Sample records for effective pore volume

  1. Effective Thermal Conductivity of an Aluminum Foam + Water Two Phase System

    NASA Technical Reports Server (NTRS)

    Moskito, John

    1996-01-01

    This study examined the effect of volume fraction and pore size on the effective thermal conductivity of an aluminum foam and water system. Nine specimens of aluminum foam representing a matrix of three volume fractions (4-8% by vol.) and three pore sizes (2-4 mm) were tested with water to determine relationships to the effective thermal conductivity. It was determined that increases in volume fraction of the aluminum phase were correlated to increases in the effective thermal conductivity. It was not statistically possible to prove that changes in pore size of the aluminum foam correlated to changes in the effective thermal conductivity. However, interaction effects between the volume fraction and pore size of the foam were statistically significant. Ten theoretical models were selected from the published literature to compare against the experimental data. Models by Asaad, Hadley, and de Vries provided effective thermal conductivity predictions within a 95% confidence interval.

  2. Effects of Pore Distributions on Ductility of Thin-Walled High Pressure Die-Cast Magnesium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Kyoo Sil; Li, Dongsheng; Sun, Xin

    2013-06-01

    In this paper, a microstructure-based three-dimensional (3D) finite element modeling method is adopted to investigate the effects of porosity in thin-walled high pressure die-cast (HPDC) Magnesium alloys on their ductility. For this purpose, the cross-sections of AM60 casting samples are first examined using optical microscope and X-ray tomography to obtain the general information on the pore distribution features. The experimentally observed pore distribution features are then used to generate a series of synthetic microstructure-based 3D finite element models with different pore volume fractions and pore distribution features. Shear and ductile damage models are adopted in the finite element analyses tomore » induce the fracture by element removal, leading to the prediction of ductility. The results in this study show that the ductility monotonically decreases as the pore volume fraction increases and that the effect of ‘skin region’ on the ductility is noticeable under the condition of same local pore volume fraction in the center region of the sample and its existence can be beneficial for the improvement of ductility. The further synthetic microstructure-based 3D finite element analyses are planned to investigate the effects of pore size and pore size distribution.« less

  3. Porosity control in nanoporous carbide-derived carbon by oxidation in air and carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osswald, S.; Portet, C.; Gogotsi, Y., E-mail: gogotsi@drexel.ed

    2009-07-15

    Carbide-derived carbons (CDC) allow a precise control over the pore size through the selection of the carbide precursor and varying of the synthesis conditions. However, their pore volume is limited by the carbide stoichiometry. While activation of carbons derived from various organic precursors has been widely studied, this process may similarly be able to increase the pore volume and specific surface area of CDC. Oxidation of carbide-derived carbon in air and CO{sub 2} at different temperatures and times allows for significant increase in pore volume and specific surface area as well as control over average pore size with subnanometer accuracy.more » The effect of activation and associated changes in the pore volume and surface area on the hydrogen uptake are also discussed. - Graphical abstract: Carbide-derived carbons (CDC) provide great potential for sorption of toxicants and gas storage applications. Activation of CDC in air and CO{sub 2} at different temperatures and times is applied in order to maximize pore volume and specific surface area, and control the average pore size with subnanometer accuracy.« less

  4. Impact of roots, mycorrhizas and earthworms on soil physical properties as assessed by shrinkage analysis

    NASA Astrophysics Data System (ADS)

    Milleret, R.; Le Bayon, R.-C.; Lamy, F.; Gobat, J.-M.; Boivin, P.

    2009-07-01

    SummarySoil biota such as earthworms, arbuscular mycorrhizal fungi (AMF) and plant roots are known to play a major role in engineering the belowground part of the terrestrial ecosystems, thus strongly influencing the water budget and quality on earth. However, the effect of soil organisms and their interactions on the numerous soil physical properties to be considered are still poorly understood. Shrinkage analysis allows quantifying a large spectrum of soil properties in a single experiment, with small standard errors. The objectives of the present study were, therefore, to assess the ability of the method to quantify changes in soil properties as induced by single or combined effects of leek roots ( Allium porrum), AMF ( Glomus intraradices) and earthworms ( Allolobophora chlorotica). The study was performed on homogenised soil microcosms and the experiments lasted 35 weeks. The volume of the root network and the external fungal hyphae was measured at the end, and undisturbed soil cores were collected. Shrinkage analysis allowed calculating the changes in soil hydro-structural stability, soil plasma and structural pore volumes, soil bulk density and plant available water, and structural pore size distributions. Data analysis revealed different impacts of the experimented soil biota on the soil physical properties. At any water content, the presence of A. chlorotica resulted in a decrease of the specific bulk volume and the hydro-structural stability around 25%, and in a significant increase in the bulk soil density. These changes went with a decrease of the structural pore volumes at any pore size, a disappearing of the thinnest structural pores, a decrease in plant available water, and a hardening of the plasma. On the contrary, leek roots decreased the bulk soil density up to 1.23 g cm -3 despite an initial bulk density of 1.15 g cm -3. This increase in volume was accompanied with a enhanced hydro-structural stability, a larger structural pore volume at any pore size, smaller structural pore radii and an increase in plant available water. Interestingly, a synergistic effect of leek roots and AMF in the absence of the earthworms was highlighted, and this synergistic effect was not observed in presence of earthworms. The structural pore volume generated by root and AMF growth was several orders of magnitude larger than the volume of the organisms. Root exudates as well as other AMF secretion have served as carbon source for bacteria that in turn would enhance soil aggregation and porosity, thus supporting the idea of a self-organization of the soil-plant-microbe complex previously described.

  5. Accurate Characterization of the Pore Volume in Microporous Crystalline Materials

    PubMed Central

    2017-01-01

    Pore volume is one of the main properties for the characterization of microporous crystals. It is experimentally measurable, and it can also be obtained from the refined unit cell by a number of computational techniques. In this work, we assess the accuracy and the discrepancies between the different computational methods which are commonly used for this purpose, i.e, geometric, helium, and probe center pore volumes, by studying a database of more than 5000 frameworks. We developed a new technique to fully characterize the internal void of a microporous material and to compute the probe-accessible and -occupiable pore volume. We show that, unlike the other definitions of pore volume, the occupiable pore volume can be directly related to the experimentally measured pore volumes from nitrogen isotherms. PMID:28636815

  6. Accurate Characterization of the Pore Volume in Microporous Crystalline Materials

    DOE PAGES

    Ongari, Daniele; Boyd, Peter G.; Barthel, Senja; ...

    2017-06-21

    Pore volume is one of the main properties for the characterization of microporous crystals. It is experimentally measurable, and it can also be obtained from the refined unit cell by a number of computational techniques. In this work, we assess the accuracy and the discrepancies between the different computational methods which are commonly used for this purpose, i.e, geometric, helium, and probe center pore volumes, by studying a database of more than 5000 frameworks. We developed a new technique to fully characterize the internal void of a microporous material and to compute the probe-accessible and -occupiable pore volume. Lasty, wemore » show that, unlike the other definitions of pore volume, the occupiable pore volume can be directly related to the experimentally measured pore volumes from nitrogen isotherms.« less

  7. Effects of pore-scale dispersion, degree of heterogeneity, sampling size, and source volume on the concentration moments of conservative solutes in heterogeneous formations

    Treesearch

    Daniele Tonina; Alberto Bellin

    2008-01-01

    Pore-scale dispersion (PSD), aquifer heterogeneity, sampling volume, and source size influence solute concentrations of conservative tracers transported in heterogeneous porous formations. In this work, we developed a new set of analytical solutions for the concentration ensemble mean, variance, and coefficient of variation (CV), which consider the effects of all these...

  8. Defect Creation by Linker Fragmentation in Metal-Organic Frameworks and Its Effects on Gas Uptake Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barin, G; Krungleviciute, V; Gutov, O

    2014-07-07

    We successfully demonstrate an approach based on linker fragmentation to create defects and tune the pore volumes and surface areas of two metal-organic frameworks, NU-125 and HKUST-1, both of which feature copper paddlewheel nodes. Depending on the linker fragment composition, the defect can be either a vacant site or a functional group that the original linker does not have. In the first case, we show that both surface area and pore volume increase, while in the second case they decrease. The effect of defects on the high-pressure gas uptake is also studied over a large temperature and pressure range formore » different gases. We found that despite an increase in pore volume and surface area in structures with vacant sites, the absolute adsorption for methane decreases for HKUST-1 and slightly increases for NU-125. However, the working capacity (deliverable amount between 65 and 5 bar) in both cases remains similar to parent frameworks due to lower uptakes at low pressures. In the case of NU-125, the effect of defects became more pronounced at lower temperatures, reflecting the greater surface areas and pore volumes of the altered forms.« less

  9. Root induced changes of effective 1D hydraulic properties in a soil column.

    PubMed

    Scholl, P; Leitner, D; Kammerer, G; Loiskandl, W; Kaul, H-P; Bodner, G

    Roots are essential drivers of soil structure and pore formation. This study aimed at quantifying root induced changes of the pore size distribution (PSD). The focus was on the extent of clogging vs. formation of pores during active root growth. Parameters of Kosugi's lognormal PSD model were determined by inverse estimation in a column experiment with two cover crops (mustard, rye) and an unplanted control. Pore dynamics were described using a convection-dispersion like pore evolution model. Rooted treatments showed a wider range of pore radii with increasing volumes of large macropores >500 μm and micropores <2.5 μm, while fine macropores, mesopores and larger micropores decreased. The non-rooted control showed narrowing of the PSD and reduced porosity over all radius classes. The pore evolution model accurately described root induced changes, while structure degradation in the non-rooted control was not captured properly. Our study demonstrated significant short term root effects with heterogenization of the pore system as dominant process of root induced structure formation. Pore clogging is suggested as a partial cause for reduced pore volume. The important change in micro- and large macropores however indicates that multiple mechanic and biochemical processes are involved in root-pore interactions.

  10. Effect of degassing temperature on specific surface area and pore volume measurements of biochar

    NASA Astrophysics Data System (ADS)

    Sigmund, Gabriel; Hüffer, Thorsten; Kah, Melanie; Hofmann, Thilo

    2017-04-01

    Specific surface area, pore volume, and pore size distribution are key biochar properties that have been related to water and nutrient cycling, microbial activity as well as sorption potential for organic compounds. Specific surface area and pore volume are commonly determined by measurement of physisorption of N2 and/or CO2. The measurement requires prior degassing of the samples, which may change the structure of the materials. Information on degassing temperature is rarely reported in literature, and recommendations differ considerably between existing guidelines for biochar characterization. Therefore, the influence of degassing temperature on N2 and CO2physisorption measurements was investigated by systematically degassing a range of materials, including four biochars, Al2O3 and carbon nanotubes at different temperatures (105 ˚ C, 150 ˚ C, 200 ˚ C, 250 ˚ C and 300 ˚ C for ≥ 14 h each). Measured specific surface area and pore volume increased with increasing degassing temperature for all biochars. Additional surface area and pore volume may have become available as components in biochars volatilized during the degassing phase. The results of our study showed that (i) degassing conditions change material properties, and influence physisorption measurements for biochar (ii) comparison between parameters derived from different degassing protocols may not be appropriate, and (iii) degassing protocols should be harmonized in the biochar community [1]. [1] Sigmund, et al. (2016), "Biochar total surface area and total pore volume determined by N2 and CO2 physisorption are strongly influenced by degassing temperature", STOTEN, doi: http://dx.doi.org/10.1016/j.scitotenv.2016.12.023.

  11. The effect of moisture on the methane adsorption capacity of shales: A study case in the eastern Qaidam Basin in China

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Yu, Qingchun

    2016-11-01

    This study investigated the effects of moisture on high-pressure methane adsorption in carboniferous shales from the Qaidam Basin, China. The shale characteristics, including the organic/inorganic compositions and pore structure (volume and surface) distribution, were obtained using various techniques. Gibbs adsorption measurements were performed over a pressure range up to 6 MPa and temperatures of 308.15 K on dry samples and moisture-equilibrated samples to analyze the correlations between organic/inorganic matter, pore structure, and moisture content on the methane sorption capacity. Compared to dry samples, the sorption capacity of wet samples (0.44-2.52% of water content) is reduced from 19.7 ± 5.3% to 36.1% ± 6.1%. Langmuir fitting is conducted to investigate moisture-dependent variations of adsorbed methane density, Langmuir pressure, and volume. By combining the pore volume and surface distribution analyses, our observations suggested that the main competition sites for CH4-H2O covered pores of approximately 2-7 nm, whereas the effective sites for methane and water were predominantly distributed within smaller (<4 nm) and larger pores (>10 nm), respectively. Regarding the compositional correlations, the impact of moisture on the amount of adsorbed methane shows a roughly linearly decreasing trend with increasing TOC content ranging from 0.62 to 2.88%, whereas the correlation between the moisture effect and various inorganic components is more complicated. Further fitting results indicate that illite/smectite mixed formations are closely related to the methane capacity, whereas the illite content show an evident connection to the pore structural (volume and surface) variations in the presence of moisture.

  12. Effect of nitric acid treatment on activated carbon derived from oil palm shell

    NASA Astrophysics Data System (ADS)

    Allwar, Allwar; Hartati, Retno; Fatimah, Is

    2017-03-01

    The primary object of this work is to study the effect of nitric acid on the porous and morphology structure of activated carbon. Production of activated carbon from oil palm shell was prepared with pyrolysis process at temperature 900°C and by introduction of 10 M nitric acid. Determination of surface area, pore volume and pore size distribution of activated carbon was conducted by the N2 adsorption-desorption isotherm at 77 K. Morphology structure and elemental micro-analysis of activated carbon were estimated by Scanning Electron Microscopy (SEM) and energy dispersive X-ray (EDX), respectively. The result shows that activated carbon after treating with nitric acid proved an increasing porous characteristics involving surface area, pore volume and pore size distribution. It also could remove the contaminants including metals and exhibit an increasing of pores and crevices all over the surface.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ongari, Daniele; Boyd, Peter G.; Barthel, Senja

    Pore volume is one of the main properties for the characterization of microporous crystals. It is experimentally measurable, and it can also be obtained from the refined unit cell by a number of computational techniques. In this work, we assess the accuracy and the discrepancies between the different computational methods which are commonly used for this purpose, i.e, geometric, helium, and probe center pore volumes, by studying a database of more than 5000 frameworks. We developed a new technique to fully characterize the internal void of a microporous material and to compute the probe-accessible and -occupiable pore volume. Lasty, wemore » show that, unlike the other definitions of pore volume, the occupiable pore volume can be directly related to the experimentally measured pore volumes from nitrogen isotherms.« less

  14. A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure

    USGS Publications Warehouse

    George, David L.; Iverson, Richard M.

    2011-01-01

    Pore-fluid pressure plays a crucial role in debris flows because it counteracts normal stresses at grain contacts and thereby reduces intergranular friction. Pore-pressure feedback accompanying debris deformation is particularly important during the onset of debrisflow motion, when it can dramatically influence the balance of forces governing downslope acceleration. We consider further effects of this feedback by formulating a new, depth-averaged mathematical model that simulates coupled evolution of granular dilatancy, solid and fluid volume fractions, pore-fluid pressure, and flow depth and velocity during all stages of debris-flow motion. To illustrate implications of the model, we use a finite-volume method to compute one-dimensional motion of a debris flow descending a rigid, uniformly inclined slope, and we compare model predictions with data obtained in large-scale experiments at the USGS debris-flow flume. Predictions for the first 1 s of motion show that increasing pore pressures (due to debris contraction) cause liquefaction that enhances flow acceleration. As acceleration continues, however, debris dilation causes dissipation of pore pressures, and this dissipation helps stabilize debris-flow motion. Our numerical predictions of this process match experimental data reasonably well, but predictions might be improved by accounting for the effects of grain-size segregation.

  15. Disorder-induced stiffness degradation of highly disordered porous materials

    NASA Astrophysics Data System (ADS)

    Laubie, Hadrien; Monfared, Siavash; Radjaï, Farhang; Pellenq, Roland; Ulm, Franz-Josef

    2017-09-01

    The effective mechanical behavior of multiphase solid materials is generally modeled by means of homogenization techniques that account for phase volume fractions and elastic moduli without considering the spatial distribution of the different phases. By means of extensive numerical simulations of randomly generated porous materials using the lattice element method, the role of local textural properties on the effective elastic properties of disordered porous materials is investigated and compared with different continuum micromechanics-based models. It is found that the pronounced disorder-induced stiffness degradation originates from stress concentrations around pore clusters in highly disordered porous materials. We identify a single disorder parameter, φsa, which combines a measure of the spatial disorder of pores (the clustering index, sa) with the pore volume fraction (the porosity, φ) to scale the disorder-induced stiffness degradation. Thus, we conclude that the classical continuum micromechanics models with one spherical pore phase, due to their underlying homogeneity assumption fall short of addressing the clustering effect, unless additional texture information is introduced, e.g. in form of the shift of the percolation threshold with disorder, or other functional relations between volume fractions and spatial disorder; as illustrated herein for a differential scheme model representative of a two-phase (solid-pore) composite model material.

  16. Mechanical properties and failure behavior of unidirectional porous ceramics

    NASA Astrophysics Data System (ADS)

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J.

    2016-04-01

    We show that the honeycomb out-of-plane model derived by Gibson and Ashby can be applied to describe the compressive behavior of unidirectional porous materials. Ice-templating allowed us to process samples with accurate control over pore volume, size, and morphology. These samples allowed us to evaluate the effect of this microstructural variations on the compressive strength in a porosity range of 45-80%. The maximum strength of 286 MPa was achieved in the least porous ice-templated sample (P(%) = 49.9), with the smallest pore size (3 μm). We found that the out-of-plane model only holds when buckling is the dominant failure mode, as should be expected. Furthermore, we controlled total pore volume by adjusting solids loading and sintering temperature. This strategy allows us to independently control macroporosity and densification of walls, and the compressive strength of ice-templated materials is exclusively dependent on total pore volume.

  17. Mechanical properties and failure behavior of unidirectional porous ceramics.

    PubMed

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J

    2016-04-14

    We show that the honeycomb out-of-plane model derived by Gibson and Ashby can be applied to describe the compressive behavior of unidirectional porous materials. Ice-templating allowed us to process samples with accurate control over pore volume, size, and morphology. These samples allowed us to evaluate the effect of this microstructural variations on the compressive strength in a porosity range of 45-80%. The maximum strength of 286 MPa was achieved in the least porous ice-templated sample (P(%) = 49.9), with the smallest pore size (3 μm). We found that the out-of-plane model only holds when buckling is the dominant failure mode, as should be expected. Furthermore, we controlled total pore volume by adjusting solids loading and sintering temperature. This strategy allows us to independently control macroporosity and densification of walls, and the compressive strength of ice-templated materials is exclusively dependent on total pore volume.

  18. 3D Analysis of Porosity in a Ceramic Coating Using X-ray Microscopy

    NASA Astrophysics Data System (ADS)

    Klement, Uta; Ekberg, Johanna; Kelly, Stephen T.

    2017-02-01

    Suspension plasma spraying (SPS) is a new, innovative plasma spray technique using a feedstock consisting of fine powder particles suspended in a liquid. Using SPS, ceramic coatings with columnar microstructures have been produced which are used as topcoats in thermal barrier coatings. The microstructure contains a wide pore size range consisting of inter-columnar spacings, micro-pores and nano-pores. Hence, determination of total porosity and pore size distribution is a challenge. Here, x-ray microscopy (XRM) has been applied for describing the complex pore space of the coatings because of its capability to image the (local) porosity within the coating in 3D at a resolution down to 50 nm. The possibility to quantitatively segment the analyzed volume allows analysis of both open and closed porosity. For an yttria-stabilized zirconia coating with feathery microstructure, both open and closed porosity were determined and it could be revealed that 11% of the pore volumes (1.4% of the total volume) are closed pores. The analyzed volume was reconstructed to illustrate the distribution of open and closed pores in 3D. Moreover, pore widths and pore volumes were determined. The results on the complex pore space obtained by XRM are discussed in connection with other porosimetry techniques.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Seok -Min; Jang, Eunji; Dysart, Arthur D.

    Here, microporous carbon compartments (MCCs) were developed via controlled carbonization of wheat flour producing large cavities that allow CO 2 gas molecules to access micropores and adsorb effectively. KOH activation of MCCs was conducted at 700 °C with varying mass ratios of KOH/C ranging from 1 to 5, and the effects of activation conditions on the prepared carbon materials in terms of the characteristics and behavior of CO 2 adsorption were investigated. Textural properties, such as specific surface area and total pore volume, linearly increased with the KOH/C ratio, attributed to the development of pores and enlargement of pores withinmore » carbon. The highest CO 2 adsorption capacities of 5.70 mol kg -1 at 0 °C and 3.48 mol kg -1 at 25 °C were obtained for MCC activated with a KOH/C ratio of 3 (MCC-K3). In addition, CO 2 adsorption uptake was significantly dependent on the volume of narrow micropores with a pore size of less than 0.8 nm rather than the volume of larger pores or surface area. MCC-K3 also exhibited excellent cyclic stability, facile regeneration, and rapid adsorption kinetics. As compared to the pseudofirst-order model, the pseudo-second-order kinetic model described the experimental adsorption data methodically.« less

  20. CO 2 capture in the sustainable wheat-derived activated microporous carbon compartments

    DOE PAGES

    Hong, Seok -Min; Jang, Eunji; Dysart, Arthur D.; ...

    2016-10-04

    Here, microporous carbon compartments (MCCs) were developed via controlled carbonization of wheat flour producing large cavities that allow CO 2 gas molecules to access micropores and adsorb effectively. KOH activation of MCCs was conducted at 700 °C with varying mass ratios of KOH/C ranging from 1 to 5, and the effects of activation conditions on the prepared carbon materials in terms of the characteristics and behavior of CO 2 adsorption were investigated. Textural properties, such as specific surface area and total pore volume, linearly increased with the KOH/C ratio, attributed to the development of pores and enlargement of pores withinmore » carbon. The highest CO 2 adsorption capacities of 5.70 mol kg -1 at 0 °C and 3.48 mol kg -1 at 25 °C were obtained for MCC activated with a KOH/C ratio of 3 (MCC-K3). In addition, CO 2 adsorption uptake was significantly dependent on the volume of narrow micropores with a pore size of less than 0.8 nm rather than the volume of larger pores or surface area. MCC-K3 also exhibited excellent cyclic stability, facile regeneration, and rapid adsorption kinetics. As compared to the pseudofirst-order model, the pseudo-second-order kinetic model described the experimental adsorption data methodically.« less

  1. CO2 Capture in the Sustainable Wheat-Derived Activated Microporous Carbon Compartments

    NASA Astrophysics Data System (ADS)

    Hong, Seok-Min; Jang, Eunji; Dysart, Arthur D.; Pol, Vilas G.; Lee, Ki Bong

    2016-10-01

    Microporous carbon compartments (MCCs) were developed via controlled carbonization of wheat flour producing large cavities that allow CO2 gas molecules to access micropores and adsorb effectively. KOH activation of MCCs was conducted at 700 °C with varying mass ratios of KOH/C ranging from 1 to 5, and the effects of activation conditions on the prepared carbon materials in terms of the characteristics and behavior of CO2 adsorption were investigated. Textural properties, such as specific surface area and total pore volume, linearly increased with the KOH/C ratio, attributed to the development of pores and enlargement of pores within carbon. The highest CO2 adsorption capacities of 5.70 mol kg-1 at 0 °C and 3.48 mol kg-1 at 25 °C were obtained for MCC activated with a KOH/C ratio of 3 (MCC-K3). In addition, CO2 adsorption uptake was significantly dependent on the volume of narrow micropores with a pore size of less than 0.8 nm rather than the volume of larger pores or surface area. MCC-K3 also exhibited excellent cyclic stability, facile regeneration, and rapid adsorption kinetics. As compared to the pseudo-first-order model, the pseudo-second-order kinetic model described the experimental adsorption data methodically.

  2. Catalyst for hydrotreating carbonaceous liquids

    DOEpatents

    Berg, Lloyd; McCandless, Frank P.; Ramer, Ronald J.

    1982-01-01

    A catalyst for denitrogenating and desulfurating carbonaceous liquid such as solvent refined coal includes catalytic metal oxides impregnated within a porous base of mostly alumina with relatively large pore diameters, surface area and pore volume. The base material includes pore volumes of 0.7-0.85 ml/g, surface areas of 200-350 m.sup.2 /g and pore diameters of 85-200 Angstroms. The catalytic metals impregnated into these base materials include the oxides of Group VI metals, molybdenum and tungsten, and the oxides of Group VIII metals, nickel and cobalt, in various combinations. These catalysts and bases in combination have effectively promoted the removal of chemically combined sulfur and nitrogen within a continuous flowing mixture of carbonaceous liquid and hydrogen gas.

  3. The role of beaded activated carbon's pore size distribution on heel formation during cyclic adsorption/desorption of organic vapors.

    PubMed

    Jahandar Lashaki, Masoud; Atkinson, John D; Hashisho, Zaher; Phillips, John H; Anderson, James E; Nichols, Mark

    2016-09-05

    The effect of activated carbon's pore size distribution (PSD) on heel formation during adsorption of organic vapors was investigated. Five commercially available beaded activated carbons (BAC) with varying PSDs (30-88% microporous) were investigated. Virgin samples had similar elemental compositions but different PSDs, which allowed for isolating the contribution of carbon's microporosity to heel formation. Heel formation was linearly correlated (R(2)=0.91) with BAC micropore volume; heel for the BAC with the lowest micropore volume was 20% lower than the BAC with the highest micropore volume. Meanwhile, first cycle adsorption capacities and breakthrough times correlated linearly (R(2)=0.87 and 0.93, respectively) with BAC total pore volume. Micropore volume reduction for all BACs confirmed that heel accumulation takes place in the highest energy pores. Overall, these results show that a greater portion of adsorbed species are converted into heel on highly microporous adsorbents due to higher share of high energy adsorption sites in their structure. This differs from mesoporous adsorbents (low microporosity) in which large pores contribute to adsorption but not to heel formation, resulting in longer adsorbent lifetime. Thus, activated carbon with high adsorption capacity and high mesopore fraction is particularly desirable for organic vapor application involving extended adsorption/regeneration cycling. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Highly ordered, accessible and nanocrystalline mesoporous TiO₂ thin films on transparent conductive substrates.

    PubMed

    Violi, Ianina L; Perez, M Dolores; Fuertes, M Cecilia; Soler-Illia, Galo J A A

    2012-08-01

    Highly porous (V(mesopore) = 25-50%) and ordered mesoporous titania thin films (MTTF) were prepared on ITO (indium tin oxide)-covered glass by a fast two-step method. The effects of substrate surface modification and thermal treatment on pore order, accessibility and crystallinity of the MTTF were systematically studied for MTTF deposited onto bare and titania-modified ITO. MTTF exposed briefly to 550 °C resulted in highly ordered films with grid-like structures, enlarged pore size, and increased accessible pore volume when prepared onto the modified ITO substrate. Mesostructure collapse and no significant change in pore volume were observed for MTTF deposited on bare ITO substrates. Highly crystalline anatase was obtained for MTTF prepared on the modified-ITO treated at high temperatures, establishing the relationship between grid-like structures and titania crystallization. Photocatalytic activity was maximized for samples with increased crystallization and high accessible pore volume. In this manner, a simple way of designing materials with optimized characteristics for optoelectronic applications was achieved through the modification of the ITO surface and a controlled thermal treatment.

  5. Fractal Characteristics of the Pore Network in Diatomites Using Mercury Porosimetry and Image Analysis

    NASA Astrophysics Data System (ADS)

    Stańczak, Grażyna; Rembiś, Marek; Figarska-Warchoł, Beata; Toboła, Tomasz

    The complex pore space considerably affects the unique properties of diatomite and its significant potential for many industrial applications. The pore network in the diatomite from the Lower Miocene strata of the Skole nappe (the Jawornik deposit, SE Poland) has been investigated using a fractal approach. The fractal dimension of the pore-space volume was calculated using the Menger sponge as a model of a porous body and the mercury porosimetry data in a pore-throat diameter range between 10,000 and 10 nm. Based on the digital analyses of the two-dimensional images from thin sections taken under a scanning electron microscope at the backscattered electron mode at different magnifications, the authors tried to quantify the pore spaces of the diatomites using the box counting method. The results derived from the analyses of the pore-throat diameter distribution using mercury porosimetry have revealed that the pore space of the diatomite has the bifractal structure in two separated ranges of the pore-throat diameters considerably smaller than the pore-throat sizes corresponding to threshold pressures. Assuming that the fractal dimensions identified for the ranges of the smaller pore-throat diameters characterize the overall pore-throat network in the Jawornik diatomite, we can set apart the distribution of the pore-throat volume (necks) and the pore volume from the distribution of the pore-space volume (pores and necks together).

  6. FIB and MIP: understanding nanoscale porosity in molecularly imprinted polymers via 3D FIB/SEM tomography.

    PubMed

    Neusser, G; Eppler, S; Bowen, J; Allender, C J; Walther, P; Mizaikoff, B; Kranz, C

    2017-10-05

    We present combined focused ion beam/scanning electron beam (FIB/SEM) tomography as innovative method for differentiating and visualizing the distribution and connectivity of pores within molecularly imprinted polymers (MIPs) and non-imprinted control polymers (NIPs). FIB/SEM tomography is used in cell biology for elucidating three-dimensional structures such as organelles, but has not yet been extensively applied for visualizing the heterogeneity of nanoscopic pore networks, interconnectivity, and tortuosity in polymers. To our best knowledge, the present study is the first application of this strategy for analyzing the nanoscale porosity of MIPs. MIPs imprinted for propranolol - and the corresponding NIPs - were investigated establishing FIB/SEM tomography as a viable future strategy complementing conventional isotherm studies. For visualizing and understanding the properties of pore networks in detail, polymer particles were stained with osmium tetroxide (OsO 4 ) vapor, and embedded in epoxy resin. Staining with OsO 4 provides excellent contrast during high-resolution SEM imaging. After optimizing the threshold to discriminate between the stained polymer matrix, and pores filled with epoxy resin, a 3D model of the sampled volume may be established for deriving not only the pore volume and pore surface area, but also to visualize the interconnectivity and tortuosity of the pores within the sampled polymer volume. Detailed studies using different types of cross-linkers and the effect of hydrolysis on the resulting polymer properties have been investigated. In comparison of MIP and NIP, it could be unambiguously shown that the interconnectivity of the visualized pores in MIPs is significantly higher vs. the non-imprinted polymer, and that the pore volume and pore area is 34% and approx. 35% higher within the MIP matrix. This confirms that the templating process not only induces selective binding sites, but indeed also affects the physical properties of such polymers down to the nanoscale, and that additional chemical modification, e.g., via hydrolysis clearly affects that nature of the polymer.

  7. Antera 3D capabilities for pore measurements.

    PubMed

    Messaraa, C; Metois, A; Walsh, M; Flynn, J; Doyle, L; Robertson, N; Mansfield, A; O'Connor, C; Mavon, A

    2018-04-29

    The cause of enlarged pores remains obscure but still remains of concern for women. To complement subjective methods, bioengineered methods are needed for quantification of pores visibility following treatments. The study objective was to demonstrate the suitability of pore measurements from the Antera 3D. Pore measurements were collected on 22 female volunteers aged 18-65 years with the Antera 3D, the DermaTOP and image analysis on photographs. Additionally, 4 raters graded pore size on photographs on a scale 0-5. Repeatability of Antera 3D parameters was ascertained and the benefit of a pore minimizer product on the cheek was assessed on a sub panel of seven female volunteers. Pore parameters using the Antera were shown to depict pore severity similar to raters on photographs, except for Max Depth. Mean pore volume, mean pore area and count were moderately correlated with DermaTOP parameters (up to r = .50). No relationship was seen between the Antera 3D and pore visibility analysis on photographs. The most repeatable parameters were found to be mean pore volume, mean pore area and max depth, especially for the small and medium filters. The benefits of a pore minimizer product were the most striking for mean pore volume and mean pore area when using the small filter for analysis, rather than the medium/large ones. Pore measurements with the Antera 3D represent a reliable tool for efficacy and field studies, with an emphasis of the small filter for analysis for the mean pore volume/mean pore area parameters. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Elements of an improved model of debris-flow motion

    USGS Publications Warehouse

    Iverson, R.M.

    2009-01-01

    A new depth-averaged model of debris-flow motion describes simultaneous evolution of flow velocity and depth, solid and fluid volume fractions, and pore-fluid pressure. Non-hydrostatic pore-fluid pressure is produced by dilatancy, a state-dependent property that links the depth-averaged shear rate and volumetric strain rate of the granular phase. Pore-pressure changes caused by shearing allow the model to exhibit rate-dependent flow resistance, despite the fact that the basal shear traction involves only rate-independent Coulomb friction. An analytical solution of simplified model equations shows that the onset of downslope motion can be accelerated or retarded by pore-pressure change, contingent on whether dilatancy is positive or negative. A different analytical solution shows that such effects will likely be muted if downslope motion continues long enough, because dilatancy then evolves toward zero, and volume fractions and pore pressure concurrently evolve toward steady states. ?? 2009 American Institute of Physics.

  9. The effects of pore structure on the behavior of water in lignite coal and activated carbon.

    PubMed

    Nwaka, Daniel; Tahmasebi, Arash; Tian, Lu; Yu, Jianglong

    2016-09-01

    The effects of physical structure (pore structure) on behavior of water in lignite coal and activated carbon (AC) samples were investigated by using Differential Scanning Calorimetry (DSC) and low-temperature X-ray diffraction (XRD) techniques. AC samples with different pore structures were prepared at 800°C in steam and the results were compared with that of parent lignite coal. The DSC results confirmed the presence of two types of freezable water that freeze at -8°C (free water) and -42°C (freezable bound water). A shift in peak position of free water (FW) towards lower temperature was observed in AC samples compared to the lignite coal with decreasing water loading. The amount of free water (FW) increased with increasing gasification conversion. The amounts of free and freezable bound water (FBW) in AC samples were calculated and correlated to pore volume and average pore size. The amount of FW in AC samples is well correlated to the pore volume and average pore size of the samples, while an opposite trend was observed for FBW. The low-temperature XRD analysis confirmed the existence of non-freezable water (NFW) in coal and AC with the boundary between the freezable and non-freezable water (NFW) determined. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Gas permeability of ice-templated, unidirectional porous ceramics

    NASA Astrophysics Data System (ADS)

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J.

    2016-01-01

    We investigate the gas flow behavior of unidirectional porous ceramics processed by ice-templating. The pore volume ranged between 54% and 72% and pore size between 2.9 ?m and 19.1 ?m. The maximum permeability (?? m?) was measured in samples with the highest total pore volume (72%) and pore size (19.1 ?m). However, we demonstrate that it is possible to achieve a similar permeability (?? m?) at 54% pore volume by modification of the pore shape. These results were compared with those reported and measured for isotropic porous materials processed by conventional techniques. In unidirectional porous materials tortuosity (?) is mainly controlled by pore size, unlike in isotropic porous structures where ? is linked to pore volume. Furthermore, we assessed the applicability of Ergun and capillary model in the prediction of permeability and we found that the capillary model accurately describes the gas flow behavior of unidirectional porous materials. Finally, we combined the permeability data obtained here with strength data for these materials to establish links between strength and permeability of ice-templated materials.

  11. Fractal Dimensionality of Pore and Grain Volume of a Siliciclastic Marine Sand

    NASA Astrophysics Data System (ADS)

    Reed, A. H.; Pandey, R. B.; Lavoie, D. L.

    Three-dimensional (3D) spatial distributions of pore and grain volumes were determined from high-resolution computer tomography (CT) images of resin-impregnated marine sands. Using a linear gradient extrapolation method, cubic three-dimensional samples were constructed from two-dimensional CT images. Image porosity (0.37) was found to be consistent with the estimate of porosity by water weight loss technique (0.36). Scaling of the pore volume (Vp) with the linear size (L), V~LD provides the fractal dimensionalities of the pore volume (D=2.74+/-0.02) and grain volume (D=2.90+/-0.02) typical for sedimentary materials.

  12. Pore structure modification of diatomite as sulfuric acid catalyst support by high energy electron beam irradiation and hydrothermal treatment

    NASA Astrophysics Data System (ADS)

    Li, Chong; Zhang, Guilong; Wang, Min; Chen, Jianfeng; Cai, Dongqing; Wu, Zhengyan

    2014-08-01

    High energy electron beam (HEEB) irradiation and hydrothermal treatment (HT), were applied in order to remove the impurities and enlarge the pore size of diatomite, making diatomite more suitable to be a catalyst support. The results demonstrated that, through thermal, charge, impact and etching effects, HEEB irradiation could make the impurities in the pores of diatomite loose and remove some of them. Then HT could remove rest of them from the pores and contribute significantly to the modification of the pore size distribution of diatomite due to thermal expansion, water swelling and thermolysis effects. Moreover, the pore structure modification improved the properties (BET (Brunauer-Emmett-Teller) specific surface area, bulk density and pore volume) of diatomite and the catalytic efficiency of the catalyst prepared from the treated diatomite.

  13. Fluid displacement fronts in porous media: pore scale interfacial jumps, pressure bursts and acoustic emissions

    NASA Astrophysics Data System (ADS)

    Moebius, Franziska; Or, Dani

    2014-05-01

    The macroscopically smooth and regular motion of fluid fronts in porous media is composed of numerous rapid pore-scale interfacial jumps and pressure bursts that involve intense interfacial energy release in the form of acoustic emissions. The characteristics of these pore scale events affect residual phase entrapment and transport properties behind the front. We present experimental studies using acoustic emission technique (AE), rapid imaging, and liquid pressure measurements to characterize these processes during drainage and imbibition in simple porous media. Imbibition and drainage produce different AE signatures (AE amplitudes obey a power law). For rapid drainage, AE signals persist long after cessation of front motion reflecting fluid redistribution and interfacial relaxation. Imaging revealed that the velocity of interfacial jumps often exceeds front velocity by more than 50 fold and is highly inertial component (Re>1000). Pore invasion volumes reduced deduced from pressure fluctuations waiting times (for constant withdrawal rates) show remarkable agreement with geometrically-deduced pore volumes. Discrepancies between invaded volumes and geometrical pores increase with increasing capillary numbers due to constraints on evacuation opportunity times and simultaneous invasion events. A mechanistic model for interfacial motions in a pore-throat network was developed to investigate interfacial dynamics focusing on the role of inertia. Results suggest that while pore scale dynamics were sensitive to variations in pore geometry and boundary conditions, inertia exerted only a minor effect on phase entrapment. The study on pore scale invasion events paints a complex picture of rapid and inertial motions and provides new insights on mechanisms at displacement fronts that are essential for improved macroscopic description of multiphase flows in porous media.

  14. CO2 Capture in the Sustainable Wheat-Derived Activated Microporous Carbon Compartments

    PubMed Central

    Hong, Seok-Min; Jang, Eunji; Dysart, Arthur D.; Pol, Vilas G.; Lee, Ki Bong

    2016-01-01

    Microporous carbon compartments (MCCs) were developed via controlled carbonization of wheat flour producing large cavities that allow CO2 gas molecules to access micropores and adsorb effectively. KOH activation of MCCs was conducted at 700 °C with varying mass ratios of KOH/C ranging from 1 to 5, and the effects of activation conditions on the prepared carbon materials in terms of the characteristics and behavior of CO2 adsorption were investigated. Textural properties, such as specific surface area and total pore volume, linearly increased with the KOH/C ratio, attributed to the development of pores and enlargement of pores within carbon. The highest CO2 adsorption capacities of 5.70 mol kg−1 at 0 °C and 3.48 mol kg−1 at 25 °C were obtained for MCC activated with a KOH/C ratio of 3 (MCC-K3). In addition, CO2 adsorption uptake was significantly dependent on the volume of narrow micropores with a pore size of less than 0.8 nm rather than the volume of larger pores or surface area. MCC-K3 also exhibited excellent cyclic stability, facile regeneration, and rapid adsorption kinetics. As compared to the pseudo-first-order model, the pseudo-second-order kinetic model described the experimental adsorption data methodically. PMID:27698448

  15. Estimating pore and cement volumes in thin section

    USGS Publications Warehouse

    Halley, R.B.

    1978-01-01

    Point count estimates of pore, grain and cement volumes from thin sections are inaccurate, often by more than 100 percent, even though they may be surprisingly precise (reproducibility + or - 3 percent). Errors are produced by: 1) inclusion of submicroscopic pore space within solid volume and 2) edge effects caused by grain curvature within a 30-micron thick thin section. Submicroscopic porosity may be measured by various physical tests or may be visually estimated from scanning electron micrographs. Edge error takes the form of an envelope around grains and increases with decreasing grain size and sorting, increasing grain irregularity and tighter grain packing. Cements are greatly involved in edge error because of their position at grain peripheries and their generally small grain size. Edge error is minimized by methods which reduce the thickness of the sample viewed during point counting. Methods which effectively reduce thickness include use of ultra-thin thin sections or acetate peels, point counting in reflected light, or carefully focusing and counting on the upper surface of the thin section.

  16. Micropore engineering of carbonized porous aromatic framework (PAF-1) for supercapacitors application.

    PubMed

    Li, Yanqiang; Roy, Soumyajit; Ben, Teng; Xu, Shixian; Qiu, Shilun

    2014-07-07

    Micropore engineering of porous carbons on the effect of capacitance was explored using a carbonized porous aromatic framework (PAF-1). The porous carbons obtained through different carbonization methods show different pore structures enabling us to do this. The capacitance was measured both in aqueous electrolyte and different organic electrolytes. The porous carbons prepared by KOH activation show both high microporous volume, which is beneficial for charge storage, and mesoporous volume, which is devoted to fast ion diffusion in the pores; properties which are highly desirable. It shows a capacitance as high as 280 F g(-1) and 203 F g(-1) at a current density of 1 A g(-1) in 6.0 M KOH and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMImTFSI), respectively. We also demonstrate the effect of diffusion and that of geometric packing of the electrolyte ions in the pores, where a commensurate match of the electrolyte ions with the pores of carbonized materials control and influence significantly the capacitance of these materials.

  17. High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium-sulfur battery.

    PubMed

    Li, Duo; Han, Fei; Wang, Shuai; Cheng, Fei; Sun, Qiang; Li, Wen-Cui

    2013-03-01

    Porous carbon materials with large pore volume are crucial in loading insulated sulfur with the purpose of achieving high performance for lithium-sulfur batteries. In our study, peapodlike mesoporous carbon with interconnected pore channels and large pore volume (4.69 cm(3) g(-1)) was synthesized and used as the matrix to fabricate carbon/sulfur (C/S) composite which served as attractive cathodes for lithium-sulfur batteries. Systematic investigation of the C/S composite reveals that the carbon matrix can hold a high but suitable sulfur loading of 84 wt %, which is beneficial for improving the bulk density in practical application. Such controllable sulfur-filling also effectively allows the volume expansion of active sulfur during Li(+) insertion. Moreover, the thin carbon walls (3-4 nm) of carbon matrix not only are able to shorten the pathway of Li(+) transfer and conduct electron to overcome the poor kinetics of sulfur cathode, but also are flexible to warrant structure stability. Importantly, the peapodlike carbon shell is beneficial to increase the electrical contact for improving electronic conductivity of active sulfur. Meanwhile, polymer modification with polypyrrole coating layer further restrains polysulfides dissolution and improves the cycle stability of carbon/sulfur composites.

  18. Effect of Pore Size and Pore Connectivity on Unidirectional Capillary Penetration Kinetics in 3-D Porous Media using Direct Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Fu, An; Palakurthi, Nikhil; Konangi, Santosh; Comer, Ken; Jog, Milind

    2017-11-01

    The physics of capillary flow is used widely in multiple fields. Lucas-Washburn equation is developed by using a single pore-sized capillary tube with continuous pore connection. Although this equation has been extended to describe the penetration kinetics into porous medium, multiple studies have indicated L-W does not accurately predict flow patterns in real porous media. In this study, the penetration kinetics including the effect of pore size and pore connectivity will be closely examined since they are expected to be the key factors effecting the penetration process. The Liquid wicking process is studied from a converging and diverging capillary tube to the complex virtual 3-D porous structures with Direct Numerical Simulation (DNS) using the Volume-Of-Fluid (VOF) method within the OpenFOAM CFD Solver. Additionally Porous Medium properties such as Permeability (k) , Tortuosity (τ) will be also analyzed.

  19. Measurements of pore-scale flow through apertures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chojnicki, Kirsten

    Pore-scale aperture effects on flow in pore networks was studied in the laboratory to provide a parameterization for use in transport models. Four cases were considered: regular and irregular pillar/pore alignment with and without an aperture. The velocity field of each case was measured and simulated, providing quantitatively comparable results. Two aperture effect parameterizations were considered: permeability and transmission. Permeability values varied by an order of magnitude between the cases with and without apertures. However, transmission did not correlate with permeability. Despite having much greater permeability the regular aperture case permitted less transmission than the regular case. Moreover, both irregularmore » cases had greater transmission than the regular cases, a difference not supported by the permeabilities. Overall, these findings suggest that pore-scale aperture effects on flow though a pore-network may not be adequately captured by properties such as permeability for applications that are interested in determining particle transport volume and timing.« less

  20. The dissolution kinetics of major elements in municipal solid waste incineration bottom ash particles

    NASA Astrophysics Data System (ADS)

    Bendz, David; Tüchsen, Peter L.; Christensen, Thomas H.

    2007-12-01

    Leaching and tracer experiments in batches at L/S 20 were performed with 3-month-old MSWI bottom ash separated into eight different particle sizes. The time-dependent leaching of major elements (Ca 2+, K +, Na +, Cl - and SO 4- 2 ) was monitored for up to 747 h. Physical properties of the particles, the specific surface (BET), pore volume and pore volume distribution over pore sizes (BJH) were determined for all particle classes by N 2 adsorption/desorption experiments. Some common features of physical pore structure for all particles were revealed. The specific surface and the particle pore volume were found to be negatively correlated with particle size, ranging from 3.2 m 2/g to 25.7 m 2/g for the surface area and from 0.0086 cm 3/g to 0.091 cm 3/g for the pore volume. Not surprisingly, the specific surface area was found to be the major material parameter that governed the leaching behavior for all elements (Ca 2+, K +, Na +, Cl - and SO 4- 2 ) and particle sizes. The diffusion resistance was determined independently by separate tracer (tritium) experiments. Diffusion gave a significant contribution to the apparent leaching kinetics for all elements during the first 10-40 h (depending on the particle size) of leaching and surface reaction was the overall rate controlling mechanism at late times for all particle sizes. For Ca 2+ and SO 4- 2 , the coupled effect of diffusion resistance and the degree of undersaturation in the intra particle pore volume was found to be a major rate limiting dissolution mechanism for both early and late times. The solubility control in the intra particulate porosity may undermine any attempt to treat bottom ash by washing out the sulfate. Even for high liquid/solid ratios, the solubility in the intra-particular porosity will limit the release rate.

  1. Exploring molecular sieve capabilities of activated carbon fibers to reduce the impact of NOM preloading on trichloroethylene adsorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanju Karanfil; Seyed A. Dastgheib; Dina Mauldin

    2006-02-15

    Adsorption of trichloroethylene (TCE) by two activated carbon fibers ACF10 and ACF20H and two granular activated carbons, coal-based F400 and Macro preloaded with hydrophobic and transphilic fractions of natural organic matter (NOM) was examined. ACF10, the most microporous activated carbon used in this study, had over 90% of its pore volume in pores smaller than 10 {angstrom}. It also had the highest volume in pores 5-8 {angstrom}, which is the optimum pore size region for TCE adsorption, among the four activated carbons. Adsorption of NOM fractions by ACF10 was, in general, negligible. Therefore, ACF10, functioning as a molecular sieve duringmore » preloading, exhibited the least NOM uptake for each fraction, and subsequently the highest TCE adsorption. The other three sorbents had wider pore size distributions, including high volumes in pores larger than 10 {angstrom}, where NOM molecules can adsorb. As a result, they showed a higher degree of uptake for all NOM fractions, and subsequently lower adsorption capacities for TCE, as compared to ACF10. The results obtained in this study showed that understanding the interplay between the optimum pore size region for the adsorption of target synthetic organic contaminant (SOC) and the pore size region for the adsorption of NOM molecules is important for controlling NOM-SOC competitions. Experiments with different NOM fractions indicated that the degree of NOM loading is important in terms of preloading effects; however the way that the carbon pores are filled and loaded by different NOM fractions can be different and may create an additional negative impact on TCE adsorption. 40 refs., 3 figs., 2 tabs.« less

  2. Effect of processing parameters and pore structure of nanostructured silica aerogel on the physical properties of aerogel blankets

    NASA Astrophysics Data System (ADS)

    Latifi, Fatemeh; Talebi, Zahra; Khalili, Haleh; Zarrebini, Mohammad

    2018-05-01

    This work investigates the influence of processing parameters and aerogel pore structure on the physical properties and hydrophobicity of aerogel blankets. Aerogel blankets were produced by in situ synthesis of nanostructured silica aerogel on a polyester nonwoven substrate. Nitrogen adsorption-desorption analysis, contact angle test and FE-SEM images were used to characterize both the aerogel particles and the blankets. The results showed that the weight and thickness of the blanket were reduced when the low amount of catalyst was used. A decrease in the aerogel pore size from 22 to 11 nm increased the weight and thickness of the blankets. The xerogel particles with high density and pore size of 5 nm reduced the blanket weight. Also, the blanket weight and thickness were increased due to increasing the sol volume. It was found that the hydrophobicity of aerogel blankets is not influenced by sol volume and pore structure of silica aerogel.

  3. Substantial Expansion of Detectable Size Range in Ionic Current Sensing through Pores by Using a Microfluidic Bridge Circuit.

    PubMed

    Yasaki, Hirotoshi; Yasui, Takao; Yanagida, Takeshi; Kaji, Noritada; Kanai, Masaki; Nagashima, Kazuki; Kawai, Tomoji; Baba, Yoshinobu

    2017-10-11

    Measuring ionic currents passing through nano- or micropores has shown great promise for the electrical discrimination of various biomolecules, cells, bacteria, and viruses. However, conventional measurements have shown there is an inherent limitation to the detectable particle volume (1% of the pore volume), which critically hinders applications to real mixtures of biomolecule samples with a wide size range of suspended particles. Here we propose a rational methodology that can detect samples with the detectable particle volume of 0.01% of the pore volume by measuring a transient current generated from the potential differences in a microfluidic bridge circuit. Our method substantially suppresses the background ionic current from the μA level to the pA level, which essentially lowers the detectable particle volume limit even for relatively large pore structures. Indeed, utilizing a microscale long pore structure (volume of 5.6 × 10 4 aL; height and width of 2.0 × 2.0 μm; length of 14 μm), we successfully detected various samples including polystyrene nanoparticles (volume: 4 aL), bacteria, cancer cells, and DNA molecules. Our method will expand the applicability of ionic current sensing systems for various mixed biomolecule samples with a wide size range, which have been difficult to measure by previously existing pore technologies.

  4. Influence of Rubber Size on Properties of Crumb Rubber Mortars

    PubMed Central

    Yu, Yong; Zhu, Han

    2016-01-01

    Studies on the properties and applications of rubber cement-based materials are well documented. The sizes of rubbers used in these materials varied. However, information about the effects of rubber size on the properties of rubber cement-based materials, especially pore structure, mechanical strengths, and drying shrinkage properties, remains limited. Three groups of rubber with major particle sizes of 2–4 mm, 1–3 mm, and 0–2 mm were selected in this study. This paper presents experimental studies on the effects of rubber size on the consistency, fresh density, pore structure, mechanical properties, and drying shrinkage properties of crumb rubber mortars (CRMs). Results demonstrated that the consistency and fresh density of CRMs decreased with the rubber size. As to the pore structure, the total pore volume increased with the decrease of the rubber size. By contrast, the influence of the rubber size on the mesopore (<50 nm) volume is not as significant as that of the rubber content. The mechanical properties of CRMs decreased with the rubber size. Low rubber stiffness and large pore volumes, especially those of small sized rubbers, contribute to the reduction of CRMs strength. The drying shrinkage of CRM increases as the rubber size decreases. The influences of rubber size on capillary tension are not significant. Thus, the shrinkage increases with the decrease of rubber size mainly because of its function in the deformation modulus reduction of CRMs. PMID:28773649

  5. AFM-porosimetry: density and pore volume measurements of particulate materials.

    PubMed

    Sörensen, Malin H; Valle-Delgado, Juan J; Corkery, Robert W; Rutland, Mark W; Alberius, Peter C

    2008-06-01

    We introduced the novel technique of AFM-porosimetry and applied it to measure the total pore volume of porous particles with a spherical geometry. The methodology is based on using an atomic force microscope as a balance to measure masses of individual particles. Several particles within the same batch were measured, and by plotting particle mass versus particle volume, the bulk density of the sample can be extracted from the slope of the linear fit. The pore volume is then calculated from the densities of the bulk and matrix materials, respectively. In contrast to nitrogen sorption and mercury porosimetry, this method is capable of measuring the total pore volume regardless of pore size distribution and pore connectivity. In this study, three porous samples were investigated by AFM-porosimetry: one ordered mesoporous sample and two disordered foam structures. All samples were based on a matrix of amorphous silica templated by a block copolymer, Pluronic F127, swollen to various degrees with poly(propylene glycol). In addition, the density of silica spheres without a template was measured by two independent techniques: AFM and the Archimedes principle.

  6. Gas permeability of ice-templated, unidirectional porous ceramics.

    PubMed

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J

    2016-01-01

    We investigate the gas flow behavior of unidirectional porous ceramics processed by ice-templating. The pore volume ranged between 54% and 72% and pore size between 2.9 [Formula: see text]m and 19.1 [Formula: see text]m. The maximum permeability ([Formula: see text] [Formula: see text] m[Formula: see text]) was measured in samples with the highest total pore volume (72%) and pore size (19.1 [Formula: see text]m). However, we demonstrate that it is possible to achieve a similar permeability ([Formula: see text] [Formula: see text] m[Formula: see text]) at 54% pore volume by modification of the pore shape. These results were compared with those reported and measured for isotropic porous materials processed by conventional techniques. In unidirectional porous materials tortuosity ([Formula: see text]) is mainly controlled by pore size, unlike in isotropic porous structures where [Formula: see text] is linked to pore volume. Furthermore, we assessed the applicability of Ergun and capillary model in the prediction of permeability and we found that the capillary model accurately describes the gas flow behavior of unidirectional porous materials. Finally, we combined the permeability data obtained here with strength data for these materials to establish links between strength and permeability of ice-templated materials.

  7. Predicting Impact of Biochar Addition on Soil Hydraulic Properties

    NASA Astrophysics Data System (ADS)

    Nakhli, S. A. A.; Yudi, Y.; Imhoff, P. T.

    2017-12-01

    Biochar has been proposed as a soil amendment to improve soil hydraulic properties, including water retention and saturated and unsaturated hydraulic conductivity, for agricultural and environmental applications. However, its effect on hydraulic properties is difficult to predict and often with mixed results: in some cases biochar enhances soil hydraulic properties, while in other cases it degrades them. Despite several published observational studies, there are no models that can reliably predict biochar's impact on soil hydraulic properties. In this project we developed models to describe the effect of addition of a commercial wood biochar pyrolyzed at 550° on soil hydraulic properties in laboratory-scale experiments. The effects of biochar addition at 2% and 6% (w/w) on water retention and saturated and unsaturated hydraulic conductivity were evaluated for silt loam, sandy loam, and loamy sand. The addition of 6% (w/w) biochar increased the available water content of silt loam, sandy loam and loamy sand by 25, 20 and 70%, respectively. The impact of biochar addition on water retention was predicted reasonably well using information on the intra particle pore volume of biochar (mercury porosimetry, N2 and CO2 sorption) and the particle size distribution of the soil/biochar mixture. When amended with 6% biochar, saturated hydraulic conductivity increased 17% for loamy sand, but decreased 30% and 54% for silt loam and sandy loam, respectively. The Kozeny-Carman equation modified to account for changes in inter pore volume predicted saturated hydraulic conductivities of the biochar-amended soils reasonably well, with RMSE ranging from 0.06 to 5.06 cm h-1 for silt loam and loamy sand, respectively. While intra particle pore volume of biochar contributed significantly to higher water retention, changes in hydraulic conductivity were correlated instead with changes in inter pore volume - the large pores between biochar and soil particles.

  8. Wettability effect on capillary trapping of supercritical CO2 at pore-scale: micromodel experiment and numerical modeling

    NASA Astrophysics Data System (ADS)

    Hu, R.; Wan, J.

    2015-12-01

    Wettability of reservoir minerals along pore surfaces plays a controlling role in capillary trapping of supercritical (sc) CO2 in geologic carbon sequestration. The mechanisms controlling scCO2 residual trapping are still not fully understood. We studied the effect of pore surface wettability on CO2 residual saturation at the pore-scale using engineered high pressure and high temperature micromodel (transparent pore networks) experiments and numerical modeling. Through chemical treatment of the micromodel pore surfaces, water-wet, intermediate-wet, and CO2-wet micromodels can be obtained. Both drainage and imbibition experiments were conducted at 8.5 MPa and 45 °C with controlled flow rate. Dynamic images of fluid-fluid displacement processes were recorded using a microscope with a CCD camera. Residual saturations were determined by analysis of late stage imbibition images of flow path structures. We performed direct numerical simulations of the full Navier-Stokes equations using a volume-of-fluid based finite-volume framework for the primary drainage and the followed imbibition for the micromodel experiments with different contact angles. The numerical simulations agreed well with our experimental observations. We found that more scCO2 can be trapped within the CO2-wet micromodel whereas lower residual scCO2 saturation occurred within the water-wet micromodels in both our experiments and the numerical simulations. These results provide direct and consistent evidence of the effect of wettability, and have important implications for scCO2 trapping in geologic carbon sequestration.

  9. Effects of pore volume-transmissivity correlation on transport phenomena.

    PubMed

    Lunati, Ivan; Kinzelbach, Wolfgang; Sørensen, Ivan

    2003-12-01

    The relevant velocity that describes transport phenomena in a porous medium is the pore velocity. For this reason, one needs not only to describe the variability of transmissivity, which fully determines the Darcy velocity field for given source terms and boundary conditions, but also any variability of the pore volume. We demonstrate that hydraulically equivalent media with exactly the same transmissivity field can produce dramatic differences in the displacement of a solute if they have different pore volume distributions. In particular, we demonstrate that correlation between pore volume and transmissivity leads to a much smoother and more homogeneous solute distribution. This was observed in a laboratory experiment performed in artificial fractures made of two plexiglass plates into which a space-dependent aperture distribution was milled. Using visualization by a light transmission technique, we observe that the solute behaviour is much smoother and more regular after the fractures are filled with glass powder, which plays the role of a homogeneous fault gouge material. This is due to a perfect correlation between pore volume and transmissivity that causes pore velocity to be not directly dependent on the transmissivity, but only indirectly through the hydraulic gradient, which is a much smoother function due to the diffusive behaviour of the flow equation acting as a filter. This smoothing property of the pore volume-transmissivity correlation is also supported by numerical simulations of tracer tests in a dipole flow field. Three different conceptual models are used: an empty fracture, a rough-walled fracture filled with a homogeneous material and a parallel-plate fracture with a heterogeneous fault gouge. All three models are hydraulically equivalent, yet they have a different pore volume distribution. Even if piezometric heads and specific flow rates are exactly the same at any point of the domain, the transport process differs dramatically. These differences make it important to discriminate in situ among different conceptual models in order to simulate correctly the transport phenomena. For this reason, we study the solute breakthrough and recovery curves at the extraction wells. Our numerical case studies show that discrimination on the basis of such data might be impossible except under very favourable conditions, i.e. the integral scale of the transmissivity field has to be known and small compared to the dipole size. If the latter conditions are satisfied, discrimination between the rough-walled fracture filled with a homogeneous material and the other two models becomes possible, whereas the parallel-plate fracture with a heterogeneous fault gouge and the empty fracture still show identifiability problems. The latter may be solved by inspection of aperture and pressure testing.

  10. Fungal colonization in soils with different management histories: modeling growth in three-dimensional pore volumes.

    PubMed

    Kravchenko, Alexandra; Falconer, Ruth E; Grinev, Dmitri; Otten, Wilfred

    2011-06-01

    Despite the importance of fungi in soil functioning they have received comparatively little attention, and our understanding of fungal interactions and communities is lacking. This study aims to combine a physiologically based model of fungal growth with digitized images of internal pore volume of samples of undisturbed soil from contrasting management practices to determine the effect of physical structure on fungal growth dynamics. We quantified pore geometries of the undisturbed-soil samples from two contrasting agricultural practices, conventionally plowed (chisel plow) (CT) and no till (NT), and from native-species vegetation land use on land that was taken out of production in 1989 (NS). Then we modeled invasion of a fungal species within the soil samples and evaluated the role of soil structure on the progress of fungal colonization of the soil pore space. The size of the studied pores was > or =110 microm. The dynamics of fungal invasion was quantified through parameters of a mathematical model fitted to the fungal invasion curves. Results indicated that NT had substantially lower porosity and connectivity than CT and NS soils. For example, the largest connected pore volume occupied 79% and 88% of pore space in CT and NS treatments, respectively, while it only occupied 45% in NT. Likewise, the proportion of pore space available to fungal colonization was much greater in NS and CT than in NT treatment, and the dynamics of the fungal invasion differed among the treatments. The relative rate of fungal invasion at the onset of simulation was higher in NT samples, while the invasion followed a more sigmoidal pattern with relatively slow invasion rates at the initial time steps in NS and CT samples. Simulations allowed us to elucidate the contribution of physical structure to the rates and magnitudes of fungal invasion processes. It appeared that fragmented pore space disadvantaged fungal invasion in soils under long-term no-till, while large connected pores in soils under native vegetation or in tilled agriculture promoted the invasion.

  11. Effects of porosity distribution and porosity volume fraction on the electromechanical properties of 3-3 piezoelectric foams

    NASA Astrophysics Data System (ADS)

    Nguyen, B. V.; Challagulla, K. S.; Venkatesh, T. A.; Hadjiloizi, D. A.; Georgiades, A. V.

    2016-12-01

    Unit-cell based finite element models are developed to completely characterize the role of porosity distribution and porosity volume fraction in determining the elastic, dielectric and piezoelectric properties as well as relevant figures of merit of 3-3 type piezoelectric foam structures. Eight classes of foam structures which represent structures with different types and degrees of uniformity of porosity distribution are identified; a Base structure (Class I), two H-type foam structures (Classes II, and III), a Cross-type foam structure (Class IV) and four Line-type foam structures (Classes V, VI, VII, and VIII). Three geometric factors that influence the electromechanical properties are identified: (i) the number of pores per face, pore size and the distance between the pores; (ii) pore orientation with respect to poling direction; (iii) the overall symmetry of the pore distribution with respect to the center of the face of the unit cell. To assess the suitability of these structures for such applications as hydrophones, bone implants, medical imaging and diagnostic devices, five figures of merit are determined via the developed finite element model; the piezoelectric coupling constant (K t ), the acoustic impedance (Z), the piezoelectric charge coefficient (d h ), the hydrostatic voltage coefficient (g h ), and the hydrostatic figure of merit (d h g h ). At high material volume fractions, foams with non-uniform Line-type porosity (Classes V and VII) where the pores are preferentially distributed perpendicular to poling direction, are found to exhibit the best combination of desirable piezoelectric figures of merit. For example, at about 50% volume fraction, the d h , g h , and d h g h figures of merit are 55%, 1600% and 2500% higher, respectively, for Classes V and VII of Line-like foam structures compared with the Base structure.

  12. Pore-scale supercritical CO 2 dissolution and mass transfer under drainage conditions

    DOE PAGES

    Chang, Chun; Zhou, Quanlin; Oostrom, Mart; ...

    2016-12-05

    Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO 2 (scCO 2) and a prolonged depletion of residual scCO 2. In this paper, pore-scale scCO 2 dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO 2 into the sandstone-analogue pore network initially saturated by water without dissolved CO 2 (dsCO 2). During the experiments, time-lapse images of dye intensity, reflecting water pH,more » were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO 2-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO 2 dissolution and phase equilibrium occurs when scCO 2 bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes – scCO 2 dissolution at phase interfaces and diffusion of dsCO 2 at the pore scale (10–100 µm) observed after scCO 2 bubble invasion into water-filled pores without pore throat constraints – are relatively fast. The overall slow dissolution of scCO 2 in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase interfaces. Finally, this finding is applicable for the behavior of dissolution at pore, core, and field scales when water-filled pores and pore clusters of varying size are surrounded by scCO 2 at narrow pore throats.« less

  13. Pore-scale supercritical CO 2 dissolution and mass transfer under drainage conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chun; Zhou, Quanlin; Oostrom, Mart

    Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO 2 (scCO 2) and a prolonged depletion of residual scCO 2. In this paper, pore-scale scCO 2 dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO 2 into the sandstone-analogue pore network initially saturated by water without dissolved CO 2 (dsCO 2). During the experiments, time-lapse images of dye intensity, reflecting water pH,more » were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO 2-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO 2 dissolution and phase equilibrium occurs when scCO 2 bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes – scCO 2 dissolution at phase interfaces and diffusion of dsCO 2 at the pore scale (10–100 µm) observed after scCO 2 bubble invasion into water-filled pores without pore throat constraints – are relatively fast. The overall slow dissolution of scCO 2 in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase interfaces. Finally, this finding is applicable for the behavior of dissolution at pore, core, and field scales when water-filled pores and pore clusters of varying size are surrounded by scCO 2 at narrow pore throats.« less

  14. Pore-scale supercritical CO 2 dissolution and mass transfer under drainage conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chun; Zhou, Quanlin; Oostrom, Mart

    Abstract: Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO 2 (scCO 2) and a prolonged depletion of residual scCO 2. In this study, pore-scale scCO 2 dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO 2 into the sandstone-analogue pore network initially saturated by water without dissolved CO 2 (dsCO 2). During the experiments, time-lapse images of dye intensity, reflecting watermore » pH, were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO 2-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO 2 dissolution and phase equilibrium occurs when scCO 2 bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes – scCO 2 dissolution at phase interfaces and diffusion of dsCO 2 at the pore scale (10-100 µm) observed after scCO 2 bubble invasion into water-filled pores without pore throat constraints – are relatively fast. The overall slow dissolution of scCO 2 in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase interfaces. This finding is applicable for the behavior of dissolution at pore, core, and field scales when water-filled pores and pore clusters of varying size are surrounded by scCO 2 at narrow pore throats.« less

  15. Pore-scale simulation of wettability and interfacial tension effects on flooding process for enhanced oil recovery.

    PubMed

    Zhao, Jin; Wen, Dongsheng

    2017-08-27

    For enhanced oil recovery (EOR) applications, the oil/water flow characteristics during the flooding process was numerically investigated with the volume-of-fluid method at the pore scale. A two-dimensional pore throat-body connecting structure was established, and four scenarios were simulated in this paper. For oil-saturated pores, the wettability effect on the flooding process was studied; for oil-unsaturated pores, three effects were modelled to investigate the oil/water phase flow behaviors, namely the wettability effect, the interfacial tension (IFT) effect, and the combined wettability/IFT effect. The results show that oil saturated pores with the water-wet state can lead to 25-40% more oil recovery than with the oil-wet state, and the remaining oil mainly stays in the near wall region of the pore bodies for oil-wet saturated pores. For oil-unsaturated pores, the wettability effects on the flooding process can help oil to detach from the pore walls. By decreasing the oil/water interfacial tension and altering the wettability from oil-wet to water-wet state, the remaining oil recovery rate can be enhanced successfully. The wettability-IFT combined effect shows better EOR potential compared with decreasing the interfacial tension alone under the oil-wet condition. The simulation results in this work are consistent with previous experimental and molecular dynamics simulation conclusions. The combination effect of the IFT reducation and wettability alteration can become an important recovery mechanism in future studies for nanoparticles, surfactant, and nanoparticle-surfactant hybrid flooding process.

  16. Pore-scale simulation of wettability and interfacial tension effects on flooding process for enhanced oil recovery

    PubMed Central

    Zhao, Jin

    2017-01-01

    For enhanced oil recovery (EOR) applications, the oil/water flow characteristics during the flooding process was numerically investigated with the volume-of-fluid method at the pore scale. A two-dimensional pore throat-body connecting structure was established, and four scenarios were simulated in this paper. For oil-saturated pores, the wettability effect on the flooding process was studied; for oil-unsaturated pores, three effects were modelled to investigate the oil/water phase flow behaviors, namely the wettability effect, the interfacial tension (IFT) effect, and the combined wettability/IFT effect. The results show that oil saturated pores with the water-wet state can lead to 25–40% more oil recovery than with the oil-wet state, and the remaining oil mainly stays in the near wall region of the pore bodies for oil-wet saturated pores. For oil-unsaturated pores, the wettability effects on the flooding process can help oil to detach from the pore walls. By decreasing the oil/water interfacial tension and altering the wettability from oil-wet to water-wet state, the remaining oil recovery rate can be enhanced successfully. The wettability-IFT combined effect shows better EOR potential compared with decreasing the interfacial tension alone under the oil-wet condition. The simulation results in this work are consistent with previous experimental and molecular dynamics simulation conclusions. The combination effect of the IFT reducation and wettability alteration can become an important recovery mechanism in future studies for nanoparticles, surfactant, and nanoparticle–surfactant hybrid flooding process. PMID:29308190

  17. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China

    PubMed Central

    Wang, Min; Yang, Jinxiu; Wang, Zhiwei; Lu, Shuangfang

    2015-01-01

    In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions) play a major role in the shale oil occurrence (free or absorbed state), amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope) observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1) Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2) There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3) Pores in lacustrine shale are well developed when the organic matter maturity (Ro) is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon) content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable. PMID:26285123

  18. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China.

    PubMed

    Wang, Min; Yang, Jinxiu; Wang, Zhiwei; Lu, Shuangfang

    2015-01-01

    In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions) play a major role in the shale oil occurrence (free or absorbed state), amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope) observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1) Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2) There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3) Pores in lacustrine shale are well developed when the organic matter maturity (Ro) is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon) content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable.

  19. Hydrodeoxygenation of heavy oils derived from low-temperature coal gasification over NiW catalysts-effect of pore structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieter Leckel

    2008-01-15

    The effect of the pore structure on the hydroprocessing of heavy distillate oils derived from low-temperature coal gasification residues was studied using four NiW catalysts with different pore size distributions. The hydroprocessing was conducted at a pressure of 17.5 MPa, a temperature range of 370-410{sup o}C, and a 0.50 h{sup -1} space velocity. The degree of hydrodeoxygenation (HDO) in terms of phenolics removal was influenced by the catalyst pore structure, with the most preferable peak pore diameter for HDO ranging between 6.8 and 16 nm. The catalyst with the highest volume of pores in the 3.5-6 nm range showed themore » lowest HDO activity. The apparent activation energies for the HDO reaction varied between 59 and 87 kJ/mol, whereby the lowest values are obtained for the catalysts with a peak pore diameter of 11 and 16 nm. 30 refs., 5 figs., 6 tabs.« less

  20. The effect of wall thickness distribution on mechanical reliability and strength in unidirectional porous ceramics.

    PubMed

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J

    2016-01-01

    Macroporous ceramics exhibit an intrinsic strength variability caused by the random distribution of defects in their structure. However, the precise role of microstructural features, other than pore volume, on reliability is still unknown. Here, we analyze the applicability of the Weibull analysis to unidirectional macroporous yttria-stabilized-zirconia (YSZ) prepared by ice-templating. First, we performed crush tests on samples with controlled microstructural features with the loading direction parallel to the porosity. The compressive strength data were fitted using two different fitting techniques, ordinary least squares and Bayesian Markov Chain Monte Carlo, to evaluate whether Weibull statistics are an adequate descriptor of the strength distribution. The statistical descriptors indicated that the strength data are well described by the Weibull statistical approach, for both fitting methods used. Furthermore, we assess the effect of different microstructural features (volume, size, densification of the walls, and morphology) on Weibull modulus and strength. We found that the key microstructural parameter controlling reliability is wall thickness. In contrast, pore volume is the main parameter controlling the strength. The highest Weibull modulus ([Formula: see text]) and mean strength (198.2 MPa) were obtained for the samples with the smallest and narrowest wall thickness distribution (3.1 [Formula: see text]m) and lower pore volume (54.5%).

  1. The effect of wall thickness distribution on mechanical reliability and strength in unidirectional porous ceramics

    NASA Astrophysics Data System (ADS)

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J.

    2016-01-01

    Macroporous ceramics exhibit an intrinsic strength variability caused by the random distribution of defects in their structure. However, the precise role of microstructural features, other than pore volume, on reliability is still unknown. Here, we analyze the applicability of the Weibull analysis to unidirectional macroporous yttria-stabilized-zirconia (YSZ) prepared by ice-templating. First, we performed crush tests on samples with controlled microstructural features with the loading direction parallel to the porosity. The compressive strength data were fitted using two different fitting techniques, ordinary least squares and Bayesian Markov Chain Monte Carlo, to evaluate whether Weibull statistics are an adequate descriptor of the strength distribution. The statistical descriptors indicated that the strength data are well described by the Weibull statistical approach, for both fitting methods used. Furthermore, we assess the effect of different microstructural features (volume, size, densification of the walls, and morphology) on Weibull modulus and strength. We found that the key microstructural parameter controlling reliability is wall thickness. In contrast, pore volume is the main parameter controlling the strength. The highest Weibull modulus (?) and mean strength (198.2 MPa) were obtained for the samples with the smallest and narrowest wall thickness distribution (3.1 ?m) and lower pore volume (54.5%).

  2. Preparation and Characterization of Impregnated Commercial Rice Husks Activated Carbon with Piperazine for Carbon Dioxide (CO2) Capture

    NASA Astrophysics Data System (ADS)

    Masoum Raman, S. N.; Ismail, N. A.; Jamari, S. S.

    2017-06-01

    Development of effective materials for carbon dioxide (CO2) capture technology is a fundamental importance to reduce CO2 emissions. This work establishes the addition of amine functional group on the surface of activated carbon to further improve the adsorption capacity of CO2. Rice husks activated carbon were modified using wet impregnation method by introducing piperazine onto the activated carbon surfaces at different concentrations and mixture ratios. These modified activated carbons were characterized by using X-Ray Diffraction (XRD), Brunauer, Emmett and Teller (BET), Fourier Transform Infrared Spectroscopy (FTIR) and Field Emission Scanning Electron Microscopy (FESEM). The results from XRD analysis show the presence of polyethylene butane at diffraction angles of 21.8° and 36.2° for modified activated carbon with increasing intensity corresponding to increase in piperazine concentration. BET results found the surface area and pore volume of non-impregnated activated carbon to be 126.69 m2/g and 0.081 cm3/g respectively, while the modified activated carbons with 4M of piperazine have lower surface area and pore volume which is 6.77 m2/g and 0.015 cm3/g respectively. At 10M concentration, the surface area and pore volume are the lowest which is 4.48 m2/g and 0.0065 cm3/g respectively. These results indicate the piperazine being filled inside the activated carbon pores thus, lowering the surface area and pore volume of the activated carbon. From the FTIR analysis, the presence of peaks at 3312 cm-1 and 1636 cm-1 proved the existence of reaction between carboxyl groups on the activated carbon surfaces with piperazine. The surface morphology of activated carbon can be clearly seen through FESEM analysis. The modified activated carbon contains fewer pores than non-modified activated carbon as the pores have been covered with piperazine.

  3. The effect of water-soluble polymers on the microstructure and properties of freeze-cast alumina ceramics

    NASA Astrophysics Data System (ADS)

    Pekor, Christopher Michael

    Porous ceramics can be divided into three separate classes based on their pore size: microporous ceramics with pores less than 2 nm, mesoporous ceramics with pores in the range of 2--50 nm and macroporous ceramics with pores that are greater than 50 nm. In particular, macroporous ceramics are used in a variety of applications such as refractories, molten metal filtration, diesel particulate filters, heterogeneous catalyst supports and biomedical scaffolds. Freeze casting is a novel method used to create macroporous ceramics. In this method growing ice crystals act as a template for the pores and are solidified, often directionally, through a ceramic dispersion and removed from the green body through a freeze drying procedure. This method has attracted some attention over the past few years due to its relative simplicity, flexibility and environmental friendliness. On top of this freeze casting is capable of producing materials with high pore volume fractions, which is an advantage over processing by packing and necking of particles, where the pore volume fraction is typically less than 50%. Many of the basic processing variables that affect the freeze cast microstructure, such as the temperature gradient, interfacial velocity and solid loading of the dispersion have been well established in the literature. On the other hand, areas such as the effect of additives on the microstructure and mechanical properties have not been covered in great detail. In this study the concept of constitutional supercooling from basic solidification theory is used to explain the effects of two water-soluble polymers, polyethylene glycol and polyvinyl alcohol, on the microstructure of freeze cast alumina ceramics. In addition, changes in the observed microstructure will be related to experimentally determined values of permeability and compressive strength.

  4. Effect of pore water velocities and solute input methods on chloride transport in the undisturbed soil columns of Loess Plateau

    NASA Astrophysics Data System (ADS)

    Zhou, BeiBei; Wang, QuanJiu

    2017-09-01

    Studies on solute transport under different pore water velocity and solute input methods in undisturbed soil could play instructive roles for crop production. Based on the experiments in the laboratory, the effect of solute input methods with small pulse input and large pulse input, as well as four pore water velocities, on chloride transport in the undisturbed soil columns obtained from the Loess Plateau under controlled condition was studied. Chloride breakthrough curves (BTCs) were generated using the miscible displacement method under water-saturated, steady flow conditions. Using the 0.15 mol L-1 CaCl2 solution as a tracer, a small pulse (0.1 pore volumes) was first induced, and then, after all the solution was wash off, a large pulse (0.5 pore volumes) was conducted. The convection-dispersion equation (CDE) and the two-region model (T-R) were used to describe the BTCs, and their prediction accuracies and fitted parameters were compared as well. All the BTCs obtained for the different input methods and the four pore water velocities were all smooth. However, the shapes of the BTCs varied greatly; small pulse inputs resulted in more rapid attainment of peak values that appeared earlier with increases in pore water velocity, whereas large pulse inputs resulted in an opposite trend. Both models could fit the experimental data well, but the prediction accuracy of the T-R was better. The values of the dispersivity, λ, calculated from the dispersion coefficient obtained from the CDE were about one order of magnitude larger than those calculated from the dispersion coefficient given by the T-R, but the calculated Peclet number, Pe, was lower. The mobile-immobile partition coefficient, β, decreased, while the mass exchange coefficient increased with increases in pore water velocity.

  5. Humidity sensitive polymers In solution processed adjustable pore-volume Cu(In,Ga)S2 photocathodes for solar hydrogen production

    NASA Astrophysics Data System (ADS)

    Zhang, Chuan; Luo, Wenjun; Wen, Xin; Guan, Zhongjie; Zou, Zhigang

    2017-11-01

    P-type Cu(In,Ga)S2 semiconductors are promising candidates to be used as photocathodes for solar water splitting. Porous structures have been widely used to improve the performances of photoelectrodes due to good minority carrier transport. However, a porous photoelectrode has longer transport distance of majority carriers, which limits its performance. Controlling pore volume of a photoelectrode can balance minority and majority carrier transport and improve the performance. Here, a porous Cu(In,Ga)S2 film is prepared by facile spin-coating method. The pore volume of Cu(In,Ga)S2 film is controlled by adjusting relative humidity (RH) of air during spin-coating process. Further studies suggest that polyvinyl acetate (PVAc) in precursor solution is a humidity sensitive polymer and plays a key role to form different pore volume. The 40% RH sample has the best performance due to its optimum pore volume. After further coated with CdS surface passivation layer and Pt electrocatalyst on the surface, a 40% RH Cu(In,Ga)S2 photocathode indicates a photocurrent density of 8.6 mA cm-2 at 0 V RHE, which is one of the highest photocurrents of Cu(In,Ga)S2 photocathodes. This new strategy for adjusting pore volume is also suitable to prepare other solution-processed inorganic materials.

  6. Catalyst for coal liquefaction process

    DOEpatents

    Huibers, Derk T. A.; Kang, Chia-Chen C.

    1984-01-01

    An improved catalyst for a coal liquefaction process; e.g., the H-Coal Process, for converting coal into liquid fuels, and where the conversion is carried out in an ebullated-catalyst-bed reactor wherein the coal contacts catalyst particles and is converted, in addition to liquid fuels, to gas and residual oil which includes preasphaltenes and asphaltenes. The improvement comprises a catalyst selected from the group consisting of the oxides of nickel molybdenum, cobalt molybdenum, cobalt tungsten, and nickel tungsten on a carrier of alumina, silica, or a combination of alumina and silica. The catalyst has a total pore volume of about 0.500 to about 0.900 cc/g and the pore volume comprises micropores, intermediate pores and macropores, the surface of the intermediate pores being sufficiently large to convert the preasphaltenes to asphaltenes and lighter molecules. The conversion of the asphaltenes takes place on the surface of micropores. The macropores are for metal deposition and to prevent catalyst agglomeration. The micropores have diameters between about 50 and about 200 angstroms (.ANG.) and comprise from about 50 to about 80% of the pore volume, whereas the intermediate pores have diameters between about 200 and 2000 angstroms (.ANG.) and comprise from about 10 to about 25% of the pore volume, and the macropores have diameters between about 2000 and about 10,000 angstroms (.ANG.) and comprise from about 10 to about 25% of the pore volume. The catalysts are further improved where they contain promoters. Such promoters include the oxides of vanadium, tungsten, copper, iron and barium, tin chloride, tin fluoride and rare earth metals.

  7. Publications - GMC 120 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 120 Publication Details Title: Porosity, permeability, density, and pore volume Reference Unknown, 1989, Porosity, permeability, density, and pore volume compressibility data of core from

  8. The effect of metal (hydr)oxide nano-enabling on intraparticle mass transport of organic contaminants in hybrid granular activated carbon.

    PubMed

    Garcia, Jose; Markovski, Jasmina; McKay Gifford, J; Apul, Onur; Hristovski, Kiril D

    2017-05-15

    The overarching goal of this study was to ascertain the changes in intraparticle mass transport rates for organic contaminants resulting from nano-enabled hybridization of commercially available granular activated carbon (GAC). Three different nano-enabled hybrid media were fabricated by in-situ synthesizing titanium dioxide nanoparticles inside the pores of GAC sorbent, characterized, and evaluated for removal of two model organic contaminants under realistic conditions to obtain the intraparticle mass transport (pore and surface diffusion) coefficients. The results validated the two hypotheses that: (H1) the pore diffusion rates of organic contaminants linearly decrease with decrease in cumulative pore volume caused by increase in metal (hydr)oxide nanoparticle content inside the pores of the hybrid GAC sorbent; and (H2) introduction of metal (hydr)oxide nanoparticles initially increases surface diffusivity, but additional loading causes its decrease as the increase in metal (hydr)oxide nanoparticles content continues to reduce the porosity of the GAC sorbent. Nano-enabled hybridization of commercially available GAC with metal (hydr)oxides has the potential to significantly increase the intraparticle mass transport limitations for organic contaminants. Introduction of metal (hydr)oxide nanoparticles inside the pores of a pristine sorbent causes the pore diffusion rates of organic contaminants to decrease as the cumulative pore volume is reduced. In contrast, the introduction of limited amounts of metal (hydr)oxide nanoparticles appears to facilitate the surface diffusion rates of these contaminants. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Laboratory measurements of shock propagation through spherical cavities in an optically accessible polymer.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chojnicki, Kirsten; Cooper, Marcia A.; Guo, Shuyue

    Pore-scale aperture effects on flow in pore networks was studied in the laboratory to provide a parameterization for use in transport models. Four cases were considered: regular and irregular pillar/pore alignment with and without an aperture. The velocity field of each case was measured and simulated, providing quantitatively comparable results. Two aperture effect parameterizations were considered: permeability and transmission. Permeability values varied by an order of magnitude between the cases with and without apertures. However, transmission did not correlate with permeability. Despite having much greater permeability the regular aperture case permitted less transmission than the regular case. Moreover, both irregularmore » cases had greater transmission than the regular cases, a difference not supported by the permeabilities. Overall, these findings suggest that pore-scale aperture effects on flow though a pore-network may not be adequately captured by properties such as permeability for applications that are interested in determining particle transport volume and timing.« less

  10. Experimental study on pore structure and performance of sintered porous wick

    NASA Astrophysics Data System (ADS)

    He, Da; Wang, Shufan; Liu, Rutie; Wang, Zhubo; Xiong, Xiang; Zou, Jianpeng

    2018-02-01

    Porous wicks were prepared via powder metallurgy using NH4HCO3 powders as pore-forming agent. The pore-forming agent particle size was varied to control the pore structure and equivalent pore size distribution feature of porous wick. The effect of pore-forming agent particle size on the porosity, pore structures, equivalent pore size distribution and capillary pumping performance were investigated. Results show that with the particle size of pore-forming agent decrease, the green density and the volume shrinkage of the porous wicks gradually increase and the porosity reduces slightly. There are two types of pores inside the porous wick, large-sized prefabricated pores and small-sized gap pores. With the particle size of pore-forming agent decrease, the size of the prefabricated pores becomes smaller and the distribution tends to be uniform. Gap pores and prefabricated pores inside the wick can make up different types of pore channels. The equivalent pore size of wick is closely related to the structure of pore channels. Furthermore, the equivalent pore size distribution of wick shows an obvious double-peak feature when the pore-forming agent particle size is large. With the particle size of pore-forming agent decrease, the two peaks of equivalent pore size distribution approach gradually to each other, resulting in a single-peak feature. Porous wick with single-peak feature equivalent pore size distribution possesses the better capillary pumping performances.

  11. Porous Carbon with Willow-Leaf-Shaped Pores for High-Performance Supercapacitors.

    PubMed

    Shi, Yanhong; Zhang, Linlin; Schon, Tyler B; Li, Huanhuan; Fan, Chaoying; Li, Xiaoying; Wang, Haifeng; Wu, Xinglong; Xie, Haiming; Sun, Haizhu; Seferos, Dwight S; Zhang, Jingping

    2017-12-13

    A novel kind of biomass-derived, high-oxygen-containing carbon material doped with nitrogen that has willow-leaf-shaped pores was synthesized. The obtained carbon material has an exotic hierarchical pore structure composed of bowl-shaped macropores, willow-leaf-shaped pores, and an abundance of micropores. This unique hierarchical porous structure provides an effective combination of high current densities and high capacitance because of a pseudocapacitive component that is afforded by the introduction of nitrogen and oxygen dopants. Our synthetic optimization allows further improvements in the performance of this hierarchical porous carbon (HPC) material by providing a high degree of control over the graphitization degree, specific surface area, and pore volume. As a result, a large specific surface area (1093 m 2 g -1 ) and pore volume (0.8379 cm 3 g -1 ) are obtained for HPC-650, which affords fast ion transport because of its short ion-diffusion pathways. HPC-650 exhibits a high specific capacitance of 312 F g -1 at 1 A g -1 , retaining 76.5% of its capacitance at 20 A g -1 . Moreover, it delivers an energy density of 50.2 W h kg -1 at a power density of 1.19 kW kg -1 , which is sufficient to power a yellow-light-emitting diode and operate a commercial scientific calculator.

  12. [Study on the geometric characteristics and distribution of porosities in three-dimensional printed Ti-6Al-4V titanium alloy].

    PubMed

    Wan, Zhipeng; Jiang, Wentao; Wang, Chong; Wang, Qingyuan; Li, Yalan

    2017-10-01

    Three dimensional (3D) printing is considered as an advanced manufacturing technology because of its additive nature. Electron beam melting (EBM) is a widely used 3D printing processes for the manufacturing of metal components. However, the products printed via this process generally contain micro porosities which affect mechanical properties, especially the fatigue property. In this paper, two types of EBM printed samples of the Ti-6Al-4V alloy, one with a round cross section and the other with a triangle cross section, were employed to investigate the existence of porosities using computed tomography (CT). Statistical analyses were conducted on the number, volume, shape, and distribution of pores. The results show that small pores (less than 0.000 2 mm 3 ) account for 80% of all pores in each type of samples. Additionally, to some extent, the shape of sample has influence on the number of micro porosities in EBM made Ti-6Al-4V. The sphericity of the pores is relatively low and is inversely proportional to pore volume. It is found that re-melting on the free surface effectively reduce pore density near the surface. This study may help produce a medical implant with better fatigue resistance.

  13. Micromechanics of cataclastic pore collapse in limestone

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Baud, Patrick; Wong, Teng-Fong

    2010-04-01

    The analysis of compactant failure in carbonate formations hinges upon a fundamental understanding of the mechanics of inelastic compaction. Microstructural observations indicate that pore collapse in a limestone initiates at the larger pores, and microcracking dominates the deformation in the periphery of a collapsed pore. To capture these micromechanical processes, we developed a model treating the limestone as a dual porosity medium, with the total porosity partitioned between macroporosity and microporosity. The representative volume element is made up of a large pore which is surrounded by an effective medium containing the microporosity. Cataclastic yielding of this effective medium obeys the Mohr-Coulomb or Drucker-Prager criterion, with failure parameters dependent on porosity and pore size. An analytic approximation was derived for the unconfined compressive strength associated with failure due to the propagation and coalescence of pore-emanated cracks. For hydrostatic loading, identical theoretical results for the pore collapse pressure were obtained using the Mohr-Coulomb or Drucker-Prager criterion. For nonhydrostatic loading, the stress state at the onset of shear-enhanced compaction was predicted to fall on a linear cap according to the Mohr-Coulomb criterion. In contrast, nonlinear caps in qualitative agreement with laboratory data were predicted using the Drucker-Prager criterion. Our micromechanical model implies that the effective medium is significantly stronger and relatively pressure-insensitive in comparison to the bulk sample.

  14. Effect of pyrolysis temperature on characteristics and aromatic contaminants adsorption behavior of magnetic biochar derived from pyrolysis oil distillation residue.

    PubMed

    Li, Hao; Mahyoub, Samah Awadh Ali; Liao, Wenjie; Xia, Shuqian; Zhao, Hechuan; Guo, Mengya; Ma, Peisheng

    2017-01-01

    The magnetic biochars were easily fabricated by thermal pyrolysis of Fe(NO 3 ) 3 and distillation residue derived from rice straw pyrolysis oil at 400, 600 and 800°C. The effects of pyrolysis temperature on characteristics of magnetic biochars as well as adsorption capacity for aromatic contaminants (i.e., anisole, phenol and guaiacol) were investigated carefully. The degree of carbonization of magnetic biochars become higher as pyrolysis temperature increasing. The magnetic biochar reached the largest surface area and pore volume at the pyrolysis temperature of 600°C due to pores blocking in biochar during pyrolysis at 800°C. Based on batch adsorption experiments, the used adsorbent could be magnetically separated and the adsorption capacity of anisole on magnetic biochars was stronger than that of phenol and guaiacol. The properties of magnetic biochar, including surface area, pore volume, aromaticity, grapheme-like-structure and iron oxide (γ-Fe 2 O 3 ) particles, showed pronounced effects on the adsorption performance of aromatic contaminants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Pore-scale simulations of drainage in granular materials: Finite size effects and the representative elementary volume

    NASA Astrophysics Data System (ADS)

    Yuan, Chao; Chareyre, Bruno; Darve, Félix

    2016-09-01

    A pore-scale model is introduced for two-phase flow in dense packings of polydisperse spheres. The model is developed as a component of a more general hydromechanical coupling framework based on the discrete element method, which will be elaborated in future papers and will apply to various processes of interest in soil science, in geomechanics and in oil and gas production. Here the emphasis is on the generation of a network of pores mapping the void space between spherical grains, and the definition of local criteria governing the primary drainage process. The pore space is decomposed by Regular Triangulation, from which a set of pores connected by throats are identified. A local entry capillary pressure is evaluated for each throat, based on the balance of capillary pressure and surface tension at equilibrium. The model reflects the possible entrapment of disconnected patches of the receding wetting phase. It is validated by a comparison with drainage experiments. In the last part of the paper, a series of simulations are reported to illustrate size and boundary effects, key questions when studying small samples made of spherical particles be it in simulations or experiments. Repeated tests on samples of different sizes give evolution of water content which are not only scattered but also strongly biased for small sample sizes. More than 20,000 spheres are needed to reduce the bias on saturation below 0.02. Additional statistics are generated by subsampling a large sample of 64,000 spheres. They suggest that the minimal sampling volume for evaluating saturation is one hundred times greater that the sampling volume needed for measuring porosity with the same accuracy. This requirement in terms of sample size induces a need for efficient computer codes. The method described herein has a low algorithmic complexity in order to satisfy this requirement. It will be well suited to further developments toward coupled flow-deformation problems in which evolution of the microstructure require frequent updates of the pore network.

  16. Biochar characteristics produced from food-processing products and their sorptive capacity for mercury and phenanthrene

    NASA Astrophysics Data System (ADS)

    Fotopoulou, Kalliopi N.; Karapanagioti, Hrissi K.; Manariotis, Ioannis D.

    2015-04-01

    Various organic-rich wastes including wood chips, animal manure, and crop residues have been used for biochar production. Biochar is used as an additive to soils to sequester carbon and improve soil fertility but its use as a sorbent for environmental remediation processes is gaining increased attention. Surface properties such as point of zero charge, surface area and pore volume, surface topography, surface functional groups and acid-base behavior are important factors, which affect sorption efficiency. Understanding the surface alteration of biochars increases our understanding of the pollutant-sorbent interaction. The scope of the present work was to evaluate the effect of key characteristics of biochars on their sorptive properties. Raw materials for biochar production were evaluated including byproducts from brewering, coffee, wine, and olive oil industry. The charring process was performed at different temperatures under limited-oxygen conditions using specialized containers. The surface area, the pore volume, and the average pore size of the biochars were determined. Open surface area and micropore volume were determined using t-plot method and Harkins & Jura equation. Raw food-processing waste demonstrates low surface area that increases by 1 order of magnitude by thermal treatment up to 750oC. At temperatures from 750 up to 900oC, pyrolysis results to biochars with surface areas 210-700 m2/g. For the same temperature range, a high percentage (46 to73%) of the pore volume of the biochars is due to micropores. Positive results were obtained when high surface area biochars were tested for their ability to remove organic (i.e. phenanthrene) and inorganic (i.e. mercury) compounds from aqueous solutions. All these properties point to new materials that can effectively be used for environmental remediation.

  17. The Application of Fractal and Multifractal Theory in Hydraulic-Flow-Unit Characterization and Permeability Estimation

    NASA Astrophysics Data System (ADS)

    Chen, X.; Yao, G.; Cai, J.

    2017-12-01

    Pore structure characteristics are important factors in influencing the fluid transport behavior of porous media, such as pore-throat ratio, pore connectivity and size distribution, moreover, wettability. To accurately characterize the diversity of pore structure among HFUs, five samples selected from different HFUs (porosities are approximately equal, however permeability varies widely) were chosen to conduct micro-computerized tomography test to acquire direct 3D images of pore geometries and to perform mercury injection experiments to obtain the pore volume-radii distribution. To characterize complex and high nonlinear pore structure of all samples, three classic fractal geometry models were applied. Results showed that each HFU has similar box-counting fractal dimension and generalized fractal dimension in the number-area model, but there are significant differences in multifractal spectrums. In the radius-volume model, there are three obvious linear segments, corresponding to three fractal dimension values, and the middle one is proved as the actual fractal dimension according to the maximum radius. In the number-radius model, the spherical-pore size distribution extracted by maximum ball algorithm exist a decrease in the number of small pores compared with the fractal power rate rather than the traditional linear law. Among the three models, only multifractal analysis can classify the HFUs accurately. Additionally, due to the tightness and low-permeability in reservoir rocks, connate water film existing in the inner surface of pore channels commonly forms bound water. The conventional model which is known as Yu-Cheng's model has been proved to be typically not applicable. Considering the effect of irreducible water saturation, an improved fractal permeability model was also deduced theoretically. The comparison results showed that the improved model can be applied to calculate permeability directly and accurately in such unconventional rocks.

  18. Measurements of unjacketed moduli of porous rock

    NASA Astrophysics Data System (ADS)

    Tarokh, A.; Makhnenko, R. Y.; Labuz, J.

    2017-12-01

    Coupling of stress and pore pressure appears in a number of applications dealing with subsurface (sedimentary) rock, including petroleum exploration and waste storage. Poroelastic analyses consider the compressibility of the solid constituents forming the rock, and often times solid bulk modulus Ks is assumed to be the same as the dominant mineral bulk modulus. In fact, there are two different parameters describing solid compressibility of a porous rock: the unjacketed bulk modulus Ks' and the unjacketed pore modulus Ks". Experimental techniques are developed to measure the two poroelastic parameters of fluid-saturated porous rock under the unjacketed condition. In an unjacketed experiment, the rock without a membrane is loaded by the fluid in a pressure vessel. The confining fluid permeates the connected pore space throughout the interior of the rock. Therefore, changes in mean stress P will produce equal changes in pore pressure p, i.e. ΔP = Δp. The test can also be performed with a jacketed rock specimen by applying equal increments of mean stress and pore pressure. The unjacketed bulk modulus, Ks', is obtained by measuring the bulk strain with resistive strain gages. The unjacketed pore modulus, Ks", the pore volume counterpart to Ks', is a measure of the change in pore pressure per unit pore volume strain under the unjacketed condition. Several indirect estimates of Ks" have been reported but limitations of these approaches do not provide an accurate value. We present direct measurements of Ks" with detailed calibration on the system volumetric response. The results indicate that for Dunnville sandstone Ks' and Ks" are equal while for Berea sandstone, a difference between the two moduli exists, which is explained by the presence of non-connected pores. The experiments also strongly suggest that both Ks' and Ks" are independent of effective stress.

  19. A multi-scale network method for two-phase flow in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khayrat, Karim, E-mail: khayratk@ifd.mavt.ethz.ch; Jenny, Patrick

    Pore-network models of porous media are useful in the study of pore-scale flow in porous media. In order to extract macroscopic properties from flow simulations in pore-networks, it is crucial the networks are large enough to be considered representative elementary volumes. However, existing two-phase network flow solvers are limited to relatively small domains. For this purpose, a multi-scale pore-network (MSPN) method, which takes into account flow-rate effects and can simulate larger domains compared to existing methods, was developed. In our solution algorithm, a large pore network is partitioned into several smaller sub-networks. The algorithm to advance the fluid interfaces withinmore » each subnetwork consists of three steps. First, a global pressure problem on the network is solved approximately using the multiscale finite volume (MSFV) method. Next, the fluxes across the subnetworks are computed. Lastly, using fluxes as boundary conditions, a dynamic two-phase flow solver is used to advance the solution in time. Simulation results of drainage scenarios at different capillary numbers and unfavourable viscosity ratios are presented and used to validate the MSPN method against solutions obtained by an existing dynamic network flow solver.« less

  20. Final report of CCQM-K136 measurement of porosity properties (specific adsorption, BET specific surface area, specific pore volume and pore diameter) of nanoporous Al2O3

    NASA Astrophysics Data System (ADS)

    Sobina, E.; Zimathis, A.; Prinz, C.; Emmerling, F.; Unger, W.; de Santis Neves, R.; Galhardo, C. E.; De Robertis, E.; Wang, H.; Mizuno, K.; Kurokawa, A.

    2016-01-01

    CCQM key comparison K-136 Measurement of porosity properties (specific adsorption, BET specific surface area, specific pore volume and pore diameter) of nanoporous Al2O3 has been performed by the Surface Analysis Working Group (SAWG) of the Consultative Committee for Amount of Substance (CCQM). The objective of this key comparison is to compare the equivalency of the National Metrology Institutes (NMIs) and Designated Institutes (DIs) for the measurement of specific adsorption, BET specific surface area, specific pore volume and pore diameter) of nanoporous substances (sorbents, catalytic agents, cross-linkers, zeolites, etc) used in advanced technology. In this key comparison, a commercial sorbent (aluminum oxide) was supplied as a sample. Five NMIs participated in this key comparison. All participants used a gas adsorption method, here nitrogen adsorption at 77.3 K, for analysis according to the international standards ISO 15901-2 and 9277. In this key comparison, the degrees of equivalence uncertainties for specific adsorption, BET specific surface area, specific pore volume and pore diameter was established. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  1. Effect of Micro Porous Shape on Mechanical Properties in Polypropylene Syntactic Foams

    NASA Astrophysics Data System (ADS)

    Mae, Hiroyuki; Omiya, Masaki; Kishimoto, Kikuo

    The objective is to characterize the effect of the microstructure of the micro pores inside the matrix on the mechanical properties of the thermoplastic syntactic polypropylene (PP) foams at the intermediate and high strain rates. Tensile tests are conducted at the nominal strain rates from 3 x 10-1 to 102 s-1. In addition, the dart impact tests are conducted at the impact velocities of 0.1, 1 and 10 m/s. Then, the constitutive law with craze evolution is modified by introducing the relative density, the stress concentration coefficient and the volume fraction of cell edge, and then applied to the dart impact test mode for simulating the macroscopic load displacement history of the dart impact process. Moreover, the microstructural finite element analysis is conducted to characterize the local stress states in the microstructure. In the tensile loading, the elastic modulus is not influenced by the shape of the micro pores in the PP matrix while the yield stress and the strain energy up to failure are relatively influenced by the shape of micro pores. The microstructural finite element analysis shows that the magnitudes of the localized stresses at the edges and the ligaments of the elliptical-shape micro pores are larger than those at the spherical micro pores, leading to the early yielding and the small material ductility. In the case of the dart impact loading, the microstructure of pores has strong effect on the absorbed energy. This is because the elliptical-shape micro pores are very sensitive to the shear deformation, which is revealed by the microstructural finite element analysis. The modified constitutive law with the stress concentration coefficient and the volume fraction of the cell edges successfully predicts the load-displacement curve of the dart impact loading in the spherical micro-porous PP foam. It is concluded that the micro porous shape has strong effect on the material ductility especially in the dart impact test, leading to the possibility to control the material ductility by the shape of the micro pores in the polymeric foams.

  2. Reactive Melt Infiltration Of Silicon Into Porous Carbon

    NASA Technical Reports Server (NTRS)

    Behrendt, Donald R.; Singh, Mrityunjay

    1994-01-01

    Report describes study of synthesis of silicon carbide and related ceramics by reactive melt infiltration of silicon and silicon/molybdenum alloys into porous carbon preforms. Reactive melt infiltration has potential for making components in nearly net shape, performed in less time and at lower temperature. Object of study to determine effect of initial pore volume fraction, pore size, and infiltration material on quality of resultant product.

  3. Proliferation, differentiation and gene expression of osteoblasts in boron-containing associated with dexamethasone deliver from mesoporous bioactive glass scaffolds.

    PubMed

    Wu, Chengtie; Miron, Richard; Sculean, Anton; Kaskel, Stefan; Doert, Thomas; Schulze, Renate; Zhang, Yufeng

    2011-10-01

    Boron is one of the trace elements in the human body which plays an important role in bone growth. Porous mesopore bioactive glass (MBG) scaffolds are proposed as potential bone regeneration materials due to their excellent bioactivity and drug-delivery ability. The aims of the present study were to develop boron-containing MBG (B-MBG) scaffolds by sol-gel method and to evaluate the effect of boron on the physiochemistry of B-MBG scaffolds and the response of osteoblasts to these scaffolds. Furthermore, the effect of dexamethasone (DEX) delivery in B-MBG scaffold system was investigated on the proliferation, differentiation and bone-related gene expression of osteoblasts. The composition, microstructure and mesopore properties (specific surface area, nano-pore volume and nano-pore distribution) of B-MBG scaffolds have been characterized. The effect of boron contents and large-pore porosity on the loading and release of DEX in B-MBG scaffolds were also investigated. The results have shown that the incorporation of boron into MBG scaffolds slightly decreases the specific surface area and pore volume, but maintains well-ordered mesopore structure and high surface area and nano-pore volume compared to non-mesopore bioactive glass. Boron contents in MBG scaffolds did not influence the nano-pore size distribution or the loading and release of DEX. B-MBG scaffolds have the ability to maintain a sustained release of DEX in a long-term span. Incorporating boron into MBG glass scaffolds led to a controllable release of boron ions and significantly improved the proliferation and bone-related gene expression (Col I and Runx2) of osteoblasts. Furthermore, the sustained release of DEX from B-MBG scaffolds significantly enhanced alkaline phosphatase (ALP) activity and gene expressions (Col I, Runx2, ALP and BSP) of osteoblasts. These results suggest that boron plays an important role in enhancing osteoblast proliferation in B-MBG scaffold system and DEX-loaded B-MBG scaffolds show great potential as a release system to enhance osteogenic property for bone tissue engineering application. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  4. Porosity and permeability development in compacting chalks during flooding of nonequilibrium brines: Insights from long-term experiment

    NASA Astrophysics Data System (ADS)

    Nermoen, Anders; Korsnes, Reidar I.; Hiorth, Aksel; Madland, Merete V.

    2015-05-01

    We report the complete chemical alteration of a Liège outcrop chalk core resulting from a 1072 flow-through experiment performed during mechanical compaction at 130°C. Chemical rock-fluid interactions alter the volumetric strain, porosity, and permeability in a nontrivial way. The porosity reduced only from 41.32% to 40.14%, even though the plug compacted more than 25%. We present a novel analysis of the experimental data, which demonstrates that the geochemical alteration does not conserve the volume of the solids, and therefore, the strain is partitioned additively into a pore volume and solid volume component. At stresses beyond yield, the observed deformation can be explained by grain reorganization reducing the pore space between grains and solid volume changes from the rock-fluid interactions. The mechanical and chemical effects are discussed in relation to the observed permeability development.

  5. An investigation into the effects of pore connectivity on T2 NMR relaxation

    NASA Astrophysics Data System (ADS)

    Ghomeshi, Shahin; Kryuchkov, Sergey; Kantzas, Apostolos

    2018-04-01

    Nuclear Magnetic Resonance (NMR) is a powerful technique used to characterize fluids and flow in porous media. The NMR relaxation curves are closely related to pore geometry, and the inversion of the NMR relaxometry data is known to give useful information with regards to pore size distribution (PSD) through the relative amplitudes of the fluids stored in the small and large pores. While this information is crucial, the main challenge for the successful use of the NMR measurements is the proper interpretation of the measured signals. Natural porous media patterns consist of complex pore structures with many interconnected or "coupled" regions, as well as isolated pores. This connectivity along the throats changes the relaxation distribution and in order to properly interpret this data, a thorough understanding of the effects of pore connectivity on the NMR relaxation distribution is warranted. In this paper we address two main points. The first pertains to the fact that there is a discrepancy between the relaxation distribution obtained from experiments, and the ones obtained from solving the mathematical models of diffusion process in the digitized images of the pore space. There are several reasons that may attribute to this such as the lack of a proper incorporation of surface roughness into the model. However, here we are more interested in the effects of pore connectivity and to understand why the typical NMR relaxation distribution obtained from experiments are wider, while the numerical simulations predict that a wider NMR relaxation distribution may indicate poor connectivity. Secondly, by not taking into account the pore coupling effects, from our experience in interpreting the data, we tend to underestimate the pore volume of small pores and overestimate the amplitudes in the large pores. The role of pore coupling becomes even more prominent in rocks with small pore sizes such as for example in shales, clay in sandstones, and in the microstructures of carbonates.

  6. Effect of confinement in nano-porous materials on the solubility of a supercritical gas

    NASA Astrophysics Data System (ADS)

    Hu, Yaofeng; Huang, Liangliang; Zhao, Shuangliang; Liu, Honglai; Gubbins, Keith E.

    2016-11-01

    By combining Gibbs Ensemble Monte Carlo simulations and density functional theory, we investigate the influence of confinement in a slit-shaped carbon pore on the solubility of a supercritical solute gas in a liquid solvent. In the cases studied here, competing adsorption of the solvent and solute determines whether the solubility is enhanced or suppressed for larger pores. We find that the solubility in the confined system is strongly dependent on pore width, and that molecular packing effects are important for small pore widths. In addition, the solubility decreases on increase in the temperature, as for the bulk mixture, but the rate of decrease is greater in the pore due to a decrease in the partial molar enthalpy of the solute in the pore; this effect becomes greater as pore width is decreased. The solubility is increased on increasing the bulk pressure of the gas in equilibrium with the pore, and obeys Henry's law at lower pressures. However, the Henry constant differs significantly from that for the bulk mixture, and the range of pressure over which Henry's law applies is reduced relative to that for the bulk mixture. The latter observation indicates that solute-solute interactions become more important in the pore than for the bulk at a given bulk pressure. Finally, we note that different authors use different definitions of the solubility in pores, leading to some confusion over the reported phenomenon of 'oversolubility'. We recommend that solubility be defined as the overall mole fraction of solute in the pores, since it takes into account the increase in density of the solvent in the pores, and avoids ambiguity in the definition of the pore volume.

  7. Adsorption of aromatic compounds by carbonaceous adsorbents: a comparative study on granular activated carbon, activated carbon fiber, and carbon nanotubes.

    PubMed

    Zhang, Shujuan; Shao, Ting; Kose, H Selcen; Karanfil, Tanju

    2010-08-15

    Adsorption of three aromatic organic compounds (AOCs) by four types of carbonaceous adsorbents [a granular activated carbon (HD4000), an activated carbon fiber (ACF10), two single-walled carbon nanotubes (SWNT, SWNT-HT), and a multiwalled carbon nanotube (MWNT)] with different structural characteristics but similar surface polarities was examined in aqueous solutions. Isotherm results demonstrated the importance of molecular sieving and micropore effects in the adsorption of AOCs by carbonaceous porous adsorbents. In the absence of the molecular sieving effect, a linear relationship was found between the adsorption capacities of AOCs and the surface areas of adsorbents, independent of the type of adsorbent. On the other hand, the pore volume occupancies of the adsorbents followed the order of ACF10 > HD4000 > SWNT > MWNT, indicating that the availability of adsorption site was related to the pore size distributions of the adsorbents. ACF10 and HD4000 with higher microporous volumes exhibited higher adsorption affinities to low molecular weight AOCs than SWNT and MWNT with higher mesopore and macropore volumes. Due to their larger pore sizes, SWNTs and MWNTs are expected to be more efficient in adsorption of large size molecules. Removal of surface oxygen-containing functional groups from the SWNT enhanced adsorption of AOCs.

  8. Heat of capillary condensation in nanopores: new insights from the equation of state.

    PubMed

    Tan, Sugata P; Piri, Mohammad

    2017-02-15

    Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) coupled with the Young-Laplace equation is a recently developed equation of state (EOS) that successfully presents not only the capillary condensation but also the pore critical phenomena. The development of this new EOS allows further investigation of the heats involved in condensation. Compared to the conventional approaches, the EOS calculations present the temperature-dependent behavior of the heat of capillary condensation as well as that of the contributing effects. The confinement effect was found to be the strongest at the pore critical point. Therefore, contrary to the bulk heat condensation that vanishes at the critical point, the heat of capillary condensation in small pores shows a minimum and then increases with temperature when approaching the pore critical temperature. Strong support for the existence of the pore critical point is also discussed as the volume expansivity of the condensed phase in confinement was found to increase dramatically near the pore critical temperature. At high reduced temperatures, the Clausius-Clapeyron equation was found to apply better for confined fluids than it does for bulk fluids.

  9. Prediction of Hot Tearing Using a Dimensionless Niyama Criterion

    NASA Astrophysics Data System (ADS)

    Monroe, Charles; Beckermann, Christoph

    2014-08-01

    The dimensionless form of the well-known Niyama criterion is extended to include the effect of applied strain. Under applied tensile strain, the pressure drop in the mushy zone is enhanced and pores grow beyond typical shrinkage porosity without deformation. This porosity growth can be expected to align perpendicular to the applied strain and to contribute to hot tearing. A model to capture this coupled effect of solidification shrinkage and applied strain on the mushy zone is derived. The dimensionless Niyama criterion can be used to determine the critical liquid fraction value below which porosity forms. This critical value is a function of alloy properties, solidification conditions, and strain rate. Once a dimensionless Niyama criterion value is obtained from thermal and mechanical simulation results, the corresponding shrinkage and deformation pore volume fractions can be calculated. The novelty of the proposed method lies in using the critical liquid fraction at the critical pressure drop within the mushy zone to determine the onset of hot tearing. The magnitude of pore growth due to shrinkage and deformation is plotted as a function of the dimensionless Niyama criterion for an Al-Cu alloy as an example. Furthermore, a typical hot tear "lambda"-shaped curve showing deformation pore volume as a function of alloy content is produced for two Niyama criterion values.

  10. Potential of coconut shell activated carbon (CSAC) in removing contaminants for water quality improvement: A critical review

    NASA Astrophysics Data System (ADS)

    Akhir, Muhammad Fitri Mohd; Saad, Noor Aida; Zakaria, Nor Azazi

    2017-10-01

    Commonly, water contaminations occur due to human-induced conditions such as industrial discharge and urban activities. The widely identified contaminants are heavy metal. The toxicity of those heavy metal elements is high and very poisonous to humans' health and environment even at lower dose or concentration of exposure. Chronic poisoning can cause fatal or defect to one's body or environment. Organic contaminants such as oil and microbial are also found due to decomposition of organic matter. The excellent quality adsorption of contaminants is highly related to surface area, pore size, pore volume, and amount plus type of functional group on surface of CSAC. The higher the surface area and pore volume, the higher adsorption that CSAC have towards contaminants. In comparison to meso-pore and macro-pore, micro-pore is better for trapping and adsorbing water contaminants. The purpose of this article is to critically review the potential of CSAC in increasing adsorption to remove contaminants for water quality improvement. A critical review is implemented using search engine like Science Direct. Alkali-modification is shown to have good adsorption in anion elements and organic matter due to improvement of hydrophobic organic compound (HOC) while acid-modification is good in cation elements adsorption. Strong alkali impregnated solution makes CSAC more hydrophobic and positively charge especially after increasing the impregnation dosage. Strong acid of adsorbate affects the quality of adsorption by reducing the surface area, pore volume and it also breaks the Van der Waals forces between adsorbent and adsorbate. However, the formation of oxygen helps the activated carbon surface to become more hydrophilic and negative charge is produced. It helps the effectiveness of metal adsorption. Therefore, by controlling dosage and types of functional groups on surface of CSAC and the pH of adsorbate, it can contribute to high adsorption of organic and inorganic contaminants in the water.

  11. The pore structure and fractal characteristics of shales with low thermal maturity from the Yuqia Coalfield, northern Qaidam Basin, northwestern China

    NASA Astrophysics Data System (ADS)

    Hou, Haihai; Shao, Longyi; Li, Yonghong; Li, Zhen; Zhang, Wenlong; Wen, Huaijun

    2018-03-01

    The continental shales from the Middle Jurassic Shimengou Formation of the northern Qaidam Basin, northwestern China, have been investigated in recent years because of their shale gas potential. In this study, a total of twenty-two shale samples were collected from the YQ-1 borehole in the Yuqia Coalfield, northern Qaidam Basin. The total organic carbon (TOC) contents, pore structure parameters, and fractal characteristics of the samples were investigated using TOC analysis, low-temperature nitrogen adsorption experiments, and fractal analysis. The results show that the average pore size of the Shimengou shales varied from 8.149 nm to 20.635 nm with a mean value of 10.74 nm, which is considered mesopore-sized. The pores of the shales are mainly inkbottle- and slit-shaped. The sedimentary environment plays an essential role in controlling the TOC contents of the low maturity shales, with the TOC values of shales from deep to semi-deep lake facies (mean: 5.23%) being notably higher than those of the shore-shallow lake facies (mean: 0.65%). The fractal dimensions range from 2.4639 to 2.6857 with a mean of 2.6122, higher than those of marine shales, which indicates that the pore surface was rougher and the pore structure more complex in these continental shales. The fractal dimensions increase with increasing total pore volume and total specific surface area, and with decreasing average pore size. With increasing TOC contents in shales, the fractal dimensions increase first and then decrease, with the highest value occurring at 2% of TOC content, which is in accordance with the trends between the TOC and both total specific surface area and total pore volume. The pore structure complexity and pore surface roughness of these low-maturity shales would be controlled by the combined effects of both sedimentary environments and the TOC contents.

  12. An effective medium approach to modelling the pressure-dependent electrical properties of porous rocks

    NASA Astrophysics Data System (ADS)

    Han, Tongcheng

    2018-07-01

    Understanding the electrical properties of rocks under varying pressure is important for a variety of geophysical applications. This study proposes an approach to modelling the pressure-dependent electrical properties of porous rocks based on an effective medium model. The so-named Textural model uses the aspect ratios and pressure-dependent volume fractions of the pores and the aspect ratio and electrical conductivity of the matrix grains. The pores were represented by randomly oriented stiff and compliant spheroidal shapes with constant aspect ratios, and their pressure-dependent volume fractions were inverted from the measured variation of total porosity with differential pressure using a dual porosity model. The unknown constant stiff and compliant pore aspect ratios and the aspect ratio and electrical conductivity of the matrix grains were inverted by best fitting the modelled electrical formation factor to the measured data. Application of the approach to three sandstone samples covering a broad porosity range showed that the pressure-dependent electrical properties can be satisfactorily modelled by the proposed approach. The results demonstrate that the dual porosity concept is sufficient to explain the electrical properties of porous rocks under pressure through the effective medium model scheme.

  13. Pore Structure and Fluoride Ion Adsorption Characteristics of Zr (IV) Surface-Immobilized Resin Prepared Using Polystyrene as a Porogen

    NASA Astrophysics Data System (ADS)

    Mizuki, Hidenobu; Ito, Yudai; Harada, Hisashi; Uezu, Kazuya

    Zr(IV) surface-immobilized resins for removal of fluoride ion were prepared by surface template polymerization using polystyrene as a porogen. At polymerization, polystyrene was added in order to increase mesopores (2-50 nm) and macropore (>50 nm) with large macropores (around 300 nm) formed with internal aqueous phase of W⁄O emulsion. The pore structure of Zr(IV) surface-immobilized resins was evaluated by measuring specific surface area, pore volume, and pore size distribution with volumetric adsorption measurement instrument and mercury porosimeter. The adsorption isotherms were well fitted by Langmuir equation. The removal of fluoride was also carried out with column method. Zr(IV) surface-immobilized resins, using 10 g⁄L polystyrene in toluene at polymerization, possessed higher volume of not only mesopores and macropores but also large macropores. Furethermore, by adding the polystyrene with smaller molecular size, the pore volume of mesopores, macropores and large macropores was significantly increased, and the fluoride ion adsorption capacity and the column utilization also increased.

  14. The role of mesopores in MTBE removal with granular activated carbon.

    PubMed

    Redding, Adam M; Cannon, Fred S

    2014-06-01

    This activated carbon research appraised how pore size and empty-bed contact time influenced the removal of methyl tert-butyl ether (MTBE) at part-per-billion (ppb) concentrations when MTBE was the sole organic impurity. The study compared six granular activated carbons (GACs) from three parent sources; these GACs contained a range of pore volume distributions and had uniform slurry pHs of 9.7-10.4 (i.e. the carbons' bulk surface chemistries were basic). Several of these activated carbons had been specifically tailored for enhanced sorption of trace organic compounds. In these tests, MTBE was spiked into deionized-distilled water (∼pH 7); MTBE loading was measured by isotherms and by rapid small-scale column tests (RSSCTs) that simulated full-scale empty-bed contact times of 7, 14, and 28 min. The results showed that both ultra-fine micropores and small-diameter mesopores were important for MTBE adsorption. Specifically, full MTBE loading during RSSCTs bore a strong correlation (R(2) = 0.94) to the product (mL/g × mL/g) of pore volume ≤4.06 Å wide and pore volume between ∼22 Å and ∼59 Å wide. This correlation was greater than for the product of any other pore volume combinations. Also, this product exhibited a stronger correlation than for just one or the other of these two pore ranges. This multiplicative relationship implied that both of these pore sizes were important for the optimum GAC performance of these six carbons (i.e. favorable mass transfer coupled with favorable sorption). The authors also compared MTBE mass loading during RSSCTs (μg MTBE/g GAC) to isotherm capacity (μg MTBE/g GAC). This RSSCT loading "efficiency" ranged from 28% to 96% for the six GACs; this efficiency correlated most strongly to pores that were 14-200 Å wide (R(2) = 0.94). This correlation indicated that only those carbons with a sufficient volume of 14-200 Å pores could adsorb MTBE to the extent that would be predicted from isotherm data. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Porous structure and fluid partitioning in polyethylene cores from 3D X-ray microtomographic imaging.

    PubMed

    Prodanović, M; Lindquist, W B; Seright, R S

    2006-06-01

    Using oil-wet polyethylene core models, we present the development of robust throat finding techniques for the extraction, from X-ray microtomographic images, of a pore network description of porous media having porosity up to 50%. Measurements of volume, surface area, shape factor, and principal diameters are extracted for pores and area, shape factor and principal diameters for throats. We also present results on the partitioning of wetting and non-wetting phases in the pore space at fixed volume increments of the injected fluid during a complete cycle of drainage and imbibition. We compare these results with fixed fractional flow injection, where wetting and non-wetting phase are simultaneously injected at fixed volume ratio. Finally we demonstrate the ability to differentiate three fluid phases (oil, water, air) in the pore space.

  16. Metastable Prepores in Tension-Free Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Ting, Christina L.; Awasthi, Neha; Müller, Marcus; Hub, Jochen S.

    2018-03-01

    The formation and closure of aqueous pores in lipid bilayers is a key step in various biophysical processes. Large pores are well described by classical nucleation theory, but the free-energy landscape of small, biologically relevant pores has remained largely unexplored. The existence of small and metastable "prepores" was hypothesized decades ago from electroporation experiments, but resolving metastable prepores from theoretical models remained challenging. Using two complementary methods—atomistic simulations and self-consistent field theory of a minimal lipid model—we determine the parameters for which metastable prepores occur in lipid membranes. Both methods consistently suggest that pore metastability depends on the relative volume ratio between the lipid head group and lipid tails: lipids with a larger head-group volume fraction (or shorter saturated tails) form metastable prepores, whereas lipids with a smaller head-group volume fraction (or longer unsaturated tails) form unstable prepores.

  17. Synchrotron microtomographic quantification of geometrical soil pore characteristics affected by compaction

    NASA Astrophysics Data System (ADS)

    Udawatta, Ranjith P.; Gantzer, Clark J.; Anderson, Stephen H.; Assouline, Shmuel

    2016-05-01

    Soil compaction degrades soil structure and affects water, heat, and gas exchange as well as root penetration and crop production. The objective of this study was to use X-ray computed microtomography (CMT) techniques to compare differences in geometrical soil pore parameters as influenced by compaction of two different aggregate size classes. Sieved (diameter < 2 mm and < 0.5 mm) and repacked (1.51 and 1.72 Mg m-3) Hamra soil cores of 5 by 5 mm (average porosities were 0.44 and 0.35) were imaged at 9.6 μm resolution at the Argonne Advanced Photon Source (synchrotron facility) using X-ray CMT. Images of 58.9 mm3 volume were analyzed using 3-Dimensional Medial Axis (3-DMA) software. Geometrical characteristics of the spatial distributions of pore structures (pore radii, volume, connectivity, path length, and tortuosity) were numerically investigated. Results show that the coordination number (CN) distribution and path length (PL) measured from the medial axis were reasonably fit by exponential relationships P(CN) = 10-CN/Co and P(PL) = 10-PL/PLo, respectively, where Co and PLo are the corresponding characteristic constants. Compaction reduced porosity, average pore size, number of pores, and characteristic constants. The average pore radii (63.7 and 61 µm; p < 0.04), largest pore volume (1.58 and 0.58 mm3; p = 0.06), number of pores (55 and 50; p = 0.09), and characteristic coordination number (3.74 and 3.94; p = 0.02) were significantly different between the low-density than the high-density treatment. Aggregate size also influenced measured geometrical pore parameters. This analytical technique provides a tool for assessing changes in soil pores that affect hydraulic properties and thereby provides information to assist in assessment of soil management systems.

  18. The influence of pore textures on the permeability of volcanic rocks

    NASA Astrophysics Data System (ADS)

    Mueller, S.; Spieler, O.; Scheu, B.; Dingwell, D.

    2006-12-01

    The permeability of a porous medium is strongly dependent on its porosity, as a higher proportion of pore volume is generally expected to lead to a greater probability of pore interconnectedness and the formation of a fluid-flow providing pathway. However, the relationship between permeability and porosity is not a unique one, as many other textural parameters may play an important role and substantially affect gas flow properties. Among these parameters are (a) the connection geometry (i.e. intergranular pore spaces in clastic sediments vs. bubble interconnections), (b) the pore sizes, (c) pore shape and (d) pore size distribution. The gas permeability of volcanic rocks may influence various eruptive processes. The transition from a quiescent degassing dome to rock failure (fragmentation) may, for example, be controlled by the rock's permeability, in as much as it affects the speed by which a gas overpressure in vesicles is reduced in response to decompression. It is therefore essential to understand and quantify influences of different pore textures on the degassing properties of volcanic rocks, as well as investigate the effects of permeability on eruptive processes. Using a modified shock-tube-based fragmentation apparatus, we have measured unsteady-state permeability at a high initial pressure differential. Following sudden decompression above the rock cylinder, pressurized gas flows through the sample in a steel autoclave. A transient 1D filtration code has been developed to calculate permeability using the experimental pressure decay curve within a defined volume below the sample. An external furnace around the autoclave and the use of compressed salt as sealant allows also measurements at high temperatures up to 800 °C. Over 130 permeability measurements have been performed on samples of different volcanic settings, covering a wide range of porosity. The results show a general positive relationship between porosity and permeability with a high data scatter. Analysis of the samples eruptive origin as well as the pore sizes, shapes and size distribution allow an estimation of the contribution of various textural effects to the overall permeability.

  19. Saturation-dependent solute dispersivity in porous media: Pore-scale processes

    NASA Astrophysics Data System (ADS)

    Raoof, A.; Hassanizadeh, S. M.

    2013-04-01

    It is known that in variably saturated porous media, dispersion coefficient depends on Darcy velocity and water saturation. In one-dimensional flow, it is commonly assumed that the dispersion coefficient is a linear function of velocity. The coefficient of proportionality, called the dispersivity, is considered to depend on saturation. However, there is not much known about its dependence on saturation. In this study, we investigate, using a pore network model, how the longitudinal dispersivity varies nonlinearly with saturation. We schematize the porous medium as a network of pore bodies and pore throats with finite volumes. The pore space is modeled using the multidirectional pore-network concept, which allows for a distribution of pore coordination numbers. This topological property together with the distribution of pore sizes are used to mimic the microstructure of real porous media. The dispersivity is calculated by solving the mass balance equations for solute concentration in all network elements and averaging the concentrations over a large number of pores. We have introduced a new formulation of solute transport within pore space, where we account for different compartments of residual water within drained pores. This formulation makes it possible to capture the effect of limited mixing due to partial filling of the pores under variably saturated conditions. We found that dispersivity increases with the decrease in saturation, it reaches a maximum value, and then decreases with further decrease in saturation. To show the capability of our formulation to properly capture the effect of saturation on solute dispersion, we applied it to model the results of a reported experimental study.

  20. Multiscale pore networks and their effect on deformation and transport property alteration associated with hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Daigle, Hugh; Hayman, Nicholas; Jiang, Han; Tian, Xiao; Jiang, Chunbi

    2017-04-01

    Multiple lines of evidence indicate that, during a hydraulic fracture stimulation, the permeability of the unfractured matrix far from the main, induced tensile fracture increases by one to two orders of magnitude. This permeability enhancement is associated with pervasive shear failure in a large region surrounding the main induced fracture. We have performed low-pressure gas sorption, mercury intrusion, and nuclear magnetic resonance measurements along with high-resolution scanning electron microscope imaging on several preserved and unpreserved shale samples from North American basins before and after inducing failure in confined compressive strength tests. We have observed that the pore structure in intact samples exhibits multiscale behavior, with sub-micron-scale pores in organic matter connected in isolated, micron-scale clusters which themselves are connected to each other through a network of microcracks. The organic-hosted pore networks are poorly connected due to a significant number of dead-end pores within the organic matter. Following shear failure, we often observe an increase in pore volume in the sub-micron range, which appears to be related to the formation of microcracks that propagate along grain boundaries and other planes of mechanical strength contrast. This is consistent with other experimental and field evidence. In some cases these microcracks cross or terminate in organic matter, intersecting the organic-hosted pores. The induced microcrack networks typically have low connectivity and do not appreciably increase the connectivity of the overall pore network. However, in other cases the shear deformation results in an overall pore volume decrease; samples which exhibit this behavior tend to have more clay minerals. Our interpretation of these phenomena is as follows. As organic matter is converted to hydrocarbons, organic-hosted pores develop, and the hydrocarbons contained in these pores are overpressured. The disconnected nature of these clusters of organic-hosted pores prevents the overpressure from dissipating, resulting in localized overpressure at the micron scale. When the rock is subjected to a hydraulic fracture stimulation, the rock surrounding the main induced fracture experiences shear deformation. Those parts of the rock that contain overpressured fluids in the organic-hosted pores will be more likely to experience dilatancy in the form of brittle deformation; the portions of the rock lacking in organic-hosted pores will tend to experience compactive shear failure since the effective normal stresses are larger. The microcrack networks that propagate into the regions of organic-hosted porosity allow the hydrocarbons resident in those pores to migrate to the main induced tensile fractures. The disconnected nature of the microcrack networks causes only a slight increase in permeability, which is consistent with other observations. Our work illustrates how multiscale pore networks in shale interact with in situ stresses to affect the bulk shale rheology.

  1. Definitions of differences and changes in peritoneal membrane water transport properties.

    PubMed

    Widerøe, T E; Smeby, L C; Dahl, K; Jörstad, S

    1988-06-01

    A survey is given comparing measurements of transperitoneal water transport in different clinical situations with analyses based on the so-called "pore theory." This model links the measured changes to physical alterations of the peritoneal membrane. The calculations include "equivalent pore radius," effective "membrane area" and diffusive length, the transport resistance of the unstirred dialysate layer, and the residual intraperitoneal volume after dialysate drainage. The clinical appearances include individual differences in transperitoneal transport characteristics, changes in transperitoneal transport over time on continuous ambulatory peritoneal dialysis (CAPD) and during peritonitis, the pharmacological effect on the transport properties, and the effect of peritoneal catheter dislocation on ultrafiltration capacity. The main conclusions are as follow: During CAPD treatment the measurement of intraperitoneal solute equilibration and "mass-transfer-area coefficients" for urea and creatinine is less sensitive than the measurement of ultrafiltration volume in revealing peritoneal membrane changes. Differences and changes found have mostly a combined physical explanation, but one is more or less dominant. Changes in peritoneal membrane area seem to be the most dominant cause of changes in transperitoneal transport during time on CAPD and when sodium nitroprusside was added to the peritoneal dialysate. Changes during peritonitis can be explained by changes in pore radius and depth. Individual differences can be explained by differences in "membrane" area and in resistance of the unstirred dialysate fluid. High residual dialysate volume can give rise to clinical problems and should be considered when placing the catheter in the peritoneal cavity.

  2. Active pore space utilization in nanoporous carbon-based supercapacitors: Effects of conductivity and pore accessibility

    NASA Astrophysics Data System (ADS)

    Seredych, Mykola; Koscinski, Mikolaj; Sliwinska-Bartkowiak, Malgorzata; Bandosz, Teresa J.

    2012-12-01

    Composites of commercial graphene and nanoporous sodium-salt-polymer-derived carbons were prepared with 5 or 20 weight% graphene. The materials were characterized using the adsorption of nitrogen, SEM/EDX, thermal analysis, Raman spectroscopy and potentiometric titration. The samples' conductivity was also measured. The performance of the carbon composites in energy storage was linked to their porosity and electronic conductivity. The small pores (<0.7) were found as very active for double layer capacitance. It was demonstrated that when double layer capacitance is a predominant mechanism of charge storage, the degree of the pore space utilization for that storage can be increased by increasing the conductivity of the carbons. That active pore space utilization is defined as gravimetric capacitance per unit pore volume in pores smaller than 0.7 nm. Its magnitude is affected by conductivity of the carbon materials. The functional groups, besides pseudocapacitive contribution, increased the wettability and thus the degree of the pore space utilization. Graphene phase, owing to its conductivity, also took part in an insitu increase of the small pore accessibility and thus the capacitance of the composites via enhancing an electron transfer to small pores and thus imposing the reduction of groups blocking the pores for electrolyte ions.

  3. Behaviors and kinetics of toluene adsorption-desorption on activated carbons with varying pore structure.

    PubMed

    Yang, Xi; Yi, Honghong; Tang, Xiaolong; Zhao, Shunzheng; Yang, Zhongyu; Ma, Yueqiang; Feng, Tiecheng; Cui, Xiaoxu

    2018-05-01

    This work was undertaken to investigate the behaviors and kinetics of toluene adsorption and desorption on activated carbons with varying pore structure. Five kinds of activated carbon from different raw materials were selected. Adsorption isotherms and breakthrough curves for toluene were measured. Langmuir and Freundlich equations were fitted to the equilibrium data, and the Freundlich equation was more suitable for simulating toluene adsorption. The process consisted of monolayer, multilayer and partial active site adsorption types. The effect of the pore structure of the activated carbons on toluene adsorption capacity was investigated. The quasi-first-order model was more suitable for describing the process than the quasi-second-order model. The adsorption data was also modeled by the internal particle diffusion model and it was found that the adsorption process could be divided into three stages. In the external surface adsorption process, the rate depended on the specific surface area. During the particle diffusion stage, pore structure and volume were the main factors affecting adsorption rate. In the final equilibrium stage, the rate was determined by the ratio of meso- and macro-pores to total pore volume. The rate over the whole adsorption process was dominated by the toluene concentration. The desorption behavior of toluene on activated carbons was investigated, and the process was divided into heat and mass transfer parts corresponding to emission and diffusion mechanisms, respectively. Physical adsorption played the main role during the adsorption process. Copyright © 2017. Published by Elsevier B.V.

  4. High surface area carbon and process for its production

    DOEpatents

    Romanos, Jimmy; Burress, Jacob; Pfeifer, Peter; Rash, Tyler; Shah, Parag; Suppes, Galen

    2016-12-13

    Activated carbon materials and methods of producing and using activated carbon materials are provided. In particular, biomass-derived activated carbon materials and processes of producing the activated carbon materials with prespecified surface areas and pore size distributions are provided. Activated carbon materials with preselected high specific surface areas, porosities, sub-nm (<1 nm) pore volumes, and supra-nm (1-5 nm) pore volumes may be achieved by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process.

  5. Impact of geometrical properties on permeability and fluid phase distribution in porous media

    NASA Astrophysics Data System (ADS)

    Lehmann, P.; Berchtold, M.; Ahrenholz, B.; Tölke, J.; Kaestner, A.; Krafczyk, M.; Flühler, H.; Künsch, H. R.

    2008-09-01

    To predict fluid phase distribution in porous media, the effect of geometric properties on flow processes must be understood. In this study, we analyze the effect of volume, surface, curvature and connectivity (the four Minkowski functionals) on the hydraulic conductivity and the water retention curve. For that purpose, we generated 12 artificial structures with 800 3 voxels (the units of a 3D image) and compared them with a scanned sand sample of the same size. The structures were generated with a Boolean model based on a random distribution of overlapping ellipsoids whose size and shape were chosen to fulfill the criteria of the measured functionals. The pore structure of sand material was mapped with X-rays from synchrotrons. To analyze the effect of geometry on water flow and fluid distribution we carried out three types of analysis: Firstly, we computed geometrical properties like chord length, distance from the solids, pore size distribution and the Minkowski functionals as a function of pore size. Secondly, the fluid phase distribution as a function of the applied pressure was calculated with a morphological pore network model. Thirdly, the permeability was determined using a state-of-the-art lattice-Boltzmann method. For the simulated structure with the true Minkowski functionals the pores were larger and the computed air-entry value of the artificial medium was reduced to 85% of the value obtained from the scanned sample. The computed permeability for the geometry with the four fitted Minkowski functionals was equal to the permeability of the scanned image. The permeability was much more sensitive to the volume and surface than to curvature and connectivity of the medium. We conclude that the Minkowski functionals are not sufficient to characterize the geometrical properties of a porous structure that are relevant for the distribution of two fluid phases. Depending on the procedure to generate artificial structures with predefined Minkowski functionals, structures differing in pore size distribution can be obtained.

  6. Pore architecture of nanoporous gold and titania by hydrogen thermoporometry

    DOE PAGES

    Johnston, L. T.; Biener, M. M.; Ye, J. C.; ...

    2015-07-10

    Nanoporous gold (NPG) and materials derived from it by templating have complex pore architecture that determines their technologically relevant physical properties. Here, we apply high-resolution hydrogen thermoporometry to study the pore structure of NPG and NPG-derived titania nanofoam (TNF). Results reveal complex multimodal pore size distributions for NPG and TNF. The freezing–melting hysteresis is pronounced, with freezing and melting scans having entirely different shapes. Experiments involving partial freeze–melt cycles reveal the lack of direct correlation between individual freezing and melting peaks, pointing to phenomena that are beyond the Gibbs-Thomson formalism. The depression of the average freezing temperature scales linearly withmore » the ratio of the internal surface area (measured by gas sorption) and the total pore volume derived from the density of monoliths. In conclusion, thermoporometry yields total pore volumes in good agreement with those derived from monolith densities for both NPG and TNF.« less

  7. Pore size engineering applied to starved electrochemical cells and batteries

    NASA Technical Reports Server (NTRS)

    Abbey, K. M.; Thaller, L. H.

    1982-01-01

    To maximize performance in starved, multiplate cells, the cell design should rely on techniques which widen the volume tolerance characteristics. These involve engineering capillary pressure differences between the components of an electrochemical cell and using these forces to promote redistribution of electrolyte to the desired optimum values. This can be implemented in practice by prescribing pore size distributions for porous back-up plates, reservoirs, and electrodes. In addition, electrolyte volume management can be controlled by incorporating different pore size distributions into the separator. In a nickel/hydrogen cell, the separator must contain pores similar in size to the small pores of both the nickel and hydrogen electrodes in order to maintain an optimum conductive path for the electrolyte. The pore size distributions of all components should overlap in such a way as to prevent drying of the separator and/or flooding of the hydrogen electrode.

  8. Pore architecture of nanoporous gold and titania by hydrogen thermoporometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, L. T.; Biener, M. M.; Ye, J. C.

    Nanoporous gold (NPG) and materials derived from it by templating have complex pore architecture that determines their technologically relevant physical properties. Here, we apply high-resolution hydrogen thermoporometry to study the pore structure of NPG and NPG-derived titania nanofoam (TNF). Results reveal complex multimodal pore size distributions for NPG and TNF. The freezing–melting hysteresis is pronounced, with freezing and melting scans having entirely different shapes. Experiments involving partial freeze–melt cycles reveal the lack of direct correlation between individual freezing and melting peaks, pointing to phenomena that are beyond the Gibbs-Thomson formalism. The depression of the average freezing temperature scales linearly withmore » the ratio of the internal surface area (measured by gas sorption) and the total pore volume derived from the density of monoliths. In conclusion, thermoporometry yields total pore volumes in good agreement with those derived from monolith densities for both NPG and TNF.« less

  9. Use of adjuvants to minimize leaching of herbicides in soil

    NASA Astrophysics Data System (ADS)

    Alva, Ashok K.; Singh, Megh

    1991-03-01

    Excessive leaching of herbicides affects their efficacy against target weeds and results in contamination of groundwater. Use of adjuvants that can weakly bind herbicides and in turn release them slowly is a valuable technique to prolong the efficacy of herbicides and to minimize their leaching into groundwater. Effects of activated charcoal, three humic substances (Enersol SP 85%, Enersol 12%, and Agroliz), or a synthetic polymer (Hydrosorb) on the leaching of bromacil, dicamba, and simazine were investigated in leaching columns using a Candler fine sand (Typic Quartzipsamment). The addition of adjuvants had no harmful effects on physical properties of the soil as evident from lack of its affects on water percolation. When no adjuvants were used, 69%, 37%, and 4% of applied dicamba, bromacil, and simazine, respectively, were leached in the first pore volume of leachate (⋍3.2 cm rainfall). With five pore volumes of leachate (⋍16 cm rainfall), bromacil and dicamba were leached completely and only 80% of simazine was leached. Using Enersol 12% adjuvant resulted in a 13%-18% reduction in leaching of dicamba and bromacil in five pore volumes of leachate. The leaching of simazine was significantly decreased when any of the five adjuvants mentioned above were used. However, the decrease in leaching was significantly greater when using Enersol SP 85% or Enersol 12% (24%-28%) than when using the other adjuvants (12%-16%).

  10. Evolution of Micro-Pores in a Single-Crystal Nickel-Based Superalloy During Solution Heat Treatment

    NASA Astrophysics Data System (ADS)

    Li, Xiangwei; Wang, Li; Dong, Jiasheng; Lou, Langhong; Zhang, Jian

    2017-06-01

    Evolution of micro-pores in a third-generation single-crystal nickel-based superalloy during solution heat treatment at 1603 K (1330 °C) was investigated by X-ray computed tomography. 3D information including morphology, size, number, and volume fraction of micro-pores formed during solidification (S-pores) and solution (H-pores) was analyzed. The growth behaviors of both S-pores and H-pores can be related to the vacancy formation and diffusion during heat treatment.

  11. Examination of Anisotropy Using Amplitude Variation with Angle and Azimuth (AVAZ) in the Woodford Shale, Anadarko Basin, Oklahoma

    NASA Astrophysics Data System (ADS)

    Bailey, Austin

    Amplitude Variation with Angle and Azimuth (AVAZ) is a method that examines the azimuthal change in seismic amplitude to calculate the anisotropy of a horizontally transverse isotropic (HTI) formation. Anisotropy is generally indicative of heterogeneity in the rock fabric, be it fractures, crack-like pores, or local stress changes. The aim of this study as a whole is to examine the relationship between AVAZ anisotropy magnitude from seismic data and pore pressure gradient from wells. Pore pressure is an important reservoir metric that is often used to understand the production variations within a hydrocarbon reservoir. Predicting pore pressure from seismic data can be extremely useful in not only estimating production, but also in predicting the completion and development strategies that may be most effective. However, seismic-based pore pressure prediction methods have not evolved much in the past decade, with the industry standard to rely on the Bowers (1995) or Eaton (1987) method of converting seismic velocities to pore pressure volumes. These methods may fall short as a predictive tool in many cases, due to their lack of spatial resolution and dependency on a stable velocity model, which may not always be available. Therefore, this study was begun in order to examine if an alternative method of detecting pore pressure variations could be found using AVAZ. The AVAZ methodology was applied to a merged 3D seismic dataset in the Anadarko Basin, Oklahoma provided by Cimarex Energy, in order to examine the Woodford Shale. The Woodford has been a key player in hydrocarbon production from the Anadarko Basin for decades, mainly serving as a source rock until the mid-2000's during the "unconventional revolution''. Throughout its extent, the Woodford Formation shows significant heterogeneity due to both the structure and faults of the basin, as well as changes in the rock fabric. This study aims to use the AVAZ methodology to examine heterogeneity in the Woodford and to relate its anisotropy to pore pressure. Before examining the AVAZ effect in the seismic data, forward modeling from well logs was completed to conceptualize a relationship between pore pressure and anisotropy. Theoretically, at higher pore pressures the reservoir fluid may be effectively propping the fractures open, thus having a greater effect on any pressure wave traveling through the fluid. At lower pore pressure, the overburden pressure dominates the fluid-filled fractures and closes them down. Therefore, at higher pore pressure the AVAZ anisotropy would be greater than at lower pore pressure. The forward modeling from dipole sonic well logs confirms this conceptual model by showing a positive relationship between pore pressure and AVAZ anisotropy. Before the results of the AVAZ workflow were obtained, a variety of pre-processing steps and quality controls were done on the merged 3D seismic dataset. Although the pore pressure - anisotropy relationship appears robust in modeling, the AVAZ results from the seismic data do not appear to correlate with pore pressure. It is likely that acquisition-related artifacts in the seismic data, as well as small magnitude of change in pore pressure, contribute to this lack of correlation. However, further interpretation of the AVAZ volumes shows local stress variations near faults as well as a potential secondary stress trend striking to the north-east. Such information has implications for completion and overall development of the Woodford as an unconventional resource play.

  12. The effect of synthesis parameters on the geometry and dimensions of mesoporous hydroxyapatite nanoparticles in the presence of 1-dodecanethiol as a pore expander.

    PubMed

    Bakhtiari, L; Rezaie, H R; Javadpour, J; Erfan, M; Shokrgozar, M A

    2015-08-01

    Mesoporous hydroxyapatite with different pore diameters and pore volumes were synthesized by the self-assembly method using Cetyltrimethylammonium bromide (CTAB) as the cationic surfactant and 1-dodecanethiol as the pore expander at different micellization pHs, solvent types and surfactant concentrations. Results of field emission scanning electron microscopy (FESEM) showed a decrease in length/diameter ratio of rod-like particles by an increase in micellization pH and also a sphere to rod transition in morphology by an increase in CTAB concentration. Brunauer-Emmett-Teller (BET) surface area and Low angle X-ray diffraction analysis revealed that the optimized mesoporous hydroxyapatite with controlled pore structure can be obtained under basic micellization pH (about 12, pH of complete ionization of 1-dodecanethiol) by using water as the solvent and a high content of cationic surfactant. The results also show that micellization pH has a strong effect on pore structure and changing the pH can shift the mesostructure to a macroporous structure with morphological changes. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Metastable Prepores in Tension-Free Lipid Bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ting, Christina L.; Awasthi, Neha; Muller, Marcus

    The formation and closure of aqueous pores in lipid bilayers is a key step in various biophysical processes. Large pores are well described by classical nucleation theory, but the free-energy landscape of small, biologically relevant pores has remained largely unexplored. The existence of small and metastable “prepores” was hypothesized decades ago from electroporation experiments, but resolving metastable prepores from theoretical models remained challenging. Using two complementary methods—atomistic simulations and self-consistent field theory of a minimal lipid model—we determine the parameters for which metastable prepores occur in lipid membranes. Here, both methods consistently suggest that pore metastability depends on the relativemore » volume ratio between the lipid head group and lipid tails: lipids with a larger head-group volume fraction (or shorter saturated tails) form metastable prepores, whereas lipids with a smaller head-group volume fraction (or longer unsaturated tails) form unstable prepores.« less

  14. Metastable Prepores in Tension-Free Lipid Bilayers

    DOE PAGES

    Ting, Christina L.; Awasthi, Neha; Muller, Marcus; ...

    2018-03-23

    The formation and closure of aqueous pores in lipid bilayers is a key step in various biophysical processes. Large pores are well described by classical nucleation theory, but the free-energy landscape of small, biologically relevant pores has remained largely unexplored. The existence of small and metastable “prepores” was hypothesized decades ago from electroporation experiments, but resolving metastable prepores from theoretical models remained challenging. Using two complementary methods—atomistic simulations and self-consistent field theory of a minimal lipid model—we determine the parameters for which metastable prepores occur in lipid membranes. Here, both methods consistently suggest that pore metastability depends on the relativemore » volume ratio between the lipid head group and lipid tails: lipids with a larger head-group volume fraction (or shorter saturated tails) form metastable prepores, whereas lipids with a smaller head-group volume fraction (or longer unsaturated tails) form unstable prepores.« less

  15. Prediction of Hydraulic Conductivity as Related to Pore Size Distribution in Unsaturated Soils

    USDA-ARS?s Scientific Manuscript database

    Soil pore volume as well as pore size, shape, type (i.e. biopore versus crack), continuity, and distribution in soil affect soil water and gas exchange. Vertical and lateral drainage of water by gravitational forces occurs through large, non-capillary soil pores, but redistribution and upward moveme...

  16. [Micropore filters for measuring red blood cell deformability and their pore diameters].

    PubMed

    Niu, X; Yan, Z

    2001-09-01

    Micropore filters are the most important components in micropore filtration testes for assessing red blood cell (RBC) deformability. With regard to their appearance and filtration behaviors, comparisons are made for different kinds of filters currently in use. Nickel filters with regular geometric characteristics are found to be more sensitive to the effects of physical, chemical, especially pathological factors on the RBC deformability. We have critically reviewed the following viewpoint that filters with 3 microns pore diameter are more sensitive to cell volume than to internal viscosity while filters with 5 microns pore diameter are just the opposite. After analyzing the experiment results with 3 microns and 5 microns filters, we point out that filters with smaller pore diameters are more suitable for assessing the RBC deformability.

  17. Investigations in Producing Porous NiAl by Combustion Synthesis

    NASA Astrophysics Data System (ADS)

    Zhong, Songming

    In recent years, nickel aluminide (NiAl) intermetallic foam, which combines the advantages of nickel-based alloy and metallic foam, has attracted great attention due to its extraordinary properties. In this present work, nickel aluminide (NiAl) foam has been reactively processed from elemental powder (nickel and aluminium) with different types and percentage of volume of a foaming agent (TiH2 or CaCO3), using a combustion synthesis (CS) approach. Most of the previous research has focused on producing close-cell NiAl intermetallic foam; however, this paper presents a new combustion synthesis process to fabricate a hybrid open-cell and close-cell NiAl intermetallic foam. Mixed elemental powder was compacted at moderate pressure generating closed and open porosity with green compact; as a result, part of the liberated gas could escape from the sample, which resulted in producing open-cell pores, in addition, closed cell pores in the product. The effect of foaming agent type and volume percentage on the product is discussed. An increase in volume percentage of TiH2 was found to have beneficial effects on increasing porosity; however, with the increase of volume percentage of CaCO3, there is a big drop in porosity because the low viscosity under high temperature makes more liberated gas escape and pores collapse. According to XRD and EDX analysis, despite the present of multiple phases in samples, NiAl was still the major phase. Hardness measurement shows that high hardness value was obtained at sample of low grain size, hardness value increases with decreasing grain size.

  18. Absorption properties of carbon dioxide enhanced-oil-recovery additives. Final Technical report, 12 May 1987-31 August 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, J.T.; Holbrook, S.T.

    1990-01-01

    The selection of the optimum foaming agent (surfactant) for enhancing oil production by carbon dioxide flooding is based on foamability and adsorption. Measurement of adsorption on carbonate cores from New Mexico reservoirs showed large adsorption differences between three commercial, high-foaming surfactants. An ethoxylated alcohol structure was least adsorbed, 0.64 mg/cc pore volume; an ethoxylated alcohol sulfate was next, 0.74 mg/cc pore volume; the highest adsorbed was a glyceryl sulfonate, 2.30 mg/cc pore volume. Commercial application of the foaming additive involves injecting alternate slugs of surfactant solution and carbon dioxide. Surfactant concentration should be determined to allow for the adsorption above.

  19. Porosity of Self-Compacting Concrete (SCC) incorporating high volume fly ash

    NASA Astrophysics Data System (ADS)

    Kristiawan, S. A.; Sunarmasto; Murti, G. Y.

    2017-02-01

    Degradation of concrete could be triggered by the presence of aggressive agents from the environment into the body of concrete. The penetration of these agents is influenced by the pore characteristics of the concrete. Incorporating a pozzolanic material such as fly ash could modify the pore characteristic of the concrete. This research aims to investigate the influence of incorporating fly ash at high volume level on the porosity of Self-Compacting Concrete (SCC). Laboratory investigations were carried out following the ASTM C642 for measuring density and volume of permeable pores (voids) of the SCC with varying fly ash contents (50-70% by weight of total binder). In addition, a measurement of permeable voids by saturation method was carried out to obtain an additional volume of voids that could not be measured by the immersion and boiling method of ASTM C642. The results show that the influence of fly ash content on the porosity appears to be dependent on age of SCC. At age less than 56 d, fly ash tends to cause an increase of voids but at 90 d of age it reduces the pores. The additional pores that can be penetrated by vacuum saturation method counts about 50% of the total voids.

  20. OCT-based angiography of human dermal microvascular reactions to local stimuli: Implications for increasing capillary blood collection volumes.

    PubMed

    Men, Shaojie; Wong, Jennifer Manyu; Welch, Emily J; Xu, Jingjiang; Song, Shaozhen; Deegan, Anthony J; Ravichander, Aarthi; Casavant, Benjamin; Berthier, Erwin; Wang, Ruikang K

    2018-05-25

    To measure and compare microvascular responses within the skin of the upper arm to local stimuli, such as heating or rubbing, through the use of optical coherence tomography angiography (OCTA), and to investigate its impact on blood volume collection. With the use of heat packs or rubbing, local stimulation was applied to the skin of either the left or right upper arm. Data from the stimulated sites were obtained using OCTA comparing pre- and post-stimulation microvascular parameters, such as vessel density, mean vessel diameter, and mean avascular pore size. Additionally, blood was collected using a newly designed collection device and volume was recorded to evaluate the effect of the skin stimulation. Nineteen subjects were recruited for local stimulation study (including rubbing and heating) and 21 subjects for blood drawn study. Of these subjects, 14 agreed to participate in both studies. OCTA was successful in monitoring and measuring minute changes in the microvasculature of the stimulated skin. Compared to baseline, significant changes after local heating and rubbing were respectively found in vessel density (16% [P = 0.0004] and 33% [P < 0.0001] increase), mean vessel diameter (14% and 11% increase) and mean avascular pore size (5% [P = 0.0068] and 8% [P = 0.0005] decrease) after stimulations. A gradual recovery was recorded for each parameter, with no difference being measured after 30 minutes. Blood collection volumes significantly increased after stimulations of heating (48% increase; P = 0.049) and rubbing (78% increase; P = 0.048). Significant correlations were found between blood volume and microvascular parameters except mean avascular pore size under the heating condition. OCTA can provide important information regarding microvascular adaptations to local stimuli. With that, both heating and rubbing of the skin have positive effects on blood collection capacity, with rubbing having the most significant effect. Lasers Surg. Med. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  1. Application of method of volume averaging coupled with time resolved PIV to determine transport characteristics of turbulent flows in porous bed

    NASA Astrophysics Data System (ADS)

    Patil, Vishal; Liburdy, James

    2012-11-01

    Turbulent porous media flows are encountered in catalytic bed reactors and heat exchangers. Dispersion and mixing properties of these flows play an essential role in efficiency and performance. In an effort to understand these flows, pore scale time resolved PIV measurements in a refractive index matched porous bed were made. Pore Reynolds numbers, based on hydraulic diameter and pore average velocity, were varied from 400-4000. Jet-like flows and recirculation regions associated with large scale structures were found to exist. Coherent vortical structures which convect at approximately 0.8 times the pore average velocity were identified. These different flow regions exhibited different turbulent characteristics and hence contributed unequally to global transport properties of the bed. The heterogeneity present within a pore and also from pore to pore can be accounted for in estimating transport properties using the method of volume averaging. Eddy viscosity maps and mean velocity field maps, both obtained from PIV measurements, along with the method of volume averaging were used to predict the dispersion tensor versus Reynolds number. Asymptotic values of dispersion compare well to existing correlations. The role of molecular diffusion was explored by varying the Schmidt number and molecular diffusion was found to play an important role in tracer transport, especially in recirculation regions. Funding by NSF grant 0933857, Particulate and Multiphase Processing.

  2. Characterization of narrow micropores in almond shell biochars by nitrogen, carbon dioxide, and hydrogen adsorption

    USDA-ARS?s Scientific Manuscript database

    Characterization of biochars usually includes surface area and pore volume determination by nitrogen adsorption. In this study, we show that there is a substantial pore volume in biochars created via slow pyrolysis from low- and high-ash almond shells that cannot be characterized in this fashion due...

  3. Increase of porosity by combining semi-carbonization and KOH activation of formaldehyde resins to prepare high surface area carbons for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Heimböckel, Ruben; Kraas, Sebastian; Hoffmann, Frank; Fröba, Michael

    2018-01-01

    A series of porous carbon samples were prepared by combining a semi-carbonization process of acidic polymerized phenol-formaldehyde resins and a following chemical activation with KOH used in different ratios to increase specific surface area, micropore content and pore sizes of the carbons which is favourable for supercapacitor applications. Samples were characterized by nitrogen physisorption, powder X-ray diffraction, Raman spectroscopy and scanning electron microscopy. The results show that the amount of KOH, combined with the semi-carbonization step had a remarkable effect on the specific surface area (up to SBET: 3595 m2 g-1 and SDFT: 2551 m2 g-1), pore volume (0.60-2.62 cm3 g-1) and pore sizes (up to 3.5 nm). The carbons were tested as electrode materials for electrochemical double layer capacitors (EDLC) in a two electrode setup with tetraethylammonium tetrafluoroborate in acetonitrile as electrolyte. The prepared carbon material with the largest surface area, pore volume and pore sizes exhibits a high specific capacitance of 145.1 F g-1 at a current density of 1 A g-1. With a high specific energy of 31 W h kg-1 at a power density of 33028 W kg-1 and a short time relaxation constant of 0.29 s, the carbon showed high power capability as an EDLC electrode material.

  4. Multi-scale Pore Imaging Techniques to Characterise Heterogeneity Effects on Flow in Carbonate Rock

    NASA Astrophysics Data System (ADS)

    Shah, S. M.

    2017-12-01

    Digital rock analysis and pore-scale studies have become an essential tool in the oil and gas industry to understand and predict the petrophysical and multiphase flow properties for the assessment and exploitation of hydrocarbon reserves. Carbonate reservoirs, accounting for majority of the world's hydrocarbon reserves, are well known for their heterogeneity and multiscale pore characteristics. The pore sizes in carbonate rock can vary over orders of magnitudes, the geometry and topology parameters of pores at different scales have a great impact on flow properties. A pore-scale study is often comprised of two key procedures: 3D pore-scale imaging and numerical modelling techniques. The fundamental problem in pore-scale imaging and modelling is how to represent and model the different range of scales encountered in porous media, from the pore-scale to macroscopic petrophysical and multiphase flow properties. However, due to the restrictions of image size vs. resolution, the desired detail is rarely captured at the relevant length scales using any single imaging technique. Similarly, direct simulations of transport properties in heterogeneous rocks with broad pore size distributions are prohibitively expensive computationally. In this study, we present the advances and review the practical limitation of different imaging techniques varying from core-scale (1mm) using Medical Computed Tomography (CT) to pore-scale (10nm - 50µm) using Micro-CT, Confocal Laser Scanning Microscopy (CLSM) and Focussed Ion Beam (FIB) to characterise the complex pore structure in Ketton carbonate rock. The effect of pore structure and connectivity on the flow properties is investigated using the obtained pore scale images of Ketton carbonate using Pore Network and Lattice-Boltzmann simulation methods in comparison with experimental data. We also shed new light on the existence and size of the Representative Element of Volume (REV) capturing the different scales of heterogeneity from the pore-scale imaging.

  5. Adsorption of SO2 onto oxidized and heat-treated activated carbon fibers (ACFs)

    USGS Publications Warehouse

    Daley, M.A.; Mangun, C.L.; DeBarr, J.A.; Riha, S.; Lizzio, A.A.; Donnals, G.L.; Economy, J.

    1997-01-01

    Oxidation of the ACFs, using an aqueous oxidant, decreased their adsorption capacity for SO2 from flue gas due to a decrease in pore volume and repulsion of the SO2 from acidic surface groups. If these samples were heat-treated to desorb the oxygen containing function groups, the amount of SO2 adsorption increased. This increase in adsorption capacity was directly correlated to the amount of CO2 evolved during heat-treatment of the oxidized ACFs. The amount of SO2 adsorbed for these samples was related to the pore size, pore surface chemistry and pore volume. This analysis is explained in more detail in this paper.

  6. Modified inverse micelle synthesis for mesoporous alumina with a high D4 siloxane adsorption capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Wei; Jiang, Ting; Jafari, Tahereh

    In this work, mesoporous aluminas (MAs) with uniform and monomodal pores were fabricated via a modified inverse micelle synthesis method, using a non-polar solvent (to minimize the effect of water content) and short reaction time (for a fast evaporation process). The effects of reaction times (4–8 h), surfactant chain lengths (non-ionic surfactants), and calcination temperatures and hold times (450–600 °C; 1–4 h) on the textural properties of MA were studied. Additionally, the targeted pore sizes of MA were obtained in the range of 3.1–5.4 nm by adjusting the surfactant and reaction time. The surface area and pore volume were controlledmore » by the calcination temperature and hold time while maintaining the thermal stability of the materials. The tuned MA of the large mesopore volume achieved 168 mg/g octamethylcyclotetrasiloxane (D4 siloxane) adsorption capacity, a 32% improvement compared to commercially activated alumina. Finally, after three adsorption recycles, the synthesized MA still maintained approximate 85% of its original adsorption capacity, demonstrating a sustainable adsorption performance and high potential for related industrial applications.« less

  7. Modified inverse micelle synthesis for mesoporous alumina with a high D4 siloxane adsorption capacity

    DOE PAGES

    Zhong, Wei; Jiang, Ting; Jafari, Tahereh; ...

    2016-10-18

    In this work, mesoporous aluminas (MAs) with uniform and monomodal pores were fabricated via a modified inverse micelle synthesis method, using a non-polar solvent (to minimize the effect of water content) and short reaction time (for a fast evaporation process). The effects of reaction times (4–8 h), surfactant chain lengths (non-ionic surfactants), and calcination temperatures and hold times (450–600 °C; 1–4 h) on the textural properties of MA were studied. Additionally, the targeted pore sizes of MA were obtained in the range of 3.1–5.4 nm by adjusting the surfactant and reaction time. The surface area and pore volume were controlledmore » by the calcination temperature and hold time while maintaining the thermal stability of the materials. The tuned MA of the large mesopore volume achieved 168 mg/g octamethylcyclotetrasiloxane (D4 siloxane) adsorption capacity, a 32% improvement compared to commercially activated alumina. Finally, after three adsorption recycles, the synthesized MA still maintained approximate 85% of its original adsorption capacity, demonstrating a sustainable adsorption performance and high potential for related industrial applications.« less

  8. The effects of chain length, embedded polar groups, pressure, and pore shape on structure and retention in reversed-phase liquid chromatography: molecular-level insights from Monte Carlo simulations.

    PubMed

    Rafferty, Jake L; Siepmann, J Ilja; Schure, Mark R

    2009-03-20

    Particle-based simulations using the configurational-bias and Gibbs ensemble Monte Carlo techniques are carried out to probe the effects of various chromatographic parameters on bonded-phase chain conformation, solvent penetration, and retention in reversed-phase liquid chromatography (RPLC). Specifically, we investigate the effects due to the length of the bonded-phase chains (C(18), C(8), and C(1)), the inclusion of embedded polar groups (amide and ether) near the base of the bonded-phase chains, the column pressure (1, 400, and 1000 atm), and the pore shape (planar slit pore versus cylindrical pore with a 60A diameter). These simulations utilize a bonded-phase coverage of 2.9 micromol/m(2)and a mobile phase containing methanol at a molfraction of 33% (about 50% by volume). The simulations show that chain length, embedded polar groups, and pore shape significantly alter structural and retentive properties of the model RPLC system, whereas the column pressure has a relatively small effect. The simulation results are extensively compared to retention measurements. A molecular view of the RPLC retention mechanism emerges that is more complex than can be inferred from thermodynamic measurements.

  9. Characterizing Adsorption Performance of Granular Activated Carbon with Permittivity.

    PubMed

    Yang, Yang; Shi, Chao; Zhang, Yi; Ye, Jinghua; Zhu, Huacheng; Huang, Kama

    2017-03-07

    A number of studies have achieved the consensus that microwave thermal technology can regenerate the granular activated carbon (GAC) more efficiently and energy-conservatively than other technologies. In particular, in the microwave heating industry, permittivity is a crucial parameter. This paper developed two equivalent models to establish the relationship between effective complex permittivity and pore volume of the GAC. It is generally based on Maxwell-Garnett approximation (MGA) theory. With two different assumptions in the model, two quantificational expressions were derived, respectively. Permittivity measurements and Brunauer-Emmett-Teller (BET) testing had been introduced in the experiments. Results confirmed the two expressions, which were extremely similar. Theoretical and experimental graphs were matched. This paper set up a bridge which links effective complex permittivity and pore volume of the GAC. Furthermore, it provides a potential and convenient method for the rapid assisted characterization of the GAC in its adsorption performance.

  10. Characterizing Adsorption Performance of Granular Activated Carbon with Permittivity

    PubMed Central

    Yang, Yang; Shi, Chao; Zhang, Yi; Ye, Jinghua; Zhu, Huacheng; Huang, Kama

    2017-01-01

    A number of studies have achieved the consensus that microwave thermal technology can regenerate the granular activated carbon (GAC) more efficiently and energy-conservatively than other technologies. In particular, in the microwave heating industry, permittivity is a crucial parameter. This paper developed two equivalent models to establish the relationship between effective complex permittivity and pore volume of the GAC. It is generally based on Maxwell-Garnett approximation (MGA) theory. With two different assumptions in the model, two quantificational expressions were derived, respectively. Permittivity measurements and Brunauer–Emmett–Teller (BET) testing had been introduced in the experiments. Results confirmed the two expressions, which were extremely similar. Theoretical and experimental graphs were matched. This paper set up a bridge which links effective complex permittivity and pore volume of the GAC. Furthermore, it provides a potential and convenient method for the rapid assisted characterization of the GAC in its adsorption performance. PMID:28772628

  11. Effect of heat treatment on CO2 adsorption of KOH-activated graphite nanofibers.

    PubMed

    Meng, Long-Yue; Park, Soo-Jin

    2010-12-15

    In this work, graphite nanofibers (GNFs) were successfully expanded intercalating KOH followed by heat treatment in the temperature range of 700-1000 °C. The aim was to improve the CO(2) adsorption capacity of the GNFs by increasing the porosity of GNFs. The effects of heat treatment on the pore structures of GNFs were investigated by N(2) full isotherms, XRD, SEM, and TEM. The CO(2) adsorption capacity was measured by CO(2) isothermal adsorption at 25 °C and 1 atm. From the results, it was found that the activation temperature had a major influence on CO(2) adsorption capacity and textural properties of GNFs. The specific surface area, total pore volume, and mesopore volume of the GNFs increased after heat treatment. The CO(2) adsorption isotherms showed that G-900 exhibited the best CO(2) adsorption capacity with 59.2 mg/g. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Lamina Cribrosa Microarchitecture in Monkey Early Experimental Glaucoma: Global Change

    PubMed Central

    Reynaud, Juan; Lockwood, Howard; Gardiner, Stuart K.; Williams, Galen; Yang, Hongli; Burgoyne, Claude F.

    2016-01-01

    Purpose The purpose of this study was to characterize experimental glaucoma (EG) versus control eye differences in lamina cribrosa (LC), beam diameter (BD), pore diameter (PD), connective tissue volume fraction (CTVF), connective tissue volume (CTV), and LC volume (LV) in monkey early EG. Methods Optic nerve heads (ONHs) of 14 unilateral EG and 6 bilateral normal (BN) monkeys underwent three-dimensional reconstruction and LC beam segmentation. Each beam and pore voxel was assigned a diameter based on the largest sphere that contained it before transformation to a common cylinder with inner, middle, and outer layers. Full-thickness and layer averages for BD, PD, CTVF, CTV, and LV were calculated for each ONH. Beam diameter and PD distributions for each ONH were fit to a gamma distribution and summarized by scale and shape parameters. Experimental glaucoma and depth effects were assessed for each parameter by linear mixed-effects (LME) modeling. Animal-specific EG versus control eye differences that exceeded the maximum intereye difference among the six BN animals were considered significant. Results Overall EG eye mean PD was 12.8% larger (28.2 ± 5.6 vs. 25.0 ± 3.3 μm), CTV was 26.5% larger (100.06 ± 47.98 vs. 79.12 ± 28.35 × 106 μm3), and LV was 40% larger (229.29 ± 98.19 vs. 163.63 ± 39.87 × 106 μm3) than control eyes (P ≤ 0.05, LME). Experimental glaucoma effects were significantly different by layer for PD (P = 0.0097) and CTVF (P < 0.0001). Pore diameter expanded consistently across all PDs. Experimental glaucoma eye-specific parameter change was variable in magnitude and direction. Conclusions Pore diameter, CTV, and LV increase in monkey early EG; however, EG eye-specific change is variable and includes both increases and decreases in BD and CTVF. PMID:27362781

  13. Influence of capillary end effects on steady-state relative permeability estimates from direct pore-scale simulations

    NASA Astrophysics Data System (ADS)

    Guédon, Gaël Raymond; Hyman, Jeffrey De'Haven; Inzoli, Fabio; Riva, Monica; Guadagnini, Alberto

    2017-12-01

    We investigate and characterize the influence of capillary end effects on steady-state relative permeabilities obtained in pore-scale numerical simulations of two-phase flows. Our study is motivated by the observation that capillary end effects documented in two-phase laboratory-scale experiments can significantly influence permeability estimates. While numerical simulations of two-phase flows in reconstructed pore-spaces are increasingly employed to characterize relative permeabilities, a phenomenon which is akin to capillary end effects can also arise in such analyses due to the constraints applied at the boundaries of the computational domain. We profile the relative strength of these capillary end effects on the calculation of steady-state relative permeabilities obtained within randomly generated porous micro-structures using a finite volume-based two-phase flow solver. We suggest a procedure to estimate the extent of the regions influenced by these capillary end effects, which in turn allows for the alleviation of bias in the estimation of relative permeabilities.

  14. Synchrotron Microtomographic Quantification of Geometrical Soil Pore Characteristics Affected by Compaction

    NASA Astrophysics Data System (ADS)

    Udawatta, Ranjith; Gantzer, Clark; Anderson, Stephen; Assouline, Shmuel

    2015-04-01

    Soil compaction degrades soil structure and affects water, heat, and gas exchange as well as root penetration and crop production. The objective of this study was to use X-ray computed microtomography (CMT) techniques to compare differences in geometrical soil pore parameters as influenced by compaction of two different aggregate size classes. Sieved (diam. < 2mm and < 0.5mm) and repacked (1.51 and 1.72 Mg m-3) Hamra soil cores of 5- by 5-mm (average porosities were 0.44 and 0.35) were imaged at 9.6-micrometer resolution at the Argonne Advanced Photon Source (synchrotron facility) using X-ray computed microtomography. Images of 58.9 mm3 volume were analyzed using 3-Dimensional Medial Axis (3DMA) software. Geometrical characteristics of the spatial distributions of pore structures (pore radii, volume, connectivity, path length, and tortuosity) were numerically investigated. Results show that the coordination number (CN) distribution and path length (PL) measured from the medial axis were reasonably fit by exponential relationships P(CN)=10-CN/Co and P(PL)=10-PL/PLo, respectively, where Co and PLo are the corresponding characteristic constants. Compaction reduced porosity, average pore size, number of pores, and characteristic constants. The average pore radii (64 and 61 μm; p<0.04), largest pore volume (1.6 and 0.6 mm3; p=0.06), number of pores (55 and 50; p=0.09), characteristic coordination number (6.3 and 6.0; p=0.09), and characteristic path length number (116 and 105; p=0.001) were significantly greater in the low density than the high density treatment. Aggregate size also influenced measured geometrical pore parameters. This analytical technique provides a tool for assessing changes in soil pores that affect hydraulic properties and thereby provides information to assist in assessment of soil management systems.

  15. Synchrotron microtomographic quantification of geometrical soil pore characteristics affected by compaction

    NASA Astrophysics Data System (ADS)

    Udawatta, R. P.; Gantzer, C. J.; Anderson, S. H.; Assouline, S.

    2015-07-01

    Soil compaction degrades soil structure and affects water, heat, and gas exchange as well as root penetration and crop production. The objective of this study was to use X-ray computed microtomography (CMT) techniques to compare differences in geometrical soil pore parameters as influenced by compaction of two different aggregate size classes. Sieved (diam. < 2 mm and < 0.5 mm) and repacked (1.51 and 1.72 Mg m-3) Hamra soil cores of 5- by 5 mm (average porosities were 0.44 and 0.35) were imaged at 9.6-micrometer resolution at the Argonne Advanced Photon Source (synchrotron facility) using X-ray computed microtomography. Images of 58.9 mm3 volume were analyzed using 3-Dimensional Medial Axis (3DMA) software. Geometrical characteristics of the spatial distributions of pore structures (pore radii, volume, connectivity, path length, and tortuosity) were numerically investigated. Results show that the coordination number (CN) distribution and path length (PL) measured from the medial axis were reasonably fit by exponential relationships P(CN) = 10-CN/Co and P(PL) = 10-PL/PLo, respectively, where Co and PLo are the corresponding characteristic constants. Compaction reduced porosity, average pore size, number of pores, and characteristic constants. The average pore radii (63.7 and 61 μm; p < 0.04), largest pore volume (1.58 and 0.58 mm3; p = 0.06), number of pores (55 and 50; p = 0.09), characteristic coordination number (6.32 and 5.94; p = 0.09), and characteristic path length number (116 and 105; p = 0.001) were significantly greater in the low density than the high density treatment. Aggregate size also influenced measured geometrical pore parameters. This analytical technique provides a tool for assessing changes in soil pores that affect hydraulic properties and thereby provides information to assist in assessment of soil management systems.

  16. Adsorption properties of carbon dioxide enchanced oil recovery additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, J.T.; Holbrook, S.T.

    1990-01-01

    The selection of the optimum foaming agent (surfactant) for enhancing oil production by carbon dioxide flooding is based on foamability and adsorption. Measurements of adsorption on carbonate cores from New Mexico reservoirs showed large adsorption differences between three commercial, high-foaming surfactants. An ethoxylated alcohol structure was at least adsorbed, 0.64 mg/cc pore volume; an ethoxylated alcohol sulfate was next, 0.74 mg/cc pore volume; the highest adsorbed was a glyceryl sulfonate, 2.30 mg/cc pore volume. Commercial application of the foaming additive involves injecting alternate slugs of surfactant solution and carbon dioxide. Surfactant concentration should be determined to allow for the adsorptionmore » above. 9 refs., 27 figs., 6 tabs.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jomekian, A.; Faculty of Chemical Engineering, Iran University of Science and Technology; Behbahani, R.M., E-mail: behbahani@put.ac.ir

    Ultra porous ZIF-8 particles synthesized using PEO/PA6 based poly(ether-block-amide) (Pebax 1657) as structure directing agent. Structural properties of ZIF-8 samples prepared under different synthesis parameters were investigated by laser particle size analysis, XRD, N{sub 2} adsorption analysis, BJH and BET tests. The overall results showed that: (1) The mean pore size of all ZIF-8 samples increased remarkably (from 0.34 nm to 1.1–2.5 nm) compared to conventionally synthesized ZIF-8 samples. (2) Exceptional BET surface area of 1869 m{sup 2}/g was obtained for a ZIF-8 sample with mean pore size of 2.5 nm. (3) Applying high concentrations of Pebax 1657 to themore » synthesis solution lead to higher surface area, larger pore size and smaller particle size for ZIF-8 samples. (4) Both, Increase in temperature and decrease in molar ratio of MeIM/Zn{sup 2+} had increasing effect on ZIF-8 particle size, pore size, pore volume, crystallinity and BET surface area of all investigated samples. - Highlights: • The pore size of ZIF-8 samples synthesized with Pebax 1657 increased remarkably. • The BET surface area of 1869 m{sup 2}/gr obtained for a ZIF-8 synthesized sample with Pebax. • Increase in temperature had increasing effect on textural properties of ZIF-8 samples. • Decrease in MeIM/Zn{sup 2+} had increasing effect on textural properties of ZIF-8 samples.« less

  18. Experimental Study on Mechanical Properties and Porosity of Organic Microcapsules Based Self-Healing Cementitious Composite.

    PubMed

    Wang, Xianfeng; Sun, Peipei; Han, Ningxu; Xing, Feng

    2017-01-01

    Encapsulation of healing agents embedded in a material matrix has become one of the major approaches for achieving self-healing function in cementitious materials in recent years. A novel type of microcapsules based self-healing cementitious composite was developed in Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University. In this study, both macro performance and the microstructure of the composite are investigated. The macro performance was evaluated by employing the compressive strength and the dynamic modulus, whereas the microstructure was represented by the pore structure parameters such as porosity, cumulative-pore volume, and average-pore diameter, which are significantly correlated to the pore-size distribution and the compressive strength. The results showed that both the compressive strength and the dynamic modulus, as well as the pore structure parameters such as porosity, cumulative-pore volume, and average-pore diameter of the specimen decrease to some extent with the amount of microcapsules. However, the self-healing rate and the recovery rate of the specimen performance and the pore-structure parameters increase with the amount of microcapsules. The results should confirm the self-healing function of microcapsules in the cementitious composite from macroscopic and microscopic viewpoints.

  19. Experimental Study on Mechanical Properties and Porosity of Organic Microcapsules Based Self-Healing Cementitious Composite

    PubMed Central

    Wang, Xianfeng; Sun, Peipei; Han, Ningxu; Xing, Feng

    2017-01-01

    Encapsulation of healing agents embedded in a material matrix has become one of the major approaches for achieving self-healing function in cementitious materials in recent years. A novel type of microcapsules based self-healing cementitious composite was developed in Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University. In this study, both macro performance and the microstructure of the composite are investigated. The macro performance was evaluated by employing the compressive strength and the dynamic modulus, whereas the microstructure was represented by the pore structure parameters such as porosity, cumulative-pore volume, and average-pore diameter, which are significantly correlated to the pore-size distribution and the compressive strength. The results showed that both the compressive strength and the dynamic modulus, as well as the pore structure parameters such as porosity, cumulative-pore volume, and average-pore diameter of the specimen decrease to some extent with the amount of microcapsules. However, the self-healing rate and the recovery rate of the specimen performance and the pore-structure parameters increase with the amount of microcapsules. The results should confirm the self-healing function of microcapsules in the cementitious composite from macroscopic and microscopic viewpoints. PMID:28772382

  20. Transport of water and ions in partially water-saturated porous media. Part 1. Constitutive equations

    NASA Astrophysics Data System (ADS)

    Revil, A.

    2017-05-01

    I developed a model of cross-coupled flow in partially saturated porous media based on electrokinetic coupling including the effect of ion filtration (normal and reverse osmosis) and the multi-component nature of the pore water (wetting) phase. The model also handles diffusion and membrane polarization but is valid only for saturations above the irreducible water saturation. I start with the local Nernst-Planck and Stokes equations and I use a volume-averaging procedure to obtain the generalized Ohm, Fick, and Darcy equations with cross-coupling terms at the scale of a representative elementary volume of the porous rock. These coupling terms obey Onsager's reciprocity, which is a required condition, at the macroscale, to keep the total dissipation function of the system positive. Rather than writing the electrokinetic terms in terms of zeta potential (the double layer electrical potential on the slipping plane located in the pore water), I developed the model in terms of an effective charge density dragged by the flow of the pore water. This effective charge density is found to be strongly controlled by the permeability and the water saturation. I also developed an electrical conductivity equation including the effect of saturation on both bulk and surface conductivities, the surface conductivity being associated with electromigration in the electrical diffuse layer coating the grains. This surface conductivity depends on the CEC of the porous material.

  1. Ion size effects upon ionic exclusion from dielectric interfaces and slit nanopores

    NASA Astrophysics Data System (ADS)

    Buyukdagli, Sahin; Achim, C. V.; Ala-Nissila, T.

    2011-05-01

    A previously developed field-theoretic model (Coalson et al 1995 J. Chem. Phys. 102 4584) that treats core collisions and Coulomb interactions on the same footing is investigated in order to understand ion size effects on the partition of neutral and charged particles at planar interfaces and the ionic selectivity of slit nanopores. We introduce a variational scheme that can go beyond the mean-field (MF) regime and couple in a consistent way pore-modified core interactions, steric effects, electrostatic solvation and image-charge forces, and surface charge induced electrostatic potential. Density profiles of neutral particles in contact with a neutral hard wall, obtained from Monte Carlo (MC) simulations are compared with the solutions of mean-field and variational equations. A recently proposed random-phase approximation (RPA) method is tested as well. We show that in the dilute limit, the MF and the variational theories agree well with simulation results, in contrast to the RPA method. The partition of charged Yukawa particles at a neutral dielectric interface (e.g. an air-water or protein-water interface) is investigated. It is shown that as a result of the competition between core collisions that push the ions toward the surface, and repulsive solvation and image forces that exclude them from the interface, a concentration peak of finite size ions sets in close to the dielectric interface. This effect is amplified with increasing ion size and bulk concentration. An integral expression for the surface tension that accounts for excluded volume effects is computed and the decrease of the surface tension with increasing ion size is illustrated. We also characterize the role played by the ion size in the ionic selectivity of neutral slit nanopores. We show that the complex interplay between electrostatic forces, excluded volume effects induced by core collisions and steric effects leads to an unexpected reversal in the ionic selectivity of the pore with varying pore size: while large pores exhibit a higher conductivity for large ions, narrow pores exclude large ions more efficiently than small ones.

  2. 3D shape extraction segmentation and representation of soil microstructures using generalized cylinders

    NASA Astrophysics Data System (ADS)

    Ngom, Ndèye Fatou; Monga, Olivier; Ould Mohamed, Mohamed Mahmoud; Garnier, Patricia

    2012-02-01

    This paper focuses on the modeling of soil microstructures using generalized cylinders, with a specific application to pore space. The geometric modeling of these microstructures is a recent area of study, made possible by the improved performance of computed tomography techniques. X-scanners provide very-high-resolution 3D volume images ( 3-5μm) of soil samples in which pore spaces can be extracted by thresholding. However, in most cases, the pore space defines a complex volume shape that cannot be approximated using simple analytical functions. We propose representing this shape using a compact, stable, and robust piecewise approximation by means of generalized cylinders. This intrinsic shape representation conserves its topological and geometric properties. Our algorithm includes three main processing stages. The first stage consists in describing the volume shape using a minimum number of balls included within the shape, such that their union recovers the shape skeleton. The second stage involves the optimum extraction of simply connected chains of balls. The final stage copes with the approximation of each simply optimal chain using generalized cylinders: circular generalized cylinders, tori, cylinders, and truncated cones. This technique was applied to several data sets formed by real volume computed tomography soil samples. It was possible to demonstrate that our geometric representation supplied a good approximation of the pore space. We also stress the compactness and robustness of this method with respect to any changes affecting the initial data, as well as its coherence with the intuitive notion of pores. During future studies, this geometric pore space representation will be used to simulate biological dynamics.

  3. Changes in pore structure of coal caused by coal-to-gas bioconversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra

    Microbial enhanced coalbed methane (ME-CBM) recovery is critically examined as a viable technology for natural gas recovery from coalbed methane (CBM) reservoirs. Since the majority of gas-in-place (GIP) is stored as an adsorbed phase in fine pores of coal matrix, the nano-pore structure directly influences gas storage and transport properties. Only limited studies have quantified the alteration of the nano-pore structure due to ME-CBM treatment. This study examines the evolution of the pore structure using a combination of small angle X-ray scattering (SAXS), low-pressure N 2 and CO 2 adsorption (LPGA) and high-pressure methane adsorption methods. The results show thatmore » the surface fractal dimension decreases for the two bioconverted coals compared to the untreated coal. After bio-treatment, the mesopore surface area and pore volume decrease with the average pore diameter increases, while the micropore surface area increases with pore volume decreases. Both inaccessible meso-/micropore size distributions decrease after bioconversion, while the accessible micropore size distribution increases, making a portion of closed micropore network accessible. In addition, the methane adsorption capacities increase after bio-treatment, which is confirmed by the increase of micropore surface area. A conceptual physical model of methanogenesis is proposed based on the evolution of the pore structure.« less

  4. Changes in pore structure of coal caused by coal-to-gas bioconversion

    DOE PAGES

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra; ...

    2017-06-19

    Microbial enhanced coalbed methane (ME-CBM) recovery is critically examined as a viable technology for natural gas recovery from coalbed methane (CBM) reservoirs. Since the majority of gas-in-place (GIP) is stored as an adsorbed phase in fine pores of coal matrix, the nano-pore structure directly influences gas storage and transport properties. Only limited studies have quantified the alteration of the nano-pore structure due to ME-CBM treatment. This study examines the evolution of the pore structure using a combination of small angle X-ray scattering (SAXS), low-pressure N 2 and CO 2 adsorption (LPGA) and high-pressure methane adsorption methods. The results show thatmore » the surface fractal dimension decreases for the two bioconverted coals compared to the untreated coal. After bio-treatment, the mesopore surface area and pore volume decrease with the average pore diameter increases, while the micropore surface area increases with pore volume decreases. Both inaccessible meso-/micropore size distributions decrease after bioconversion, while the accessible micropore size distribution increases, making a portion of closed micropore network accessible. In addition, the methane adsorption capacities increase after bio-treatment, which is confirmed by the increase of micropore surface area. A conceptual physical model of methanogenesis is proposed based on the evolution of the pore structure.« less

  5. Partitioning of habitable pore space in earthworm burrows.

    PubMed

    Gorres, Josef H; Amador, Jose A

    2010-03-01

    Earthworms affect macro-pore structure of soils. However, some studies suggest that earthworm burrow walls and casts themselves differ greatly in structure from surrounding soils, potentially creating habitat for microbivorours nematodes which accelerate the decomposition and C and N mineralization. In this study aggregates were sampled from the burrow walls of the anecic earthworm Lumbricus terrestris and bulk soil (not altered by earthworms) from mesocosm incubated in the lab for 0, 1, 3, 5 and 16 weeks. Pore volumes and pore sizes were measured in triplicate with Mercury Intrusion Porosimetry (MIP). This method is well suited to establish pore size structure in the context of habitat, because it measures the stepwise intrusion of mercury from the outside of the aggregate into ever smaller pores. The progress of mercury into the aggregate interior thus resembles potential paths of a nematode into accessible habitable pore spaces residing in an aggregate. Total specific pore volume, V(s), varied between 0.13 and 0.18 mL/g and increased from 3 to 16 weeks in both burrow and bulk soil. Differences between total V(s) of bulk and burrow samples were not significant on any sampling date. However, differences were significant for pore size fractions at the scale of nematode body diameter.

  6. Partitioning of habitable pore space in earthworm burrows

    PubMed Central

    Amador, Jose A.

    2010-01-01

    Earthworms affect macro-pore structure of soils. However, some studies suggest that earthworm burrow walls and casts themselves differ greatly in structure from surrounding soils, potentially creating habitat for microbivorours nematodes which accelerate the decomposition and C and N mineralization. In this study aggregates were sampled from the burrow walls of the anecic earthworm Lumbricus terrestris and bulk soil (not altered by earthworms) from mesocosm incubated in the lab for 0, 1, 3, 5 and 16 weeks. Pore volumes and pore sizes were measured in triplicate with Mercury Intrusion Porosimetry (MIP). This method is well suited to establish pore size structure in the context of habitat, because it measures the stepwise intrusion of mercury from the outside of the aggregate into ever smaller pores. The progress of mercury into the aggregate interior thus resembles potential paths of a nematode into accessible habitable pore spaces residing in an aggregate. Total specific pore volume, Vs, varied between 0.13 and 0.18 mL/g and increased from 3 to 16 weeks in both burrow and bulk soil. Differences between total Vs of bulk and burrow samples were not significant on any sampling date. However, differences were significant for pore size fractions at the scale of nematode body diameter. PMID:22736839

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, W.; Chang, Q.G.; Liu, W.D.

    A series of follow-up investigations were performed to produce data for improving the four-indicator carbon selection method that we developed to identify high-potential activated carbons effective for removing specific organic water pollutants. The carbon's pore structure and surface chemistry are dependent on the raw material and the activation process. Coconut carbons have relatively more small pores than large pores; coal and apricot nutshell/walnut shell fruit carbons have the desirable pore structures for removing adsorbates of all sizes. Chemical activation, excessive activation, and/or thermal reactivation enlarge small pores, resulting in reduced phenol number and higher tannic acid number. Activated carbon's phenol,more » iodine, methylene blue, and tannic acid numbers are convenient indicators of its surface area and pore volume of pore diameters < 10, 10-15, 15-28, and > 28 angstrom, respectively. The phenol number of a carbon is also a good indicator of its surface acidity of oxygen-containing organic functional groups that affect the adsorptive capacity for aromatic and other small polar organics. The tannic acid number is an indicator of carbon's capacity for large, high-molecular-weight natural organic precursors of disinfection by-products in water treatment. The experimental results for removing nitrobenzene, methyl-tert-butyl ether, 4,4-bisphenol, humic acid, and the organic constituents of a biologically treated coking-plant effluent have demonstrated the effectiveness of this capacity-indicator-based method of carbon selection.« less

  8. Adsorption of polypropylene from dilute solutions on a zeolite column packing.

    PubMed

    Macko, Tibor; Pasch, Harald; Denayer, Joeri F

    2005-01-01

    Faujasite type zeolite CBV-780 was tested as adsorbent for isotactic polypropylene by liquid chromatography. When cyclohexane, cyclohexanol, n-decanol, n-dodecanol, diphenylmethane, or methylcyclohexane was used as mobile phase, polypropylene was fully or partially retained within the column packing. This is the first series of sorbent-solvent systems to show a pronounced retention of isotactic polypropylene. According to the hydrodynamic volumes of polypropylene in solution, macromolecules of polypropylene should be fully excluded from the pore volume of the sorbent. Sizes of polypropylene macromolecules in linear conformations, however, correlate with the pore size of the column packing used. It is presumed that the polypropylene chains partially penetrate into the pores and are retained due to the high adsorption potential in the narrow pores.

  9. Liquid Photonic Crystals for Mesopore Detection.

    PubMed

    Zhu, Biting; Fu, Qianqian; Chen, Ke; Ge, Jianping

    2018-01-02

    Nitrogen adsorption-desorption for mesopore characterization requires the using of expensive instrumentation, time-consuming processes, and the consumption of liquid nitrogen. Herein, a new method is developed to measure the pore parameters through mixing a mesoporous substance with a supersaturated SiO 2 colloidal solution at different temperatures, and subsequent rapid measurement of reflection changes of the precipitated liquid photonic crystals. The pore volumes and diameters of mesoporous silica were measured according to the positive correlation between unit mass reflection change (Δλ/m) and pore volume (V), and the negative correlation between average absorption temperature (T) and pore diameter (D). This new approach may provide an alternative method for fast, convenient and economical characterization of mesoporous materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Preparation of activated petroleum coke for removal of naphthenic acids model compounds: Box-Behnken design optimization of KOH activation process.

    PubMed

    Niasar, Hojatallah Seyedy; Li, Hanning; Das, Sreejon; Kasanneni, Tirumala Venkateswara Rao; Ray, Madhumita B; Xu, Chunbao Charles

    2018-04-01

    This study employed Box-Behnken design and response surface methodology to optimize activation parameters for the production of activated petroleum coke (APC) adsorbent from petroleum coke (PC) to achieve highest adsorption capacity for three model naphthenic acids. Activated petroleum coke (APC) adsorbent with a BET surface area of 1726 m 2 /g and total pore volume of 0.85 cc/g was produced at the optimum activation conditions (KOH/coke mass ratio) of 3.0, activation temperature 790 °C, and activation time 3.47 h). Effects of the activation parameters on the adsorption pefromances (adsortion capaciy and kinetics) were investigated. With the APC obtained at the optimum activation condition, the maximum adsorption capacity of 451, 362, and 320 (mg/g) was achieved for 2-naphthoic acid, diphenylacetic acid and cyclohexanepentanoic acid (CP), respectively. Although, generally APC adsorbents with a higher specific surface area and pore volume provide better adsorption capacity, the textural properties (surface areas and pore volume) are not the only parameters determining the APC adsorbents' adsorption capacity. Other parameters such as surface functionalities play effective roles on the adsorption capacity of the produced APC adsorbents for NAs. The KOH activation process, in particular the acid washing step, distinctly reduced the sulfur and metals contents in the raw PC, decreasing the leaching potential of metals from APC adsorbents during adsorption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Synergistic Effect of Molecular-Type Electrocatalysts with Ultrahigh Pore Volume Carbon Microspheres for Lithium-Sulfur Batteries.

    PubMed

    Lim, Won-Gwang; Mun, Yeongdong; Cho, Ara; Jo, Changshin; Lee, Seonggyu; Han, Jeong Woo; Lee, Jinwoo

    2018-05-14

    Lithium-sulfur (Li-S) batteries are regarded as potential high-energy storage devices due to their outstanding energy density. However, the low electrical conductivity of sulfur, dissolution of the active material, and sluggish reaction kinetics cause poor cycle stability and rate performance. A variety of approaches have been attempted to resolve the above issues and achieve enhanced electrochemical performance. However, inexpensive multifunctional host materials which can accommodate large quantities of sulfur and exhibit high electrode density are not widely available, which hinders the commercialization of Li-S batteries. Herein, mesoporous carbon microspheres with ultrahigh pore volume are synthesized, followed by the incorporation of Fe-N-C molecular catalysts into the mesopores, which can act as sulfur hosts. The ultrahigh pore volume of the prepared host material can accommodate up to ∼87 wt % sulfur, while the uniformly controlled spherical morphology and particle size of the carbon microspheres enable high areal/volumetric capacity with high electrode density. Furthermore, the uniform distribution of Fe-N-C (only 0.33 wt %) enhances the redox kinetics of the conversion reaction of sulfur and efficiently captures the soluble intermediates. The resulting electrode with 5.2 mg sulfur per cm 2 shows excellent cycle stability and 84% retention of the initial capacity even after 500 cycles at a 3 C rate.

  12. Water storage capacities of soil under four different land uses in Hawaii

    Treesearch

    Teruo Yamamoto; Paul Duffy

    1963-01-01

    Soil pore volume and pore size were correlated with land use or vegetation cover type. The top foot of forest soils had more large pores and higher water-holding capacities than that of soils under cultivation, in pasture land, or in idle grassland.

  13. Breakdown of lung framework and an increase in pores of Kohn as initial events of emphysema and a cause of reduction in diffusing capacity.

    PubMed

    Yoshikawa, Akira; Sato, Shuntaro; Tanaka, Tomonori; Hashisako, Mikiko; Kashima, Yukio; Tsuchiya, Tomoshi; Yamasaki, Naoya; Nagayasu, Takeshi; Yamamoto, Hiroshi; Fukuoka, Junya

    2016-01-01

    Pulmonary emphysema is the pathological prototype of chronic obstructive pulmonary disease and is also associated with other lung diseases. We considered that observation with different approaches may provide new insights for the pathogenesis of emphysema. We reviewed tissue blocks of the lungs of 25 cases with/without emphysema and applied a three-dimensional observation method to the blocks. Based on the three-dimensional characteristics of the alveolar structure, we considered one face of the alveolar polyhedron as a structural unit of alveoli and called it a framework unit (FU). We categorized FUs based on their morphological characteristics and counted their number to evaluate the destructive changes in alveoli. We also evaluated the number and the area of pores of Kohn in FUs. We performed linear regression analysis to estimate the effect of these data on pulmonary function tests. In multivariable regression analysis, a decrease in the number of FUs without an alveolar wall led to a significant decrease in the diffusing capacity of the lung for carbon monoxide (DLCO) and DLCO per unit alveolar volume, and an increase in the area of pores of Kohn had a significant effect on an increase in residual capacity. A breakdown in the lung framework and an increase in pores of Kohn are associated with a decrease in DLCO and DLCO per unit alveolar volume with/without emphysema.

  14. Comparison of thermal compatibility between atomized and comminuted U{sub 3}Si dispersion fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Woo-Seog; Park, Jong-Man; Kim, Chang-Kyu

    1997-08-01

    Thermal compatibility of atomized U{sub 3}Si dispersion fuels were evaluated up to 2600 hours in the temperature range from 250 to 500{degrees}C, and compared with that of comminuted U{sub 3}Si. Atomized U{sub 3}Si showed better performance in terms of volume expansion of fuel meats. The reaction zone of U{sub 3}Si and Al occurred along the grain boundaries and deformation bands in U{sub 3}Si particles. Pores around fuel particles appeared at high temperature or after long-term annealing tests to remain diffusion paths over the trench of the pores. The constraint effects of cladding on fuel rod suppressed the fuel meat, andmore » reduced the volume expansion.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanping Guo; Abhishek Yadav; Tanju Karanfil

    Adsorption of trichloroethylene (TCE) and atrazine, two synthetic organic contaminants (SOCs) having different optimum adsorption pore regions, by four activated carbons and an activated carbon fiber (ACF) was examined. Adsorbents included two coconut-shell based granular activated carbons (GACs), two coal-based GACs (F400 and HD4000) and a phenol formaldehyde-based activated carbon fiber. The selected adsorbents had a wide range of pore size distributions but similar surface acidity and hydrophobicity. Single solute and preloading (with a dissolved organic matter (DOM)) isotherms were performed. Single solute adsorption results showed that (i) the adsorbents having higher amounts of pores with sizes about the dimensionsmore » of the adsorbate molecules exhibited higher uptakes, (ii) there were some pore structure characteristics, which were not completely captured by pore size distribution analysis, that also affected the adsorption, and (iii) the BET surface area and total pore volume were not the primary factors controlling the adsorption of SOCs. The preloading isotherm results showed that for TCE adsorbing primarily in pores <10 {angstrom}, the highly microporous ACF and GACs, acting like molecular sieves, exhibited the highest uptakes. For atrazine with an optimum adsorption pore region of 10-20 {angstrom}, which overlaps with the adsorption region of some DOM components, the GACs with a broad pore size distribution and high pore volumes in the 10-20 {angstrom} region had the least impact of DOM on the adsorption. 25 refs., 3 figs., 3 tabs.« less

  16. Adsorption of sulfur dioxide on ammonia-treated activated carbon fibers

    USGS Publications Warehouse

    Mangun, C.L.; DeBarr, J.A.; Economy, J.

    2001-01-01

    A series of activated carbon fibers (ACFs) and ammonia-treated ACFs prepared from phenolic fiber precursors have been studied to elucidate the role of pore size, pore volume, and pore surface chemistry on adsorption of sulfur dioxide and its catalytic conversion to sulfuric acid. As expected, the incorporation of basic functional groups into the ACFs was shown as an effective method for increasing adsorption of sulfur dioxide. The adsorption capacity for dry SO2 did not follow specific trends; however the adsorption energies calculated from the DR equation were found to increase linearly with nitrogen content for each series of ACFs. Much higher adsorption capacities were achieved for SO2 in the presence of oxygen and water due to its catalytic conversion to H2SO4. The dominant factor for increasing adsorption of SO2 from simulated flue gas for each series of fibers studied was the weight percent of basic nitrogen groups present. In addition, the adsorption energies calculated for dry SO2 were shown to be linearly related to the adsorption capacity of H2SO4 from this flue gas for all fibers. It was shown that optimization of this parameter along with the pore volume results in higher adsorption capacities for removal of SO2 from flue gases. ?? 2001 Elsevier Science Ltd. All rights reserved.

  17. Porosity in low dielectric constant SiOCH films depth profiled by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Brusa, R. S.; Spagolla, M.; Karwasz, G. P.; Zecca, A.; Ottaviani, G.; Corni, F.; Bacchetta, M.; Carollo, E.

    2004-03-01

    The 3γ annihilation of orthopositronium and the Doppler broadening of the positron annihilation line have been measured by implanting low energy positrons in low dielectric constant (low-k) SiOCH films. The evolution and stability of film porosity with thermal treatments in the 400-900 °C temperature range has been studied. The films have been produced by plasma enhanced chemical vapor deposition and after annealing in N2 atmospheres at 480 °C have been treated in N2+He plasma. The minimum free volume of the pores in the as-produced samples has been estimated to correspond to that of a sphere with radius r=0.6 nm. The treatment in the N2 plasma was found to seal the pores up to 45 nm depth. Both the composition of the films (as obtained by Rutherford backscattering spectroscopy and elastic recoil detection analysis) and the chemical environment of the pores probed by positrons were found to be very stable up to 600 °C thermal treatment. Above such a temperature a reduction of the hydrogen content accompanied by a change in the structure and in the chemical environment of the pores has been observed. In the samples thermal treated at 800-900 °C, the positronium formation is reduced by one-third respect with the as produced sample. In the annealed and as-produced films, a natural aging of 30 days in air was enough to contaminate the porosity, as pointed out by a strong reduction of the 3γ annihilations. The effect of contamination and the distribution of the pores were completely recovered after a thermal treatment at 400 °C. Artificial aging of SiOCH films in controlled atmospheres of H2, O2, H2O has shown that H2O is the more efficient contaminant in reducing the effective volume of the pores.

  18. Pore size and concentration effect of mesoporous silica nanoparticles on the coefficient of thermal expansion and optical transparency of poly(ether sulfone) films.

    PubMed

    Vo, Nhat Tri; Patra, Astam K; Kim, Dukjoon

    2017-01-18

    Mesoporous silica nanoparticles (MSNs) with uniform size (<50 nm) yet with different pore diameters were synthesized, and used as fillers in poly(ether sulfone) (PES) films in order to decrease their coefficient of thermal expansion (CTE) without sacrificing optical transparency. Here, both CTE and optical transparency of the MSN/PES nanocomposite films gradually decreased with increasing MSN concentration. The PES films containing MSNs with larger pores showed the best performance in CTE and optical transparency. While the CTE decreased by 32.3% with increasing MSN content up to 0.5 wt%, the optical transparency decreased by only less than 6.9% because of the small and uniform particle size of less than 50 nm, which minimizes light scattering. This pore size effect is more clearly observed via an annealing process, which enables the polymer chains to slowly move and fill in the free volume in the pores of the MSN, and thus restricts the thermal motion. The effect of the silica nanoparticles was investigated not only on the thermal stability but also on the mechanical stability. We expect the MSNs synthesized in this study to be used as a promising filler to enhance the thermal and mechanical stability of the PES substrate without sacrificing its optical transparency.

  19. Welded tuff porosity characterization using mercury intrusion, nitrogen and ethylene glycol monoethyl ether sorption and epifluorescence microscopy

    USGS Publications Warehouse

    Reddy, M.M.; Claassen, H.C.; Rutherford, D.W.; Chiou, C.T.

    1994-01-01

    Porosity of welded tuff from Snowshoe Mountain, Colorado, was characterized by mercury intrusion porosimetry (MIP), nitrogen sorption porosimetry, ethylene glycol monoethyl ether (EGME) gas phase sorption and epifluorescence optical microscopy. Crushed tuff of two particle-size fractions (1-0.3 mm and less than 0.212 mm), sawed sections of whole rock and crushed tuff that had been reacted with 0.1 N hydrochloric acid were examined. Average MIP pore diameter values were in the range of 0.01-0.02??m. Intrusion volume was greatest for tuff reacted with 0.1 N hydrochloric acid and least for sawed tuff. Cut rock had the smallest porosity (4.72%) and crushed tuff reacted in hydrochloric acid had the largest porosity (6.56%). Mean pore diameters from nitrogen sorption measurements were 0.0075-0.0187 ??m. Nitrogen adsorption pore volumes (from 0.005 to 0.013 cm3/g) and porosity values (from 1.34 to 3.21%) were less than the corresponding values obtained by MIP. More than half of the total tuff pore volume was associated with pore diameters < 0.05??m. Vapor sorption of EGME demonstrated that tuff pores contain a clay-like material. Epifluorescence microscopy indicated that connected porosity is heterogeneously distributed within the tuff matix; mineral grains had little porosity. Tuff porosity may have important consequences for contaminant disposal in this host rock. ?? 1994.

  20. Assessing the utility of FIB-SEM images for shale digital rock physics

    NASA Astrophysics Data System (ADS)

    Kelly, Shaina; El-Sobky, Hesham; Torres-Verdín, Carlos; Balhoff, Matthew T.

    2016-09-01

    Shales and other unconventional or low permeability (tight) reservoirs house vast quantities of hydrocarbons, often demonstrate considerable water uptake, and are potential repositories for fluid sequestration. The pore-scale topology and fluid transport mechanisms within these nanoporous sedimentary rocks remain to be fully understood. Image-informed pore-scale models are useful tools for studying porous media: a debated question in shale pore-scale petrophysics is whether there is a representative elementary volume (REV) for shale models? Furthermore, if an REV exists, how does it differ among petrophysical properties? We obtain three dimensional (3D) models of the topology of microscale shale volumes from image analysis of focused ion beam-scanning electron microscope (FIB-SEM) image stacks and investigate the utility of these models as a potential REV for shale. The scope of data used in this work includes multiple local groups of neighboring FIB-SEM images of different microscale sizes, corresponding core-scale (milli- and centimeters) laboratory data, and, for comparison, series of two-dimensional (2D) cross sections from broad ion beam SEM images (BIB-SEM), which capture a larger microscale field of view than the FIB-SEM images; this array of data is larger than the majority of investigations with FIB-SEM-derived microscale models of shale. Properties such as porosity, organic matter content, and pore connectivity are extracted from each model. Assessments of permeability with single phase, pressure-driven flow simulations are performed in the connected pore space of the models using the lattice-Boltzmann method. Calculated petrophysical properties are compared to those of neighboring FIB-SEM images and to core-scale measurements of the sample associated with the FIB-SEM sites. Results indicate that FIB-SEM images below ∼5000 μm3 volume (the largest volume analyzed) are not a suitable REV for shale permeability and pore-scale networks; i.e. field of view is compromised at the expense of detailed, but often unconnected, nanopore morphology. Further, we find that it is necessary to acquire several local FIB-SEM or BIB-SEM images and correlate their extracted geometric properties to improve the likelihood of achieving representative values of porosity and organic matter volume. Our work indicates that FIB-SEM images of microscale volumes of shale are a qualitative tool for petrophysical and transport analysis. Finally, we offer alternatives for quantitative pore-scale assessments of shale.

  1. Pore water sampling in acid sulfate soils: a new peeper method.

    PubMed

    Johnston, Scott G; Burton, Edward D; Keene, Annabelle F; Bush, Richard T; Sullivan, Leigh A; Isaacson, Lloyd

    2009-01-01

    This study describes the design, deployment, and application of a modified equilibration dialysis device (peeper) optimized for sampling pore waters in acid sulfate soils (ASS). The modified design overcomes the limitations of traditional-style peepers, when sampling firm ASS materials over relatively large depth intervals. The new peeper device uses removable, individual cells of 25 mL volume housed in a 1.5 m long rigid, high-density polyethylene rod. The rigid housing structure allows the device to be inserted directly into relatively firm soils without requiring a supporting frame. The use of removable cells eliminates the need for a large glove-box after peeper retrieval, thus simplifying physical handling. Removable cells are easily maintained in an inert atmosphere during sample processing and the 25-mL sample volume is sufficient for undertaking multiple analyses. A field evaluation of equilibration times indicates that 32 to 38 d of deployment was necessary. Overall, the modified method is simple and effective and well suited to acquisition and processing of redox-sensitive pore water profiles>1 m deep in acid sulfate soil or any other firm wetland soils.

  2. Multi-scale characterization of pore evolution in a combustion metamorphic complex, Hatrurim basin, Israel: Combining (ultra) small-angle neutron scattering and image analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hsiu-Wen; Anovitz, Lawrence; Burg, Avihu

    Backscattered scanning electron micrograph and ultra small- and small-angle neutron scattering data have been combined to provide statistically meaningful data on the pore/grain structure and pore evolution of combustion metamorphic complexes from the Hatrurim basin, Israel. Three processes, anti-sintering roughening, alteration of protolith (dehydration, decarbonation, and oxidation) and crystallization of high-temperature minerals, occurred simultaneously, leading to significant changes in observed pore/grain structures. Pore structures in the protoliths, and in lowand high-grade metamorphic rocks show surface (Ds) and mass (Dm) pore fractal geometries with gradual increases in both Ds and Dm values as a function of metamorphic grade. This suggests thatmore » increases in pore volume and formation of less branching pore networks are accompanied by a roughening of pore/grain interfaces. Additionally, pore evolution during combustion metamorphism is also characterized by reduced contributions from small-scale pores to the cumulative porosity in the high-grade rocks. At high temperatures, small-scale pores may be preferentially closed by the formation of high-temperature minerals, producing a rougher morphology with increasing temperature. Alternatively, large-scale pores may develop at the expense of small-scale pores. These observations (pore fractal geometry and cumulative porosity) indicate that the evolution of pore/grain structures is correlated with the growth of high-temperature phases and is a consequence of the energy balance between pore/grain surface energy and energy arising from heterogeneous phase contacts. The apparent pore volume density further suggests that the localized time/temperature development of the high-grade Hatrurim rocks is not simply an extension of that of the low-grade rocks. The former likely represents the "hot spots (burning foci)" in the overall metamorphic terrain while the latter may represent contact aureoles.« less

  3. Highly tunable porous organic polymer (POP) supports for metallocene-based ethylene polymerization

    NASA Astrophysics Data System (ADS)

    Wang, Xiong; Li, Zhenyou; Han, Xiaoyu; Han, Zhengang; Bai, Yongxiao

    2017-10-01

    Porous organic Polymers (POPs) can not only exhibit high specific surface area and pore volume, but also tunable pore size distribution. Herein, copolymers of 2-hydroxyethylmethylacrylate (HEMA) and divinylbenzene (DVB) with specific pore structure were synthesized via a dispersion polymerization strategy, and then immobilized metallocene catalysts with well-defined pore structure were obtained on the produced POP supports. The nitrogen sorption and Gel permeation chromatography (GPC) results demonstrate that the pore structure of the immobilized metallocene catalyst is highly dependent on the pore structure of the POPs, and the pore structure of metallocene catalysts or the POPs has a significant influence on the molecular chain growth of the produced polyethylene. By tuning the distribution of the active species scattered in the micro- and the narrow meso-pore range (roughly ≤4 nm), the chain growth of the polyolefin can be tailored effectively during the polymerization process, although differential scanning calorimetry (DSC) and temperature rising elution fractionation (TREF) results show that the chemical composition distributions (CCDs) of produced PE from the POPs-supported metallocene catalysts are not determined by polymerization activity or molecule chain length, but mainly by the active site species scattered in the supported catalysts. Scanning electron micrograph (SEM) shows that the produced polyethylene has highly porous fabric which consists of nanofiber and spherical beads of micron dimension.

  4. Modeling failure in brittle porous ceramics

    NASA Astrophysics Data System (ADS)

    Keles, Ozgur

    Brittle porous materials (BPMs) are used for battery, fuel cell, catalyst, membrane, filter, bone graft, and pharmacy applications due to the multi-functionality of their underlying porosity. However, in spite of its technological benefits the effects of porosity on BPM fracture strength and Weibull statistics are not fully understood--limiting a wider use. In this context, classical fracture mechanics was combined with two-dimensional finite element simulations not only to account for pore-pore stress interactions, but also to numerically quantify the relationship between the local pore volume fraction and fracture statistics. Simulations show that even the microstructures with the same porosity level and size of pores differ substantially in fracture strength. The maximum reliability of BPMs was shown to be limited by the underlying pore--pore interactions. Fracture strength of BMPs decreases at a faster rate under biaxial loading than under uniaxial loading. Three different types of deviation from classic Weibull behavior are identified: P-type corresponding to a positive lower tail deviation, N-type corresponding to a negative lower tail deviation, and S-type corresponding to both positive upper and lower tail deviations. Pore-pore interactions result in either P-type or N-type deviation in the limit of low porosity, whereas S-type behavior occurs when clusters of low and high fracture strengths coexist in a fracture data.

  5. Effective properties of a fly ash geopolymer: Synergistic application of X-ray synchrotron tomography, nanoindentation, and homogenization models

    DOE PAGES

    Das, Sumanta; Yang, Pu; Singh, Sudhanshu S.; ...

    2015-09-02

    Microstructural and micromechanical investigation of a fly ash-based geopolymer using: (i) synchrotron x-ray tomography (XRT) to determine the volume fraction and tortuosity of pores that are influential in fluid transport, (ii) mercury intrusion porosimetry (MIP) to capture the volume fraction of smaller pores, (iii) scanning electron microscopy (SEM) combined with multi-label thresholding to identify and characterize the solid phases in the microstructure, and (iv) nanoindentation to determine the component phase elastic properties using statistical deconvolution, is reported in this paper. The phase volume fractions and elastic properties are used in multi-step mean field homogenization (Mori- Tanaka and double inclusion) modelsmore » to determine the homogenized macroscale elastic modulus of the composite. The homogenized elastic moduli are in good agreement with the flexural elastic modulus determined on macroscale paste beams. As a result, the combined use of microstructural and micromechanical characterization tools at multiple scales provides valuable information towards the material design of fly ash geopolymers.« less

  6. Effect of Pore Pressure on Slip Failure of an Impermeable Fault: A Coupled Micro Hydro-Geomechanical Model

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Juanes, R.

    2015-12-01

    The geomechanical processes associated with subsurface fluid injection/extraction is of central importance for many industrial operations related to energy and water resources. However, the mechanisms controlling the stability and slip motion of a preexisting geologic fault remain poorly understood and are critical for the assessment of seismic risk. In this work, we develop a coupled hydro-geomechanical model to investigate the effect of fluid injection induced pressure perturbation on the slip behavior of a sealing fault. The model couples single-phase flow in the pores and mechanics of the solid phase. Granular packs (see example in Fig. 1a) are numerically generated where the grains can be either bonded or not, depending on the degree of cementation. A pore network is extracted for each granular pack with pore body volumes and pore throat conductivities calculated rigorously based on geometry of the local pore space. The pore fluid pressure is solved via an explicit scheme, taking into account the effect of deformation of the solid matrix. The mechanics part of the model is solved using the discrete element method (DEM). We first test the validity of the model with regard to the classical one-dimensional consolidation problem where an analytical solution exists. We then demonstrate the ability of the coupled model to reproduce rock deformation behavior measured in triaxial laboratory tests under the influence of pore pressure. We proceed to study the fault stability in presence of a pressure discontinuity across the impermeable fault which is implemented as a plane with its intersected pore throats being deactivated and thus obstructing fluid flow (Fig. 1b, c). We focus on the onset of shear failure along preexisting faults. We discuss the fault stability criterion in light of the numerical results obtained from the DEM simulations coupled with pore fluid flow. The implication on how should faults be treated in a large-scale continuum model is also presented.

  7. On the predictivity of pore-scale simulations: Estimating uncertainties with multilevel Monte Carlo

    NASA Astrophysics Data System (ADS)

    Icardi, Matteo; Boccardo, Gianluca; Tempone, Raúl

    2016-09-01

    A fast method with tunable accuracy is proposed to estimate errors and uncertainties in pore-scale and Digital Rock Physics (DRP) problems. The overall predictivity of these studies can be, in fact, hindered by many factors including sample heterogeneity, computational and imaging limitations, model inadequacy and not perfectly known physical parameters. The typical objective of pore-scale studies is the estimation of macroscopic effective parameters such as permeability, effective diffusivity and hydrodynamic dispersion. However, these are often non-deterministic quantities (i.e., results obtained for specific pore-scale sample and setup are not totally reproducible by another ;equivalent; sample and setup). The stochastic nature can arise due to the multi-scale heterogeneity, the computational and experimental limitations in considering large samples, and the complexity of the physical models. These approximations, in fact, introduce an error that, being dependent on a large number of complex factors, can be modeled as random. We propose a general simulation tool, based on multilevel Monte Carlo, that can reduce drastically the computational cost needed for computing accurate statistics of effective parameters and other quantities of interest, under any of these random errors. This is, to our knowledge, the first attempt to include Uncertainty Quantification (UQ) in pore-scale physics and simulation. The method can also provide estimates of the discretization error and it is tested on three-dimensional transport problems in heterogeneous materials, where the sampling procedure is done by generation algorithms able to reproduce realistic consolidated and unconsolidated random sphere and ellipsoid packings and arrangements. A totally automatic workflow is developed in an open-source code [1], that include rigid body physics and random packing algorithms, unstructured mesh discretization, finite volume solvers, extrapolation and post-processing techniques. The proposed method can be efficiently used in many porous media applications for problems such as stochastic homogenization/upscaling, propagation of uncertainty from microscopic fluid and rock properties to macro-scale parameters, robust estimation of Representative Elementary Volume size for arbitrary physics.

  8. Column Testing and 1D Reactive Transport Modeling to Evaluate Uranium Plume Persistence Processes

    NASA Astrophysics Data System (ADS)

    Johnson, R. H.; Morrison, S.; Morris, S.; Tigar, A.; Dam, W. L.; Dayvault, J.

    2015-12-01

    At many U.S. Department of Energy Office of Legacy Management sites, 100 year natural flushing was selected as a remedial option for groundwater uranium plumes. However, current data indicate that natural flushing is not occurring as quickly as expected and solid-phase and aqueous uranium concentrations are persistent. At the Grand Junction, Colorado office site, column testing was completed on core collected below an area where uranium mill tailings have been removed. The total uranium concentration in this core was 13.2 mg/kg and the column was flushed with laboratory-created water with no uranium and chemistry similar to the nearby Gunnison River. The core was flushed for a total of 91 pore volumes producing a maximum effluent uranium concentration of 6,110 μg/L at 2.1 pore volumes and a minimum uranium concentration of 36.2 μg/L at the final pore volume. These results indicate complex geochemical reactions at small pore volumes and a long tailing affect at greater pore volumes. Stop flow data indicate the occurrence of non-equilibrium processes that create uranium concentration rebound. These data confirm the potential for plume persistence, which is occurring at the field scale. 1D reactive transport modeling was completed using PHREEQC (geochemical model) and calibrated to the column test data manually and using PEST (inverse modeling calibration routine). Processes of sorption, dual porosity with diffusion, mineral dissolution, dispersion, and cation exchange were evaluated separately and in combination. The calibration results indicate that sorption and dual porosity are major processes in explaining the column test data. These processes are also supported by fission track photographs that show solid-phase uranium residing in less mobile pore spaces. These procedures provide valuable information on plume persistence and secondary source processes that may be used to better inform and evaluate remedial strategies, including natural flushing.

  9. Quantification of a maximum injection volume of CO2 to avert geomechanical perturbations using a compositional fluid flow reservoir simulator

    NASA Astrophysics Data System (ADS)

    Jung, Hojung; Singh, Gurpreet; Espinoza, D. Nicolas; Wheeler, Mary F.

    2018-02-01

    Subsurface CO2 injection and storage alters formation pressure. Changes of pore pressure may result in fault reactivation and hydraulic fracturing if the pressure exceeds the corresponding thresholds. Most simulation models predict such thresholds utilizing relatively homogeneous reservoir rock models and do not account for CO2 dissolution in the brine phase to calculate pore pressure evolution. This study presents an estimation of reservoir capacity in terms of allowable injection volume and rate utilizing the Frio CO2 injection site in the coast of the Gulf of Mexico as a case study. The work includes laboratory core testing, well-logging data analyses, and reservoir numerical simulation. We built a fine-scale reservoir model of the Frio pilot test in our in-house reservoir simulator IPARS (Integrated Parallel Accurate Reservoir Simulator). We first performed history matching of the pressure transient data of the Frio pilot test, and then used this history-matched reservoir model to investigate the effect of the CO2 dissolution into brine and predict the implications of larger CO2 injection volumes. Our simulation results -including CO2 dissolution- exhibited 33% lower pressure build-up relative to the simulation excluding dissolution. Capillary heterogeneity helps spread the CO2 plume and facilitate early breakthrough. Formation expansivity helps alleviate pore pressure build-up. Simulation results suggest that the injection schedule adopted during the actual pilot test very likely did not affect the mechanical integrity of the storage complex. Fault reactivation requires injection volumes of at least about sixty times larger than the actual injected volume at the same injection rate. Hydraulic fracturing necessitates much larger injection rates than the ones used in the Frio pilot test. Tested rock samples exhibit ductile deformation at in-situ effective stresses. Hence, we do not expect an increase of fault permeability in the Frio sand even in the presence of fault reactivation.

  10. Comparison between the loading capacities of columns packed with partially and totally porous fine particles. What is the effective surface area available for adsorption?

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2007-12-28

    The adsorption isotherms of phenol, caffeine, insulin, and lysozyme were measured on two C(18)-bonded silica columns. The first one was packed with classical totally porous particles (3 microm Luna(2)-C(18)from Phenomenex, Torrance, CA, USA), the second one with shell particles (2.7 microm Halo-C(18) from Advanced Materials Technology, Wilmington, DE, USA). The measurements were made at room temperature (T=295+/-1K), using mainly frontal analysis (FA) and also elution by characteristic points (FACP) when necessary. The adsorption energy distributions (AEDs) were estimated by the iterative numerical expectation-maximization (EM) procedure and served to justify the choice of the best adsorption isotherm model for each compound. The best isotherm parameters were derived from either the best fit of the experimental data to a multi-Langmuir isotherm model (MLRA) or from the AED results (equilibrium constants and saturation capacities), when the convergence of the EM program was achieved. The experiments show than the loading capacity of the Luna column is more than twice that of the Halo column for low-molecular-weight compounds. This result was expected; it is in good agreement with the values of the accessible surface area of these two materials, which were calculated from the pore size volume distributions. The pore size volume distributions are validated by the excellent agreement between the calculated and measured exclusion volumes of polystyrene standards by inverse size exclusion chromatography (ISEC). In contrast, the loading capacity ratio of the two columns is 1.5 or less with insulin and lysozyme. This is due to a significant exclusion of these two proteins from the internal pore volumes of the two packing materials. This result raises the problem of the determination of the effective surface area of the packing material, particularly in the case of proteins. This area is about 40 and 30% of the total surface area for insulin and for lysozyme, respectively, based on the pore size volume distribution validated by the ISEC method. The ISEC experiments showed that the largest and the smallest mesopores have rather a cylindrical and a spherical shape, respectively, for both packing materials.

  11. Computer design of porous active materials at different dimensional scales

    NASA Astrophysics Data System (ADS)

    Nasedkin, Andrey

    2017-12-01

    The paper presents a mathematical and computer modeling of effective properties of porous piezoelectric materials of three types: with ordinary porosity, with metallized pore surfaces, and with nanoscale porosity structure. The described integrated approach includes the effective moduli method of composite mechanics, simulation of representative volumes, and finite element method.

  12. What controls open-pore and residual currents in the first sensing zone of alpha-hemolysin nanopore? Combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    de Biase, Pablo M.; Ervin, Eric N.; Pal, Prithwish; Samoylova, Olga; Markosyan, Suren; Keehan, Michael G.; Barrall, Geoffrey A.; Noskov, Sergei Yu.

    2016-06-01

    The electrophoretic transport of single-stranded DNA through biological nanopores such as alpha-hemolysin (αHL) is a promising and cost-effective technology with the potential to revolutionize genomics. The rational design of pores with the controlled polymer translocation rates and high contrast between different nucleotides could improve significantly nanopore sequencing applications. Here, we apply a combination of theoretical and experimental methods in an attempt to elucidate several selective modifications in the pore which were proposed to be central for the effective discrimination between purines and pyrimidines. Our nanopore test set includes the wild type αHL and six mutants (E111N/M113X/K147N) in which the cross-section and chemical functionality of the first constriction zone of the pore are modified. Electrophysiological recordings were combined with all-atom Molecular Dynamics simulations (MD) and a recently developed Brownian Dynamics (BROMOC) protocol to investigate residual ion currents and pore-DNA interactions for two homo-polymers e.g. poly(dA)40 or poly(dC)40 blocking the pore. The calculated residual currents and contrast in the poly(dA)40/poly(dC)40 blocked pore are in qualitative agreement with the experimental recordings. We showed that a simple structural metric allows rationalization of key elements in the emergent contrast between purines and pyrimidines in the modified αHL mutants. The shape of the pore and its capacity for hydrogen bonding to a translocated polynucleotide are two essential parameters for contrast optimization. To further probe the impact of these two factors in the ssDNA sensing, we eliminated the effect of the primary constriction using serine substitutions (i.e. E111S/M113S/T145S/K147S) and increased the hydrophobic volume of the central residue in the secondary constriction (L135I). This pore modification sharply increased the contrast between Adenine (A) and Cytosine (C).The electrophoretic transport of single-stranded DNA through biological nanopores such as alpha-hemolysin (αHL) is a promising and cost-effective technology with the potential to revolutionize genomics. The rational design of pores with the controlled polymer translocation rates and high contrast between different nucleotides could improve significantly nanopore sequencing applications. Here, we apply a combination of theoretical and experimental methods in an attempt to elucidate several selective modifications in the pore which were proposed to be central for the effective discrimination between purines and pyrimidines. Our nanopore test set includes the wild type αHL and six mutants (E111N/M113X/K147N) in which the cross-section and chemical functionality of the first constriction zone of the pore are modified. Electrophysiological recordings were combined with all-atom Molecular Dynamics simulations (MD) and a recently developed Brownian Dynamics (BROMOC) protocol to investigate residual ion currents and pore-DNA interactions for two homo-polymers e.g. poly(dA)40 or poly(dC)40 blocking the pore. The calculated residual currents and contrast in the poly(dA)40/poly(dC)40 blocked pore are in qualitative agreement with the experimental recordings. We showed that a simple structural metric allows rationalization of key elements in the emergent contrast between purines and pyrimidines in the modified αHL mutants. The shape of the pore and its capacity for hydrogen bonding to a translocated polynucleotide are two essential parameters for contrast optimization. To further probe the impact of these two factors in the ssDNA sensing, we eliminated the effect of the primary constriction using serine substitutions (i.e. E111S/M113S/T145S/K147S) and increased the hydrophobic volume of the central residue in the secondary constriction (L135I). This pore modification sharply increased the contrast between Adenine (A) and Cytosine (C). Electronic supplementary information (ESI) available: Statistical data on correlation between experimental and predicted conductance, ion densities in open and blocked pores and data on solvent structuring in nanopores. See DOI: 10.1039/c6nr00164e

  13. Porosity and permeability studies of Virginia aggregates : final report.

    DOT National Transportation Integrated Search

    1972-01-01

    It is generally recognized that the volume and geometry of included pores within a mineral aggregate have a significant effect on the physical and chemical behavior of the aggregate when used as a structural material. However due to the technical dif...

  14. Synthesis and characterization of pore size-tunable magnetic mesoporous silica nanoparticles.

    PubMed

    Zhang, Jixi; Li, Xu; Rosenholm, Jessica M; Gu, Hong-chen

    2011-09-01

    Magnetic mesoporous silica nanoparticles (M-MSNs) are emerging as one of the most appealing candidates for theranostic carriers. Herein, a simple synthesis method of M-MSNs with a single Fe(3)O(4) nanocrystal core and a mesoporous shell with radially aligned pores was elaborated using tetraethyl orthosilicate (TEOS) as silica source, cationic surfactant CTAB as template, and 1,3,5-triisopropylbenzene (TMB)/decane as pore swelling agents. Due to the special localization of TMB during the synthesis process, the pore size was increased with added TMB amount within a limited range, while further employment of TMB lead to severe particle coalescence and not well-developed pore structure. On the other hand, when a proper amount of decane was jointly incorporated with limited amounts of TMB, effective pore expansion of M-MSNs similar to that of analogous mesoporous silica nanoparticles was realized. The resultant M-MSN materials possessed smaller particle size (about 40-70 nm in diameter), tunable pore sizes (3.8-6.1 nm), high surface areas (700-1100 m(2)/g), and large pore volumes (0.44-1.54 cm(3)/g). We also demonstrate their high potential in conventional DNA loading. Maximum loading capacity of salmon sperm DNA (375 mg/g) was obtained by the use of the M-MSN sample with the largest pore size of 6.1 nm. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Effect of Porosity Parameters and Surface Chemistry on Carbon Dioxide Adsorption in Sulfur-Doped Porous Carbons.

    PubMed

    Wang, En-Jie; Sui, Zhu-Yin; Sun, Ya-Nan; Ma, Zhuang; Han, Bao-Hang

    2018-05-22

    In this work, a series of highly porous sulfur-doped carbons are prepared through physical activation methods by using polythiophene as a precursor. The morphology, structure, and physicochemical properties are revealed by a variety of characterization methods, such as scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and nitrogen sorption measurement. Their porosity parameters and chemical compositions can be well-tuned by changing the activating agents (steam and carbon dioxide) and reaction temperature. These sulfur-doped porous carbons possess specific surface area of 670-2210 m 2 g -1 , total pore volume of 0.31-1.26 cm 3 g -1 , and sulfur content of 0.6-4.9 atom %. The effect of porosity parameters and surface chemistry on carbon dioxide adsorption in sulfur-doped porous carbons is studied in detail. After a careful analysis of carbon dioxide uptake at different temperatures (273 and 293 K), pore volumes from small pore size (less than 1 nm) play an important role in carbon dioxide adsorption at 273 K, whereas surface chemistry is the key factor at a higher adsorption temperature or lower relative pressure. Furthermore, sulfur-doped porous carbons also possess good gas adsorption selectivity and excellent recyclability for regeneration.

  16. Bioaccessible Porosity in Soil Aggregates and Implications for Biodegradation of High Molecular Weight Petroleum Compounds.

    PubMed

    Akbari, Ali; Ghoshal, Subhasis

    2015-12-15

    We evaluated the role of soil aggregate pore size on biodegradation of essentially insoluble petroleum hydrocarbons that are biodegraded primarily at the oil-water interface. The size and spatial distribution of pores in aggregates sampled from biodegradation experiments of a clayey, aggregated, hydrocarbon-contaminated soil with relatively high bioremediation end point were characterized by image analyses of X-ray micro-CT scans and N2 adsorption. To determine the bioaccessible pore sizes, we performed separate experiments to assess the ability of hydrocarbon degrading bacteria isolated from the soil to pass through membranes with specific sized pores and to access hexadecane (model insoluble hydrocarbon). Hexadecane biodegradation occurred only when pores were 5 μm or larger, and did not occur when pores were 3 μm and smaller. In clayey aggregates, ∼ 25% of the aggregate volume was attributed to pores larger than 4 μm, which was comparable to that in aggregates from a sandy, hydrocarbon-contaminated soil (~23%) scanned for comparison. The ratio of volumes of inaccessible pores (<4 μm) to bioaccessible pores (>4 μm) in the clayey aggregates was 0.32, whereas in the sandy aggregates it was approximately 10 times lower. The role of soil microstructure on attainable bioremediation end points could be qualitatively assessed in various soils by the aggregate characterization approach outlined herein.

  17. Characterization of the intragranular water regime within subsurface sediments: Pore volume, surface area, and mass transfer limitations

    USGS Publications Warehouse

    Hay, M.B.; Stoliker, D.L.; Davis, J.A.; Zachara, J.M.

    2011-01-01

    Although "intragranular" pore space within grain aggregates, grain fractures, and mineral surface coatings may contain a relatively small fraction of the total porosity within a porous medium, it often contains a significant fraction of the reactive surface area, and can thus strongly affect the transport of sorbing solutes. In this work, we demonstrate a batch experiment procedure using tritiated water as a high-resolution diffusive tracer to characterize the intragranular pore space. The method was tested using uranium-contaminated sediments from the vadose and capillary fringe zones beneath the former 300A process ponds at the Hanford site (Washington). Sediments were contacted with tracers in artificial groundwater, followed by a replacement of bulk solution with tracer-free groundwater and the monitoring of tracer release. From these data, intragranular pore volumes were calculated and mass transfer rates were quantified using a multirate first-order mass transfer model. Tritium-hydrogen exchange on surface hydroxyls was accounted for by conducting additional tracer experiments on sediment that was vacuum dried after reaction. The complementary ("wet" and "dry") techniques allowed for the simultaneous determination of intragranular porosity and surface area using tritium. The Hanford 300A samples exhibited intragranular pore volumes of ???1% of the solid volume and intragranular surface areas of ???20%-35% of the total surface area. Analogous experiments using bromide ion as a tracer yielded very different results, suggesting very little penetration of bromide into the intragranular porosity. Copyright 2011 by the American Geophysical Union.

  18. Characterization of the intragranular water regime within subsurface sediments: pore volume, surface area, and mass transfer limitations

    USGS Publications Warehouse

    Hay, Michael B.; Stoliker, Deborah L.; Davis, James A.; Zachara, John M.

    2011-01-01

    Although "intragranular" pore space within grain aggregates, grain fractures, and mineral surface coatings may contain a relatively small fraction of the total porosity within a porous medium, it often contains a significant fraction of the reactive surface area, and can thus strongly affect the transport of sorbing solutes. In this work, we demonstrate a batch experiment procedure using tritiated water as a high-resolution diffusive tracer to characterize the intragranular pore space. The method was tested using uranium-contaminated sediments from the vadose and capillary fringe zones beneath the former 300A process ponds at the Hanford site (Washington). Sediments were contacted with tracers in artificial groundwater, followed by a replacement of bulk solution with tracer-free groundwater and the monitoring of tracer release. From these data, intragranular pore volumes were calculated and mass transfer rates were quantified using a multirate first-order mass transfer model. Tritium-hydrogen exchange on surface hydroxyls was accounted for by conducting additional tracer experiments on sediment that was vacuum dried after reaction. The complementary ("wet" and "dry") techniques allowed for the simultaneous determination of intragranular porosity and surface area using tritium. The Hanford 300A samples exhibited intragranular pore volumes of ~1% of the solid volume and intragranular surface areas of ~20%–35% of the total surface area. Analogous experiments using bromide ion as a tracer yielded very different results, suggesting very little penetration of bromide into the intragranular porosity.

  19. Micro-CT Pore Scale Study Of Flow In Porous Media: Effect Of Voxel Resolution

    NASA Astrophysics Data System (ADS)

    Shah, S.; Gray, F.; Crawshaw, J.; Boek, E.

    2014-12-01

    In the last few years, pore scale studies have become the key to understanding the complex fluid flow processes in the fields of groundwater remediation, hydrocarbon recovery and environmental issues related to carbon storage and capture. A pore scale study is often comprised of two key procedures: 3D pore scale imaging and numerical modelling techniques. The essence of a pore scale study is to test the physics implemented in a model of complicated fluid flow processes at one scale (microscopic) and then apply the model to solve the problems associated with water resources and oil recovery at other scales (macroscopic and field). However, the process of up-scaling from the pore scale to the macroscopic scale has encountered many challenges due to both pore scale imaging and modelling techniques. Due to the technical limitations in the imaging method, there is always a compromise between the spatial (voxel) resolution and the physical volume of the sample (field of view, FOV) to be scanned by the imaging methods, specifically X-ray micro-CT (XMT) in our case In this study, a careful analysis was done to understand the effect of voxel size, using XMT to image the 3D pore space of a variety of porous media from sandstones to carbonates scanned at different voxel resolution (4.5 μm, 6.2 μm, 8.3 μm and 10.2 μm) but keeping the scanned FOV constant for all the samples. We systematically segment the micro-CT images into three phases, the macro-pore phase, an intermediate phase (unresolved micro-pores + grains) and the grain phase and then study the effect of voxel size on the structure of the macro-pore and the intermediate phases and the fluid flow properties using lattice-Boltzmann (LB) and pore network (PN) modelling methods. We have also applied a numerical coarsening algorithm (up-scale method) to reduce the computational power and time required to accurately predict the flow properties using the LB and PN method.

  20. Macroporous Silica with Thick Framework for Steam-Stable and High-Performance Poly(ethyleneimine)/Silica CO2 Adsorbent.

    PubMed

    Min, Kyungmin; Choi, Woosung; Choi, Minkee

    2017-06-09

    Poly(ethyleneimine) (PEI)/silica has been widely studied as a solid adsorbent for post-combustion CO 2 capture. In this work, a highly macroporous silica (MacS), synthesized by secondary sintering of fumed silica, is compared with various mesoporous silicas with different pore structures as a support for PEI. The silicas with large pore diameter and volume enabled high CO 2 adsorption kinetics and capacity, because pore occlusion by the supported PEI was minimized. The steam stability of the silica structures increased with the silica wall thickness owing to suppressed framework ripening. The silicas with low steam stability showed rapid leaching of PEI, which indicated that the PEI squeezed out of the collapsed silica pores leached more readily. Consequently, MacS that had an extra-large pore volume (1.80 cm 3  g -1 ) and pore diameter (56.0 nm), and a thick wall (>10 nm), showed the most promising CO 2 adsorption kinetics and capacity as well as steam stability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A kinetic Monte Carlo approach to study fluid transport in pore networks

    NASA Astrophysics Data System (ADS)

    Apostolopoulou, M.; Day, R.; Hull, R.; Stamatakis, M.; Striolo, A.

    2017-10-01

    The mechanism of fluid migration in porous networks continues to attract great interest. Darcy's law (phenomenological continuum theory), which is often used to describe macroscopically fluid flow through a porous material, is thought to fail in nano-channels. Transport through heterogeneous and anisotropic systems, characterized by a broad distribution of pores, occurs via a contribution of different transport mechanisms, all of which need to be accounted for. The situation is likely more complicated when immiscible fluid mixtures are present. To generalize the study of fluid transport through a porous network, we developed a stochastic kinetic Monte Carlo (KMC) model. In our lattice model, the pore network is represented as a set of connected finite volumes (voxels), and transport is simulated as a random walk of molecules, which "hop" from voxel to voxel. We simulated fluid transport along an effectively 1D pore and we compared the results to those expected by solving analytically the diffusion equation. The KMC model was then implemented to quantify the transport of methane through hydrated micropores, in which case atomistic molecular dynamic simulation results were reproduced. The model was then used to study flow through pore networks, where it was able to quantify the effect of the pore length and the effect of the network's connectivity. The results are consistent with experiments but also provide additional physical insights. Extension of the model will be useful to better understand fluid transport in shale rocks.

  2. Pore Fluid Pressure Development in Compacting Fault Gouge in Theory, Experiments, and Nature

    NASA Astrophysics Data System (ADS)

    Faulkner, D. R.; Sanchez-Roa, C.; Boulton, C.; den Hartog, S. A. M.

    2018-01-01

    The strength of fault zones is strongly dependent on pore fluid pressures within them. Moreover, transient changes in pore fluid pressure can lead to a variety of slip behavior from creep to unstable slip manifested as earthquakes or slow slip events. The frictional properties of low-permeability fault gouge in nature and experiment can be affected by pore fluid pressure development through compaction within the gouge layer, even when the boundaries are drained. Here the conditions under which significant pore fluid pressures develop are analyzed analytically, numerically, and experimentally. Friction experiments on low-permeability fault gouge at different sliding velocities show progressive weakening as slip rate is increased, indicating that faster experiments are incapable of draining the pore fluid pressure produced by compaction. Experiments are used to constrain the evolution of the permeability and pore volume needed for numerical modeling of pore fluid pressure build up. The numerical results are in good agreement with the experiments, indicating that the principal physical processes have been considered. The model is used to analyze the effect of pore fluid pressure transients on the determination of the frictional properties, illustrating that intrinsic velocity-strengthening behavior can appear velocity weakening if pore fluid pressure is not given sufficient time to equilibrate. The results illustrate that care must be taken when measuring experimentally the frictional characteristics of low-permeability fault gouge. The contribution of compaction-induced pore fluid pressurization leading to weakening of natural faults is considered. Cyclic pressurization of pore fluid within fault gouge during successive earthquakes on larger faults may reset porosity and hence the capacity for compaction weakening.

  3. Initial characterization of mudstone nanoporosity with small angle neutron scattering using caprocks from carbon sequestration sites.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCray, John; Navarre-Sitchler, Alexis; Mouzakis, Katherine

    Geological carbon sequestration relies on the principle that CO{sub 2} injected deep into the subsurface is unable to leak to the atmosphere. Structural trapping by a relatively impermeable caprock (often mudstone such as a shale) is the main trapping mechanism that is currently relied on for the first hundreds of years. Many of the pores of the caprock are of micrometer to nanometer scale. However, the distribution, geometry and volume of porosity at these scales are poorly characterized. Differences in pore shape and size can cause variation in capillary properties and fluid transport resulting in fluid pathways with different capillarymore » entry pressures in the same sample. Prediction of pore network properties for distinct geologic environments would result in significant advancement in our ability to model subsurface fluid flow. Specifically, prediction of fluid flow through caprocks of geologic CO{sub 2} sequestration reservoirs is a critical step in evaluating the risk of leakage to overlying aquifers. The micro- and nanoporosity was analyzed in four mudstones using small angle neutron scattering (SANS). These mudstones are caprocks of formations that are currently under study or being used for carbon sequestration projects and include the Marine Tuscaloosa Group, the Lower Tuscaloosa Group, the upper and lower shale members of the Kirtland Formation, and the Pennsylvanian Gothic shale. Total organic carbon varies from <0.3% to 4% by weight. Expandable clay contents range from 10% to {approx}40% in the Gothic shale and Kirtland Formation, respectively. Neutrons effectively scatter from interfaces between materials with differing scattering length density (i.e. minerals and pores). The intensity of scattered neutrons, I(Q), where Q is the scattering vector, gives information about the volume of pores and their arrangement in the sample. The slope of the scattering data when plotted as log I(Q) vs. log Q provides information about the fractality or geometry of the pore network. Results from this study, combined with high-resolution TEM imaging, provide insight into the differences in volume and geometry of porosity between these various mudstones.« less

  4. Effects of exchanged cation on the microporosity of montmorillonite

    USGS Publications Warehouse

    Rutherford, David W.; Chiou, Cary T.; Eberl, Dennis D.

    1997-01-01

    The micropore volumes of 2 montmorillonites (SAz-1 and SWy-1), each exchanged with Ca, Na, K, Cs and tetramethylammonium (TMA) ions, were calculated from the measured vapor adsorption data of N2 and neo-hexane by use of t- and αs-plots. The corresponding surface areas of the exchanged clays were determined from Brunauer-Emmett-Teller (BET) plots of N2 adsorption data. Micropore volumes and surface areas of the samples increased with the size of exchanged cation: TMA > Cs > K > Ca > Na. The SAz-1 exchanged clays showed generally greater micropore volumes and surface areas than the corresponding SWy-1 clays. The vapor adsorption data and d(001) measurements for dry clay samples were used together to evaluate the likely locations and accessibility of clay micropores, especially the relative accessibility of their interlayer spacing. For both source clays exchanged with Na, Ca and K ions, the interlayer spacing appeared to be too small to admit nonpolar gases and the accessible micropores appeared to have dimensions greater than 5.0 Å, the limiting molecular dimension of neo-hexane. In these systems, there was a good consistency of micropore volumes detected by N2 and neo-hexane. When the clays were intercalated with relatively large cations (TMA and possibly Cs), the large layer expansion created additional microporosity, which was more readily accessible to small N2 than to relatively large neo-hexane. Hence, the micropore volume as detected by N2 was greater than that detected by neo-hexane. The micropore volumes with pore dimensions greater than 5 Å determined for clays exchanged with Na, Ca and K likely resulted from the pores on particle edges and void created by overlap regions of layers. The increase in micropore volumes with pore dimensions less than 5 Å determined for clays exchanged with TMA and possibly Cs could be caused by opening of the interlayer region by the intercalation of these large cations.

  5. Comparison of caprock pore networks which potentially will be impacted by carbon sequestration projects.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCray, John; Navarre-Sitchler, Alexis; Mouzakis, Katherine

    Injection of CO2 into underground rock formations can reduce atmospheric CO2 emissions. Caprocks present above potential storage formations are the main structural trap inhibiting CO2 from leaking into overlying aquifers or back to the Earth's surface. Dissolution and precipitation of caprock minerals resulting from reaction with CO2 may alter the pore network where many pores are of the micrometer to nanometer scale, thus altering the structural trapping potential of the caprock. However, the distribution, geometry and volume of pores at these scales are poorly characterized. In order to evaluate the overall risk of leakage of CO2 from storage formations, amore » first critical step is understanding the distribution and shape of pores in a variety of different caprocks. As the caprock is often comprised of mudstones, we analyzed samples from several mudstone formations with small angle neutron scattering (SANS) and high-resolution transmission electron microscopy (TEM) imaging to compare the pore networks. Mudstones were chosen from current or potential sites for carbon sequestration projects including the Marine Tuscaloosa Group, the Lower Tuscaloosa Group, the upper and lower shale members of the Kirtland Formation, and the Pennsylvanian Gothic shale. Expandable clay contents ranged from 10% to approximately 40% in the Gothic shale and Kirtland Formation, respectively. During SANS, neutrons effectively scatter from interfaces between materials with differing scattering length density (i.e., minerals and pores). The intensity of scattered neutrons, I(Q), where Q is the scattering vector, gives information about the volume and arrangement of pores in the sample. The slope of the scattering data when plotted as log I(Q) vs. log Q provides information about the fractality or geometry of the pore network. On such plots slopes from -2 to -3 represent mass fractals while slopes from -3 to -4 represent surface fractals. Scattering data showed surface fractal dimensions for the Kirtland formation and one sample from the Tuscaloosa formation close to 3, indicating very rough surfaces. In contrast, scattering data for the Gothic shale formation exhibited mass fractal behavior. In one sample of the Tuscaloosa formation the data are described by a surface fractal at low Q (larger pores) and a mass fractal at high Q (smaller pores), indicating two pore populations contributing to the scattering behavior. These small angle neutron scattering results, combined with high-resolution TEM imaging, provided a means for both qualitative and quantitative analysis of the differences in pore networks between these various mudstones.« less

  6. Change of the human taste bud volume over time.

    PubMed

    Srur, Ehab; Stachs, Oliver; Guthoff, Rudolf; Witt, Martin; Pau, Hans Wilhelm; Just, Tino

    2010-08-01

    The specific aim of this study is to measure the taste volume in healthy human subjects over a 2.5-month period and to demonstrate morphological changes of the peripheral taste organs. Eighteen human taste buds in four fungiform papillae (fPap) were examined over a 10-week period. The fungiform papillae investigated were selected based on the form of the papillae or the arrangement of surface taste pores. Measurements were performed over 10 consecutive weeks, with five scans in a day once a week. The following parameters were measured: height and diameter of the taste bud, diameter of the fungiform papilla and diameter of the taste pore. The findings of this exploratory study indicated that (1) taste bud volumes changed over a 10-week period, (2) the interval between two volume maxima within the 10-week period was 3-5 weeks, and (3) the diameter of the fPap did not correlate with the volume of a single taste bud or with the volume of all taste buds in the fPap within the 10-week period. This exploratory in vivo study revealed changes in taste bud volumes in healthy humans with age-related gustatory sensitivity. These findings need to be considered when studying the effect of denervation of fungiform papillae in vivo using confocal microscopy. Crown Copyright 2009. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Pore diameter effects on phase behavior of a gas condensate in graphitic one-and two-dimensional nanopores.

    PubMed

    Welch, William R W; Piri, Mohammad

    2016-01-01

    Molecular dynamics (MD) simulations were performed on a hydrocarbon mixture representing a typical gas condensate composed mostly of methane and other small molecules with small fractions of heavier hydrocarbons, representative of mixtures found in tight shale reservoirs. The fluid was examined both in bulk and confined to graphitic nano-scale slits and pores. Numerous widths and diameters of slits and pores respectively were examined under variable pressures at 300 K in order to find conditions in which the fluid at the center of the apertures would not be affected by capillary condensation due to the oil-wet walls. For the bulk fluid, retrograde phase behavior was verified by liquid volumes obtained from Voronoi tessellations. In cases of both one and two-dimensional confinement, for the smallest apertures, heavy molecules aggregated inside the pore space and compression of the gas outside the solid structure lead to decreases in density of the confined fluid. Normal density/pressure relationships were observed for slits having gaps of above 3 nm and pores having diameters above 6 nm. At 70 bar, the minimum gap width at which the fluid could pass through the center of slits without condensation effects was predicted to be 6 nm and the corresponding diameter in pores was predicted to be 8 nm. The models suggest that in nanoscale networks involving pores smaller than these limiting dimensions, capillary condensation should significantly impede transmission of natural gases with similar composition.

  8. Intraparticle diffusion limitations in the hydrogenation of monounsaturated edible oils and their fatty acid methyl esters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonker, G.H.; Veldsink, J.W.; Beenackers, A.A.C.M.

    1998-12-01

    Intraparticle diffusion limitation in the hydrogenation and isomerization of fatty acid methyl esters (FAMEs) and edible oils (triacylglycerol, TAG) in porous nickel catalyst was investigated both under reactive and under inert conditions. Under reactive conditions, the diffusion coefficients were determined from the best fits of the model simulations applying the intrinsic reacting kinetics of monounsaturated FAME hydrogenation to experiments under diffusion limited conditions. Due to the absence of reaction (hydrogenation of double bonds), the obtained effective H{sub z} diffusion coefficient (D{sub e}) with the HPLC technique is volume averaged and thereby determined by the larger intercrystalline pores (<30% of themore » total pore volume) only. Moreover, D{sub e} measured under reaction conditions reflected the influence of the micropores, resulting in a 10-fold lower value.« less

  9. Hierarchically Porous Graphitic Carbon with Simultaneously High Surface Area and Colossal Pore Volume Engineered via Ice Templating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estevez, Luis; Prabhakaran, Venkateshkumar; Garcia, Adam L.

    Developing hierarchical porous carbon (HPC) materials with competing textural characteristics such as surface area and pore volume in one material is difficult to accomplish—particulalry for an atomically ordered (graphitic) carbon. Herein we describe a synthesis strategy to engineer tunable hierarchically porous carbon (HPC) materials across micro- meso- and macroporous length scales, allowing the fabrication of a graphitic HPC with both very high surface area (> 2500 m2/g) and pore volume (>10 cm3/g), the combination of which has not been seen previously. The mesopore volume alone for these materials is up to 7.91 cm3/g, the highest ever reported. The unique materialmore » was explored for use as a supercapaictor electrode and for oil adsorption; two applications that require textural properties that are typicaly exclusive to one another. This design scheme for HPCs can be utilized in broad applications, including electrochemical systems such as batteries and supercapacitors, sorbents, and catalyst supports.« less

  10. Micromechanics investigation of expansive reactions in chemoelastic concrete.

    PubMed

    Lemarchand, Eric; Dormieux, Luc; Ulm, Franz-Josef

    2005-11-15

    Expansive reactions damage porous materials through the formation of reaction products of a volume in excess of the available space left by the reactants and the natural porosity of the material. This leads to pressurizing the pore space accessible to the reaction products, which differs when the chemical reaction is through-solution or topochemical or both in nature. This paper investigates expansive reactions from a micromechanical point of view, which allows bridging the scale from the local chemo-mechanical mechanisms to the macroscopically observable stress-free expansion. In particular, the study of the effect of morphology of the pore space, in which the chemical expansion occurs locally, on the macroscopically observable expansion is the main focus of this paper. The first part revisits the through-solution and the topochemical reaction mechanism within the framework of micro-macro-homogenization theories, and the effect of the microscopic geometry of pores and microcracks in the solid matrix on the macroscopic chemical expansion is examined. The second part deals with the transition from a topochemical to a through-solution-like mechanism that occurs in a solid matrix with inclusions (cracks, pores) of different morphology.

  11. Optimization of Pore Structure of Cathodic Carbon Supports for Solvate Ionic Liquid Electrolytes Based Lithium-Sulfur Batteries.

    PubMed

    Zhang, Shiguo; Ikoma, Ai; Li, Zhe; Ueno, Kazuhide; Ma, Xiaofeng; Dokko, Kaoru; Watanabe, Masayoshi

    2016-10-04

    Lithium-sulfur (Li-S) batteries are a promising energy-storage technology owing to their high theoretical capacity and energy density. However, their practical application remains a challenge because of the serve shuttle effect caused by the dissolution of polysulfides in common organic electrolytes. Polysulfide-insoluble electrolytes, such as solvate ionic liquids (ILs), have recently emerged as alternative candidates and shown great potential in suppressing the shuttle effect and improving the cycle stability of Li-S batteries. Redox electrochemical reactions in polysulfide-insoluble electrolytes occur via a solid-state process at the interphase between the electrolyte and the composite cathode; therefore, creating an appropriate interface between sulfur and a carbon support is of great importance. Nevertheless, the porous carbon supports established for conventional organic electrolytes may not be suitable for polysulfide-insoluble electrolytes. In this work, we investigated the effect of the porous structure of carbon materials on the Li-S battery performance in polysulfide-insoluble electrolytes using solvate ILs as a model electrolyte. We determined that the pore volume (rather than the surface area) exerts a major influence on the discharge capacity of S composite cathodes. In particular, inverse opal carbons with three-dimensionally ordered interconnected macropores and a large pore volume deliver the highest discharge capacity. The battery performance in both polysulfide-soluble electrolytes and solvate ILs was used to study the effect of electrolytes. We propose a plausible mechanism to explain the different porous structure requirements in polysulfide-soluble and polysulfide-insoluble electrolytes.

  12. Characterization of Coal Porosity for Naturally Tectonically Stressed Coals in Huaibei Coal Field, China

    PubMed Central

    Li, Xiaoshi; Hou, Quanlin; Li, Zhuo; Wei, Mingming

    2014-01-01

    The enrichment of coalbed methane (CBM) and the outburst of gas in a coal mine are closely related to the nanopore structure of coal. The evolutionary characteristics of 12 coal nanopore structures under different natural deformational mechanisms (brittle and ductile deformation) are studied using a scanning electron microscope (SEM) and low-temperature nitrogen adsorption. The results indicate that there are mainly submicropores (2~5 nm) and supermicropores (<2 nm) in ductile deformed coal and mesopores (10~100 nm) and micropores (5~10 nm) in brittle deformed coal. The cumulative pore volume (V) and surface area (S) in brittle deformed coal are smaller than those in ductile deformed coal which indicates more adsorption space for gas. The coal with the smaller pores exhibits a large surface area, and coal with the larger pores exhibits a large volume for a given pore volume. We also found that the relationship between S and V turns from a positive correlation to a negative correlation when S > 4 m2/g, with pore sizes <5 nm in ductile deformed coal. The nanopore structure (<100 nm) and its distribution could be affected by macromolecular structure in two ways. Interconversion will occur among the different size nanopores especially in ductile deformed coal. PMID:25126601

  13. Activated boron nitride as an effective adsorbent for metal ions and organic pollutants

    PubMed Central

    Li, Jie; Xiao, Xing; Xu, Xuewen; Lin, Jing; Huang, Yang; Xue, Yanming; Jin, Peng; Zou, Jin; Tang, Chengchun

    2013-01-01

    Novel activated boron nitride (BN) as an effective adsorbent for pollutants in water and air has been reported in the present work. The activated BN was synthesized by a simple structure-directed method that enabled us to control the surface area, pore volume, crystal defects and surface groups. The obtained BN exhibits an super high surface area of 2078 m2/g, a large pore volume of 1.66 cm3/g and a special multimodal microporous/mesoporous structure located at ~ 1.3, ~ 2.7, and ~ 3.9 nm, respectively. More importantly, the novel activated BN exhibits an excellent adsorption performance for various metal ions (Cr3+, Co2+, Ni2+, Ce3+, Pb2+) and organic pollutants (tetracycline, methyl orange and congo red) in water, as well as volatile organic compounds (benzene) in air. The excellent reusability of the activated BN has also been confirmed. All the features render the activated BN a promising material suitable for environmental remediation. PMID:24220570

  14. Nanocrystalline Iron-Ore-Based Catalysts for Fischer-Tropsch Synthesis.

    PubMed

    Yong, Seok; Park, Ji Chan; Lee, Ho-Tae; Yang, Jung-Il; Hong, SungJun; Jung, Heon; Chun, Dong Hyun

    2016-02-01

    Nanocrystalline iron ore particles were fabricated by a wet-milling process using an Ultra Apex Mill, after which they were used as raw materials of iron-based catalysts for low-temperature Fischer-Tropsch synthesis (FTS) below 280 degrees C, which usually requires catalysts with a high surface area, a large pore volume, and a small crystallite size. The wet-milling process using the Ultra Apex Mill effectively destroyed the initial crystallite structure of the natural iron ores of several tens to hundreds of nanometers in size, resulting in the generation of nanocrystalline iron ore particles with a high surface area and a large pore volume. The iron-ore-based catalysts prepared from the nanocrystalline iron ore particles effectively catalyzed the low-temperature FTS, displaying a high CO conversion (about 90%) and good C5+ hydrocarbon productivity (about 0.22 g/g(cat)(-h)). This demonstrates the feasibility of using the iron-ore-based catalysts as inexpensive and disposable catalysts for the low-temperature FTS.

  15. The effect of precipitants on Ni-Al2O3 catalysts prepared by a co-precipitation method for internal reforming in molten carbonate fuel cells

    PubMed Central

    Jung, You-Shick; Yoon, Wang-Lai; Seo, Yong-Seog; Rhee, Young-Woo

    2012-01-01

    Ni-Al2O3 catalysts are prepared via the co-precipitation method using various precipitants: urea, Na2CO3, NaOH, K2CO3, KOH and NH4OH. The effects of the precipitants on the physicochemical properties and catalytic activities of the Ni-Al2O3 catalysts are investigated. The Ni50-urea catalyst displays the largest specific surface area and the highest pore volume. This catalyst also exhibits the highest Ni dispersion and the largest Ni surface area. Ni50-urea catalyst prepared with urea as precipitant and Ni50-K2CO3 catalyst prepared with K2CO3 as precipitant exhibit high pore volumes and good catalytic activities for methane steam reforming. The Ni50-urea catalyst exhibits the best physicochemical properties and shows good catalytic activity and a strong resistance to electrolyte contamination. PMID:22962548

  16. Synthesis and characterization of binary titania-silica mixed oxides

    NASA Astrophysics Data System (ADS)

    Budhi, Sridhar

    A series of binary titania-silica mixed oxides were synthesized by the sol-gel method at room temperature. The mixed oxides were prepared that involved the hydrolysis of titanium isopropoxide and tetraethylorthosilicate (TEOS) by co-solvent induced gelation usually in acidic media. The resulting gels were dried, calcined and then characterized by powder X-ray diffractometric studies, nitrogen sorption studies (at 77K), diffuse reflectance spectroscopy, Raman microscopy and transmission electron microscopic studies. The nitrogen sorption studies indicate that the specific surface areas, pore volume, pore diameter and pore size distribution of the mixed oxides were substantially enhanced when non-polar solvents such as toluene, p-xylene or mesitylene were added as co-solvents to the synthesis gel. Transmission electron microscopic (TEM) studies confirm the results obtained from the nitrogen sorption studies. Our results indicate that we can obtain binary metal oxides possessing high surface area and large pore volumes with tunable pore size distribution at room temperature. Photocatalytic evaluation of the mixed oxides is currently in progress.

  17. Micro-computed tomography pore-scale study of flow in porous media: Effect of voxel resolution

    NASA Astrophysics Data System (ADS)

    Shah, S. M.; Gray, F.; Crawshaw, J. P.; Boek, E. S.

    2016-09-01

    A fundamental understanding of flow in porous media at the pore-scale is necessary to be able to upscale average displacement processes from core to reservoir scale. The study of fluid flow in porous media at the pore-scale consists of two key procedures: Imaging - reconstruction of three-dimensional (3D) pore space images; and modelling such as with single and two-phase flow simulations with Lattice-Boltzmann (LB) or Pore-Network (PN) Modelling. Here we analyse pore-scale results to predict petrophysical properties such as porosity, single-phase permeability and multi-phase properties at different length scales. The fundamental issue is to understand the image resolution dependency of transport properties, in order to up-scale the flow physics from pore to core scale. In this work, we use a high resolution micro-computed tomography (micro-CT) scanner to image and reconstruct three dimensional pore-scale images of five sandstones (Bentheimer, Berea, Clashach, Doddington and Stainton) and five complex carbonates (Ketton, Estaillades, Middle Eastern sample 3, Middle Eastern sample 5 and Indiana Limestone 1) at four different voxel resolutions (4.4 μm, 6.2 μm, 8.3 μm and 10.2 μm), scanning the same physical field of view. Implementing three phase segmentation (macro-pore phase, intermediate phase and grain phase) on pore-scale images helps to understand the importance of connected macro-porosity in the fluid flow for the samples studied. We then compute the petrophysical properties for all the samples using PN and LB simulations in order to study the influence of voxel resolution on petrophysical properties. We then introduce a numerical coarsening scheme which is used to coarsen a high voxel resolution image (4.4 μm) to lower resolutions (6.2 μm, 8.3 μm and 10.2 μm) and study the impact of coarsening data on macroscopic and multi-phase properties. Numerical coarsening of high resolution data is found to be superior to using a lower resolution scan because it avoids the problem of partial volume effects and reduces the scaling effect by preserving the pore-space properties influencing the transport properties. This is evidently compared in this study by predicting several pore network properties such as number of pores and throats, average pore and throat radius and coordination number for both scan based analysis and numerical coarsened data.

  18. Multi-scale modeling of multi-component reactive transport in geothermal aquifers

    NASA Astrophysics Data System (ADS)

    Nick, Hamidreza M.; Raoof, Amir; Wolf, Karl-Heinz; Bruhn, David

    2014-05-01

    In deep geothermal systems heat and chemical stresses can cause physical alterations, which may have a significant effect on flow and reaction rates. As a consequence it will lead to changes in permeability and porosity of the formations due to mineral precipitation and dissolution. Large-scale modeling of reactive transport in such systems is still challenging. A large area of uncertainty is the way in which the pore-scale information controlling the flow and reaction will behave at a larger scale. A possible choice is to use constitutive relationships relating, for example the permeability and porosity evolutions to the change in the pore geometry. While determining such relationships through laboratory experiments may be limited, pore-network modeling provides an alternative solution. In this work, we introduce a new workflow in which a hybrid Finite-Element Finite-Volume method [1,2] and a pore network modeling approach [3] are employed. Using the pore-scale model, relevant constitutive relations are developed. These relations are then embedded in the continuum-scale model. This approach enables us to study non-isothermal reactive transport in porous media while accounting for micro-scale features under realistic conditions. The performance and applicability of the proposed model is explored for different flow and reaction regimes. References: 1. Matthäi, S.K., et al.: Simulation of solute transport through fractured rock: a higher-order accurate finite-element finite-volume method permitting large time steps. Transport in porous media 83.2 (2010): 289-318. 2. Nick, H.M., et al.: Reactive dispersive contaminant transport in coastal aquifers: Numerical simulation of a reactive Henry problem. Journal of contaminant hydrology 145 (2012), 90-104. 3. Raoof A., et al.: PoreFlow: A Complex pore-network model for simulation of reactive transport in variably saturated porous media, Computers & Geosciences, 61, (2013), 160-174.

  19. Porosity of different dental luting cements.

    PubMed

    Milutinović-Nikolić, Aleksandra D; Medić, Vesna B; Vuković, Zorica M

    2007-06-01

    The aim of this in vitro study was to compare open porosity and pore size distribution of different types of luting cements (zinc phosphate and polycarboxylate produced by Harvard Cement, Great Britain, glass-ionomer product GC Fuji I, GC Corporation, Japan, and Panavia F, resin based composite cement, Kurraray Co. Ltd. Japan) using mercury intrusion porosimetry and use it as an additional parameter for ranging the quality of cements used in prosthetics. Samples were hand mixed in accordance with the manufacturer's instructions and formed in cylindrical test specimens. Density of samples was determined using a pycnometer while porous structure was estimated using high pressure mercury intrusion porosimeter enabling estimation of pore diameters in interval 7.5-15,000 nm. The polycarboxylate cement posses the highest porosity and specific pore volume among investigated cements. By comparison of the results obtained for zinc phosphate and glass-ionomer cement, it can be observed that according to some textural properties zinc phosphate cement is better choice (smaller specific pore volume and absence of macropores larger than 1 microm) while according to other textural properties the glass-ionomer has advantage (smaller porosity). The resin based composite cement poses the most desired porous structure for prosthetic application among the investigated cements (the lowest porosity and specific pore volume and all identified pores are smaller than 20 nm). Based on results of this study, it is possible to estimate the efficiency of luting cements to protect the interior of tooth from penetration of oral fluids, bacteria and bacterial toxins into unprotected dentine.

  20. Inertial effects during irreversible meniscus reconfiguration in angular pores

    NASA Astrophysics Data System (ADS)

    Ferrari, Andrea; Lunati, Ivan

    2014-12-01

    In porous media, the dynamics of the invading front between two immiscible fluids is often characterized by abrupt reconfigurations caused by local instabilities of the interface. As a prototype of these phenomena we consider the dynamics of a meniscus in a corner as it can be encountered in angular pores. We investigate this process in detail by means of direct numerical simulations that solve the Navier-Stokes equations in the pore space and employ the Volume of Fluid method (VOF) to track the evolution of the interface. We show that for a quasi-static displacement, the numerically calculated surface energy agrees well with the analytical solutions that we have derived for pores with circular and square cross sections. However, the spontaneous reconfigurations are irreversible and cannot be controlled by the injection rate: they are characterized by the amount of surface energy that is spontaneously released and transformed into kinetic energy. The resulting local velocities can be orders of magnitude larger than the injection velocity and they induce damped oscillations of the interface that possess their own time scales and depend only on fluid properties and pore geometry. In complex media (we consider a network of cubic pores) reconfigurations are so frequent and oscillations last long enough that increasing inertial effects leads to a different fluid distribution by influencing the selection of the next pore to be invaded. This calls into question simple pore-filling rules based only on capillary forces. Also, we demonstrate that inertial effects during irreversible reconfigurations can influence the work done by the external forces that is related to the pressure drop in Darcy's law. This suggests that these phenomena have to be considered when upscaling multiphase flow because local oscillations of the menisci affect macroscopic quantities and modify the constitutive relationships to be used in macro-scale models. These results can be extrapolated to other interface instabilities that are at the origin of fast pore-scale events, such as Haines jumps, snap-off and coalescence.

  1. Modeling of submicrometer aerosol penetration through sintered granular membrane filters.

    PubMed

    Marre, Sonia; Palmeri, John; Larbot, André; Bertrand, Marielle

    2004-06-01

    We present a deep-bed aerosol filtration model that can be used to estimate the efficiency of sintered granular membrane filters in the region of the most penetrating particle size. In this region the capture of submicrometer aerosols, much smaller than the filter pore size, takes place mainly via Brownian diffusion and direct interception acting in synergy. By modeling the disordered sintered grain packing of such filters as a simple cubic lattice, and mapping the corresponding 3D connected pore volume onto a discrete cylindrical pore network, the efficiency of a granular filter can be estimated, using new analytical results for the efficiency of cylindrical pores. This model for aerosol penetration in sintered granular filters includes flow slip and the kinetics of particle capture by the pore surface. With a unique choice for two parameters, namely the structural tortuosity and effective kinetic coefficient of particle adsorption, this semiempirical model can account for the experimental efficiency of a new class of "high-efficiency particulate air" ceramic membrane filters as a function of particle size over a wide range of filter thickness and texture (pore size and porosity) and operating conditions (face velocity).

  2. Fractal Nature of Porosity in Volcanic Tight Reservoirs of the Santanghu Basin and its Relationship to Pore Formation Processes

    NASA Astrophysics Data System (ADS)

    Wang, Weiming; Wang, Zhixuan; Chen, Xuan; Long, Fei; Lu, Shuangfang; Liu, Guohong; Tian, Weichao; Su, Yue

    In this paper, in a case study of Santanghu Basin in China, the morphological characteristics and size distribution of nanoscale pores in the volcanic rocks of the Haerjiawu Formation were investigated using the results of low temperature nitrogen adsorption experiments. This research showed that within the target layer, a large number of nanoscale, eroded pores showed an “ink bottle” morphology with narrow pore mouths and wide bodies. The fractal dimension of pores increases gradually with increasing depth. Moreover, as fractal dimension increases, BET-specific surface area gradually increases, average pore diameter decreases and total pore volume gradually increases. The deeper burial of the Haerjiawu volcanic rocks in the Santanghu Basin leads to more intense erosion by organic acids derived from the basin’s source rocks. Furthermore, the internal surface roughness of these corrosion pores results in poor connectivity. As stated above, the corrosion process is directly related to the organic acids generated by the source rock of the interbedded volcanic rocks. The deeper the reservoir, the more the organic acids being released from the source rock. However, due to the fact that the Haerjiawu volcanic rocks are tight reservoirs and have complicated pore-throat systems, while organic acids dissolve unstable minerals such as feldspars which improve the effective reservoir space; the dissolution of feldspars results in the formation of new minerals, which cannot be expelled from the tight reservoirs. They are instead precipitated in the fine pore throats, thereby reducing pore connectivity, while enhancing reservoir micro-preservation conditions.

  3. X-ray CT analysis of pore structure in sand

    NASA Astrophysics Data System (ADS)

    Mukunoki, Toshifumi; Miyata, Yoshihisa; Mikami, Kazuaki; Shiota, Erika

    2016-06-01

    The development of microfocused X-ray computed tomography (CT) devices enables digital imaging analysis at the pore scale. The applications of these devices are diverse in soil mechanics, geotechnical and geoenvironmental engineering, petroleum engineering, and agricultural engineering. In particular, the imaging of the pore space in porous media has contributed to numerical simulations for single-phase and multiphase flows or contaminant transport through the pore structure as three-dimensional image data. These obtained results are affected by the pore diameter; therefore, it is necessary to verify the image preprocessing for the image analysis and to validate the pore diameters obtained from the CT image data. Moreover, it is meaningful to produce the physical parameters in a representative element volume (REV) and significant to define the dimension of the REV. This paper describes the underlying method of image processing and analysis and discusses the physical properties of Toyoura sand for the verification of the image analysis based on the definition of the REV. On the basis of the obtained verification results, a pore-diameter analysis can be conducted and validated by a comparison with the experimental work and image analysis. The pore diameter is deduced from Young-Laplace's law and a water retention test for the drainage process. The results from previous study and perforated-pore diameter originally proposed in this study, called the voxel-percolation method (VPM), are compared in this paper. In addition, the limitations of the REV, the definition of the pore diameter, and the effectiveness of the VPM for an assessment of the pore diameter are discussed.

  4. A depth-averaged debris-flow model that includes the effects of evolving dilatancy: II. Numerical predictions and experimental tests.

    USGS Publications Warehouse

    George, David L.; Iverson, Richard M.

    2014-01-01

    We evaluate a new depth-averaged mathematical model that is designed to simulate all stages of debris-flow motion, from initiation to deposition. A companion paper shows how the model’s five governing equations describe simultaneous evolution of flow thickness, solid volume fraction, basal pore-fluid pressure, and two components of flow momentum. Each equation contains a source term that represents the influence of state-dependent granular dilatancy. Here we recapitulate the equations and analyze their eigenstructure to show that they form a hyperbolic system with desirable stability properties. To solve the equations we use a shock-capturing numerical scheme with adaptive mesh refinement, implemented in an open-source software package we call D-Claw. As tests of D-Claw, we compare model output with results from two sets of large-scale debris-flow experiments. One set focuses on flow initiation from landslides triggered by rising pore-water pressures, and the other focuses on downstream flow dynamics, runout, and deposition. D-Claw performs well in predicting evolution of flow speeds, thicknesses, and basal pore-fluid pressures measured in each type of experiment. Computational results illustrate the critical role of dilatancy in linking coevolution of the solid volume fraction and pore-fluid pressure, which mediates basal Coulomb friction and thereby regulates debris-flow dynamics.

  5. Investigating the relationship between seismicity and fluid injection in the Barnett Shale, Texas using coupled poroelastic model and surface deformation data

    NASA Astrophysics Data System (ADS)

    Zhai, G.; Shirzaei, M.

    2017-12-01

    Across the Barnett Shale, Texas a noticeable increase in seismic activity was observed during 2007 and 2015, which was accompanied by high volume injection at several nearby disposal wells. Many studies focused on the positive correlation between injection rate at individual wells and the adjacent seismicity, suggesting that seismicity is triggered or induced due to increased pore fluid pressure associated with fluid injection in hydraulically connected geological units. However, investigating temporal evolution of total volume of injected fluid and concurrent earthquakes in a larger area indicates more complex patterns, requiring a more comprehensive analysis of the spatiotemporal evolution of coupled poroelastic stress and pore fluid pressure. In this study, we created a coupled poroelastic model to simulate large scale spatiotemporal evolution of pore pressure, poroelastic stresses, and Coulomb failure stress in the Barnett Shale using injection time series of 96 high-volume injection wells spanning from 2007 to 2015. We additionally account for a layered poroelastic medium, where its parameters are set up using geological maps and seismic tomographic data sets. Fault orientations and relevant frictional properties are also extracted from published literatures. We further integrate observation of surface deformation obtained from interferometric processing of 16 ALOS L-Band SAR images to optimize rock hydraulic diffusivity and constrain the extent to which fluid may migrate. The preliminary modeling result shows that poroelastic stress is only 10% of pore pressure. However, the superimposition of these two effects is spatially and temporally responsible for the occurrence of earthquakes in the Barnett Shale. Also, not all area with increased Coulomb failure stress experiences elevated seismicity, suggesting possible heterogeneous background tectonic stresses, lacking pre-existing faults, and/or heterogeneous fault orientations.

  6. Physically based estimation of soil water retention from textural data: General framework, new models, and streamlined existing models

    USGS Publications Warehouse

    Nimmo, J.R.; Herkelrath, W.N.; Laguna, Luna A.M.

    2007-01-01

    Numerous models are in widespread use for the estimation of soil water retention from more easily measured textural data. Improved models are needed for better prediction and wider applicability. We developed a basic framework from which new and existing models can be derived to facilitate improvements. Starting from the assumption that every particle has a characteristic dimension R associated uniquely with a matric pressure ?? and that the form of the ??-R relation is the defining characteristic of each model, this framework leads to particular models by specification of geometric relationships between pores and particles. Typical assumptions are that particles are spheres, pores are cylinders with volume equal to the associated particle volume times the void ratio, and that the capillary inverse proportionality between radius and matric pressure is valid. Examples include fixed-pore-shape and fixed-pore-length models. We also developed alternative versions of the model of Arya and Paris that eliminate its interval-size dependence and other problems. The alternative models are calculable by direct application of algebraic formulas rather than manipulation of data tables and intermediate results, and they easily combine with other models (e.g., incorporating structural effects) that are formulated on a continuous basis. Additionally, we developed a family of models based on the same pore geometry as the widely used unsaturated hydraulic conductivity model of Mualem. Predictions of measurements for different suitable media show that some of the models provide consistently good results and can be chosen based on ease of calculations and other factors. ?? Soil Science Society of America. All rights reserved.

  7. Bioaccessible Porosity: A new approach to assess residual contamination after bioremediation of hydrophobic organic compounds in sub-surface microporous environments

    NASA Astrophysics Data System (ADS)

    Akbari, A.; Ghoshal, S.

    2016-12-01

    We define a new parameter, "bioaccessible porosity", the fraction of aggregate volume accessible to soil bacteria, towards a priori assessment of hydrocarbon bioremediation end points. Microbial uptake of poorly soluble hydrocarbons occurs through direct uptake or micellar solubilzation/emulsification associated with biosurfactant production, and requires close proximity of bacteria and hydrocarbon phase. In subsurface microporous environments, bioremediation rates are attenuated when residual hydrophobic contamination is entrapped in sterically restrictive environments which is not accessible to soil bacteria. This study presents new approaches for characterization of the microstructure of porous media and as well, the ability of indigenous hydrocarbon degraders to access to a range of pore sizes. Bacterial access to poorly soluble hydrocarbons in soil micro pores were simulated with bioreactors with membranes with different pore sizes containing the hydrocarbon degrading bacteria, Dietzia maris. D. maris is Gram-positive, and nonmotile that we isolated as the major hydrocarbon degrader from a fine-grained, weathered, hydrocarbon-contaminated site soil. Under nutritional stress, planktonic D. maris cells were aggregated and accessed 5 µm but not 3 µm and smaller pores. However, when hexadecane was available at the pore mouth, D. maris colonized the pore mouth, and accessed pores as small as 0.4 µm. This suggests bacterial accessibility to different pore sizes is regulated by nutritional conditions. A combination of X-ray micro-CT scanning, gas adsorption and mercury intrusion porosimetry was used to characterize the range of pore sizes of soil aggregates. In case of the studied contaminated soil, the bioaccessible porosity were determined as 25% , 27% and 29% (assuming 4, 1, 0.4 µm respectively as accessibility criteria), and about 2.7% of aggregate volume was attributed to 0.006-0.4 µm pores. The 2% aggregate volume at an assumed saturation of 10% could accommodate 1000 mg/ kg soil of oil. The remediation endpoint after extended biotreatment was at similar order of magnitude of 600 mg/kg. The approach introduced here could be used for qualitative assessment of attainable bioremediation endpoint in soils with different microstructure and hydrocarbon degrading bacterial community.

  8. ARSENIC REMOVAL USING SOL-GEL SYNTHESIZED TITANIUM DIOXIDE NANOPARTICLES

    EPA Science Inventory

    In this study, the effectiveness of TiO2 nanoparticles in arsenic adsorption was examined. TiO2 particles (LS) were synthesized via sol-gel techniques and characterized for their crystallinity, surface area and pore volume. Batch adsorption studies were perf...

  9. Tomographic Image of a Seismically Active Volcano: Mammoth Mountain, California

    NASA Astrophysics Data System (ADS)

    Dawson, P. B.; Chouet, B. A.; Pitt, A. M.

    2015-12-01

    High-resolution tomographic P wave, S wave, and VP /VS velocity structure models are derived for Mammoth Mountain, California using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (˜50 km3) of low P and low S wave velocities is imaged beneath Mammoth Mountain, extending from near the surface to a depth of ˜2 km below sea level. We infer that the reduction in seismic wave velocities is primarily due to the presence of CO2 distributed in oblate-spheroid pores with mean aspect ratio α ˜8 x 10-4 (crack-like pores) and gas volume fraction φ ˜4 x 10-4. The pore density parameter κ = 3φ / (4πα) = na3 = 0.12, where n is the number of pores per cubic meter and a is the mean pore equatorial radius. The total mass of CO2 is estimated to range up to ˜1.6 x 1010 kg if the pores exclusively contain CO2, although he presence of an aqueous phase may lower this estimate by up to one order of magnitude. The local geological structure indicates that the CO2 contained in the pores is delivered to the surface through fractures controlled by faults and remnant foliation of the bedrock beneath Mammoth Mountain. The total volume of CO2 contained in the reservoir suggests that given an emission rate of 5 x 105 kg day-1, the reservoir could supply the emission of CO2 for ˜8 to ˜90 years before depletion. Continued supply of CO2 from an underlying magmatic system would significantly prolong the existence of the reservoir.

  10. Dynamic three-dimensional pore-scale imaging of reaction in a carbonate at reservoir conditions.

    PubMed

    Menke, Hannah P; Bijeljic, Branko; Andrew, Matthew G; Blunt, Martin J

    2015-04-07

    Quantifying CO2 transport and average effective reaction rates in the subsurface is essential to assess the risks associated with underground carbon capture and storage. We use X-ray microtomography to investigate dynamic pore structure evolution in situ at temperatures and pressures representative of underground reservoirs and aquifers. A 4 mm diameter Ketton carbonate core is injected with CO2-saturated brine at 50 °C and 10 MPa while tomographic images are taken at 15 min intervals with a 3.8 μm spatial resolution over a period of 2(1/2) h. An approximate doubling of porosity with only a 3.6% increase in surface area to volume ratio is measured from the images. Pore-scale direct simulation and network modeling on the images quantify an order of magnitude increase in permeability and an appreciable alteration of the velocity field. We study the uniform reaction regime, with dissolution throughout the core. However, at the pore scale, we see variations in the degree of dissolution with an overall reaction rate which is approximately 14 times lower than estimated from batch measurements. This work implies that in heterogeneous rocks, pore-scale transport of reactants limits dissolution and can reduce the average effective reaction rate by an order of magnitude.

  11. A controlled release of ibuprofen by systematically tailoring the morphology of mesoporous silica materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu Fengyu; Chemistry and Pharmaceutical College, Jiamusi University, Jiamusi 154007; Zhu Guangshan

    2006-07-15

    A series of mesoporous silica materials with similar pore sizes, different morphologies and variable pore geometries were prepared systematically. In order to control drug release, ibuprofen was employed as a model drug and the influence of morphology and pore geometry of mesoporous silica on drug release profiles was extensively studied. The mesoporous silica and drug-loaded samples were characterized by X-ray diffraction, Fourier transform IR spectroscopy, N{sub 2} adsorption and desorption, scanning electron microscopy, and transmission electron microscopy. It was found that the drug-loading amount was directly correlated to the Brunauer-Emmett-Teller surface area, pore geometry, and pore volume; while the drugmore » release profiles could be controlled by tailoring the morphologies of mesoporous silica carriers. - Graphical abstract: The release of ibuprofen is controlled by tailoring the morphologies of mesoporous silica. The mesoporous silica and drug-loaded samples are characterized by powder X-ray diffraction, Fourier transform IR spectroscopy, N{sub 2} adsorption and desorption, scanning electron microscopy, and transmission electron microscopy. The drug-loading amount is directly correlated to the Brunauer-Emmett-Teller surface area, pore geometry, and pore volume; while the drug release profiles can be controlled by tailoring the morphologies of mesoporous silica carriers.« less

  12. Generalized network modeling of capillary-dominated two-phase flow

    NASA Astrophysics Data System (ADS)

    Raeini, Ali Q.; Bijeljic, Branko; Blunt, Martin J.

    2018-02-01

    We present a generalized network model for simulating capillary-dominated two-phase flow through porous media at the pore scale. Three-dimensional images of the pore space are discretized using a generalized network—described in a companion paper [A. Q. Raeini, B. Bijeljic, and M. J. Blunt, Phys. Rev. E 96, 013312 (2017), 10.1103/PhysRevE.96.013312]—which comprises pores that are divided into smaller elements called half-throats and subsequently into corners. Half-throats define the connectivity of the network at the coarsest level, connecting each pore to half-throats of its neighboring pores from their narrower ends, while corners define the connectivity of pore crevices. The corners are discretized at different levels for accurate calculation of entry pressures, fluid volumes, and flow conductivities that are obtained using direct simulation of flow on the underlying image. This paper discusses the two-phase flow model that is used to compute the averaged flow properties of the generalized network, including relative permeability and capillary pressure. We validate the model using direct finite-volume two-phase flow simulations on synthetic geometries, and then present a comparison of the model predictions with a conventional pore-network model and experimental measurements of relative permeability in the literature.

  13. Experimental investigation of changes in methane adsorption of bitumen-free Woodford Shale with thermal maturation induced by hydrous pyrolysis

    USGS Publications Warehouse

    Hu, Haiyan; Zhang, Tongwei; Wiggins-Camacho, Jaclyn D.; Ellis, Geoffrey S.; Lewan, Michael D.; Zhang, Xiayong

    2014-01-01

    This study quantifies the effects of organic-matter (OM) thermal maturity on methane (CH4) sorption, on the basis of five samples that were artificially matured through hydrous pyrolysis achieved by heating samples of immature Woodford Shale under five different time–temperature conditions. CH4-sorption isotherms at 35 °C, 50 °C, and 65 °C, and pressures up to 14 MPa on dry, solvent-extracted samples of the artificially matured Woodford Shale were measured. The results showed that CH4-sorption capacity, normalized to TOC, varied with thermal maturity, following the trend: maximum oil (367 °C) > oil cracking (400 °C) > maximum bitumen/early oil (333 °C) > early bitumen (300 °C) > immature stage (130 °C). The Langmuir constants for the samples at maximum-oil and oil-cracking stages are larger than the values for the bitumen-forming stages. The total pore volume, determined by N2 physisorption at 77 K, increases with increased maturation: mesopores, 2–50 nm in width, were created during the thermal conversion of organic-matter and a dramatic increase in porosity appeared when maximum-bitumen and maximum-oil generation stages were reached. A linear relationship between thermal maturity and Brunauer–Emmett–Teller (BET) surface area suggests that the observed increase in CH4-sorption capacity may be the result of mesopores produced during OM conversion. No obvious difference is observed in pore-size distribution and pore volume for samples with pores 2 physisorption at 273 K. The isosteric heat of adsorption and the standard entropy for artificially matured samples ranged from 17.9 kJ mol−1 to 21.9 kJ mol−1 and from −85.4 J mol−1 K−1 to −101.8 J mol−1 K−1, respectively. These values are similar to the values of immature Woodford kerogen concentrate previously observed, but are larger than naturally matured organic-rich shales. High-temperature hydrous pyrolysis might have induced Lewis acid sites on both organic and mineral surfaces, resulting to some extent, in chemical interactions between the adsorption site and the methane C–H bonds. The formation of abundant mesopores (2–50 nm) within organic matter during organic-matter thermal maturation makes a great contribution to the increase in both BET surface area and pore volume, and a significant increase in 2–6 nm pores occurs at maximum-oil-generation and oil-cracking to gas, ultimately controlling the methane-adsorption capacity. Therefore, consideration of pore-size effects and thermal maturity is very important for gas in place (GIP) prediction in organic-rich shales.

  14. Wood decay by brown-rot fungi : changes in pore structure and cell wall volume

    Treesearch

    Douglas S. Flournoy; T. Kent Kirk; T.L. Highley

    1991-01-01

    Sweetgum (Liquidambar styraciflua L.) wood blocks were decayed by Postia (= Poria) placenta in soilblock cultures. Decay was terminated at various weight losses, and the pore volumes available to four low molecular weight molecules, (water, 4 Å,; glucose, 8 Å,; maltose, 10 Å; and raffinose, 128,) and three dextrans (Mr 6,000, 38 Å; 11,200, 51 Å; nd 17,500, 61 Å) were...

  15. Catalytic two-stage coal liquefaction process having improved nitrogen removal

    DOEpatents

    Comolli, Alfred G.

    1991-01-01

    A process for catalytic multi-stage hydrogenation and liquefaction of coal to produce high yields of low-boiling hydrocarbon liquids containing low concentrations of nitogen compounds. First stage catalytic reaction conditions are 700.degree.-800.degree. F. temperature, 1500-3500 psig hydrogen partial pressure, with the space velocity maintained in a critical range of 10-40 lb coal/hr ft.sup.3 catalyst settled volume. The first stage catalyst has 0.3-1.2 cc/gm total pore volume with at least 25% of the pore volume in pores having diameters of 200-2000 Angstroms. Second stage reaction conditions are 760.degree.-870.degree. F. temperature with space velocity exceeding that in the first stage reactor, so as to achieve increased hydrogenation yield of low-boiling hydrocarbon liquid products having at least 75% removal of nitrogen compounds from the coal-derived liquid products.

  16. Ion beam promoted lithium absorption in glassy polymeric carbon

    NASA Astrophysics Data System (ADS)

    Ila, D.; Zimmerman, R. L.; Jenkins, G. M.; Maleki, H.; Poker, D. B.

    1995-12-01

    Glassy Polymeric Carbon (GPC) samples prepared from a precursor possess accessible pore volume that depends on the heat treatment temperature. We have shown that lithium percolates without diffusion into the accessible pores of GPC samples immersed in a molten lithium salt bath at 700°C. Ion bombardment with 10 MeV Au atoms increases the total pore volume available for lithium occupation even for samples normally impermeable to lithium. The lithium concentration depth profile is measured using Li7(p,2α) nuclear reaction analysis. We will report on lithium percolation into GPC prepared at temperatures between 500°C and 1000°C and activated by a 10 MeV gold ion bombardment.

  17. Ultrasound Algorithm Derivation for Soil Moisture Content Estimation

    NASA Technical Reports Server (NTRS)

    Belisle, W.R.; Metzl, R.; Choi, J.; Aggarwal, M. D.; Coleman, T.

    1997-01-01

    Soil moisture content can be estimated by evaluating the velocity at which sound waves travel through a known volume of solid material. This research involved the development of three soil algorithms relating the moisture content to the velocity at which sound waves moved through dry and moist media. Pressure and shear wave propagation equations were used in conjunction with soil property descriptions to derive algorithms appropriate for describing the effects of moisture content variation on the velocity of sound waves in soils with and without complete soil pore water volumes, An elementary algorithm was used to estimate soil moisture contents ranging from 0.08 g/g to 0.5 g/g from sound wave velocities ranging from 526 m/s to 664 m/s. Secondary algorithms were also used to estimate soil moisture content from sound wave velocities through soils with pores that were filled predominantly with air or water.

  18. An investigation of rock fall and pore water pressure using LIDAR in Highway 63 rock cuts.

    DOT National Transportation Integrated Search

    2014-07-01

    The purpose of this research work is compare LIDAR scanning measurements of rock fall with the natural changes in groundwater level to determining the effect of water pressures (levels) on rock fall. To collect the information of rock cut volume chan...

  19. Meso- and micropore characteristics of coal lithotypes: Implications for CO2 adsorption

    USGS Publications Warehouse

    Mastalerz, Maria; Drobniak, A.; Rupp, J.

    2008-01-01

    Lithotypes (vitrain, clarain, and fusain) of high volatile bituminous Pennsylvanian coals (Ro of 0.56-0.62%) from Indiana (the Illinois Basin) have been studied with regard to meso- and micropore characteristics using low-pressure nitrogen and carbon dioxide adsorption techniques, respectively. High-pressure CO2 adsorption isotherms were obtained from lithotypes of the Lower Block Coal Member (the Brazil Formation) and the Springfield Coal Member (the Petersburg Formation), and after evacuation of CO2, the lithotypes were re-analyzed for meso- and micropore characteristics to investigate changes related to high-pressure CO2 adsorption. Coal lithotypes have differing Brunauer-Emmett-Teller (BET) surface areas and mesopore volumes, with significantly lower values in fusains than in vitrains or clarains. Fusains have very limited pore volume in the pore size width of 4-10 nm, and the volume, increases with an increase in pore size, in contrast to vitrain, for which a 4-10 nm range is the dominant pore'Wlidth. For clarain, both pores of 4-10 nm and pores larger than 20 nm contribute substantially to the mesoporosity. Micropore surface areas are the smallest for fusain (from 72.8 to 98.2 m2/g), largest for vitrain (from 125.0 to,158.4 m2 /g), and intermediate for clarain (from 110.5 to 124.4 m2/g). Similar relationships are noted for micropore volumes, and the lower values of these parameters in fusains are related to smaller volumes of all incremental micropore sizes. In the Springfield and the Lower Block Coal Members, among lithotypes studied, fusain has the lowest adsorption capacity. For the Lower Block, vitrain has significantly higher adsorption capacity than fusain and clarain, whereas for the Springfield, vitrain and clarain have comparable but still significantly higher adsorption capacities than fusain. The Lower Block vitrain and fusain have much higher adsorption capacities than those in the Springfield, whereas the clarains of the two coals are comparable. After exposure of coal to CO2 at high pressure, vitrains experienced the largest porosity changes among all lithotypes studied. These changes are dominantly manifested in the mesoporosity (decrease in mesopore volume) range; whereas little to no change occurred in the micropore size range. In other lithotypes (clarains, the dominant lithology in the coals studied, and sporadic fusains), the changes were minimal. ?? 2008 American Chemical Society.

  20. Slip-flow in complex porous media as determined by a multi-relaxation-time lattice Boltzmann model

    NASA Astrophysics Data System (ADS)

    Landry, C. J.; Prodanovic, M.; Eichhubl, P.

    2014-12-01

    The pores and throats of shales and mudrocks are predominantly found within a range of 1-100 nm, within this size range the flow of gas at reservoir conditions will fall within the slip-flow and low transition-flow regime (0.001 < Kn < 0.5). Currently, the study of slip-flows is for the most part limited to simple tube and channel geometries, however, the geometry of mudrock pores is often sponge-like (organic matter) and/or platy (clays). Molecular dynamics (MD) simulations can be used to predict slip-flow in complex geometries, but due to prohibitive computational demand are generally limited to small volumes (one to several pores). Here we present a multi-relaxation-time lattice Boltzmann model (LBM) parameterized for slip-flow (Guo et al. 2008) and adapted here to complex geometries. LBMs are inherently parallelizable, such that flow in complex geometries of significant (near REV-scale) volumes can be readily simulated at a fraction of the computational cost of MD simulations. At the macroscopic-scale the LBM is parameterized with local effective viscosities at each node to capture the variance of the mean-free-path of gas molecules in a bounded system. The corrected mean-free-path for each lattice node is determined using the mean distance of the node to the pore-wall and Stop's correction for mean-free-paths in an infinite parallel-plate geometry. At the microscopic-scale, a combined bounce-back specular-reflection boundary condition is applied to the pore-wall nodes to capture Maxwellian-slip. The LBM simulation results are first validated in simple tube and channel geometries, where good agreement is found for Knudsen numbers below 0.1, and fair agreement is found for Knudsen numbers between 0.1 and 0.5. More complex geometries are then examined including triangular-ducts and ellipsoid-ducts, both with constant and tapering/expanding cross-sections, as well as a clay pore-network imaged from a hydrocarbon producing shale by sequential focused ion-beam scanning electron microscopy. These results are analyzed to determine grid-independent resolutions, and used to explore the relationship between effective permeability and Knudsen number in complex geometries.

  1. Spontaneous crystalline-to-amorphous phase transformation of organic or medicinal compounds in the presence of porous media, part 2: amorphization capacity and mechanisms of interaction.

    PubMed

    Qian, Ken K; Suib, Steven L; Bogner, Robin H

    2011-11-01

    Amorphization of crystalline compounds using mesoporous media is a promising technique to improve the solubility and dissolution rate of poorly soluble compounds. The objective of this paper is to determine the capacity of amorphization and understand the mechanisms of phase transformation. Commercial grades of mesoporous silicon dioxide (SiO(2)) samples (5- to 30-nm mean pore diameters) with either constant surface area or constant pore volume were used. The amorphization capacity of naphthalene was not proportional to either the surface area or the pore volume measured using adsorption chambers. Instead, the amorphization capacity correlated with surface curvature, that is, the smaller the pore diameter and the higher the surface curvature, the greater the amorphization capacity. The change in surface chemistry due to a highly curved surface may be responsible for the enhanced amorphization capacity as well. The amorphization of crystalline compounds was facilitated through capillary condensation, with the decrease in pore volume as the direct experimental evidence. The amorphization capacity was also enhanced by the dipole-dipole or dipole-induced dipole interaction, promoted by the hydroxyl groups on the surface of SiO(2). The enthalpy of vapor-solid condensation of crystalline compounds was a useful indicator to predict the rank order of amorphization capacity. Copyright © 2011 Wiley-Liss, Inc.

  2. THE EFFECT OF TEMPERATURE AND UNIAXIAL PRESSURE ON THE DENSIFICATION BEHAVIOR OF SILICA AEROGEL GRANULES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyas, Josef; Robinson, Matthew J.; Fryxell, Glen E.

    Materials are being developed in U.S. for the removal and immobilization of iodine from gaseous products of nuclear fuel reprocessing in support of the Fuel Cycle Technology Separations and Waste Forms Campaign. The silver-functionalized silica aerogel proved to be an excellent candidate for this treatment because of its high selectivity and sorption capacity for radioiodine and its possible conversion to a durable silica-based waste form. The present study investigated with nitrogen sorption and helium pycnometry the effect of pressureless isothermal sintering at temperatures of 900-1400°C for 2.5-90 min or isothermal hot-pressing at 1200°C for 2.5 min on densification of rawmore » and silver-functionalized silica aerogel granules. Rapid sintering was observed at 1050 and 1200°C. Only 15 min of pressureless sintering at 1200°C resulted in almost complete densification. The macropores disappeared, surface area decreased from 1114 m2/g to 25 m2/g, pore volume from 7.41 cm3/g to 0.09 cm3/g, and adsorption pore size from 18.7 to 7 nm. The skeletal density of sintered granules was similar to the bulk density of amorphous silica (2.2 g/cm3). The hot-pressing accelerated the sintering process, decreasing significantly the pore size and volume.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, R.H.; Rand, B.

    The physical adsorption of nonpolar and polar vapors by active carbons is discussed in relation to pore structure and pore wall chemistry. For nonpolar vapors the Dubinin-Radushkevich equation is used to derive micropore volumes (W[sub 0]), average adsorption energies (E[sub 0]), and micropore widths (L) for a number of systems. These parameters are used to interpret the adsorption behavior of nitrogen which, because it is a relatively small molecule, is frequently used at 77 K to probe porosity and surface area. Results are presented for three carbons from differing precursors, namely, coal, coconut shells, and polyvinylidene chloride (PVDC) to illustratemore » the applicability of the technique. For the latter carbon increases in micropore size, induced by activation in carbon dioxide, and reductions in accessible pore volume caused by heat treatment in argon are also characterized and related to structural changes. The approach is then extended to the adsorption of larger hydrogen vapors, where the resulting W[sub 0] values may require correction for molecular packing effects which occur in the lower relative pressure regions of the isotherms, i.e., during the filling of ultramicropores. These packing effects are shown to limit the use of the Polanyi characteristic curve for correlating isotherm data for several vapors, of differing molecular size, by one adsorbent. Data for the adsorption of water, which is a strongly polar liquid, have been interpreted using the Dubinin-Serpinsky equation.« less

  4. Pore-scale modeling of saturated permeabilities in random sphere packings.

    PubMed

    Pan, C; Hilpert, M; Miller, C T

    2001-12-01

    We use two pore-scale approaches, lattice-Boltzmann (LB) and pore-network modeling, to simulate single-phase flow in simulated sphere packings that vary in porosity and sphere-size distribution. For both modeling approaches, we determine the size of the representative elementary volume with respect to the permeability. Permeabilities obtained by LB modeling agree well with Rumpf and Gupte's experiments in sphere packings for small Reynolds numbers. The LB simulations agree well with the empirical Ergun equation for intermediate but not for small Reynolds numbers. We suggest a modified form of Ergun's equation to describe both low and intermediate Reynolds number flows. The pore-network simulations agree well with predictions from the effective-medium approximation but underestimate the permeability due to the simplified representation of the porous media. Based on LB simulations in packings with log-normal sphere-size distributions, we suggest a permeability relation with respect to the porosity, as well as the mean and standard deviation of the sphere diameter.

  5. Synthesis and characterization of high-surface-area millimeter-sized silica beads with hierarchical multi-modal pore structure by the addition of agar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yosep; Choi, Junhyun; Tong, Meiping, E-mail: tongmeiping@iee.pku.edu.cn

    2014-04-01

    Millimeter-sized spherical silica foams (SSFs) with hierarchical multi-modal pore structure featuring high specific surface area and ordered mesoporous frameworks were successfully prepared using aqueous agar addition, foaming and drop-in-oil processes. The pore-related properties of the prepared spherical silica (SSs) and SSFs were systematically characterized by field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), small-angle X-ray diffraction (SAXRD), Hg intrusion porosimetry, and N{sub 2} adsorption–desorption isotherm measurements. Improvements in the BET surface area and total pore volume were observed at 504 m{sup 2} g{sup −1} and 5.45 cm{sup 3} g{sup −1}, respectively, after an agar addition and foaming process. Despitemore » the increase in the BET surface area, the mesopore wall thickness and the pore size of the mesopores generated from the block copolymer with agar addition were unchanged based on the SAXRD, TEM, and BJH methods. The SSFs prepared in the present study were confirmed to have improved BET surface area and micropore volume through the agar loading, and to exhibit interconnected 3-dimensional network macropore structure leading to the enhancement of total porosity and BET surface area via the foaming process. - Highlights: • Millimeter-sized spherical silica foams (SSFs) are successfully prepared. • SSFs exhibit high BET surface area and ordered hierarchical pore structure. • Agar addition improves BET surface area and micropore volume of SSFs. • Foaming process generates interconnected 3-D network macropore structure of SSFs.« less

  6. Are artificial opals non-close-packed fcc structures?

    NASA Astrophysics Data System (ADS)

    García-Santamaría, F.; Braun, P. V.

    2007-06-01

    The authors report a simple experimental method to accurately measure the volume fraction of artificial opals. The results are modeled using several methods, and they find that some of the most common yield very inaccurate results. Both finite size and substrate effects play an important role in calculations of the volume fraction. The experimental results show that the interstitial pore volume is 4%-15% larger than expected for close-packed structures. Consequently, calculations performed in previous work relating the amount of material synthesized in the opal interstices with the optical properties may need revision, especially in the case of high refractive index materials.

  7. Pore pressure control on faulting behavior in a block-gouge system

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Juanes, R.

    2016-12-01

    Pore fluid pressure in a fault zone can be altered by natural processes (e.g., mineral dehydration and thermal pressurization) and industrial operations involving subsurface fluid injection/extraction for the development of energy and water resources. However, the effect of pore pressure change on the stability and slip motion of a preexisting geologic fault remain poorly understood; yet they are critical for the assessment of seismic risk. In this work, we develop a micromechanical model to investigate the effect of pore pressure on faulting behavior. The model couples pore network fluid flow and mechanics of the solid grains. We conceptualize the fault zone as a gouge layer sandwiched between two blocks; the block material is represented by a group of contact-bonded grains and the gouge is composed of unbonded grains. A pore network is extracted from the particulate pack of the block-gouge system with pore body volumes and pore throat conductivities calculated rigorously based on the geometry of the local pore space. Pore fluid exerts pressure force onto the grains, the motion of which is solved using the discrete element method (DEM). The model updates the pore network regularly in response to deformation of the solid matrix. We study the fault stability in the presence of a pressure inhomogeneity (gradient) across the gouge layer, and compare it with the case of homogeneous pore pressure. We consider both normal and thrust faulting scenarios with a focus on the onset of shear failure along the block-gouge interfaces. Numerical simulations show that the slip behavior is characterized by intermittent dynamics, which is evident in the number of slipping contacts at the block-gouge interfaces and the total kinetic energy of the gouge particles. Numerical results also show that, for the case of pressure inhomogeneity, the onset of slip occurs earlier for the side with higher pressure, and that this onset appears to be controlled by the maximum pressure of both sides of the fault. We conclude that the stability of the fault should be evaluated separately for both sides of the gouge layer, a result that sheds new light on the use of the effective stress principle and the Coulomb failure criterion in evaluating the stability of a complex fault zone.

  8. Fractal Characteristics of Pores in Taiyuan Formation Shale from Hedong Coal Field, China

    NASA Astrophysics Data System (ADS)

    Li, Kunjie; Zeng, Fangui; Cai, Jianchao; Sheng, Guanglong; Xia, Peng; Zhang, Kun

    For the purpose of investigating the fractal characteristics of pores in Taiyuan formation shale, a series of qualitative and quantitative experiments were conducted on 17 shale samples from well HD-1 in Hedong coal field of North China. The results of geochemical experiments show that Total organic carbon (TOC) varies from 0.67% to 5.32% and the organic matters are in the high mature or over mature stage. The shale samples consist mainly of clay minerals and quartz with minor pyrite and carbonates. The FE-SEM images indicate that three types of pores, organic-related pores, inorganic-related pores and micro-fractures related pores, are developed well, and a certain number of intragranular pores are found inside quartz and carbonates formed by acid liquid corrosion. The pore size distributions (PSDs) broadly range from several to hundreds nanometers, but most pores are smaller than 10nm. As the result of different adsorption features at relative pressure (0-0.5) and (0.5-1) on the N2 adsorption isotherm, two fractal dimensions D1 and D2 were obtained with the Frenkel-Halsey-Hill (FHH) model. D1 and D2 vary from 2.4227 to 2.6219 and from 2.6049 to 2.7877, respectively. Both TOC and brittle minerals have positive effect on D1 and D2, whereas clay minerals, have a negative influence on them. The fractal dimensions are also influenced by the pore structure parameters, such as the specific surface area, BJH pore volume, etc. Shale samples with higher D1 could provide more adsorption sites leading to a greater methane adsorption capacity, whereas shale samples with higher D2 have little influence on methane adsorption capacity.

  9. Effects of activated carbon surface chemistry and pore structure on the adsorption of trace organic contaminants from aqueous solution

    NASA Astrophysics Data System (ADS)

    Li, Lei

    The objectives were (1) to identify activated pore structure and surface chemistry characteristics that assure the effective removal of trace organic contaminants from aqueous-solution, and (2) to develop a procedure to predict the adsorption capacity of activated carbons from fundamental adsorbent and adsorbate properties. A matrix of activated carbon fibers (ACFs) (with three activation levels and four surface chemistry levels) and three commercially available granular activated carbons (GACs) served as the adsorbents. BET surface area, pore size distribution, elemental composition, point of zero charge and infrared spectroscopy data were obtained to characterize the adsorbents. The adsorption of relative hydrophilic methyl tertiary-butyl ether (MTBE) and relative hydrophobic trichloroethene (TCE) were conducted in both ultrapure water and Sacramento-San Joaquin Delta water. The results showed that an effective adsorbent for the removal of micropollutants from water requires (1) a large volume of micropores with widths that are about 1.5 times larger than the kinetic diameter of the target adsorbate, (2) a micropore size distribution that extends to widths that are approximately twice the kinetic diameter of the target adsorbate to prevent pore blockage by NOM, and (3) a hydrophobic pore surface chemistry with the sum of oxygen and nitrogen contents less than 2 to 3 mmol/g. A procedure based on the Polanyi Potential Theory (PPT) was developed to predict the adsorption capacities of activated carbons from fundamental adsorbent and adsorbate properties. A correlation between the coalescing factor for water adsorption and adsorbent oxygen content was developed. Based on this correlation, the PPT yielded reasonable estimates of aqueous phase adsorption capacities for both relatively polar and non-polar adsorbates on both relatively hydrophobic and hydrophilic activated carbons. With the developed procedure, the adsorption capacities of organic compounds that are partially miscible in water can be predicted from (1) N2 and CO2 adsorption isotherms of a given adsorbent, (2) the adsorbent oxygen content, and (3) the molar volume and parachor of the target adsorbate.

  10. High-resolution synchrotron imaging shows that root hairs influence rhizosphere soil structure formation.

    PubMed

    Koebernick, Nicolai; Daly, Keith R; Keyes, Samuel D; George, Timothy S; Brown, Lawrie K; Raffan, Annette; Cooper, Laura J; Naveed, Muhammad; Bengough, Anthony G; Sinclair, Ian; Hallett, Paul D; Roose, Tiina

    2017-10-01

    In this paper, we provide direct evidence of the importance of root hairs on pore structure development at the root-soil interface during the early stage of crop establishment. This was achieved by use of high-resolution (c. 5 μm) synchrotron radiation computed tomography (SRCT) to visualise both the structure of root hairs and the soil pore structure in plant-soil microcosms. Two contrasting genotypes of barley (Hordeum vulgare), with and without root hairs, were grown for 8 d in microcosms packed with sandy loam soil at 1.2 g cm -3 dry bulk density. Root hairs were visualised within air-filled pore spaces, but not in the fine-textured soil regions. We found that the genotype with root hairs significantly altered the porosity and connectivity of the detectable pore space (> 5 μm) in the rhizosphere, as compared with the no-hair mutants. Both genotypes showed decreasing pore space between 0.8 and 0.1 mm from the root surface. Interestingly the root-hair-bearing genotype had a significantly greater soil pore volume-fraction at the root-soil interface. Effects of pore structure on diffusion and permeability were estimated to be functionally insignificant under saturated conditions when simulated using image-based modelling. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  11. New insights about HERG blockade obtained from protein modeling, potential energy mapping, and docking studies.

    PubMed

    Farid, Ramy; Day, Tyler; Friesner, Richard A; Pearlstein, Robert A

    2006-05-01

    We created a homology model of the homo-tetrameric pore domain of HERG using the crystal structure of the bacterial potassium channel, KvAP, as a template. We docked a set of known blockers with well-characterized effects on channel function into the lumen of the pore between the selectivity filter and extracellular entrance using a novel docking and refinement procedure incorporating Glide and Prime. Key aromatic groups of the blockers are predicted to form multiple simultaneous ring stacking and hydrophobic interactions among the eight aromatic residues lining the pore. Furthermore, each blocker can achieve these interactions via multiple docking configurations. To further interpret the docking results, we mapped hydrophobic and hydrophilic potentials within the lumen of each refined docked complex. Hydrophilic iso-potential contours define a 'propeller-shaped' volume at the selectivity filter entrance. Hydrophobic contours define a hollow 'crown-shaped' volume located above the 'propeller', whose hydrophobic 'rim' extends along the pore axis between Tyr652 and Phe656. Blockers adopt conformations/binding orientations that closely mimic the shapes and properties of these contours. Blocker basic groups are localized in the hydrophilic 'propeller', forming electrostatic interactions with Ser624 rather than a generally accepted pi-cation interaction with Tyr652. Terfenadine, cisapride, sertindole, ibutilide, and clofilium adopt similar docked poses, in which their N-substituents bridge radially across the hollow interior of the 'crown' (analogous to the hub and spokes of a wheel), and project aromatic/hydrophobic portions into the hydrophobic 'rim'. MK-499 docks with its longitudinal axis parallel to the axis of the pore and 'crown', and its hydrophobic groups buried within the hydrophobic 'rim'.

  12. Microporous carbons derived from melamine and isophthalaldehyde: One-pot condensation and activation in a molten salt medium for efficient gas adsorption.

    PubMed

    Rehman, Adeela; Park, Soo-Jin

    2018-04-17

    In the present work, mixture of melamine and isophthalaldehyde undergo simultaneous polymerization, carbonization, and in situ activation in the presence of molten salt media through a single all-in-one route to design microporous carbons with high specific surface areas (~3000 m 2 /g). The effect of the activation temperature and molten salts on the polymerization process and final texture of the carbon was explored. Carbon materials prepared at 700 °C, in the presence of KOH (referred as MIK-700), exhibited a narrower pore-size distribution ~1.05 nm than those prepared in the presence of the eutectic KOH-NaOH mixture (MIKN). Additionally, MIK-700 possesses an optimum micropore volume (1.33 cm 3 /g) along with a high nitrogen content (2.66 wt%), resulting in the excellent CO 2 adsorption capacity of 9.7 mmol/g at 273 K and 1 bar. Similarly, the high specific area and highest total pore volume play an important role in H 2 storage at 77 K, with 4.0 wt% uptake by MIKN-800 (specific surface area and pore volume of 2984 m 2 /g and 1.98 cm 3 /g, respectively.) Thus, the facile one-step solvent-free synthesis and activation strategy is an economically favorable avenue for designing microporous carbons as an efficient gas adsorbents.

  13. Microcomputed tomographic and histomorphometric analyses of novel titanium mesh membranes for guided bone regeneration: a study in rat calvarial defects.

    PubMed

    Rakhmatia, Yunia Dwi; Ayukawa, Yasunori; Furuhashi, Akihiro; Koyano, Kiyoshi

    2014-01-01

    The objective of this study was to evaluate the optimal thickness and porosity of novel titanium mesh membranes to enhance bone augmentation, prevent soft tissue ingrowth, and prevent membrane exposure. Six types of novel titanium meshes with different thicknesses and pore sizes, along with three commercially available membranes, were used to cover surgically created calvarial defects in 6-week-old Sprague-Dawley rats. The animals were killed after 4 or 8 weeks. Microcomputed tomographic analyses were performed to analyze the three-dimensional bone volume and bone mineral density. Soft tissue ingrowth was also evaluated histologically and histomorphometrically. The novel titanium membranes used in this study were as effective at augmenting bone in the rat calvarial defect model as the commercially available membranes. The greatest bone volume was observed on 100-μm-thick membranes with larger pores, although these membranes promoted growth of bone with lower mineral density. Soft tissue ingrowth when 100-μm membranes were used was increased at 4 weeks but decreased again by 8 weeks to a level not statistically significantly different from other membranes. Membrane thickness affects the total amount of new bone formation, and membrane porosity is an essential factor for guided bone regeneration, especially during the initial healing period, although the final bone volume obtained is essentially the same. Newly developed titanium mesh membranes of 100 μm in thickness and with large pores appear to be optimal for guided bone regeneration.

  14. Atrazine removal from water by polycation-clay composites: effect of dissolved organic matter and comparison to activated carbon.

    PubMed

    Zadaka, Dikla; Nir, Shlomo; Radian, Adi; Mishael, Yael G

    2009-02-01

    Atrazine removal from water by two polycations pre-adsorbed on montmorillonite was studied. Batch experiments demonstrated that the most suitable composite poly (4-vinylpyridine-co-styrene)-montmorillonite (PVP-co-S90%-mont.) removed 90-99% of atrazine (0.5-28 ppm) within 20-40 min at 0.367% w/w. Calculations employing Langmuir's equation could simulate and predict the kinetics and final extents of atrazine adsorption. Column filter experiments (columns 20x1.6 cm) which included 2g of the PVP-co-S90%-mont. composite mixed with excess sand removed 93-96% of atrazine (800 ppb) for the first 800 pore volumes, whereas the same amount of granular activated carbon (GAC) removed 83-75%. In the presence of dissolved organic matter (DOM; 3.7 ppm) the efficiency of the GAC filter to remove atrazine decreased significantly (68-52% removal), whereas the corresponding efficiency of the PVP-co-S90%-mont. filter was only slightly influenced by DOM. At lower atrazine concentration (7 ppb) the PVP-co-S90%-mont. filter reduced even after 3000 pore volumes the emerging atrazine concentration below 3 ppb (USEPA standard). In the case of the GAC filter the emerging atrazine concentration was between 2.4 and 5.3 microg/L even for the first 100 pore volumes. Thus, the PVP-co-S90%-mont. composite is a new efficient material for the removal of atrazine from water.

  15. Calibrating the Iowa pore index with mercury intrusion porosimetry and petrography.

    DOT National Transportation Integrated Search

    2017-10-31

    The Iowa Pore Index (IPI) test is a fast, non-destructive, inexpensive, and environmentally friendly test used by several Midwestern state departments of transportation to determine the volume ratio of macropores to micropores in a coarse rock aggreg...

  16. Fundamental investigations related to the mitigation of volume changes in cement-based materials at early ages

    NASA Astrophysics Data System (ADS)

    Sant, Gaurav Niteen

    The increased use of high-performance, low water-to-cement (w/c) ratio concretes has led to increased occurrences of early-age shrinkage cracking in civil engineering structures. To reduce the magnitude of early-age shrinkage and the potential for cracking, mitigation strategies using shrinkage reducing admixtures (SRAs), saturated lightweight aggregates, expansive cements and extended moist curing durations in construction have been recommended. However, to appropriately utilize these strategies, it is important to have a complete understanding of the driving forces of early-age volume change and how these methods work from a materials perspective to reduce shrinkage. This dissertation uses a first-principles approach to understand the mechanism of shrinkage reducing admixtures (SRAs) to generate an expansion and mitigate shrinkage at early-ages, quantify the influence of a CaO-based expansive additive in reducing unrestrained shrinkage, residual stress development and the cracking potential at early-ages and quantify the influence of shrinkage reducing admixtures (SRAs) and cement hydration (pore structure refinement) on the reduction induced in the fluid transport properties of the material. The effects of shrinkage reducing admixtures (SRAs) are described in terms of inducing autogenous expansions in cement pastes at early ages. An evaluation comprising measurements of autogenous deformation, x-ray diffraction (Rietveld analysis), pore solution and thermogravimetric analysis and electron microscopy is performed to understand the chemical nature and physical effects of the expansion. Thermodynamic calculations performed on the measured liquid-phase compositions indicate the SRA produces elevated Portlandite super-saturations in the pore solution which results in crystallization stress driven expansions. The thermodynamic calculations are supported by deformation measurements performed on cement pastes mixed in solutions saturated with Portlandite or containing additional Sodium Hydroxide. Further, to quantify the influence of temperature on volume changes in SRA containing materials, deformation measurements are performed at different temperatures. The results indicate maturity transformations are incapable of simulating volume changes over any temperature regime due to the influence of temperature on salt solubility and pore solution composition, crystallization stresses and self-desiccation. The performance of a CaO-based expansive additive is evaluated over a range of additive concentrations and curing conditions to quantify the reduction in restrained and unrestrained volume changes effected in low w/c cement pastes. The results suggest, under unrestrained sealed conditions the additive generates an expansion and reduces the magnitude of total shrinkage experienced by the material. However, the extent of drying shrinkage developed is noted to be similar in all systems and independent of the additive dosage. Under restrained sealed conditions, the additive induces a significant compressive stress which delays tensile stress development in the system. However, a critical additive concentration (around four percent) needs to be exceeded to appreciably reduce the risk of cracking at early-ages. The influence of shrinkage reducing admixtures (SRAs) is quantified in terms of the effects of SRA addition on fluid transport in cement-based materials. The change in the cement paste's pore solution properties, i.e., the surface tension and fluid-viscosity, induced by the addition of a SRA is observed to depress the fluid-sorption and wetting moisture diffusion coefficients, with the depression being a function of the SRA concentration. The experimental results are compared to analytical descriptions of water sorption and a good correlation is observed. These results allow for the change in pore-solution and fluid-transport properties to be incorporated from a fundamental perspective in models which aim to describe the service-life of structures. Several experimental techniques such as chemical shrinkage, low temperature calorimetry and electrical impedance spectroscopy are evaluated in terms of their suitability to identify capillary porosity depercolation in cement pastes. The evidence provided by the experiments is: (1) that there exists a capillary porosity depercolation threshold around 20% capillary porosity in cement pastes and (2) low temperature calorimetry is not suitable to detect porosity depercolation in cement pastes containing SRAs. Finally, the influence of porosity depercolation is demonstrated in terms of the reduction effected in the transport properties (i.e., the fluid-sorption coefficient) of the material as quantified using x-ray attenuation measurements. The study relates the connectivity of the pore structure to the fluid transport response providing insights related to the development of curing technologies and the specification of wet curing regimes during construction.

  17. Pore Geometry Optimization of Titanium (Ti6Al4V) Alloy, for Its Application in the Fabrication of Customized Hip Implants

    PubMed Central

    Roy, Sandipan; Panda, Debojyoti; Khutia, Niloy; Chowdhury, Amit Roy

    2014-01-01

    The present study investigates the mechanical response of representative volume elements of porous Ti-6Al-4V alloy, to arrive at a desired range of pore geometries that would optimize the reduction in stiffness necessary for biocompatibility with the stress concentration arising around the pore periphery, under physiological loading conditions with respect to orthopedic hip implants. A comparative study of the two is performed with the aid of a newly defined optimizing parameter called pore efficiency that takes into consideration both the stiffness quantity and the stress localization around pores. To perform a detailed analysis of the response of the porous structure over the entire spectrum of loading conditions that a hip implant is subjected to in vivo, the mechanical responses of 3D finite element models of cubic and rectangular parallelepiped geometries, with porosities varying over a range of 10% to 60%, are simulated under representative compressive, flexural as well as combined loading conditions. The results that are obtained are used to suggest a range of pore diameters that lower the effective stiffness and modulus of the implant to around 60% of the stiffness and modulus of dense solid implants while keeping the stress levels within permissible limits. PMID:25400663

  18. Mars: Crustal pore volume, cryospheric depth, and the global occurrence of groundwater

    NASA Technical Reports Server (NTRS)

    Clifford, Stephen M.

    1987-01-01

    It is argued that most of the Martian hydrosphere resides in a porous outer layer of crust that, based on a lunar analogy, appears to extend to a depth of about 10 km. The total pore volume of this layer is sufficient to store the equivalent of a global ocean of water some 500 to 1500 m deep. Thermal modeling suggests that about 300 to 500 m of water could be stored as ice within the crust. Any excess must exist as groundwater.

  19. Carbon with hierarchical pores from carbonized metal-organic frameworks for lithium sulphur batteries.

    PubMed

    Xi, Kai; Cao, Shuai; Peng, Xiaoyu; Ducati, Caterina; Kumar, R Vasant; Cheetham, Anthony K

    2013-03-18

    This paper presents a novel method and rationale for utilizing carbonized MOFs for sulphur loading to fabricate cathode structures for lithium-sulphur batteries. Unique carbon materials with differing hierarchical pore structures were synthesized from four types of zinc-containing metal-organic frameworks (MOFs). It is found that cathode materials made from MOFs-derived carbons with higher mesopore (2-50 nm) volumes exhibit increased initial discharge capacities, whereas carbons with higher micropore (<2 nm) volumes lead to cathode materials with better cycle stability.

  20. 3-D Distribution of Retained Colloids in Unsaturated Porous Media

    NASA Astrophysics Data System (ADS)

    Morales, V. L.; Perez-Reche, F. J.; Holzner, M.; Kinzelbach, W. K.; Otten, W.

    2013-12-01

    It is well accepted that colloid transport processes in porous media differ substantially between water saturated and unsaturated conditions. Differences are frequently ascribed to colloid immobilization by association with interfaces with the gas, as well as to restrictions of the liquid medium through which colloids are transported. Such factors depend on interfacial conditions provided by the water saturation of the porous medium. Yet, the current understanding of the importance of colloid retention at gas interfaces is based on observations of single pores or two-dimensional pore network representations, leaving open the question of their statistical significance when all pores in the medium are considered. In order to address this question, column experiments were performed using a model porous medium of glass beads through which colloidal silver particles were transported for conditions of varying water content. X-ray microtomography was subsequently employed as a non-destructive imaging technique to obtain pore-scale information of the entire column regarding: i) the presence and distribution of the four main locations where colloids can become retained (interfaces with the liquid-solid, gas-liquid and gas-solid, and the bulk liquid), ii) deposition profiles of colloids along the column classified by the available retention location, iii) morphological characteristics of the deposited colloidal aggregates, and iv) channel widths of 3-dimensional pore-water network representations. The results presented provide, for the first time, a direct statistical evaluation on the significance of colloid retention by attachment to the liquid-solid, gas-liquid, gas-solid interfaces, and by straining in the bulk liquid. Additionally, an effective-pore structure characteristic is proposed to improve predictions of mass removal by straining under various water saturations. A) Unsaturated conditions. B) Saturated conditions. Left: Tomograph slice illustrating with false coloring Regions Of Interest corresponding to retention locations at the gas-liquid (purple), gas-solid (white) and solid-liquid interface (blue), and the bulk liquid (teal). Right: Deposition profiles of silver colloids (Ag) per retention location (T: total, GLI: gas-liquid interface, GSI: gas-solid interface, SLI: solid-liquid interface, L: bulk liquid) (Top). Depth profiles of the volume occupied by each retention location (Middle). Normalized deposition profiles of silver volume retained by its corresponding retention-location volume (Bottom).

  1. Nanostructured mesoporous silica: influence of the preparation conditions on the physical-surface properties for efficient organic dye uptake

    NASA Astrophysics Data System (ADS)

    Morsi, Rania E.; Mohamed, Rasha S.

    2018-03-01

    A series of ordered mesoporous silica such as MCM-41, SBA-3 and SBA-15, in addition to silica micro- (SM) and nano- (SN) mesoporous particles, were prepared. The preparation conditions were found to greatly influence the physical-surface properties including morphological structure, porosity, particle size, aggregate average size, surface area, pore size, pore volume and zeta potential of the prepared silica, while the chemical structure, predicted from FT-IR spectra, and the diffraction patterns, predicted from wide-angle X-ray diffraction spectra, were identical. Surface areas of approximately 1500, 1027, 600, 552 and 317 m2 g-1, pore volumes of 0.93, 0.56, 0.82, 0.72 and 0.5 cm3 g-1, radii of 2.48, 2.2, 5.66, 6.6 and 8.98 nm, average aggregate sizes of 56, 65.4, 220.9, 73, 61.1 and 261 nm and zeta potential values of -32.8, -46.1, -26.3, -31.4 and -25.9 mV were obtained for MCM-41, SBA-3, SBA-15, SN and SM, respectively. Methylene blue dye uptake capacity of the prepared silica types was investigated using the batch technique and, in addition, the most effective material was further studied by the column flow system. The kinetics and isotherms of the uptake process were studied. The morphological structure, surface area, pore radius and zeta potential values were the most correlated factors.

  2. Wettability impact on supercritical CO2 capillary trapping: Pore-scale visualization and quantification

    NASA Astrophysics Data System (ADS)

    Hu, Ran; Wan, Jiamin; Kim, Yongman; Tokunaga, Tetsu K.

    2017-08-01

    How the wettability of pore surfaces affects supercritical (sc) CO2 capillary trapping in geologic carbon sequestration (GCS) is not well understood, and available evidence appears inconsistent. Using a high-pressure micromodel-microscopy system with image analysis, we studied the impact of wettability on scCO2 capillary trapping during short-term brine flooding (80 s, 8-667 pore volumes). Experiments on brine displacing scCO2 were conducted at 8.5 MPa and 45°C in water-wet (static contact angle θ = 20° ± 8°) and intermediate-wet (θ = 94° ± 13°) homogeneous micromodels under four different flow rates (capillary number Ca ranging from 9 × 10-6 to 8 × 10-4) with a total of eight conditions (four replicates for each). Brine invasion processes were recorded and statistical analysis was performed for over 2000 images of scCO2 saturations, and scCO2 cluster characteristics. The trapped scCO2 saturation under intermediate-wet conditions is 15% higher than under water-wet conditions under the slowest flow rate (Ca ˜ 9 × 10-6). Based on the visualization and scCO2 cluster analysis, we show that the scCO2 trapping process in our micromodels is governed by bypass trapping that is enhanced by the larger contact angle. Smaller contact angles enhance cooperative pore filling and widen brine fingers (or channels), leading to smaller volumes of scCO2 being bypassed. Increased flow rates suppress this wettability effect.

  3. Nanostructured mesoporous silica: influence of the preparation conditions on the physical-surface properties for efficient organic dye uptake.

    PubMed

    Morsi, Rania E; Mohamed, Rasha S

    2018-03-01

    A series of ordered mesoporous silica such as MCM-41, SBA-3 and SBA-15, in addition to silica micro- (SM) and nano- (SN) mesoporous particles, were prepared. The preparation conditions were found to greatly influence the physical-surface properties including morphological structure, porosity, particle size, aggregate average size, surface area, pore size, pore volume and zeta potential of the prepared silica, while the chemical structure, predicted from FT-IR spectra, and the diffraction patterns, predicted from wide-angle X-ray diffraction spectra, were identical. Surface areas of approximately 1500, 1027, 600, 552 and 317 m 2  g -1 , pore volumes of 0.93, 0.56, 0.82, 0.72 and 0.5 cm 3  g -1 , radii of 2.48, 2.2, 5.66, 6.6 and 8.98 nm, average aggregate sizes of 56, 65.4, 220.9, 73, 61.1 and 261 nm and zeta potential values of -32.8, -46.1, -26.3, -31.4 and -25.9 mV were obtained for MCM-41, SBA-3, SBA-15, SN and SM, respectively. Methylene blue dye uptake capacity of the prepared silica types was investigated using the batch technique and, in addition, the most effective material was further studied by the column flow system. The kinetics and isotherms of the uptake process were studied. The morphological structure, surface area, pore radius and zeta potential values were the most correlated factors.

  4. Stage-dependent remodeling of the nuclear envelope and lamina during rabbit early embryonic development.

    PubMed

    Popken, Jens; Schmid, Volker J; Strauss, Axel; Guengoer, Tuna; Wolf, Eckhard; Zakhartchenko, Valeri

    2016-04-22

    Utilizing 3D structured illumination microscopy, we investigated the quality and quantity of nuclear invaginations and the distribution of nuclear pores during rabbit early embryonic development and identified the exact time point of nucleoporin 153 (NUP153) association with chromatin during mitosis. Contrary to bovine early embryonic nuclei, featuring almost exclusively nuclear invaginations containing a small volume of cytoplasm, nuclei in rabbit early embryonic stages show additionally numerous invaginations containing a large volume of cytoplasm. Small-volume invaginations frequently emanated from large-volume nuclear invaginations but not vice versa, indicating a different underlying mechanism. Large- and small-volume nuclear envelope invaginations required the presence of chromatin, as they were restricted to chromatin-positive areas. The chromatin-free contact areas between nucleolar precursor bodies (NPBs) and large-volume invaginations were free of nuclear pores. Small-volume invaginations were not in contact with NPBs. The number of invaginations and isolated intranuclear vesicles per nucleus peaked at the 4-cell stage. At this stage, the nuclear surface showed highly concentrated clusters of nuclear pores surrounded by areas free of nuclear pores. Isolated intranuclear lamina vesicles were usually NUP153 negative. Cytoplasmic, randomly distributed NUP153-positive clusters were highly abundant at the zygote stage and decreased in number until they were almost absent at the 8-cell stage and later. These large NUP153 clusters may represent a maternally provided NUP153 deposit, but they were not visible as clusters during mitosis. Major genome activation at the 8- to 16-cell stage may mark the switch from a necessity for a deposit to on-demand production. NUP153 association with chromatin is initiated during metaphase before the initiation of the regeneration of the lamina. To our knowledge, the present study demonstrates for the first time major remodeling of the nuclear envelope and its underlying lamina during rabbit preimplantation development.

  5. Optimizing heterosurface adsorbent synthesis for liquid chromatography

    NASA Astrophysics Data System (ADS)

    Bogoslovskii, S. Yu.; Serdan, A. A.

    2016-03-01

    The structural and geometric parameters of a silica matrix (SM) for the synthesis of heterosurface adsorbents (HAs) are optimized. Modification is performed by shielding the external surfaces of alkyl-modified silica (AS) using human serum albumin and its subsequent crosslinking. The structural and geometric characteristics of the SM, AS, and HA are measured via low-temperature nitrogen adsorption. It is found that the structural characteristics of AS pores with diameters D < 6 nm do not change during HA synthesis, while the volume of pores with diameters of 6 nm < D < 9 nm shrinks slightly due to the adsorption of albumin in the pore orifices. It is established that the volume of pores with diameters D > 9 nm reduces significantly due to adsorption of albumin. It is concluded that silica gel with a maximum pore size distribution close to 5 nm and a minimal proportion of pores with D > 9 nm is optimal for HA synthesis; this allows us to achieve the greatest similarity between the chromatographic retention parameters for HA and AS. The suitability of the synthesized adsorbents for analyzing drugs in biological fluids through direct sample injection is confirmed by chromatography. It was found that the percentage of the protein fraction detected at the outlet of the chromatographic column is 98%.

  6. Using synchrotron X-ray microtomography to characterize the pore network of reservoir rocks: A case study on carbonates

    NASA Astrophysics Data System (ADS)

    Arzilli, F.; Cilona, A.; Mancini, L.; Tondi, E.

    2016-09-01

    In this work we propose a new methodology to calculate pore connectivity in granular rocks. This method is useful to characterize the pore networks of natural and laboratory compaction bands (CBs), and compare them with the host rock pore network. Data were collected using the synchrotron X-ray microtomography technique and quantitative analyses were carried out using the Pore3D software library. The porosity was calculated from segmented tridimensional images of deformed and pristine rocks. A process of skeletonization of the pore space was used to obtain the number of connected pores within the rock volume. By analyzing the skeletons the differences between natural and laboratory CBs were highlighted. The natural CB has a lower porosity than to the laboratory one. In natural CBs, the grain contacts appear welded, whereas laboratory CBs show irregular pore shape. Moreover, we assessed for the first time how pore connectivity evolves as a function of deformation, documenting the mechanism responsible for pore connectivity drop within the CBs.

  7. Biochar from Coffee Residues: A New Promising Sorbent

    NASA Astrophysics Data System (ADS)

    Fotopoulou, Kalliopi; Karapanagioti, Hrissi; Manariotis, Ioannis

    2014-05-01

    Biochar is a carbon-rich material produced by heating biomass in an oxygen-limited environment. Biochar is mainly used as an additive to soils to sequester carbon and improve soil fertility as well as a sorbent for environmental remediation processes. Surface properties such as point of zero charge, surface area and pore volume, surface topography, surface functional groups and acid-base behavior are important factors, which affect sorption efficiency. Understanding the surface alteration of biochars increases our understanding of the pollutant-sorbent interaction. The objective of the present study was to characterize the surface properties of biochar produced, and to investigate the effect of thermal treatment conditions on key characteristics that affect sorptive properties. The espresso coffee residue was obtained after the coffee was brewed through espresso machines in coffee shops. The coffee residue was dried and kept in an oven at 50oC until its pyrolysis at 850oC. Pyrolysis with different coffee mass and containers were tested in order to find optimum biochar characteristics. Detailed characterization techniques were carried out to determine the properties of the produced biochar. The surface area, the pore volume, and the average pore size of the biochars were determined using gas (N2) adsorption-desorption cycles using the Brunauer, Emmett, and Teller (BET) equation. Open surface area and micropore volume were determined using the t-plot method and the Harkins & Jura equation. Total organic carbon was also determined because it is an important factor that affects sorption. The results were compared with the corresponding properties of activated carbons. The biochar produced exhibited a wide range of surface area from 21 to 770 m2/g and open surface area from 21 to 65 m2/g. It is obvious that the surface area results from the formation of pores. Actually it was calculated that up to 90% of the porosity is due to the micropores. More specifically the average size of the pores for the high surface area biochars was 32 A. Finally, the organic carbon content of the produced biochar ranged from 45 to 75%.

  8. Petrophysical evaluation of the hydrocarbon potential of the Lower Cretaceous Kharita clastics, North Qarun oil field, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Teama, Mostafa A.; Nabawy, Bassem S.

    2016-09-01

    Based on the available well log data of six wells chosen in the North Qarun oil field in the Western Desert of Egypt, the petrophysical evaluation for the Lower Cretaceous Kharita Formation was accomplished. The lithology of Kharita Formation was analyzed using the neutron porosity-density and the neutron porosity-gamma ray crossplots as well as the litho-saturation plot. The petrophysical parameters, include shale volume, effective porosity, water saturation and hydrocarbon pore volume, were determined and traced laterally in the studied field through the iso-parametric maps. The lithology crossplots of the studied wells show that the sandstone is the main lithology of the Kharita Formation intercalated with some calcareous shale. The cutoff values of shale volume, porosity and water saturation for the productive hydrocarbon pay zones are defined to be 40%, 10% and 50%, respectively, which were determined, based on the applied crossplots approach and their limits. The iso-parametric contour maps for the average reservoir parameters; such as net-pay thickness, average porosity, shale volume, water saturation and the hydrocarbon pore volume were illustrated. From the present study, it is found that the Kharita Formation in the North Qarun oil field has promising reservoir characteristics, particularly in the northwestern part of the study area, which is considered as a prospective area for oil accumulation.

  9. [Preparation of large-pore silica microspheres using templating method and their applications to protein separation with high performance liquid chromatography].

    PubMed

    Niu, Mengna; Ma, Hongyan; Hu, Fei; Wang, Shige; Liu, Lu; Chang, Haizhou; Huang, Mingxian

    2017-06-08

    Large-pore silica microspheres were synthesized by utilizing weak cation exchange polymer beads as templates, N -trimethoxysilylpropyl- N,N,N -trimethylammonium chloride (TMSPTMA) as a structure-directing agent, tetraethoxysilane (TEOS) as a silica precursor, and triethanolamine as a weak base catalyst. The hydrolysis and condensation of the silica precursors occurred inside the templating polymer beads yielded polymer/silica composite microspheres. After the organic polymer templates were removed in the calcination step, large-pore silica microspheres were produced. The effects of different reaction conditions on the morphology, structure and dispersibility of the formed silica microspheres were investigated. It has been shown that when the volume ratio of TMSPTMA, TEOS and triethanolamine was 1:2:2, silica microspheres with pore size range of 50-150 nm and particle size around 2 μm were obtained. The as-prepared silica microspheres were then bonded with chlorodimethyloctadecylsilane (C18), packed into a 50 mm×4.6 mm column, and evaluated for the separations of some common standard proteins and soybean isolation proteins. The results showed that the large-pore silica spheres from this work have potentials for protein separation in HPLC.

  10. Effects of porosity on weld-joint tensile strength of aluminum alloys

    NASA Technical Reports Server (NTRS)

    Lovoy, C. V.

    1974-01-01

    Tensile properties in defect-free weldments of aluminum alloys 2014-T6 and 2219-T87 (sheet and plate) are shown to be related to the level or concentration of induced simulated porosity. The scatter diagram shows that the ultimate tensile strength of the weldments displays the most pronounced linear relationship with the level of porosity. The relationships between yield strength or elongation and porosity are either trivial or inconsequential in the lower and intermediate levels of porosity content. In highly concentrated levels of porosity, both yield strength and elongation values decrease markedly. Correlation coefficients were obtained by simple straight line regression analysis between the variables of ultimate tensile strength and pore level. The coefficients were greater, indicating a better correlation, using a pore area accumulation concept or pore volume accumulation than the accumulation of the pore diameters. These relationships provide a useful tool for assessing the existing aerospace radiographic acceptance standards with respect to permissible porosity. In addition, these relationships, in combination with known design load requirements, will serve as an engineering guideline in determining when a weld repair is necessary based on accumulative pore level as detected by radiographic techniques.

  11. Ceramic impregnated superabrasives

    DOEpatents

    Radtke, Robert P.; Sherman, Andrew

    2009-02-10

    A superabrasive fracture resistant compact is formed by depositing successive layers of ceramic throughout the network of open pores in a thermally stable self-bonded polycrystalline diamond or cubic boron nitride preform. The void volume in the preform is from approximately 2 to 10 percent of the volume of the preform, and the average pore size is below approximately 3000 nanometers. The preform is evacuated and infiltrated under at least about 1500 pounds per square inch pressure with a liquid pre-ceramic polymerizable precursor. The precursor is infiltrated into the preform at or below the boiling point of the precursor. The precursor is polymerized into a solid phase material. The excess is removed from the outside of the preform, and the polymer is pyrolized to form a ceramic. The process is repeated at least once more so as to achieve upwards of 90 percent filling of the original void volume. When the remaining void volume drops below about 1 percent the physical properties of the compact, such as fracture resistance, improve substantially. Multiple infiltration cycles result in the deposition of sufficient ceramic to reduce the void volume to below 0.5 percent. The fracture resistance of the compacts in which the pores are lined with formed in situ ceramic is generally at least one and one-half times that of the starting preforms.

  12. Pore-scale micro-computed-tomography imaging: Nonwetting-phase cluster-size distribution during drainage and imbibition

    NASA Astrophysics Data System (ADS)

    Georgiadis, A.; Berg, S.; Makurat, A.; Maitland, G.; Ott, H.

    2013-09-01

    We investigated the cluster-size distribution of the residual nonwetting phase in a sintered glass-bead porous medium at two-phase flow conditions, by means of micro-computed-tomography (μCT) imaging with pore-scale resolution. Cluster-size distribution functions and cluster volumes were obtained by image analysis for a range of injected pore volumes under both imbibition and drainage conditions; the field of view was larger than the porosity-based representative elementary volume (REV). We did not attempt to make a definition for a two-phase REV but used the nonwetting-phase cluster-size distribution as an indicator. Most of the nonwetting-phase total volume was found to be contained in clusters that were one to two orders of magnitude larger than the porosity-based REV. The largest observed clusters in fact ranged in volume from 65% to 99% of the entire nonwetting phase in the field of view. As a consequence, the largest clusters observed were statistically not represented and were found to be smaller than the estimated maximum cluster length. The results indicate that the two-phase REV is larger than the field of view attainable by μCT scanning, at a resolution which allows for the accurate determination of cluster connectivity.

  13. Tomographic image of a seismically active volcano: Mammoth Mountain, California

    USGS Publications Warehouse

    Dawson, Phillip B.; Chouet, Bernard A.; Pitt, Andrew M.

    2016-01-01

    High-resolution tomographic P wave, S wave, and VP/VS velocity structure models are derived for Mammoth Mountain, California, using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (5.1 × 109 to 5.9 × 1010m3) of low P and low S wave velocities is imaged beneath Mammoth Mountain, extending from near the surface to a depth of ∼2 km below sea level. We infer that the reduction in seismic wave velocities is due to the presence of CO2 distributed in oblate spheroid pores with mean aspect ratio α = 1.6 × 10−3 to 7.9 × 10−3 (crack-like pores) and mean gas volume fraction ϕ = 8.1 × 10−4 to 3.4 × 10−3. The pore density parameter κ = 3ϕ/(4πα) = na3=0.11, where n is the number of pores per cubic meter and a is the mean pore equatorial radius. The total mass of CO2 is estimated to be 4.6 × 109 to 1.9 × 1011 kg. The local geological structure indicates that the CO2 contained in the pores is delivered to the surface through fractures controlled by faults and remnant foliation of the bedrock beneath Mammoth Mountain. The total volume of CO2 contained in the reservoir suggests that given an emission rate of 500 tons day−1, the reservoir could supply the emission of CO2 for ∼25–1040 years before depletion. Continued supply of CO2 from an underlying magmatic system would significantly prolong the existence of the reservoir.

  14. Tomographic image of a seismically active volcano: Mammoth Mountain, California

    NASA Astrophysics Data System (ADS)

    Dawson, Phillip; Chouet, Bernard; Pitt, Andrew

    2016-01-01

    High-resolution tomographic P wave, S wave, and VP/VS velocity structure models are derived for Mammoth Mountain, California, using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (5.1 × 109 to 5.9 × 1010m3) of low P and low S wave velocities is imaged beneath Mammoth Mountain, extending from near the surface to a depth of ˜2 km below sea level. We infer that the reduction in seismic wave velocities is due to the presence of CO2 distributed in oblate spheroid pores with mean aspect ratio α = 1.6 × 10-3 to 7.9 × 10-3 (crack-like pores) and mean gas volume fraction ϕ = 8.1 × 10-4 to 3.4 × 10-3. The pore density parameter κ = 3ϕ/(4πα) = na3=0.11, where n is the number of pores per cubic meter and a is the mean pore equatorial radius. The total mass of CO2 is estimated to be 4.6 × 109 to 1.9 × 1011 kg. The local geological structure indicates that the CO2 contained in the pores is delivered to the surface through fractures controlled by faults and remnant foliation of the bedrock beneath Mammoth Mountain. The total volume of CO2 contained in the reservoir suggests that given an emission rate of 500 tons day-1, the reservoir could supply the emission of CO2 for ˜25-1040 years before depletion. Continued supply of CO2 from an underlying magmatic system would significantly prolong the existence of the reservoir.

  15. Determining Representative Elementary Volume For Multiple Petrophysical Parameters using a Convex Hull Analysis of Digital Rock Data

    NASA Astrophysics Data System (ADS)

    Shah, S.; Gray, F.; Yang, J.; Crawshaw, J.; Boek, E.

    2016-12-01

    Advances in 3D pore-scale imaging and computational methods have allowed an exceptionally detailed quantitative and qualitative analysis of the fluid flow in complex porous media. A fundamental problem in pore-scale imaging and modelling is how to represent and model the range of scales encountered in porous media, starting from the smallest pore spaces. In this study, a novel method is presented for determining the representative elementary volume (REV) of a rock for several parameters simultaneously. We calculate the two main macroscopic petrophysical parameters, porosity and single-phase permeability, using micro CT imaging and Lattice Boltzmann (LB) simulations for 14 different porous media, including sandpacks, sandstones and carbonates. The concept of the `Convex Hull' is then applied to calculate the REV for both parameters simultaneously using a plot of the area of the convex hull as a function of the sub-volume, capturing the different scales of heterogeneity from the pore-scale imaging. The results also show that the area of the convex hull (for well-chosen parameters such as the log of the permeability and the porosity) decays exponentially with sub-sample size suggesting a computationally efficient way to determine the system size needed to calculate the parameters to high accuracy (small convex hull area). Finally we propose using a characteristic length such as the pore size to choose an efficient absolute voxel size for the numerical rock.

  16. On the mechanism of polypropylene fibres in preventing fire spalling in self-compacting and high-performance cement paste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X.; Magnel Laboratory for Concrete Research, Department of Structural Engineering, Ghent University, Technologiepark-Zwijnaarde 904 B-9052, Ghent; Ye, G.

    2008-04-15

    With the increasing application of self-compacting concrete (SCC) in construction and infrastructure, the fire spalling behavior of SCC has been attracting due attention. In high performance concrete (HPC), addition of polypropylene fibers (PP fibers) is widely used as an effective method to prevent explosive spalling. Hence, it would be useful to investigate whether the PP fibers are also efficient in SCC to avoid explosive spalling. However, no universal agreement exists concerning the fundamental mechanism of reducing the spalling risk by adding PP fiber. For SCC, the reduction of flowability should be considered when adding a significant amount of fibres. Inmore » this investigation, both the micro-level and macro-level properties of pastes with different fiber contents were studied in order to investigate the role of PP fiber at elevated temperature in self-compacting cement paste samples. The micro properties were studied by backscattering electron microscopy (BSE) and mercury intrusion porosimetry (MIP) tests. The modification of the pore structure at elevated temperature was investigated as well as the morphology of the PP fibers. Some macro properties were measured, such as the gas permeability of self-compacting cement paste after heating at different temperatures. The factors influencing gas permeability were analyzed. It is shown that with the melting of PP fiber, no significant increase in total pore volume is obtained. However, the connectivity of isolated pores increases, leading to an increase of gas permeability. With the increase of temperature, the addition of PP fibers reduces the damage of cement pastes, as seen from the total pore volume and the threshold pore diameter changes. From this investigation, it is concluded that the connectivity of pores as well as the creation of micro cracks are the major factors which determine the gas permeability after exposure to high temperatures. Furthermore, the connectivity of the pores acts as a dominant factor for temperatures below 300 deg. C. For higher temperatures micro cracks are becoming the major factor which influences the gas permeability.« less

  17. Modeling adsorption: Investigating adsorbate and adsorbent properties

    NASA Astrophysics Data System (ADS)

    Webster, Charles Edwin

    1999-12-01

    Surface catalyzed reactions play a major role in current chemical production technology. Currently, 90% of all chemicals are produced by heterogeneously catalyzed reactions. Most of these catalyzed reactions involve adsorption, concentrating the substrate(s) (the adsorbate) on the surface of the solid (the adsorbent). Pore volumes, accessible surface areas, and the thermodynamics of adsorption are essential in the understanding of solid surface characteristics fundamental to catalyst and adsorbent screening and selection. Molecular properties such as molecular volumes and projected molecular areas are needed in order to convert moles adsorbed to surface volumes and areas. Generally, these molecular properties have been estimated from bulk properties, but many assumptions are required. As a result, different literature values are employed for these essential molecular properties. Calculated molar volumes and excluded molecular areas are determined and tabulated for a variety of molecules. Molecular dimensions of molecules are important in the understanding of molecular exclusion as well as size and shape selectivity, diffusion, and adsorbent selection. Molecular dimensions can also be used in the determination of the effective catalytic pore size of a catalyst. Adsorption isotherms, on zeolites, (crystalline mineral oxides) and amorphous solids, can be analyzed with the Multiple Equilibrium Analysis (MEA) description of adsorption. The MEA produces equilibrium constants (Ki), capacities (ni), and thermodynamic parameters (enthalpies, ΔHi, and entropies, ΔSi) of adsorption for each process. Pore volumes and accessible surface areas are calculated from the process capacities. Adsorption isotherms can also be predicted for existing and new adsorbate-adsorbent systems with the MEA. The results show that MEA has the potential of becoming a standard characterization method for microporous solids that will lead to an increased understanding of their behavior in gas adsorption and catalysis. These studies are also applicable to environmental cleanup applications, such as waste stream purification and separation procedures as well as decontamination of chemical warfare agents.

  18. Porotic paradox: distribution of cortical bone pore sizes at nano- and micro-levels in healthy vs. fragile human bone.

    PubMed

    Milovanovic, Petar; Vukovic, Zorica; Antonijevic, Djordje; Djonic, Danijela; Zivkovic, Vladimir; Nikolic, Slobodan; Djuric, Marija

    2017-05-01

    Bone is a remarkable biological nanocomposite material showing peculiar hierarchical organization from smaller (nano, micro) to larger (macro) length scales. Increased material porosity is considered as the main feature of fragile bone at larger length-scales. However, there is a shortage of quantitative information on bone porosity at smaller length-scales, as well as on the distribution of pore sizes in healthy vs. fragile bone. Therefore, here we investigated how healthy and fragile bones differ in pore volume and pore size distribution patterns, considering a wide range of mostly neglected pore sizes from nano to micron-length scales (7.5 to 15000 nm). Cortical bone specimens from four young healthy women (age: 35 ± 6 years) and five women with bone fracture (age: 82 ± 5 years) were analyzed by mercury porosimetry. Our findings showed that, surprisingly, fragile bone demonstrated lower pore volume at the measured scales. Furtnermore, pore size distribution showed differential patterns between healthy and fragile bones, where healthy bone showed especially high proportion of pores between 200 and 15000 nm. Therefore, although fragile bones are known for increased porosity at macroscopic level and level of tens or hundreds of microns as firmly established in the literature, our study with a unique assessment range of nano-to micron-sized pores reveal that osteoporosis does not imply increased porosity at all length scales. Our thorough assessment of bone porosity reveals a specific distribution of porosities at smaller length-scales and contributes to proper understanding of bone structure which is important for designing new biomimetic bone substitute materials.

  19. Direct Numerical Simulation of Low Capillary Number Pore Scale Flows

    NASA Astrophysics Data System (ADS)

    Esmaeilzadeh, S.; Soulaine, C.; Tchelepi, H.

    2017-12-01

    The arrangement of void spaces and the granular structure of a porous medium determines multiple macroscopic properties of the rock such as porosity, capillary pressure, and relative permeability. Therefore, it is important to study the microscopic structure of the reservoir pores and understand the dynamics of fluid displacements through them. One approach for doing this, is direct numerical simulation of pore-scale flow that requires a robust numerical tool for prediction of fluid dynamics and a detailed understanding of the physical processes occurring at the pore-scale. In pore scale flows with a low capillary number, Eulerian multiphase methods are well-known to produce additional vorticity close to the interface. This is mainly due to discretization errors which lead to an imbalance of capillary pressure and surface tension forces that causes unphysical spurious currents. At the pore scale, these spurious currents can become significantly stronger than the average velocity in the phases, and lead to unphysical displacement of the interface. In this work, we first investigate the capability of the algebraic Volume of Fluid (VOF) method in OpenFOAM for low capillary number pore scale flow simulations. Afterward, we compare VOF results with a Coupled Level-Set Volume of Fluid (CLSVOF) method and Iso-Advector method. It has been shown that the former one reduces the VOF's unphysical spurious currents in some cases, and both are known to capture interfaces sharper than VOF. As the conclusion, we will investigate that whether the use of CLSVOF or Iso-Advector will lead to less spurious velocities and more accurate results for capillary driven pore-scale multiphase flows or not. Keywords: Pore-scale multiphase flow, Capillary driven flows, Spurious currents, OpenFOAM

  20. Hierarchically Porous Carbon Materials for CO 2 Capture: The Role of Pore Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estevez, Luis; Barpaga, Dushyant; Zheng, Jian

    2018-01-17

    With advances in porous carbon synthesis techniques, hierarchically porous carbon (HPC) materials are being utilized as relatively new porous carbon sorbents for CO2 capture applications. These HPC materials were used as a platform to prepare samples with differing textural properties and morphologies to elucidate structure-property relationships. It was found that high microporous content, rather than overall surface area was of primary importance for predicting good CO2 capture performance. Two HPC materials were analyzed, each with near identical high surface area (~2700 m2/g) and colossally high pore volume (~10 cm3/g), but with different microporous content and pore size distributions, which ledmore » to dramatically different CO2 capture performance. Overall, large pore volumes obtained from distinct mesopores were found to significantly impact adsorption performance. From these results, an optimized HPC material was synthesized that achieved a high CO2 capacity of ~3.7 mmol/g at 25°C and 1 bar.« less

  1. Correlation between physicochemical properties of modified clinoptilolite and its performance in the removal of ammonia-nitrogen.

    PubMed

    Dong, Yingbo; Lin, Hai; He, Yinhai

    2017-03-01

    The physicochemical properties of the 24 modified clinoptilolite samples and their ammonia-nitrogen removal rates were measured to investigate the correlation between them. The modified clinoptilolites obtained by acid modification, alkali modification, salt modification, and thermal modification were used to adsorb ammonia-nitrogen. The surface area, average pore width, macropore volume, mecropore volume, micropore volume, cation exchange capacity (CEC), zeta potential, silicon-aluminum ratios, and ammonia-nitrogen removal rate of the 24 modified clinoptilolite samples were measured. Subsequently, the linear regression analysis method was used to research the correlation between the physicochemical property of the different modified clinoptilolite samples and the ammonia-nitrogen removal rate. Results showed that the CEC was the major physicochemical property affecting the ammonia-nitrogen removal performance. According to the impacts from strong to weak, the order was CEC > silicon-aluminum ratios > mesopore volume > micropore volume > surface area. On the contrary, the macropore volume, average pore width, and zeta potential had a negligible effect on the ammonia-nitrogen removal rate. The relational model of physicochemical property and ammonia-nitrogen removal rate of the modified clinoptilolite was established, which was ammonia-nitrogen removal rate = 1.415[CEC] + 173.533 [macropore volume] + 0.683 [surface area] + 4.789[Si/Al] - 201.248. The correlation coefficient of this model was 0.982, which passed the validation of regression equation and regression coefficients. The results of the significance test showed a good fit to the correlation model.

  2. Gas occurrence property in shales of Tuha basin northwest china

    NASA Astrophysics Data System (ADS)

    Chen, Jinlong; Huang, Zhilong

    2017-04-01

    Pore of rock under formation condition must be fulfilled by gas, oil, or water, so the volume of water and gas is equation to porous volume in shale gas. The occurrences states of gas are free gas, solution gas, and absorbed gas. Field analysis is used to obtain total gas content by improved lost gas recover method. Free gas content acquired by pore proportion of gas, which use measured pore volume minus water and oil saturation, convert gas content of standard condition by state equation. Water saturation obtain from core water content, oil saturation obtain from extract carbohydrate. Solution gas need gas solubility in oil and water to calculate solution gas content in standard condition. Absorbed gas, introduce Absorbed Gas Saturation ɛ, which acquire from isothermal adsorption volume vs field analysis gas content in many basins of published paper, need isothermal adsorption and Absorbed Gas Saturation to obtain absorbed gas content. All of the data build connect with logging value by regression equation. The gas content is 0.92-1.53 m3/t from field analysis, evaluate gas content is 1.33 m3/t average, free gas proportion is about 47%, absorbed gas counter for 49%, and solution gas is average 4%.

  3. Structural characteristics of methylsilsesquioxane based porous low-k thin films fabricated with increasing cross-linked particle porogen loading

    NASA Astrophysics Data System (ADS)

    Lee, Hae-Jeong; Soles, Christopher L.; Liu, Da-Wei; Bauer, Barry J.; Lin, Eric K.; Wu, Wen-Li; Gallagher, Michael

    2006-09-01

    Methylsilsesquioxane (MSQ) based porous low-k dielectric films are characterized by x-ray porosimetry (XRP) to determine their pore size distribution, average density, wall density, and porosity. By varying the porogen content from 1% to 30% by mass, the porosity changes from 12% to 34% by volume, indicating that the base MSQ matrix material contains approximately 10% by volume inherent microporosity. The wall density of this matrix material is measured to be 1.33-1.35g/cm3, independent of porosity. The average pore radii determined from the XRP adsorption isotherms increase from 6to27Å with increased porogen loadings. Small angle neutron scattering measurements confirm these XRP average pore radii for the films with porogen loading higher than 10% by mass.

  4. Integrating SANS and fluid-invasion methods to characterize pore structure of typical American shale oil reservoirs.

    PubMed

    Zhao, Jianhua; Jin, Zhijun; Hu, Qinhong; Jin, Zhenkui; Barber, Troy J; Zhang, Yuxiang; Bleuel, Markus

    2017-11-13

    An integration of small-angle neutron scattering (SANS), low-pressure N 2 physisorption (LPNP), and mercury injection capillary pressure (MICP) methods was employed to study the pore structure of four oil shale samples from leading Niobrara, Wolfcamp, Bakken, and Utica Formations in USA. Porosity values obtained from SANS are higher than those from two fluid-invasion methods, due to the ability of neutrons to probe pore spaces inaccessible to N 2 and mercury. However, SANS and LPNP methods exhibit a similar pore-size distribution, and both methods (in measuring total pore volume) show different results of porosity and pore-size distribution obtained from the MICP method (quantifying pore throats). Multi-scale (five pore-diameter intervals) inaccessible porosity to N 2 was determined using SANS and LPNP data. Overall, a large value of inaccessible porosity occurs at pore diameters <10 nm, which we attribute to low connectivity of organic matter-hosted and clay-associated pores in these shales. While each method probes a unique aspect of complex pore structure of shale, the discrepancy between pore structure results from different methods is explained with respect to their difference in measurable ranges of pore diameter, pore space, pore type, sample size and associated pore connectivity, as well as theoretical base and interpretation.

  5. A facile one-pot self-assembly approach to incorporate SnOx nanoparticles in ordered mesoporous carbon with soft templating for fuel cells.

    PubMed

    Huang, Yingqiang; Zhai, Zhicheng; Luo, Zhigang; Liu, Yingju; Liang, Zhurong; Fang, Yueping

    2014-04-04

    Unique SnO(x) (x = 1,2)/ordered mesoporous carbon nanocomposites (denoted as SnO(x)/OMC) are firstly synthesized through a 'one-pot' synthesis together with the soft template self-assembly approach. The obtained SnO(x)/OMC nanocomposites with various SnO(x) contents exhibit uniform pore sizes between 3.9 and 4.2 nm, high specific surface areas between 497 and 595 m(2) g(-1), and high pore volumes between 0.39 and 0.48 cm(3) g(-1). With loading of Pt, Pt-SnO(x)/OMC with relatively low SnO(x) content exhibits superior electrocatalytic performance, long-term durability, and resistance to CO poisoning for methanol oxidation, as compared to Pt/OMC, PtRu/C and Pt-SnO(x)/C, which may be attributed not only to the synergetic effect of embedded SnO(x), but also to the highly ordered mesostructure with high specific surface areas and large pore volumes affording plenty of surface area for support of Pt nanoparticles. This work supplies an efficient way to synthesize novel ordered mesoporous carbon self-supported metallic oxide as catalyst support and its further potential application to reduce the cost of catalysts in direct methanol fuel cells.

  6. A facile one-pot self-assembly approach to incorporate SnOx nanoparticles in ordered mesoporous carbon with soft templating for fuel cells

    NASA Astrophysics Data System (ADS)

    Huang, Yingqiang; Zhai, Zhicheng; Luo, Zhigang; Liu, Yingju; Liang, Zhurong; Fang, Yueping

    2014-04-01

    Unique SnOx (x = 1,2)/ordered mesoporous carbon nanocomposites (denoted as SnOx/OMC) are firstly synthesized through a ‘one-pot’ synthesis together with the soft template self-assembly approach. The obtained SnOx/OMC nanocomposites with various SnOx contents exhibit uniform pore sizes between 3.9 and 4.2 nm, high specific surface areas between 497 and 595 m2 g-1, and high pore volumes between 0.39 and 0.48 cm3 g-1. With loading of Pt, Pt-SnOx/OMC with relatively low SnOx content exhibits superior electrocatalytic performance, long-term durability, and resistance to CO poisoning for methanol oxidation, as compared to Pt/OMC, PtRu/C and Pt-SnOx/C, which may be attributed not only to the synergetic effect of embedded SnOx, but also to the highly ordered mesostructure with high specific surface areas and large pore volumes affording plenty of surface area for support of Pt nanoparticles. This work supplies an efficient way to synthesize novel ordered mesoporous carbon self-supported metallic oxide as catalyst support and its further potential application to reduce the cost of catalysts in direct methanol fuel cells.

  7. A trimodal porous carbon as an effective catalyst for hydrogen production by methane decomposition.

    PubMed

    Shen, Yi; Lua, Aik Chong

    2016-01-15

    A new type of porous carbon with an interconnected trimodal pore system is synthesized by a nanocasting method using nanoparticulated bimodal micro-mesoporous silica particles as the template. The synthesized template and carbon material are characterized using transmission electron microscopy (TEM), field emission electron scanning microscopy (FESEM) and nitrogen adsorption-desorption test. The synthesized carbon material has an extremely high surface area, a large pore volume and an interconnected pore structure, which could provide abundant active sites and space for chemical reactions and minimize the diffusion resistance of the reactants. The resulting carbon is used as the catalyst for hydrogen production by the thermal decomposition of methane. The catalytic results show that the as-synthesized carbon in this study produces much higher methane conversion and hydrogen yield than the commercial carbon materials. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Secondary Confinement of Water Observed in Eutectic Melting of Aqueous Salt Systems in Nanopores.

    PubMed

    Meissner, Jens; Prause, Albert; Findenegg, Gerhard H

    2016-05-19

    Freezing and melting of aqueous solutions of alkali halides confined in the cylindrical nanopores of MCM-41 and SBA-15 silica was probed by differential scanning calorimetry (DSC). We find that the confinement-induced shift of the eutectic temperature in the pores can be significantly greater than the shift of the melting temperature of pure water. Greatest shifts of the eutectic temperature are found for salts that crystallize as oligohydrates at the eutectic point. This behavior is explained by the larger fraction of pore volume occupied by salt hydrates as compared to anhydrous salts, on the assumption that precipitated salt constitutes an additional confinement for ice/water in the pores. A model based on this secondary confinement effect gives a good representation of the experimental data. Salt-specific secondary confinement may play a role in a variety of fields, from salt-impregnated advanced adsorbents and catalysts to the thermal weathering of building materials.

  9. Intercomparison of 3D pore-scale flow and solute transport simulation methods

    DOE PAGES

    Mehmani, Yashar; Schoenherr, Martin; Pasquali, Andrea; ...

    2015-09-28

    Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based onmore » the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This paper provides support for confidence in a variety of pore-scale modeling methods and motivates further development and application of pore-scale simulation methods.« less

  10. Intercomparison of 3D pore-scale flow and solute transport simulation methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofan; Mehmani, Yashar; Perkins, William A.

    2016-09-01

    Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based onmore » the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This study provides support for confidence in a variety of pore-scale modeling methods and motivates further development and application of pore-scale simulation methods.« less

  11. Degassing, gas retention and release in Fe(0) permeable reactive barriers.

    PubMed

    Ruhl, Aki S; Jekel, Martin

    2014-04-01

    Corrosion of Fe(0) has been successfully utilized for the reductive treatment of multiple contaminants. Under anaerobic conditions, concurrent corrosion leads to the generation of hydrogen and its liberation as a gas. Gas bubbles are mobile or trapped within the irregular pore structure leading to a reduction of the water filled pore volume and thus decreased residence time and permeability (gas clogging). With regard to the contaminant transport to the reactive site, the estimation of surface properties of the reactive material indicated that individual gas bubbles only occupied minor contact areas of the reactive surface. Quantification of gas entrapment by both gravimetrical and tracer investigations revealed that development of preferential flow paths was not significant. A novel continuous gravimetrical method was implemented to record variations in gas entrapment and gas bubble releases from the reactive filling. Variation of grain size fractions revealed that the pore geometry had a significant impact on gas release. Large pores led to the release of comparably large gas amounts while smaller volumes were released from finer pores with a higher frequency. Relevant processes are explained with a simplified pictorial sequence that incorporates relevant mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Numerical study of the effects of contact angle and viscosity ratio on the dynamics of snap-off through porous media

    NASA Astrophysics Data System (ADS)

    Starnoni, Michele; Pokrajac, Dubravka

    2018-01-01

    Snap-off is a pore-scale mechanism occurring in porous media in which a bubble of non-wetting phase displacing a wetting phase, and vice-versa, can break-up into ganglia when passing through a constriction. This mechanism is very important in foam generation processes, enhanced oil recovery techniques and capillary trapping of CO2 during its geological storage. In the present study, the effects of contact angle and viscosity ratio on the dynamics of snap-off are examined by simulating drainage in a single pore-throat constriction of variable cross-section, and for different pore-throat geometries. To model the flow, we developed a CFD code based on the Finite Volume method. The Volume-of-fluid method is used to track the interfaces. Results show that the threshold contact angle for snap-off, i.e. snap-off occurs only for contact angles smaller than the threshold, increases from a value of 28° for a circular cross-section to 30-34° for a square cross-section and up to 40° for a triangular one. For a throat of square cross-section, increasing the viscosity of the injected phase results in a drop in the threshold contact angle from a value of 30° when the viscosity ratio μ bar is equal to 1 to 26° when μ bar = 20 and down to 24° when μ bar = 20 .

  13. Petrophysical laboratory invertigations of carbon dioxide storage in a subsurface saline aquifer in Ketzin/Germany within the scope of CO2SINK

    NASA Astrophysics Data System (ADS)

    Zemke, K.; Kummmerow, J.; Wandrey, M.; Co2SINK Group

    2009-04-01

    Since June of 2008 carbon dioxide has been injected into a saline aquifer at the Ketzin test site [Würdemann et al., this volume]. The food grade CO2 is injected into a sandstone zone of the Stuttgart formation at ca. 650 m depth at 35°C reservoir temperature and 62 bar reservoir pressure. With the injection of CO2 into the geological formation, chemical and physical reservoir characteristics are changed depending on pressure, temperature, fluid chemistry and rock composition. Fluid-rock interaction could comprise dissolution of non-resistant minerals in CO2-bearing pore fluids, cementing of the pore space by precipitating substances from the pore fluid, drying and disintegration of clay minerals and thus influence of the composition and activities of the deep biosphere. To testing the injection behaviour of CO2 in water saturated rock and to evaluate the geophysical signature depending on the thermodynamic conditions, flow experiments with water and CO2 have been performed on cores of the Stuttgart formation from different locations including new wells of ketzin test site. The studied core material is an unconsolidated fine-grained sandstone with porosity values from 15 to 32 %. Permeability, electrical resistivity, and sonic wave velocities and their changes with pressure, saturation and time have been studied under simulated in situ conditions. The flow experiments conducted over several weeks with brine and CO2 showed no significant changes of resistivity and velocity and a slightly decreasing permeability. Pore fluid analysis showed mobilization of clay and some other components. A main objective of the CO2Sink laboratory program is the assessment of the effect of long-term CO2 exposure on reservoir rocks to predict the long-term behaviour of geological CO2 storage. For this CO2 exposure experiments reservoir rock samples were exposed to CO2 saturated reservoir fluid in corrosion-resistant high pressure vessels under in situ temperature and pressure conditions over a period of several months. Before and after the CO2 exposure experiment cyclic measurements of physical properties were carried out on these cores in a mechanical testing system. After experimental runs of up to 3 months no significant changes in flow and petrophysical data were observed. [For the microbilogical studies see Wandrey et al., this volume.] To study the impact of fluid-rock interactions on petrophysical parameters, porosity and pore radii distribution have been investigated before and after the experiment by NMR relaxation and mercury-injection. NMR measurements on rock core plugs saturated with brine may return valuable information on the porous structure of the rock core. The distribution of NMR-T2 values (CPMG) reflects the pore sizes within the rock core. NMR pore size is a derivative of the ratio pore surface/volume. The mercury injection pore size is an area-equivalent diameter of the throats connecting the pore system. Most of the tested samples show in the NMR measurements a slightly increasing porosity and a higher part of large pores. The mercury measurements and thin- section for microstructural characterisation after the CO2 exposure will be done at a later date.

  14. Habitable pore space and survival ofRhizobium leguminosarum biovartrifolii introduced into soil.

    PubMed

    Postma, J; van Veen, J A

    1990-03-01

    The hypothesis that the population size of introduced bacteria is affected by habitable pore space was studied by varying moisture content and bulk density in sterilized, as well as in natural loamy sand and silt loam. The soils were inoculated withRhizobium leguminosarum biovartrifolii and established and maintained at soil water potentials between -5 and -20 kPa (pF 1.7 and 2.3). Rhizobial cells were enumerated when population sizes were expected to be more or less stable. In sterilized soils, the rhizobial numbers were not affected or decreased only slightly when water potentials increased from -20 to -5 kPa. In natural soils, the decrease in rhizobial numbers with increasing water potentials was more pronounced. Bulk density had only minor effects on the population sizes of rhizobia or total bacteria. Soil water retention curves of both soils were used to calculate volume and surface area of pores from different diameter classes, and an estimation of the habitable pore space was made. Combining these values of the theoretical habitable pore space with the measured rhizobial numbers showed that only 0.37 and 0.44% of the habitable pore space was occupied in the sterilized loamy sand and silt loam, respectively. The situation in natural soil is more complicated, since a whole variety of microorganisms is present. Nevertheless, it was suggested that, in general, pore space does not limit proliferation and growth of soil microorganisms.

  15. Effect of Ionic Soil Stabilizers on Soil-Water Characteristic of Special Clay

    NASA Astrophysics Data System (ADS)

    Cui, D.; Xiang, W.

    2011-12-01

    The engineering properties of special clay are conventionally improved through the use of chemical additive such as ionic soil stabilizer (ISS). Such special clays are often referred to as stabilized or treated clays. The soil-water characteristic curves (SWCC) of special clays from Henan province and Hubei province were measured both in natural and stabilized conditions using the pressure plate apparatus in the suction range of 0-500 kPa. The SWCC results are used to interpret the special clays behavior due to stabilizer treatment. In addition, relationships were developed between the basic clay and stabilized properties such as specific surface area and pore size distribution. The analysis showed that specific surface area decreases, cumulative pore volume and average pore size diameter decrease, dehydration rate slows and the thickness of water film thins after treatment with Ionic Soil Stabilizer. The research data and interpretation analysis presented here can be extended to understand the water film change behaviors influencing the mechanical and physical properties of stabilized special clay soils. KEY WORDS: ionic soil stabilizer, special clay, pore size diameter, specific surface area, soil water characteristic curve, water film

  16. Influence of surface treatments on micropore structure and hydrogen adsorption behavior of nanoporous carbons.

    PubMed

    Kim, Byung-Joo; Park, Soo-Jin

    2007-07-15

    The scope of this work was to control the pore sizes of porous carbons by various surface treatments and to investigate the relation between pore structures and hydrogen adsorption capacity. The effects of various surface treatments (i.e., gas-phase ozone, anodic oxidation, fluorination, and oxygen plasma) on the micropore structures of porous carbons were investigated by N(2)/77 K isothermal adsorption. The hydrogen adsorption capacity was measured by H(2) isothermal adsorption at 77 K. In the result, the specific surface area and micropore volume of all of the treated samples were slightly decreased due to the micropore filling or pore collapsing behaviors. It was also found that in F(2)-treated carbons the center of the pore size distribution was shifted to left side, meaning that the average size of the micropores decreased. The F(2)- and plasma-treated samples showed higher hydrogen storage capacities than did the other samples, the F(2)-treated one being the best, indicating that the micropore size of the porous carbons played a key role in the hydrogen adsorption at 77 K.

  17. Pentaethylenehexamine-Loaded Hierarchically Porous Silica for CO2 Adsorption

    PubMed Central

    Ji, Changchun; Huang, Xin; Li, Lei; Xiao, Fukui; Zhao, Ning; Wei, Wei

    2016-01-01

    Recently, amine-functionalized materials as a prospective chemical sorbent for post combustion CO2 capture have gained great interest. However, the amine grafting for the traditional MCM-41, SBA-15, pore-expanded MCM-41 or SBA-15 supports can cause the pore volume and specific surface area of sorbents to decrease, significantly affecting the CO2 adsorption-desorption dynamics. To overcome this issue, hierarchical porous silica with interparticle macropores and long-range ordering mesopores was prepared and impregnated with pentaethylenehexamine. The pore structure and amino functional group content of the modified silicas were analyzed by scanning electron microscope, transmission electron microscope, N2 adsorption, X-ray powder diffraction, and Fourier transform infrared spectra. Moreover, the effects of the pore structure as well as the amount of PEHA loading of the samples on the CO2 adsorption capacity were investigated in a fixed-bed adsorption system. The CO2 adsorption capacity reached 4.5 mmol CO2/(g of adsorbent) for HPS−PEHA-70 at 75 °C. Further, the adsorption capacity for HPS-PEHA-70 was steady after a total of 15 adsorption-desorption cycles. PMID:28773956

  18. Fluid Absorption and Release of Nonwovens and their Response to Compression

    NASA Astrophysics Data System (ADS)

    Bateny, Fatemeh

    Fluid handling is a key property in one of the major nonwoven applications in absorbent product such as wipes, hygiene products, and baby diapers. These products are subjected to various levels of compression in real-use. The aim of this study was to investigate the liquid absorption and release properties of nonwovens to establish the absorption structure-property relationship at various compression levels. A comprehensive methodology, considering various flow directions, was employed to establish the relationship by decoupling the effect of structural parameters and material properties in two phases of this study respectively. In the first phase, the mechanism of absorption by pore structure was investigated through considering various fiber cross-sectional size and shape, as well as heterogeneous layered structures having a pore size reduction and expansion. In the second phase, the mechanism of absorption by fiber and consequent swelling was evaluated in view of fluid diffusion into the rayon fibers in samples having different percentages of PET fiber (non-absorbent) and rayon fiber (absorbent). The analysis of absorption and release properties through the entire dissertation was based on the pore characteristics of the nonwovens by measuring the average pore sizes, pore size distribution, and solidity. The investigation revealed that the absorption and release properties of nonwovens are governed by their pore characteristics. In homogeneous non-layered nonwoven fabrics, maximum absorption is mainly governed by the available pore volume. Absorbency rate is determined according to pore size and the maximum rate of absorption is achieved at a specific range of pore sizes. This indicates that an in-depth understanding of the absorption and release properties brings about valuable information for the absorbent product engineering.

  19. Postseismic rebound in fault step-overs caused by pore fluid flow

    USGS Publications Warehouse

    Peltzer, G.; Rosen, P.; Rogez, F.; Hudnut, K.

    1996-01-01

    Near-field strain induced by large crustal earthquakes results in changes in pore fluid pressure that dissipate with time and produce surface deformation. Synthetic aperture radar (SAR) interferometry revealed several centimeters of postseismic uplift in pull-apart structures and subsidence in a compressive jog along the Landers, California, 1992 earthquake surface rupture, with a relaxation time of 270 ?? 45 days. Such a postseismic rebound may be explained by the transition of the Poisson's ratio of the deformed volumes of rock from undrained to drained conditions as pore fluid flow allows pore pressure to return to hydrostatic equilibrium.

  20. Cathode architectures for alkali metal / oxygen batteries

    DOEpatents

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  1. Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: A comparative study.

    PubMed

    Liu, Na; Charrua, Alberto Bento; Weng, Chih-Huang; Yuan, Xiaoling; Ding, Feng

    2015-12-01

    The physicochemical properties of biochars produced from soybeans (SBB), corn stalks (CSB), rice stalks (RSB), poultry manure (PMB), cattle manure (CMB), and pig manure (PgMB) and their adsorption characteristics of atrazine were investigated. The adsorption capacity increased with the increase of temperature and initial atrazine concentration. More atrazine was removed from basic solutions than acidic solutions, due to the effects of adsorption and hydrolysis. The Freundlich isotherm adsorption parameters indicated that the adsorption capacity decreased in the order SBB>RSB>CMB>CSB>PMB>PgMB, which is associated to the pore volume of biochars. The total pore volume and biochar pH were concluded to play important roles in determining the adsorption capacity, and they may have contributed to physical adsorption mechanisms dominating the overall adsorption process (the low activation energy for all of the biochars). Modified Freundlich and intraparticle diffusion models were used to describe the kinetics of the adsorption process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Rate laws for water-assisted compaction and stress-induced water-rock interaction in sandstones

    NASA Astrophysics Data System (ADS)

    Dewers, Thomas; Hajash, Andrew

    1995-07-01

    Mineral-water interactions under conditions of nonhydrostatic stress play a role in subjects as diverse as ductile creep in fault zones, phase relations in metamorphic rocks, mass redistribution and replacement reactions during diagenesis, and loss of porosity in deep sedimentary basins. As a step toward understanding the fundamental geochemical processes involved, using naturally rounded St. Peter sand, we have investigated the kinetics of pore volume loss and quartz-water reactions under nonhydrostatic, hydrothermal conditions in flow-through reactors. Rate laws for creep and mineral-water reaction are derived from the time rate of change of pore volume, sand-water dissolution kinetics, and (flow rate independent) steady state silica concentrations, and reveal functional dependencies of rates on grain size, volume strain, temperature, effective pressure (confining minus pore pressure), and specific surface areas. Together the mechanical and chemical rate laws form a self-consistent model for coupled deformation and water-rock interaction of porous sands under nonhydrostatic conditions. Microstructural evidence shows a progressive widening of nominally circular and nominally flat grain-grain contacts with increasing strain or, equivalently, porosity loss, and small quartz overgrowths occurring at grain contact peripheries. The mechanical and chemical data suggest that the dominant creep mechanism is due to removal of mass from grain contacts (termed pressure solution or solution transfer), with a lesser component of time-dependent crack growth and healing. The magnitude of a stress-dependent concentration increase is too large to be accounted for by elastic or dislocation strain energy-induced supersaturations, favoring instead the normal stress dependence of molar Gibbs free energy associated with grain-grain interfaces.

  3. CO2 breakthrough pressure and permeability for unsaturated low-permeability sandstone of the Ordos Basin

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Yu, Qingchun

    2017-07-01

    With rising threats from greenhouse gases, capture and injection of CO2 into suitable underground formations is being considered as a method to reduce anthropogenic emissions of CO2 to the atmosphere. As the injected CO2 will remain in storage for hundreds of years, the safety of CO2 geologic sequestration is a major concern. The low-permeability sandstone of the Ordos Basin in China is regarded as both caprock and reservoir rock, so understanding the breakthrough pressure and permeability of the rock is necessary. Because part of the pore volume experiences a non-wetting phase during the CO2 injection and migration process, the rock may be in an unsaturated condition. And if accidental leakage occurs, CO2 will migrate up into the unsaturated zone. In this study, breakthrough experiments were performed at various degrees of water saturation with five core samples of low-permeability sandstone obtained from the Ordos Basin. The experiments were conducted at 40 °C and pressures of >8 MPa to simulate the geological conditions for CO2 sequestration. The results indicate that the degree of water saturation and the pore structure are the main factors affecting the rock breakthrough pressure and permeability, since the influence of calcite dissolution and clay mineral swelling during the saturation process is excluded. Increasing the average pore radius or most probable pore radius leads to a reduction in the breakthrough pressure and an increase by several orders of magnitude in scCO2 effective permeability. In addition, the breakthrough pressure rises and the scCO2 effective permeability decreases when the water saturation increases. However, when the average pore radius is greater than 0.151 μm, the degree of water saturation will has a little effect on the breakthrough pressure. On this foundation, if the most probable pore radius of the core sample reaches 1.760 μm, the breakthrough pressure will not be impacted by the increasing water saturation. We establish correlations between (1) the breakthrough pressure and average pore radius or most probable pore radius, (2) the breakthrough pressure and scCO2 effective permeability, (3) the breakthrough pressure and water saturation, and (4) the scCO2 effective permeability and water saturation. This study provides practical information for further studies of CO2 sequestration as well as the caprock evaluation.

  4. Linking Silica Support Morphology to the Dynamics of Aminopolymers in Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrillo, Jan-Michael Y.; Potter, Matthew E.; Sakwa-Novak, Miles A.

    A combined computational and experimental approach is used to elucidate the effect of silica support morphology on polymer dynamics and CO 2 adsorption capacities in aminopolymer/silica composites. Furthermore, simulations are based on coarse-grained molecular dynamics simulations of aminopolymer composites where a branched aminopolymer, representing poly(ethylenimine) (PEI), is impregnated into different silica mesoporous supports. The morphology of the mesoporous supports varies from hexagonally packed cylindrical pores representing SBA-15, double gyroids representing KIT-6 and MCM-48, and cagelike structures representing SBA-16. In parallel, composites of PEI and the silica supports SBA-15, KIT-6, MCM-48, and SBA-16 are synthesized and characterized, including measuring their COmore » 2 uptake. Simulations predict that a 3D pore morphology, such as those of KIT-6, MCM-48, and SBA-16, will have faster segmental mobility and have lower probability of primary amine and surface silanol associations, which should translate to higher CO 2 uptake in comparison to a 2D pore morphology such as that of SBA-15. We found that KIT-6 has higher CO 2 uptake than SBA-15 at equivalent PEI loading, even though both supports have similar surface area and pore volume. But, this is not the case for the MCM-48 support, which has smaller pores, and SBA-16, whose pore structure rapidly degrades after PEI impregnation.« less

  5. Estimating Pore Properties from NMR Relaxation Time Measurements in Heterogeneous Media

    NASA Astrophysics Data System (ADS)

    Grunewald, E.; Knight, R.

    2008-12-01

    The link between pore geometry and the nuclear magnetic resonance (NMR) relaxation time T2 is well- established for simple systems but is poorly understood for complex media with heterogeneous pores. Conventional interpretation of NMR relaxation data employs a model of isolated pores in which each hydrogen proton samples only one pore type, and the T2-distribution is directly scaled to estimate a pore-size distribution. During an actual NMR measurement, however, each proton diffuses through a finite volume of the pore network, and so may sample multiple pore types encountered within this diffusion cell. For cases in which heterogeneous pores are strongly coupled by diffusion, the meaning of the T2- distribution is not well understood and further research is required to determine how such measurements should be interpreted. In this study we directly investigate the implications of pore coupling in two groups of laboratory NMR experiments. We conduct two suites of experiments, in which samples are synthesized to exhibit a range of pore coupling strengths using two independent approaches: (a) varying the scale of the diffusion cell and (b) varying the scale over which heterogeneous pores are encountered. In the first set of experiments, we vary the scale of the diffusion cell in silica gels which have a bimodal pore-size distribution comprised of intragrannular micropores and much larger intergrannular pores. The untreated gel exhibits strong pore coupling with a single broad peak observed in the T2-distribution. By treating the gel with varied amounts of paramagnetic iron surface coatings, we decrease the surface relaxation time, T2S, and effectively decrease both the size of the diffusion cell and the degree of pore coupling. As more iron is coated to the grain surfaces, we observe a separation of the broad T2-distribution into two peaks that more accurately represent the true bimodal pore-size distribution. In the second set of experiments, we vary the scale over which heterogeneous pores are encountered in bimodal grain packs of pure quartz (long T2S) and hematite (short T2S). The scale of heterogeneity is varied by changing the mean grain size and relative mineral concentrations. When the mean grain size is small and the mineral concentrations are comparable, the T2-distribution is roughly monomodal indicating strong pore coupling. As the grain size is increased or the mineral concentrations are made increasingly uneven, the T2- distribution develops a bimodal character, more representative of the actual distribution of pore types. Numerical simulations of measurements in both experiment groups allow us to more closely investigate how the relaxing magnetization evolves in both time and space. Collectively, these experiments provide important insights into the effects of pore coupling on NMR measurements in heterogeneous systems and contribute to our ultimate goal of improving the interpretation of these data in complex near-surface sediments.

  6. Fabricating hierarchically porous carbon with well-defined open pores via polymer dehalogenation for high-performance supercapacitor

    NASA Astrophysics Data System (ADS)

    Guo, Mei; Li, Yu; Du, Kewen; Qiu, Chaochao; Dou, Gang; Zhang, Guoxin

    2018-05-01

    Improving specific energy of supercapacitors (SCs) at high power has been intensively investigated as a hot and challengeable topic. In this work, hierarchically porous carbon (HPC) materials with well-defined meso-/macro-pores are reported via the dehalogenation reaction of polyvinyl fluoride (PVDF) by NaNH2. The pore hierarchy is achievable mainly because of the coupled effects of NaNH2 activation and the template/bubbling effects of byproducts of NaF and NH3. Electron microscopy studies and Brunauer-Emmett-Teller (BET) measurements confirm that the structures of HPC samples contain multiple-scale pores assembled in a hierarchical pattern, and most of their volumes are contributed by mesopores. Aqueous symmetric supercapacitors (ASSCs) were fabricated using HPC-M7 materials, achieving an ultrahigh specific energy of 18.8 Wh kg-1 at specific power of 986.8 W kg-1. Remarkably, at the ultrahigh power of 14.3 kW kg-1, the HPC-ASSCs still output a very high specific energy of 16.7 Wh kg-1, which means the ASSCs can be charged or discharged within 4 s. The outstanding rate capacitive performance is mainly benefited from the hierarchical porous structure that allows highly efficient ion diffusion.

  7. Influence of functionally graded pores on bone ingrowth in cementless hip prosthesis: a finite element study using mechano-regulatory algorithm.

    PubMed

    Tarlochan, Faris; Mehboob, Hassan; Mehboob, Ali; Chang, Seung-Hwan

    2018-06-01

    Cementless hip prostheses with porous outer coating are commonly used to repair the proximally damaged femurs. It has been demonstrated that stability of prosthesis is also highly dependent on the bone ingrowth into the porous texture. Bone ingrowth is influenced by the mechanical environment produced in the callus. In this study, bone ingrowth into the porous structure was predicted by using a mechano-regulatory model. Homogenously distributed pores (200 and 800 [Formula: see text]m in diameter) and functionally graded pores along the length of the prosthesis were introduced as a porous coating. Bone ingrowth was simulated using 25 and 12 [Formula: see text]m micromovements. Load control simulations were carried out instead of traditionally used displacement control. Spatial and temporal distributions of tissues were predicted in all cases. Functionally graded pore decreasing models gave the most homogenous bone distribution, the highest bone ingrowth (98%) with highest average Young's modulus of all tissue phenotypes approximately 4.1 GPa. Besides this, the volume of the initial callus increased to 8.33% in functionally graded pores as compared to the 200 [Formula: see text]m pore size models which increased the bone volume. These findings indicate that functionally graded porous surface promote bone ingrowth efficiently which can be considered to design of surface texture of hip prosthesis.

  8. Characterization of the porosity of human dental enamel and shear bond strength in vitro after variable etch times: initial findings using the BET method.

    PubMed

    Nguyen, Trang T; Miller, Arthur; Orellana, Maria F

    2011-07-01

    (1) To quantitatively characterize human enamel porosity and surface area in vitro before and after etching for variable etching times; and (2) to evaluate shear bond strength after variable etching times. Specifically, our goal was to identify the presence of any correlation between enamel porosity and shear bond strength. Pore surface area, pore volume, and pore size of enamel from extracted human teeth were analyzed by Brunauer-Emmett-Teller (BET) gas adsorption before and after etching for 15, 30, and 60 seconds with 37% phosphoric acid. Orthodontic brackets were bonded with Transbond to the samples with variable etch times and were subsequently applied to a single-plane lap shear testing system. Pore volume and surface area increased after etching for 15 and 30 seconds. At 60 seconds, this increase was less pronounced. On the contrary, pore size appears to decrease after etching. No correlation was found between variable etching times and shear strength. Samples etched for 15, 30, and 60 seconds all demonstrated clinically viable shear strength values. The BET adsorption method could be a valuable tool in enhancing our understanding of enamel characteristics. Our findings indicate that distinct quantitative changes in enamel pore architecture are evident after etching. Further testing with a larger sample size would have to be carried out for more definitive conclusions to be made.

  9. Heterogeneous porous structures for the fastest liquid absorption

    NASA Astrophysics Data System (ADS)

    Shou, Dahua; Ye, Lin; Fan, Jintu

    2013-08-01

    Engineered porous materials, which have fast absorption of liquids under global constraints (e.g. volume, surface area, or cost of the materials), are useful in many applications including moisture management fabrics, medical wound dressings, paper-based analytical devices, liquid molding composites, etc.. The absorption in capillary tubes and porous media is driven by the surface tension of liquid, which is inversely proportional to the pore size. On the contrary, the ability of conduction (or permeability) of liquid in porous materials is linear with the square of pore size. Both mechanisms superimpose with each other leading to a possibility of the fastest absorption for a porous structure. In this work, we explore the flow behaviors for the fastest absorption using heterogeneous porous architectures, from two-portion tubes to two-layer porous media. The absorption time for filling up the voids in these porous materials is expressed in terms of pore size, height and porosity. It is shown that under the given height and void volume, these two-component porous structures with a negative gradient of pore size/porosity against the imbibition direction, have a faster absorption rate than controlled samples with uniform pore size/porosity. Particularly, optimal structural parameters including pore size, height and porosity are found for the minimum absorption time. The obtained results will be used as a priori for the design of porous structures with excellent water absorption and moisture management property in various fields.

  10. Nanostructured mesoporous silica: influence of the preparation conditions on the physical-surface properties for efficient organic dye uptake

    PubMed Central

    Mohamed, Rasha S.

    2018-01-01

    A series of ordered mesoporous silica such as MCM-41, SBA-3 and SBA-15, in addition to silica micro- (SM) and nano- (SN) mesoporous particles, were prepared. The preparation conditions were found to greatly influence the physical-surface properties including morphological structure, porosity, particle size, aggregate average size, surface area, pore size, pore volume and zeta potential of the prepared silica, while the chemical structure, predicted from FT-IR spectra, and the diffraction patterns, predicted from wide-angle X-ray diffraction spectra, were identical. Surface areas of approximately 1500, 1027, 600, 552 and 317 m2 g−1, pore volumes of 0.93, 0.56, 0.82, 0.72 and 0.5 cm3 g−1, radii of 2.48, 2.2, 5.66, 6.6 and 8.98 nm, average aggregate sizes of 56, 65.4, 220.9, 73, 61.1 and 261 nm and zeta potential values of −32.8, −46.1, −26.3, −31.4 and −25.9 mV were obtained for MCM-41, SBA-3, SBA-15, SN and SM, respectively. Methylene blue dye uptake capacity of the prepared silica types was investigated using the batch technique and, in addition, the most effective material was further studied by the column flow system. The kinetics and isotherms of the uptake process were studied. The morphological structure, surface area, pore radius and zeta potential values were the most correlated factors. PMID:29657800

  11. Anomalous solute transport in saturated porous media: Relating transport model parameters to electrical and nuclear magnetic resonance properties

    USGS Publications Warehouse

    Swanson, Ryan D; Binley, Andrew; Keating, Kristina; France, Samantha; Osterman, Gordon; Day-Lewis, Frederick D.; Singha, Kamini

    2015-01-01

    The advection-dispersion equation (ADE) fails to describe commonly observed non-Fickian solute transport in saturated porous media, necessitating the use of other models such as the dual-domain mass-transfer (DDMT) model. DDMT model parameters are commonly calibrated via curve fitting, providing little insight into the relation between effective parameters and physical properties of the medium. There is a clear need for material characterization techniques that can provide insight into the geometry and connectedness of pore spaces related to transport model parameters. Here, we consider proton nuclear magnetic resonance (NMR), direct-current (DC) resistivity, and complex conductivity (CC) measurements for this purpose, and assess these methods using glass beads as a control and two different samples of the zeolite clinoptilolite, a material that demonstrates non-Fickian transport due to intragranular porosity. We estimate DDMT parameters via calibration of a transport model to column-scale solute tracer tests, and compare NMR, DC resistivity, CC results, which reveal that grain size alone does not control transport properties and measured geophysical parameters; rather, volume and arrangement of the pore space play important roles. NMR cannot provide estimates of more-mobile and less-mobile pore volumes in the absence of tracer tests because these estimates depend critically on the selection of a material-dependent and flow-dependent cutoff time. Increased electrical connectedness from DC resistivity measurements are associated with greater mobile pore space determined from transport model calibration. CC was hypothesized to be related to length scales of mass transfer, but the CC response is unrelated to DDMT.

  12. A physically-based analytical model to describe effective excess charge for streaming potential generation in saturated porous media

    NASA Astrophysics Data System (ADS)

    Jougnot, D.; Guarracino, L.

    2016-12-01

    The self-potential (SP) method is considered by most researchers the only geophysical method that is directly sensitive to groundwater flow. One source of SP signals, the so-called streaming potential, results from the presence of an electrical double layer at the mineral-pore water interface. When water flows through the pore space, it gives rise to a streaming current and a resulting measurable electrical voltage. Different approaches have been proposed to predict streaming potentials in porous media. One approach is based on the excess charge which is effectively dragged in the medium by the water flow. Following a recent theoretical framework, we developed a physically-based analytical model to predict the effective excess charge in saturated porous media. In this study, the porous media is described by a bundle of capillary tubes with a fractal pore-size distribution. First, an analytical relationship is derived to determine the effective excess charge for a single capillary tube as a function of the pore water salinity. Then, this relationship is used to obtain both exact and approximated expressions for the effective excess charge at the Representative Elementary Volume (REV) scale. The resulting analytical relationship allows the determination of the effective excess charge as a function of pore water salinity, fractal dimension and hydraulic parameters like porosity and permeability, which are also obtained at the REV scale. This new model has been successfully tested against data from the literature of different sources. One of the main finding of this study is that it provides a mechanistic explanation to the empirical dependence between the effective excess charge and the permeability that has been found by various researchers. The proposed petrophysical relationship also contributes to understand the role of porosity and water salinity on effective excess charge and will help to push further the use of streaming potential to monitor groundwater flow.

  13. Modeling Thermal Pressurization Around Shallow Dikes Using Temperature-Dependent Hydraulic Properties: Implications for Deformation Around Intrusions

    NASA Astrophysics Data System (ADS)

    Townsend, Meredith R.

    2018-01-01

    Pressurization and flow of groundwater around igneous intrusions depend in part on the hydraulic diffusivity of the host rocks and processes that enhance diffusivity, such as fracturing, or decrease diffusivity, such as mineral precipitation during chemical alteration. Characterizing and quantifying the coupled effects of alteration, pore pressurization, and deformation have significant implications for deformation around intrusions, geothermal energy, contact metamorphism, and heat transfer at mid-ocean ridges. Fractures around dikes at Ship Rock, New Mexico, indicate that pore pressures in the host rocks exceeded hydrostatic conditions by at least 15 MPa following dike emplacement. Hydraulic measurements and petrographic analysis indicate that mineral precipitation clogged the pores of the host rock, reducing porosity from 0.25 to <0.10 and reducing permeability by 5 orders of magnitude. Field data from Ship Rock are used to motivate and constrain numerical models for thermal pore fluid pressurization adjacent to a meter-scale dike, using temperature-dependent hydraulic properties in the host rock as a proxy for porosity loss by mineral precipitation during chemical alteration. Reduction in permeability by chemical alteration has a negligible effect on pressurization. However, reduction in porosity by mineral precipitation increases fluid pressure by constricting pore volume and is identified as a potentially significant source of pressure. A scaling relationship is derived to determine when porosity loss becomes important; if permeability is low enough, pressurization by porosity loss outweighs pressurization by thermal expansion of fluids.

  14. Pore size engineering applied to the design of separators for nickel-hydrogen cells and batteries

    NASA Technical Reports Server (NTRS)

    Abbey, K. M.; Britton, D. L.

    1983-01-01

    Pore size engineering in starved alkaline multiplate cells involves adopting techniques to widen the volume tolerance of individual cells. Separators with appropriate pore size distributions and wettability characteristics (capillary pressure considerations) to have wider volume tolerances and an ability to resist dimensional changes in the electrodes were designed. The separators studied for potential use in nickel-hydrogen cells consist of polymeric membranes as well as inorganic microporous mats. In addition to standard measurements, the resistance and distribution of electrolyte as a function of total cell electrolyte content were determined. New composite separators consisting of fibers, particles and/or binders deposited on Zircar cloth were developed in order to engineer the proper capillary pressure characteristics in the separator. These asymmetric separators were prepared from a variety of fibers, particles and binders.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tammas-Williams, S., E-mail: Samuel.tammas-wiliams@manchester.ac.uk; Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD; Zhao, H.

    Selective Electron Beam Melting (SEBM) is a promising powder bed Additive Manufacturing technique for near-net-shape manufacture of high-value titanium components. However without post-manufacture HIPing the fatigue life of SEBM parts is currently dominated by the presence of porosity. In this study, the size, volume fraction, and spatial distribution of the pores in model samples have been characterised in 3D, using X-ray Computed Tomography, and correlated to the process variables. The average volume fraction of the pores (< 0.2%) was measured to be lower than that usually observed in competing processes, such as selective laser melting, but a strong relationship wasmore » found with the different beam strategies used to contour, and infill by hatching, a part section. The majority of pores were found to be small spherical gas pores, concentrated in the infill hatched region; this was attributed to the lower energy density and less focused beam used in the infill strategy allowing less opportunity for gas bubbles to escape the melt pool. Overall, increasing the energy density or focus of the beam was found to correlate strongly to a reduction in the level of gas porosity. Rarer irregular shaped pores were mostly located in the contour region and have been attributed to a lack of fusion between powder particles. - Graphical abstract: Display Omitted - Highlights: • Vast majority of defects detected were small spherical gas pores. • Gas bubbles trapped in the powder granules expand and coalesce in the melt pool. • Pores have been shown not to be randomly distributed. • Larger and deeper melt pools give more opportunity for gas to escape. • Minor changes to melt strategy result in significant reductions in pore population.« less

  16. Tomographic analysis of reactive flow induced pore structure changes in column experiments

    NASA Astrophysics Data System (ADS)

    Cai, Rong; Lindquist, W. Brent; Um, Wooyong; Jones, Keith W.

    2009-09-01

    We utilize synchrotron X-ray computed micro-tomography to capture and quantify snapshots in time of dissolution and secondary precipitation in the microstructure of Hanford sediments exposed to simulated caustic waste in flow-column experiments. The experiment is complicated somewhat as logistics dictated that the column spent significant amounts of time in a sealed state (acting as a batch reactor). Changes accompanying a net reduction in porosity of 4% were quantified including: (1) a 25% net decrease in pores resulting from a 38% loss in the number of pores <10-4mm in volume and a 13% increase in the number of pores of larger size; and (2) a 38% decrease in the number of throats. The loss of throats resulted in decreased coordination number for pores of all sizes and significant reduction in the number of pore pathways.

  17. Properties of carbonate rocks related to SO2 reactivity

    USGS Publications Warehouse

    Borgwardt, R.H.; Harvey, R.D.

    1972-01-01

    Petrographic examination and grain size-distribution measurements were made on 11 specimens representing a broad spectrum of limestones and dolomites. The SO2 reaction kinetics of calcines prepared from each rock type were determined at 980??C. Stones of various geological types yield calcines of distinctly different physical structures that show correspondingly large differences in both rate of reaction and capacity for SO2 sorption. Pore size and particle size together determine the extent to which the interiors of individual particles react. Particles smaller than 0.01 cm with pores larger than 0.1 ?? react throughout their internal pore structure at a rate directly proportional to the BET surface. The rate decays exponentially as sulfation proceeds until the pores are filled with reaction product. The ultimate capacity of small particles is determined by the pore volume available for product accumulation, which is generally equivalent to about 50% conversion of the CaO in limestones. Variations in effectiveness of carbonate rocks for flue gas desulfurization are explained by the physical properties of their calcines, which are related to the crystal structure of the original rock. The high reaction rates achieved in the limestone injection process apparently result from the large surface area existing for short periods immediately following the dissociation of CaCO3.

  18. Dimethyl Methylphosphonate Adsorption Capacities and Desorption Energies on Ordered Mesoporous Carbons.

    PubMed

    Huynh, Kim; Holdren, Scott; Hu, Junkai; Wang, Luning; Zachariah, Michael R; Eichhorn, Bryan W

    2017-11-22

    In this study, we determine effective adsorption capacities and desorption energies for DMMP with highly ordered mesoporous carbons (OMCs), 1D cylindrical FDU-15, 3D hexagonal CMK-3, 3D bicontinuous CMK-8, and as a reference, microporous BPL carbon. After exposure to DMMP vapor at room temperature for approximately 70 and 800 h, the adsorption capacity of DMMP for each OMC was generally proportional to the total surface area and pore volume, respectively. Desorption energies of DMMP were determined using a model-free isoconversional method applied to thermogravimetric analysis (TGA) data. Our experiments determined that DMMP saturated carbon will desorb any weakly bound DMMP from pores >2.4 nm at room temperature, and no DMMP will adsorb into pores smaller than 0.5 nm. The calculated desorption energies for high surface coverages, 25% DMMP desorbed from pores ≤2.4 nm, are 68-74 kJ mol -1 , which is similar to the DMMP heat of vaporization (52 kJ mol -1 ). At lower surface coverages, 80% DMMP desorbed, the DMMP desorption energies from the OMCs are 95-103 kJ mol -1 . This is overall 20-30 kJ mol -1 higher in comparison to that of BPL carbon, due to the pore size and diffusion through different porous networks.

  19. Optimization of mesoporous carbons for efficient adsorption of berberine hydrochloride from aqueous solutions.

    PubMed

    Li, Yin; Fu, Jie; Deng, Shuguang; Lu, Xiuyang

    2014-06-15

    Sixteen mesoporous carbon adsorbents were synthesized by varying the ratio of soft to hard templates in order to optimize the pore textural properties of these adsorbents. The mesoporous carbon adsorbents have a high BET specific surface area (1590.3-2193.5 m(2)/g), large pore volume (1.72-2.56 cm(3)/g), and uniform pore size distribution with a median pore diameter ranging from 3.51 nm to 4.52 nm. It was observed that pore textural properties of the carbon adsorbents critically depend on the molar ratio of carbon sources to templates, and the hard template plays a more important role than the soft template in manipulating the pore textures. Adsorption isotherms of berberine hydrochloride at 303 K were measured to evaluate the adsorption efficacy of these adsorbents. The adsorption of berberine hydrochloride from aqueous solutions on the sixteen mesoporous carbon adsorbents synthesized in this work is very efficient, and the adsorption equilibrium capacities on all samples are more than double the adsorption capacities of berberine hydrochloride of the benchmark adsorbents (polymer resins and spherical activated carbons) at similar conditions. It was observed from the adsorption experiments that the equilibrium adsorption amounts of berberine hydrochloride are strongly correlated with the BET specific surface area and pore volume of the adsorbents. The adsorbent with the highest BET of 2193.5 m(2)/g displayed the largest adsorption capacity of 574 mg/g at an equilibrium concentration of 0.10mg/mL of berberine hydrochloride in an aqueous solution. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Multiscale pore structure and constitutive models of fine-grained rocks

    NASA Astrophysics Data System (ADS)

    Heath, J. E.; Dewers, T. A.; Shields, E. A.; Yoon, H.; Milliken, K. L.

    2017-12-01

    A foundational concept of continuum poromechanics is the representative elementary volume or REV: an amount of material large enough that pore- or grain-scale fluctuations in relevant properties are dissipated to a definable mean, but smaller than length scales of heterogeneity. We determine 2D-equivalent representative elementary areas (REAs) of pore areal fraction of three major types of mudrocks by applying multi-beam scanning electron microscopy (mSEM) to obtain terapixel image mosaics. Image analysis obtains pore areal fraction and pore size and shape as a function of progressively larger measurement areas. Using backscattering imaging and mSEM data, pores are identified by the components within which they occur, such as in organics or the clastic matrix. We correlate pore areal fraction with nano-indentation, micropillar compression, and axysimmetic testing at multiple length scales on a terrigenous-argillaceous mudrock sample. The combined data set is used to: investigate representative elementary volumes (and areas for the 2D images); determine if scale separation occurs; and determine if transport and mechanical properties at a given length scale can be statistically defined. Clear scale separation occurs between REAs and observable heterogeneity in two of the samples. A highly-laminated sample exhibits fine-scale heterogeneity and an overlapping in scales, in which case typical continuum assumptions on statistical variability may break down. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  1. Dendritic silica nanomaterials (KCC-1) with fibrous pore structure possess high DNA adsorption capacity and effectively deliver genes in vitro.

    PubMed

    Huang, Xiaoxi; Tao, Zhimin; Praskavich, John C; Goswami, Anandarup; Al-Sharab, Jafar F; Minko, Tamara; Polshettiwar, Vivek; Asefa, Tewodros

    2014-09-16

    The pore size and pore structure of nanoporous materials can affect the materials' physical properties, as well as potential applications in different areas, including catalysis, drug delivery, and biomolecular therapeutics. KCC-1, one of the newest members of silica nanomaterials, possesses fibrous, large pore, dendritic pore networks with wide pore entrances, large pore size distribution, spacious pore volume and large surface area--structural features that are conducive for adsorption and release of large guest molecules and biomacromolecules (e.g., proteins and DNAs). Here, we report the results of our comparative studies of adsorption of salmon DNA in a series of KCC-1-based nanomaterials that are functionalized with different organoamine groups on different parts of their surfaces (channel walls, external surfaces or both). For comparison the results of our studies of adsorption of salmon DNA in similarly functionalized, MCM-41 mesoporous silica nanomaterials with cylindrical pores, some of the most studied silica nanomaterials for drug/gene delivery, are also included. Our results indicate that, despite their relatively lower specific surface area, the KCC-1-based nanomaterials show high adsorption capacity for DNA than the corresponding MCM-41-based nanomaterials, most likely because of KCC-1's large pores, wide pore mouths, fibrous pore network, and thereby more accessible and amenable structure for DNA molecules to diffuse through. Conversely, the MCM-41-based nanomaterials adsorb much less DNA, presumably because their outer surfaces/cylindrical channel pore entrances can get blocked by the DNA molecules, making the inner parts of the materials inaccessible. Moreover, experiments involving fluorescent dye-tagged DNAs suggest that the amine-grafted KCC-1 materials are better suited for delivering the DNAs adsorbed on their surfaces into cellular environments than their MCM-41 counterparts. Finally, cellular toxicity tests show that the KCC-1-based materials are biocompatible. On the basis of these results, the fibrous and porous KCC-1-based nanomaterials can be said to be more suitable to carry, transport, and deliver DNAs and genes than cylindrical porous nanomaterials such as MCM-41.

  2. In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering.

    PubMed

    Jiang, Tao; Abdel-Fattah, Wafa I; Laurencin, Cato T

    2006-10-01

    A three-dimensional (3-D) scaffold is one of the major components in many tissue engineering approaches. We developed novel 3-D chitosan/poly(lactic acid-glycolic acid) (PLAGA) composite porous scaffolds by sintering together composite chitosan/PLAGA microspheres for bone tissue engineering applications. Pore sizes, pore volume, and mechanical properties of the scaffolds can be manipulated by controlling fabrication parameters, including sintering temperature and sintering time. The sintered microsphere scaffolds had a total pore volume between 28% and 37% with median pore size in the range 170-200microm. The compressive modulus and compressive strength of the scaffolds are in the range of trabecular bone making them suitable as scaffolds for load-bearing bone tissue engineering. In addition, MC3T3-E1 osteoblast-like cells proliferated well on the composite scaffolds as compared to PLAGA scaffolds. It was also shown that the presence of chitosan on microsphere surfaces increased the alkaline phosphatase activity of the cells cultured on the composite scaffolds and up-regulated gene expression of alkaline phosphatase, osteopontin, and bone sialoprotein.

  3. Synthesis of pore-variable mesoporous CdS and evaluation of its photocatalytic activity in degrading methylene blue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wei-Min, E-mail: chm_zhangwm@ujn.edu.cn; Jiang, Yao-Quan; Cao, Xiao-Yan

    2013-10-15

    Graphical abstract: - Highlights: • Self-templated synthesis of tubular CdS. • Cadmium complexes of aliphatic acids sustain the network of mesoporous structures. • Aliphatic acids affect the phase composition and particle size. • Pore size and volume vary with aliphatic acids having different hydrocarbonyl. - Abstract: In this study, mesoporous CdS polycrystallites have been synthesized using aliphatic acids of hexanoic acid, octanoic acid, and oleic acid as coordinating and capping agents, respectively. The fibrous Cd–fatty acid salts act as a template to form the tubular CdS. The organic species are found to be necessary for maintaining the network of mesoporousmore » CdS. The characterization results indicate that the shorter carbon chain length in aliphatic acids favors the wurtzite phase and particle size growth the specific surface area, pore diameter and pore volume show a monotonic raise with increasing carbon chain. The photocatalytic activities of mesoporous CdS tubes exhibit much higher efficiency than those of nanosized CdS powders in decolorizing methylene blue under simulated visible light.« less

  4. Relationship between pore geometric characteristics and SIP/NMR parameters observed for mudstones

    NASA Astrophysics Data System (ADS)

    Robinson, J.; Slater, L. D.; Keating, K.; Parker, B. L.; Robinson, T.

    2017-12-01

    The reliable estimation of permeability remains one of the most challenging problems in hydrogeological characterization. Cost effective, non-invasive geophysical methods such as spectral induced polarization (SIP) and nuclear magnetic resonance (NMR) offer an alternative to traditional sampling methods as they are sensitive to the mineral surfaces and pore spaces that control permeability. We performed extensive physical characterization, SIP and NMR geophysical measurements on fractured rock cores extracted from a mudstone site in an effort to compare 1) the pore size characterization determined from traditional and geophysical methods and 2) the performance of permeability models based on these methods. We focus on two physical characterizations that are well-correlated with hydraulic properties: the pore volume normalized surface area (Spor) and an interconnected pore diameter (Λ). We find the SIP polarization magnitude and relaxation time are better correlated with Spor than Λ, the best correlation of these SIP measures for our sample dataset was found with Spor divided by the electrical formation factor (F). NMR parameters are, similarly, better correlated with Spor than Λ. We implement previously proposed mechanistic and empirical permeability models using SIP and NMR parameters. A sandstone-calibrated SIP model using a polarization magnitude does not perform well while a SIP model using a mean relaxation time performs better in part by more sufficiently accounting for the effects of fluid chemistry. A sandstone-calibrated NMR permeability model using an average measure of the relaxation time does not perform well, presumably due to small pore sizes which are either not connected or contain water of limited mobility. An NMR model based on the laboratory determined portions of the bound versus mobile portions of the relaxation distribution performed reasonably well. While limitations exist, there are many opportunities to use geophysical data to predict permeability in mudstone formations.

  5. Pore and grain boundary migration under a temperature gradient: A phase-field model study

    DOE PAGES

    Biner, S. B.

    2016-03-16

    In this study, the collective migration behavior of pores and grain boundaries under a temperature gradient is studied for simple single crystal, bi-crystal and polycrystal configurations with a phase-field model formulism. For simulation of the microstructure of solids, composed of pores and grain boundaries, the results indicate that not only the volume fraction of pores, but also its spatial partitioning between the grain boundary junctions and the grain boundary segments appears to be important. In addition to various physical properties, the evolution kinetics, under given temperature gradients, will be strongly influenced with the initial morphology of a poly-crystalline microstructure.

  6. Polyaniline nanofibers with a high specific surface area and an improved pore structure for supercapacitors

    NASA Astrophysics Data System (ADS)

    Xu, Hailing; Li, Xingwei; Wang, Gengchao

    2015-10-01

    Polyaniline (PANI) with a high specific surface area and an improved pore structure (HSSA-PANI) has been prepared by using a facile method, treating PANI nanofibers with chloroform (CHCl3), and its structure, morphology and pore structure are investigated. The specific surface area and pore volume of HSSA-PANI are 817.3 m2 g-1 and 0.6 cm3 g-1, and those of PANI are 33.6 m2 g-1 and 0.2 cm3 g-1. As electrode materials, a large specific surface area and pore volume can provide high electroactive regions, accelerate the diffusion of ions, and mitigate the electrochemical degradation of active materials. Compared with PANI, the capacity retention rate of HSSA-PANI is 90% with a growth of current density from 5.0 to 30 A g-1, and that of PANI is 29%. At a current density of 30 A g-1, the specific capacitance of HSSA-PANI still reaches 278.3 F g-1, and that of PANI is 86.7 F g-1. At a current density of 5.0 A g-1, the capacitance retention of HSSA-PANI is 53.1% after 2000 cycles, and that of PANI electrode is only 28.1%.

  7. Mesoporous carbon spheres with controlled porosity for high-performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Wang, Dexian; Fu, Aiping; Li, Hongliang; Wang, Yiqian; Guo, Peizhi; Liu, Jingquan; Zhao, Xiu Song

    2015-07-01

    Mesoporous carbon (MC) spheres with hierarchical pores, controlled pore volume and high specific surface areas have been prepared by a mass-producible spray drying assisted template method using sodium alginate as carbon precursor and commercial colloidal silica particles as hard template. The resulting MC spheres, possessing hierarchical pores in the range of 3-30 nm, are employed as conductive matrices for the preparation of cathode materials for lithium-sulfur batteries. A high pressure induced one-step impregnation of elemental sulfur into the pore of the MC spheres has been exploited. The electrochemical performances of sulfur-impregnated MC spheres (S-MC) derived from MC spheres with different pore volume and specific surface area but with the same sulfur loading ratio of 60 wt% (S-MC-X-60) have been investigated in details. The S-MC-4-60 composite cathode material displayed a high initial discharge capacity of 1388 mAhg-1 and a good cycling stability of 857 mAhg-1 after 100 cycles at 0.2C, and shows also excellent rate capability of 864 mAhg-1 at 2C. More importantly, the sulfur loading content in MC-4 spheres can reach as high as 80%, and it still can deliver a capacity of 569 mAhg-1 after 100 cycles at 0.2C.

  8. Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering.

    PubMed

    Vikingsson, L; Claessens, B; Gómez-Tejedor, J A; Gallego Ferrer, G; Gómez Ribelles, J L

    2015-08-01

    In tissue engineering the design and optimization of biodegradable polymeric scaffolds with a 3D-structure is an important field. The porous scaffold provide the cells with an adequate biomechanical environment that allows mechanotransduction signals for cell differentiation and the scaffolds also protect the cells from initial compressive loading. The scaffold have interconnected macro-pores that host the cells and newly formed tissue, while the pore walls should be micro-porous to transport nutrients and waste products. Polycaprolactone (PCL) scaffolds with a double micro- and macro-pore architecture have been proposed for cartilage regeneration. This work explores the influence of the micro-porosity of the pore walls on water permeability and scaffold compliance. A Poly(Vinyl Alcohol) with tailored mechanical properties has been used to simulate the growing cartilage tissue inside the scaffold pores. Unconfined and confined compression tests were performed to characterize both the water permeability and the mechanical response of scaffolds with varying size of micro-porosity while volume fraction of the macro-pores remains constant. The stress relaxation tests show that the stress response of the scaffold/hydrogel construct is a synergic effect determined by the performance of the both components. This is interesting since it suggests that the in vivo outcome of the scaffold is not only dependent upon the material architecture but also the growing tissue inside the scaffold׳s pores. On the other hand, confined compression results show that compliance of the scaffold is mainly controlled by the micro-porosity of the scaffold and less by hydrogel density in the scaffold pores. These conclusions bring together valuable information for customizing the optimal scaffold and to predict the in vivo mechanical behavior. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Volume change measurements of rice by environmental scanning electron microscopy and stereoscopy.

    PubMed

    Tang, Xiaohu; De Rooij, Mario; De Jong, Liesbeth

    2007-01-01

    The measurement of volume change, which is induced by changing the relative humidity, is performed on rice by using environmental scanning electron microscope (ESEM) and stereoscopy techniques. The typical DeltaV% approximately RH curve of rice in both sorption and desorption can be categorized into three regions: low, intermediate, and high dependence on relative humidity from low- to high-relative humidity. The volume changes faster for rice samples with lower crystallinity, which is because the amorphous component is easier to absorb moisture than the crystalline component. The volume change behavior in various relative humidity environments is comparable with rice isotherm curve in sorption process though discrepancies exist in desorption, which are thought to be the presence of small pores and microstructure changes at high relative humidity. The volume in the desorption branch is less than that in the sorption branch at the same relative humidity, which can be attributed to the collapse of interior structures, existence of small pores, surface topography loss, and amylose leach.

  10. Poisson-Nernst-Planck-Fermi theory for modeling biological ion channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jinn-Liang, E-mail: jinnliu@mail.nhcue.edu.tw; Eisenberg, Bob, E-mail: beisenbe@rush.edu

    2014-12-14

    A Poisson-Nernst-Planck-Fermi (PNPF) theory is developed for studying ionic transport through biological ion channels. Our goal is to deal with the finite size of particle using a Fermi like distribution without calculating the forces between the particles, because they are both expensive and tricky to compute. We include the steric effect of ions and water molecules with nonuniform sizes and interstitial voids, the correlation effect of crowded ions with different valences, and the screening effect of water molecules in an inhomogeneous aqueous electrolyte. Including the finite volume of water and the voids between particles is an important new part ofmore » the theory presented here. Fermi like distributions of all particle species are derived from the volume exclusion of classical particles. Volume exclusion and the resulting saturation phenomena are especially important to describe the binding and permeation mechanisms of ions in a narrow channel pore. The Gibbs free energy of the Fermi distribution reduces to that of a Boltzmann distribution when these effects are not considered. The classical Gibbs entropy is extended to a new entropy form — called Gibbs-Fermi entropy — that describes mixing configurations of all finite size particles and voids in a thermodynamic system where microstates do not have equal probabilities. The PNPF model describes the dynamic flow of ions, water molecules, as well as voids with electric fields and protein charges. The model also provides a quantitative mean-field description of the charge/space competition mechanism of particles within the highly charged and crowded channel pore. The PNPF results are in good accord with experimental currents recorded in a 10{sup 8}-fold range of Ca{sup 2+} concentrations. The results illustrate the anomalous mole fraction effect, a signature of L-type calcium channels. Moreover, numerical results concerning water density, dielectric permittivity, void volume, and steric energy provide useful details to study a variety of physical mechanisms ranging from binding, to permeation, blocking, flexibility, and charge/space competition of the channel.« less

  11. Thermally-driven Coupled THM Processes in Shales

    NASA Astrophysics Data System (ADS)

    Rutqvist, J.

    2017-12-01

    Temperature changes can trigger strongly coupled thermal-hydrological-mechanical (THM) processes in shales that are important to a number of subsurface energy applications, including geologic nuclear waste disposal and hydrocarbon extraction. These coupled processes include (1) direct pore-volume couplings, by thermal expansion of trapped pore-fluid that triggers instantaneous two-way couplings between pore fluid pressure and mechanical deformation, and (2) indirect couplings in terms of property changes, such as changes in mechanical stiffness, strength, and permeability. Direct pore-volume couplings have been studied in situ during borehole heating experiments in shale (or clay stone) formations at Mont Terri and Bure underground research laboratories in Switzerland and France. Typically, the temperature changes are accompanied with a rapid increase in pore pressure followed by a slower decrease towards initial (pre-heating) pore pressure. Coupled THM modeling of these heater tests shows that the pore pressure increases because the thermal expansion coefficient of the fluid is much higher than that of the porous clay stone. Such thermal pressurization induces fluid flow away from the pressurized area towards areas of lower pressure. The rate of pressure increase and magnitude of peak pressure depends on the rate of heating, pore-compressibility, and permeability of the shale. Modeling as well as laboratory experiments have shown that if the pore pressure increase is sufficiently large it could lead to fracturing of the shale or shear slip along pre-existing bedding planes. Another set of data and observations have been collected associated with studies related to concentrated heating and cooling of oil-shales and shale-gas formations. Heating may be used to enhance production from tight oil-shale, whereas thermal stimulation has been attempted for enhanced shale-gas extraction. Laboratory experiments on shale have shown that strength and elastic deformation modulus decreases with temperature while the rate creep deformations increase with temperature. Such temperature dependency also affects the well stability and zonal sealing across shale layers.

  12. Polybenzimidazole (PBI) functionalized nanographene as highly stable catalyst support for polymer Electrolyte membrane fuel cells (PEMFCs)

    DOE PAGES

    Xin, Le; Yang, Fan; Qiu, Yang; ...

    2016-08-25

    Nanoscale graphenes were used as cathode catalyst supports in proton exchange membrane fuel cells (PEMFCs). Surface-initiated polymerization that covalently bonds polybenzimidazole (PBI) polymer on the surface of graphene supports enables the uniform distribution of the Pt nanoparticles, as well as allows the sealing of the unterminated carbon bonds usually present on the edge of graphene from the chemical reduction of graphene oxide. The nanographene effectively shortens the length of channels and pores for O 2 diffusion/water dissipation and significantly increases the primary pore volume. Further addition of p-phenyl sulfonic functional graphitic carbon particles as spacers, increases the specific volume ofmore » the secondary pores and greatly improves O 2 mass transport within the catalyst layers. The developed composite cathode catalyst of Pt/PBI-nanographene (50 wt%) + SO 3H-graphitic carbon black demonstrates a higher beginning of life (BOL) PEMFC performance as compared to both Pt/PBI-nanographene (50 wt%) and Pt/PBI-graphene (50 wt%) + SO 3H-graphitic carbon black (GCB). Accelerated stress tests show excellent support durability compared to that of traditional Pt/Vulcan XC72 catalysts, when subjected to 10,000 cycles from 1.0 V to 1.5 V. As a result, this study suggests the promise of using PBI-nanographene + SO 3H-GCB hybrid supports in fuel cells to achieve the 2020 DOE targets for transportation applications.« less

  13. Generation of random microstructures and prediction of sound velocity and absorption for open foams with spherical pores.

    PubMed

    Zieliński, Tomasz G

    2015-04-01

    This paper proposes and discusses an approach for the design and quality inspection of the morphology dedicated for sound absorbing foams, using a relatively simple technique for a random generation of periodic microstructures representative for open-cell foams with spherical pores. The design is controlled by a few parameters, namely, the total open porosity and the average pore size, as well as the standard deviation of pore size. These design parameters are set up exactly and independently, however, the setting of the standard deviation of pore sizes requires some number of pores in the representative volume element (RVE); this number is a procedure parameter. Another pore structure parameter which may be indirectly affected is the average size of windows linking the pores, however, it is in fact weakly controlled by the maximal pore-penetration factor, and moreover, it depends on the porosity and pore size. The proposed methodology for testing microstructure-designs of sound absorbing porous media applies the multi-scale modeling where some important transport parameters-responsible for sound propagation in a porous medium-are calculated from microstructure using the generated RVE, in order to estimate the sound velocity and absorption of such a designed material.

  14. Ion beam promoted lithium absorption in glassy polymeric carbon

    NASA Astrophysics Data System (ADS)

    Zimmerman, R. L.; Ila, D.; Jenkins, G. M.; Maleki, H.; Poker, D. B.

    1995-12-01

    Glassy Polymeric Carbon (GPC) samples prepared from a precursor possess accessible pore volume that depends on the heat treatment temperature [G.M. Jenkins and K. Kawamura, Polymeric Carbons - Carbon Fiber, Glass and Char (Cambridge University Press, Cambridge, 1976) p. 140]. We have shown that lithium percolates without diffusion into the accessible pores of GPC samples immersed in a molten lithium salt bath at 700°C [D. Ila, G.M. Jenkins, L.R. Holland, A.L. Evelyn and H. Jena, Vacuum 45 (1994) 451]. Ion bombardment with 10 MeV Au atoms increases the total pore volume available for lithium occupation even for samples normally impermeable to lithium. The lithium concentration depth profile is measured using Li 7(p,2α) nuclear reaction analysis. We will report on lithium percolation into GPC prepared at temperatures between 500°C and 1000°C and activated by a 10 MeV gold ion bombardment.

  15. Pore size engineering applied to the design of separators for nickel-hydrogen cells and batteries

    NASA Technical Reports Server (NTRS)

    Abbey, K. M.; Britton, D. L.

    1983-01-01

    Pore size engineering in starved alkaline multiplate cells involves adopting techniques to widen the volume tolerance of individual cells. Separators with appropriate pore size distributions and wettability characteristics (capillary pressure considerations) to have wider volume tolerances and an ability to resist dimensional changes in the electrodes were designed. The separators studied for potential use in nickel-hydrogen cells consist of polymeric membranes as well as inorganic microporous mats. In addition to standard measurements, the resistance and distribution of electrolyte as a function of total cell electrolyte content were determined. New composite separators consisting of fibers, particles and/or binders deposited on Zircar cloth were developed in order to engineer the proper capillary pressure characteristics in the separator. These asymmetric separators were prepared from a variety of fibers, particles and binders. Previously announced in STAR as N83-24571

  16. Catalyst comprising Ir or Ir and Ru for hydrazine decomposition

    NASA Technical Reports Server (NTRS)

    Armstrong, Warren E. (Inventor); Voge, Hervey H. (Inventor); Ryland, Lloyd B. (Inventor)

    1978-01-01

    A catalyst for hydrazine decomposition consisting essentially of a carrier having a pore volume of at least 0.1 cubic centimeters per gram and a specific surface area, measured in square meters per gram, equal to 195 (C.sub.p + 0.013 + 0.736 V.sub.p) where C.sub.p is the specific heat capacity of the carrier at about 25.degree. C in calories per gram per degree and V.sub.p is the pore volume of the carrier in cubic centimeters per gram and metal of the group consisting of iridium, and mixtures consisting of iridium and ruthenium deposited on said carrier in an amount between 20% and about 40% by weight of the catalyst and distributed through the pores thereof in discrete particles sufficiently separated from each other so that they do not sinter or fuse together when the catalyst is at hydrazine decomposition temperature.

  17. Measurement and Analysis of Porosity in Al-10Si-1Mg Components Additively Manufactured by Selective Laser Melting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Suraj; Cunningham, Ross; Ozturk, Tugce

    Aluminum alloys are candidate materials for weight critical applications because of their excellent strength and stiffness to weight ratio. However, defects such as voids decrease the strength and fatigue life of these alloys, which can limit the application of Selective Laser Melting. In this study, the average volume fraction, average size, and size distribution of pores in Al10-Si-1Mg samples built using Selective Laser Melting have been characterized. Synchrotron high energy X-rays were used to perform computed tomography on volumes of order one cubic millimeter with a resolution of approximately 1.5 μm. Substantial variations in the pore size distributions were foundmore » as a function of process conditions. Even under conditions that ensured that all locations were melted at least once, a significant number density was found of pores above 5 μm in diameter.« less

  18. The effect of pore-scale geometry and wettability on two-phase relative permeabilities within elementary cells

    NASA Astrophysics Data System (ADS)

    Bianchi Janetti, Emanuela; Riva, Monica; Guadagnini, Alberto

    2017-04-01

    We study the relative role of the complex pore space geometry and wettability of the solid matrix on the quantification of relative permeabilities characterizing steady state immiscible two-phase flow in porous media. We do so by considering elementary cells, which are typically employed in upscaling frameworks based on, e.g., homogenization or volume averaging. In this context one typically relies on the solution of pore-scale physics at a scale which is much smaller than that of an investigated porous system. Pressure-driven two-phase flow following simultaneous co-current injection of water and oil is numerically solved for a suite of regular and stochastically generated two-dimensional explicit elementary cells with fixed porosity and sharing main topological/morphological features. We show that relative permeabilities of the randomly generated elementary cells are significantly influenced by the formation of preferential percolation paths (principal pathways), giving rise to a strongly nonuniform distribution of fluid fluxes. These pathways are a result of the spatially variable resistance that the random pore structures exert on the fluid. The overall effect on relative permeabilities of the diverse organization of principal pathways, as driven by a given random realization at the scale of the unit cell, is significantly larger than that of the wettability of the host rock. In contrast to what can be observed for the random cells analyzed, relative permeabilities of regular cells display a clear trend with contact angle at the investigated scale. Our findings suggest the need to perform systematic upscaling studies in a stochastic context, to propagate the effects of uncertain pore space geometries to a probabilistic description of relative permeability curves at the continuum scale.

  19. Pore size distribution of OPC and SRPC mortars in presence of chlorides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suryavanshi, A.K.; Scantlebury, J.D.; Lyon, S.B.

    1995-07-01

    The pore structure of chloride-free ordinary portland cement (OPC) and sulphate resistant portland cement (SRPC) mortars are compared with the corresponding mortars with NaCl and CaCl{sub 2} added during mixing. In both OPC and SRPC mortars the addition of chlorides reduced the total accessible pore volumes compared to the corresponding chloride-free mortars. Also, in the presence of chlorides, the number of coarse pores were increased. These changes in the pore structure are believed to be due to dense calcium silicate hydrate (C-S-H) gel morphology formed in the presence of chlorides. The SRPC showed greater changes in pore structures than themore » OPC with equivalent amounts of chlorides added. This may be due to the lower chloride binding capacity of the SRPC and hence the higher availability of free chlorides to modify the gel morphology.« less

  20. Metal-organic frameworks for Xe/Kr separation

    DOEpatents

    Ryan, Patrick J.; Farha, Omar K.; Broadbelt, Linda J.; Snurr, Randall Q.; Bae, Youn-Sang

    2014-07-22

    Metal-organic framework (MOF) materials are provided and are selectively adsorbent to xenon (Xe) over another noble gas such as krypton (Kr) and/or argon (Ar) as a result of having framework voids (pores) sized to this end. MOF materials having pores that are capable of accommodating a Xe atom but have a small enough pore size to receive no more than one Xe atom are desired to preferentially adsorb Xe over Kr in a multi-component (Xe--Kr mixture) adsorption method. The MOF material has 20% or more, preferably 40% or more, of the total pore volume in a pore size range of 0.45-0.75 nm which can selectively adsorb Xe over Kr in a multi-component Xe--Kr mixture over a pressure range of 0.01 to 1.0 MPa.

  1. Metal-organic frameworks for Xe/Kr separation

    DOEpatents

    Ryan, Patrick J.; Farha, Omar K.; Broadbelt, Linda J.; Snurr, Randall Q.; Bae, Youn-Sang

    2013-08-27

    Metal-organic framework (MOF) materials are provided and are selectively adsorbent to xenon (Xe) over another noble gas such as krypton (Kr) and/or argon (Ar) as a result of having framework voids (pores) sized to this end. MOF materials having pores that are capable of accommodating a Xe atom but have a small enough pore size to receive no more than one Xe atom are desired to preferentially adsorb Xe over Kr in a multi-component (Xe--Kr mixture) adsorption method. The MOF material has 20% or more, preferably 40% or more, of the total pore volume in a pore size range of 0.45-0.75 nm which can selectively adsorb Xe over Kr in a multi-component Xe--Kr mixture over a pressure range of 0.01 to 1.0 MPa.

  2. Mesoporous Akaganeite of Adjustable Pore Size Synthesized using Mixed Templates

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Ge, D. L.; Ren, H. P.; Fan, Y. J.; Wu, L. M.; Sun, Z. X.

    2017-12-01

    Mesoporous akaganeite with large and adjustable pore size was synthesized through a co-template method, which was achieved by the combined interaction between PEG2000 and alkyl amines with different lengths of the straight carbon chain. The characterized results indicate that the synthesized samples show comparatively narrow BJH pore size distributions and centered at 14.3 nm when PEG and HEPA was used, and it could be enlarged to 16.8 and 19.4 nm respectively through changing the alkyl amines to DDA and HDA. Meanwhile, all the synthesized akaganeite possess relativity high specific surface area ranging from 183 to 281 m2/g and high total pore volume of 0.98 to 1.5 cm3/g. A possible mechanism leading to the pore size changing was also proposed.

  3. Dependence of Capillary Properties of Contemporary Clinker Bricks on Their Microstructure

    NASA Astrophysics Data System (ADS)

    Wesołowska, Maria; Kaczmarek, Anna

    2017-10-01

    Contemporary clinker bricks are applied for outer layers of walls built from other materials and walls which should have high durability and aesthetic qualities. The intended effect depends not only on the mortar applied but also on clinker properties. Traditional macroscopic tests do not allow to predict clinker behaviour in contact with mortars and external environment. The basic information for this issue is open porosity of material. It defines the material ability to absorb liquids: rain water (through the face wall surface) and grout from mortar (through base surface). The main capillary flow goes on in pores with diameters from 300 to 3000nm. It is possible to define pore distribution and their size using the Mercury Intrusion Porosimetry method. The aim of these research is evaluation of clinker brick capillary properties (initial water absorption and capillary rate) and analysis of differences in microstructure of the face and base wall of a product. Detailed results allowed to show pore distribution in function of their diameters and definition of pore amount responsible for capillary flow. Based on relation between volume function differential and pore diameter, a differential distribution curve was obtained which helped to determine the dominant diameters. The results obtained let us state that face wall of bricks was characterized with the lowest material density and open porosity. In this layer (most burnt) part of pores could be closed by locally appearing liquid phase during brick burning. Thus density is lower comparing to other part of the product.

  4. Extreme value statistics analysis of fracture strengths of a sintered silicon nitride failing from pores

    NASA Technical Reports Server (NTRS)

    Chao, Luen-Yuan; Shetty, Dinesh K.

    1992-01-01

    Statistical analysis and correlation between pore-size distribution and fracture strength distribution using the theory of extreme-value statistics is presented for a sintered silicon nitride. The pore-size distribution on a polished surface of this material was characterized, using an automatic optical image analyzer. The distribution measured on the two-dimensional plane surface was transformed to a population (volume) distribution, using the Schwartz-Saltykov diameter method. The population pore-size distribution and the distribution of the pore size at the fracture origin were correllated by extreme-value statistics. Fracture strength distribution was then predicted from the extreme-value pore-size distribution, usin a linear elastic fracture mechanics model of annular crack around pore and the fracture toughness of the ceramic. The predicted strength distribution was in good agreement with strength measurements in bending. In particular, the extreme-value statistics analysis explained the nonlinear trend in the linearized Weibull plot of measured strengths without postulating a lower-bound strength.

  5. A vacuum-operated pore-water extractor for estuarine and freshwater sediments

    USGS Publications Warehouse

    Winger, Parley V.; Lasier, Peter J.

    1991-01-01

    A vacuum-operated pore-water extractor for estuarine and freshwater sediments was developed and constructed from a fused-glass air stone attached with aquarium airline tubing to a 30 or 60 cc polypropylene syringe. Pore water is extracted by inserting the air stone into the sediment and creating a vacuum by retracting and bracing the syringe plunger. A hand-operated vacuum pump attached to a filtration flask was also evaluated as an alternative vacuum source. The volume and time to extract pore water varies with the number of devices and the sediment particle size. Extraction time is longer for fine sediments than for sandy sediments. Four liters of sediment generally yield between 500 and 1,500 mL of pore water. The sediment that surrounds and accumulates on the air stone acts as a filter, and, except for the first few milliliters, the collected pore water is clear. Because there is no exposure to air or avenue for escape, volatile compounds andin situ characteristics are retained in the extracted pore water.

  6. Soil architecture relationships with dynamic soil physical processes: a conceptual study using natural, artificial, and 3D-printed soil cores

    NASA Astrophysics Data System (ADS)

    Lamandé, Mathieu; Schjønning, Per; Dal Ferro, Nicola; Morari, Francesco

    2017-04-01

    Pore system architecture is a key feature for understanding physical, biological and chemical processes in soils. Development of visualisation technics, especially x-ray CT, during recent years has been useful in describing the complex relationships between soil architecture and soil functions. We believe that combining visualization with physical models is a step further towards a better understanding of these relationships. We conducted a concept study using natural, artificial and 3D-printed soil cores. Eight natural soil cores (100 cm3) were sampled in a cultivated stagnic Luvisol at two depths (topsoil and subsoil), representing contrasting soil pore systems. Cylinders (100 cm3) were produced from plastic or from autoclaved aerated concrete. Holes of diameters 1.5 and 3 mm were drilled in the cylinder direction for the plastic cylinder and for one of the AAC cylinders. All natural and artificial cores were scanned in a micro x-ray CT scanner at a resolution of 35 µm. The reconstructed image of each soil core was printed with 3D multijet printing technology at a resolution of 29 µm. In some reconstructed digital volumes of the natural soil cores, pores of different sizes (equivalent diameter of 35, 70, 100, and 200 µm) were removed before additional 3D printing. Effective air-filled porosity, Darcian air permeability, and oxygen diffusion were measured on all natural, artificial and printed cores. The comparison of the natural and the artificial cores emphasized the difference in pore architecture between topsoil (sponge like) and subsoil (dominated by large vertical macropores). This study showed the high potential of using printed soil cores for understanding soil pore functions. The results confirm the suitability of the Ball model partitioning the pore system into arterial, marginal and remote pores to describe effects of soil structure on gas transport.

  7. Dielectric properties of magnetic-ferroelectric CoO-NaNO2-porous glass nanocomposite

    NASA Astrophysics Data System (ADS)

    Koroleva, E. Yu.; Burdin, D. Yu.; Kumzerov, Yu. A.; Sysoeva, A. A.; Filimonov, A. V.; Vakhrushev, S. B.

    2017-10-01

    Dielectric properties of the nanostructured multiferroic composite on the basis of silicate porous glass simultaneously filled with ferromagnetic (cobalt oxide CoO) and ferroelectric (sodium nitrite) materials have been investigated in wide temperature (270-570 K) and frequency (10-1-107 Hz) ranges. The mean diameter of pores in the matrix is 7 ± 1 nm. The magnetic material particles are synthesized directly in the pores of the glass matrix and occupy about 10% of the pore volume. The porous glass is well wetted with NaNO2. The latter easily infiltrates into the glass and occupies 90% of the remaining unfilled pore volume. The dielectric response of matrices filled with both the components together and with each component separately is studied. An analysis of the obtained data makes it possible to reveal the contributions of individual components into the dielectric response of the composite and the influence of the confined geometry on their dielectric properties. It is found that the incorporation of CoO nanoparticles leads to an order of magnitude increase in the dielectric permittivity and electrical conductivity of the two-component composite in comparison with these values for the composite filled solely with sodium nitrite and to a decrease in the activation energy over the entire studied temperature range. These studies are of interest not only as a preliminary investigation prior to the study of the effect of a magnetic field on the dielectric properties of the synthesized composite, but are of independent physical interest as well, since they allow one to determine the influence of the confined geometry on the dielectric properties of magnetic metal oxides and on the of their phase transition parameters.

  8. Pore structure characterization of Chang-7 tight sandstone using MICP combined with N2GA techniques and its geological control factors

    NASA Astrophysics Data System (ADS)

    Cao, Zhe; Liu, Guangdi; Zhan, Hongbin; Li, Chaozheng; You, Yuan; Yang, Chengyu; Jiang, Hang

    2016-11-01

    Understanding the pore networks of unconventional tight reservoirs such as tight sandstones and shales is crucial for extracting oil/gas from such reservoirs. Mercury injection capillary pressure (MICP) and N2 gas adsorption (N2GA) are performed to evaluate pore structure of Chang-7 tight sandstone. Thin section observation, scanning electron microscope, grain size analysis, mineral composition analysis, and porosity measurement are applied to investigate geological control factors of pore structure. Grain size is positively correlated with detrital mineral content and grain size standard deviation while negatively related to clay content. Detrital mineral content and grain size are positively correlated with porosity, pore throat radius and withdrawal efficiency and negatively related to capillary pressure and pore-to-throat size ratio; while interstitial material is negatively correlated with above mentioned factors. Well sorted sediments with high debris usually possess strong compaction resistance to preserve original pores. Although many inter-crystalline pores are produced in clay minerals, this type of pores is not the most important contributor to porosity. Besides this, pore shape determined by N2GA hysteresis loop is consistent with SEM observation on clay inter-crystalline pores while BJH pore volume is positively related with clay content, suggesting N2GA is suitable for describing clay inter-crystalline pores in tight sandstones.

  9. Pore structure characterization of Chang-7 tight sandstone using MICP combined with N2GA techniques and its geological control factors

    PubMed Central

    Cao, Zhe; Liu, Guangdi; Zhan, Hongbin; Li, Chaozheng; You, Yuan; Yang, Chengyu; Jiang, Hang

    2016-01-01

    Understanding the pore networks of unconventional tight reservoirs such as tight sandstones and shales is crucial for extracting oil/gas from such reservoirs. Mercury injection capillary pressure (MICP) and N2 gas adsorption (N2GA) are performed to evaluate pore structure of Chang-7 tight sandstone. Thin section observation, scanning electron microscope, grain size analysis, mineral composition analysis, and porosity measurement are applied to investigate geological control factors of pore structure. Grain size is positively correlated with detrital mineral content and grain size standard deviation while negatively related to clay content. Detrital mineral content and grain size are positively correlated with porosity, pore throat radius and withdrawal efficiency and negatively related to capillary pressure and pore-to-throat size ratio; while interstitial material is negatively correlated with above mentioned factors. Well sorted sediments with high debris usually possess strong compaction resistance to preserve original pores. Although many inter-crystalline pores are produced in clay minerals, this type of pores is not the most important contributor to porosity. Besides this, pore shape determined by N2GA hysteresis loop is consistent with SEM observation on clay inter-crystalline pores while BJH pore volume is positively related with clay content, suggesting N2GA is suitable for describing clay inter-crystalline pores in tight sandstones. PMID:27830731

  10. Ectopic bone formation by marrow stromal osteoblast transplantation using poly(DL-lactic-co-glycolic acid) foams implanted into the rat mesentery

    NASA Technical Reports Server (NTRS)

    Ishaug-Riley, S. L.; Crane, G. M.; Gurlek, A.; Miller, M. J.; Yasko, A. W.; Yaszemski, M. J.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    Porous biodegradable poly(DL-lactic-co-glycolic acid) foams were seeded with rat marrow stromal cells and implanted into the rat mesentery to investigate in vivo bone formation at an ectopic site. Cells were seeded at a density of 6.83 x 10(5) cells/cm2 onto polymer foams having pore sizes ranging from either 150 to 300 to 710 microns and cultured for 7 days in vitro prior to implantation. The polymer/cell constructs were harvested after 1, 7, 28, or 49 days in vivo and processed for histology and gel permeation chromatography. Visual observation of hematoxylin and eosin-stained sections and von Kossa-stained sections revealed the formation of mineralized bonelike tissue in the constructs within 7 days postimplantation. Ingrowth of vascular tissue was also found adjacent to the islands of bone, supplying the necessary metabolic requirements to the newly formed tissue. Mineralization and bone tissue formation were investigated by histomorphometry. The average penetration depth of mineralized tissue in the construct ranged from 190 +/- 50 microns for foams with 500-710-microns pores to 370 +/- 160 microns for foams with 150-300-microns pores after 49 days in vivo. The mineralized bone volume per surface area and total bone volume per surface area had maximal values of 0.28 +/- 0.21 mm (500-710-microns pore size, day 28) and 0.038 +/- 0.024 mm (150-300-microns, day 28), respectively. As much as 11% of the foam volume penetrated by bone tissue was filled with mineralized tissue. No significant trends over time were observed for any of the measured values (penetration depth, bone volume/surface area, or percent mineralized bone volume). These results suggest the feasibility of bone formation by osteoblast transplantation in an orthotopic site where not only bone formation from transplanted cells but also ingrowth from adjacent bone may occur.

  11. An upscaled two-equation model of transport in porous media through unsteady-state closure of volume averaged formulations

    NASA Astrophysics Data System (ADS)

    Chaynikov, S.; Porta, G.; Riva, M.; Guadagnini, A.

    2012-04-01

    We focus on a theoretical analysis of nonreactive solute transport in porous media through the volume averaging technique. Darcy-scale transport models based on continuum formulations typically include large scale dispersive processes which are embedded in a pore-scale advection diffusion equation through a Fickian analogy. This formulation has been extensively questioned in the literature due to its inability to depict observed solute breakthrough curves in diverse settings, ranging from the laboratory to the field scales. The heterogeneity of the pore-scale velocity field is one of the key sources of uncertainties giving rise to anomalous (non-Fickian) dispersion in macro-scale porous systems. Some of the models which are employed to interpret observed non-Fickian solute behavior make use of a continuum formulation of the porous system which assumes a two-region description and includes a bimodal velocity distribution. A first class of these models comprises the so-called ''mobile-immobile'' conceptualization, where convective and dispersive transport mechanisms are considered to dominate within a high velocity region (mobile zone), while convective effects are neglected in a low velocity region (immobile zone). The mass exchange between these two regions is assumed to be controlled by a diffusive process and is macroscopically described by a first-order kinetic. An extension of these ideas is the two equation ''mobile-mobile'' model, where both transport mechanisms are taken into account in each region and a first-order mass exchange between regions is employed. Here, we provide an analytical derivation of two region "mobile-mobile" meso-scale models through a rigorous upscaling of the pore-scale advection diffusion equation. Among the available upscaling methodologies, we employ the Volume Averaging technique. In this approach, the heterogeneous porous medium is supposed to be pseudo-periodic, and can be represented through a (spatially) periodic unit cell. Consistently with the two-region model working hypotheses, we subdivide the pore space into two volumes, which we select according to the features of the local micro-scale velocity field. Assuming separation of the scales, the mathematical development associated with the averaging method in the two volumes leads to a generalized two-equation model. The final (upscaled) formulation includes the standard first order mass exchange term together with additional terms, which we discuss. Our developments allow to identify the assumptions which are usually implicitly embedded in the usual adoption of a two region mobile-mobile model. All macro-scale properties introduced in this model can be determined explicitly from the pore-scale geometry and hydrodynamics through the solution of a set of closure equations. We pursue here an unsteady closure of the problem, leading to the occurrence of nonlocal (in time) terms in the upscaled system of equations. We provide the solution of the closure problems for a simple application documenting the time dependent and the asymptotic behavior of the system.

  12. Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities

    NASA Astrophysics Data System (ADS)

    Marcolli, C.

    2013-06-01

    Heterogeneous ice nucleation is an important mechanism for the glaciation of mixed phase clouds and may also be relevant for cloud formation and dehydration at the cirrus cloud level. It is thought to proceed through different mechanisms, namely contact, condensation, immersion and deposition nucleation. Supposedly, deposition nucleation is the only pathway which does not involve liquid water but occurs by direct water vapor deposition on a surface. This study challenges this classical view by putting forward the hypothesis that what is called deposition nucleation is in fact homogeneous or immersion nucleation occurring in pores and cavities that may form between aggregated primary particles and fill with water at relative humidity RHw < 100% because of the inverse Kelvin effect. Evidence for this hypothesis of pore condensation and freezing (PCF) originates from a number of only loosely connected scientific areas. The prime example for PCF is ice nucleation in clay minerals and mineral dusts, for which the data base is best. Studies on freezing in confinement carried out on mesoporous silica materials such as SBA-15, SBA-16, MCM-41, zeolites and KIT have shown that homogeneous ice nucleation occurs abruptly at T=230-235 K in pores with diameters (D) of 3.5-4 nm or larger but only gradually at T=210-230 K in pores with D=2.5-3.5 nm. Melting temperatures in pores are depressed by an amount that can be described by the Gibbs-Thomson equation. Water adsorption isotherms of MCM-41 show that pores with D=3.5-4 nm fill with water at RHw = 56-60% in accordance with an inverse Kelvin effect. Water in such pores should freeze homogeneously for T < 235 K even before relative humidity with respect to ice (RHi) reaches ice saturation. Ice crystal growth by water vapor deposition from the gas phase is therefore expected to set in as soon as RHw > 100%. Pores with D > 7.5 nm fill with water at RHi > 100% for T < 235 K and are likely to freeze homogeneously as soon as they are filled with water. Water in pores can freeze in immersion mode at T > 235 K if the pore walls contain an active site. Pore analysis of clay minerals shows that kaolinites exhibit pore structures with pore diameters of 20-50 nm. The mesoporosity of illites and montmorillonites is characterized by pores with T = 2-5 nm. The number and size of pores is distinctly increased in acid treated montmorillonites like K10. Many clay minerals and mineral dusts show a strong increase in ice nucleation efficiency when temperature is decreased below 235 K. Such an increase is difficult to explain when ice nucleation is supposed to occur by a deposition mechanism, but evident when assuming freezing in pores, because for homogeneous ice nucleation only small pore volumes are needed, while heterogeneous ice nucleation requires larger pore structures to contain at least one active site for immersion nucleation. Together, these pieces of evidence strongly suggest that ice nucleation within pores should be the prevailing freezing mechanism of clay minerals for RHw below water saturation. Extending the analysis to other types of ice nuclei shows that freezing in pores and cracks is probably the prevailing ice nucleation mechanism for glassy and volcanic ash aerosols at RHw below water saturation. Freezing of water in carbon nanotubes might be of significance for ice nucleation by soot aerosols. No case could be identified that gives clear evidence of ice nucleation by water vapor deposition on a solid surface. Inspection of ice nuclei with a close lattice match to ice, such as silver iodide or SnomaxTM, show that for high ice nucleation efficiency below water saturation the presence of impurities or cracks on the surface may be essential. Soluble impurities promote the formation of a liquid phase below water saturation in patches on the surface or as a complete surface layer that offers an environment for immersion freezing. If porous aerosol particles come in contact with semivolatile vapors, these will condense preferentially in pores before a coating on the surface of the particles is formed. A pore partially filled with condensed species attracts water at lower RHw than an empty pore, but the aqueous solution that forms in the pore will freeze at a higher RHi than pure water. The ice nucleation ability of pores completely filled with condensed organic species might be totally impeded. Pores might also be important for preactivation, the capability of a particle to nucleate ice at lower RHi in subsequent experiments when compared to the first initial ice nucleation event. Preactivation has often been explained by persistence of ice embryos at specific sites like dislocations, steps, kinks or pores. However, it is not clear how such features can preserve an ice embryo at RHi < 100%. Rather, ice embryos could be preserved when embedded in water. To keep liquid water at RHw well below 100%, narrow pores are needed but to avoid a strong melting point depression large pores are favorable. A narrow pore opening and a large inner volume are combined in "ink bottle" pores. Such "ink bottle" pores would be suited to preserve ice at RHi < 100% and can arise e.g. in spaces between aggregated particles.

  13. Micropore analysis of polymer networks by gas sorption and 129Xe NMR spectroscopy: toward a better understanding of intrinsic microporosity.

    PubMed

    Weber, Jens; Schmidt, Johannes; Thomas, Arne; Böhlmann, Winfried

    2010-10-05

    The microporosity of two microporous polymer networks is investigated in detail. Both networks are based on a central spirobifluorene motif but have different linker groups, namely, imide and thiophene units. The microporosity of the networks is based on the "polymers of intrinsic microporosity (PIM)" design strategy. Nitrogen, argon, and carbon dioxide were used as sorbates in order to analyze the microporosity in greater detail. The gas sorption data was analyzed with respect to important parameters such as specific surface area, pore volume, and pore size (distribution). It is shown that the results can be strongly model dependent and swelling effects have to be regarded. (129)Xe NMR was used as an independent technique for the estimation of the average pore size of the polymer networks. The results indicate that both networks are mainly ultramicroporous (pore sizes < 0.8 nm) in the dry state, which was not expected based on the molecular design. Phase separation and network defects might influence the overall network morphology strongly. Finally, the observed swelling indicates that this "soft" microporous matter might have a different micropore size in the solvent swollen/filled state that in the dry state.

  14. Direct Numerical Simulation of Liquid Transport Through Fibrous Porous Media

    NASA Astrophysics Data System (ADS)

    Palakurthi, Nikhil Kumar

    Fluid flow through fibrous media occurs in many industrial processes, including, but not limited, to fuel cell technology, drug delivery patches, sanitary products, textile reinforcement, filtration, heat exchangers, and performance fabrics. Understanding the physical processes involved in fluid flow through fibrous media is essential for their characterization as well as for the optimization and development of new products. Macroscopic porous-media equations require constitutive relations, which account for the physical processes occurring at the micro-scale, to predict liquid transport at the macro-scale. In this study, micro-scale simulations were conducted using conventional computational fluid dynamics (CFD) technique (finite-volume method) to determine the macroscopic constitutive relations. The first part of this thesis deals with the single-phase flow in fibrous media, following which multi-phase flow through fibrous media was studied. Darcy permeability is an important parameter that characterizes creeping flow through a fibrous porous medium. It has a complex dependence on the medium's properties such as fibers' in-plane and through-plane orientation, diameter, aspect ratio, curvature, and porosity. A suite of 3D virtual fibrous structures with a wide range of geometric properties were constructed, and the permeability values of the structures were calculated by solving the 3D incompressible Navier-Stokes equations. The through-plane permeability was found to be a function of only the fiber diameter, the fibers' through-plane orientation, and the porosity of the medium. The numerical results were used to extend a permeability-porosity relation, developed in literature for 3D isotropic fibrous media, to a wide range of fibers' through-plane orientations. In applications where rate of capillary penetration is important, characterization of porous media usually involves determination of either the effective pore radius from capillary penetration experiments or a representative pore radius (R50) from pore-size distribution data. The relationship between effective and representative pore radii was studied by performing direct simulations of capillary penetration of a wetting liquid using a finite-volume-based volume-of-fluid (VOF) method. The simulated unidirectional liquid penetration through fibrous media followed Lucas-Washburn kinetics (L ˜ t1/2), except during the initial stages, which are dominated by inertial forces. Even though fluid properties and contact angle were kept constant in the simulations, the effective pore radii were found to be quite different from the representative radii. It can be concluded that the differences between effective and representative pore radii did not arise from contact angle variations. The unsaturated flow through fibrous media at the macro-scale is typically described using Richard's equation which requires constitutive relations: capillary pressure and permeability as a function of liquid saturation. In the present study, the quasi-static capillary pressure-saturation (P c-S) relationship for the primary drainage in a 3D isotropic fibrous medium was determined by performing micro-scale simulations using a VOF method. The Pc-S relationship obtained from the VOF method was compared with the results from the full-morphology (FM) method. Good agreement was observed between the results from the VOF and FM methods, thus suggesting that the FM method, a computationally less intensive method as compared to VOF method, may be sufficient for estimating the Pc-S relationship for primary drainage.

  15. Preparation of High Surface Area Activated Carbon from Spent Phenolic Resin by Microwave Heating and KOH Activation

    NASA Astrophysics Data System (ADS)

    Cheng, Song; Zhang, Libo; Zhang, Shengzhou; Xia, Hongying; Peng, Jinhui

    2018-01-01

    The spent phenolic resin is as raw material for preparing high surface area activated carbon (HSAAC) by microwave-assisted KOH activation. The effects of microwave power, activation duration and impregnation ratio (IR) on the iodine adsorption capability and yield of HSAAC were investigated. The surface characteristics of HSAAC were characterized by nitrogen adsorption isotherms, FTIR, SEM and TEM. The operating variables were optimized utilizing the response surface methodology (RSM) and were identified to be microwave power of 700 W, activation duration of 15 min and IR of 4, corresponding to a yield of 51.25 % and an iodine number of 2,384 mg/g. The pore structure parameters of the HSAAC, i. e., Brunauer-Emmett-Teller (BET) surface area, total pore volume, and average pore diameter were estimated to be 4,269 m2/g, 2.396 ml/g and 2.25 nm, respectively, under optimum conditions. The findings strongly support the feasibility of microwave-assisted KOH activation for preparation of HSAAC from spent phenolic resin.

  16. Properties of vanadium-loaded iron sorbent after alkali regeneration.

    PubMed

    Khalid, Muhammad Kamran; Leiviskä, Tiina; Tanskanen, Juha

    2017-11-01

    The aim of this research was to investigate the regeneration and reuse of a commercial granular iron sorbent (mainly goethite) when used in vanadium removal. A regeneration rate of 3 M NaOH was the highest (85%) achieved, followed by 2 M NaOH (79%) and 1 M NaOH (68%). The breakthrough curves show that the regenerated material can be reused. The BET (Brunauer-Emmett-Teller) surface area increased by 35-38% and the total pore volume increased by 123-130% as a consequence of NaOH treatment. The results indicated that sodium hydroxide could be used for the regeneration of iron sorbent although the regeneration was incomplete. This may be explained by the fact that vanadium diffusion into pores is a significant sorption mechanism in addition to complex formation with surface functional groups. As a consequence, vanadium desorbability from pores is not as effective as the regeneration of surface sites. X-ray photoelectron spectroscopy analyses confirmed a very low vanadium content on the surface of the NaOH-treated iron sorbent.

  17. Micelle-Template Synthesis of Nitrogen-Doped Mesoporous Graphene as an Efficient Metal-Free Electrocatalyst for Hydrogen Production

    NASA Astrophysics Data System (ADS)

    Huang, Xiaodan; Zhao, Yufei; Ao, Zhimin; Wang, Guoxiu

    2014-12-01

    Synthesis of mesoporous graphene materials by soft-template methods remains a great challenge, owing to the poor self-assembly capability of precursors and the severe agglomeration of graphene nanosheets. Herein, a micelle-template strategy to prepare porous graphene materials with controllable mesopores, high specific surface areas and large pore volumes is reported. By fine-tuning the synthesis parameters, the pore sizes of mesoporous graphene can be rationally controlled. Nitrogen heteroatom doping is found to remarkably render electrocatalytic properties towards hydrogen evolution reactions as a highly efficient metal-free catalyst. The synthesis strategy and the demonstration of highly efficient catalytic effect provide benchmarks for preparing well-defined mesoporous graphene materials for energy production applications.

  18. Micelle-template synthesis of nitrogen-doped mesoporous graphene as an efficient metal-free electrocatalyst for hydrogen production.

    PubMed

    Huang, Xiaodan; Zhao, Yufei; Ao, Zhimin; Wang, Guoxiu

    2014-12-19

    Synthesis of mesoporous graphene materials by soft-template methods remains a great challenge, owing to the poor self-assembly capability of precursors and the severe agglomeration of graphene nanosheets. Herein, a micelle-template strategy to prepare porous graphene materials with controllable mesopores, high specific surface areas and large pore volumes is reported. By fine-tuning the synthesis parameters, the pore sizes of mesoporous graphene can be rationally controlled. Nitrogen heteroatom doping is found to remarkably render electrocatalytic properties towards hydrogen evolution reactions as a highly efficient metal-free catalyst. The synthesis strategy and the demonstration of highly efficient catalytic effect provide benchmarks for preparing well-defined mesoporous graphene materials for energy production applications.

  19. Micelle-Template Synthesis of Nitrogen-Doped Mesoporous Graphene as an Efficient Metal-Free Electrocatalyst for Hydrogen Production

    PubMed Central

    Huang, Xiaodan; Zhao, Yufei; Ao, Zhimin; Wang, Guoxiu

    2014-01-01

    Synthesis of mesoporous graphene materials by soft-template methods remains a great challenge, owing to the poor self-assembly capability of precursors and the severe agglomeration of graphene nanosheets. Herein, a micelle-template strategy to prepare porous graphene materials with controllable mesopores, high specific surface areas and large pore volumes is reported. By fine-tuning the synthesis parameters, the pore sizes of mesoporous graphene can be rationally controlled. Nitrogen heteroatom doping is found to remarkably render electrocatalytic properties towards hydrogen evolution reactions as a highly efficient metal-free catalyst. The synthesis strategy and the demonstration of highly efficient catalytic effect provide benchmarks for preparing well-defined mesoporous graphene materials for energy production applications. PMID:25523276

  20. Growth of nanostructures with controlled diameter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfefferle, Lisa; Haller, Gary; Ciuparu, Dragos

    2009-02-03

    Transition metal-substituted MCM-41 framework structures with a high degree of structural order and a narrow pore diameter distribution were reproducibly synthesized by a hydrothermal method using a surfactant and an anti-foaming agent. The pore size and the mesoporous volume depend linearly on the surfactant chain length. The transition metals, such as cobalt, are incorporated substitutionally and highly dispersed in the silica framework. Single wall carbon nanotubes with a narrow diameter distribution that correlates with the pore diameter of the catalytic framework structure were prepared by a Boudouard reaction. Nanostructures with a specified diameter or cross-sectional area can therefore be predictablymore » prepared by selecting a suitable pore size of the framework structure.« less

  1. Spontaneous Imbibition Process in Micro-Nano Fractal Capillaries Considering Slip Flow

    NASA Astrophysics Data System (ADS)

    Shen, Yinghao; Li, Caoxiong; Ge, Hongkui; Guo, Xuejing; Wang, Shaojun

    An imbibition process of water into a matrix is required to investigate the influences of large-volume fracturing fluids on gas production of unconventional formations. Slip flow has been recognized by recent studies as a major mechanism of fluid transport in nanotubes. For nanopores in shale, a slip boundary is nonnegligible in the imbibition process. In this study, we established an analytic equation of spontaneous imbibition considering slip effects in capillaries. A spontaneous imbibition model that couples the analytic equation considering the slip effect was constructed based on fractal theory. We then used a model for various conditions, such as slip boundary, pore structure, and fractal dimension of pore tortuosity, to capture the imbibition characteristics considering the slip effect. A dynamic contact angle was integrated into the modeling. Results of our study verify that the slip boundary influences water imbibition significantly. The imbibition speed is significantly improved when slip length reaches the equivalent diameter of a tube. Therefore, disregarding the slip effect will underestimate the imbibition speed in shale samples.

  2. Preparation of a specific bamboo based activated carbon and its application for ciprofloxacin removal.

    PubMed

    Wang, Y X; Ngo, H H; Guo, W S

    2015-11-15

    The studied bamboo based activated carbon (BbAC) with high specific surface area (SSA) and high micro pore volume was prepared from bamboo scraps by the combined activation of H3PO4 and K2CO3. The BbAC was characterized based on the N2 adsorption isotherm at 77K. The results showed that the SSA and pore volume of BbAC increased with increasing impregnation ratio and reached maxima at the impregnation ratio of 3:1 at 750°C. Under these optimal conditions, the BbAC obtained could have a maximum SSA of 2237 m(2)/g and a maximum total pore volume of 1.23 cm(3)/g with the micro pore ratio of more than 90%. The adsorption performance of ciprofloxacin (CIP) on the BbAC was determined at 298 K. The Langmuir and Freundlich models were employed to describe the adsorption equilibrium and the kinetic data were fitted by pseudo first-order and pseudo second-order kinetic models. The results showed that the Langmuir model and the pseudo second-order kinetic model presented better fittings for the adsorption equilibrium and kinetics data, respectively. The maximum adsorption amount of CIP (613 mg/g) on the BbAC was much higher than the report in the literature. Conclusively, the BbAC could be a promising adsorption material for CIP removal from water. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Topological characteristics underpin intermittency and anomalous transport behavior in soil-like porous media

    NASA Astrophysics Data System (ADS)

    Holzner, M.; Morales, V.; Willmann, M.; Jerjen, I.; Kaufmann, R.; Dentz, M.

    2016-12-01

    Continuum models of porous media are based on the validity of the Darcy equation for fluid and Fick's law for scalar fluxes on a representative elementary volume. Fluctuations of pore-scale flow and scalar transport are averaged out and represented in terms of effective parameters such as hydrodynamic dispersion. However, the intermittent behavior of pore-scale flow impacts on the nature of particle and scalar transport, and it determines the way dissolved substances mix and react. The understanding of the origin of these processes is of both fundamental and practical importance in applications ranging from reactive transport in groundwater flow to diffusion in fuel cells or biological systems. A central issue in porous medium flow is therefore to relate intermittent behavior of Lagrangian velocity at pore scale imposed by the complex pore network geometry to transport properties at larger scales. Lagrangian measurements in porous systems are nonetheless scarce and most experimental techniques do not provide access to all three velocity components. In this contribution we report 3D measurements of Lagrangian velocity in soil-like porous media. We complement these measurements with detailed X-ray scans of the pore network. We find sharp velocity transitions close to pore throats, and low flow variability in the pore bodies, which gives rise to stretched exponential Lagrangian velocity and acceleration distributions characterized by a sharp peak at low velocity and a superlinear evolution of particle dispersion. We demonstrate that porosity and pore size distribution alone cannot explain the observed features of the flow. Rather, anomalous transport is better interpreted in terms of how pores of various geometries are interconnected. We reproduce the main observations using a continuous-time random walk (CTRW) model revealing the main features that control the system and showing the potential of this simple model to capture transport in complex geometries.

  4. Effects of the soil pore network architecture on the soil's physical functionalities

    NASA Astrophysics Data System (ADS)

    Smet, Sarah; Beckers, Eléonore; Léonard, Angélique; Degré, Aurore

    2017-04-01

    The soil fluid movement's prediction is of major interest within an agricultural or environmental scope because many processes depend ultimately on the soil fluids dynamic. It is common knowledge that the soil microscopic pore network structure governs the inner-soil convective fluids flow. There isn't, however, a general methodthat consider the pore network structure as a variable in the prediction of thecore scale soil's physical functionalities. There are various possible representations of the microscopic pore network: sample scale averaged structural parameters, extrapolation of theoretic pore network, or use of all the information available by modeling within the observed pore network. Different representations implydifferent analyzing methodologies. To our knowledge, few studies have compared the micro-and macroscopic soil's characteristics for the same soil core sample. The objective of our study is to explore the relationship between macroscopic physical properties and microscopic pore network structure. The saturated hydraulic conductivity, the air permeability, the retention curve, and others classical physical parameters were measured for ten soil samples from an agricultural field. The pore network characteristics were quantified through the analyses of X-ray micro-computed tomographic images(micro-CT system Skyscan-1172) with a voxel size of 22 µm3. Some of the first results confirmed what others studies had reported. Then, the comparison between macroscopic properties and microscopic parameters suggested that the air movements depended mostly on the pore connectivity and tortuosity than on the total porosity volume. We have also found that the fractal dimension calculated from the X-ray images and the fractal dimension calculated from the retention curve were significantly different. Our communication will detailthose results and discuss the methodology: would the results be similar with a different voxel size? What are the calculated and measured parameters uncertainties? Sarah Smet, as a research fellow, acknowledges the support of the National Fund for Scientific Research (Brussels, Belgium).

  5. Pore network extraction from pore space images of various porous media systems

    NASA Astrophysics Data System (ADS)

    Yi, Zhixing; Lin, Mian; Jiang, Wenbin; Zhang, Zhaobin; Li, Haishan; Gao, Jian

    2017-04-01

    Pore network extraction, which is defined as the transformation from irregular pore space to a simplified network in the form of pores connected by throats, is significant to microstructure analysis and network modeling. A physically realistic pore network is not only a representation of the pore space in the sense of topology and morphology, but also a good tool for predicting transport properties accurately. We present a method to extract pore network by employing the centrally located medial axis to guide the construction of maximal-balls-like skeleton where the pores and throats are defined and parameterized. To validate our method, various rock samples including sand pack, sandstones, and carbonates were used to extract pore networks. The pore structures were compared quantitatively with the structures extracted by medial axis method or maximal ball method. The predicted absolute permeability and formation factor were verified against the theoretical solutions obtained by lattice Boltzmann method and finite volume method, respectively. The two-phase flow was simulated through the networks extracted from homogeneous sandstones, and the generated relative permeability curves were compared with the data obtained from experimental method and other numerical models. The results show that the accuracy of our network is higher than that of other networks for predicting transport properties, so the presented method is more reliable for extracting physically realistic pore network.

  6. In situ self-sacrificed template synthesis of vanadium nitride/nitrogen-doped graphene nanocomposites for electrochemical capacitors.

    PubMed

    Liu, Hong-Hui; Zhang, Hong-Ling; Xu, Hong-Bin; Lou, Tai-Ping; Sui, Zhi-Tong; Zhang, Yi

    2018-03-15

    Vanadium nitride and graphene have been widely used as pseudo-capacitive and electric double-layer capacitor electrode materials for electrochemical capacitors, respectively. However, the poor cycling stability of vanadium nitride and the low capacitance of graphene impeded their practical applications. Herein, we demonstrated an in situ self-sacrificed template method for the synthesis of vanadium nitride/nitrogen-doped graphene (VN/NGr) nanocomposites by the pyrolysis of a mixture of dicyandiamide, glucose, and NH 4 VO 3 . Vanadium nitride nanoparticles of the size in the range of 2 to 7 nm were uniformly embedded into the nitrogen-doped graphene skeleton. Furthermore, the VN/NGr nanocomposites with a high specific surface area and pore volume showed a high specific capacitance of 255 F g -1 at 10 mV s -1 , and an excellent cycling stability (94% capacitance retention after 2000 cycles). The excellent capacitive properties were ascribed to the excellent conductivity of nitrogen-doped graphene, high surface area, high pore volume, and the synergistic effect between vanadium nitride and nitrogen-doped graphene.

  7. Understanding fluid transport through the multiscale pore network of a natural shale

    NASA Astrophysics Data System (ADS)

    Davy, Catherine; Adler, Pierre; Song, Yang; Nguyen, Thang Kim; Troadec, David; Dhénin, Jean-Francois

    2017-04-01

    Natural shales have a complex pore structure, which is only partly understood today. In the present contribution, a combination of different techniques is used to get information on three different scales. On each scale, the relevant flow equation is solved and provides input for the flow equation of the next higher scale. More precisely, micro-CT, FIB/SEM (Focused Ion Beam/Scanning Electron Microscopy) and TEM (Transmission Electron Microscopy) provide a full representative 3D pore space on the macroscopic scale, the mesoscale and the nanoscale. The corresponding typical voxel sizes are 0.7 μm, 10 nm and 1 nm, respectively. The porosity on the micro-CT images is 0.5 %, and it is not connected. One can distinguish between the pores, the porous clay matrix and non porous minerals; the volume percentages of these last two phases are 0.6 and 0.395, respectively. Samples of the porous clay matrix were analyzed by FIB/SEM which yields 3D information. They have a porosity ranging from 2 to 6 %. In some of them, the pore space is connected. Finally, TEM provides 2D images with a porosity of about 10 to 25 %. These information were used in the following way to estimate the macroscopic permeability which has been measured independently and found equal to 6 x10-20 m2. At the nanoscopic scale analyzed by 2D TEM, in the absence of 3D images, the pore structure is reconstructed by using a technique based on truncated Gaussian fields. Then, the Stokes equations are solved by using a 3D Lattice Boltzmann method. The resulting velocity field is averaged and this provides the permeability K_n. The permeability of the nanoscale structure varies between 0.7x 10-20 and 1.8x10-19 m2. As expected, the material is anisotropic. At the mesoscale, percolation of the FIB/SEM pore volume occurs only along a single direction. The Stokes equations are again solved by the same method and the mesoscopic permeability Km varies between 3.3 10-20 and 1.20 10-18 m2, depending on the nature of the percolating volume. The influence of the nanoscale porosity on the mesoscopic permeability is also studied. Two examples show that despite the scale ratio between the mesoscopic and nanoscopic pores, the nanoscopic pore structure cannot be neglected to estimate the permeability of the pore clay matrix. Finally, the sample provided by micro-CT is considered as a porous medium composed of three phases with permeabilities 0 (for the non porous minerals), 1 (for the porous clay matrix) and infinity (for the macroscopic pores). The overall permeability Kmacro is obtained by solving the Darcy's equation with a variable local permeability with spatially periodic boundary conditions. Kmacro is found of the order of 0.4 and the medium is relatively isotropic on this scale. This estimation of Kmacro is in agreement with the measured value.

  8. A systematic investigation of SO2 removal dynamics by coal-based activated cokes: The synergic enhancement effect of hierarchical pore configuration and gas components

    NASA Astrophysics Data System (ADS)

    Sun, Fei; Gao, Jihui; Liu, Xin; Tang, Xiaofan; Wu, Shaohua

    2015-12-01

    For the aim to break through the long-term roadblock to porous carbon based SO2 removal technology, typical coal-based activated cokes differing in terms of surface area, pore configuration and surface functional properties, were employed to investigate the SO2 removal dynamics. Among the employed activated cokes, the one with a hierarchically porous structure greatly enhanced the SO2 removal dynamics under the simulated flue gas compositions. More detailedly, SO2 separate adsorption property under normal temperature and pressure evidenced that monolayer SO2 molecules anchoring on micropore surface is the main adsorption pattern. The catalytic oxidation of SO2 follows the Eley-Rideal mechanism by which SO2 was firstly oxidized by molecular oxygen into SO3 which could depart partially to release the active sites for further adsorption. For the role of hierarchical pore configuration, it was proposed that micropores serve as gas adsorption and reaction accommodation, meso-/macropores act as byproduct H2SO4 transport and buffing reservoirs, which may in turn gives rise to the recovery of active sites in micropores and guarantees the continuous proceeding of sulfur-containing species transformation in the micropores. The present results suggest that pore configuration or interconnecting pattern, but not mere surface area or pore volume, should be favourably considered for optimizing heterogeneous gas-solid adsorption and reaction.

  9. Evaluation of Toluene Adsorption Performance of Mortar Adhesives Using Porous Carbon Material as Adsorbent.

    PubMed

    Wi, Seunghwan; Chang, Seong Jin; Jeong, Su-Gwang; Lee, Jongki; Kim, Taeyeon; Park, Kyung-Won; Lee, Dong Ryeol; Kim, Sumin

    2017-07-26

    Porous carbon materials are advantageous in adsorbing pollutants due to their wide range of specific surface areas, pore diameter, and pore volume. Among the porous carbon materials in the current study, expanded graphite, xGnP, xGnP C-300, xGnP C-500, and xGnP C-750 were prepared as adsorbent materials. Brunauer-Emmett-Teller (BET) analysis was conducted to select the adsorbent material through the analysis of the specific surface area, pore size, and pore volume of the prepared porous carbon materials. Morphological analysis using SEM was also performed. The xGnP C-500 as adsorbent material was applied to a mortar adhesive that is widely used in the installation of interior building materials. The toluene adsorption performances of the specimens were evaluated using 20 L small chamber. Furthermore, the performance of the mortar adhesive, as indicated by the shear bond strength, length change rate, and water retention rate, was analyzed according to the required test method specified in the Korean standards. It was confirmed that for the mortar adhesives prepared using the xGnP C-500 as adsorbent material, the toluene adsorption performance was excellent and satisfied the required physical properties.

  10. Preparation of TiO2-SiO2 via sol-gel method: Effect of Silica precursor on Catalytic and Photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Fatimah, I.

    2017-02-01

    TiO2-SiO2have been synthesized by the sol-gel method from titanium isopropoxide and varied silica precursors: tetraethyl orthosilicate and tetra methyl ortho silicate. To study the effect of the precursor, prepared materials were characterized by X-ray diffraction, scanning electron microscopy, Diffuse Reflectance UV-vis optical absorption, and also gas sorption analysis. XRD patterns showed the formation of TiO2 anatase in the TiO2-SiO2 composite with different crystallite size from different silica precursor as well as the different surface morphology. The DRUV-vis absorption spectra exhibit similar band gap energy correspond to 3.21eV value while the surface area, pore volume and pore radius of the materials seems to be affected by the precursor. The higher specific surface area contributes to give the enhanced activity in phenol hydroxylation and methylene blue photodegradation.

  11. Characterization of porosity in sulfide ore minerals: A USANS/SANS study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, F.; Zhao, J.; Etschmann, B. E.

    Porosity plays a key role in the formation and alteration of sulfide ore minerals, yet our knowledge of the nature and formation of the residual pores is very limited. Herein, we report the application of ultra-small-angle neutron scattering and small-angle neutron scattering (USANS/SANS) to assess the porosity in five natural sulfide minerals (violarite, marcasite, pyrite, chalcopyrite, and bornite) possibly formed by hydrothermal mineral replacement reactions and two synthetic sulfide minerals (violarite and marcasite) prepared experimentally by mimicking natural hydrothermal conditions. USANS/SANS data showed very different pore size distributions for these minerals. Natural violarite and marcasite tend to possess less poresmore » in the small size range (<100 nm) compared with their synthetic counterparts. This phenomenon is consistent with a higher degree of pore healing or diagenetic compaction experienced by the natural violarite and marcasite. Surprisingly, nanometer-sized (<20 nm) pores were revealed for a natural pyrite cube from La Rioga, Spain, and the sample has a pore volume fraction of ~7.7%. Both chalcopyrite and bornite from the massive sulfide assemblage of the Olympic Dam deposit in Roxby Downs, South Australia, were found to be porous with a similar pore volume fraction (~15%), but chalcopyrite tends to have a higher proportion of nanometer-size pores centered at ~4 nm while bornite tends to have a broader pore size distribution. The specific surface area is generally low for these minerals ranging from 0.94 to 6.28 m2/g, and the surfaces are generally rough as surface fractal behavior was observed for all these minerals. This investigation has demonstrated that USANS/SANS is a very useful tool for analyzing porosity in ore minerals. We believe that with this quantified porosity information a deeper understanding of the complex fluid flow behavior within the porous minerals can be expected.« less

  12. Reactive transport under stress: Permeability evolution by chemo-mechanical deformation

    NASA Astrophysics Data System (ADS)

    Roded, R.; Holtzman, R.

    2017-12-01

    The transport of reactive fluids in porous media is important in many natural and engineering processes. Reaction with the solid matrix—e.g. dissolution—changes the transport properties, which in turn affect the rate of reagent transport and hence the reaction. The importance of this highly nonlinear problem has motivated intensive research. Specifically, there have been numerous studies concerning the permeability evolution, especially the process of "wormholing", where preferential dissolution of the most conductive regions leads to a runaway permeability increase. Much less attention, however, has been given to the effect of geomechanics; that is, how the fact that the medium is under stress changes the permeability evolution. Here, we present a novel, mechanistic pore-scale model, simulating the interplay between pore opening by matrix dissolution and pore closure by mechanical compaction, facilitated by weakening caused by the very same process of dissolution. We combine a pore network model of reactive transport with a block-spring model that captures the effect of geomechanics through the update of the network properties. Our simulations show that permeability enhancement is inhibited by stress concentration downstream, in the less dissolved (hence stiffer) regions. Higher stresses lead to stronger inhibition, in agreement with experiments. The effect of stress also depends on the Damkohler number (Da)—the ratio between the flow and the reaction rate. At rapid injection (small Da), where dissolution is relatively uniform, stress has a significant effect on permeability. At slower flow rates (high Da, wormholing regime), stress affects the permeability evolution mostly in early stages, with a much smaller effect on the injected volume required for a significant permeability increase (breakthrough) than at low Da. Interestingly, at higher Da, stress concentration downstream induced by the more heterogeneous dissolution leads to a more homogeneous reagent transport, promoting wormhole competition.

  13. Understanding the synergistic effect and the main factors influencing the enzymatic hydrolyzability of corn stover at low enzyme loading by hydrothermal and/or ultrafine grinding pretreatment.

    PubMed

    Zhang, Haiyan; Li, Junbao; Huang, Guangqun; Yang, Zengling; Han, Lujia

    2018-05-26

    A thorough assessment of the microstructural changes and synergistic effects of hydrothermal and/or ultrafine grinding pretreatment on the subsequent enzymatic hydrolysis of corn stover was performed in this study. The mechanism of pretreatment was elucidated by characterizing the particle size, specific surface area (SSA), pore volume (PV), average pore size, cellulose crystallinity (CrI) and surface morphology of the pretreated samples. In addition, the underlying relationships between the structural parameters and final glucose yields were elucidated, and the relative significance of the factors influencing enzymatic hydrolyzability were assessed by principal component analysis (PCA). Hydrothermal pretreatment at a lower temperature (170 °C) combined with ultrafine grinding achieved a high glucose yield (80.36%) at a low enzyme loading (5 filter paper unit (FPU)/g substrate) which is favorable. The relative significance of structural parameters in enzymatic hydrolyzability was SSA > PV > average pore size > CrI/cellulose > particle size. PV and SSA exhibited logarithmic correlations with the final enzymatic hydrolysis yield. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Pore Effect on the Occurrence and Formation of Gas Hydrate in Permafrost of Qilian Mountain, Qinghai-Tibet Plateau, China

    NASA Astrophysics Data System (ADS)

    Gao, H.; Lu, H.; Lu, Z.

    2014-12-01

    Gas hydrates were found in the permafrost of Qilian Mountain, Qinghai- Tibet Plateau, China in 2008. It has been found that gas hydrates occur in Jurassic sedimentary rocks, and the hydrated gases are mainly thermogenic. Different from the gas hydrates existing in loose sands in Mallik, Mackenzie Delta, Canada and North Slope, Alaska, USA, the gas hydrates in Qilian Mountain occurred in hard rocks. For understanding the occurrence and formation mechanism of gas hydrate in hard rcok, extensive experimental investigations have been conducted to study the pore features and hydrate formation in the rocks recovered from the hydrate layers in Qilian Mountain. The structures of sedimentary rock were observed by high-resolution X-ray CT, and pore size distribution of a rock specimen was measured with the mercury-injection method. Methane hydrate was synthesized in water-saturated rocks, and the saturations of hydrate in sedimentary rocks of various types were estimated from the amount of gas released from certain volume of rock. X-ray CT observation revealed that fractures were developed in the rocks associated with faults, while those away from faults were generally with massive structure. The mercury-injection analysis of pore features found that the porosities of the hydrate-existing rocks were generally less than 3%, and the pore sizes were generally smaller than 100 nm. The synthesizing experiments found that the saturation of methane hydrate were generally lower than 6% of pore space in rocks, but up to 16% when fractures developed. The low hydrate saturation in Qilian sedimentary rocks has been found mainly due to the small pore size of rock. The low hydrate saturation in the rocks might be the reason for the failure of regional seismic and logging detections of gas hydrates in Qilian Mountain.

  15. The effects of ageing time on the microstructure and properties of mesoporous silica-hydroxyapatite nanocomposite

    NASA Astrophysics Data System (ADS)

    Yousefpour, Mardali; Taherian, Zahra

    2013-02-01

    In this study, a mesoporous silica-hydroxyapatite nanocomposite (MCM-41/HA) was synthesized via sol-gel technique as a drug delivery system. The synthesis of MCM-41/hydroxyapatite nanocomposite was carried out at room temperature. The effect of various ageing time on the nanocomposite properties was studied during synthesis process. 0, 24, 36, and 48 h aging times were chosen. Textural properties and microstructure of the nanocomposites were characterized by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray Spectroscopy (EDS), Electron Diffraction pattern (ED), and N2 adsorption-desorption. Results showed that ageing process led to HA crystals nucleation and growth on the surface of mesoporous silica. At 48 h of aging time, the surface area and total pore volume increased from 36.2 to 334 m2/g and 0.14-0.7 cm3/g, respectively. In contrast, the average pore diameter considerably decreased from 20.1 nm for (MCM-41/HA)24 to 8.39 nm for (MCM-41/HA)48. Furthermore, it was observed more homogeneous pore distribution with increasing the ageing time. In conclusion, the ageing time play an important role on textural properties of MCM-41/HA nanocomposite which could have a major effect on drug delivery properties such as molecular loading and release kinetics.

  16. Nanoporous activated carbon derived from Lapsi (Choerospondias axillaris) seed stone for the removal of arsenic from water.

    PubMed

    Rajbhandari, Rinita; Shrestha, Lok Kumar; Pradhananga, Raja Ram

    2012-09-01

    Activated carbons were prepared from Lapsi (Choerospondias axillaris) seed stone by zinc chloride (ZnCl2) activation at three different Lapsi seed powder (LSP):ZnCl2 ratios: 1:0.5 (AC-0.5), 1:1 (AC-1), and 1:2 (AC-2). The properties of these activated carbons (ACs), including effective surface areas, pore volumes, and pore size distributions were characterized from N2 adsorption-desorption isotherms. The ACs obtained were essentially nanoporous (including both micro- and mesoporous) with effective surface area ranging from 1167 to 1328 m2/g. Fourier-transform infrared (FTIR) spectroscopy showed the presence of functional groups on the surface of ACs. Scanning electron microscopy (SEM) images showed a high pore development in the ACs. X-ray diffraction (XRD) patterns showed that, in addition to the amorphous structure, ACs contains crystalline ZnO formed during the carbonization. Presence of amorphous carbon is further confirmed by Raman scattering, where we observed only D and G bands. Iron impregnated nanoporous AC has been found to be very effective for arsenic removal from ground water; amount of arsenic is decreased from ca. 200 ppb to 10 ppb. These experimental results indicate the potential use of Lapsi seed as a precursor material for the preparation of high surface area nanoporous activated carbons.

  17. X-ray pore optic developments

    NASA Astrophysics Data System (ADS)

    Wallace, Kotska; Bavdaz, Marcos; Collon, Maximilien; Beijersbergen, Marco; Kraft, Stefan; Fairbend, Ray; Séguy, Julien; Blanquer, Pascal; Graue, Roland; Kampf, Dirk

    2017-11-01

    In support of future x-ray telescopes ESA is developing new optics for the x-ray regime. To date, mass and volume have made x-ray imaging technology prohibitive to planetary remote sensing imaging missions. And although highly successful, the mirror technology used on ESA's XMM-Newton is not sufficient for future, large, x-ray observatories, since physical limits on the mirror packing density mean that aperture size becomes prohibitive. To reduce telescope mass and volume the packing density of mirror shells must be reduced, whilst maintaining alignment and rigidity. Structures can also benefit from a modular optic arrangement. Pore optics are shown to meet these requirements. This paper will discuss two pore optic technologies under development, with examples of results from measurement campaigns on samples. One activity has centred on the use of coated, silicon wafers, patterned with ribs, that are integrated onto a mandrel whose form has been polished to the required shape. The wafers follow the shape precisely, forming pore sizes in the sub-mm region. Individual stacks of mirrors can be manufactured without risk to, or dependency on, each other and aligned in a structure from which they can also be removed without hazard. A breadboard is currently being built to demonstrate this technology. A second activity centres on glass pore optics. However an adaptation of micro channel plate technology to form square pores has resulted in a monolithic material that can be slumped into an optic form. Alignment and coating of two such plates produces an x-ray focusing optic. A breadboard 20cm aperture optic is currently being built.

  18. Variations in pore characteristics in high volatile bituminous coals: Implications for coal bed gas content

    USGS Publications Warehouse

    Mastalerz, Maria; Drobniak, A.; Strapoc, D.; Solano-Acosta, W.; Rupp, J.

    2008-01-01

    The Seelyville Coal Member of the Linton Formation (Pennsylvanian) in Indiana was studied to: 1) understand variations in pore characteristics within a coal seam at a single location and compare these variations with changes occurring between the same coal at different locations, 2) elaborate on the influence of mineral-matter and maceral composition on mesopore and micropore characteristics, and 3) discuss implications of these variations for coal bed gas content. The coal is high volatile bituminous rank with R0 ranging from 0.57% to 0.60%. BET specific surface areas (determined by nitrogen adsorption) of the coals samples studied range from 1.8 to 22.9??m2/g, BJH adsorption mesopore volumes from 0.0041 to 0.0339??cm3/g, and micropore volumes (determined by carbon dioxide adsorption) from 0.0315 to 0.0540??cm3/g. The coals that had the largest specific surface areas and largest mesopore volumes occur at the shallowest depths, whereas the smallest values for these two parameters occur in the deepest coals. Micropore volumes, in contrast, are not depth-dependent. In the coal samples examined for this study, mineral-matter content influenced both specific surface area as well as mesopore and micropore volumes. It is especially clear in the case of micropores, where an increase in mineral-matter content parallels the decrease of micropore volume of the coal. No obvious relationships were observed between the total vitrinite content and pore characteristics but, after splitting vitrinite into individual macerals, we see that collotelinite influences both meso- and micropore volume positively, whereas collodetrinite contributes to the reduction of mesopore and micropore volumes. There are large variations in gas content within a single coal at a single location. Because of this variability, the entire thickness of the coal must be desorbed in order to determine gas content reliably and to accurately calculate the level of gas saturation. ?? 2008 Elsevier B.V. All rights reserved.

  19. Fluid Pressure in the Shallow Plate Interface at the Nankai Trough Subduction Zone

    NASA Astrophysics Data System (ADS)

    Tobin, H. J.; Saffer, D.

    2003-12-01

    The factors controlling the occurrence, magnitude, and other characteristics of great earthquakes is a fundamental outstanding question in fault physics. Pore fluid pressure is perhaps the most critical yet poorly known parameter governing the strength and seismogenic character of plate boundary faults, but unfortunately cannot be directly inferred through available geophysical sensing methods. Moreover, true in situ fluid pressure has proven difficult to measure even in boreholes. At the Nankai Trough, several hundred meters of sediment are subducted beneath the frontal portion of the accretionary prism. The up-dip portion of the plate interface is therefore hosted in these fine-grained marine sedimentary rocks. ODP Leg 190 and 196 showed that these rapidly-loaded underthrust sediments are significantly overpressured near the deformation front. Here, we attempt to quantitatively infer porosity, pore pressure, and effective normal stress at the plate interface at depths currently inaccessible to drilling. Using seismic reflection interval velocity calibrated at the boreholes to porosity, we quantitatively infer pore pressure to ˜ 20 km down-dip of the deformation front, to a plate interface depth of ˜ 6 km. We have developed a Nankai-specific velocity-porosity transform using ODP cores and logs. We use this function to derive a porosity profile for each of two down-dip seismic sections extracted from a 3-D dataset from the Cape Muroto region. We then calculate pore fluid pressure and effective vertical (fault-normal) stress for the underthrust sediment section using a compaction disequilibrium approach and core-based consolidation test data. Because the pore fluid pressure at the fault interface is likely controlled by that of the top of the underthrust section, this calculation represents a quantitative profile of effective stress and pore pressure at the plate interface. Results show that seismic velocity and porosity increase systematically downdip in the underthrust section, but the increase is suppressed relative to that expected from normally consolidating sediments. The computed pore pressure increases landward from an overpressure ratio (λ * = hydrostatic pressure divided by the lithostatic overburden) of ˜ 0.6 at the deformation front to ˜ 0.77 where sediments have been subducted 15 km. The results of this preliminary analysis suggest that a 3-dimensional mapping of predicted effective normal stress in the seismic data volume is possible.

  20. Facile large-scale synthesis of brain-like mesoporous silica nanocomposites via a selective etching process

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Wang, Qihua; Wang, Tingmei

    2015-10-01

    The core-shell structured mesoporous silica nanomaterials (MSNs) are experiencing rapid development in many applications such as heterogeneous catalysis, bio-imaging and drug delivery wherein a large pore volume is desirable. We develop a one-pot method for large-scale synthesis of brain-like mesoporous silica nanocomposites based on the reasonable change of the intrinsic nature of the -Si-O-Si- framework of silica nanoparticles together with a selective etching strategy. The as-synthesized products show good monodispersion and a large pore volume of 1.0 cm3 g-1. The novelty of this approach lies in the use of an inorganic-organic hybrid layer to assist the creation of large-pore morphology on the outermost shell thereby promoting efficient mass transfer or storage. Importantly, the method is reliable and grams of products can be easily prepared. The morphology on the outermost silica shell can be controlled by simply adjusting the VTES-to-TEOS molar ratio (VTES: triethoxyvinylsilane, TEOS: tetraethyl orthosilicate) as well as the etching time. The as-synthesized products exhibit fluorescence performance by incorporating rhodamine B isothiocyanate (RITC) covalently into the inner silica walls, which provide potential application in bioimaging. We also demonstrate the applications of as-synthesized large-pore structured nanocomposites in drug delivery systems and stimuli-responsive nanoreactors for heterogeneous catalysis.The core-shell structured mesoporous silica nanomaterials (MSNs) are experiencing rapid development in many applications such as heterogeneous catalysis, bio-imaging and drug delivery wherein a large pore volume is desirable. We develop a one-pot method for large-scale synthesis of brain-like mesoporous silica nanocomposites based on the reasonable change of the intrinsic nature of the -Si-O-Si- framework of silica nanoparticles together with a selective etching strategy. The as-synthesized products show good monodispersion and a large pore volume of 1.0 cm3 g-1. The novelty of this approach lies in the use of an inorganic-organic hybrid layer to assist the creation of large-pore morphology on the outermost shell thereby promoting efficient mass transfer or storage. Importantly, the method is reliable and grams of products can be easily prepared. The morphology on the outermost silica shell can be controlled by simply adjusting the VTES-to-TEOS molar ratio (VTES: triethoxyvinylsilane, TEOS: tetraethyl orthosilicate) as well as the etching time. The as-synthesized products exhibit fluorescence performance by incorporating rhodamine B isothiocyanate (RITC) covalently into the inner silica walls, which provide potential application in bioimaging. We also demonstrate the applications of as-synthesized large-pore structured nanocomposites in drug delivery systems and stimuli-responsive nanoreactors for heterogeneous catalysis. Electronic supplementary information (ESI) available: The average particle size distribution of LPASN-1, LPASN-2 and LPASN-3; the wide-angle XRD pattern of LPASN-2/LPASN-3/LPASN-4; the catalytic properties of LPASN-PNIPAM at different temperatures (15 °C and 33 °C). See DOI: 10.1039/c5nr04123f

  1. Electrolyte volume effects on electrochemical performance and solid electrolyte interphase in Si-graphite/NMC lithium-ion pouch cells

    DOE PAGES

    An, Seong Jin; Li, Jianlin; Daniel, Claus; ...

    2017-05-15

    This study aims to explore the correlations between electrolyte volume, electrochemical performance, and properties of the solid electrolyte interphase in pouch cells with Si-graphite composite anodes. The electrolyte is 1.2 M LiPF 6 in ethylene carbonate:ethylmethyl carbonate with 10 wt.% fluoroethylene carbonate. Single layer pouch cells (100 mAh) were constructed with 15 wt.% Si-graphite/LiNi 0.5Mn 0.3CO 0.2O 2 electrodes. It is found that a minimum electrolyte volume factor of 3.1 times the total pore volume of cell components (cathode, anode, and separator) is needed for better cycling stability. Less electrolyte causes increases in ohmic and charge transfer resistances. Lithium dendritesmore » are observed when the electrolyte volume factor is low. The resistances from the anodes become significant as the cells are discharged. As a result, solid electrolyte interphase thickness grows as the electrolyte volume factor increases and is non-uniform after cycling.« less

  2. Ultrasonic sensing of powder densification

    NASA Technical Reports Server (NTRS)

    Lu, Yichi; Wadley, Haydn N. G.; Parthasarathi, Sanjai

    1992-01-01

    An independent scattering theory has been applied to the interpretation of ultrasonic velocity measurements made on porous metal samples produced either by a cold or a high-temperature compaction process. The results suggest that the pores in both processes are not spherical, an aspect ration of 1:3 fitting best with the data for low (less than 4 percent) pore volume fractions. For the hot compacted powders, the pores are smooth due to active diffusional processes during processing. For these types of voids, the results can be extended to a pore fraction of 10 percent, at which point voids form an interconnected network that violates the model assumptions. The cold pressed samples are not as well predicted by the theory because of poor particle bonding.

  3. Modeling of nanostructured porous thermoelastic composites with surface effects

    NASA Astrophysics Data System (ADS)

    Nasedkin, A. V.; Nasedkina, A. A.; Kornievsky, A. S.

    2017-01-01

    The paper presents an integrated approach for determination of effective properties of anisotropic porous thermoelastic materials with a nanoscale stochastic porosity structure. This approach includes the effective moduli method for composite me-chanics, the simulation of representative volumes and the finite element method. In order to take into account nanoscale sizes of pores, the Gurtin-Murdoch model of surface stresses and the highly conducting interface model are used at the borders between material and pores. The general methodology for determination of effective properties of porous composites is demonstrated for a two-phase composite with special conditions for stresses and heat flux discontinuities at the phase interfaces. The mathematical statements of boundary value problems and the resulting formulas to determine the complete set of effective constants of the two-phase composites with arbitrary anisotropy and with surface properties are described; the generalized statements are formulated and the finite element approximations are given. It is shown that the homogenization procedures for porous composites with surface effects can be considered as special cases of the corresponding procedures for the two-phase composites with interphase stresses and heat fluxes if the moduli of nanoinclusions are negligibly small. These approaches have been implemented in the finite element package ANSYS for a model of porous material with cubic crystal system for various values of surface moduli, porosity and number of pores. It has been noted that the magnitude of the area of the interphase boundaries has influence on the effective moduli of the porous materials with nanosized structure.

  4. Experimental and Theoretical Studies of Gas Adsorption in Cu3(BTC)2: An Effective Activation Procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J.; Culp, J.T.; Natesakhawat, Sittichai

    2007-07-05

    We have improved the activation process for CuBTC [Cu3(BTC)2, BTC ) 1,3,5-benzenetricarboxylate] by extracting the N,N-dimethylformamide-solvated crystals with methanol; we identify material activated in this way as CuBTC-MeOH. This improvement allowed the activation to be performed at a much lower temperature, thus greatly mitigating the danger of reducing the copper ions. A review of the literature for H2 adsorption in CuBTC shows that the preparation and activation process has a significant impact on the adsorption capacity, surface area, and pore volume. CuBTC-MeOH exhibits a larger pore volume and H2 adsorption amount than any previously reported results for CuBTC. We havemore » performed atomically detailed modeling to complement experimentally measured isotherms. Quantum effects for hydrogen adsorption in CuBTC were found to be important at 77 K. Simulations that include quantum effects are in good agreement with the experimentally measured capacity for H2 at 77 K and high pressure. However, simulations underpredict the amount adsorbed at low pressures. We have compared the adsorption isotherms from simulations with experiments for H2 adsorption at 77, 87, 175, and 298 K; nitrogen adsorption at 253 and 298 K; and argon adsorption at 298 and 356 K. Reasonable agreement was obtained in all cases.« less

  5. Effects of igneous intrusion on microporosity and gas adsorption capacity of coals in the Haizi Mine, China.

    PubMed

    Jiang, Jingyu; Cheng, Yuanping

    2014-01-01

    This paper describes the effects of igneous intrusions on pore structure and adsorption capacity of the Permian coals in the Huaibei Coalfield, China. Twelve coal samples were obtained at different distances from a ~120 m extremely thick sill. Comparisons were made between unaltered and heat-affected coals using geochemical data, pore-fracture characteristics, and adsorption properties. Thermal alteration occurs down to ~1.3 × sill thickness. Approaching the sill, the vitrinite reflectance (R(o)) increased from 2.30% to 2.78%, forming devolatilization vacuoles and a fine mosaic texture. Volatile matter (VM) decreased from 17.6% to 10.0% and the moisture decreased from 3.0% to 1.6%. With decreasing distance to the sill, the micropore volumes initially increased from 0.0054 cm(3)/g to a maximum of 0.0146 cm(3)/g and then decreased to 0.0079 cm(3)/g. The results show that the thermal evolution of the sill obviously changed the coal geochemistry and increased the micropore volume and adsorption capacity of heat-affected coal (60-160 m from the sill) compared with the unaltered coals. The trap effect of the sill prevented the high-pressure gas from being released, forming gas pocket. Mining activities near the sill created a low pressure zone leading to the rapid accumulation of methane and gas outbursts in the Haizi Mine.

  6. Towards assessing cortical bone porosity using low-frequency quantitative acoustics: A phantom-based study

    PubMed Central

    Vogl, Florian; Bernet, Benjamin; Bolognesi, Daniele; Taylor, William R.

    2017-01-01

    Purpose Cortical porosity is a key characteristic governing the structural properties and mechanical behaviour of bone, and its quantification is therefore critical for understanding and monitoring the development of various bone pathologies such as osteoporosis. Axial transmission quantitative acoustics has shown to be a promising technique for assessing bone health in a fast, non-invasive, and radiation-free manner. One major hurdle in bringing this approach to clinical application is the entanglement of the effects of individual characteristics (e.g. geometry, porosity, anisotropy etc.) on the measured wave propagation. In order to address this entanglement problem, we therefore propose a systematic bottom-up approach, in which only one bone property is varied, before addressing interaction effects. This work therefore investigated the sensitivity of low-frequency quantitative acoustics to changes in porosity as well as individual pore characteristics using specifically designed cortical bone phantoms. Materials and methods 14 bone phantoms were designed with varying pore size, axial-, and radial pore number, resulting in porosities (bone volume fraction) between 0% and 15%, similar to porosity values found in human cortical bone. All phantoms were manufactured using laser sintering, measured using axial-transmission acoustics and analysed using a full-wave approach. Experimental results were compared to theoretical predictions based on a modified Timoshenko theory. Results A clear dependence of phase velocity on frequency and porosity produced by increasing pore size or radial pore number was demonstrated, with the velocity decreasing by between 2–5 m/s per percent of additional porosity, which corresponds to -0.5% to -1.0% of wave speed. While the change in phase velocity due to axial pore number was consistent with the results due to pore size and radial pore number, the relative uncertainties for the estimates were too high to draw any conclusions for this parameter. Conclusions This work has shown the capability of low-frequency quantitative acoustics to reflect changes in porosity and individual pore characteristics and demonstrated that additive manufacturing is an appropriate method that allows the influence of individual bone properties on the wave propagation to be systematically assessed. The results of this work opens perspectives for the efficient development of a multi-frequency, multi-mode approach to screen, diagnose, and monitor bone pathologies in individuals. PMID:28880868

  7. Towards assessing cortical bone porosity using low-frequency quantitative acoustics: A phantom-based study.

    PubMed

    Vogl, Florian; Bernet, Benjamin; Bolognesi, Daniele; Taylor, William R

    2017-01-01

    Cortical porosity is a key characteristic governing the structural properties and mechanical behaviour of bone, and its quantification is therefore critical for understanding and monitoring the development of various bone pathologies such as osteoporosis. Axial transmission quantitative acoustics has shown to be a promising technique for assessing bone health in a fast, non-invasive, and radiation-free manner. One major hurdle in bringing this approach to clinical application is the entanglement of the effects of individual characteristics (e.g. geometry, porosity, anisotropy etc.) on the measured wave propagation. In order to address this entanglement problem, we therefore propose a systematic bottom-up approach, in which only one bone property is varied, before addressing interaction effects. This work therefore investigated the sensitivity of low-frequency quantitative acoustics to changes in porosity as well as individual pore characteristics using specifically designed cortical bone phantoms. 14 bone phantoms were designed with varying pore size, axial-, and radial pore number, resulting in porosities (bone volume fraction) between 0% and 15%, similar to porosity values found in human cortical bone. All phantoms were manufactured using laser sintering, measured using axial-transmission acoustics and analysed using a full-wave approach. Experimental results were compared to theoretical predictions based on a modified Timoshenko theory. A clear dependence of phase velocity on frequency and porosity produced by increasing pore size or radial pore number was demonstrated, with the velocity decreasing by between 2-5 m/s per percent of additional porosity, which corresponds to -0.5% to -1.0% of wave speed. While the change in phase velocity due to axial pore number was consistent with the results due to pore size and radial pore number, the relative uncertainties for the estimates were too high to draw any conclusions for this parameter. This work has shown the capability of low-frequency quantitative acoustics to reflect changes in porosity and individual pore characteristics and demonstrated that additive manufacturing is an appropriate method that allows the influence of individual bone properties on the wave propagation to be systematically assessed. The results of this work opens perspectives for the efficient development of a multi-frequency, multi-mode approach to screen, diagnose, and monitor bone pathologies in individuals.

  8. Removal of nitrobenzene by immobilized nanoscale zero-valent iron: Effect of clay support and efficiency optimization

    NASA Astrophysics Data System (ADS)

    Li, Xiaoguang; Zhao, Ying; Xi, Beidou; Mao, Xuhui; Gong, Bin; Li, Rui; Peng, Xing; Liu, Hongliang

    2016-05-01

    In this study, natural clays were used as the support for nanoscale zero-valent iron (nZVI) to fulfill affordable and efficient decontamination materials. In comparison with the kaolinite (K) and montmorillonite (M) supported nZVI materials (K-nZVI and M-nZVI), Hangjin clay supported nZVI (HJ-nZVI) exhibited the best performance for nitrobenzene (NB) removal because of its favorable characteristics, such as higher specific surface area (SSA, 82.0 m2 g-1), larger pore volume (0.1198 cm3 g-1) and bigger average pore diameter (6.2 nm). The NB removal efficiency achieved by HJ-nZVI (93.2 ± 2.8%) was much higher than these achieved by HJ clay alone (38.2 ± 2.3%), nZVI alone (52.3 ± 2.5%) and by the combined use of nZVI and HJ clay (70.2 ± 1.3%). The superior performance of HJ-nZVI was associated with three aspects: the even distribution of nZVIs onto HJ clay, higher payload efficiency of nZVIs and the stronger adsorption capability of HJ clay support. Higher SSA, larger pore volume, favorable cation exchange capacity and structural negative charges all facilitated the payload of iron onto HJ clay. The adsorption process accelerated the reduction via increasing the local concentration of aqueous NB. The high efficiency of HJ-nZVI for decontamination warranted its promising prospect in remediation applications.

  9. Dynamics of water in the amphiphilic pore of amyloid β fibrils

    NASA Astrophysics Data System (ADS)

    GhattyVenkataKrishna, Pavan K.; Mostofian, Barmak

    2013-09-01

    Alzheimers disease related amyloid peptide, Aβ, forms a fibrillar structure through aggregation. The aggregate is stabilized by a salt bridge that is responsible for the formation of an amphiphilic pore that can accommodate water molecules. None of the reported structures of Aβ, however, contain water. We present results from molecular dynamics simulations on dimeric Aβ fibrils solvated in water. Water penetrates and fills the amphiphilic pore increasing its volume. We observe a thick wire of water that is translationally and rotationally stiff in comparison to bulk water and may be essential for the stabilization of the amyloid Aβ protein.

  10. Construction of hierarchically porous metal–organic frameworks through linker labilization

    DOE PAGES

    Yuan, Shuai; Zou, Lanfang; Qin, Jun-Sheng; ...

    2017-05-25

    One major goal of metal–organic framework (MOF) research is the expansion of pore size and volume. Although many approaches have been attempted to increase the pore size of MOF materials, it is still a challenge to construct MOFs with precisely customized pore apertures for specific applications. W present a new method, namely linker labilization, to increase the MOF porosity and pore size, giving rise to hierarchical-pore architectures. Microporous MOFs with robust metal nodes and pro-labile linkers were initially synthesized. The mesopores were subsequently created as crystal defects through the splitting of a pro-labile-linker and the removal of the linker fragmentsmore » by acid treatment. We also demonstrate that linker labilization method can create controllable hierarchical porous structures in stable MOFs, which facilitates the diffusion and adsorption process of guest molecules to improve the performances of MOFs in adsorption and catalysis.« less

  11. Construction of hierarchically porous metal-organic frameworks through linker labilization

    NASA Astrophysics Data System (ADS)

    Yuan, Shuai; Zou, Lanfang; Qin, Jun-Sheng; Li, Jialuo; Huang, Lan; Feng, Liang; Wang, Xuan; Bosch, Mathieu; Alsalme, Ali; Cagin, Tahir; Zhou, Hong-Cai

    2017-05-01

    A major goal of metal-organic framework (MOF) research is the expansion of pore size and volume. Although many approaches have been attempted to increase the pore size of MOF materials, it is still a challenge to construct MOFs with precisely customized pore apertures for specific applications. Herein, we present a new method, namely linker labilization, to increase the MOF porosity and pore size, giving rise to hierarchical-pore architectures. Microporous MOFs with robust metal nodes and pro-labile linkers were initially synthesized. The mesopores were subsequently created as crystal defects through the splitting of a pro-labile-linker and the removal of the linker fragments by acid treatment. We demonstrate that linker labilization method can create controllable hierarchical porous structures in stable MOFs, which facilitates the diffusion and adsorption process of guest molecules to improve the performances of MOFs in adsorption and catalysis.

  12. Monitoring CO2 invasion processes at the pore scale using geological labs on chip.

    PubMed

    Morais, S; Liu, N; Diouf, A; Bernard, D; Lecoutre, C; Garrabos, Y; Marre, S

    2016-09-21

    In order to investigate at the pore scale the mechanisms involved during CO2 injection in a water saturated pore network, a series of displacement experiments is reported using high pressure micromodels (geological labs on chip - GLoCs) working under real geological conditions (25 < T (°C) < 75 and 4.5 < p (MPa) < 8). The experiments were focused on the influence of three experimental parameters: (i) the p, T conditions, (ii) the injection flow rates and (iii) the pore network characteristics. By using on-chip optical characterization and imaging approaches, the CO2 saturation curves as a function of either time or the number of pore volume injected were determined. Three main mechanisms were observed during CO2 injection, namely, invasion, percolation and drying, which are discussed in this paper. Interestingly, besides conventional mechanisms, two counterintuitive situations were observed during the invasion and drying processes.

  13. Construction of hierarchically porous metal–organic frameworks through linker labilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Shuai; Zou, Lanfang; Qin, Jun-Sheng

    One major goal of metal–organic framework (MOF) research is the expansion of pore size and volume. Although many approaches have been attempted to increase the pore size of MOF materials, it is still a challenge to construct MOFs with precisely customized pore apertures for specific applications. W present a new method, namely linker labilization, to increase the MOF porosity and pore size, giving rise to hierarchical-pore architectures. Microporous MOFs with robust metal nodes and pro-labile linkers were initially synthesized. The mesopores were subsequently created as crystal defects through the splitting of a pro-labile-linker and the removal of the linker fragmentsmore » by acid treatment. We also demonstrate that linker labilization method can create controllable hierarchical porous structures in stable MOFs, which facilitates the diffusion and adsorption process of guest molecules to improve the performances of MOFs in adsorption and catalysis.« less

  14. 10 CFR 960.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... which there is recurrent movement, which is usually indicated by small, periodic displacements or... of fluids, expressed as the ratio of the volume of interconnected pores and openings to the volume of... displacement of the side relative to one another parallel to the fracture or zone of fractures. Faulting means...

  15. 10 CFR 960.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... which there is recurrent movement, which is usually indicated by small, periodic displacements or... of fluids, expressed as the ratio of the volume of interconnected pores and openings to the volume of... displacement of the side relative to one another parallel to the fracture or zone of fractures. Faulting means...

  16. 10 CFR 960.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... which there is recurrent movement, which is usually indicated by small, periodic displacements or... of fluids, expressed as the ratio of the volume of interconnected pores and openings to the volume of... displacement of the side relative to one another parallel to the fracture or zone of fractures. Faulting means...

  17. 10 CFR 960.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... which there is recurrent movement, which is usually indicated by small, periodic displacements or... of fluids, expressed as the ratio of the volume of interconnected pores and openings to the volume of... displacement of the side relative to one another parallel to the fracture or zone of fractures. Faulting means...

  18. Flow and axial dispersion in a sinusoidal-walled tube: Effects of inertial and unsteady flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, Marshall C.; Perkins, William A.; Scheibe, Timothy D.

    2013-12-01

    Dispersion in porous media flows has been the subject of much experimental, theoretical and numerical study. Here we consider a wavy-walled tube (a three-dimensional tube with sinusoidally-varying diameter) as a simplified conceptualization of flow in porous media, where constrictions represent pore throats and expansions pore bodies. A theoretical model for effective (macroscopic) longitudinal dispersion in this system has been developed by volume averaging the microscale velocity field. Direct numerical simulation using computational fluid dynamics (CFD) methods was used to compute velocity fields by solving the Navier-Stokes equations, and also to numerically solve the volume averaging closure problem, for a rangemore » of Reynolds numbers (Re) spanning the low-Re to inertial flow regimes, including one simulation at Re = 449 for which unsteady flow was observed. Dispersion values were computed using both the volume averaging solution and a random walk particle tracking method, and results of the two methods were shown to be consistent. Our results are compared to experimental measurements of dispersion in porous media and to previous theoretical results for the low-Re, Stokes flow regime. In the steady inertial regime we observe an power-law increase in effective longitudinal dispersion (DL) with Re, consistent with previous results. This rapid rate of increase is caused by trapping of solute in expansions due to flow separation (eddies). For the unsteady case (Re = 449), the rate of increase of DL with Re was smaller than that observed at lower Re. Velocity fluctuations in this regime lead to increased rates of solute mass transfer between the core flow and separated flow regions, thus diminishing the amount of tailing caused by solute trapping in eddies and thereby reducing longitudinal dispersion.« less

  19. Final report of “A Detailed Study of the Physical Mechanisms Controlling CO2-Brine Capillary Trapping in the Subsurface” (University of Arizona, DE-SC0006696)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaap, Marcel G.

    Carbon capture and storage (CCS) of carbon dioxide emissions generated by production or combustion of fossil fuels is a technologically viable means to reduce the build-up of CO2 in the atmosphere and oceans. Using advantages of scale and location, CCS is particularly suitable for large point sources near ubiquitous deep saline aquifers, depleted gas reservoirs, or at production reservoirs for enhanced oil recovery (EOR). In the BES-funded research project, Oregon State University (OSU) carried out capillary trapping experiments with proxy fluids that mimic the properties of the scCO2/brine system under ambient temperatures and pressures, and successfully developed a unique andmore » novel x-ray compatible, high-pressure, elevated temperature setup to study the scCO2/brine system under challenging reservoir conditions. Both methodologies were applied to a variety of porous media, including synthetic (glass bead) and geologic (Bentheimer sandstone) materials. The University of Arizona (UA) developed pore-scale lattice Boltzmann (LB) models which are able to handle the experimental conditions for proxy fluids, as well as the scCO2/brine system, that are capable of simulating permeability in volumes of tens of millions of fluid elements. We reached the following summary findings (main institute indicated): 1. (OSU/UA) To understand capillary trapping in a multiphase fluid-porous medium system, the system must be analyzed from a pore-scale force balance perspective; trapping can be enhanced by manipulating wetting and nonwetting phase fluid properties. 2. (OSU) Pore-scale fluid connectivity and topology has a clear and direct effect on nonwetting phase capillary trapping efficiency. 3. (OSU) Rock type and flow regime also have a pronounced effects on capillary trapping. 4. (OSU/UA) There is a predictable relationship between NWP connectivity and NWP saturation, which allows for development of injection strategies that optimize trapping. The commonly used Land model (Land, 1968) does not predict amount of trapped NWP accurately. 5. (UA) There are ambiguities regarding the segmentation of large-volume gray-scale CT data into pore-volumes suitable for pore-scale modeling. Simulated permeabilities vary by three orders of magnitude and do not resemble observed values very well. Small-volume synchrotron-based CT data (such as produced by OSU) does not suffer significantly from segmentation ambiguities. 6. (UA) A standard properly parameterized Shan-Chen model LB model is useful for simulating porous media with proxy fluids as well as the scCO2/brine system and produces results that are consistent with tomographic observations. 7. (UA) A LB model with fluid-interactions defined by a (modified) Peng-Robinson Equation of State is able to handle the scCO2/brine system with variable solid phase wettability. This model is numerically stable at temperatures between 0 and 250 °C and pressures between 3 and 50 MPa, and produces appropriate densities above the critical point of CO2 and exhibits three-phase separation below. Based on above findings OSU and UA have proposed continued experimentation and pore-scale modeling of the scCO2/brine system. The reported research has extensively covered capillary trapping using proxy fluids, but due to limited beam-time availability we were unable to apply our high-pressure CO2 setup to sufficient variation in fluid properties, and initial scCO2 connectivity. New data will also allow us to test, calibrate and apply our LB models to reservoir conditions beyond those that are currently feasible experimentally. Such experiments and simulations will also allow us to provide information how suitable proxy fluids are for the scCO2/brine system. We believe it would be worthwhile to pursue the following new research questions: 1. What are the fundamental differences in the physics underlying capillary trapping at ambient vs. supercritical conditions? 2. Do newly developed pore-scale trapping interactions and relationships translate to continuum scales? A motivation for these questions was elaborated in “Capillary Trapping of Super-Critical CO2: Linking Pore and Continuum Scales to Verify new Relationships” that was submitted to DOE-BES in 2015.« less

  20. Nuclear magnetic resonance diffusion pore imaging: Experimental phase detection by double diffusion encoding

    NASA Astrophysics Data System (ADS)

    Demberg, Kerstin; Laun, Frederik Bernd; Windschuh, Johannes; Umathum, Reiner; Bachert, Peter; Kuder, Tristan Anselm

    2017-02-01

    Diffusion pore imaging is an extension of diffusion-weighted nuclear magnetic resonance imaging enabling the direct measurement of the shape of arbitrarily formed, closed pores by probing diffusion restrictions using the motion of spin-bearing particles. Examples of such pores comprise cells in biological tissue or oil containing cavities in porous rocks. All pores contained in the measurement volume contribute to one reconstructed image, which reduces the problem of vanishing signal at increasing resolution present in conventional magnetic resonance imaging. It has been previously experimentally demonstrated that pore imaging using a combination of a long and a narrow magnetic field gradient pulse is feasible. In this work, an experimental verification is presented showing that pores can be imaged using short gradient pulses only. Experiments were carried out using hyperpolarized xenon gas in well-defined pores. The phase required for pore image reconstruction was retrieved from double diffusion encoded (DDE) measurements, while the magnitude could either be obtained from DDE signals or classical diffusion measurements with single encoding. The occurring image artifacts caused by restrictions of the gradient system, insufficient diffusion time, and by the phase reconstruction approach were investigated. Employing short gradient pulses only is advantageous compared to the initial long-narrow approach due to a more flexible sequence design when omitting the long gradient and due to faster convergence to the diffusion long-time limit, which may enable application to larger pores.

  1. Discontinuous pore fluid distribution under microgravity--KC-135 flight investigations

    NASA Technical Reports Server (NTRS)

    Reddi, Lakshmi N.; Xiao, Ming; Steinberg, Susan L.

    2005-01-01

    Designing a reliable plant growth system for crop production in space requires the understanding of pore fluid distribution in porous media under microgravity. The objective of this experimental investigation, which was conducted aboard NASA KC-135 reduced gravity flight, is to study possible particle separation and the distribution of discontinuous wetting fluid in porous media under microgravity. KC-135 aircraft provided gravity conditions of 1, 1.8, and 10(-2) g. Glass beads of a known size distribution were used as porous media; and Hexadecane, a petroleum compound immiscible with and lighter than water, was used as wetting fluid at residual saturation. Nitrogen freezer was used to solidify the discontinuous Hexadecane ganglia in glass beads to preserve the ganglia size changes during different gravity conditions, so that the blob-size distributions (BSDs) could be measured after flight. It was concluded from this study that microgravity has little effect on the size distribution of pore fluid blobs corresponding to residual saturation of wetting fluids in porous media. The blobs showed no noticeable breakup or coalescence during microgravity. However, based on the increase in bulk volume of samples due to particle separation under microgravity, groups of particles, within which pore fluid blobs were encapsulated, appeared to have rearranged themselves under microgravity.

  2. Computation of fluid flow and pore-space properties estimation on micro-CT images of rock samples

    NASA Astrophysics Data System (ADS)

    Starnoni, M.; Pokrajac, D.; Neilson, J. E.

    2017-09-01

    Accurate determination of the petrophysical properties of rocks, namely REV, mean pore and grain size and absolute permeability, is essential for a broad range of engineering applications. Here, the petrophysical properties of rocks are calculated using an integrated approach comprising image processing, statistical correlation and numerical simulations. The Stokes equations of creeping flow for incompressible fluids are solved using the Finite-Volume SIMPLE algorithm. Simulations are then carried out on three-dimensional digital images obtained from micro-CT scanning of two rock formations: one sandstone and one carbonate. Permeability is predicted from the computed flow field using Darcy's law. It is shown that REV, REA and mean pore and grain size are effectively estimated using the two-point spatial correlation function. Homogeneity and anisotropy are also evaluated using the same statistical tools. A comparison of different absolute permeability estimates is also presented, revealing a good agreement between the numerical value and the experimentally determined one for the carbonate sample, but a large discrepancy for the sandstone. Finally, a new convergence criterion for the SIMPLE algorithm, and more generally for the family of pressure-correction methods, is presented. This criterion is based on satisfaction of bulk momentum balance, which makes it particularly useful for pore-scale modelling of reservoir rocks.

  3. Liquefaction, ground oscillation, and soil deformation at the Wildlife Array, California

    USGS Publications Warehouse

    Holzer, T.L.; Youd, T.L.

    2007-01-01

    Excess pore-water pressure and liquefaction at the Wildlife Liquefaction Array in 1987 were caused by deformation associated with both high-frequency strong ground motion and 5.5-second-period Love waves. The Love waves produced large (???1.5%) cyclic shear strains well after the stronger high-frequency ground motion abated. These cyclic strains generated approximately from 13 to 35% of the excess pore-water pressure in the liquefied layer and caused excess pore-water pressures ultimately to reach effective overburden stress. The deformation associated with the Love waves explains the "postearthquake" increase of pore-water pressure that was recorded at the array. This explanation suggests that conventional methods for predicting liquefaction based on peak ground acceleration are incomplete and may need to consider cyclic strains associated with long-period surface waves. A post-earthquake survey of an inclinometer casing indicated permanent shear strain associated with lateral spreading primarily occurred in the upper part of the liquefied layer. Comparison of cone penetration test soundings conducted after the earthquake with pre-earthquake soundings suggests sleeve friction increased. Natural lateral variability of the liquefied layer obscured changes in tip resistance despite a ???1% reduction in volume. The large oscillatory motion associated with surface waves explains ground oscillation that has been reported at some liquefaction sites during earthquakes.

  4. Soft-Template-Synthesized Mesoporous Carbon for Oral Drug Delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Dipendu; Warren, Kaitlyn E; Naskar, Amit K

    Template-synthesized mesoporous carbons were successfully used in in vitro investigations of controlled delivery of three model drugs, captopril, furosemide, and ranitidine hydrochloride. Captopril and furosemide exhibited desorption kinetics over 30 40 h, and ranitidine HCl had a complete release time of 5 10 h. As evident from the slow release kinetics, we contend that our mesoporous carbon is an improved drug-delivery medium compared to state-of-the-art porous silica-based substrates. The mesoporous carbons, synthesized from phloroglucinol and lignin, a synthetic and a sustainable precursor, respectively, exhibit BET surface area of 200 400 m2 g-1 and pore volume of 0.2 0.6 cm3 g-1.more » The phloroglucinol-based carbon has narrower pore widths and higher pore volume than the lignin-derived counterpart and maintains a longer release time. Numerical modeling of the release kinetics data reveals that the diffusivities of all the drugs from lignin-based carbon media are of equivalent magnitude (10-22 to 10-24 m2 s-1). However, a tailored reduction of pore width in the sorbent reduces the diffusivity of smaller drug molecules (captopril) by an order of magnitude. Thus, engineered pore morphology in our synthesized carbon sorbent, along with its potential to tailor the chemistry of its interaction with sorbet, can be exploited for optimal delivery system of a preferred drug within its therapeutic level and below the level of toxicity.« less

  5. Controls on the physical properties of gas-hydrate-bearing sediments because of the interaction between gas hydrate and porous media

    USGS Publications Warehouse

    Lee, Myung W.; Collett, Timothy S.

    2005-01-01

    Physical properties of gas-hydrate-bearing sediments depend on the pore-scale interaction between gas hydrate and porous media as well as the amount of gas hydrate present. Well log measurements such as proton nuclear magnetic resonance (NMR) relaxation and electromagnetic propagation tool (EPT) techniques depend primarily on the bulk volume of gas hydrate in the pore space irrespective of the pore-scale interaction. However, elastic velocities or permeability depend on how gas hydrate is distributed in the pore space as well as the amount of gas hydrate. Gas-hydrate saturations estimated from NMR and EPT measurements are free of adjustable parameters; thus, the estimations are unbiased estimates of gas hydrate if the measurement is accurate. However, the amount of gas hydrate estimated from elastic velocities or electrical resistivities depends on many adjustable parameters and models related to the interaction of gas hydrate and porous media, so these estimates are model dependent and biased. NMR, EPT, elastic-wave velocity, electrical resistivity, and permeability measurements acquired in the Mallik 5L-38 well in the Mackenzie Delta, Canada, show that all of the well log evaluation techniques considered provide comparable gas-hydrate saturations in clean (low shale content) sandstone intervals with high gas-hydrate saturations. However, in shaly intervals, estimates from log measurement depending on the pore-scale interaction between gas hydrate and host sediments are higher than those estimates from measurements depending on the bulk volume of gas hydrate.

  6. Determination of atrazine and its major degradation products in soil pore water by solid-phase extraction, chemical derivatization, and gas chromatography/mass spectrometry

    USGS Publications Warehouse

    Carter, D.S.

    1996-01-01

    This report describes a method for the determination of atrazine, desethylatrazine, deisopropylatrazine, didealkylatrazine, and hydroxyatrazine from soil pore waters by use of solid-phase extractionfollowed by chemical derivatization and gas chromatography/mass spectrometry. The analytes are isolated from the pore-water matrix byextraction onto a graphitized carbon-black cartridge. The cartridge is dried under vacuum, and adsorbed analytes are removed by elution with ethyl acetate followed by dichloromethane/methanol (7:3, volume/volume). Water is removed from the ethyl acetate fraction on an anhydrous sodium sulfate column. The combined fractions are solvent exchanged into acetonitrile, evaporated by use of a nitrogen stream, and derivatized by use of N- methyl-N-(tert-butyldimethylsilyl)- trifluoroacetamide. The derivatized extracts are analyzed by capillary-column gaschromatography/electron-impact mass spectrometry in the scan mode. Estimated method detection limits range from 0.03 to 0.07 micrograms per liter. The mean recoveries of all analytes and surrogates determined at 0.74 to 0.82 micrograms per liter in reagent water in soil pore water were 94 percent and 98 percent, respectively. The mean recoveries of all analytes and surrogates determined at 7.4 to 8.2 micrograms per liter in reagent water and in soil pore water were 96 percent and 97 percent,respectively. Recoveries were 90 percent or higher, regardless of analyte concentration or matrix composition, for all compounds excepthydroxyatrazine, whose recoveries were slightly lower (77 percent) at the low concentration.

  7. Sustainable development of tyre char-based activated carbons with different textural properties for value-added applications.

    PubMed

    Hadi, Pejman; Yeung, Kit Ying; Guo, Jiaxin; Wang, Huaimin; McKay, Gordon

    2016-04-01

    This paper aims at the sustainable development of activated carbons for value-added applications from the waste tyre pyrolysis product, tyre char, in order to make pyrolysis economically favorable. Two activation process parameters, activation temperature (900, 925, 950 and 975 °C) and residence time (2, 4 and 6 h) with steam as the activating agent have been investigated. The textural properties of the produced tyre char activated carbons have been characterized by nitrogen adsorption-desorption experiments at -196 °C. The activation process has resulted in the production of mesoporous activated carbons confirmed by the existence of hysteresis loops in the N2 adsorption-desorption curves and the pore size distribution curves obtained from BJH method. The BET surface area, total pore volume and mesopore volume of the activated carbons from tyre char have been improved to 732 m(2)/g, 0.91 cm(3)/g and 0.89 cm(3)/g, respectively. It has been observed that the BET surface area, mesopore volume and total pore volume increased linearly with burnoff during activation in the range of experimental parameters studied. Thus, yield-normalized surface area, defined as the surface area of the activated carbon per gram of the precursor, has been introduced to optimize the activation conditions. Accordingly, the optimized activation conditions have been demonstrated as an activation temperature of 975 °C and an activation time of 4 h. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Fluctuation of Ultrafiltration Coefficient of Hemodialysis Membrane During Reuse

    NASA Astrophysics Data System (ADS)

    Arif, Idam; Christin

    2010-12-01

    Hemodialysis treatment for patient with kidney failure is to regulate body fluid and to excrete waste products of metabolism. The patient blood and the dialyzing solution (dialysate) are flowed counter currently in a dialyzer to allow volume flux of fluid and diffusion of solutes from the blood to the dialysate through a semipermiable membrane. The volume flux of fluid depends on the hydrostatic and the osmotic pressure difference between the blood and the dialysate. It also depends on the membrane parameter that represents how the membrane allows the fluid and the solutes to move across as a result of the pressure difference, known as the ultrafiltration coefficient Kuf. The coefficient depends on the number and the radius of membrane pores for the movement of the fluids and the solutes across the membrane. The measured membrane ultrafiltration coefficient of reused dialyzer shows fluctuation between one uses to another without any significant trend of change. This indicates that the cleaning process carried out before reuse does not cause perfect removal of clots that happen in the previous use. Therefore the unblocked pores are forced to work hardly to obtain targeted volume flux in a certain time of treatment. This may increase the unblocked pore radius. Reuse is stopped when there is indication of blood leakage during the hemodialysis treatment.

  9. An analysis of electrical conductivity model in saturated porous media

    NASA Astrophysics Data System (ADS)

    Cai, J.; Wei, W.; Qin, X.; Hu, X.

    2017-12-01

    Electrical conductivity of saturated porous media has numerous applications in many fields. In recent years, the number of theoretical methods to model electrical conductivity of complex porous media has dramatically increased. Nevertheless, the process of modeling the spatial conductivity distributed function continues to present challenges when these models used in reservoirs, particularly in porous media with strongly heterogeneous pore-space distributions. Many experiments show a more complex distribution of electrical conductivity data than the predictions derived from the experiential model. Studies have observed anomalously-high electrical conductivity of some low-porosity (tight) formations compared to more- porous reservoir rocks, which indicates current flow in porous media is complex and difficult to predict. Moreover, the change of electrical conductivity depends not only on the pore volume fraction but also on several geometric properties of the more extensive pore network, including pore interconnection and tortuosity. In our understanding of electrical conductivity models in porous media, we study the applicability of several well-known methods/theories to electrical characteristics of porous rocks as a function of pore volume, tortuosity and interconnection, to estimate electrical conductivity based on the micro-geometrical properties of rocks. We analyze the state of the art of scientific knowledge and practice for modeling porous structural systems, with the purpose of identifying current limitations and defining a blueprint for future modeling advances. We compare conceptual descriptions of electrical current flow processes in pore space considering several distinct modeling approaches. Approaches to obtaining more reasonable electrical conductivity models are discussed. Experiments suggest more complex relationships between electrical conductivity and porosity than experiential models, particularly in low-porosity formations. However, the available theoretical models combined with simulations do provide insight to how microscale physics affects macroscale electrical conductivity in porous media.

  10. X-ray Computed Tomography and Pore Network Modeling to Assess the Impact of Biochar on Saturated Hydraulic Conductivity of Stormwater Infiltration Media

    NASA Astrophysics Data System (ADS)

    Imhoff, P. T.; Nakhli, S. A. A.; Mills, G.; Yudi, Y.; Abera, K.; Williams, R.; Manahiloh, K. N.; Willson, C. S.

    2017-12-01

    Biochar has been proposed as an amendment to stormwater infiltration media to enhance pollutant capture (metals, organics) or transformation (e.g., nitrate). Because stormwater media must maintain sufficient infiltration capacity, it is critical that biochar amendment not reduce saturated hydraulic conductivity. We present experimental measurements of saturated hydraulic conductivity for mixtures of wood biochar, sieved to various size fractions, and uniform sands or bioretention media (mixtures of sand, clay, and sawdust). While the influence of biochar on the inter particle pore volume of the mixtures explained most changes in hydraulic conductivity, for mixtures containing large biochar particles results were unexpected. For example, while large biochar particles (2 - 4.75 mm) increased inter particle porosity from 0.35 to 0.48 for a sand/biochar mixture, hydraulic conductivity decreased from 820 ± 90 cm/h to 323 ± 2 cm/h. To understand this and other unusual data, biochar was doped with 3% CsCl, mixed with uniform sand using different packing techniques, and analyzed with X-ray computed tomography to assess biochar distribution and pore structure. Depending on packing technique, biochar particles were either segregated or uniformly mixed, which influenced pore structure. Biochar content and inter particle pore volume determined from X-ray images were in excellent agreement with experimental data (< 5% difference). Grain-based algorithms were then used to generate physically-representative pore networks, and single-phase permeability models were employed to estimate saturated hydraulic conductivity of sand and biochar-amended sand packings for specimens prepared with different packing techniques. Results from these analyses will be presented and compared with experimental measurements to elucidate the mechanisms by which large biochar particles alter the saturated hydraulic conductivity of engineered media.

  11. Structure formation control of foam concrete

    NASA Astrophysics Data System (ADS)

    Steshenko, Aleksei; Kudyakov, Aleksander; Konusheva, Viktoriya; Syrkin, Oleg

    2017-01-01

    The process of predetermined foam concrete structure formation is considered to be a crucial issue from the point of process control and it is currently understudied thus defining the need for additional research. One of the effective ways of structure formation control in naturally hardening foam concrete is reinforcement with dispersed fibers or introduction of plasticizers. The paper aims at studying the patterns of influence of microreinforcing and plasticizing additives on the structure and performance properties of foam concrete. Preparation of foam concrete mix has been conducted using one-step technology. The structure of modified foam concrete has been studied by means of electron microscopy. The cellular structure of foam concrete samples with the additives is homogeneous; the pores are uniformly distributed over the total volume. It has been revealed that introduction of the Neolas 5.2 plasticizer and microreinforcing fibers in the foam concrete mixture in the amount of 0.4 - 0.1 % by weight of cement leads to reduction of the average pore diameter in the range of 45.3 to 30.2 microns and the standard deviation of the pore average diameter from 23.6 to 9.2 in comparison with the sample without additive. Introduction of modifying additives has stimulated formation of a large number of closed pores. Thus porosity of conditionally closed pores has increased from 16.06 % to 34.48 %, which has lead to increase of frost resistance brand of foam concrete from F15 to F50 and to reduction of its water absorption by weight by 20 %.

  12. Pore-scale Investigation of Surfactant Induced Mobilization for the Remediation of LNAPL

    NASA Astrophysics Data System (ADS)

    Ghosh, J.; Tick, G. R.

    2011-12-01

    The presence of nonaqueous phase liquids within the subsurface can significantly limit the effectiveness of groundwater remediation. Specifically, light nonaqueous phase liquids (LNAPLs) present unique challenges as they can become "smeared" within zones above and below the water table. The aim of this research is to understand the interfacial phenomena at the pore scale influencing residual saturation of LNAPL distribution as function of media heterogeneity and remediation processes from various aquifer systems. A series of columns were packed with three types of unconsolidated sand of increasing heterogeneity in grain size distribution and were established with residual saturations of light and heavy crude oil fractions, respectively. These columns were then subjected to flooding with 0.1% anionic surfactant solution in various episodes to initiate mobilization and enhanced recovery of NAPL phase contamination. Synchrotron X-ray microtomography (SXM) imaging technology was used to study three-dimensional (3-D) distributions of crude-oil-blobs before and after sequential surfactant flooding events. Results showed that LNAPL blob distributions became more heterogeneous after each subsequent surfactant flooding episode for all porous-media systems. NAPL recovery was most effective from the homogenous porous medium whereby 100% recovery resulted after 5 pore volumes (PVs) of flushing. LNAPL within the mildly heterogeneous porous medium produced a limited but consistent reduction in saturation after each surfactant flooding episode (23% and 43% recovery for light and heavy after the 5-PV flood). The highly heterogeneous porous medium showed greater NAPL recovery potential (42% and 16% for light and heavy) only after multiple pore volumes of flushing, at which point the NAPL blobs become fragmented into the smaller fragments in response to the reduced interfacial tension. The heterogeneity of the porous media (i.e. grain-size distribution) was a dominant control on the NAPL-blob-size-distribution trapped as residual saturation. The mobility of the NAPL blobs, as a result of surfactant flooding, was primarily controlled by the relative permeability of the medium and the reduction of interfacial tension between the wetting phase (water) and NAPL phase.

  13. Surface tension confined liquid cryogen cooler

    NASA Technical Reports Server (NTRS)

    Castles, Stephen H. (Inventor); Schein, Michael E. (Inventor)

    1989-01-01

    A cryogenic cooler is provided for use in craft such as launch, orbital, and space vehicles subject to substantial vibration, changes in orientation, and weightlessness. The cooler contains a small pore, large free volume, low density material to restrain a cryogen through surface tension effects during launch and zero-g operations and maintains instrumentation within the temperature range of 10 to 140 K. The cooler operation is completely passive, with no inherent vibration or power requirements.

  14. Numerical simulation of filtration of mine water from coal slurry particles

    NASA Astrophysics Data System (ADS)

    Dyachenko, E. N.; Dyachenko, N. N.

    2017-11-01

    The discrete element method is applied to model a technology for clarification of industrial waste water containing fine-dispersed solid impurities. The process is analyzed at the level of discrete particles and pores. The effect of filter porosity on the volume fraction of particles has been shown. The degree of clarification of mine water was also calculated depending on the coal slurry particle size, taking into account the adhesion force.

  15. Porous Materials from Thermally Activated Kaolinite: Preparation, Characterization and Application

    PubMed Central

    Luo, Jun; Jiang, Tao; Li, Guanghui; Peng, Zhiwei; Rao, Mingjun; Zhang, Yuanbo

    2017-01-01

    In the present study, porous alumina/silica materials were prepared by selective leaching of silicon/aluminum constituents from thermal-activated kaolinite in inorganic acid or alkali liquor. The correlations between the characteristics of the prepared porous materials and the dissolution properties of activated kaolinite were also investigated. The results show that the specific surface area (SSA) of porous alumina/silica increases with silica/alumina dissolution, but without marked change of the BJH pore size. Furthermore, change in pore volume is more dependent on activation temperature. The porous alumina and silica obtained from alkali leaching of kaolinite activated at 1150 °C for 15 min and acid leaching of kaolinite activated at 850 °C for 15 min are mesoporous, with SSAs, BJH pore sizes and pore volumes of 55.8 m2/g and 280.3 m2/g, 6.06 nm and 3.06 nm, 0.1455 mL/g and 0.1945 mL/g, respectively. According to the adsorption tests, porous alumina has superior adsorption capacities for Cu2+, Pb2+ and Cd2+ compared with porous silica and activated carbon. The maximum capacities of porous alumina for Cu2+, Pb2+ and Cd2+ are 134 mg/g, 183 mg/g and 195 mg/g, respectively, at 30 °C. PMID:28773002

  16. Evaluation of Toluene Adsorption Performance of Mortar Adhesives Using Porous Carbon Material as Adsorbent

    PubMed Central

    Chang, Seong Jin; Jeong, Su-Gwang; Lee, Jongki; Kim, Taeyeon; Park, Kyung-Won; Lee, Dong Ryeol; Kim, Sumin

    2017-01-01

    Porous carbon materials are advantageous in adsorbing pollutants due to their wide range of specific surface areas, pore diameter, and pore volume. Among the porous carbon materials in the current study, expanded graphite, xGnP, xGnP C-300, xGnP C-500, and xGnP C-750 were prepared as adsorbent materials. Brunauer–Emmett–Teller (BET) analysis was conducted to select the adsorbent material through the analysis of the specific surface area, pore size, and pore volume of the prepared porous carbon materials. Morphological analysis using SEM was also performed. The xGnP C-500 as adsorbent material was applied to a mortar adhesive that is widely used in the installation of interior building materials. The toluene adsorption performances of the specimens were evaluated using 20 L small chamber. Furthermore, the performance of the mortar adhesive, as indicated by the shear bond strength, length change rate, and water retention rate, was analyzed according to the required test method specified in the Korean standards. It was confirmed that for the mortar adhesives prepared using the xGnP C-500 as adsorbent material, the toluene adsorption performance was excellent and satisfied the required physical properties. PMID:28773214

  17. Synthesis and characterization of nanocrystalline mesoporous zirconia using supercritical drying.

    PubMed

    Tyagi, Beena; Sidhpuria, Kalpesh; Shaik, Basha; Jasra, Raksh Vir

    2006-06-01

    Synthesis of nano-crystalline zirconia aerogel was done by sol-gel technique and supercritical drying using n-propanol solvent at and above supercritical temperature (235-280 degrees C) and pressure (48-52 bar) of n-propanol. Zirconia xerogel samples have also been prepared by conventional thermal drying method to compare with the super critically dried samples. Crystalline phase, crystallite size, surface area, pore volume, and pore size distribution were determined for all the samples in detail to understand the effect of gel drying methods on these properties. Supercritical drying of zirconia gel was observed to give thermally stable, nano-crystalline, tetragonal zirconia aerogels having high specific surface area and porosity with narrow and uniform pore size distribution as compared to thermally dried zirconia. With supercritical drying, zirconia samples show the formation of only mesopores whereas in thermally dried samples, substantial amount of micropores are observed along with mesopores. The samples prepared using supercritical drying yield nano-crystalline zirconia with smaller crystallite size (4-6 nm) as compared to higher crystallite size (13-20 nm) observed with thermally dried zirconia.

  18. Combining slope stability and groundwater flow models to assess stratovolcano collapse hazard

    NASA Astrophysics Data System (ADS)

    Ball, J. L.; Taron, J.; Reid, M. E.; Hurwitz, S.; Finn, C.; Bedrosian, P.

    2016-12-01

    Flank collapses are a well-documented hazard at volcanoes. Elevated pore-fluid pressures and hydrothermal alteration are invoked as potential causes for the instability in many of these collapses. Because pore pressure is linked to water saturation and permeability of volcanic deposits, hydrothermal alteration is often suggested as a means of creating low-permeability zones in volcanoes. Here, we seek to address the question: What alteration geometries will produce elevated pore pressures in a stratovolcano, and what are the effects of these elevated pressures on slope stability? We initially use a finite element groundwater flow model (a modified version of OpenGeoSys) to simulate `generic' stratovolcano geometries that produce elevated pore pressures. We then input these results into the USGS slope-stability code Scoops3D to investigate the effects of alteration and magmatic intrusion on potential flank failure. This approach integrates geophysical data about subsurface alteration, water saturation and rock mechanical properties with data about precipitation and heat influx at Cascade stratovolcanoes. Our simulations show that it is possible to maintain high-elevation water tables in stratovolcanoes given specific ranges of edifice permeability (ideally between 10-15 and 10-16 m2). Low-permeability layers (10-17 m2, representing altered pyroclastic deposits or altered breccias) in the volcanoes can localize saturated regions close to the surface, but they may actually reduce saturation, pore pressures, and water table levels in the core of the volcano. These conditions produce universally lower factor-of-safety (F) values than at an equivalent dry edifice with the same material properties (lower values of F indicate a higher likelihood of collapse). When magmatic intrusions into the base of the cone are added, near-surface pore pressures increase and F decreases exponentially with time ( 7-8% in the first year). However, while near-surface impermeable layers create elevated water tables and pore pressures, they do not necessarily produce the largest or deepest collapses. This suggests that mechanical properties of both the edifice and layers still exert a significant control, and collapse volumes depend on a complex interplay of mechanical factors and layering.

  19. A Three-Dimensional Pore-Scale Model for Non-Wetting Phase Mobilization with Ferrofluid

    NASA Astrophysics Data System (ADS)

    Wang, N.; Prodanovic, M.

    2017-12-01

    Ferrofluid, a stable dispersion of paramagnetic nanoparticles in water, can generate a distributed pressure difference across the phase interface in an immiscible two-phase flow under an external magnetic field. In water-wet porous media, this non-uniform pressure difference may be used to mobilize the non-wetting phase, e.g. oil, trapped in the pores. Previous numerical work by Soares et al. of two-dimensional single-pore model showed enhanced non-wetting phase recovery with water-based ferrofluid under certain magnetic field directions and decreased recovery under other directions. However, the magnetic field selectively concentrates in the high magnetic permeability ferrofluid which fills the small corners between the non-wetting phase and the solid wall. The magnetic field induced pressure is proportional to the square of local magnetic field strength and its normal component, and makes a significant impact on the non-wetting phase deformation. The two-dimensional model omitted the effect of most of these corners and is not sufficient to compute the magnetic-field-induced pressure difference or to predict the non-wetting blob deformation. Further, it is not clear that 3D effects on magnetic field in an irregular geometry can be approximated in 2D. We present a three-dimensional immiscible two-phase flow model to simulate the deformation of a non-wetting liquid blob in a single pore filled with a ferrofluid under a uniform external magnetic field. The ferrofluid is modeled as a uniform single phase because the nanoparticles are 104 times smaller than the pore. The open source CFD solver library OpenFOAM is used for the simulations based on the volume of fluid method. Simulations are performed in a converging-diverging channel model on different magnetic field direction, different initial oil saturations, and different pore shapes. Results indicate that the external magnetic field always stretches the non-wetting blob away from the solid channel wall. A magnetic field transverse to the channel direction may likely provide the best elongation along the channel direction for the non-wetting blob. The pore-throat size ratio has an impact on the deformation of the non-wetting blob.

  20. Geochemical interactions between constituents in acidic groundwater and alluvium in an aquifer near Globe, Arizona

    USGS Publications Warehouse

    Stollenwerk, Kenneth G.

    1994-01-01

    Acidic water from a copper-mining area has contaminated an alluvial aquifer and stream near Globe, Arizona. The most contaminated groundwater has a pH of 3.3, and contains about 100 mmol/1 SO4, 50 mmol/1 Fe, 11 mmol/1 Al and 3 mmol/1 Cu. Reactions between alluvium and acidic groundwater were first evaluated in laboratory column experiments. A geochemical model was developed and used in the equilibrium speciation program, MINTEQA2, to simulate breakthrough curves for different constituents from the column. The geochemical model was then used to simulate the measured changes in concentration of aqueous constituents along a flow path in the aquifer.The pH was predominantly controlled by reaction with carbonate minerals. Where carbonates had been dissolved, adsorption of H+ by iron oxides was used to simulate pH. Acidic groundwater contained little or no dissolved oxygen, and most aqueous Fe was present as Fe(II). In the anoxic core of the plume, Fe(II) was oxidized by MnO2 to Fe(III), which then precipitated as Fe(OH)3. Attenuation of aqueous Cu, Co, Mn, Ni and Zn was a function of pH and could be quantitatively modeled with the diffuse-layer, surface complexation model in MINTEQA2. Aluminum precipitated as amorphous Al(OH)3 at pH < 4.7 and as AlOHSO4 at pH < 4.7. Aqueous Ca and SO4were close to equilibrium with gypsum.After the alluvium in the column had reached equilibrium with acidic groundwater, uncontaminated groundwater was eluted through the column to evaluate the effect of reactants on groundwater remediation. The concentration of Fe, Mn, Cu, Co, Ni and Zn rapidly decreased to the detection limits within a few pore volumes. All of the gypsum that had precipitated initially redissolved, resulting in elevated Ca and SO4concentrations for about 5 pore volumes. Aluminum and pH exhibited the most potential for continued adverse effects on groundwater quality. As H+ desorbed from Fe(OH)3, pH remained below 4.5 for more than 20 pore volumes, resulting in dissolution of AlOHSO4 and elevated aqueous Al.

  1. The Rapid Formation of Localized Compaction Bands Under Hydrostatic Load Leading to Pore-pressure Transients in Compacting Rocks

    NASA Astrophysics Data System (ADS)

    Faulkner, D.; Leclere, H.; Bedford, J. D.; Behnsen, J.; Wheeler, J.

    2017-12-01

    Compaction of porous rocks can occur uniformly or within localized deformation bands. The formation of compaction bands and their effects on deformation behaviour are poorly understood. Porosity may be primary and compaction can occur with burial, or it can be produced by metamorphic reactions with a solid volume reduction, that can then undergo collapse. We report results from hydrostatic compaction experiments on porous bassanite (CaSO4.0.5H2O) aggregates. Gypsum (CaSO4.2H2O) is first dehydrated under low effective pressure, 4 MPa, to produce a bassanite aggregate with a porosity of 27%. Compaction is induced by increasing confining pressure at rates from 0.001 MPa/s to 0.02 MPa/s while the sample is maintained at a temperature of 115°C. At slow compaction rates, porosity collapse proceeds smoothly. At higher compaction rates, sudden increases in the pore-fluid pressure occur with a magnitude of 5 MPa. Microstructural investigations using X-ray microtomography and SEM observations show that randomly oriented localized compaction features occur in all samples, where the bulk porosity of 18% outside the band is reduced to 5% inside the band. Previous work on deformation bands has suggested that localized compactive features only form under an elevated differential stress and not under a hydrostatic stress state. The magnitude of the pore-pressure pulses can be explained by the formation of compaction bands. The results indicate that the compaction bands can form by rapid (unstable) propagation across the sample above a critical strain rate, or quasi-statically at low compaction rates without pore-fluid pressure bursts. The absence of pore-fluid pressure bursts at slow compaction rates can be explained by viscous deformation of the bassanite aggregate around the tip of a propagating compaction band, relaxing stress, and promoting stable propagation. Conversely, at higher compaction rates, viscous deformation cannot relax the stress sufficiently and unstable, brittle propagation occurs. In nature, this type of compaction behaviour might result in a mechanism to produce pulses of pore pressure within porous rocks which might have a significant effect on the deformation behaviour at depth.

  2. Natural and laboratory compaction bands in porous carbonates: a three-dimensional characterization using synchrotron X-ray computed microtomography

    NASA Astrophysics Data System (ADS)

    Cilona, A.; Arzilli, F.; Mancini, L.; Emanuele, T.

    2014-12-01

    Porous carbonates form important reservoirs for water and hydrocarbons. The fluid flow properties of carbonate reservoirs may be affected by post-depositional processes (e.g., mechanical and chemical), which need to be quantified. Field-based studies described bed-parallel compaction bands (CBs) within carbonates with a wide range of porosities. These burial-related structures accommodate volumetric strain by grain rotation, translation, pore collapse and pressure solution. Recently, the same structures have been reproduced for the first time in the laboratory by performing triaxial compaction experiments on porous grainstones. These laboratory studies characterized and compared the microstructures of natural and laboratory CBs, but no analysis of pore connectivity has been performed. In this paper, we use an innovative approach to characterize the pore networks (e.g. porosity, connectivity) of natural and laboratory CBs and compare them with the host rock one. We collected the data using the synchrotron X-ray computed microtomography technique at the SYRMEP beamline of the Elettra-Sincrotrone Trieste Laboratory (Italy). Quantitative analyses of the samples were performed with the Pore3D software library. The porosity was calculated from segmented 3D images of pristine and deformed carbonates. A process of skeletonization was then applied to quantify the number of connected pores within the rock volume. The analysis of the skeleton allowed us to highlight the differences between natural and laboratory CBs, and to investigate how pore connectivity evolves as a function of different deformation pathways. Both pore volume and connectivity are reduced within the CBs respect to the pristine rock and the natural CB has a lower porosity with respect to the laboratory one. The grain contacts in the natural CB are welded, whereas in the laboratory one they have more irregular shapes and grain crushing is the predominant process.

  3. Numerical Simulation of Electrical Properties of Carbonate Reservoir Rocks Using µCT Images

    NASA Astrophysics Data System (ADS)

    Colgin, J.; Niu, Q.; Zhang, C.; Zhang, F.

    2017-12-01

    Digital rock physics involves the modern microscopic imaging of geomaterials, digitalization of the microstructure, and numerical simulation of physical properties of rocks. This physics-based approach can give important insight into understanding properties of reservoir rocks, and help reveal the link between intrinsic rock properties and macroscopic geophysical responses. The focus of this study is the simulation of the complex conductivity of carbonate reservoir rocks using reconstructed 3D rock structures from high-resolution X-ray micro computed tomography (µCT). Carbonate core samples with varying lithofacies and pore structures from the Cambro-Ordovician Arbuckle Group and the Upper Pennsylvanian Lansing-Kansas City Group in Kansas are used in this study. The wide variations in pore geometry and connectivity of these samples were imaged using µCT. A two-phase segmentation method was used to reconstruct a digital rock of solid particles and pores. We then calculate the effective electrical conductivity of the digital rock volume using a pore-scale numerical approach. The complex conductivity of geomaterials is influenced by the electrical properties and geometry of each phase, i.e., the solid and fluid phases. In addition, the electrical double layer that forms between the solid and fluid phases can also affect the effective conductivity of the material. In the numerical modeling, the influence of the electrical double layer is quantified by a complex surface conductance and converted to an apparent volumetric complex conductivity of either solid particles or pore fluid. The effective complex conductivity resulting from numerical simulations based on µCT images will be compared to results from laboratory experiments on equivalent rock samples. The imaging and digital segmentation method, assumptions in the numerical simulation, and trends as compared to laboratory results will be discussed. This study will help us understand how microscale physics affects macroscale electrical conductivity in porous media.

  4. Confocal Raman Microscopy for in Situ Measurement of Octanol-Water Partitioning within the Pores of Individual C18-Functionalized Chromatographic Particles.

    PubMed

    Kitt, Jay P; Harris, Joel M

    2015-05-19

    Octanol-water partitioning is one of the most widely used predictors of hydrophobicity and lipophilicity. Traditional methods for measuring octanol-water partition coefficients (K(ow)), including shake-flasks and generator columns, require hours for equilibration and milliliter quantities of sample solution. These challenges have led to development of smaller-scale methods for measuring K(ow). Recent advances in microfluidics have produced faster and smaller-volume approaches to measuring K(ow). As flowing volumes are reduced, however, separation of water and octanol prior to measurement and detection in small volumes of octanol phase are especially challenging. In this work, we reduce the receiver volume of octanol-water partitioning measurements from current practice by six-orders-of-magnitude, to the femtoliter scale, by using a single octanol-filled reversed-phase, octadecylsilane-modified (C18-silica) chromatographic particle as a collector. The fluid-handling challenges of working in such small volumes are circumvented by eliminating postequilibration phase separation. Partitioning is measured in situ within the pore-confined octanol phase using confocal Raman microscopy, which is capable of detecting and quantifying a wide variety of molecular structures. Equilibration times are fast (less than a minute) because molecular diffusion is efficient over distance scales of micrometers. The demonstrated amount of analyte needed to carry out a measurement is very small, less than 50 fmol, which would be a useful attribute for drug screening applications or testing of small quantities of environmentally sensitive compounds. The method is tested for measurements of pH-dependent octanol-water partitioning of naphthoic acid, and the results are compared to both traditional shake-flask measurements and sorption onto C18-modified silica without octanol present within the pores.

  5. Quantification of in situ pore pressure and stress in regions of low frequency earthquakes and anomalously low seismic velocity at the Nankai Trough

    NASA Astrophysics Data System (ADS)

    Kitajima, H.; Saffer, D. M.

    2012-12-01

    Recent seismic reflection and ocean bottom seismometer (OBS) studies reveal broad regions of low seismic velocity along the megathrust plate boundary of the Nankai subduction zone offshore SW Japan. These low velocity zones (LVZ's) extend to ~55 km from the trench, corresponding to depths of >~10 km below sea floor. Elevated pore pressure has been invoked as one potential cause of both the LVZ's and very low frequency earthquakes (VLFE) in the outer forearc. Here, we estimate the in-situ pore fluid pressure and stress state within these LVZ's by combining P-wave velocities (Vp) obtained from seismic reflection and OBS data with well-constrained empirical relations between (1) P-wave velocity and porosity; and (2) porosity and effective mean and differential stresses, defined by triaxial deformation tests on drill core samples of the incoming oceanic sediment. We used cores of Lower Shikoku Basin (LSB) hemipelagic mudstone (322-C0011B-19R-5, initial porosity of 43%), and Middle Shikoku Basin (MSB) tuffaceous sandstone (333-C0011D-51X-2, initial porosity of 46%) that have been recovered from IODP Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) Site C0011 (~20 km seaward from the deformation front). Samples were loaded under a range of different stress paths including isotropic loading, triaxial compression, and triaxial extension. During the tests, all pressures, axial displacement, and pore volume change were continuously monitored; and ultrasonic velocity and permeability were measured at regular intervals. The relationship between Vp and porosity for LSB mudstone is independent of stress path, and is well fit by an empirical function derived by Hoffman and Tobin [2004] for LSB sediments sampled by drilling along Muroto transect, located ~150 km southwest of the NanTroSEIZE study area. The MSB sandstone exhibits slightly higher P-wave velocity than LSB mudstone at a given porosity. Based on our experimental results, and assuming that the sediments in the LVZ's are at shear failure defined by a critical state stress condition, we estimate that effective vertical stress in the LVZ ranges from 15 MPa at 13 km landward of the trench, to 41 MPa at a distance of 55 km. The maximum horizontal effective stress ranges from 41-124 MPa over this region. Excess pore fluid pressure ranges from 15-81 MPa, corresponding to modified pore pressure ratios, λ* of 0.44-0.73. If LVZ is composed dominantly of sandstones, both the effective vertical and horizontal stresses would be lower, and the excess pore pressure would be higher, with pore pressure ratios λ* = 0.31-0.90. Our results suggest that the sediments have been loaded under poorly drained conditions, and that pore fluids support ≥~53-91 % of the overburden stress along the base of the accretionary wedge across the outer forearc. The low effective stress should lead to a mechanically weak plate boundary, and is spatially correlated with well-located low-frequency earthquakes in the outer accretionary wedge. The heterogeneous distribution of inferred pore pressure also suggests that fluid sources and drainage are localized and possibly transient.

  6. Porosity and permeability determination of organic-rich Posidonia shales based on 3-D analyses by FIB-SEM microscopy

    NASA Astrophysics Data System (ADS)

    Grathoff, Georg H.; Peltz, Markus; Enzmann, Frieder; Kaufhold, Stephan

    2016-07-01

    The goal of this study is to better understand the porosity and permeability in shales to improve modelling fluid and gas flow related to shale diagenesis. Two samples (WIC and HAD) were investigated, both mid-Jurassic organic-rich Posidonia shales from Hils area, central Germany of different maturity (WIC R0 0.53 % and HAD R0 1.45 %). The method for image collection was focused ion beam (FIB) microscopy coupled with scanning electron microscopy (SEM). For image and data analysis Avizo and GeoDict was used. Porosity was calculated from segmented 3-D FIB based images and permeability was simulated by a Navier Stokes-Brinkman solver in the segmented images. Results show that the quantity and distribution of pore clusters and pores (≥ 40 nm) are similar. The largest pores are located within carbonates and clay minerals, whereas the smallest pores are within the matured organic matter. Orientation of the pores calculated as pore paths showed minor directional differences between the samples. Both samples have no continuous connectivity of pore clusters along the axes in the x, y, and z direction on the scale of 10 to 20 of micrometer, but do show connectivity on the micrometer scale. The volume of organic matter in the studied volume is representative of the total organic carbon (TOC) in the samples. Organic matter does show axis connectivity in the x, y, and z directions. With increasing maturity the porosity in organic matter increases from close to 0 to more than 5 %. These pores are small and in the large organic particles have little connection to the mineral matrix. Continuous pore size distributions are compared with mercury intrusion porosimetry (MIP) data. Differences between both methods are caused by resolution limits of the FIB-SEM and by the development of small pores during the maturation of the organic matter. Calculations show no permeability when only considering visible pores due to the lack of axis connectivity. Adding the organic matter with a background permeability of 1 × 10-21 m2 to the calculations, the total permeability increased by up to 1 order of magnitude for the low mature and decreases slightly for the overmature sample from the gas window. Anisotropy of permeability was observed. Permeability coefficients increase by 1 order of magnitude if simulations are performed parallel to the bedding. Our results compare well with experimental data from the literature suggesting that upscaling may be possible in the future as soon as maturity dependent organic matter permeability coefficients can be determined.

  7. Synthesis of polybenzoxazine based nitrogen-rich porous carbons for carbon dioxide capture

    NASA Astrophysics Data System (ADS)

    Wan, Liu; Wang, Jianlong; Feng, Chong; Sun, Yahui; Li, Kaixi

    2015-04-01

    Nitrogen-rich porous carbons (NPCs) were synthesized from 1,5-dihydroxynaphthalene, urea, and formaldehyde based on benzoxazine chemistry by a soft-templating method with KOH chemical activation. They possess high surface areas of 856.8-1257.8 m2 g-1, a large pore volume of 0.15-0.65 cm3 g-1, tunable pore structure, high nitrogen content (5.21-5.32 wt%), and high char yields. The amount of the soft-templating agent F127 has multiple influences on the textural and chemical properties of the carbons, affecting the surface area and pore structure, impacting the compositions of nitrogen species and resulting in an improvement of the CO2 capture performance. At 1 bar, high CO2 uptake of 4.02 and 6.35 mmol g-1 at 25 and 0 °C was achieved for the sample NPC-2 with a molar ratio of F127 : urea = 0.010 : 1. This can be attributed to its well-developed micropore structure and abundant pyridinic nitrogen, pyrrolic nitrogen and pyridonic nitrogen functionalities. The sample NPC-2 also exhibits a remarkable selectivity for CO2/N2 separation and a fast adsorption/desorption rate and can be easily regenerated. This suggests that the polybenzoxazine-based NPCs are desirable for CO2 capture because of possessing a high micropore surface area, a large micropore volume, appropriate pore size distribution, and a large number of basic nitrogen functionalities.Nitrogen-rich porous carbons (NPCs) were synthesized from 1,5-dihydroxynaphthalene, urea, and formaldehyde based on benzoxazine chemistry by a soft-templating method with KOH chemical activation. They possess high surface areas of 856.8-1257.8 m2 g-1, a large pore volume of 0.15-0.65 cm3 g-1, tunable pore structure, high nitrogen content (5.21-5.32 wt%), and high char yields. The amount of the soft-templating agent F127 has multiple influences on the textural and chemical properties of the carbons, affecting the surface area and pore structure, impacting the compositions of nitrogen species and resulting in an improvement of the CO2 capture performance. At 1 bar, high CO2 uptake of 4.02 and 6.35 mmol g-1 at 25 and 0 °C was achieved for the sample NPC-2 with a molar ratio of F127 : urea = 0.010 : 1. This can be attributed to its well-developed micropore structure and abundant pyridinic nitrogen, pyrrolic nitrogen and pyridonic nitrogen functionalities. The sample NPC-2 also exhibits a remarkable selectivity for CO2/N2 separation and a fast adsorption/desorption rate and can be easily regenerated. This suggests that the polybenzoxazine-based NPCs are desirable for CO2 capture because of possessing a high micropore surface area, a large micropore volume, appropriate pore size distribution, and a large number of basic nitrogen functionalities. Electronic supplementary information (ESI) available: Elemental and XPS analyses and XPS peak positions and relative content of N species in the NPCs. See DOI: 10.1039/c4nr07409b

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litvinova, Larisa, E-mail: larisalitvinova@yandex.ru, E-mail: vshupletsova@mail.ru, E-mail: leitsin@mail.ru; Shupletsova, Valeria, E-mail: larisalitvinova@yandex.ru, E-mail: vshupletsova@mail.ru, E-mail: leitsin@mail.ru; Leitsin, Vladimir, E-mail: larisalitvinova@yandex.ru, E-mail: vshupletsova@mail.ru, E-mail: leitsin@mail.ru

    The work studies ZrO{sub 2}(Me{sub x}O{sub y})-based porous ceramics produced from the powders consisting of hollow spherical particles. It was shown that the structure is represented by a cellular framework with bimodal porosity consisting of sphere-like large pores and pores that were not filled with the powder particles during the compaction. For such ceramics, the increase of pore volume is accompanied by the increased strain in an elastic area. It was also shown that the porous ZrO{sub 2} ceramics had no acute or chronic cytotoxicity. At the same time, ceramics possess the following osteoconductive properties: adhesion support, spreading, proliferation andmore » osteogenic differentiation of MSCs.« less

  9. Influence of the doping type and level on the morphology of porous Si formed by galvanic etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyatilova, O. V., E-mail: 5ilova87@gmail.com; Gavrilov, S. A.; Shilyaeva, Yu. I.

    The formation of porous silicon (por-Si) layers by the galvanic etching of single-crystal Si samples (doped with boron or phosphorus) in an HF/C{sub 2}H{sub 5}OH/H{sub 2}O{sub 2} solution is investigated. The por-Si layers are analyzed by the capillary condensation of nitrogen and scanning electron microscopy (SEM). The dependences of the morphological characteristics of por-Si (pore diameter, specific surface area, pore volume, and thickness of the pore walls), which determine the por-Si combustion kinetics, on the dopant type and initial wafer resistivity are established.

  10. Magnetic resonance studies of dissolving particulate solids.

    PubMed

    Johns, M L; Gladden, L F

    2003-01-01

    Magnetic resonance methods have been used to elucidate the internal pore structure of particulate solids, in particular detergent tablets. Such information is essential to a comprehensive understanding of the dissolution characteristics of these materials and how this property is related to processing conditions during tablet formation. In particular 3-D images of porosity are produced and 2-D self-diffusion maps are acquired as a function of observation time, which enables pore size to be quantified as a function of position via the extracted surface-to-volume ratio of the pore space. These properties are determined as a function of processing parameters, in particular the compression force used in tablet formation.

  11. Effects of PEG4000 template on sol-gel synthesis of porous cerium titanate photocatalyst

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjie; Tao, Yingjie; Li, Chuanguo

    2018-04-01

    Porous cerium titanate was synthesized by sol-gel method, using polyethylene glycol (PEG4000) as template agent. Brannerite structured CeTi2O6 in monoclinic system is the major substance formed in the materials. Formation of CeO2 and rutile TiO2 depends on the amount of PEG4000. The addition of PEG4000 leads to production of fine particles in the samples, but it does not apparently affect the band gap energy. Pore volume of the cerium titanate sample continuously increases with rising PEG4000 amount. The sample obtained using 3.5 g PEG4000 has BET surface area of 16.2 m2/g and pore volume of 0.0232 cm3/g. The addition of PEG4000 can obviously promote photocatalytic activity of cerium titanate, which can be proven by both enhanced production of hydroxyl radical and ofloxacin degradation efficiency. As much as 95.2% of the initial ofloxacin molecules are removed from the solution after 50 min of photocatalytic degradation on the cerium titanate obtained using 3.5 g PEG4000, while only 48.4% ofloxacin is removed on cerium titanate obtained without PEG4000.

  12. Effective ligand functionalization of zirconium-based metal-organic frameworks for the adsorption and separation of benzene and toluene: a multiscale computational study.

    PubMed

    Wu, Ying; Chen, Huiyong; Liu, Defei; Xiao, Jing; Qian, Yu; Xi, Hongxia

    2015-03-18

    The adsorption and separation properties of benzene and toluene on the zirconium-based frameworks UiO-66, -67, -68, and their functional analogues UiO-Phe and UiO-Me2 were studied using grand canonical Monte Carlo simulations, density functional theory, and ideal adsorbed solution theory. Remarkable higher adsorption uptakes of benzene and toluene at low pressures on UiO-Phe and -Me2 were found compared to their parent framework UiO-67. It can be ascribed to the presence of functional groups (aromatic rings and methyl groups) that significantly intensified the adsorption, majorly by reducing the effective pore size and increasing the interaction strength with the adsorbates. At high pressures, the pore volumes and accessible surfaces of the frameworks turned out to be the dominant factors governing the adsorption. In the case of toluene/benzene separation, toluene selectivities of UiOs showed a two-stage separation behavior at the measured pressure range, resulting from the greater interaction affinities of toluene at low pressures and steric hindrance effects at high pressures. Additionally, the counterbalancing factors of enhanced π delocalization and suitable pore size of UiO-Phe gave rise to the highest toluene selectivity, suggesting the ligand functionalization strategy could reach both high adsorption capacity and separation selectivity from aromatic mixtures at low concentrations.

  13. Pore formation during dehydration of polycrystalline gypsum observed and quantified in a time-series synchrotron radiation based X-ray micro-tomography experiment

    NASA Astrophysics Data System (ADS)

    Fusseis, F.; Schrank, C.; Liu, J.; Karrech, A.; Llana-Fúnez, S.; Xiao, X.; Regenauer-Lieb, K.

    2011-10-01

    We conducted an in-situ X-ray micro-computed tomography heating experiment at the Advanced Photon Source (USA) to dehydrate an unconfined 2.3 mm diameter cylinder of Volterra Gypsum. We used a purpose-built X-ray transparent furnace to heat the sample to 388 K for a total of 310 min to acquire a three-dimensional time-series tomography dataset comprising nine time steps. The voxel size of 2.2 μm3 proved sufficient to pinpoint reaction initiation and the organization of drainage architecture in space and time. We observed that dehydration commences across a narrow front, which propagates from the margins to the centre of the sample in more than four hours. The advance of this front can be fitted with a square-root function, implying that the initiation of the reaction in the sample can be described as a diffusion process. Novel parallelized computer codes allow quantifying the geometry of the porosity and the drainage architecture from the very large tomographic datasets (6.4 × 109 voxel each) in unprecedented detail. We determined position, volume, shape and orientation of each resolvable pore and tracked these properties over the duration of the experiment. We found that the pore-size distribution follows a power law. Pores tend to be anisotropic but rarely crack-shaped and have a preferred orientation, likely controlled by a pre-existing fabric in the sample. With on-going dehydration, pores coalesce into a single interconnected pore cluster that is connected to the surface of the sample cylinder and provides an effective drainage pathway. Our observations can be summarized in a model in which gypsum is stabilized by thermal expansion stresses and locally increased pore fluid pressures until the dehydration front approaches to within about 100 μm. Then, the internal stresses are released and dehydration happens efficiently, resulting in new pore space. Pressure release, the production of pores and the advance of the front are coupled in a feedback loop. We discuss our findings in the context of previous studies.

  14. Pore formation during dehydration of a polycrystalline gypsum sample observed and quantified in a time-series synchrotron X-ray micro-tomography experiment

    NASA Astrophysics Data System (ADS)

    Fusseis, F.; Schrank, C.; Liu, J.; Karrech, A.; Llana-Fúnez, S.; Xiao, X.; Regenauer-Lieb, K.

    2012-03-01

    We conducted an in-situ X-ray micro-computed tomography heating experiment at the Advanced Photon Source (USA) to dehydrate an unconfined 2.3 mm diameter cylinder of Volterra Gypsum. We used a purpose-built X-ray transparent furnace to heat the sample to 388 K for a total of 310 min to acquire a three-dimensional time-series tomography dataset comprising nine time steps. The voxel size of 2.2 μm3 proved sufficient to pinpoint reaction initiation and the organization of drainage architecture in space and time. We observed that dehydration commences across a narrow front, which propagates from the margins to the centre of the sample in more than four hours. The advance of this front can be fitted with a square-root function, implying that the initiation of the reaction in the sample can be described as a diffusion process. Novel parallelized computer codes allow quantifying the geometry of the porosity and the drainage architecture from the very large tomographic datasets (20483 voxels) in unprecedented detail. We determined position, volume, shape and orientation of each resolvable pore and tracked these properties over the duration of the experiment. We found that the pore-size distribution follows a power law. Pores tend to be anisotropic but rarely crack-shaped and have a preferred orientation, likely controlled by a pre-existing fabric in the sample. With on-going dehydration, pores coalesce into a single interconnected pore cluster that is connected to the surface of the sample cylinder and provides an effective drainage pathway. Our observations can be summarized in a model in which gypsum is stabilized by thermal expansion stresses and locally increased pore fluid pressures until the dehydration front approaches to within about 100 μm. Then, the internal stresses are released and dehydration happens efficiently, resulting in new pore space. Pressure release, the production of pores and the advance of the front are coupled in a feedback loop.

  15. The distribution and mechanism of pore formation in copper foams fabricated by Lost Carbonate Sintering method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahzeydi, Mohammad Hosein; Parvanian, Amir Masoud; Panjepour, Masoud, E-mail: panjepour@cc.iut.ac.ir

    2016-01-15

    In this research, utilizing X-ray computed tomography (XCT), geometrical characterization, and pore formation mechanisms of highly porous copper foams manufactured by powder metallurgical (PM) process are investigated. Open-cell copper foams with porosity percentages of 60% and 80% and with a pore size within the range of 300–600 μm were manufactured by using potassium carbonate as a space holder agent via the Lost Carbonate Sintering (LCS) technique. XCT and SEM were also employed to investigate the three-dimensional structure of foams and to find the effect of the parameters of the space holders on the structural properties of copper foams. The resultmore » showed an excellent correlation between the structural properties of the foams including the size and shape of the pores, porosity percentage, volume percentage, particle size, and the shape of the sacrificial agent used. Also, the advanced image analysis of XCT images indicated fluctuations up to ± 10% in porosity distribution across different cross-sections of the foams. Simultaneous thermal analysis (STA: DTA–TG) was also used to study the thermal history of the powders used during the manufacturing process of the foams. The results indicated that the melting and thermal decomposition of the potassium carbonate occurred simultaneously at 920 °C and created the porous structure of the foams. By combining the STA result with the result of the tension analysis of cell walls, the mechanisms of open-pore formation were suggested. In fact, most open pores in the samples were formed due to the direct contact of potassium carbonate particles with each other in green compact. Also, it was found that the thermal decomposition of potassium carbonate particles into gaseous CO{sub 2} led to the production of gas pressure inside the closed pores, which eventually caused the creation of cracks on the cell walls and the opening of the pores in foam's structure. - Highlights: • Structural characterization of copper foam produced by LCS method is investigated by tomography images. • The ability of LCS technique to control structural features of produced foams was proved. • The mechanisms of open pores formation were presented.« less

  16. Spatial and temporal distribution of pore gas concentrations during mainstream large-scale trough composting in China.

    PubMed

    Zeng, Jianfei; Shen, Xiuli; Sun, Xiaoxi; Liu, Ning; Han, Lujia; Huang, Guangqun

    2018-05-01

    With the advantages of high treatment capacity and low operational cost, large-scale trough composting has become one of the mainstream composting patterns in composting plants in China. This study measured concentrations of O 2 , CO 2 , CH 4 and NH 3 on-site to investigate the spatial and temporal distribution of pore gas concentrations during mainstream large-scale trough composting in China. The results showed that the temperature in the center of the pile was obviously higher than that in the side of the pile. Pore O 2 concentration rapidly decreased and maintained <5% (in volume) for 38 days or more in both the center and side of the pile and effective O 2 diffusion occurred at most in every two contiguous layers. Pore CO 2 and CH 4 concentrations at each measurement point were positively correlated (0.436 ≤ r ≤ 0.570, P < 0.01) and the concentrations in the side of the pile were obviously lower than those in the center. The top layer exhibited highest pore O 2 concentration and lowest CO 2 and CH 4 concentrations, and the bottom layer was on the contrary. No significant differences in pore NH 3 concentrations between different layers or between different measurement points in the same layer were found. Therefore, mixing the center and the side of the pile when mechanical turning and adjusting the height of the pile according to the physical properties of bulking agents are suggested to optimize the oxygen distribution and promote the composting process during large-scale trough composting when the pile was naturally aerated, which will contribute to improving the current undesirable atmosphere environment in China. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Pore-wall roughness as a fractal surface and theoretical simulation of mercury intrusion/retraction in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsakiroglou, C.D.; Payatakes, A.C.

    The mercury intrusion/retraction curves of many types of porous materials (e.g., sandstones) have sections of finite slope in the region of high and very high pressure. This feature is attributed to the existence of microroughness on the pore walls. In the present work pore-wall roughness features are added to a three-dimensional primary network of chambers-and-throats using ideas of fractal geometry. The roughness of the throats is modeled with a finite number of self-similar triangular prisms of progressively smaller sizes. The roughness of the chambers is modeled in a similar way using right circular cones instead of prisms. Three parameters sufficemore » for the complete characterization of the model of fractal roughness, namely, the number of features per unit length, the common angle of sharpness, and the number of layers (which is taken to be the same for throats and chambers). Analytical relations that give the surface area, pore volume, and mercury saturation of the pore network as functions of the fractal roughness parameters are developed for monolayer and multilayer arrangements. The chamber-and-throat network with fractal pore-wall roughness is used to develop an extended version of the computer-aided simulator of mercury porosimetry that has been reported in previous publications. This new simulator is used to investigate the effects of the roughness features on the form of mercury intrusion/retraction curves. It turns out that the fractal model of the porewall roughness gives an adequate representation of real porous media, and capillary pressure curves which are similar to the experimental ones for many typical porous materials such as sandstones. The method is demonstrated with the analysis of a Greek sandstone.« less

  18. Relation of Thermal Conductivity with Process Induced Anisotropic Void Systems in EB-PVD PYSZ Thermal Barrier Coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renteria, A. Flores; Saruhan-Brings, B.; Ilavsky, J.

    2008-03-03

    Thermal barrier coatings (TBCs) deposited by Electron-beam physical deposition (EB-PVD) protect the turbine blades situated at the high pressure sector of the aircraft and stationary turbines. It is an important task to uphold low thermal conductivity in TBCs during long-term service at elevated temperatures. One of the most promising methods to fulfil this task is to optimize the properties of PYSZ-based TBC by tailoring its microstructure. Thermal conductivity of the EB-PVD produced PYSZ TBCs is influenced mainly by the size, shape, orientation and volume of the various types of porosity present in the coatings. These pores can be classified asmore » open (inter-columnar and between feather arms gaps) and closed (intra-columnar pores). Since such pores are located within the three-dimensionally deposited columns and enclose large differences in their sizes, shapes, distribution and anisotropy, the accessibility for their characterization is very complex and requires the use of sophisticated methods. In this work, three different EB-PVD TBC microstructures were manufactured by varying the process parameters, yielding various characteristics of their pores. The corresponding thermal conductivities in as-coated state and after ageing at 11000C/1h and 100h were measured via Laser Flash Analysis Method (LFA). The pore characteristics and their individual effect on the thermal conductivity are analysed by USAXS which is supported by subsequent modelling and LFA methods, respectively. Evident differences in the thermal conductivity values of each microstructure were found in as-coated and aged conditions. In summary, broader columns introduce higher values in thermal conductivity. In general, thermal conductivity increases after ageing for all three investigated microstructures, although those with initial smaller pore surface area show smaller changes.« less

  19. Relation of thermal conductivity with process induced anisotropic void system in EB-PVD PYSZ thermal barrier coatings.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renteria, A. F.; Saruhan, B.; Ilavsky, J.

    2007-01-01

    Thermal barrier coatings (TBCs) deposited by Electron-beam physical deposition (EB-PVD) protect the turbine blades situated at the high pressure sector of the aircraft and stationary turbines. It is an important task to uphold low thermal conductivity in TBCs during long-term service at elevated temperatures. One of the most promising methods to fulfil this task is to optimize the properties of PYSZ-based ,TBC by tailoring its microstructure. Thermal conductivity of the EB-PVD produced PYSZ TBCs is influenced mainly by the size, shape, orientation and volume of the various types of porosity present in the coatings. These pores can be classified asmore » open (inter-columnar and between feather arms gaps) and closed (intra-columnar pores). Since such pores are located within the three-dimensionally deposited columns and enclose large differences in their sizes, shapes, distribution and anisotropy, the accessibility for their characterization is very complex and requires the use of sophisticated methods. In this work, three different EB-PVD TBC microstructures were manufactured by varying the process parameters, yielding various characteristics of their pores. The corresponding thermal conductivities in as-coated state and after ageing at 1100C/1h and 100h were measured via Laser Flash Analysis Method (LFA). The pore characteristics and their individual effect on the thermal conductivity are analysed by USAXS which is supported by subsequent modelling and LFA methods, respectively. Evident differences in the thermal conductivity values of each microstructure were found in as-coated and aged conditions. In summary, broader columns introduce higher values in thermal conductivity. In general, thermal conductivity increases after ageing for all three investigated microstructures, although those with initial smaller pore surface area show smaller changes.« less

  20. Extravasation of adhering vesicles

    NASA Astrophysics Data System (ADS)

    Tordeux, C.; Fournier, J.-B.

    2002-12-01

    We study how the passage of lipid vesicles through a small pore can be induced by the difference in non-specific adhesion energy between the two sides of the substrate bearing the pore. This process is inspired from the extravasation of cells or liposomes from blood vessels, which involves adhesion binders. We study the adhesion-dominated regime and we show that the passage of a vesicle of volume V and area A is selective in terms of the reduced volume v ~ V/A3/2. Extravasation occurs for adhesion ratios of order unity. We also consider the possibility of pressure-induced extravasation in the presence of adhesion. Finally, we propose a micro-device based on adhesion-induced extravasation, which is designed to sort vesicles according to their deflatedness.

  1. Zeolites with Continuously Tuneable Porosity**

    PubMed Central

    Wheatley, Paul S; Chlubná-Eliášová, Pavla; Greer, Heather; Zhou, Wuzong; Seymour, Valerie R; Dawson, Daniel M; Ashbrook, Sharon E; Pinar, Ana B; McCusker, Lynne B; Opanasenko, Maksym; Čejka, Jiří; Morris, Russell E

    2014-01-01

    Zeolites are important materials whose utility in industry depends on the nature of their porous structure. Control over microporosity is therefore a vitally important target. Unfortunately, traditional methods for controlling porosity, in particular the use of organic structure-directing agents, are relatively coarse and provide almost no opportunity to tune the porosity as required. Here we show how zeolites with a continuously tuneable surface area and micropore volume over a wide range can be prepared. This means that a particular surface area or micropore volume can be precisely tuned. The range of porosity we can target covers the whole range of useful zeolite porosity: from small pores consisting of 8-rings all the way to extra-large pores consisting of 14-rings. PMID:25284344

  2. Leaching and ponding of viral contaminants following land application of biosolids on sandy-loam soil.

    PubMed

    Wong, Kelvin; Harrigan, Tim; Xagoraraki, Irene

    2012-12-15

    Much of the land available for application of biosolids is cropland near urban areas. Biosolids are often applied on hay or grassland during the growing season or on corn ground before planting or after harvest in the fall. In this study, mesophilic anaerobic digested (MAD) biosolids were applied at 56,000 L/ha on a sandy-loam soil over large containment lysimeters seeded to perennial covers of orchardgrass (Dactylis glomerata L.), switchgrass (Panicum virgatum), or planted annually to maize (Zea mays L.). Portable rainfall simulators were to maintain the lysimeters under a nearly saturated (90%, volumetric basis) conditions. Lysimeter leachate and surface ponded water samples were collected and analyzed for somatic phage, adenoviruses, and anionic (chloride) and microbial (P-22 bacteriophage) tracers. Neither adenovirus nor somatic phage was recovered from the leachate samples. P-22 bacteriophage was found in the leachate of three lysimeters (removal rates ranged from 1.8 to 3.2 log(10)/m). Although the peak of the anionic tracer breakthrough occurred at a similar pore volume in each lysimeter (around 0.3 pore volume) the peak of P-22 breakthrough varied between lysimeters (<0.1, 0.3 and 0.7 pore volume). The early time to peak breakthrough of anionic and microbial tracers indicated preferential flow paths, presumably from soil cracks, root channels, worm holes or other natural phenomena. The concentration of viral contaminants collected in ponded surface water ranged from 1 to 10% of the initial concentration in the applied biosolids. The die off of somatic phage and P-22 in the surface water was fit to a first order decay model and somatic phage reached background level at about day ten. In conclusion, sandy-loam soils can effectively remove/adsorb the indigenous viruses leached from the land-applied biosolids, but there is a potential of viral pollution from runoff following significant rainfall events when biosolids remain on the soil surface. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Effect of wettability on two-phase quasi-static displacement: Validation of two pore scale modeling approaches

    NASA Astrophysics Data System (ADS)

    Verma, Rahul; Icardi, Matteo; Prodanović, Maša

    2018-05-01

    Understanding of pore-scale physics for multiphase flow in porous media is essential for accurate description of various flow phenomena. In particular, capillarity and wettability strongly influence capillary pressure-saturation and relative permeability relationships. Wettability is quantified by the contact angle of the fluid-fluid interface at the pore walls. In this work we focus on the non-trivial interface equilibria in presence of non-neutral wetting and complex geometries. We quantify the accuracy of a volume-of-fluid (VOF) formulation, implemented in a popular open-source computational fluid dynamics code, compared with a new formulation of a level set (LS) method, specifically developed for quasi-static capillarity-dominated displacement. The methods are tested in rhomboidal packings of spheres for a range of contact angles and for different rhomboidal configurations and the accuracy is evaluated against the semi-analytical solutions obtained by Mason and Morrow (1994). While the VOF method is implemented in a general purpose code that solves the full Navier-Stokes (NS) dynamics in a finite volume formulation, with additional terms to model surface tension, the LS method is optimized for the quasi-static case and, therefore, less computationally expensive. To overcome the shortcomings of the finite volume NS-VOF system for low capillary number flows, and its computational cost, we introduce an overdamped dynamics and a local time stepping to speed up the convergence to the steady state, for every given imposed pressure gradient (and therefore saturation condition). Despite these modifications, the methods fundamentally differ in the way they capture the interface, as well as in the number of equations solved and in the way the mean curvature (or equivalently capillary pressure) is computed. This study is intended to provide a rigorous validation study and gives important indications on the errors committed by these methods in solving more complex geometry and dynamics, where usually many sources of errors are interplaying.

  4. In-situ microwave synthesis of graphene-TiO2 nanocomposites with enhanced photocatalytic properties for the degradation of organic pollutants.

    PubMed

    Shanmugam, Mahalingam; Alsalme, Ali; Alghamdi, Abdulaziz; Jayavel, Ramasamy

    2016-10-01

    Graphene-titanium oxide (G-TiO2) nanocomposites were synthesized by a novel surfactant free, environmentally friendly one-port in-situ microwave method. The structure of the nanocomposite was characterized by the X-ray diffraction analysis and the morphology by using scanning electron microscopic and transmission electron microscopic images. The functional groups and carbon band structures were identified using FTIR and Raman spectral analysis. TiO2 nanoparticles in the size range of 5-10nm were distributed on the graphene sheets. The surface area of pure TiO2 and G-TiO2 nanocomposite was measured to be 20.11 and 173.76m(2)/g respectively. The pore volume and pore size of TiO2 were 0.018cm(3)/g and 1.5266nm respectively. G-TiO2 composite possesses higher pore volume (0.259cm(3)/g) and pore size 3.2075nm. The binding states of C, O and Ti of nanocomposite were analyzed by X-ray photoelectron spectroscopy, which confirmed the chemical bonding between graphene-TiO2. The photocatalytic activity of pure TiO2 and G-TiO2 nanocomposite was studied under UV and visible light irradiation sources with methylene blue dye. It has been observed that the degradation was faster in G-TiO2 nanocomposite than pure TiO2 nanoparticles. The rate constant and half life time were calculated from the kinetic studies of the degradation. The highest degradation efficiency of 97% was achieved in UV light and 96% for visible light irradiation with G-TiO2 as a catalyst. The studies reveal that G-TiO2 nanocomposite can be an effective catalyst for industrial waste water treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. High-flux ceramic membranes with a nanomesh of metal oxide nanofibers.

    PubMed

    Ke, Xue Bin; Zheng, Zhan Feng; Liu, Hong Wei; Zhu, Huai Yong; Gao, Xue Ping; Zhang, Li Xiong; Xu, Nan Ping; Wang, Huanting; Zhao, Hui Jun; Shi, Jeffrey; Ratinac, Kyle R

    2008-04-24

    Traditional ceramic separation membranes, which are fabricated by applying colloidal suspensions of metal hydroxides to porous supports, tend to suffer from pinholes and cracks that seriously affect their quality. Other intrinsic problems for these membranes include dramatic losses of flux when the pore sizes are reduced to enhance selectivity and dead-end pores that make no contribution to filtration. In this work, we propose a new strategy for addressing these problems by constructing a hierarchically structured separation layer on a porous substrate using large titanate nanofibers and smaller boehmite nanofibers. The nanofibers are able to divide large voids into smaller ones without forming dead-end pores and with the minimum reduction of the total void volume. The separation layer of nanofibers has a porosity of over 70% of its volume, whereas the separation layer in conventional ceramic membranes has a porosity below 36% and inevitably includes dead-end pores that make no contribution to the flux. This radical change in membrane texture greatly enhances membrane performance. The resulting membranes were able to filter out 95.3% of 60-nm particles from a 0.01 wt % latex while maintaining a relatively high flux of between 800 and 1000 L/m2.h, under a low driving pressure (20 kPa). Such flow rates are orders of magnitude greater than those of conventional membranes with equal selectivity. Moreover, the flux was stable at approximately 800 L/m2.h with a selectivity of more than 95%, even after six repeated runs of filtration and calcination. Use of different supports, either porous glass or porous alumina, had no substantial effect on the performance of the membranes; thus, it is possible to construct the membranes from a variety of supports without compromising functionality. The Darcy equation satisfactorily describes the correlation between the filtration flux and the structural parameters of the new membranes. The assembly of nanofiber meshes to combine high flux with excellent selectivity is an exciting new direction in membrane fabrication.

  6. Hydrogen Storage in Metal Hydrides

    DTIC Science & Technology

    1990-08-01

    TitlePage 1. Properties of Reticulated Carbon Foam 26 2. Hydrogen Storage Capacity of Various Metal Hydrides 27 iv INTRODUCTION This is the final technical...pores, and results in coating of only the surface. The substrate for the fabrication of the magnesium foam was a reticulated carbon foam. This...material is an open-pore foam composed solely of vitreous carbon . It has an exceptionally high void volume (97%) and a high surface area, combined with self

  7. Characterization of pore structure in cement-based materials using pressurization-depressurization cycling mercury intrusion porosimetry (PDC-MIP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Jian, E-mail: Jian.Zhou@tudelft.n; Ye Guang, E-mail: g.ye@tudelft.n; Magnel Laboratory for Concrete Research, Department of Structural Engineering, Ghent University, Technologiepark-Zwijnaarde 904 B-9052, Ghent

    2010-07-15

    Numerous mercury intrusion porosimetry (MIP) studies have been carried out to investigate the pore structure in cement-based materials. However, the standard MIP often results in an underestimation of large pores and an overestimation of small pores because of its intrinsic limitation. In this paper, an innovative MIP method is developed in order to provide a more accurate estimation of pore size distribution. The new MIP measurements are conducted following a unique mercury intrusion procedure, in which the applied pressure is increased from the minimum to the maximum by repeating pressurization-depressurization cycles instead of a continuous pressurization followed by a continuousmore » depressurization. Accordingly, this method is called pressurization-depressurization cycling MIP (PDC-MIP). By following the PDC-MIP testing sequence, the volumes of the throat pores and the corresponding ink-bottle pores can be determined at every pore size. These values are used to calculate pore size distribution by using the newly developed analysis method. This paper presents an application of PDC-MIP on the investigation of the pore size distribution in cement-based materials. The experimental results of PDC-MIP are compared with those measured by standard MIP. The PDC-MIP is further validated with the other experimental methods and numerical tool, including nitrogen sorption, backscanning electron (BSE) image analysis, Wood's metal intrusion porosimetry (WMIP) and the numerical simulation by the cement hydration model HYMOSTRUC3D.« less

  8. Characterization of nanoporous shales with gas sorption

    NASA Astrophysics Data System (ADS)

    Joewondo, N.; Prasad, M.

    2017-12-01

    The understanding of the fluid flow in porous media requires the knowledge of the pore system involved. Fluid flow in fine grained shales falls under different regime than transport regime in conventional reservoir due to the different average pore sizes in the two materials; the average pore diameter of conventional sandstones is on the micrometer scale, while of shales can be as small as several nanometers. Mercury intrusion porosimetry is normally used to characterize the pores of conventional reservoir, however with increasingly small pores, the injection pressure required to imbibe the pores becomes infinitely large due to surface tension. Characterization of pores can be expressed by a pore size distribution (PSD) plot, which reflects distribution of pore volume or surface area with respect to pore size. For the case of nanoporous materials, the surface area, which serves as the interface between the rock matrix and fluid, becomes increasingly large and important. Physisorption of gas has been extensively studied as a method of nanoporous solid characterization (particularly for the application of catalysis, metal organic frameworks, etc). The PSD is obtained by matching the experimental result to the calculated theoretical result (using Density Functional Theory (DFT), a quantum mechanics based modelling method for molecular scale interactions). We present the challenges and experimental result of Nitrogen and CO2 gas sorption on shales with various mineralogy and the interpreted PSD obtained by DFT method. Our result shows significant surface area contributed by the nanopores of shales, hence the importance of surface area measurements for the characterization of shales.

  9. Early-age hydration and volume change of calcium sulfoaluminate cement-based binders

    NASA Astrophysics Data System (ADS)

    Chaunsali, Piyush

    Shrinkage cracking is a predominant deterioration mechanism in structures with high surface-to-volume ratio. One way to allay shrinkage-induced stresses is to use calcium sulfoaluminate (CSA) cement whose early-age expansion in restrained condition induces compressive stress that can be utilized to counter the tensile stresses due to shrinkage. In addition to enhancing the resistance against shrinkage cracking, CSA cement also has lower carbon footprint than that of Portland cement. This dissertation aims at improving the understanding of early-age volume change of CSA cement-based binders. For the first time, interaction between mineral admixtures (Class F fly ash, Class C fly ash, and silica fume) and OPC-CSA binder was studied. Various physico-chemical factors such as the hydration of ye'elimite (main component in CSA cement), amount of ettringite (the main phase responsible for expansion in CSA cement), supersaturation with respect to ettringite in cement pore solution, total pore volume, and material stiffness were monitored to examine early-age expansion characteristics. This research validated the crystallization stress theory by showing the presence of higher supersaturation level of ettringite, and therefore, higher crystallization stress in CSA cement-based binders. Supersaturation with respect to ettringite was found to increase with CSA dosage and external supply of gypsum. Mineral admixtures (MA) altered the expansion characteristics in OPC-CSA-MA binders with fixed CSA cement. This study reports that fly ash (FA) behaves differently depending on its phase composition. The Class C FA-based binder (OPC-CSA-CFA) ceased expanding beyond two days unlike other OPC-CSA-MA binders. Three factors were found to govern expansion of CSA cement-based binders: 1) volume fraction of ettringite in given pore volume, 2) saturation level of ettringite, and 3) dynamic modulus. Various models were utilized to estimate the macroscopic tensile stress in CSA cement-based binders without taking into account the viscoelastic effects. For the first time, model based on poromechanics was used to calculate the macroscopic tensile stress that develops in CSA cement-based binders due to crystallization of ettringite. The models enabled a reasonable prediction of tensile stress due to crystallization of ettringite including the failure of an OPC-CSA binder which had high CSA cement content. Elastic strain based on crystallization stress was calculated and compared with the observed strain. A mismatch between observed and calculated elastic strain indicated the presence of early-age creep. Lastly, the application of CSA cement in concretes is discussed to link the paste and concrete behavior.

  10. Supercapacitors based on ordered mesoporous carbon derived from furfuryl alcohol: effect of the carbonized temperature.

    PubMed

    Li, Na; Xu, Jianxiong; Chen, Han; Wang, Xianyou

    2014-07-01

    Supercapacitors are successfully prepared from ordered mesoporous carbon (OMC) synthesized by employing the mesoporous silica, SBA-15 as template and furfuryl alcohol as carbon source. It is found that the carbonized temperature greatly influences the physical properties of the synthesized mesoporous carbon materials. The optimal carbonized temperature is measured to be 600 degrees C under which OMC with the specific surface area of 1219 m2/g and pore volume of 1.31 cm3/g and average pore diameter of - 3 nm are synthesized. The OMC materials synthesized under different carbonized temperature are used as electrode material of supercapacitors and the electrochemical properties of the OMC materials are compared by using cyclic voltammetry, electrochemical impedance spectroscopy, galvanostatic charge-discharge and self-discharge tests. The results show that the electrochemical properties of the OMC materials are directly related to the specific surface area and pore volume of the mesoporous carbon and the electrode prepared from the OMC synthesized under the carbonized temperature of 600 degrees C (OMC-600) exhibits the most excellent electrochemical performance with the specific capacitance of 207.08 F/g obtained from cyclic voltammetry at the scan rate of 1 mV/s, small resistance and low self-discharge rate. Moreover, the supercapacitor based on the OMC-600 material exhibits good capacitance properties and stable cycle behavior with the specific capacitance of 105 F/g at the current density of 700 mA/g, and keeps a specific capacitance of 98 F/g after 20000 consecutive charge/discharge cycles.

  11. Effects of Igneous Intrusion on Microporosity and Gas Adsorption Capacity of Coals in the Haizi Mine, China

    PubMed Central

    2014-01-01

    This paper describes the effects of igneous intrusions on pore structure and adsorption capacity of the Permian coals in the Huaibei Coalfield, China. Twelve coal samples were obtained at different distances from a ~120 m extremely thick sill. Comparisons were made between unaltered and heat-affected coals using geochemical data, pore-fracture characteristics, and adsorption properties. Thermal alteration occurs down to ~1.3 × sill thickness. Approaching the sill, the vitrinite reflectance (R o) increased from 2.30% to 2.78%, forming devolatilization vacuoles and a fine mosaic texture. Volatile matter (VM) decreased from 17.6% to 10.0% and the moisture decreased from 3.0% to 1.6%. With decreasing distance to the sill, the micropore volumes initially increased from 0.0054 cm3/g to a maximum of 0.0146 cm3/g and then decreased to 0.0079 cm3/g. The results show that the thermal evolution of the sill obviously changed the coal geochemistry and increased the micropore volume and adsorption capacity of heat-affected coal (60–160 m from the sill) compared with the unaltered coals. The trap effect of the sill prevented the high-pressure gas from being released, forming gas pocket. Mining activities near the sill created a low pressure zone leading to the rapid accumulation of methane and gas outbursts in the Haizi Mine. PMID:24723841

  12. Effect of natural Bayah zeolite particle size reduction to physico-chemical properties and absortion against potassium permanganate (KMnO4)

    NASA Astrophysics Data System (ADS)

    Widayanti, Siti Mariana; Syamsu, Khaswar; Warsiki, Endang; Yuliani, Sri

    2016-02-01

    Recently, researches on nanotechnology have been developed very rapid, as well as the utilization of nano-zeolites. Nano-sized material has several advantages which are expanding absorptive surfaces so it will enhance the material absorption and shorten the absorption time. Zeolite as a KMnO4 binder, has been widely recognized for its ability to extend the shelf life of vegetables and fruits. This study was conducted to determine zeolites physico-chemical characters from different particle size and the effect on KMnO4 absorption. Potassium permanganate (KMnO4) is a strong oxidizer for reducing the quantity of ethylene in storage process of fresh horticultural products. The treatment consisted of (1) different length of milling time (10, 20, 30, 40, and 60 minutes) and (2) the duration of chemical activation with 1 N KOH solution. Physical and chemical characters of zeolite were analyzed using BET, PSA, XRD and SEM. The research design was randomized design. The result implied that milling time was significantly affecting the zeolite particle size, material surface area, and the size of pore diameter and volume. Milling treatment for 40 minutes produced higher zeolite surface area and pore volume than other treatments. While the duration of chemical activation using 1 N KOH solution gives different effect on zeolite absorption to KMnO4 solution. Milling time for 60 minutes and activated for 48 hours has higher initial adsorption than other treatments.

  13. Determination of degradation rates of organic substances in the unsaturated soil zone depending on the grain size fractions of various soil types

    NASA Astrophysics Data System (ADS)

    Fichtner, Thomas; Stefan, Catalin; Goersmeyer, Nora

    2015-04-01

    Rate and extent of the biological degradation of organic substances during transport through the unsaturated soil zone is decisively influenced by the chemical and physical properties of the pollutants such as water solubility, toxicity and molecular structure. Furthermore microbial degradation processes are also influenced by soil-specific properties. An important parameter is the soil grain size distribution on which the pore volume and the pore size depends. Changes lead to changes in air and water circulation as well as preferred flow paths. Transport capacity of water inclusive nutrients is lower in existing bad-drainable fine pores in soils with small grain size fractions than in well-drainable coarse pores in a soil with bigger grain size fractions. Because fine pores are saturated with water for a longer time than the coarse pores and oxygen diffusion in water is ten thousand times slower than in air, oxygen is replenished much slower in soils with small grain size fractions. As a result life and growth conditions of the microorganisms are negatively affected. This leads to less biological activity, restricted degradation/mineralization of pollutants or altered microbial processes. The aim of conducted laboratory column experiments was to study the correlation between the grain size fractions respectively pore sizes, the oxygen content and the biodegradation rate of infiltrated organic substances. Therefore two columns (active + sterile control) were filled with different grain size fractions (0,063-0,125 mm, 0,2-0,63 mm and 1-2 mm) of soils. The sterile soil was inoculated with a defined amount of a special bacteria culture (sphingobium yanoikuae). A solution with organic substances glucose, oxalic acid, sinaphylic alcohol and nutrients was infiltrated from the top in intervals. The degradation of organic substances was controlled by the measurement of dissolved organic carbon in the in- and outflow of the column. The control of different pore volumes respectively pore sizes in the soil samples occurred by air pycnometer measurement and determination of soil moisture characteristic by evaporation method according to Wind/Schindler. The present study results can be useful to find a correlation between various soil types with different grain size distributions and the suitability of these soils for example for the infiltration of treated wastewater in the context of managed aquifer recharge (MAR) measures.

  14. Enhanced capture of elemental mercury by bamboo-based sorbents.

    PubMed

    Tan, Zengqiang; Xiang, Jun; Su, Sheng; Zeng, Hancai; Zhou, Changsong; Sun, Lushi; Hu, Song; Qiu, Jianrong

    2012-11-15

    To develop cost-effective sorbent for gas-phase elemental mercury removal, the bamboo charcoal (BC) produced from renewable bamboo and KI modified BC (BC-I) were used for elemental mercury removal. The effect of NO, SO2 on gas-phase Hg0 adsorption by KI modified BC was evaluated on a fixed bed reactor using an online mercury analyzer. BET surface area analysis, temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) were used to determine the pore structure and surface chemistry of the sorbents. The results show that KI impregnation reduced the sorbents' BET surface area and total pore volume compared with that of the original BC. But the BC-I has excellent adsorption capacity for elemental mercury at a relatively higher temperature of 140 °C and 180 °C. The presence of NO or SO2 could inhibit Hg0 capture, but BC-I has strong anti-poisoning ability. The specific reaction mechanism has been further analyzed. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Effects of pretreatment on the surface chemistry and pore size properties of nitrogen functionalized and alkylated granular activated carbon

    NASA Astrophysics Data System (ADS)

    Chen, Jiajun; Zhai, Yunbo; Chen, Hongmei; Li, Caiting; Zeng, Guangming; Pang, Daoxiong; Lu, Pei

    2012-12-01

    In this paper, granular activated carbon (GAC) from coconut shell was pretreated by HNO3, H2O2 and urea-formaldehyde resin, respectively. Then the obtained materials were functionalized in the same way for nitrogen group, and then alkylated. Effects of pretreatment on the surface chemistry and pore size of modified GACs were studied. Surface area and micropore volume of modified GAC which pretreated by HNO3 were 723.88 m2/g and 0.229 cm3/g, respectively, while virgin GAC were 742.34 m2/g and 0.276 cm3/g. Surface area and micropore volume decrease of the modified GACs which pretreated by the others two methods were more drastically. The types of groups presented were analyzed by electrophoresis, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Nsbnd CH3 group and Cdbnd N group were detected on the surfaces of these three kinds of modified GACs. Results of XPS showed that the nitrogen functions of modified GAC which pretreated by H2O2 was 4.07%, it was more than that of the others two pretreatment methods. However, the modified GAC which pretreated by urea-formaldehyde resin was fixed more pyridine structure, which structure percentage was 45.88%, in addition, there were more basic groups or charge on the surface than the others.

  16. Multi-Material Tissue Engineering Scaffold with Hierarchical Pore Architecture.

    PubMed

    Morgan, Kathy Ye; Sklaviadis, Demetra; Tochka, Zachary L; Fischer, Kristin M; Hearon, Keith; Morgan, Thomas D; Langer, Robert; Freed, Lisa E

    2016-08-23

    Multi-material polymer scaffolds with multiscale pore architectures were characterized and tested with vascular and heart cells as part of a platform for replacing damaged heart muscle. Vascular and muscle scaffolds were constructed from a new material, poly(limonene thioether) (PLT32i), which met the design criteria of slow biodegradability, elastomeric mechanical properties, and facile processing. The vascular-parenchymal interface was a poly(glycerol sebacate) (PGS) porous membrane that met different criteria of rapid biodegradability, high oxygen permeance, and high porosity. A hierarchical architecture of primary (macroscale) and secondary (microscale) pores was created by casting the PLT32i prepolymer onto sintered spheres of poly(methyl methacrylate) (PMMA) within precisely patterned molds followed by photocuring, de-molding, and leaching out the PMMA. Pre-fabricated polymer templates were cellularized, assembled, and perfused in order to engineer spatially organized, contractile heart tissue. Structural and functional analyses showed that the primary pores guided heart cell alignment and enabled robust perfusion while the secondary pores increased heart cell retention and reduced polymer volume fraction.

  17. Numerical models of pore pressure and stress changes along basement faults due to wastewater injection: Applications to the 2014 Milan, Kansas Earthquake

    USGS Publications Warehouse

    Hearn, Elizabeth H.; Koltermann, Christine; Rubinstein, Justin R.

    2018-01-01

    We have developed groundwater flow models to explore the possible relationship between wastewater injection and the 12 November 2014 Mw 4.8 Milan, Kansas earthquake. We calculate pore pressure increases in the uppermost crust using a suite of models in which hydraulic properties of the Arbuckle Formation and the Milan earthquake fault zone, the Milan earthquake hypocenter depth, and fault zone geometry are varied. Given pre‐earthquake injection volumes and reasonable hydrogeologic properties, significantly increasing pore pressure at the Milan hypocenter requires that most flow occur through a conductive channel (i.e., the lower Arbuckle and the fault zone) rather than a conductive 3‐D volume. For a range of reasonable lower Arbuckle and fault zone hydraulic parameters, the modeled pore pressure increase at the Milan hypocenter exceeds a minimum triggering threshold of 0.01 MPa at the time of the earthquake. Critical factors include injection into the base of the Arbuckle Formation and proximity of the injection point to a narrow fault damage zone or conductive fracture in the pre‐Cambrian basement with a hydraulic diffusivity of about 3–30 m2/s. The maximum pore pressure increase we obtain at the Milan hypocenter before the earthquake is 0.06 MPa. This suggests that the Milan earthquake occurred on a fault segment that was critically stressed prior to significant wastewater injection in the area. Given continued wastewater injection into the upper Arbuckle in the Milan region, assessment of the middle Arbuckle as a hydraulic barrier remains an important research priority.

  18. Characterization of the porous structures of the green body and sintered biomedical titanium scaffolds with micro-computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arifvianto, B., E-mail: b.arifvianto@tudelft.nl; L

    The present research was aimed at gaining an understanding of the porous structure changes from the green body through water leaching and sintering to titanium scaffolds. Micro-computed tomography (micro-CT) was performed to generate 3D models of titanium scaffold preforms containing carbamide space-holding particles and sintered scaffolds containing macro- and micro-pores. The porosity values and structural parameters were determined by means of image analysis. The result showed that the porosity values, macro-pore sizes, connectivity densities and specific surface areas of the titanium scaffolds sintered at 1200 °C for 3 h did not significantly deviate from those of the green structures withmore » various volume fractions of the space holder. Titanium scaffolds with a maximum specific surface area could be produced with an addition of 60–65 vol% carbamide particles to the matrix powder. The connectivity of pores inside the scaffold increased with rising volume fraction of the space holder. The shrinkage of the scaffolds prepared with > 50 vol% carbamide space holder, occurring during sintering, was caused by the reductions of macro-pore sizes and micro-pore sizes as well as the thickness of struts. In conclusion, the final porous structural characteristics of titanium scaffolds could be estimated from those of the green body. - Highlights: •Porous structures of green body and sintered titanium scaffolds was studied. •Porous structures of both samples were quantitatively characterized with micro-CT. •Porous structures of scaffolds could be controlled from the green body. •Shrinkage mechanisms of titanium scaffolds during sintering was established.« less

  19. Enhanced performance of sulfur-infiltrated bimodal mesoporous carbon foam by chemical solution deposition as cathode materials for lithium sulfur batteries

    NASA Astrophysics Data System (ADS)

    Jeong, Tae-Gyung; Chun, Jinyong; Cho, Byung-Won; Lee, Jinwoo; Kim, Yong-Tae

    2017-02-01

    The porous carbon matrix is widely recognized to be a promising sulfur reservoir to improve the cycle life by suppressing the polysulfide dissolution in lithium sulfur batteries (LSB). Herein, we synthesized mesocellular carbon foam (MSUF-C) with bimodal mesopore (4 and 30 nm) and large pore volume (1.72 cm2/g) using MSUF silica as a template and employed it as both the sulfur reservoir and the conductive agent in the sulfur cathode. Sulfur was uniformly infiltrated into MSUF-C pores by a chemical solution deposition method (MSUF-C/S CSD) and the amount of sulfur loading was achieved as high as 73% thanks to the large pore volume with the CSD approach. MSUF-C/S CSD showed a high capacity (889 mAh/g after 100 cycles at 0.2 C), an improved rate capability (879 mAh/g at 1C and 420 mAh/g at 2C), and a good capacity retention with a fade rate of 0.16% per cycle over 100 cycles.

  20. Enhanced performance of sulfur-infiltrated bimodal mesoporous carbon foam by chemical solution deposition as cathode materials for lithium sulfur batteries

    PubMed Central

    Jeong, Tae-Gyung; Chun, Jinyong; Cho, Byung-Won; Lee, Jinwoo; Kim, Yong-Tae

    2017-01-01

    The porous carbon matrix is widely recognized to be a promising sulfur reservoir to improve the cycle life by suppressing the polysulfide dissolution in lithium sulfur batteries (LSB). Herein, we synthesized mesocellular carbon foam (MSUF-C) with bimodal mesopore (4 and 30 nm) and large pore volume (1.72 cm2/g) using MSUF silica as a template and employed it as both the sulfur reservoir and the conductive agent in the sulfur cathode. Sulfur was uniformly infiltrated into MSUF-C pores by a chemical solution deposition method (MSUF-C/S CSD) and the amount of sulfur loading was achieved as high as 73% thanks to the large pore volume with the CSD approach. MSUF-C/S CSD showed a high capacity (889 mAh/g after 100 cycles at 0.2 C), an improved rate capability (879 mAh/g at 1C and 420 mAh/g at 2C), and a good capacity retention with a fade rate of 0.16% per cycle over 100 cycles. PMID:28165041

  1. Preparation of modified semi-coke by microwave heating and adsorption kinetics of methylene blue.

    PubMed

    Wang, Xin; Peng, Jin-Hui; Duan, Xin-Hui; Srinivasakannan, Chandrasekar

    2013-01-01

    Preparation of modified semi-coke has been achieved, using phosphoric acid as the modifying agent, by microwave heating from virgin semi-coke. Process optimization using a Central Composite Design (CCD) design of Response Surface Methodology (RSM) technique for the preparation of modifies semi-coke is presented in this paper. The optimum conditions for producing modified semi-coke were: concentration of phosphoric acid 2.04, heating time 20 minutes and temperature 587 degrees C, with the optimum iodine of 862 mg/g and yield of 47.48%. The textural characteristics of modified semi-coke were analyzed using scanning electron microscopy (SEM) and nitrogen adsorption isotherm. The BET surface area of modified semi-coke was estimated to be 989.60 m2/g, with the pore volume of 0.74 cm3/g and a pore diameter of 3.009 nm, with micro-pore volume contributing to 62.44%. The Methylene Blue monolayer adsorption capacity was found to be mg/g at K. The adsorption capacity of the modified semi-coke highlights its suitability for liquid phase adsorption application with a potential usage in waste water treatment.

  2. Synthesis of Spongy-Like Mesoporous Hydroxyapatite from Raw Waste Eggshells for Enhanced Dissolution of Ibuprofen Loaded via Supercritical CO2

    PubMed Central

    Ibrahim, Abdul-Rauf; Li, Xiangyun; Zhou, Yulan; Huang, Yan; Chen, Wenwen; Wang, Hongtao; Li, Jun

    2015-01-01

    The use of cheaper and recyclable biomaterials (like eggshells) to synthesize high purity hydroxyapatite (HAp) with better properties (small particle size, large surface area and pore volume) for applications (in environmental remediation, bone augmentation and replacement, and drug delivery systems) is vital since high-purity synthetic calcium sources are expensive. In this work, pure and mesoporous HAp nanopowder with large pore volume (1.4 cm3/g) and surface area (284.1 m2/g) was produced from raw eggshells at room temperature using a simple two-step procedure. The control of precursor droplets could stabilize the pH value of the reaction solution, because of the size of the needle (of the syringe pump used for precursor additions) leading to production of HAp with high surface area and pore size. The as-produced HAp revealed high ibuprofen (as a model drug) loading (1.38 g/g HAp), enhanced dissolution and controllable release of the drug via solute-saturated supercritical carbon dioxide. PMID:25860950

  3. Hydrothermal carbonization (HTC) of wheat straw: influence of feedwater pH prepared by acetic acid and potassium hydroxide.

    PubMed

    Reza, M Toufiq; Rottler, Erwin; Herklotz, Laureen; Wirth, Benjamin

    2015-04-01

    In this study, influence of feedwater pH (2-12) was studied for hydrothermal carbonization (HTC) of wheat straw at 200 and 260°C. Acetic acid and KOH were used as acidic and basic medium, respectively. Hydrochars were characterized by elemental and fiber analyses, SEM, surface area, pore volume and size, and ATR-FTIR, while HTC process liquids were analyzed by HPLC and GC. Both hydrochar and HTC process liquid qualities vary with feedwater pH. At acidic pH, cellulose and elemental carbon increase in hydrochar, while hemicellulose and pseudo-lignin decrease. Hydrochars produced at pH 2 feedwater has 2.7 times larger surface area than that produced at pH 12. It also has the largest pore volume (1.1 × 10(-1) ml g(-1)) and pore size (20.2 nm). Organic acids were increasing, while sugars were decreasing in case of basic feedwater, however, phenolic compounds were present only at 260°C and their concentrations were increasing in basic feedwater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effect of Microstructural Parameters on the Relative Densities of Metal Foams

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Kerr, Jacob A.

    2010-01-01

    A detailed quantitative microstructural analyses of primarily open cell FeCrAlY and 314 stainless steel metal foams with different relative densities and pores per inch (p.p.i.) were undertaken in the present investigation to determine the effect of microstructural parameters on the relative densities of metal foams. Several elements of the microstructure, such as longitudinal and transverse cell sizes, cell areas and perimeters, ligament dimensions, cell shapes and volume fractions of closed and open cells, were measured. The cross-sections of the foam ligaments showed a large number of shrinkage cavities, and their circularity factors and average sizes were determined. The volume fractions of closed cells increased linearly with increasing relative density. In contrast, the volume fractions of the open cells and ligaments decreased with increasing relative density. The relative densities and p.p.i. were not significantly dependent on cell size, cell perimeter and ligament dimensions within the limits of experimental scatter. A phenomenological model is proposed to rationalize the present microstructural observations.

  5. Visualizing and Quantifying Bioaccessible Pores in Field-Aged Petroleum Hydrocarbon-Contaminated Clay Soils Using Synchrotron-based X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Chang, W.; Kim, J.; Zhu, N.; McBeth, J. M.

    2015-12-01

    Microbial hydrocarbon degradation is environmentally significant and applicable to contaminated site remediation practices only when hydrocarbons (substrates) are physically bioaccessible to bacteria in soil matrices. Powerful X-rays are produced by synchrotron radiation, allowing for bioaccessible pores in soil (larger than 4 microns), where bacteria can be accommodated, colonize and remain active, can be visualized at a much higher resolution. This study visualized and quantified such bioaccessible pores in intact field-aged, oil-contaminated unsaturated soil fractions, and examined the relationship between the abundance of bioaccessible pores and hydrocarbon biodegradation. Using synchrotron-based X-ray Computed Tomography (CT) at the Canadian Light Source, a large dataset of soil particle characteristics, such as pore volumes, surface areas, number of pores and pore size distribution, was generated. Duplicate samples of five different soil fractions with different soil aggregate sizes and water contents (13, 18 and 25%) were examined. The method for calculating the number and distribution of bioaccessible pores using CT images was validated using the known porosity of Ottawa sand. This study indicated that the distribution of bioaccessible pore sizes in soil fractions are very closely related to microbial enhancement. A follow-up aerobic biodegradation experiment for the soils at 17 °C (average site temperature) over 90 days confirmed that a notable decrease in hydrocarbon concentrations occurred in soils fractions with abundant bioaccessible pores and with a larger number of pores between 10 and 100 μm. The hydrocarbon degradation in bioactive soil fractions was extended to relatively high-molecular-weight hydrocarbons (C16-C34). This study provides quantitative information about how internal soil pore characteristics can influence bioremediation performance.

  6. Scalable synthesis of hierarchical macropore-rich activated carbon microspheres assembled by carbon nanoparticles for high rate performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Dongdong; Zhao, Jianghong; Feng, Chong; Zhao, Rijie; Sun, Yahui; Guan, Taotao; Han, Baixin; Tang, Nan; Wang, Jianlong; Li, Kaixi; Qiao, Jinli; Zhang, Jiujun

    2017-02-01

    A scalable inverse-microemulsion-polymerization-phase-separation coupling method is applied to successfully prepare hierarchical macropore-rich activated carbon microspheres (ACS) using a phenolic resin (PR) precursor followed by carbonization and KOH activation for the first time. The formed ACS materials are assembled by carbon nanoparticles (CNPs). The macropores interspersed among the component CNPs are formed after removing the non-reactive solvent phase in the course of the polymerization of the reactive PR phase, which occupies ∼64% of the total pore volume (∼2.779 cm3 g-1) of the optimized ACS. In combination with mesopores (∼18% of the total pore volume), the ACS possesses meso/macropores approaching 82% of the total pore volume. Micropores are created in the component CNPs via KOH activation, showing shortened ion transport distances in the nanoscale dimension. Both the hierarchical micro/meso/macroporous structure and the inner nanoparticle morphology (short ion diffusion pathways) can significantly contribute to the rapid transport of electrolyte ions throughout the carbonaceous matrix, resulting in superior rate performance of ACS-based supercapacitors. More importantly, the energy densities of the ACS supercapacitors operating in both aqueous and organic electrolyte retain steady over a wide range of power densities varying dramatically from 0.25 to 14.5 kW kg-1 and to 7.0 kW kg-1, respectively.

  7. Visualization of soil particulate organic matter by means of X-ray CT?

    NASA Astrophysics Data System (ADS)

    Sleutel, Steven; Van Loo, Denis; Maenhout, Peter; Van Hoorebeke, Luc; Cnudde, Veerle; De Neve, Stefaan

    2014-05-01

    The role of soil structure in organic matter (OM) stabilization has been primarily investigated through physical fractionation studies operative at the scale of aggregates and smaller organo-mineral particles. By narrowing down soil structure to an arrangement of mineral and organic particles, the majority of studies did not explore the spatial organization of the soil pore network, the actual habitat of microorganisms. The pore structure of soil can have a significant impact on soil processes like OM decomposition by excluding OM from micro-organisms in small pores, by regulating the diffusion of substrates and metabolites and by regulating aeration and presence of moisture. Because of its ability to visualize the 3D architecture of soil non-destructively, X-ray Computed Tomography (CT) is becoming a widespread tool for studying soil pore network structure. However, phase determination of pore space, soil OM, soil mineral matter (MM) and water is often limited even with the latest technological and software advances, allowing high resolution and better quality imaging. Contrast agents commonly used in histology enable enhancement of X-ray attenuation of targeted structures or compounds. Here we report on the first systematic investigation of the use of such X-ray contrast agents for soil research. An evaluation procedure as well as a method to apply the agents to soil samples was developed and applied on reference soil samples. The effectiveness and selectivity of the contrast agents was evaluated for soil organic matter (SOM), MM and water. Several products were found to selectively increase the attenuation of water or SOM. The four agents with the best OM-staining capabilities (Phosphomolybdenic acid (PMA), silver nitrate, lead nitrate and lead acetate) were further tested on an OM-MM mixture. Observed differences in reactivity of the staining agents with MM components were apparent, suggesting that contrasting agents may have to be selected for the specific composition of the soil mineral matrix. Furthermore, techniques such as multiple-energy scanning and K-edge imaging, even in the future perhaps in combination with spectral resolving detectors or spectroscopic techniques can could further enhance the potential benefit from this study of X-ray CT staining agents. The high Z elements of the staining agents have unique and characteristic traits that can be detected or quantified with the abovementioned techniques and methods. We conclude that, given resolution limits and inherent presence of partial volume effects staining, X-ray CT-based localization of discrete SOM particles will be limited to a lower limit of 20-50 µm. Still, the improved 3D visualization of OM and soil pore space opens up possibilities for tailored lab experiments with measures of microbial activity, which could generate new insights in carbon cycling at small scales. In addition, we report on a lab incubation experiment in which CO2 respiration from soil cores was monitored (headspace GC analysis) and an X-ray CT approach yielded soil pore size distributions. We incubated a sandy loam soil (with application of ground grass or sawdust) in 18 small aluminium rings (Ø 1 cm, h 1 cm). Bulk density was adjusted to 1.1 or 1.3 Mg m-3 (compaction) and 6 rings were filled at a coarser Coarse Sand:Fine Sand:Silt+Clay ratio. While compaction induced a strong reduction in the cumulative C mineralization for both grass and sawdust substrates, artificial change to a coarser soil texture only reduced net C mineralization from the added sawdust. There thus appears to be a strong interaction effect between soil pore structure and substrate type on substrate decomposition. Correlation coefficients between the C mineralization rates and volumes of 7 pore size classes (from the X-ray CT data) also showed an increasing positive correlation with increasing pore size. Since any particulate organic matter initially present in the soil was removed prior to the experiment (sieving, ashing the >53µm fraction and recombining with the <53µm fraction), the added OM can be localized by means of X-ray CT. Through on-going image analysis the surrounding porosity of the added grass or sawdust particles is being quantified to further study the interaction between the soil pore structure and substrate decomposition.

  8. Chemical stimulation of adherent cells by localized application of acetylcholine from a microfluidic system.

    PubMed

    Zibek, Susanne; Hagmeyer, Britta; Stett, Alfred; Stelzle, Martin

    2010-01-01

    Chemical stimulation of cells is inherently cell type selective in contrast to electro-stimulation. The availability of a system for localized application of minute amounts of chemical stimulants could be useful for dose related response studies to test new compounds. It could also bring forward the development of a novel type of neuroprostheses. In an experimental setup microdroplets of an acetylcholine solution were ejected from a fluidic microsystem and applied to the bottom of a nanoporous membrane. The solution traveled through the pores to the top of the membrane on which TE671 cells were cultivated. Calcium imaging was used to visualize cellular response with temporal and spatial resolution. Experimental demonstration of chemical stimulation for both threshold gated stimulation as well as accumulated dose-response was achieved by either employing acetylcholine as chemical stimulant or applying calcein uptake, respectively. Numerical modeling and simulation of transport mechanisms involved were employed to gain a theoretical understanding of the influence of pore size, concentration of stimulant and droplet volume on the spatial-temporal distribution of stimulant and on the cellular response. Diffusion, pressure driven flow and evaporation effects were taken into account. Fast stimulation kinetic is achieved with pores of 0.82 μm diameter, whereas sustained substance delivery is obtained with nanoporous membranes. In all cases threshold concentrations ranging from 0.01 to 0.015 μM acetylcholine independent of pore size were determined.

  9. Octahedral Tin Dioxide Nanocrystals Anchored on Vertically Aligned Carbon Aerogels as High Capacity Anode Materials for Lithium-Ion Batteries.

    PubMed

    Liu, Mingkai; Liu, Yuqing; Zhang, Yuting; Li, Yiliao; Zhang, Peng; Yan, Yan; Liu, Tianxi

    2016-08-11

    A novel binder-free graphene - carbon nanotubes - SnO2 (GCNT-SnO2) aerogel with vertically aligned pores was prepared via a simple and efficient directional freezing method. SnO2 octahedrons exposed of {221} high energy facets were uniformly distributed and tightly anchored on multidimensional graphene/carbon nanotube (GCNT) composites. Vertically aligned pores can effectively prevent the emersion of "closed" pores which cannot load the active SnO2 nanoparticles, further ensure quick immersion of electrolyte throughout the aerogel, and can largely shorten the transport distance between lithium ions and active sites of SnO2. Especially, excellent electrical conductivity of GCNT-SnO2 aerogel was achieved as a result of good interconnected networks of graphene and CNTs. Furthermore, meso- and macroporous structures with large surface area created by the vertically aligned pores can provide great benefit to the favorable transport kinetics for both lithium ion and electrons and afford sufficient space for volume expansion of SnO2. Due to the well-designed architecture of GCNT-SnO2 aerogel, a high specific capacity of 1190 mAh/g with good long-term cycling stability up to 1000 times was achieved. This work provides a promising strategy for preparing free-standing and binder-free active electrode materials with high performance for lithium ion batteries and other energy storage devices.

  10. Effects of Pt and ionomer ratios on the structure of catalyst layer: A theoretical model for polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Ishikawa, H.; Sugawara, Y.; Inoue, G.; Kawase, M.

    2018-01-01

    The 3D structure of the catalyst layer (CL) in the polymer electrolyte fuel cell (PEFC) is modeled with a Pt/carbon (Pt/C) ratio of 0.4-2.3 and ionomer/carbon (i/C) ratio of 0.5-1.5, and the structural properties are evaluated by numerical simulation. The models are constructed by mimicking the actual shapes of Pt particles and carbon aggregates, as well as the ionomer adhesion in real CLs. CLs with different compositions are characterized by structural properties such as Pt inter-particle distance, ionomer coating thickness, pore size distribution, tortuosity, and ionomer coverage on Pt. The results for Pt/C = 1.0, i/C = 1.0 with Pt loading of 0.3 mg cm-2 and 50% porosity are validated against measured data for CLs with the same composition. With increasing i/C ratio, the smaller pores disappear and the number of isolated pores increases; while the ionomer connection and its coverage on Pt are significantly enhanced at i/C ∼1.0. With increasing Pt/C ratio, the Pt inter-particle distance decreases as the particles connect with each other. The tortuosity of the pores and the ionomer exhibits a trade-off relation depending on the ionomer volume. Further CL design concepts to optimize both O2 diffusion and H+ conduction are discussed.

  11. Octahedral Tin Dioxide Nanocrystals Anchored on Vertically Aligned Carbon Aerogels as High Capacity Anode Materials for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Liu, Mingkai; Liu, Yuqing; Zhang, Yuting; Li, Yiliao; Zhang, Peng; Yan, Yan; Liu, Tianxi

    2016-08-01

    A novel binder-free graphene - carbon nanotubes - SnO2 (GCNT-SnO2) aerogel with vertically aligned pores was prepared via a simple and efficient directional freezing method. SnO2 octahedrons exposed of {221} high energy facets were uniformly distributed and tightly anchored on multidimensional graphene/carbon nanotube (GCNT) composites. Vertically aligned pores can effectively prevent the emersion of “closed” pores which cannot load the active SnO2 nanoparticles, further ensure quick immersion of electrolyte throughout the aerogel, and can largely shorten the transport distance between lithium ions and active sites of SnO2. Especially, excellent electrical conductivity of GCNT-SnO2 aerogel was achieved as a result of good interconnected networks of graphene and CNTs. Furthermore, meso- and macroporous structures with large surface area created by the vertically aligned pores can provide great benefit to the favorable transport kinetics for both lithium ion and electrons and afford sufficient space for volume expansion of SnO2. Due to the well-designed architecture of GCNT-SnO2 aerogel, a high specific capacity of 1190 mAh/g with good long-term cycling stability up to 1000 times was achieved. This work provides a promising strategy for preparing free-standing and binder-free active electrode materials with high performance for lithium ion batteries and other energy storage devices.

  12. Microfluidic Foaming: A Powerful Tool for Tailoring the Morphological and Permeability Properties of Sponge-like Biopolymeric Scaffolds.

    PubMed

    Costantini, Marco; Colosi, Cristina; Jaroszewicz, Jakub; Tosato, Alessia; Święszkowski, Wojciech; Dentini, Mariella; Garstecki, Piotr; Barbetta, Andrea

    2015-10-28

    Ordered porous polymeric materials can be engineered to present highly ordered pore arrays and uniform and tunable pore size. These features prompted a number of applications in tissue engineering, generation of meta materials, and separation and purification of biomolecules and cells. Designing new and efficient vistas for the generation of ordered porous materials is an active area of research. Here we investigate the potential of microfluidic foaming within a flow-focusing (FF) geometry in producing 3D regular sponge-like polymeric matrices with tailored morphological and permeability properties. The challenge in using microfluidic systems for the generation of polymeric foams is in the high viscosity of the continuous phase. We demonstrate that as the viscosity of the aqueous solution increases, the accessible range of foam bubble fraction (Φb) and bubble diameter (Db) inside the microfluidic chip tend to narrow progressively. This effect limits the accessible range of geometric properties of the resulting materials. We further show that this problem can be rationally tackled by appropriate choice of the concentration of the polymer. We demonstrate that via such optimization, the microfluidic assisted synthesis of porous materials becomes a facile and versatile tool for generation of porous materials with a wide range of pore size and pore volume. Moreover, we demonstrate that the size of interconnects among pores-for a given value of the gas fraction-can be tailored through the variation of surfactant concentration. This, in turn, affects the permeability of the materials, a factor of key importance in flow-through applications and in tissue engineering.

  13. Effect of membrane characteristics on the performance of membrane bioreactors for oily wastewater treatment.

    PubMed

    Mafirad, S; Mehrnia, M R; Sarrafzadeh, M H

    2011-01-01

    Influence of membrane material and pore size on the performance of a submerged membrane bioreactor (sMBR) for oily wastewater treatment was investigated. The sMBR had a working volume of about 19 L with flat sheet modules at the same hydrodynamic conditions. Five types of micro- and ultra-polymeric membranes containing cellulose acetate (CA), cellulose nitrate (CN), polyamide (PA), polyvinylidene difluoride (PVDF) and polyethersulfone (PES) were used and their filtration performance in terms of permeability, permeate quality and fouling intensity were evaluated. Characterization of the membranes was done by performing some analysis such as pore size distribution; contact angle and scanning electronic microscopy (SEM) microphotograph on all membranes. The quality of permeates from each membrane was identified by measuring chemical oxygen demand (COD). The results showed more irreversible fouling intensity for membranes with larger pore size which can be due to more permeation of bioparticles and colloids inside the pores. Membrane characteristics have a major role in the preliminary time of the filtration before cake layer formation so that the PA with the highest hydrophilicity had the lowest permeability decline by fouling in this period. Also, the PVDF and PES membranes had better performance according to better permeate quality in the preliminary time of the filtration related to smaller pore size and also their better fouling resistance and chemical stability properties. However, all membranes resulted in the same permeability and permeate quality after cake layer formation. An overall efficiency of about 95% in COD removal was obtained for oily wastewater treatment by the membranes used in this study.

  14. Characterizing TPS Microstructure: A Review of Some techniques

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew; Stackpole, Mairead; Agrawal, Parul; Chavez-Garcie, Jose

    2011-01-01

    I. When seeking to understand ablator microstructure and morphology there are several useful techniques A. SEM 1) Visual characteriza3on at various length scales. 2) Chemical mapping by backscatter or x-ray highlights areas of interest. 3) Combined with other techniques (density, weight change, chemical analysis) SEM is a powerful tool to aid in explaining thermo/structural data. B. ASAP. 1) Chemical characteriza3on at various length scales. 2) Chemical mapping of pore structure by gas adsorption. 3) Provides a map of pore size vs. pore volume. 4) Provided surface area of exposed TPS. II. Both methods help characterize and understand how ablators react with other chemical species and provides insight into how they oxidize.

  15. A new formulation of the dispersion tensor in homogeneous porous media

    NASA Astrophysics Data System (ADS)

    Valdés-Parada, Francisco J.; Lasseux, Didier; Bellet, Fabien

    2016-04-01

    Dispersion is the result of two mass transport processes, namely molecular diffusion, which is a pure mixing effect and hydrodynamic dispersion, which combines mixing and spreading. The identification of each contribution is crucial and is often misinterpreted. Traditionally, under a volume averaging framework, a single closure problem is solved and the resulting fields are substituted into diffusive and dispersive filters. However the diffusive filter (that leads to the effective diffusivity) allows passing information from convection, which leads to an incorrect definition of the effective medium coefficients composing the total dispersion tensor. In this work, we revisit the definitions of the effective diffusivity and hydrodynamic dispersion tensors using the method of volume averaging. Our analysis shows that, in the context of laminar flow with or without inertial effects, two closure problems need to be computed in order to correctly define the corresponding effective medium coefficients. The first closure problem is associated to momentum transport and needs to be solved for a prescribed Reynolds number and flow orientation. The second closure problem is related to mass transport and it is solved first with a zero Péclet number and second with the required Péclet number and flow orientation. All the closure problems are written using closure variables only as required by the upscaling method. The total dispersion tensor is shown to depend on the microstructure, macroscopic flow angles, the cell (or pore) Péclet number and the cell (or pore) Reynolds number. It is non-symmetric in the general case. The condition for quasi-symmetry is highlighted. The functionality of the longitudinal and transverse components of this tensor with the flow angle is investigated for a 2D model porous structure obtaining consistent results with previous studies.

  16. Modeling experimental stable isotope results from CO2 adsorption and diffusion experiments

    NASA Astrophysics Data System (ADS)

    Larson, T. E.

    2012-12-01

    Transport of carbon dioxide through porous media can be affected by diffusion, advection and adsorption processes. Developing new tools to understand which of these processes dominates migration of CO2 or other gases in the subsurface is important to a wide range of applications including CO2 storage. Whereas advection rates are not affected by isotope substitution in CO2, adsorption and diffusion constants are. For example, differences in the binary diffusion constant calculated between C12O2-He and C13O2-He results in a carbon isotope fractionation whereby the front of the chromatographic peak is enriched in carbon-12 and the tail of the peak is enriched in carbon-13. Interestingly, adsorption is shown to have an opposite, apparent inverse affect whereby the lighter isotopologues of CO2 are preferentially retained by the chromatographic column and the heavier isotopologues are eluted first. This apparent inverse chromatographic effect has been ascribed to Van der Waals dispersion forces. Smaller molar volumes of the heavier isotopologues resulting from increased bond strength (shorter bond length) effectively decreases Van der Waals forces in heavier isotopologues compared to lighter isotopologues. Here we discuss the possible application of stable isotope values measured across chromatographic peaks to differentiate diffusion-dominated from adsorption-dominated transport processes for CO2. Separate 1-dimensional flow-through columns were packed with quartz and illite, and one remained empty. Dry helium was used as a carrier gas. Constant flow rate, temperature and column pressure were maintained. After background CO2 concentrations were minimized and constant, a sustained pulse of CO2 was injected at the head of the column and the effluent was sampled at 4 minute intervals for CO2 concentration, and carbon and oxygen isotope ratios. The quartz-sand packed and empty columns resulted in similar trends in concentration and isotope ratios whereby CO2 concentrations steadily increased and became constant after two pore volumes of CO2 flushed through the column. Carbon and oxygen isotope values of the front of the peak (first pore volume) are 2‰ and 5‰ lower than the injected CO2 values, respectively. These results are fit very well using a mass transfer model that only includes binary diffusion between CO2 and helium that account for isotope substitution in the reduced mass coefficient. In contrast to these diffusion-dominated systems, CO2 break through curves from the illite packed column show strong adsorption effects that include a +180‰ increase in the carbon isotope ratio at the front of the peak followed by a 20‰ decrease. Up to 20 pore volumes of CO2 were flushed through the column before the carbon and oxygen isotope values stabilized to their starting values. These adsorption effects cannot be modeled using mass isotope effects alone, and instead must include additional parameters such as volume effects. These results demonstrate the importance of understanding the isotopic effects of CO2 in different substrates, and potentially offers a tracer tool that can be used to quantify surface area, transport distance, and surface reactivity of CO2. Additional applications may include more affectively determining transfer rates of CO2 across low permeability zones.

  17. The influence of extraction procedure on ion concentrations in sediment pore water

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.; Jackson, B.P.

    1998-01-01

    Sediment pore water has the potential to yield important information on sediment quality, but the influence of isolation procedures on the chemistry and toxicity are not completely known and consensus on methods used for the isolation from sediment has not been reached. To provide additional insight into the influence of collection procedures on pore water chemistry, anion (filtered only) and cation concentrations were measured in filtered and unfiltered pore water isolated from four sediments using three different procedures: dialysis, centrifugation and vacuum. Peepers were constructed using 24-cell culture plates and cellulose membranes, and vacuum extractors consisted of fused-glass air stones attached with airline tubing to 60cc syringes. Centrifugation was accomplished at two speeds (2,500 and 10,000 x g) for 30 min in a refrigerated centrifuge maintained at 4?C. Only minor differences in chemical characteristics and cation and anion concentrations were found among the different collecting methods with differences being sediment specific. Filtering of the pore water did not appreciably reduce major cation concentrations, but trace metals (Cu and Pb) were markedly reduced. Although the extraction methods evaluated produced pore waters of similar chemistries, the vacuum extractor provided the following advantages over the other methods: (1) ease of extraction, (2) volumes of pore water isolated, (3) minimal preparation time and (4) least time required for extraction of pore water from multiple samples at one time.

  18. Study on the Adsorption Phenomenon in Shale with the Combination of Molecular Dynamic Simulation and Fractal Analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Liehui; Li, Jianchao; Jia, Du; Zhao, Yulong; Xie, Chunyu; Tao, Zhengwu

    As one of the key status of gas in shale reservoir, adsorption gas accounts for considerable percentage of total gas amount. Due to the complexity and nanostructure of shale gas reservoir, it is very challenging to represent adsorption gas through traditional methods. However, the integration of the fractal theory and molecular dynamics (MD) simulation may provide a new perspective of understanding such nanostructure and the micro-phenomenon happening in it. The key purpose of this paper is to investigate the adsorption phenomenon in shale kerogen. By using MD simulation and grand canonical Monte Carlo (GCMC) algorithm, the adsorption of methane in 2, 5 and 10nm slit-like pores is simulated for different temperature and pressure status. According to the results, the average gas density in smaller pores is higher than that in bigger pores, and multilayer adsorption presents on some areas of pore surfaces. Then, the simulation results are analyzed using the multilayer fractal adsorption model. The analysis indicates that the number of adsorption layer increases with pressure increase: four-layer adsorption presents in 10nm pores while three-layer adsorption shows up in 2nm and 5nm pores due to pore volume limit. Fractal dimension of pore wall surface generated in this study is in the range of 2.31-2.63. Moreover, high temperature could decrease the adsorption behavior in reservoir condition.

  19. Thermoporometry characterization of silica microparticles and nanowires.

    PubMed

    Wu, Jiaxin; Zheng, Han; Cheng, He; Zhou, L; Leong, K C; Rajagopalan, R; Too, H P; Choi, W K

    2014-03-04

    We present the results of a systematic study on the porosity of silica microparticles and nanowires prepared by glancing angle deposition-metal-assisted chemical etching (GLAD-MACE) and interference lithography-metal-assisted chemical etching (IL-MACE) techniques using the thermoporometry (TPM) method. Good agreement was obtained between our TPM results and published data provided by the suppliers of silica microparticles. TPM characterization of the GLAD-MACE and IL-MACE nanowires was carried out on the basis of parameters obtained from TPM experiments on microparticles. Our nanowires showed a similar trend but lower values of the pore volume and surface area than nanowires prepared by MACE with AgNO3 solution. We attribute the enhanced bioanalysis performance of the GLAD-MACE nanowires based devices to the increased pore volume and total surface area of the nanowires.

  20. Physical parameters of Fluvisols on flooded and non-flooded terraces

    NASA Astrophysics Data System (ADS)

    Kercheva, Milena; Sokołowska, Zofia; Hajnos, Mieczysław; Skic, Kamil; Shishkov, Toma

    2017-01-01

    The heterogeneity of soil physical properties of Fluvisols, lack of large pristine areas, and different moisture regimes on non-flooded and flooded terraces impede the possibility to find a soil profile which can serve as a baseline for estimating the impact of natural or anthropogenic factors on soil evolution. The aim of this study is to compare the pore size distribution of pristine Fluvisols on flooded and non-flooded terraces using the method of the soil water retention curve, mercury intrusion porosimetry, nitrogen adsorption isotherms, and water vapour sorption. The pore size distribution of humic horizons of pristine Fluvisols on the non-flooded terrace differs from pore size distribution of Fluvisols on the flooded terrace. The peaks of textural and structural pores are higher in the humic horizons under more humid conditions. The structural characteristics of subsoil horizons depend on soil texture and evolution stage. The peaks of textural pores at about 1 mm diminish with lowering of the soil organic content. Structureless horizons are characterized by uni-modal pore size distribution. Although the content of structural pores of the subsoil horizons of Fluvisols on the non-flooded terrace is low, these pores are represented by biopores, as the coefficient of filtration is moderately high. The difference between non-flooded and flooded profiles is well expressed by the available water storage, volume and mean radius of pores, obtained by mercury intrusion porosimetry and water desorption, which are higher in the surface horizons of frequently flooded Fluvisols.

  1. Cuticular gas exchange by Antarctic sea spiders.

    PubMed

    Lane, Steven J; Moran, Amy L; Shishido, Caitlin M; Tobalske, Bret W; Woods, H Arthur

    2018-04-25

    Many marine organisms and life stages lack specialized respiratory structures, like gills, and rely instead on cutaneous respiration, which they facilitate by having thin integuments. This respiratory mode may limit body size, especially if the integument also functions in support or locomotion. Pycnogonids, or sea spiders, are marine arthropods that lack gills and rely on cutaneous respiration but still grow to large sizes. Their cuticle contains pores, which may play a role in gas exchange. Here, we examined alternative paths of gas exchange in sea spiders: (1) oxygen diffuses across pores in the cuticle, a common mechanism in terrestrial eggshells, (2) oxygen diffuses directly across the cuticle, a common mechanism in small aquatic insects, or (3) oxygen diffuses across both pores and cuticle. We examined these possibilities by modeling diffusive oxygen fluxes across all pores in the body of sea spiders and asking whether those fluxes differed from measured metabolic rates. We estimated fluxes across pores using Fick's law parameterized with measurements of pore morphology and oxygen gradients. Modeled oxygen fluxes through pores closely matched oxygen consumption across a range of body sizes, which means the pores facilitate oxygen diffusion. Furthermore, pore volume scaled hypermetrically with body size, which helps larger species facilitate greater diffusive oxygen fluxes across their cuticle. This likely presents a functional trade-off between gas exchange and structural support, in which the cuticle must be thick enough to prevent buckling due to external forces but porous enough to allow sufficient gas exchange. © 2018. Published by The Company of Biologists Ltd.

  2. Variational-based segmentation of bio-pores in tomographic images

    NASA Astrophysics Data System (ADS)

    Bauer, Benjamin; Cai, Xiaohao; Peth, Stephan; Schladitz, Katja; Steidl, Gabriele

    2017-01-01

    X-ray computed tomography (CT) combined with a quantitative analysis of the resulting volume images is a fruitful technique in soil science. However, the variations in X-ray attenuation due to different soil components keep the segmentation of single components within these highly heterogeneous samples a challenging problem. Particularly demanding are bio-pores due to their elongated shape and the low gray value difference to the surrounding soil structure. Recently, variational models in connection with algorithms from convex optimization were successfully applied for image segmentation. In this paper we apply these methods for the first time for the segmentation of bio-pores in CT images of soil samples. We introduce a novel convex model which enforces smooth boundaries of bio-pores and takes the varying attenuation values in the depth into account. Segmentation results are reported for different real-world 3D data sets as well as for simulated data. These results are compared with two gray value thresholding methods, namely indicator kriging and a global thresholding procedure, and with a morphological approach. Pros and cons of the methods are assessed by considering geometric features of the segmented bio-pore systems. The variational approach features well-connected smooth pores while not detecting smaller or shallower pores. This is an advantage in cases where the main bio-pores network is of interest and where infillings, e.g., excrements of earthworms, would result in losing pore connections as observed for the other thresholding methods.

  3. Improved capacitance characteristics of electrospun ACFs by pore size control and vanadium catalyst.

    PubMed

    Im, Ji Sun; Woo, Sang-Wook; Jung, Min-Jung; Lee, Young-Seak

    2008-11-01

    Nano-sized carbon fibers were prepared by using electrospinning, and their electrochemical properties were investigated as a possible electrode material for use as an electric double-layer capacitor (EDLC). To improve the electrode capacitance of EDLC, we implemented a three-step optimization. First, metal catalyst was introduced into the carbon fibers due to the excellent conductivity of metal. Vanadium pentoxide was used because it could be converted to vanadium for improved conductivity as the pore structure develops during the carbonization step. Vanadium catalyst was well dispersed in the carbon fibers, improving the capacitance of the electrode. Second, pore-size development was manipulated to obtain small mesopore sizes ranging from 2 to 5 nm. Through chemical activation, carbon fibers with controlled pore sizes were prepared with a high specific surface and pore volume, and their pore structure was investigated by using a BET apparatus. Finally, polyacrylonitrile was used as a carbon precursor to enrich for nitrogen content in the final product because nitrogen is known to improve electrode capacitance. Ultimately, the electrospun activated carbon fibers containing vanadium show improved functionality in charge/discharge, cyclic voltammetry, and specific capacitance compared with other samples because of an optimal combination of vanadium, nitrogen, and fixed pore structures.

  4. A computational geometry approach to pore network construction for granular packings

    NASA Astrophysics Data System (ADS)

    van der Linden, Joost H.; Sufian, Adnan; Narsilio, Guillermo A.; Russell, Adrian R.; Tordesillas, Antoinette

    2018-03-01

    Pore network construction provides the ability to characterize and study the pore space of inhomogeneous and geometrically complex granular media in a range of scientific and engineering applications. Various approaches to the construction have been proposed, however subtle implementational details are frequently omitted, open access to source code is limited, and few studies compare multiple algorithms in the context of a specific application. This study presents, in detail, a new pore network construction algorithm, and provides a comprehensive comparison with two other, well-established Delaunay triangulation-based pore network construction methods. Source code is provided to encourage further development. The proposed algorithm avoids the expensive non-linear optimization procedure in existing Delaunay approaches, and is robust in the presence of polydispersity. Algorithms are compared in terms of structural, geometrical and advanced connectivity parameters, focusing on the application of fluid flow characteristics. Sensitivity of the various networks to permeability is assessed through network (Stokes) simulations and finite-element (Navier-Stokes) simulations. Results highlight strong dependencies of pore volume, pore connectivity, throat geometry and fluid conductance on the degree of tetrahedra merging and the specific characteristics of the throats targeted by the merging algorithm. The paper concludes with practical recommendations on the applicability of the three investigated algorithms.

  5. Temperature-mediated phase transformation, pore geometry and pore hysteresis transformation of borohydride derived in-born porous zirconium hydroxide nanopowders

    PubMed Central

    Nayak, Nadiya B.; Nayak, Bibhuti B.

    2016-01-01

    Development of in-born porous nature of zirconium hydroxide nanopowders through a facile hydrogen (H2) gas-bubbles assisted borohydride synthesis route using sodium borohydride (NaBH4) and novel information on the temperature-mediated phase transformation, pore geometry as well as pore hysteresis transformation of in-born porous zirconium hydroxide nanopowders with the help of X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) isotherm and Transmission Electron Microscopy (TEM) images are the main theme of this research work. Without any surfactants or pore forming agents, the borohydride derived amorphous nature of porous powders was stable up to 500 °C and then the seed crystals start to develop within the loose amorphous matrix and trapping the inter-particulate voids, which led to develop the porous nature of tetragonal zirconium oxide at 600 °C and further sustain this porous nature as well as tetragonal phase of zirconium oxide up to 800 °C. The novel hydrogen (H2) gas-bubbles assisted borohydride synthesis route led to develop thermally stable porous zirconium hydroxide/oxide nanopowders with an adequate pore size, pore volume, and surface area and thus these porous materials are further suggested for promising use in different areas of applications. PMID:27198738

  6. Characterization of branched ultrahigh molar mass polymers by asymmetrical flow field-flow fractionation and size exclusion chromatography.

    PubMed

    Otte, T; Pasch, H; Macko, T; Brüll, R; Stadler, F J; Kaschta, J; Becker, F; Buback, M

    2011-07-08

    The molar mass distribution (MMD) of synthetic polymers is frequently analyzed by size exclusion chromatography (SEC) coupled to multi angle light scattering (MALS) detection. For ultrahigh molar mass (UHM) or branched polymers this method is not sufficient, because shear degradation and abnormal elution effects falsify the calculated molar mass distribution and information on branching. High temperatures above 130 °C have to be applied for dissolution and separation of semi-crystalline materials like polyolefins which requires special hardware setups. Asymmetrical flow field-flow fractionation (AF4) offers the possibility to overcome some of the main problems of SEC due to the absence of an obstructing porous stationary phase. The SEC-separation mainly depends on the pore size distribution of the used column set. The analyte molecules can enter the pores of the stationary phase in dependence on their hydrodynamic volume. The archived separation is a result of the retention time of the analyte species inside SEC-column which depends on the accessibility of the pores, the residence time inside the pores and the diffusion ability of the analyte molecules. The elution order in SEC is typically from low to high hydrodynamic volume. On the contrary AF4 separates according to the diffusion coefficient of the analyte molecules as long as the chosen conditions support the normal FFF-separation mechanism. The separation takes place in an empty channel and is caused by a cross-flow field perpendicular to the solvent flow. The analyte molecules will arrange in different channel heights depending on the diffusion coefficients. The parabolic-shaped flow profile inside the channel leads to different elution velocities. The species with low hydrodynamic volume will elute first while the species with high hydrodynamic volume elute later. The AF4 can be performed at ambient or high temperature (AT-/HT-AF4). We have analyzed one low molar mass polyethylene sample and a number of narrow distributed polystyrene standards as reference materials with known structure by AT/HT-SEC and AT/HT-AF4. Low density polyethylenes as well as polypropylene and polybutadiene, containing high degrees of branching and high molar masses, have been analyzed with both methods. As in SEC the relationship between the radius of gyration (R(g)) or the molar mass and the elution volume is curved up towards high elution volumes, a correct calculation of the MMD and the molar mass average or branching ratio is not possible using the data from the SEC measurements. In contrast to SEC, AF4 allows the precise determination of the MMD, the molar mass averages as well as the degree of branching because the molar mass vs. elution volume curve and the conformation plot is not falsified in this technique. In addition, higher molar masses can be detected using HT-AF4 due to the absence of significant shear degradation in the channel. As a result the average molar masses obtained from AF4 are higher compared to SEC. The analysis time in AF4 is comparable to that of SEC but the adjustable cross-flow program allows the user to influence the separation efficiency which is not possible in SEC without a costly change of the whole column combination. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Permeability-Selectivity Analysis of Microfiltration and Ultrafiltration Membranes: Effect of Pore Size and Shape Distribution and Membrane Stretching.

    PubMed

    Siddiqui, Muhammad Usama; Arif, Abul Fazal Muhammad; Bashmal, Salem

    2016-08-06

    We present a modeling approach to determine the permeability-selectivity tradeoff for microfiltration and ultrafiltration membranes with a distribution of pore sizes and pore shapes. Using the formulated permeability-selectivity model, the effect of pore aspect ratio and pore size distribution on the permeability-selectivity tradeoff of the membrane is analyzed. A finite element model is developed to study the effect of membrane stretching on the distribution of pore sizes and shapes in the stretched membrane. The effect of membrane stretching on the permeability-selectivity tradeoff of membranes is also analyzed. The results show that increasing pore aspect ratio improves membrane performance while increasing the width of pore size distribution deteriorates the performance. It was also found that the effect of membrane stretching on the permeability-selectivity tradeoff is greatly affected by the uniformity of pore distribution in the membrane. Stretching showed a positive shift in the permeability-selectivity tradeoff curve of membranes with well-dispersed pores while in the case of pore clustering, a negative shift in the permeability-selectivity tradeoff curve was observed.

  8. Special Features of the Structure of Single-Crystal Refractory Nickel Alloy Under Directed Crystallization

    NASA Astrophysics Data System (ADS)

    Bondarenko, Yu. A.; Echin, A. B.; Surova, V. A.; Kolodyazhnyi, M. Yu.

    2017-05-01

    The effect of the conditions of directed crystallization (the temperature gradient and the crystallization rate) on the dendrite spacing, on the size of the particles of the hardening γ'-phase in the arms and arm spaces of the dendrites, on the volume fraction and size of the pores, on the size of the particles of the eutectic γ/γ'-phase, and on the features of dendritic segregation in a single-crystal castable refractory alloy is studied.

  9. The Upper Limit of Energy Density of Nanoporous Materials Functionalized Liquid

    NASA Astrophysics Data System (ADS)

    Han, Aijie; Punyamurtula, Venkata K.; Kim, Taewan; Qiao, Yu

    2008-06-01

    In this article, we report the experimental result of energy dissipation of a mobil crystalline material (MCM) 41 in mercury. The MCM41 contains a large volume fraction of nanometer-sized pores. As the applied pressure is relatively high, the nanopore surfaces are exposed to mercury. Due to the large nanopore surface area and the large solid-liquid interfacial tension, the energy dissipation effectiveness of this system is ultrahigh, representing the upper limit that can be achieved by the pressure-induced infiltration technique.

  10. Methane hydrate formation in partially water-saturated Ottawa sand

    USGS Publications Warehouse

    Waite, W.F.; Winters, W.J.; Mason, D.H.

    2004-01-01

    Bulk properties of gas hydrate-bearing sediment strongly depend on whether hydrate forms primarily in the pore fluid, becomes a load-bearing member of the sediment matrix, or cements sediment grains. Our compressional wave speed measurements through partially water-saturated, methane hydrate-bearing Ottawa sands suggest hydrate surrounds and cements sediment grains. The three Ottawa sand packs tested in the Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI) contain 38(1)% porosity, initially with distilled water saturating 58, 31, and 16% of that pore space, respectively. From the volume of methane gas produced during hydrate dissociation, we calculated the hydrate concentration in the pore space to be 70, 37, and 20% respectively. Based on these hydrate concentrations and our measured compressional wave speeds, we used a rock physics model to differentiate between potential pore-space hydrate distributions. Model results suggest methane hydrate cements unconsolidated sediment when forming in systems containing an abundant gas phase.

  11. Determining the Size of Pores in a Partially Transparent Ceramics from Total-Reflection Spectra

    NASA Astrophysics Data System (ADS)

    Mironov, R. A.; Zabezhailov, M. O.; Georgiu, I. F.; Cherepanov, V. V.; Rusin, M. Yu.

    2018-03-01

    A technique is proposed for determining the pore-size distribution based on measuring the dependence of total reflectance in the domain of partial transparency of a material. An assumption about equality of scattering-coefficient spectra determined by solving the inverse radiation transfer problem and by theoretical calculation with the Mie theory is used. The technique is applied to studying a quartz ceramics. The poresize distribution is also determined using mercury and gas porosimetry. All three methods are shown to produce close results for pores with diameters of <180 nm, which occupy 90% of the void volume. In the domain of pore dimensions of >180 nm, the methods show differences that might be related to both specific procedural features and the structural properties of ceramics. The spectral-scattering method has a number of advantages over traditional porosimetry, and it can be viewed as a routine industrial technique.

  12. Pore Water Transport of Enterococci out of Beach Sediments

    PubMed Central

    Phillips, Matthew C.; Solo-Gabriele, Helena M.; Reniers, Adrianus J. H. M.; Wang, John D.; Kiger, Russell T.; Abdel-Mottaleb, Noha

    2011-01-01

    Enterococci are used to evaluate the safety of beach waters and studies have identified beach sands as a source of these bacteria. In order to study and quantify the release of microbes from beach sediments, flow column systems were built to evaluate flow of pore water out of beach sediments. Results show a peak in enterococci (average of 10% of the total microbes in core) released from the sand core within one pore water volume followed by a marked decline to below detection. These results indicate that few enterococci are easily removed and that factors other than simple pore water flow control the release of the majority of enterococci within beach sediments. A significantly larger quantity and release of enterococci were observed in cores collected after a significant rain event suggesting the influx of fresh water can alter the release pattern as compared to cores with no antecedent rainfall. PMID:21945015

  13. Influence of Polyvinyl Alcohol (PVA) Addition on Silica Membrane Performance Prepared from Rice Straw

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Ramelan, A. H.; Wardoyo, D. T.; Ichsan, S.; Kristiawan, Y. R.

    2018-03-01

    The utilization and modification of silica from rice straw as the main ingredient of adsorbent has been studied. The aim of this study was to determine the optimum composition of PVA (polyvinyl alcohol): silica to produce adsorbents with excellent pore characteristics, optimum adsorption efficiency and optimum pH for methyl yellow adsorptions. X-Ray Fluorescence (XRF) analysis results showed that straw ash contains 82.12 % of silica (SiO2). SAA (Surface Area Analyzer) analysis showed optimum composition ratio 5:5 of PVA: silica with surface area of 1.503 m2/g. Besides, based on the pore size distribution of PVA: silica (5:5) showed the narrow pore size distribution with the largest pore cumulative volume of 2.8 x 10-3 cc/g. The optimum pH for Methanyl Yellow adsorption is pH 2 with adsorption capacity = 72.1346%.

  14. Physical Explanation of Archie's Porosity Exponent in Granular Materials: A Process-Based, Pore-Scale Numerical Study

    NASA Astrophysics Data System (ADS)

    Niu, Qifei; Zhang, Chi

    2018-02-01

    The empirical Archie's law has been widely used in geosciences and engineering to explain the measured electrical resistivity of many geological materials, but its physical basis has not been fully understood yet. In this study, we use a pore-scale numerical approach combining discrete element-finite difference methods to study Archie's porosity exponent m of granular materials over a wide porosity range. Numerical results reveal that at dilute states (e.g., porosity ϕ > 65%), m is exclusively related to the particle shape and orientation. As the porosity decreases, the electric flow in pore space concentrates progressively near particle contacts and m increases continuously in response to the intensified nonuniformity of the local electrical field. It is also found that the increase in m is universally correlated with the volume fraction of pore throats for all the samples regardless of their particle shapes, particle size range, and porosities.

  15. Finite volume solution for two-phase flow in a straight capillary

    NASA Astrophysics Data System (ADS)

    Yelkhovsky, Alexander; Pinczewski, W. Val

    2018-04-01

    The problem of two-phase flow in straight capillaries of polygonal cross section displays many of the dynamic characteristics of rapid interfacial motions associated with pore-scale displacements in porous media. Fluid inertia is known to be important in these displacements but is usually ignored in network models commonly used to predict macroscopic flow properties. This study presents a numerical model for two-phase flow which describes the spatial and temporal evolution of the interface between the fluids. The model is based on an averaged Navier-Stokes equation and is shown to be successful in predicting the complex dynamics of both capillary rise in round capillaries and imbibition along the corners of polygonal capillaries. The model can form the basis for more realistic network models which capture the effect of capillary, viscous, and inertial forces on pore-scale interfacial dynamics and consequent macroscopic flow properties.

  16. Surface characterization and chemical analysis of bamboo substrates pretreated by alkali hydrogen peroxide.

    PubMed

    Song, Xueping; Jiang, Yan; Rong, Xianjian; Wei, Wei; Wang, Shuangfei; Nie, Shuangxi

    2016-09-01

    The surface characterization and chemical analysis of bamboo substrates by alkali hydrogen peroxide pretreatment (AHPP) were investigated in this study. The results tended to manifest that AHPP prior to enzymatic and chemical treatment was potential for improving accessibility and reactivity of bamboo substrates. The inorganic components, organic solvent extractives and acid-soluble lignin were effectively removed by AHPP. X-ray photoelectron spectroscopy (XPS) analysis indicated that the surface of bamboo chips had less lignin but more carbohydrate after pre-treatment. Fiber surfaces became etched and collapsed, and more pores and debris on the substrate surface were observed with Scanning Electron Microscopy (SEM). Brenauer-Emmett-Teller (BET) results showed that both of pore volume and surface area were increased after AHPP. Although XRD analysis showed that AHPP led to relatively higher crystallinity, pre-extraction could overall enhance the accessibility of enzymes and chemicals into the bamboo structure. Copyright © 2016. Published by Elsevier Ltd.

  17. The effect of membrane filtration on dissolved trace element concentrations

    USGS Publications Warehouse

    Horowitz, A.J.; Lum, K.R.; Garbarino, J.R.; Hall, G.E.M.; Lemieux, C.; Demas, C.R.

    1996-01-01

    The almost universally accepted operational definition for dissolved constituents is based on processing whole-water samples through a 0.45-??m membrane filter. Results from field and laboratory experiments indicate that a number of factors associated with filtration, other than just pore size (e.g., diameter, manufacturer, volume of sample processed, amount of suspended sediment in the sample), can produce substantial variations in the 'dissolved' concentrations of such elements as Fe, Al, Cu, Zn, Pb, Co, and Ni. These variations result from the inclusion/exclusion of colloidally- associated trace elements. Thus, 'dissolved' concentrations quantitated by analyzing filtrates generated by processing whole-water through similar pore- sized membrane filters may not be equal/comparable. As such, simple filtration through a 0.45-??m membrane filter may no longer represent an acceptable operational definition for dissolved chemical constituents. This conclusion may have important implications for environmental studies and regulatory agencies.

  18. Dip-coating of nano-sized CeO2 on SiC membrane and its effect on thermal diffusivity.

    PubMed

    Park, Jihye; Jung, Miewon

    2014-05-01

    CeO2-SiC mixed composite membrane was fabricated with porous SiC ceramic and cerium oxide powder synthesized by sol-gel process. This CeO2-SiC membrane and SiC membrane which is made by the purified SiC ceramic were pressed and sintered in Ar atmosphere. And then, the SiC membrane was dip-coated by cerium oxide precursor sol solution and heat-treated in air. The surface morphology, particle size, porosity and structure analysis of the mixing and dip-coating SiC membrane were monitored by FE-SEM and X-ray diffraction analysis. Surface area, pore volume and pore diameter were determined by BET instrument. Thermal diffusivity was measured by laser flash method with increasing temperature. The relation between porosity and thermal diffusivity from different preparation process has been discussed on this study.

  19. Synthesis of Higher Alcohols via Syngas on Cu/Zn/Si Catalysts. Effect of Polyethylene Glycol Content

    NASA Astrophysics Data System (ADS)

    Cui, Rong-Ji; Yan, Xing; Fan, Jin-Chuan; Huang, Wei

    2018-05-01

    Cu/Zn/Si catalysts with different polyethylene glycol (PEG) content were prepared by a complete liquid-phase method, and characterized by XRD, H2-TPR, N2-adsorption, and XPS. The influence of PEG content on the higher alcohols synthesis from syngas was investigated. The results showed that addition of PEG can influence the texture and surface properties of the catalysts, and therefore affect their activity and product distribution. With an increase in PEG content, BET surface area, Cu crystallite size and surface active ingredient content of the catalysts first increased and then decreased, the CO conversion had similar variation tendency. However, the pore volume and pore diameter of the catalyst increased, and the binding energy of the active component and the content of Cu2O decreased, which resulted in higher catalyst selectivity towards higher alcohols. The highest C2+OH selectivity in total alcohols was 60.6 wt %.

  20. Production of nanotubes in delignified porous cellulosic materials after hydrolysis with cellulase.

    PubMed

    Koutinas, Αthanasios Α; Papafotopoulou-Patrinou, Evgenia; Gialleli, Angelika-Ioanna; Petsi, Theano; Bekatorou, Argyro; Kanellaki, Maria

    2016-08-01

    In this study, tubular cellulose (TC), a porous cellulosic material produced by delignification of sawdust, was treated with a Trichoderma reesei cellulase in order to increase the proportion of nano-tubes. The effect of enzyme concentration and treatment duration on surface characteristics was studied and the samples were analyzed with BET, SEM and XRD. Also, a composite material of gelatinized starch and TC underwent enzymatic treatment in combination with amylase (320U) and cellulase (320U) enzymes. For TC, the optimum enzyme concentration (640U) led to significant increase of TC specific surface area and pore volume along with the reduction of pore diameter. It was also shown that the enzymatic treatment did not result to a significant change of cellulose crystallinity index. The produced nano-tubular cellulose shows potential for application to drug and chemical preservative delivery systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Increased Cortical Porosity in Type-2 Diabetic Postmenopausal Women with Fragility Fractures

    PubMed Central

    Patsch, Janina M.; Burghardt, Andrew J.; Yap, Samuel P.; Baum, Thomas; Schwartz, Ann V.; Joseph, Gabby B.; Link, Thomas M.

    2012-01-01

    The primary goal of this study was to assess peripheral bone microarchitecture and strength in diabetic postmenopausal women with fragility fractures (DMFx) and to compare them with diabetic women without fracture (DM). Secondary goals were to assess differences in non-diabetic women with (Fx) and without fragility fractures (Co) and in women with (DM) and without diabetes (Co). Eighty women (mean age 61.3±5.7 yrs) were recruited into these groups (n=20 per group). Participants underwent DXA and high-resolution peripheral quantitative computed tomography (HR-pQCT) of the ultradistal and distal radius and tibia. In the HR-pQCT images volumetric bone mineral density, cortical and trabecular structure measures, including cortical porosity, were calculated. Bone strength was estimated using micro-finite element analysis (μFEA). Differential strength estimates were obtained with and without open cortical pores. At the ultradistal and distal tibia, DMFx had greater intracortical pore volume (+52.6%, p=0.009; +95.4%, p=0.020), relative porosity (+58.1%; p=0.005; +87.9%, p=0.011) and endocortical bone surface (+10.9%, p=0.031; +11.5%, 0.019) than DM. At the distal radius DMFx had 4.7-fold greater relative porosity (p=0.000) than DM. At the ultradistal radius, intracortical pore volume was significantly higher in DMFx than DM (+67.8%, p=0.018). DMFx also displayed larger trabecular heterogeneity (ultradistal radius; +36.8%, p=0.035), and lower total and cortical BMD (ultradistal tibia: −12.6%, p=0.031; −6.8%, p=0.011) than DM. DMFx exhibited significantly higher pore-related deficits in stiffness, failure load and cortical load fraction at the ultradistal and distal tibia, and the distal radius than DM. Comparing non-diabetic Fx and Co, we only found a non-significant trend with increase in pore volume (+38.9%, p=0.060) at the ultradistal radius. The results of our study suggest that severe deficits in cortical bone quality are responsible for fragility fractures in postmenopausal diabetic women. PMID:22991256

  2. Effect of osteoblastic culture conditions on the structure of poly(DL-lactic-co-glycolic acid) foam scaffolds

    NASA Technical Reports Server (NTRS)

    Goldstein, A. S.; Zhu, G.; Morris, G. E.; Meszlenyi, R. K.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    Poly(DL-lactic-co-glycolic acid) (PLGA) foams are an osteoconductive support that holds promise for the development of bone tissue in vitro and implantation into orthopedic defects. Because it is desirable that foams maintain their shape and size, we examined a variety of foams cultured in vitro with osteoblastic cells. Foams were prepared with different porosities and pore sizes by the method of solvent casting/porogen leaching using 80, 85, and 90 wt% NaCl sieved with particle sizes of 150-300 and 300-500 microm and characterized by mercury intrusion porosimetry. Foams seeded with cells were found to have volumes after 7 days in static culture that decreased with increasing porosity: the least porous exhibited no change in volume while the most porous foams decreased by 39 +/- 10%. In addition, a correlation was observed between decreasing foam volume after 7 days in culture and decreasing internal surface area of the foams prior to seeding. Furthermore, foams prepared with the 300-500 microm porogen had lower porosities, greater mean wall thicknesses between adjacent pores, and larger volumes after 7 days in culture than those prepared with the smaller porogen. Two culture conditions for maintaining cells, static and agitated (in a rotary vessel), were found to have similar influences on foam size, cell density, and osteoblastic function for 7 and 14 days in culture. Finally, we examined unseeded foams in aqueous solutions of pH 3.0, 5.0, and 7.4 and found no significant decrease in foam size with degradation. This study demonstrates that adherent osteoblastic cells may collapse very porous PLGA foams prepared by solvent casting/particulate leaching: a potentially undesirable property for repair of orthopedic defects.

  3. Principles of Considering the Effect of the Limited Volume of a System on Its Thermodynamic State

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2018-01-01

    The features of a system with a finite volume that affect its thermodynamic state are considered in comparison to describing small bodies in macroscopic phases. Equations for unary and pair distribution functions are obtained using difference derivatives of a discrete statistical sum. The structure of the equation for the free energy of a system consisting of an ensemble of volume-limited regions with different sizes and a full set of equations describing a macroscopic polydisperse system are discussed. It is found that the equations can be applied to molecular adsorption on small faces of microcrystals, to bound and isolated pores of a polydisperse material, and to describe the spinodal decomposition of a fluid in brief periods of time and high supersaturations of the bulk phase when each local region functions the same on average. It is shown that as the size of a system diminishes, corrections must be introduced for the finiteness of the system volume and fluctuations of the unary and pair distribution functions.

  4. Effect of different flours on quality of legume cakes to be baked in microwave-infrared combination oven and conventional oven.

    PubMed

    Ozkahraman, Betul Canan; Sumnu, Gulum; Sahin, Serpil

    2016-03-01

    The objective of this study was to compare the quality of legume cakes baked in microwave-infrared combination (MW-IR) oven with conventional oven. Legume cake formulations were developed by replacing 10 % wheat flour by lentil, chickpea and pea flour. As a control, wheat flour containing cakes were used. Weight loss, specific volume, texture, color, gelatinization degree, macro and micro-structure of cakes were investigated. MW-IR baked cakes had higher specific volume, weight loss and crust color change and lower hardness values than conventionally baked cakes. Larger pores were observed in MW-IR baked cakes according to scanning electron microscope (SEM) images. Pea flour giving the hardest structure, lowest specific volume and gelatinization degree was determined to be the least acceptable legume flour. On the other hand, lentil and chickpea flour containing cakes had the softest structure and highest specific volume showing that lentil and chickpea flour can be used to produce functional cakes.

  5. Guard cells elongate: relationship of volume and surface area during stomatal movement.

    PubMed

    Meckel, Tobias; Gall, Lars; Semrau, Stefan; Homann, Ulrike; Thiel, Gerhard

    2007-02-01

    Stomata in the epidermis of photosynthetically active plant organs are formed by pairs of guard cells, which create a pore, to facilitate CO2 and water exchange with the environment. To control this gas exchange, guard cells actively change their volume and, consequently, surface area to alter the aperture of the stomatal pore. Due to the limited elasticity of the plasma membrane, such changes in surface area require an exocytic addition or endocytic retrieval of membrane during stomatal movement. Using confocal microscopic data, we have reconstructed detailed three-dimensional models of open and closed stomata to precisely quantify the necessary area to be exo- and endocytosed by the guard cells. Images were obtained under a strong emphasis on a precise calibration of the method and by avoiding unphysiological osmotical imbalance, and hence osmocytosis. The data reveal that guard cells of Vicia faba L., whose aperture increases by 111.89+/-22.39%, increase in volume and surface area by 24.82+/-6.26% and 14.99+/-2.62%, respectively. In addition, the precise volume to surface area relationship allows quantitative modeling of the three-dimensional changes. While the major volume change is caused by a slight increase in the cross section of the cells, an elongation of the guard cells achieves the main aperture change.

  6. Ring-Interferometric Sol-Gel Bio-Sensor

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory (Inventor); Cohen, David (Inventor)

    2006-01-01

    A biosensor embodying the invention includes a sensing volume having an array of pores sized for immobilizing a first biological entity tending to bind to a second biological entity in such a manner as to change an index of refraction of the sensing volume. The biosensor further includes a ring interferometer, one volumetric section of the ring interferometer being the sensing volume, a laser for supplying light to the ring interferometer, and a photodetector for receiving light from the interferometer.

  7. Micro-CT scan reveals an unexpected high-volume and interconnected pore network in a Cretaceous Sanagasta dinosaur eggshell.

    PubMed

    Hechenleitner, E Martín; Grellet-Tinner, Gerald; Foley, Matthew; Fiorelli, Lucas E; Thompson, Michael B

    2016-03-01

    The Cretaceous Sanagasta neosauropod nesting site (La Rioja, Argentina) was the first confirmed instance of extinct dinosaurs using geothermal-generated heat to incubate their eggs. The nesting strategy and hydrothermal activities at this site led to the conclusion that the surprisingly 7 mm thick-shelled eggs were adapted to harsh hydrothermal microenvironments. We used micro-CT scans in this study to obtain the first three-dimensional microcharacterization of these eggshells. Micro-CT-based analyses provide a robust assessment of gas conductance in fossil dinosaur eggshells with complex pore canal systems, allowing calculation, for the first time, of the shell conductance through its thickness. This novel approach suggests that the shell conductance could have risen during incubation to seven times more than previously estimated as the eggshell erodes. In addition, micro-CT observations reveal that the constant widening and branching of pore canals form a complex funnel-like pore canal system. Furthermore, the high density of pore canals and the presence of a lateral canal network in the shell reduce the risks of pore obstruction during the extended incubation of these eggs in a relatively highly humid and muddy nesting environment. © 2016 The Author(s).

  8. Modeling the Pore Formation Mechanism in UMo/AL Dispersion Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yeon Soo; Jamison, L.; Hofman, G.

    In UMo/Al dispersion fuel meat, pores formed in the ILs or at IL-Al interfaces tend to increase in size with irradiation, potentially limiting performance of this fuel. There has been no universally accepted mechanism for the formation and growth of this type of pore. However, there is a consensus that the stress state determined by meat swelling and fission- induced creep is one of the determinants, and fission gas availability at the pore site is another. Five dispersion RERTR miniplates that have well defined irradiation conditions and PIE data were selected for examination. Meat swelling and pore volume were measuredmore » in each plate. ABAQUS finite element analysis (FEA) package was utilized to obtain the time-dependent evolution of mechanical states in the plates while matching the measured meat swelling and creep. Interpretation of these results give insights on how to model a failure function – a predictor for large pore formation – using variables such as meat swelling, interaction layer growth, stress, and creep. This model can be used for optimizing fuel design parameters to reach the desired goal: meeting high power and performance reactor demand.« less

  9. Tailoring pore properties of MCM-48 silica for selective adsorption of CO2.

    PubMed

    Kim, Sangil; Ida, Junichi; Guliants, Vadim V; Lin, Jerry Y S

    2005-04-07

    Four different types of amine-attached MCM-48 silicas were prepared and investigated for CO(2) separation from N(2). Monomeric and polymeric hindered and unhindered amines were attached to the pore surface of the MCM-48 silica and characterized with respect to their CO(2) sorption properties. The pore structures and amino group content in these modified silicas were investigated by XRD, FT-IR, TGA, N(2) adsorption/desorption at 77 K and CHN/Si analysis, which confirmed that in all cases the amino groups were attached to the pore surface of MCM-48 at 1.5-5.2 mmol/g. The N(2) adsorption/desorption analysis showed a considerable decrease of the pore volume and surface area for the MCM-48 silica containing a polymeric amine (e.g., polyethyleneimine). The CO(2) adsorption rates and capacities of the amine-attached MCM-48 samples were studied employing a sorption microbalance. The results obtained indicated that in addition to the concentration of surface-attached amino groups, specific interactions between CO(2) and the surface amino groups, and the resultant pore structure after amine group attachment have a significant impact on CO(2) adsorption properties of these promising adsorbent materials.

  10. Shrinkage deformation of cement foam concrete

    NASA Astrophysics Data System (ADS)

    Kudyakov, A. I.; Steshenko, A. B.

    2015-01-01

    The article presents the results of research of dispersion-reinforced cement foam concrete with chrysotile asbestos fibers. The goal was to study the patterns of influence of chrysotile asbestos fibers on drying shrinkage deformation of cement foam concrete of natural hardening. The chrysotile asbestos fiber contains cylindrical fiber shaped particles with a diameter of 0.55 micron to 8 microns, which are composed of nanostructures of the same form with diameters up to 55 nm and length up to 22 microns. Taking into account the wall thickness, effective reinforcement can be achieved only by microtube foam materials, the so- called carbon nanotubes, the dimensions of which are of power less that the wall pore diameter. The presence of not reinforced foam concrete pores with perforated walls causes a decrease in its strength, decreases the mechanical properties of the investigated material and increases its shrinkage. The microstructure investigation results have shown that introduction of chrysotile asbestos fibers in an amount of 2 % by weight of cement provides the finely porous foam concrete structure with more uniform size closed pores, which are uniformly distributed over the volume. This reduces the shrinkage deformation of foam concrete by 50%.

  11. MD-based computational design of new engineered Ni-based nanocatalysts: An in-depth study of the underlying mechanism

    NASA Astrophysics Data System (ADS)

    Kardani, Arash; Mehrafrooz, Behzad; Montazeri, Abbas

    2018-03-01

    Porous nickel-based nanocatalysts have attracted great attention thanks to their high surface-to-volume ratio and desired mechanical properties. One of the major challenges associated with their applications is weakening their shear properties due to their contact with the high fluid flow values at elevated service temperatures. On the other hand, their shear behavior is dominantly influenced by the size and distribution of pores available in their structure. In this study, different nickel samples containing periodic distribution surface porosities with 2 nm diameter are examined via molecular dynamics simulation. Moreover, to explore the effects of porosities distribution, the obtained results are compared with those of the samples having concentrated pores at the bigger size of 10nm. Accordingly, shear loading conditions are imposed to capture the dependency of the shear characteristics of the samples on the location and on the geometrical factors of the aforementioned porosities. Surprisingly, it is revealed that the existence of randomly distributed pores can lead to an enhancement of their yield strain compared to that of non-porous counterparts. The underlying mechanism governing this special behavior is thoroughly studied employing several case studies.

  12. Quantifying the impact of early calcite cementation on the reservoir quality of carbonate rocks: A 3D process-based model

    NASA Astrophysics Data System (ADS)

    Hosa, Aleksandra; Wood, Rachel

    2017-06-01

    The reservoir properties of carbonate rocks are controlled by both deposition and diagenesis. The latter includes the early precipitation of calcite cements, which can exert a strong control on the evolution of subsequent diagenetic pathways. We quantify the impact of early marine cement growth in grainstones on evolving pore space by examining trends in the relationship between cementation and permeability using a 3D process-based model (Calcite3D). The model assumes varying proportions of polycrystalline and monocrystalline grain types, upon which we grow isopachous and syntaxial calcite cement types, respectively. We model two syntaxial cement shapes, compact and elongated, that approximate the geometries of typical rhombohedral calcite forms. Results demonstrate the effect of cement competition: an increasing proportion of monocrystalline grains creates stronger competition and a reduction in the impact of individual grains on final calcite cement volume and porosity. Isopachous cement is effective in closing pore throats and limiting permeability. We also show that the impact of syntaxial cement on porosity occlusion and therefore flow is highly dependent on monocrystalline grain location and the orientation of crystal axes. This demonstrates the importance of diagenetic overprint in controlling the evolution of rock properties, but also that this process can be essentially random. We also show that diagenesis alone can create notable heterogeneity in the permeability of carbonates. While Calcite3D is successful in modelling realistic changes in cement volumes and pore space morphology, modelled permeabilities (0.01 -30D) are above the range reported in reservoir grainstones due to the very high permeability of the initial synthetic sediment deposit (58.9D). Poroperm data generated by Calcite3D, however, exhibits a linear relationship between the logarithms of porosity and permeability with a high coefficient of determination, as observed in natural media.

  13. EFFECTIVE POROSITY IMPLIES EFFECTIVE BULK DENSITY IN SORBING SOLUTE TRANSPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flach, G.

    2012-02-27

    The concept of an effective porosity is widely used in solute transport modeling to account for the presence of a fraction of the medium that effectively does not influence solute migration, apart from taking up space. This non-participating volume or ineffective porosity plays the same role as the gas phase in single-phase liquid unsaturated transport: it increases pore velocity, which is useful towards reproducing observed solute travel times. The prevalent use of the effective porosity concept is reflected by its prominent inclusion in popular texts, e.g., de Marsily (1986), Fetter (1988, 1993) and Zheng and Bennett (2002). The purpose ofmore » this commentary is to point out that proper application of the concept for sorbing solutes requires more than simply reducing porosity while leaving other material properties unchanged. More specifically, effective porosity implies the corresponding need for an effective bulk density in a conventional single-porosity model. The reason is that the designated non-participating volume is composed of both solid and fluid phases, both of which must be neglected for consistency. Said another way, if solute does not enter the ineffective porosity then it also cannot contact the adjoining solid. Conceptually neglecting the fluid portion of the non-participating volume leads to a lower (effective) porosity. Likewise, discarding the solid portion of the non-participating volume inherently leads to a lower or effective bulk density. In the author's experience, practitioners virtually never adjust bulk density when adopting the effective porosity approach.« less

  14. Mechanical and electromagnetic properties of northern Gulf of Mexico sediments with and without THF hydrates

    USGS Publications Warehouse

    Lee, J.Y.; Santamarina, J.C.; Ruppel, C.

    2008-01-01

    Using an oedometer cell instrumented to measure the evolution of electromagnetic properties, small strain stiffness, and temperature, we conducted consolidation tests on sediments recovered during drilling in the northern Gulf of Mexico at the Atwater Valley and Keathley Canyon sites as part of the 2005 Chevron Joint Industry Project on Methane Hydrates. The tested specimens include both unremolded specimens (as recovered from the original core liner) and remolded sediments both without gas hydrate and with pore fluid exchanged to attain 100% synthetic (tetrahydrofuran) hydrate saturation at any stage of loading. Test results demonstrate the extent to which the electromagnetic and mechanical properties of hydrate-bearing marine sediments are governed by the vertical effective stress, stress history, porosity, hydrate saturation, fabric, ionic concentration of the pore fluid, and temperature. We also show how permittivity and electrical conductivity data can be used to estimate the evolution of hydrate volume fraction during formation. The gradual evolution of geophysical properties during hydrate formation probably reflects the slow increase in ionic concentration in the pore fluid due to ion exclusion in closed systems and the gradual decrease in average pore size in which the hydrate forms. During hydrate formation, the increase in S-wave velocity is delayed with respect to the decrease in permittivity, consistent with hydrate formation on mineral surfaces and subsequent crystal growth toward the pore space. No significant decementation/debonding occurred in 100% THF hydrate-saturated sediments during unloading, hence the probability of sampling hydrate-bearing sediments without disturbing the original sediment fabric is greatest for samples in which the gas hydrate is primarily responsible for maintaining the sediment fabric and for which the time between core retrieval and restoration of in situ effective stress in the laboratory is minimized. In evaluating the impact of core retrieval on specimen properties, it is also important to consider how far removed hydrate-bearing samples are from hydrate stability conditions. ?? 2008 Elsevier Ltd.

  15. Tortuosity measurement and the effects of finite pulse widths on xenon gas diffusion NMR studies of porous media

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Hurlimann, M. D.; Sen, P. N.; Schwartz, L. M.; Patz, S.; Walsworth, R. L.

    2001-01-01

    We have extended the utility of NMR as a technique to probe porous media structure over length scales of approximately 100-2000 microm by using the spin 1/2 noble gas 129Xe imbibed into the system's pore space. Such length scales are much greater than can be probed with NMR diffusion studies of water-saturated porous media. We utilized Pulsed Gradient Spin Echo NMR measurements of the time-dependent diffusion coefficient, D(t), of the xenon gas filling the pore space to study further the measurements of both the pore surface-area-to-volume ratio, S/V(p), and the tortuosity (pore connectivity) of the medium. In uniform-size glass bead packs, we observed D(t) decreasing with increasing t, reaching an observed asymptote of approximately 0.62-0.65D(0), that could be measured over diffusion distances extending over multiple bead diameters. Measurements of D(t)/D(0) at differing gas pressures showed this tortuosity limit was not affected by changing the characteristic diffusion length of the spins during the diffusion encoding gradient pulse. This was not the case at the short time limit, where D(t)/D(0) was noticeably affected by the gas pressure in the sample. Increasing the gas pressure, and hence reducing D(0) and the diffusion during the gradient pulse served to reduce the previously observed deviation of D(t)/D(0) from the S/V(p) relation. The Pade approximation is used to interpolate between the long and short time limits in D(t). While the short time D(t) points lay above the interpolation line in the case of small beads, due to diffusion during the gradient pulse on the order of the pore size, it was also noted that the experimental D(t) data fell below the Pade line in the case of large beads, most likely due to finite size effects.

  16. Numerical Modeling of the 2014 Oso, Washington, Landslide.

    NASA Astrophysics Data System (ADS)

    George, D. L.; Iverson, R. M.

    2014-12-01

    Numerical simulations of alternative scenarios that could have transpired during the Oso, Washington, landslide of 22 March 2014 provide insight into factors responsible for the landslide's devastating high-speed runout.We performed these simulations using D-Claw, a numerical model we recently developed to simulate landslide and debris-flow motion from initiation to deposition. D-Claw solves a hyperbolic system of five partial differential equations that describe simultaneous evolution of the thickness,solid volume fraction, basal pore-fluid pressure, and two components of momentum of the moving mass. D-Claw embodies the concept ofstate-dependent dilatancy, which causes the solid volume fraction m to evolve toward a value that is equilibrated to the ambient stress state andshear rate. As the value of m evolves, basal pore-fluid pressure coevolves,and thereby causes an evolution in frictional resistance to motion. Our Oso simulations considered alternative scenarios in which values of all model parameters except the initial solid volume fraction m0 were held constant.These values were: basal friction angle = 36°; static critical-state solidvolume fraction = 0.64; initial sediment permeability = 10-8 m2; pore-fluid density = 1100 kg/m3; sediment grain density = 2700 kg/m3; pore-fluid viscosity = 0.005 Pa-s; and dimensionless sediment compressibility coefficient = 0.03. Simulations performed using these values and m0 = 0.62 produced widespread landslide liquefaction, runaway acceleration, andlandslide runout distances, patterns and speeds similar to those observed or inferred for the devastating Oso event. Alternative simulations that usedm0 = 0.64 produced a much slower landslide that did not liquefy and that traveled only about 100 m before stopping. This relatively benign behavioris similar to that of several landslides at the Oso site prior to 2014. Our findings illustrate a behavioral bifurcation that is highly sensitive to the initial solid volume fraction. They suggest that the destructiveness of the2014 Oso event may have resulted in part from prior slope deformation that produced a dilated sediment state that made the sediment susceptible to contraction and liquefaction as it began to fail on March 22.

  17. Effect of Nanosecond RF Pulses on Mitochondrial Membranes

    NASA Astrophysics Data System (ADS)

    Zharkova, L. P.; Romanchenko, I. V.; Bol'shakov, M. A.; Rostov, V. V.

    2017-12-01

    Effect of nanosecond RF pulses on the state of isolated mitochondria and their membranes is investigated. Mitochondrial suspensions are exposed to periodic RF pulses with durations from 4 to 25 ns, frequencies from 0.6 to 1.0 GHz, amplitudes from 0.1 to 36 kV/cm, and pulse repetition frequencies 8-25 Hz. The integrity of the mitochondrial membranes is estimated from their resistance to electric current. The possibility of opening of protein pores with nonspecific permeability is determined from a change in the mitochondrial volume by registration of optical density of organelle suspension.

  18. Investigating the Influence of Temperature on the Kaolinite-Base Synthesis of Zeolite and Urease Immobilization for the Potential Fabrication of Electrochemical Urea Biosensors.

    PubMed

    Anderson, David Ebo; Balapangu, Srinivasan; Fleischer, Heidimarie N A; Viade, Ruth A; Krampa, Francis D; Kanyong, Prosper; Awandare, Gordon A; Tiburu, Elvis K

    2017-08-08

    Temperature-dependent zeolite synthesis has revealed a unique surface morphology, surface area and pore size which influence the immobilization of urease on gold electrode supports for biosensor fabrication. XRD characterization has identified zeolite X (Na) at all crystallization temperatures tested. However, N₂ adsorption and desorption results showed a pore size and pore volume of zeolite X (Na) 60 °C, zeolite X (Na) 70 °C and zeolite X (Na) 90 °C to range from 1.92 nm to 2.45 nm and 0.012 cm³/g to 0.061 cm³/g, respectively, with no significant differences. The specific surface area of zeolite X (Na) at 60, 70 and 90 °C was 64 m²/g, 67 m²/g and 113 m²/g, respectively. The pore size, specific surface area and pore volumes of zeolite X (Na) 80 °C and zeolite X (Na) 100 °C were dramatically increased to 4.21 nm, 295 m²/g, 0.762 cm³/g and 4.92 nm, 389 m²/g, 0.837 cm³/g, in that order. The analytical performance of adsorbed urease on zeolite X (Na) surface was also investigated using cyclic voltammetry measurements, and the results showed distinct cathodic and anodic peaks by zeolite X (Na) 80 °C and zeolite X (Na) 100 °C. These zeolites' molar conductance was measured as a function of urea concentration and gave an average polynomial regression fit of 0.948. The findings in this study suggest that certain physicochemical properties, such as crystallization temperature and pH, are critical parameters for improving the morphological properties of zeolites synthesized from natural sources for various biomedical applications.

  19. Investigating the Influence of Temperature on the Kaolinite-Base Synthesis of Zeolite and Urease Immobilization for the Potential Fabrication of Electrochemical Urea Biosensors

    PubMed Central

    Anderson, David Ebo; Balapangu, Srinivasan; Fleischer, Heidimarie N. A.; Viade, Ruth A.; Awandare, Gordon A.; Tiburu, Elvis K.

    2017-01-01

    Temperature-dependent zeolite synthesis has revealed a unique surface morphology, surface area and pore size which influence the immobilization of urease on gold electrode supports for biosensor fabrication. XRD characterization has identified zeolite X (Na) at all crystallization temperatures tested. However, N2 adsorption and desorption results showed a pore size and pore volume of zeolite X (Na) 60 °C, zeolite X (Na) 70 °C and zeolite X (Na) 90 °C to range from 1.92 nm to 2.45 nm and 0.012 cm3/g to 0.061 cm3/g, respectively, with no significant differences. The specific surface area of zeolite X (Na) at 60, 70 and 90 °C was 64 m2/g, 67 m2/g and 113 m2/g, respectively. The pore size, specific surface area and pore volumes of zeolite X (Na) 80 °C and zeolite X (Na) 100 °C were dramatically increased to 4.21 nm, 295 m2/g, 0.762 cm3/g and 4.92 nm, 389 m2/g, 0.837 cm3/g, in that order. The analytical performance of adsorbed urease on zeolite X (Na) surface was also investigated using cyclic voltammetry measurements, and the results showed distinct cathodic and anodic peaks by zeolite X (Na) 80 °C and zeolite X (Na) 100 °C. These zeolites’ molar conductance was measured as a function of urea concentration and gave an average polynomial regression fit of 0.948. The findings in this study suggest that certain physicochemical properties, such as crystallization temperature and pH, are critical parameters for improving the morphological properties of zeolites synthesized from natural sources for various biomedical applications. PMID:28786961

  20. Noncatalytic hydrogenation of naphthalene in nanosized membrane reactors with accumulated hydrogen and controlled adjustment of their reaction zone volumes

    NASA Astrophysics Data System (ADS)

    Soldatov, A. P.

    2017-05-01

    As part of ongoing studies aimed at designing the next generation of nanosized membrane reactors (NMRs) with accumulated hydrogen, the noncatalytic hydrogenation of naphthalene in pores of ceramic membranes (TRUMEM ultrafiltration membranes with D av = 50 and 90 nm) is performed for the first time, using hydrogen preadsorbed in a hybrid carbon nanostructure: mono- and multilayered oriented carbon nanotubes with graphene walls (OCNTGs) that form on inner pore surfaces. In this technique, the reaction proceeds in the temperature range of 330-390°C at contact times of 10-16 h. The feedstock is an 8% naphthalene solution in decane. The products are analyzed via chromatography on a quartz capillary column coated with polydimethylsiloxane (SE-30). It is established for the first time that in NMRs, the noncatalytic hydrogenation of naphthalene occurs at 370-390°C, forming 1,2,3,4-tetrahydronaphthalene in amounts of up to 0.61%. The rate constants and activation energy (123.5 kJ/mol) of the noncatalytic hydrogenation reaction are determined for the first time. The possibility of designing an NMR with an adjustable reaction zone volume is explored. Changes in the pore structure of the membranes after their modification with pyrocarbon nanosized crystallites (PNCs) are therefore studied as well. It is shown that lengthening the process time reduces pore size: within 23 h after the deposition of PNCs, the average pore radius ( r av) falls from 25 to 3.1 nm. The proposed approach would allow us to design nanoreactors of molecular size and conduct hydrogenation reactions within certain guidelines to synthesize new chemical compounds.

Top