore » explained both from the micro and macromechanics viewpoint.« less
The role of cyclic plastic zone size on fatigue crack growth behavior in high strength steels
NASA Astrophysics Data System (ADS)
Korda, Akhmad A.; Miyashita, Y.; Mutoh, Y.
2015-09-01
The role of cyclic plastic zone in front of the crack tip was studied in high strength steels. Estimated plastic zone size would be compared with actual observation. Strain controlled fatigue tests of the steels were carried out to obtain cyclic stress-strain curves for plastic zone estimation. Observations of plastic zone were carried out using in situ SEM fatigue crack growth tests under a constant-ΔK. Hard microstructures in structural steels showed to inhibit the extent of plastic deformation around the crack tip. The rate of crack growth can be correlated with the size of plastic zone. The smaller the plastic zone size, the slower the fatigue crack growth.
NASA Technical Reports Server (NTRS)
Kumar, Parikshith K.; Desai, Uri; Chatzigeorgiou, George; Lagoudas, Dimitris C.; Monroe, James; Karaman, Ibrahim; Noebe, Ron; Bigelow, Glen
2010-01-01
The present work is focused on studying the cycling actuation behavior of HTSMAs undergoing simultaneous creep and transformation. For the thermomechanical testing, a high temperature test setup was assembled on a MTS frame with the capability to test up to temperatures of 600 C. Constant stress thermal cycling tests were conducted to establish the actuation characteristics and the phase diagram for the chosen HTSMA. Additionally, creep tests were conducted at constant stress levels at different test temperatures to characterize the creep behavior of the alloy over the operational range. A thermodynamic constitutive model is developed and extended to take into account a) the effect of multiple thermal cycling on the generation of plastic strains due to transformation (TRIP strains) and b) both primary and secondary creep effects. The model calibration is based on the test results. The creep tests and the uniaxial tests are used to identify the viscoplastic behavior of the material. The parameters for the SMA properties, regarding the transformation and transformation induced plastic strain evolutions, are obtained from the material phase diagram and the thermomechanical tests. The model is validated by predicting the material behavior at different thermomechanical test conditions.
NASA Astrophysics Data System (ADS)
Vyletel, G. M.; Allison, J. E.; van Aken, D. C.
1995-12-01
The low-cycle and high-cycle fatigue behavior and cyclic response of naturally aged and overaged 2219/TiC/15p and unreinforced 2219 Al were investigated using plastic strain-controlled and stress-controlled testing. In addition, the influence of grain size on the particle-reinforced materials was examined. In both reinforced and unreinforced materials, the naturally aged conditions were cyclically unstable, exhibiting an initial hardening behavior followed by an extended region of cyclic stability and ultimately a softening region. The overaged reinforced material was cyclically stable for the plastic strains examined, while the overaged unreinforced material exhibited cyclic hardening at plastic strains greater than 2.5 × 10-4. Decreasing grain size of particle-reinforced materials modestly increased the cyclic flow stress of both naturally aged and overaged materials. Reinforced and unreinforced materials exhibited similar fatigue life behaviors; however, the reinforced and unreinforced naturally aged materials had superior fatigue lives in comparison to the overaged materials. Grain size had no effect on the fatigue life behavior of the particle-reinforced materials. The fatigue lives were strongly influenced by the presence of clusters of TiC particles and exogenous Al3Ti intermetallics.
Nonlinear behavior of shells of revolution under cyclic loading.
NASA Technical Reports Server (NTRS)
Levine, H. S.; Armen, H., Jr.; Winter, R.; Pifko, A.
1973-01-01
A large deflection elastic-plastic analysis is presented applicable to orthotropic axisymmetric plates and shells of revolution subjected to monotonic and cyclic loading conditions. The analysis is based on the finite-element method. It employs a new higher order, fully compatible, doubly curved orthotropic shell-of-revolution element using cubic Hermitian expansions for both meridional and normal displacements. Both perfectly plastic and strain hardening behavior are considered. Strain hardening is incorporated through use of the Prager-Ziegler kinematic hardening theory, which predicts an ideal Bauschinger effect. Numerous sample problems involving monotonic and cyclic loading conditions are analyzed.
Hydrogen suppression of 'ductile' processes
NASA Technical Reports Server (NTRS)
Sisson, R. D., Jr.; Wilson, J. H.; Adler, T. A.; Mcnitt, R. P.; Louthan, M. R., Jr.
1980-01-01
Experimental results are reported for torsional fatigue specimens of high-strength steel 4370 and tensile bars of mild steel A-106 which present evidence of a hydrogen-induced strain-aided hardening effect. These results are consistent with the postulate that hydrogen suppresses ductile processes required for crack initiation at large plastic strains.
NASA Astrophysics Data System (ADS)
Park, Joonam; Choi, Eunsoo; Park, Kyoungsoo; Kim, Hong-Taek
2011-09-01
Shape memory alloy (SMA) wire jackets for concrete are distinct from conventional jackets of steel or fiber reinforced polymer (FRP) since they provide active confinement which can be easily achieved due to the shape memory effect of SMAs. This study uses NiTiNb SMA wires of 1.0 mm diameter to confine concrete cylinders with the dimensions of 300 mm × 150 mm (L × D). The NiTiNb SMAs have a relatively wider temperature hysteresis than NiTi SMAs; thus, they are more suitable for the severe temperature-variation environments to which civil structures are exposed. Steel jackets of passive confinement are also prepared in order to compare the cyclic behavior of actively and passively confined concrete cylinders. For this purpose, monotonic and cyclic compressive loading tests are conducted to obtain axial and circumferential strain. Both strains are used to estimate the volumetric strains of concrete cylinders. Plastic strains from cyclic behavior are also estimated. For the cylinders jacketed by NiTiNb SMA wires, the monotonic axial behavior differs from the envelope of cyclic behavior. The plastic strains of the actively confined concrete show a similar trend to those of passive confinement. This study proposed plastic strain models for concrete confined by SMA wire or steel jackets. For the volumetric strain, the active jackets of NiTiNb SMA wires provide more energy dissipation than the passive jacket of steel.
NASA Astrophysics Data System (ADS)
Yuan, Hao-Chih
This research focuses on developing high-performance single-crystal Si-based nanomembranes and high-frequency thin-film transistors (TFTs) using these nanomembranes on flexible plastic substrates. Unstrained Si or SiGe nanomembranes with thickness of several tens to a couple of hundred nanometers are derived from silicon-on-insulator (SOI) or silicon-germanium-on-insulator (SGOI) and are subsequently transferred and integrated with flexible plastic host substrates via a one-step dry printing technique. Biaxial tensile-strained Si membranes that utilize elastic strain-sharing between Si and additionally grown SiGe thin films are also successfully integrated with plastic host substrates and exhibit predicted strain status and negligible density of dislocations. Biaxial tensile strain enhances electron mobility and lowers Schottky contact resistance. As a result, flexible TFTs built on the strained Si-membranes demonstrate much higher electron effective mobility and higher drive current than the unstrained counterpart. The dependence of drive current and transconductance on uniaxial tensile strain introducing by mechanical bending is also discussed. A novel combined "hot-and-cold" TFT fabrication process is developed specifically for realizing a wide spectrum of micro-electronics that can exhibit RF performance and can be integrated on low-temperature plastic substrate. The "hot" process that consists of ion implant and high-temperature annealing for desired doping type, profile, and concentration is realized on the bulk SOI/SGOI substrates followed by the "cold" process that includes room-temperature silicon-monoxide (SiO) deposition as gate dielectric layer to ensure the process compatibility with low-temperature, low-cost plastics. With these developments flexible Si-membrane n-type RF TFTs for analog applications and complementary TFTs for digital applications are demonstrated for the first time. RF TFTs with 1.5-mum channel length have demonstrated record-high f T and fmax values of 2.04 and 7.8 GHz, respectively. A small-signal equivalent circuit model study on the RF TFTs reveals the physics of how device layout affects fT and f max, which paves the way for further performance optimization and realization of integrated circuit on flexible substrate in the future.
NASA Astrophysics Data System (ADS)
Moallemi, Mohammad; Zarei-Hanzaki, Abbas; Eskandari, Mostafa; Burrows, Andrew; Alimadadi, Hossein
2017-08-01
A new metastable Ni-free duplex stainless steel has been designed with superior plasticity by optimizing austenite stability using thermodynamic calculations of stacking fault energy and with reference to literature findings. Several characterization methods comprising optical microscopy, magnetic phase measurements, X-ray diffraction (XRD) and electron backscattered diffraction were employed to study the plastic deformation behavior and to identify the operating plasticity mechanisms. The results obtained show that the newly designed duplex alloy exhibits some extraordinary mechanical properties, including an ultimate tensile strength of 900 MPa and elongation to fracture of 94 pct due to the synergistic effects of transformation-induced plasticity and twinning-induced plasticity. The deformation mechanism of austenite is complex and includes deformation banding, strain-induced martensite formation, and deformation-induced twinning, while the ferrite phase mainly deforms by dislocation slip. Texture analysis indicates that the Copper and Rotated Brass textures in austenite (FCC phase) and {001}<110> texture in ferrite and martensite (BCC phases) are the main active components during tensile deformation. The predominance of these components is logically related to the strain-induced martensite and/or twin formation.
Bearing capacity and rigidity of short plastic-concrete-tubal vertical columns under transverse load
NASA Astrophysics Data System (ADS)
Dolzhenko, A. V.; Naumov, A. E.; Shevchenko, A. E.
2018-03-01
The results of mathematical modeling in determining strain-stress distribution parameters of a short plastic-concrete-tubal vertical column under horizontal load as those in vertical constructions are described. Quantitative parameters of strain-stress distribution during vertical and horizontal loads and horizontal stiffness were determined by finite element modeling. The internal stress in the concrete column core was analyzed according to equivalent stress in Mohr theory of failure. It was determined that the bearing capacity of a short plastic- concrete-tubal vertical column is 25% higher in resistibility and 15% higher in rigidness than those of the caseless concrete columns equal in size. Cracks formation in the core of a short plastic-concrete-tubal vertical column happens under significantly bigger horizontal loads with less amount of concrete spent than that in caseless concrete columns. The significant increase of bearing capacity and cracking resistance of a short plastic-concrete-tubal vertical column under vertical and horizontal loads allows recommending them as highly effective and highly reliable structural wall elements in civil engineering.
The plastic response of Tantalum in Quasi-Isentropic Compression Ramp and Release
NASA Astrophysics Data System (ADS)
Moore, Alexander; Brown, Justin; Lim, Hojun; Lane, J. Matthew D.
2017-06-01
The mechanical response of various forms of tantalum under extreme pressures and strain rates is studied using dynamic quasi-isentropic compression loading conditions in atomistic simulations. Ramp compression in bcc metals under these conditions tend to show a significant strengthening effect with increasing pressure; however, due to limitations of experimental methods in such regimes, the underlying physics for this phenomenon is not well understood. Molecular dynamics simulations provide important information about the plasticity mechanisms and can be used to investigate this strengthening. MD simulations are performed on nanocrystalline Ta and single crystal defective Ta with dislocations and point defects to uncover how the material responds and the underlying plasticity mechanisms. The different systems of solid Ta are seen to plastically deform through different mechanisms. Fundamental understanding of tantalum plasticity in these high pressure and strain rate regimes is needed to model and fully understand experimental results. Sandia National Labs is a multi program laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Stability of surface plastic flow in large strain deformation of metals
NASA Astrophysics Data System (ADS)
Viswanathan, Koushik; Udapa, Anirduh; Sagapuram, Dinakar; Mann, James; Chandrasekar, Srinivasan
We examine large-strain unconstrained simple shear deformation in metals using a model two-dimensional cutting system and high-speed in situ imaging. The nature of the deformation mode is shown to be a function of the initial microstructure state of the metal and the deformation geometry. For annealed metals, which exhibit large ductility and strain hardening capacity, the commonly assumed laminar flow mode is inherently unstable. Instead, the imposed shear is accommodated by a highly rotational flow-sinuous flow-with vortex-like components and large-amplitude folding on the mesoscale. Sinuous flow is triggered by a plastic instability on the material surface ahead of the primary region of shear. On the other hand, when the material is extensively strain-hardened prior to shear, laminar flow again becomes unstable giving way to shear banding. The existence of these flow modes is established by stability analysis of laminar flow. The role of the initial microstructure state in determining the change in stability from laminar to sinuous / shear-banded flows in metals is elucidated. The implications for cutting, forming and wear processes for metals, and to surface plasticity phenomena such as mechanochemical Rehbinder effects are discussed.
NASA Astrophysics Data System (ADS)
Yagodzinskyy, Yuriy; Malitckii, Evgenii; Tuomisto, Filip; Hänninen, Hannu
2018-03-01
Single crystals of oxygen-free copper oriented to easy glide of dislocations were tensile tested in order to study the hydrogen effects on the strain localisation in the form of slip bands appearing on the polished specimen surface under tensile straining. It was found that hydrogen increases the plastic flow stress in Stage I of deformation. The dislocation slip localisation in the form of slip bands was observed and analysed using an online optical monitoring system and atomic force microscopy. The fine structure of the slip bands observed with AFM shows that they consist of a number of dislocation slip offsets which spacing in the presence of hydrogen is markedly reduced as compared to that in the hydrogen-free specimens. The tensile tests and AFM observations were accompanied with positron annihilation lifetime measurements showing that straining of pure copper in the presence of hydrogen results in free volume generation in the form of vacancy complexes. Hydrogen-enhanced free-volume generation is discussed in terms of hydrogen interactions with edge dislocation dipoles forming in double cross-slip of screw dislocations in the initial stage of plastic deformation of pure copper.
Koitabashi, Motoo; Noguchi, Masako T; Sameshima-Yamashita, Yuka; Hiradate, Syuntaro; Suzuki, Ken; Yoshida, Shigenobu; Watanabe, Takashi; Shinozaki, Yukiko; Tsushima, Seiya; Kitamoto, Hiroko K
2012-08-02
To improve the biodegradation of biodegradable plastic (BP) mulch films, 1227 fungal strains were isolated from plant surface (phylloplane) and evaluated for BP-degrading ability. Among them, B47-9 a strain isolated from the leaf surface of barley showed the strongest ability to degrade poly-(butylene succinate-co-butylene adipate) (PBSA) and poly-(butylene succinate) (PBS) films. The strain grew on the surface of soil-mounted BP films, produced breaks along the direction of hyphal growth indicated that it secreted a BP-degrading enzyme, and has directly contributing to accelerating the degradation of film. Treatment with the culture filtrate decomposed 91.2 wt%, 23.7 wt%, and 14.6 wt% of PBSA, PBS, and commercially available BP polymer blended mulch film, respectively, on unsterlized soil within 6 days. The PCR-DGGE analysis of the transition of soil microbial community during film degradation revealed that the process was accompanied with drastic changes in the population of soil fungi and Acantamoeba spp., as well as the growth of inoculated strain B47-9. It has a potential for application in the development of an effective method for accelerating degradation of used plastics under actual field conditions.
Phyllosphere yeasts rapidly break down biodegradable plastics
2011-01-01
The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily isolated from plant surfaces, displayed strong degradation activity on films made from poly-butylene succinate or poly-butylene succinate-co-adipate. Strains of P. antarctica isolated from leaves and husks of paddy rice displayed strong degradation activity on these films at 30°C. The type strain, P. antarctica JCM 10317, and Pseudozyma spp. strains from phyllosphere secreted a biodegradable plastic-degrading enzyme with a molecular mass of about 22 kDa. Reliable source of biodegradable plastic-degrading microorganisms are now in our hands. PMID:22126328
Phyllosphere yeasts rapidly break down biodegradable plastics.
Kitamoto, Hiroko K; Shinozaki, Yukiko; Cao, Xiao-Hong; Morita, Tomotake; Konishi, Masaaki; Tago, Kanako; Kajiwara, Hideyuki; Koitabashi, Motoo; Yoshida, Shigenobu; Watanabe, Takashi; Sameshima-Yamashita, Yuka; Nakajima-Kambe, Toshiaki; Tsushima, Seiya
2011-11-29
The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily isolated from plant surfaces, displayed strong degradation activity on films made from poly-butylene succinate or poly-butylene succinate-co-adipate. Strains of P. antarctica isolated from leaves and husks of paddy rice displayed strong degradation activity on these films at 30°C. The type strain, P. antarctica JCM 10317, and Pseudozyma spp. strains from phyllosphere secreted a biodegradable plastic-degrading enzyme with a molecular mass of about 22 kDa. Reliable source of biodegradable plastic-degrading microorganisms are now in our hands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Fei; Daymond, Mark R., E-mail: mark.daymond@queensu.ca; Yao, Zhongwen
Thin foil dog bone samples prepared from a hot rolled Zr-2.5Nb alloy have been deformed by tensile deformation to different plastic strains. The development of slip traces during loading was observed in situ through SEM, revealing that deformation starts preferentially in certain sets of grains during the elastic-plastic transition region. TEM characterization showed that sub-grain boundaries formed during hot rolling consisted of screw 〈a〉 dislocations or screw 〈c〉 and 〈a〉 dislocations. Prismatic 〈a〉 dislocations with large screw or edge components have been identified from the sample with 0.5% plastic strain. Basal 〈a〉 and pyramidal 〈c + a〉 dislocations were found in themore » sample that had been deformed with 1.5% plastic strain, implying that these dislocations require larger stresses to be activated.« less
Fole, A; Martin, M; Morales, L; Del Olmo, N
2015-09-01
The use of Lewis (LEW) together with Fischer-344 (F344) rats has been proposed as an addiction model because of the addiction behavior differences of these two strains. We have previously suggested that these differences could be related to learning and memory processes and that they depend on the genetic background of these two strains of rats. Adolescence is a period of active synaptic remodeling, plasticity and particular vulnerability to the effects of environmental insults such as drugs of abuse. We have evaluated spatial memory using novel location recognition in LEW and F344 adult rats undergoing a chronic treatment with cocaine during adolescence or adulthood. In order to study whether synaptic plasticity mechanisms were involved in the possible changes in learning after chronic cocaine treatment, we carried out electrophysiological experiments in hippocampal slices from treated animals. Our results showed that, in LEW cocaine-treated rats, hippocampal memory was only significantly impaired when the drug was administered during adolescence whereas adult administration did not produce any detrimental effect in spatial memory measured in this protocol. Moreover, F344 rats showed clear difficulties carrying out the protocol even in standard conditions, confirming the spatial memory problems observed in previous reports and demonstrating the genetic differences in spatial learning and memory. Our experiments show that the effects in behavioral experiments are related to synaptic plasticity mechanisms. Long-term depression induced by the glutamate agonist NMDA (LTD-NMDA) is partially abolished in cocaine-treated animals in hippocampal slices from LEW rats. Hippocampal LTD-NMDA is partially inhibited in F344 animals regardless of whether saline or cocaine administration, suggesting the lack of plasticity of this strain that could be related to the inability of these animals to carry out the novel object location protocol. Copyright © 2015 Elsevier Inc. All rights reserved.
Geomechanical Modeling of Gas Hydrate Bearing Sediments
NASA Astrophysics Data System (ADS)
Sanchez, M. J.; Gai, X., Sr.
2015-12-01
This contribution focuses on an advance geomechanical model for methane hydrate-bearing soils based on concepts of elasto-plasticity for strain hardening/softening soils and incorporates bonding and damage effects. The core of the proposed model includes: a hierarchical single surface critical state framework, sub-loading concepts for modeling the plastic strains generally observed inside the yield surface and a hydrate enhancement factor to account for the cementing effects provided by the presence of hydrates in sediments. The proposed framework has been validated against recently published experiments involving both, synthetic and natural hydrate soils, as well as different sediments types (i.e., different hydrate saturations, and different hydrates morphologies) and confinement conditions. The performance of the model in these different case studies was very satisfactory.
Rebound mechanics of micrometre-scale, spherical particles in high-velocity impacts.
Yildirim, Baran; Yang, Hankang; Gouldstone, Andrew; Müftü, Sinan
2017-08-01
The impact mechanics of micrometre-scale metal particles with flat metal surfaces is investigated for high-velocity impacts ranging from 50 m s -1 to more than 1 km s -1 , where impact causes predominantly plastic deformation. A material model that includes high strain rate and temperature effects on the yield stress, heat generation due to plasticity, material damage due to excessive plastic strain and heat transfer is used in the numerical analysis. The coefficient of restitution e is predicted by the classical work using elastic-plastic deformation analysis with quasi-static impact mechanics to be proportional to [Formula: see text] and [Formula: see text] for the low and moderate impact velocities that span the ranges of 0-10 and 10-100 m s -1 , respectively. In the elastic-plastic and fully plastic deformation regimes the particle rebound is attributed to the elastic spring-back that initiates at the particle-substrate interface. At higher impact velocities (0.1-1 km s -1 ) e is shown to be proportional to approximately [Formula: see text]. In this deeply plastic deformation regime various deformation modes that depend on plastic flow of the material including the time lag between the rebound instances of the top and bottom points of particle and the lateral spreading of the particle are identified. In this deformation regime, the elastic spring-back initiates subsurface, in the substrate.
On the Uniqueness Conditions and Bifurcation Criteria in Coupled Thermo-Elasto-Plasticity
NASA Astrophysics Data System (ADS)
Śloderbach, Z.
2017-02-01
The global and local conditions of uniqueness and the criteria excluding a possibility of bifurcation of the equilibrium state for small strains are derived. The conditions and criteria are derived analyzing the problem of uniqueness of solution of the basic incremental boundary problem of coupled generalized thermo-elasto-plasticity. This paper is a continuation of some previous works by the author, but contains new derivation of the global and local criteria excluding a possibility of bifurcation of the equilibrium state for a comparison body dependent on statically admissible fields of stress velocity. All the thermal elastoplastic coupling effects, non-associated laws of plastic flow and influence of plastic strains on thermoplastic properties of a body were taken into account in this work. Thus, the mathematical problem considered here is not a self-conjugated problem. The paper contains four Appendices A, B, C and D where the local necessery and sufficient conditions of uniqueness have been derived.
NASA Astrophysics Data System (ADS)
Śloderbach, Zdzisław
2016-05-01
This paper reports the results of a study into global and local conditions of uniqueness and the criteria excluding the possibility of bifurcation of the equilibrium state for small strains. The conditions and criteria are derived on the basis of an analysis of the problem of uniqueness of a solution involving the basic incremental boundary problem of coupled generalized thermo-elasto-plasticity. This work forms a follow-up of previous research (Śloderbach in Bifurcations criteria for equilibrium states in generalized thermoplasticity, IFTR Reports, 1980, Arch Mech 3(35):337-349, 351-367, 1983), but contains a new derivation of global and local criteria excluding a possibility of bifurcation of an equilibrium state regarding a comparison body dependent on the admissible fields of stress rate. The thermal elasto-plastic coupling effects, non-associated laws of plastic flow and influence of plastic strains on thermoplastic properties of a body were taken into account in this work. Thus, the mathematical problem considered here is not a self-conjugated problem.
NASA Astrophysics Data System (ADS)
Yoon, Jonghun; Kim, Kyungjin; Yoon, Jeong Whan
2013-12-01
Yield function has various material parameters that describe how materials respond plastically in given conditions. However, a significant number of mechanical tests are required to identify the many material parameters for yield function. In this study, an effective method using crystal plasticity through a virtual experiment is introduced to develop the anisotropic yield function for AA5042. The crystal plasticity approach was used to predict the anisotropic response of the material in order to consider a number of stress or strain modes that would not otherwise be evident through mechanical testing. A rate-independent crystal plasticity model based on a smooth single crystal yield surface, which removes the innate ambiguity problem within the rate-independent model and Taylor model for polycrystalline deformation behavior were employed to predict the material's response in the balanced biaxial stress, pure shear, and plane strain states to identify the parameters for the anisotropic yield function of AA5042.
NASA Astrophysics Data System (ADS)
Zhao, Zhuang; Chen, Jing; Tan, Hua; Lin, Xin; Huang, Weidong
2017-07-01
In this paper, laser additive manufacturing (LAM) technology with powder feeding has been employed to fabricate 50%LAMed specimens (i.e. the volume fraction of the laser deposited zone was set to 50%). With aid of the 3D-DIC technique, the tensile deformation behavior of 50%LAMed Ti64ELI titanium alloy was investigated. The 50%LAMed specimen exhibits a significant characteristic of strength mismatch due to the heterogeneous microstructure. The tensile fracture of 50%LAMed specimen occurs in WSZ (wrought substrate zone), but the tensile strength is slightly higher and the plastic elongation is significantly lower than that of the wrought specimen. The 3D-DIC results shows that the 50%LAMed specimen exhibits a characteristic of dramatic plastic strain heterogeneity and the maximal strain is invariably concentrated in WSZ. The ABAQUS simulation indicates that, the LDZ (laser deposited zone) can constrain the plastic deformation of the WSZ and biaxial stresses develop at the interface after yielding.
Effect of Pre-Strain on the Fatigue Behavior of Extruded AZ31 Alloys
NASA Astrophysics Data System (ADS)
Wu, Yanjun
2017-09-01
An attempt is made to rationalize the effect of pre-strain history on fatigue behaviors of AZ31 magnesium alloy. Axial fatigue tests were conducted in the extruded and pre-compressioned AZ31 alloy under low cycle total strain control fatigue conditions. The pre-strain process influences the plastic deformation mechanism activated during fatigue deformation, especially during tensile loading, by enhancing the activity of detwinning mechanism. The low-cycle fatigue lifetime of extruded AZ31 alloy can be enhanced by the pre-compression process. And the hysteresis energy was successfully used to predict the low-cycle fatigue lifetime.
The relationship between strain geometry and geometrically necessary dislocations
NASA Astrophysics Data System (ADS)
Hansen, Lars; Wallis, David
2016-04-01
The kinematics of past deformations are often a primary goal in structural analyses of strained rocks. Details of the strain geometry, in particular, can help distinguish hypotheses about large-scale tectonic phenomena. Microstructural indicators of strain geometry have been heavily utilized to investigate large-scale kinematics. However, many of the existing techniques require structures for which the initial morphology is known, and those structures must undergo the same deformation as imposed macroscopically. Many deformed rocks do not exhibit such convenient features, and therefore the strain geometry is often difficult (if not impossible) to ascertain. Alternatively, crystallographic textures contain information about the strain geometry, but the influence of strain geometry can be difficult to separate from other environmental factors that might affect slip system activity and therefore the textural evolution. Here we explore the ability for geometrically necessary dislocations to record information about the deformation geometry. It is well known that crystallographic slip due to the motion of dislocations yields macroscopic plastic strain, and the mathematics are established to relate dislocation glide on multiple slip systems to the strain tensor of a crystal. This theoretical description generally assumes that dislocations propagate across the entire crystal. However, at any point during the deformation, dislocations are present that have not fully transected the crystal, existing either as free dislocations or as dislocations organized into substructures like subgrain boundaries. These dislocations can remain in the lattice after deformation if the crystal is quenched sufficiently fast, and we hypothesize that this residual dislocation population can be linked to the plastic strain geometry in a quantitative manner. To test this hypothesis, we use high-resolution electron backscatter diffraction to measure lattice curvatures in experimentally deformed single crystals and aggregates of olivine for which the strain geometry is known. Tested geometries include constrictional strain, flattening strain, and plane strain. We use measured lattice curvatures to calculate the densities and spatial distributions of geometrically necessary dislocations. Dislocation densities are calculated for each of the major dislocation types in olivine. These densities are then used to estimate the plastic strain geometry under the assumption that the population of geometrically necessary dislocations accurately represents the relative activity of different dislocations during deformation. Our initial results demonstrate compelling relationships between the imposed strain geometry and the calculated plastic strain geometry. In addition, the calculated plastic strain geometry is linked to the distribution of crystallographic orientations, giving insight into the nature of plastic anisotropy in textured olivine aggregates. We present this technique as a new microstructural tool for assessing the kinematic history of deformed rocks.
Global Existence Results for Viscoplasticity at Finite Strain
NASA Astrophysics Data System (ADS)
Mielke, Alexander; Rossi, Riccarda; Savaré, Giuseppe
2018-01-01
We study a model for rate-dependent gradient plasticity at finite strain based on the multiplicative decomposition of the strain tensor, and investigate the existence of global-in-time solutions to the related PDE system. We reveal its underlying structure as a generalized gradient system, where the driving energy functional is highly nonconvex and features the geometric nonlinearities related to finite-strain elasticity as well as the multiplicative decomposition of finite-strain plasticity. Moreover, the dissipation potential depends on the left-invariant plastic rate, and thus depends on the plastic state variable. The existence theory is developed for a class of abstract, nonsmooth, and nonconvex gradient systems, for which we introduce suitable notions of solutions, namely energy-dissipation-balance and energy-dissipation-inequality solutions. Hence, we resort to the toolbox of the direct method of the calculus of variations to check that the specific energy and dissipation functionals for our viscoplastic models comply with the conditions of the general theory.
2008-04-01
ensemble (TEX), from which pole figures can be calculated, and the effective Taylor factor (M) for the ensemble. All employ a form of the Voce hardening...strain rate, using a strain-rate sensitivity exponent, m = 1/n. Both hardening and non-hardening conditions were investigated using an empirical Voce
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.; Wirth, G.
1983-01-01
Swaging between 750 and 1050 C has been investigated as a means to introduce work into the directionally solidified eutectic alloy gamma/gamma prime-alpha (Ni-32.3 wt percent Mo-6.3 wt percent Al) and increase the elevated temperature creep strength. The 1000 C slow plastic compressive flow stress-strain rate properties in air of as-grown, annealed, and worked nominally 10 and 25 percent materials have been determined. Swaging did not improve the slow plastic behavior. In fact large reductions tended to degrade the strength and produced a change in the deformation mechanism from uniform flow to one involving intense slip band formation. Comparison of 1000 C tensile and compressive strength-strain rate data reveals that deformation is independent of the stress state.
Study on the Strain Hardening Behaviors of TWIP/TRIP Steels
NASA Astrophysics Data System (ADS)
Huang, T. T.; Dan, W. J.; Zhang, W. G.
2017-10-01
Due to the complex coupling of twinning-induced plasticity (TWIP), transformation-induced plasticity (TRIP), and dislocation glide in TWIP/TRIP steels, it is difficult as well as essential to build a comprehensive strain hardening model to describe the interactions between different deformation mechanisms ( i.e., deformation twinning, martensitic transformation, and dislocation glide) and the resulted strain hardening behaviors. To address this issue, a micromechanical model is established in this paper to predict the deformation process of TWIP/TRIP steels considering both TWIP and TRIP effects. In the proposed model, the generation of deformation twinning and martensitic transformation is controlled by the stacking fault energy (SFE) of the material. In the thermodynamic calculation of SFE, deformation temperature, chemical compositions, microstrain, and temperature rise during deformation are taken into account. Varied by experimental results, the developed model can predict the stress-strain response and strain hardening behaviors of TWIP/TRIP steels precisely. In addition, the improved strength and enhanced strain hardening in Fe-Mn-C TWIP/TRIP steels due to the increased carbon content is also analyzed, which consists with literature.
NASA Astrophysics Data System (ADS)
Lin, Bing; Huang, Minsheng; Zhao, Liguo; Roy, Anish; Silberschmidt, Vadim; Barnard, Nick; Whittaker, Mark; McColvin, Gordon
2018-06-01
Strain-controlled cyclic deformation of a nickel-based single crystal superalloy has been modelled using three-dimensional (3D) discrete dislocation dynamics (DDD) for both [0 0 1] and [1 1 1] orientations. The work focused on the interaction between dislocations and precipitates during cyclic plastic deformation at elevated temperature, which has not been well studied yet. A representative volume element with cubic γ‧-precipitates was chosen to represent the material, with enforced periodical boundary conditions. In particular, cutting of superdislocations into precipitates was simulated by a back-force method. The global cyclic stress-strain responses were captured well by the DDD model when compared to experimental data, particularly the effects of crystallographic orientation. Dislocation evolution showed that considerably high density of dislocations was produced for [1 1 1] orientation when compared to [0 0 1] orientation. Cutting of dislocations into the precipitates had a significant effect on the plastic deformation, leading to material softening. Contour plots of in-plane shear strain proved the development of heterogeneous strain field, resulting in the formation of shear-band embryos.
Brake, M. R. W.
2015-02-17
Impact between metallic surfaces is a phenomenon that is ubiquitous in the design and analysis of mechanical systems. We found that to model this phenomenon, a new formulation for frictional elastic–plastic contact between two surfaces is developed. The formulation is developed to consider both frictional, oblique contact (of which normal, frictionless contact is a limiting case) and strain hardening effects. The constitutive model for normal contact is developed as two contiguous loading domains: the elastic regime and a transitionary region in which the plastic response of the materials develops and the elastic response abates. For unloading, the constitutive model ismore » based on an elastic process. Moreover, the normal contact model is assumed to only couple one-way with the frictional/tangential contact model, which results in the normal contact model being independent of the frictional effects. Frictional, tangential contact is modeled using a microslip model that is developed to consider the pressure distribution that develops from the elastic–plastic normal contact. This model is validated through comparisons with experimental results reported in the literature, and is demonstrated to be significantly more accurate than 10 other normal contact models and three other tangential contact models found in the literature.« less
Computational material design for Q&P steels with plastic instability theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, G.; Choi, K. S.; Hu, X. H.
In this paper, the deformation limits of Quenching and Partitioning (Q&P) steels are examined with the plastic instability theory. For this purpose, the constituent phase properties of various Q&P steels were first experimentally obtained, and used to estimate the overall tensile stress-strain curves based on the simple rule of mixture (ROM) with the iso-strain and iso-stress assumptions. Plastic instability theory was then applied to the obtained overall stress-strain curves in order to estimate the deformation limits of the Q&P steels. A parametric study was also performed to examine the effects of various material parameters on the deformation limits of Q&Pmore » steels. Computational material design was subsequently carried out based on the information obtained from the parametric study. The results show that the plastic instability theory with iso-stress-based stress-strain curve may be used to provide the lower bound estimate of the uniform elongation (UE) for the various Q&P steels considered. The results also indicate that higher austenite stability/volume fractions, less strength difference between the primary phases, higher hardening exponents of the constituent phases are generally beneficial for the performance improvement of Q&P steels, and that various material parameters may be concurrently adjusted in a cohesive way in order to improve the performance of Q&P steel. The information from this study may be used to devise new heat treatment parameters and alloying elements to produce Q&P steels with the improved performance.« less
Microstructurally Based Prediction of High Strain Failure Modes in Crystalline Solids
2016-07-05
SECURITY CLASSIFICATION OF: New three-dimensional dislocation-density based crystalline plasticity formulations was used with grain-boundary (GB...Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 High strain-rate; failure, crsytalline plasticity , dislocation-density...Solids Report Title New three-dimensional dislocation-density based crystalline plasticity formulations was used with grain-boundary (GB) kinematic
Nonlinear behavior of shells of revolution under cyclic loading
NASA Technical Reports Server (NTRS)
Levine, H. S.; Armen, H., Jr.; Winter, R.; Pifko, A.
1972-01-01
A large deflection elastic-plastic analysis is presented, applicable to orthotropic axisymmetric plates and shells of revolution subjected to monotonic and cyclic loading conditions. The analysis is based on the finite-element method. It employs a new higher order, fully compatible, doubly curved orthotropic shell-of-revolution element using cubic Hermitian expansions for both meridional and normal displacements. Both perfectly plastic and strain hardening behavior are considered. Strain hardening is incorporated through use of the Prager-Ziegler kinematic hardening theory, which predicts an ideal Bauschinger effect. Numerous sample problems involving monotonic and cyclic loading conditions are analyzed. The monotonic results are compared with other theoretical solutions.
NASA Astrophysics Data System (ADS)
Le Pourhiet, L.; Huet, B.; Labrousse, L.; Yao, K.; Agard, P.; Jolivet, L.
2013-04-01
We have designed a series of fully dynamic numerical simulations aimed at assessing how the orientation of mechanical layering in rocks controls the orientation of shear bands and the depth of penetration of strain in the footwall of detachment zones. Two parametric studies are presented. In the first one, the influence of stratification orientation on the occurrence and mode of strain localisation is tested by varying initial dip of inherited layering in the footwall with regard to the orientation of simple shear applied at the rigid boundary simulating a rigid hanging wall, all scaling and rheological parameter kept constant. It appears that when Mohr-Coulomb plasticity is being used, shear bands are found to localise only when the layering is being stretched. This corresponds to early deformational stages for inital layering dipping in the same direction as the shear is applied, and to later stages for intial layering dipping towards the opposite direction of shear. In all the cases, localisation of the strain after only γ=1 requires plastic yielding to be activated in the strong layer. The second parametric study shows that results are length-scale independent and that orientation of shear bands is not sensitive to the viscosity contrast or the strain rate. However, decreasing or increasing strain rate is shown to reduce the capacity of the shear zone to localise strain. In the later case, the strain pattern resembles a mylonitic band but the rheology is shown to be effectively linear. Based on the results, a conceptual model for strain localisation under detachment faults is presented. In the early stages, strain localisation occurs at slow rates by viscous shear instabilities but as the layered media is exhumed, the temperature drops and the strong layers start yielding plastically, forming shear bands and localising strain at the top of the shear zone. Once strain localisation has occured, the deformation in the shear band becomes extremely penetrative but the strength cannot drop since the shear zone has a finite thickness.
NASA Astrophysics Data System (ADS)
Dang, Thi Cam Ha; Thang Nguyen, Dang; Thai, Hoang; Chinh Nguyen, Thuy; Thu Hien Tran, Thi; Le, Viet Hung; Huynh Nguyen, Van; Bach Tran, Xuan; Phuong Thao Pham, Thi; Giang Nguyen, Truong; Nguyen, Quang Trung
2018-03-01
Three different kinds of plastic bags HL, VHL, and VN1 with different chemical nature were degraded by a novel thermophilic bacterial strain isolated from composting agricultural residual in Vietnam in shaking liquid medium at 55 °C after 30 d. The new strain was classified in the Bacillus genus by morphological property and sequence of partial 16Sr RNA coding gene and named as Bacillus sp. BCBT21. This strain could produce extracellular hydrolase enzymes including lipase, CMCase, xylanase, chitinase, and protease with different level of activity in the same media. After a 30-d treatment at 55 °C with Bacillus sp. BCBT21, all characteristics including properties and morphology of treated plastic bags had been significantly changed. The weight loss, structure and surface morphology of these bags as well as the change in the average molecular weight of VHL bag were detected. Especially, the average molecular weight of VHL bag was significantly reduced from 205 000 to 116 760. New metabolites from the treated bags indicated biodegradation occurring with the different pathways. This finding suggests that there is high potential to develop an effective integrated method for plastic bags degradation by a combination of extracellular enzymes from bacteria and fungi existing in the composting process.
Song, Wenwen; Bleck, Wolfgang
2017-01-01
The quantitative characterization of the microstructure evolution in high-Mn steel during deformation is of great importance to understanding its strain-hardening behavior. In the current study, in situ high-energy synchrotron X-ray diffraction was employed to characterize the microstructure evolution in a Fe-17Mn-1.5Al-0.3C steel during a tensile test. The microstructure at different engineering strain levels—in terms of ε-martensite and α’-martensite volume fractions, the stacking fault probability, and the twin fault probability—was analyzed by the Rietveld refinement method. The Fe-17Mn-1.5Al-0.3C steel exhibits a high ultimate tensile strength with a superior uniform elongation and a high strain-hardening rate. The remaining high strain-hardening rate at the strain level about 0.025 to 0.35 results from ε-martensite dominant transformation-induced-plasticity (TRIP) effect. The increase in the strain-hardening rate at the strain level around 0.35 to 0.43 is attributed to the synergetic α’-martensite dominant TRIP and twinning-induced-plasticity (TWIP) effects. An evaluation of the stacking fault energy (SFE) of the Fe-17Mn-1.5Al-0.3C steel by the synchrotron measurements shows good agreement with the thermodynamic calculation of the SFE. PMID:28946692
Ma, Yan; Song, Wenwen; Bleck, Wolfgang
2017-09-25
The quantitative characterization of the microstructure evolution in high-Mn steel during deformation is of great importance to understanding its strain-hardening behavior. In the current study, in situ high-energy synchrotron X-ray diffraction was employed to characterize the microstructure evolution in a Fe-17Mn-1.5Al-0.3C steel during a tensile test. The microstructure at different engineering strain levels-in terms of ε-martensite and α'-martensite volume fractions, the stacking fault probability, and the twin fault probability-was analyzed by the Rietveld refinement method. The Fe-17Mn-1.5Al-0.3C steel exhibits a high ultimate tensile strength with a superior uniform elongation and a high strain-hardening rate. The remaining high strain-hardening rate at the strain level about 0.025 to 0.35 results from ε-martensite dominant transformation-induced-plasticity (TRIP) effect. The increase in the strain-hardening rate at the strain level around 0.35 to 0.43 is attributed to the synergetic α'-martensite dominant TRIP and twinning-induced-plasticity (TWIP) effects. An evaluation of the stacking fault energy (SFE) of the Fe-17Mn-1.5Al-0.3C steel by the synchrotron measurements shows good agreement with the thermodynamic calculation of the SFE.
Elastic and plastic strain measurement in high temperature environment using laser speckle
NASA Technical Reports Server (NTRS)
Chiang, Fu-Pen
1992-01-01
Two laser speckle methods are described to measure strain in high temperature environment and thermal strain caused by high temperature. Both are non-contact, non-destructive and remote sensing techniques that can be automated. The methods have different but overlapping ranges of application with one being more suitable for large plastic deformation.
Elastic And Plastic Deformations In Butt Welds
NASA Technical Reports Server (NTRS)
Verderaime, V.
1992-01-01
Report presents study of mathematical modeling of stresses and strains, reaching beyond limits of elasticity, in bars and plates. Study oriented toward development of capability to predict stresses and resulting elastic and plastic strains in butt welds.
Wu, Yuan; Stoica, Alexandru Dan; Ren, Yang; ...
2015-09-03
In situ high-energy synchrotron X-ray diffraction was conducted on elastically and plastically bent bulk metallic glass (BMG) thin plates, from which distinct local elastic strain fields were mapped spatially. These directly measured residual strain fields can be nicely interpreted by our stress analysis, and also validate a previously proposed indirect residual-stress-measurement method by relating nanoindentation hardness to residual stresses. Local shear strain variations on the cross sections of these thin plates were found in the plastically bent BMG, which however cannot be determined from the indirect indentation method. As a result, this study has important implications in designing and manipulatingmore » internal strain fields in BMGs for the purpose of ductility enhancement.« less
Onset of Plasticity via Relaxation Analysis (OPRA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandey, Amit; Wheeler, Robert; Shyam, Amit
In crystalline metals and alloys, plasticity occurs due to the movement of mobile dislocations and the yield stress for engineering applications is traditionally quantified based on strain. The onset of irreversible plasticity or “yielding” is generally identified by a deviation from linearity in the stress-strain plot or by some standard convention such as 0.2 % offset strain relative to the “linear elastic response”. In the present work, we introduce a new methodology for the determination of the true yield point based on stress relaxation. We show experimentally that this determination is self-consistent in nature and, as such, provides an objectivemore » observation of the very onset of plastic flow. Lastly, our designation for yielding is no longer related to the shape of the stress-strain curve but instead reflects the earliest signature of the activation of concerted irreversible dislocation motion in a test specimen under increasing load.« less
Onset of Plasticity via Relaxation Analysis (OPRA)
Pandey, Amit; Wheeler, Robert; Shyam, Amit; ...
2016-03-17
In crystalline metals and alloys, plasticity occurs due to the movement of mobile dislocations and the yield stress for engineering applications is traditionally quantified based on strain. The onset of irreversible plasticity or “yielding” is generally identified by a deviation from linearity in the stress-strain plot or by some standard convention such as 0.2 % offset strain relative to the “linear elastic response”. In the present work, we introduce a new methodology for the determination of the true yield point based on stress relaxation. We show experimentally that this determination is self-consistent in nature and, as such, provides an objectivemore » observation of the very onset of plastic flow. Lastly, our designation for yielding is no longer related to the shape of the stress-strain curve but instead reflects the earliest signature of the activation of concerted irreversible dislocation motion in a test specimen under increasing load.« less
Reduced partitioning of plastic strain for strong and yet ductile precipitate-strengthened alloys.
Jones, R D; Di Gioacchino, F; Lim, H; Edwards, T E J; Schwalbe, C; Battaile, C C; Clegg, W J
2018-06-06
When a material that contains precipitates is deformed, the precipitates and the matrix may strain plastically by different amounts causing stresses to build up at the precipitate-matrix interfaces. If premature failure is to be avoided, it is therefore essential to reduce the difference in the plastic strain between the two phases. Here, we conduct nanoscale digital image correlation to measure a new variable that quantifies this plastic strain difference and show how its value can be used to estimate the associated interfacial stresses, which are found to be approximately three times greater in an Fe-Ni 2 AlTi steel than in the more ductile Ni-based superalloy CMSX-4 ® . It is then demonstrated that decreasing these stresses significantly improves the ability of the Fe-Ni 2 AlTi microstructure to deform under tensile loads without loss in strength.
NASA Technical Reports Server (NTRS)
Rzasnicki, W.
1973-01-01
A method of solution is presented, which, when applied to the elasto-plastic analysis of plates having a v-notch on one edge and subjected to pure bending, will produce stress and strain fields in much greater detail than presently available. Application of the boundary integral equation method results in two coupled Fredholm-type integral equations, subject to prescribed boundary conditions. These equations are replaced by a system of simultaneous algebraic equations and solved by a successive approximation method employing Prandtl-Reuss incremental plasticity relations. The method is first applied to number of elasto-static problems and the results compared with available solutions. Good agreement is obtained in all cases. The elasto-plastic analysis provides detailed stress and strain distributions for several cases of plates with various notch angles and notch depths. A strain hardening material is assumed and both plane strain and plane stress conditions are considered.
van Boxelaere, Michiel; Clements, Jason; Callaerts, Patrick; D'Hooge, Rudi; Callaerts-Vegh, Zsuzsanna
2017-01-01
Alterations in the social and cognitive domain are considered important indicators for increased disability in many stress-related disorders. Similar impairments have been observed in rodents chronically exposed to stress, mimicking potential endophenotypes of stress-related psychopathologies such as major depression disorder (MDD), anxiety, conduct disorder, and posttraumatic stress disorder (PTSD). Data from numerous studies suggest that deficient plasticity mechanisms in hippocampus (HC) and prefrontal cortex (PFC) might underlie these social and cognitive deficits. Specifically, stress-induced deficiencies in neural plasticity have been associated with a hypodopaminergic state and reduced neural plasticity persistence. Here we assessed the effects of unpredictable chronic mild stress (UCMS) on exploratory, social and cognitive behavior of females of two inbred mouse strains (C57BL/6J and DBA/2J) that differ in their dopaminergic profile. Exposure to chronic stress resulted in impaired circadian rhythmicity, sociability and social cognition in both inbred strains, but differentially affected activity patterns and contextual discrimination performance. These stress-induced behavioral impairments were accompanied by reduced expression levels of brain derived neurotrophic factor (BDNF) in the prefrontal cortex. The strain-specific cognitive impairment was coexistent with enhanced plasma corticosterone levels and reduced expression of genes related to dopamine signaling in hippocampus. These results underline the importance of assessing different strains with multiple test batteries to elucidate the neural and genetic basis of social and cognitive impairments related to chronic stress.
A polycrystal plasticity model of strain localization in irradiated iron
NASA Astrophysics Data System (ADS)
Barton, Nathan R.; Arsenlis, Athanasios; Marian, Jaime
2013-02-01
At low to intermediate homologous temperatures, the degradation of structural materials performance in nuclear environments is associated with high number densities of nanometric defects produced in irradiation cascades. In polycrystalline ferritic materials, self-interstitial dislocations loops are a principal signature of irradiation damage, leading to a mechanical response characterized by increased yield strengths, decreased total strain to failure, and decreased work hardening as compared to the unirradiated behavior. Above a critical defect concentration, the material deforms by plastic flow localization, giving rise to strain softening in terms of the engineering stress-strain response. Flow localization manifests itself in the form of defect-depleted crystallographic channels, through which all dislocation activity is concentrated. In this paper, we describe the formulation of a crystal plasticity model for pure Fe embedded in a finite element polycrystal simulator and present results of uniaxial tensile deformation tests up to 10% strain. We use a tensorial damage descriptor variable to capture the evolution of the irradiation damage loop subpopulation during deformation. The model is parameterized with detailed dislocation dynamics simulations of tensile tests up to 1.5% deformation of systems containing various initial densities of irradiation defects. The coarse-grained simulations are shown to capture the essential details of the experimental stress response observed in ferritic alloys and steels. Our methodology provides an effective linkage between the defect scale, of the order of one nanometer, and the continuum scale involving multiple grain orientations.
Quantifying yield behaviour in metals by X-ray nanotomography
Mostafavi, M.; Bradley, R.; Armstrong, D. E. J.; Marrow, T. J.
2016-01-01
Nanoindentation of engineering materials is commonly used to study, at small length scales, the continuum mechanical properties of elastic modulus and yield strength. However, it is difficult to measure strain hardening via nanoindentation. Strain hardening, which describes the increase in strength with plastic deformation, affects fracture toughness and ductility, and is an important engineering material property. The problem is that the load-displacement data of a single nanoindentation do not provide a unique solution for the material’s plastic properties, which can be described by its stress-strain behaviour. Three-dimensional mapping of the displacement field beneath the indentation provides additional information that can overcome this difficulty. We have applied digital volume correlation of X-ray nano-tomographs of a nanoindentation to measure the sub-surface displacement field and so obtain the plastic properties of a nano-structured oxide dispersion strengthened steel. This steel has potential applications in advanced nuclear energy systems, and this novel method could characterise samples where proton irradiation of the surface simulates the effects of fast neutron damage, since facilities do not yet exist that can replicate this damage in bulk materials. PMID:27698472
Evaluation of stress in high pressure radial diffraction: application to hcp Co
NASA Astrophysics Data System (ADS)
Merkel, S.; Tome, C.; Wenk, H.
2007-12-01
Understanding the coupling between elastic and plastic behaviour in hcp Co plastically deformed is important as it can serve as a starting model for improving our understanding of hcp-Fe, the main constituent of the Earth's inner core. For many years, the radial diffraction technique has been used to study mechanical properties under pressure. In those experiments, a polycrystalline sample is plastically deformed between two diamond anvils and lattice spacings are measured using diffraction, with the incoming x-ray beam perpendicular to the compression direction. From the variations of the d-spacings with the diffraction angle, we deduce information on the hydrostatic and deviatoric stress in the sample, while the variations of diffraction intensities provide information on the lattice preferred orientations within the polycrystal. Theories have been developed to relate the observed lattice strains to elastic moduli and stress within the sample (1). However, those models do not account for the effect of plastic deformation and, as a consequence, stress determinations can be inconsistent between lattice planes. In particular, experiments on cobalt have shown that plasticity effects on lattice strains were particularly large in hcp metals (2). This implies that the elastic moduli previously measured for hcp-iron using this technique are not directly related to single-crystal elastic moduli(3). Addressing this problem requires us to consider plastic relaxation, in addition to elastic effects. This can be done using polycrystal elasto-plastic models, which account for slip activity and the threshold stresses associated with their activation. Here, we present new results on modeling radial diffraction experiments using an elasto-plastic self-consistent (EPSC) model and show how the model can be used to interpret radial diffraction data on hcp-Co. More important, we also show how this can be used to derive information about the active slip systems and their critical stress of activation. (1) A.K. Singh, C. Balasingh, Mao, R.J. Hemley & J. Shu, Analysis of lattice strains measured under non- hydrostatic pressure, J. Appl. Phys., 1998, 83, 7567-7575 (2) S. Merkel, N. Miyajima, D. Antonangeli, G. Fiquet & T. Yagi, Lattice preferred orientation and stress in polycrystalline hcp-Co plastically deformed under high pressure, J. Appl. Phys., 2006, 100, 023510 (3) D. Antonangeli, S. Merkel & D. L. Farber, Elastic anisotropy in hcp metals at high pressure and the sound wave anisotropy of the Earth's inner core, Geophys. Res. Lett., 2006, 33, L24303
NASA Technical Reports Server (NTRS)
Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.
2012-01-01
A multiscale modeling methodology that combines the predictive capability of discrete dislocation plasticity and the computational efficiency of continuum crystal plasticity is developed. Single crystal configurations of different grain sizes modeled with periodic boundary conditions are analyzed using discrete dislocation plasticity (DD) to obtain grain size-dependent stress-strain predictions. These relationships are mapped into crystal plasticity parameters to develop a multiscale DD/CP model for continuum level simulations. A polycrystal model of a structurally-graded microstructure is developed, analyzed and used as a benchmark for comparison between the multiscale DD/CP model and the DD predictions. The multiscale DD/CP model follows the DD predictions closely up to an initial peak stress and then follows a strain hardening path that is parallel but somewhat offset from the DD predictions. The difference is believed to be from a combination of the strain rate in the DD simulation and the inability of the DD/CP model to represent non-monotonic material response.
Thermodynamic theory of dislocation-enabled plasticity
NASA Astrophysics Data System (ADS)
Langer, J. S.
2017-11-01
The thermodynamic theory of dislocation-enabled plasticity is based on two unconventional hypotheses. The first of these is that a system of dislocations, driven by external forces and irreversibly exchanging heat with its environment, must be characterized by a thermodynamically defined effective temperature that is not the same as the ordinary temperature. The second hypothesis is that the overwhelmingly dominant mechanism controlling plastic deformation is thermally activated depinning of entangled pairs of dislocations. This paper consists of a systematic reformulation of this theory followed by examples of its use in analyses of experimentally observed phenomena including strain hardening, grain-size (Hall-Petch) effects, yielding transitions, and adiabatic shear banding.
Nonlinear crack analysis with finite elements
NASA Technical Reports Server (NTRS)
Armen, H., Jr.; Saleme, E.; Pifko, A.; Levine, H. S.
1973-01-01
The application of finite element techniques to the analytic representation of the nonlinear behavior of arbitrary two-dimensional bodies containing cracks is discussed. Specific methods are proposed using which it should be possible to obtain information concerning: the description of the maximum, minimum, and residual near-tip stress and strain fields; the effects of crack closure on the near-tip behavior of stress and strain fields during cyclic loading into the plastic range; the stress-strain and displacement field behavior associated with a nonstationary crack; and the effects of large rotation near the crack tip.
A Constitutive Model for Strain-Controlled Strength Degradation of Rockmasses (SDR)
NASA Astrophysics Data System (ADS)
Kalos, A.; Kavvadas, M.
2017-11-01
The paper describes a continuum, rate-independent, incremental plasticity constitutive model applicable in weak rocks and heavily fractured rockmasses, where mechanical behaviour is controlled by rockmass strength rather than structural features (discontinuities). The model describes rockmass structure by a generalised Hoek-Brown Structure Envelope (SE) in the stress space. Stress paths inside the SE are nonlinear and irreversible to better simulate behaviour at strains up to peak strength and under stress reversals. Stress paths on the SE have user-controlled volume dilatancy (gradually reducing to zero at large shear strains) and can model post-peak strain softening of brittle rockmasses via a structure degradation (damage) mechanism triggered by accumulated plastic shear strains. As the SE may strain harden with plastic strains, ductile behaviour can also be modelled. The model was implemented in the Finite Element Code Simulia ABAQUS and was applied in plane strain (2D) excavation of a cylindrical cavity (tunnel) to predict convergence-confinement curves. It is shown that small-strain nonlinearity, variable volume dilatancy and post-peak hardening/softening strongly affect the predicted curves, resulting in corresponding differences of lining pressures in real tunnel excavations.
Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization
NASA Astrophysics Data System (ADS)
Ojha, Nupur; Pradhan, Neha; Singh, Surjit; Barla, Anil; Shrivastava, Anamika; Khatua, Pradip; Rai, Vivek; Bose, Sutapa
2017-01-01
Plastic in any form is a nuisance to the well-being of the environment. The ‘pestilence’ caused by it is mainly due to its non-degradable nature. With the industrial boom and the population explosion, the usage of plastic products has increased. A steady increase has been observed in the use of plastic products, and this has accelerated the pollution. Several attempts have been made to curb the problem at large by resorting to both chemical and biological methods. Chemical methods have only resulted in furthering the pollution by releasing toxic gases into the atmosphere; whereas; biological methods have been found to be eco-friendly however they are not cost effective. This paves the way for the current study where fungal isolates have been used to degrade polyethylene sheets (HDPE, LDPE). Two potential fungal strains, namely, Penicillium oxalicum NS4 (KU559906) and Penicillium chrysogenum NS10 (KU559907) had been isolated and identified to have plastic degrading abilities. Further, the growth medium for the strains was optimized with the help of RSM. The plastic sheets were subjected to treatment with microbial culture for 90 days. The extent of degradation was analyzed by, FE-SEM, AFM and FTIR. Morphological changes in the plastic sheet were determined.
Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization.
Ojha, Nupur; Pradhan, Neha; Singh, Surjit; Barla, Anil; Shrivastava, Anamika; Khatua, Pradip; Rai, Vivek; Bose, Sutapa
2017-01-04
Plastic in any form is a nuisance to the well-being of the environment. The 'pestilence' caused by it is mainly due to its non-degradable nature. With the industrial boom and the population explosion, the usage of plastic products has increased. A steady increase has been observed in the use of plastic products, and this has accelerated the pollution. Several attempts have been made to curb the problem at large by resorting to both chemical and biological methods. Chemical methods have only resulted in furthering the pollution by releasing toxic gases into the atmosphere; whereas; biological methods have been found to be eco-friendly however they are not cost effective. This paves the way for the current study where fungal isolates have been used to degrade polyethylene sheets (HDPE, LDPE). Two potential fungal strains, namely, Penicillium oxalicum NS4 (KU559906) and Penicillium chrysogenum NS10 (KU559907) had been isolated and identified to have plastic degrading abilities. Further, the growth medium for the strains was optimized with the help of RSM. The plastic sheets were subjected to treatment with microbial culture for 90 days. The extent of degradation was analyzed by, FE-SEM, AFM and FTIR. Morphological changes in the plastic sheet were determined.
Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization
Ojha, Nupur; Pradhan, Neha; Singh, Surjit; Barla, Anil; Shrivastava, Anamika; Khatua, Pradip; Rai, Vivek; Bose, Sutapa
2017-01-01
Plastic in any form is a nuisance to the well-being of the environment. The ‘pestilence’ caused by it is mainly due to its non-degradable nature. With the industrial boom and the population explosion, the usage of plastic products has increased. A steady increase has been observed in the use of plastic products, and this has accelerated the pollution. Several attempts have been made to curb the problem at large by resorting to both chemical and biological methods. Chemical methods have only resulted in furthering the pollution by releasing toxic gases into the atmosphere; whereas; biological methods have been found to be eco-friendly however they are not cost effective. This paves the way for the current study where fungal isolates have been used to degrade polyethylene sheets (HDPE, LDPE). Two potential fungal strains, namely, Penicillium oxalicum NS4 (KU559906) and Penicillium chrysogenum NS10 (KU559907) had been isolated and identified to have plastic degrading abilities. Further, the growth medium for the strains was optimized with the help of RSM. The plastic sheets were subjected to treatment with microbial culture for 90 days. The extent of degradation was analyzed by, FE-SEM, AFM and FTIR. Morphological changes in the plastic sheet were determined. PMID:28051105
Effect of texture on rheological properties: the case of ɛ-Fe (Invited)
NASA Astrophysics Data System (ADS)
Merkel, S.; Gruson, M.; Tomé, C. N.; Nishiyama, N.; Wang, Y.
2009-12-01
Lattice preferred orientations (LPO) are known to affect the physical properties of materials. However, in most high pressure deformation experiments, LPO are ignored when interpreting the measured stress-strain curves. In addition, stress measurements in those experiments are complicated by the effect of plastic deformation on the measured lattice strains(1). Here, we present a new interpretation of the results obtained on hcp-iron at up to 19 GPa and 600 K in the deformation-DIA(2). In those experiments, five independent stress-strain curves were obtained on axial shortening with a ductile behavior of the sample for all. Stress were studied using results of monochromatic X-ray diffraction and the elastic theory of lattice strains(3). However, measured stresses were inconsistent with a change of behavior after 4% axial strain, particularly for strains measured on the 0002 line. We use elasto-plastic self consistent modeling(1) to show that this change of behavior is due to the evolution of LPO in the sample. With compression, 10-10 planes in hcp-iron align parallel to the compression direction and this affects the rheological behavior of the sample, which can not be summarized in a simple average law. We will also discuss the implication of those results for the extraction of polycrystalline rheological properties for materials with non-random lattice preferred orientations and how this could affect our understanding of the Earth deep interior. 1- S. Merkel, C.N. Tomé, H.-R Wenk, A modeling analysis of the influence of plasticity on high pressure deformation of hcp-Co, Phys. Rev. B, 79, 064110 (2009) 2- N. Nishiyama, Y. Wang, M. L. Rivers, S. R. Sutton, D. Cookson, Rheology of e-iron up to 19 GPa and 600 K in the D-DIA, Geophys. Res. Lett., 34, L23304 (2007) 3- A. K. Singh, C. Balasingh, H. K. Mao, R. J. Hemley, J. Shu, Analysis of lattice strains measured under non-hydrostatic pressure, J. Appl. Phys., 83, 7567-7575 (1998)
Implementation and application of a gradient enhanced crystal plasticity model
NASA Astrophysics Data System (ADS)
Soyarslan, C.; Perdahcıoǧlu, E. S.; Aşık, E. E.; van den Boogaard, A. H.; Bargmann, S.
2017-10-01
A rate-independent crystal plasticity model is implemented in which description of the hardening of the material is given as a function of the total dislocation density. The evolution of statistically stored dislocations (SSDs) is described using a saturating type evolution law. The evolution of geometrically necessary dislocations (GNDs) on the other hand is described using the gradient of the plastic strain tensor in a non-local manner. The gradient of the incremental plastic strain tensor is computed explicitly during an implicit FE simulation after each converged step. Using the plastic strain tensor stored as state variables at each integration point and an efficient numerical algorithm to find the gradients, the GND density is obtained. This results in a weak coupling of the equilibrium solution and the gradient enhancement. The algorithm is applied to an academic test problem which considers growth of a cylindrical void in a single crystal matrix.
Elastic-plastic finite-element analyses of thermally cycled double-edge wedge specimens
NASA Technical Reports Server (NTRS)
Kaufman, A.; Hunt, L. E.
1982-01-01
Elastic-plastic stress-strain analyses were performed for double-edge wedge specimens subjected to thermal cycling in fluidized beds at 316 and 1088 C. Four cases involving different nickel-base alloys (IN 100, Mar M-200, NASA TAZ-8A, and Rene 80) were analyzed by using the MARC nonlinear, finite element computer program. Elastic solutions from MARC showed good agreement with previously reported solutions obtained by using the NASTRAN and ISO3DQ computer programs. Equivalent total strain ranges at the critical locations calculated by elastic analyses agreed within 3 percent with those calculated from elastic-plastic analyses. The elastic analyses always resulted in compressive mean stresses at the critical locations. However, elastic-plastic analyses showed tensile mean stresses for two of the four alloys and an increase in the compressive mean stress for the highest plastic strain case.
Modeling shock responses of plastic bonded explosives using material point method
NASA Astrophysics Data System (ADS)
Shang, Hailin; Zhao, Feng; Fu, Hua
2017-01-01
Shock responses of plastic bonded explosives are modeled using material point method as implemented in the Uintah Computational Framework. Two-dimensional simulation model was established based on the micrograph of PBX9501. Shock loading for the explosive was performed by a piston moving at a constant velocity. Unreactive simulation results indicate that under shock loading serious plastic strain appears on the boundary of HMX grains. Simultaneously, the plastic strain energy transforms to thermal energy, causing the temperature to rise rapidly on grain boundary areas. The influence of shock strength on the responses of explosive was also investigated by increasing the piston velocity. And the results show that with increasing shock strength, the distribution of plastic strain and temperature does not have significant changes, but their values increase obviously. Namely, the higher the shock strength is, the higher the temperature rise will be.
Plastic Stress-strain Relations for 75S-T6 Aluminum Alloy Subjected to Biaxial Tensile Stresses
NASA Technical Reports Server (NTRS)
Marin, Joseph; Ulrich, B H; Hughes, W P
1951-01-01
In this investigation, the material tested was a 75S-T6 aluminum alloy and the stresses were essentially biaxial and tensile. The biaxial tensile stresses were produced in a specially designed testing machine by subjecting a thin-walled tubular specimen to axial tension and internal pressure. Plastic stress-strain relations for various biaxial stress conditions were obtained using a clip-type SR-4 strain gage. Three types of tests were made: Constant-stress-ratio tests, variable-stress-ratio tests, and special tests. The constant-stress-ratio test results gave control data and showed the influence of biaxial stresses on the yield, fracture, and ultimate strength of the material. By means of the variable-stress-ratio tests, it is possible to determine whether there is any significant difference between the flow and deformation type of theory. Finally, special tests were conducted to check specific assumptions made in the theories of plastic flow. The constant-stress-ratio tests show that the deformation theory based on the octahedral, effective; or significant stress-strain relations is in approximate agreement with the test results. The variable-stress-ratio tests show that both the deformation and flow theory are in equally good agreement with the test results.
NASA Astrophysics Data System (ADS)
Cissé, Sarata; Tanguy, Benoit; Laffont, Lydia; Lafont, Marie-Christine; Guerre, Catherine; Andrieu, Eric
The sensibility of precipitation-strengthened A286 austenitic stainless steel to Stress Corrosion Cracking (SCC) is studied by means of Slow Strain Rate Tests (SSRT). First, alloy cold working by Low Cycle Fatigue (LCF) is investigated. Fatigue tests under plastic strain control are performed at different strain levels (Δ ɛp/2=0.2%, 0.5% and 0.8%) in order to establish correlation between stress softening and deformation microstructure resulting from LCF tests. Deformed microstructures have been identified through TEM investigations. Three states of cyclic behaviour for precipitation-strengthened A286 have been identified: hardening, cyclic softening and finally saturation of softening. It is shown that the A286 alloy cyclic softening is due to microstructural features such as defects — free deformation bands resulting from dislocations motion along family plans <111>, that swept defects or γ' precipitates and lead to deformation localization. In order to quantify effects of plastic localized deformation on intergranular stress corrosion cracking (IGSCC) of the A286 alloy in PWR primary water, slow strain rate tests are conducted. For each cycling conditions, two specimens at a similar stress level are tested: the first containing free precipitate deformation bands, the other not significant of a localized deformation state. SSRT tests are still in progress.
2012-01-01
To improve the biodegradation of biodegradable plastic (BP) mulch films, 1227 fungal strains were isolated from plant surface (phylloplane) and evaluated for BP-degrading ability. Among them, B47-9 a strain isolated from the leaf surface of barley showed the strongest ability to degrade poly-(butylene succinate-co-butylene adipate) (PBSA) and poly-(butylene succinate) (PBS) films. The strain grew on the surface of soil-mounted BP films, produced breaks along the direction of hyphal growth indicated that it secreted a BP-degrading enzyme, and has directly contributing to accelerating the degradation of film. Treatment with the culture filtrate decomposed 91.2 wt%, 23.7 wt%, and 14.6 wt% of PBSA, PBS, and commercially available BP polymer blended mulch film, respectively, on unsterlized soil within 6 days. The PCR-DGGE analysis of the transition of soil microbial community during film degradation revealed that the process was accompanied with drastic changes in the population of soil fungi and Acantamoeba spp., as well as the growth of inoculated strain B47-9. It has a potential for application in the development of an effective method for accelerating degradation of used plastics under actual field conditions. PMID:22856640
The Development of Electrical Strain Gages
NASA Technical Reports Server (NTRS)
De Forest, A V; Leaderman, H
1940-01-01
The design, construction, and properties of an electrical-resistance strain gage consisting of fine wires molded in a laminated plastic are described. The properties of such gages are discussed and also the problems of molding of wires in plastic materials, temperature compensation, and cementing and removal of the gages. Further work to be carried out on the strain gage, together with instrument problems, is discussed.
2010-01-01
McLean and Dyson." The basic model is adapted to incorporate the effects of prior plastic strain and coupling to the plasticity model. The 10...Creep Problems in Stroctural Members (New’tbrk: American Elsevier Publishing Co., 1969), p.137. 13. J.L. Chaboche, J Applied Machanics , 55 (March...1988), p~ 59-64. 14. J.L. Chaboche, J Applied Machanics , 55 (March 1988), p~ 65-72. 15. D.R. Sande .. (Ph.D. thesis, Texas A&M University, 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sapozhnikov, K.V.; Vetrov, V.V.; Pulnev, S.A.
1996-05-15
Internal friction (IF) during temperature-induced thermoelastic martensitic transformation (TMT) has been studied extensively, whereas IF behavior during stress-induced TMT has not attracted much attention so far. It is known that quasistatic flow stress may decrease under superimposition of an oscillatory stress in the case of dislocation plasticity (acoustoplastic or Blaha effect). Strain originating from the reversible TMT (so-called transformation pseudoelasticity), in contrast to the dislocation plastic strain, may be completely reversible, however, accompanied by macroscopic hysteresis. The existence of the pseudoelastic hysteresis is usually attributed to the presence of obstacles impeding the mobility of interfaces during stress-induced transformation. A numbermore » of theories also consider the mobility of interfaces as the main source of IF during TMT. As a consequence, one should expect certain interconnection between the ADIF during stress-induced TMT and the macroscopically observed hysteresis. Thus the purpose of present paper is to study in a wide oscillatory strain amplitude range the ADIF during stress-induced TMT and the effect of ultrasound on this mode of deformation.« less
A study on the plasticity of soda-lime silica glass via molecular dynamics simulations.
Urata, Shingo; Sato, Yosuke
2017-11-07
Molecular dynamics (MD) simulations were applied to construct a plasticity model, which enables one to simulate deformations of soda-lime silica glass (SLSG) by using continuum methods. To model the plasticity, stress induced by uniaxial and a variety of biaxial deformations was measured by MD simulations. We found that the surfaces of yield and maximum stresses, which are evaluated from the equivalent stress-strain curves, are reasonably represented by the Mohr-Coulomb ellipsoid. Comparing a finite element model using the constructed plasticity model to a large scale atomistic model on a nanoindentation simulation of SLSG reveals that the empirical method is accurate enough to evaluate the SLSG mechanical responses. Furthermore, the effect of ion-exchange on the SLSG plasticity was examined by using MD simulations. As a result, it was demonstrated that the effects of the initial compressive stress on the yield and maximum stresses are anisotropic contrary to our expectations.
A study on the plasticity of soda-lime silica glass via molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Urata, Shingo; Sato, Yosuke
2017-11-01
Molecular dynamics (MD) simulations were applied to construct a plasticity model, which enables one to simulate deformations of soda-lime silica glass (SLSG) by using continuum methods. To model the plasticity, stress induced by uniaxial and a variety of biaxial deformations was measured by MD simulations. We found that the surfaces of yield and maximum stresses, which are evaluated from the equivalent stress-strain curves, are reasonably represented by the Mohr-Coulomb ellipsoid. Comparing a finite element model using the constructed plasticity model to a large scale atomistic model on a nanoindentation simulation of SLSG reveals that the empirical method is accurate enough to evaluate the SLSG mechanical responses. Furthermore, the effect of ion-exchange on the SLSG plasticity was examined by using MD simulations. As a result, it was demonstrated that the effects of the initial compressive stress on the yield and maximum stresses are anisotropic contrary to our expectations.
The Shock and Vibration Bulletin. Part 1. Welcome, Keynote Address, Invited Papers.
1980-09-01
modes. Turning and pointing such a structure is a bit like aiming a wet noodle floating in a bowl of water. If you do it very slowly, it can be done...effective plastic strain 7P can be computed at each finite difference mesh point for each instant of time. Furthermore, the plastic work effected...attempted at any instant . In somewhat similar vein, digital control systems have the inherent capability to improve the performance of re- sponse
Teichtmeister, S.; Aldakheel, F.
2016-01-01
This work outlines a novel variational-based theory for the phase-field modelling of ductile fracture in elastic–plastic solids undergoing large strains. The phase-field approach regularizes sharp crack surfaces within a pure continuum setting by a specific gradient damage modelling. It is linked to a formulation of gradient plasticity at finite strains. The framework includes two independent length scales which regularize both the plastic response as well as the crack discontinuities. This ensures that the damage zones of ductile fracture are inside of plastic zones, and guarantees on the computational side a mesh objectivity in post-critical ranges. PMID:27002069
NASA Astrophysics Data System (ADS)
Abuzaid, Wael Z. M.
In this study, high resolution ex situ digital image correlation (DIC) was used to measure plastic strain accumulation in polycrystalline Hastelloy X, a nickel-based superalloy, subjected to monotonic and cyclic loading conditions. In addition, the underlying microstructure was characterized with similar spatial resolution using electron backscatter diffraction (EBSD). The experimental results were utilized to investigate the localization of plastic strains in the vicinity of grain boundaries (GBs). Particularly we address the interaction of slip with GBs which can result in slip blockage or slip transmission and investigate how these two possible outcomes of slip-GB interaction influence the plastic strain magnitudes and fatigue crack formation in GB regions. In the first part of this work, we focus on slip transmission across GBs. Strain measurements with sub-grain level spatial resolution were acquired for Hastelloy X deformed plastically in uniaxial tension. The full field DIC measurements show a high level of heterogeneity in the plastic response with large variations in strain magnitudes within grains and across GBs. We used the experimental results to study these variations in strains, focusing specifically on the role of slip transmission across GBs in the development of strain heterogeneities. For every GB in the polycrystalline aggregate, we have established the most likely dislocation reaction and used that information to calculate the residual Burgers vector and plastic strain magnitudes due to slip transmission across each interface. From our analysis, we show an inverse relation between the magnitudes of the residual Burgers vector and the plastic strains across GBs. We therefore emphasize the importance of considering the magnitude of the residual Burgers vector to obtain a better description of the GB resistance to slip transmission, which in turn influences the local plastic strains in the vicinity of grain boundaries. In the second part of this work, we consider fatigue micro-crack formation. It is widely accepted that the localization in plastic strains is a necessary condition and a precursor for the nucleation of fatigue cracks. However a clear and quantitative assessment of the correlation between strain localization and fatigue micro-crack lengths requires further investigation. To address this point, high resolution deformation measurements using DIC were conducted on polycrystalline Hastelloy X subjected to fatigue loading. The sub-grain level strain measurements were made prior to the formation of micro-cracks. The correlation between the localization of plastic strains, very early on during the loading (e.g., less than 1,000 cycles), and the micro-cracks which were detected later in the life of the sample ( e.g., around 10,000 cycles) is discussed in this thesis. Particular focus is given to the difference in grain boundary response, either blocking or transmitting slip, and the associated fatigue micro-crack lengths generated in the vicinity of these boundaries. The results show a clear correlation between both the locations and lengths of fatigue micro-cracks and the localization of plastic strains very early in the loading process. In addition, we observed that for the same number of cycles, the transmission of slip across grain boundaries resulted in longer transgranular cracks compared to cracks near grains surrounded by blocking grain boundaries which were shorter cracks and confined within single grains. In the last part of this study, experiments were conducted on Hastelloy X subjected to fatigue loading. The purpose of the experiments was to investigate the scatter in fatigue lives under similar loading conditions. We also used a recent novel fatigue model based on persistent slip band (PSB) -- GB interaction to investigate the scatter in fatigue lives and shed light into the critical types of GBs which nucleate cracks. The implementation of this model provides simulation results of the scatter in fatigue life, which are consistent with the scatter observed from experiments. Finally, with the use of high resolution strain measurements, we provide a critical evaluation of some aspects of the modeling approach, for example the formation of grain clusters and their influence on fatigue life. Also the role of special GBs, mainly annealing twin boundaries (Sigma3 GBs), was evaluated.
NASA Technical Reports Server (NTRS)
Huron, Eric S.
1986-01-01
Directionally solidified (DS) MAR-M246+Hf was tested in tension and fatigue, at temperatures from 20 C to 1093 C. Tests were performed on (001) oriented specimens at strain rates of 50 % and 0.5 % per minute. In tension, the yield strength was constant up to 704 C, above which the strength dropped off rapidly. A strong dependence of strength on strain rate was seen at the higher temperatures. The deformation mode was observed to change from heterogeneous to homogeneous with increasing temperature. Low Cycle Fatigue tests were done using a fully reversed waveform and total strain control. For a given plastic strain range, lives increased with increasing temperature. For a given temperature strain rate had a strong effect on life. At 704 C, decreasing strain rates decreased life, while at the higher temperatures, decreasing strain rates increased life, for a given plastic strain range. These results could be explained through considerations of the deformation modes and stress levels. At the higher temperatures, marked coarsening caused beneficial stress reductions, but oxidation limited the life. The longitudinal grain boundaries were found to influence slip behavior. The degree of secondary slip adjacent to the boundaries was found to be related to the degree of misorientation between the grains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lankford, J.
High-strain-rate compressive failure mechanisms in fiber-reinforced ceramic-matrix composite materials were characterized. These are contrasted with composite damage development at low-strain rates, and with the dynamic failure of monolithic ceramics. It is shown that it is possible to derive major strain-rate strengthening benefits if a major fraction of the fiber reinforcement is aligned with the load axis. This effect considerably exceeds the inertial microfracture strengthening observed in monolithic ceramics, and non-aligned composites. Its basis is shown to be the trans-specimen propagation time period for heterogeneously-nucleated, high-strain kink bands. A brief study on zirconia focused on the remarkable inverse strength-strain rate resultmore » previously observed for both fully and partially-stabilized zirconia single crystals, whereby the strength decreased with increasing strain rate. Based on the hypothesis that the suppression of microplastic flow, hence, local stress relaxation, might be responsible for this behavior, fully stabilized (i.e., non-transformable) specimens were strain-gaged and subjected to compressive microstrain. The rather stunning observation was that the crystals are highly microplastic, exhibiting plastic yield on loading and anelasticity and reverse plasticity upon unloading. These results clearly support the hypothesis that with increasing strain rate, microcracking is favored at the expense of microplasticity.« less
NASA Astrophysics Data System (ADS)
Dæhli, Lars Edvard Bryhni; Morin, David; Børvik, Tore; Hopperstad, Odd Sture
2017-10-01
Numerical unit cell models of an approximative representative volume element for a porous ductile solid are utilized to investigate differences in the mechanical response between a quadratic and a non-quadratic matrix yield surface. A Hershey equivalent stress measure with two distinct values of the yield surface exponent is employed as the matrix description. Results from the unit cell calculations are further used to calibrate a heuristic extension of the Gurson model which incorporates effects of the third deviatoric stress invariant. An assessment of the porous plasticity model reveals its ability to describe the unit cell response to some extent, however underestimating the effect of the Lode parameter for the lower triaxiality ratios imposed in this study when compared to unit cell simulations. Ductile failure predictions by means of finite element simulations using a unit cell model that resembles an imperfection band are then conducted to examine how the non-quadratic matrix yield surface influences the failure strain as compared to the quadratic matrix yield surface. Further, strain localization predictions based on bifurcation analyses and imperfection band analyses are undertaken using the calibrated porous plasticity model. These simulations are then compared to the unit cell calculations in order to elucidate the differences between the various modelling strategies. The current study reveals that strain localization analyses using an imperfection band model and a spatially discretized unit cell are in reasonable agreement, while the bifurcation analyses predict higher strain levels at localization. Imperfection band analyses are finally used to calculate failure loci for the quadratic and the non-quadratic matrix yield surface under a wide range of loading conditions. The underlying matrix yield surface is demonstrated to have a pronounced influence on the onset of strain localization.
Plasticity solutions for soil behaviour around contracting cavities and tunnels
NASA Astrophysics Data System (ADS)
Yu, H. S.; Rowe, R. K.
1999-10-01
The action of tunnel excavation reduces the in-situ stresses along the excavated circumference and can therefore be simulated by unloading of cavities from the in-situ stress state. Increasing evidence suggests that soil behavior in the plane perpendicular to the tunnel axis can be modelled reasonably by a contracting cylindrical cavity, while movements ahead of an advancing tunnel heading can be better predicted by spherical cavity contraction theory. In the past, solutions for unloading of cavities from in-situ stresses in cohesive-frictional soils have mainly concentrated on the small strain, cylindrical cavity model. Large strain spherical cavity contraction solutions with a non-associated Mohr-Coulomb model do not seem to be widely available for tunnel applications. Also, cavity unloading solutions in undrained clays have been developed only in terms of total stresses with a linear elastic-perfectly plastic soil model. The total stress analyses do not account for the effects of strain hardening/softening, variable soil stiffness, and soil stress history (OCR). The effect of these simplifying assumptions on the predicted soil behavior around tunnels is not known.In this paper, analytical and semi-analytical solutions are presented for unloading of both cylindrical and spherical cavities from in-situ state of stresses under both drained and undrained conditions. The non-associated Mohr-Coulomb model and various critical state theories are used respectively to describe the drained and undrained stress-strain behaviors of the soils. The analytical solutions presented in this paper are developed in terms of large strain formulations. These solutions can be used to serve two main purposes: (1) to provide models for predicting soil behavior around tunnels; (2) to provide valuable benchmark solutions for verifying various numerical methods involving both Mohr-Coulomb and critical state plasticity models.
The generation of thermal stress and strain during quenching
NASA Astrophysics Data System (ADS)
Soomro, A. B.
A viscoelastic-plastic mathematical model was used to calculate the thermal stress and strain generated during the quenching of an infinite plate of high hardenability steel (835M30) in water, oil and Polymer. In the present work the mathematical model was modified to include the effect of initial stress on the rate of stress relaxation, which has been found to be significant. The data required to incorporate this effect into the calculations, were obtained experimentally during the-.present investigation. The effect of an applied stress during transformation (transformation plasticity) was also introduced in the mathematical model. The new model produced a marked improvement in the degree of agreement between the calculated and experimental residual stress, although the corresponding level of agreement in the case of residual strain was less good. In particular, strains after water quenching agreed less well with experiment as a consequence of the change in the model, although this drawback was not found after oil and polymer quenching. The new mathematical model was used to investigate the effect of martempering, section size and transformation temperature range on the generation of thermal stress and strain. A salt bath treatment above the Ms temperature followed by air cooling prevented residual stress development, but an oil quench after the salt bath treatment generated a level of residual stress at the end of cooling that was similar to that obtained after a direct oil quench from 850°C. Neither martempering process was successful in reducing residual strain.With.an increase in section size a reduction in the residual stress and an increase in the distortions was obtained after a water quench. However, after oil quenching the overall effect of section size on residual stress and strain was small. The effect of variation in the transformation temperature range was found to be small in the case of residual stress but an increase in Ms temperature produced a significant increase in the level of residual strain.
2008-10-01
the standard model characterization procedure is based on creep and recovery tests, where loading and unloading occurs at a fast rate of 1.0 MPa/s...σ − g[ǫ] and on d̊g[ǫ] dǫ = E, where g̊ is defined as the equilibrium stress g[ ] for extremely fast loading. For this case, the stress-strain curves...Strain S tr es s Strain Rate Slow Strain Rate Medium Strain Rate Fast Plastic Flow Fully Established Figure 2.10: Stress Strain Curve Schematic
NASA Astrophysics Data System (ADS)
Lei, Dong; Bai, Pengxiang; Zhu, Feipeng
2018-01-01
Nowadays, acetabulum prosthesis replacement is widely used in clinical medicine. However, there is no efficient way to evaluate the implantation effect of the prosthesis. Based on a modern photomechanics technique called digital image correlation (DIC), the evaluation method of the installation effect of the acetabulum was established during a prosthetic replacement of a hip joint. The DIC method determines strain field by comparing the speckle images between the undeformed sample and the deformed counterpart. Three groups of experiments were carried out to verify the feasibility of the DIC method on the acetabulum installation deformation test. Experimental results indicate that the installation deformation of acetabulum generally includes elastic deformation (corresponding to the principal strain of about 1.2%) and plastic deformation. When the installation angle is ideal, the plastic deformation can be effectively reduced, which could prolong the service life of acetabulum prostheses.
NASA Technical Reports Server (NTRS)
Wu, R. W.; Witmer, E. A.
1972-01-01
A user-oriented FORTRAN 4 computer program, called JET 3, is presented. The JET 3 program, which employs the spatial finite-element and timewise finite-difference method, can be used to predict the large two-dimensional elastic-plastic transient Kirchhoff-type deformations of a complete or partial structural ring, with various support conditions and restraints, subjected to a variety of initial velocity distributions and externally-applied transient forcing functions. The geometric shapes of the structural ring can be circular or arbitrarily curved and with variable thickness. Strain-hardening and strain-rate effects of the material are taken into account.
The dependence of granular plasticity on particle shape
NASA Astrophysics Data System (ADS)
Murphy, Kieran; Jaeger, Heinrich
Granular materials plastically deform through reworking an intricate network of particle-particle contacts. Some particle rearrangements have only a fleeting effect before being forgotten while others set in motion global restructuring. How particle shape affects local interactions and how those, in turn, influence the nature of the aggregate's plasticity is far from clear, especially in three dimensions. Here we investigate the remarkably wide range of behaviors in the yielding regime, from quiescent flow to violent jerks, depending on particle shape. We study this complex dependence via uniaxial compression experiments on aggregates of 3D-printed particles, and complement stress-strain data with simultaneous x-ray videos and volumetric strain measurements. We find power law distributions of the slip magnitudes, and discuss their universality. Our data show that the multitude of small slips serves to gradually dilate the packing whereas the fewer large ones accompany significant compaction events. Our findings provide new insights into general features of granular materials during plastic deformation and highlight how small changes in particle shape can give rise to drastic differences in yielding behavior.
Simulating Thermal Cycling and Isothermal Deformation Response of Polycrystalline NiTi
NASA Technical Reports Server (NTRS)
Manchiraju, Sivom; Gaydosh, Darrell J.; Noebe, Ronald D.; Anderson, Peter M.
2011-01-01
A microstructure-based FEM model that couples crystal plasticity, crystallographic descriptions of the B2-B19' martensitic phase transformation, and anisotropic elasticity is used to simulate thermal cycling and isothermal deformation in polycrystalline NiTi (49.9at% Ni). The model inputs include anisotropic elastic properties, polycrystalline texture, DSC data, and a subset of isothermal deformation and load-biased thermal cycling data. A key experimental trend is captured.namely, the transformation strain during thermal cycling is predicted to reach a peak with increasing bias stress, due to the onset of plasticity at larger bias stress. Plasticity induces internal stress that affects both thermal cycling and isothermal deformation responses. Affected thermal cycling features include hysteretic width, two-way shape memory effect, and evolution of texture with increasing bias stress. Affected isothermal deformation features include increased hardening during loading and retained martensite after unloading. These trends are not captured by microstructural models that lack plasticity, nor are they all captured in a robust manner by phenomenological approaches. Despite this advance in microstructural modeling, quantitative differences exist, such as underprediction of open loop strain during thermal cycling.
NASA Astrophysics Data System (ADS)
Wang, Huamiao; Wu, Peidong; Wang, Jian
2015-07-01
Magnesium alloy AZ31B plastically deforms via twinning and slip. Corresponding to the unidirectional nature of twinning, the activity of twinning/detwinning is directly related to loading history and materials texture. Using the elastic viscoplastic self-consistent model implementing with the twinning and detwinning model (EVPSC-TDT), we revisited experimental data of AZ31B sheets under four different strain paths: (1) tension-compression-tension along rolling direction, (2) tension-compression-tension along transverse direction, (3) compression-tension-compression along rolling direction, and (4) compression-tension-compression along transverse direction, and identified the dominant deformation mechanisms with respect to the strain path. We captured plastic deformation behaviors observed in experiments and quantitatively interpreted experimental observations in terms of the activities of different deformation mechanisms and the evolution of texture. It is found that the in-plane pre-tension has slight effect on the subsequent deformation, and the pre-compression and the reverse tension after compression have significant effect on the subsequent deformation. The inelastic behavior under compressive unloading is found to be insignificant at a small strain level but pronounced at a large strain level. Such significant effect is mainly ascribed to the activity of twinning and detwinning.
Wang, Huamiao; Wu, Peidong; Wang, Jian
2015-04-17
Magnesium alloy AZ31B plastically deforms via twinning and slip. Corresponding to the unidirectional nature of twinning, the activity of twinning/detwinning is directly related to loading history and materials texture. Using the elastic viscoplastic self-consistent model implementing with the twinning and detwinning model (EVPSC–TDT), we revisited experimental data of AZ31B sheets under four different strain paths: (1) tension–compression–tension along rolling direction, (2) tension–compression–tension along transverse direction, (3) compression–tension–compression along rolling direction, and (4) compression–tension–compression along transverse direction, and identified the dominant deformation mechanisms with respect to the strain path. We captured plastic deformation behaviors observed in experiments and quantitatively interpreted experimentalmore » observations in terms of the activities of different deformation mechanisms and the evolution of texture. It is found that the in-plane pre-tension has slight effect on the subsequent deformation, and the pre-compression and the reverse tension after compression have significant effect on the subsequent deformation. The inelastic behavior under compressive unloading is found to be insignificant at a small strain level but pronounced at a large strain level. Lastly, such significant effect is mainly ascribed to the activity of twinning and detwinning.« less
The Effects of Stress State on the Strain Hardening Behaviors of TWIP Steel
NASA Astrophysics Data System (ADS)
Liu, F.; Dan, W. J.; Zhang, W. G.
2017-05-01
Twinning-Induced Plasticity (TWIP) steels have received great attention due to their excellent mechanical properties as a result of austenite twinning during straining. In this paper, the effects of stress state on the strain hardening behaviors of Fe-20Mn-1.2C TWIP steel were studied. A twinning model considering stress state was presented based on the shear-band framework, and a strain hardening model was proposed by taking dislocation mixture evolution into account. The models were verified by the experimental results of uniaxial tension, simple shear and rolling processes. The strain hardening behaviors of TWIP steel under different stress states were predicted. The results show that the stress state can improve the austenite twining and benefit the strain hardening of TWIP steel.
NASA Astrophysics Data System (ADS)
Chen, Qiyong; Alizadeh, Arash; Xie, Wanting; Wang, Xuemei; Champagne, Victor; Gouldstone, Andrew; Lee, Jae-Hwang; Müftü, Sinan
2018-04-01
Impact of spherical particles onto a flat sapphire surface was investigated in 50-950 m/s impact speed range experimentally and theoretically. Material parameters of the bilinear Johnson-Cook model were determined based on comparison of deformed particle shapes from experiment and simulation. Effects of high-strain-rate plastic flow, heat generation due to plasticity, material damage, interfacial friction and heat transfer were modeled. Four distinct regions were identified inside the particle by analyzing temporal variation of material flow. A relatively small volume of material near the impact zone becomes unstable due to plasticity-induced heating, accompanied by severe drop in the flow stress for impact velocity that exceeds 500 m/s. Outside of this region, flow stress is reduced due to temperature effects without the instability. Load carrying capacity of the material degrades and the material expands horizontally leading to jetting. The increase in overall plastic and frictional dissipation with impact velocity was found to be inherently lower than the increase in the kinetic energy at high speeds, leading to the instability. This work introduces a novel method to characterize HSR (109 s-1) material properties and also explains coupling between HSR material behavior and mechanics that lead to extreme deformation.
NASA Astrophysics Data System (ADS)
Zhang, Jiu-Chang
2018-02-01
Triaxial compression tests are conducted on a quasi-brittle rock, limestone. The analyses show that elastoplastic deformation is coupled with damage. Based on the experimental investigation, a coupled elastoplastic damage model is developed within the framework of irreversible thermodynamics. The coupling effects between the plastic and damage dissipations are described by introducing an isotropic damage variable into the elastic stiffness and yield criterion. The novelty of the model is in the description of the thermodynamic force associated with damage, which is formulated as a state function of both elastic and plastic strain energies. The latter gives a full consideration on the comprehensive effects of plastic strain and stress changing processes in rock material on the development of damage. The damage criterion and potential are constructed to determine the onset and evolution of damage variable. The return mapping algorithms of the coupled model are deduced for three different inelastic corrections. Comparisons between test data and numerical simulations show that the coupled elastoplastic damage model is capable of describing the main mechanical behaviours of the quasi-brittle rock.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valiev, R.Z.; Islamgaliev, R.K.; Kuzmina, N.F.
Intense plastic straining techniques such as torsion straining and equal channel angular (ECA) pressing are processing procedures which may be used to make beneficial changes in the properties of materials through a substantial refinement in the microstructure. Although intense plastic straining procedures have been used for grain refinement in numerous experiments reported over the last decade, there appears to have been no investigations in which these procedures were used with metal matrix composites. The present paper describes a series of experiments in which torsion straining and ECA pressing were applied to an Al-6061 metal matrix composite reinforced with 10 volumemore » % of Al{sub 2}O{sub 3} particulates. As will be demonstrated, intense plastic straining has the potential for both reducing the grain size of the composite to the submicrometer level and increasing the strength at room temperature by a factor in the range of {approximately}2 to {approximately}3.« less
van Boxelaere, Michiel; Clements, Jason; Callaerts, Patrick; D’Hooge, Rudi
2017-01-01
Alterations in the social and cognitive domain are considered important indicators for increased disability in many stress-related disorders. Similar impairments have been observed in rodents chronically exposed to stress, mimicking potential endophenotypes of stress-related psychopathologies such as major depression disorder (MDD), anxiety, conduct disorder, and posttraumatic stress disorder (PTSD). Data from numerous studies suggest that deficient plasticity mechanisms in hippocampus (HC) and prefrontal cortex (PFC) might underlie these social and cognitive deficits. Specifically, stress-induced deficiencies in neural plasticity have been associated with a hypodopaminergic state and reduced neural plasticity persistence. Here we assessed the effects of unpredictable chronic mild stress (UCMS) on exploratory, social and cognitive behavior of females of two inbred mouse strains (C57BL/6J and DBA/2J) that differ in their dopaminergic profile. Exposure to chronic stress resulted in impaired circadian rhythmicity, sociability and social cognition in both inbred strains, but differentially affected activity patterns and contextual discrimination performance. These stress-induced behavioral impairments were accompanied by reduced expression levels of brain derived neurotrophic factor (BDNF) in the prefrontal cortex. The strain-specific cognitive impairment was coexistent with enhanced plasma corticosterone levels and reduced expression of genes related to dopamine signaling in hippocampus. These results underline the importance of assessing different strains with multiple test batteries to elucidate the neural and genetic basis of social and cognitive impairments related to chronic stress. PMID:29166674
Twinning-induced plasticity (TWIP) and work hardening in Ti-based metallic glass matrix composites.
Fan, J; Qiao, J W; Wang, Z H; Rao, W; Kang, G Z
2017-05-12
The present study demonstrates that Ti-based metallic glass matrix composites (MGMCs) with a normal composition of Ti 43 Zr 32 Ni 6 Ta 5 Be 14 containing ductile dendrites dispersed in the glass matrix has been developed, and deformation mechanisms about the tensile property have been investigated by focusing on twinning-induced plasticity (TWIP) effect. The Ti-based MGMC has excellent tensile properties and pronounced tensile work-hardening capacity, with a yield strength of 1100 MPa and homogeneous elongation of 4%. The distinguished strain hardening is ascribed to the formation of deformation twinning within the dendrites. Twinning generated in the dendrites works as an obstacle for the rapid propagation of shear bands, and then, the localized necking is avoided, which ensures the ductility of such kinds of composites. Besides, a finite-element model (FEM) has been established to explain the TWIP effect which brings out a work-hardening behavior in the present MGMC instead of a localized strain concentration. According to the plasticity theory of traditional crystal materials and some new alloys, TWIP effect is mainly controlled by stacking fault energy (SFE), which has been analyzed intensively in the present MGMC.
Thermodynamic theory of dislocation-enabled plasticity
Langer, J. S.
2017-11-30
The thermodynamic theory of dislocation-enabled plasticity is based on two unconventional hypotheses. The first of these is that a system of dislocations, driven by external forces and irreversibly exchanging heat with its environment, must be characterized by a thermodynamically defined effective temperature that is not the same as the ordinary temperature. The second hypothesis is that the overwhelmingly dominant mechanism controlling plastic deformation is thermally activated depinning of entangled pairs of dislocations. This paper consists of a systematic reformulation of this theory followed by examples of its use in analyses of experimentally observed phenomena including strain hardening, grain-size (Hall-Petch) effects,more » yielding transitions, and adiabatic shear banding.« less
NASA Technical Reports Server (NTRS)
Spring, A. H.
1973-01-01
The application of a structural computer program for analysis of a thrust chamber liner is discussed. Two objectives were accomplished as follows: (1) exercise of the full capabilities of the computer program and (2) definition of thermal and mechanical boundary conditions to reflect the emergency power level operating conditions for the SSME 47OK engine at a station just upstream of the thrust chamber throat. Creep information on the thrust chamber is presented as a reference curve of creep strain versus time for various temperatures. Contour plots of the effective plastic strain, effective stress, and effective creep strain are developed.
Closure of fatigue cracks at high strains
NASA Technical Reports Server (NTRS)
Iyyer, N. S.; Dowling, N. E.
1985-01-01
Experiments were conducted on smooth specimens to study the closure behavior of short cracks at high cyclic strains under completely reversed cycling. Testing procedures and methodology, and closure measurement techniques, are described in detail. The strain levels chosen for the study cover from predominantly elastic to grossly plastic strains. Crack closure measurements are made at different crack lengths. The study reveals that, at high strains, cracks close only as the lowest stress level in the cycle is approached. The crack opening is observed to occur in the compressive part of the loading cycle. The applied stress needed to open a short crack under high strain is found to be less than for cracks under small scale yielding. For increased plastic deformations, the value of sigma sub op/sigma sub max is observed to decrease and approaches the value of R. Comparison of the experimental results with existing analysis is made and indicates the limitations of the small scale yielding approach where gross plastic deformation behavior occurs.
In-situ neutron diffraction characterization of temperature dependence deformation in α-uranium
NASA Astrophysics Data System (ADS)
Calhoun, C. A.; Garlea, E.; Sisneros, T. A.; Agnew, S. R.
2018-04-01
In-situ strain neutron diffraction measurements were conducted at temperature on specimens coming from a clock-rolled α-uranium plate, and Elasto-Plastic Self-Consistent (EPSC) modeling was employed to interpret the findings. The modeling revealed that the active slip systems exhibit a thermally activated response, while deformation twinning remains athermal over the temperature ranges explored (25-150 °C). The modeling also allowed assessment of the effects of thermal residual stresses on the mechanical response during compression. These results are consistent with those from a prior study of room-temperature deformation, indicating that the thermal residual stresses strongly influence the internal strain evolution of grain families, as monitored with neutron diffraction, even though accounting for these residual stresses has little effect on the macroscopic flow curve, except in the elasto-plastic transition.
Miehe, C; Teichtmeister, S; Aldakheel, F
2016-04-28
This work outlines a novel variational-based theory for the phase-field modelling of ductile fracture in elastic-plastic solids undergoing large strains. The phase-field approach regularizes sharp crack surfaces within a pure continuum setting by a specific gradient damage modelling. It is linked to a formulation of gradient plasticity at finite strains. The framework includes two independent length scales which regularize both the plastic response as well as the crack discontinuities. This ensures that the damage zones of ductile fracture are inside of plastic zones, and guarantees on the computational side a mesh objectivity in post-critical ranges. © 2016 The Author(s).
Stress-strain response of plastic waste mixed soil.
Babu, G L Sivakumar; Chouksey, Sandeep Kumar
2011-03-01
Recycling plastic waste from water bottles has become one of the major challenges worldwide. The present study provides an approach for the use plastic waste as reinforcement material in soil. The experimental results in the form of stress-strain-pore water pressure response are presented. Based on experimental test results, it is observed that the strength of soil is improved and compressibility reduced significantly with addition of a small percentage of plastic waste to the soil. The use of the improvement in strength and compressibility response due to inclusion of plastic waste can be advantageously used in bearing capacity improvement and settlement reduction in the design of shallow foundations. Copyright © 2010 Elsevier Ltd. All rights reserved.
24 CFR 3280.608 - Hangers and supports.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Hangers and supports. (a) Strains and stresses. Piping in a plumbing system shall be installed without undue strains and stresses, and provision shall be made for expansion, contraction, and structural..., plastic drainage piping shall be supported at intervals not to exceed 4 feet and plastic water piping...
24 CFR 3280.608 - Hangers and supports.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Hangers and supports. (a) Strains and stresses. Piping in a plumbing system shall be installed without undue strains and stresses, and provision shall be made for expansion, contraction, and structural..., plastic drainage piping shall be supported at intervals not to exceed 4 feet and plastic water piping...
NASA Astrophysics Data System (ADS)
Li, Qingda; Hua, Guomin; Lu, Hao; Yu, Bin; Li, D. Y.
2018-05-01
The elastic modulus of materials is usually treated as a constant in engineering applications. However, plastic deformation may result in changes in the elastic modulus of metallic materials. Using brass, aluminum, and low-carbon steel as sample materials, it is demonstrated that plastic deformation decreased the elastic modulus of the materials by 10% to 20%. A percolation model incorporating the electron work function is proposed to correlate such plastic-strain-induced variations in the elastic modulus to corresponding changes in the electron work function. Efforts are made to understand the observed phenomenon on an electronic basis. The obtained experimental results are consistent with the theoretical analysis.
NASA Astrophysics Data System (ADS)
Risse, Marcel; Lentz, Martin; Fahrenson, Christoph; Reimers, Walter; Knezevic, Marko; Beyerlein, Irene J.
2017-01-01
In this work, we study the deformation behavior of Mg-4 wt pct Li in uniaxial tension as a function of temperature and loading direction. Standard tensile tests were performed at temperatures in the range of 293 K (20 °C) ≤ T ≤ 473 K (200 °C) and in two in-plane directions: the extrusion and the transverse. We find that while the in-plane plastic anisotropy (PA) decreases with temperature, the anisotropy in failure strain and texture development increases. To uncover the temperature dependence in the critical stresses for slip and in the amounts of slip and twinning systems mediating deformation, we employ the elastic-plastic self-consistent polycrystal plasticity model with a thermally activated dislocation density based hardening law for activating slip with individual crystals. We demonstrate that the model, with a single set of intrinsic material parameters, achieves good agreement with the stress-strain curves, deformation textures, and intragranular misorientation axis analysis for all test directions and temperatures. With the model, we show that at all temperatures the in-plane tensile behavior is driven primarily by < a rangle slip and both < {c + a} rangle slip and twinning play a minor role. The analysis explains that the in-plane PA decreases and failure strains increase with temperature as a result of a significant reduction in the activation stress for pyramidal < {c + a} rangle slip, which effectively promotes strain accommodation from multiple types of < a rangle and < {c + a} rangle slip. The results also show that because of the strong initial texture, in-plane texture development is anisotropic since prismatic slip dominates the deformation in one test, although it is not the easiest slip mode, and basal slip in the other. These findings reveal the relationship between the temperature-sensitive thresholds needed to activate crystallographic slip and the development of texture and macroscopic PA.
NASA Astrophysics Data System (ADS)
Vollrath, Bastian; Hübel, Hartwig
2018-01-01
The Simplified Theory of Plastic Zones (STPZ) may be used to determine post-shakedown quantities such as strain ranges and accumulated strains at plastic or elastic shakedown. The principles of the method are summarized. Its practical applicability is shown by the example of a pipe bend subjected to constant internal pressure along with cyclic in-plane bending or/and cyclic radial temperature gradient. The results are compared with incremental analyses performed step-by-step throughout the entire load history until the state of plastic shakedown is achieved.
Three dimensional grain boundary modeling in polycrystalline plasticity
NASA Astrophysics Data System (ADS)
Yalçinkaya, Tuncay; Özdemir, Izzet; Fırat, Ali Osman
2018-05-01
At grain scale, polycrystalline materials develop heterogeneous plastic deformation fields, localizations and stress concentrations due to variation of grain orientations, geometries and defects. Development of inter-granular stresses due to misorientation are crucial for a range of grain boundary (GB) related failure mechanisms, such as stress corrosion cracking (SCC) and fatigue cracking. Local crystal plasticity finite element modelling of polycrystalline metals at micron scale results in stress jumps at the grain boundaries. Moreover, the concepts such as the transmission of dislocations between grains and strength of the grain boundaries are not included in the modelling. The higher order strain gradient crystal plasticity modelling approaches offer the possibility of defining grain boundary conditions. However, these conditions are mostly not dependent on misorientation of grains and can define only extreme cases. For a proper definition of grain boundary behavior in plasticity, a model for grain boundary behavior should be incorporated into the plasticity framework. In this context, a particular grain boundary model ([l]) is incorporated into a strain gradient crystal plasticity framework ([2]). In a 3-D setting, both bulk and grain boundary models are implemented as user-defined elements in Abaqus. The strain gradient crystal plasticity model works in the bulk elements and considers displacements and plastic slips as degree of freedoms. Interface elements model the plastic slip behavior, yet they do not possess any kind of mechanical cohesive behavior. The physical aspects of grain boundaries and the performance of the model are addressed through numerical examples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Hojun; Dingreville, Rémi; Deibler, Lisa A.
In this research, a crystal plasticity-finite element (CP-FE) model is used to investigate the effects of microstructural variability at a notch tip in tantalum single crystals and polycrystals. It is shown that at the macroscopic scale, the mechanical response of single crystals is sensitive to the crystallographic orientation while the response of polycrystals shows relatively small susceptibility to it. However, at the microscopic scale, the local stress and strain fields in the vicinity of the crack tip are completely determined by the local crystallographic orientation at the crack tip for both single and polycrystalline specimens with similar mechanical field distributions.more » Variability in the local metrics used (maximum von Mises stress and equivalent plastic strain at 3% deformation) for 100 different realizations of polycrystals fluctuates by up to a factor of 2–7 depending on the local crystallographic texture. Comparison with experimental data shows that the CP model captures variability in stress–strain response of polycrystals that can be attributed to the grain-scale microstructural variability. In conclusion, this work provides a convenient approach to investigate fluctuations in the mechanical behavior of polycrystalline materials induced by grain morphology and crystallographic orientations.« less
Effect of strain rate and temperature on mechanical properties of selected building Polish steels
NASA Astrophysics Data System (ADS)
Moćko, Wojciech; Kruszka, Leopold
2015-09-01
Currently, the computer programs of CAD type are basic tool for designing of various structures under impact loading. Application of the numerical calculations allows to substantially reduce amount of time required for the design stage of such projects. However, the proper use of computer aided designing technique requires input data for numerical software including elastic-plastic models of structural materials. This work deals with the constitutive model developed by Rusinek and Klepaczko (RK) applied for the modelling of mechanical behaviour of selected grades structural St0S, St3SX, 18GS and 34GS steels and presents here results of experimental and empirical analyses to describe dynamic elastic-plastic behaviours of tested materials at wide range of temperature. In order to calibrate the RK constitutive model, series of compression tests at wide range of strain rates, including static, quasi-static and dynamic investigations at lowered, room and elevated temperatures, were carried out using two testing stands: servo-hydraulic machine and split Hopkinson bar. The results were analysed to determine influence of temperature and strain rate on visco-plastic response of tested steels, and show good correlation with experimental data.
Lim, Hojun; Dingreville, Rémi; Deibler, Lisa A.; ...
2016-02-27
In this research, a crystal plasticity-finite element (CP-FE) model is used to investigate the effects of microstructural variability at a notch tip in tantalum single crystals and polycrystals. It is shown that at the macroscopic scale, the mechanical response of single crystals is sensitive to the crystallographic orientation while the response of polycrystals shows relatively small susceptibility to it. However, at the microscopic scale, the local stress and strain fields in the vicinity of the crack tip are completely determined by the local crystallographic orientation at the crack tip for both single and polycrystalline specimens with similar mechanical field distributions.more » Variability in the local metrics used (maximum von Mises stress and equivalent plastic strain at 3% deformation) for 100 different realizations of polycrystals fluctuates by up to a factor of 2–7 depending on the local crystallographic texture. Comparison with experimental data shows that the CP model captures variability in stress–strain response of polycrystals that can be attributed to the grain-scale microstructural variability. In conclusion, this work provides a convenient approach to investigate fluctuations in the mechanical behavior of polycrystalline materials induced by grain morphology and crystallographic orientations.« less
Mechanical rejuvenation in bulk metallic glass induced by thermo-mechanical creep
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Yang; Dmowski, W.; Bei, Hongbin
Using high energy X-ray diffraction we studied the temperature, stress, and time effect on structural changes in a Zr-based bulk metallic glass induced by thermo-mechanical creep. Pair distribution functions obtained from two-dimensional diffraction patterns show that thermo-mechanical creep induces structural disordering, but only when the stress beyond a threshold is applied. A similar threshold behavior was observed for anelastic strain. We conclude that anelastic creep strain induces rejuvenation, whereas plastic strain does not.
Mechanical rejuvenation in bulk metallic glass induced by thermo-mechanical creep
Tong, Yang; Dmowski, W.; Bei, Hongbin; ...
2018-02-16
Using high energy X-ray diffraction we studied the temperature, stress, and time effect on structural changes in a Zr-based bulk metallic glass induced by thermo-mechanical creep. Pair distribution functions obtained from two-dimensional diffraction patterns show that thermo-mechanical creep induces structural disordering, but only when the stress beyond a threshold is applied. A similar threshold behavior was observed for anelastic strain. We conclude that anelastic creep strain induces rejuvenation, whereas plastic strain does not.
Effect of ageing time on mechanical properties of plasticized poly(hydroxybutyrate) (PHB)
NASA Astrophysics Data System (ADS)
Farris, Giuseppe; Cinelli, Patrizia; Anguillesi, Irene; Salvadori, Sara; Coltelli, Maria-Beatrice; Lazzeri, Andrea
2014-05-01
Polyhydroxybutyrate (PHB) based materials were prepared by melt extrusion by using different plasticizers, such as poly(ethylene glycol)s (PEG)s having different molecular weight (400, 1500 and 4000). The plasticizers content was varied in the range 10-20% by weight versus the PHB polymeric matrix. The variation of tensile properties of the different samples was monitored as a function of time of ageing to study the stability of the material. The elastic modulus and tensile strength increased as a function of time, whereas the strain at break decreased. The experimental results were explained by considering both the demixing of the plasticizers and the occurring of secondary crystallization. Moreover the variation in mechanical properties was correlated to the structure and concentration of the different plasticizers employed.
An elasto-plastic solution for channel cracking of brittle coating on polymer substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chao; Chen, Fangliang; Gray, Matthew H.
In this study, an elasto-plastic channel-cracking model is presented to study the open-mode fracture of a thin layer brittle coating grown on a polymer substrate. A linear elastic shear interlayer is introduced to describe the stress transfer from the elasto-plastic substrate to the brittle coating, on basis of the shear-lag principle. The channel cracking behavior involves three stages: elastic, elasto-plastic and plastic stages, which are solved in a continuous manner based on the deformation status of the substrate. Explicit solutions are derived for the mutli-stage cracking process. Corresponding experimental tests for a titanium oxide (TiO 2) coating on a polymore » (ethylene terephthalate) substrate are conducted. The fracture toughness of the coating layer is estimated based on the crack spacing versus layer thickness relationship at certain strain levels. This method is found to be more reliable than the traditional methods using crack onset strain. Parametric studies of the fracture energy release rate for the coating and interfacial compliance of the thin film system are conducted, through which the effect of plastic deformation on the channel cracking behavior is studied extensively. The results indicate that the tangent modulus of the substrate controls the evolution curvature of crack spacing where a smaller tangent modulus corresponds to a slower saturation of crack spacing. The energy release rate also varies significantly with the properties of the interlayer. The study highlights the necessity of an elasto-plastic model for the thin film systems of brittle coating on a plastic substrate.« less
An elasto-plastic solution for channel cracking of brittle coating on polymer substrate
Zhang, Chao; Chen, Fangliang; Gray, Matthew H.; ...
2017-04-25
In this study, an elasto-plastic channel-cracking model is presented to study the open-mode fracture of a thin layer brittle coating grown on a polymer substrate. A linear elastic shear interlayer is introduced to describe the stress transfer from the elasto-plastic substrate to the brittle coating, on basis of the shear-lag principle. The channel cracking behavior involves three stages: elastic, elasto-plastic and plastic stages, which are solved in a continuous manner based on the deformation status of the substrate. Explicit solutions are derived for the mutli-stage cracking process. Corresponding experimental tests for a titanium oxide (TiO 2) coating on a polymore » (ethylene terephthalate) substrate are conducted. The fracture toughness of the coating layer is estimated based on the crack spacing versus layer thickness relationship at certain strain levels. This method is found to be more reliable than the traditional methods using crack onset strain. Parametric studies of the fracture energy release rate for the coating and interfacial compliance of the thin film system are conducted, through which the effect of plastic deformation on the channel cracking behavior is studied extensively. The results indicate that the tangent modulus of the substrate controls the evolution curvature of crack spacing where a smaller tangent modulus corresponds to a slower saturation of crack spacing. The energy release rate also varies significantly with the properties of the interlayer. The study highlights the necessity of an elasto-plastic model for the thin film systems of brittle coating on a plastic substrate.« less
Compaction-Based Deformable Terrain Model as an Interface for Real-Time Vehicle Dynamics Simulations
2013-04-16
to vehicular loads, and the resulting visco-elastic-plastic stress/strain on the affected soil volume. Pedo transfer functions allow for the...resulting visco-elastic-plastic stress/strain on the affected soil volume. Pedo transfer functions allow for the calculation of the soil mechanics model
NASA Astrophysics Data System (ADS)
Kobayashi, M.; Miura, H.; Toda, H.
2015-08-01
Anisotropy of mechanical responses depending on crystallographic orientation causes inhomogeneous deformation on the mesoscopic scale (grain size scale). Investigation of the local plastic strain development is important for discussing recrystallization mechanisms, because the sites with higher local plastic strain may act as potential nucleation sites for recrystallization. Recently, high-resolution X-ray tomography, which is non-destructive inspection method, has been utilized for observation of the materials structure. In synchrotron radiation X-ray tomography, more than 10,000 microstructural features, like precipitates, dispersions, compounds and hydrogen pores, can be observed in aluminium alloys. We have proposed employing these microstructural features as marker gauges to measure local strains, and then have developed a method to calculate the three-dimensional strain distribution by tracking the microstructural features. In this study, we report the development of local plastic strain as a function of the grain microstructure in an aluminium alloy by means of this three-dimensional strain measurement technique. Strongly heterogeneous strain development was observed during tensile loading to 30%. In other words, some parts of the sample deform little whereas another deforms a lot. However, strain in the whole specimen was keeping harmony. Comparing the microstructure with the strain concentration that is obtained by this method has a potential to reveal potential nucleation sites of recrystallization.
NASA Astrophysics Data System (ADS)
Son, Ho-Young; Kim, Ilho; Lee, Soon-Bok; Jung, Gi-Jo; Park, Byung-Jin; Paik, Kyung-Wook
2009-01-01
A thick Cu column based double-bump flip chip structure is one of the promising alternatives for fine pitch flip chip applications. In this study, the thermal cycling (T/C) reliability of Cu/SnAg double-bump flip chip assemblies was investigated, and the failure mechanism was analyzed through the correlation of T/C test and the finite element analysis (FEA) results. After 1000 thermal cycles, T/C failures occurred at some Cu/SnAg bumps located at the edge and corner of chips. Scanning acoustic microscope analysis and scanning electron microscope observations indicated that the failure site was the Cu column/Si chip interface. It was identified by a FEA where the maximum stress concentration was located during T/C. During T/C, the Al pad between the Si chip and a Cu column bump was displaced due to thermomechanical stress. Based on the low cycle fatigue model, the accumulation of equivalent plastic strain resulted in thermal fatigue deformation of the Cu column bumps and ultimately reduced the thermal cycling lifetime. The maximum equivalent plastic strains of some bumps at the chip edge increased with an increased number of thermal cycles. However, equivalent plastic strains of the inner bumps did not increase regardless of the number of thermal cycles. In addition, the z-directional normal plastic strain ɛ22 was determined to be compressive and was a dominant component causing the plastic deformation of Cu/SnAg double bumps. As the number of thermal cycles increased, normal plastic strains in the perpendicular direction to the Si chip and shear strains were accumulated on the Cu column bumps at the chip edge at low temperature region. Thus it was found that the Al pad at the Si chip/Cu column interface underwent thermal fatigue deformation by compressive normal strain and the contact loss by displacement failure of the Al pad, the main T/C failure mode of the Cu/SnAg flip chip assembly, then occurred at the Si chip/Cu column interface shear strain deformation during T/C.
Substructure based modeling of nickel single crystals cycled at low plastic strain amplitudes
NASA Astrophysics Data System (ADS)
Zhou, Dong
In this dissertation a meso-scale, substructure-based, composite single crystal model is fully developed from the simple uniaxial model to the 3-D finite element method (FEM) model with explicit substructures and further with substructure evolution parameters, to simulate the completely reversed, strain controlled, low plastic strain amplitude cyclic deformation of nickel single crystals. Rate-dependent viscoplasticity and Armstrong-Frederick type kinematic hardening rules are applied to substructures on slip systems in the model to describe the kinematic hardening behavior of crystals. Three explicit substructure components are assumed in the composite single crystal model, namely "loop patches" and "channels" which are aligned in parallel in a "vein matrix," and persistent slip bands (PSBs) connected in series with the vein matrix. A magnetic domain rotation model is presented to describe the reverse magnetostriction of single crystal nickel. Kinematic hardening parameters are obtained by fitting responses to experimental data in the uniaxial model, and the validity of uniaxial assumption is verified in the 3-D FEM model with explicit substructures. With information gathered from experiments, all control parameters in the model including hardening parameters, volume fraction of loop patches and PSBs, and variation of Young's modulus etc. are correlated to cumulative plastic strain and/or plastic strain amplitude; and the whole cyclic deformation history of single crystal nickel at low plastic strain amplitudes is simulated in the uniaxial model. Then these parameters are implanted in the 3-D FEM model to simulate the formation of PSB bands. A resolved shear stress criterion is set to trigger the formation of PSBs, and stress perturbation in the specimen is obtained by several elements assigned with PSB material properties a priori. Displacement increment, plastic strain amplitude control and overall stress-strain monitor and output are carried out in the user subroutine DISP and URDFIL of ABAQUS, respectively, while constitutive formulations of the FEM model are coded and implemented in UMAT. The results of the simulations are compared to experiments. This model verified the validity of Winter's two-phase model and Taylor's uniform stress assumption, explored substructure evolution and "intrinsic" behavior in substructures and successfully simulated the process of PSB band formation and propagation.
Grain Orientation Dependence of the Residual Lattice Strain in a Cold Rolled Interstitial-Free Steel
Xie, Qingge; Gorti, Sarma B.; Sidor, Jurij; ...
2018-01-10
The experimentally measured grain-orientation-dependent residual lattice strains, evolved in an interstitia-free steel after 70% cold rolling reduction, are studied by means of crystal elastic visco-plastic finite element simulations, which provides a very satisfactory prediction of deformation texture. The calculated residual lattice strain pole figure matches well with the experimentally measured counterpart within the highest density regions of major texture components observed. Both experimental evidence and results of modeling clearly indicate that the residual lattice strain is orientation dependent, based on comprehensive information on the evolution of residual lattice strain in various crystallographic orientations during plastic deformation. It appears that inmore » a cold rolled material, there is a general correlation between the stresses developed just prior to unloading and the residual lattice strains in particular directions. Here, it is also shown that the cumulative plastic shear does not reveal a clear correlation with the components of residual lattice strain while presented in the normal correlation plot, however, this relationship can be better understood by means of the orientation distribution function of residual lattice strain, which can be derived from the neutron or X-ray diffraction experiments.« less
Grain Orientation Dependence of the Residual Lattice Strain in a Cold Rolled Interstitial-Free Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Qingge; Gorti, Sarma B.; Sidor, Jurij
The experimentally measured grain-orientation-dependent residual lattice strains, evolved in an interstitia-free steel after 70% cold rolling reduction, are studied by means of crystal elastic visco-plastic finite element simulations, which provides a very satisfactory prediction of deformation texture. The calculated residual lattice strain pole figure matches well with the experimentally measured counterpart within the highest density regions of major texture components observed. Both experimental evidence and results of modeling clearly indicate that the residual lattice strain is orientation dependent, based on comprehensive information on the evolution of residual lattice strain in various crystallographic orientations during plastic deformation. It appears that inmore » a cold rolled material, there is a general correlation between the stresses developed just prior to unloading and the residual lattice strains in particular directions. Here, it is also shown that the cumulative plastic shear does not reveal a clear correlation with the components of residual lattice strain while presented in the normal correlation plot, however, this relationship can be better understood by means of the orientation distribution function of residual lattice strain, which can be derived from the neutron or X-ray diffraction experiments.« less
NASA Astrophysics Data System (ADS)
Kumar, Jagadish; Ananthakrishna, G.
2018-01-01
Scale-invariant power-law distributions for acoustic emission signals are ubiquitous in several plastically deforming materials. However, power-law distributions for acoustic emission energies are reported in distinctly different plastically deforming situations such as hcp and fcc single and polycrystalline samples exhibiting smooth stress-strain curves and in dilute metallic alloys exhibiting discontinuous flow. This is surprising since the underlying dislocation mechanisms in these two types of deformations are very different. So far, there have been no models that predict the power-law statistics for discontinuous flow. Furthermore, the statistics of the acoustic emission signals in jerky flow is even more complex, requiring multifractal measures for a proper characterization. There has been no model that explains the complex statistics either. Here we address the problem of statistical characterization of the acoustic emission signals associated with the three types of the Portevin-Le Chatelier bands. Following our recently proposed general framework for calculating acoustic emission, we set up a wave equation for the elastic degrees of freedom with a plastic strain rate as a source term. The energy dissipated during acoustic emission is represented by the Rayleigh-dissipation function. Using the plastic strain rate obtained from the Ananthakrishna model for the Portevin-Le Chatelier effect, we compute the acoustic emission signals associated with the three Portevin-Le Chatelier bands and the Lüders-like band. The so-calculated acoustic emission signals are used for further statistical characterization. Our results show that the model predicts power-law statistics for all the acoustic emission signals associated with the three types of Portevin-Le Chatelier bands with the exponent values increasing with increasing strain rate. The calculated multifractal spectra corresponding to the acoustic emission signals associated with the three band types have a maximum spread for the type C bands and decreasing with types B and A. We further show that the acoustic emission signals associated with Lüders-like band also exhibit a power-law distribution and multifractality.
Kumar, Jagadish; Ananthakrishna, G
2018-01-01
Scale-invariant power-law distributions for acoustic emission signals are ubiquitous in several plastically deforming materials. However, power-law distributions for acoustic emission energies are reported in distinctly different plastically deforming situations such as hcp and fcc single and polycrystalline samples exhibiting smooth stress-strain curves and in dilute metallic alloys exhibiting discontinuous flow. This is surprising since the underlying dislocation mechanisms in these two types of deformations are very different. So far, there have been no models that predict the power-law statistics for discontinuous flow. Furthermore, the statistics of the acoustic emission signals in jerky flow is even more complex, requiring multifractal measures for a proper characterization. There has been no model that explains the complex statistics either. Here we address the problem of statistical characterization of the acoustic emission signals associated with the three types of the Portevin-Le Chatelier bands. Following our recently proposed general framework for calculating acoustic emission, we set up a wave equation for the elastic degrees of freedom with a plastic strain rate as a source term. The energy dissipated during acoustic emission is represented by the Rayleigh-dissipation function. Using the plastic strain rate obtained from the Ananthakrishna model for the Portevin-Le Chatelier effect, we compute the acoustic emission signals associated with the three Portevin-Le Chatelier bands and the Lüders-like band. The so-calculated acoustic emission signals are used for further statistical characterization. Our results show that the model predicts power-law statistics for all the acoustic emission signals associated with the three types of Portevin-Le Chatelier bands with the exponent values increasing with increasing strain rate. The calculated multifractal spectra corresponding to the acoustic emission signals associated with the three band types have a maximum spread for the type C bands and decreasing with types B and A. We further show that the acoustic emission signals associated with Lüders-like band also exhibit a power-law distribution and multifractality.
Metallic nanoparticle-based strain sensors elaborated by atomic layer deposition
NASA Astrophysics Data System (ADS)
Puyoo, E.; Malhaire, C.; Thomas, D.; Rafaël, R.; R'Mili, M.; Malchère, A.; Roiban, L.; Koneti, S.; Bugnet, M.; Sabac, A.; Le Berre, M.
2017-03-01
Platinum nanoparticle-based strain gauges are elaborated by means of atomic layer deposition on flexible polyimide substrates. Their electro-mechanical response is tested under mechanical bending in both buckling and conformational contact configurations. A maximum gauge factor of 70 is reached at a strain level of 0.5%. Although the exponential dependence of the gauge resistance on strain is attributed to the tunneling effect, it is shown that the majority of the junctions between adjacent Pt nanoparticles are in a short circuit state. Finally, we demonstrate the feasibility of an all-plastic pressure sensor integrating Pt nanoparticle-based strain gauges in a Wheatstone bridge configuration.
2013-09-01
pattern of an alloy, such as steel , reveals, among other properties (ex., phase composition, crystal structure), information about the strain state...This, together with elastic strain / residual stress analysis, would enable better evaluation of the current state of health of steel structures and...plastic strain in a component/structure may better evaluate the current state of health of steel structures and components as they near predetermined
Probabilistic analysis of structures involving random stress-strain behavior
NASA Technical Reports Server (NTRS)
Millwater, H. R.; Thacker, B. H.; Harren, S. V.
1991-01-01
The present methodology for analysis of structures with random stress strain behavior characterizes the uniaxial stress-strain curve in terms of (1) elastic modulus, (2) engineering stress at initial yield, (3) initial plastic-hardening slope, (4) engineering stress at point of ultimate load, and (5) engineering strain at point of ultimate load. The methodology is incorporated into the Numerical Evaluation of Stochastic Structures Under Stress code for probabilistic structural analysis. The illustrative problem of a thick cylinder under internal pressure, where both the internal pressure and the stress-strain curve are random, is addressed by means of the code. The response value is the cumulative distribution function of the equivalent plastic strain at the inner radius.
Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong
2016-05-01
The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution. Copyright © 2016 Elsevier B.V. All rights reserved.
On numerically accurate finite element
NASA Technical Reports Server (NTRS)
Nagtegaal, J. C.; Parks, D. M.; Rice, J. R.
1974-01-01
A general criterion for testing a mesh with topologically similar repeat units is given, and the analysis shows that only a few conventional element types and arrangements are, or can be made suitable for computations in the fully plastic range. Further, a new variational principle, which can easily and simply be incorporated into an existing finite element program, is presented. This allows accurate computations to be made even for element designs that would not normally be suitable. Numerical results are given for three plane strain problems, namely pure bending of a beam, a thick-walled tube under pressure, and a deep double edge cracked tensile specimen. The effects of various element designs and of the new variational procedure are illustrated. Elastic-plastic computation at finite strain are discussed.
NASA Technical Reports Server (NTRS)
Marr, W. A., Jr.
1972-01-01
The behavior of finite element models employing different constitutive relations to describe the stress-strain behavior of soils is investigated. Three models, which assume small strain theory is applicable, include a nondilatant, a dilatant and a strain hardening constitutive relation. Two models are formulated using large strain theory and include a hyperbolic and a Tresca elastic perfectly plastic constitutive relation. These finite element models are used to analyze retaining walls and footings. Methods of improving the finite element solutions are investigated. For nonlinear problems better solutions can be obtained by using smaller load increment sizes and more iterations per load increment than by increasing the number of elements. Suitable methods of treating tension stresses and stresses which exceed the yield criteria are discussed.
NASA Astrophysics Data System (ADS)
Tutyshkin, Nikolai D.; Lofink, Paul; Müller, Wolfgang H.; Wille, Ralf; Stahn, Oliver
2017-01-01
On the basis of the physical concepts of void formation, nucleation, and growth, generalized constitutive equations are formulated for a tensorial model of plastic damage in metals based on three invariants. The multiplicative decomposition of the metric transformation tensor and a thermodynamically consistent formulation of constitutive relations leads to a symmetric second-order damage tensor with a clear physical meaning. Its first invariant determines the damage related to plastic dilatation of the material due to growth of the voids. The second invariant of the deviatoric damage tensor is related to the change in void shape. The third invariant of the deviatoric tensor describes the impact of the stress state on damage (Lode angle), including the effect of rotating the principal axes of the stress tensor (Lode angle change). The introduction of three measures with related physical meaning allows for the description of kinetic processes of strain-induced damage with an equivalent parameter in a three-dimensional vector space, including the critical condition of ductile failure. Calculations were performed by using experimentally determined material functions for plastic dilatation and deviatoric strain at the mesoscale, as well as three-dimensional graphs for plastic damage of steel DC01. The constitutive parameter was determined from tests in tension, compression, and shear by using scanning electron microscopy, which allowed to vary the Lode angle over the full range of its values [InlineEquation not available: see fulltext.]. In order to construct the three-dimensional plastic damage curve for a range of triaxiality parameters -1 ≤ ST ≤ 1 and of Lode angles [InlineEquation not available: see fulltext.], we used our own, as well as systematized published experimental data. A comparison of calculations shows a significant effect of the third invariant (Lode angle) on equivalent damage. The measure of plastic damage, based on three invariants, can be useful for assessing the quality of metal mesostructure produced during metal forming processes. In many processes of metal sheet forming the material experiences, a non-proportional loading accompanied by rotating the principal axes of the stress tensor and a corresponding change of Lode angle.
Studying plastic shear localization in aluminum alloys under dynamic loading
NASA Astrophysics Data System (ADS)
Bilalov, D. A.; Sokovikov, M. A.; Chudinov, V. V.; Oborin, V. A.; Bayandin, Yu. V.; Terekhina, A. I.; Naimark, O. B.
2016-12-01
An experimental and theoretical study of plastic shear localization mechanisms observed under dynamic deformation using the shear-compression scheme on a Hopkinson-Kolsky bar has been carried out using specimens of AMg6 alloy. The mechanisms of plastic shear instability are associated with collective effects in the microshear ensemble in spatially localized areas. The lateral surface of the specimens was photographed in the real-time mode using a CEDIP Silver 450M high-speed infrared camera. The temperature distribution obtained at different times allowed us to trace the evolution of the localization of the plastic strain. Based on the equations that describe the effect of nonequilibrium transitions on the mechanisms of structural relaxation and plastic flow, numerical simulation of plastic shear localization has been performed. A numerical experiment relevant to the specimen-loading scheme was carried out using a system of constitutive equations that reflect the part of the structural relaxation mechanisms caused by the collective behavior of microshears with the autowave modes of the evolution of the localized plastic flow. Upon completion of the experiment, the specimens were subjected to microstructure analysis using a New View-5010 optical microscope-interferometer. After the dynamic deformation, the constancy of the Hurst exponent, which reflects the relationship between the behavior of defects and roughness induced by the defects on the surfaces of the specimens is observed in a wider range of spatial scales. These investigations revealed the distinctive features in the localization of the deformation followed by destruction to the script of the adiabatic shear. These features may be caused by the collective multiscale behavior of defects, which leads to a sharp decrease in the stress-relaxation time and, consequently, a localized plastic flow and generation of fracture nuclei in the form of adiabatic shear. Infrared scanning of the localization zone of the plastic strain in situ and the subsequent study of the defect structure corroborated the hypothesis about the decisive role of non-equilibrium transitions in defect ensembles during the evolution of a localized plastic flow.
Quasistatic Evolution in Perfect Plasticity for General Heterogeneous Materials
NASA Astrophysics Data System (ADS)
Solombrino, Francesco
2014-04-01
Inspired by some recent developments in the theory of small-strain heterogeneous elastoplasticity, we both revisit and generalize the formulation of the quasistatic evolutionary problem in perfect plasticity given by Francfort and Giacomini (Commun Pure Appl Math, 65:1185-1241, 2012). We show that their definition of the plastic dissipation measure is equivalent to an abstract one, where it is defined as the supremum of the dualities between the deviatoric parts of admissible stress fields and the plastic strains. By means of this abstract definition, a viscoplastic approximation and variational techniques from the theory of rate-independent processes give the existence of an evolution satisfying an energy-dissipation balance and consequently Hill's maximum plastic work principle for an abstract and very large class of yield conditions.
Avalanches and plastic flow in crystal plasticity: an overview
NASA Astrophysics Data System (ADS)
Papanikolaou, Stefanos; Cui, Yinan; Ghoniem, Nasr
2018-01-01
Crystal plasticity is mediated through dislocations, which form knotted configurations in a complex energy landscape. Once they disentangle and move, they may also be impeded by permanent obstacles with finite energy barriers or frustrating long-range interactions. The outcome of such complexity is the emergence of dislocation avalanches as the basic mechanism of plastic flow in solids at the nanoscale. While the deformation behavior of bulk materials appears smooth, a predictive model should clearly be based upon the character of these dislocation avalanches and their associated strain bursts. We provide here a comprehensive overview of experimental observations, theoretical models and computational approaches that have been developed to unravel the multiple aspects of dislocation avalanche physics and the phenomena leading to strain bursts in crystal plasticity.
DEFORMATION PROCESSES IN MATERIALS. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washburn, J.; Parker, E.R.; Tinder, R.F.
1962-08-01
It was found that irreversible plastic deformation occurs in polycrystaliine specimens of zinc, copper and its dilute alloys, and aluminum at room temperature, beginning at stresses indetectably above zero applied stress. Neither Frank-Read source generation nor simple bowing of dislocations between fixed nodes can explain the irreversible plastic behavior observed at small stresses in the metals studied. More extensive rearrangements of the dislocation substructure that probably involve glide of nodes and formation of new nodes seem to be required. Prestrained specimens of copper and its dilute alloys often exhibited bursts of plastic deformation which could possibly be due to cooperativemore » rearrangement of the dislocation substructure in one or a few grains. The introduction, by particle bombardment, of new lengths of dislocations into the gage section surface of specimens of copper and its dilute alloys produced extensive irreversible plastic flow beginning at stresses indetectably above zero applied stress. The effect of prestraln on the shape of the loading and unloading curves for zinc shows that dislocation rearrangements that cause forward and reverse strain can occur simultaneously. The net strain rate can be the algebraic sum of the strain recovery rate and the forward creep rate. The present quantitative theories of the Peierls-Nabarro stress are insufficient to permit an estimate of its magnitude from the results of this investigation. In dilute copper alloys containing up to 0.1 at.% impurity, there were many dislocations in the grown-in networks that were not locked by segregation of the foreign atoms. The study of creep behavior over a range of temperatures and at the same strain sensitivity used in these experiments combined with dislocation etch pit observations of dislocation substructure appears to be a particularly fruitful field for further investigation. (auth)« less
Modelling irradiation-induced softening in BCC iron by crystal plasticity approach
NASA Astrophysics Data System (ADS)
Xiao, Xiazi; Terentyev, Dmitry; Yu, Long; Song, Dingkun; Bakaev, A.; Duan, Huiling
2015-11-01
Crystal plasticity model (CPM) for BCC iron to account for radiation-induced strain softening is proposed. CPM is based on the plastically-driven and thermally-activated removal of dislocation loops. Atomistic simulations are applied to parameterize dislocation-defect interactions. Combining experimental microstructures, defect-hardening/absorption rules from atomistic simulations, and CPM fitted to properties of non-irradiated iron, the model achieves a good agreement with experimental data regarding radiation-induced strain softening and flow stress increase under neutron irradiation.
Fracture and Plasticity Characterization of DH-36 Navy Steel
2012-06-01
32 Figure 30: Butterfly shear test showing front and back views and highlighting the unwanted edge buckling and fracture...maximum point of equivalent plastic strain in the edge section not the gage section. The face shown is the middle of the specimen...0 100 200 300 400 500 600 700 800 900 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 T ru e S tr e ss Plastic Strain Experiment Power Law 19 Figure 12
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther
2015-01-01
Several key capabilities have been identified by the aerospace community as lacking in the material/models for composite materials currently available within commercial transient dynamic finite element codes such as LS-DYNA. Some of the specific desired features that have been identified include the incorporation of both plasticity and damage within the material model, the capability of using the material model to analyze the response of both three-dimensional solid elements and two dimensional shell elements, and the ability to simulate the response of composites composed with a variety of composite architectures, including laminates, weaves and braids. In addition, a need has been expressed to have a material model that utilizes tabulated experimentally based input to define the evolution of plasticity and damage as opposed to utilizing discrete input parameters (such as modulus and strength) and analytical functions based on curve fitting. To begin to address these needs, an orthotropic macroscopic plasticity based model suitable for implementation within LS-DYNA has been developed. Specifically, the Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic plasticity model with a non-associative flow rule. The coefficients in the yield function are determined based on tabulated stress-strain curves in the various normal and shear directions, along with selected off-axis curves. Incorporating rate dependence into the yield function is achieved by using a series of tabluated input curves, each at a different constant strain rate. The non-associative flow-rule is used to compute the evolution of the effective plastic strain. Systematic procedures have been developed to determine the values of the various coefficients in the yield function and the flow rule based on the tabulated input data. An algorithm based on the radial return method has been developed to facilitate the numerical implementation of the material model. The presented paper will present in detail the development of the orthotropic plasticity model and the procedures used to obtain the required material parameters. Methods in which a combination of actual testing and selective numerical testing can be combined to yield the appropriate input data for the model will be described. A specific laminated polymer matrix composite will be examined to demonstrate the application of the model.
NASA Astrophysics Data System (ADS)
Saeed-Akbari, A.; Mishra, A. K.; Mayer, J.; Bleck, W.
2012-05-01
The jerky and smooth flow curves in high-manganese twinning induced plasticity (TWIP) steels were investigated by comparing Fe-Mn-C and Fe-Mn-Al-C systems. The pronounced serrations on the flow curves of Fe-Mn-C TWIP steel, produced during tensile testing at 300 K (27 °C) and 373 K (100 °C), were shown to be the result of localized high-temperature Portevin Le-Chatelier (PLC) bands moving across the gage length throughout the deformation. The speed of the PLC bands and their temperature effects were found to be strongly dependent on the applied strain rate, which was controlled by adjusting the cross-head speed of the tensile testing machine. The localized temperature-dependent stacking fault energy (SFE) variations resulting from the PLC effect and adiabatic heating were analyzed and compared for both slow and fast deformation rates. The instabilities in the measured logarithmic strain values caused by jerky flow could cause the local strain rate to deviate systematically from the targeted (applied) strain rate. These instabilities are better observed by calculating the instantaneous strain rate (ISR) values for each instant of deformation along the entire gage length. Finally, a new type of diagram was developed by plotting the true stress against the ISR values. From the diagram, the onset of different mechanisms, such as deformation twinning, nonpronounced, and pronounced serrations, could be marked precisely.
NASA Astrophysics Data System (ADS)
Pesin, A.; Pustovoytov, D.; Lokotunina, N.
2017-12-01
The mechanism of severe plastic deformation comes from very significant shear strain. Shear-compression testing of materials is complicated by the fact that a state of large equivalent strain with dominant shear strain is not easily achievable. This paper presents the novel technique of laboratory simulation of severe plastic deformation by multi-cycle shear-compression testing at room temperature with equivalent strain e=1…5. The specimen consisted of a parallelepiped having an inclined gauge section created by two diametrically opposed semi-circular slots which were machined at 45°. Height of the specimen was 50 mm, section dimensions were 25×25 mm, gauge thickness was 5.0 mm and gauge width was 6.0 mm. The specimen provided dominant shear strain in an inclined gauge-section. The level of shear strain and equivalent strain was controlled through adjustment of the height reduction of the specimen, load application direction and number of cycles of shear-compression. Aluminium alloy Al-6.2Mg-0.7Mn was used as a material for specimen. FE simulation and analysis of the stress-strain state were performed. The microstructure of the specimen after multi-cycle shear-compression testing with equivalent strain e=1…5 was examined by optical and scanning electron microscope.
Creep of Ni(3)Al in the temperature regime of anomalous flow behavior
NASA Astrophysics Data System (ADS)
Uchic, Michael David
Much attention has been paid to understanding the dynamics of dislocation motion and substructure formation in Ni3Al in the anomalous flow regime. However, most of the experimental work that has been performed in the lowest temperatures of the anomalous flow regime has been under constant-strain-rate conditions. An alternative and perhaps more fundamental way to probe the plastic behavior of materials is a monotonic creep test, in which the stress and temperature are held constant while the time-dependent strain is measured. The aim of this study is to use constant-stress experiments to further explore the plastic flow anomaly in L12 alloys at low temperatures. Tension creep experiments have been carried out on <123> oriented single crystals of Ni75Al24Ta1 at temperatures between 293 and 473 K. We have observed primary creep leading to exhaustion at all temperatures and stresses, with creep rates declining faster than predicted by the logarithmic creep law. The total strain and creep strain have an anomalous dependence on temperature, which is consistent with the flow stress anomaly. We have also observed other unusual behavior in our creep experiments; for example, the reinitiation of plastic flow at low temperatures after a modest increment in applied stress shows a sigmoidal response, i.e., there is a significant time delay before the plastic strain rate accelerates to a maximum value. We also examined the ability to reinitiate plastic flow in samples that have been crept to exhaustion by simply lowering the test temperature. In addition, we have also performed conventional constant-displacement-rate experiments in the same temperature range. From these experiments, we have discovered that unlike most metals, Ni3Al displays a negative dependence of the work hardening rate (WHR) with increasing strain rate. For tests at intermediate temperatures (373 and 423 K), the WHRs of crystals tested at moderately high strain rates (10-2 s-1) are half the WHRs of crystals tested at conventional strain rates (10 -5 s-1), and this anomalous dependence has also been shown to be reversible with changes in strain rate. The implications of all results are discussed in light of our efforts to model plastic deformation in these alloys.
NASA Astrophysics Data System (ADS)
Meftah, H.; Tamboura, S.; Fitoussi, J.; BenDaly, H.; Tcharkhtchi, A.
2017-08-01
The aim of this study is the complete physicochemical characterization and strain rate effect multi-scale analysis of a new fully recycled carbon fiber reinforced composites for automotive crash application. Two composites made of 20% wt short recycled carbon fibers (CF) are obtained by injection molding. The morphology and the degree of dispersion of CF in the matrixes were examined using a new ultrasonic method and SEM. High strain tensile behavior up to 100 s-1 is investigated. In order to avoid perturbation due to inertial effect and wave propagation, the specimen geometry was optimized. The elastic properties appear to be insensitive to the strain rate. However, a high strain rate effect on the local visco-plasticity of the matrix and fiber/matrix interface visco-damageable behavior is emphasized. The predominant damage mechanisms evolve from generalized matrix local ductility at low strain rate regime to fiber/matrix interface debonding and fibers pull-out at high strain rate regime.
NASA Astrophysics Data System (ADS)
Meftah, H.; Tamboura, S.; Fitoussi, J.; BenDaly, H.; Tcharkhtchi, A.
2018-06-01
The aim of this study is the complete physicochemical characterization and strain rate effect multi-scale analysis of a new fully recycled carbon fiber reinforced composites for automotive crash application. Two composites made of 20% wt short recycled carbon fibers (CF) are obtained by injection molding. The morphology and the degree of dispersion of CF in the matrixes were examined using a new ultrasonic method and SEM. High strain tensile behavior up to 100 s-1 is investigated. In order to avoid perturbation due to inertial effect and wave propagation, the specimen geometry was optimized. The elastic properties appear to be insensitive to the strain rate. However, a high strain rate effect on the local visco-plasticity of the matrix and fiber/matrix interface visco-damageable behavior is emphasized. The predominant damage mechanisms evolve from generalized matrix local ductility at low strain rate regime to fiber/matrix interface debonding and fibers pull-out at high strain rate regime.
NASA Astrophysics Data System (ADS)
Ren, Zhenhua; Zeng, Xiantao; Liu, Hanlong; Zhou, Fengjun
2013-03-01
The application of fiber reinforced plastic (FRP), including carbon FRP and glass FRP, for structural repair and strengthening has grown due to their numerous advantages over conventional materials such as externally bonded reinforcement (EBR) and near-surface mounted (NSM) strengthening techniques. This paper summarizes the results from 21 reinforced concrete beams strengthened with different methods, including externally-bonded and near-surface mounted FRP, to study the strain coordination of the FRP and steel rebar of the RC beam. Since there is relative slipping between the RC beam and the FRP, the strain of the FRP and steel rebar of the RC beam satisfy the quasi-plane-hypothesis; that is, the strain of the longitudinal fiber that parallels the neutral axis of the plated beam within the scope of the effective height ( h 0) of the cross section is in direct proportion to the distance from the fiber to the neutral axis. The strain of the FRP and steel rebar satisfies the equation: ɛ FRP= βɛ steel, and the value of β is equal to 1.1-1.3 according to the test results.
Verification of Experimental Techniques for Flow Surface Determination
NASA Technical Reports Server (NTRS)
Lissenden, Cliff J.; Lerch, Bradley A.; Ellis, John R.; Robinson, David N.
1996-01-01
The concept of a yield surface is central to the mathematical formulation of a classical plasticity theory. However, at elevated temperatures, material response can be highly time-dependent, which is beyond the realm of classical plasticity. Viscoplastic theories have been developed for just such conditions. In viscoplastic theories, the flow law is given in terms of inelastic strain rate rather than the inelastic strain increment used in time-independent plasticity. Thus, surfaces of constant inelastic strain rate or flow surfaces are to viscoplastic theories what yield surfaces are to classical plasticity. The purpose of the work reported herein was to validate experimental procedures for determining flow surfaces at elevated temperatures. Since experimental procedures for determining yield surfaces in axial/torsional stress space are well established, they were employed -- except inelastic strain rates were used rather than total inelastic strains. In yield-surface determinations, the use of small-offset definitions of yield minimizes the change of material state and allows multiple loadings to be applied to a single specimen. The key to the experiments reported here was precise, decoupled measurement of axial and torsional strain. With this requirement in mind, the performance of a high-temperature multi-axial extensometer was evaluated by comparing its results with strain gauge results at room temperature. Both the extensometer and strain gauges gave nearly identical yield surfaces (both initial and subsequent) for type 316 stainless steel (316 SS). The extensometer also successfully determined flow surfaces for 316 SS at 650 C. Furthermore, to judge the applicability of the technique for composite materials, yield surfaces were determined for unidirectional tungsten/Kanthal (Fe-Cr-Al).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaudoin, A. J.; Shade, P. A.; Schuren, J. C.
The plastic deformation of crystalline materials is usually modeled as smoothly progressing in space and time, yet modern studies show intermittency in the deformation dynamics of single-crystals arising from avalanche behavior of dislocation ensembles under uniform applied loads. However, once the prism of the microstructure in polycrystalline materials disperses and redistributes the load on a grain-by-grain basis, additional length and time scales are involved. Thus, the question is open as to how deformation intermittency manifests for the nonuniform grain-scale internal driving forces interacting with the finer-scale dislocation ensemble behavior. In this work we track the evolution of elastic strain withinmore » individual grains of a creep-loaded titanium alloy, revealing widely varying internal strains that fluctuate over time. Here, the findings provide direct evidence of how flow intermittency proceeds for an aggregate of ~700 grains while showing the influences of multiscale ensemble interactions and opening new avenues for advancing plasticity modeling.« less
Ductile Crack Initiation Criterion with Mismatched Weld Joints Under Dynamic Loading Conditions.
An, Gyubaek; Jeong, Se-Min; Park, Jeongung
2018-03-01
Brittle failure of high toughness steel structures tends to occur after ductile crack initiation/propagation. Damages to steel structures were reported in the Hanshin Great Earthquake. Several brittle failures were observed in beam-to-column connection zones with geometrical discontinuity. It is widely known that triaxial stresses accelerate the ductile fracture of steels. The study examined the effects of geometrical heterogeneity and strength mismatches (both of which elevate plastic constraints due to heterogeneous plastic straining) and loading rate on critical conditions initiating ductile fracture. This involved applying the two-parameter criterion (involving equivalent plastic strain and stress triaxiality) to estimate ductile cracking for strength mismatched specimens under static and dynamic tensile loading conditions. Ductile crack initiation testing was conducted under static and dynamic loading conditions using circumferentially notched specimens (Charpy type) with/without strength mismatches. The results indicated that the condition for ductile crack initiation using the two parameter criterion was a transferable criterion to evaluate ductile crack initiation independent of the existence of strength mismatches and loading rates.
Beaudoin, A. J.; Shade, P. A.; Schuren, J. C.; ...
2017-11-30
The plastic deformation of crystalline materials is usually modeled as smoothly progressing in space and time, yet modern studies show intermittency in the deformation dynamics of single-crystals arising from avalanche behavior of dislocation ensembles under uniform applied loads. However, once the prism of the microstructure in polycrystalline materials disperses and redistributes the load on a grain-by-grain basis, additional length and time scales are involved. Thus, the question is open as to how deformation intermittency manifests for the nonuniform grain-scale internal driving forces interacting with the finer-scale dislocation ensemble behavior. In this work we track the evolution of elastic strain withinmore » individual grains of a creep-loaded titanium alloy, revealing widely varying internal strains that fluctuate over time. Here, the findings provide direct evidence of how flow intermittency proceeds for an aggregate of ~700 grains while showing the influences of multiscale ensemble interactions and opening new avenues for advancing plasticity modeling.« less
Crystal plasticity modeling of irradiation growth in Zircaloy-2
NASA Astrophysics Data System (ADS)
Patra, Anirban; Tomé, Carlos N.; Golubov, Stanislav I.
2017-08-01
A physically based reaction-diffusion model is implemented in the visco-plastic self-consistent (VPSC) crystal plasticity framework to simulate irradiation growth in hcp Zr and its alloys. The reaction-diffusion model accounts for the defects produced by the cascade of displaced atoms, their diffusion to lattice sinks and the contribution to crystallographic strain at the level of single crystals. The VPSC framework accounts for intergranular interactions and irradiation creep, and calculates the strain in the polycrystalline ensemble. A novel scheme is proposed to model the simultaneous evolution of both, number density and radius, of irradiation-induced dislocation loops directly from experimental data of dislocation density evolution during irradiation. This framework is used to predict the irradiation growth behaviour of cold-worked Zircaloy-2 and trends compared to available experimental data. The role of internal stresses in inducing irradiation creep is discussed. Effects of grain size, texture and external stress on the coupled irradiation growth and creep behaviour are also studied and compared with available experimental data.
NASA Astrophysics Data System (ADS)
Sandfeld, Stefan; Budrikis, Zoe; Zapperi, Stefano; Fernandez Castellanos, David
2015-02-01
Crystalline plasticity is strongly interlinked with dislocation mechanics and nowadays is relatively well understood. Concepts and physical models of plastic deformation in amorphous materials on the other hand—where the concept of linear lattice defects is not applicable—still are lagging behind. We introduce an eigenstrain-based finite element lattice model for simulations of shear band formation and strain avalanches. Our model allows us to study the influence of surfaces and finite size effects on the statistics of avalanches. We find that even with relatively complex loading conditions and open boundary conditions, critical exponents describing avalanche statistics are unchanged, which validates the use of simpler scalar lattice-based models to study these phenomena.
NASA Technical Reports Server (NTRS)
Riff, R.; Carlson, R. L.; Simitses, G. J.
1985-01-01
The paper is concerned with the development of constitutive relations for large nonisothermal elastic-viscoplastic deformations for metals. The kinematics of elastic-plastic deformation, valid for finite strains and rotations, is presented. The resulting elastic-plastic uncoupled equations for the deformation rate combined with use of the incremental elasticity law permits a precise and purely deductive development of elastic-viscoplastic theory. It is shown that a phenomenological thermodynamic theory in which the elastic deformation and the temperature are state variables, including few internal variables, can be utilized to construct elastic-viscoplastic constitutive equations, which are appropriate for metals. The limiting case of inviscid plasticity is examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wronski, S., E-mail: wronski@fis.agh.edu.pl; Tarasiuk, J., E-mail: tarasiuk@ftj.agh.edu.pl; Bacroix, B., E-mail: brigitte.bacroix@univ-paris13.fr
The main purpose of the present work is to describe the qualitative and quantitative behaviours of aluminium during high strain plastic deformation and the effect of deformation on the subsequent recrystallization process. An Electron Backscatter Diffraction analysis of aluminium after the Equal channel angular pressing (ECAP) and recrystallization process is presented. In order to do this, several topological maps are measured for samples processed by 4 and 8 passes and recrystallized. The processing was conducted with route C. For all samples, distributions of grain size, misorientation, image quality factor (IQ) and texture were preceded and then analysed in some detail.more » - Highlights: ► Describe the microstructure fragmentation in aluminum. ► High strain plastic deformation and effect of deformation on recrystallization. ► The microstructure fragmentation and its influence on recrystallization. ► Image quality factor and misorientation characteristics are examined using EBSD.« less
Toth, Laszlo S.; Allen, Robert; Lapovok, Rimma; Molodov, Dmitri A.; Cherkaoui, Mohammed; Kadiri, Haitham El
2018-01-01
Modeling the effect of deformation twinning and the ensuing twin-twin- and slip-twin-induced hardening is a long-standing problem in computational mechanical metallurgy of materials that deform by both slip and twinning. In this work, we address this effect using the twin volume transfer method, which obviates the need of any cumbersome criterion for twin variant selection. Additionally, this method is capable of capturing, at the same time, secondary or double twinning, which is particularly important for modeling in large strain regimes. We validate our modeling methodology by simulating the behavior of an Fe-23Mn-1.5Al-0.3C twinning-induced plasticity (TWIP) steel under large strain conditions, experimentally achieved in this work through equal-channel angular pressing (ECAP) for up to two passes in a 90° die following route BC at 300 °C. Each possible twin variant, whether nucleating inside the parent grain or inside a potential primary twin variant was predefined in the initial list of orientations as possible grain of the polycrystal with zero initial volume fraction. A novelty of our approach is to take into account the loss of coherency of the twins with their parent matrix under large strains, obstructing progressively their further growth. This effect has been captured by attenuating growth rates of twins as a function of their rotation away from their perfect twin orientation, dubbed here as “disorientation” with respect to the mother grain’s lattice. The simulated textures and the hardening under tensile strain showed very good agreement with experimental characterization and mechanical testing results. Furthermore, upper-bound Taylor deformation was found to be operational for the TWIP steel deformation when all the above ingredients of twinning are captured, indicating that self-consistent schemes can be bypassed. PMID:29786663
NASA Astrophysics Data System (ADS)
Ji, L. K.; Xu, T.; Zhang, J. M.; Wang, H. T.; Tong, M. X.; Zhu, R. H.; Zhou, G. S.
2017-07-01
Tensile properties of the high-deformability dual-phase ferrite-bainite X70 pipeline steel have been investigated at room temperature under the strain rates of 2.5 × 10-5, 1.25 × 10-4, 2.5 × 10-3, and 1.25 × 10-2 s-1. The microstructures at different amount of plastic deformation were examined by using scanning and transmission electron microscopy. Generally, the ductility of typical body-centered cubic steels is reduced when its stain rate increases. However, we observed a different ductility dependence on strain rates in the dual-phase X70 pipeline steel. The uniform elongation (UEL%) and elongation to fracture (EL%) at the strain rate of 2.5 × 10-3 s-1 increase about 54 and 74%, respectively, compared to those at 2.5 × 10-5 s-1. The UEL% and EL% reach to their maximum at the strain rate of 2.5 × 10-3 s-1. This phenomenon was explained by the observed grain structures and dislocation configurations. Whether or not the ductility can be enhanced with increasing strain rates depends on the competition between the homogenization of plastic deformation among the microconstituents (ultra-fine ferrite grains, relatively coarse ferrite grains as well as bainite) and the progress of cracks formed as a consequence of localized inconsistent plastic deformation.
NASA Astrophysics Data System (ADS)
Önal, Orkun; Ozmenci, Cemre; Canadinc, Demircan
2014-09-01
A multi-scale modeling approach was applied to predict the impact response of a strain rate sensitive high-manganese austenitic steel. The roles of texture, geometry and strain rate sensitivity were successfully taken into account all at once by coupling crystal plasticity and finite element (FE) analysis. Specifically, crystal plasticity was utilized to obtain the multi-axial flow rule at different strain rates based on the experimental deformation response under uniaxial tensile loading. The equivalent stress - equivalent strain response was then incorporated into the FE model for the sake of a more representative hardening rule under impact loading. The current results demonstrate that reliable predictions can be obtained by proper coupling of crystal plasticity and FE analysis even if the experimental flow rule of the material is acquired under uniaxial loading and at moderate strain rates that are significantly slower than those attained during impact loading. Furthermore, the current findings also demonstrate the need for an experiment-based multi-scale modeling approach for the sake of reliable predictions of the impact response.
Modeling the impact behavior of high strength ceramics. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajendran, A.M.
1993-12-01
An advanced constitutive model is used to describe the shock and high strain rate behaviors of silicon carbide (SC), boron carbide B4C, and titanium diboride (TiB2) under impact loading conditions. The model's governing equations utilize a set of microphysically-based constitutive relationships to model the deformation and damage processes in a ceramic. The total strain is decomposed into elastic, plastic, and microcracking components. The plastic strain component was calculated using conventional viscoplastic equations. The strain components due to microcracking utilized relationships derived for a penny-shaped crack containing elastic solids. The main features of the model include degradation of strength and stiffnessmore » under both compressive and tensile loading conditions. When loaded above the Hugoniot elastic limit (HEL), the strength is limited by the strain rate dependent strength equation. However, below the HEL, the strength variation with respect to strain rate and pressure is modeled through microcracking relationships assuming no plastic flow. The ceramic model parameters were determined using a set of VISAR data from the plate impact experiments.« less
Classical and sequential limit analysis revisited
NASA Astrophysics Data System (ADS)
Leblond, Jean-Baptiste; Kondo, Djimédo; Morin, Léo; Remmal, Almahdi
2018-04-01
Classical limit analysis applies to ideal plastic materials, and within a linearized geometrical framework implying small displacements and strains. Sequential limit analysis was proposed as a heuristic extension to materials exhibiting strain hardening, and within a fully general geometrical framework involving large displacements and strains. The purpose of this paper is to study and clearly state the precise conditions permitting such an extension. This is done by comparing the evolution equations of the full elastic-plastic problem, the equations of classical limit analysis, and those of sequential limit analysis. The main conclusion is that, whereas classical limit analysis applies to materials exhibiting elasticity - in the absence of hardening and within a linearized geometrical framework -, sequential limit analysis, to be applicable, strictly prohibits the presence of elasticity - although it tolerates strain hardening and large displacements and strains. For a given mechanical situation, the relevance of sequential limit analysis therefore essentially depends upon the importance of the elastic-plastic coupling in the specific case considered.
Tension-compression asymmetry of a rolled Mg-Y-Nd alloy
NASA Astrophysics Data System (ADS)
Song, Bo; Pan, Hucheng; Ren, Weijie; Guo, Ning; Wu, Zehong; Xin, Renlong
2017-07-01
In this work, tension and compression deformation behaviors of rolled and aged Mg-Y-Nd alloys were investigated. The microstructure evolution and plastic deformation mechanism during tension and compression were analyzed by combined use of electron backscatter diffraction and a visco-plastic self-consistent crystal plasticity model. The results show that both rolled and aged Mg-Y-Nd sheets show an extremely low yield asymmetry. Elimination of yield asymmetry can be ascribed to the tilted basal texture and suppression of {10-12} twinning. The rolled sheet has almost no yield asymmetry, however exhibits a remarkable strain-hardening behavior asymmetry. Compressed sample shows lower initial strain hardening rate and keeps higher strain hardening rate at the later stage compared with tension. The strain-hardening asymmetry can be aggravated by aging at 280 C. It is considered the limited amount of twins in compression plays the critical role in the strain hardening asymmetry. Finally, the relevant mechanism was analyzed and discussed.
On Compression of a Heavy Compressible Layer of an Elastoplastic or Elastoviscoplastic Medium
NASA Astrophysics Data System (ADS)
Kovtanyuk, L. V.; Panchenko, G. L.
2017-11-01
The problem of deformation of a horizontal plane layer of a compressible material is solved in the framework of the theory of small strains. The upper boundary of the layer is under the action of shear and compressing loads, and the no-slip condition is satisfied on the lower boundary of the layer. The loads increase in absolute value with time, then become constant, and then decrease to zero.Various plasticity conditions are consideredwith regard to the material compressibility, namely, the Coulomb-Mohr plasticity condition, the von Mises-Schleicher plasticity condition, and the same conditions with the viscous properties of the material taken into account. To solve the system of partial differential equations for the components of irreversible strains, a finite-difference scheme is developed for a spatial domain increasing with time. The laws of motion of elastoplastic boundaries are presented, the stresses, strains, rates of strain, and displacements are calculated, and the residual stresses and strains are found.
FY16 Status Report on Development of Integrated EPP and SMT Design Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jetter, R. I.; Sham, T. -L.; Wang, Y.
2016-08-01
The goal of the Elastic-Perfectly Plastic (EPP) combined integrated creep-fatigue damage evaluation approach is to incorporate a Simplified Model Test (SMT) data based approach for creep-fatigue damage evaluation into the EPP methodology to avoid the separate evaluation of creep and fatigue damage and eliminate the requirement for stress classification in current methods; thus greatly simplifying evaluation of elevated temperature cyclic service. The EPP methodology is based on the idea that creep damage and strain accumulation can be bounded by a properly chosen “pseudo” yield strength used in an elastic-perfectly plastic analysis, thus avoiding the need for stress classification. The originalmore » SMT approach is based on the use of elastic analysis. The experimental data, cycles to failure, is correlated using the elastically calculated strain range in the test specimen and the corresponding component strain is also calculated elastically. The advantage of this approach is that it is no longer necessary to use the damage interaction, or D-diagram, because the damage due to the combined effects of creep and fatigue are accounted in the test data by means of a specimen that is designed to replicate or bound the stress and strain redistribution that occurs in actual components when loaded in the creep regime. The reference approach to combining the two methodologies and the corresponding uncertainties and validation plans are presented. Results from recent key feature tests are discussed to illustrate the applicability of the EPP methodology and the behavior of materials at elevated temperature when undergoing stress and strain redistribution due to plasticity and creep.« less
NASA Astrophysics Data System (ADS)
Tari, D. Ghaffari; Worswick, M. J.
2011-05-01
Increasing demand for lighter final products has created new opportunities for the application of new light weight materials. Due to high strength to density ratio and good magnetic resistance properties, magnesium alloys are good candidates to replace steel and aluminum for same application. However, limited numbers of active slip deformation mechanisms, result in a decreased formability at room temperature. Furthermore, wrought magnesium alloys have an initial crystallographic texture, remained from the prior rolling operations, which makes them highly anisotropic. In this paper, tensile tests are performed at room temperature and 200° C at different strain rates and orientations relative to the rolling direction, including rolling, 30°, 45°, 60° and transverse orientation. The strain rates adopted for these experiments varied from 0.001 to 1.0. The testing results show the effect of temperature on the strain rate sensitivity of AZ31 sheets. The extent of deformation is continuously recorded using two separate high temperature extensometers. The results of testing show an increase in the r-values with the plastic deformation. The strain rate sensitivity of AZ31 increased as the temperature was elevated. At higher strain rates the measured r-values are larger and the slope of its evolution with the plastic strain is steeper.
Significance of grain bondary sliding for localization of ductile deformation in rocks
NASA Astrophysics Data System (ADS)
Dimanov, A.; Bourcier, M.; Gaye, A.; Héripré, E.; Bornert, M.; Raphanel, J. L.; Gharbi, H.; Ludwig, W.
2016-12-01
Ductile strain localizes in mylonites, with microstructural signatures of several concomitant deformation mechanisms. Crystal plasticity dominates in volume, but grain boundary sliding and diffusive/solution mass transport act along interfaces. Because the chronology and the interactions between these mechanisms are unclear, inference of the overall rheology seems illusory. In order to clarify these aspects we underwent a multi-scale investigation of the ductile deformation of synthetic rock salt. The mechanical tests were combined with in-situ optical microscopy, scanning electron microscopy and X ray tomography (MCT). Digital image correlation (DIC) techniques allowed for measurements and characterization of the multiscale organization of 2D and 3D full strain fields. Macroscopic and mesoscopic shear bands appear at the sample and microstructure scales, respectively. Discrete slip bands within individual grains allowed for identification of dominant crystal plasticity and of the activated slip systems. Conversely, we clearly evidenced grain boundary sliding (GBS). DIC allowed the precise quantification of the relative contribution of each mechanism. GBS is continuously operational along with crystal slip plasticity, which indicates that in spite of being a secondary mechanism (< 5% contribution) it is a necessary one. Both the localized activity of secondary slip systems in the vicinity of interfaces and GBS are inferred to be necessary in order to accommodate for plastic strain incompatibilities between neighboring grains. More specifically, GBS accommodation mechanisms allow for relaxation of local stress enhancement and reduction of strain hardening. GBS appears to be directly involved in the formation of localized shear bands at the microstructural scale, but also to allow for the transmission of ductile strain throughout the whole specimen. Finite element (FE) modeling of the viscoplastic behavior of rock salt based on crystal plasticity alone is inadequate. If GBS is not considered the computed strain fields do not sufficiently match the experimentally measured ones. Our major conclusion about ductile deformation of rocks is that crystal plasticity and GBS are not really dissociable. They appear as co-operative mechanisms due to the pronounced plastic anisotropy of minerals.
Torquato, Libéria Souza; Mattos, Daniel; Matta, Bruna Palma; Bitner-Mathé, Blanche Christine
2014-12-01
Organ shape evolves through cross-generational changes in developmental patterns at cellular and/or tissue levels that ultimately alter tissue dimensions and final adult proportions. Here, we investigated the cellular basis of an artificially selected divergence in the outline shape of Drosophila melanogaster wings, by comparing flies with elongated or rounded wing shapes but with remarkably similar wing sizes. We also tested whether cellular plasticity in response to developmental temperature was altered by such selection. Results show that variation in cellular traits is associated with wing shape differences, and that cell number may play an important role in wing shape response to selection. Regarding the effects of developmental temperature, a size-related plastic response was observed, in that flies reared at 16 °C developed larger wings with larger and more numerous cells across all intervein regions relative to flies reared at 25 °C. Nevertheless, no conclusive indication of altered phenotypic plasticity was found between selection strains for any wing or cellular trait. We also described how cell area is distributed across different intervein regions. It follows that cell area tends to decrease along the anterior wing compartment and increase along the posterior one. Remarkably, such pattern was observed not only in the selected strains but also in the natural baseline population, suggesting that it might be canalized during development and was not altered by the intense program of artificial selection for divergent wing shapes.
NASA Astrophysics Data System (ADS)
Kabirian, Farhoud
Mechanical responses and texture evolution of extruded AZ31 Mg are measured under uniaxial (tension-compression) and multiaxial (free-end torsion) loadings. Compression loading is carried out in three different directions at temperature and strain rate ranges of 77-423 K and 10-4 -3000 s -1, respectively. Texture evolution at different intermediate strains reveals that crystal reorientation is exhausted at smaller strains with increase in strain rate while increase in temperature retards twinning. In addition to the well-known tension-compression yield asymmetry, a strong anisotropy in strain hardening response is observed. Strain hardening during the compression experiment is intensified with decreasing and increasing temperature and strain rate, respectively. This complex behavior is explained through understanding the roles of deformation mechanisms using the Visco-Plastic Self Consistent (VPSC) model. In order to calibrate the VPSC model's constants as accurate as possible, a vast number of mechanical responses including stress-strain curves in tension, compression in three directions, and free-end torsion, texture evolution at different strains, lateral strains of compression samples, twin volume fraction, and axial strain during the torsion experiment. Modeling results show that depending on the number of measurements used for calibration, roles of different mechanisms in plastic deformation change significantly. In addition, a precise definition of yield is established for the extruded AZ31magnesium alloy after it is subjected to different loading conditions (uniaxial to multiaxial) at four different plastic strains. The yield response is measured in ?-? space. Several yield criteria are studied to predict yield response of extruded AZ31. This study proposes an asymmetrical fourth-order polynomial yield function. Material constants in this model can be directly calculated using mechanical measurements. Convexity of the proposed model is discussed, and domains of constants where convexity holds are determined. Effects of grain refinement induced by Equal Channel Angular Pressing, ECAP, on mechanical responses and texture evolution are investigated. Yield strength in compression increases after ECAP, however, strain-hardening rate drops with number of ECAP passes while failure strain increases. Texture measurements reveal the higher propensity to twinning in the extruded material compared with ECAPed magnesium. Calculated Schmid factor maps are utilized to connect the observed mechanical responses to the texture.
NASA Astrophysics Data System (ADS)
Manigandan, K.; Srivatsan, T. S.; Tammana, Deepthi; Poorgangi, Behrang; Vasudevan, Vijay K.
2014-05-01
The focus of this technical manuscript is a record of the specific role of microstructure and test specimen orientation on cyclic stress response, cyclic strain resistance, and cyclic stress versus strain response, deformation and fracture behavior of alloy steel 300 M. The cyclic strain amplitude-controlled fatigue properties of this ultra-high strength alloy steel revealed a linear trend for the variation of log elastic strain amplitude with log reversals-to-failure, and log plastic strain amplitude with log reversals-to-failure for both longitudinal and transverse orientations. Test specimens of the longitudinal orientation showed only a marginal improvement over the transverse orientation at equivalent values of plastic strain amplitude. Cyclic stress response revealed a combination of initial hardening for the first few cycles followed by gradual softening for a large portion of fatigue life before culminating in rapid softening prior to catastrophic failure by fracture. Fracture characteristics of test specimens of this alloy steel were different at both the macroscopic and fine microscopic levels over the entire range of cyclic strain amplitudes examined. Both macroscopic and fine microscopic observations revealed fracture to be a combination of both brittle and ductile mechanisms. The underlying mechanisms governing stress response, deformation characteristics, fatigue life, and final fracture behavior are presented and discussed in light of the competing and mutually interactive influences of test specimen orientation, intrinsic microstructural effects, deformation characteristics of the microstructural constituents, cyclic strain amplitude, and response stress.
Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation
He, Jie; Kaban, Ivan; Mattern, Norbert; Song, Kaikai; Sun, Baoan; Zhao, Jiuzhou; Kim, Do Hyang; Eckert, Jürgen; Greer, A. Lindsay
2016-01-01
At room temperature, plastic flow of metallic glasses (MGs) is sharply localized in shear bands, which are a key feature of the plastic deformation in MGs. Despite their clear importance and decades of study, the conditions for formation of shear bands, their structural evolution and multiplication mechanism are still under debate. In this work, we investigate the local conditions at shear bands in new phase-separated bulk MGs containing glassy nanospheres and exhibiting exceptional plasticity under compression. It is found that the glassy nanospheres within the shear band dissolve through mechanical mixing driven by the sharp strain localization there, while those nearby in the matrix coarsen by Ostwald ripening due to the increased atomic mobility. The experimental evidence demonstrates that there exists an affected zone around the shear band. This zone may arise from low-strain plastic deformation in the matrix between the bands. These results suggest that measured property changes originate not only from the shear bands themselves, but also from the affected zones in the adjacent matrix. This work sheds light on direct visualization of deformation-related effects, in particular increased atomic mobility, in the region around shear bands. PMID:27181922
A unified dislocation density-dependent physical-based constitutive model for cold metal forming
NASA Astrophysics Data System (ADS)
Schacht, K.; Motaman, A. H.; Prahl, U.; Bleck, W.
2017-10-01
Dislocation-density-dependent physical-based constitutive models of metal plasticity while are computationally efficient and history-dependent, can accurately account for varying process parameters such as strain, strain rate and temperature; different loading modes such as continuous deformation, creep and relaxation; microscopic metallurgical processes; and varying chemical composition within an alloy family. Since these models are founded on essential phenomena dominating the deformation, they have a larger range of usability and validity. Also, they are suitable for manufacturing chain simulations since they can efficiently compute the cumulative effect of the various manufacturing processes by following the material state through the entire manufacturing chain and also interpass periods and give a realistic prediction of the material behavior and final product properties. In the physical-based constitutive model of cold metal plasticity introduced in this study, physical processes influencing cold and warm plastic deformation in polycrystalline metals are described using physical/metallurgical internal variables such as dislocation density and effective grain size. The evolution of these internal variables are calculated using adequate equations that describe the physical processes dominating the material behavior during cold plastic deformation. For validation, the model is numerically implemented in general implicit isotropic elasto-viscoplasticity algorithm as a user-defined material subroutine (UMAT) in ABAQUS/Standard and used for finite element simulation of upsetting tests and a complete cold forging cycle of case hardenable MnCr steel family.
The Time-Dependency of Deformation in Porous Carbonate Rocks
NASA Astrophysics Data System (ADS)
Kibikas, W. M.; Lisabeth, H. P.; Zhu, W.
2016-12-01
Porous carbonate rocks are natural reservoirs for freshwater and hydrocarbons. More recently, due to their potential for geothermal energy generation as well as carbon sequestration, there are renewed interests in better understanding of the deformation behavior of carbonate rocks. We conducted a series of deformation experiments to investigate the effects of strain rate and pore fluid chemistry on rock strength and transport properties of porous limestones. Indiana limestone samples with initial porosity of 16% are deformed at 25 °C under effective pressures of 10, 30, and 50 MPa. Under nominally dry conditions, the limestone samples are deformed under 3 different strain rates, 1.5 x 10-4 s-1, 1.5 x 10-5 s-1 and 1.5 x 10-6 s-1 respectively. The experimental results indicate that the mechanical behavior is both rate- and pressure-dependent. At low confining pressures, post-yielding deformation changes from predominantly strain softening to strain hardening as strain rate decreases. At high confining pressures, while all samples exhibit shear-enhanced compaction, decreasing strain rate leads to an increase in compaction. Slower strain rates enhance compaction at all confining pressure conditions. The rate-dependence of deformation behaviors of porous carbonate rocks at dry conditions indicates there is a strong visco-elastic coupling for the degradation of elastic modulus with increasing plastic deformation. In fluid saturated samples, inelastic strain of limestone is partitioned among low temperature plasticity, cataclasis and solution transport. Comparison of inelastic behaviors of samples deformed with distilled water and CO2-saturated aqueous solution as pore fluids provide experimental constraints on the relative activities of the various mechanisms. Detailed microstructural analysis is conducted to take into account the links between stress, microstructure and the inelastic behavior and failure mechanisms.
Procedures for experimental measurement and theoretical analysis of large plastic deformations
NASA Technical Reports Server (NTRS)
Morris, R. E.
1974-01-01
Theoretical equations are derived and analytical procedures are presented for the interpretation of experimental measurements of large plastic strains in the surface of a plate. Orthogonal gage lengths established on the metal surface are measured before and after deformation. The change in orthogonality after deformation is also measured. Equations yield the principal strains, deviatoric stresses in the absence of surface friction forces, true stresses if the stress normal to the surface is known, and the orientation angle between the deformed gage line and the principal stress-strain axes. Errors in the measurement of nominal strains greater than 3 percent are within engineering accuracy. Applications suggested for this strain measurement system include the large-strain-stress analysis of impact test models, burst tests of spherical or cylindrical pressure vessels, and to augment small-strain instrumentation tests where large strains are anticipated.
Some Recent Developments in the Endochronic Theory with Application to Cyclic Histories
NASA Technical Reports Server (NTRS)
Valanis, K. C.; Lee, C. F.
1983-01-01
Constitutive equations with only two easily determined material constants predict the stress (strain) response of normalized mild steel to a variety of general strain (stress) histories, without a need for special unloading-reloading rules. The equations are derived from the endochronic theory of plasticity of isotropic materials with an intrinsic time scale defined in the plastic strain space. Agreement between theoretical predictions and experiments are are excellent quantitatively in cases of various uniaxial constant amplitude histories, variable uniaxial strain amplitude histories and cyclic relaxation. The cyclic ratcheting phenomenon is predicted by the present theory.
NASA Technical Reports Server (NTRS)
Morris, R. E.
1973-01-01
An experimental plastic strain measurement system is presented for use on the surface of high velocity impact test models. The system was used on a hollow sphere tested in impact against a reinforced concrete block. True strains, deviatoric stresses, and true stresses were calculated from experimental measurements. The maximum strain measured in the model was small compared to the true failure strain obtained from static tensile tests of model material. This fact suggests that a much greater impact velocity would be required to cause failure of the model shell structure.
Intergrannular strain evolution in a zircaloy-4 alloy with Widmanstatten microstructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clausen, Bjorn; Vogel, Sven C; Garlea, Eena
2009-01-01
A Zircaloy-4 alloy with Widmanstatten-Basketweave microstructure and random texture has been used to study the deformation systems responsible for the polycrystalline plasticity at the grain level. The evolution of internal strain and bulk texture is investigated using neutron diffraction and an elasto-plastic self-consistent (EPSC) modeling scheme. The macroscopic stress-strain behavior and intergranular (hkil-specific) strain development, parallel and perpendicular to the loading direction, were measured in-situ during uniaxial tensile loading. Then, the EPSC model was employed to simulate the experimental results. This modeling scheme accounts for the thermal anisotropy; elastic-plastic properties of the constituent grains; and activation, reorientation, and stress relaxationmore » associated with twinning. The agreement between the experiment and the model will be discussed as well as the critical resolved shear stresses (CRSS) and the hardening coefficients obtained from the model.« less
NASA Astrophysics Data System (ADS)
Skripnyak, Vladimir; Skripnyak, Evgeniya; Skripnyak, Vladimir; Vaganova, Irina; Skripnyak, Nataliya
2013-06-01
Results of researches testify that a grain size have a strong influence on the mechanical behavior of metals and alloys. Ultrafine grained HCP and FCC metal alloys present higher values of the spall strength than a corresponding coarse grained counterparts. In the present study we investigate the effect of grain size distribution on the flow stress and strength under dynamic compression and tension of aluminium and magnesium alloys. Microstructure and grain size distribution in alloys were varied by carrying out severe plastic deformation during the multiple-pass equal channel angular pressing, cyclic constrained groove pressing, and surface mechanical attrition treatment. Tests were performed using a VHS-Instron servo-hydraulic machine. Ultra high speed camera Phantom V710 was used for photo registration of deformation and fracture of specimens in range of strain rates from 0,01 to 1000 1/s. In dynamic regime UFG alloys exhibit a stronger decrease in ductility compared to the coarse grained material. The plastic flow of UFG alloys with a bimodal grain size distribution was highly localized. Shear bands and shear crack nucleation and growth were recorded using high speed photography.
NASA Astrophysics Data System (ADS)
Sun, P. L.; Huang, S. J.
2017-07-01
Samples of commercially pure aluminum were subjected to equal channel angular extrusion (ECAE) using a 90° square die by routes A and C, where the specimens are not rotated and are rotated 180° between extrusion passes, respectively. Qualitatively similar anisotropic responses under compressive loading along the three orthogonal directions of the ECAE billet are seen in both cases. The plastic anisotropy is related to the effect of strain-path change, namely that different slip activities are induced for specimens loaded along different directions with respect to the last ECAE pass. The anisotropic mechanical behavior is more evident in the sample deformed by route C. Considering the shear patterns imposed in each ECAE route, the characteristics of dislocations introduced in ECAE should affect the mechanical response in post-ECAE loading. It is suggested that during the ECAE process, dislocations on fewer slip systems are activated in route C than in route A, and therefore, a stronger plastic anisotropy results in this sample. The as-ECAE specimens were also heat treated to achieve a recovery-annealed state. The plastic anisotropy persists in the annealed specimens to slightly reduced extent, which can be ascribed to partial annihilation of preexisting dislocations.
Rifle bullet penetration into ballistic gelatin.
Wen, Yaoke; Xu, Cheng; Jin, Yongxi; Batra, R C
2017-03-01
The penetration of a rifle bullet into a block of ballistic gelatin is experimentally and computationally studied for enhancing our understanding of the damage caused to human soft tissues. The gelatin is modeled as an isotropic and homogeneous elastic-plastic linearly strain-hardening material that obeys a polynomial equation of state. Effects of numerical uncertainties on penetration characteristics are found by repeating simulations with minute variations in the impact speed and the angle of attack. The temporary cavity formed in the gelatin and seen in pictures taken by two high speed cameras is found to compare well with the computed one. The computed time histories of the hydrostatic pressure at points situated 60 mm above the line of impact are found to have "two peaks", one due to the bullet impact and the other due to the bullet tumbling. Contours of the von Mises stress and of the effective plastic strain in the gelatin block imply that a very small region adjacent to the cavity surface is plastically deformed. The angle of attack is found to noticeably affect the penetration depth at the instant of the bullet tumbling through 90°. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rahman, Abdul Samad Abdul; Noor, Mohd Jamaludin Md; Ahmad, Juhaizad Bin; Sidek, Norbaya
2017-10-01
The concept of effective stress has been the principal concept in characterizing soil volume change behavior in soil mechanics, the settlement models developed using this concept have been empirical in nature. However, there remain certain unexplained soil volume change behaviors that cannot be explained using the effective stress concept, one such behaviour is the inundation settlement. Studies have begun to indicate the inevitable role of shear strength as a critical element to be incorporated in models to unravel the unexplained soil behaviours. One soil volume change model that applies the concept of effective stress and the shear strength interaction is the Rotational Multiple Yield Surface Framework (RMYSF) model. This model has been developed from the soil-strain behavior under anisotropic stress condition. Hence, the RMYSF actually measure the soil actual elasto-plastic response to stress rather than assuming it to be fully elastic or plastic as normally perceived by the industry. The frameworks measures the increase in the mobilize shear strength when the soil undergo anisotropic settlement.
The notion of a plastic material spin in atomistic simulations
NASA Astrophysics Data System (ADS)
Dickel, D.; Tenev, T. G.; Gullett, P.; Horstemeyer, M. F.
2016-12-01
A kinematic algorithm is proposed to extend existing constructions of strain tensors from atomistic data to decouple elastic and plastic contributions to the strain. Elastic and plastic deformation and ultimately the plastic spin, useful quantities in continuum mechanics and finite element simulations, are computed from the full, discrete deformation gradient and an algorithm for the local elastic deformation gradient. This elastic deformation gradient algorithm identifies a crystal type using bond angle analysis (Ackland and Jones 2006 Phys. Rev. B 73 054104) and further exploits the relationship between bond angles to determine the local deformation from an ideal crystal lattice. Full definitions of plastic deformation follow directly using a multiplicative decomposition of the deformation gradient. The results of molecular dynamics simulations of copper in simple shear and torsion are presented to demonstrate the ability of these new discrete measures to describe plastic material spin in atomistic simulation and to compare them with continuum theory.
Multiphase-field model of small strain elasto-plasticity according to the mechanical jump conditions
NASA Astrophysics Data System (ADS)
Herrmann, Christoph; Schoof, Ephraim; Schneider, Daniel; Schwab, Felix; Reiter, Andreas; Selzer, Michael; Nestler, Britta
2018-04-01
We introduce a small strain elasto-plastic multiphase-field model according to the mechanical jump conditions. A rate-independent J_2 -plasticity model with linear isotropic hardening and without kinematic hardening is applied exemplary. Generally, any physically nonlinear mechanical model is compatible with the subsequently presented procedure. In contrast to models with interpolated material parameters, the proposed model is able to apply different nonlinear mechanical constitutive equations for each phase separately. The Hadamard compatibility condition and the static force balance are employed as homogenization approaches to calculate the phase-inherent stresses and strains. Several verification cases are discussed. The applicability of the proposed model is demonstrated by simulations of the martensitic transformation and quantitative parameters.
Experimental evaluation criteria for constitutive models of time dependent cyclic plasticity
NASA Technical Reports Server (NTRS)
Martin, J. F.
1986-01-01
Notched members were tested at temperatures far above those recorded till now. Simulation of the notch root stress response was accomplished to establish notch stress-strain behavior. Cyclic stress-strain profiles across the net-section were recorded and on-line direct notch strain control was accomplished. Data are compared to three analysis techniques with good results. The objective of the study is to generate experimental data that can be used to evaluate the accuracy of constitutive models of time dependent cyclic plasticity.
NASA Astrophysics Data System (ADS)
Klecka, Michael A.
Case hardened materials, popularly used in many demanding engineering applications such as bearings, gears, and wear/impact surfaces, have high surface hardness and a gradient in material properties (hardness, yield strength, etc.) as a function of depth; therefore, they behave as plastically graded materials. In the current study, two different commercially available case carburized steels along with two through hardened steels are characterized to obtain relationships among the volume fraction of subsurface carbides, indentation hardness, elastic modulus, and yield strength as a function of depth. A variety of methods including microindentation, nanoindentation, ultrasonic measurements, compression testing, rule of mixtures, and upper and lower bound models are used to determine the relationships for elastic modulus and compare the experimental results with model predictions. In addition, the morphology, composition, and properties of the carbide particles are also determined. The gradient in hardness with depth in graded materials is commonly determined using microindentation on the cross-section of the material which contains the gradation in microstructure or composition. In the current study, a novel method is proposed to predict the hardness gradient profile using solely surface indentations at a range of loads. The method does not require the graded material to be sectioned, and has practical utility in the surface heat-treatment industry. For a material with a decreasing gradient in hardness, higher indent loads result in a lower measured hardness due to the influence of the softer subsurface layers. A power-law model is presented which relates the measured surface indentation hardness under increasing load to the subsurface gradient in hardness. A coordinated experimental and numerical study is presented to extract the constitutive response of graded materials, utilizing relationships between hardness, plastic deformation, and strain hardening response. The average plastic strain induced by an indent is shown to be an effective measure of the representative plastic strain, which is used in order to relate hardness to yield strength in both virgin and plastically deformed materials. It is shown that the two carburized steels contain gradients in yield strength, but constant strain hardening exponent with depth. The resulting model of material behavior is used to characterize the influence of specific gradients in material properties on the surface indentation behavior under increasing indentation loads. It is also shown that the response of the material is not greatly influenced by strain hardening exponent, while a gradient in strain hardening ability only has minimal impact. Gradients in elastic properties are also shown to have negligible influence for a fixed gradient in hardness. The depth of subsurface plastic deformation is shown to increase with sharper gradients in hardness, but is not altered by gradients in elastic properties. The proposed approach is not specific to case hardened materials and can be used to determine the subsurface hardness gradient for any graded material.
NASA Astrophysics Data System (ADS)
Qin, Guoxuan; Yuan, Hao-Chih; Celler, George K.; Ma, Jianguo; Ma, Zhenqiang
2011-10-01
This letter presents radio frequency (RF) characterization of flexible microwave switches using single-crystal silicon nanomembranes (SiNMs) on plastic substrate under various uniaxial mechanical tensile bending strains. The flexible switches shows significant/negligible performance enhancement on strains under on/off states from dc to 10 GHz. Furthermore, an RF/microwave strain equivalent circuit model is developed and reveals the most influential factors, and un-proportional device parameters change with bending strains. The study demonstrates that flexible microwave single-crystal SiNM switches, as a simple circuit example towards the goal of flexible monolithic microwave integrated circuits, can be properly operated and modeled under mechanical bending conditions.
Strain effects on the work function of an organic semiconductor
Wu, Yanfei; Chew, Annabel R.; Rojas, Geoffrey A.; Sini, Gjergji; Haugstad, Greg; Belianinov, Alex; Kalinin, Sergei V.; Li, Hong; Risko, Chad; Brédas, Jean-Luc; Salleo, Alberto; Frisbie, C. Daniel
2016-01-01
Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively with density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at ∼0.05% tensile strain along the rubrene π-stacking direction. The results provide the first concrete link between mechanical strain and WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder in soft organic electronic materials. PMID:26831362
Strain effects on the work function of an organic semiconductor
NASA Astrophysics Data System (ADS)
Wu, Yanfei; Chew, Annabel R.; Rojas, Geoffrey A.; Sini, Gjergji; Haugstad, Greg; Belianinov, Alex; Kalinin, Sergei V.; Li, Hong; Risko, Chad; Brédas, Jean-Luc; Salleo, Alberto; Frisbie, C. Daniel
2016-02-01
Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively with density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at ~0.05% tensile strain along the rubrene π-stacking direction. The results provide the first concrete link between mechanical strain and WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder in soft organic electronic materials.
Strain effects on the work function of an organic semiconductor.
Wu, Yanfei; Chew, Annabel R; Rojas, Geoffrey A; Sini, Gjergji; Haugstad, Greg; Belianinov, Alex; Kalinin, Sergei V; Li, Hong; Risko, Chad; Brédas, Jean-Luc; Salleo, Alberto; Frisbie, C Daniel
2016-02-01
Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively with density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at ∼0.05% tensile strain along the rubrene π-stacking direction. The results provide the first concrete link between mechanical strain and WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder in soft organic electronic materials.
Strain effects on the work function of an organic semiconductor
Wu, Yanfei; Chew, Annabel R.; Rojas, Geoffrey A.; ...
2016-02-01
Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding the electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively withmore » density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at ~0.05% tensile strain along the rubrene -stacking direction. The results provide the first concrete link between mechanical strain and the WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder (charge traps) in soft organic electronic materials.« less
Dynamic fields near a crack tip growing in an elastic-perfectly-plastic solid
NASA Technical Reports Server (NTRS)
Nemat-Nasser, S.; Gao, Y. C.
1983-01-01
A full asymptotic solution is presented for the fields in the neighborhood of the tip of a steadily advancing crack in an incompressible elastic-perfectly-plastic solid. There are four findings for mode I crack growth in the plane strain condition. The first is that the entire crack tip in steady crack growth is surrounded by a plastic region and that no elastic unloading is predicted by the complete dynamic asymptotic solution. The second is that, in contrast to the quasi-static solution, the dynamic solution yields strain fields with a logarithmic singularity everywhere near the crack tip. The third is that whereas the stress field varies throughout the entire crack tip neighborhood, it does not exhibit behavior that can be approximated by a constant field followed by an essentially centered-fan field and then by another constant field, especially for small crack growth speeds. The fourth finding is that there are two shock fronts emanating from the crack tip across which certain stress and strain components undergo jump discontinuities. After reviewing the mode III steady-state crack growth, it is concluded that ductile fracture criteria for nonstationary cracks must be based on solutions that include the inertia effects and that for this purpose quasi-static solutions may be inadequate.
On localization and void coalescence as a precursor to ductile fracture.
Tekoğlu, C; Hutchinson, J W; Pardoen, T
2015-03-28
Two modes of plastic flow localization commonly occur in the ductile fracture of structural metals undergoing damage and failure by the mechanism involving void nucleation, growth and coalescence. The first mode consists of a macroscopic localization, usually linked to the softening effect of void nucleation and growth, in either a normal band or a shear band where the thickness of the band is comparable to void spacing. The second mode is coalescence with plastic strain localizing to the ligaments between voids by an internal necking process. The ductility of a material is tied to the strain at macroscopic localization, as this marks the limit of uniform straining at the macroscopic scale. The question addressed is whether macroscopic localization occurs prior to void coalescence or whether the two occur simultaneously. The relation between these two modes of localization is studied quantitatively in this paper using a three-dimensional elastic-plastic computational model representing a doubly periodic array of voids within a band confined between two semi-infinite outer blocks of the same material but without voids. At sufficiently high stress triaxiality, a clear separation exists between the two modes of localization. At lower stress triaxialities, the model predicts that the onset of macroscopic localization and coalescence occur simultaneously. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Deformation-driven diffusion and plastic flow in amorphous granular pillars.
Li, Wenbin; Rieser, Jennifer M; Liu, Andrea J; Durian, Douglas J; Li, Ju
2015-06-01
We report a combined experimental and simulation study of deformation-induced diffusion in compacted quasi-two-dimensional amorphous granular pillars, in which thermal fluctuations play a negligible role. The pillars, consisting of bidisperse cylindrical acetal plastic particles standing upright on a substrate, are deformed uniaxially and quasistatically by a rigid bar moving at a constant speed. The plastic flow and particle rearrangements in the pillars are characterized by computing the best-fit affine transformation strain and nonaffine displacement associated with each particle between two stages of deformation. The nonaffine displacement exhibits exponential crossover from ballistic to diffusive behavior with respect to the cumulative deviatoric strain, indicating that in athermal granular packings, the cumulative deviatoric strain plays the role of time in thermal systems and drives effective particle diffusion. We further study the size-dependent deformation of the granular pillars by simulation, and find that different-sized pillars follow self-similar shape evolution during deformation. In addition, the yield stress of the pillars increases linearly with pillar size. Formation of transient shear lines in the pillars during deformation becomes more evident as pillar size increases. The width of these elementary shear bands is about twice the diameter of a particle, and does not vary with pillar size.
Finite element solutions for crack-tip behavior in small-scale yielding
NASA Technical Reports Server (NTRS)
Tracey, D. M.
1976-01-01
The subject considered is the stress and deformation fields in a cracked elastic-plastic power law hardening material under plane strain tensile loading. An incremental plasticity finite element formulation is developed for accurate analysis of the complete field problem including the extensively deformed near tip region, the elastic-plastic region, and the remote elastic region. The formulation has general applicability and was used to solve the small scale yielding problem for a set of material hardening exponents. Distributions of stress, strain, and crack opening displacement at the crack tip and through the elastic-plastic zone are presented as a function of the elastic stress intensity factor and material properties.
NASA Astrophysics Data System (ADS)
Kuhn, Matthew R.; Daouadji, Ali
2018-05-01
The paper addresses a common assumption of elastoplastic modeling: that the recoverable, elastic strain increment is unaffected by alterations of the elastic moduli that accompany loading. This assumption is found to be false for a granular material, and discrete element (DEM) simulations demonstrate that granular materials are coupled materials at both micro- and macro-scales. Elasto-plastic coupling at the macro-scale is placed in the context of thermomechanics framework of Tomasz Hueckel and Hans Ziegler, in which the elastic moduli are altered by irreversible processes during loading. This complex behavior is explored for multi-directional loading probes that follow an initial monotonic loading. An advanced DEM model is used in the study, with non-convex non-spherical particles and two different contact models: a conventional linear-frictional model and an exact implementation of the Hertz-like Cattaneo-Mindlin model. Orthotropic true-triaxial probes were used in the study (i.e., no direct shear strain), with tiny strain increments of 2 ×10-6 . At the micro-scale, contact movements were monitored during small increments of loading and load-reversal, and results show that these movements are not reversed by a reversal of strain direction, and some contacts that were sliding during a loading increment continue to slide during reversal. The probes show that the coupled part of a strain increment, the difference between the recoverable (elastic) increment and its reversible part, must be considered when partitioning strain increments into elastic and plastic parts. Small increments of irreversible (and plastic) strain and contact slipping and frictional dissipation occur for all directions of loading, and an elastic domain, if it exists at all, is smaller than the strain increment used in the simulations.
Effect of anisotropy on mechanical properties of Ti-6Al-4V in superplastic region
NASA Astrophysics Data System (ADS)
Wahed, MA; Gupta, AK; Singh, SK; Kotkunde, N.
2018-04-01
This paper presents an experimental investigation on the flow stress behaviour of Ti-6Al-4V alloy at elevated temperatures and very low strain rate. Though Ti-6Al-4V alloy is very hard to deform at room temperature, having only about 16 % elongation, it exhibits super-plasticity at elevated temperatures. To investigate this, the tensile tests were conducted from 700°C to 900°C temperatures at an interval of 50°C and at a very low strain rate 0.0001/s along three different directions: rolling direction, 45° to rolling direction and transverse direction. The experimental study shows more than 50% elongation in all the cases and particularly more than 250% elongation at 0.0001 / s strain rate and at 750°C to 900°C temperature in all directions, which is an indication of super-plasticity in the material. This is also corroborated by the microstructural study of the fractured specimens.
NASA Astrophysics Data System (ADS)
Jain, Rahul; Pal, Surjya Kanta; Singh, Shiv Brat
2017-02-01
Friction Stir Welding (FSW) is a solid state joining process and is handy for welding aluminum alloys. Finite Element Method (FEM) is an important tool to predict state variables of the process but numerical simulation of FSW is highly complex due to non-linear contact interactions between tool and work piece and interdependency of displacement and temperature. In the present work, a three dimensional coupled thermo-mechanical method based on Lagrangian implicit method is proposed to study the thermal history, strain distribution and thermo-mechanical process in butt welding of Aluminum alloy 2024 using DEFORM-3D software. Workpiece is defined as rigid-visco plastic material and sticking condition between tool and work piece is defined. Adaptive re-meshing is used to tackle high mesh distortion. Effect of tool rotational and welding speed on plastic strain is studied and insight is given on asymmetric nature of FSW process. Temperature distribution on the workpiece and tool is predicted and maximum temperature is found in workpiece top surface.
New Modelling of Localized Necking in Sheet Metal Stretching
NASA Astrophysics Data System (ADS)
Bressan, José Divo
2011-01-01
Present work examines a new mathematical model to predict the onset of localized necking in the industrial processes of sheet metal forming such as biaxial stretching. Sheet metal formability is usually assessed experimentally by testing such as the Nakajima test to obtain the Forming Limit Curve, FLC, which is an essential material parameter necessary to numerical simulations by FEM. The Forming Limit Diagram or "Forming Principal Strain Map" shows the experimental FLC which is the plot of principal true strains in the sheet metal surface, ɛ1 and ɛ2, occurring at critical points obtained in laboratory formability tests or in the fabrication process. Two types of undesirable rupture mechanisms can occur in sheet metal forming products: localized necking and shear induced fracture. Therefore, two kinds of limit strain curves can be plotted: the local necking limit curve FLC-N and the shear fracture limit curve FLC-S. Localized necking is theoretically anticipated to initiate at a thickness defect ƒin = hib/hia inside the grooved sheet thickness hia, but only at the instability point of maximum load. The inception of grooving on the sheet surface evolves from instability point to localized necking and final rupture, during further sheet metal straining. Work hardening law is defined for a strain and strain rate material by the effective stress σ¯ = σo(1+βɛ¯)n???ɛM. The average experimental hardening law curve for tensile tests at 0°, 45° and 90°, assuming isotropic plasticity, was used to analyze the plasticity behavior during the biaxial stretching of sheet metals. Theoretical predicted curves of local necking limits are plotted in the positive quadrant of FPSM for different defect values ƒin and plasticity parameters. Limit strains are obtained from a software developed by the author. Some experimental results of forming limit curve obtained from experiments for IF steel sheets are compared with the theoretical predicted curves: the correlation is good.
Modeling Near-Crack-Tip Plasticity from Nano- to Micro-Scales
NASA Technical Reports Server (NTRS)
Glaessgen, Edward H.; Saether, Erik; Hochhalter, Jake D.; Yamakov, Vesselin I.
2010-01-01
Several efforts that are aimed at understanding the plastic deformation mechanisms related to crack propagation at the nano-, meso- and micro-length scales including atomistic simulation, discrete dislocation plasticity, strain gradient plasticity and crystal plasticity are discussed. The paper focuses on discussion of newly developed methodologies and their application to understanding damage processes in aluminum and its alloys. Examination of plastic mechanisms as a function of increasing length scale illustrates increasingly complex phenomena governing plasticity
Application of Chaboche Model in Rocket Thrust Chamber Analysis
NASA Astrophysics Data System (ADS)
Asraff, Ahmedul Kabir; Suresh Babu, Sheela; Babu, Aneena; Eapen, Reeba
2017-06-01
Liquid Propellant Rocket Engines are commonly used in space technology. Thrust chamber is one of the most important subsystems of a rocket engine. The thrust chamber generates propulsive thrust force for flight of the rocket by ejection of combustion products at supersonic speeds. Often double walled construction is employed for these chambers. The thrust chamber investigated here has its hot inner wall fabricated out of a high thermal conductive material like copper alloy and outer wall made of stainless steel. Inner wall is subjected to high thermal and pressure loads during operation of engine due to which it will be in the plastic regime. Main reasons for the failure of such chambers are fatigue in the plastic range (called as low cycle fatigue since the number of cycles to failure will be low in plastic range), creep and thermal ratcheting. Elasto plastic material models are required to simulate the above effects through a cyclic stress analysis. This paper gives the details of cyclic stress analysis carried out for the thrust chamber using different plasticity model combinations available in ANSYS (Version 15) FE code. The best model among the above is applied in the cyclic stress analysis of two dimensional (plane strain and axisymmetric) and three dimensional finite element models of thrust chamber. Cyclic life of the chamber is calculated from stress-strain graph obtained from above analyses.
NASA Astrophysics Data System (ADS)
Terekhina, A. I.; Plekhov, O. A.; Kostina, A. A.; Susmel, L.
2017-06-01
The problem of determining the strength of engineering structures, considering the effects of the non-local fracture in the area of stress concentrators is a great scientific and industrial interest. This work is aimed on modification of the classical theory of critical distance that is known as a method of failure prediction based on linear-elastic analysis in case of elasto-plastic material behaviour to improve the accuracy of estimation of lifetime of notched components. Accounting plasticity has been implemented with the use of the Simplified Johnson-Cook model. Mechanical tests were carried out using a 300 kN electromechanical testing machine Shimadzu AG-X Plus. The cylindrical un-notched specimens and specimens with stress concentrators of titanium alloy Grade2 were tested under tensile loading with different grippers travel speed, which ensured several orders of strain rate. The results of elasto-plastic analyses of stress distributions near a wide variety of notches are presented. The results showed that the use of the modification of the TCD based on elasto-plastic analysis gives us estimates falling within an error interval of ±5-10%, that more accurate predictions than the linear elastic TCD solution. The use of an improved description of the stress-strain state at the notch tip allows introducing the critical distances as a material parameter.
NASA Technical Reports Server (NTRS)
Atli, K. C.; Karaman, I.; Noebe, R. D.; Maier, H. J.
2010-01-01
We compare the effectiveness of a conventional thermomechanical training procedure and severe plastic deformation via equal channel angular extrusion to achieve improved functional stability in a Ti50.5Ni24.5Pd25 high-temperature shape memory alloy. Thermomechanical testing indicates that both methods result in enhanced shape memory characteristics, such as reduced irrecoverable strain and thermal hysteresis. The mechanisms responsible for the improvements are discussed in light of microstructural findings from transmission electron microscopy.
On the effectiveness of surface severe plastic deformation by shot peening at cryogenic temperature
NASA Astrophysics Data System (ADS)
Novelli, M.; Fundenberger, J.-J.; Bocher, P.; Grosdidier, T.
2016-12-01
The effect of cryogenic temperature (CT) on the graded microstructures obtained by severe shot peening using surface mechanical attrition treatment (SMAT) was investigated for two austenitic steels that used different mechanisms for assisting plastic deformation. For the metastable 304L steel, the depth of the hardened region increases because CT promotes the formation of strain induced martensite. Comparatively, for the 310S steel that remained austenitic, the size of the subsurface affected region decreases because of the improved strength of the material at CT but the fine twinned nanostructures results in significant top surface hardening.
2009-09-01
Sec. 2, while the latter ase—which implicitly includes the effects of image forces of efects in neighboring volume elements—may be more practical rom...versetzungen und eigenspannungen,” Arch . Ration. Mech. Anal., 4, pp. 273–334. 25 Lee, E. H., 1969, “Elastic-Plastic Deformation at Finite Strains,” ASME J...Rev., 73, pp. 373–382. 27 Kroner, E., and Seeger, A., 1959, “Nicht-Lineare Elastizitatstheorie der Verset- zungen und Eigenspannungen,” Arch . Ration
Survey and Assessment of Fragmentation Materials/Concepts
1976-06-01
both one and two-demensional wave propagation codes (KO and HEMP ). Actual tests were used to show fragmentation details such as size, shape and...Characteristics of HE Shell. Part 1", WAL R-763/891-1, April 1956, (U). 29. C. Zener and J. H. Hollomon, "Effect of Strain Rate Upon Plastic Flow...Material Program", Internal Report, April 1966, (U). for T. A. Read, H. Markus, and J. M. McCaughey, " Plastic Flow and Rupture of Steel at High
Modeling plasticity by non-continuous deformation
NASA Astrophysics Data System (ADS)
Ben-Shmuel, Yaron; Altus, Eli
2017-10-01
Plasticity and failure theories are still subjects of intense research. Engineering constitutive models on the macroscale which are based on micro characteristics are very much in need. This study is motivated by the observation that continuum assumptions in plasticity in which neighbour material elements are inseparable at all-time are physically impossible, since local detachments, slips and neighbour switching must operate, i.e. non-continuous deformation. Material microstructure is modelled herein by a set of point elements (particles) interacting with their neighbours. Each particle can detach from and/or attach with its neighbours during deformation. Simulations on two- dimensional configurations subjected to uniaxial compression cycle are conducted. Stochastic heterogeneity is controlled by a single "disorder" parameter. It was found that (a) macro response resembles typical elasto-plastic behaviour; (b) plastic energy is proportional to the number of detachments; (c) residual plastic strain is proportional to the number of attachments, and (d) volume is preserved, which is consistent with macro plastic deformation. Rigid body displacements of local groups of elements are also observed. Higher disorder decreases the macro elastic moduli and increases plastic energy. Evolution of anisotropic effects is obtained with no additional parameters.
Modelling highly deformable metal extrusion using SPH
NASA Astrophysics Data System (ADS)
Prakash, Mahesh; Cleary, Paul W.
2015-05-01
Computational modelling is often used to reduce trial extrusions through accurate defect prediction. Traditionally, metal extrusion is modelled using mesh based finite element methods. However, large plastic deformations can lead to heavy re-meshing and numerical diffusion. Here we use the mesh-less smoothed particle hydrodynamics method since it allows simulation of large deformations without re-meshing and the tracking of history dependent properties such as plastic strain making it suitable for defect prediction. The variation in plastic strain and deformation for aluminium alloy in a cylindrical 3D geometry with extrusion ratio and die angle is evaluated. The extrusion process is found to have three distinct phases consisting of an initial sharp rise in extrusion force, a steady phase requiring constant force and terminating in a sharp decline in force as metal is completely extruded. Deformation and plastic strain increased significantly with extrusion ratio but only moderately with die angle. Extrusion force increased by 150 % as the extrusion ratio increased from 2:1 to 4:1 but had only a marginal change with die angle. A low strain zone in the centre of the extruded product was found to be a function of extrusion ratio but was persistent and did not vary with die angle. Simulation of a complex 3D building industry component showed large variations in plastic strain along the length of the product at two scales. These were due to change in metal behaviour as extrusion progressed from phase 1 to phase 2. A stagnation zone at the back of the die was predicted that could lead to the "funnel" or "pipe" defect.
Quantitative Analyses of the Modes of Deformation in Engineering Thermoplastics
NASA Astrophysics Data System (ADS)
Landes, B. G.; Bubeck, R. A.; Scott, R. L.; Heaney, M. D.
1998-03-01
Synchrotron-based real-time small-angle X-ray scattering (RTSAXS) studies have been performed on rubber-toughened engineering thermoplastics with amorphous and semi-crystalline matrices. Scattering patterns are measured at successive time intervals of 3 ms were analyzed to determine the plastic strain due to crazing. Simultaneous measurements of the absorption of the primary beam by the sample permits the total plastic strain to be concurrently computed. The plastic strain due to other deformation mechanisms (e.g., particle cavitation and macroscopic shear yield can be determined from the difference between the total and craze-derived plastic strains. The contribution from macroscopic shear deformation can be determined from video-based optical data measured simultaneously with the X-ray data. These types of time-resolved experiments result in the generation of prodigious quantities of data, the analysis of which can considerably delay the determination of key results. A newly developed software package that runs in WINDOWSa 95 permits the rapid analysis of the relative contributions of the deformation modes from these time-resolved experiments. Examples of using these techniques on ABS-type and QUESTRAa syndiotactic polystyrene type engineering resins will be given.
Petrini, Lorenza; Bertini, Alessandro; Berti, Francesca; Pennati, Giancarlo; Migliavacca, Francesco
2017-05-01
Nickel-titanium alloys are commonly adopted for producing cardiovascular minimally invasive devices such as self-expandable stents, aortic valves and stent-grafts. These devices are subjected to cyclic loads (due to blood pulsatility, leg or heart movements), that can induce fatigue fracture, and may also be subjected to very large deformations (due to crimping procedure, a tortuous physiological path or overloads), that can induce material yield. Recently, the authors developed a new constitutive model that considers inelastic strains due to not-completed reverse phase transformation (not all the stress-induced martensite turns back to austenite) or/and plasticity and their accumulation during cyclic loads. In this article, the model is implemented in the finite element code ABAQUS/Standard and it is used to investigate the effects of inelastic strain accumulation on endovascular nickel-titanium devices. In particular, the behavior of a transcatheter aortic valve is studied considering the following steps: (1) crimping, (2) expansion in a tube resembling a durability test chamber and (3) cyclic loads due to pressure variation applied on the inner surface of the tube. The analyses are performed twice, activating and not activating that part of the new model which describes the development of irreversible strain. From the results, it is interesting to note that plasticity has a very significant effect on the local material response, inducing stress modification from compression to tension. However, permanent deformations are concentrated in few zones of the stent frame and their presence does not affect the global behavior of the device that maintains its capability of recovering the original shape. In conclusion, this work suggests that at least for cardiovascular devices where the crimping is high (local strain may reach values of 8%-9%), taking into account inelastic effects due to plasticity and not-completed reverse phase transformation can be important, and hence using a suitable constitutive model is recommended.
NASA Astrophysics Data System (ADS)
Myhr, Ole Runar; Hopperstad, Odd Sture; Børvik, Tore
2018-05-01
In this study, a combined precipitation, yield strength, and work hardening model for Al-Mg-Si alloys known as NaMo has been further developed to include the effects of strain rate and temperature on the resulting stress-strain behavior. The extension of the model is based on a comprehensive experimental database, where thermomechanical data for three different Al-Mg-Si alloys are available. In the tests, the temperature was varied between 20 °C and 350 °C with strain rates ranging from 10-6 to 750 s-1 using ordinary tension tests for low strain rates and a split-Hopkinson tension bar system for high strain rates, respectively. This large span in temperatures and strain rates covers a broad range of industrial relevant problems from creep to impact loading. Based on the experimental data, a procedure for calibrating the different physical parameters of the model has been developed, starting with the simplest case of a stable precipitate structure and small plastic strains, from which basic kinetic data for obstacle limited dislocation glide were extracted. For larger strains, when work hardening becomes significant, the dynamic recovery was linked to the Zener-Hollomon parameter, again using a stable precipitate structure as a basis for calibration. Finally, the complex situation of concurrent work hardening and dynamic evolution of the precipitate structure was analyzed using a stepwise numerical solution algorithm where parameters representing the instantaneous state of the structure were used to calculate the corresponding instantaneous yield strength and work hardening rate. The model was demonstrated to exhibit a high degree of predictive power as documented by a good agreement between predictions and measurements, and it is deemed well suited for simulations of thermomechanical processing of Al-Mg-Si alloys where plastic deformation is carried out at various strain rates and temperatures.
NASA Astrophysics Data System (ADS)
Chen, Ran; Tonon, Fulvio
2011-03-01
The paper presents a closed-form solution for the convergence curve of a circular tunnel in an elasto-brittle-plastic rock mass with both the Hoek-Brown and generalized Hoek-Brown failure criteria, and a linear flow rule, i.e., the ratio between the minor and major plastic strain increments is constant. The improvement over the original solution of Brown et al. (J Geotech Eng ASCE 109(1):15-39, 1983) consists of taking into account the elastic strain variation in the plastic annulus, which was assumed to be fixed in the original solution by Brown et al. The improvement over Carranza-Torres' solution (Int J Rock Mech Min Sci 41(Suppl 1):629-639, 2004) consists of providing a closed-form solution, rather than resorting to numerical integration of an ordinary differential equation. The presented solution, by rigorously following the theory of plasticity, takes into account that the elastic strain components change with radial and circumferential stress changes within the plastic annulus. For the original Hoek-Brown failure criterion, disregarding the elastic strain change leads to underestimate the convergence by up to 55%. For a rock mass failing according to the generalized Hoek-Brown failure criterion, using the original failure criterion leads to a high probability (97%) of underestimating the convergence by up to 100%. As a consequence, the onset or degree of squeezing may be underestimated, and the loading on the support/reinforcement calculated with the convergence/confinement method may be largely underestimated.
Development of Craze and Impact Resistance in Glazing Plastics by Multiaxial Stretching
NASA Technical Reports Server (NTRS)
Kline, G M; Wolock, I; Axilrod, B M; Sherman, M A; George, D A; Cohen, V
1956-01-01
The loss of strength of cast polymethyl methacrylate plastic as a result of crazing is of considerable importance to the aircraft industry. Because of the critical need for basic information on the nature of crazing and the effects of various treatments and environmental conditions on its incidence and magnitude, an investigation of this phenomenon was undertaken. The following factors were examined: (1) the effect of stress-solvent crazing on tensile strength of polymethyl methacrylate; (2) the critical stress and strain for onset of crazing at various temperatures; (3) the effect of molecular weight on crazing; and (4) the effect of multiaxial stretching on crazing of polymethyl methacrylate and other acrylic glazing materials.
Three-dimensional elastic-plastic finite-element analysis of fatigue crack propagation
NASA Technical Reports Server (NTRS)
Goglia, G. L.; Chermahini, R. G.
1985-01-01
Fatigue cracks are a major problem in designing structures subjected to cyclic loading. Cracks frequently occur in structures such as aircraft and spacecraft. The inspection intervals of many aircraft structures are based on crack-propagation lives. Therefore, improved prediction of propagation lives under flight-load conditions (variable-amplitude loading) are needed to provide more realistic design criteria for these structures. The main thrust was to develop a three-dimensional, nonlinear, elastic-plastic, finite element program capable of extending a crack and changing boundary conditions for the model under consideration. The finite-element model is composed of 8-noded (linear-strain) isoparametric elements. In the analysis, the material is assumed to be elastic-perfectly plastic. The cycle stress-strain curve for the material is shown Zienkiewicz's initial-stress method, von Mises's yield criterion, and Drucker's normality condition under small-strain assumptions are used to account for plasticity. The three-dimensional analysis is capable of extending the crack and changing boundary conditions under cyclic loading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyazgin, Alexander, E-mail: lyazgin@list.ru; Shugurov, Artur, E-mail: shugurov@ispms.tsc.ru; Sergeev, Viktor, E-mail: retc@ispms.tsc.ru
The effect of bombardment of the Ni-B sublayer by Zr ion beams on the surface morphology and tribomechanical properties of Au-Ni coatings was investigated. It was found that the treatment has no significant effect on the surface roughness and grain size of the Au-Ni coatings, while it provides essential reducing of their friction coefficient and improvement of wear resistance. It is shown that increased wear resistance of these coatings was caused by their strain hardening resulted from localization of plastic strain. The optimal Zr fluence were determined that provide the maximum reduction of linear wear of the coatings.
NASA Technical Reports Server (NTRS)
Monroe, J. A.; Karaman, I.; Lagoudas, D. C.; Bigelow, G.; Noebe, R. D.; Padula, S., II
2011-01-01
When Ni(29.5)Ti(50.5)Pd30 shape memory alloy is thermally cycled under stress, significant strain can accumulate due to elasticity, remnant oriented martensite and plasticity. The strain due to remnant martensite can be recovered by further thermal cycling under 0 MPa until the original transformation-induced volume change and martensite coefficient of thermal expansion are obtained. Using this technique, it was determined that the 8.15% total accumulated strain after cycling under 200 MPa consisted of 0.38%, 3.97% and 3.87% for elasticity, remnant oriented martensite and creep/plasticity, respectively.
NASA Astrophysics Data System (ADS)
Shibkov, A. A.; Denisov, A. A.; Zheltov, M. A.; Zolotov, A. E.; Gasanov, M. F.; Kochegarov, S. S.
2015-02-01
The effect of direct current induced suppression of the Portevin-Le Chatelier serrated deformation in the aluminum-magnesium alloy 5056 has been revealed experimentally. This effect manifests itself as an increase in the critical plastic strain, which precedes the onset of serrations in the stress-strain curve, with an increase in the current density in the range from 15 to 60 A/mm2. It has been shown that the observed effect is not related to the Joule heating of the entire specimen. Possible mechanisms of the phenomenon have been discussed.
NASA Astrophysics Data System (ADS)
Yee, Eric
In this thesis I address a series of issues related to ground failure and ground motions during earthquakes. A major component is the evaluation of cyclic volumetric strain behavior of unsaturated soils, more commonly known as seismic compression, from advanced laboratory testing. Another major component is the application of nonlinear and equivalent linear ground response analyses to large-strain problems involving highly nonlinear dynamic soil behavior. These two components are merged in the analysis of a truly unique and crucial field case history of nonlinear site response and seismic compression. My first topic concerns dynamic soil testing for relatively small strain dynamic soil properties such as threshold strains, gammatv. Such testing is often conducted using specialized devices such as dual-specimen simple-shear, as devices configured for large strain testing produce noisy signals in the small strain range. Working with a simple shear device originally developed for large-strain testing, I extend its low-strain capabilities by characterizing noisy signals and utilizing several statistical methods to extract meaningful responses in the small strain range. I utilize linear regression of a transformed variable to estimate the cyclic shear strain from a noisy signal and the confidence interval on its amplitude. I utilize Kernel regression with the Nadaraya-Watson estimator and a Gaussian kernel to evaluate vertical strain response. A practical utilization of these techniques is illustrated by evaluating threshold shear strains for volume change with a procedure that takes into account uncertainties in the measured shear and vertical strains. My second topic concerns the seismic compression characteristics of non-plastic and low-plasticity silty sands with varying fines content (10 ≤ FC ≤ 60%). Simple shear testing was performed on various sand-fines mixtures at a range of modified Proctor relative compaction levels ( RC) and degrees-of-saturation (S). Aside from the expected strong influence of RC, increasing fines content is found to generally decrease volume change for fines fractions consisting of silts and clayey silts with moderate to low plasticity. With truly non-plastic fines (rock flour), cyclic volume change increases with FC. Some materials also exhibit an effect of as-compacted saturation in which moderate saturation levels associated with high matric suction cause volume change to decrease. A preliminary empirical model to capture these effects is presented. The balance of the dissertation is related to a case history of strongly nonlinear site response and seismic compression associated with a free-field downhole array installed near the Service Hall at the Kashiwazaki-Kariwa nuclear power plant, which recorded strong ground motions from the Mw 6.6 2007 Niigata-ken Chuetsu-oki earthquake. Site conditions at the array consist of about 70 m of medium-dense sands overlying clayey bedrock, with ground water located at 45 m. Ground shaking at the bedrock level had geometric mean peak accelerations of 0.55 g which is reduced to 0.4 g at the ground surface, indicating nonlinear site response. Ground settlements of approximately 15+/-5 cm occurred at the site. A site investigation was performed to develop relevant soil properties for ground response and seismic compression analysis, including shear wave velocities, shear strength, relative density, and modulus reduction and damping curves. (Abstract shortened by UMI.)
Life prediction of expulsion bladders through fatigue test and fold strain analysis
NASA Technical Reports Server (NTRS)
Chu, H. N.; Unterberg, W.
1972-01-01
Cycle life data are presented in terms of true maximum strain for four metals, two plastics, and two elastomers. The Coffin-Manson fatigue theory was applied for metals and plastics, and cut-growth fatigue theory for elastomers. The data are based on measurements made at room and elevated temperatures. It was found that double folds give rise to far severer folding strains than do simple folds. It was also found that, except for the elastomers, all the bladder materials develop surface cracks due to double folds after only one cycle. The findings indicate that metals, which are bets for premeation resistance, are worst for fatigue resistance, and vice versa for elastomers. The intermediate plastics were found to be unsatisfactory for both permeation and fatigue resistance for missions of extended duration.
NASA Technical Reports Server (NTRS)
Lerch, Bradley A.; Melis, Matthew E.; Tong, Mike
1991-01-01
The nonlinear stress strain behavior of 90 degree/0 degree sub 2s, SiC/Ti-15-3 composite laminate was numerically investigated with a finite element, unit cell approach. Tensile stress-strain curves from room temperature experiments depicted three distinct regions of deformation, and these regions were predicted by finite element analysis. The first region of behavior, which was linear elastic, occurred at low applied stresses. As applied stresses increased, fiber/matrix debonding in the 90 degree plies caused a break in the stress-strain curve and initiated a second linear region. In this second region, matrix plasticity in the 90 degree plies developed. The third region, which was typified by nonlinear, stress-strain behavior occr red at high stresses. In this region, the onset of matrix plasticity in the 0 degree plies stiffened the laminate in the direction transverse to the applied load. Metallographic sections confirmed the existence of matrix plasticity in specific areas of the structure. Finite element analysis also predicted these locations of matrix slip.
NASA Astrophysics Data System (ADS)
Kerschbaum, M.; Hopmann, C.
2016-06-01
The computationally efficient simulation of the progressive damage behaviour of continuous fibre reinforced plastics is still a challenging task with currently available computer aided engineering methods. This paper presents an original approach for an energy based continuum damage model which accounts for stress-/strain nonlinearities, transverse and shear stress interaction phenomena, quasi-plastic shear strain components, strain rate effects, regularised damage evolution and consideration of load reversal effects. The physically based modelling approach enables experimental determination of all parameters on ply level to avoid expensive inverse analysis procedures. The modelling strategy, implementation and verification of this model using commercially available explicit finite element software are detailed. The model is then applied to simulate the impact and penetration of carbon fibre reinforced cross-ply specimens with variation of the impact speed. The simulation results show that the presented approach enables a good representation of the force-/displacement curves and especially well agreement with the experimentally observed fracture patterns. In addition, the mesh dependency of the results were assessed for one impact case showing only very little change of the simulation results which emphasises the general applicability of the presented method.
NASA Astrophysics Data System (ADS)
Erice, B.; Pérez-Martín, M. J.; Cendón, D. A.; Gálvez, F.
2012-05-01
A series of quasi-static and dynamic tensile tests at varying temperatures were carried out to determine the mechanical behaviour of Ti-45Al-2Nb-2Mn+0.8vol.% TiB2 XD as-HIPed alloy. The temperature for the tests ranged from room temperature to 850 ∘C. The effect of the temperature on the ultimate tensile strength, as expected, was almost negligible within the selected temperature range. Nevertheless, the plastic flow suffered some softening because of the temperature. This alloy presents a relatively low ductility; thus, a low tensile strain to failure. The dynamic tests were performed in a Split Hopkinson Tension Bar, showing an increase of the ultimate tensile strength due to the strain rate hardening effect. Johnson-Cook constitutive relation was used to model the plastic flow. A post-testing microstructural of the specimens revealed an inhomogeneous structure, consisting of lamellar α2 + γ structure and γ phase equiaxed grains in the centre, and a fully lamellar structure on the rest. The assessment of the duplex-fully lamellar area ratio showed a clear relationship between the microstructure and the fracture behaviour.
Relationship between fatigue life in the creep-fatigue region and stress-strain response
NASA Technical Reports Server (NTRS)
Berkovits, A.; Nadiv, S.
1988-01-01
On the basis of mechanical tests and metallographic studies, strainrange partitioned lives were predicted by introducing stress-strain materials parameters into the Universal Slopes Equation. This was the result of correlating fatigue damage mechanisms and deformation mechanisms operating at elevated temperatures on the basis of observed mechanical and microstructural behavior. Correlation between high temperature fatigue and stress strain properties for nickel base superalloys and stainless steel substantiated the method. Parameters which must be evaluated for PP- and CC- life are the maximum stress achievable under entirely plastic and creep conditions respectively and corresponding inelastic strains, and the elastic modulus. For plasticity/creep interaction conditions (PC and CP) two more pairs of stress strain parameters must be ascertained.
Indentation-derived elastic modulus of multilayer thin films: Effect of unloading induced plasticity
Jamison, Ryan Dale; Shen, Yu -Lin
2015-08-13
Nanoindentation is useful for evaluating the mechanical properties, such as elastic modulus, of multilayer thin film materials. A fundamental assumption in the derivation of the elastic modulus from nanoindentation is that the unloading process is purely elastic. In this work, the validity of elastic assumption as it applies to multilayer thin films is studied using the finite element method. The elastic modulus and hardness from the model system are compared to experimental results to show validity of the model. Plastic strain is shown to increase in the multilayer system during the unloading process. Additionally, the indentation-derived modulus of a monolayermore » material shows no dependence on unloading plasticity while the modulus of the multilayer system is dependent on unloading-induced plasticity. Lastly, the cyclic behavior of the multilayer thin film is studied in relation to the influence of unloading-induced plasticity. Furthermore, it is found that several cycles are required to minimize unloading-induced plasticity.« less
Grain boundary engineering: fatigue fracture
NASA Astrophysics Data System (ADS)
Das, Arpan
2017-04-01
Grain boundary engineering has revealed significant enhancement of material properties by modifying the populations and connectivity of different types of grain boundaries within the polycrystals. The character and connectivity of grain boundaries in polycrystalline microstructures control the corrosion and mechanical behaviour of materials. A comprehensive review of the previous researches has been carried out to understand this philosophy. Present research thoroughly explores the effect of total strain amplitude on phase transformation, fatigue fracture features, grain size, annealing twinning, different grain connectivity and grain boundary network after strain controlled low cycle fatigue deformation of austenitic stainless steel under ambient temperature. Electron backscatter diffraction technique has been used extensively to investigate the grain boundary characteristics and morphologies. The nominal variation of strain amplitude through cyclic plastic deformation is quantitatively demonstrated completely in connection with the grain boundary microstructure and fractographic features to reveal the mechanism of fatigue fracture of polycrystalline austenite. The extent of boundary modifications has been found to be a function of the number of applied loading cycles and strain amplitudes. It is also investigated that cyclic plasticity induced martensitic transformation strongly influences grain boundary characteristics and modifications of the material's microstructure/microtexture as a function of strain amplitudes. The experimental results presented here suggest a path to grain boundary engineering during fatigue fracture of austenite polycrystals.
Modeling collective behavior of dislocations in crystalline materials
NASA Astrophysics Data System (ADS)
Varadhan, Satya N.
Elastic interaction of dislocations leads to collective behavior and determines plastic response at the mesoscale. Notable characteristics of mesoscale plasticity include the formation of dislocation patterns, propagative instability phenomena due to strain aging such as the Luders and Portevin-Le Chatelier effects, and size-dependence of low stress. This work presents a unified approach to modeling collective behavior based on mesoscale field dislocation mechanics and crystal plasticity, using constitutive models with physical basis. Successful application is made to: compression of a bicrystal, where "smaller is stronger"---the flow stress increases as the specimen size is reduced; torsional creep of ice single crystals, where the plastic strain rate increases with time under constant applied torque; strain aging in a single crystal alloy, where the transition from homogeneous deformation to intermittent bands to continuous band is captured as the applied deformation rate is increased. A part of this work deals with the kinematics of dislocation density evolution. An explicit Galerkin/least-squares formulation is introduced for the quasilinear evolution equation, which leads to a symmetric and well-conditioned system of equations with constant coefficients, making it attractive for large-scale problems. It is shown that the evolution equation simplifies to the Hamilton-Jacobi equations governing geometric optics and level set methods in the following physical contexts: annihilation of dislocations, expansion of a polygonal dislocation loop and operation of a Frank-Read source. The weak solutions to these equations are not unique, and the numerical method is able to capture solutions corresponding to shock as well as expansion fans.
Tucker, Garritt J.; Foiles, Stephen Martin
2014-09-22
Over the past decade, numerous efforts have sought to understand the influence of twin boundaries on the behavior of polycrystalline materials. Early results suggested that twin boundaries within nanocrystalline face-centered cubic metals have a considerable effect on material behavior by altering the activated deformation mechanisms. In this work, we employ molecular dynamics simulations to elucidate the role of twin boundaries on the deformation of <100> columnar nanocrystalline copper at room temperature under uniaxial strain. We leverage non-local kinematic metrics, formulated from continuum mechanics theory, to compute atomically-resolved rotational and strain fields during plastic deformation. These results are then utilized tomore » compute the distribution of various nanoscale mechanisms during straining, and quantitatively resolve their contribution to the total strain accommodation within the microstructure, highlighting the fundamental role of twin boundaries. Our results show that nanoscale twins influence nanocrystalline copper by altering the cooperation of fundamental deformation mechanisms and their contributed role in strain accommodation, and we present new methods for extracting useful information from atomistic simulations. The simulation results suggest a tension–compression asymmetry in the distribution of deformation mechanisms and strain accommodation by either dislocations or twin boundary mechanisms. In highly twinned microstructures, twin boundary migration can become a significant deformation mode, in comparison to lattice dislocation plasticity in non-twinned columnar microstructures, especially during compression.« less
Size effect on the deformation mechanisms of nanocrystalline platinum thin films.
Shu, Xinyu; Kong, Deli; Lu, Yan; Long, Haibo; Sun, Shiduo; Sha, Xuechao; Zhou, Hao; Chen, Yanhui; Mao, Shengcheng; Liu, Yinong
2017-10-16
This paper reports a study of time-resolved deformation process at the atomic scale of a nanocrystalline Pt thin film captured in situ under a transmission electron microscope. The main mechanism of plastic deformation was found to evolve from full dislocation activity-enabled plasticity in large grains (with grain size d > 10 nm), to partial dislocation plasticity in smaller grains (with grain size 10 nm < d < 6 nm), and grain boundary-mediated plasticity in the matrix with grain sizes d < 6 nm. The critical grain size for the transition from full dislocation activity to partial dislocation activity was estimated based on consideration of stacking fault energy. For grain boundary-mediated plasticity, the possible contributions to strain rate of grain creep, grain sliding and grain rotation to plastic deformation were estimated using established models. The contribution of grain creep is found to be negligible, the contribution of grain rotation is effective but limited in magnitude, and grain sliding is suggested to be the dominant deformation mechanism in nanocrystalline Pt thin films. This study provided the direct evidence of these deformation processes at the atomic scale.
NASA Astrophysics Data System (ADS)
Hong, Yanyan; Li, Shilei; Li, Hongjia; Li, Jian; Sun, Guangai; Wang, Yan-Dong
2018-05-01
Neutron diffraction was used to investigate the residual lattice strains in AL6XN austenitic stainless steel subjected to tensile loading at different temperatures, revealing the development of large intergranular stresses after plastic deformation. Elastic-plastic self-consistent modeling was employed to simulate the micromechanical behavior at room temperature. The overall variations of the modeled lattice strains as a function of the sample direction with respect to the loading axis agree in general with the experimental values, indicating that dislocation slip is the main plastic deformation mode. At 300 °C, the serrated flow in the stress-strain curve and the great amount of slip bands indicate the appearance of dynamic strain aging. Except for promoting the local strain concentration, the long-range stress field caused by the planar slip bands near the grain boundaries is also attributed to the decrease in the experimental intergranular strains. An increase in the lattice strains localized at some specific specimen orientations for reflections at 600 °C may be explained by the segregation of solute atoms (Cr and Mo) at dislocation slip bands. The evolution of full-width at half-maximum demonstrates that the dynamic recovery indeed plays an important role in alleviating the local strain concentrations during tensile loading at 600 °C.
The effect of hydrogen embrittlement on the localized plastic deformation of aluminum alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bochkareva, Anna, E-mail: avb@ispms.tsc.ru; Lunev, Aleksey, E-mail: agl@ispms.tsc.ru; National Research Tomsk Polytechnic University, Tomsk, 634050
2015-10-27
The effect of hydrogen embrittlement on the localized plastic deformation of aluminum alloy D1 was investigated. The studies were performed for the test samples of aluminum alloy subjected to electrolytic hydrogenation. It is found that the mechanical properties and localized plastic deformation parameters of aluminum alloy are affected adversely by hydrogen embrittlement. The hydrogenated counterpart of alloy has a lower degree of ductility relative to the original alloy; however, the plastic flow behavior of material remains virtually unaffected. Using scanning electron and atomic force microscopy methods, the changes in the fracture surface were investigated. The deformation diagrams were examined formore » the deformed samples of aluminum alloy. These are found to show all the plastic flow stages: the linear, parabolic and pre-failure stages would occur for the respective values of the exponent n from the Ludwik-Holomon equation. Using digital speckle image technique, the local strain patterns were being registered for the original alloy D1 and the counterpart subjected to electrolytic hydrogenation for 100 h.« less
Elucidating the atomistic mechanisms underpinning plasticity in Li-Si nanostructures
NASA Astrophysics Data System (ADS)
Yan, Xin; Gouissem, Afif; Guduru, Pradeep R.; Sharma, Pradeep
2017-10-01
Amorphous lithium-silicon (a-Li-Si), especially in nanostructure form, is an attractive high-capacity anode material for next-generation Li-ion batteries. During cycles of charging and discharging, a-Li-Si undergoes substantive inelastic deformation and exhibits microcracking. The mechanical response to repeated lithiation-delithiation eventually results in the loss of electrical contact and consequent decrease of capacity, thus underscoring the importance of studying the plasticity of a-Li-Si nanostructures. In recent years, a variety of phenomenological continuum theories have been introduced that purport to model plasticity and the electro-chemo-mechanical behavior of a-Li-Si. Unfortunately, the micromechanisms and atomistic considerations underlying plasticity in Li-Si material are not yet fully understood and this impedes the development of physics-based constitutive models. Conventional molecular dynamics, although extensively used to study this material, is grossly inadequate to resolve this matter. As is well known, conventional molecular dynamics simulations can only address phenomena with characteristic time scales of (at most) a microsecond. Accordingly, in such simulations, the mechanical behavior is deduced under conditions of very high strain rates (usually, 108s-1 or even higher). This limitation severely impacts a realistic assessment of rate-dependent effects. In this work, we attempt to circumvent the time-scale bottleneck of conventional molecular dynamics and provide novel insights into the mechanisms underpinning plastic deformation of Li-Si nanostructures. We utilize an approach that allows imposition of slow strain rates and involves the employment of a new and recently developed potential energy surface sampling method—the so-called autonomous basin climbing—to identify the local minima in the potential energy surface. Combined with other techniques, such as nudged elastic band, kinetic Monte Carlo and transition state theory, we assess the behavior of a-Li-Si nanostructures under tensile strain rates ranging from 103 to 108s-1 . We find significant differences in the deformation behavior across the strain rates and discover that the well-known shear transformation zones (widely discussed in the context of amorphous materials) are formed by a "diffusionlike" process. We identify the rotation of the shear transformation zone as a key dissipation mechanism.
Grain-scale investigations of deformation heterogeneities in aluminum alloys
NASA Astrophysics Data System (ADS)
Güler, Baran; Şimşek, Ülke; Yalçınkaya, Tuncay; Efe, Mert
2018-05-01
The anisotropic deformation of Aluminum alloys at micron scale exhibits localized deformation, which has negative implications on the macroscale mechanical and forming behavior. The scope of this work is twofold. Firstly, micro-scale deformation heterogeneities affecting forming behavior of aluminum alloys is investigated through experimental microstructure analysis at large strains and various strain paths. The effects of initial texture, local grain misorientation, and strain paths on the strain localizations are established. In addition to uniaxial tension condition, deformation heterogeneities are also investigated under equibiaxial tension condition to determine the strain path effects on the localization behavior. Secondly, the morphology and the crystallographic data obtained from the experiments is transferred to Abaqus software, in order to predict both macroscopic response and the microstructure evolution though crystal plasticity finite element simulations. The model parameters are identified through the comparison with experiments and the capability of the model to capture real material response is discussed as well.
NASA Astrophysics Data System (ADS)
Zhu, Shun-Peng; Huang, Hong-Zhong; Li, Haiqing; Sun, Rui; Zuo, Ming J.
2011-06-01
Based on ductility exhaustion theory and the generalized energy-based damage parameter, a new viscosity-based life prediction model is introduced to account for the mean strain/stress effects in the low cycle fatigue regime. The loading waveform parameters and cyclic hardening effects are also incorporated within this model. It is assumed that damage accrues by means of viscous flow and ductility consumption is only related to plastic strain and creep strain under high temperature low cycle fatigue conditions. In the developed model, dynamic viscosity is used to describe the flow behavior. This model provides a better prediction of Superalloy GH4133's fatigue behavior when compared to Goswami's ductility model and the generalized damage parameter. Under non-zero mean strain conditions, moreover, the proposed model provides more accurate predictions of Superalloy GH4133's fatigue behavior than that with zero mean strains.
Probing the limits of metal plasticity with molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Zepeda-Ruiz, Luis A.; Stukowski, Alexander; Oppelstrup, Tomas; Bulatov, Vasily V.
2017-10-01
Ordinarily, the strength and plasticity properties of a metal are defined by dislocations--line defects in the crystal lattice whose motion results in material slippage along lattice planes. Dislocation dynamics models are usually used as mesoscale proxies for true atomistic dynamics, which are computationally expensive to perform routinely. However, atomistic simulations accurately capture every possible mechanism of material response, resolving every ``jiggle and wiggle'' of atomic motion, whereas dislocation dynamics models do not. Here we present fully dynamic atomistic simulations of bulk single-crystal plasticity in the body-centred-cubic metal tantalum. Our goal is to quantify the conditions under which the limits of dislocation-mediated plasticity are reached and to understand what happens to the metal beyond any such limit. In our simulations, the metal is compressed at ultrahigh strain rates along its [001] crystal axis under conditions of constant pressure, temperature and strain rate. To address the complexity of crystal plasticity processes on the length scales (85-340 nm) and timescales (1 ns-1μs) that we examine, we use recently developed methods of in situ computational microscopy to recast the enormous amount of transient trajectory data generated in our simulations into a form that can be analysed by a human. Our simulations predict that, on reaching certain limiting conditions of strain, dislocations alone can no longer relieve mechanical loads; instead, another mechanism, known as deformation twinning (the sudden re-orientation of the crystal lattice), takes over as the dominant mode of dynamic response. Below this limit, the metal assumes a strain-path-independent steady state of plastic flow in which the flow stress and the dislocation density remain constant as long as the conditions of straining thereafter remain unchanged. In this distinct state, tantalum flows like a viscous fluid while retaining its crystal lattice and remaining a strong and stiff metal.
NASA Astrophysics Data System (ADS)
Farrahi, G. H.; Ghodrati, M.; Azadi, M.; Rezvani Rad, M.
2014-08-01
This article presents the cyclic behavior of the A356.0 aluminum alloy under low-cycle fatigue (or isothermal) and thermo-mechanical fatigue loadings. Since the thermo-mechanical fatigue (TMF) test is time consuming and has high costs in comparison to low-cycle fatigue (LCF) tests, the purpose of this research is to use LCF test results to predict the TMF behavior of the material. A time-independent model, considering the combined nonlinear isotropic/kinematic hardening law, was used to predict the TMF behavior of the material. Material constants of this model were calibrated based on room-temperature and high-temperature low-cycle fatigue tests. The nonlinear isotropic/kinematic hardening law could accurately estimate the stress-strain hysteresis loop for the LCF condition; however, for the out-of-phase TMF, the condition could not predict properly the stress value due to the strain rate effect. Therefore, a two-layer visco-plastic model and also the Johnson-Cook law were applied to improve the estimation of the stress-strain hysteresis loop. Related finite element results based on the two-layer visco-plastic model demonstrated a good agreement with experimental TMF data of the A356.0 alloy.
Creation of High-Yield Polyhydroxyalkanoates Engineered Strains by Low Energy Ion Implantation
NASA Astrophysics Data System (ADS)
Qian, Shiquan; Cheng, Ying; Zhu, Suwen; Cheng, Beijiu
2008-12-01
Polyhydroxyalkanoates (PHAs), as a candidate for biodegradable plastic materials, can be synthesized by numerous microorganisms. However, as its production cost is high in comparison with those of chemically synthesized plastics, a lot of research has been focused on the efficient production of PHAs using different methods. In the present study, the mutation effects of PHAs production in strain pCB4 were investigated with implantation of low energy ions. It was found that under the implantation conditions of 7.8 × 1014 N+/cm2 at 10 keV, a high-yield PHAs strain with high genetic stability was generated from many mutants. After optimizing its fermentation conditions, the biomass, PHAs concentration and PHAs content of pCBH4 reached 2.26 g/L, 1.81 g/L, and 80.08% respectively, whereas its wild type controls were about 1.24 g/L, 0.61 g/L, and 49.20%. Moreover, the main constituent of PHAs was identified as poly-3-hydroxybutyrates (PHB) in the mutant stain and the yield of this compound was increased up to 41.33% in contrast to that of 27.78% in the wild type strain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neilsen, Michael K.; Lu, Wei-Yang; Scherzinger, William M.
Numerous experiments were performed to characterize the mechanical response of several different rigid polyurethane foams (FR3712, PMDI10, PMDI20, and TufFoam35) to large deformation. In these experiments, the effects of load path, loading rate, and temperature were investigated. Results from these experiments indicated that rigid polyurethane foams exhibit significant volumetric and deviatoric plasticity when they are compressed. Rigid polyurethane foams were also found to be very strain-rate and temperature dependent. These foams are also rather brittle and crack when loaded to small strains in tension or to larger strains in compression. Thus, a new Unified Creep Plasticity Damage (UCPD) model wasmore » developed and implemented into SIERRA with the name Foam Damage to describe the mechanical response of these foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments and experimental findings. Next, development of a UCPD model for rigid, polyurethane foams is described. Selection of material parameters for a variety of rigid polyurethane foams is then discussed and finite element simulations with the new UCPD model are compared with experimental results to show behavior that can be captured with this model.« less
Takei, Atsushi; Jin, Lihua; Fujita, Hiroyuki; Takei, A; Fujita, H; Jin, Lihua
2016-09-14
Wrinkles on thin film/elastomer bilayer systems provide functional surfaces. The aspect ratio of these wrinkles is critical to their functionality. Much effort has been dedicated to creating high-aspect-ratio structures on the surface of bilayer systems. A highly prestretched elastomer attached to a thin film has recently been shown to form a high-aspect-ratio structure, called a ridge structure, due to a large strain induced in the elastomer. However, the prestretch requirements of the elastomer during thin film attachment are not compatible with conventional thin film deposition methods, such as spin coating, dip coating, and chemical vapor deposition (CVD). Thus, the fabrication method is complex, and ridge structure formation is limited to planar surfaces. This paper presents a new and simple method for constructing ridge structures on a nonplanar surface using a plastic thin film/elastomer bilayer system. A plastic thin film is attached to a stress-free elastomer, and the resulting bilayer system is highly stretched one- or two-dimensionally. Upon the release of the stretch load, the deformation of the elastomer is reversible, while the plastically deformed thin film stays elongated. The combination of the length mismatch and the large strain induced in the elastomer generates ridge structures. The morphology of the plastic thin film/elastomer bilayer system is experimentally studied by varying the physical parameters, and the functionality and the applicability to a nonplanar surface are demonstrated. Finally, we simulate the effect of plasticity on morphology. This study presents a new technique for generating microscale high-aspect-ratio structures and its potential for functional surfaces.
Ren, Jingli; Chen, Cun; Wang, Gang; ...
2017-03-22
This study explores the temporal scaling behavior induced shear-branching structure in response to variant temperatures and strain rates during plastic deformation of Zr-based bulk metallic glass (BMG). The data analysis based on the compression tests suggests that there are two states of shear-branching structures: the fractal structure with a long-range order at an intermediate temperature of 223 K and a larger strain rate of 2.5 × 10 –2 s –1; the disordered structure dominated at other temperature and strain rate. It can be deduced from the percolation theory that the compressive ductility, ec, can reach the maximum value at themore » intermediate temperature. Furthermore, a dynamical model involving temperature is given for depicting the shear-sliding process, reflecting the plastic deformation has fractal structure at the temperature of 223 K and strain rate of 2.5 × 10 –2 s –1.« less
Dynamic compressive strength of epoxy composites
NASA Astrophysics Data System (ADS)
Plastinin, A. V.; Sil'vestrov, V. V.
1996-11-01
The strength of laminated and unidirectionally reinforced composite materials was investigated in conditions of dynamic uniaxial compression with a strain rate of 50-1000 sec-1 using the split Hopkinson pressure bar method. It was shown that in conditions of dynamic compression, glass/epoxy, aramid/epoxy, and carbon/epoxy composites exhibit elastic-brittle behavior with anisotropy of the strength and elastic properties. The effect of the strain rate on the strength characteristics of fiberglass-reinforced plastics was demonstrated.
Evaluation of ionic liquid epoxy carbon fiber composites in a cryogenic environment
NASA Astrophysics Data System (ADS)
Lyne, Christopher T.; Henry, Christopher R.; Kaukler, William F.; Grugel, R. N.
2018-03-01
A novel ionic liquid epoxy (ILE) was used to fabricate carbon fiber composite discs which were then subjected to biaxial strain testing in liquid nitrogen. The ILE composite showed a greater strain-to-failure at cryogenic temperatures when compared to a commercial epoxy. This result is likely an effect, as shown in micrographs, of the strong ILE bonding with the carbon fibers as well as it exhibiting plastic deformation at the fracture surface.
Deza, M A; Araujo, M; Garrido, M J
2007-01-01
This study evaluated the efficacy of neutral electrolyzed water (NEW; 64.1 mg/liter of active chlorine) to reduce populations of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Listeria monocytogenes on plastic and wooden kitchen cutting boards. Its effectiveness was compared with that of a sodium hypochlorite solution (NaClO; 62.3 mg/liter of active chlorine). Inoculated portions of cutting boards were rinsed in either NEW or NaClO solutions, or deionized water (control). Plastic boards were rinsed for 1 min and wooden boards for 1 and 5 min. After each treatment, the surviving population of each strain was determined on the surface and in the soaking water. No significant difference (P > or = 0.05) was found between the final populations of each strain with regard to the treatment solutions (NEW or NaClO). However, a significant difference (P < or = 0.05) was revealed between surface materials after 1 min of washing. Whereas in plastic boards the initial bacterial populations were reduced by 5 log CFU/50 cm2, in wooden cutting boards they underwent a reduction of <3 log CFU/50 cm2. A 5-min exposure time yielded reductions of about 4 log CFU/50 cm2. The surviving populations of all bacteria in NEW and NaCIO washing solutions were <1 log CFU/ml after soaking both surfaces. This study revealed that NEW treatment is an effective method for reducing microbial contamination on plastic and wooden cutting boards. NEW efficacy was comparable to that of NaCIO, with the advantage of having a larger storage time.
X-ray Topographic Methods and Application to Analysis of Electronic Materials
NASA Technical Reports Server (NTRS)
Mayo, W. E.; Liu, H. Y.; Chaudhuri, J.
1984-01-01
Three supplementary X-ray techniques new to semiconductor applications are discussed. These are the Computer Aided Rocking Curve Analyzer, the Divergent Beam Method and a new method based on enhanced X-ray flourescence. The first method is used for quantitative mapping of an elastic or plastic strain field while the other two methods are used only to measure elastic strains. The divergent beam method is used for measuring the full strain tensor while the microfluorescence method is useful for monitoring strain uniformity. These methods are discussed in detail and examples of their application is presented. Among these are determination of the full strain ellipsoid in state-of-the-art liquid phase epitaxy deposited III-V epitaxial films; mapping of the plastic strain concentrations in tensile deformed Si; and quantitative determination of damage in V3Si due to ion implantation.
The Use of Particle/Substrate Material Models in Simulation of Cold-Gas Dynamic-Spray Process
NASA Astrophysics Data System (ADS)
Rahmati, Saeed; Ghaei, Abbas
2014-02-01
Cold spray is a coating deposition method in which the solid particles are accelerated to the substrate using a low temperature supersonic gas flow. Many numerical studies have been carried out in the literature in order to study this process in more depth. Despite the inability of Johnson-Cook plasticity model in prediction of material behavior at high strain rates, it is the model that has been frequently used in simulation of cold spray. Therefore, this research was devoted to compare the performance of different material models in the simulation of cold spray process. Six different material models, appropriate for high strain-rate plasticity, were employed in finite element simulation of cold spray process for copper. The results showed that the material model had a considerable effect on the predicted deformed shapes.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos
2003-01-01
A previously developed analytical formulation has been modified in order to more accurately account for the effects of hydrostatic stresses on the nonlinear, strain rate dependent deformation of polymer matrix composites. State variable constitutive equations originally developed for metals have been modified in order to model the nonlinear, strain rate dependent deformation of polymeric materials. To account for the effects of hydrostatic stresses, which are significant in polymers, the classical J2 plasticity theory definitions of effective stress and effective inelastic strain, along with the equations used to compute the components of the inelastic strain rate tensor, are appropriately modified. To verify the revised formulation, the shear and tensile deformation of two representative polymers are computed across a wide range of strain rates. Results computed using the developed constitutive equations correlate well with experimental data. The polymer constitutive equations are implemented within a strength of materials based micromechanics method to predict the nonlinear, strain rate dependent deformation of polymer matrix composites. The composite mechanics are verified by analyzing the deformation of a representative polymer matrix composite for several fiber orientation angles across a variety of strain rates. The computed values compare well to experimentally obtained results.
Deformation fields near a steady fatigue crack with anisotropic plasticity
Gao, Yanfei
2015-11-30
In this work, from finite element simulations based on an irreversible, hysteretic cohesive interface model, a steady fatigue crack can be realized if the crack extension exceeds about twice the plastic zone size, and both the crack increment per loading cycle and the crack bridging zone size are smaller than the plastic zone size. The corresponding deformation fields develop a plastic wake behind the crack tip and a compressive residual stress field ahead of the crack tip. In addition, the Hill’s plasticity model is used to study the role of plastic anisotropy on the retardation of fatigue crack growth andmore » the elastic strain fields. It is found that for Mode-I cyclic loading, an enhanced yield stress in directions that are inclined from the crack plane will lead to slower crack growth rate, but this retardation is insignificant for typical degrees of plastic anisotropy. Furthermore, these results provide key inputs for future comparisons to neutron and synchrotron diffraction measurements that provide full-field lattice strain mapping near fracture and fatigue crack tips, especially in textured materials such as wrought or rolled Mg alloys.« less
Deformation fields near a steady fatigue crack with anisotropic plasticity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yanfei
In this work, from finite element simulations based on an irreversible, hysteretic cohesive interface model, a steady fatigue crack can be realized if the crack extension exceeds about twice the plastic zone size, and both the crack increment per loading cycle and the crack bridging zone size are smaller than the plastic zone size. The corresponding deformation fields develop a plastic wake behind the crack tip and a compressive residual stress field ahead of the crack tip. In addition, the Hill’s plasticity model is used to study the role of plastic anisotropy on the retardation of fatigue crack growth andmore » the elastic strain fields. It is found that for Mode-I cyclic loading, an enhanced yield stress in directions that are inclined from the crack plane will lead to slower crack growth rate, but this retardation is insignificant for typical degrees of plastic anisotropy. Furthermore, these results provide key inputs for future comparisons to neutron and synchrotron diffraction measurements that provide full-field lattice strain mapping near fracture and fatigue crack tips, especially in textured materials such as wrought or rolled Mg alloys.« less
NASA Astrophysics Data System (ADS)
Nabavi, Seyed Tohid; Alavi, Seyed Ahmad; Mohammadi, Soheil; Ghassemi, Mohammad Reza
2018-01-01
The mechanical evolution of transpression zones affected by fault interactions is investigated by a 3D elasto-plastic mechanical model solved with the finite-element method. Ductile transpression between non-rigid walls implies an upward and lateral extrusion. The model results demonstrate that a, transpression zone evolves in a 3D strain field along non-coaxial strain paths. Distributed plastic strain, slip transfer, and maximum plastic strain occur within the transpression zone. Outside the transpression zone, fault slip is reduced because deformation is accommodated by distributed plastic shear. With progressive deformation, the σ3 axis (the minimum compressive stress) rotates within the transpression zone to form an oblique angle to the regional transport direction (∼9°-10°). The magnitude of displacement increases faster within the transpression zone than outside it. Rotation of the displacement vectors of oblique convergence with time suggests that transpression zone evolves toward an overall non-plane strain deformation. The slip decreases along fault segments and with increasing depth. This can be attributed to the accommodation of bulk shortening over adjacent fault segments. The model result shows an almost symmetrical domal uplift due to off-fault deformation, generating a doubly plunging fold and a 'positive flower' structure. Outside the overlap zone, expanding asymmetric basins subside to 'negative flower' structures on both sides of the transpression zone and are called 'transpressional basins'. Deflection at fault segments causes the fault dip fall to less than 90° (∼86-89°) near the surface (∼1.5 km). This results in a pure-shear-dominated, triclinic, and discontinuous heterogeneous flow of the transpression zone.
NASA Astrophysics Data System (ADS)
Wang, Peng; Zheng, Zhijun; Liao, Shenfei; Yu, Jilin
2018-02-01
The seemingly contradictory understandings of the initial crush stress of cellular materials under dynamic loadings exist in the literature, and a comprehensive analysis of this issue is carried out with using direct information of local stress and strain. Local stress/strain calculation methods are applied to determine the initial crush stresses and the strain rates at initial crush from a cell-based finite element model of irregular honeycomb under dynamic loadings. The initial crush stress under constant-velocity compression is identical to the quasi-static one, but less than the one under direct impact, i.e. the initial crush stresses under different dynamic loadings could be very different even though there is no strain-rate effect of matrix material. A power-law relation between the initial crush stress and the strain rate is explored to describe the strain-rate effect on the initial crush stress of irregular honeycomb when the local strain rate exceeds a critical value, below which there is no strain-rate effect of irregular honeycomb. Deformation mechanisms of the initial crush behavior under dynamic loadings are also explored. The deformation modes of the initial crush region in the front of plastic compaction wave are different under different dynamic loadings.
Silicon nanowire-based tunneling field-effect transistors on flexible plastic substrates.
Lee, Myeongwon; Koo, Jamin; Chung, Eun-Ae; Jeong, Dong-Young; Koo, Yong-Seo; Kim, Sangsig
2009-11-11
A technique to implement silicon nanowire (SiNW)-based tunneling field-effect transistors (TFETs) on flexible plastic substrates is developed for the first time. The p-i-n configured Si NWs are obtained from an Si wafer using a conventional top-down CMOS-compatible technology, and they are then transferred onto the plastic substrate. Based on gate-controlled band-to-band tunneling (BTBT) as their working principle, the SiNW-based TFETs show normal p-channel switching behavior with a threshold voltage of -1.86 V and a subthreshold swing of 827 mV/dec. In addition, ambipolar conduction is observed due to the presence of the BTBT between the heavily doped p+ drain and n+ channel regions, indicating that our TFETs can operate in the n-channel mode as well. Furthermore, the BTBT generation rates for both the p-channel and n-channel operating modes are nearly independent of the bending state (strain = 0.8%) of the plastic substrate.
Skariyachan, Sinosh; Megha, M; Kini, Meghna Niranjan; Mukund, Kamath Manali; Rizvi, Alya; Vasist, Kiran
2015-01-01
Industrialization and urbanization have led to massive accumulation of plastic garbage all over India. The persistence of plastic in soil and aquatic environment has become ecological threat to the metropolitan city such as Bangalore, India. Present study investigates an ecofriendly, efficient and cost-effective approach for plastic waste management by the screening of novel microbial consortia which are capable of degrading plastic polymers. Plastic-contaminated soil and water samples were collected from six hot spots of urban and rural areas of Bangalore. The plastic-degrading bacteria were enriched, and degradation ability was determined by zone of clearance method. The percentage of polymer degradation was initially monitored by weight loss method, and the main isolates were characterized by standard microbiology protocols. These isolates were used to form microbial consortia, and the degradation efficiency of the consortia was compared with individual isolate and known strains obtained from the Microbial Type Culture Collection (MTCC) and Gene Bank, India. One of the main enzymes responsible for polymer degradation was identified, and the biodegradation mechanism was hypothesized by bioinformatics studies. From this study, it is evident that the bacteria utilized the plastic polymer as a sole source of carbon and showed 20-50% weight reduction over a period of 120 days. The two main bacteria responsible for the degradation were microbiologically characterized to be Pseudomonas spp. These bacteria could grow optimally at 37 °C in pH 9.0 and showed 35-40% of plastic weight reduction over 120 days. These isolates were showed better degradation ability than known strains from MTCC. The current study further revealed that the microbial consortia formulated by combining Psuedomonas spp. showed 40 plastic weight reduction over a period of 90 days. Further, extracellular lipase, one of the main enzymes responsible for polymer degradation, was identified. The computational docking studies suggested that polyethylene glycol and polystyrene present in the plastics might have good interaction towards the microbial lipase with stable binding and interacting forces which probably could be one of the reasons for the degradative mechanisms.
Newson, William R; Kuktaite, Ramune; Hedenqvist, Mikael S; Gällstedt, Mikael; Johansson, Eva
2014-07-16
Ten chemical additives were selected from the literature for their proposed modifying activity in protein-protein interactions. These consisted of acids, bases, reducing agents, and denaturants and were added to residual deoiled meals of Crambe abyssinica (crambe) and Brassica carinata (carinata) to modify the properties of plastics produced through hot compression molding at 130 °C. The films produced were examined for tensile properties, protein solubility, molecular weight distribution, and water absorption. Of the additives tested, NaOH had the greatest positive effect on tensile properties, with increases of 105% in maximum stress and 200% in strain at maximum stress for crambe and a 70% increase in strain at maximum stress for carinata. Stiffness was not increased by any of the applied additives. Changes in tensile strength and elongation for crambe and elongation for carinata were related to changes in protein solubility. Increased pH was the most successful in improving the protein aggregation and mechanical properties within the complex chemistry of residual oilseed meals.
An allowable cladding peak temperature for spent nuclear fuels in interim dry storage
NASA Astrophysics Data System (ADS)
Cha, Hyun-Jin; Jang, Ki-Nam; Kim, Kyu-Tae
2018-01-01
Allowable cladding peak temperatures for spent fuel cladding integrity in interim dry storage were investigated, considering hydride reorientation and mechanical property degradation behaviors of unirradiated and neutron irradiated Zr-Nb cladding tubes. Cladding tube specimens were heated up to various temperatures and then cooled down under tensile hoop stresses. Cool-down specimens indicate that higher heat-up temperature and larger tensile hoop stress generated larger radial hydride precipitation and smaller tensile strength and plastic hoop strain. Unirradiated specimens generated relatively larger radial hydride precipitation and plastic strain than did neutron irradiated specimens. Assuming a minimum plastic strain requirement of 5% for cladding integrity maintenance in interim dry storage, it is proposed that a cladding peak temperature during the interim dry storage is to keep below 250 °C if cladding tubes are cooled down to room temperature.
Deformation behavior of Nb nanowires in TiNiCu shape memory alloy matrix
Jiang, Daqiang; Liu, Yinong; Yu, Cun; ...
2015-08-18
An in-situ nanowire Nb/TiNiCu composite is fabricated based on the concept of strain under-matching between a phase transforming matrix and high strength nanomaterials. The deformation behavior of the Nb nanowire was investigated by means of in-situ synchrotron X-ray diffraction when the TiNiCu matrix underwent different deformation modes. The maximum lattice strain of the Nb nanowires was about 5% when the matrix deformed via martensitic transformation or 1% when deforming plastically by dislocation slip. As a result, the Nb nanowires showed a lattice strain of 3.5% when the matrix deformed in the mixed mode of plastic deformation and martensitic transformation, whichmore » means that the occurrence of plastic deformation does not impede load transfer from the matrix to the nanowires.« less
Linking strain anisotropy and plasticity in copper metallization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Conal E., E-mail: conal@us.ibm.com; Jordan-Sweet, Jean; Priyadarshini, Deepika
2015-05-04
The elastic anisotropy of copper leads to significant variation in the x-ray elastic constants (XEC), which link diffraction-based strain measurements to stress. An accurate depiction of the mechanical response in copper thin films requires a determination of an appropriate grain interaction model that lies between Voigt and Reuss limits. It is shown that the associated XEC weighting fraction, x*, between these limits provides a metric by which strain anisotropy can be quantified. Experimental values of x*, as determined by a linear regression scheme of diffraction data collected from multiple reflections, reveal the degree of strain anisotropy and its dependence onmore » plastic deformation induced during in-situ and ex-situ thermal treatments.« less
Investigation of creep by use of closed loop servo-hydraulic test system
NASA Technical Reports Server (NTRS)
Wu, H. C.; Yao, J. C.
1981-01-01
Creep tests were conducted by means of a closed loop servo-controlled materials test system. These tests are different from the conventional creep tests in that the strain history prior to creep may be carefully monitored. Tests were performed for aluminum alloy 6061-0 at 150 C and monitored by a PDP 11/04 minicomputer at a preset constant plastic-strain rate prehistory. The results show that the plastic-strain rate prior to creep plays a significant role in creep behavior. The endochronic theory of viscoplasticity was applied to describe the observed creep curves. The concepts of intrinsic time and strain rate sensitivity function are employed and modified according to the present observation.
Christensen, G D; Simpson, W A; Younger, J J; Baddour, L M; Barrett, F F; Melton, D M; Beachey, E H
1985-01-01
The adherence of coagulase-negative staphylococci to smooth surfaces was assayed by measuring the optical densities of stained bacterial films adherent to the floors of plastic tissue culture plates. The optical densities correlated with the weight of the adherent bacterial film (r = 0.906; P less than 0.01). The measurements also agreed with visual assessments of bacterial adherence to culture tubes, microtiter plates, and tissue culture plates. Selected clinical strains were passed through a mouse model for foreign body infections and a rat model for catheter-induced endocarditis. The adherence measurements of animal passed strains remained the same as those of the laboratory-maintained parent strain. Spectrophotometric classification of coagulase-negative staphylococci into nonadherent and adherent categories according to these measurements had a sensitivity, specificity, and accuracy of 90.6, 80.8, and 88.4%, respectively. We examined a previously described collection of 127 strains of coagulase-negative staphylococci isolated from an outbreak of intravascular catheter-associated sepsis; strains associated with sepsis were more adherent than blood culture contaminants and cutaneous strains (P less than 0.001). We also examined a collection of 84 strains isolated from pediatric patients with cerebrospinal fluid (CSF) shunts; once again, pathogenic strains were more adherent than were CSF contaminants (P less than 0.01). Finally, we measured the adherence of seven endocarditis strains. As opposed to strains associated with intravascular catheters and CSF shunts, endocarditis strains were less adherent than were saprophytic strains of coagulase-negative staphylococci. The optical densities of bacterial films adherent to plastic tissue culture plates serve as a quantitative model for the study of the adherence of coagulase-negative staphylococci to medical devices, a process which may be important in the pathogenesis of foreign body infections. Images PMID:3905855
Stochastic approach to plasticity and yield in amorphous solids.
Hentschel, H G E; Jaiswal, Prabhat K; Procaccia, Itamar; Sastry, Srikanth
2015-12-01
We focus on the probability distribution function (PDF) P(Δγ;γ) where Δγ are the measured strain intervals between plastic events in a athermal strained amorphous solids, and γ measures the accumulated strain. The tail of this distribution as Δγ→0 (in the thermodynamic limit) scales like Δγ(η). The exponent η is related via scaling relations to the tail of the PDF of the eigenvalues of the plastic modes of the Hessian matrix P(λ) which scales like λ(θ), η=(θ-1)/2. The numerical values of η or θ can be determined easily in the unstrained material and in the yielded state of plastic flow. Special care is called for in the determination of these exponents between these states as γ increases. Determining the γ dependence of the PDF P(Δγ;γ) can shed important light on plasticity and yield. We conclude that the PDF's of both Δγ and λ are not continuous functions of γ. In slowly quenched amorphous solids they undergo two discontinuous transitions, first at γ=0(+) and then at the yield point γ=γ(Y) to plastic flow. In quickly quenched amorphous solids the second transition is smeared out due to the nonexisting stress peak before yield. The nature of these transitions and scaling relations with the system size dependence of 〈Δγ〉 are discussed.
Wang, Cheng-Cai; Mao, Yun-Wei; Shan, Zhi-Wei; Dao, Ming; Li, Ju; Sun, Jun; Ma, Evan; Suresh, Subra
2013-12-03
Metallic glasses (MGs) exhibit greater elastic limit and stronger resistance to plastic deformation than their crystalline metal counterparts. Their capacity to withstand plastic straining is further enhanced at submicrometer length scales. For a range of microelectromechanical applications, the resistance of MGs to damage and cracking from thermal and mechanical stress or strain cycling under partial or complete constraint is of considerable scientific and technological interest. However, to our knowledge, no real-time, high-resolution transmission electron microscopy observations are available of crystallization, damage, and failure from the controlled imposition of cyclic strains or displacements in any metallic glass. Here we present the results of a unique in situ study, inside a high-resolution transmission electron microscope, of glass-to-crystal formation and fatigue of an Al-based MG. We demonstrate that cyclic straining progressively leads to nanoscale surface roughening in the highly deformed region of the starter notch, causing crack nucleation and formation of nanocrystals. The growth of these nanograins during cyclic straining impedes subsequent crack growth by bridging the crack. In distinct contrast to this fatigue behavior, only distributed nucleation of smaller nanocrystals is observed with no surface roughening under monotonic deformation. We further show through molecular dynamics simulation that these findings can be rationalized by the accumulation of strain-induced nonaffine atomic rearrangements that effectively enhances diffusion through random walk during repeated strain cycling. The present results thus provide unique insights into fundamental mechanisms of fatigue of MGs that would help shape strategies for material design and engineering applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langer, J. S.
The thermodynamic theory of dislocation-enabled plasticity is based on two unconventional hypotheses. The first of these is that a system of dislocations, driven by external forces and irreversibly exchanging heat with its environment, must be characterized by a thermodynamically defined effective temperature that is not the same as the ordinary temperature. The second hypothesis is that the overwhelmingly dominant mechanism controlling plastic deformation is thermally activated depinning of entangled pairs of dislocations. This paper consists of a systematic reformulation of this theory followed by examples of its use in analyses of experimentally observed phenomena including strain hardening, grain-size (Hall-Petch) effects,more » yielding transitions, and adiabatic shear banding.« less
Sang, Mee Kyung; Kim, Jeong Do; Kim, Beom Seok; Kim, Ki Deok
2011-06-01
We previously selected rhizobacterial strains CCR04, CCR80, GSE09, ISE13, and ISE14, which were antagonistic to Phytophthora blight of pepper. In this study, we investigated the effects of root treatment of rhizobacteria on anthracnose occurrence, ripening, and yield of pepper fruit in the plastic house and field in 2008 and 2009. We also examined the effects of volatiles produced by the strains on fruit ripening and on mycelial growth and spore development of Colletotrichum acutatum and Phytophthora capsici in the laboratory, identifying the volatile compounds by gas chromatography-mass spectrometry (GC-MS). In the house tests, all strains significantly (P < 0.05) reduced anthracnose incidence on pepper fruit; strains GSE09 and ISE14 consistently produced higher numbers of pepper fruit or increased the fresh weight of red fruit more than the controls in both years. In the field tests, all strains significantly (P < 0.05) reduced anthracnose occurrence on either green or red pepper fruit; strain ISE14 consistently produced higher numbers or increased fresh weights of red fruit more than the controls in both years. In the laboratory tests, volatiles produced by strains GSE09 and ISE13 only stimulated maturation of pepper fruit from green (unripe) to red (ripe) fruit; the volatiles of certain strains inhibited the growth and development of C. acutatum and P. capsici. On the other hand, GC-MS analysis of volatiles of strains GSE09 and ISE13 revealed 17 distinct compounds in both strains, including decane, dodecane, 1,3-di-tert-butylbenzene, tetradecane, 2,4-di-tert-butylphenol, and hexadecane. Among these compounds, 2,4-di-tert-butylphenol only stimulated fruit ripening and inhibited growth and development of the pathogens. Taken together, strains GSE09 and ISE14 effectively reduced anthracnose occurrence and stimulated pepper fruit ripening and yield, possibly via bacterial volatiles. Therefore, these two strains could be potential agents for controlling Phytophthora blight and anthracnose, and for increasing fruit ripening and yield. To our knowledge, this is the first report of volatiles such as 2,4-di-tert-butylphenol produced by rhizobacteria being related to both fruit ripening and pathogen inhibition.
The Impacts of Industrial Robots
1981-11-01
plastics, ’and strain gauges are used to measure very small forces at a number of points on the robot’s "end effector. Except for the simplest on-off...devices, tactile sensors are not yet found on commercially available robots. Forces are sensed by using strain gauges or piezoelectric sensors to...tools: deburring, drilling , grinding,milling,routing machines ii. plastic materialsformirg and injection machines iii. metal die casting machines iv
In Situ Observation of Plastic Foaming under Static Condition, Extensional Flow and Shear Flow
NASA Astrophysics Data System (ADS)
Wong, Anson Sze Tat
Traditional blowing agents (e.g., hydrochlorofluorocarbons) in plastic foaming processes has been phasing out due to environmental regulations. Plastic foaming industry is forced to employ greener alternatives (e.g., carbon dioxide, nitrogen), but their foaming processes are technologically challenging. Moreover, to improve the competitiveness of the foaming industry, it is imperative to develop a new generation of value-added plastic foams with cell structures that can be tailored to different applications. In this context, the objective of this thesis is to achieve a thorough understanding on cell nucleation and growth phenomena that determine cell structures in plastic foaming processes. The core research strategy is to develop innovative visualization systems to capture and study these phenomena. A system with accurate heating and cooling control has been developed to observe and study crystallization-induced foaming behaviors of polymers under static conditions. The cell nucleation and initial growth behavior of polymers blown with different blowing agents (nitrogen, argon and helium, and carbon dioxide-nitrogen mixtures) have also been investigated in great detail. Furthermore, two innovative systems have been developed to simulate the dynamic conditions in industrial foaming processes: one system captures a foaming process under an easily adjustable and uniform extensional strain in a high temperature and pressure environment, while the other achieves the same target, but with shear strain. Using these systems, the extensional and shear effects on bubble nucleation and initial growth processes has been investigated independently in an isolated manner, which has never been achieved previously. The effectiveness of cell nucleating agents has also been evaluated under dynamic conditions, which have led to the identification of new foaming mechanisms based on polymer-chain alignment and generation of microvoids under stress. Knowledge generated from these researches and the wide range of future studies made possible by the visualization systems will be valuable to the development of innovative plastic foaming technologies and foams.
Selection on worker honeybee responses to queen pheromone (Apis mellifera L.)
NASA Astrophysics Data System (ADS)
Pankiw, T.; Winston, Mark L.; Fondrk, M. Kim; Slessor, Keith N.
Disruptive selection for responsiveness to queen mandibular gland pheromone (QMP) in the retinue bioassay resulted in the production of high and low QMP responding strains of honeybees (Apis mellifera L.). Strains differed significantly in their retinue response to QMP after one generation of selection. By the third generation the high strain was on average at least nine times more responsive than the low strain. The strains showed seasonal phenotypic plasticity such that both strains were more responsive to the pheromone in the spring than in the fall. Directional selection for low seasonal variation indicated that phenotypic plasticity was an additional genetic component to retinue response to QMP. Selection for high and low retinue responsiveness to QMP was not an artifact of the synthetic blend because both strains were equally responsive or non-responsive to whole mandibular gland extracts compared with QMP. The use of these strains clearly pointed to an extra-mandibular source of retinue pheromones (Pankiw et al. 1995; Slessor et al. 1998; Keeling et al. 1999).
Elastic-plastic analysis of AS4/PEEK composite laminate using a one-parameter plasticity model
NASA Technical Reports Server (NTRS)
Sun, C. T.; Yoon, K. J.
1992-01-01
A one-parameter plasticity model was shown to adequately describe the plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The elastic-plastic stress-strain relations of coupon specimens were measured and compared with those predicted by the finite element analysis using the one-parameter plasticity model. The results show that the one-parameter plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.
NASA Astrophysics Data System (ADS)
Das, Anindya; Biswas, Pinaki; Tarafder, S.; Chakrabarti, D.; Sivaprasad, S.
2018-05-01
In order to ensure crash resistance of the steels used in automotive components, the ensile deformation behavior needs to be studied and predicted not only under quasi-static condition, but also under dynamic loading rates. In the present study, tensile tests have been performed on four different automobile grade sheet steels, namely interstitial free steel, dual-phase 600 and 800, and a carbon manganese steel over the strain rate regime of 0.001-800/s. Apart from the variation in strength (which always increased with strain rate), the effect of strengthening mechanism on strain rate sensitivity and strain hardening behavior has been evaluated. Strain rate sensitivity was found to increase at high-strain rate regime for all the steels. Contribution of solid solution hardening on strain rate sensitivity at lower plastic strains was found to be higher compared to dislocation strengthening and second-phase hardening. However, precipitation hardening coupled with solid solution hardening produced the highest strain rate sensitivity, in C-Mn-440 steel at high strain rates. Different strain-rate-sensitive models which take into account the change in yield stress and strain hardening behavior with strain rate for ductile materials were used to predict the flow behavior of these sheet steels at strain rates up to 800/s.
Effect of pre-straining on the evolution of material anisotropy in rolled magnesium alloy AZ31 sheet
NASA Astrophysics Data System (ADS)
Qiao, H.; Guo, X. Q.; Wu, P. D.
2013-12-01
The large strain Elastic Visco-Plastic Self-Consistent (EVPSC) model and the recently developed Twinning and De-Twinning (TDT) model are applied to study the mechanical behavior of rolled magnesium alloy AZ31 sheet. Three different specimen orientations with tilt angles of 0°, 45° and 90° between the rolling direction and longitudinal specimen axis are used to study the mechanical anisotropy under both uniaxial tension and compression. The effect of pre-strain in uniaxial compression along the rolling direction on subsequent uniaxial tension/compression along the three directions is also investigated. It is demonstrated that the twinning during pre-strain in compression and the detwinning in the subsequent deformation have a significant influence on the mechanical anisotropy. Numerical results are in good agreement with the experimental observations found in the literature.
Gradient Plasticity Model and its Implementation into MARMOT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, Erin I.; Li, Dongsheng; Zbib, Hussein M.
2013-08-01
The influence of strain gradient on deformation behavior of nuclear structural materials, such as boby centered cubic (bcc) iron alloys has been investigated. We have developed and implemented a dislocation based strain gradient crystal plasticity material model. A mesoscale crystal plasticity model for inelastic deformation of metallic material, bcc steel, has been developed and implemented numerically. Continuum Dislocation Dynamics (CDD) with a novel constitutive law based on dislocation density evolution mechanisms was developed to investigate the deformation behaviors of single crystals, as well as polycrystalline materials by coupling CDD and crystal plasticity (CP). The dislocation density evolution law in thismore » model is mechanism-based, with parameters measured from experiments or simulated with lower-length scale models, not an empirical law with parameters back-fitted from the flow curves.« less
Elastic-plastic models for multi-site damage
NASA Technical Reports Server (NTRS)
Actis, Ricardo L.; Szabo, Barna A.
1994-01-01
This paper presents recent developments in advanced analysis methods for the computation of stress site damage. The method of solution is based on the p-version of the finite element method. Its implementation was designed to permit extraction of linear stress intensity factors using a superconvergent extraction method (known as the contour integral method) and evaluation of the J-integral following an elastic-plastic analysis. Coarse meshes are adequate for obtaining accurate results supported by p-convergence data. The elastic-plastic analysis is based on the deformation theory of plasticity and the von Mises yield criterion. The model problem consists of an aluminum plate with six equally spaced holes and a crack emanating from each hole. The cracks are of different sizes. The panel is subjected to a remote tensile load. Experimental results are available for the panel. The plasticity analysis provided the same limit load as the experimentally determined load. The results of elastic-plastic analysis were compared with the results of linear elastic analysis in an effort to evaluate how plastic zone sizes influence the crack growth rates. The onset of net-section yielding was determined also. The results show that crack growth rate is accelerated by the presence of adjacent damage, and the critical crack size is shorter when the effects of plasticity are taken into consideration. This work also addresses the effects of alternative stress-strain laws: The elastic-ideally-plastic material model is compared against the Ramberg-Osgood model.
Wireless measurement of elastic and plastic deformation by a metamaterial-based sensor.
Ozbey, Burak; Demir, Hilmi Volkan; Kurc, Ozgur; Erturk, Vakur B; Altintas, Ayhan
2014-10-20
We report remote strain and displacement measurement during elastic and plastic deformation using a metamaterial-based wireless and passive sensor. The sensor is made of a comb-like nested split ring resonator (NSRR) probe operating in the near-field of an antenna, which functions as both the transmitter and the receiver. The NSRR probe is fixed on a standard steel reinforcing bar (rebar), and its frequency response is monitored telemetrically by a network analyzer connected to the antenna across the whole stress-strain curve. This wireless measurement includes both the elastic and plastic region deformation together for the first time, where wired technologies, like strain gauges, typically fail to capture. The experiments are further repeated in the presence of a concrete block between the antenna and the probe, and it is shown that the sensing system is capable of functioning through the concrete. The comparison of the wireless sensor measurement with those undertaken using strain gauges and extensometers reveals that the sensor is able to measure both the average strain and the relative displacement on the rebar as a result of the applied force in a considerably accurate way. The performance of the sensor is tested for different types of misalignments that can possibly occur due to the acting force. These results indicate that the metamaterial-based sensor holds great promise for its accurate, robust and wireless measurement of the elastic and plastic deformation of a rebar, providing beneficial information for remote structural health monitoring and post-earthquake damage assessment.
Characterization of plastic deformation in a disk bend test
NASA Astrophysics Data System (ADS)
Byun, T. S.; Lee, E. H.; Hunn, J. D.; Farrell, K.; Mansur, L. K.
2001-04-01
A disk bend test technique has been developed to study deformation mechanisms as well as mechanical properties. In the disk bend test, a transmission electron microscopy (TEM) disk size specimen of 3 mm diameter ×0.25 mm thick is clamped around its rim in a circular holder and indented with a tungsten carbide ball of 1 mm diameter on its back face. AISI 316LN austenitic stainless steel and 9Cr-2WVTa ferritic/martensitic steel were selected as test materials. A model was developed to determine the average plastic strain and surface plastic strain in the disk bend test. The deformation regimes of the plastic strain versus deflection curves corresponded to those of the load versus deflection curves. The stress state of the disk bend deformation was analyzed for the two test materials and compared with those of other mechanical tests such as uniaxial tensile, compact tension, and ball indentation tests. Slip line features at the deformed surface and the corresponding TEM microstructures were examined for both tensile and disk bend specimens. Differences and similarities in deformation between the disk bend and the tensile tests are described.
Rhizosphere of Avicennia marina (Forsk.) Vierh. as a landmark for polythene degrading bacteria.
Shahnawaz, Mohd; Sangale, Manisha K; Ade, Avinash B
2016-07-01
Due to high durability, cheap cost, and ease of manufacture, 311 million tons of plastic-based products are manufactured around the globe per annum. The slow/least rate of plastic degradation leads to generation of million tons of plastic waste per annum, which is of great environmental concern. Of the total plastic waste generated, polythene shared about 64 %. Various methods are available in the literature to tackle with the plastic waste, and biodegradation is considered as the most accepted, eco-friendly, and cost-effective method of polythene waste disposal. In the present study, an attempt has been made to isolate, screen, and characterize the most efficient polythene degrading bacteria by using rhizosphere soil of Avicennia marina as a landmark. From 12 localities along the west coast of India, a total of 123 bacterial isolates were recorded. Maximum percent weight loss (% WL; 21.87 ± 6.37 %) was recorded with VASB14 at pH 3.5 after 2 months of shaking at room temperature. Maximum percent weight gain (13.87 ± 3.6 %) was reported with MANGB5 at pH 7. Maximum percent loss in tensile strength (% loss in TS; 87.50 ± 4.8 %) was documented with VASB1 at pH 9.5. The results based on the % loss in TS were only reproducible. Further, the level of degradation was confirmed by scanning electron microscopic (SEM) and Fourier transform infrared spectroscopy (FTIR) analysis. In SEM analysis, scions/crakes were found on the surface of the degraded polythene, and mass of bacterial cell was also recorded on the weight-gained polythene strips. Maximum reduction in carbonyl index (4.14 %) was recorded in untreated polythene strip with Lysinibacillus fusiformis strain VASB14/WL. Based on 16S ribosomal RNA (rRNA) gene sequence homology, the most efficient polythene degrading bacteria were identified as L. fusiformis strainVASB14/WL and Bacillus cereus strain VASB1/TS.
Anomalous tensoelectric effects in gallium arsenide tunnel diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alekseeva, Z.M.; Vyatkin, A.P.; Krivorotov, N.P.
Anomalous tensoelectric phenomena induced in a tunnel p-n junction by a concentrated load and by hydrostatic compression were studied. The anomalous tensoelectric effects are caused by the action of concentrators of mechanical stresses in the vicinity of the p-n junction, giving rise to local microplastic strain. Under the conditions of hydrostatic compression prolate inclusions approx.100-200 A long play the role of concentrators. Analysis of irreversible changes in the current-voltage characteristics of tunnel p-n junctions made it possible to separate the energy levels of the defects produced with plastic strain of gallium arsenide.
An Elastic Plastic Contact Model with Strain Hardening for the LAMMPS Granular Package
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhr, Bryan; Brake, Matthew Robert; Lechman, Jeremy B.
2015-03-01
The following details the implementation of an analytical elastic plastic contact model with strain hardening for normal im pacts into the LAMMPS granular package. The model assumes that, upon impact, the co llision has a period of elastic loading followed by a period of mixed elastic plas tic loading, with contributions to each mechanism estimated by a hyperbolic seca nt weight function. This function is implemented in the LAMMPS source code as the pair style gran/ep/history. Preliminary tests, simulating the pouring of pure nickel spheres, showed the elastic/plastic model took 1.66x as long as similar runs using gran/hertz/history.
Microstructural and strain rate effects on plastic deformation in aluminum 2219-T87
NASA Astrophysics Data System (ADS)
Rincon, Carlos D.
A fundamental investigation has been conducted on the effects of microstructure and strain rate on the plastic deformation of theta-prime-strengthened 2219 aluminum. The motivation for this work is based upon a previous study which showed inhomogeneous and locally extreme work hardening in the HAZ regions in VPPA 2219-T87 butt welds. This strongly suggests that the HAZ microstructure plays a major role in the deformation and fracture process in precipitation hardened aluminum alloy 2219. Tensile specimens of the weld joint exhibited more rapid work hardening in the heat-affected-zone (HAZ) at higher strain levels. Microhardness contour maps for these welds illustrated that late stage deformation was concentrated in two crossing bands at about 45sp° to the tensile axis. The width of the deformation bands and the ultimate tensile strength seemed to be dictated by the amount of work hardening in the HAZ. In this study, three different heat treatments were used to produce samples with different particle sizes and particle spacings, but all hardened by copper aluminide precipitates of the thetasp' structure. The heat treatments were categorized as being (A) as-received T87 condition, (B) T87 condition aged at approximately 204sp°C for 3 hours and (C) T87 over-aged at 204sp°C for 7 days. Uniaxial tensile tests consisted of two sets of experiments: (1) three heat treatments (A, B, and C) at two strain rates (0.02 minsp{-1} and 0.2 minsp{-1}) and (2) three heat treatments that were interrupted at select stress-strain levels (0.8% and 2% total strain) during the tensile tests at strain rate equal to 0.02 minsp{-1} at room temperature. Furthermore, a detailed transmission electron microscopy (TEM) study demonstrates the microstructural development during tensile deformation. The Voce equation of strain-hardening provides a slightly better fit to the tensile curves than the Ludwik-Hollomon equation. At higher strains, localized areas showed strain fields around thetasp' platelets had diminished. Lastly, in every treatment, both the yield and tensile strength were slightly higher for the higher strain rate, but only by 0.5 to 2.0 ksi.
Peralta, P.; Loomis, E.; Chen, Y.; ...
2015-04-09
Variability in local dynamic plasticity due to material anisotropy in polycrystalline metals is likely to be important on damage nucleation and growth at low pressures. Hydrodynamic instabilities could be used to study these plasticity effects by correlating measured changes in perturbation amplitudes at free surfaces to local plastic behaviour and grain orientation, but amplitude changes are typically too small to be measured reliably at low pressures using conventional diagnostics. Correlations between strength at low shock pressures and grain orientation were studied in copper (grain size ≈ 800 μm) using the Richtmyer–Meshkov instability with a square-wave surface perturbation (wavelength = 150 μm, amplitude = 5 μm), shocked at 2.7 GPa using symmetric plate impacts. A Plexiglas window was pressed against the peaks of the perturbation, keeping valleys as free surfaces. This produced perturbation amplitude changes much larger than those predicted without the window. Amplitude reductions from 64 to 88% were measured in recovered samples and grains oriented close tomore » $$\\langle$$0 0 1$$\\rangle$$ parallel to the shock had the largest final amplitude, whereas grains with shocks directions close to $$\\langle$$1 0 1$$\\rangle$$ had the lowest. Finite element simulations were performed with elastic-perfectly plastic models to estimate yield strengths leading lead to those final amplitudes. Anisotropic elasticity and these yield strengths were used to calculate the resolved shear stresses at yielding for the two orientations. In conclusion, results are compared with reports on orientation dependence of dynamic yielding in Cu single crystals and the higher values obtained suggest that strength estimations via hydrodynamic instabilities are sensitive to strain hardening and strain rate effects.« less
Determination of stresses in RC eccentrically compressed members using optimization methods
NASA Astrophysics Data System (ADS)
Lechman, Marek; Stachurski, Andrzej
2018-01-01
The paper presents an optimization method for determining the strains and stresses in reinforced concrete (RC) members subjected to the eccentric compression. The governing equations for strains in the rectangular cross-sections are derived by integrating the equilibrium equations of cross-sections, taking account of the effect of concrete softening in plastic range and the mean compressive strength of concrete. The stress-strain relationship for concrete in compression for short term uniaxial loading is assumed according to Eurocode 2 for nonlinear analysis. For reinforcing steel linear-elastic model with hardening in plastic range is applied. The task consists in the solving the set of the derived equations s.t. box constraints. The resulting problem was solved by means of fmincon function implemented from the Matlab's Optimization Toolbox. Numerical experiments have shown the existence of many points verifying the equations with a very good accuracy. Therefore, some operations from the global optimization were included: start of fmincon from many points and clusterization. The model is verified on the set of data encountered in the engineering practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Fuping, E-mail: fpyuan@lnm.imech.ac.cn; Wu, Xiaolei, E-mail: xlwu@imech.ac.cn
2014-12-15
A series of large-scale molecular dynamics simulations were conducted to investigate the scaling laws and the related atomistic deformation mechanisms of Cu monocrystal samples containing randomly placed nanovoids under adiabatic uniaxial strain compression. At onset of yielding, plastic deformation is accommodated by dislocations emitted from void surfaces as shear loops. The collapse of voids are observed by continuous emissions of dislocations from void surfaces and their interactions with further plastic deformation. The simulation results also suggest that the effect modulus, the yield stress and the energy aborption density of samples under uniaxial strain are linearly proportional to the relative densitymore » ρ. Moreover, the yield stress, the average flow stress and the energy aborption density of samples with the same relative density show a strong dependence on the void diameter d, expressed by exponential relations with decay coefficients much higher than -1/2. The corresponding atomistic mechanisms for scaling laws of the relative density and the void diameter were also presented. The present results should provide insights for understanding deformation mechanisms of nanoporous metals under extreme conditions.« less
NASA Astrophysics Data System (ADS)
Garkushin, Gennady; Kanel, Gennady; Razorenov, Sergey
2011-06-01
The spall strength and elastic-plastic response have been measured with the VISAR for MA2-1 (94.2% Mg, 0.4 % Mn, 4.4% Al, 1% Zn) alloy at temperatures from 293 K to 823 K. The decay of elastic precursor wave at 293 K is approximately in reverse proportionality with the cubic root from the distance that corresponds to decrease of plastic strain rate from 5 ×105 s-1 at 0.25 mm (213 MPa of the shear stress) down to 5 ×103 s-1 at 10 mm (63 MPa shear stress). An analysis of the rise times of plastic shock waves shows by order of magnitude faster plastic strain rates at corresponding shear stresses than that at the HEL. The decay of elastic precursor wave is weaker and the dependence of initial plastic strain rate on the shear stress at HEL is stronger than that was observed for aluminum. Unlike to aluminum, the magnesium alloy does not exhibit anomalous thermal hardening: the HEL values at 823 K are close to the values at room temperatures. The temperature increase from 293 K to 823 K has led to significant decrease of the spall strength.
NASA Astrophysics Data System (ADS)
González, C.; Segurado, J.; LLorca, J.
2004-07-01
The deformation of a composite made up of a random and homogeneous dispersion of elastic spheres in an elasto-plastic matrix was simulated by the finite element analysis of three-dimensional multiparticle cubic cells with periodic boundary conditions. "Exact" results (to a few percent) in tension and shear were determined by averaging 12 stress-strain curves obtained from cells containing 30 spheres, and they were compared with the predictions of secant homogenization models. In addition, the numerical simulations supplied detailed information of the stress microfields, which was used to ascertain the accuracy and the limitations of the homogenization models to include the nonlinear deformation of the matrix. It was found that secant approximations based on the volume-averaged second-order moment of the matrix stress tensor, combined with a highly accurate linear homogenization model, provided excellent predictions of the composite response when the matrix strain hardening rate was high. This was not the case, however, in composites which exhibited marked plastic strain localization in the matrix. The analysis of the evolution of the matrix stresses revealed that better predictions of the composite behavior can be obtained with new homogenization models which capture the essential differences in the stress carried by the elastic and plastic regions in the matrix at the onset of plastic deformation.
Solution of elastic-plastic stress analysis problems by the p-version of the finite element method
NASA Technical Reports Server (NTRS)
Szabo, Barna A.; Actis, Ricardo L.; Holzer, Stefan M.
1993-01-01
The solution of small strain elastic-plastic stress analysis problems by the p-version of the finite element method is discussed. The formulation is based on the deformation theory of plasticity and the displacement method. Practical realization of controlling discretization errors for elastic-plastic problems is the main focus. Numerical examples which include comparisons between the deformation and incremental theories of plasticity under tight control of discretization errors are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, B.
1994-12-31
This paper describes an elastic-plastic fracture mechanics (EPFM) study of shallow weld-toe cracks. Two limiting crack configurations, plane strain edge crack and semi-circular surface crack in fillet welded T-butt plate joint, were analyzed using the finite element method. Crack depth ranging from 2 to 40% of plate thickness were considered. The elastic-plastic analysis, assuming power-law hardening relationship and Mises yield criterion, was based on incremental plasticity theory. Tension and bending loads applied were monotonically increased to a level causing relatively large scale yielding at the crack tip. Effects of weld-notch geometry and ductile material modeling on prediction of fracture mechanicsmore » characterizing parameter were assessed. It was found that the weld-notch effect reduces and the effect of material modeling increases as crack depth increases. Material modeling is less important than geometric modeling in analysis of very shallow cracks but is more important for relatively deeper cracks, e.g. crack depth more than 20% of thickness. The effect of material modeling can be assessed using a simplified structural model. Weld magnification factors derived assuming linear elastic conditions can be applied to EPFM characterization.« less
Determination of the ductile-brittle transition temperature from the microplastic-strain rate
NASA Astrophysics Data System (ADS)
Andreev, A. K.; Solntsev, Yu. P.
2008-04-01
The possibility of the determination of the tendency of cast and deformed steels to brittle fracture using the temperature dependence of the small-plastic-strain rate is studied. The temperature corresponding to the maximum in this curve is found to indicate an abrupt decrease in the steel plasticity, which makes it possible to interpret it as the ductile-brittle transition temperature depending only on the structure of a material.
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Song, Kyongchan; Elliott, Kenny B.; Raju, Ivatury S.; Warren, Jerry E.
2012-01-01
Elastic-plastic, large-deflection nonlinear stress analyses are performed for the external hat-shaped stringers (or stiffeners) on the intertank portion of the Space Shuttle s external tank. These stringers are subjected to assembly strains when the stringers are initially installed on an intertank panel. Four different stringer-feet configurations including the baseline flat-feet, the heels-up, the diving-board, and the toes-up configurations are considered. The assembly procedure is analytically simulated for each of these stringer configurations. The location, size, and amplitude of the strain field associated with the stringer assembly are sensitive to the assumed geometry and assembly procedure. The von Mises stress distributions from these simulations indicate that localized plasticity will develop around the first eight fasteners for each stringer-feet configuration examined. However, only the toes-up configuration resulted in high assembly hoop strains.
NASA Astrophysics Data System (ADS)
Xiang, Longhao; Pan, Juyi; Chen, Songying
2018-06-01
The influence of pit shape and size on local stress concentration in the tensile specimen and the stress corrosion cracks inception was studied by employing the element remove technique. The maximum stress located in the bottom of pit on FV520B tensile specimen. The location of maximum strain was near the mouth of the pit or the shoulder and plastic strain existed in this region. Stress concentration factor and plastic deformation on four different geometrical shape pits of hemisphere, semi-ellipsoid, bullet and butterfly were numerically investigated, respectively. The simulation results showed that butterfly pit got the biggest stress concentration factor. The plastic strain rate during pit growth was in the sensitivity range of stress corrosion cracks inception, indicating that stress corrosion cracks were more likely to nucleate near the pit tip or the shoulder.
NASA Astrophysics Data System (ADS)
Buchanan, Dennis J.; John, Reji; Brockman, Robert A.; Rosenberger, Andrew H.
2010-01-01
Shot peening is a commonly used surface treatment process that imparts compressive residual stresses into the surface of metal components. Compressive residual stresses retard initiation and growth of fatigue cracks. During component loading history, shot-peened residual stresses may change due to thermal exposure, creep, and cyclic loading. In these instances, taking full credit for compressive residual stresses would result in a nonconservative life prediction. This article describes a methodical approach for characterizing and modeling residual stress relaxation under elevated temperature loading, near and above the monotonic yield strength of INI 00. The model incorporates the dominant creep deformation mechanism, coupling between the creep and plasticity models, and effects of prior plastic strain to simulate surface treatment deformation.
Coupled THM processes in EDZ of crystalline rocks using an elasto-plastic cellular automaton
NASA Astrophysics Data System (ADS)
Pan, Peng-Zhi; Feng, Xia-Ting; Huang, Xiao-Hua; Cui, Qiang; Zhou, Hui
2009-05-01
This paper aims at a numerical study of coupled thermal, hydrological and mechanical processes in the excavation disturbed zones (EDZ) around nuclear waste emplacement drifts in fractured crystalline rocks. The study was conducted for two model domains close to an emplacement tunnel; (1) a near-field domain and (2) a smaller wall-block domain. Goodman element and weak element were used to represent the fractures in the rock mass and the rock matrix was represented as elasto-visco-plastic material. Mohr-Coulomb criterion and a non-associated plastic flow rule were adopted to consider the viscoplastic deformation in the EDZ. A relation between volumetric strain and permeability was established. Using a self-developed EPCA2D code, the elastic, elasto-plastic and creep analyses to study the evolution of stress and deformations, as well as failure and permeability evolution in the EDZ were conducted. Results indicate a strong impact of fractures, plastic deformation and time effects on the behavior of EDZ especially the evolution of permeability around the drift.
Silva, Bruno; Nunes, Alexandra; Vale, Filipa F; Rocha, Raquel; Gomes, João Paulo; Dias, Ricardo; Oleastro, Mónica
2017-08-01
Helicobacter pylori virulence is associated with different clinical outcomes. The existence of an intact dupA gene from tfs4b cluster has been suggested as a predictor for duodenal ulcer development. However, the role of tfs plasticity zone clusters in the development of ulcers remains unclear. We studied several H. pylori strains to characterize the gene arrangement of tfs3 and tfs4 clusters and their impact in the inflammatory response by infected gastric cells. The genome of 14 H. pylori strains isolated from Western patients, pediatric (n=10) and adult (n=4), was fully sequenced using the Illumina platform MiSeq, in addition to eight pediatric strains previously sequenced. These strains were used to infect human gastric cells, and the secreted interleukin-8 (IL-8) was quantified by ELISA. The expression of virB2, dupA, virB8, virB10, and virB6 was assessed by quantitative PCR in adherent and nonadherent fractions of H. pylori during in vitro co-infection, at different pH values. We have found that cagA-positive H. pylori strains harboring a complete tfs plasticity zone cluster significantly induce increased production of IL-8 from gastric cells. We have also found that the region spanning from virB2 to virB10 genes constitutes an operon, whose expression is increased in the adherent fraction of bacteria during infection, as well as in both adherent and nonadherent fractions at acidic conditions. A complete tfs plasticity zone cluster is a virulence factor that may be important for the colonization of H. pylori and to the development of severe outcomes of the infection with cagA-positive strains. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Iannitti, Gianluca; Bonora, Nicola; Ruggiero, Andrew; Dichiaro, Simone
2012-03-01
In this work, a constitutive modeling that couples plasticity, grain size evolution (due to plastic deformation and dynamic recrystallization) and ductile damage has been developed. The effect of grain size on the material yield stress (Hall-Petch) and on the melting temperature has been considered. The model has been used to investigate computationally the behavior of high purity copper in dynamic tensile extrusion test (DTE). An extensive numerical simulation work, using implicit finite element code with direct integration, has been performed and the results have been compared with available experimental data. The major finding is that the proposed model is capable to predict most of the observed features such as the increase of material ductility with the decreasing average grain size, the overall number and size of fragments and the average grain size distribution in the fragment trapped into the dime.
NASA Astrophysics Data System (ADS)
Iannitti, Gianluca; Bonora, Nicola; Ruggiero, Andrew; Dichiaro, Simone
2011-06-01
In this work, a constitutive modeling that couples plasticity, grain size evolution (due to plastic deformation and dynamic recrystallization) and ductile damage has been developed. The effect of grain size on the material yield stress (Hall-Petch) and on the melting temperature has been considered. The model has been used to investigate computationally the behaviour of high purity copper in dynamic tensile extrusion test (DTE). An extensive numerical simulation work, using implicit finite element code with direct integration, has been performed and the results have been compared with available experimental data. The major finding is that the proposed model is capable to predict most of the observed features such as the increase of material ductility with the decreasing average grain size, the overall number and size of fragments and the average grain size distribution in the fragment trapped into the dime.
Quantifying Grain Level Stress-Strain Behavior for AM40 via Instrumented Microindentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Guang; Barker, Erin I.; Stephens, Elizabeth V.
2016-01-01
ABSTRACT Microindentation is performed on hot isostatic pressed (HIP) Mg-Al (AM40) alloy samples produced by high-pressure die cast (HPDC) process for the purpose of quantifying the mechanical properties of the α-Mg grains. The process of obtaining elastic modulus and hardness from indentation load-depth curves is well established in the literature. A new inverse method is developed to extract plastic properties in this study. The method utilizes empirical yield strength-hardness relationship reported in the literature together with finite element modeling of the individual indentation. Due to the shallow depth of the indentation, indentation size effect (ISE) is taken into account whenmore » determining plastic properties. The stress versus strain behavior is determined for a series of indents. The resulting average values and standard deviations are obtained for future use as input distributions for microstructure-based property prediction of AM40.« less
[Changes in the forms of industrial production and their effects on workers' health].
Fernandes, Rita de Cássia Pereira; Assunção, Ada Avila; Carvalho, Fernando Martins
2010-06-01
This study aimed to identify determinants of health in workers of plastic industries. Production organization, machinery from maintenance and productive areas, and workers' characteristics of 14 plastic industries from Greater Salvador, Bahia State, Brazil, were described. Data were collected about development policy of each company; marketing, operational procedures; production and quality requirements, and formal rules of work organization. High strain management techniques for production time reduction have been implemented. The increase of work rhythm, reduction of break time, and a situation of high cognitive demand impose to workers anomalous body positioning for performing tasks that imply repetitive movements. Physical and psychosocial demands (repetitive work, lower control of the worker on his own tasks, time pressure and job dissatisfaction) compose a complex of conditions adverse to workers' health. Changes in production management, personnel and business impose new strains into the development of task by the workers and bringing in new risk factors to workers' health.
Statistical physics of the yielding transition in amorphous solids.
Karmakar, Smarajit; Lerner, Edan; Procaccia, Itamar
2010-11-01
The art of making structural, polymeric, and metallic glasses is rapidly developing with many applications. A limitation is that under increasing external strain all amorphous solids (like their crystalline counterparts) have a finite yield stress which cannot be exceeded without effecting a plastic response which typically leads to mechanical failure. Understanding this is crucial for assessing the risk of failure of glassy materials under mechanical loads. Here we show that the statistics of the energy barriers ΔE that need to be surmounted changes from a probability distribution function that goes smoothly to zero as ΔE=0 to a pdf which is finite at ΔE=0 . This fundamental change implies a dramatic transition in the mechanical stability properties with respect to external strain. We derive exact results for the scaling exponents that characterize the magnitudes of average energy and stress drops in plastic events as a function of system size.
NASA Astrophysics Data System (ADS)
Hazeli, K.; Cuadra, J.; Vanniamparambil, P. A.; Carmi, R.; Kontsos, A.
This study presents a hybrid experimental mechanics approach combining multi-scale mechanical testing, in situ nondestructive evaluation and targeted microscopic quantification to identify and quantify critical micro structural parameters that affect properties and overall plasticity of Mg alloys. Room temperature monotonic and cyclic experiments monitored by Digital Image Correlation (DIC) coupled with Acoustic Emission (AE) of Mg Alloys of the AZ series were used for this investigation. Data obtained using the optico-acoustic nondestructive system revealed for the first time the direct connection between surface strain localization effects similar to Luder's bands and pronounced twin activity. Electron Back Scatter Diffraction (EBSD) measurements showed the profuse and spatially inhomogeneous nature of twinning at early stages of plasticity which is related with the onset of yielding and the macroscopic plateau region in the stress-strain curve. Furthermore, twinning/detwinning activity was identified in several grains of tested specimens and during characteristic points of fatigue cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poling, Whitney A.; Savic, Vesna; Hector, Louis G.
2016-04-05
The strain-induced, diffusionless shear transformation of retained austenite to martensite during straining of transformation induced plasticity (TRIP) assisted steels increases strain hardening and delays necking and fracture leading to exceptional ductility and strength, which are attractive for automotive applications. A novel technique that provides the retained austenite volume fraction variation with strain in TRIP-assisted steels with improved precision is presented. Digital images of the gauge section of tensile specimens were first recorded up to selected plastic strains with a stereo digital image correlation (DIC) system. The austenite volume fraction was measured by synchrotron X-ray diffraction from small squares cut frommore » the gage section. Strain fields in the squares were then computed by localizing the strain measurement to the corresponding region of a given square during DIC post-processing of the images recorded during tensile testing. Results obtained for a QP980 steel are used to study the influence of initial volume fraction of austenite and the austenite transformation with strain on tensile mechanical behavior.« less
3D digital image correlation investigation of PLC effect in a new Ni-Co base superalloy
NASA Astrophysics Data System (ADS)
Gao, Y.; Fu, S. H.; Cheng, T.; Huo, X.; Zhang, Q. C.
2013-06-01
Repeated plastic instability accompanying serrated yielding in stress-strain curves and localization of deformation is observed during plastic deformation of many metallic alloys when tensile specimens are deformed under certain experimental conditions of temperature, strain rate, and pre-deformation. This phenomenon is referred to as the Portevin- Le Chatelier (PLC) effect. TMW alloy, a newly developed Ni-Co base superalloy for aircraft engine application, also exhibit PLC effect during tensile test at temperatures ranging from 300 ° to 600 °, which are also the temperature range for engine working. In this paper, a 3D digital image correlation (3D DIC) measurement system was established to observe the localization of deformation (PLC band) in a tensile test performed on TMW alloy specimen at temperature of 400 °. The 3D DIC system, with displacement measurement accuracy up to 0.01 pixels and strain measurement accuracy up to 100 μɛ, has a high performance in displacement field calculation with more than 10000 points every second on a 3.1G Hz CPU computer. The test result shows that, the PLC bands are inclined at an angle of about 60° to the tensile axis. Unlike tensile test performed on aluminums alloy, the widths of PLC bands of TMW alloy specimen, ranging from 4 mm to 4.5 mm, are much greater than the specimen thickness (0.25 mm).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barua, Bipul; Mohanty, Subhasish; Listwan, Joseph T.
In this paper, a cyclic-plasticity based fully mechanistic fatigue modeling approach is presented. This is based on time-dependent stress-strain evolution of the material over the entire fatigue life rather than just based on the end of live information typically used for empirical S~N curve based fatigue evaluation approaches. Previously we presented constant amplitude fatigue test based related material models for 316 SS base, 508 LAS base and 316 SS- 316 SS weld which are used in nuclear reactor components such as pressure vessels, nozzles, and surge line pipes. However, we found that constant amplitude fatigue data based models have limitationmore » in capturing the stress-strain evolution under arbitrary fatigue loading. To address the above mentioned limitation, in this paper, we present a more advanced approach that can be used for modeling the cyclic stress-strain evolution and fatigue life not only under constant amplitude but also under any arbitrary (random/variable) fatigue loading. The related material model and analytical model results are presented for 316 SS base metal. Two methodologies (either based on time/cycle or based on accumulated plastic strain energy) to track the material parameters at a given time/cycle are discussed and associated analytical model results are presented. From the material model and analytical cyclic plasticity model results, it is found that the proposed cyclic plasticity model can predict all the important stages of material behavior during the entire fatigue life of the specimens with more than 90% accuracy« less
Barua, Bipul; Mohanty, Subhasish; Listwan, Joseph T.; ...
2017-12-05
In this paper, a cyclic-plasticity based fully mechanistic fatigue modeling approach is presented. This is based on time-dependent stress-strain evolution of the material over the entire fatigue life rather than just based on the end of live information typically used for empirical S~N curve based fatigue evaluation approaches. Previously we presented constant amplitude fatigue test based related material models for 316 SS base, 508 LAS base and 316 SS- 316 SS weld which are used in nuclear reactor components such as pressure vessels, nozzles, and surge line pipes. However, we found that constant amplitude fatigue data based models have limitationmore » in capturing the stress-strain evolution under arbitrary fatigue loading. To address the above mentioned limitation, in this paper, we present a more advanced approach that can be used for modeling the cyclic stress-strain evolution and fatigue life not only under constant amplitude but also under any arbitrary (random/variable) fatigue loading. The related material model and analytical model results are presented for 316 SS base metal. Two methodologies (either based on time/cycle or based on accumulated plastic strain energy) to track the material parameters at a given time/cycle are discussed and associated analytical model results are presented. From the material model and analytical cyclic plasticity model results, it is found that the proposed cyclic plasticity model can predict all the important stages of material behavior during the entire fatigue life of the specimens with more than 90% accuracy« less
Green's Function and Stress Fields in Stochastic Heterogeneous Continua
NASA Astrophysics Data System (ADS)
Negi, Vineet
Many engineering materials used today are heterogenous in composition e.g. Composites - Polymer Matrix Composites, Metal Matrix Composites. Even, conventional engineering materials - metals, plastics, alloys etc. - may develop heterogeneities, like inclusions and residual stresses, during the manufacturing process. Moreover, these materials may also have intrinsic heterogeneities at a nanoscale in the form of grain boundaries in metals, crystallinity in amorphous polymers etc. While, the homogenized constitutive models for these materials may be satisfactory at a macroscale, recent studies of phenomena like fatigue failure, void nucleation, size-dependent brittle-ductile transition in polymeric nanofibers reveal a major play of micro/nanoscale physics in these phenomena. At this scale, heterogeneities in a material may no longer be ignored. Thus, this demands a study into the effects of various material heterogeneities. In this work, spatial heterogeneities in two material properties - elastic modulus and yield stress - have been investigated separately. The heterogeneity in the elastic modulus is studied in the context of Green's function. The Stochastic Finite Element method is adopted to get the mean statistics of the Green's function defined on a stochastic heterogeneous 2D infinite space. A study of the elastic-plastic transition in a domain having stochastic heterogenous yield stress was done using Mont-Carlo methods. The statistics for various stress and strain fields during the transition were obtained. Further, the effects of size of the domain and the strain-hardening rate on the stress fields during the heterogeneous elastic-plastic transition were investigated. Finally, a case is made for the role of the heterogenous elastic-plastic transition in damage nucleation and growth.
Galvin, Emmet; Cummins, Christy; Yoshihara, Shoichiro; Mac Donald, Bryan J; Lally, Caitríona
2017-08-01
Magnesium stents are a promising candidate in the emerging field of absorbable metallic stents (AMSs). In this study, the mechanical and corrosion performance of dog-bone specimens and a specific stent design of a magnesium alloy, WE43, are assessed experimentally in terms of their corrosion behaviour and mechanical integrity. It is shown that plastic strains that are induced in the struts of the stent during stent deployment have a critical influence in directing subsequent corrosion behaviour within the material. In addition, the deployment and scaffolding characteristics of the magnesium stent are elucidated and contrasted with those of a commercial stainless steel stent. The magnesium stent is found to support higher levels of cyclic strain amplitude than the stainless steel stent, even prior to degradation, and this may play a role in reducing in-stent restenosis. This study provides new insights into the experimental performance of a current AMS design and material whilst demonstrating the critical influence of plastic strain on the corrosion performance and scaffolding ability of an AMS.
Predicting Hot Deformation of AA5182 Sheet
NASA Astrophysics Data System (ADS)
Lee, John T.; Carpenter, Alexander J.; Jodlowski, Jakub P.; Taleff, Eric M.
Aluminum 5000-series alloy sheet materials exhibit substantial ductilities at hot and warm temperatures, even when grain size is not particularly fine. The relatively high strain-rate sensitivity exhibited by these non-superplastic materials, when deforming under solute-drag creep, is a primary contributor to large tensile ductilities. This active deformation mechanism influences both plastic flow and microstructure evolution across conditions of interest for hot- and warm-forming. Data are presented from uniaxial tensile and biaxial bulge tests of AA5182 sheet material at elevated temperatures. These data are used to construct a material constitutive model for plastic flow, which is applied in finite-element-method (FEM) simulations of plastic deformation under multiaxial stress states. Simulation results are directly compared against experimental data to explore the usefulness of this constitutive model. The effects of temperature and stress state on plastic response and microstructure evolution are discussed.
NASA Astrophysics Data System (ADS)
Krasnoveikin, V. A.; Kozulin, A. A.; Skripnyak, V. A.; Moskvichev, E. N.; Borodulin, D. A.
2017-12-01
This paper presents the results of studies into the effect of severe plastic deformation on the microstructure, physical and mechanical properties of coarse-grained Al-Mg alloy 1560 in the as-received state with an average grain size of 50 µm. Severe plastic deformation is performed by four-pass equal channel angular pressing (ECAP), which results in the formation of an ultrafine-grained structure with an average grain size of 3 µm in the alloy. Analysis of experimental data revealed that the physical and mechanical properties change significantly after severe plastic deformation. The microhardness of the ECAPed alloy increases by 50%, tensile yield strength by 80%, and ultimate strength by 44% in comparison with these parameters in the as-received state. The constants of approximating functions have been determined for the experimental stress-strain curves of the alloy specimens in the as-received and ECAPed states.
NASA Astrophysics Data System (ADS)
Wang, Chuanjie; Liu, Huan; Zhang, Ying; Chen, Gang; Li, Yujie; Zhang, Peng
2017-12-01
Micro-forming is one promising technology for manufacturing micro metal parts. However, the traditional metal-forming theories fail to analyze the plastic deformation behavior in micro-scale due to the size effect arising from the part geometry scaling down from macro-scale to micro-scale. To reveal the mechanism of plastic deformation behavior size effect in micro-scale, the geometrical parameters and the induced variation of microstructure by them need to be integrated in the developed constitutive models considering the free surface effect. In this research, the variations of dislocation cell diameter with original grain size, strain and location (surface grain or inner grain) are derived according the previous research data. Then the overall flow stress of the micro specimen is determined by employing the surface layer model and the relationship between dislocation cell diameter and the flow stress. This new developed constitutive model considers the original grain size, geometrical dimension and strain simultaneously. The flow stresses in micro-tensile tests of thin sheets are compared with calculated results using the developed constitutive model. The calculated and experimental results match well. Thus the validity of the developed constitutive model is verified.
NASA Astrophysics Data System (ADS)
Lee, Chin-Hyung; Nguyen Van Do, Vuong; Chang, Kyong-Ho; Jeon, Jun-Tai; Um, Tae-Hwan
2018-04-01
The present study attempts to characterize the relevance of welding residual stresses to the hysteretic behaviour of a girth-welded circular stainless steel tube under cyclic mechanical loadings. Finite element (FE) thermal simulation of the girth butt welding process is first performed to identify the weld-induced residual stresses by using the one-way coupled three-dimensional (3-D) thermo-mechanical FE analysis method. 3-D elastic-plastic FE analysis equipped with the cyclic plasticity constitutive model capable of describing the cyclic response is next carried out to scrutinize the effects that the residual stresses have on the hysteretic performance of the girth-welded steel tube exposed to cyclic axial loading, which takes the residual stresses and plastic strains calculated from the preceding thermo-mechanical analysis as the initial condition. The analytical results demonstrate that the residual stresses bring about premature yielding and deterioration of the load carrying capacity in the elastic and the transition load ranges, whilst the residual stress effect is wiped out quickly in the plastic load domain since the residual stresses are nearly wholly relaxed after application of the cyclic plastic loading.
Nonlinear Inelastic Mechanical Behavior Of Epoxy Resin Polymeric Materials
NASA Astrophysics Data System (ADS)
Yekani Fard, Masoud
Polymer and polymer matrix composites (PMCs) materials are being used extensively in different civil and mechanical engineering applications. The behavior of the epoxy resin polymers under different types of loading conditions has to be understood before the mechanical behavior of Polymer Matrix Composites (PMCs) can be accurately predicted. In many structural applications, PMC structures are subjected to large flexural loadings, examples include repair of structures against earthquake and engine fan cases. Therefore it is important to characterize and model the flexural mechanical behavior of epoxy resin materials. In this thesis, a comprehensive research effort was undertaken combining experiments and theoretical modeling to investigate the mechanical behavior of epoxy resins subject to different loading conditions. Epoxy resin E 863 was tested at different strain rates. Samples with dog-bone geometry were used in the tension tests. Small sized cubic, prismatic, and cylindrical samples were used in compression tests. Flexural tests were conducted on samples with different sizes and loading conditions. Strains were measured using the digital image correlation (DIC) technique, extensometers, strain gauges, and actuators. Effects of triaxiality state of stress were studied. Cubic, prismatic, and cylindrical compression samples undergo stress drop at yield, but it was found that only cubic samples experience strain hardening before failure. Characteristic points of tensile and compressive stress strain relation and load deflection curve in flexure were measured and their variations with strain rate studied. Two different stress strain models were used to investigate the effect of out-of-plane loading on the uniaxial stress strain response of the epoxy resin material. The first model is a strain softening with plastic flow for tension and compression. The influence of softening localization on material behavior was investigated using the DIC system. It was found that compression plastic flow has negligible influence on flexural behavior in epoxy resins, which are stronger in pre-peak and post-peak softening in compression than in tension. The second model was a piecewise-linear stress strain curve simplified in the post-peak response. Beams and plates with different boundary conditions were tested and analytically studied. The flexural over-strength factor for epoxy resin polymeric materials were also evaluated.
Small-scale plasticity critically needs a new mechanics description
NASA Astrophysics Data System (ADS)
Ngan, Alfonso H. W.
2013-06-01
Continuum constitutive laws describe the plastic deformation of materials as a smooth, continuously differentiable process. However, provided that the measurement is done with a fine enough resolution, the plastic deformation of real materials is often found to comprise discrete events usually nanometric in size. For bulk-sized specimens, such nanoscale events are minute compared with the specimen size, and so their associated strain changes are negligibly small, and this is why the continuum laws work well. However, when the specimen size is in the micrometer scale or smaller, the strain changes due to the discrete events could be significant, and the continuum description would be highly unsatisfactory. Yet, because of the advent of microtechnology and nanotechnolgy, small-sized materials will be increasingly used, and so there is a strong need to develop suitable replacement descriptions for plasticity of small materials. As the occurrence of the discrete plastic events is also strongly stochastic, their satisfactory description should also be one of a probabilistic, rather than deterministic, nature.
Basha, Dudekula Althaf; Rosalie, Julian M; Somekawa, Hidetoshi; Miyawaki, Takashi; Singh, Alok; Tsuchiya, Koichi
2016-01-01
Microstructural investigation of extremely strained samples, such as severely plastically deformed (SPD) materials, by using conventional transmission electron microscopy techniques is very challenging due to strong image contrast resulting from the high defect density. In this study, low angle annular dark field (LAADF) imaging mode of scanning transmission electron microscope (STEM) has been applied to study the microstructure of a Mg-3Zn-0.5Y (at%) alloy processed by high pressure torsion (HPT). LAADF imaging advantages for observation of twinning, grain fragmentation, nucleation of recrystallized grains and precipitation on second phase particles in the alloy processed by HPT are highlighted. By using STEM-LAADF imaging with a range of incident angles, various microstructural features have been imaged, such as nanoscale subgrain structure and recrystallization nucleation even from the thicker region of the highly strained matrix. It is shown that nucleation of recrystallized grains starts at a strain level of revolution [Formula: see text] (earlier than detected by conventional bright field imaging). Occurrence of recrystallization of grains by nucleating heterogeneously on quasicrystalline particles is also confirmed. Minimizing all strain effects by LAADF imaging facilitated grain size measurement of [Formula: see text] nm in fully recrystallized HPT specimen after [Formula: see text].
Shear Strains, Strain Rates and Temperature Changes in Adiabatic Shear Bands
1980-05-01
X14A. It has been found that when bainitic and martensitic steels are sheared adiabatically, a layer of material within ths shear zone is altezed and...Sooiety for Metals, Metals Park, Ohio, 1978, pp. 148-0. 21 TABLE II SOLID-STATE TRANSFORMATIONS IN BAINITIC STEEL TRANSFORMATION TRANSFORMATION...shear, thermoplastic, plasticity, plastic deformation, armor, steel IL AnSRACT ( -=nba asoa.tm a naeoesM iN faity by bleak n bet/2972 Experiments
NASA Astrophysics Data System (ADS)
Ramos-Azpeitia, Mitsuo; Elizabeth Martínez-Flores, E.; Hernandez-Rivera, Jose Luis; Torres-Villaseñor, Gabriel
2017-11-01
The aim of this work is to analyze the plastic flow instability in Zn-21Al-2Cu alloy deformed under 10-3 s-1 and 513 K, which are optimum conditions for inducing superplastic behavior in this alloy. An evaluation using the Hart and Wilkinson-Caceres criteria showed that the limited stability of plastic flow observed in this alloy is related to low values of the strain-rate sensitivity index ( m) and the strain-hardening coefficient ( γ), combined with the tendency of these parameters to decrease depending on true strain ( ɛ). The reduction in m and γ values could be associated with the early onset of plastic instability and with microstructural changes observed as function of the strain. Grain growth induced by deformation seems to be important during the first stage of deformation of this alloy. However, when ɛ > 0.4 this growth is accompanied by other microstructural rearrangements. These results suggest that in this alloy, a grain boundary sliding mechanism acts to allow a steady superplastic flow only for ɛ < 0.4. For ɛ values between 0.4 and 0.7, observed occurrences of microstructural changes and severe neck formation lead to the supposition that there is a transition in the deformation mechanism. These changes are more evident when ɛ > 0.7 as another mechanism is thought to take over.
Topological defect clustering and plastic deformation mechanisms in functionalized graphene
NASA Astrophysics Data System (ADS)
Nunes, Ricardo; Araujo, Joice; Chacham, Helio
2011-03-01
We present ab initio results suggesting that strain plays a central role in the clustering of topological defects in strained and functionalized graphene models. We apply strain onto the topological-defect graphene networks from our previous work, and obtain topological-defect clustering patterns which are in excellent agreement with recent observations in samples of reduced graphene oxide. In our models, the graphene layer, containing an initial concentration of isolated topological defects, is covered by hydrogen or hydroxyl groups. Our results also suggest a rich variety of plastic deformation mechanism in functionalized graphene systems. We acknowledge support from the Brazilian agencies: CNPq, Fapemig, and INCT-Materiais de Carbono.
NASA Astrophysics Data System (ADS)
Oh, Gyu-Jin; Lee, Kye-Man; Huh, Moo-Young; Park, Jin Eon; Park, Soo Ho; Engler, Olaf
2017-01-01
Three initial tensile specimens having different textures and, in consequence, different r-values were cut from a sheet of an interstitial-free steel. Using these specimens, the effect of r-value and texture on plastic deformation and the necking behavior were studied by tackling the strain state and texture during tensile tests. A reduced decrease in work hardening rate of tensile specimens with higher r-values led to a slower onset of diffuse necking which offers an increased uniform elongation. A slower reduction in thickness of specimens with a higher r-value provided a favorable resistance against onset of failure by localized necking.
NASA Astrophysics Data System (ADS)
Comǎneci, Radu Ioachim; Nedelcu, Dumitru; Bujoreanu, Leandru Gheorghe
2017-10-01
Equal channel angular pressing (ECAP) is a well-established method for grain refinement in metallic materials by large shear plastic deformation, being the most promising and effective severe plastic deformation (SPD) technique. ECAP is a discontinuous process, so the billet removal implies a new development of the procedure: the new sample pushes out the previous sample. In resuming the process the head and the tail ends of the work piece which becomes strongly distorted and receiving different amount of strain have to be removed. Due to the path difference in material flow between upper and lower region of the outlet channel, a non-uniform strain and stress distribution across the width of the workpiece leaving the plastic deformation zone (PDZ) is achieved. A successful ECAP requires surpassing two obstacles: the necessary load level which directly affects tools and a favorable stress distribution so the material withstanding the accumulated strain of repeated deformation. Under back pressure (BP), materials have shown to be able to withstand more passes. As soon as the billet passes the PDZ along the bisector plane of the two channels, the compressive mean stress changes to tensile (leading to crack initiation), while in the presence of BP, a negative (compressive) stress is applied during the process. In this paper a comparative tridimensional finite element analysis (FEA) is performed to evaluate the behavior of a difficult-to-work Al-Mg alloy depending on tools geometry and process parameters. The results in terms of load level and strain distribution show the influence of the punch geometry and BP on the material behavior.
Zuanetti, Bryan; McGrane, Shawn David; Bolme, Cynthia Anne; ...
2018-05-18
Here, this article presents results from laser-driven shock compression experiments performed on pre-heated pure aluminum films at temperatures ranging from 23 to 400 °C. The samples were vapor deposited on the surface of a 500 μm thick sapphire substrate and mounted onto a custom holder with an integrated ring-heater to enable variable initial temperature conditions. A chirped pulse amplified laser was used to generate a pulse for both shocking the films and for probing the free surface velocity using Ultrafast Dynamic Ellipsometry. The particle velocity traces measured at the free surface clearly show elastic and plastic wave separation, which wasmore » used to estimate the decay of the elastic precursor amplitude over propagation distances ranging from 0.278 to 4.595 μm. Elastic precursors (which also correspond to dynamic material strength under uniaxial strain) of increasing amplitudes were observed with increasing initial sample temperatures for all propagation distances, which is consistent with expectations for aluminum in a deformation regime where phonon drag limits the mobility of dislocations. The experimental results show peak elastic amplitudes corresponding to axial stresses of over 7.5 GPa; estimates for plastic strain-rates in the samples are of the order 10 9/s. The measured elastic amplitudes at the micron length scales are compared with those at the millimeter length-scales using a two-parameter model and used to correlate the rate sensitivity of the dynamic strength at strain-rates ranging from 10 3 to 10 9/s and elevated temperature conditions. The overall trend, as inferred from the experimental data, indicates that the temperature-strengthening effect decreases with increasing plastic strain-rates.« less
NASA Astrophysics Data System (ADS)
Zuanetti, Bryan; McGrane, Shawn D.; Bolme, Cynthia A.; Prakash, Vikas
2018-05-01
This article presents results from laser-driven shock compression experiments performed on pre-heated pure aluminum films at temperatures ranging from 23 to 400 °C. The samples were vapor deposited on the surface of a 500 μm thick sapphire substrate and mounted onto a custom holder with an integrated ring-heater to enable variable initial temperature conditions. A chirped pulse amplified laser was used to generate a pulse for both shocking the films and for probing the free surface velocity using Ultrafast Dynamic Ellipsometry. The particle velocity traces measured at the free surface clearly show elastic and plastic wave separation, which was used to estimate the decay of the elastic precursor amplitude over propagation distances ranging from 0.278 to 4.595 μm. Elastic precursors (which also correspond to dynamic material strength under uniaxial strain) of increasing amplitudes were observed with increasing initial sample temperatures for all propagation distances, which is consistent with expectations for aluminum in a deformation regime where phonon drag limits the mobility of dislocations. The experimental results show peak elastic amplitudes corresponding to axial stresses of over 7.5 GPa; estimates for plastic strain-rates in the samples are of the order 109/s. The measured elastic amplitudes at the micron length scales are compared with those at the millimeter length-scales using a two-parameter model and used to correlate the rate sensitivity of the dynamic strength at strain-rates ranging from 103 to 109/s and elevated temperature conditions. The overall trend, as inferred from the experimental data, indicates that the temperature-strengthening effect decreases with increasing plastic strain-rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuanetti, Bryan; McGrane, Shawn David; Bolme, Cynthia Anne
Here, this article presents results from laser-driven shock compression experiments performed on pre-heated pure aluminum films at temperatures ranging from 23 to 400 °C. The samples were vapor deposited on the surface of a 500 μm thick sapphire substrate and mounted onto a custom holder with an integrated ring-heater to enable variable initial temperature conditions. A chirped pulse amplified laser was used to generate a pulse for both shocking the films and for probing the free surface velocity using Ultrafast Dynamic Ellipsometry. The particle velocity traces measured at the free surface clearly show elastic and plastic wave separation, which wasmore » used to estimate the decay of the elastic precursor amplitude over propagation distances ranging from 0.278 to 4.595 μm. Elastic precursors (which also correspond to dynamic material strength under uniaxial strain) of increasing amplitudes were observed with increasing initial sample temperatures for all propagation distances, which is consistent with expectations for aluminum in a deformation regime where phonon drag limits the mobility of dislocations. The experimental results show peak elastic amplitudes corresponding to axial stresses of over 7.5 GPa; estimates for plastic strain-rates in the samples are of the order 10 9/s. The measured elastic amplitudes at the micron length scales are compared with those at the millimeter length-scales using a two-parameter model and used to correlate the rate sensitivity of the dynamic strength at strain-rates ranging from 10 3 to 10 9/s and elevated temperature conditions. The overall trend, as inferred from the experimental data, indicates that the temperature-strengthening effect decreases with increasing plastic strain-rates.« less
Zhou, Fen; Tomberlin, Jeffery K; Zheng, Longyu; Yu, Ziniu; Zhang, Jibin
2013-11-01
Black soldier flies, Hermetia illucens L., are distributed throughout the temperate and tropic regions of the world and are known an established method for sustainably managing animal wastes. Colonies used to conduct research on the black soldier fly within the past 20 yr have predominately been established from eggs or larvae received from a colony originated from Bacon County, GA. Consequently, little is known about the phenotypic plasticity (i.e., development and waste conversion) across strains from different regions. This study compared the development of three strains of the black soldier fly (Texas; Guangzhou, China; and Wuhan, China) and their ability to reduce dry matter and associated nutrients in swine, dairy, and chicken manure. The Wuhan strain appeared to be more fit. Larvae from Wuhan needed 17.7-29.9% less time to reach the prepupal stage than those from Guangzhou or Texas, respectively. Larvae from Wuhan weighed 14.4-37.0% more than those from Guanghzhou or Texas, respectively. Larvae from the Wuhan strain reduced dry matter 46.0% (swine), 40.1% (dairy), and 48.4% (chicken) more than the Guangzhou strain and 6.9, 7.2, and 7.9% more than the Texas strain. This study demonstrates that phenotypic plasticity (e.g., development and waste conversion) varies across populations of black soldier flies and should be taken into account when selecting and establishing a population as a waste management agent in a given region of the world.
The cutting of metals via plastic buckling
Viswanathan, Koushik; Ho, Yeung; Chandrasekar, Srinivasan
2017-01-01
The cutting of metals has long been described as occurring by laminar plastic flow. Here we show that for metals with large strain-hardening capacity, laminar flow mode is unstable and cutting instead occurs by plastic buckling of a thin surface layer. High speed in situ imaging confirms that the buckling results in a small bump on the surface which then evolves into a fold of large amplitude by rotation and stretching. The repeated occurrence of buckling and folding manifests itself at the mesoscopic scale as a new flow mode with significant vortex-like components—sinuous flow. The buckling model is validated by phenomenological observations of flow at the continuum level and microstructural characteristics of grain deformation and measurements of the folding. In addition to predicting the conditions for surface buckling, the model suggests various geometric flow control strategies that can be effectively implemented to promote laminar flow, and suppress sinuous flow in cutting, with implications for industrial manufacturing processes. The observations impinge on the foundations of metal cutting by pointing to the key role of stability of laminar flow in determining the mechanism of material removal, and the need to re-examine long-held notions of large strain deformation at surfaces. PMID:28690406
The cutting of metals via plastic buckling.
Udupa, Anirudh; Viswanathan, Koushik; Ho, Yeung; Chandrasekar, Srinivasan
2017-06-01
The cutting of metals has long been described as occurring by laminar plastic flow. Here we show that for metals with large strain-hardening capacity, laminar flow mode is unstable and cutting instead occurs by plastic buckling of a thin surface layer. High speed in situ imaging confirms that the buckling results in a small bump on the surface which then evolves into a fold of large amplitude by rotation and stretching. The repeated occurrence of buckling and folding manifests itself at the mesoscopic scale as a new flow mode with significant vortex-like components-sinuous flow. The buckling model is validated by phenomenological observations of flow at the continuum level and microstructural characteristics of grain deformation and measurements of the folding. In addition to predicting the conditions for surface buckling, the model suggests various geometric flow control strategies that can be effectively implemented to promote laminar flow, and suppress sinuous flow in cutting, with implications for industrial manufacturing processes. The observations impinge on the foundations of metal cutting by pointing to the key role of stability of laminar flow in determining the mechanism of material removal, and the need to re-examine long-held notions of large strain deformation at surfaces.
The cutting of metals via plastic buckling
NASA Astrophysics Data System (ADS)
Udupa, Anirudh; Viswanathan, Koushik; Ho, Yeung; Chandrasekar, Srinivasan
2017-06-01
The cutting of metals has long been described as occurring by laminar plastic flow. Here we show that for metals with large strain-hardening capacity, laminar flow mode is unstable and cutting instead occurs by plastic buckling of a thin surface layer. High speed in situ imaging confirms that the buckling results in a small bump on the surface which then evolves into a fold of large amplitude by rotation and stretching. The repeated occurrence of buckling and folding manifests itself at the mesoscopic scale as a new flow mode with significant vortex-like components-sinuous flow. The buckling model is validated by phenomenological observations of flow at the continuum level and microstructural characteristics of grain deformation and measurements of the folding. In addition to predicting the conditions for surface buckling, the model suggests various geometric flow control strategies that can be effectively implemented to promote laminar flow, and suppress sinuous flow in cutting, with implications for industrial manufacturing processes. The observations impinge on the foundations of metal cutting by pointing to the key role of stability of laminar flow in determining the mechanism of material removal, and the need to re-examine long-held notions of large strain deformation at surfaces.
NASA Astrophysics Data System (ADS)
Zecevic, Milovan; Korkolis, Yannis P.; Kuwabara, Toshihiko; Knezevic, Marko
2016-11-01
In this work, we develop a physically-based crystal plasticity model for the prediction of cyclic tension-compression deformation of multi-phase materials, specifically dual-phase (DP) steels. The model is elasto-plastic in nature and integrates a hardening law based on statistically stored dislocation density, localized hardening due to geometrically necessary dislocations (GNDs), slip-system-level kinematic backstresses, and annihilation of dislocations. The model further features a two level homogenization scheme where the first level is the overall response of a two-phase polycrystalline aggregate and the second level is the homogenized response of the martensite polycrystalline regions. The model is applied to simulate a cyclic tension-compression-tension deformation behavior of DP590 steel sheets. From experiments, we observe that the material exhibits a typical decreasing hardening rate during forward loading, followed by a linear and then a non-linear unloading upon the load reversal, the Bauschinger effect, and changes in hardening rate during strain reversals. To predict these effects, we identify the model parameters using a portion of the measured data and validate and verify them using the remaining data. The developed model is capable of predicting all the particular features of the cyclic deformation of DP590 steel, with great accuracy. From the predictions, we infer and discuss the effects of GNDs, the backstresses, dislocation annihilation, and the two-level homogenization scheme on capturing the cyclic deformation behavior of the material.
Deformation mechanisms of bent Si nanowires governed by the sign and magnitude of strain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lihua, E-mail: wlh@bjut.edu.cn, E-mail: xdhan@bjut.edu.cn, E-mail: j.zou@uq.edu.au; Materials Engineering, The University of Queensland, Brisbane, QLD 4072; Kong, Deli
2016-04-11
In this study, the deformation mechanisms of bent Si nanowires are investigated at the atomic scale with bending strain up to 12.8%. The sign and magnitude of the applied strain are found to govern their deformation mechanisms, in which the dislocation types (full or partial dislocations) can be affected by the sign (tensile or compressive) and magnitude of the applied strain. In the early stages of bending, plastic deformation is controlled by 60° full dislocations. As the bending increases, Lomer dislocations can be frequently observed. When the strain increases to a significant level, 90° partial dislocations induced from the tensilemore » surfaces of the bent nanowires are observed. This study provides a deeper understanding of the effect of the sign and magnitude of the bending strain on the deformation mechanisms in bent Si nanowires.« less
Large Strain Behaviour of ZEK100 Magnesium Alloy at Various Strain Rates
NASA Astrophysics Data System (ADS)
Lévesque, Julie; Kurukuri, Srihari; Mishra, Raja; Worswick, Michael; Inal, Kaan
A constitutive framework based on a rate-dependent crystal plasticity theory is employed to simulate large strain deformation in hexagonal closed-packed metals that deform by slip and twinning. The model allows the twinned zones and the parent matrix to rotate independently. ZEK100 magnesium alloy sheets which significant texture weakening compared to AZ31 sheets are investigated using the model. There is considerable in-plane anisotropy and tension compression asymmetry in the flow behavior of ZEK100. Simulations of uniaxial tension in different directions at various strain rates and the accompanying texture evolution are performed and they are in very good agreement with experimental measurements. The effect of strain rate on the activation of the various slip systems and twinning show that differences in the strain rate dependence of yield stress and Rvalues in ZEK100 have their origin in the activation of different deformation mechanisms.
NASA Astrophysics Data System (ADS)
Khmelevskaya, I.; Komarov, V.; Kawalla, R.; Prokoshkin, S.; Korpala, G.
2017-08-01
Severe plastic deformation (SPD) of Ti-50.0 at.% Ni alloy was carried out using the multi-axial deformation MaxStrain module of Gleeble system at 400, 370, 350 and 330 °C with accumulated true strains from e = 3.5 to 9.5. Kinetics of martensitic transformations was studied by DSC method, the structure features by x-ray diffraction and TEM. The recoverable strain was studied using a bending mode for strain inducing. A mixed nanocrystalline and nanosubgrained structure with average grain/subgrain size below 100 nm has been formed in a bulk sample as a result of SPD at as low as 330 °C. The resulting nanostructure provides an obvious advantage in the completely recoverable strain (9.3%) as compared to SPD at 350-400 °C (7-8%), and to reference treatment (2.5%). That correlates with Vickers hardness changes versus SPD strain.
On the Importance of Adiabatic Heating on Deformation Behavior of Medium-Manganese Sheet Steels
NASA Astrophysics Data System (ADS)
Rana, Radhakanta; De Moor, Emmanuel; Speer, John G.; Matlock, David K.
2018-02-01
The effects of adiabatic heating during deformation of a medium-manganese transformation-induced plasticity steel containing 10.1Mn-1.68Al-0.14C-0.2Si (wt.%) processed with initially 57 vol.% retained austenite were investigated over the temperature range from - 60°C to 100°C at strain rates from 0.002 s-1 to 0.2 s-1. Tensile tests were performed on specimens immersed in isothermal baths, which reduced but did not completely eliminate adiabatic heating. The specimen temperature depended on the extent of adiabatic heating, which increased with strain and strain rate. The measured properties primarily reflected the effects of temperature on austenite stability and the corresponding resistance of austenite transformation to martensite with strain. Changes in austenite stability were monitored by measurements of austenite fractions at a specific strain and observation of microstructures after deformation. The results of this study provide a basis to identify input material parameters required for numerical models applicable to sheet metal forming of medium-Mn steels.
Bonding of strain gages to fiber reinforced composite plastic materials
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Hanson, M. P.; Serafini, T. T.
1970-01-01
Strain gage is installed during molding of composite and utilizes the adhesive properties of the matrix resin in the composite to bond the strain gage in place. Gages thus embedded provide data at all temperatures that the matrix can withstand.
Strain rate sensitivity of a TRIP-assisted dual-phase high-entropy alloy
NASA Astrophysics Data System (ADS)
Basu, Silva; Li, Zhiming; Pradeep, K. G.; Raabe, Dierk
2018-05-01
Dual-phase high-entropy alloys (DP-HEAs) with transformation induced plasticity (TRIP) have an excellent strength-ductility combination. To reveal their strain-rate sensitivity and hence further understand the corresponding deformation mechanisms, we investigated the tensile behavior and microstructural evolution of a typical TRIP-DP-HEA (Fe50Mn30Co10Cr10, at. %) under different strain rates (i.e., 5 × 10-3 s-1, 1 × 10-3 s-1, 5 × 10-4 s-1 and 1 × 10-4 s-1) at room temperature. The strain rate range was confined to this regime in order to apply the digital image correlation technique for probing the local strain evolution during tensile deformation at high resolution and to correlate it to the microstructure evolution. Grain size effects of the face-centered cubic (FCC) matrix and the volume fractions of the hexagonal-close packed (HCP) phase prior to deformation were also considered. The results show that within the explored strain rate regime the TRIP-DP-HEA has a fairly low strain rate sensitivity parameter within the range from 0.004 to 0.04, which is significantly lower than that of DP and TRIP steels. Samples with varying grain sizes (e.g., 2.8 μm and 38 μm) and starting HCP phase fractions (e.g., 25% and 72%) at different strain rates show similar deformation mechanisms, i.e., dislocation plasticity and strain-induced transformation from the FCC matrix to the HCP phase. The low strain rate sensitivity is attributed to the observed dominant displacive transformation mechanism. Also, the coarse-grained alloy samples with a very high starting HCP phase fraction ( 72%) prior to deformation show very good ductility with a total elongation of 60%, suggesting that both, the initial and the transformed HCP phase in the TRIP-DP-HEA are ductile and deform further via dislocation slip at the different strain rates which were probed.
Deposition behavior of mixed binary metallic powders in cold spraying process
NASA Astrophysics Data System (ADS)
Zhou, X. L.; Mou, S. J.; Wu, X. K.; Zhang, J. S.
2011-10-01
In the present study, Zn/Al composite coating was selected for the typical case to study the deposition behavior and the deformation of binary mixing particles in cold spraying process by means of an experiment and numerical simulation. The experimental results demonstrated that the coating had a dense microstructure, and that Zn and Al were uniformly distributed in the coating. Al particles deformed more severely than Zn particles, and extensively deformed Al particles had a local jet-metallic mixing area. The steel substrate underwent a small amount of deformation when impacted by Zn particles, whereas the substrate did not deform when impacted by Al particles. XRD results show that the Zn/Al composite coating did not form a new phase, and only resulted in the mechanical mixing of Zn and Al, producing a pseudo-alloy coating. In addition, a binary Zn/Al multiparticle impact was first simulated using the finite element analysis software ANSYS/LS-DYNA. The effective plastic strain contour, which enabled the description of the particle deposit procedure, was demonstrated. The plastic deformation evolution of Zn and Al particles in the composite coating was analyzed individually, and the curves of effective plastic strain versus time of typical monitored elements at the edge of the Zn and Al particles were plotted. The simulations showed good concordance with the experimental results.
A 3/D finite element approach for metal matrix composites based on micromechanical models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svobodnik, A.J.; Boehm, H.J.; Rammerstorfer, F.G.
Based on analytical considerations by Dvorak and Bahel-El-Din, a 3/D finite element material law has been developed for the elastic-plastic analysis of unidirectional fiber-reinforced metal matrix composites. The material law described in this paper has been implemented in the finite element code ABAQUS via the user subroutine UMAT. A constitutive law is described under the assumption that the fibers are linear-elastic and the matrix is of a von Mises-type with a Prager-Ziegler kinematic hardening rule. The uniaxial effective stress-strain relationship of the matrix in the plastic range is approximated by a Ramberg-Osgood law, a linear hardening rule or a nonhardeningmore » rule. Initial yield surface of the matrix material and for the fiber reinforced composite are compared to show the effect of reinforcement. Implementation of this material law in a finite element program is shown. Furthermore, the efficiency of substepping schemes and stress corrections for the numerical integration of the elastic-plastic stress-strain relations for anisotropic materials are investigated. The results of uniaxial monotonic tests of a boron/aluminum composite are compared to some finite element analyses based on micromechanical considerations. Furthermore a complete 3/D analysis of a tensile test specimen made of a silicon-carbide/aluminum MMC and the analysis of an MMC inlet inserted in a homogenous material are shown. 12 refs.« less
Softening and Hardening of Alloys of the Al - Zn System Under Plastic Deformation
NASA Astrophysics Data System (ADS)
Skvortsov, A. I.; Polev, V. V.
2017-11-01
The proportion of hardening and softening under plastic deformation at room temperature in metals and alloys of the Al - Zn system has been studied as dependent on the regime of preliminary heat treatment. The influence of the strain rate on the dependence of alloy hardness on the degree of plastic deformation is estimated.
Influence of Strain Rate on Heat Release under Quasi-Static Stretching of Metals. Experiment
NASA Astrophysics Data System (ADS)
Zimin, B. A.; Sventitskaya, V. E.; Smirnov, I. V.; Sud'enkov, Yu. V.
2018-04-01
The paper presents the results of experimental studies of energy dissipation during a quasi-static stretching of metals and alloys at room temperature. The strain rates varied in the range of 10-3-10-2 s-1. Samples of M1 copper, AZ31B magnesium alloy, BT6 titanium, 12Cr18Ni10Ti steel, and D16AM aluminum alloy were analyzed. The experimental results demonstrated a significant dependence of the heat release on the strain rate in the absence of its influence on stress-strain diagrams for all the metals studied in this range of strain rates. The correlation of the changes in the character of heat release with the processes of structural transformations at various stages of plastic flow is shown on the qualitative level. A difference in the nature of the processes of heat release in materials with different ratios of the plasticity and strength is noted.
Texture developed during deformation of Transformation Induced Plasticity (TRIP) steels
NASA Astrophysics Data System (ADS)
Bhargava, M.; Shanta, C.; Asim, T.; Sushil, M.
2015-04-01
Automotive industry is currently focusing on using advanced high strength steels (AHSS) due to its high strength and formability for closure applications. Transformation Induced Plasticity (TRIP) steel is promising material for this application among other AHSS. The present work is focused on the microstructure development during deformation of TRIP steel sheets. To mimic complex strain path condition during forming of automotive body, Limit Dome Height (LDH) tests were conducted and samples were deformed in servo hydraulic press to find the different strain path. FEM Simulations were done to predict different strain path diagrams and compared with experimental results. There is a significant difference between experimental and simulation results as the existing material models are not applicable for TRIP steels. Micro texture studies were performed on the samples using EBSD and X-RD techniques. It was observed that austenite is transformed to martensite and texture developed during deformation had strong impact on limit strain and strain path.
Micromechanics Based Failure Analysis of Heterogeneous Materials
NASA Astrophysics Data System (ADS)
Sertse, Hamsasew M.
In recent decades, heterogeneous materials are extensively used in various industries such as aerospace, defense, automotive and others due to their desirable specific properties and excellent capability of accumulating damage. Despite their wide use, there are numerous challenges associated with the application of these materials. One of the main challenges is lack of accurate tools to predict the initiation, progression and final failure of these materials under various thermomechanical loading conditions. Although failure is usually treated at the macro and meso-scale level, the initiation and growth of failure is a complex phenomena across multiple scales. The objective of this work is to enable the mechanics of structure genome (MSG) and its companion code SwiftComp to analyze the initial failure (also called static failure), progressive failure, and fatigue failure of heterogeneous materials using micromechanics approach. The initial failure is evaluated at each numerical integration point using pointwise and nonlocal approach for each constituent of the heterogeneous materials. The effects of imperfect interfaces among constituents of heterogeneous materials are also investigated using a linear traction-displacement model. Moreover, the progressive and fatigue damage analyses are conducted using continuum damage mechanics (CDM) approach. The various failure criteria are also applied at a material point to analyze progressive damage in each constituent. The constitutive equation of a damaged material is formulated based on a consistent irreversible thermodynamics approach. The overall tangent modulus of uncoupled elastoplastic damage for negligible back stress effect is derived. The initiation of plasticity and damage in each constituent is evaluated at each numerical integration point using a nonlocal approach. The accumulated plastic strain and anisotropic damage evolution variables are iteratively solved using an incremental algorithm. The damage analyses are performed for both brittle failure/high cycle fatigue (HCF) for negligible plastic strain and ductile failure/low cycle fatigue (LCF) for large plastic strain. The proposed approach is incorporated in SwiftComp and used to predict the initial failure envelope, stress-strain curve for various loading conditions, and fatigue life of heterogeneous materials. The combined effects of strain hardening and progressive fatigue damage on the effective properties of heterogeneous materials are also studied. The capability of the current approach is validated using several representative examples of heterogeneous materials including binary composites, continuous fiber-reinforced composites, particle-reinforced composites, discontinuous fiber-reinforced composites, and woven composites. The predictions of MSG are also compared with the predictions obtained using various micromechanics approaches such as Generalized Methods of Cells (GMC), Mori-Tanaka (MT), and Double Inclusions (DI) and Representative Volume Element (RVE) Analysis (called as 3-dimensional finite element analysis (3D FEA) in this document). This study demonstrates that a micromechanics based failure analysis has a great potential to rigorously and more accurately analyze initiation and progression of damage in heterogeneous materials. However, this approach requires material properties specific to damage analysis, which are needed to be independently calibrated for each constituent.
NASA Astrophysics Data System (ADS)
Hopmann, Ch.; Schöngart, M.; Weber, M.; Klein, J.
2015-05-01
Thermoplastic materials are more and more used as a light weight replacement for metal, especially in the automotive industry. Since these materials do not provide the mechanical properties, which are required to manufacture supporting elements like an auto body or a cross bearer, plastics are combined with metals in so called hybrid structures. Normally, the plastics components are joined to the metal structures using different technologies like welding or screwing. Very often, the hybrid structures are made of flat metal parts, which are stiffened by a reinforcement structure made of thermoplastic materials. The loads on these structures are very often impulsive, for example in the crash situation of an automobile. Due to the large stiffness variation of metal and thermoplastic materials, complex states of stress and very high local strain rates occur in the contact zone under impact conditions. Since the mechanical behavior of thermoplastic materials is highly dependent on these types of load, the crash failure of metal plastic hybrid parts is very complex. The problem is that the normally used strain rate dependent elastic/plastic material models are not capable to simulate the mechanical behavior of thermoplastic materials depended on the state of stress. As part of a research project, a method to simulate the mechanical behavior of hybrid structures under impact conditions is developed at the IKV. For this purpose, a specimen for the measurement of mechanical properties dependet on the state of stress and a method for the strain rate depended characterization of thermoplastic materials were developed. In the second step impact testing is performed. A hybrid structure made from a metal sheet and a reinforcement structure of a Polybutylenterephthalat Polycarbonate blend is tested under impact conditions. The measured stress and strain rate depended material data are used to simulate the mechanical behavior of the hybrid structure under highly dynamic load with impact velocities up to 5 m/s. The mechanical behavior of the plastics structure is simulated using a quadratic yield surface, which takes the state of stress and the strain rate into account. The FE model is made from mid surface elements to reduce the computing time.
Modeling Strain Rate Effect of Heterogeneous Materials Using SPH Method
NASA Astrophysics Data System (ADS)
Ma, G. W.; Wang, X. J.; Li, Q. M.
2010-11-01
The strain rate effect on the dynamic compressive failure of heterogeneous material based on the smoothed particle hydrodynamics (SPH) method is studied. The SPH method employs a rate-insensitive elasto-plastic damage model incorporated with a Weibull distribution law to reflect the mechanical behavior of heterogeneous rock-like materials. A series of simulations are performed for heterogeneous specimens by applying axial velocity conditions, which induce different strain-rate loadings to the specimen. A detailed failure process of the specimens in terms of microscopic crack-activities and the macro-mechanical response are discussed. Failure mechanisms between the low and high strain rate cases are compared. The result shows that the strain-rate effects on the rock strength are mainly caused by the changing internal pressure due to the inertial effects as well as the material heterogeneity. It also demonstrates that the inertial effect becomes significant only when the induced strain rate exceeds a threshold, below which, the dynamic strength enhancement can be explained due to the heterogeneities in the material. It also shows that the dynamic strength is affected more significantly for a relatively more heterogeneous specimen, which coincides with the experimental results showing that the poor quality specimen had a relatively larger increase in the dynamic strength.
Lebyodkin, Mikhail; Amouzou, Kékéli; Lebedkina, Tatiana; Richeton, Thiebaud; Roth, Amandine
2018-06-22
Current progress in the prediction of mechanical behavior of solids requires understanding of spatiotemporal complexity of plastic flow caused by self-organization of crystal defects. It may be particularly important in hexagonal materials because of their strong anisotropy and combination of different mechanisms of plasticity, such as dislocation glide and twinning. These materials often display complex behavior even on the macroscopic scale of deformation curves, e.g., a peculiar three-stage elastoplastic transition, the origin of which is a matter of debates. The present work is devoted to a multiscale study of plastic flow in α-Ti, based on simultaneous recording of deformation curves, 1D local strain field, and acoustic emission (AE). It is found that the average AE activity also reveals three-stage behavior, but in a qualitatively different way depending on the crystallographic orientation of the sample axis. On the finer scale, the statistical analysis of AE events and local strain rates testifies to an avalanche-like character of dislocation processes, reflected in power-law probability distribution functions. The results are discussed from the viewpoint of collective dislocation dynamics and are confronted to predictions of a recent micromechanical model of Ti strain hardening.
Deformation field heterogeneity in punch indentation
Murthy, Tejas G.; Saldana, Christopher; Hudspeth, Matthew; M'Saoubi, Rachid
2014-01-01
Plastic heterogeneity in indentation is fundamental for understanding mechanics of hardness testing and impression-based deformation processing methods. The heterogeneous deformation underlying plane-strain indentation was investigated in plastic loading of copper by a flat punch. Deformation parameters were measured, in situ, by tracking the motion of asperities in high-speed optical imaging. These measurements were coupled with multi-scale analyses of strength, microstructure and crystallographic texture in the vicinity of the indentation. Self-consistency is demonstrated in description of the deformation field using the in situ mechanics-based measurements and post-mortem materials characterization. Salient features of the punch indentation process elucidated include, among others, the presence of a dead-metal zone underneath the indenter, regions of intense strain rate (e.g. slip lines) and extent of the plastic flow field. Perhaps more intriguing are the transitions between shear-type and compression-type deformation modes over the indentation region that were quantified by the high-resolution crystallographic texture measurements. The evolution of the field concomitant to the progress of indentation is discussed and primary differences between the mechanics of indentation for a rigid perfectly plastic material and a strain-hardening material are described. PMID:24910521
Plastic strain arrangement in copper single crystals in sliding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chumaevskii, Andrey V., E-mail: tch7av@gmail.com; Lychagin, Dmitry V., E-mail: dvl-tomsk@mail.ru; Tarasov, Sergei Yu., E-mail: tsy@ispms.tsc.ru
2014-11-14
Deformation of tribologically loaded contact zone is one of the wear mechanisms in spite of the fact that no mass loss may occur during this process. Generation of optimal crystallographic orientations of the grains in a polycrystalline materials (texturing) may cause hardening and reducing the deformation wear. To reveal the orientation dependence of an individual gain and simplify the task we use copper single crystals with the orientations of the compression axis along [111] and [110]. The plastic deformation was investigated by means of optical, scanning electron microscopy and EBSD techniques. It was established that at least four different zonesmore » were generated in the course of sliding test, such as non-deformed base metal, plastic deformation layer sliding, crystalline lattice reorientation layer and subsurface grain structure layer. The maximum plastic strain penetration depth was observed on [110]-single crystals. The minimum stability of [111]-crystals with respect to rotation deformation mode as well as activation of shear in the sliding contact plane provide for rotation deformation localization below the worn surface. The high-rate accumulation of misorientations and less strain penetration depth was observed on [111]-crystals as compared to those of [110]-oriented ones.« less
Ductility of Advanced High-Strength Steel in the Presence of a Sheared Edge
NASA Astrophysics Data System (ADS)
Ruggles, Tim; Cluff, Stephen; Miles, Michael; Fullwood, David; Daniels, Craig; Avila, Alex; Chen, Ming
2016-07-01
The ductility of dual-phase (DP) 980 and transformation-induced plasticity (TRIP) assisted bainitic ferritic (TBF) 980 steels was studied in the presence of a sheared edge. Specimens were tested in uniaxial tension in a standard test frame as well as in situ in the scanning electron microscope (SEM). Incremental tensile straining was done in the SEM with images taken at each strain increment. Then digital image correlation (DIC) was used to compute the effective strain at the level of the individual phases in the microstructure. Shear banding across multiple phases was seen in strained TBF specimens, while the DP specimens exhibited more of a patchwork strain pattern, with high strains concentrated in ferrite and low strains observed in the martensite. Two-point statistics were applied to the strain data from the DIC work and the corresponding microstructure images to evaluate the effect of phase hardness on localization and fracture. It was observed that the DP 980 material had a greater tendency for localization around hard phases compared to the TBF 980. This at least partially explains the greater ductility of the TBF material, especially in specimens where a sheared edge was present.
NASA Technical Reports Server (NTRS)
Sun, C. T.; Yoon, K. J.
1990-01-01
A one-parameter plasticity model was shown to adequately describe the orthotropic plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The nonlinear stress-strain relations were measured and compared with those predicted by the finite element analysis using the one-parameter elastic-plastic constitutive model. The results show that the one-parameter orthotropic plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.
Stability of a horizontal well and hydraulic fracture initiation in rocks of the bazhenov formation
NASA Astrophysics Data System (ADS)
Stefanov, Yu. P.; Bakeev, R. A.; Myasnikov, A. V.; Akhtyamova, A. I.; Romanov, A. S.
2017-12-01
Three-dimensional numerical modeling of the formation of the stress-strain state in the vicinity of a horizontal well in weakened rocks of the Bazhenov formation is carried out. The influence of the well orientation and plastic deformation on the stress-strain state and the possibility of hydraulic fracturing are considered. It is shown that the deviation of the well from the direction of maximum compression leads to an increase in plastic deformation and a discrepancy between tangential stresses around the well bore and principle stresses in the surrounding medium. In an elastoplastic medium, an increase in the pressure in the well can lead to a large-scale development of plastic deformation, at which no tensile stresses necessary for hydraulic fracturing according to the classical scheme arise. In this case, there occur plastic expansion and fracture of the well.
Paradigm Change: Alternate Approaches to Constitutive and Necking Models for Sheet Metal Forming
NASA Astrophysics Data System (ADS)
Stoughton, Thomas B.; Yoon, Jeong Whan
2011-08-01
This paper reviews recent work proposing paradigm changes for the currently popular approach to constitutive and failure modeling, focusing on the use of non-associated flow rules to enable greater flexibility to capture the anisotropic yield and flow behavior of metals using less complex functions than those needed under associated flow to achieve that same level of fidelity to experiment, and on the use of stress-based metrics to more reliably predict necking limits under complex conditions of non-linear forming. The paper discusses motivating factors and benefits in favor of both associated and non-associated flow models for metal forming, including experimental, theoretical, and practical aspects. This review is followed by a discussion of the topic of the forming limits, the limitations of strain analysis, the evidence in favor of stress analysis, the effects of curvature, bending/unbending cycles, triaxial stress conditions, and the motivation for the development of a new type of forming limit diagram based on the effective plastic strain or equivalent plastic work in combination with a directional parameter that accounts for the current stress condition.
Latent hardening size effect in small-scale plasticity
NASA Astrophysics Data System (ADS)
Bardella, Lorenzo; Segurado, Javier; Panteghini, Andrea; Llorca, Javier
2013-07-01
We aim at understanding the multislip behaviour of metals subject to irreversible deformations at small-scales. By focusing on the simple shear of a constrained single-crystal strip, we show that discrete Dislocation Dynamics (DD) simulations predict a strong latent hardening size effect, with smaller being stronger in the range [1.5 µm, 6 µm] for the strip height. We attempt to represent the DD pseudo-experimental results by developing a flow theory of Strain Gradient Crystal Plasticity (SGCP), involving both energetic and dissipative higher-order terms and, as a main novelty, a strain gradient extension of the conventional latent hardening. In order to discuss the capability of the SGCP theory proposed, we implement it into a Finite Element (FE) code and set its material parameters on the basis of the DD results. The SGCP FE code is specifically developed for the boundary value problem under study so that we can implement a fully implicit (Backward Euler) consistent algorithm. Special emphasis is placed on the discussion of the role of the material length scales involved in the SGCP model, from both the mechanical and numerical points of view.
NASA Astrophysics Data System (ADS)
Park, Jae Yong; Lee, Illhwan; Ham, Juyoung; Gim, Seungo; Lee, Jong-Lam
2017-06-01
Implementing nanostructures on plastic film is indispensable for highly efficient flexible optoelectronic devices. However, due to the thermal and chemical fragility of plastic, nanostructuring approaches are limited to indirect transfer with low throughput. Here, we fabricate single-crystal AgCl nanorods by using a Cl2 plasma on Ag-coated polyimide. Cl radicals react with Ag to form AgCl nanorods. The AgCl is subjected to compressive strain at its interface with the Ag film because of the larger lattice constant of AgCl compared to Ag. To minimize strain energy, the AgCl nanorods grow in the [200] direction. The epitaxial relationship between AgCl (200) and Ag (111) induces a strain, which leads to a strain gradient at the periphery of AgCl nanorods. The gradient causes a strain-induced diffusion of Ag atoms to accelerate the nanorod growth. Nanorods grown for 45 s exhibit superior haze up to 100% and luminance of optical device increased by up to 33%.
Tian, Y Z; Zhao, L J; Chen, S; Shibata, A; Zhang, Z F; Tsuji, N
2015-11-19
It is commonly accepted that twinning can induce an increase of strain-hardening rate during the tensile process of face-centered cubic (FCC) metals and alloys with low stacking fault energy (SFE). In this study, we explored the grain size effect on the strain-hardening behavior of a Cu-15 at.%Al alloy with low SFE. Instead of twinning, we detected a significant contribution of stacking faults (SFs) irrespective of the grain size even in the initial stage of tensile process. In contrast, twinning was more sensitive to the grain size, and the onset of deformation twins might be postponed to a higher strain with increasing the grain size. In the Cu-15 at.%Al alloy with a mean grain size of 47 μm, there was a stage where the strain-hardening rate increases with strain, and this was mainly induced by the SFs instead of twinning. Thus in parallel with the TWIP effect, we proposed that SFs also contribute significantly to the plasticity of FCC alloys with low SFE.
Tian, Y. Z.; Zhao, L. J.; Chen, S.; Shibata, A.; Zhang, Z. F.; Tsuji, N.
2015-01-01
It is commonly accepted that twinning can induce an increase of strain-hardening rate during the tensile process of face-centered cubic (FCC) metals and alloys with low stacking fault energy (SFE). In this study, we explored the grain size effect on the strain-hardening behavior of a Cu-15 at.%Al alloy with low SFE. Instead of twinning, we detected a significant contribution of stacking faults (SFs) irrespective of the grain size even in the initial stage of tensile process. In contrast, twinning was more sensitive to the grain size, and the onset of deformation twins might be postponed to a higher strain with increasing the grain size. In the Cu-15 at.%Al alloy with a mean grain size of 47 μm, there was a stage where the strain-hardening rate increases with strain, and this was mainly induced by the SFs instead of twinning. Thus in parallel with the TWIP effect, we proposed that SFs also contribute significantly to the plasticity of FCC alloys with low SFE. PMID:26582568
THE FAILURE OF STRUCTURAL METALS SUBJECTED TO STRAIN-CYCLING CONDITIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swindeman, R.W.; Douglas, D.A.
1958-11-01
Data showing the isothermal strain-cycling capacity of three metals, inconel, Hastelloy "B," and beryllium, are presented. It is noted that at frequencies of 0.5 cycles per minute the data satisfied am equation of the form N/ sup alpha / epsilon /sub p/ = K, where N is the number of cycles to failure, epsilon /sub p/ is the plastic strain per cycle, and alpha and K are constants whose values depend on the structure and test conditions. Data on Ihconel are given to establish the effect of grain size, specimen geometry, temperature, and frequency. It is found that at temperaturesmore » above 1300 F, grain sine amd frequency exert a pronounced effect on the rupture life. Fine-gralned metal survives more cycles before failure than coarsegrained material. Lomg time cycles shorten the number of cycles to failure when the strain per cycle is low. Thermal strain cycling dain for ihconel are compared to strain cycling data at the same mean temperature. Good correlation is found to exist between the two types of data. (auth)« less
Micromechanical models of delamination in aluminum-lithium alloys
NASA Astrophysics Data System (ADS)
Messner, Mark Christian
Aluminum lithium (Al-Li) alloys are lighter, stiffer, and tougher than conventional aerospace aluminum alloys. Replacing conventional aluminums with Al-Li could substantially decrease the weight and cost of aerospace structures. However, Al-Li alloys often fracture intergranularly via a mechanism called delamination cracking. While secondary delamination cracks can improve the effective toughness of a component, no current model accurately predicts the initiation and growth of intergranular cracks. Since simulations cannot incorporate delamination into a structural model, designers cannot quantify the effect of delamination cracking on a particular component. This uncertainty limits the application of Al-Li alloys. Previous experiments identify microstructural features linked to delamination. Fractography of failed surfaces indicates plastic void growth triggers intergranular failure. Furthermore, certain types of soft/stiff grain boundaries tend to localize void growth and nucleate delamination cracks. This dissertation develops a mechanism for the initiation of delamination on the microscale that accounts for these experimental observations. Microscale simulations of grain boundaries near a long primary crack explore the delamination mechanism on the mesoscale. In these simulations, a physically-based crystal plasticity (CP) model represents the constitutive response of individual grains. This CP model incorporates plastic voriticity correction terms into a standard objective stress rate integration, to accurately account for the kinematics of lattice deformation. The CP model implements slip system hardening with a modular approach to facilitate quick testing and calibration of different theories of hardening. The microscale models reveal soft/stiff grain boundaries develop elevated mean stress and plastic strain as a consequence of the mechanics of the interface. These elevated stresses and strain drive plastic void growth. The results indicate plastic void growth localizes to the grain boundaries even without the presence of material defects, such as precipitate free zones. Microscale simulations also explain the strong T-stress effect often observed in experimental fracture tests on Al-Li alloys. Finally, this dissertation develops a multiscale model of intergranular damage that incorporates the results of the microscale CP simulations. The multiscale model represents the mechanics of microscale deformation near grain boundaries with a simplified compatibility/equilibrium method. The intergranular stresses and strains from the simplified interface model drive a microscale damage index based on the physics of plastic void growth. Finally, a mesh-size independent scheme homogenizes damage on many grain boundaries into a macroscale damage index and projects the damage index to fail a plane of a macroscale structural model. The multiscale damage model, applied to 2195 Al-Li, successfully predicts delamination crack growth in a variety of standard experimental test configurations. The model correctly represents the microscale physics of delamination initiation and growth; after calibration to experimental data it can reliably predict the growth of delamination cracks in a component with any material configuration and loading. Therefore, the multiscale damage model forms the basis of a simulation method that allows designers to predict the development and net effect of delamination cracking in a structural model -- facilitating the application of lightweight Al-Li alloys in high-performance aerospace structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
I. M. Robertson; A. Beaudoin; J. Lambros
2004-01-05
OAK-135 Development and validation of constitutive models for polycrystalline materials subjected to high strain rate loading over a range of temperatures are needed to predict the response of engineering materials to in-service type conditions (foreign object damage, high-strain rate forging, high-speed sheet forming, deformation behavior during forming, response to extreme conditions, etc.). To account accurately for the complex effects that can occur during extreme and variable loading conditions, requires significant and detailed computational and modeling efforts. These efforts must be closely coupled with precise and targeted experimental measurements that not only verify the predictions of the models, but also providemore » input about the fundamental processes responsible for the macroscopic response. Achieving this coupling between modeling and experimentation is the guiding principle of this program. Specifically, this program seeks to bridge the length scale between discrete dislocation interactions with grain boundaries and continuum models for polycrystalline plasticity. Achieving this goal requires incorporating these complex dislocation-interface interactions into the well-defined behavior of single crystals. Despite the widespread study of metal plasticity, this aspect is not well understood for simple loading conditions, let alone extreme ones. Our experimental approach includes determining the high-strain rate response as a function of strain and temperature with post-mortem characterization of the microstructure, quasi-static testing of pre-deformed material, and direct observation of the dislocation behavior during reloading by using the in situ transmission electron microscope deformation technique. These experiments will provide the basis for development and validation of physically-based constitutive models, which will include dislocation-grain boundary interactions for polycrystalline systems. One aspect of the program will involve the dire ct observation of specific mechanisms of micro-plasticity, as these will indicate the boundary value problem that should be addressed. This focus on the pre-yield region in the quasi-static effort (the elasto-plastic transition) is also a tractable one from an experimental and modeling viewpoint. In addition, our approach will minimize the need to fit model parameters to experimental data to obtain convergence. These are critical steps to reach the primary objective of simulating and modeling material performance under extreme loading conditions. In this annual report, we describe the progress made in the first year of this program.« less
Coarse graining atomistic simulations of plastically deforming amorphous solids
NASA Astrophysics Data System (ADS)
Hinkle, Adam R.; Rycroft, Chris H.; Shields, Michael D.; Falk, Michael L.
2017-05-01
The primary mode of failure in disordered solids results from the formation and persistence of highly localized regions of large plastic strains known as shear bands. Continuum-level field theories capable of predicting this mechanical response rely upon an accurate representation of the initial and evolving states of the amorphous structure. We perform molecular dynamics simulations of a metallic glass and propose a methodology for coarse graining discrete, atomistic quantities, such as the potential energies of the elemental constituents. A strain criterion is established and used to distinguish the coarse-grained degrees-of-freedom inside the emerging shear band from those of the surrounding material. A signal-to-noise ratio provides a means of evaluating the strength of the signal of the shear band as a function of the coarse graining. Finally, we investigate the effect of different coarse graining length scales by comparing a two-dimensional, numerical implementation of the effective-temperature description in the shear transformation zone (STZ) theory with direct molecular dynamics simulations. These comparisons indicate the coarse graining length scale has a lower bound, above which there is a high level of agreement between the atomistics and the STZ theory, and below which the concept of effective temperature breaks down.
Plastic Muscles TM as lightweight, low voltage actuators and sensors
NASA Astrophysics Data System (ADS)
Bennett, Matthew; Leo, Donald; Duncan, Andrew
2008-03-01
Using proprietary technology, Discover Technologies has developed ionomeric polymer transducers that are capable of long-term operation in air. These "Plastic Muscle TM" transducers are useful as soft distributed actuators and sensors and have a wide range of applications in the aerospace, robotics, automotive, electronics, and biomedical industries. Discover Technologies is developing novel fabrication methods that allow the Plastic Muscles TM to be manufactured on a commercial scale. The Plastic Muscle TM transducers are capable of generating more than 0.5% bending strain at a peak strain rate of over 0.1 %/s with a 3 V input. Because the Plastic Muscles TM use an ionic liquid as a replacement solvent for water, they are able to operate in air for long periods of time. Also, the Plastic Muscles TM do not exhibit the characteristic "back relaxation" phenomenon that is common in water-swollen devices. The elastic modulus of the Plastic Muscle TM transducers is estimated to be 200 MPa and the maximum generated stress is estimated to be 1 MPa. Based on these values, the maximum blocked force at the tip of a 6 mm wide, 35 mm long actuator is estimated to be 19 mN. Modeling of the step response with an exponential series reveals nonlinearity in the transducers' behavior.
NASA Astrophysics Data System (ADS)
Abdelmoula, Nouha; Harthong, Barthélémy; Imbault, Didier; Dorémus, Pierre
2017-12-01
The multi-particle finite element method involving assemblies of meshed particles interacting through finite-element contact conditions is adopted to study the plastic flow of a granular material with highly deformable elastic-plastic grains. In particular, it is investigated whether the flow rule postulate applies for such materials. Using a spherical stress probing method, the influence of incremental stress on plastic strain increment vectors was assessed for numerical samples compacted along two different loading paths up to different values of relative density. Results show that the numerical samples studied behave reasonably well according to an associated flow rule, except in the vicinity of the loading point where the influence of the stress increment proved to be very significant. A plausible explanation for the non-uniqueness of the direction of plastic flow is proposed, based on the idea that the resistance of the numerical sample to plastic straining can vary by an order of magnitude depending on the direction of the accumulated stress. The above-mentioned dependency of the direction of plastic flow on the direction of the stress increment was related to the difference in strength between shearing and normal stressing at the scale of contact surfaces between particles.
Stress-strain characteristics of rubber-like materials: Experiment and analysis
NASA Technical Reports Server (NTRS)
Allen, David J.
1992-01-01
The objectives are: (1) to demonstrate tensile testing of materials and the application of the concepts of stress and strain; and (2) to yield a mathematical relationship between stress and strain for many artificial rubbers and plastics. The experiment, supplies, and procedure are presented.
Cyclic fatigue analysis of rocket thrust chambers. Volume 1: OFHC copper chamber low cycle fatigue
NASA Technical Reports Server (NTRS)
Miller, R. W.
1974-01-01
A three-dimensional finite element elasto-plastic strain analysis was performed for the throat section of a regeneratively cooled rocket combustion chamber. The analysis employed the RETSCP finite element computer program. The analysis included thermal and pressure loads, and the effects of temperature dependent material properties, to determine the strain range corresponding to the chamber operating cycle. The analysis was performed for chamber configuration and operating conditions corresponding to a hydrogen-oxygen combustion chamber which was fatigue tested to failure. The computed strain range at typical chamber operating conditions was used in conjunction with oxygen-free, high-conductivity (OHFC) copper isothermal fatigue test data to predict chamber low-cycle fatigue life.
Effect of hydrogen on the mechanical properties of titanium and its alloys
NASA Technical Reports Server (NTRS)
Beck, F. H.
1975-01-01
Occluded hydrogen resulting from cathodic charging of commercially pure titanium and titanium alloys, Ti-8Al-1Mo-1V and Ti-6Al-4V, was shown to cause embrittlement of the alloys. Embrittlement was a function of the interstitial hydrogen content rather than the amount of precipitated titanium hydride. The effects of hydrogen concentration on the critical strain for plastic instability along pure shear directions was determined for alloys Ti-8Al-1Mo-1V and Ti-5Al-2.5Sn. Hydrogen, in concentrations below that necessary for spontaneous hydride precipitation, increased the strain necessary for instability formation or instability failure. The strain rate sensitivity also increased with increasing hydrogen concentration. The effect of hydrogen on slip and twinning was determined for titanium single crystals. The critical resolved shear stress for prism slip was increased and the critical resolved shear stress for twinning was decreased with increasing hydrogen concentration.
Study of an athermal quasi static plastic deformation in a 2D granular material
NASA Astrophysics Data System (ADS)
Zhang, Jie; Zheng, Jie
In crystalline materials, the plasticity has been well understood in terms of dynamics of dislocation, i.e. flow defects in the crystals where the flow defects can be directly visualized under a microscope. In a contrast, the plasticity in amorphous materials, i.e. glass, is still poorly understood due to the disordered nature of the materials. In this talk, I will discuss the recent results we have obtained in our ongoing research of the plasticity of a 2D glass in the athermal quasi static limit where the 2D glass is made of bi-disperse granular disks with very low friction. Starting from a densely packed homogeneous and isotropic initial state, we apply pure shear deformation to the system. For a sufficiently small strain, the response of the system is linear and elastic like; when the strain is large enough, the plasticity of the system gradually develops and eventually the shear bands are fully developed. In this study, we are particularly interested in how to relate the local plastic deformation to the macroscopic response of the system and also in the development of the shear bands.
Study of an athermal quasi static plastic deformation in a 2D granular material
NASA Astrophysics Data System (ADS)
Zhang, Jie; Zheng, Jie
2016-11-01
In crystalline materials, the plasticity has been well understood in terms of dynamics of dislocation, i.e. flow defects in the crystals where the flow defects can be directly visualized under a microscope. In a contrast, the plasticity in amorphous materials, i.e. glass, is still poorly understood due to the disordered nature of the materials. In this talk, I will discuss the recent results we have obtained in our ongoing research of the plasticity of a 2D glass in the athermal quasi static limit where the 2D glass is made of bi-disperse granular disks with very low friction. Starting from a densely packed homogeneous and isotropic initial state, we apply pure shear deformation to the system. For a sufficiently small strain, the response of the system is linear and elastic like; when the strain is large enough, the plasticity of the system gradually develops and eventually the shear bands are fully developed. In this study, we are particularly interested in how to relate the local plastic deformation to the macroscopic response of the system and also in the development of the shear bands.
Study of an athermal quasi static plastic deformation in a 2D granular material
NASA Astrophysics Data System (ADS)
Zhang, Jie
2017-11-01
In crystalline materials, the plasticity has been well understood in terms of dynamics of dislocation, i.e. flow defects in the crystals where the flow defects can be directly visualized under a microscope. In a contrast, the plasticity in amorphous materials, i.e. glass, is still poorly understood due to the disordered nature of the materials. In this talk, I will discuss the recent results we have obtained in our ongoing research of the plasticity of a 2D glass in the athermal quasi static limit where the 2D glass is made of bi-disperse granular disks with very low friction. Starting from a densely packed homogeneous and isotropic initial state, we apply pure shear deformation to the system. For a sufficiently small strain, the response of the system is linear and elastic like; when the strain is large enough, the plasticity of the system gradually develops and eventually the shear bands are fully developed. In this study, we are particularly interested in how to relate the local plastic deformation to the macroscopic response of the system and also in the development of the shear bands.
Sun, Xiaoqiang; Liu, Xuyang; Liu, Yaolu; Hu, Ning; Zhao, Youxuan; Ding, Xiangyan; Qin, Shiwei; Zhang, Jianyu; Zhang, Jun; Liu, Feng; Fu, Shaoyun
2017-01-01
In this study, a numerical approach—the discontinuous Meshless Local Petrov-Galerkin-Eshelby Method (MLPGEM)—was adopted to simulate and measure material plasticity in an Al 7075-T651 plate. The plate was modeled in two dimensions by assemblies of small particles that interact with each other through bonding stiffness. The material plasticity of the model loaded to produce different levels of strain is evaluated with the Lamb waves of S0 mode. A tone burst at the center frequency of 200 kHz was used as excitation. Second-order nonlinear wave was extracted from the spectrogram of a signal receiving point. Tensile-driven plastic deformation and cumulative second harmonic generation of S0 mode were observed in the simulation. Simulated measurement of the acoustic nonlinearity increased monotonically with the level of tensile-driven plastic strain captured by MLPGEM, whereas achieving this state by other numerical methods is comparatively more difficult. This result indicates that the second harmonics of S0 mode can be employed to monitor and evaluate the material or structural early-stage damage induced by plasticity. PMID:28773188
Fatigue damage mechanisms in boron-aluminium composite laminates
NASA Technical Reports Server (NTRS)
Dvorak, G. J.; Johnson, W. S.
1980-01-01
The relationship between fatigue and shakedown in metal matrix composites is investigated theoretically and experimentally for unidirectional and laminated 6061 Al-B materials. It is shown that no fatigue damage takes place if the applied stress range is such that the material remains elastic, or shakes down, i.e., resumes elastic cyclic straining after a small number of plastic strain cycles. Fatigue damage occurs only in specimens subjected to stress ranges which cause sustained cyclic plastic straining in the aluminum matrix. If the applied stress range is smaller than that required for fatigue failure, after about 10 to the 6th cycles a saturation damage state is reached which remains essentially unchanged with increasing number of cycles.
Behavior of fiber reinforced metal laminates at high strain rate
NASA Astrophysics Data System (ADS)
Newaz, Golam; Sasso, Marco; Amodio, Dario; Mancini, Edoardo
2018-05-01
Carbon Fiber Reinforced Aluminum Laminate (CARALL) is a good system for energy absorption through plastic deformation in aluminum and micro-cracking in the composite layers. Moreover, CARALL FMLs also provide excellent impact resistance due to the presence of aluminum layer. The focus of this research is to characterize the CARALL behavior under dynamic conditions. High strain rate tests on sheet laminate samples have been carried out by means of direct Split Hopkinson Tension Bar. The sample geometry and the clamping system were optimized by FEM simulations. The clamping system has been designed and optimized in order reduce impedance disturbance due to the fasteners and to avoid the excessive plastic strain outside the gauge region of the samples.
NASA Astrophysics Data System (ADS)
Tingley, Daniel Arthur
The reinforcement of wood and wood composite structural products to improve their mechanical properties has been in practice for many years. Recently, the use of high-strength fiber-reinforced plastic (FRP) as a reinforcement in such applications has been commercialized. The reinforcement is manufactured using a standard pultrusion process or alternatively a sheet-forming process commonly referred to as "pulforming". The high-modulus fibers are predominately unidirectional, although off-axis fibers are often used to enhance off-axis properties. The fibers used are either of a single type or multiple types, which are called "hybrids". Unidirectional, single, and hybrid fiber FRP physical properties and characteristics were compared to wood. Full-scale reinforced glulams were tested. Aramid-reinforced plastics (ARP) used as tensile reinforcements were found to be superior in strength applications to other types of FRP made with fiber, such as carbon and fiberglass. Carbon/aramid-reinforced plastic (CARP) was shown to be superior in both modulus and strength design situations. Fiberglass was shown to be suitable only in hybrid situations with another fiber such as aramid or carbon and only in limited use situations where modulus was a design criteria. The testing and analysis showed that the global response of reinforced glulam beams is controlled by localized strength variations in the wood such as slope of grain, knots, finger joints, etc. in the tensile zone. The elemental tensile strains in the extreme wood tensile laminae, due to global applied loads, were found to be well below the strain at failure in clear wood samples recovered from the failure area. Two areas affecting the relationship between the wood and the FRP were investigated: compatibility of the wood and FRP materials and interface characteristics between the wood and FRP. The optimum strain value at yield point for an FRP was assessed to be slightly higher than the clear wood value in tension for a species/grade to be reinforced. The effects of localized strength variations in the tensile wood laminae adjacent to the FRP were found to be the predominate cause of failure in full-scale reinforced glulams with less than 1.5% by cross section reinforcement.
Liu, Gui-Long; Huang, Shi-Hong; Shi, Che-Si; Zeng, Bin; Zhang, Ke-Shi; Zhong, Xian-Ci
2018-02-10
Using copper thin-walled tubular specimens, the subsequent yield surfaces under pre-tension, pre-torsion and pre-combined tension-torsion are measured, where the single-sample and multi-sample methods are applied respectively to determine the yield stresses at specified offset strain. The rule and characteristics of the evolution of the subsequent yield surface are investigated. Under the conditions of different pre-strains, the influence of test point number, test sequence and specified offset strain on the measurement of subsequent yield surface and the concave phenomenon for measured yield surface are studied. Moreover, the feasibility and validity of the two methods are compared. The main conclusions are drawn as follows: (1) For the single or multi-sample method, the measured subsequent yield surfaces are remarkably different from cylindrical yield surfaces proposed by the classical plasticity theory; (2) there are apparent differences between the test results from the two kinds of methods: the multi-sample method is not influenced by the number of test points, test order and the cumulative effect of residual plastic strain resulting from the other test point, while those are very influential in the single-sample method; and (3) the measured subsequent yield surface may appear concave, which can be transformed to convex for single-sample method by changing the test sequence. However, for the multiple-sample method, the concave phenomenon will disappear when a larger offset strain is specified.
NASA Astrophysics Data System (ADS)
Jiao, Lei; Yang, Yonggang; Li, Hui; Zhao, Yutao; Wang, Xiaolu
2018-05-01
In this study, the in situ Al3Ti/2024Al composites were successfully fabricated by direct melt reaction method and subjected to forging and friction stir processing (FSP) to achieve superplasticity. Then, the microstructure and superplastic tensile behavior of the composites were investigated. The results show that the reinforcement particles are broken and grains are fine after plastic processing. Particularly, the size of reinforcement particles ranges from 0.2 μm to 5 μm and the average size of fine equiaxed grains is 5 μm after FSP processing. And the superplasticity of the composites was improved apparently. The maximum elongation of 642% was obtained at 0.15 s‑1 and 510 °C for the FSP specimen, with a strain rate sensitive parameter (m) of 0.58, indicating the FSP specimen has obtained excellent high strain rate superplasticity. The strain rate sensitivity parameter, m, ranges from 0.23 to 0.58, and the activation energy was calculated to be 135.24 kJ mol‑1. All results indicated that the main superplastic deformation mechanism was grain boundary sliding (GBS) for the FSP Al3Ti/2024Al composites.
NASA Astrophysics Data System (ADS)
Kim, Jong-Min; Lee, Hyun-Boo; Chang, Yoon-Suk; Choi, Jae-Boong; Kim, Young-Jin; Ji, Kum-Young
2010-05-01
Recently, the reliability assurance of lead-free solder to prevent environmental contamination is quite important issue for chip-scale packaging. Although lots of efforts have been devoted to the solder undergone drop, shear and creep loads, there was a little research on IMC due primarily to its thickness restriction and geometric irregularity. However, the IMC is known as the weakest layer governing failures of the solder joint. The present work is to characterize realistic material properties of the IMC for ENEPIG process. Lee's modified reverse algorithm was adopted to determine elastic-plastic stress-strain curve and so forth, after examining several methods, which requires inherently elastic data. In this context, a series of nano-indentation tests as well as corresponding simulations were carried out by changing indentation depths from 200 to 400 nm and strain rates from 0.05 to 0.10 1/s. It would be conclude that effect of strain rate is relatively small and IMC layer should be more than 5 times of indentation depth when using the recommended method, which are applicable to generate realistic material properties for further diverse structural integrity simulations.
An extended 3D discrete-continuous model and its application on single- and bi-crystal micropillars
NASA Astrophysics Data System (ADS)
Huang, Minsheng; Liang, Shuang; Li, Zhenhuan
2017-04-01
A 3D discrete-continuous model (3D DCM), which couples the 3D discrete dislocation dynamics (3D DDD) and finite element method (FEM), is extended in this study. New schemes for two key information transfers between DDD and FEM, i.e. plastic-strain distribution from DDD to FEM and stress transfer from FEM to DDD, are suggested. The plastic strain induced by moving dislocation segments is distributed to an elementary spheroid (ellipsoid or sphere) via a specific new distribution function. The influence of various interfaces (such as free surfaces and grain boundaries (GBs)) on the plastic-strain distribution is specially considered. By these treatments, the deformation fields can be solved accurately even for dislocations on slip planes severely inclined to the FE mesh, with no spurious stress concentration points produced. In addition, a stress correction by singular and non-singular theoretical solutions within a cut-off sphere is introduced to calculate the stress on the dislocations accurately. By these schemes, the present DCM becomes less sensitive to the FE mesh and more numerically efficient, which can also consider the interaction between neighboring dislocations appropriately even though they reside in the same FE mesh. Furthermore, the present DCM has been employed to model the compression of single-crystal and bi-crystal micropillars with rigid and dislocation-absorbed GBs. The influence of internal GB on the jerky stress-strain response and deformation mode is studied in detail to shed more light on these important micro-plastic problems.
Local elasticity map and plasticity in a model Lennard-Jones glass.
Tsamados, Michel; Tanguy, Anne; Goldenberg, Chay; Barrat, Jean-Louis
2009-08-01
In this work we calculate the local elastic moduli in a weakly polydispersed two-dimensional Lennard-Jones glass undergoing a quasistatic shear deformation at zero temperature. The numerical method uses coarse-grained microscopic expressions for the strain, displacement, and stress fields. This method allows us to calculate the local elasticity tensor and to quantify the deviation from linear elasticity (local Hooke's law) at different coarse-graining scales. From the results a clear picture emerges of an amorphous material with strongly spatially heterogeneous elastic moduli that simultaneously satisfies Hooke's law at scales larger than a characteristic length scale of the order of five interatomic distances. At this scale, the glass appears as a composite material composed of a rigid scaffolding and of soft zones. Only recently calculated in nonhomogeneous materials, the local elastic structure plays a crucial role in the elastoplastic response of the amorphous material. For a small macroscopic shear strain, the structures associated with the nonaffine displacement field appear directly related to the spatial structure of the elastic moduli. Moreover, for a larger macroscopic shear strain we show that zones of low shear modulus concentrate most of the strain in the form of plastic rearrangements. The spatiotemporal evolution of this local elasticity map and its connection with long term dynamical heterogeneity as well as with the plasticity in the material is quantified. The possibility to use this local parameter as a predictor of subsequent local plastic activity is also discussed.
High Strain Rate and Shock-Induced Deformation in Metals
NASA Astrophysics Data System (ADS)
Ravelo, Ramon
2012-02-01
Large-scale non-equilibrium molecular Dynamics (MD) simulations are now commonly used to study material deformation at high strain rates (10^9-10^12 s-1). They can provide detailed information-- such as defect morphology, dislocation densities, and temperature and stress profiles, unavailable or hard to measure experimentally. Computational studies of shock-induced plasticity and melting in fcc and bcc single, mono-crystal metals, exhibit generic characteristics: high elastic limits, large directional anisotropies in the yield stress and pre-melting much below the equilibrium melt temperature for shock wave propagation along specific crystallographic directions. These generic features in the response of single crystals subjected to high strain rates of deformation can be explained from the changes in the energy landscape of the uniaxially compressed crystal lattice. For time scales relevant to dynamic shock loading, the directional-dependence of the yield strength in single crystals is shown to be due to the onset of instabilities in elastic-wave propagation velocities. The elastic-plastic transition threshold can accurately be predicted by a wave-propagation stability analysis. These strain-induced instabilities create incipient defect structures, which can be quite different from the ones, which characterize the long-time, asymptotic state of the compressed solid. With increase compression and strain rate, plastic deformation via extended defects gives way to amorphization associated with the loss in shear rigidity along specific deformation paths. The hot amorphous or (super-cooled liquid) metal re-crystallizes at rates, which depend on the temperature difference between the amorphous solid and the equilibrium melt line. This plastic-amorphous transition threshold can be computed from shear-waves stability analyses. Examples from selected fcc and bcc metals will be presented employing semi-empirical potentials of the embedded atom method (EAM) type as well as results from density functional theory calculations.