Science.gov

Sample records for effective potential calculation

  1. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi

    SciTech Connect

    Wadt, W.R.; Hay, P.J.

    1985-01-01

    A consistent set of ab initio effective core potentials (ECP) has been generated for the main group elements from Na to Bi using the procedure originally developed by Kahn. The ECP's are derived from all-electron numerical Hartree--Fock atomic wave functions and fit to analytical representations for use in molecular calculations. For Rb to Bi the ECP's are generated from the relativistic Hartree--Fock atomic wave functions of Cowan which incorporate the Darwin and mass--velocity terms. Energy-optimized valence basis sets of (3s3p) primitive Gaussians are presented for use with the ECP's. Comparisons between all-electron and valence-electron ECP calculations are presented for NaF, NaCl, Cl/sub 2/, Cl/sub 2//sup -/, Br/sub 2/, Br/sub 2//sup -/, and Xe/sub 2//sup +/. The results show that the average errors introduced by the ECP's are generally only a few percent.

  2. Sputtering yield calculations using an interatomic potential with the shell effect and a new local model

    NASA Astrophysics Data System (ADS)

    Li, Zhijie; Kenmotsu, Takahiro; Kawamura, Takaichi; Ono, Tadayoshi; Yamamura, Yasunori

    1999-06-01

    In order to test the availabilities of the theoretical screening lengths with the shell effect and the new local electronic-energy-loss model proposed by Yamamura et al., the sputtering yields due to various ion impacts on monatomic materials were calculated with the ACAT code. It is found that the sputtering yields calculated by the Molière potential with the present theoretical screening lengths are in reasonable good agreement with experimental data and Yamamura's empirical sputtering formula without free parameters.

  3. Calculating potential of mean force between like-charged nanoparticles: A comprehensive study on salt effects

    NASA Astrophysics Data System (ADS)

    Wu, Yuan-Yan; Wang, Feng-Hua; Tan, Zhi-Jie

    2013-10-01

    Ions are critical to the structure and stability of polyelectrolytes such as nucleic acids. In this work, we systematically calculated the potentials of mean force between two like-charged nanoparticles in salt solutions by Monte Carlo simulations. The pseudo-spring method is employed to calculate the potential of mean force and compared systematically with the inversed-Boltzmann method. An effective attraction is predicted between two like-charged nanoparticles in divalent/trivalent salt solution and such attraction becomes weakened at very high salt concentration. Our analysis reveals that for the system, the configuration of ion-bridging nanoparticles is responsible for the attraction, and the invasion of anions into the inter-nanoparticles region at high salt concentration would induce attraction weakening rather than the charge inversion effect. The present method would be useful for calculating effective interactions during nucleic acid folding.

  4. Use of Relativistic Effective Core Potentials in the Calculation of Electron-Impact Ionization Cross Sections

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Kim, Yong-Ki

    1999-01-01

    Based on the Binary-Encounter-Bethe (BEB) model, the advantage of using relativistic effective core potentials (RECP) in the calculation of total ionization cross sections of heavy atoms or molecules containing heavy atoms is discussed. Numerical examples for Ar, Kr, Xe, and WF6 are presented.

  5. Exchange-only optimized effective potential calculation of excited state spectra for He and Be atoms.

    SciTech Connect

    Desjarlais, Michael Paul; Muller, Richard Partain

    2006-02-01

    The optimized effective potential (OEP) method allows orbital-dependent functionals to be used in density functional theory (DFT), which, in particular, allows exact exchange formulations of the exchange energy to be used in DFT calculations. Because the exact exchange is inherently self-interaction correcting, the resulting OEP calculations have been found to yield superior band-gaps for condensed-phase systems. Here we apply these methods to the isolated atoms He and Be, and compare to high quality experiments and calculations to demonstrate that the orbital energies accurately reproduce the excited state spectrum for these species. These results suggest that coupling the exchange-only OEP calculations with proper (orbital-dependent or other) correlation functions might allow quantitative accuracy from DFT calculations.

  6. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg

    SciTech Connect

    Hay, P.J.; Wadt, W.R.

    1985-01-01

    Ab initio effective core potentials (ECP's) have been generated to replace the Coulomb, exchange, and core-orthogonality effects of the chemically inert core electron in the transition metal atoms Sc to Hg. For the second and third transition series relative ECP's have been generated which also incorporate the mass--velocity and Darwin relativistic effects into the potential. The ab initio ECP's should facilitate valence electron calculations on molecules containing transition-metal atoms with accuracies approaching all-electron calculations at a fraction of the computational cost. Analytic fits to the potentials are presented for use in multicenter integral evaluation. Gaussian orbital valence basis sets are developed for the (3d,4s,4p), (4d,5s,5p), and (5d,6s,6p) orbitals of the first, second, and third transition series atoms, respectively. All-electron and valence-electron atomic excitation energies are also compared for the low-lying states of Sc--Hg, and the valence-electron calculations are found to reproduce the all-electron excitation energies (typically within a few tenths of an eV).

  7. Calculations of current densities for neutral and doubly charged persubstituted benzenes using effective core potentials.

    PubMed

    Rauhalahti, Markus; Taubert, Stefan; Sundholm, Dage; Liégeois, Vincent

    2017-03-08

    Magnetically induced current density susceptibilities and ring-current strengths have been calculated for neutral and doubly charged persubstituted benzenes C6X6 and C6X6(2+) with X = F, Cl, Br, I, At, SeH, SeMe, TeH, TeMe, and SbH2. The current densities have been calculated using the gauge-including magnetically induced current (GIMIC) method, which has been interfaced to the Gaussian electronic structure code rendering current density calculations using effective core potentials (ECP) feasible. Relativistic effects on the ring-current strengths have been assessed by employing ECP calculations of the current densities. Comparison of the ring-current strengths obtained in calculations on C6At6 and C6At6(2+) using relativistic and non-relativistic ECPs show that scalar relativistic effects have only a small influence on the ring-current strengths. Comparisons of the ring-current strengths and ring-current profiles show that the C6I6(2+), C6At6(2+), C6(SeH)6(2+), C6(SeMe)6(2+), C6(TeH)6(2+), C6(TeMe)6(2+), and C6(SbH2)6(2+) dications are doubly aromatic sustaining spatially separated ring currents in the carbon ring and in the exterior of the molecule. The C6I6(+) radical cation is also found to be doubly aromatic with a weaker ring current than obtained for the dication.

  8. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals

    SciTech Connect

    Hay, P.J.; Wadt, W.R.

    1985-01-01

    Ab initio effective core potentials (ECP's) have been generated to replace the innermost core electron for third-row (K--Au), fourth-row (Rb--Ag), and fifth-row (Cs--Au) atoms. The outermost core orbitals: corresponding to the ns/sup 2/np/sup 6/ configuration for the three rows here: are not replaced by the ECP but are treated on an equal footing with the nd, (n+1)s and (n+1)p valence orbitals. These ECP's have been derived for use in molecular calculations where these outer core orbitals need to be treated explicitly rather than to be replaced by an ECP. The ECP's for the forth and fifth rows also incorporate the mass--velocity and Darwin relativistic effects into the potentials. Analytic fits to the potentials are presented for use in multicenter integral evaluation. Gaussian orbital valence basis sets are developed for the (3s, 3p, 3d, 4s, 4p), (4s, 4p, 4d, 5s, 5p), and (5s, 5p, 5d, 6s, 6p) ortibals of the three respective rows.

  9. Polarization energy gradients in combined quantum mechanics, effective fragment potential, and polarizable continuum model calculations

    NASA Astrophysics Data System (ADS)

    Li, Hui; Gordon, Mark S.

    2007-03-01

    A method that combines quantum mechanics (QM), typically a solute, the effective fragment potential (EFP) discrete solvent model, and the polarizable continuum model is described. The EFP induced dipoles and polarizable continuum model (PCM) induced surface charges are determined in a self-consistent fashion. The gradients of these two energies with respect to molecular coordinate changes are derived and implemented. In general, the gradients can be formulated as simple electrostatic forces and torques among the QM nuclei, electrons, EFP static multipoles, induced dipoles, and PCM induced charges. Molecular geometry optimizations can be performed efficiently with these gradients. The formulas derived for EFP/PCM can be generally applied to other combined molecular mechanics and continuum methods that employ induced dipoles and charges.

  10. Highly Efficient Free Energy Calculations of the Fe Equation of State Using Temperature-Dependent Effective Potential Method

    PubMed Central

    2016-01-01

    Free energy calculations at finite temperature based on ab initio molecular dynamics (AIMD) simulations have become possible, but they are still highly computationally demanding. Besides, achieving simultaneously high accuracy of the calculated results and efficiency of the computational algorithm is still a challenge. In this work we describe an efficient algorithm to determine accurate free energies of solids in simulations using the recently proposed temperature-dependent effective potential method (TDEP). We provide a detailed analysis of numerical approximations employed in the TDEP algorithm. We show that for a model system considered in this work, hcp Fe, the obtained thermal equation of state at 2000 K is in excellent agreement with the results of standard calculations within the quasiharmonic approximation. PMID:27700093

  11. Highly Efficient Free Energy Calculations of the Fe Equation of State Using Temperature-Dependent Effective Potential Method.

    PubMed

    Mosyagin, Igor; Hellman, Olle; Olovsson, Weine; Simak, Sergei I; Abrikosov, Igor A

    2016-11-03

    Free energy calculations at finite temperature based on ab initio molecular dynamics (AIMD) simulations have become possible, but they are still highly computationally demanding. Besides, achieving simultaneously high accuracy of the calculated results and efficiency of the computational algorithm is still a challenge. In this work we describe an efficient algorithm to determine accurate free energies of solids in simulations using the recently proposed temperature-dependent effective potential method (TDEP). We provide a detailed analysis of numerical approximations employed in the TDEP algorithm. We show that for a model system considered in this work, hcp Fe, the obtained thermal equation of state at 2000 K is in excellent agreement with the results of standard calculations within the quasiharmonic approximation.

  12. Molecular wave function and effective adiabatic potentials calculated by extended multi-configuration time-dependent Hartree-Fock method

    SciTech Connect

    Kato, Tsuyoshi; Ide, Yoshihiro; Yamanouchi, Kaoru

    2015-12-31

    We first calculate the ground-state molecular wave function of 1D model H{sub 2} molecule by solving the coupled equations of motion formulated in the extended multi-configuration time-dependent Hartree-Fock (MCTDHF) method by the imaginary time propagation. From the comparisons with the results obtained by the Born-Huang (BH) expansion method as well as with the exact wave function, we observe that the memory size required in the extended MCTDHF method is about two orders of magnitude smaller than in the BH expansion method to achieve the same accuracy for the total energy. Second, in order to provide a theoretical means to understand dynamical behavior of the wave function, we propose to define effective adiabatic potential functions and compare them with the conventional adiabatic electronic potentials, although the notion of the adiabatic potentials is not used in the extended MCTDHF approach. From the comparison, we conclude that by calculating the effective potentials we may be able to predict the energy differences among electronic states even for a time-dependent system, e.g., time-dependent excitation energies, which would be difficult to be estimated within the BH expansion approach.

  13. A self-consistent, microenvironment modulated screened coulomb potential approximation to calculate pH-dependent electrostatic effects in proteins.

    PubMed Central

    Mehler, E L; Guarnieri, F

    1999-01-01

    An improved approach is presented for calculating pH-dependent electrostatic effects in proteins using sigmoidally screened Coulomb potentials (SCP). It is hypothesized that a key determinant of seemingly aberrant behavior in pKa shifts is due to the properties of the unique microenvironment around each residue. To help demonstrate this proposal, an approach is developed to characterize the microenvironments using the local hydrophobicity/hydrophilicity around each residue of the protein. The quantitative characterization of the microenvironments shows that the protein is a complex mosaic of differing dielectric regions that provides a physical basis for modifying the dielectric screening functions: in more hydrophobic microenvironments the screening decreases whereas the converse applies to more hydrophilic regions. The approach was applied to seven proteins providing more than 100 measured pKa values and yielded a root mean square deviation of 0.5 between calculated and experimental values. The incorporation of the local hydrophobicity characteristics into the algorithm allowed the resolution of some of the more intractable problems in the calculation of pKa. Thus, the divergent shifts of the pKa of Glu-35 and Asp-66 in hen egg white lysozyme, which are both about 90% buried, was correctly predicted. Mechanistically, the divergence occurs because Glu-35 is in a hydrophobic microenvironment, while Asp-66 is in a hydrophilic microenvironment. Furthermore, because the calculation of the microenvironmental effects takes very little CPU time, the computational speed of the SCP formulation is conserved. Finally, results from different crystal structures of a given protein were compared, and it is shown that the reliability of the calculated pKa values is sufficient to allow identification of conformations that may be more relevant for the solution structure. PMID:10388736

  14. Model potential calculations of lithium transitions.

    NASA Technical Reports Server (NTRS)

    Caves, T. C.; Dalgarno, A.

    1972-01-01

    Semi-empirical potentials are constructed that have eigenvalues close in magnitude to the binding energies of the valence electron in lithium. The potentials include the long range polarization force between the electron and the core. The corresponding eigenfunctions are used to calculate dynamic polarizabilities, discrete oscillator strengths, photoionization cross sections and radiative recombination coefficients. A consistent application of the theory imposes a modification on the transition operator, but its effects are small for lithium. The method presented can be regarded as a numerical generalization of the widely used Coulomb approximation.

  15. Density functional calculation of intermolecular potentials.

    PubMed

    Nyeland, Carl

    2011-06-30

    Calculations of intermolecular potentials following the density functional theory (DFT) turn out to be very complicated without using some appropriate approximations. Most often the following three approximations have been considered. In one approximation the disturbed charge distributions during collisions are reduced to sums of undisturbed charge distributions from the colliding species. In another approximation, the so-called local density approximation (LDA), one neglects the fact that the intermolecular potentials that depend on charge densities also depend on gradients in the densities. In a third approximation one assumes that the intermolecular potential can be considered as a sum of two terms: a term for the long-range geometry and a term for the short-range geometry. In this Article the three approximations mentioned will be discussed for numerical accuracy for calculations of potentials between inert gas atoms and for calculations of potentials between surfaces and inert gas atoms. In the discussion a few other approximations will be mentioned too.

  16. The effect of the time interval used to calculate mean wind velocity on the calculated drift potential, relative drift potential, and resultant drift direction for sands from three deserts in northern China

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengcai; Dong, Zhibao; Zhao, Aiguo

    2016-01-01

    Wind is the power behind many erosion processes and is responsible for many of the characteristics of arid zone geomorphology. Wind velocity is a key factor in determining the potential sand transport, but the nature of the wind velocity data can strongly affect assessments of the risk of blowing sand. In this study, we obtained real-time wind velocity data in a region of the Tengger Desert with shifting sands, in the Badain Jaran Desert, and in the Madoi desertification land, with the data obtained at 1-min intervals, and used the data to determine the influence of how the wind velocity was calculated (mean versus mid-point values and the averaging time used to calculate these values) on sand drift potential. In the three regions, for both the mean and the mid-point wind velocities, the estimated drift potential decreased with increasing averaging time. The relationships between velocities calculated using the different averaging time intervals and the value calculated using a 1-min interval could be expressed as linear functions. The drift potential calculated using the mid-point wind velocity was larger than that calculated using the mean wind velocity.

  17. Calculation of effective dose.

    PubMed

    McCollough, C H; Schueler, B A

    2000-05-01

    The concept of "effective dose" was introduced in 1975 to provide a mechanism for assessing the radiation detriment from partial body irradiations in terms of data derived from whole body irradiations. The effective dose is the mean absorbed dose from a uniform whole-body irradiation that results in the same total radiation detriment as from the nonuniform, partial-body irradiation in question. The effective dose is calculated as the weighted average of the mean absorbed dose to the various body organs and tissues, where the weighting factor is the radiation detriment for a given organ (from a whole-body irradiation) as a fraction of the total radiation detriment. In this review, effective dose equivalent and effective dose, as established by the International Commission on Radiological Protection in 1977 and 1990, respectively, are defined and various methods of calculating these quantities are presented for radionuclides, radiography, fluoroscopy, computed tomography and mammography. In order to calculate either quantity, it is first necessary to estimate the radiation dose to individual organs. One common method of determining organ doses is through Monte Carlo simulations of photon interactions within a simplified mathematical model of the human body. Several groups have performed these calculations and published their results in the form of data tables of organ dose per unit activity or exposure. These data tables are specified according to particular examination parameters, such as radiopharmaceutical, x-ray projection, x-ray beam energy spectra or patient size. Sources of these organ dose conversion coefficients are presented and differences between them are examined. The estimates of effective dose equivalent or effective dose calculated using these data, although not intended to describe the dose to an individual, can be used as a relative measure of stochastic radiation detriment. The calculated values, in units of sievert (or rem), indicate the amount of

  18. Calculating the potential to emit particulate matter

    SciTech Connect

    Vaart, D.R. van der

    1996-09-01

    As the implementation of the 1990 amendments to the Clean Air Act, and Title V in particular, continues, questions regarding the calculation of a facility`s potential to emit continue to surface. The US Environmental Protection Agency (EPA) has provided limited guidance decisions, although many are still being made during Title V implementation. This paper discusses what is meant by PM-10 and the validity of using sieve analysis in estimating particulate emissions. Title V of the Clean Air Amendments of 1990, and the accompanying regulations in 40 CFR Part 70, defines a major source subject to Title V by calculating its potential emissions of all regulated pollutants, both criteria and hazardous air pollutants. For PM, the threshold emission rate is 100 tons per year (tpy) for applicability to Title V. Much discussion has ensued regarding a definition of PM for the purpose of determining a facility`s potential to emit. Recently, EPA provided guidance which indicated that only PM-10 should be considered for making this determination although many states regulate larger particles through their state implementation plan (SIP) as a surrogate for PM-10.

  19. On calculating the potential vorticity flux

    SciTech Connect

    Hsu, Pei-Chun; Diamond, P. H.

    2015-03-15

    We discuss and compare different approaches to calculating the dynamics of anisotropic flow structure formation in quasi two-dimensional turbulence based on potential vorticity (PV) transport in real space. The general structure of the PV flux in the relaxation processes is deduced non-perturbatively. The transport coefficients of the PV flux are then systematically calculated using perturbation theory. We develop two non-perturbative relaxation models: the first is a mean field theory for the dynamics of minimum enstrophy relaxation based on the requirement that the mean flux of PV dissipates total potential enstrophy but conserves total fluid kinetic energy. The results show that the structure of PV flux has the form of a sum of a positive definite hyper-viscous and a negative or positive viscous flux of PV. Turbulence spreading is shown to be related to PV mixing via the link of turbulence energy flux to PV flux. In the relaxed state, the ratio of the PV gradient to zonal flow velocity is homogenized. This homogenized quantity sets a constraint on the amplitudes of PV and zonal flow in the relaxed state. The second relaxation model is derived from symmetry principles alone. The form of PV flux contains a nonlinear convective term in addition to viscous and hyper-viscous terms. For both cases, the transport coefficients are calculated using perturbation theory. For a broad turbulence spectrum, a modulational calculation of the PV flux gives both a negative viscosity and a positive hyper-viscosity. For a narrow turbulence spectrum, the result of a parametric instability analysis shows that PV transport is also convective. In both relaxation and perturbative analyses, it is shown that turbulent PV transport is sensitive to flow structure, and the transport coefficients are nonlinear functions of flow shear.

  20. Singularity embedding method in potential flow calculations

    NASA Technical Reports Server (NTRS)

    Jou, W. H.; Huynh, H.

    1982-01-01

    The so-called H-type mesh is used in a finite-element (or finite-volume) calculation of the potential flow past an airfoil. Due to coordinate singularity at the leading edge, a special singular trial function is used for the elements neighboring the leading edge. The results using the special singular elements are compared to those using the regular elements. It is found that the unreasonable pressure distribution obtained by the latter is removed by the embedding of the singular element. Suggestions to extend the present method to transonic cases are given.

  1. Rotational excitation of symmetric top molecules by collisions with atoms: Close coupling, coupled states, and effective potential calculations for NH3-He

    NASA Technical Reports Server (NTRS)

    Green, S.

    1976-01-01

    The formalism for describing rotational excitation in collisions between symmetric top rigid rotors and spherical atoms is presented both within the accurate quantum close coupling framework and also the coupled states approximation of McGuire and Kouri and the effective potential approximation of Rabitz. Calculations are reported for thermal energy NH3-He collisions, treating NH3 as a rigid rotor and employing a uniform electron gas (Gordon-Kim) approximation for the intermolecular potential. Coupled states are found to be in nearly quantitative agreement with close coupling results while the effective potential method is found to be at least qualitatively correct. Modifications necessary to treat the inversion motion in NH3 are discussed.

  2. Two-component relativistic density-functional calculations of the dimers of the halogens from bromine through element 117 using effective core potential and all-electron methods.

    PubMed

    Mitin, Alexander V; van Wüllen, Christoph

    2006-02-14

    A two-component quasirelativistic Hamiltonian based on spin-dependent effective core potentials is used to calculate ionization energies and electron affinities of the heavy halogen atom bromine through the superheavy element 117 (eka-astatine) as well as spectroscopic constants of the homonuclear dimers of these atoms. We describe a two-component Hartree-Fock and density-functional program that treats spin-orbit coupling self-consistently within the orbital optimization procedure. A comparison with results from high-order Douglas-Kroll calculations--for the superheavy systems also with zeroth-order regular approximation and four-component Dirac results--demonstrates the validity of the pseudopotential approximation. The density-functional (but not the Hartree-Fock) results show very satisfactory agreement with theoretical coupled cluster as well as experimental data where available, such that the theoretical results can serve as an estimate for the hitherto unknown properties of astatine, element 117, and their dimers.

  3. First Principles Structure Calculations Using the General Potential Lapw Method

    NASA Astrophysics Data System (ADS)

    Wei, Su-Huai

    We have developed a completely general first principles self-consistent full-potential linearized-augmented-plane -wave (LAPW) method program within the density functional formalism to calculate electronic band structure, total energy, pressure and other quantities. No symmetry assumptions are used for the crystal structure. Shape unrestricted charge densities and potentials are calculated inside muffin -tin (MT) spheres as well as in the interstitial regions. All contributions to the Hamiltonian matrix elements are completely taken into account. The core states are treated fully relativistically using the spherical part of the potential only. Scalar relativistic effects are included for the band-states, and spin-orbit coupling is included using a second variation procedure. Both core states and valence states are treated self-consistently, the frozen core approximation is not required. The fast Fourier transformation method is used wherever it is applicable, and this greatly improves the efficiency. This state-of-the-art program has been tested extensively to check the accuracy and convergence properties by comparing calculated electronic band structures, ground state properties, equations of state and cohesive energies for bulk W and GaAs with other theoretical calculations and experimental results. It has been successfully applied to calculate and predict structural and metal-insulator phase transitions for close-packed crystal BaSe and BaTe and the geometric structure of the d-band metal W(001) surface. The results are in generally good agreement with experiment.

  4. Spectral element discontinuous Galerkin simulations for wake potential calculations : NEKCEM.

    SciTech Connect

    Min, M.; Fischer, P. F.; Chae, Y.-C.

    2008-01-01

    In this paper we present high-order spectral element discontinuous Galerkin simulations for wake field and wake potential calculations. Numerical discretizations are based on body-conforming hexagonal meshes on Gauss-Lobatto-Legendre grids. We demonstrate wake potential profiles for cylindrically symmetric cavity structures in 3D, including the cases for linear and quadratic transitions between two cross sections. Wake potential calculations are carried out on 2D surfaces for various bunch sizes.

  5. Sequence and conformation effects on ionization potential and charge distribution of homo-nucleobase stacks using M06-2X hybrid density functional theory calculations

    PubMed Central

    Rooman, Marianne; Wintjens, René

    2013-01-01

    DNA is subject to oxidative damage due to radiation or by-products of cellular metabolism, thereby creating electron holes that migrate along the DNA stacks. A systematic computational analysis of the dependence of the electronic properties of nucleobase stacks on sequence and conformation was performed here, on the basis of single- and double-stranded homo-nucleobase stacks of 1–10 bases or 1–8 base pairs in standard A-, B-, and Z-conformation. First, several levels of theory were tested for calculating the vertical ionization potentials of individual nucleobases; the M06-2X/6-31G* hybrid density functional theory method was selected by comparison with experimental data. Next, the vertical ionization potential, and the Mulliken charge and spin density distributions were calculated and considered on all nucleobase stacks. We found that (1) the ionization potential decreases with the number of bases, the lowest being reached by Gua≡Cyt tracts; (2) the association of two single strands into a double-stranded tract lowers the ionization potential significantly (3) differences in ionization potential due to sequence variation are roughly three times larger than those due to conformational modifications. The charge and spin density distributions were found (1) to be located toward the 5′-end for single-stranded Gua-stacks and toward the 3′-end for Cyt-stacks and basically delocalized over all bases for Ade- and Thy-stacks; (2) the association into double-stranded tracts empties the Cyt- and Thy-strands of most of the charge and all the spin density and concentrates them on the Gua- and Ade-strands. The possible biological implications of these results for transcription are discussed. PMID:23582046

  6. A new potential energy surface for H[sub 2]Br and its use to calculate branching ratios and kinetic isotope effects for the H + HBr reaction

    SciTech Connect

    Lynch, G.C.; Truhlar, D.G. ); Brown, F.B.; Zhao, J.G. )

    1995-01-05

    We have carried out multireference configuration interaction calculations with a large basis set for the H[sub 2]Br system at 104 geometries preselected for convenient use in fitting an analytic potential energy surface for the reactions H + HBr [yields] H[sub 2]Br and H + H[prime]Br [yields] H[prime] + HBr. The external part of the correlation energy is scaled (SEC method) to yield a 101 geometry data set which is fitted using the extended London -Eyring-Polanyi-Sato method with bond-distance- and internal-angle-dependent Sato parameters plus a three-center term localized at the colinear H-Br-H saddle point. The unweighted root-mean-square error for 88 points corresponding to collinear and bent H-H-Br geometries and collinear H-Br-H geometries is 0.55 kcal/mol, with larger deviations for bent H-Br-H geometries. Rate constants were calculated by combining the new analytic potential energy surface with improved canonical variational transition state theory and the least-action semiclassical tunneling approximation. For the abstraction reaction, H + HBr [yields] H[sub 2] + Br, and four deuterium and muonium isotopic analogs, agreement with experiment is very good. 87 refs., 11 figs., 30 tabs.

  7. Calculation of relativistic nucleon-nucleon potentials in three dimensions

    NASA Astrophysics Data System (ADS)

    Hadizadeh, M. R.; Radin, M.

    2017-02-01

    In this paper, we have applied a three-dimensional approach for the calculation of the relativistic nucleon-nucleon potential. The quadratic operator relation between the non-relativistic and the relativistic nucleon-nucleon interactions is formulated as a function of relative two-nucleon momentum vectors, which leads to a three-dimensional integral equation. The integral equation is solved by the iteration method, and the matrix elements of the relativistic potential are calculated from non-relativistic ones. The spin-independent Malfliet-Tjon potential is employed in the numerical calculations, and the numerical tests indicate that the two-nucleon observables calculated by the relativistic potential are preserved with high accuracy.

  8. The Calculation of the Electrostatic Potential of Infinite Charge Distributions

    ERIC Educational Resources Information Center

    Redzic, Dragan V.

    2012-01-01

    We discuss some interesting aspects in the calculation of the electrostatic potential of charge distributions extending to infinity. The presentation is suitable for the advanced undergraduate level. (Contains 3 footnotes.)

  9. Calculation of molecular free energies in classical potentials

    NASA Astrophysics Data System (ADS)

    Farhi, Asaf; Singh, Bipin

    2016-02-01

    Free energies of molecules can be calculated by quantum chemistry computations or by normal mode classical calculations. However, the first can be computationally impractical for large molecules and the second is based on the assumption of harmonic dynamics. We present a novel, accurate and complete calculation of molecular free energies in standard classical potentials. In this method we transform the molecule by relaxing potential terms which depend on the coordinates of a group of atoms in that molecule and calculate the free energy difference associated with the transformation. Then, since the transformed molecule can be treated as non-interacting systems, the free energy associated with these atoms is analytically or numerically calculated. This two-step calculation can be applied to calculate free energies of molecules or free energy difference between (possibly large) molecules in a general environment. We demonstrate the method in free energy calculations for methanethiol and butane molecules in vacuum and solvent. We suggest the potential application of free energy calculation of chemical reactions in classical molecular simulations.

  10. Calculating potential fields using microchannel spatial light modulators

    NASA Technical Reports Server (NTRS)

    Reid, Max B.

    1993-01-01

    We describe and present experimental results of the optical calculation of potential field maps suitable for mobile robot navigation. The optical computation employs two write modes of a microchannel spatial light modulator (MSLM). In one mode, written patterns expand spatially, and this characteristic is used to create an extended two dimensional function representing the influence of the goal in a robot's workspace. Distinct obstacle patterns are written in a second, non-expanding, mode. A model of the mechanisms determining MSLM write mode characteristics is developed and used to derive the optical calculation time for full potential field maps. Field calculations at a few hertz are possible with current technology, and calculation time vs. map size scales favorably in comparison to digital electronic computation.

  11. Chemical potential calculations in dense liquids using metadynamics

    NASA Astrophysics Data System (ADS)

    Perego, C.; Giberti, F.; Parrinello, M.

    2016-10-01

    The calculation of chemical potential has traditionally been a challenge in atomistic simulations. One of the most used approaches is Widom's insertion method in which the chemical potential is calculated by periodically attempting to insert an extra particle in the system. In dense systems this method fails since the insertion probability is very low. In this paper we show that in a homogeneous fluid the insertion probability can be increased using metadynamics. We test our method on a supercooled high density binary Lennard-Jones fluid. We find that we can obtain efficiently converged results even when Widom's method fails.

  12. Computer programs for calculating potential flow in propulsion system inlets

    NASA Technical Reports Server (NTRS)

    Stockman, N. O.; Button, S. L.

    1973-01-01

    In the course of designing inlets, particularly for VTOL and STOL propulsion systems, a calculational procedure utilizing three computer programs evolved. The chief program is the Douglas axisymmetric potential flow program called EOD which calculates the incompressible potential flow about arbitrary axisymmetric bodies. The other two programs, original with Lewis, are called SCIRCL AND COMBYN. Program SCIRCL generates input for EOD from various specified analytic shapes for the inlet components. Program COMBYN takes basic solutions output by EOD and combines them into solutions of interest, and applies a compressibility correction.

  13. Calculation of interaction-induced spectra using complex absorbing potentials

    SciTech Connect

    Gustafsson, Magnus; Antipov, Sergey V.

    2010-10-29

    A complex absorbing potential method is implemented for calculation of collision-induced spectra. The scheme provides a way to avoid the integration of the Schroedinger equation to very large separations of the collisional pair. The method is tested by reproducing a previously computed absorption spectrum for H-He at two different temperatures.

  14. Kinetic Isotope Effects as a Probe for the Protonolysis Mechanism of Alkylmetal Complexes: VTST/MT Calculations Based on DFT Potential Energy Surfaces.

    PubMed

    Mai, Binh Khanh; Kim, Yongho

    2016-10-03

    Protonolysis by platinum or palladium complexes has been extensively studied because it is the microscopic reverse of the C-H bond activation reaction. The protonolysis of (COD)Pt(II)Me2, which exhibits abnormally large kinetic isotope effects (KIEs), is proposed to occur via a concerted pathway (SE2 mechanism) with large tunneling. However, further investigation of KIEs for the protonolysis of ZnMe2 and others led to a conclusion that there is no noticeable correlation between the mechanism and magnitude of KIE. In this study, we demonstrated that variational transition state theory including multidimensional tunneling (VTST/MT) could accurately predict KIEs and Arrhenius parameters of the protonolysis of alkylmetal complexes based on the potential energy surfaces generated by density functional theory. The predicted KIEs, Ea(D) - Ea(H) values, and AH/AD ratios for the protonolysis of (COD)Pt(II)Me2 and Zn(II)Me2 by TFA agreed very well with experimental values. The protonolysis of ZnMe2 with the concerted pathway has a very flat potential energy surface, which produces a very small tunneling effect and therefore a small KIE. The predicted KIE for the stepwise protonolysis (SE(ox) mechanism) of (COD)Pt(II)Me2 was much smaller than that of the concerted pathway, but greater than the KIE of the concerted protonolysis of ZnMe2. A large KIE, which entails a significant tunneling effect, could be used as an experimental probe of the concerted pathway. However, a normal or small KIE should not be used as an indicator of the stepwise mechanism, and the interplay between experiments and reliable theory including tunneling would be essential to uncover the mechanism correctly.

  15. Ab initio calculation of the potential bubble nucleus 34Si

    NASA Astrophysics Data System (ADS)

    Duguet, T.; Somà, V.; Lecluse, S.; Barbieri, C.; Navrátil, P.

    2017-03-01

    Background: The possibility that an unconventional depletion (referred to as a "bubble") occurs in the center of the charge density distribution of certain nuclei due to a purely quantum mechanical effect has attracted theoretical and experimental attention in recent years. Based on a mean-field rationale, a correlation between the occurrence of such a semibubble and an anomalously weak splitting between low angular-momentum spin-orbit partners has been further conjectured. Energy density functional and valence-space shell model calculations have been performed to identify and characterize the best candidates, among which 34Si appears as a particularly interesting case. While the experimental determination of the charge density distribution of the unstable 34Si is currently out of reach, (d ,p ) experiments on this nucleus have been performed recently to test the correlation between the presence of a bubble and an anomalously weak 1 /2--3 /2- splitting in the spectrum of 35Si as compared to 37S. Purpose: We study the potential bubble structure of 34Si on the basis of the state-of-the-art ab initio self-consistent Green's function many-body method. Methods: We perform the first ab initio calculations of 34Si and 36S. In addition to binding energies, the first observables of interest are the charge density distribution and the charge root-mean-square radius for which experimental data exist in 36S. The next observable of interest is the low-lying spectroscopy of 35Si and 37S obtained from (d ,p ) experiments along with the spectroscopy of 33Al and 35P obtained from knock-out experiments. The interpretation in terms of the evolution of the underlying shell structure is also provided. The study is repeated using several chiral effective field theory Hamiltonians as a way to test the robustness of the results with respect to input internucleon interactions. The convergence of the results with respect to the truncation of the many-body expansion, i.e., with respect to

  16. Effect of soil type patterns on the variability of bare soil evaporation within a field: comparison of eddy covariance measurements with potential and actual evaporation calculations

    NASA Astrophysics Data System (ADS)

    Vanderborght, J.; Graf, A.; Steenpass, C.; Scharnagl, B.; Prolingheuer, N.; Herbst, M.; Vereecken, H.

    2009-12-01

    Bare soil evaporation was measured with the eddy-covariance method at the Selhausen field site. The site has a distinct gradient in soil texture with a considerably higher stone content at the upper part of the field. Because of this gradient, a spatial variation in evaporation fluxes in the field is expected. Because of the higher stone content at the upper part of the field, it is expected that the water that is stored in the soil surface layer and can be evaporated at a maximal evaporation rate, which is determined by the energy that is available for evaporation, is considerable smaller in the upper than in the lower part of the field. We investigated whether this hypothesis is supported by eddy covariance (EC) measurements of the evaporation fluxes at the field site. The EC measurements were combined with a footprint model that predicts the location of the soil surface that contributes to the measured evaporation flux. In this way, evaporation measurements of the two parts of the field site could be distinguished. However, since only one EC station was available, simultaneous evaporation measurements for the two field parts were not available. As a consequence, the datasets of measurements had to be interpreted and put into context of the meteorological and soil hydrological conditions. The potential evapotranspiration was calculated using the FAO method (Allen et al., 1998) to represent the meteorological conditions whereas a simple soil evaporation model (Boesten and Stroosnijder, 1986) was used to represent the influence of the precipitation and soil hydrological conditions on the actual evaporation rate. Since different soil parameters were required to describe the evaporation measurements for the upper and lower part of the plot, our starting hypothesis that more water is evaporated in the lower part of the field could be confirmed. Allen, R. G., L. S. Pereira, D. Raes, and M. Smith (1998), Crop evapotranspiration: Guidelines for computing crop water

  17. Thermal conductivity calculations of crystalline quartz from the BKS potential

    NASA Astrophysics Data System (ADS)

    Yoon, Young-Gui; Car, Roberto; Srolovitz, David J.; Scandolo, Sandro

    2003-03-01

    We present thermal conductivity calculations from the classical BKS potential[1]. Following a velocity rescaling method for a constant heat flux proposed by P. Jund and R. Jullien[2], thermal conductivity as a heat flux to temperature gradient ratio is directly calculated in periodic simulation cells. Our calculations in a wide temperature range at which crystalline quartz exists are consistent with the experimental trend[3]. The conductivity decreases with temperature in the alpha-quartz regime, and increases after the phase transition to beta-quartz. The temperature dependence is rather small in the beta-quartz regime. [1] B. W. H. van Beest, G. J. Kramer, and R. A. van Santen, Phy. Rev. Lett. 64, 1995 (1990). [2] P. Jund, and R. Jullien, Phy. Rev. B 59, 13707 (1999). [3] H. Kanamori, N. Fujii, and H. Mizutani, J. Geophys. Res. 73, 595 (1968).

  18. Numerical Green's functions in optical potential calculations for positron scattering from argon and neon

    NASA Technical Reports Server (NTRS)

    Bartschat, K.; Mceachran, R. P.; Stauffer, A. D.

    1990-01-01

    An optical potential method was applied to the calculation of positron scattering from the noble gases in order to determine the effect of open excitation channels on the shape of differential scattering cross sections.

  19. Calculating vibrational spectra using modified Shepard interpolated potential energy surfaces.

    PubMed

    Evenhuis, Christian R; Manthe, Uwe

    2008-07-14

    A potential energy interpolation approach based on modified Shepard interpolation and specifically designed for calculation of vibrational states is presented. The importance of the choice of coordinates for the rate of convergence is demonstrated. Studying the vibrational states of the water molecule as a test case, a coordinate system comprised of inverse bond distances and trigonometric functions of the bond angle is found to be particularly efficient. Different sampling schemes used to locate the reference points in the modified Shepard interpolation are investigated. A final scheme is recommended, which allows the construction of potential energy surfaces to sub-wave-number accuracy.

  20. Calculation of potential flow past airship bodies in yaw

    NASA Technical Reports Server (NTRS)

    Lotz, I

    1932-01-01

    An outline of Von Karman's method of computing the potential flow of airships in yaw by means of partially constant dipolar superposition on the axis of the body is followed by several considerations for beginning and end of the superposition. Then this method is improved by postulating a continuous, in part linearly variable dipolar superposition on the axis. The second main part of the report brings the calculation of the potential flow by means of sources and sinks, arranged on the surface of the airship body. The integral equation which must satisfy this surface superposition is posed, and the core reduced to functions developed from whole elliptical normal integrals. The functions are shown diagrammatically. The integration is resolvable by iteration. The consequence of the method is good. The formulas for computing the velocity on the surface and of the potential for any point conclude the report.

  1. Proliferation Potential of Accelerator-Drive Systems: Feasibility Calculations

    SciTech Connect

    Riendeau, C.D.; Moses, D.L.; Olson, A.P.

    1998-11-01

    Accelerator-driven systems for fissile materials production have been proposed and studied since the early 1950s. Recent advances in beam power levels for small accelerators have raised the possibility that such use could be feasible for a potential proliferator. The objective of this study is to review the state of technology development for accelerator-driven spallation neutron sources and subcritical reactors. Energy and power requirements were calculated for a proton accelerator-driven neutron spallation source and subcritical reactors to produce a significant amount of fissile material--plutonium.

  2. Free energy calculations: an efficient adaptive biasing potential method.

    PubMed

    Dickson, Bradley M; Legoll, Frédéric; Lelièvre, Tony; Stoltz, Gabriel; Fleurat-Lessard, Paul

    2010-05-06

    We develop an efficient sampling and free energy calculation technique within the adaptive biasing potential (ABP) framework. By mollifying the density of states we obtain an approximate free energy and an adaptive bias potential that is computed directly from the population along the coordinates of the free energy. Because of the mollifier, the bias potential is "nonlocal", and its gradient admits a simple analytic expression. A single observation of the reaction coordinate can thus be used to update the approximate free energy at every point within a neighborhood of the observation. This greatly reduces the equilibration time of the adaptive bias potential. This approximation introduces two parameters: strength of mollification and the zero of energy of the bias potential. While we observe that the approximate free energy is a very good estimate of the actual free energy for a large range of mollification strength, we demonstrate that the errors associated with the mollification may be removed via deconvolution. The zero of energy of the bias potential, which is easy to choose, influences the speed of convergence but not the limiting accuracy. This method is simple to apply to free energy or mean force computation in multiple dimensions and does not involve second derivatives of the reaction coordinates, matrix manipulations nor on-the-fly adaptation of parameters. For the alanine dipeptide test case, the new method is found to gain as much as a factor of 10 in efficiency as compared to two basic implementations of the adaptive biasing force methods, and it is shown to be as efficient as well-tempered metadynamics with the postprocess deconvolution giving a clear advantage to the mollified density of states method.

  3. Footprinting molecular electrostatic potential surfaces for calculation of solvation energies.

    PubMed

    Calero, Christian Solis; Farwer, Jochen; Gardiner, Eleanor J; Hunter, Christopher A; Mackey, Mark; Scuderi, Serena; Thompson, Stuart; Vinter, Jeremy G

    2013-11-07

    A liquid is composed of an ensemble of molecules that populate a large number of different states, so calculation of the solvation energy of a molecule in solution requires a method for summing the interactions with the environment over all of these states. The surface site interaction model for the properties of liquids at equilibrium (SSIMPLE) simplifies the surface of a molecule to a discrete number of specific interaction sites (SSIPs). The thermodynamic properties of these interaction sites can be characterised experimentally, for example, through measurement of association constants for the formation of simple complexes that feature a single H-bonding interaction. Correlation of experimentally determined solution phase H-bond parameters with gas phase ab initio calculations of maxima and minima on molecular electrostatic potential surfaces (MEPS) provides a method for converting gas phase calculations on isolated molecules to parameters that can be used to estimate solution phase interaction free energies. This approach has been generalised using a footprinting technique that converts an MEPS into a discrete set of SSIPs (each described by a polar interaction parameter, εi). These SSIPs represent the molecular recognition properties of the entire surface of the molecule. For example, water is described by four SSIPs, two H-bond donor sites and two H-bond acceptor sites. A liquid mixture is described as an ensemble of SSIPs that represent the components of the mixture at appropriate concentrations. Individual SSIPs are assumed to be independent, so speciation of SSIP contacts can be calculated based on properties of the individual SSIP interactions, which are given by the sum of a polar (εiεj) and a non-polar (E(vdW)) interaction term. Results are presented for calculation the free energies of transfer of a range of organic molecules from the pure liquid into water, from the pure liquid into n-hexadecane, from n-hexadecane into water, from n-octanol into

  4. CO dimer: new potential energy surface and rovibrational calculations.

    PubMed

    Dawes, Richard; Wang, Xiao-Gang; Carrington, Tucker

    2013-08-15

    The spectrum of CO dimer was investigated by solving the rovibrational Schrödinger equation on a new potential energy surface constructed from coupled-cluster ab initio points. The Schrödinger equation was solved with a Lanczos algorithm. Several 4D (rigid monomer) global ab initio potential energy surfaces (PESs) were made using a previously reported interpolating moving least-squares (IMLS) fitting procedure specialized to describe the interaction of two linear fragments. The potential has two nonpolar minima giving rise to a complicated set of energy level stacks, which are very sensitive to the shapes and relative depths of the two wells. Although the CO dimer has defied previous attempts at an accurate purely ab initio description our best surface yields results in good agreement with experiment. Root-mean-square (rms) fitting errors of less than 0.1 cm(-1) were obtained for each of the fits using 2226 ab initio data at different levels. This allowed direct assessment of the quality of various levels of ab initio theory for prediction of spectra. Our tests indicate that standard CCSD(T) is slow to converge the interaction energy even when sextuple zeta bases as large as ACV6Z are used. The explicitly correlated CCSD(T)-F12b method was found to recover significantly more correlation energy (from singles and doubles) at the CBS limit. Correlation of the core-electrons was found to be important for this system. The best PES was obtained by extrapolation of calculations at the CCSD(T)(AE)-F12b/CVnZ-F12 (n = 3,4) levels. The calculated energy levels were compared to 105 J ≤ 10 levels from experiment. The rms error for 68 levels with J ≤ 6 is only 0.29 cm(-1). The calculated energy levels were assigned stack labels using several tools. New stacks were found. One of them, stack y1, has an energy lower than many previously known stacks and may be observable.

  5. Electronic structure calculations toward new potentially AChE inhibitors

    NASA Astrophysics Data System (ADS)

    de Paula, A. A. N.; Martins, J. B. L.; Gargano, R.; dos Santos, M. L.; Romeiro, L. A. S.

    2007-10-01

    The main purpose of this study was the use of natural non-isoprenoid phenolic lipid of cashew nut shell liquid from Anacardium occidentale as lead material for generating new potentially candidates of acetylcholinesterase inhibitors. Therefore, we studied the electronic structure of 15 molecules derivatives from the cardanol using the following groups: methyl, acetyl, N, N-dimethylcarbamoyl, N, N-dimethylamine, N, N-diethylamine, piperidine, pyrrolidine, and N-benzylamine. The calculations were performed at RHF level using 6-31G, 6-31G(d), 6-31+G(d) and 6-311G(d,p) basis functions. Among the proposed compounds we found that the structures with substitution by acetyl, N, N-dimethylcarbamoyl, N, N-dimethylamine, and pyrrolidine groups were better correlated to rivastigmine indicating possible activity.

  6. Theoretical calculation of polarizability isotope effects.

    PubMed

    Moncada, Félix; Flores-Moreno, Roberto; Reyes, Andrés

    2017-03-01

    We propose a scheme to estimate hydrogen isotope effects on molecular polarizabilities. This approach combines the any-particle molecular orbital method, in which both electrons and H/D nuclei are described as quantum waves, with the auxiliary density perturbation theory, to calculate analytically the polarizability tensor. We assess the performance of method by calculating the polarizability isotope effect for 20 molecules. A good correlation between theoretical and experimental data is found. Further analysis of the results reveals that the change in the polarizability of a X-H bond upon deuteration decreases as the electronegativity of X increases. Our investigation also reveals that the molecular polarizability isotope effect presents an additive character. Therefore, it can be computed by counting the number of deuterated bonds in the molecule.

  7. Bonn potential and shell-model calculations for N=126 isotones

    SciTech Connect

    Coraggio, L.; Covello, A.; Gargano, A.; Itaco, N.; Kuo, T. T. S.

    1999-12-01

    We have performed shell-model calculations for the N=126 isotones {sup 210}Po, {sup 211}At, and {sup 212}Rn using a realistic effective interaction derived from the Bonn-A nucleon-nucleon potential by means of a G-matrix folded-diagram method. The calculated binding energies, energy spectra, and electromagnetic properties show remarkably good agreement with the experimental data. The results of this paper complement those of our previous study on neutron hole Pb isotopes, confirming that realistic effective interactions are now able to reproduce with quantitative accuracy the spectroscopic properties of complex nuclei. (c) 1999 The American Physical Society.

  8. Osmotic potential calculations of inorganic and organic aqueous solutions over wide solute concentration levels and temperatures

    SciTech Connect

    Cochrane, T. T.; Cochrane, T. A.

    2016-01-15

    } using recorded relative density data at 20 °C. They were subsequently used to estimate N{sub f} values at temperatures up to and excess of body temperatures. Those values, together with t values at temperatures up to and in excess of body temperatures recorded in the literature, were substituted in the authors’ equation for the provisional calculation of osmotic potentials. The calculations indicated that solution temperatures and solute concentrations have a marked effect on osmotic potentials. Conclusions: Following work to measure the relative densities of aqueous solutions for the calculation of N{sub f} values and the determination of definitive t values up to and beyond bodily temperatures, the authors’ equation would enable the accurate estimations of the osmotic potentials of wide concentrations of aqueous solutions of inorganic and organic solutes over the temperature range. The study illustrates that not only solute concentrations but also temperatures have a marked effect on osmotic potentials, an observation of medical and biological significance.

  9. Self-consistent calculations of rare-gas-transition-metal interaction potentials

    NASA Astrophysics Data System (ADS)

    Drakova, D.; Doyen, G.; v. Trentini, F.

    1985-11-01

    A model Hamiltonian is used to calculate potential-energy surfaces for He and Ne on the (110) faces of Ni, Cu, Pd, and Ag. The calculations are nonperturbative, self-consistent, and contain no parameters which are fittable with respect to the gas-solid interaction. Static image-force effects are included. The theory represents the first quantum-mechanical approach to rare-gas-transition-metal potentials which includes the interaction of the rare-gas orbitals with the d electrons in a consistent way. Corrugation is found to be approximately proportional to the d-electron charge density. The sp band is represented by a Sommerfeld model with hybridization gap, which does not contribute to the corrugation. Part of the potential arises through the hybridization of the rare-gas orbitals with the unoccupied metal states. This interference energy is roughly a factor of 2 larger for neon than for helium, leading to larger corrugations of the neon potentials as compared with the helium potentials. This is in agreement with recent experiments, but in contrast to earlier theoretical predictions. The theoretically calculated corrugations and well depths compare reasonably to the experimental data where available. The computed values of corrugation for He increase in the order Ni, Cu, Ag, and Pd. This agrees with experiments where soft potentials have been fitted to the scattering data, although the predicted He/Ni(110) corrugation is overly large by more than a factor of 2. With increasing energy, the He corrugation increases slightly in the calculations. The dependence is nearly constant for Ni and strongest for Pd. For Ne/Ni(110) and Ne/Pd(110) corrugation decreases with energy. Image-force effects are found to be important for the corrugation and softness of the neon potentials.

  10. Many-Body Potentials for Aqueous Be(2+) Derived from ab Initio Calculations.

    PubMed

    Winter, Nicolas D

    2016-12-08

    An effective three-body potential for the aqueous Be(2+) ion has been constructed from a large number of high-level ab initio cluster calculations. The new potential was validated in subsequent molecular dynamics simulations of both gas phase ion-water clusters and bulk liquid. The structures of the first and second solvation shells were studied using radial distribution functions and angular distribution functions. The vibrational spectrum of Be(2+) and first shell waters was examined by computing power spectra from the molecular dynamics simulations. The observed bands showed reasonable agreement with experimental spectroscopic frequencies. The potential of mean force for water exchange between the first and second solvation shells was calculated and the energy barrier for exchange was found to have improved agreement with experiment relative to two-body force fields. Examination of the solvation structure near the transition state yielded results consistent with an associative mechanism.

  11. Potential Energy Calculations for Collinear Cluster Tripartition Fission Events

    NASA Astrophysics Data System (ADS)

    Unzhakova, A. V.; Pashkevich, V. V.; Pyatkov, Y. V.

    2014-09-01

    Strutinsky shell correction calculations were performed to describe the recent experimental results on collinear ternary fission. Collinear Cluster Tripartion fission events were studied experimentally in neutron induced fission of 235U, where the missing mass in the detected binary decay was suggested to characterize fission event as a collinear tripartition; and in spontaneous fission of 252Cf, where the direct detection of the three fission fragments has been used to confirm the existence of the Collinear Cluster Tripartition channel with a probability of 4.7×10-3 relative to the binary fission events.

  12. Potential infrared relaxation channels calculated for CO2 clathrate hydrates

    NASA Astrophysics Data System (ADS)

    Lakhlifi, Azzedine; Dahoo, Pierre Richard; Chassefière, Eric

    2017-01-01

    The infrared bar-spectrum of a single carbon dioxide molecule encapsulated in nano-cage clathrate hydrate is determined using the LD (Lakhlifi-Dahoo) extended site inclusion model successfully applied to analyze the spectra of CO2 isotopologues isolated in rare gas matrices. Trapping is energetically more favorable in clathrate structure of type sI than sII. CO2 exhibits hindered orientational motions (librational motions) around its equilibrium configurations in the small and large nano-cages. The orientation transitions are weak, and the spectra are purely vibrational. In the static field inside the cage, the doubly degenerate bending mode ν2 is blue shifted and split. From the scheme of the calculated energy levels for the different degrees of freedom, which is comparable to that of CO2 in rare gas matrices, it is conjectured that infrared excited CO2 will rather relax radiatively. Non-radiative channels can be analyzed by binary collision model.

  13. Fully Relativistic Calculations on the Potential Energy Surfaces of the Lowest 23 States of Molecular Chlorine

    SciTech Connect

    Luiz Guilherme M. de Macedo; de Jong, Wibe A.

    2008-01-24

    The electronic structure and spectroscopic properties (Re, ωexe, βe, Te ) of the ground state and the 22 lowest excited states of chlorine molecule were studied within a four component relativistic framework using the MOLFDIR program package. The potential energy curves of all possible 23 covalent states were calculated using relativistic complete open shell configuration interaction (COSCI) approach. In addition, four component multi-reference configuration interaction with singles and doubles excitations (MRCISD) calculations were performed in order to infer the effects due to dynamical correlation in vertical excitations. The calculated properties are in good agreement with the available experimental data.

  14. Potential theoretic methods for far field sound radiation calculations

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Stenger, Edward J.; Scott, J. R.

    1995-01-01

    In the area of computational acoustics, procedures which accurately predict the far-field sound radiation are much sought after. A systematic development of such procedures are found in a sequence of papers by Atassi. The method presented here is an alternate approach to predicting far field sound based on simple layer potential theoretic methods. The main advantages of this method are: it requires only a simple free space Green's function, it can accommodate arbitrary shapes of Kirchoff surfaces, and is readily extendable to three-dimensional problems. Moreover, the procedure presented here, though tested for unsteady lifting airfoil problems, can easily be adapted to other areas of interest, such as jet noise radiation problems. Results are presented for lifting airfoil problems and comparisons are made with the results reported by Atassi. Direct comparisons are also made for the flat plate case.

  15. Effective Potential in Noncommutative BTZ Black Hole

    NASA Astrophysics Data System (ADS)

    Sadeghi, Jafar; Shajiee, Vahid Reza

    2016-02-01

    In this paper, we investigated the noncommutative rotating BTZ black hole and showed that such a space-time is not maximally symmetric. We calculated effective potential for the massive and the massless test particle by geodesic equations, also we showed effect of non-commutativity on the minimum mass of BTZ black hole.

  16. Calculations supporting evaluation of potential environmental standards for Yucca Mountain

    SciTech Connect

    Duguid, J.O.; Andrews, R.W.; Brandstetter, E.; Dale, T.F.; Reeves, M.

    1994-04-01

    The Energy Policy Act of 1992, Section 801 (US Congress, 1992) provides for the US Environmental Protection Agency (EPA) to contract the National Academy of Sciences (NAS) to conduct a study and provide findings and recommendations on reasonable standards for the disposal of high-level wastes at the Yucca Mountain site. The NAS study is to provide findings and recommendations which include, among other things, whether a health-based standard based on dose to individual members of the public from releases to the accessible environment will provide a reasonable standard for the protection of the health and safety of the public. The EPA, based upon and consistent with the findings and recommendations of the NAS, is required to promulgate standards for protection of the public from releases from radioactive materials stored or disposed of in a repository at the Yucca Mountain site. This document presents a number of different ``simple`` analyses of undisturbed repository performance that are intended to provide input to those responsible for setting appropriate environmental standards for a potential repository at the Yucca Mountain site in Nevada. Each of the processes included in the analyses has been simplified to capture the primary significance of that process in containing or isolating the waste from the biosphere. In these simplified analyses, the complex waste package interactions were approximated by a simple waste package ``failure`` distribution which is defined by the initiation and rate of waste package ``failures``. Similarly, releases from the waste package and the engineered barrier system are controlled by the very near field environment and the presence and rate of advective and diffusive release processes. Release was approximated by either a simple alteration-controlled release for the high solubility radionuclides and either a diffusive or advective-controlled release for the solubility-limited radionuclides.

  17. [Hyponatremia: effective treatment based on calculated outcomes].

    PubMed

    Vervoort, G; Wetzels, J F M

    2006-09-30

    A 78-year-old man was treated for symptomatic hyponatremia. Despite administration of an isotonic NaCl 0.9% solution, plasma sodium remained unchanged due to high concentrations of sodium and potassium in the urine. After infusion of a hypertonic NaCl solution, a satisfactory increase in plasma sodium was reached and symptoms resolved gradually. The hyponatremia was found to be caused by hypothyroidism, which was treated. A 70-year-old female was admitted to the hospital with loss of consciousness and hyponatremia. She was treated initially with a hypertonic NaCl 2.5% solution, which resulted in a steady increase in plasma sodium and a resolution of symptoms. Treatment was changed to an isotonic NaCl 0.9% infusion to attenuate the rise of serum sodium. Nevertheless plasma sodium increased too rapidly due to increased diuresis and reduced urinary sodium and potassium excretion. A slower increase in plasma sodium was achieved by administering a glucose 5% infusion. Hyponatremia is frequently observed in hospitalised patients. It should be treated effectively, and the rate of correction should be adapted to the clinical situation. Effective treatment is determined by calculating changes in effective osmoles and the resulting changes in the distribution of water over extra- and intracellular spaces. Changes in urine production and urinary excretion of sodium and potassium should be taken into account.

  18. Derivation of enhanced potentials for cerium brannerite and the calculation of lattice and intrinsic defect properties

    NASA Astrophysics Data System (ADS)

    Bird, Rebecca A.; Read, Mark S. D.

    2017-02-01

    A new potential has been derived for ceria and used to calculate its lattice and defect properties. The Ce4+ ⋯O2- potential is obtained via a combination of empirical fitting to crystal structural data and parametric fitting to additional physical properties, while the O2- ⋯O2- potential is transferred from earlier publications on UO2 and PuO2 . The overall potential is subsequently verified and validated by calculation of elastic and dielectric constants, whose values agree favourably with those measured experimentally. The potential is then employed to calculate intrinsic defect formation energies and predict the most favourable type of intrinsic disorder.

  19. Calculation of the Helmholtz potential of an elastic strand in an external electric field.

    PubMed

    Khaliullin, Renat N; Schieber, Jay D

    2011-02-14

    We derive from statistical mechanics the Gibbs free energy of an elastic random-walk chain affected by the presence of an external electric field. Intrachain charge interactions are ignored. In addition, we find two approximations of the Helmholtz potential for this system analogous to the gaussian and Cohen-Padé approximations for an elastic strand without the presence of an electric field. Our expressions agree well with exact numerical calculations of the potential in a wide range of conditions. Our analog of the gaussian approximation exhibits distortion of the monomer density due to the presence of the electric field, and our analog of the Cohen-Padé approximation additionally includes finite chain extensibility effects. The Helmholtz potential may be used in modeling the dynamics of electrophoresis experiments.

  20. Calculation of chemical potentials of chain molecules by the incremental gauge cell method.

    PubMed

    Rasmussen, Christopher J; Vishnyakov, Aleksey; Neimark, Alexander V

    2011-12-07

    The gauge cell Monte Carlo method is extended to calculations of the incremental chemical potentials and free energies of linear chain molecules. The method was applied to chains of Lennard-Jones beads with stiff harmonic bonds up to 500 monomers in length. We show that the suggested method quantitatively reproduces the modified Widom particle insertion method of Kumar et al. [S. K. Kumar, I. Szleifer, and A. Z. Panagiotopoulos, Phys. Rev. Lett. 66(22), 2935 (1991)], and is by an order of magnitude more efficient for long chains in terms of the computational time required for the same accuracy of chemical potential calculations. The chain increment ansatz, which suggests that the incremental chemical potential is independent of the chain length, was tested at different temperatures. We confirmed that the ansatz holds only for coils above the θ temperature. Special attention is paid to the effects of the magnitude of adsorption potential and temperature on the behavior of single chains in confinements that are comparable in size with the free chain radius of gyration. At sufficiently low temperatures, the dependence of the incremental chemical potential on the chain length in wetting pores is superficially similar to a capillary condensation isotherm, reflecting monolayer formation following by pore volume filling, as the chain length increases. We find that the incremental gauge cell method is an accurate and efficient technique for calculations of the free energies of chain molecules in bulk systems and nanoconfinements alike. The suggested method may find practical applications, such as modeling polymer partitioning on porous substrates and dynamics of chain translocation into nanopores.

  1. Calculation of chemical potentials of chain molecules by the incremental gauge cell method

    NASA Astrophysics Data System (ADS)

    Rasmussen, Christopher J.; Vishnyakov, Aleksey; Neimark, Alexander V.

    2011-12-01

    The gauge cell Monte Carlo method is extended to calculations of the incremental chemical potentials and free energies of linear chain molecules. The method was applied to chains of Lennard-Jones beads with stiff harmonic bonds up to 500 monomers in length. We show that the suggested method quantitatively reproduces the modified Widom particle insertion method of Kumar et al. [S. K. Kumar, I. Szleifer, and A. Z. Panagiotopoulos, Phys. Rev. Lett. 66(22), 2935 (1991)], 10.1103/PhysRevLett.66.2935, and is by an order of magnitude more efficient for long chains in terms of the computational time required for the same accuracy of chemical potential calculations. The chain increment ansatz, which suggests that the incremental chemical potential is independent of the chain length, was tested at different temperatures. We confirmed that the ansatz holds only for coils above the θ temperature. Special attention is paid to the effects of the magnitude of adsorption potential and temperature on the behavior of single chains in confinements that are comparable in size with the free chain radius of gyration. At sufficiently low temperatures, the dependence of the incremental chemical potential on the chain length in wetting pores is superficially similar to a capillary condensation isotherm, reflecting monolayer formation following by pore volume filling, as the chain length increases. We find that the incremental gauge cell method is an accurate and efficient technique for calculations of the free energies of chain molecules in bulk systems and nanoconfinements alike. The suggested method may find practical applications, such as modeling polymer partitioning on porous substrates and dynamics of chain translocation into nanopores.

  2. Accurate calculation of second virial coefficient of the Exp-6 potential and its application

    NASA Astrophysics Data System (ADS)

    Mamedov, B. A.; Somuncu, E.

    2015-02-01

    In this study, a new approach to calculate the second virial coefficient of the Exp-6 potential is proposed. Over a wide temperature range, the calculated results of the second virial coefficient determined from Exp-6 potential are comparable with the calculations of second virial coefficient over Lennard-Jones (12-6) potential. As an example of application, the formulas obtained for second virial coefficient are calculated for molecules Kr,Xe,N2,Hg,CH4 and C2H6. The obtained results are in good agreement with the data available in the literature.

  3. Calculation of Water Drop Trajectories to and About Arbitrary Three-Dimensional Bodies in Potential Airflow

    NASA Technical Reports Server (NTRS)

    Norment, H. G.

    1980-01-01

    Calculations can be performed for any atmospheric conditions and for all water drop sizes, from the smallest cloud droplet to large raindrops. Any subsonic, external, non-lifting flow can be accommodated; flow into, but not through, inlets also can be simulated. Experimental water drop drag relations are used in the water drop equations of motion and effects of gravity settling are included. Seven codes are described: (1) a code used to debug and plot body surface description data; (2) a code that processes the body surface data to yield the potential flow field; (3) a code that computes flow velocities at arrays of points in space; (4) a code that computes water drop trajectories from an array of points in space; (5) a code that computes water drop trajectories and fluxes to arbitrary target points; (6) a code that computes water drop trajectories tangent to the body; and (7) a code that produces stereo pair plots which include both the body and trajectories. Code descriptions include operating instructions, card inputs and printouts for example problems, and listing of the FORTRAN codes. Accuracy of the calculations is discussed, and trajectory calculation results are compared with prior calculations and with experimental data.

  4. Influence of the intramolecular potential of adsorbed hydrogen on frequency shift calculations

    NASA Astrophysics Data System (ADS)

    Larin, Alexander V.

    1995-01-01

    The influence of the choice of the intramolecular potential on the resulting frequency shift of the fundamental vibrational transition in the dihydrogen molecule adsorbed on zeolite NaA is estimated. It is shown that an improved Morse potential and the potential calculated by Kołtsos and Wolniewicz lead to the same frequency shift value. Application of the Buckingham method for the frequency shift calculation to this case is discussed.

  5. Interface effects on calculated defect levels for oxide defects

    NASA Astrophysics Data System (ADS)

    Edwards, Arthur; Barnaby, Hugh; Schultz, Peter; Pineda, Andrew

    2014-03-01

    Density functional theory (DFT) has had impressive recent success predicting defect levels in insulators and semiconductors [Schultz and von Lillienfeld, 2009]. Such success requires care in accounting for long-range electrostatic effects. Recently, Komsa and Pasquarello have started to address this problem in systems with interfaces. We report a multiscale technique for calculating electrostatic energies for charged defects in oxide of the metal-oxide-silicon (MOS) system, but where account is taken of substrate doping density, oxide thickness, and gate bias. We use device modeling to calculate electric fields for a point charge a fixed distance from the interface, and used the field to numerically calculate the long-range electrostatic interactions. We find, for example, that defect levels in the oxide do depend on both the magnitude and the polarity the substrate doping density. Furthermore, below 20 Å, oxide thickness also has significant effects. So, transferring results directly from bulk calculations leads to inaccuracies up to 0.5 eV- half of the silicon band gap. We will present trends in defect levels as a function of device parameters. We show that these results explain previous experimental results, and we comment on their potential impact on models for NBTI. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under co.

  6. The ozone depletion potentials on halocarbons: Their dependence of calculation assumptions

    NASA Technical Reports Server (NTRS)

    Karol, Igor L.; Kiselev, Andrey A.

    1994-01-01

    The concept of Ozone Depletion Potential (ODP) is widely used in the evaluation of numerous halocarbons and of their replacement effects on ozone, but the methods, assumptions and conditions used in ODP calculations have not been analyzed adequately. In this paper a model study of effects on ozone of the instantaneous releases of various amounts of CH3CCl3 and of CHF2Cl (HCFC-22) for several compositions of the background atmosphere are presented, aimed at understanding connections of ODP values with the assumptions used in their calculations. To facilitate the ODP computation in numerous versions for the long time periods after their releases, the above rather short-lived gases and the one-dimensional radiative photochemical model of the global annually averaged atmospheric layer up to 50 km height are used. The variation of released gas global mass from 1 Mt to 1 Gt leads to ODP value increase with its stabilization close to the upper bound of this range in the contemporary atmosphere. The same variations are analyzed for conditions of the CFC-free atmosphere of 1960's and for the anthropogenically loaded atmosphere in the 21st century according to the known IPCC 'business as usual' scenario. Recommendations for proper ways of ODP calculations are proposed for practically important cases.

  7. Calculation of smooth potential energy surfaces using local electron correlation methods

    NASA Astrophysics Data System (ADS)

    Mata, Ricardo A.; Werner, Hans-Joachim

    2006-11-01

    The geometry dependence of excitation domains in local correlation methods can lead to noncontinuous potential energy surfaces. We propose a simple domain merging procedure which eliminates this problem in many situations. The method is applied to heterolytic bond dissociations of ketene and propadienone, to SN2 reactions of Cl- with alkylchlorides, and in a quantum mechanical/molecular mechanical study of the chorismate mutase enzyme. It is demonstrated that smooth potentials are obtained in all cases. Furthermore, basis set superposition error effects are reduced in local calculations, and it is found that this leads to better basis set convergence when computing barrier heights or weak interactions. When the electronic structure strongly changes between reactants or products and the transition state, the domain merging procedure leads to a balanced description of all structures and accurate barrier heights.

  8. Calculation of smooth potential energy surfaces using local electron correlation methods

    SciTech Connect

    Mata, Ricardo A.; Werner, Hans-Joachim

    2006-11-14

    The geometry dependence of excitation domains in local correlation methods can lead to noncontinuous potential energy surfaces. We propose a simple domain merging procedure which eliminates this problem in many situations. The method is applied to heterolytic bond dissociations of ketene and propadienone, to SN2 reactions of Cl{sup -} with alkylchlorides, and in a quantum mechanical/molecular mechanical study of the chorismate mutase enzyme. It is demonstrated that smooth potentials are obtained in all cases. Furthermore, basis set superposition error effects are reduced in local calculations, and it is found that this leads to better basis set convergence when computing barrier heights or weak interactions. When the electronic structure strongly changes between reactants or products and the transition state, the domain merging procedure leads to a balanced description of all structures and accurate barrier heights.

  9. On the consistent definition of spin-orbit effects calculated by relativistic effective core potentials with one-electron spin-orbit operators: Comparison of spin-orbit effects for Tl, TlH, TlH3, PbH2, and PbH4

    NASA Astrophysics Data System (ADS)

    Han, Young-Kyu; Bae, Cheolbeom; Lee, Yoon Sup

    1999-05-01

    The spin-orbit effects for Tl, TlH, TlH3, PbH2, and PbH4 are evaluated by two-component calculations using several relativistic effective core potentials (RECP) with one-electron spin-orbit operators. The used RECPs are shape-consistent RECPs derived by Wildman et al. [J. Chem. Phys. 107, 9975 (1997)] and three sets of energy-consistent (or adjusted) RECPs published by Schwerdtfeger et al. [Phys. Scr. 36, 453 (1987); J. Chem. Phys. 90, 762 (1989)], Küchle et al. [Mol. Phys. 74, 1245 (1991)], and Leininger et al. [Chem. Phys. 217, 19 (1997)]. The shape-consistent RECP results are in very good agreement with the Küchle et al. energy-consistent RECP results for all the molecules studied here and all-electron results for TlH. The RECPs of Schwerdtfeger et al. and Leininger et al. seem to provide qualitatively different spin-orbit effects. If one defines spin-free RECP as the potential average of the corresponding two-component RECP, all RECPs give very similar spin-orbit effects for all the cases. Most of the discrepancies of molecular spin-orbit effects among various RECPs reported in the literature may originate from different definitions of RECPs with or without a spin-orbit term and not from the inherent difference in spin-orbit operators.

  10. An accurate potential energy curve for helium based on ab initio calculations

    NASA Astrophysics Data System (ADS)

    Janzen, A. R.; Aziz, R. A.

    1997-07-01

    Korona, Williams, Bukowski, Jeziorski, and Szalewicz [J. Chem. Phys. 106, 1 (1997)] constructed a completely ab initio potential for He2 by fitting their calculations using infinite order symmetry adapted perturbation theory at intermediate range, existing Green's function Monte Carlo calculations at short range and accurate dispersion coefficients at long range to a modified Tang-Toennies potential form. The potential with retardation added to the dipole-dipole dispersion is found to predict accurately a large set of microscopic and macroscopic experimental data. The potential with a significantly larger well depth than other recent potentials is judged to be the most accurate characterization of the helium interaction yet proposed.

  11. Tunable redox potential of nonmetal doped monolayer MoS2: First principle calculations

    NASA Astrophysics Data System (ADS)

    Lu, S.; Li, C.; Zhao, Y. F.; Gong, Y. Y.; Niu, L. Y.; Liu, X. J.

    2016-10-01

    Doping is an effective method to alter the electronic behavior of materials by forming new chemical bonds and bringing bond relaxation. With this aid of first principle calculations, the crystal configuration and electronic properties of monolayer MoS2 have been modulated by the nonmetal (NM) dopants (H, B, C, N, O, F, Si, P, Cl, As, Se, Br, Te and I), and the thermodynamic stability depending on the preparation conditions (Mo-rich and S-rich conditions) were discussed. Results shown that, the NM dopants substituted preferentially for S under Mo-rich condition, the electronic distribution around the dopants and the nearby Mo atoms are changed by the new formed Mo-NM bonds and bands relaxation. Compared to pristine monolayer MoS2, the NM ions with odd chemical valences enhance the oxidation potential and reduce the reduction potential of specimens, but the NM ions with even chemical valences have the opposite effects on the redox potentials. Compared to the NM ions with even chemical valences, the lone pair electrons in NM ions with odd chemical valences can extra interact with the Mo ions and reduces the ECBM and EVBM values of specimens. It offers a simple way to design various monolayer MoS2 based catalysts in order to catalyze different materials by chose the reasonable dopants for stronger oxidation or reduction potential.

  12. Quantum-Mechanical Calculation of Ionization-Potential Lowering in Dense Plasmas

    NASA Astrophysics Data System (ADS)

    Son, Sang-Kil; Thiele, Robert; Jurek, Zoltan; Ziaja, Beata; Santra, Robin

    2014-07-01

    The charged environment within a dense plasma leads to the phenomenon of ionization-potential depression (IPD) for ions embedded in the plasma. Accurate predictions of the IPD effect are of crucial importance for modeling atomic processes occurring within dense plasmas. Several theoretical models have been developed to describe the IPD effect, with frequently discrepant predictions. Only recently, first experiments on IPD in Al plasma have been performed with an x-ray free-electron laser, where their results were found to be in disagreement with the widely used IPD model by Stewart and Pyatt. Another experiment on Al, at the Orion laser, showed disagreement with the model by Ecker and Kröll. This controversy shows a strong need for a rigorous and consistent theoretical approach to calculate the IPD effect. Here, we propose such an approach: a two-step Hartree-Fock-Slater model. With this parameter-free model, we can accurately and efficiently describe the experimental Al data and validate the accuracy of standard IPD models. Our model can be a useful tool for calculating atomic properties within dense plasmas with wide-ranging applications to studies on warm dense matter, shock experiments, planetary science, inertial confinement fusion, and nonequilibrium plasmas created with x-ray free-electron lasers.

  13. 40 CFR Appendix D to Part 72 - Calculation of Potential Electric Output Capacity

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Calculation of Potential Electric Output Capacity D Appendix D to Part 72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PERMITS REGULATION Pt. 72, App. D Appendix D to Part 72—Calculation...

  14. 40 CFR Appendix D to Part 72 - Calculation of Potential Electric Output Capacity

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Calculation of Potential Electric Output Capacity D Appendix D to Part 72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PERMITS REGULATION Pt. 72, App. D Appendix D to Part 72—Calculation...

  15. 40 CFR Appendix D to Part 72 - Calculation of Potential Electric Output Capacity

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Calculation of Potential Electric Output Capacity D Appendix D to Part 72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PERMITS REGULATION Pt. 72, App. D Appendix D to Part 72—Calculation...

  16. CASSCF/CI calculations of low-lying states and potential energy surfaces of Au3

    NASA Astrophysics Data System (ADS)

    Balasubramanian, K.; Liao, M. Z.

    1987-05-01

    Complete active space MCSCF (CASSCF) and second-order configuration interaction (SOCI) calculations of low-lying electronic states [2B2,2A1] of Au3 as well as the 1Σ+g state of Au2 are carried out. The bending potential energy surfaces of 2A1 and 2B2 states are also presented. A barrier is found in the potential energy surface of the 2A1 state in moving from the linear to bent structure. Two nearly-degenerate structures are found for the ground state. The 2Σ+u state arising from the linear structure with an Au-Au bond length of 2.66 Å is only 3.2 kcal/mol below the 2A1 bent state. The equilibrium geometry of the 2A1 state is an isosceles triangle with an apex angle of 54°. The Au3 cluster is found to be more stable than the gold dimer. The effect of d correlation is studied on Au2 by carrying out MRSDCI (multireference singles and doubles CI) calculations on the 1Σ+g state of Au2 which include excitations from the d orbitals.

  17. Crystal-field calculations for transition-metal ions by application of an opposing potential

    DOE PAGES

    Zhou, Fei; Aberg, Daniel

    2016-02-16

    We propose a fully ab initio method, the opposing crystal potential (OCP), to calculate the crystal-field parameters of transition-metal impurities in insulator hosts. Through constrained density functional calculations, OCP obtains the constraining Lagrange multipliers, which act as a cancellation potential against the crystal field and lead to spherical d-electron distribution. Furthermore, the method is applied to several insulators doped with Mn4+ and Mn2+ ions and shown to be in good agreement with experiment.

  18. Investigation of segregation of silver at copper grain boundaries by first principles and empirical potential calculations

    NASA Astrophysics Data System (ADS)

    Kiyohara, Shin; Mizoguchi, Teruyasu

    2016-08-01

    Segregation of silver at copper grain boundaries was investigated using theoretical calculations. Empirical potentials for copper-silver alloys were generated to systematically investigate the segregation. The segregation energies of the [001]-axis symmetric tilt Σ5 (210) and Σ25 (430) grain boundaries were calculated, and the most stable segregation sites for silver at these copper grain boundaries were determined. The generated empirical potential was validated by comparing it with that obtained from the first principles calculation. The segregation of silver at copper grain boundaries strongly depends on the open space at the segregation site.

  19. Polarizable interaction potential for water from coupled cluster calculations. I. Analysis of dimer potential energy surface

    NASA Astrophysics Data System (ADS)

    Bukowski, Robert; Szalewicz, Krzysztof; Groenenboom, Gerrit C.; van der Avoird, Ad

    2008-03-01

    A six-dimensional interaction potential for the water dimer has been fitted to ab initio interaction energies computed at 2510 dimer configurations. These energies were obtained by combining the supermolecular second-order energies extrapolated to the complete basis set limit from up to quadruple-zeta quality basis sets with the contribution from the coupled-cluster method including single, double, and noniterative triple excitations computed in a triple-zeta quality basis set. All basis sets were augmented by diffuse functions and supplemented by midbond functions. The energies have been fitted using an analytic form with the induction component represented by a polarizable term, making the potential directly transferable to clusters and the bulk phase. Geometries and energies of stationary points on the potential surface agree well with the results of high-level ab initio geometry optimizations.

  20. Analysis of the quasi-static approximation for calculating potentials generated by neural stimulation.

    PubMed

    Bossetti, Chad A; Birdno, Merrill J; Grill, Warren M

    2008-03-01

    In models of electrical stimulation of the nervous system, the electric potential is typically calculated using the quasi-static approximation. The quasi-static approximation allows Maxwell's equations to be simplified by ignoring capacitive, inductive and wave propagation contributions to the potential. While this simplification has been validated for bioelectric sources, its application to rapid stimulation pulses, which contain more high-frequency power, may not be appropriate. We compared the potentials calculated using the quasi-static approximation with those calculated from the exact solution to the inhomogeneous Helmholtz equation. The mean absolute errors between the two potential calculations were limited to 5-13% for pulse widths commonly used for neural stimulation (25 micros-1 ms). We also quantified the excitation properties of extracellular point source stimulation of a myelinated nerve fiber model using potentials calculated from each method. Deviations between the strength-duration curves for potentials calculated using the quasi-static (sigma = 0.105 S m(-1)) and Helmholtz approaches ranged from 3 to 16%, with the minimal error occurring for 100 micros pulses. Differences in the threshold-distance curves for the two calculations ranged from 0 to 9%, for the same value of quasi-static conductivity. A sensitivity analysis of the material parameters revealed that the potential was much more strongly dependent on the conductivity than on the permittivity. These results indicate that for commonly used stimulus pulse parameters, the exact solution for the potential can be approximated by quasi-static simplifications only for appropriate values of conductivity.

  1. CAS SCF/CI calculations of potential energy surfaces of He 3+ and He 2+

    NASA Astrophysics Data System (ADS)

    Balasubramanian, K.; Liao, M. Z.; Lin, S. H.

    1987-12-01

    Complete active space MC SCF (CAS SCF) calculations followed by second-order configuration interaction (SOCI) calculations are carried out on the potential energy surfaces (bending surface, linear surfaces) of the 2Σ g+ ground state of He 3+. The potential minimum for the 2Σ g+ state occurs at a linear geometry with HeHe bond length of 1.248 Å. The binding energy of He 3+ with respect to He + He + + He was calculated to be 2.47 eV at the SOCI level. The energy required to dissociate He 3+ ( 2Σ g+) into He 2+ ( 2Σ u+) and He( 1S) is calculated to be 0.14 eV. The same level of SOCI calculations of He 2+ yield a De value of 2.36 eV.

  2. Calculating Second-Order Effects in MOSFET's

    NASA Technical Reports Server (NTRS)

    Benumof, Reuben; Zoutendyk, John A.; Coss, James R.

    1990-01-01

    Collection of mathematical models includes second-order effects in n-channel, enhancement-mode, metal-oxide-semiconductor field-effect transistors (MOSFET's). When dimensions of circuit elements relatively large, effects neglected safely. However, as very-large-scale integration of microelectronic circuits leads to MOSFET's shorter or narrower than 2 micrometer, effects become significant in design and operation. Such computer programs as widely-used "Simulation Program With Integrated Circuit Emphasis, Version 2" (SPICE 2) include many of these effects. In second-order models of n-channel, enhancement-mode MOSFET, first-order gate-depletion region diminished by triangular-cross-section deletions on end and augmented by circular-wedge-cross-section bulges on sides.

  3. 40 CFR Appendix D to Part 72 - Calculation of Potential Electric Output Capacity

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Output Capacity D Appendix D to Part 72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Potential Electric Output Capacity The potential electrical output capacity is calculated from the maximum... boiler with a maximum design heat input capacity of 340 million Btu/hr. (2) One-third of the...

  4. 40 CFR Appendix D to Part 72 - Calculation of Potential Electric Output Capacity

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Output Capacity D Appendix D to Part 72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Potential Electric Output Capacity The potential electrical output capacity is calculated from the maximum... boiler with a maximum design heat input capacity of 340 million Btu/hr. (2) One-third of the...

  5. Accurate calculation of absolute one-electron redox potentials of some para-quinone derivatives in acetonitrile.

    PubMed

    Namazian, Mansoor; Coote, Michelle L

    2007-08-02

    Standard ab initio molecular orbital theory and density functional theory calculations have been used to calculate absolute one-electron reduction potentials of several para-quinones in acetonitrile. The high-level composite method of G3(MP2)-RAD is used for the gas-phase calculations and a continuum model of solvation, CPCM, has been employed to calculate solvation energies. To compare the theoretical reduction potentials with experiment, the reduction potentials relative to a standard calomel electrode (SCE) have also been calculated and compared to experimental values. The average error of the calculated reduction potentials using the proposed method is 0.07 V without any additional approximation. An ONIOM method in which the core is studied at G3(MP2)-RAD and the substituent effect of the rest of the molecule is studied at R(O)MP2/6-311+G(3df,2p) provides an accurate low-cost alternative to G3(MP2)-RAD for larger molecules.

  6. The strategy for numerical solving of PIES without explicit calculation of singular integrals in 2D potential problems

    NASA Astrophysics Data System (ADS)

    Szerszeń, Krzysztof; Zieniuk, Eugeniusz

    2016-06-01

    The paper presents a strategy for numerical solving of parametric integral equation system (PIES) for 2D potential problems without explicit calculation of singular integrals. The values of these integrals will be expressed indirectly in terms of easy to compute non-singular integrals. The effectiveness of the proposed strategy is investigated with the example of potential problem modeled by the Laplace equation. The strategy simplifies the structure of the program with good the accuracy of the obtained solutions.

  7. New Soft-Core Potential Function for Molecular Dynamics Based Alchemical Free Energy Calculations.

    PubMed

    Gapsys, Vytautas; Seeliger, Daniel; de Groot, Bert L

    2012-07-10

    The fields of rational drug design and protein engineering benefit from accurate free energy calculations based on molecular dynamics simulations. A thermodynamic integration scheme is often used to calculate changes in the free energy of a system by integrating the change of the system's Hamiltonian with respect to a coupling parameter. These methods exploit nonphysical pathways over thermodynamic cycles involving particle introduction and annihilation. Such alchemical transitions require the modification of the classical nonbonded potential energy terms by applying soft-core potential functions to avoid singularity points. In this work, we propose a novel formulation for a soft-core potential to be applied in nonequilibrium free energy calculations that alleviates singularities, numerical instabilities, and additional minima in the potential energy for all combinations of nonbonded interactions at all intermediate alchemical states. The method was validated by application to (a) the free energy calculations of a closed thermodynamic cycle, (b) the mutation influence on protein thermostability, (c) calculations of small ligand solvation free energies, and (d) the estimation of binding free energies of trypsin inhibitors. The results show that the novel soft-core function provides a robust and accurate general purpose solution to alchemical free energy calculations.

  8. Characteristic potential method of noise calculation in semiconductor devices: calculation of 1/f noise in MOS transistors in the ohmic region

    NASA Astrophysics Data System (ADS)

    Hong, Sung-min; Kim, Yong-Seok; Min, Hong S.; Park, Young June

    2003-05-01

    The characteristic potential method(CPM), which has been successfully applied to calculate 1/f noise and thermal noise of multi-terminal homogeneous semiconductor resistors, is extended to calculate 1/f noise in inhomogeneous devices such as MOSFETs. The drain 1/f noise current of MOSFETs in the linear region is calculated using the CPM together with the well-known existing 1/f noise sources based on either Hooge's empirical model or McWhorter's model, and the calculated results are compared with the experimental results. It is shown that the difference of the 1/f noise behaviour between n-MOSFETs and p-MOSFETs in the linear region can be attributed to either the difference in their effective field dependence between the local electron mobility and the local hole mobility near the Si-SiO2 interface in the inversion layer or the difference in degree of Nt(oxide trap density)dependence between the effective electron mobility and the effective hole mobility.

  9. Potential effects of gallium on cladding materials

    SciTech Connect

    Wilson, D.F.; Beahm, E.C.; Besmann, T.M.; DeVan, J.H.; DiStefano, J.R.; Gat, U.; Greene, S.R.; Rittenhouse, P.L.; Worley, B.A.

    1997-10-01

    This paper identifies and examines issues concerning the incorporation of gallium in weapons derived plutonium in light water reactor (LWR) MOX fuels. Particular attention is given to the more likely effects of the gallium on the behavior of the cladding material. The chemistry of weapons grade (WG) MOX, including possible consequences of gallium within plutonium agglomerates, was assessed. Based on the calculated oxidation potentials of MOX fuel, the effect that gallium may have on reactions involving fission products and possible impact on cladding performance were postulated. Gallium transport mechanisms are discussed. With an understanding of oxidation potentials and assumptions of mechanisms for gallium transport, possible effects of gallium on corrosion of cladding were evaluated. Potential and unresolved issues and suggested research and development (R and D) required to provide missing information are presented.

  10. Calculation of the polarization potential for e-N2 collisions

    NASA Technical Reports Server (NTRS)

    Onda, K.; Temkin, A.

    1983-01-01

    A polarization potential V(pol) for e-N2 collisions is calculated by the generalization of the static part of the method of polarized orbitals to molecular targets. Partial differential equations (PDE) are derived for polarized orbitals, which are functions of the distance (r) from the molecular center and angle (theta) from the molecular axis. The equations are solved with the use of the noniterative PDE technique. From the polarized orbitals a polarization potential can be constructed whose r and theta dependence is found to be significantly different from the well-known phenomenological one. The two potentials are further compared by carrying out limited hybrid-theory scattering calculations. Only those scattering results based on the calculated V(pol) are in satisfactory accord with experiment.

  11. Gaussian effective potential: Quantum mechanics

    NASA Astrophysics Data System (ADS)

    Stevenson, P. M.

    1984-10-01

    We advertise the virtues of the Gaussian effective potential (GEP) as a guide to the behavior of quantum field theories. Much superior to the usual one-loop effective potential, the GEP is a natural extension of intuitive notions familiar from quantum mechanics. A variety of quantum-mechanical examples are studied here, with an eye to field-theoretic analogies. Quantum restoration of symmetry, dynamical mass generation, and "quantum-mechanical resuscitation" are among the phenomena discussed. We suggest how the GEP could become the basis of a systematic approximation procedure. A companion paper will deal with scalar field theory.

  12. 17 CFR 230.459 - Calculation of effective date.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Calculation of effective date. 230.459 Section 230.459 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION GENERAL RULES AND REGULATIONS, SECURITIES ACT OF 1933 Filings; Fees; Effective Date § 230.459 Calculation...

  13. Crystal-field calculations for transition-metal ions by application of an opposing potential

    SciTech Connect

    Zhou, Fei; Aberg, Daniel

    2016-02-16

    We propose a fully ab initio method, the opposing crystal potential (OCP), to calculate the crystal-field parameters of transition-metal impurities in insulator hosts. Through constrained density functional calculations, OCP obtains the constraining Lagrange multipliers, which act as a cancellation potential against the crystal field and lead to spherical d-electron distribution. Furthermore, the method is applied to several insulators doped with Mn4+ and Mn2+ ions and shown to be in good agreement with experiment.

  14. Potential of pin-by-pin SPN calculations as an industrial reference

    SciTech Connect

    Fliscounakis, M.; Girardi, E.; Courau, T.; Couyras, D.

    2012-07-01

    This paper aims at analysing the potential of pin-by-pin SP{sub n} calculations to compute the neutronic flux in PWR cores as an alternative to the diffusion approximation. As far as pin-by-pin calculations are concerned, a SPH equivalence is used to preserve the reactions rates. The use of SPH equivalence is a common practice in core diffusion calculations. In this paper, a methodology to generalize the equivalence procedure in the SP{sub n} equations context is presented. In order to verify and validate the equivalence procedure, SP{sub n} calculations are compared to 2D transport reference results obtained with the APOLL02 code. The validation cases consist in 3x3 analytical assembly color sets involving burn-up heterogeneities, UOX/MOX interfaces, and control rods. Considering various energy discretizations (up to 26 groups) and flux development orders (up to 7) for the SP{sub n} equations, results show that 26-group SP{sub 3} calculations are very close to the transport reference (with pin production rates discrepancies < 1%). This proves the high interest of pin-by-pin SP{sub n} calculations as an industrial reference when relying on 26 energy groups combined with SP{sub 3} flux development order. Additionally, the SP{sub n} results are compared to diffusion pin-by-pin calculations, in order to evaluate the potential benefit of using a SP{sub n} solver as an alternative to diffusion. Discrepancies on pin-production rates are less than 1.6% for 6-group SP{sub 3} calculations against 3.2% for 2-group diffusion calculations. This shows that SP{sub n} solvers may be considered as an alternative to multigroup diffusion. (authors)

  15. A finite volume method for calculating transonic potential flow around wings from the pressure minimum integral

    NASA Technical Reports Server (NTRS)

    Eberle, A.

    1978-01-01

    Analysis of the pressure minimum integral in the calculation of three-dimensional potential flow around wings makes it possible to use non-rectangular mesh networks for distributing the three-dimensional potential into discrete points. The method is comparatively easily expanded to the treatment of realistic airplane configurations. Shock-pressure affected pressure distributions on any wings are determined with accuracy using this method.

  16. On the accuracy of calculating the exchange part of the real heavy ion potential

    NASA Astrophysics Data System (ADS)

    Ismail, M.; Osman, M. M.; Salah, F.

    1996-02-01

    In the present work, we test the validity of replacing the non-diagonal density matrix appearing in the exchange part of the nucleus-nucleus optical potential by an approximation based on the density matrix expansion used frequently in the nuclear structure calculations. We have found that for the recently derived BDM3Y nucleon-nucleon force the DME may produce a maximum error more than 20% in the nucleus-nucleus potential.

  17. Accuracy of calculating the exchange part of the real alpha-nucleus potential

    NASA Astrophysics Data System (ADS)

    Ismail, M.; Salah, F.; Osman, M. M.

    1996-12-01

    In the present work, we test the validity of replacing the nondiagonal matrix ρ(r-->,r-->') appearing in the exchange part of the α-nucleus optical potential by an approximation based on the density matrix expansion (DME) used frequently in nuclear structure calculations. We have found that for the recently derived BDM3Y nucleon-nucleon force the DME may produce a maximum error more than 29% in the α-nucleus potential.

  18. Effective one-electron approaches to calculate high harmonic generation

    NASA Astrophysics Data System (ADS)

    Rohringer, Nina; Santra, Robin

    2006-05-01

    The single-active electron approach (SAE) is frequently applied to calculate high harmonic generation in atoms and consists in solving a one-particle Schr"odinger equation in an appropriate model potential. As an ad hoc approach it is difficult to be systematically improved. Starting with the time-dependent configuration interaction singles (TDCIS) technique we derive a new class of effective one-electron approaches. The resulting one-electron equations are in general non-local and non-unitary. A local approximation to TDCIS can be derived by restricting the total many-body Hamiltonian to a local mean-field Hamiltonian (those usually used in SAE calculations). The resulting equations are similar to traditional SAE approaches but include an additional term which destroys the unitarity of the time-evolution. We show that this correction term is essential and improves on traditional SAE approaches. Numerical tests show that this improved SAE method gives dipole-moments in better agreement with exact results than time-dependent Hartree Fock. The test system is a one-dimensional model of helium which allows for a straightforward numerical solution and therefore provides a benchmark to assess the quality of the different approximations.

  19. Calculating solar photovoltaic potential on residential rooftops in Kailua Kona, Hawaii

    NASA Astrophysics Data System (ADS)

    Carl, Caroline

    As carbon based fossil fuels become increasingly scarce, renewable energy sources are coming to the forefront of policy discussions around the globe. As a result, the State of Hawaii has implemented aggressive goals to achieve energy independence by 2030. Renewable electricity generation using solar photovoltaic technologies plays an important role in these efforts. This study utilizes geographic information systems (GIS) and Light Detection and Ranging (LiDAR) data with statistical analysis to identify how much solar photovoltaic potential exists for residential rooftops in the town of Kailua Kona on Hawaii Island. This study helps to quantify the magnitude of possible solar photovoltaic (PV) potential for Solar World SW260 monocrystalline panels on residential rooftops within the study area. Three main areas were addressed in the execution of this research: (1) modeling solar radiation, (2) estimating available rooftop area, and (3) calculating PV potential from incoming solar radiation. High resolution LiDAR data and Esri's solar modeling tools and were utilized to calculate incoming solar radiation on a sample set of digitized rooftops. Photovoltaic potential for the sample set was then calculated with the equations developed by Suri et al. (2005). Sample set rooftops were analyzed using a statistical model to identify the correlation between rooftop area and lot size. Least squares multiple linear regression analysis was performed to identify the influence of slope, elevation, rooftop area, and lot size on the modeled PV potential values. The equations built from these statistical analyses of the sample set were applied to the entire study region to calculate total rooftop area and PV potential. The total study area statistical analysis findings estimate photovoltaic electric energy generation potential for rooftops is approximately 190,000,000 kWh annually. This is approximately 17 percent of the total electricity the utility provided to the entire island in

  20. Computer programs for calculating two-dimensional potential flow through deflected nozzles

    NASA Technical Reports Server (NTRS)

    Hawk, J. D.; Stockman, N. O.

    1979-01-01

    Computer programs to calculate the incompressible potential flow, corrected for compressibility, in two-dimensional nozzles at arbitrary operating conditions are presented. A statement of the problem to be solved, a description of each of the computer programs, and sufficient documentation, including a test case, to enable a user to run the program are included.

  1. The Calculation of Potential Energy Curves of Diatomic Molecules: The RKR Method.

    ERIC Educational Resources Information Center

    Castano, F.; And Others

    1983-01-01

    The RKR method for determining accurate potential energy curves is described. Advantages of using the method (compared to Morse procedure) and a TRS-80 computer program which calculates the classical turning points by an RKR method are also described. The computer program is available from the author upon request. (Author/JN)

  2. The Inversion Potential of Ammonia: An Intrinsic Reaction Coordinate Calculation for Student Investigation

    ERIC Educational Resources Information Center

    Halpern, Arthur M.; Ramachandran, B. R.; Glendening, Eric D.

    2007-01-01

    A report is presented to describe how students can be empowered to construct the full, double minimum inversion potential for ammonia by performing intrinsic reaction coordinate calculations. This work can be associated with the third year physical chemistry lecture laboratory or an upper level course in computational chemistry.

  3. Computer programs for calculating two-dimensional potential flow in and about propulsion system inlets

    NASA Technical Reports Server (NTRS)

    Hawk, J. D.; Stockman, N. O.; Farrell, C. A., Jr.

    1978-01-01

    Incompressible potential flow calculations are presented that were corrected for compressibility in two-dimensional inlets at arbitrary operating conditions. Included are a statement of the problem to be solved, a description of each of the computer programs, and sufficient documentation, including a test case, to enable a user to run the program.

  4. Improved computer programs for calculating potential flow in propulsion system inlets

    NASA Technical Reports Server (NTRS)

    Stockman, N. O.; Farrell, C. A., Jr.

    1977-01-01

    Computer programs to calculate the incompressible potential flow corrected for compressibility in axisymmetric inlets at arbitrary operating conditions are presented. Included are a statement of the problem to be solved, a description of each of the programs and sufficient documentation, including a test case, to enable a user to run the programs.

  5. Carbon dioxide hydrate phase equilibrium and cage occupancy calculations using ab initio intermolecular potentials.

    PubMed

    Velaga, Srinath C; Anderson, Brian J

    2014-01-16

    Gas hydrate deposits are receiving increased attention as potential locations for CO2 sequestration, with CO2 replacing the methane that is recovered as an energy source. In this scenario, it is very important to correctly characterize the cage occupancies of CO2 to correctly assess the sequestration potential as well as the methane recoverability. In order to predict accurate cage occupancies, the guest–host interaction potential must be represented properly. Earlier, these potential parameters were obtained by fitting to experimental equilibrium data and these fitted parameters do not match with those obtained by second virial coefficient or gas viscosity data. Ab initio quantum mechanical calculations provide an independent means to directly obtain accurate intermolecular potentials. A potential energy surface (PES) between H2O and CO2 was computed at the MP2/aug-cc-pVTZ level and corrected for basis set superposition error (BSSE), an error caused due to the lower basis set, by using the half counterpoise method. Intermolecular potentials were obtained by fitting Exponential-6 and Lennard-Jones 6-12 models to the ab initio PES, correcting for many-body interactions. We denoted this model as the “VAS” model. Reference parameters for structure I carbon dioxide hydrate were calculated using the VAS model (site–site ab initio intermolecular potentials) as Δμ(w)(0) = 1206 ± 2 J/mol and ΔH(w)(0) = 1260 ± 12 J/mol. With these reference parameters and the VAS model, pure CO2 hydrate equilibrium pressure was predicted with an average absolute deviation of less than 3.2% from the experimental data. Predictions of the small cage occupancy ranged from 32 to 51%, and the large cage is more than 98% occupied. The intermolecular potentials were also tested by calculating the pure CO2 density and diffusion of CO2 in water using molecular dynamics simulations.

  6. A study of potential numerical pitfalls in GPU-based Monte Carlo dose calculation

    NASA Astrophysics Data System (ADS)

    Magnoux, Vincent; Ozell, Benoît; Bonenfant, Éric; Després, Philippe

    2015-07-01

    The purpose of this study was to evaluate the impact of numerical errors caused by the floating point representation of real numbers in a GPU-based Monte Carlo code used for dose calculation in radiation oncology, and to identify situations where this type of error arises. The program used as a benchmark was bGPUMCD. Three tests were performed on the code, which was divided into three functional components: energy accumulation, particle tracking and physical interactions. First, the impact of single-precision calculations was assessed for each functional component. Second, a GPU-specific compilation option that reduces execution time as well as precision was examined. Third, a specific function used for tracking and potentially more sensitive to precision errors was tested by comparing it to a very high-precision implementation. Numerical errors were found in two components of the program. Because of the energy accumulation process, a few voxels surrounding a radiation source end up with a lower computed dose than they should. The tracking system contained a series of operations that abnormally amplify rounding errors in some situations. This resulted in some rare instances (less than 0.1%) of computed distances that are exceedingly far from what they should have been. Most errors detected had no significant effects on the result of a simulation due to its random nature, either because they cancel each other out or because they only affect a small fraction of particles. The results of this work can be extended to other types of GPU-based programs and be used as guidelines to avoid numerical errors on the GPU computing platform.

  7. A study of potential numerical pitfalls in GPU-based Monte Carlo dose calculation.

    PubMed

    Magnoux, Vincent; Ozell, Benoît; Bonenfant, Éric; Després, Philippe

    2015-07-07

    The purpose of this study was to evaluate the impact of numerical errors caused by the floating point representation of real numbers in a GPU-based Monte Carlo code used for dose calculation in radiation oncology, and to identify situations where this type of error arises. The program used as a benchmark was bGPUMCD. Three tests were performed on the code, which was divided into three functional components: energy accumulation, particle tracking and physical interactions. First, the impact of single-precision calculations was assessed for each functional component. Second, a GPU-specific compilation option that reduces execution time as well as precision was examined. Third, a specific function used for tracking and potentially more sensitive to precision errors was tested by comparing it to a very high-precision implementation. Numerical errors were found in two components of the program. Because of the energy accumulation process, a few voxels surrounding a radiation source end up with a lower computed dose than they should. The tracking system contained a series of operations that abnormally amplify rounding errors in some situations. This resulted in some rare instances (less than 0.1%) of computed distances that are exceedingly far from what they should have been. Most errors detected had no significant effects on the result of a simulation due to its random nature, either because they cancel each other out or because they only affect a small fraction of particles. The results of this work can be extended to other types of GPU-based programs and be used as guidelines to avoid numerical errors on the GPU computing platform.

  8. The Effect of Calculator Use on College Students' Mathematical Performance

    ERIC Educational Resources Information Center

    Boyle, Robert W.; Farreras, Ingrid G.

    2015-01-01

    This experiment tested the effect that calculator use had on 200 randomly assigned college students' mathematical performance. The purposes of the current experiment were twofold: to measure the level of mathematical preparation of current college students, and to test whether calculators improve mathematical performance in such students as it…

  9. Calculation of Transient Potential Rise on the Wind Turbine Struck by Lightning

    PubMed Central

    Xiaoqing, Zhang

    2014-01-01

    A circuit model is proposed in this paper for calculating the transient potential rise on the wind turbine struck by lightning. The model integrates the blade, sliding contact site, and tower and grounding system of the wind turbine into an equivalent circuit. The lightning current path from the attachment point to the ground can be fully described by the equivalent circuit. The transient potential responses are obtained in the different positions on the wind turbine by solving the circuit equations. In order to check the validity of the model, the laboratory measurement is made with a reduced-scale wind turbine. The measured potential waveform is compared with the calculated one and a better agreement is shown between them. The practical applicability of the model is also examined by a numerical example of a 2 MW Chinese-built wind turbine. PMID:25254231

  10. Defect Properties in GaN: Ab Initio and Empirical Potential Calculations

    SciTech Connect

    Gao, Fei; Bylaska, Eric J.; Weber, William J.

    2005-01-03

    The defect properties and atomic configurations in GaN have been comparatively investigated using density functional theory (DFT) and molecular dynamics method with two representative potentials. The DFT calculations show that the relaxation of vacancies is generally small, but the relaxation around antisite defects is large. The N interstitials, starting from any possible configurations, eventually relax into a N+-N<11-20 > split interstitial. In the case of Ga interstitials, the most stable configuration is a Ga octahedral interstitial, but the Ga+-Ga<11-20 > split interstitial can bridge the gap between non-bounded Ga atoms. The formation energies of vacancies and antisite defects obtained using the Stillinger-Weber potential (SW) are in reasonable agreement with those obtained by DFT calculations, whereas the Tersoff-Brenner (TB) potential better describes the behavior of N interstitials.

  11. Ab initio calculation of anion proton affinity and ionization potential for energetic ionic liquids.

    PubMed

    Carlin, Caleb; Gordon, Mark S

    2015-04-05

    Developing a better understanding of the bulk properties of ionic liquids requires accurate measurements of the underlying molecular properties that help to determine the bulk behavior. Two computational methods are used in this work: second-order perturbation theory (MP2) and completely renormalized coupled cluster theory [CR-CC(2,3)], to calculate the proton affinity and ionization potential of a set of anions that are of interest for use in protic, energetic ionic liquids. Compared with experimental values, both methods predict similarly accurate proton affinities, but CR-CC(2,3) predicts significantly more accurate ionization potentials. It is concluded that more time intensive methods like CR-CC(2,3) are required in calculations involving open shell states like the ionization potential.

  12. Calculation of transient potential rise on the wind turbine struck by lightning.

    PubMed

    Xiaoqing, Zhang

    2014-01-01

    A circuit model is proposed in this paper for calculating the transient potential rise on the wind turbine struck by lightning. The model integrates the blade, sliding contact site, and tower and grounding system of the wind turbine into an equivalent circuit. The lightning current path from the attachment point to the ground can be fully described by the equivalent circuit. The transient potential responses are obtained in the different positions on the wind turbine by solving the circuit equations. In order to check the validity of the model, the laboratory measurement is made with a reduced-scale wind turbine. The measured potential waveform is compared with the calculated one and a better agreement is shown between them. The practical applicability of the model is also examined by a numerical example of a 2 MW Chinese-built wind turbine.

  13. Aqueous Hydricity from Calculations of Reduction Potential and Acidity in Water.

    PubMed

    Brereton, Kelsey R; Bellows, Sarina M; Fallah, Hengameh; Lopez, Antonio A; Adams, Robert M; Miller, Alexander J M; Jones, William D; Cundari, Thomas R

    2016-12-22

    Hydricity, or hydride donating ability, is a thermodynamic value that helps define the reactivity of transition metal hydrides. To avoid some of the challenges of experimental hydricity measurements in water, a computational method for the determination of aqueous hydricity values has been developed. With a thermochemical cycle involving deprotonation of the metal hydride (pKa), 2e(-) oxidation of the metal (E°), and 2e(-) reduction of the proton, hydricity values are provided along with other valuable thermodynamic information. The impact of empirical corrections (for example, calibrating reduction potentials with 2e(-) organic versus 1e(-) inorganic potentials) was assessed in the calculation of the reduction potentials, acidities, and hydricities of a series of iridium hydride complexes. Calculated hydricities are consistent with electronic trends and agree well with experimental values.

  14. Effect of EMP fields on cell membrane potentials

    SciTech Connect

    Gailey, P.C.; Easterly, C.E.

    1993-06-01

    A simple model is presented for cell membrane potentials induced during exposure to electromagnetic pulse (EMP). Using calculated values of internal electric field strength induced during EMP exposure, the model predicts that cell membrane potentials of about 100 mV may be induced for time frames on the order of 10 ns. Possible biological effects of these potentials including electroporation area discussed.

  15. Calculation procedures for potential and viscous flow solutions for engine inlets

    NASA Technical Reports Server (NTRS)

    Albers, J. A.; Stockman, N. O.

    1973-01-01

    The method and basic elements of computer solutions for both potential flow and viscous flow calculations for engine inlets are described. The procedure is applicable to subsonic conventional (CTOL), short-haul (STOL), and vertical takeoff (VTOL) aircraft engine nacelles operating in a compressible viscous flow. The calculated results compare well with measured surface pressure distributions for a number of model inlets. The paper discusses the uses of the program in both the design and analysis of engine inlets, with several examples given for VTOL lift fans, acoustic splitters, and for STOL engine nacelles. Several test support applications are also given.

  16. Short range effective potentials for ionic fluids

    NASA Astrophysics Data System (ADS)

    Clarke, J. H. R.; Smith, W.; Woodcock, L. V.

    1986-02-01

    It is shown that the structure of a simple ionic liquid, potassium chloride, can be reproduced in computer simulations using short range effective pair (SHREP) potentials of a simple form. Aside from the balance between like and unlike particle interactions, the important parameters determining the structure are the depth ɛ and the position r0 of the unlike particle pair energy minimum. The results demonstrate that the long range ordering characteristic of ionic liquids is not a consequence of the long range of Coulomb interactions. It is further shown that first order perturbation theory can be used accurately to calculate the thermodynamic properties of an ionic liquid from a corresponding reference liquid generated using a SHREP potential. These results can be generalized to explain deviations from the Reiss-Mayer-Katz corresponding states law for alkali halides and suggest an alternative scheme, effective depth reduction (EDR), based on values of ɛ for the gas phase ion pairs.

  17. Effective boson number calculations in Mo and Cd isotopes

    NASA Astrophysics Data System (ADS)

    Cata, G.; Bucurescu, D.; Cutoiu, D.; Ivaşcu, M.; Zamfir, N. V.

    1990-09-01

    The effects of the neutron-proton interaction on the low-lying levels of Mo and Cd isotopes have been considered in the frame of the IBA-1 model by taking into account an effective boson number ( N eff). Both an empirical procedure based on previous IBA-2 mixing calculations and the N p N n scheme provide comparable N eff values. Level spectra and electromagnetic transitions are investigated. The results support the idea that IBA-1 calculations with a suitable N eff can largely simulate IBA-2 mixing calculations, taking advantage of simplicity and a smaller number of parameters.

  18. Regularizing the molecular potential in electronic structure calculations. II. Many-body methods

    SciTech Connect

    Bischoff, Florian A.

    2014-11-14

    In Paper I of this series [F. A. Bischoff, “Regularizing the molecular potential in electronic structure calculations. I. SCF methods,” J. Chem. Phys. 141, 184105 (2014)] a regularized molecular Hamilton operator for electronic structure calculations was derived and its properties in SCF calculations were studied. The regularization was achieved using a correlation factor that models the electron-nuclear cusp. In the present study we extend the regularization to correlated methods, in particular the exact solution of the two-electron problem, as well as second-order many body perturbation theory. The nuclear and electronic correlation factors lead to computations with a smaller memory footprint because the singularities are removed from the working equations, which allows coarser grid resolution while maintaining the precision. Numerical examples are given.

  19. Classical calculation of the equilibrium constants for true bound dimers using complete potential energy surface.

    PubMed

    Buryak, Ilya; Vigasin, Andrey A

    2015-12-21

    The present paper aims at deriving classical expressions which permit calculation of the equilibrium constant for weakly interacting molecular pairs using a complete multidimensional potential energy surface. The latter is often available nowadays as a result of the more and more sophisticated and accurate ab initio calculations. The water dimer formation is considered as an example. It is shown that even in case of a rather strongly bound dimer the suggested expression permits obtaining quite reliable estimate for the equilibrium constant. The reliability of our obtained water dimer equilibrium constant is briefly discussed by comparison with the available data based on experimental observations, quantum calculations, and the use of RRHO approximation, provided the latter is restricted to formation of true bound states only.

  20. Classical calculation of the equilibrium constants for true bound dimers using complete potential energy surface

    SciTech Connect

    Buryak, Ilya; Vigasin, Andrey A.

    2015-12-21

    The present paper aims at deriving classical expressions which permit calculation of the equilibrium constant for weakly interacting molecular pairs using a complete multidimensional potential energy surface. The latter is often available nowadays as a result of the more and more sophisticated and accurate ab initio calculations. The water dimer formation is considered as an example. It is shown that even in case of a rather strongly bound dimer the suggested expression permits obtaining quite reliable estimate for the equilibrium constant. The reliability of our obtained water dimer equilibrium constant is briefly discussed by comparison with the available data based on experimental observations, quantum calculations, and the use of RRHO approximation, provided the latter is restricted to formation of true bound states only.

  1. Multireference configuration interaction calculations of the first six ionization potentials of the uranium atom

    SciTech Connect

    Bross, David H.; Parmar, Payal; Peterson, Kirk A.

    2015-11-14

    The first 6 ionization potentials (IPs) of the uranium atom have been calculated using multireference configuration interaction (MRCI+Q) with extrapolations to the complete basis set limit using new all-electron correlation consistent basis sets. The latter was carried out with the third-order Douglas-Kroll-Hess Hamiltonian. Correlation down through the 5s5p5d electrons has been taken into account, as well as contributions to the IPs due to the Lamb shift. Spin-orbit coupling contributions calculated at the 4-component Kramers restricted configuration interaction level, as well as the Gaunt term computed at the Dirac-Hartree-Fock level, were added to the best scalar relativistic results. The final ionization potentials are expected to be accurate to at least 5 kcal/mol (0.2 eV) and thus more reliable than the current experimental values of IP{sub 3} through IP{sub 6}.

  2. Multireference configuration interaction calculations of the first six ionization potentials of the uranium atom

    NASA Astrophysics Data System (ADS)

    Bross, David H.; Parmar, Payal; Peterson, Kirk A.

    2015-11-01

    The first 6 ionization potentials (IPs) of the uranium atom have been calculated using multireference configuration interaction (MRCI+Q) with extrapolations to the complete basis set limit using new all-electron correlation consistent basis sets. The latter was carried out with the third-order Douglas-Kroll-Hess Hamiltonian. Correlation down through the 5s5p5d electrons has been taken into account, as well as contributions to the IPs due to the Lamb shift. Spin-orbit coupling contributions calculated at the 4-component Kramers restricted configuration interaction level, as well as the Gaunt term computed at the Dirac-Hartree-Fock level, were added to the best scalar relativistic results. The final ionization potentials are expected to be accurate to at least 5 kcal/mol (0.2 eV) and thus more reliable than the current experimental values of IP3 through IP6.

  3. Native Defect Properties in Beta-SiC: Ab Initio and Empirical Potential Calculations

    SciTech Connect

    Gao, Fei; Bylaska, Eric J.; Weber, William J.; Corrales, Louis R.

    2001-06-25

    There is considerable ambiguity about the formation of native defects and their clusters in SiC, since different empirical potential gives different results, particular related to the stability of interstitial configurations. Ab intio pseudopotential methods are used to study the formation and properties of native defects in beta-SiC. The results are compared with those calculated by molecular dynamics (MD) using a Tersoff potential, where the various cut-off distances found in the literature are employed. The formation energy of vacancies and antisite defects obtained by ab initio calculations are in good agreement with those given by the Tersoff potential, regardless of the cut-off distances, but there is a disparity for interstitials between the two methods, depending on the cut-off distances used in the Tersoff potential. The present results, however, provide guidelines for evaluating the quality and fit of empirical potentials for large-scale simulations of irradiation damage (displacement cascades) and point defect migration (recombination or annealing) in SiC.

  4. Quantum Monte Carlo calculations with chiral effective field theory interactions.

    PubMed

    Gezerlis, A; Tews, I; Epelbaum, E; Gandolfi, S; Hebeler, K; Nogga, A; Schwenk, A

    2013-07-19

    We present the first quantum Monte Carlo (QMC) calculations with chiral effective field theory (EFT) interactions. To achieve this, we remove all sources of nonlocality, which hamper the inclusion in QMC calculations, in nuclear forces to next-to-next-to-leading order. We perform auxiliary-field diffusion Monte Carlo (AFDMC) calculations for the neutron matter energy up to saturation density based on local leading-order, next-to-leading order, and next-to-next-to-leading order nucleon-nucleon interactions. Our results exhibit a systematic order-by-order convergence in chiral EFT and provide nonperturbative benchmarks with theoretical uncertainties. For the softer interactions, perturbative calculations are in excellent agreement with the AFDMC results. This work paves the way for QMC calculations with systematic chiral EFT interactions for nuclei and nuclear matter, for testing the perturbativeness of different orders, and allows for matching to lattice QCD results by varying the pion mass.

  5. Medication calculation: the potential role of digital game-based learning in nurse education.

    PubMed

    Foss, Brynjar; Mordt Ba, Petter; Oftedal, Bjørg F; Løkken, Atle

    2013-12-01

    Medication dose calculation is one of several medication-related activities that are conducted by nurses daily. However, medication calculation skills appear to be an area of global concern, possibly because of low numeracy skills, test anxiety, low self-confidence, and low self-efficacy among student nurses. Various didactic strategies have been developed for student nurses who still lack basic mathematical competence. However, we suggest that the critical nature of these skills demands the investigation of alternative and/or supplementary didactic approaches to improve medication calculation skills and to reduce failure rates. Digital game-based learning is a possible solution because of the following reasons. First, mathematical drills may improve medication calculation skills. Second, games are known to be useful during nursing education. Finally, mathematical drill games appear to improve the attitudes of students toward mathematics. The aim of this article was to discuss common challenges of medication calculation skills in nurse education, and we highlight the potential role of digital game-based learning in this area.

  6. Calculations of {sup 8}He+p elastic cross sections using a microscopic optical potential

    SciTech Connect

    Lukyanov, V. K.; Zemlyanaya, E. V.; Lukyanov, K. V.; Kadrev, D. N.; Antonov, A. N.; Gaidarov, M. K.; Massen, S. E.

    2009-08-15

    An approach to calculate microscopic optical potential with the real part obtained by a folding procedure and with the imaginary part inherent in the high-energy approximation is applied to study the {sup 8}He+p elastic-scattering data at energies of tens of MeV/nucleon. The neutron and proton density distributions obtained in different models for {sup 8}He are used in the calculations of the differential cross sections. The role of the spin-orbit potential is studied. Comparison of the calculations with the available experimental data on the elastic-scattering differential cross sections at beam energies of 15.7, 26.25, 32, 66, and 73 MeV/nucleon is performed. The problem of the ambiguities of the depths of each component of the optical potential is considered by means of the imposed physical criterion related to the known behavior of the volume integrals as functions of the incident energy. It is shown also that the role of the surface absorption is rather important, in particular for the lowest incident energies (e.g., 15.7 and 26.25 MeV/nucleon)

  7. A terrain-dependent reference atmosphere determination method for available potential energy calculations

    NASA Technical Reports Server (NTRS)

    Koehler, T. L.

    1986-01-01

    An iterative technique that determines the reference atmosphere which incorporates the effects of uneven surface topography is presented. This method has been successfully applied in several available potential energy studies. An alternative method due to Taylor is also evaluated. While Taylor presented excellent continuous formulations of the available potential energy that include topography, his method for determining the reference atmosphere distributions failed to provide the accuracy needed to produce reliable available potential energy estimates. Since topography has a significant influence on the general circulation, it is important to employ techniques that incorporate its effects in the determination of available potential energy.

  8. Radial nodalization effects on BWR (boiling water reactor) stability calculations

    SciTech Connect

    March-Leuba, J.

    1990-01-01

    Computer simulations have shown that stability calculations in boiling water reactors (BWRs) are very sensitive to a number of input parameters and modeling assumptions. In particular, the number of thermohydraulic regions (i.e., channels) used in the calculation can affect the results of decay ratio calculations by as much as 30%. This paper presents the background theory behind the observed effects of radial nodalization in BWR stability calculations. The theory of how a radial power distribution can be simulated in time or frequency domain codes by using representative'' regions is developed. The approximations involved in this method of solution are reviewed, and some examples of the effect of radial nodalization are presented based on LAPUR code solutions. 2 refs., 4 figs., 2 tabs.

  9. Calculation of water drop trajectories to and about arbitrary three-dimensional lifting and nonlifting bodies in potential airflow

    NASA Technical Reports Server (NTRS)

    Norment, H. G.

    1985-01-01

    Subsonic, external flow about nonlifting bodies, lifting bodies or combinations of lifting and nonlifting bodies is calculated by a modified version of the Hess lifting code. Trajectory calculations can be performed for any atmospheric conditions and for all water drop sizes, from the smallest cloud droplet to large raindrops. Experimental water drop drag relations are used in the water drop equations of motion and effects of gravity settling are included. Inlet flow can be accommodated, and high Mach number compressibility effects are corrected for approximately. Seven codes are described: (1) a code used to debug and plot body surface description data; (2) a code that processes the body surface data to yield the potential flow field; (3) a code that computes flow velocities at arrays of points in space; (4) a code that computes water drop trajectories from an array of points in space; (5) a code that computes water drop trajectories and fluxes to arbitrary target points; (6) a code that computes water drop trajectories tangent to the body; and (7) a code that produces stereo pair plots which include both the body and trajectories. Accuracy of the calculations is discussed, and trajectory calculation results are compared with prior calculations and with experimental data.

  10. Quantum Calculations on Salt Bridges with Water: Potentials, Structure, and Properties

    SciTech Connect

    Liao, Sing; Green, Michael E.

    2011-01-01

    Salt bridges are electrostatic links between acidic and basic amino acids in a protein; quantum calculations are used here to determine the energetics and other properties of one form of these species, in the presence of water molecules. The acidic groups are carboxylic acids (aspartic and glutamic acids); proteins have two bases with pK above physiological pH: one, arginine, with a guanidinium basic group, the other lysine, which is a primary amine. Only arginine is modeled here, by ethyl guanidinium, while propionic acid is used as a model for either carboxylic acid. The salt bridges are accompanied by 0-12 water molecules; for each of the 13 systems, the energy-bond distance relation, natural bond orbitals (NBO), frequency calculations allowing thermodynamic corrections to room temperature, and dielectric constant dependence, were all calculated. The water molecules were found to arrange themselves in hydrogen bonded rings anchored to the oxygens of the salt bridge components. This was not surprising in itself, but it was found that the rings lead to a periodicity in the energy, and to a 'water addition' rule. The latter shows that the initial rings, with four oxygen atoms, become five member rings when an additional water molecule becomes available, with the additional water filling in at the bond with the lowest Wiberg index, as calculated using NBO. The dielectric constant dependence is the expected hyperbola, and the fit of the energy to the inverse dielectric constant is determined. There is an energy periodicity related to ring formation upon addition of water molecules. When 10 water molecules have been added, all spaces near the salt bridge are filled, completing the first hydration shell, and a second shell starts to form. The potentials associated with salt bridges depend on their hydration, and potentials assigned without regard to local hydration are likely to cause errors as large as or larger than kBT, thus suggesting a serious problem if these

  11. Spin-orbit configuration interaction calculation of the potential energy curves of iodine oxide

    SciTech Connect

    Roszak, S.; Krauss, M.; Alekseyev, A.B.; Liebermann, H.P.; Buenker, R.J.

    2000-04-06

    An ab initio configuration interaction (CI) study including spin-orbit coupling is carried out for the ground and excited states of the IO radical by employing relativistic effective core potentials. The computed spectroscopic constants are in good agreement with available experimental data, with some tendency to underestimate the strength of bonding. The first excited state, a{sup 4}{Sigma}{sup {minus}}, which has not yet been observed experimentally, is predicted to be bound by 30.1 kJ/mol and to have a significantly larger equilibrium distance than the ground state. It is split by spin-orbit interaction into 1/2 and 3/2 components, with the 1/2 component being the lower one with a calculated spin-orbit splitting of 210 cm{sup {minus}1}. The most interesting state in the low-energy IO spectrum, A{sub 1}{sup 2}{Pi}{sub 3/2}, is shown to be predissociated due to interaction with a number of repulsive electronic states. Predissociation of the A{sup 1}, {nu}{prime} = 0, 1 vibrational levels is attributed to a fairly weak spin-orbit coupling with the {sup 2}{Delta}{sub 3/2} state, while rotationally dependent predissociation of the {nu}{prime} = 2 level is explained by the coupling with the 1/2(III) state having mainly {sup 2}{Sigma}{sup {minus}} character. Strong predissociation of the {nu}{prime} {ge} 4 levels is attributed to interaction with the higher-lying {Omega} = 3/2 states, with predominantly {sup 4}{Sigma}{sup +} and {sup 4}{Delta} origin.

  12. Age difference in numeral recognition and calculation: an event-related potential study.

    PubMed

    Xuan, Dong; Wang, Suhong; Yang, Yilin; Meng, Ping; Xu, Feng; Yang, Wen; Sheng, Wei; Yang, Yuxia

    2007-01-01

    In this study, we investigated the age difference in numeral recognition and calculation in one group of school-aged children (n = 38) and one of undergraduate students (n = 26) using the event-related potential (ERP) methods. Consistent with previous reports, the age difference was significant in behavioral results. Both numeral recognition and calculation elicited a negativity peaking at about 170-280 ms (N2) and a positivity peaking at 200-470 ms (pSW) in raw ERPs, and a difference potential (dN3) between 360 and 450 ms. The difference between the two age groups indicated that more attention resources were devoted to arithmetical tasks in school-aged children, and that school-aged children and undergraduate students appear to use different strategies to solve arithmetical problems. The analysis of frontal negativity suggested that numeral recognition and mental calculation impose greater load on working memory and executive function in schoolchildren than in undergraduate students. The topography data determined that the parietal regions were responsible for arithmetical function in humans, and there was an age-related difference in the area of cerebral activation.

  13. Theoretical calculations and vibrational potential energy surface of 4-silaspiro(3,3)heptane

    SciTech Connect

    Ocola, Esther J.; Medders, Cross; Laane, Jaan; Meinander, Niklas

    2014-04-28

    Theoretical computations have been carried out on 4-silaspiro(3,3)heptane (SSH) in order to calculate its molecular structure and conformational energies. The molecule has two puckered four-membered rings with dihedral angles of 34.2° and a tilt angle of 9.4° between the two rings. Energy calculations were carried out for different conformations of SSH. These results allowed the generation of a two-dimensional ring-puckering potential energy surface (PES) of the form V = a(x{sub 1}{sup 4} + x{sub 2}{sup 4}) – b(x{sub 1}{sup 2} + x{sub 2}{sup 2}) + cx{sub 1}{sup 2}x{sub 2}{sup 2}, where x{sub 1} and x{sub 2} are the ring-puckering coordinates for the two rings. The presence of sufficiently high potential energy barriers prevents the molecule from undergoing pseudorotation. The quantum states, wave functions, and predicted spectra resulting from the PESs were calculated.

  14. Uncertainties in Properties Calculated from Fitted Potential Functions and Determining Potential Functions from FITS to Bound to Continuum Intensity Data

    NASA Astrophysics Data System (ADS)

    Le Roy, Robert J.

    2013-06-01

    In recent years it has become increasingly common to analyse spectroscopic data by using ``direct potential fits" of simulated data generated from analytic potential energy functions to experiment to optimize the parameters defining that potential energy function. This has the advantages of circumventing use of the semiclassical approximations associated with traditional methodologies, and of directly yielding a closed-form expression that is the most compact and comprehensive way to summarize what we know about a molecule. A question which then arises is: What are the uncertainties in properties computed using this potential? It turns out that this question is very closely related to the question of how to apply this simulation/fitting method efficiently to the analysis of bound to continuum intensity data. Both depend upon being able to answer the question: What are the partial derivatives of a wavefunction with respect to the parameters defining the potential energy function from which it is generated? It will be shown that such partial derivatives may be obtained readily as the `particular' solutions of linear inhomogeneous differential equations of a type that is routinely solved in another context for calculating the centrifugal distortion constants of diatomic molecules. Applications of this technique have been incorporated into the publicly available bound-state data analysis and simulation program DPotFit and the distributed bound to continuum simulation/fitting program BCONT. J.M. Hutson, J. Phys. B (At. Mol. Phys) {14}, 851 (1981). J. Tellinghuisen, J. Mol. Spectrosc. {122}, 455 (1987). See http://leroy.uwaterloo.ca/programs/

  15. Calculation of subsonic and supersonic steady and unsteady aerodynamic forces using velocity potential aerodynamic elements

    NASA Technical Reports Server (NTRS)

    Haviland, J. K.; Yoo, Y. S.

    1976-01-01

    Expressions for calculation of subsonic and supersonic, steady and unsteady aerodynamic forces are derived, using the concept of aerodynamic elements applied to the downwash velocity potential method. Aerodynamic elements can be of arbitrary out of plane polygon shape, although numerical calculations are restricted to rectangular elements, and to the steady state case in the supersonic examples. It is suggested that the use of conforming, in place of rectangular elements, would give better results. Agreement with results for subsonic oscillating T tails is fair, but results do not converge as the number of collocation points is increased. This appears to be due to the form of expression used in the calculations. The methods derived are expected to facilitate automated flutter analysis on the computer. In particular, the aerodynamic element concept is consistent with finite element methods already used for structural analysis. The method is universal for the complete Mach number range, and, finally, the calculations can be arranged so that they do not have to be repeated completely for every reduced frequency.

  16. The calculated ionization potential and electron affinity of cationic cyanine dyes.

    PubMed

    Delgado, Juan C; Ishikawa, Yasuyuki; Selsby, Ronald G

    2009-01-01

    The ionization potential (IP) and electron affinity (EA) of the isolated single dye molecule and a hypothetical isolated J-aggregated dimer are calculated as an energy difference between separately minimized ground and ionized states. Three quantum methods are employed: density functional theory (DFT) Gaussian03 B3LYP/6-311G** (++G**); DFT using Dmol(3); and a modification of CNDO/S, called CNDO/S-Deltazeta, which is developed for rapid calculation of the IP and EA. Results indicate that for the monomer, 1,1'-dimethyl-2,2'carbocyanine chloride, the vertical IP and EA are 6.2 +/- 0.1 and 1.90 +/- 0.05 eV, respectively. This is consistent with the threshold IP and EA predicted by the Yianoulis and Nelson "Statistical Model" of spectral sensitization. For the isolated J-aggregated dimer, whose configuration is consistent with being adsorbed on a dielectric substrate, the calculations predict a value of 5.2 +/- 0.2 and 2.35 +/- 0.05 eV for the IP and EA, respectively. Significant charge density is removed from the halide anion in the ionization process. The HOMO of the dye molecule is an MO associated with the halide anion. Calculation of the isolated entities is a necessary preliminary step in the study of the IP and EA of the adsorbed dye monomer and aggregate.

  17. Electronic coupling calculations with transition charges, dipoles, and quadrupoles derived from electrostatic potential fitting

    SciTech Connect

    Fujimoto, Kazuhiro J.

    2014-12-07

    A transition charge, dipole, and quadrupole from electrostatic potential (TrESP-CDQ) method for electronic coupling calculations is proposed. The TrESP method is based on the classical description of electronic Coulomb interaction between transition densities for individual molecules. In the original TrESP method, only the transition charge interactions were considered as the electronic coupling. In the present study, the TrESP method is extended to include the contributions from the transition dipoles and quadrupoles as well as the transition charges. Hence, the self-consistent transition density is employed in the ESP fitting procedure. To check the accuracy of the present approach, several test calculations are performed to a helium dimer, a methane dimer, and an ethylene dimer. As a result, the TrESP-CDQ method gives a much improved description of the electronic coupling, compared with the original TrESP method. The calculated results also show that the self-consistent treatment to the transition densities contributes significantly to the accuracy of the electronic coupling calculations. Based on the successful description of the electronic coupling, the contributions to the electronic coupling are also analyzed. This analysis clearly shows a negligible contribution of the transition charge interaction to the electronic coupling. Hence, the distribution of the transition density is found to strongly influence the magnitudes of the transition charges, dipoles, and quadrupoles. The present approach is useful for analyzing and understanding the mechanism of excitation-energy transfer.

  18. Effective UV radiation from model calculations and measurements

    NASA Technical Reports Server (NTRS)

    Feister, Uwe; Grewe, Rolf

    1994-01-01

    Model calculations have been made to simulate the effect of atmospheric ozone and geographical as well as meteorological parameters on solar UV radiation reaching the ground. Total ozone values as measured by Dobson spectrophotometer and Brewer spectrometer as well as turbidity were used as input to the model calculation. The performance of the model was tested by spectroradiometric measurements of solar global UV radiation at Potsdam. There are small differences that can be explained by the uncertainty of the measurements, by the uncertainty of input data to the model and by the uncertainty of the radiative transfer algorithms of the model itself. Some effects of solar radiation to the biosphere and to air chemistry are discussed. Model calculations and spectroradiometric measurements can be used to study variations of the effective radiation in space in space time. The comparability of action spectra and their uncertainties are also addressed.

  19. Regularizing the molecular potential in electronic structure calculations. I. SCF methods

    SciTech Connect

    Bischoff, Florian A.

    2014-11-14

    We present a method to remove the singular nuclear potential in a molecule and replace it with a regularized potential that is more amenable to be represented numerically. The singular nuclear potential is canceled by the similarity-transformed kinetic energy operator giving rise to an effective nuclear potential that contains derivative operators acting on the wave function. The method is fully equivalent to the non-similarity-transformed version. We give numerical examples within the framework of multi-resolution analysis for medium-sized molecules.

  20. Approximate first-principles anharmonic calculations of polyatomic spectra using MP2 and B3LYP potentials: comparisons with experiment.

    PubMed

    Roy, Tapta Kanchan; Carrington, Tucker; Gerber, R Benny

    2014-08-21

    Anharmonic vibrational spectroscopy calculations using MP2 and B3LYP computed potential surfaces are carried out for a series of molecules, and frequencies and intensities are compared with those from experiment. The vibrational self-consistent field with second-order perturbation correction (VSCF-PT2) is used in computing the spectra. The test calculations have been performed for the molecules HNO3, C2H4, C2H4O, H2SO4, CH3COOH, glycine, and alanine. Both MP2 and B3LYP give results in good accord with experimental frequencies, though, on the whole, MP2 gives very slightly better agreement. A statistical analysis of deviations in frequencies from experiment is carried out that gives interesting insights. The most probable percentage deviation from experimental frequencies is about -2% (to the red of the experiment) for B3LYP and +2% (to the blue of the experiment) for MP2. There is a higher probability for relatively large percentage deviations when B3LYP is used. The calculated intensities are also found to be in good accord with experiment, but the percentage deviations are much larger than those for frequencies. The results show that both MP2 and B3LYP potentials, used in VSCF-PT2 calculations, account well for anharmonic effects in the spectroscopy of molecules of the types considered.

  1. Empirical atom—atom potential calculations on twoantagonists in histamene h2-receptors: metiamide and cimetidine

    NASA Astrophysics Data System (ADS)

    Jauregui, E. A.; Estrada, M. R.; Mayorga, L. S.; Ciuffo, G. M.; Iban¯ez, R. R.; Santillan, M. B.

    1981-03-01

    Empirical atom—atom potential calculations for nietiamide and cimetidine have been made in order to show the behaviour of the species in solution at 37°C. It was assumed that hydration should eliminate electrostatic interaction and consequently calculations made on molecules without charge. For both molecules very rigid gauche conformations are obtained with a population of more than 90%, which show a remarkable parallelism between the imidazole ring and thiourea (or cyanoguanidine) group planes. It seems that this conformation is necessary for the interaction with histamine H2-receptors. While metiamide shows a conformational equilibrium among configurational isomers, cimetidine shows practically only one configurational isomer ( Z, E). This fact would apparently explain its greater biological specificity.

  2. The critical role of logarithmic transformation in Nernstian equilibrium potential calculations.

    PubMed

    Sawyer, Jemima E R; Hennebry, James E; Revill, Alexander; Brown, Angus M

    2017-06-01

    The membrane potential, arising from uneven distribution of ions across cell membranes containing selectively permeable ion channels, is of fundamental importance to cell signaling. The necessity of maintaining the membrane potential may be appreciated by expressing Ohm's law as current = voltage/resistance and recognizing that no current flows when voltage = 0, i.e., transmembrane voltage gradients, created by uneven transmembrane ion concentrations, are an absolute requirement for the generation of currents that precipitate the action and synaptic potentials that consume >80% of the brain's energy budget and underlie the electrical activity that defines brain function. The concept of the equilibrium potential is vital to understanding the origins of the membrane potential. The equilibrium potential defines a potential at which there is no net transmembrane ion flux, where the work created by the concentration gradient is balanced by the transmembrane voltage difference, and derives from a relationship describing the work done by the diffusion of ions down a concentration gradient. The Nernst equation predicts the equilibrium potential and, as such, is fundamental to understanding the interplay between transmembrane ion concentrations and equilibrium potentials. Logarithmic transformation of the ratio of internal and external ion concentrations lies at the heart of the Nernst equation, but most undergraduate neuroscience students have little understanding of the logarithmic function. To compound this, no current undergraduate neuroscience textbooks describe the effect of logarithmic transformation in appreciable detail, leaving the majority of students with little insight into how ion concentrations determine, or how ion perturbations alter, the membrane potential.

  3. Quantum dynamics studies of gas-surface reactions and use of complex absorbing potentials in wave-packet calculations

    NASA Astrophysics Data System (ADS)

    Ge, Jiuyuan

    1999-11-01

    In this thesis, quantum dynamics studies are conducted on gas-surface reactions and complex absorbing potentials. Through a three-dimensional model, dissociation probabilities for O2 on both (110) and (100) surfaces of copper are calculated for ground state as well as rovibrationally excited oxygen molecules. Specifically, the reason for the difference in calculated dissociation probabilities of oxygen on two surfaces is explained. Then the thermal effect of the surface on the dissociation probability is studied by a one dimensional fluctuating barrier. It is observed that the quantum mechanical tunneling probability exhibits a maximum as a function of the oscillating frequency between the low and the high frequency limits. The physical origin and process underlying this resonantlike phenomenon are proposed. In the second part of this thesis, the complex absorbing potential (CAP) is introduced and studied. Exact numerical calculation shows that use of optimized CAP significantly improves the efficiency of wavefunction absorption over that of negative imaginary potential (NIP) in scattering applications. The CAP is optimized by an efficient time-dependent propagation approach. Application to the prototype inelastic scattering of He + H2 demonstrates the accuracy and efficiency of the channel-dependent CAP for extracting state-to-state scattering information.

  4. Potential adverse effects of phytoestrogens.

    PubMed

    Whitten, P L; Lewis, C; Russell, E; Naftolin, F

    1995-03-01

    Evaluation of the potential benefits and risks offered by naturally occurring plant estrogens requires investigation of their potency and sites of action when consumed at natural dietary concentrations. Our investigations have examined the effects of a range of natural dietary concentrations of the most potent plant isoflavonoid, coumestrol, using a rat model and a variety of estrogen-dependent tissues and endpoints. Treatments of immature females demonstrated agonistic action in the reproductive tract, brain, and pituitary at natural dietary concentrations. Experiments designed to test for estrogen antagonism demonstrated that coumestrol did not conform to the picture of a classic antiestrogen. However, coumestrol did suppress estrous cycles in adult females. Developmental actions were examined by neonatal exposure of pups through milk of rat dams fed a coumestrol, control, or commercial soy-based diet during the critical period of the first 10 postnatal days or throughout the 21 days of lactation. The 10-day treatment did not significantly alter adult estrous cyclicity, but the 21-day treatment produced in a persistent estrus state in coumestrol-treated females by 132 days of age. In contrast, the 10-day coumestrol treatments produced significant deficits in the sexual behavior of male offspring. These findings illustrate the broad range of actions of these natural estrogens and the variability in potency across endpoints. This variability argues for the importance of fully characterizing each phytoestrogen in terms of its sites of action, balance of agonistic and antagonistic properties, natural potency, and short-term and long-term effects.

  5. Calculations of the ionization potentials of the halogens by the relativistic Hartree-Rock-Dirac method taking account of superposition of configurations

    SciTech Connect

    Tupitsyn, I.I.

    1988-03-01

    The ionization potentials of the halogen group have been calculated. The calculations were carried out using the relativistic Hartree-Fock method taking into account correlation effects. Comparison of theoretical results with experimental data for the elements F, Cl, Br, and I allows an estimation of the accuracy and reliability of the method. The theoretical values of the ionization potential of astatine obtained here may be of definite interest for the chemistry of astatine.

  6. Ab initio calculation of thermodynamic potentials and entropies for superionic water

    DOE PAGES

    French, Martin; Desjarlais, Michael P.; Redmer, Ronald

    2016-02-25

    We construct thermodynamic potentials for two superionic phases of water [with body-centered cubic (bcc) and face-centered cubic (fcc) oxygen lattice] using a combination of density functional theory (DFT) and molecular dynamics simulations (MD). For this purpose, a generic expression for the free energy of warm dense matter is developed and parametrized with equation of state data from the DFT-MD simulations. A second central aspect is the accurate determination of the entropy, which is done using an approximate two-phase method based on the frequency spectra of the nuclear motion. The boundary between the bcc superionic phase and the ices VII andmore » X calculated with thermodynamic potentials from DFT-MD is consistent with that directly derived from the simulations. As a result, differences in the physical properties of the bcc and fcc superionic phases and their impact on interior modeling of water-rich giant planets are discussed.« less

  7. Ab initio calculation of thermodynamic potentials and entropies for superionic water

    SciTech Connect

    French, Martin; Desjarlais, Michael P.; Redmer, Ronald

    2016-02-25

    We construct thermodynamic potentials for two superionic phases of water [with body-centered cubic (bcc) and face-centered cubic (fcc) oxygen lattice] using a combination of density functional theory (DFT) and molecular dynamics simulations (MD). For this purpose, a generic expression for the free energy of warm dense matter is developed and parametrized with equation of state data from the DFT-MD simulations. A second central aspect is the accurate determination of the entropy, which is done using an approximate two-phase method based on the frequency spectra of the nuclear motion. The boundary between the bcc superionic phase and the ices VII and X calculated with thermodynamic potentials from DFT-MD is consistent with that directly derived from the simulations. As a result, differences in the physical properties of the bcc and fcc superionic phases and their impact on interior modeling of water-rich giant planets are discussed.

  8. Mie potentials for phase equilibria calculations: application to alkanes and perfluoroalkanes.

    PubMed

    Potoff, Jeffrey J; Bernard-Brunel, Damien A

    2009-11-05

    Transferable united-atom force fields, based on n - 6 Lennard-Jones potentials, are presented for normal alkanes and perfluorocarbons. It is shown that by varying the repulsive exponent the range of the potential can be altered, leading to improved predictions of vapor pressures while also reproducing saturated liquid densities to high accuracy. Histogram-reweighting Monte Carlo simulations in the grand canonical ensemble are used to determine the vapor liquid coexistence curves, vapor pressures, heats of vaporization, and critical points for normal alkanes methane through tetradecane, and perfluorocarbons perfluoromethane through perfluorooctane. For all molecules studied, saturated liquid densities are reproduced to within 1% of experiment. Vapor pressures for normal alkanes and perfluorocarbons were predicted to within 3% and 6% of experiment, respectively. Calculations performed for binary mixture vapor-liquid equilibria for propane + pentane show excellent agreement with experiment, while slight deviations are observed for the ethane + perfluoroethane mixture.

  9. Ab initio calculation of thermodynamic potentials and entropies for superionic water

    NASA Astrophysics Data System (ADS)

    French, Martin; Desjarlais, Michael P.; Redmer, Ronald

    2016-02-01

    We construct thermodynamic potentials for two superionic phases of water [with body-centered cubic (bcc) and face-centered cubic (fcc) oxygen lattice] using a combination of density functional theory (DFT) and molecular dynamics simulations (MD). For this purpose, a generic expression for the free energy of warm dense matter is developed and parametrized with equation of state data from the DFT-MD simulations. A second central aspect is the accurate determination of the entropy, which is done using an approximate two-phase method based on the frequency spectra of the nuclear motion. The boundary between the bcc superionic phase and the ices VII and X calculated with thermodynamic potentials from DFT-MD is consistent with that directly derived from the simulations. Differences in the physical properties of the bcc and fcc superionic phases and their impact on interior modeling of water-rich giant planets are discussed.

  10. A simulation method for the calculation of chemical potentials in small, inhomogeneous, and dense systems.

    PubMed

    Neimark, Alexander V; Vishnyakov, Aleksey

    2005-06-15

    We present a modification of the gauge cell Monte Carlo simulation method [A. V. Neimark and A. Vishnyakov, Phys. Rev. E 62, 4611 (2000)] designed for chemical potential calculations in small confined inhomogeneous systems. To measure the chemical potential, the system under study is set in chemical equilibrium with the gauge cell, which represents a finite volume reservoir of ideal particles. The system and the gauge cell are immersed into the thermal bath of a given temperature. The size of the gauge cell controls the level of density fluctuations in the system. The chemical potential is rigorously calculated from the equilibrium distribution of particles between the system cell and the gauge cell and does not depend on the gauge cell size. This scheme, which we call a mesoscopic canonical ensemble, bridges the gap between the canonical and the grand canonical ensembles, which are known to be inconsistent for small systems. The ideal gas gauge cell method is illustrated with Monte Carlo simulations of Lennard-Jones fluid confined to spherical pores of different sizes. Special attention is paid to the case of extreme confinement of several molecular diameters in cross section where the inconsistency between the canonical ensemble and the grand canonical ensemble is most pronounced. For sufficiently large systems, the chemical potential can be reliably determined from the mean density in the gauge cell as it was implied in the original gauge cell method. The method is applied to study the transition from supercritical adsorption to subcritical capillary condensation, which is observed in nanoporous materials as the pore size increases.

  11. General theory for calculating disorder-averaged Green's function correlators within the coherent potential approximation

    NASA Astrophysics Data System (ADS)

    Zhou, Chenyi; Guo, Hong

    2017-01-01

    We report a diagrammatic method to solve the general problem of calculating configurationally averaged Green's function correlators that appear in quantum transport theory for nanostructures containing disorder. The theory treats both equilibrium and nonequilibrium quantum statistics on an equal footing. Since random impurity scattering is a problem that cannot be solved exactly in a perturbative approach, we combine our diagrammatic method with the coherent potential approximation (CPA) so that a reliable closed-form solution can be obtained. Our theory not only ensures the internal consistency of the diagrams derived at different levels of the correlators but also satisfies a set of Ward-like identities that corroborate the conserving consistency of transport calculations within the formalism. The theory is applied to calculate the quantum transport properties such as average ac conductance and transmission moments of a disordered tight-binding model, and results are numerically verified to high precision by comparing to the exact solutions obtained from enumerating all possible disorder configurations. Our formalism can be employed to predict transport properties of a wide variety of physical systems where disorder scattering is important.

  12. First-principles study of terpyrrole as a potential hydrogen cyanide sensor: DFT calculations.

    PubMed

    Shokuhi Rad, Ali; Zardoost, Mohammad Reza; Abedini, Ehsan

    2015-10-01

    The sensitivity of terpyrrole (TPy; used as a polypyrrole model) to toxic hydrogen cyanide (HCN) adsorption was studied by using DFT to perform geometry optimization and to calculate the adsorption energy of HCN on TPy as well as orbital properties. The interaction of terpyrrole with HCN was studied for different relative orientations of the molecules. The adsorption energy, charge analysis, and the density of states were used to evaluate the ability of TPy to sense HCN in these different relative orientations. The adsorption energy was calculated to be -3.9 and -3.1 kcal mol(-1) for two possible relative orientations. Frontier molecular orbitals and energies indicated that some hybridization occurs during the adsorption of HCN on TPy when the molecules have appropriate relative orientations, resulting in an increase in conductivity. Considering the changes in the HOMO-LUMO energy gap that were calculated to occur during HCN adsorption, it is clear that TPy is sensitive to HCN adsorption, suggesting that TPy has the potential to act as an HCN sensor. Graphical abstract HCN adsorption on TPy.

  13. Potential energy surface and second virial coefficient of methane-water from ab initio calculations.

    PubMed

    Akin-Ojo, Omololu; Szalewicz, Krzysztof

    2005-10-01

    Six-dimensional intermolecular potential energy surfaces (PESs) for the interaction of CH4 with H2O are presented, obtained from ab initio calculations using symmetry-adapted perturbation theory (SAPT) at two different levels of intramonomer correlation and the supermolecular approach at three different levels of electron correlation. Both CH4 and H2O are assumed to be rigid molecules with interatomic distances and angles fixed at the average values in the ground-state vibration. A physically motivated analytical expression for each PES has been developed as a sum of site-site functions. The PES of the CH4-H2O dimer has only two symmetry-distinct minima. From the SAPT calculations, the global minimum has an energy of -1.03 kcal/mol at a geometry where H2O is the proton donor, HO-H...CH4, with the O-H-C angle of 165 degrees, while the secondary minimum, with an energy of -0.72 kcal/mol, has CH4 in the role of the proton donor (H3C-H...OH2). We estimated the complete basis set limit of the SAPT interaction energy at the global minimum to be -1.06 kcal/mol. The classical cross second virial coefficient B12(T) has been calculated for the temperature range 298-653 K. Our best results agree well with some experiments, allowing an evaluation of the quality of experimental results.

  14. Effective source approach to self-force calculations

    NASA Astrophysics Data System (ADS)

    Vega, Ian; Wardell, Barry; Diener, Peter

    2011-07-01

    Numerical evaluation of the self-force on a point particle is made difficult by the use of delta functions as sources. Recent methods for self-force calculations avoid delta functions altogether, using instead a finite and extended 'effective source' for a point particle. We provide a review of the general principles underlying this strategy, using the specific example of a scalar point charge moving in a black hole spacetime. We also report on two new developments: (i) the construction and evaluation of an effective source for a scalar charge moving along a generic orbit of an arbitrary spacetime, and (ii) the successful implementation of hyperboloidal slicing that significantly improves on previous treatments of boundary conditions used for effective-source-based self-force calculations. Finally, we identify some of the key issues related to the effective source approach that will need to be addressed by future work.

  15. Effect size estimates: current use, calculations, and interpretation.

    PubMed

    Fritz, Catherine O; Morris, Peter E; Richler, Jennifer J

    2012-02-01

    The Publication Manual of the American Psychological Association (American Psychological Association, 2001, American Psychological Association, 2010) calls for the reporting of effect sizes and their confidence intervals. Estimates of effect size are useful for determining the practical or theoretical importance of an effect, the relative contributions of factors, and the power of an analysis. We surveyed articles published in 2009 and 2010 in the Journal of Experimental Psychology: General, noting the statistical analyses reported and the associated reporting of effect size estimates. Effect sizes were reported for fewer than half of the analyses; no article reported a confidence interval for an effect size. The most often reported analysis was analysis of variance, and almost half of these reports were not accompanied by effect sizes. Partial η2 was the most commonly reported effect size estimate for analysis of variance. For t tests, 2/3 of the articles did not report an associated effect size estimate; Cohen's d was the most often reported. We provide a straightforward guide to understanding, selecting, calculating, and interpreting effect sizes for many types of data and to methods for calculating effect size confidence intervals and power analysis.

  16. Multireference configuration interaction calculations of the first six ionization potentials of the uranium atom

    DOE PAGES

    Bross, David H.; Parmar, Payal; Peterson, Kirk A.

    2015-11-12

    The first 6 ionization potentials (IPs) of the uranium atom have been calculated using multireference configuration interaction (MRCI+Q) with extrapolations to the complete basis set (CBS) limit using new all-electron correlation consistent basis sets. The latter were carried out with the third-order Douglas-Kroll-Hess Hamiltonian. Correlation down through the 5s5p5d electrons have been taken into account, as well as contributions to the IPs due to the Lamb shift. Spin-orbit coupling contributions calculated at the 4-component Kramers restricted configuration interaction level, as well as the Gaunt term computed at the Dirac-Hartree-Fock level, were added to the best scalar relativistic results. As amore » result, the final ionization potentials are expected to be accurate to at least 5 kcal/mol (0.2 eV), and thus more reliable than the current experimental values of IP3 through IP6.« less

  17. Multireference configuration interaction calculations of the first six ionization potentials of the uranium atom

    SciTech Connect

    Bross, David H.; Parmar, Payal; Peterson, Kirk A.

    2015-11-12

    The first 6 ionization potentials (IPs) of the uranium atom have been calculated using multireference configuration interaction (MRCI+Q) with extrapolations to the complete basis set (CBS) limit using new all-electron correlation consistent basis sets. The latter were carried out with the third-order Douglas-Kroll-Hess Hamiltonian. Correlation down through the 5s5p5d electrons have been taken into account, as well as contributions to the IPs due to the Lamb shift. Spin-orbit coupling contributions calculated at the 4-component Kramers restricted configuration interaction level, as well as the Gaunt term computed at the Dirac-Hartree-Fock level, were added to the best scalar relativistic results. As a result, the final ionization potentials are expected to be accurate to at least 5 kcal/mol (0.2 eV), and thus more reliable than the current experimental values of IP3 through IP6.

  18. Calculation of binary magnetic properties and potential energy curve in xenon dimer: second virial coefficient of (129)Xe nuclear shielding.

    PubMed

    Hanni, Matti; Lantto, Perttu; Runeberg, Nino; Jokisaari, Jukka; Vaara, Juha

    2004-09-22

    Quantum chemical calculations of the nuclear shielding tensor, the nuclear quadrupole coupling tensor, and the spin-rotation tensor are reported for the Xe dimer using ab initio quantum chemical methods. The binary chemical shift delta, the anisotropy of the shielding tensor Delta sigma, the nuclear quadrupole coupling tensor component along the internuclear axis chi( parallel ), and the spin-rotation constant C( perpendicular ) are presented as a function of internuclear distance. The basis set superposition error is approximately corrected for by using the counterpoise correction (CP) method. Electron correlation effects are systematically studied via the Hartree-Fock, complete active space self-consistent field, second-order Møller-Plesset many-body perturbation, and coupled-cluster singles and doubles (CCSD) theories, the last one without and with noniterative triples, at the nonrelativistic all-electron level. We also report a high-quality theoretical interatomic potential for the Xe dimer, gained using the relativistic effective potential/core polarization potential scheme. These calculations used valence basis set of cc-pVQZ quality supplemented with a set of midbond functions. The second virial coefficient of Xe nuclear shielding, which is probably the experimentally best-characterized intermolecular interaction effect in nuclear magnetic resonance spectroscopy, is computed as a function of temperature, and compared to experiment and earlier theoretical results. The best results for the second virial coefficient, obtained using the CCSD(CP) binary chemical shift curve and either our best theoretical potential or the empirical potentials from the literature, are in good agreement with experiment. Zero-point vibrational corrections of delta, Delta sigma, chi (parallel), and C (perpendicular) in the nu=0, J=0 rovibrational ground state of the xenon dimer are also reported.

  19. An analytical ab initio potential surface and the calculated tunneling energies for the HCl dimer

    NASA Astrophysics Data System (ADS)

    Bunker, P. R.; Epa, V. C.; Jensen, Per; Karpfen, Alfred

    1991-03-01

    The six-dimensional potential energy surface of the HCl dimer has been calculated ab initio at 1654 nuclear geometries [A. Karpfen, P. R. Bunker and P. Jensen, Chem. Phys., in press]. In the present paper we have fitted an analytical function to these points; the analytical function is similar to that used previously by us for the potential surface of the HF dimer. The fitted function has 38 adjustable parameters and the standard deviation of the weighted fit is 19.0 cm -1. We have determined the minimum energy path for the trans-bending tunneling motion on this surface, and have calculated the tunneling and K-rotation energies and wavefunctions. Around equilibrium the path is qualitatively similar to that for the HF dimer in that there are two equivalent hydrogen-bonded structures of Cs symmetry (which are approximately L-shaped with a "bound" and a "free" H-atom) that can tunnel through a C2 h saddle point (the "closed" C2 h saddle point). However, away from equilibrium the path is qualitatively different from that found for the HF dimer since the HCl dimer never becomes linear along the path; in fact it passes through a second C2 h saddle point (the "open" C2 h saddle point). As a result the A-rotational constant only varies slightly along the path, and this explains the experimental observation that the tunneling splitting varies little with K-type rotation for the HCl dimer, in contrast to the situation for the HF dimer. Quantitatively it is clear that errors in the ab initio calculation, errors in the fitting of an analytic function to the points, the correction to the path that is caused by the zero point motion in the other vibrations, and the coupling between the four low-frequency modes, will all be relatively more significant than they were for the HF dimer because the full six-dimensional potential is much flatter; the ab initio dissociation energy is only ˜600 cm -1, and the ab initio tunneling barrier is only ˜70 cm -1. Therefore, we modify the

  20. Balanced Basis Sets in the Calculation of Potential Energy Curves for Diatomic Molecules.

    NASA Astrophysics Data System (ADS)

    Barclay, V. J.

    "Balanced" basis sets, which describe the internuclear region as well as the nuclear region, are examined in the context of an ab initio selection-extrapolation configuration -interaction method (MRD-CI). The sets are balanced by adding bond functions (BF's), which are s, p and d-type orbitals at the bond mid-point, to atomic-centred molecular basis sets, which have double and triple sets of valence -shell orbitals (DZ and TZ) and one or two sets of polarization functions (PF's). Potential energy curves and spectroscopic constants were calculated for the ground states of the hydrides H _2, OH, NaH, MgH, MH, SiH, PH, SH, HCl, and for the ionized species OH^+ and OH^{++}, and for the A^3Sigma_{u}, w^3Delta_{u} and B^3Pi_{g} excited states of N_2. The basis sets containing bond functions gave curves and constants superior to the DZP and (where calculated) TZPP results, and of quality similar to large basis set calculations in the literature. The single and double ionization potentials of OH, and the term energies of the N_2 excited states had error at the atomic asymptotes for all basis sets. The dissociation energies of the ground states of ten first-row diatomics (C_2, N_2, O_2, F_2, CN, CO, CF, NO, NF, and FO) were studied using balanced basis sets. A correlation was found to exist between the actual bond order of a species, and the number and kinds of orbitals which comprise the optimum BF. For MRD-CI diatomic calculations, the following BF's should be added to a DZP basis set (sp) (for a bond order of 1); 2(sp) (B. O. 1.5); (spd) (B. O. 2); 3(sp) (B. O. 2.5); 2(spd) (B. O. 3). The prescribed BF basis method was tested on the 26 second-row congeners Si _2, P_2, S _2, Cl_2, SiP, SiS, SiCl, PS, PCl, and ClS, and mixed-row congeners SiN, SiO, SiF, PO, PF, SF, SiC, PN, SO, ClF, CP, CS, CCl, NS, NCl, and ClO. An average error of 6% and a maximum error of 10% relative to known experimental D_{e }'s was found: compared to an average error of 18% for TZPP calculations

  1. Hybrid MP2/MP4 potential surfaces in VSCF calculations of IR spectra: applications for organic molecules.

    PubMed

    Knaanie, Roie; Šebek, Jiří; Kalinowski, Jaroslaw; Benny Gerber, R

    2014-02-05

    This study introduces an improved hybrid MP2/MP4 ab initio potential for vibrational spectroscopy calculations which is very accurate, yet without high computational demands. The method uses harmonic vibrational calculations with the MP4(SDQ) potential to construct an improved MP2 potential by coordinate scaling. This improved MP2 potential is used for the anharmonic VSCF calculation. The method was tested spectroscopically for four molecules: butane, acetone, ethylene and glycine. Very good agreement with experiment was found. For most of the systems, the more accurate harmonic treatment considerably improved the MP2 anharmonic results.

  2. Effective Connectivity Reveals Strategy Differences in an Expert Calculator

    PubMed Central

    Minati, Ludovico; Sigala, Natasha

    2013-01-01

    Mathematical reasoning is a core component of cognition and the study of experts defines the upper limits of human cognitive abilities, which is why we are fascinated by peak performers, such as chess masters and mental calculators. Here, we investigated the neural bases of calendrical skills, i.e. the ability to rapidly identify the weekday of a particular date, in a gifted mental calculator who does not fall in the autistic spectrum, using functional MRI. Graph-based mapping of effective connectivity, but not univariate analysis, revealed distinct anatomical location of “cortical hubs” supporting the processing of well-practiced close dates and less-practiced remote dates: the former engaged predominantly occipital and medial temporal areas, whereas the latter were associated mainly with prefrontal, orbitofrontal and anterior cingulate connectivity. These results point to the effect of extensive practice on the development of expertise and long term working memory, and demonstrate the role of frontal networks in supporting performance on less practiced calculations, which incur additional processing demands. Through the example of calendrical skills, our results demonstrate that the ability to perform complex calculations is initially supported by extensive attentional and strategic resources, which, as expertise develops, are gradually replaced by access to long term working memory for familiar material. PMID:24086291

  3. Absorbed Dose and Dose Equivalent Calculations for Modeling Effective Dose

    NASA Technical Reports Server (NTRS)

    Welton, Andrew; Lee, Kerry

    2010-01-01

    While in orbit, Astronauts are exposed to a much higher dose of ionizing radiation than when on the ground. It is important to model how shielding designs on spacecraft reduce radiation effective dose pre-flight, and determine whether or not a danger to humans is presented. However, in order to calculate effective dose, dose equivalent calculations are needed. Dose equivalent takes into account an absorbed dose of radiation and the biological effectiveness of ionizing radiation. This is important in preventing long-term, stochastic radiation effects in humans spending time in space. Monte carlo simulations run with the particle transport code FLUKA, give absorbed and equivalent dose data for relevant shielding. The shielding geometry used in the dose calculations is a layered slab design, consisting of aluminum, polyethylene, and water. Water is used to simulate the soft tissues that compose the human body. The results obtained will provide information on how the shielding performs with many thicknesses of each material in the slab. This allows them to be directly applicable to modern spacecraft shielding geometries.

  4. Effect of neglecting geothermal gradient on calculated oil recovery

    NASA Astrophysics Data System (ADS)

    Safari, Mehdi; Mohammadi, Majid; Sedighi, Mehdi

    2017-03-01

    Reduced recovery rate with time is a common challenge for most of the oil producing reservoirs. Water flooding is one of the most common methods used for enhanced oil recovery. Simulating water-flooding process is sometimes carried out without considering the effect of geothermal gradient, and an average temperature is assumed for all the grid blocks. However, the gradient plays a significant role on the reservoir fluid properties. So neglecting its effect might result in a large error in the calculated oil recovery results, especially for the thick reservoirs, which in theory can show significant variations in temperature with depth. In this paper, first, advancing the waterfront during injection into a geothermal oil reservoir is discussed. Then, the performance of considering either an average temperature or gradient temperature, are considered and compared with each other. The results suggest that assuming a fixed average reservoir temperature with no geothermal gradient, can lead to a pronounced error for calculated oil recovery.

  5. Some calculations of transonic potential flow for the NACA 64A006 airfoil with oscillating flap

    NASA Technical Reports Server (NTRS)

    Bennett, R. M.; Bland, S. R.

    1978-01-01

    A method for calculating the transonic flow over steady and oscillating airfoils was developed by Isogai. It solves the full potential equation with a semi-implicit, time-marching, finite difference technique. Steady flow solutions are obtained from time asymptotic solutions for a steady airfoil. Corresponding oscillatory solutions are obtained by initiating an oscillation and marching in time for several cycles until a converged periodic solution is achieved. In this paper the method is described in general terms, and results are compared with experimental data for both steady flow and for oscillations at several values of reduced frequency. Good agreement for static pressures is shown for subcritical speeds, with increasing deviation as Mach number is increased into the supercritical speed range. Fair agreement with experiment was obtained at high reduced frequencies with larger deviations at low reduced frequencies.

  6. The screened pseudo-charge repulsive potential in perturbed orbitals for band calculations by DFT+U.

    PubMed

    Huang, Bolong

    2017-03-06

    The conventional linear response overestimates the U in DFT+U calculations for solids with fully occupied orbitals. Here, we demonstrate that the challenge arises from the incomplete cancellation of the electron-electron Coulomb repulsion energy under external perturbation. We applied the second charge response, denoted as the "pseudo-charge" model, to offset such residue effects. Counteracting between these two charge response-induced Coulomb potentials, the U parameters are self-consistently obtained by fulfilling the conditions for minimizing the non-Koopmans energy. Moreover, the pseudo-charge-induced repulsive potential shows a screening behavior related to the orbital occupation and is potentially in compliance with the screened exact exchange-correlation of electrons. The resultant U parameters are self-consistent solutions for improved band structure calculations by the DFT+U method. This work extends the validity of the linear response method to both partially and fully occupied orbitals and gives a reference for estimating the Hubbard U parameter prior to other advanced methods. The U parameters were determined in a transferability test using both PBE and hybrid density functional methods, and the results showed that this method is independent of the functional. The electronic structures determined from the hybrid-DFT+U(hybrid) approach are provided. Comparisons are also made with the recently developed self-consistent hybrid-DFT+Uw method.

  7. Full potential calculation of electronics and thermoelectric properties of doped Mg{sub 2}Si

    SciTech Connect

    Poopanya, P.; Yangthaisong, A.

    2013-12-04

    We present the calculations of the electronic structure and transport properties on the anti-fluorite Mg{sub 2}Si using the full potential linearized augmented plane-wave (FP-LAPW) method and the semi-classical Boltzmann theory. The modified Becke-Johnson (mBJ) exchange potentials are used to derive energy gaps and correct band gaps according to experimental values. It is found that Mg{sub 2}Si is an indirect band gap (Γ→X) material with the gap of 0.56 eV which is in good agreement with the experimental observation. Note that the band structure of Mg{sub 2}Si is directly used in combination with the semi-classical Boltzmann theory to obtain the transport coefficients. It is found that the material is the n-type semiconductor with the lowest electron concentration of 3.03×10{sup 14} cm{sup −3} at 300 K. We have also calculated the thermoelectric properties of Mg{sub 2}Si based on the rigid band approximation by varying the p-type and n-type doping levels. At room temperature, the highest power factor for p-type and n-type dopants are obtained at the hole and electron concentration of 1.63×10{sup 20} cm{sup −3} and 1.15×1021 cm{sup −3}, respectively. From the electronic states, we also found that the n-type doping region is dominated by the Mg−2p{sup 6} 3s{sup 2} and Si−3p{sup 2} states, while the Mg−2p{sup 6} and Si−3p{sup 2} states are important in the p-type doped Mg{sub 2}Si.

  8. Spectroscopic studies, potential energy surface and molecular orbital calculations of pramipexole

    NASA Astrophysics Data System (ADS)

    Muthu, S.; Uma Maheswari, J.; Srinivasan, S.; Isac paulraj, E.

    2013-11-01

    A systematic vibrational spectroscopic assignment and analysis of pramipexole [(S)-N6-propyl-4,5,6,7-tetrahydro-1,3-benzothiazole-2,6-diamine] has been carried out using FT-IR and FT-Raman spectral data. The vibrational analysis was aided by an electronic structure calculation based on the hybrid density functional method B3LYP using a 6-311G(d, p) and cc-pVTZ basis sets. Molecular equilibrium geometries, electronic energies, IR and Raman intensities, harmonic vibrational frequencies have been computed. The assignments are based on the experimental IR and Raman spectra, and a complete assignment of the observed spectra has been proposed. The UV-visible spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies and the maximum absorption λmax were determined by time-dependent DFT (TD-DFT) method. The geometrical parameters, vibrational frequencies and absorption wavelengths were compared with the experimental data. The complete vibrational assignments are performed on the basis of the potential energy distributions (PEDs) of the vibrational modes in terms of natural internal coordinates. The simulated FT-IR, FT-Raman, and UV spectra of the title compound have been constructed. In addition, the potential energy surface, HOMO and LUMO energies, the molecular electrostatic potential and the first-order hyperpolarizability have been computed. The magnitude of the first-order hyperpolarizability is 5 times larger than that of urea and the title compound may be a potential applicant for the development of NLO materials.

  9. Symmetry-adapted perturbation theory calculation of the He-HF intermolecular potential energy surface

    NASA Astrophysics Data System (ADS)

    Moszynski, Robert; Wormer, Paul E. S.; Jeziorski, Bogumil; van der Avoird, Ad

    1994-08-01

    Symmetry-adapted perturbation theory has been applied to compute the HeHF intermolecular potential energy surface for three internuclear distances in the HF subunit. The interaction energy is found to be dominated by the first-order exchange contribution and by the dispersion energy (including the intramonomer correlation effects). However, smaller corrections as the electrostatics, induction, and second-order exchange are found to be nonnegligible, and the final shape of the potential results from a delicate balance of attractive and repulsive contributions due to the four fundamental intermolecular interactions: electrostatics, exchange, induction, and dispersion. For a broad range of He-HF configurations the theoretical potential agrees very well with the empirical potential of Lovejoy and Nesbitt [C. M. Lovejoy and D. J. Nesbitt, J. Chem. Phys. 93, 5387 (1990)], which was adjusted to reproduce the near-infrared spectrum of the complex. Our potential has a global minimum of ɛm=-39.68 cm-1 for the linear He-HF geometry at Rm=6.16 bohr, and a secondary minimum of ɛm=-36.13 cm-1 for the linear He-FH geometry at Rm=5.59 bohr. These values are in very good agreement with the corresponding empirical results: ɛm=-39.20 cm-1 and Rm=6.17 bohr for the global minimum, and ɛm=-35.12 cm-1 and Rm=5.67 bohr for the secondary minimum.

  10. Calculation of alloying effect on formation enthalpy of TiCu intermetallics from first-principles calculations for designing Ti-Cu-system metallic glasses

    NASA Astrophysics Data System (ADS)

    Shirasawa, Naoya; Takigawa, Yorinobu; Uesugi, Tokuteru; Higashi, Kenji

    2016-01-01

    The effect of alloying on the formation enthalpy of TiCu intermetallics was investigated via first-principles calculations to propose a new design method for Ti-Cu-system metallic glasses. The calculation results showed good agreement with the reported experimental results that Ni, Pd, Sn and Zr improve this system's glass-forming ability. According to the calculation results, a Ti-Zr-Cu-Ga system was designed as a potential new bulk Ti-based metallic glass, and a bulk sample with a 2-mm diameter was fabricated.

  11. Effects of internal gain assumptions in building energy calculations

    SciTech Connect

    Christensen, C.; Perkins, R.

    1981-01-01

    The utilization of direct solar gains in buildings can be affected by operating profiles, such as schedules for internal gains, thermostat controls, and ventilation rates. Building energy analysis methods use various assumptions about these profiles. The effects of typical internal gain assumptions in energy calculations are described. Heating and cooling loads from simulations using the DOE 2.1 computer code are compared for various internal-gain inputs: typical hourly profiles, constant average profiles, and zero gain profiles. Prototype single-family-detached and multi-family-attached residential units are studied with various levels of insulation and infiltration. Small detached commercial buildings and attached zones in large commercial buildings are studied with various levels of internal gains. The results of this study indicate that calculations of annual heating and cooling loads are sensitive to internal gains, but in most cases are relatively insensitive to hourly variations in internal gains.

  12. Effects of internal gain assumptions in building energy calculations

    NASA Astrophysics Data System (ADS)

    Christensen, C.; Perkins, R.

    1981-01-01

    The utilization of direct solar gains in buildings can be affected by operating profiles, such as schedules for internal gains, thermostat controls, and ventilation rates. Building energy analysis methods use various assumptions about these profiles. The effects of typical internal gain assumptions in energy calculations are described. Heating and cooling loads from simulations using the DOE 2.1 computer code are compared for various internal gain inputs: typical hourly profiles, constant average profiles, and zero gain profiles. Prototype single-family-detached and multifamily-attached residential units are studied with various levels of insulation and infiltration. Small detached commercial buildings and attached zones in large commercial buildings are studied with various levels of internal gains. The results indicate that calculations of annual heating and cooling loads are sensitive to internal gains, but in most cases are relatively insensitive to hourly variations in internal gains.

  13. Effects of internal gain assumptions in building energy calculations

    NASA Astrophysics Data System (ADS)

    Christensen, C.; Perkins, R.

    The utilization of direct solar gains in buildings can be affected by operating profiles, such as schedules for internal gains, thermostat controls, and ventilation rates. Building energy analysis methods use various assumptions about these profiles. The effects of typical internal gain assumptions in energy calculations. Heating and cooling loads from simulations using the Department of Energy 2.1 computer code are compared for various internal-gain inputs: typical hourly profiles, constant average profiles, and zero gain profiles. Prototype single-family-detached and multi-family-attached residential units are studied with various levels of insulation and infiltration. Small detached commercial buildings and attached zones in large commercial buildings are studied with various levels of internal gains. The results indicate that calculations of annual heating and cooling loads are sensitive to internal gains, but in most cases are relatively insensitive to hourly variations in internal gains.

  14. Calculations of multiquark functions in effective models of strong interaction

    SciTech Connect

    Jafarov, R. G.; Rochev, V. E.

    2013-09-15

    In this paper we present our results of the investigation of multiquark equations in the Nambu-Jona-Lasinio model with chiral symmetry of SU(2) group in the mean-field expansion. To formulate the mean-field expansion we have used an iteration scheme of solution of the Schwinger-Dyson equations with the fermion bilocal source. We have considered the equations for Green functions of the Nambu-Jona-Lasinio model up to third step for this iteration scheme. To calculate the high-order corrections to the mean-field approximation, we propose the method of the Legendre transformation with respect to the bilocal source, which allows effectively to take into account the symmetry constraints related with the chiral Ward identity. We discuss also the problem of calculating the multiquark functions in the mean-field expansion for Nambu-Jona-Lasinio-type models with other types of the multifermion sources.

  15. Calculation of effective diffusivities for biofilms and tissues.

    PubMed

    Wood, Brian D; Quintard, Michel; Whitaker, Stephen

    2002-03-05

    In this study we describe a scheme for numerically calculating the effective diffusivity of cellular systems such as biofilms and tissues. This work extends previous studies in which we developed the macroscale representations of the transport equations for cellular systems based on the subcellular-scale transport and reaction processes. A finite-difference model is used to predict the effective diffusivity of a cellular system on the basis of the subcellular-scale geometry and transport parameters. The effective diffusivity is predicted for a complex three-dimensional structure that is based on laboratory observations of a biofilm, and these numerical predictions are compared with predictions from a simple analytical solution and with experimental data. Our results indicate that, under many practical circumstances, the simple analytical solution can be used to provide reasonable estimates of the effective diffusivity.

  16. Calculation of the transport properties of carbon dioxide. II. Thermal conductivity and thermomagnetic effects

    NASA Astrophysics Data System (ADS)

    Bock, Steffen; Bich, Eckard; Vogel, Eckhard; Dickinson, Alan S.; Vesovic, Velisa

    2004-05-01

    The transport properties of pure carbon dioxide have been calculated from the intermolecular potential using the classical trajectory method. Results are reported in the dilute-gas limit for thermal conductivity and thermomagnetic coefficients for temperatures ranging from 200 K to 1000 K. Three recent carbon dioxide potential energy hypersurfaces have been investigated. Since thermal conductivity is influenced by vibrational degrees of freedom, not included in the rigid-rotor classical trajectory calculation, a correction for vibration has also been employed. The calculations indicate that the second-order thermal conductivity corrections due to the angular momentum polarization (<2%) and velocity polarization (<1%) are both small. Thermal conductivity values calculated using the potential energy hypersurface by Bukowski et al. (1999) are in good agreement with the available experimental data. They underestimate the best experimental data at room temperature by 1% and in the range up to 470 K by 1%-3%, depending on the data source. Outside this range the calculated values, we believe, may be more reliable than the currently available experimental data. Our results are consistent with measurements of the thermomagnetic effect at 300 K only when the vibrational degrees of freedom are considered fully. This excellent agreement for these properties indicates that particularly the potential surface of Bukowski et al. provides a realistic description of the anisotropy of the surface.

  17. Perturbative Calculation of Quasi-Potential in Non-equilibrium Diffusions: A Mean-Field Example

    NASA Astrophysics Data System (ADS)

    Bouchet, Freddy; Gawȩdzki, Krzysztof; Nardini, Cesare

    2016-06-01

    In stochastic systems with weak noise, the logarithm of the stationary distribution becomes proportional to a large deviation rate function called the quasi-potential. The quasi-potential, and its characterization through a variational problem, lies at the core of the Freidlin-Wentzell large deviations theory (Freidlin and Wentzell, Random perturbations of dynamical systems, 2012). In many interacting particle systems, the particle density is described by fluctuating hydrodynamics governed by Macroscopic Fluctuation Theory (Bertini et al., arXiv:1404.6466 , 2014), which formally fits within Freidlin-Wentzell's framework with a weak noise proportional to 1/√{N}, where N is the number of particles. The quasi-potential then appears as a natural generalization of the equilibrium free energy to non-equilibrium particle systems. A key physical and practical issue is to actually compute quasi-potentials from their variational characterization for non-equilibrium systems for which detailed balance does not hold. We discuss how to perform such a computation perturbatively in an external parameter λ , starting from a known quasi-potential for λ =0. In a general setup, explicit iterative formulae for all terms of the power-series expansion of the quasi-potential are given for the first time. The key point is a proof of solvability conditions that assure the existence of the perturbation expansion to all orders. We apply the perturbative approach to diffusive particles interacting through a mean-field potential. For such systems, the variational characterization of the quasi-potential was proven by Dawson and Gartner (Stochastics 20:247-308, 1987; Stochastic differential systems, vol 96, pp 1-10, 1987). Our perturbative analysis provides new explicit results about the quasi-potential and about fluctuations of one-particle observables in a simple example

  18. Theoretical study of ignition reactions of linear symmetrical monoethers as potential diesel fuel additives: DFT calculations

    NASA Astrophysics Data System (ADS)

    Marrouni, Karim El; Abou-Rachid, Hakima; Kaliaguine, Serge

    This work investigates the chemical reactivity of four linear symmetrical monoethers with molecular oxygen. Such oxygenated compounds may be considered as potential diesel fuel additives in order to reduce the ignition delay in diesel fuel engines. For this purpose, a kinetic study is proposed to clarify the relation between the molecular structure of the fuel molecule and its ignition properties. To this end, DFT calculations were performed for these reactions using B3LYP/6-311G(d,p) and BH&HLYP/6-311G(d,p) to determine structures, energies, and vibrational frequencies of stationary points as well as activated complexes involved in each gas-phase combustion initiation reaction of the monoethers CH3OCH3, C2H5OC2H5, C3H7OC3H7, or C4H9OC4H9 with molecular oxygen. This theoretical kinetic study was carried out using electronic structure results and the transition state theory, to assess the rate constants for all studied combustion reactions. As it has been shown in our previous work [Abou-Rachid et al., J Mol Struct (Theochem) 2003, 621, 293], the cetane number (CN) of a pure organic molecule depends on the initiation rate of its homogeneous gas-phase reaction with molecular oxygen. Indeed, the calculated initiation rate constants of the H-abstraction process of linear monoethers with O2 show a very good correlation with experimental CN data of these pure compounds at T D 1,000 K. This temperature is representative of the operating conditions of a diesel fuel engine.0

  19. Full potential calculation of electronic properties of rutile RO 2 (R=Si, Ge, Sn and Pb) compounds via modified Becke Johnson potential

    NASA Astrophysics Data System (ADS)

    Singh, Hardev; Singh, Mukhtiyar; Kumar, Sarvesh; Kashyap, Manish K.

    2011-10-01

    The electronic properties of RO 2 (R=Si, Ge, Sn and Pb; a group IVA element) compounds in rutile structure have been calculated using WIEN2k implementation of full potential linearized augmented plane wave (FPLAPW) method. The exchange and correlation (XC) effects are taken into account by an orbital independent modified Becke Johnson (MBJ) potential as coupled with Local Density Approximation (LDA) for all the compounds except for PbO 2 where only Generalized Gradient Approximation (GGA) is considered for the same. We predict a direct band gap in all these compounds with continuous decrease as the atomic size of IVA element increases such that there is an appearance of semimetallic band structure for the last compound, PbO 2. The largest band gap (7.66 eV) has been found for SiO 2, which governs its insulating nature. We observe that MBJLDA results for band gaps of these compounds are far better than those obtained using GGA and Engel-Vosko's GGA (EV-GGA). A very good agreement is observed between MBJLDA band gaps with corresponding experimental values as compared to other calculations. The electronic band structures are also analyzed in terms of contributions from various electrons.

  20. Dynamics study of the OH + NH3 hydrogen abstraction reaction using QCT calculations based on an analytical potential energy surface.

    PubMed

    Monge-Palacios, M; Corchado, J C; Espinosa-Garcia, J

    2013-06-07

    To understand the reactivity and mechanism of the OH + NH3 → H2O + NH2 gas-phase reaction, which evolves through wells in the entrance and exit channels, a detailed dynamics study was carried out using quasi-classical trajectory calculations. The calculations were performed on an analytical potential energy surface (PES) recently developed by our group, PES-2012 [Monge-Palacios et al. J. Chem. Phys. 138, 084305 (2013)]. Most of the available energy appeared as H2O product vibrational energy (54%), reproducing the only experimental evidence, while only the 21% of this energy appeared as NH2 co-product vibrational energy. Both products appeared with cold and broad rotational distributions. The excitation function (constant collision energy in the range 1.0-14.0 kcal mol(-1)) increases smoothly with energy, contrasting with the only theoretical information (reduced-dimensional quantum scattering calculations based on a simplified PES), which presented a peak at low collision energies, related to quantized states. Analysis of the individual reactive trajectories showed that different mechanisms operate depending on the collision energy. Thus, while at high energies (E(coll) ≥ 6 kcal mol(-1)) all trajectories are direct, at low energies about 20%-30% of trajectories are indirect, i.e., with the mediation of a trapping complex, mainly in the product well. Finally, the effect of the zero-point energy constraint on the dynamics properties was analyzed.

  1. Selecting the optimal method to calculate daily global reference potential evaporation from CFSR reanalysis data

    NASA Astrophysics Data System (ADS)

    Sperna Weiland, F. C.; Tisseuil, C.; Dürr, H. H.; Vrac, M.; van Beek, L. P. H.

    2011-07-01

    Potential evaporation (PET) is one of the main inputs of hydrological models. Yet, there is limited consensus on which PET equation is most applicable in hydrological climate impact assessments. In this study six different methods to derive global scale reference PET time series from CFSR reanalysis data are compared: Penman-Monteith, Priestley-Taylor and original and modified versions of the Hargreaves and Blaney-Criddle method. The calculated PET time series are (1) evaluated against global monthly Penman-Monteith PET time series calculated from CRU data and (2) tested on their usability for modeling of global discharge cycles. The lowest root mean squared differences and the least significant deviations (95 % significance level) between monthly CFSR derived PET time series and CRU derived PET were obtained for the cell specific modified Blaney-Criddle equation. However, results show that this modified form is likely to be unstable under changing climate conditions and less reliable for the calculation of daily time series. Although often recommended, the Penman-Monteith equation did not outperform the other methods. In arid regions (e.g., Sahara, central Australia, US deserts), the equation resulted in relatively low PET values and, consequently, led to relatively high discharge values for dry basins (e.g., Orange, Murray and Zambezi). Furthermore, the Penman-Monteith equation has a high data demand and the equation is sensitive to input data inaccuracy. Therefore, we preferred the modified form of the Hargreaves equation, which globally gave reference PET values comparable to CRU derived values. Although it is a relative efficient empirical equation, like Blaney-Criddle, the equation considers multiple spatial varying meteorological variables and consequently performs well for different climate conditions. In the modified form of the Hargreaves equation the multiplication factor is uniformly increased from 0.0023 to 0.0031 to overcome the global underestimation

  2. A comparison of estimated and calculated effective porosity

    NASA Astrophysics Data System (ADS)

    Stephens, Daniel B.; Hsu, Kuo-Chin; Prieksat, Mark A.; Ankeny, Mark D.; Blandford, Neil; Roth, Tracy L.; Kelsey, James A.; Whitworth, Julia R.

    Effective porosity in solute-transport analyses is usually estimated rather than calculated from tracer tests in the field or laboratory. Calculated values of effective porosity in the laboratory on three different textured samples were compared to estimates derived from particle-size distributions and soil-water characteristic curves. The agreement was poor and it seems that no clear relationships exist between effective porosity calculated from laboratory tracer tests and effective porosity estimated from particle-size distributions and soil-water characteristic curves. A field tracer test in a sand-and-gravel aquifer produced a calculated effective porosity of approximately 0.17. By comparison, estimates of effective porosity from textural data, moisture retention, and published values were approximately 50-90% greater than the field calibrated value. Thus, estimation of effective porosity for chemical transport is highly dependent on the chosen transport model and is best obtained by laboratory or field tracer tests. Résumé La porosité effective dans les analyses de transport de soluté est habituellement estimée, plutôt que calculée à partir d'expériences de traçage sur le terrain ou au laboratoire. Les valeurs calculées de la porosité effective au laboratoire sur trois échantillons de textures différentes ont été comparées aux estimations provenant de distributions de taille de particules et de courbes caractéristiques sol-eau. La concordance était plutôt faible et il semble qu'il n'existe aucune relation claire entre la porosité effective calculée à partir des expériences de traçage au laboratoire et la porosité effective estimée à partir des distributions de taille de particules et de courbes caractéristiques sol-eau. Une expérience de traçage de terrain dans un aquifère de sables et de graviers a fourni une porosité effective calculée d'environ 0,17. En comparaison, les estimations de porosité effective de données de

  3. Potential Ergogenic Effects of Saffron.

    PubMed

    Meamarbashi, Abbas; Rajabi, Ali

    2016-01-01

    Crocus sativus, commonly known as saffron, is a rich source of carotenoids with many health benefits. The muscular strength, pulmonary function, and reaction time are vital to the athlete's performance, and this study aimed to investigate an ergogenic effect of saffron. Twenty-eight nonactive and healthy male university students were randomly assigned into the saffron (n = 14) and control (n = 15) groups. The experimental group received dried saffron stigma (300 mg/day for 10 days) and the control group received a placebo. After one session, familiarization with the tests, anthropometric parameters, visual and audio reaction times, and the maximum isometric and isotonic forces on a leg press machine were measured accordingly, 1 day before and after the supplementation period. This study shows that 10 days of supplementation with saffron significantly increased (10.1%) the isometric force (p < .0001; effect size (EF) = 0.432) and increased 6.1% the isotonic force (p < .0001; effect size = 0.662), as well as effecting faster visual (p < .05; EF = 0.217) and audio (p < .05; EF = 0.214) reaction times. The ergogenic effect of saffron (increase in the forces) may contribute to increase in the muscle mitochondrial biogenesis and positive effect on the motor cortex, both of which may explain faster audio and visual reaction times. Saffron supplementation was also possibly responsible for improvement of muscle blood perfusion and facilitation in the oxygen transport.

  4. Electron Affinity Calculations for Atoms: Sensitive Probe of Many-Body Effects

    NASA Astrophysics Data System (ADS)

    Felfli, Z.; Msezane, A. Z.

    2016-05-01

    Electron-electron correlations and core-polarization interactions are crucial for the existence and stability of most negative ions. Therefore, they can be used as a sensitive probe of many-body effects in the calculation of the electron affinities (EAs) of atoms. The importance of relativistic effects in the calculation of the EAs of atoms has recently been assessed to be insignificant up to Z of 85. Here we use the complex angular momentum (CAM) methodology wherein is embedded fully the electron-electron correlations, to investigate core-polarization interactions in low-energy electron elastic scattering from the atoms In, Sn, Eu, Au and At through the calculation of their EAs. For the core-polarization interaction we use the rational function approximation of the Thomas-Fermi potential, which can be analytically continued into the complex plane. The EAs are extracted from the large resonance peaks in the CAM calculated low-energy electron-atom scattering total cross sections and compared with those from measurements and sophisticated theoretical methods. It is concluded that when the electron-electron correlations and core polarization interactions (both major many-body effects) are accounted for adequately the importance of relativity on the calculation of the EAs of atoms can be assessed. Even for the high Z (85) At atom relativistic effects are estimated to contribute a maximum of 3.6% to its EA calculation.

  5. Separable Representation of Nucleon-Nucleus Optical Potentials as Input to (d; p) Reaction Calculations

    NASA Astrophysics Data System (ADS)

    Hlophe, Linda D.

    The three-body description of deuteron-induced nuclear reactions requires the nucleon-nucleon (NN) and effective nucleon-nucleus interactions as input. The latter are given by Optical Model Potentials (OMPs), which are complex as well as energy-dependent. While a lot of effort has been dedicated to creating separable NN potentials, the same is not true for the nucleon-nucleus OMPs. In this work, separable representations of nucleon-nucleus OMPs are presented. To construct separable representations of neutron-nucleus OMPs, a scheme due to Ernst, Shakin, and Thaler (EST) is adopted as a starting point. It is shown that, by including both incoming and outgoing scattering states in the EST scheme, separable expansions for complex neutron-nucleus potentials that partially obey reciprocity are obtained. For the application to neutron-nucleus potentials that are complex as well as energy-dependent, a further generalization is carried out leading to an energy-dependent separable expansion that exactly fulfills reciprocity. By working exclusively with half-shell transition matrices in momentum space, the implementation of these separable representation schemes is straightforward. The proton-nucleus interaction consists of a short-ranged nuclear piece as well as the long-ranged point-Coulomb potential. After separating the point-Coulomb piece via the Gell-Mann-Goldberger relation, one is left with the short-ranged potential in the Coulomb basis. An extension of the separable representation schemes for neutron-nucleus OMPs to proton-nucleus systems thus requires scattering solutions in the Coulomb basis. This complicates a momentum space implementation of the aforementioned separable expansions. However, by employing the techniques first suggested by Elster, Liu, and Thaler, the separable representation schemes generalized for proton-nucleus OMPs are implemented in a similar manner to neutron-nucleus OMPs. Taking into account the internal structure of the nucleus leads to

  6. Generic effective source for scalar self-force calculations

    NASA Astrophysics Data System (ADS)

    Wardell, Barry; Vega, Ian; Thornburg, Jonathan; Diener, Peter

    2012-05-01

    A leading approach to the modeling of extreme mass ratio inspirals involves the treatment of the smaller mass as a point particle and the computation of a regularized self-force acting on that particle. In turn, this computation requires knowledge of the regularized retarded field generated by the particle. A direct calculation of this regularized field may be achieved by replacing the point particle with an effective source and solving directly a wave equation for the regularized field. This has the advantage that all quantities are finite and require no further regularization. In this work, we present a method for computing an effective source which is finite and continuous everywhere, and which is valid for a scalar point particle in arbitrary geodesic motion in an arbitrary background spacetime. We explain in detail various technical and practical considerations that underlie its use in several numerical self-force calculations. We consider as examples the cases of a particle in a circular orbit about Schwarzschild and Kerr black holes, and also the case of a particle following a generic timelike geodesic about a highly spinning Kerr black hole. We provide numerical C code for computing an effective source for various orbital configurations about Schwarzschild and Kerr black holes.

  7. Effective core potentials for the cadmium and mercury atoms

    NASA Technical Reports Server (NTRS)

    Basch, H.; Newton, M. D.; Jafri, J.; Moskowitz, J. W.; Topiol, S.

    1978-01-01

    Ab initio effective core potentials have been obtained for the cadmium and mercury atoms by the methods of Kahn et al. (1976). Both two and twelve valence electron representations of Cd and Hg were tested for various atom state-configurations by comparison with all-electron calculations. The generated potentials were used to obtain the equilibrium bond distances and molecular binding energies for the dichloride and dimethyl compounds of both atoms from single and optimum-double configuration self-consistent field calculations.

  8. Configuration interaction calculations of potential curves and annihilation rates for positronic complexes of alkali monoxides.

    PubMed

    Buenker, Robert J; Liebermann, Heinz-Peter

    2009-09-21

    Ab initio multireference single- and double-excitation configuration interaction calculations have been carried out to compute the potential curves and annihilation rates (ARs) of positronic molecular complexes of a series of alkali monoxides. The dissociation limit for the lowest states of these systems consists of the positive alkali ion ground state (M(+)) and the OPs (e(+)O(-)) complex formed by attaching the positron to O(-), even though the ground state of the corresponding neutral molecule always correlates with uncharged fragments (M+O). The positron affinity of the neutral oxide (2)Pi state is greater than that of (2)Sigma(+) in each case, so that the e(+)MO ground state always has (3,1)Pi symmetry, despite the fact that both KO and RbO have (2)Sigma(+) ground states. The bonding in the positronic systems is highly ionic at all internuclear distances and this causes their ARs to decrease gradually as the positive alkali ion approaches the OPs fragment.

  9. Effective method for calculating modes of multilayer waveguide

    NASA Astrophysics Data System (ADS)

    Ivanov, I. K.; Dimitrov, P. D.

    2017-01-01

    A fast and efficient numerical method for finding the modes of a multilayered waveguide is proposed. Using the complex vector of the Riemann-Silberstein has resulted in a reduction of the order of the differential equations describing the passage of light through the different layers, as well as a double reduction of the searched variables. The approximation of the differential equations is made by the method of Galyorkin by a suitable choice of the base functions. The calculation of the effective indices and their corresponding wave configurations is realized by the inverse-shifting power method with Rayleigh’s quantity. The method was successfully applied waveguide systems, generating values close in the effective indices.

  10. Numerical calculation of steady inviscid full potential compressible flow about wind turbine blades

    NASA Technical Reports Server (NTRS)

    Dulikravich, D. S.

    1980-01-01

    The air flow through a propeller-type wind turbine rotor is characterized by three-dimensional rotating cascade effects about the inner portions of the rotor blades and compressibility effects about the tip regions of the blades. In the case of large rotor diameter and/or increased rotor angular speed, the existence of small supersonic zones terminated by weak shocks is possible. An exact nonlinear mathematical model (called a steady Full Potential Equation - FPE) that accounts for the above phenomena has been rederived. An artificially time dependent version of FPE was iteratively solved by a finite volume technique involving an artificial viscosity and a three-level consecutive mesh refinement. The exact boundary conditions were applied by generating a boundary conforming periodic computation mesh.

  11. A New Green's Function for the Wake Potential Calculation of the SLAC S-band Constant Gradient Accelerating Section

    SciTech Connect

    Novokhatski, A,; /SLAC

    2012-02-17

    The behavior of the longitudinal wake fields excited by a very short bunch in the SLAC S-band constant gradient accelerating structures has been studied. Wake potential calculations were performed for a bunch length of 10 microns using the author's code to obtain a numerical solution of Maxwell's equations in the time domain. We have calculated six accelerating sections in the series (60-ft) to find the stationary solution. While analyzing the computational results we have found a new formula for the Green's function. Wake potentials, which are calculated using this Green's function are in amazingly good agreement with numerical results over a wide range of bunch lengths. The Green's function simplifies the wake potential calculations and can be easily incorporated into the tracking codes. This is very useful for beam dynamics studies of the linear accelerators of LCLS and FACET.

  12. A new hydrocarbon empirical potential in angle bending calculation for the molecular dynamics simulation

    SciTech Connect

    Ping, Tan Ai; Hoe, Yeak Su

    2014-07-10

    Typically, short range potential only depends on neighbouring atoms and its parameters function can be categorized into bond stretching, angle bending and bond rotation potential. In this paper, we present our work called Angle Bending (AB) potential, whereas AB potential is the extension of our previous work namely Bond Stretching (BS) potential. Basically, potential will tend to zero after truncated region, potential in specific region can be represented by different piecewise polynomial. We proposed the AB piecewise potential which is possible to solve a system involving three atoms. AB potential able to handle the potential of covalent bonds for three atoms as well as two atoms cases due to its degeneracy properties. Continuity for the piecewise polynomial has been enforced by coupling with penalty methods. There are still plenty of improvement spaces for this AB potential. The improvement for three atoms AB potential will be studied and further modified into torsional potential which are the ongoing current research.

  13. The calculation of the effective diamagnetic frequency using BOUT + + code

    NASA Astrophysics Data System (ADS)

    Wang, Y. M.; Xu, X. Q.; Snyder, P. B.; Osborne, T. H.

    2016-10-01

    The effective diamagnetic frequency of the peeling-ballooning modes is evaluated by the ideal MHD and the 2-fliud models. This effective diamagnetic frequency is used in the EPED code to predict the pedestal width and height. In the DIII-D detachment experiments, the difference of the measured pedestal height and predicted pedestal height become more significant for the higher density cases. In the higher gas puffing case, the bootstrap current is suppressed and the decrease of the pressure gradient will lead to less ion diamagnetic stabilization. A new effective diamagnetic model is needed to improve the accuracy of the pedestal parameters prediction. The effective diamagnetic frequency with different parameters is calculated by BOUT + + 3-field linear code using dbm19 equilibrium generated by TOQ code. The equilibriums are generated using sets of different fraction of bootstrap current, elongation, q95, pedestal width and height. A new formula of effective diamagnetic frequency with these parameters is generated by fitting the simulation results. Using the new formula, the comparison between the simulation results and the experimental measurements will be conducted. This work is supported by the National Natural Science Fonudation of China (Grant No. 11505221) and China Scholarship Council (Grant No. 201504910132).

  14. New method for calculating comparative toxicity potential of cationic metals in freshwater: application to copper, nickel, and zinc.

    PubMed

    Gandhi, Nilima; Diamond, Miriam L; van de Meent, Dik; Huijbregts, Mark A J; Peijnenburg, Willie J G M; Guinée, Jeroen

    2010-07-01

    Current practice in chemical hazard ranking and toxic impact assessments is to estimate fate and toxicity assuming the chemical exists in dissolved and particulate phases and, for metals, that all dissolved species are equally bioavailable. This introduces significant error since metal effects are related to the truly dissolved phase and free metal ion within it, not the total dissolved phase. We introduce a Bioavailability Factor (BF) to the calculation of hazard or Comparative Toxicity Potentials (CTPs) (also known as Characterization Factors; CFs) for use in Life Cycle Impact Assessment (LCIA). The method uses for calculation (1) USEtox for environmental fate, (2) WHAM 6.0 for metal partitioning and speciation in aquatic systems, and (3) Biotic Ligand Model (BLM) for average toxicity. For 12 EU water-types, we calculated medians (range) of CTPs of 1.5 x 10(4) (1.5 x 10(2) to 1.2 x 10(5)), 5.6 x 10(4) (9.4 x 10(3) to 4.1 x 10(5)), and 2.1 x 10(4) (7 x 10(3) to 5.8 x 10(4)) day*m(3)/kg for Cu, Ni, and Zn, respectively, which are up to approximately 1000 times lower than previous values. The greatest contributor to variability in CTPs was the BF, followed by toxicity Effect Factor (EF). The importance of the choice of water-type is shown by changes in the relative ranking of CTPs, which are equally influenced by water chemistry and inherent metal-specific differences.

  15. VORSTAB: A computer program for calculating lateral-directional stability derivatives with vortex flow effect

    NASA Technical Reports Server (NTRS)

    Lan, C. Edward

    1985-01-01

    A computer program based on the Quasi-Vortex-Lattice Method of Lan is presented for calculating longitudinal and lateral-directional aerodynamic characteristics of nonplanar wing-body combination. The method is based on the assumption of inviscid subsonic flow. Both attached and vortex-separated flows are treated. For the vortex-separated flow, the calculation is based on the method of suction analogy. The effect of vortex breakdown is accounted for by an empirical method. A summary of the theoretical method, program capabilities, input format, output variables and program job control set-up are described. Three test cases are presented as guides for potential users of the code.

  16. Full Dimensional Vibrational Calculations for Methane Using AN Accurate New AB Initio Based Potential Energy Surface

    NASA Astrophysics Data System (ADS)

    Majumder, Moumita; Dawes, Richard; Wang, Xiao-Gang; Carrington, Tucker; Li, Jun; Guo, Hua; Manzhos, Sergei

    2014-06-01

    New potential energy surfaces for methane were constructed, represented as analytic fits to about 100,000 individual high-level ab initio data. Explicitly-correlated multireference data (MRCI-F12(AE)/CVQZ-F12) were computed using Molpro [1] and fit using multiple strategies. Fits with small to negligible errors were obtained using adaptations of the permutation-invariant-polynomials (PIP) approach [2,3] based on neural-networks (PIP-NN) [4,5] and the interpolative moving least squares (IMLS) fitting method [6] (PIP-IMLS). The PESs were used in full-dimensional vibrational calculations with an exact kinetic energy operator by representing the Hamiltonian in a basis of products of contracted bend and stretch functions and using a symmetry adapted Lanczos method to obtain eigenvalues and eigenvectors. Very close agreement with experiment was produced from the purely ab initio PESs. References 1- H.-J. Werner, P. J. Knowles, G. Knizia, 2012.1 ed. 2012, MOLPRO, a package of ab initio programs. see http://www.molpro.net. 2- Z. Xie and J. M. Bowman, J. Chem. Theory Comput 6, 26, 2010. 3- B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577, 2009. 4- J. Li, B. Jiang and Hua Guo, J. Chem. Phys. 139, 204103 (2013). 5- S Manzhos, X Wang, R Dawes and T Carrington, JPC A 110, 5295 (2006). 6- R. Dawes, X-G Wang, A.W. Jasper and T. Carrington Jr., J. Chem. Phys. 133, 134304 (2010).

  17. Conformational evaluation of DNA-carcinogen adducts using semi-empirical potential energy calculations

    SciTech Connect

    Verna, L.K.

    1992-01-01

    The covalent attachment of an aromatic amine to guanine C8 can produce a conformational change within the DNA molecule. This conformational change is likely to influence the altered DNA's biological capacity. The author used semi-empirical potential energy calculations to evaluate conformational patterns of DNA-aromatic amine adducts using the series: aniline, 4-aminobiphenyl, 2-aminofluorene and 1-aminopyrene. An exhaustive search was made of the conformational space for carcinogen modified two-base sequences. Information was incorporated into single stranded modified trimers. Modified strands were incorporated in duplex trimers. Nine-base modified duplexes were constructed and evaluated. This procedure produced distinctly different patterns for each aromatic amine investigated. It was apparent that the base sequence in which the carcinogen modification was found was crucial to the conformational change produced. At the dimer level, aniline allows both syn and anti guanine orientations at the carcinogen modification site. There were base-base and base-carcinogen stacked states, suggesting a flexible adduct easily able to assume many conformations. 4-Aminobiphenyl attachment resulted in low energy base-carcinogen stacked states, and a guanine torsion predominantly in a low syn orientation. The flexibility of this adduct was greatly reduced from that of the aniline adduct. 2-Aminofluorene adducts assumed more of a conformational mix. The major portion was base-base stacked with modified guanine anti, with a portion with base-carcinogen stacking and guanine syn or low syn. 1-Aminopyrene adducts were inflexible. The majority assumed a base-carcinogen stack with guanine syn. The conformational profiles of large modified pieces provided details of a unique low energy wedge conformation, in which aminofluorene, particularly, was able to fit into the minor groove with very little helix distortion.

  18. Exploring Ce3+/Ce4+ cation ordering in reduced ceria nanoparticles using interionic-potential and density-functional calculations.

    PubMed

    Migani, Annapaola; Neyman, Konstantin M; Illas, Francesc; Bromley, Stefan T

    2009-08-14

    The performance of atomistic calculations using interionic potentials has been examined in detail with respect to the structures and energetic stabilities of ten configurational isomers (i.e., distinct Ce3+/Ce4+ cationic orderings) of a low energy octahedral ceria nanoparticle Ce19O32. The outcome of these calculations is compared with the results of corresponding density-functional (DF) calculations employing local and gradient corrected functionals with an additional corrective onsite Coulombic interaction applied to the f-electrons (i.e., LDA+U and GGA+U, respectively). Strikingly similar relative energy ordering of the isomers and atomic scale structural trends (e.g., cation-cation distances) are obtained in both the DF and interionic-potential calculations. The surprisingly good agreement between the DF electronic structure calculations and the relatively simple classical potentials is not found to be due to a single dominant interaction type but is due to a sensitive balance between long range electrostatics and local bonding contributions to the energy. Considering the relatively high computational cost and technical difficulty involved in obtaining charge-localized electronic solutions for reduced ceria using DF calculations, the use of interionic potentials for rapid and reliable preselection of the most stable Ce3+/Ce4+ cationic orderings is of considerable benefit.

  19. Effect of blood activity on dosimetric calculations for radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Zvereva, Alexandra; Petoussi-Henss, Nina; Li, Wei Bo; Schlattl, Helmut; Oeh, Uwe; Zankl, Maria; Graner, Frank Philipp; Hoeschen, Christoph; Nekolla, Stephan G.; Parodi, Katia; Schwaiger, Markus

    2016-11-01

    The objective of this work was to investigate the influence of the definition of blood as a distinct source on organ doses, associated with the administration of a novel radiopharmaceutical for positron emission tomography-computed tomography (PET/CT) imaging—(S)-4-(3-18F-fluoropropyl)-L-glutamic acid (18F-FSPG). Personalised pharmacokinetic models were constructed based on clinical PET/CT images from five healthy volunteers and blood samples from four of them. Following an identifiability analysis of the developed compartmental models, person-specific model parameters were estimated using the commercial program SAAM II. Organ doses were calculated in accordance to the formalism promulgated by the Committee on Medical Internal Radiation Dose (MIRD) and the International Commission on Radiological Protection (ICRP) using specific absorbed fractions for photons and electrons previously derived for the ICRP reference adult computational voxel phantoms. Organ doses for two concepts were compared: source organ activities in organs parenchyma with blood as a separate source (concept-1); aggregate activities in perfused source organs without blood as a distinct source (concept-2). Aggregate activities comprise the activities of organs parenchyma and the activity in the regional blood volumes (RBV). Concept-1 resulted in notably higher absorbed doses for most organs, especially non-source organs with substantial blood contents, e.g. lungs (92% maximum difference). Consequently, effective doses increased in concept-1 compared to concept-2 by 3-10%. Not considering the blood as a distinct source region leads to an underestimation of the organ absorbed doses and effective doses. The pronounced influence of the blood even for a radiopharmaceutical with a rapid clearance from the blood, such as 18F-FSPG, suggests that blood should be introduced as a separate compartment in most compartmental pharmacokinetic models and blood should be considered as a distinct source in

  20. WIND: Computer program for calculation of three dimensional potential compressible flow about wind turbine rotor blades

    NASA Technical Reports Server (NTRS)

    Dulikravich, D. S.

    1980-01-01

    A computer program is presented which numerically solves an exact, full potential equation (FPE) for three dimensional, steady, inviscid flow through an isolated wind turbine rotor. The program automatically generates a three dimensional, boundary conforming grid and iteratively solves the FPE while fully accounting for both the rotating cascade and Coriolis effects. The numerical techniques incorporated involve rotated, type dependent finite differencing, a finite volume method, artificial viscosity in conservative form, and a successive line overrelaxation combined with the sequential grid refinement procedure to accelerate the iterative convergence rate. Consequently, the WIND program is capable of accurately analyzing incompressible and compressible flows, including those that are locally transonic and terminated by weak shocks. The program can also be used to analyze the flow around isolated aircraft propellers and helicopter rotors in hover as long as the total relative Mach number of the oncoming flow is subsonic.

  1. Accelerating quantum instanton calculations of the kinetic isotope effects

    SciTech Connect

    Karandashev, Konstantin; Vaníček, Jiří

    2015-11-21

    Path integral implementation of the quantum instanton approximation currently belongs among the most accurate methods for computing quantum rate constants and kinetic isotope effects, but its use has been limited due to the rather high computational cost. Here, we demonstrate that the efficiency of quantum instanton calculations of the kinetic isotope effects can be increased by orders of magnitude by combining two approaches: The convergence to the quantum limit is accelerated by employing high-order path integral factorizations of the Boltzmann operator, while the statistical convergence is improved by implementing virial estimators for relevant quantities. After deriving several new virial estimators for the high-order factorization and evaluating the resulting increase in efficiency, using ⋅H{sub α} + H{sub β}H{sub γ} → H{sub α}H{sub β} + ⋅ H{sub γ} reaction as an example, we apply the proposed method to obtain several kinetic isotope effects on CH{sub 4} + ⋅ H ⇌ ⋅ CH{sub 3} + H{sub 2} forward and backward reactions.

  2. Accurate high level ab initio-based global potential energy surface and dynamics calculations for ground state of CH2(+).

    PubMed

    Li, Y Q; Zhang, P Y; Han, K L

    2015-03-28

    A global many-body expansion potential energy surface is reported for the electronic ground state of CH2 (+) by fitting high level ab initio energies calculated at the multireference configuration interaction level with the aug-cc-pV6Z basis set. The topographical features of the new global potential energy surface are examined in detail and found to be in good agreement with those calculated directly from the raw ab initio energies, as well as previous calculations available in the literature. In turn, in order to validate the potential energy surface, a test theoretical study of the reaction CH(+)(X(1)Σ(+))+H((2)S)→C(+)((2)P)+H2(X(1)Σg (+)) has been carried out with the method of time dependent wavepacket on the title potential energy surface. The total integral cross sections and the rate coefficients have been calculated; the results determined that the new potential energy surface can both be recommended for dynamics studies of any type and as building blocks for constructing the potential energy surfaces of larger C(+)/H containing systems.

  3. An effective algorithm for calculating the Chandrasekhar function

    NASA Astrophysics Data System (ADS)

    Jablonski, A.

    2012-08-01

    Numerical values of the Chandrasekhar function are needed with high accuracy in evaluations of theoretical models describing electron transport in condensed matter. An algorithm for such calculations should be possibly fast and also accurate, e.g. an accuracy of 10 decimal digits is needed for some applications. Two of the integral representations of the Chandrasekhar function are prospective for constructing such an algorithm, but suitable transformations are needed to obtain a rapidly converging quadrature. A mixed algorithm is proposed in which the Chandrasekhar function is calculated from two algorithms, depending on the value of one of the arguments. Catalogue identifier: AEMC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 567 No. of bytes in distributed program, including test data, etc.: 4444 Distribution format: tar.gz Programming language: Fortran 90 Computer: Any computer with a FORTRAN 90 compiler Operating system: Linux, Windows 7, Windows XP RAM: 0.6 Mb Classification: 2.4, 7.2 Nature of problem: An attempt has been made to develop a subroutine that calculates the Chandrasekhar function with high accuracy, of at least 10 decimal places. Simultaneously, this subroutine should be very fast. Both requirements stem from the theory of electron transport in condensed matter. Solution method: Two algorithms were developed, each based on a different integral representation of the Chandrasekhar function. The final algorithm is edited by mixing these two algorithms and by selecting ranges of the argument ω in which performance is the fastest. Restrictions: Two input parameters for the Chandrasekhar function, x and ω (notation used in the code), are restricted to the range: 0⩽x⩽1 and 0⩽ω⩽1

  4. Positron-electron correlation-polarization potentials for the calculation of positron collisions with atoms and molecules*

    NASA Astrophysics Data System (ADS)

    Franz, Jan

    2017-02-01

    We present correlation-polarization potentials for the calculation of scattering cross sections of positrons with atoms and molecules. The potentials are constructed from a short-range correlation term and a long-range polarization term. For the short-range correlation term we present four different potentials that are derived from multi-component density functionals. For the long-range polarization term we employ a multi-term expansion. Quantum scattering calculations are presented for low energy collisions of positrons with two atomic targets (argon and krypton) and two molecular targets (nitrogen and methane). For collision energies below the threshold for Positronium formation our calculations of scattering cross sections are in good agreement with recent data sets from experiments and theory. Contribution to the Topical Issue "Low-Energy Interactions related to Atmospheric and Extreme Conditions", edited by S. Ptasinska, M. Smialek-Telega, A. Milosavljevic and B. Sivaraman.

  5. Effects of Fast Simple Numerical Calculation Training on Neural Systems

    PubMed Central

    Takeuchi, Hikaru; Nagase, Tomomi; Taki, Yasuyuki; Sassa, Yuko; Hashizume, Hiroshi; Nouchi, Rui; Kawashima, Ryuta

    2016-01-01

    Cognitive training, including fast simple numerical calculation (FSNC), has been shown to improve performance on untrained processing speed and executive function tasks in the elderly. However, the effects of FSNC training on cognitive functions in the young and on neural mechanisms remain unknown. We investigated the effects of 1-week intensive FSNC training on cognitive function, regional gray matter volume (rGMV), and regional cerebral blood flow at rest (resting rCBF) in healthy young adults. FSNC training was associated with improvements in performance on simple processing speed, speeded executive functioning, and simple and complex arithmetic tasks. FSNC training was associated with a reduction in rGMV and an increase in resting rCBF in the frontopolar areas and a weak but widespread increase in resting rCBF in an anatomical cluster in the posterior region. These results provide direct evidence that FSNC training alone can improve performance on processing speed and executive function tasks as well as plasticity of brain structures and perfusion. Our results also indicate that changes in neural systems in the frontopolar areas may underlie these cognitive improvements. PMID:26881117

  6. Electronic structure of molecules using relativistic effective core potentials

    SciTech Connect

    Hay, P.J.

    1981-01-01

    Starting with one-component Cowan-Griffin relativistic Hartree-Fock orbitals, which successfully incorporate the mass-velocity and Darwin terms present in more complicated wavefunctions such as Dirac-Hartree-Fock, one can derive relativistic effective core potentials (RECP's) to carry out molecular calculations. These potentials implicitly include the dominant relativistic terms for molecules while allowing one to use the traditional quantum chemical techniques for studying the electronic structure of molecules. The effects of spin-orbit coupling can then be included using orbitals from such calculations using an effective 1-electron, 1-center spin-orbit operator. Applications to molecular systems involving heavy atoms, show good agreement with available spectroscopic data on molecular geometries and excitation energies.

  7. Electric potential invariants and ions-in-molecules effective potentials for molecular Rydberg states

    NASA Astrophysics Data System (ADS)

    Coy, Stephen L.; Grimes, David D.; Zhou, Yan; Field, Robert W.; Wong, Bryan M.

    2016-12-01

    The dependence of multipole moments and polarizabilities on external fields appears in many applications including biomolecular molecular mechanics, optical non-linearity, nanomaterial calculations, and the perturbation of spectroscopic signatures in atomic clocks. Over a wide range of distances, distributed multipole and polarizability potentials can be applied to obtain the variation of atom-centered atoms-in-molecules electric properties like bonding-quenched polarizability. For cylindrically symmetric charge distributions, we examine single-center and atom-centered effective polarization potentials in a non-relativistic approximation for Rydberg states. For ions, the multipole expansion is strongly origin-dependent, but we note that origin-independent invariants can be defined. The several families of invariants correspond to optimized representations differing by origin and number of terms. Among them, a representation at the center of dipole polarizability optimizes the accuracy of the potential with terms through 1/r4. We formulate the single-center expansion in terms of polarization-modified effective multipole moments, defining a form related to the source-multipole expansion of Brink and Satchler. Atom-centered potentials are an origin independent alternative but are limited both by the properties allowed at each center and by the neglected effects like bond polarizability and charge flow. To enable comparisons between single-center effective potentials in Cartesian or spherical form and two-center effective potentials with differing levels of mutual induction between atomic centers, we give analytical expressions for the bond-length and origin-dependence of multipole and polarizability terms projected in the multipole and polarizability expansion of Buckingham. The atom-centered potentials can then be used with experimental data and ab initio calculations to estimate atoms-in-molecules properties. Some results are given for BaF+ and HF showing the

  8. Electric potential invariants and ions-in-molecules effective potentials for molecular Rydberg states.

    PubMed

    Coy, Stephen L; Grimes, David D; Zhou, Yan; Field, Robert W; Wong, Bryan M

    2016-12-21

    The dependence of multipole moments and polarizabilities on external fields appears in many applications including biomolecular molecular mechanics, optical non-linearity, nanomaterial calculations, and the perturbation of spectroscopic signatures in atomic clocks. Over a wide range of distances, distributed multipole and polarizability potentials can be applied to obtain the variation of atom-centered atoms-in-molecules electric properties like bonding-quenched polarizability. For cylindrically symmetric charge distributions, we examine single-center and atom-centered effective polarization potentials in a non-relativistic approximation for Rydberg states. For ions, the multipole expansion is strongly origin-dependent, but we note that origin-independent invariants can be defined. The several families of invariants correspond to optimized representations differing by origin and number of terms. Among them, a representation at the center of dipole polarizability optimizes the accuracy of the potential with terms through 1/r(4). We formulate the single-center expansion in terms of polarization-modified effective multipole moments, defining a form related to the source-multipole expansion of Brink and Satchler. Atom-centered potentials are an origin independent alternative but are limited both by the properties allowed at each center and by the neglected effects like bond polarizability and charge flow. To enable comparisons between single-center effective potentials in Cartesian or spherical form and two-center effective potentials with differing levels of mutual induction between atomic centers, we give analytical expressions for the bond-length and origin-dependence of multipole and polarizability terms projected in the multipole and polarizability expansion of Buckingham. The atom-centered potentials can then be used with experimental data and ab initio calculations to estimate atoms-in-molecules properties. Some results are given for BaF(+) and HF showing the

  9. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment.

    PubMed

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M

    2015-05-21

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H2O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0-4000 cm(-1) is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.

  10. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment

    SciTech Connect

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M.

    2015-05-21

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H{sub 2}O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0–4000 cm{sup −1} is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.

  11. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment

    NASA Astrophysics Data System (ADS)

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M.

    2015-05-01

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H2O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0-4000 cm-1 is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.

  12. Effective Inflow Conditions for Turbulence Models in Aerodynamic Calculations

    NASA Technical Reports Server (NTRS)

    Spalart, Philippe R.; Rumsey, Christopher L.

    2007-01-01

    The selection of inflow values at boundaries far upstream of an aircraft is considered, for one- and two-equation turbulence models. Inflow values are distinguished from the ambient values near the aircraft, which may be much smaller. Ambient values should be selected first, and inflow values that will lead to them after the decay second; this is not always possible, especially for the time scale. The two-equation decay during the approach to the aircraft is shown; often, the time scale has been set too short for this decay to be calculated accurately on typical grids. A simple remedy for both issues is to impose floor values for the turbulence variables, outside the viscous sublayer, and it is argued that overriding the equations in this manner is physically justified. Selecting laminar ambient values is easy, if the boundary layers are to be tripped, but a more common practice is to seek ambient values that will cause immediate transition in boundary layers. This opens up a wide range of values, and selection criteria are discussed. The turbulent Reynolds number, or ratio of eddy viscosity to laminar viscosity has a huge dynamic range that makes it unwieldy; it has been widely mis-used, particularly by codes that set upper limits on it. The value of turbulent kinetic energy in a wind tunnel or the atmosphere is also of dubious value as an input to the model. Concretely, the ambient eddy viscosity must be small enough to preserve potential cores in small geometry features, such as flap gaps. The ambient frequency scale should also be small enough, compared with shear rates in the boundary layer. Specific values are recommended and demonstrated for airfoil flows

  13. Effect of composition on antiphase boundary energy in Ni3Al based alloys: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Gorbatov, O. I.; Lomaev, I. L.; Gornostyrev, Yu. N.; Ruban, A. V.; Furrer, D.; Venkatesh, V.; Novikov, D. L.; Burlatsky, S. F.

    2016-06-01

    The effect of composition on the antiphase boundary (APB) energy of Ni-based L 12-ordered alloys is investigated by ab initio calculations employing the coherent potential approximation. The calculated APB energies for the {111} and {001} planes reproduce experimental values of the APB energy. The APB energies for the nonstoichiometric γ' phase increase with Al concentration and are in line with the experiment. The magnitude of the alloying effect on the APB energy correlates with the variation of the ordering energy of the alloy according to the alloying element's position in the 3 d row. The elements from the left side of the 3 d row increase the APB energy of the Ni-based L 12-ordered alloys, while the elements from the right side slightly affect it except Ni. The way to predict the effect of an addition on the {111} APB energy in a multicomponent alloy is discussed.

  14. An event-related potential investigation of spatial attention orientation in children trained with mental abacus calculation

    PubMed Central

    Liu, Xiaoqin

    2017-01-01

    The objective of this study was to investigate the effects of long-term mental abacus calculation training (MACT) on children’s spatial attention orientation. Fifteen children with intensive MACT (MACT group) and 15 children without MACT (non-MACT group) were selected. The two groups of children were matched in age, sex, handedness, and academic grade. The participants were tested with a Posner spatial cueing task while their neural activities were recorded with a 32-channel electroencephalogram system. The participants’ behavior scores (reaction time and accuracy) as well as early components of event-related potential (ERP) during the tests were statistically analyzed. The behavioral scores showed no significant difference between the two groups of children, although the MACT group tended to have a shorter reaction time. The early ERP components showed that under valid cueing condition, the MACT group had significantly higher P1 amplitude [F(1, 28)=5.06, P<0.05, effective size=0.72] and lower N1 amplitude [F(1, 28)=6.05, P<0.05, effective size=0.82] in the occipital region compared with the non-MACT group. In the centrofrontal brain region, the MACT group had lower N1 amplitude [F(1, 28)=4.89, P<0.05, effect size=0.70] and longer N1 latency [F(1, 28)=6.26, P<0.05, effect size=0.80] than the non-MACT group. In particular, the MACT group also showed a higher centrofrontal P2 amplitude in the right hemisphere [F(1, 28)=4.82, P<0.05, effect size 0.81] compared with the left hemisphere and the middle location. MACT enhances the children’s spatial attention orientation, which can be detected in the early components of ERP. PMID:27831960

  15. Potential Health Effects from Groundwater Pollution.

    ERIC Educational Resources Information Center

    Goyer, Robert A.

    1985-01-01

    Discusses the growing awareness of potential toxicological effects of synthetic organic chemicals contaminating groundwater. Problems concerning pesticides, chlorination, epidemiologic studies, cancer, nephrotoxicity, and considerations of risk are addressed. Additional research in this area is advocated. (DH)

  16. Dechanneling of Positrons in Disordered Lattices Effect of Anharmonic Potential

    NASA Astrophysics Data System (ADS)

    Abu-Assy, M. K.; El-Ashry, M. Y.; Mohamed, A. A.

    2005-01-01

    Dechanneling of positrons due to lattice disorder has been investigated for two stable configurations of the disordered face-centered cubic(fcc) lattices, Dumb-bell configuration (DBC) and Body-centered interstitial (BCI) for channeled positrons with incident energy (10 200) MeV in Cu single crystal in the planar direction (100). The effects of anharmonic terms in the channeling potential have been considered in the calculations. The calculations covered the transition-channeling probability, dechanneling probability, transmission and dechanneling coefficients. It has been found that the transition-channeling probability from the normal into the disordered region occurs only for the transitions n (normal) → n (disordered). Also the dependence of the transmission and dechanneling coefficients on the incident beam position has been studied by using a planar potential function based on shell structure model and compared with the results of a planar potential based on Lindhard's model.

  17. The Effect of Using Graphing Calculators in Complex Function Graphs

    ERIC Educational Resources Information Center

    Ocak, Mehmet Akif

    2008-01-01

    This study investigates the role of graphing calculators in multiple representations for knowledge transfer and the omission of oversimplification in complex function graphs. The main aim is to examine whether graphing calculators were used efficiently to see different cases and multiple perspectives among complex function graphs, or whether…

  18. Effect of molecular models on viscosity and thermal conductivity calculations

    NASA Astrophysics Data System (ADS)

    Weaver, Andrew B.; Alexeenko, Alina A.

    2014-12-01

    The effect of molecular models on viscosity and thermal conductivity calculations is investigated. The Direct Simulation Monte Carlo (DSMC) method for rarefied gas flows is used to simulate Couette and Fourier flows as a means of obtaining the transport coefficients. Experimental measurements for argon (Ar) provide a baseline for comparison over a wide temperature range of 100-1,500 K. The variable hard sphere (VHS), variable soft sphere (VSS), and Lennard-Jones (L-J) molecular models have been implemented into a parallel version of Bird's one-dimensional DSMC code, DSMC1, and the model parameters have been recalibrated to the current experimental data set. While the VHS and VSS models only consider the short-range, repulsive forces, the L-J model also includes constributions from the long-range, dispersion forces. Theoretical results for viscosity and thermal conductivity indicate the L-J model is more accurate than the VSS model; with maximum errors of 1.4% and 3.0% in the range 300-1,500 K for L-J and VSS models, respectively. The range of validity of the VSS model is extended to 1,650 K through appropriate choices for the model parameters.

  19. Nonperturbative calculation of phonon effects on spin squeezing

    NASA Astrophysics Data System (ADS)

    Dylewsky, D.; Freericks, J. K.; Wall, M. L.; Rey, A. M.; Foss-Feig, M.

    2016-01-01

    Theoretical models of spins coupled to bosons provide a simple setting for studying a broad range of important phenomena in many-body physics, from virtually mediated interactions to decoherence and thermalization. In many atomic, molecular, and optical systems, such models also underlie the most successful attempts to engineer strong, long-ranged interactions for the purpose of entanglement generation. Especially when the coupling between the spins and bosons is strong, such that it cannot be treated perturbatively, the properties of such models are extremely challenging to calculate theoretically. Here, exact analytical expressions for nonequilibrium spin-spin correlation functions are derived for a specific model of spins coupled to bosons. The spatial structure of the coupling between spins and bosons is completely arbitrary, and thus the solution can be applied to systems in any number of dimensions. The explicit and nonperturbative inclusion of the bosons enables the study of entanglement generation (in the form of spin squeezing) even when the bosons are driven strongly and near resonantly, and thus provides a quantitative view of the breakdown of adiabatic elimination that inevitably occurs as one pushes towards the fastest entanglement generation possible. The solution also helps elucidate the effect of finite temperature on spin squeezing. The model considered is relevant to a variety of atomic, molecular, and optical systems, such as atoms in cavities or trapped ions. As an explicit example, the results are used to quantify phonon effects in trapped ion quantum simulators, which are expected to become increasingly important as these experiments push towards larger numbers of ions.

  20. Electronically Excited States in Poly(p-phenylenevinylene): Vertical Excitations and Torsional Potentials from High-Level Ab Initio Calculations

    PubMed Central

    2013-01-01

    Ab initio second-order algebraic diagrammatic construction (ADC(2)) calculations using the resolution of the identity (RI) method have been performed on poly-(p-phenylenevinylene) (PPV) oligomers with chain lengths up to eight phenyl rings. Vertical excitation energies for the four lowest π–π* excitations and geometry relaxation effects for the lowest excited state (S1) are reported. Extrapolation to infinite chain length shows good agreement with analogous data derived from experiment. Analysis of the bond length alternation (BLA) based on the optimized S1 geometry provides conclusive evidence for the localization of the defect in the center of the oligomer chain. Torsional potentials have been computed for the four excited states investigated and the transition densities divided into fragment contributions have been used to identify excitonic interactions. The present investigation provides benchmark results, which can be used (i) as reference for lower level methods and (ii) give the possibility to parametrize an effective Frenkel exciton Hamiltonian for quantum dynamical simulations of ultrafast exciton transfer dynamics in PPV type systems. PMID:23427902

  1. CEPA Calculations of potential energy surfaces for open-shell systems. II. The reaction of C + Ions with molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Jaquet, Ralph; Staemmler, Volker

    1982-07-01

    Ab initio calculations including electron correlation effects (mainly on CEPA-PNO level) have been performed for the potential energy surface (PES) of the reaction of 2P carbon ions with molecular hydrogen. For the collinear abstraction reactions (C ∞v symmetry: 2σ +, 2Π-2) the minimum energy paths have been determined. The vertical insertion reaction (C 2v; 2A 1,B 1, 2B 2) has been investigated with particular emphasis (minimum energy path, barrier heights, intersystem crossing). The influence of the size of the orbital basis and of electron correlation has been studied in some detail. The interaction of the 2A 1, and 2B 2 surfaces has been analyzed, leading to the conclusion that close to C 2v symmetry a low energy path exists by which CH 2+( 2A 1)can be easily formed, with a barrier ( 2B 2 → 2A 1) ≈ 18 kcal/mol below the asymptote. The analysis of electron correlation effects reveals that it is compulsory to correlate the whole valence shell if one wants to obtain reliable surfaces. The influence of singly excited configurations for getting the correct behaviour of the PES is generally small.

  2. Confusing Aspects in the Calculation of the Electrostatic Potential of an Infinite Line of Charge

    ERIC Educational Resources Information Center

    Jimenez, J. L.; Campos, I.; Roa-Neri, J. A. E.

    2012-01-01

    In this work we discuss the trick of eliminating infinite potential of reference arguing that it corresponds to a constant of integration, in the problem of determining the electrostatic potential of an infinite line of charge with uniform density, and show how the problem must be tackled properly. The usual procedure is confusing for most…

  3. Calculations of the ionization potentials and electron affinities of bacteriochlorophyll and bacteriopheophytin via ab initio quantum chemistry

    SciTech Connect

    Crystal, J.; Friesner, R.A.

    2000-03-23

    Ionization potentials (IP) and electron affinities (EA) are calculated for bacteriopheophytin (BPh) and bacteriochlorophyll (BChl) in the photosynthetic reaction center utilizing density functional methods implemented in a parallel version of the JAGUAR electronic structure code. These quantities are studied as a function of basis set size and molecular geometry. The results indicate the necessity of using large basis sets with diffuse functions in order to obtain reliable IP and EA in the gas phase. The relative reduction potentials of BChl and BPh in dimethylformamide solution are also calculated and compared with experimental results. Excellent agreement between theory and experiment is obtained when ligand binding of solvent molecules to the central Mg atom of BNhl is incorporated in the calculations.

  4. Chern-Simons potential in models of Casimir effect

    SciTech Connect

    Pis'mak, Yury M.; Pis'mak, Daria Yu.

    2014-07-23

    In the model constructed in the framework of the proposed by Symanzik approach for description of interaction of a macroscopic material body with quantum fields the interaction of thin material film with photon field is presented by the Chern-Simons potential. All the effects of this interaction with can by described in the framework of one model. In this way, the Casimir energy for two parallel infinite planes and sphere, the Casimir-Polder potential, and characteristics of other physical phenomena have been calculated for non-ideal conducting material of film. The specific of regularization and renormalization procedures used by calculations and the physical meaning of obtained results are discussed. In the limit of infinite coupling constant one obtains the known results of models with boundary conditions. By finite value of coupling constants the model predicts unusual effects which could be important for micro-mechanics, nano-photonics, constructing of new materials.

  5. Effective potentials from complex simulations: a potential-matching algorithm and remarks on coarse-grained potentials

    NASA Astrophysics Data System (ADS)

    Tóth, Gergely

    2007-08-01

    The projection of complex interactions onto simple distance-dependent or angle-dependent classical mechanical functions is a long-standing theoretical challenge in the field of computational sciences concerning biomolecules, colloids, aggregates and simple systems as well. The construction of an effective potential may be based on theoretical assumptions, on the application of fitting procedures on experimental data and on the simplification of complex molecular simulations. Recently, a force-matching method was elaborated to project the data of Car-Parrinello ab initio molecular dynamics simulations onto two-particle classical interactions (Izvekov et al 2004 J. Chem. Phys. 120 10896). We have developed a potential-matching algorithm as a practical analogue of this force-matching method. The algorithm requires a large number of configurations (particle positions) and a single value of the potential energy for each configuration. We show the details of the algorithm and the test calculations on simple systems. The test calculation on water showed an example in which a similar structure was obtained for qualitatively different pair interactions. The application of the algorithm on reverse Monte Carlo configurations was tried as well. We detected inconsistencies in a part of our calculations. We found that the coarse graining of potentials cannot be performed perfectly both for the structural and the thermodynamic data. For example, if one applies an inverse method with an input of the pair-correlation function, it provides energetics data for the configurations uniquely. These energetics data can be different from the desired ones obtained by all atom simulations, as occurred in the testing of our potential-matching method.

  6. Effect of the cluster integrals on three particles on the calculated electron density of a hydrogen plasma

    NASA Technical Reports Server (NTRS)

    Mcintyre, R. G.; Bruce, R. E.

    1974-01-01

    The effect of the calculation of the cluster integrals on three particles is analyzed and evaluated for a hydrogen plasma where a pairwise-additive hard sphere-Coulomb potential is assumed. The Mayer cluster integral method was used to calculate the Helmholtz free energy which was then applied to the calculation of the electron number density through an iterative technique using a corrected Saha equation. It is seen that the three particle integrals provide a substantial correction to the calculations in the low energy-high density region of the hydrogen plasma.

  7. On the calculation of the absolute grand potential of confined smectic-A phases

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Cheng; Baus, Marc; Ryckaert, Jean-Paul

    2015-09-01

    We determine the absolute grand potential Λ along a confined smectic-A branch of a calamitic liquid crystal system enclosed in a slit pore of transverse area A and width L, using the rod-rod Gay-Berne potential and a rod-wall potential favouring perpendicular orientation at the walls. For a confined phase with an integer number of smectic layers sandwiched between the opposite walls, we obtain the excess properties (excess grand potential Λexc, solvation force fs and adsorption Γ) with respect to the bulk phase at the same μ (chemical potential) and T (temperature) state point. While usual thermodynamic integration methods are used along the confined smectic branch to estimate the grand potential difference as μ is varied at fixed L, T, the absolute grand potential at one reference state point is obtained via the evaluation of the absolute Helmholtz free energy in the (N, L, A, T) canonical ensemble. It proceeds via a sequence of free energy difference estimations involving successively the cost of localising rods on layers and the switching on of a one-dimensional harmonic field to keep layers integrity coupled to the elimination of inter-layers and wall interactions. The absolute free energy of the resulting set of fully independent layers of interacting rods is finally estimated via the existing procedures. This work opens the way to the computer simulation study of phase transitions implying confined layered phases.

  8. New Method for Calculating the Potential Energy of Deformed Nuclei within the Liquid-Drop Model

    SciTech Connect

    Kurmanov, R.S.; Kosenko, G.I.

    2004-11-01

    The method that we previously developed for going over from double volume integrals to double surface integrals in calculating the Coulomb energy of nuclei that have a sharp surface is generalized to the case of nuclei where the range of nuclear forces is finite and where the nuclear surface is diffuse. New formulas for calculating the Coulomb and the nuclear energy of deformed nuclei are obtained within this approach. For a spherically symmetric nucleus, in which case there is an analytic solution to the problem in question, the results are compared with those that are quoted in the literature, and it is shown that the respective results coincide identically. A differential formulation of the method developed previously by Krappe, Nix, and Sierk for going over from double volume integrals to double surface integrals is proposed here on the basis of the present approach.

  9. Relativistic semiempirical-core-potential calculations of Sr+ using Laguerre and Slater spinors

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Mitroy, J.; Cheng, Yongjun; Bromley, Michael W. J.

    2016-12-01

    A relativistic description of the structure of heavy alkali-metal atoms and alkali-like ions using S-spinors and L-spinors is developed. The core wave function is defined by a Dirac-Fock calculation using an S-spinor basis. The S-spinor basis is then supplemented with a large set of L-spinors for calculation of the valence wave function in a frozen-core model. The numerical stability of the L-spinor approach is demonstrated by computing the energies and decay rates of several low-lying hydrogen eigenstates, along with the polarizabilities of a Z =60 hydrogenic ion. The approach is then applied to calculate the dynamic polarizabilities of the 5 s , 4 d , and 5 p states of Sr+. The magic wavelengths at which the Stark shifts between different pairs of transitions are 0 are computed. Determination of the magic wavelengths for the 5 s →4 d3/2 and 5 s →4 d5/2 transitions near 417 nm (near the wavelength for the 5 s →5 pj transitions) would allow determination of the oscillator strength ratio for the 5 s →5 p1/2 and 5 s →5 p3/2 transitions.

  10. The potential, limitations, and challenges of divide and conquer quantum electronic structure calculations on energetic materials.

    SciTech Connect

    Tucker, Jon R.; Magyar, Rudolph J.

    2012-02-01

    High explosives are an important class of energetic materials used in many weapons applications. Even with modern computers, the simulation of the dynamic chemical reactions and energy release is exceedingly challenging. While the scale of the detonation process may be macroscopic, the dynamic bond breaking responsible for the explosive release of energy is fundamentally quantum mechanical. Thus, any method that does not adequately describe bonding is destined to lack predictive capability on some level. Performing quantum mechanics calculations on systems with more than dozens of atoms is a gargantuan task, and severe approximation schemes must be employed in practical calculations. We have developed and tested a divide and conquer (DnC) scheme to obtain total energies, forces, and harmonic frequencies within semi-empirical quantum mechanics. The method is intended as an approximate but faster solution to the full problem and is possible due to the sparsity of the density matrix in many applications. The resulting total energy calculation scales linearly as the number of subsystems, and the method provides a path-forward to quantum mechanical simulations of millions of atoms.

  11. Calculation of P, T-odd effects in 205TlF including electron correlation.

    PubMed

    Petrov, A N; Mosyagin, N S; Isaev, T A; Titov, A V; Ezhov, V F; Eliav, E; Kaldor, U

    2002-02-18

    A method and codes for two-step correlation calculations of heavy-atom molecules have been developed, employing the generalized relativistic effective core potential (GRECP) and relativistic coupled cluster (RCC) methods at the first step, followed by nonvariational one-center restoration of proper four-component spinors in the heavy cores. Electron correlation is included for the first time in an ab initio calculation of the interaction of the permanent P,T-odd proton electric dipole moments with the internal electromagnetic field in a molecule. Inclusion of electron correlation by GRECP/RCC has a major effect on the P,T-odd parameters of 205TlF, decreasing M by 17% and X by 22%.

  12. Electric potential calculation in molecular simulation of electric double layer capacitors

    NASA Astrophysics Data System (ADS)

    Wang, Zhenxing; Olmsted, David L.; Asta, Mark; Laird, Brian B.

    2016-11-01

    For the molecular simulation of electric double layer capacitors (EDLCs), a number of methods have been proposed and implemented to determine the one-dimensional electric potential profile between the two electrodes at a fixed potential difference. In this work, we compare several of these methods for a model LiClO4-acetonitrile/graphite EDLC simulated using both the traditional fixed-charged method (FCM), in which a fixed charge is assigned a priori to the electrode atoms, or the recently developed constant potential method (CPM) (2007 J. Chem. Phys. 126 084704), where the electrode charges are allowed to fluctuate to keep the potential fixed. Based on an analysis of the full three-dimensional electric potential field, we suggest a method for determining the averaged one-dimensional electric potential profile that can be applied to both the FCM and CPM simulations. Compared to traditional methods based on numerically solving the one-dimensional Poisson’s equation, this method yields better accuracy and no supplemental assumptions.

  13. Electric potential calculation in molecular simulation of electric double layer capacitors.

    PubMed

    Wang, Zhenxing; Olmsted, David L; Asta, Mark; Laird, Brian B

    2016-11-23

    For the molecular simulation of electric double layer capacitors (EDLCs), a number of methods have been proposed and implemented to determine the one-dimensional electric potential profile between the two electrodes at a fixed potential difference. In this work, we compare several of these methods for a model LiClO4-acetonitrile/graphite EDLC simulated using both the traditional fixed-charged method (FCM), in which a fixed charge is assigned a priori to the electrode atoms, or the recently developed constant potential method (CPM) (2007 J. Chem. Phys. 126 084704), where the electrode charges are allowed to fluctuate to keep the potential fixed. Based on an analysis of the full three-dimensional electric potential field, we suggest a method for determining the averaged one-dimensional electric potential profile that can be applied to both the FCM and CPM simulations. Compared to traditional methods based on numerically solving the one-dimensional Poisson's equation, this method yields better accuracy and no supplemental assumptions.

  14. Microscopic calculation of interacting boson model parameters by potential-energy surface mapping

    SciTech Connect

    Bentley, I.; Frauendorf, S.

    2011-06-15

    A coherent state technique is used to generate an interacting boson model (IBM) Hamiltonian energy surface which is adjusted to match a mean-field energy surface. This technique allows the calculation of IBM Hamiltonian parameters, prediction of properties of low-lying collective states, as well as the generation of probability distributions of various shapes in the ground state of transitional nuclei, the last two of which are of astrophysical interest. The results for krypton, molybdenum, palladium, cadmium, gadolinium, dysprosium, and erbium nuclei are compared with experiment.

  15. Calculation of the nd Scattering Lengths by a Realistic Nonlocal Gaussian Potential

    SciTech Connect

    Fukukawa, K.; Fujiwara, Y.

    2010-05-12

    We apply a quark-model nucleon-nucleon interaction to the neutron-deuteron (nd) scattering. We solve the Alt-Grassberger-Sandhas equation in the momentum space. The doublet and quartet nd scattering lengths ({sup 2}a{sub nd} and {sup 4}a{sub nd}) are calculated. We re-confirm the pole structure in the doublet scattering length. The experimental data are well reproduced without three-nucleon forces. This result seems to be related to the off-shell properties of the quark-model nucleon-nucleon interaction.

  16. Calculating broad neutron resonances in a cut-off Woods-Saxon potential

    NASA Astrophysics Data System (ADS)

    Baran, Á.; Noszály, Cs.; Salamon, P.; Vertse, T.

    2015-07-01

    In a cut-off Woods-Saxon (CWS) potential with realistic depth S -matrix poles being far from the imaginary wave number axis form a sequence where the distances of the consecutive resonances are inversely proportional with the cut-off radius value, which is an unphysical parameter. Other poles lying closer to the imaginary wave number axis might have trajectories with irregular shapes as the depth of the potential increases. Poles being close repel each other, and their repulsion is responsible for the changes of the directions of the corresponding trajectories. The repulsion might cause that certain resonances become antibound and later resonances again when they collide on the imaginary axis. The interaction is extremely sensitive to the cut-off radius value, which is an apparent handicap of the CWS potential.

  17. Excited State Effects in Nucleon Matrix Element Calculations

    SciTech Connect

    Constantia Alexandrou, Martha Constantinou, Simon Dinter, Vincent Drach, Karl Jansen, Theodoros Leontiou, Dru B Renner

    2011-12-01

    We perform a high-statistics precision calculation of nucleon matrix elements using an open sink method allowing us to explore a wide range of sink-source time separations. In this way the influence of excited states of nucleon matrix elements can be studied. As particular examples we present results for the nucleon axial charge g{sub A} and for the first moment of the isovector unpolarized parton distribution x{sub u-d}. In addition, we report on preliminary results using the generalized eigenvalue method for nucleon matrix elements. All calculations are performed using N{sub f} = 2+1+1 maximally twisted mass Wilson fermions.

  18. QM/MM calculations of kinetic isotope effects in the chorismate mutase active site.

    PubMed

    Martí, Sergio; Moliner, Vincent; Tuñón, Iñaki; Williams, Ian H

    2003-02-07

    Kinetic isotope effects have been computed for the Claisen rearrangement of chorismate to prephenate in aqueous solution and in the active site of chorismate mutase from B. subtilus. These included primary 13C and 18O and secondary 3H effects for substitutions at the bond-making and bond-breaking positions. The initial structures of the putative stationary points on the potential energy surface, required for the calculations of isotope effects using the CAMVIB/CAMISO programs, have been selected from hybrid QM/MM molecular dynamical simulations using the DYNAMO program. Refinement of the reactant complex and transition-state structures has been carried out by means of AM1/CHARMM24/TIP3P calculations using the GRACE program, with full gradient relaxation of the position of > 5200 atoms for the enzymic simulations, and with a box containing 711 water molecules for the corresponding reaction in aqueous solution. Comparison of these results, and of gas phase calculations, with experimental data has shown that the chemical rearrangement is largely rate-determining for the enzyme mechanism. Inclusion of the chorismate conformational pre-equilibrium step in the modelled kinetic scheme leads to better agreement between recent experimental data and theoretical predictions. These results provide new information on an important enzymatic transformation, and the key factors responsible for the kinetics of its molecular mechanism are clarified. Treatment of the enzyme and/or solvent environment by means of a large and flexible model is absolutely essential for prediction of kinetic isotope effects.

  19. Accelerating electrostatic surface potential calculation with multi-scale approximation on graphics processing units.

    PubMed

    Anandakrishnan, Ramu; Scogland, Tom R W; Fenley, Andrew T; Gordon, John C; Feng, Wu-chun; Onufriev, Alexey V

    2010-06-01

    Tools that compute and visualize biomolecular electrostatic surface potential have been used extensively for studying biomolecular function. However, determining the surface potential for large biomolecules on a typical desktop computer can take days or longer using currently available tools and methods. Two commonly used techniques to speed-up these types of electrostatic computations are approximations based on multi-scale coarse-graining and parallelization across multiple processors. This paper demonstrates that for the computation of electrostatic surface potential, these two techniques can be combined to deliver significantly greater speed-up than either one separately, something that is in general not always possible. Specifically, the electrostatic potential computation, using an analytical linearized Poisson-Boltzmann (ALPB) method, is approximated using the hierarchical charge partitioning (HCP) multi-scale method, and parallelized on an ATI Radeon 4870 graphical processing unit (GPU). The implementation delivers a combined 934-fold speed-up for a 476,040 atom viral capsid, compared to an equivalent non-parallel implementation on an Intel E6550 CPU without the approximation. This speed-up is significantly greater than the 42-fold speed-up for the HCP approximation alone or the 182-fold speed-up for the GPU alone.

  20. Rapidly calculated density functional theory (DFT) relaxed Iso-potential Phi Si Maps: Beta-cellobiose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New cellobiose Phi-H/Si-H maps are rapidly generated using a mixed basis set DFT method, found to achieve a high level of confidence while reducing computer resources dramatically. Relaxed iso-potential maps are made for different conformational states of cellobiose, showing how glycosidic bond dihe...

  1. Accelerating Electrostatic Surface Potential Calculation with Multiscale Approximation on Graphics Processing Units

    PubMed Central

    Anandakrishnan, Ramu; Scogland, Tom R. W.; Fenley, Andrew T.; Gordon, John C.; Feng, Wu-chun; Onufriev, Alexey V.

    2010-01-01

    Tools that compute and visualize biomolecular electrostatic surface potential have been used extensively for studying biomolecular function. However, determining the surface potential for large biomolecules on a typical desktop computer can take days or longer using currently available tools and methods. Two commonly used techniques to speed up these types of electrostatic computations are approximations based on multi-scale coarse-graining and parallelization across multiple processors. This paper demonstrates that for the computation of electrostatic surface potential, these two techniques can be combined to deliver significantly greater speed-up than either one separately, something that is in general not always possible. Specifically, the electrostatic potential computation, using an analytical linearized Poisson Boltzmann (ALPB) method, is approximated using the hierarchical charge partitioning (HCP) multiscale method, and parallelized on an ATI Radeon 4870 graphical processing unit (GPU). The implementation delivers a combined 934-fold speed-up for a 476,040 atom viral capsid, compared to an equivalent non-parallel implementation on an Intel E6550 CPU without the approximation. This speed-up is significantly greater than the 42-fold speed-up for the HCP approximation alone or the 182-fold speed-up for the GPU alone. PMID:20452792

  2. [Cost-effectiveness analysis of prevention of reinfarction using low-dose acetylsalicylic acid; model calculation].

    PubMed

    Schädlich, P K; Brecht, J G

    1997-01-01

    The purpose of this study is to estimate the potential of savings which can be achieved by prophylaxis of myocardial reinfarction with low-dose acetylsalicylic acid (ASA) at 75 mg per day over a treatment period of two years. After secondary analysis of published data, the effectiveness of low-dose ASA is compared to placebo by a model calculation. The difference in the effectiveness between the prophylaxis with ASA and placebo is taken from an international meta-analysis. The economic valuation of this difference is carried out by a cost-effectiveness analysis applying disease costs per case. According to the model calculation, 5535 DM can be saved per patient with a history of myocardial infarction with 75 mg ASA a day over a treatment period of two years. In 1991 there were around 740,000 patients with a history of myocardial infarction in the age group of 25-64 in the Old Bundesländer of the Federal Republic of Germany. The application of the results of the model calculation would lead to considerable savings. Even in the sensitivity analysis with different assumptions regarding costs incurred by hospital treatment and costs incurred by premature retirement, the cost advantage of the ASA-prophylaxis remains. Due to the cautious and conservative assumptions in the model calculation the potential of savings is likely underestimated. Nevertheless, there is a distinct advantage for the prophylaxis with low-dose ASA which already occurs in direct costs thus leading to advantages also for cost carriers.

  3. Environmental Perchlorate Exposure: Potential Adverse Thyroid Effects

    PubMed Central

    Leung, Angela M.; Pearce, Elizabeth N.; Braverman, Lewis E.

    2014-01-01

    Purpose of review This review will present a general overview of the sources, human studies, and proposed regulatory action regarding environmental perchlorate exposure. Recent findings Some recent studies have reported significant associations between urinary perchlorate concentrations, thyroid dysfunction, and decreased infant IQ in groups who would be particularly susceptible to perchlorate effects. An update regarding the recent proposed regulatory actions and potential costs surrounding amelioration of perchlorate contamination is provided. Summary The potential adverse thyroidal effects of environmental perchlorate exposure remain controversial, and further research is needed to further define its relationship to human health among pregnant and lactating women and their infants. PMID:25106002

  4. Conceptual DFT Descriptors of Amino Acids with Potential Corrosion Inhibition Properties Calculated with the Latest Minnesota Density Functionals

    PubMed Central

    Frau, Juan; Glossman-Mitnik, Daniel

    2017-01-01

    Amino acids and peptides have the potential to perform as corrosion inhibitors. The chemical reactivity descriptors that arise from Conceptual DFT for the twenty natural amino acids have been calculated by using the latest Minnesota family of density functionals. In order to verify the validity of the calculation of the descriptors directly from the HOMO and LUMO, a comparison has been performed with those obtained through ΔSCF results. Moreover, the active sites for nucleophilic and electrophilic attacks have been identified through Fukui function indices, the dual descriptor Δf(r) and the electrophilic and nucleophilic Parr functions. The results could be of interest as a starting point for the study of large peptides where the calculation of the radical cation and anion of each system may be computationally harder and costly. PMID:28361050

  5. Conceptual DFT Descriptors of Amino Acids with Potential Corrosion Inhibition Properties Calculated with the Latest Minnesota Density Functionals.

    PubMed

    Frau, Juan; Glossman-Mitnik, Daniel

    2017-01-01

    Amino acids and peptides have the potential to perform as corrosion inhibitors. The chemical reactivity descriptors that arise from Conceptual DFT for the twenty natural amino acids have been calculated by using the latest Minnesota family of density functionals. In order to verify the validity of the calculation of the descriptors directly from the HOMO and LUMO, a comparison has been performed with those obtained through ΔSCF results. Moreover, the active sites for nucleophilic and electrophilic attacks have been identified through Fukui function indices, the dual descriptor Δf(r) and the electrophilic and nucleophilic Parr functions. The results could be of interest as a starting point for the study of large peptides where the calculation of the radical cation and anion of each system may be computationally harder and costly.

  6. Ab initio projected-unrestricted Hartree-Fock calculation of some potential energy curves for carbonyl fluoride

    NASA Technical Reports Server (NTRS)

    Brewer, D. A.; Schug, J. C.; Phillips, D. H.

    1980-01-01

    Some potential energy curves for CF2O were calculated using projected-unrestricted Hartree-Fock (PUHF) theory. The calculations employed a contracted (4s 3p) Gaussian-type atomic orbital basis set. Bound states were found for the X-tilde 1A1 and 1,3A2 states while the 1,3B1 and 1,3B2 states were repulsive in the valence representation. The merits of the PUHF treatment for excited states are discussed. The results are discussed in terms of available experimental information and previous calculations with particular emphasis on the question of the photolysis channels open in the solar spectral region.

  7. JCZS: An Intermolecular Potential Database for Performing Accurate Detonation and Expansion Calculations

    SciTech Connect

    Baer, M.R.; Hobbs, M.L.; McGee, B.C.

    1998-11-03

    Exponential-13,6 (EXP-13,6) potential pammeters for 750 gases composed of 48 elements were determined and assembled in a database, referred to as the JCZS database, for use with the Jacobs Cowperthwaite Zwisler equation of state (JCZ3-EOS)~l) The EXP- 13,6 force constants were obtained by using literature values of Lennard-Jones (LJ) potential functions, by using corresponding states (CS) theory, by matching pure liquid shock Hugoniot data, and by using molecular volume to determine the approach radii with the well depth estimated from high-pressure isen- tropes. The JCZS database was used to accurately predict detonation velocity, pressure, and temperature for 50 dif- 3 Accurate predictions were also ferent explosives with initial densities ranging from 0.25 glcm3 to 1.97 g/cm . obtained for pure liquid shock Hugoniots, static properties of nitrogen, and gas detonations at high initial pressures.

  8. Ruthenium tetraoxide oxidations of alkanes: DFT calculations of barrier heights and kinetic isotope effects.

    PubMed

    Drees, Markus; Strassner, Thomas

    2006-03-03

    The oxidation of C-H and C-C bonds by metal-oxo compounds is of general interest. We studied the RuO4-mediated catalytic oxidation of several cycloalkanes such as adamantane and cis- and trans-decalin as well as methane. B3LYP/6-31G(d) calculations on the experimentally proposed (3+2) mechanism are in good agreement with known experimental results. Comparison of experimental and theoretical kinetic isotope effects confirms the proposed mechanism. Besides RuO4, we also looked at RuO4(OH)- as a potential active species to account for ruthenium tetraoxide oxidations under strong basic conditions.

  9. Transonic flow analysis for rotors. Part 1: Three-dimensional quasi-steady, full-potential calculation

    NASA Technical Reports Server (NTRS)

    Chang, I. C.

    1984-01-01

    A new computer program is presented for calculating the quasi-steady transonic flow past a helicopter rotor blade in hover as well as in forward flight. The program is based on the full potential equations in a blade attached frame of reference and is capable of treating a very general class of rotor blade geometries. Computed results show good agreement with available experimental data for both straight and swept tip blade geometries.

  10. Drift-oscillatory steering with the forward-reverse method for calculating the potential of mean force

    NASA Astrophysics Data System (ADS)

    Nategholeslam, Mostafa; Holland, Bryan W.; Gray, C. G.; Tomberli, Bruno

    2011-02-01

    We present a method that enables the use of the forward-reverse (FR) method of Kosztin on a broader range of problems in soft matter physics. Our method, which we call the oscillating forward-reverse (OFR) method, adds an oscillatory steering potential to the constant velocity steering potential of the FR method. This enables the calculation of the potential of mean force (PMF) in a single unidirectional oscillatory drift, rather than multiple drifts in both directions as required by the FR method. By following small forward perturbations with small reverse perturbations, the OFR method is able to generate a piecewise reverse path that follows the piecewise forward path much more closely than any practical set of paths used in the FR method. We calculate the PMF for four different systems: a dragged Brownian oscillator, a pair of atoms in a Lennard-Jones liquid, a Na+-Cl- ion pair in an aqueous solution, and a deca-alanine molecule being stretched in an implicit solvent. In all cases, the PMF results are in good agreement with those published previously using various other methods, and, to our knowledge, we give for the first time PMFs calculated by nonequilibrium methods for the Lennard-Jones and Na+-Cl- systems.

  11. Numerical calculation of steady inviscid full potential compressible flow about wind turbine blades

    NASA Technical Reports Server (NTRS)

    Dulikravich, D. S.

    1980-01-01

    An exact nonlinear mathematical model that accounts for three-dimensional cascade effects about the inner portions of the rotor blades and compressibility effects about the tip regions of the blades was derived. An artificially time dependent version was iteratively solved by a finite volume technique involving an artificial viscosity and a three-level consecutive mesh refinement. The exact boundary conditions were applied by generating a boundary conforming periodic computation mesh.

  12. Electrode contamination effects of retarding potential analyzer.

    PubMed

    Fang, H K; Oyama, K-I; Cheng, C Z

    2014-01-01

    The electrode contamination in electrostatic analyzers such as Langmuir probes and retarding potential analyzers (RPA) is a serious problem for space measurements. The contamination layer acts as extra capacitance and resistance and leads to distortion in the measured I-V curve, which leads to erroneous measurement results. There are two main effects of the contamination layer: one is the impedance effect and the other is the charge attachment and accumulation due to the capacitance. The impedance effect can be reduced or eliminated by choosing the proper sweeping frequency. However, for RPA the charge accumulation effect becomes serious because the capacitance of the contamination layer is much larger than that of the Langmuir probe of similar dimension. The charge accumulation on the retarding potential grid causes the effective potential, that ions experience, to be changed from the applied voltage. Then, the number of ions that can pass through the retarding potential grid to reach the collector and, thus, the measured ion current are changed. This effect causes the measured ion drift velocity and ion temperature to be changed from the actual values. The error caused by the RPA electrode contamination is expected to be significant for sounding rocket measurements with low rocket velocity (1-2 km/s) and low ion temperature of 200-300 K in the height range of 100-300 km. In this paper we discuss the effects associated with the RPA contaminated electrodes based on theoretical analysis and experiments performed in a space plasma operation chamber. Finally, the development of a contamination-free RPA for sounding rocket missions is presented.

  13. Potential-model calculation of an order-v2 nonrelativistic QCD matrix element

    NASA Astrophysics Data System (ADS)

    Bodwin, Geoffrey T.; Kang, Daekyoung; Lee, Jungil

    2006-07-01

    We present two methods for computing dimensionally regulated nonrelativistic QCD heavy-quarkonium matrix elements that are related to the second derivative of the heavy-quarkonium wave function at the origin. The first method makes use of a hard-cutoff regulator as an intermediate step and requires knowledge only of the heavy-quarkonium wave function. It involves a significant cancellation that is an obstacle to achieving high numerical accuracy. The second method is more direct and yields a result that is identical to the Gremm-Kapustin relation, but it is limited to use in potential models. It can be generalized to the computation of matrix elements of higher order in the heavy-quark velocity and can be used to resum the contributions to decay and production rates that are associated with those matrix elements. We apply these methods to the Cornell potential model and compute a matrix element for the J/ψ state that appears in the leading relativistic correction to the production and decay of that state through the color-singlet quark-antiquark channel.

  14. Ab Initio Potential Energy Surfaces and the Calculation of Accurate Vibrational Frequencies

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Dateo, Christopher E.; Martin, Jan M. L.; Taylor, Peter R.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Due to advances in quantum mechanical methods over the last few years, it is now possible to determine ab initio potential energy surfaces in which fundamental vibrational frequencies are accurate to within plus or minus 8 cm(exp -1) on average, and molecular bond distances are accurate to within plus or minus 0.001-0.003 Angstroms, depending on the nature of the bond. That is, the potential energy surfaces have not been scaled or empirically adjusted in any way, showing that theoretical methods have progressed to the point of being useful in analyzing spectra that are not from a tightly controlled laboratory environment, such as vibrational spectra from the interstellar medium. Some recent examples demonstrating this accuracy will be presented and discussed. These include the HNO, CH4, C2H4, and ClCN molecules. The HNO molecule is interesting due to the very large H-N anharmonicity, while ClCN has a very large Fermi resonance. The ab initio studies for the CH4 and C2H4 molecules present the first accurate full quartic force fields of any kind (i.e., whether theoretical or empirical) for a five-atom and six-atom system, respectively.

  15. Potential effects on health of global warming

    SciTech Connect

    Haines, A. . Whittington Hospital); Parry, M. . Environmental Change Unit)

    1993-12-01

    Prediction of the impacts of global climate change on health is complicated by a number of factors. These include: the difficulty in predicting regional changes in climate, the capacity for adaptation to climate change, the interactions between the effects of global climate change and a number of other key determinants of health, including population growth and poverty, and the availability of adequate preventive and curative facilities for diseases that may be effected by climate change. Nevertheless, it is of importance to consider the potential health impacts of global climate change for a number of reasons. It is also important to monitor diseases which could be effected by climate change in order to detect changes in incidence as early as possible and study possible interactions with other factors. It seems likely that the possible impacts on health of climate change will be a major determinant of the degree to which policies aimed at reducing global warming are followed, as perceptions of the effect of climate change to human health and well-being are particularly likely to influence public opinion. The potential health impacts of climate change can be divided into direct (primary) and indirect (secondary and tertiary) effects. Primary effects are those related to the effect of temperature on human well-being and disease. Secondary effects include the impacts on health of changes in food production, availability of water and of sea level rise. A tertiary level of impacts can also be hypothesized.

  16. Dynamic polarization potential effects on vector analyzing powers of 6Li- 28Si elastic scattering from non-monotonic potentials

    NASA Astrophysics Data System (ADS)

    Basak, A. K.; Roy, P. K.; Hossain, S.; Abdullah, M. N. A.; Tariq, A. S. B.; Uddin, M. A.; Reichstein, I.; Malik, F. B.

    2010-08-01

    Experimental cross section (CS) and vector analyzing power (VAP) data of the 6Li-28Si elastic scattering at 22.8 MeV are analyzed in the coupled-channels (CC) and coupled discretized continuum channels (CDCC) methods. Non-monotonic (NM) 6Li and α potentials of microscopic origin are employed, respectively, in the CC calculations and to generate folding potentials for the CDCC calculations. The study demonstrates that the use of central NM potentials can generate an appropriate dynamic polarization potential (DPP) required to describe both the CS and VAP data without the necessity of renormalization. This also produces an effective spin-orbit (SO) potential to account for the iT11 data without the requirement of an additional static SO potential at the incident energy considered.

  17. Large impurity effects in rubrene crystals: First-principles calculations

    SciTech Connect

    Tsetseris, L.; Pantelides, Sokrates T.

    2008-01-01

    Carrier mobilities of rubrene films are among the highest values reported for any organic semiconductor. Here, we probe with first-principles calculations the sensitivity of rubrene crystals on impurities. We find that isolated oxygen impurities create distinct peaks in the electronic density of states consistent with observations of defect levels in rubrene and that increased O content changes the position and shape of rubrene energy bands significantly. We also establish a dual role of hydrogen as individual H species and H impurity pairs create and annihilate deep carrier traps, respectively. The results are relevant to the performance and reliability of rubrene-based devices.

  18. The effective potential in nonconformal gauge theories

    NASA Astrophysics Data System (ADS)

    Brandt, F. T.; Chishtie, F. A.; McKeon, D. G. C.

    2017-01-01

    By using the renormalization group (RG) equation it has proved possible to sum logarithmic corrections to quantities that arise due to quantum effects in field theories. In particular, the effective potential V in the Standard Model in the limit that there are no massive parameters in the classical action (the “conformal limit”) has been subject to this analysis, as has the effective potential in a scalar theory with a quartic self-coupling and in massless scalar electrodynamics. Having multiple coupling constants and/or mass parameters in the initial action complicates this analysis, as then several mass scales arise. We show how to address this problem by considering the effective potential in a Yukawa model when the scalar field has a tree-level mass term. In addition to summing logarithmic corrections by using the RG equation, we also consider the consequences of the condition V‧(v) = 0 where v is the vacuum expectation value of the scalar. If V is expanded in powers of logarithms that arise, then it proves possible to show that either v is zero or that V is independent of the scalar. (That is, either there is no spontaneous symmetry breaking or the vacuum expectation value is not determined by minimizing V as V is “flat”.)

  19. Global Pattern of Potential Evaporation Calculated from the Penman-Monteith Equation Using Satellite and Assimilated Data

    NASA Technical Reports Server (NTRS)

    Choudhury, Bhaskar J.

    1997-01-01

    Potential evaporation (E(0)) has been found to be useful in many practical applications and in research for setting a reference level for actual evaporation. All previous estimates of regional or global E(0) are based upon empirical formulae using climatologic meteorologic measurements at isolated stations (i.e., point data). However, the Penman-Monteith equation provides a physically based approach for computing E(0), and by comparing 20 different methods of estimating E(0), Jensen et al. (1990) showed that the Penman-Monteith equation provides the most accurate estimate of monthly E(0) from well-watered grass or alfalfa. In the present study, monthly total E(0) for 24 months (January 1987 to December 1988) was calculated from the Penman-Monteith equation, with prescribed albedo of 0.23 and surface resistance of 70 s/m, which are considered to be representative of actively growing well-watered grass covering the ground. These calculations have been done using spatially representative data derived from satellite observations and data assimilation results. Satellite observations were used to obtain solar radiation, fractional cloud cover, air temperature, and vapor pressure, while four-dimensional data assimilation results were used to calculate the aerodynamic resistance. Meteorologic data derived from satellite observations were compared with the surface measurements to provide a measure of accuracy. The accuracy of the calculated E(0) values was assessed by comparing with lysimeter observations for evaporation from well-watered grass at 35 widely distributed locations, while recognizing that the period of present calculations was not concurrent with the lysimeter measurements and the spatial scales of these measurements and calculations are vastly different. These comparisons suggest that the error in the calculated E(0) values may not be exceeded, on average, 20% for any month or location, but are more likely to be about 15%. These uncertainties are difficult to

  20. On Effective Potential in Tortoise Coordinate

    NASA Astrophysics Data System (ADS)

    Ganjali, M. A.

    2012-08-01

    In this paper, we study the field dynamics in Tortoise coordinate where the equation of motion of a scalar can be written as Schrodinger-like form. We obtain a general form for effective potential by finding the Schrodinger equation for scalar and spinor fields and study its global behavior in some black hole backgrounds in three dimension such as BTZ black holes, new type black holes and black holes with no horizon. Especially, we study the asymptotic behavior of potential at infinity, horizons and origin and find that its asymptotic in BTZ and new type solution is completely different from that of vanishing horizon solution. In fact, potential for vanishing horizon goes to a fixed quantity at infinity, while in BTZ and new type black hole we have an infinite barrier.

  1. Efficient generation of Heisenberg Hamiltonian matrices for VB calculations of potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Tokmachev, A. M.; Robb, M. A.

    The spin-Hamiltonian valence bond theory relies upon covalent configurations formed by singly occupied orbitals differing by their spin counterparts. This theory has been proven to be successful in studying potential energy surfaces of the ground and lowest excited states in organic molecules when used as a part of the hybrid molecular mechanics - valence bond method. The method allows one to consider systems with large active spaces formed by n electrons in n orbitals and relies upon a specially proposed graphical unitary group approach. At the same time, the restriction of the equality of the numbers of electrons and orbitals in the active space is too severe: it excludes from the consideration a lot of interesting applications. We can mention here carbocations and systems with heteroatoms. Moreover, the structure of the method makes it difficult to study charge-transfer excited states because they are formed by ionic configurations. In the present work we tackle these problems by significant extension of the spin-Hamiltonian approach. We consider (i) more general active space formed by n ± m electrons in n orbitals and (ii) states with the charge transfer. The main problem addressed is the generation of Hamiltonian matrices for these general cases. We propose a scheme combining operators of electron exchange and hopping, generating all nonzero matrix elements step-by-step. This scheme provides a very efficient way to generate the Hamiltonians, thus extending the applicability of spin-Hamiltonian valence bond theory.

  2. Resonance energies, lifetimes and complex energy potential curves from standard wave-packet calculations

    NASA Astrophysics Data System (ADS)

    Goldzak, Tamar; Gilary, Ido; Moiseyev, Nimrod

    2012-05-01

    We show here for a simple model system that the wavepacket dynamics in the interaction region can be described by a superposition of the non-Hermitian exponential divergent eigenfunctions of the physical Hamiltonian. We demonstrate how it is possible to obtain the complex eigenvalues and also the corresponding resonance eigenfunctions from the propagation of the wavepacket within the framework of the standard formalism of quantum mechanics. The general results demonstrated here for a simple model can lead to two different types of computational applications: (i) for systems where one can obtain the resonance energies and lifetimes as well as their corresponding eigenfunctions it is possible to study the evolution of the physical properties solely based on the initially populated resonance states without the need to propagate the wavepacket; (ii) for molecular systems where it is quite difficult to solve the non-Hermitian time-independent Schrödinger equation and obtain molecular resonance energies and functions. For this type of problem, the methods presented here enable one to evaluate the topology of complex potential energy surfaces from the wavepacket propagation and facilitate the study of the nuclear dynamics of ionizing molecular systems.

  3. Extension of the Source-Sink Potential (SSP) approach for multi-channel conductance calculations

    NASA Astrophysics Data System (ADS)

    Rocheleau, Philippe; Ernzerhof, Matthias

    2010-03-01

    In molecular electronics, molecules are connected to macroscopic contacts and the current passing through is studied as a function of the applied voltage. We focus on modeling the transmission of electrons through such a molecular electronic device (MED). Based on a simple H"uckel Hamiltonian to describe the π electrons in conjugated systems, the SSP method [1,2,3] employs complex potentials to replace the wavefunction of the infinite contacts in a rigorous way. The initial SSP approach [4] was limited to two one-dimensional contacts, here we extend the approach to multiple channels, i.e., to two-dimensional contacts including transverse modes. We describe the development of the method and illustrate it with applications. References:[1] F. Goyer, M. Ernzerhof and M. Zhuang, J. Chem. Phys., 126, (2007) 144104.[2] M. Ernzerhof, J. Chem. Phys., 127, (2007) 204709.[3] B.T. Pickup and P.W. Fowler, Chem. Phys. Lett., 459, (2008) 198-202.[4] P. Rocheleau and M. Ernzerhof, J. Chem. Phys., 130 (17) (2009).

  4. Predicting Reduction Rates of Energetic Nitroaromatic Compounds Using Calculated One-Electron Reduction Potentials

    SciTech Connect

    Salter-Blanc, Alexandra; Bylaska, Eric J.; Johnston, Hayley; Tratnyek, Paul G.

    2015-02-11

    The evaluation of new energetic nitroaromatic compounds (NACs) for use in green munitions formulations requires models that can predict their environmental fate. The susceptibility of energetic NACs to nitro reduction might be predicted from correlations between rate constants (k) for this reaction and one-electron reduction potentials (E1NAC) / 0.059 V, but the mechanistic implications of such correlations are inconsistent with evidence from other methods. To address this inconsistency, we have reevaluated existing kinetic data using a (non-linear) free-energy relationship (FER) based on the Marcus theory of outer-sphere electron transfer. For most reductants, the results are inconsistent with rate limitation by an initial, outer-sphere electron transfer, suggesting that the strong correlation between k and E1NAC is justified only as an empirical model. This empirical correlation was used to calibrate a new quantitative structure-activity relationship (QSAR) using previously reported values of k for non-energetic NAC reduction by Fe(II) porphyrin and newly reported values of E1NAC determined using density functional theory at the B3LYP/6-311++G(2d,2p) level with the COSMO solvation model. The QSAR was then validated for energetic NACs using newly measured kinetic data for 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (2,4-DNT), and 2,4-dinitroanisole (DNAN). The data show close agreement with the QSAR, supporting its applicability to energetic NACs.

  5. Calculating potential energy curves with fixed-node diffusion Monte Carlo: CO and N2

    NASA Astrophysics Data System (ADS)

    Powell, Andrew D.; Dawes, Richard

    2016-12-01

    This study reports on the prospect for the routine use of Quantum Monte Carlo (QMC) for the electronic structure problem, applying fixed-node Diffusion Monte Carlo (DMC) to generate highly accurate Born-Oppenheimer potential energy curves (PECs) for small molecular systems. The singlet ground electronic states of CO and N2 were used as test cases. The PECs obtained by DMC employing multiconfigurational trial wavefunctions were compared with those obtained by conventional high-accuracy electronic structure methods such as multireference configuration interaction and/or the best available empirical spectroscopic curves. The goal was to test whether a straightforward procedure using available QMC codes could be applied robustly and reliably. Results obtained with DMC codes were found to be in close agreement with the benchmark PECs, and the n3 scaling with the number of electrons (compared with n7 or worse for conventional high-accuracy quantum chemistry) could be advantageous depending on the system size. Due to a large pre-factor in the scaling, for the small systems tested here, it is currently still much more computationally intensive to compute PECs with QMC. Nevertheless, QMC algorithms are particularly well-suited to large-scale parallelization and are therefore likely to become more relevant for future massively parallel hardware architectures.

  6. Predicting Reduction Rates of Energetic Nitroaromatic Compounds Using Calculated One-Electron Reduction Potentials

    DOE PAGES

    Salter-Blanc, Alexandra; Bylaska, Eric J.; Johnston, Hayley; ...

    2015-02-11

    The evaluation of new energetic nitroaromatic compounds (NACs) for use in green munitions formulations requires models that can predict their environmental fate. The susceptibility of energetic NACs to nitro reduction might be predicted from correlations between rate constants (k) for this reaction and one-electron reduction potentials (E1NAC) / 0.059 V, but the mechanistic implications of such correlations are inconsistent with evidence from other methods. To address this inconsistency, we have reevaluated existing kinetic data using a (non-linear) free-energy relationship (FER) based on the Marcus theory of outer-sphere electron transfer. For most reductants, the results are inconsistent with rate limitation bymore » an initial, outer-sphere electron transfer, suggesting that the strong correlation between k and E1NAC is justified only as an empirical model. This empirical correlation was used to calibrate a new quantitative structure-activity relationship (QSAR) using previously reported values of k for non-energetic NAC reduction by Fe(II) porphyrin and newly reported values of E1NAC determined using density functional theory at the B3LYP/6-311++G(2d,2p) level with the COSMO solvation model. The QSAR was then validated for energetic NACs using newly measured kinetic data for 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (2,4-DNT), and 2,4-dinitroanisole (DNAN). The data show close agreement with the QSAR, supporting its applicability to energetic NACs.« less

  7. Effective medium approximation for effective propagation constant calculation in a dense random medium. [electromagnetic wave scattering

    NASA Technical Reports Server (NTRS)

    Zhu, P. Y.; Fung, A. K.

    1986-01-01

    The effective medium approximation (EMA) formalism developed for scalar wave calculations in solid state physics is generalized to electromagnetic wave scattering in a dense random medium. Results are applied to compute the effective propagation constant in a dense medium involving discrete spherical scatterers. When compared with a common quasicrystalline approximation (QCA), it is found that EMA accounts for backward scattering and the effect of correlation among three scatterers which are not available in QCA. It is also found that there is not much difference in the calculated normalized phase velocity between the use of these two approximations. However, there is a significant difference in the computed effective loss tangent in a nonabsorptive random medium. The computed effective loss tangent using EMA and measurements from a snow medium are compared, showing good agreement.

  8. Potential health effects of space radiation

    NASA Technical Reports Server (NTRS)

    Yang, Chui-Hsu; Craise, Laurie M.

    1993-01-01

    Crewmembers on missions to the Moon or Mars will be exposed to radiation belts, galactic cosmic rays, and possibly solar particle events. The potential health hazards due to these space radiations must be considered carefully to ensure the success of space exploration. Because there is no human radioepidemiological data for acute and late effects of high-LET (Linear-Energy-Transfer) radiation, the biological risks of energetic charged particles have to be estimated from experimental results on animals and cultured cells. Experimental data obtained to date indicate that charged particle radiation can be much more effective than photons in causing chromosome aberrations, cell killing, mutation, and tumor induction. The relative biological effectiveness (RBE) varies with biological endpoints and depends on the LET of heavy ions. Most lesions induced by low-LET radiation can be repaired in mammalian cells. Energetic heavy ions, however, can produce large complex DNA damages, which may lead to large deletions and are irreparable. For high-LET radiation, therefore, there are less or no dose rate effects. Physical shielding may not be effective in minimizing the biological effects on energetic heavy ions, since fragments of the primary particles can be effective in causing biological effects. At present the uncertainty of biological effects of heavy particles is still very large. With further understanding of the biological effects of space radiation, the career doses can be kept at acceptable levels so that the space radiation environment need not be a barrier to the exploitation of the promise of space.

  9. Basis set effects on the intermolecular interaction energies of methane dimers obtained by the Moeller-Plesset perturbation theory calculation

    SciTech Connect

    Tsuzuki, Seiji; Tanabe, Kazutoshi )

    1991-03-21

    Intermolecular interaction energies of methane dimer were calculated by using several basis sets up to 6-311G(3d,4p) with electron correlation energy correction by the Moeller-Plesset perturbation method and basis set superposition error (BSSE) correction by the counterpoise method to evaluate the basis set effect. The calculated interaction energies depended on the basis set considerably. Whereas the interaction energies of repulsive component calculated at HF level were not affected by the change of basis set, the dispersion energy component dependent greatly on the basis set used. The dispersion energies calculated with the Moeller-Plesset second- and third-order perturbation by using 6-311G(2d,2p) basis set were 0-10% and 4-6% smaller than those obtained with the fourth-order (MP4(SDTQ)) perturbation, respectively. The BSSE's calculated by the counterpoise method were still about 30% of the calculated intermolecular interaction energies for the conformers of energy minima event at the MP4(SDTQ)/6-311G(2d,2p) level. The calculated interaction potentials of dimers at the MP4(SDTQ)/6-311G(2d,2p) level were considerably shallower than those obtained by MM2 force fields but were close to the potentials given by the Williams potential and by the recently reported MM3 force field.

  10. Semiclassical calculations of tunneling using interpolating moving least-squares potentials

    NASA Astrophysics Data System (ADS)

    Pham, Phong

    The interpolating moving least-squares (IMLS) and Local-IMLS methods are incorporated into semiclassical trajectory simulation. Issues related to the implementation are investigated. Potential energy surface (PES) constructed by the IMLS/L-IMLS methods is used to study tunneling in polyatomic systems HONO and malonaldehyde, where direct dynamics becomes prohibitively expensive at high ab initio levels. To study cis--trans isomerization in HONO, the PES is constructed by L-IMLS fitting at the MP4(SDQ)/6-31++G(d,p) level with the HDMR(5,3,3) basis set. Results obtained can be compared with the others in the literature. Semiclassical rates are close to the referenced quantum mechanical ones. The isomerization is governed by energy transfer into the reaction coordinate---the torsional mode; the rate is strongly mode-selective, and much faster for the cis--trans direction than for the opposite one. To study the ground-state splitting of malonaldehyde, the PES is first constructed by single-level L-IMLS fitting at the MP2/6-31G(d,p) level with the HDMR(3,2) basis set. The dual-level method is then employed for increasing accuracy of the PES and reducing computational cost using MP4/6-31G(d,p) as the high level method. Results obtained can be compared with the others in the literature. For 0.5 kcal/mol fitting tolerance the splitting is 38.7 and 8.8 cm-1 at MP2 single-level, and 29.6 and 5.5 cm-1 at MP4 dual-level for H9 and D5D9 isotopomers respectively, compared to the experiment of 21.6 and 2.884 cm-1 . Splitting is within two times of the experiment and agrees with other quantum mechanical and semiclassical studies.

  11. Accurate and efficient calculation of van der Waals interactions within density functional theory by local atomic potential approach.

    PubMed

    Sun, Y Y; Kim, Yong-Hyun; Lee, Kyuho; Zhang, S B

    2008-10-21

    Density functional theory (DFT) in the commonly used local density or generalized gradient approximation fails to describe van der Waals (vdW) interactions that are vital to organic, biological, and other molecular systems. Here, we propose a simple, efficient, yet accurate local atomic potential (LAP) approach, named DFT+LAP, for including vdW interactions in the framework of DFT. The LAPs for H, C, N, and O are generated by fitting the DFT+LAP potential energy curves of small molecule dimers to those obtained from coupled cluster calculations with single, double, and perturbatively treated triple excitations, CCSD(T). Excellent transferability of the LAPs is demonstrated by remarkable agreement with the JSCH-2005 benchmark database [P. Jurecka et al. Phys. Chem. Chem. Phys. 8, 1985 (2006)], which provides the interaction energies of CCSD(T) quality for 165 vdW and hydrogen-bonded complexes. For over 100 vdW dominant complexes in this database, our DFT+LAP calculations give a mean absolute deviation from the benchmark results less than 0.5 kcal/mol. The DFT+LAP approach involves no extra computational cost other than standard DFT calculations and no modification of existing DFT codes, which enables straightforward quantum simulations, such as ab initio molecular dynamics, on biomolecular systems, as well as on other organic systems.

  12. Calculation of Molecular Shape Resonances Using Grid Based Exterior Complex Scaling and N2-Term Separable Potentials

    NASA Astrophysics Data System (ADS)

    Abeln, Brant; Rescigno, Thomas N.; McCurdy, C. William

    2015-05-01

    A novel approach employing Exterior Complex Scaling (ECS) and discrete grid methods is used to calculate molecular resonance energies and widths for the 2Πg shape resonance state of N2-and 2Πu shape resonance of CO2-.These calculations are performed using a Finite Element Discrete Variable Representation (FE-DVR) in prolate spheroidal coordinates with an atomic center placed at each of the foci of the coordinate system, thereby preserving the cusp condition at those sites. A separable approximation to the interaction potential is made from the matrices of the nuclear attraction, direct and exchange operators generated by an existing quantum chemistry structure code in a Gaussian basis. These potentials are then represented on our ECS FE-DVR grid allowing the calculation of complex-valued resonance energies. The method is demonstrated here in the static-exchange approximation. Work supported by NSFGRF DGE1148897, USDOE, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division.

  13. Methodology for the calculation of the potential of mean force for a cation-pi complex in water.

    PubMed

    Ghoufi, Aziz; Archirel, Pierre; Morel, Jean-Pierre; Morel-Desrosiers, Nicole; Boutin, Anne; Malfreyt, Patrice

    2007-08-06

    We report potential of mean force (PMF) calculations on the interaction between the p-sulfonatocalix[4]arene and a monovalent cation (Cs(+)). It has been recently shown from microcalorimetry and (133)Cs NMR experiments that the association with Cs(+) is governed by favourable cation-pi interactions and is characterized by the insertion of the cation into the cavity of the macrocycle. We show that the PMF calculation based upon a classical model is not able to reproduce both the thermodynamic properties of association and the insertion of the cation. In order to take into account the different contributions of the cation-pi interactions, we develop a new methodology consisting of changing the standard PMF by an additional contribution resulting from quantum calculations. The calculated thermodynamic properties of association are thus in line with the microcalorimetry and (133)Cs NMR experiments and the structure of the complex at the Gibbs free-energy minimum shows the insertion of the cation into the cavity of the calixarene.

  14. Accelerating potential of mean force calculations for lipid membrane permeation: System size, reaction coordinate, solute-solute distance, and cutoffs

    NASA Astrophysics Data System (ADS)

    Nitschke, Naomi; Atkovska, Kalina; Hub, Jochen S.

    2016-09-01

    Molecular dynamics simulations are capable of predicting the permeability of lipid membranes for drug-like solutes, but the calculations have remained prohibitively expensive for high-throughput studies. Here, we analyze simple measures for accelerating potential of mean force (PMF) calculations of membrane permeation, namely, (i) using smaller simulation systems, (ii) simulating multiple solutes per system, and (iii) using shorter cutoffs for the Lennard-Jones interactions. We find that PMFs for membrane permeation are remarkably robust against alterations of such parameters, suggesting that accurate PMF calculations are possible at strongly reduced computational cost. In addition, we evaluated the influence of the definition of the membrane center of mass (COM), used to define the transmembrane reaction coordinate. Membrane-COM definitions based on all lipid atoms lead to artifacts due to undulations and, consequently, to PMFs dependent on membrane size. In contrast, COM definitions based on a cylinder around the solute lead to size-independent PMFs, down to systems of only 16 lipids per monolayer. In summary, compared to popular setups that simulate a single solute in a membrane of 128 lipids with a Lennard-Jones cutoff of 1.2 nm, the measures applied here yield a speedup in sampling by factor of ˜40, without reducing the accuracy of the calculated PMF.

  15. The Stark Effect in Linear Potentials

    ERIC Educational Resources Information Center

    Robinett, R. W.

    2010-01-01

    We examine the Stark effect (the second-order shifts in the energy spectrum due to an external constant force) for two one-dimensional model quantum mechanical systems described by linear potentials, the so-called quantum bouncer (defined by V(z) = Fz for z greater than 0 and V(z) = [infinity] for z less than 0) and the symmetric linear potential…

  16. Probing the mechanism of hypoxia selectivity of copper bis(thiosemicarbazonato) complexes: DFT calculation of redox potentials and absolute acidities in solution.

    PubMed

    Holland, Jason P; Green, Jennifer C; Dilworth, Jonathan R

    2006-02-14

    Density functional theory (DFT) calculations have been performed using the uB3LYP/6-31++G(d,p) model to calculate the solution phase one-electron reduction potentials (E(calc)) and absolute pKa values of a series of copper bis(thiosemicarbazonato) complexes. The effects of solvation in water and dimethylsulfoxide (DMSO) are incorporated as a self-consistent reaction field (SCRF) using the integral equation formalism polarisable continuum model (IEFPCM) and are found to be essential for quantitative agreement with an average error in E(calc) of -0.02 V compared to experiment. The bonding and spin densities are examined through the use of Natural Bond Order analysis and the results used to rationalise the calculated and observed reduction potentials. Calculated estimates of pKa values of several copper(II) species are presented and their implications for the mechanisms of transport and trapping within hypoxic cells are considered. Reduction is found to be a prerequisite for protonation of the complexes which suggests their transport in the blood stream as neutral species, and the mechanistic sequence is identified as a sequential electrochemical-chemical (EC) process. The complex equilibria of protonation, reoxidation and dissociation are discussed and the copper(I) diprotonated, cationic complex of diacetyl bis(4-methyl-3-thiosemicarbazonato)copper(II), Cu(I)ATSMH2(+), is identified as a possible candidate for the initial species trapped in hypoxic cells.

  17. Calculation of the absolute thermodynamic properties of association of host-guest systems from the intermolecular potential of mean force.

    PubMed

    Ghoufi, Aziz; Malfreyt, Patrice

    2006-12-14

    The authors report calculations of the intermolecular potential of mean force (PMF) in the case of the host-guest interaction. The host-guest system is defined by a water soluble calixarene and a cation. With an organic cation such as the tetramethylammonium cation, the calixarene forms an insertion complex, whereas with the Lanthane cation, the supramolecular assembly is an outer-sphere complex. The authors apply a modified free energy perturbation method and the force constraint technique to establish the PMF profiles as a function of the separation distance between the host and guest. They use the PMF profile for the calculation of the absolute thermodynamic properties of association that they compare to the experimental values previously determined. They finish by giving some structural features of the insertion and outer-sphere complexes at the Gibbs free energy minimum.

  18. New three-dimensional far-field potential repository thermomechanical calculations; Yucca Mountain Site Characterization Project

    SciTech Connect

    Hardy, M.P.; Bai, M.; Goodrich, R.R.; Lin, M.; Carlisle, S.; Bauer, S.J.

    1993-03-01

    The thermomechanical effect on the exploratory ramps, drifts, and shafts as a result of high-level nuclear waste disposal is examined using a three-dimensional thermo-elastic model. The repository layout modeled is based on the use of mechanical mining of all excavations with equivalent waste emplacement areal power densities of 57 and 80 kW/acre. Predicted temperatures and stress changes for the north and south access drifts, east main drift, east-west exploratory drift, the north and south Calico Hills access ramps, the Calico Hills north-south exploratory drift, and the optional exploratory studies facility and man and materials shafts are presented for times 10, 35, 50, 100, 300, 500, 1000, 2000, 5000, and 10,000 years after the start of waste emplacement. The study indicates that the east-west exploratory drift at the repository horizon is subject to the highest thermomechanical impact because it is located closest the buried waste canisters. For most exploratory openings, the thermally induced temperatures and stresses tend to reach the maximum magnitudes at approximately 1000 years after waste emplacement.

  19. Using the charge-stabilization technique in the double ionization potential equation-of-motion calculations with dianion references.

    PubMed

    Kuś, Tomasz; Krylov, Anna I

    2011-08-28

    The charge-stabilization method is applied to double ionization potential equation-of-motion (EOM-DIP) calculations to stabilize unstable dianion reference functions. The auto-ionizing character of the dianionic reference states spoils the numeric performance of EOM-DIP limiting applications of this method. We demonstrate that reliable excitation energies can be computed by EOM-DIP using a stabilized resonance wave function instead of the lowest energy solution corresponding to the neutral + free electron(s) state of the system. The details of charge-stabilization procedure are discussed and illustrated by examples. The choice of optimal stabilizing Coulomb potential, which is strong enough to stabilize the dianion reference, yet, minimally perturbs the target states of the neutral, is the crux of the approach. Two algorithms of choosing optimal parameters of the stabilization potential are presented. One is based on the orbital energies, and another--on the basis set dependence of the total Hartree-Fock energy of the reference. Our benchmark calculations of the singlet-triplet energy gaps in several diradicals show a remarkable improvement of the EOM-DIP accuracy in problematic cases. Overall, the excitation energies in diradicals computed using the stabilized EOM-DIP are within 0.2 eV from the reference EOM spin-flip values.

  20. COME: a robust coding potential calculation tool for lncRNA identification and characterization based on multiple features

    PubMed Central

    Hu, Long; Xu, Zhiyu; Hu, Boqin; Lu, Zhi John

    2017-01-01

    Recent genomic studies suggest that novel long non-coding RNAs (lncRNAs) are specifically expressed and far outnumber annotated lncRNA sequences. To identify and characterize novel lncRNAs in RNA sequencing data from new samples, we have developed COME, a coding potential calculation tool based on multiple features. It integrates multiple sequence-derived and experiment-based features using a decompose–compose method, which makes it more accurate and robust than other well-known tools. We also showed that COME was able to substantially improve the consistency of predication results from other coding potential calculators. Moreover, COME annotates and characterizes each predicted lncRNA transcript with multiple lines of supporting evidence, which are not provided by other tools. Remarkably, we found that one subgroup of lncRNAs classified by such supporting features (i.e. conserved local RNA secondary structure) was highly enriched in a well-validated database (lncRNAdb). We further found that the conserved structural domains on lncRNAs had better chance than other RNA regions to interact with RNA binding proteins, based on the recent eCLIP-seq data in human, indicating their potential regulatory roles. Overall, we present COME as an accurate, robust and multiple-feature supported method for the identification and characterization of novel lncRNAs. The software implementation is available at https://github.com/lulab/COME. PMID:27608726

  1. Quantum Tunneling in Testosterone 6β-Hydroxylation by Cytochrome P450: Reaction Dynamics Calculations Employing Multiconfiguration Molecular-Mechanical Potential Energy Surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Lin, Hai

    2009-05-01

    Testosterone hydroxylation is a prototypical reaction of human cytochrome P450 3A4, which metabolizes about 50% of oral drugs on the market. Reaction dynamics calculations were carried out for the testosterone 6β-hydrogen abstraction and the 6β-d1-testosterone 6β-duterium abstraction employing a model that consists of the substrate and the active oxidant compound I. The calculations were performed at the level of canonical variational transition state theory with multidimensional tunneling and were based on a semiglobal full-dimensional potential energy surface generated by the multiconfiguration molecular mechanics technique. The tunneling coefficients were found to be around 3, indicating substantial contributions by quantum tunneling. However, the tunneling made only modest contributions to the kinetic isotope effects. The kinetic isotope effects were computed to be about 2 in the doublet spin state and about 5 in the quartet spin state.

  2. An improved fast multipole method for electrostatic potential calculations in a class of coarse-grained molecular simulations

    SciTech Connect

    Poursina, Mohammad; Anderson, Kurt S.

    2014-08-01

    This paper presents a novel algorithm to approximate the long-range electrostatic potential field in the Cartesian coordinates applicable to 3D coarse-grained simulations of biopolymers. In such models, coarse-grained clusters are formed via treating groups of atoms as rigid and/or flexible bodies connected together via kinematic joints. Therefore, multibody dynamic techniques are used to form and solve the equations of motion of such coarse-grained systems. In this article, the approximations for the potential fields due to the interaction between a highly negatively/positively charged pseudo-atom and charged particles, as well as the interaction between clusters of charged particles, are presented. These approximations are expressed in terms of physical and geometrical properties of the bodies such as the entire charge, the location of the center of charge, and the pseudo-inertia tensor about the center of charge of the clusters. Further, a novel substructuring scheme is introduced to implement the presented far-field potential evaluations in a binary tree framework as opposed to the existing quadtree and octree strategies of implementing fast multipole method. Using the presented Lagrangian grids, the electrostatic potential is recursively calculated via sweeping two passes: assembly and disassembly. In the assembly pass, adjacent charged bodies are combined together to form new clusters. Then, the potential field of each cluster due to its interaction with faraway resulting clusters is recursively calculated in the disassembly pass. The method is highly compatible with multibody dynamic schemes to model coarse-grained biopolymers. Since the proposed method takes advantage of constant physical and geometrical properties of rigid clusters, improvement in the overall computational cost is observed comparing to the tradition application of fast multipole method.

  3. Calculation of the surface potential and surface charge density by measurement of the three-phase contact angle.

    PubMed

    Horiuchi, H; Nikolov, A; Wasan, D T

    2012-11-01

    The silica/silicon wafer is widely used in the semiconductor industry in the manufacture of electronic devices, so it is essential to understand its physical chemistry and determine the surface potential at the silica wafer/water interface. However, it is difficult to measure the surface potential of a silica/silicon wafer directly due to its high electric resistance. In the present study, the three-phase contact angle (TPCA) on silica is measured as a function of the pH. The surface potential and surface charge density at the silica/water surface are calculated by a model based on the Young-Lippmann equation in conjunction with the Gouy-Chapman model for the electric double layer. In measurements of the TPCA on silica, two distinct regions were identified with a boundary at pH 9.5-showing a dominance of the surface ionization of silanol groups below pH 9.5 and a dominance of the dissolution of silica into the aqueous solution above pH 9.5. Since the surface chemistry changes above pH 9.5, the model is applied to solutions below pH 9.5 (ionization dominant) for the calculation of the surface potential and surface charge density at the silica/aqueous interface. In order to evaluate the model, a galvanic mica cell was made of a mica sheet and the surface potential was measured directly at the mica/water interface. The model results are also validated by experimental data from the literature, as well as the results obtained by the potentiometric titration method and the electro-kinetic measurements.

  4. A review of back-calculation techniques and their potential to inform mitigation strategies with application to non-transmissible acute infectious diseases

    PubMed Central

    Egan, Joseph R.; Hall, Ian M.

    2015-01-01

    Back-calculation is a process whereby generally unobservable features of an event leading to a disease outbreak can be inferred either in real-time or shortly after the end of the outbreak. These features might include the time when persons were exposed and the source of the outbreak. Such inferences are important as they can help to guide the targeting of mitigation strategies and to evaluate the potential effectiveness of such strategies. This article reviews the process of back-calculation with a particular emphasis on more recent applications concerning deliberate and naturally occurring aerosolized releases. The techniques can be broadly split into two themes: the simpler temporal models and the more sophisticated spatio-temporal models. The former require input data in the form of cases' symptom onset times, whereas the latter require additional spatial information such as the cases' home and work locations. A key aspect in the back-calculation process is the incubation period distribution, which forms the initial topic for consideration. Links between atmospheric dispersion modelling, within-host dynamics and back-calculation are outlined in detail. An example of how back-calculation can inform mitigation strategies completes the review by providing improved estimates of the duration of antibiotic prophylaxis that would be required in the response to an inhalational anthrax outbreak. PMID:25977955

  5. A review of back-calculation techniques and their potential to inform mitigation strategies with application to non-transmissible acute infectious diseases.

    PubMed

    Egan, Joseph R; Hall, Ian M

    2015-05-06

    Back-calculation is a process whereby generally unobservable features of an event leading to a disease outbreak can be inferred either in real-time or shortly after the end of the outbreak. These features might include the time when persons were exposed and the source of the outbreak. Such inferences are important as they can help to guide the targeting of mitigation strategies and to evaluate the potential effectiveness of such strategies. This article reviews the process of back-calculation with a particular emphasis on more recent applications concerning deliberate and naturally occurring aerosolized releases. The techniques can be broadly split into two themes: the simpler temporal models and the more sophisticated spatio-temporal models. The former require input data in the form of cases' symptom onset times, whereas the latter require additional spatial information such as the cases' home and work locations. A key aspect in the back-calculation process is the incubation period distribution, which forms the initial topic for consideration. Links between atmospheric dispersion modelling, within-host dynamics and back-calculation are outlined in detail. An example of how back-calculation can inform mitigation strategies completes the review by providing improved estimates of the duration of antibiotic prophylaxis that would be required in the response to an inhalational anthrax outbreak.

  6. Resonances in SN2 reactions: Two-mode quantum calculations for Cl-+CH3Br on a coupled-cluster potential energy surface

    NASA Astrophysics Data System (ADS)

    Schmatz, Stefan; Botschwina, Peter; Hauschildt, Jan; Schinke, Reinhard

    2002-12-01

    An effective two-dimensional potential energy surface has been constructed for the SN2 reaction Cl-+CH3Br→ClCH3+Br- from coupled-cluster calculations with a large basis set. In the quantum dynamics calculations Radau coordinates were employed to describe the Cl-C and C-Br stretching modes. Making use of the filter diagonalization method and an optical potential, bound states as well as resonance states up to energies far above the dissociation threshold have been calculated. The resonance widths fluctuate over several orders of magnitude. In addition to a majority of Feshbach-type resonances there are also exceedingly long-lived shape resonances, which can only decay by tunneling. Owing to a smaller width of the potential barrier and a larger density of states, tunneling through the barrier is more important for Cl-+CH3Br than for Cl-+CH3Cl despite the larger total mass of this system. Excitation of the C-Br stretching vibration enhances the tunneling probability of the entrance channel complex.

  7. Precision calculation for nucleon capture by deuteron with Effective Field Theory

    SciTech Connect

    Bayegan, S.; Sadeghi, H.

    2005-05-06

    We calculate the cross section for radiative capture of neutron by deuteron n + d {yields} 3H+{gamma} using Effective Field Theory (EFT). The calculation includes N2LO order and we compare our results with available calculated data below E = 0.2 MeV.

  8. Path integral molecular dynamics calculations of the H6+ and D6+ clusters on an ab initio potential energy surface

    NASA Astrophysics Data System (ADS)

    Kakizaki, Akira; Takayanagi, Toshiyuki; Shiga, Motoyuki

    2007-11-01

    Path integral molecular dynamics simulations for the H6+ and D6+ cluster cations have been carried out in order to understand the floppy nature of their molecular structure due to quantum-mechanical fluctuation. A full-dimensional analytical potential energy surface for the ground electronic state of H6+ has been developed on the basis of accurate ab initio electronic structure calculations at the CCSD(T)/cc-pVTZ level. It is found that the outer H 2(D 2) nuclei rotate almost freely and that the probability density distributions of the central H 2(D 2) nuclei show strong spatial delocalization.

  9. Effective potential and interdiffusion in binary ionic mixtures.

    PubMed

    Beznogov, M V; Yakovlev, D G

    2014-09-01

    We calculate interdiffusion coefficients in a two-component, weakly or strongly coupled ion plasma (gas or liquid, composed of two ion species immersed into a neutralizing electron background). We use an effective potential method proposed recently by Baalrud and Daligaut [Phys. Rev. Lett. 110, 235001 (2013)]. It allows us to extend the standard Chapman-Enskog procedure of calculating the interdiffusion coefficients to the case of strong Coulomb coupling. We compute binary diffusion coefficients for several ionic mixtures and fit them by convenient expressions in terms of the generalized Coulomb logarithm. These fits cover a wide range of plasma parameters spanning from weak to strong Coulomb couplings. They can be used to simulate diffusion of ions in ordinary stars as well as in white dwarfs and neutron stars.

  10. Garlic: a review of potential therapeutic effects

    PubMed Central

    Bayan, Leyla; Koulivand, Peir Hossain; Gorji, Ali

    2014-01-01

    Throughout history, many different cultures have recognized the potential use of garlic for prevention and treatment of different diseases. Recent studies support the effects of garlic and its extracts in a wide range of applications. These studies raised the possibility of revival of garlic therapeutic values in different diseases. Different compounds in garlic are thought to reduce the risk for cardiovascular diseases, have anti-tumor and anti-microbial effects, and show benefit on high blood glucose concentration. However, the exact mechanism of all ingredients and their long-term effects are not fully understood. Further studies are needed to elucidate the pathophysiological mechanisms of action of garlic as well as its efficacy and safety in treatment of various diseases. PMID:25050296

  11. QuickPol: Fast calculation of effective beam matrices for CMB polarization

    NASA Astrophysics Data System (ADS)

    Hivon, Eric; Mottet, Sylvain; Ponthieu, Nicolas

    2017-01-01

    Current and planned observations of the cosmic microwave background (CMB) polarization anisotropies, with their ever increasing number of detectors, have reached a potential accuracy that requires a very demanding control of systematic effects. While some of these systematics can be reduced in the design of the instruments, others will have to be modeled and hopefully accounted for or corrected a posteriori. We propose QuickPol, a quick and accurate calculation of the full effective beam transfer function and of temperature to polarization leakage at the power spectra level, as induced by beam imperfections and mismatches between detector optical and electronic responses. All the observation details such as exact scanning strategy, imperfect polarization measurements, and flagged samples are accounted for. Our results are validated on Planck high frequency instrument (HFI) simulations. We show how the pipeline can be used to propagate instrumental uncertainties up to the final science products, and could be applied to experiments with rotating half-wave plates.

  12. Numerical calculation of thermal effect on cavitation in cryogenic fluids

    NASA Astrophysics Data System (ADS)

    Shi, Suguo; Wang, Guoyu

    2012-11-01

    A key design issue related to the turbopump of the rocket engine is that cavitation occurs in cryogenic fluids when the fluid pressure is lower than the vapor pressure at a local thermodynamic state. Cavitation in cryogenic fluids generates substantial thermal effects and strong variations in fluid properties, which in turn alter the cavity characteristics. To date, fewer investigate the thermal effect on cavitation in cryogenic fluids clearly by the numerical methods due to the difficulty of the heat transfer in the phase change process. In order to study the thermal effect on cavitation in cryogenic fluid, computations are conducted around a 2D quarter caliber hydrofoil in liquid nitrogen and hydrogen respectively by implementing modified Merkle cavitation model, which accounts for the energy balance and variable thermodynamic properties of the fluid. The numerical results show that with the thermal effect, the vapour content in constant location decreases, the cavity becomes more porous and the interface becomes less distinct which shows increased spreading while getting shorter in length. In the cavity region, the temperature around the cavity depresses due to absorb the evaporation latent heat and the saturation pressure drops. When the vapour volume fraction is higher, the temperature depression and pressure depression becomes larger. It is also observed that a slight temperature rise is found above the reference fluid temperature at the cavity rear end attributed to the release of latent heat during the condensation process. When the fluid is operating close to its critical temperature, thermal effects on cavitation are more obviously in both the liquid nitrogen and hydrogen. The thermal effect on cavitation in liquid hydrogen is more distinctly compared with that in liquid nitrogen due to the density ratio, vapour pressure and other variable properties of the fluid. The investigation provides aid for the design of the cryogenic pump of the liquid rocket.

  13. Could piracetam potentiate behavioural effects of psychostimulants?

    PubMed

    Slais, Karel; Machalova, Alena; Landa, Leos; Vrskova, Dagmar; Sulcova, Alexandra

    2012-08-01

    Press and internet reports mention abuse of nootropic drug piracetam (PIR) in combination with psychostimulants methamphetamine (MET) or 4-methylenedioxymethamphetamine (MDMA). These combinations are believed to produce more profound desirable effects, while decreasing hangover. However, there is a lack of valid experimental studies on such drug-drug interactions in the scientific literature available. Our hypothesis proposes that a functional interaction exists between PIR and amphetamine psychostimulants (MET and MDMA) which can potentiate psychostimulant behavioural effects. Our hypothesis is supported by the results of our pilot experiment testing acute effects of drugs given to mice intraperitoneally (Vehicle, n=12; MET 2.5mg/kg, n=10; MDMA 2.5mg/kg, n=11; PIR 300 mg/kg, n=12; PIR+MET, n=12; PIR+MDMA, n=11) in the Open Field Test (Actitrack, Panlab, Spain). PIR given alone caused no significant changes in mouse locomotor/exploratory behaviour, whereas the same dose combined with either MET or MDMA significantly enhanced their stimulatory effects. Different possible neurobiological mechanism underlying drug-drug interaction of PIR with MET or MDMA are discussed, as modulation of dopaminergic, glutamatergic or cholinergic brain systems. However, the interaction with membrane phospholipids seems as the most plausible mechanism explaining PIR action on activities of neurotransmitter systems. Despite that our behavioural experiment cannot serve for explanation of the pharmacological mechanisms of these functional interactions, it shows that PIR effects can increase behavioural stimulation of amphetamine drugs. Thus, the reported combining of PIR with MET or MDMA by human abusers is not perhaps a coincidental phenomenon and may be based on existing PIR potential to intensify acute psychostimulant effects of these drugs of abuse.

  14. Large vibrational effects upon calculated phase boundaries in Al-Sc.

    PubMed

    Ozoliņs, V; Asta, M

    2001-01-15

    The fcc portion of the Al-Sc phase diagram is calculated from first principles including contributions to alloy free energies associated with ionic vibrations. It is found that vibrational entropy accounts for a 27-fold increase in the calculated solubility limits for Sc in fcc Al at high temperatures, bringing calculated and measured values into very good agreement. The present work gives a clear example demonstrating a large effect of vibrational entropy upon calculated phase boundaries in substitutional alloys.

  15. Efficient calculation of the quasi-static electrical potential on a tetrahedral mesh and its implementation in STEPS.

    PubMed

    Hepburn, Iain; Cannon, Robert; De Schutter, Erik

    2013-01-01

    We describe a novel method for calculating the quasi-static electrical potential on tetrahedral meshes, which we call E-Field. The E-Field method is implemented in STEPS, which performs stochastic spatial reaction-diffusion computations in tetrahedral-based cellular geometry reconstructions. This provides a level of integration between electrical excitability and spatial molecular dynamics in realistic cellular morphology not previously achievable. Deterministic solutions are also possible. By performing the Rallpack tests we demonstrate the accuracy of the E-Field method. Efficient node ordering is an important practical consideration, and we find that a breadth-first search provides the best solutions, although principal axis ordering suffices for some geometries. We discuss potential applications and possible future directions, and predict that the E-Field implementation in STEPS will play an important role in the future of multiscale neural simulations.

  16. Efficient calculation of the quasi-static electrical potential on a tetrahedral mesh and its implementation in STEPS

    PubMed Central

    Hepburn, Iain; Cannon, Robert; De Schutter, Erik

    2013-01-01

    We describe a novel method for calculating the quasi-static electrical potential on tetrahedral meshes, which we call E-Field. The E-Field method is implemented in STEPS, which performs stochastic spatial reaction-diffusion computations in tetrahedral-based cellular geometry reconstructions. This provides a level of integration between electrical excitability and spatial molecular dynamics in realistic cellular morphology not previously achievable. Deterministic solutions are also possible. By performing the Rallpack tests we demonstrate the accuracy of the E-Field method. Efficient node ordering is an important practical consideration, and we find that a breadth-first search provides the best solutions, although principal axis ordering suffices for some geometries. We discuss potential applications and possible future directions, and predict that the E-Field implementation in STEPS will play an important role in the future of multiscale neural simulations. PMID:24194715

  17. Gyroid Optical Metamaterials: Calculating the Effective Permittivity of Multidomain Samples

    PubMed Central

    2016-01-01

    Gold gyroid optical metamaterials are known to possess a reduced plasma frequency and linear dichroism imparted by their intricate subwavelength single gyroid morphology. The anisotropic optical properties are, however, only evident when a large individual gyroid domain is investigated. Multidomain gyroid metamaterials, fabricated using a polyisoprene-b-polystyrene-b-poly(ethylene oxide) triblock terpolymer and consisting of multiple small gyroid domains with random orientation and handedness, instead exhibit isotropic optical properties. Comparing three effective medium models, we here show that the specular reflectance spectra of such multidomain gyroid optical metamaterials can be accurately modeled over a broad range of incident angles by a Bruggeman effective medium consisting of a random wire array. This model accurately reproduces previously published results tracking the variation in normal incidence reflectance spectra of gold gyroid optical metamaterials as a function of host refractive index and volume fill fraction of gold. The effective permittivity derived from this theory confirms the change in sign of the real part of the permittivity in the visible spectral region (so, that gold gyroid metamaterials exhibit both dielectric and metallic behavior at optical wavelengths). That a Bruggeman effective medium can accurately model the experimental reflectance spectra implies that small multidomain gold gyroid optical metamaterials behave both qualitatively and quantitatively as an amorphous composite of gold and air (i.e., nanoporous gold) and that coherent electromagnetic contributions arising from the subwavelength gyroid symmetry are not dominant. PMID:27785456

  18. Potential Flow Analysis of Dynamic Ground Effect

    NASA Technical Reports Server (NTRS)

    Feifel, W. M.

    1999-01-01

    Interpretation of some flight test data suggests the presence of a 'dynamic ground effect'. The lift of an aircraft approaching the ground depends on the rate of descent and is lower than the aircraft steady state lift at a same height above the ground. Such a lift deficiency under dynamic conditions could have a serious impact on the overall aircraft layout. For example, the increased pitch angle needed to compensate for the temporary loss in lift would reduce the tail strike margin or require an increase in landing gear length. Under HSR2 an effort is under way to clarify the dynamic ground effect issue using a multi-pronged approach. A dynamic ground effect test has been run in the NASA Langley 14x22 ft wind tunnel. Northup-Grumman is conducting time accurate CFD (Computational Fluid Dynamics) Euler analyses on the National Aerodynamic Simulator facility. Boeing has been using linear potential flow methodology which are thought to provide much needed insight in, physics of this very complex problem. The present report summarizes the results of these potential flow studies.

  19. Bioconjugates: harnessing potential for effective therapeutics.

    PubMed

    Khare, Piush; Jain, Aviral; Gulbake, Arvind; Soni, Vandana; Jain, Nitin K; Jain, Sanjay K

    2009-01-01

    The accomplishment of selective delivery can be brought through efficient drug targeting in which the attack of drug moiety is visualized only by the diseased organ and not by the organs of the whole body. This, in turn, consequently minimizes the unwanted effects or side effects caused by the drug action on the other organs. Bioconjugation is a fascinating technique that explores new vistas of drug delivery, and at the same time opens new possibilities for safe and effective therapy. This review is dedicated to and describes the science of bioconjugation and its potential in the drug delivery field, including different bioconjugates and their use in various therapeutic strategies. These have been classified as polymer based, macromolecule based, carrier based, and novel bioconjugates. This review describes the utility of bioconjugates in major diseases like cancer and others, and discusses experiments and research on the same. Bioconjugates have immense potential and extend a promising future in the drug delivery field. The review can act as a quick reference for those actively engaged in drug delivery and drug research to help overcome the hurdles of therapeutics.

  20. Productivity cost calculations in health economic evaluations: correcting for compensation mechanisms and multiplier effects.

    PubMed

    Krol, Marieke; Brouwer, Werner B F; Severens, Johan L; Kaper, Janneke; Evers, Silvia M A A

    2012-12-01

    Productivity costs related to paid work are commonly calculated in economic evaluations of health technologies by multiplying the relevant number of work days lost with a wage rate estimate. It has been argued that actual productivity costs may either be lower or higher than current estimates due to compensation mechanisms and/or multiplier effects (related to team dependency and problems with finding good substitutes in cases of absenteeism). Empirical evidence on such mechanisms and their impact on productivity costs is scarce, however. This study aims to increase knowledge on how diminished productivity is compensated within firms. Moreover, it aims to explore how compensation and multiplier effects potentially affect productivity cost estimates. Absenteeism and compensation mechanisms were measured in a randomized trial among Dutch citizens examining the cost-effectiveness of reimbursement for smoking cessation treatment. Multiplier effects were extracted from published literature. Productivity costs were calculated applying the Friction Cost Approach. Regular estimates were subsequently adjusted for (i) compensation during regular working hours, (ii) job dependent multipliers and (iii) both compensation and multiplier effects. A total of 187 respondents included in the trial were useful for inclusion in this study, based on being in paid employment, having experienced absenteeism in the preceding six months and completing the questionnaire on absenteeism and compensation mechanisms. Over half of these respondents stated that their absenteeism was compensated during normal working hours by themselves or colleagues. Only counting productivity costs not compensated in regular working hours reduced the traditional estimate by 57%. Correcting for multiplier effects increased regular estimates by a quarter. Combining both impacts decreased traditional estimates by 29%. To conclude, large amounts of lost production are compensated in normal hours. Productivity costs

  1. Calculated Effects of Nitric Oxide Flow Contamination on Scramjet Performance

    NASA Technical Reports Server (NTRS)

    Fischer, Karen E.; Rock, Kenneth E.

    1995-01-01

    The level of nitric oxide contamination in the test gas of the NASA Langley Research Center Arc-Heated Scramjet Test Facility and the effect of the contamination on scramjet test engine performance were investigated analytically. The study was conducted for standard facility conditions corresponding to Mach 6, 7, and 8 flight simulations. The analytically determined levels of nitric oxide produced in the facility are compared with experimentally measured levels. Results of the analysis indicate that nitric oxide levels range from one to three mole percent, which corroborates the measured levels. A three-stream combustor code with finite rate chemistry was used to investigate how nitric oxide affects scramjet performance in terms of combustor pressure rise, heat release, and thrust performance. Results indicate minimal effects on engine performance for the test conditions of this investigation.

  2. Calculation of Tip Clearance Effects in a Transonic Compressor Rotor

    NASA Technical Reports Server (NTRS)

    Chima, R. V.

    1998-01-01

    The flow through the tip clearance region of a transonic compressor rotor (NASA rotor 37) was computed and compared to aerodynamic probe and laser anemometer data. Tip clearance effects were modeled both by gridding the clearance gap and by using a simple periodicity model across the ungridded gap. The simple model was run with both the full gap height, and with half the gap height to simulate a vena-contracta effect. Comparisons between computed and measured performance maps and downstream profiles were used to validate the models and to assess the effects of gap height on the simple clearance model. Recommendations were made concern- ing the use of the simple clearance model Detailed comparisons were made between the gridded clearance gap solution and the laser anemometer data near the tip at two operating points. The computed results agreed fairly well with the data but overpredicted the extent of the casing separation and underpredicted the wake decay rate. The computations were then used to describe the interaction of the tip vortex, the passage shock, and the casing boundary layer.

  3. Calculation of tip clearance effects in a transonic compressor rotor

    NASA Technical Reports Server (NTRS)

    Chima, R. V.

    1996-01-01

    The flow through the tip clearance region of a transonic compressor rotor (NASA rotor 37) was computed and compared to aerodynamic probe and laser anemometer data. Tip clearance effects were modeled both by gridding the clearance gap and by using a simple periodicity model across the ungridded gap. The simple model was run with both the full gap height, and with half the gap height to simulate a vena-contracta effect. Comparisons between computed and measured performance maps and downstream profiles were used to validate the models and to assess the effects of gap height on the simple clearance model. Recommendations were made concerning the use of the simple clearance model. Detailed comparisons were made between the gridded clearance gap solution and the laser anemometer data near the tip at two operating points. The computer results agreed fairly well with the data but overpredicted the extent of the casing separation and underpredicted the wake decay rate. The computations were then used to describe the interaction of the tip vortex, the passage shock, and the casing boundary layer.

  4. Density functional theory calculations of the redox potentials of actinide(VI)/actinide(V) couple in water.

    PubMed

    Steele, Helen M; Guillaumont, Dominique; Moisy, Philippe

    2013-05-30

    The measured redox potential of an actinide at an electrode surface involves the transfer of a single electron from the electrode surface on to the actinide center. Before electron transfer takes place, the complexing ligands and molecules of solvation need to become structurally arranged such that the electron transfer is at its most favorable. Following the electron transfer, there is further rearrangement to obtain the minimum energy structure for the reduced state. As such, there are three parts to the total energy cycle required to take the complex from its ground state oxidized form to its ground state reduced form. The first part of the energy comes from the structural rearrangement and solvation energies of the actinide species before the electron transfer or charge transfer process; the second part, the energy of the electron transfer; the third part, the energy required to reorganize the ligands and molecules of solvation around the reduced species. The time resolution of electrochemical techniques such as cyclic voltammetry is inadequate to determine to what extent bond and solvation rearrangement occurs before or after electron transfer; only for a couple to be classed as reversible is it fast in terms of the experimental time. Consequently, the partitioning of the energy theoretically is of importance to obtain good experimental agreement. Here we investigate the magnitude of the instantaneous charge transfer through calculating the fast one electron reduction energies of AnO2(H2O)n(2+), where An = U, Np, and Pu, for n = 4-6, in solution without inclusion of the structural optimization energy of the reduced form. These calculations have been performed using a number of DFT functionals, including the recently developed functionals of Zhao and Truhlar. The results obtained for calculated electron affinities in the aqueous phase for the AnO2(H2O)5(2+/+) couples are within 0.04 V of accepted experimental redox potentials, nearly an order of magnitude

  5. The surface tension of a solid at the solid-vacuum interface, an evaluation from adsorption and wall potential calculations.

    PubMed

    Jakubov, Tim S; Mainwaring, David E

    2007-03-15

    A method for the evaluation of quantities that are experimentally inaccessible such as the surface tension at the solid-vacuum interface and the superficial tension of the fluid in contact with the solid is presented. The approach is based on consideration of an equilibrium of a fluid in solid capillary wherein a balance between surface and capillary forces has been replaced by conceptual alternative interfacial and centrifugal forces. This approach involves the simultaneous numerical solution one the special forms of the Gibbs equation for solid-fluid interface and a generalized Kelvin equation derived earlier. The latter equation takes into account interactions between the solid thick cylindrical wall and confined fluid, this body-body interaction potential has been primarily calculated using the Lennard-Jones (6-12) expression for the atom-atom pair potentials and expressed by hypergeometrical functions having good convergences. All numerical calculations shown here have been performed for the model graphite-argon system at 90 K. Finally, an analysis of the accuracy of the proposed method is considered.

  6. Two-electron R-matrix approach to calculations of potential-energy curves of long-range Rydberg molecules

    NASA Astrophysics Data System (ADS)

    Tarana, Michal; Čurík, Roman

    2016-05-01

    We introduce a computational method developed for study of long-range molecular Rydberg states of such systems that can be approximated by two electrons in a model potential of the atomic cores. The method is based on a two-electron R-matrix approach inside a sphere centered on one of the atoms. The wave function is then connected to a Coulomb region outside the sphere via a multichannel version of the Coulomb Green's function. This approach is applied to a study of Rydberg states of Rb2 for internuclear separations R from 40 to 320 bohrs and energies corresponding to n from 7 to 30. We report bound states associated with the low-lying 3Po resonance and with the virtual state of the rubidium atom that turn into ion-pair-like bound states in the Coulomb potential of the atomic Rydberg core. The results are compared with previous calculations based on single-electron models employing a zero-range contact-potential and short-range modele potential. Czech Science Foundation (Project No. P208/14-15989P).

  7. Calculation of Permeability Change Due to Coupled Thermal-Hydrological-Mechanical Effects

    SciTech Connect

    S. Blair

    2000-06-28

    The purpose of this calculation is to provide a bounding estimate of how thermal-hydrological-mechanical (THM) behavior of rock in the region surrounding an emplacement drift in a Monitored Geologic Repository subsurface facility may affect the permeability of fractures in the rock mass forming the region. The bounding estimate will provide essential input to performance assessment analysis of the potential repository system. This calculation also supports the Near Field Environment Process Model Report (NFE PMR) and will contribute to Site Recommendation. The geologic unit being considered as a potential repository horizon at Yucca Mountain, Nevada lies within a fractured, densely welded ash-flow tuff located in the Topopah Spring Tuff member of the Paintbrush Group. Fractures form the primary conduits for fluid flow in the rock mass. Considerable analysis has been performed to characterize the thermal-hydrologic (TH) behavior of this rock unit (e.g., CRWMS M&O 2000a, pp. 83-87), and recently the dual permeability model (DKM) has proved to be an effective tool for predicting TH behavior (CRWMS M&O 2000a). The DKM uses fracture permeability as a primary input parameter, and it is well known that fracture permeability is strongly dependent on fracture deformation (Brown. 1995). Consequently, one major unknown is how deformation during heating and cooling periods may change fracture permeability. Opening of fractures increases their permeability, whereas closing reduces permeability. More importantly, shear displacement on fractures increases their permeability, and fractures undergoing shear are likely to conduct fluids. This calculation provides a bounding estimate of how heating and cooling in the rock surrounding an emplacement drift and the resulting mechanical deformation may affect the fracture permeability of the rock.

  8. Potential adverse health effects of wood smoke

    SciTech Connect

    Pierson, W.E.; Koenig, J.Q.; Bardana, E.J. Jr.

    1989-09-01

    The use of wood stoves has increased greatly in the past decade, causing concern in many communities about the health effects of wood smoke. Wood smoke is known to contain such compounds as carbon monoxide, nitrogen oxides, sulfur oxides, aldehydes, polycyclic aromatic hydrocarbons, and fine respirable particulate matter. All of these have been shown to cause deleterious physiologic responses in laboratory studies in humans. Some compounds found in wood smoke--benzo(a)pyrene and formaldehyde--are possible human carcinogens. Fine particulate matter has been associated with decreased pulmonary function in children and with increased chronic lung disease in Nepal, where exposure to very high amounts of wood smoke occurs in residences. Wood smoke fumes, taken from both outdoor and indoor samples, have shown mutagenic activity in short-term bioassay tests. Because of the potential health effects of wood smoke, exposure to this source of air pollution should be minimal.29 references.

  9. Conservatism in effective dose calculations for accident events involving fuel reprocessing waste tanks.

    PubMed

    Bevelacqua, J J

    2011-07-01

    Conservatism in the calculation of the effective dose following an airborne release from an accident involving a fuel reprocessing waste tank is examined. Within the regulatory constraints at the Hanford Site, deterministic effective dose calculations are conservative by at least an order of magnitude. Deterministic calculations should be used with caution in reaching decisions associated with required safety systems and mitigation philosophy related to the accidental release of airborne radioactive material to the environment.

  10. Using BRDFs for accurate albedo calculations and adjacency effect corrections

    SciTech Connect

    Borel, C.C.; Gerstl, S.A.W.

    1996-09-01

    In this paper the authors discuss two uses of BRDFs in remote sensing: (1) in determining the clear sky top of the atmosphere (TOA) albedo, (2) in quantifying the effect of the BRDF on the adjacency point-spread function and on atmospheric corrections. The TOA spectral albedo is an important parameter retrieved by the Multi-angle Imaging Spectro-Radiometer (MISR). Its accuracy depends mainly on how well one can model the surface BRDF for many different situations. The authors present results from an algorithm which matches several semi-empirical functions to the nine MISR measured BRFs that are then numerically integrated to yield the clear sky TOA spectral albedo in four spectral channels. They show that absolute accuracies in the albedo of better than 1% are possible for the visible and better than 2% in the near infrared channels. Using a simplified extensive radiosity model, the authors show that the shape of the adjacency point-spread function (PSF) depends on the underlying surface BRDFs. The adjacency point-spread function at a given offset (x,y) from the center pixel is given by the integral of transmission-weighted products of BRDF and scattering phase function along the line of sight.

  11. Band-structure calculations of noble-gas and alkali halide solids using accurate Kohn-Sham potentials with self-interaction correction

    SciTech Connect

    Li, Y.; Krieger, J.B. ); Norman, M.R. ); Iafrate, G.J. )

    1991-11-15

    The optimized-effective-potential (OEP) method and a method developed recently by Krieger, Li, and Iafrate (KLI) are applied to the band-structure calculations of noble-gas and alkali halide solids employing the self-interaction-corrected (SIC) local-spin-density (LSD) approximation for the exchange-correlation energy functional. The resulting band gaps from both calculations are found to be in fair agreement with the experimental values. The discrepancies are typically within a few percent with results that are nearly the same as those of previously published orbital-dependent multipotential SIC calculations, whereas the LSD results underestimate the band gaps by as much as 40%. As in the LSD---and it is believed to be the case even for the exact Kohn-Sham potential---both the OEP and KLI predict valence-band widths which are narrower than those of experiment. In all cases, the KLI method yields essentially the same results as the OEP.

  12. 30 CFR 254.44 - Calculating response equipment effective daily recovery capacities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... recovery capacities. 254.44 Section 254.44 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION... Calculating response equipment effective daily recovery capacities. (a) You are required by § 254.26(d)(1) to calculate the effective daily recovery capacity of the response equipment identified in your response...

  13. Angle-resolved effective potentials for disk-shaped molecules

    SciTech Connect

    Heinemann, Thomas Klapp, Sabine H. L.; Palczynski, Karol Dzubiella, Joachim

    2014-12-07

    We present an approach for calculating coarse-grained angle-resolved effective pair potentials for uniaxial molecules. For integrating out the intramolecular degrees of freedom we apply umbrella sampling and steered dynamics techniques in atomistically-resolved molecular dynamics (MD) computer simulations. Throughout this study we focus on disk-like molecules such as coronene. To develop the methods we focus on integrating out the van der Waals and intramolecular interactions, while electrostatic charge contributions are neglected. The resulting coarse-grained pair potential reveals a strong temperature and angle dependence. In the next step we fit the numerical data with various Gay-Berne-like potentials to be used in more efficient simulations on larger scales. The quality of the resulting coarse-grained results is evaluated by comparing their pair and many-body structure as well as some thermodynamic quantities self-consistently to the outcome of atomistic MD simulations of many-particle systems. We find that angle-resolved potentials are essential not only to accurately describe crystal structures but also for fluid systems where simple isotropic potentials start to fail already for low to moderate packing fractions. Further, in describing these states it is crucial to take into account the pronounced temperature dependence arising in selected pair configurations due to bending fluctuations.

  14. Angle-resolved effective potentials for disk-shaped molecules.

    PubMed

    Heinemann, Thomas; Palczynski, Karol; Dzubiella, Joachim; Klapp, Sabine H L

    2014-12-07

    We present an approach for calculating coarse-grained angle-resolved effective pair potentials for uniaxial molecules. For integrating out the intramolecular degrees of freedom we apply umbrella sampling and steered dynamics techniques in atomistically-resolved molecular dynamics (MD) computer simulations. Throughout this study we focus on disk-like molecules such as coronene. To develop the methods we focus on integrating out the van der Waals and intramolecular interactions, while electrostatic charge contributions are neglected. The resulting coarse-grained pair potential reveals a strong temperature and angle dependence. In the next step we fit the numerical data with various Gay-Berne-like potentials to be used in more efficient simulations on larger scales. The quality of the resulting coarse-grained results is evaluated by comparing their pair and many-body structure as well as some thermodynamic quantities self-consistently to the outcome of atomistic MD simulations of many-particle systems. We find that angle-resolved potentials are essential not only to accurately describe crystal structures but also for fluid systems where simple isotropic potentials start to fail already for low to moderate packing fractions. Further, in describing these states it is crucial to take into account the pronounced temperature dependence arising in selected pair configurations due to bending fluctuations.

  15. Angle-resolved effective potentials for disk-shaped molecules

    NASA Astrophysics Data System (ADS)

    Heinemann, Thomas; Palczynski, Karol; Dzubiella, Joachim; Klapp, Sabine H. L.

    2014-12-01

    We present an approach for calculating coarse-grained angle-resolved effective pair potentials for uniaxial molecules. For integrating out the intramolecular degrees of freedom we apply umbrella sampling and steered dynamics techniques in atomistically-resolved molecular dynamics (MD) computer simulations. Throughout this study we focus on disk-like molecules such as coronene. To develop the methods we focus on integrating out the van der Waals and intramolecular interactions, while electrostatic charge contributions are neglected. The resulting coarse-grained pair potential reveals a strong temperature and angle dependence. In the next step we fit the numerical data with various Gay-Berne-like potentials to be used in more efficient simulations on larger scales. The quality of the resulting coarse-grained results is evaluated by comparing their pair and many-body structure as well as some thermodynamic quantities self-consistently to the outcome of atomistic MD simulations of many-particle systems. We find that angle-resolved potentials are essential not only to accurately describe crystal structures but also for fluid systems where simple isotropic potentials start to fail already for low to moderate packing fractions. Further, in describing these states it is crucial to take into account the pronounced temperature dependence arising in selected pair configurations due to bending fluctuations.

  16. Force and heat current formulas for many-body potentials in molecular dynamics simulations with applications to thermal conductivity calculations

    NASA Astrophysics Data System (ADS)

    Fan, Zheyong; Pereira, Luiz Felipe C.; Wang, Hui-Qiong; Zheng, Jin-Cheng; Donadio, Davide; Harju, Ari

    2015-09-01

    We derive expressions of interatomic force and heat current for many-body potentials such as the Tersoff, the Brenner, and the Stillinger-Weber potential used extensively in molecular dynamics simulations of covalently bonded materials. Although these potentials have a many-body nature, a pairwise force expression that follows Newton's third law can be found without referring to any partition of the potential. Based on this force formula, a stress applicable for periodic systems can be unambiguously defined. The force formula can then be used to derive the heat current formulas using a natural potential partitioning. Our heat current formulation is found to be equivalent to most of the seemingly different heat current formulas used in the literature, but to deviate from the stress-based formula derived from two-body potential. We validate our formulation numerically on various systems described by the Tersoff potential, namely three-dimensional silicon and diamond, two-dimensional graphene, and quasi-one-dimensional carbon nanotube. The effects of cell size and production time used in the simulation are examined.

  17. Probing calculated O2+ potential-energy curves with an XUV-IR pump-probe experiment

    NASA Astrophysics Data System (ADS)

    Cörlin, Philipp; Fischer, Andreas; Schönwald, Michael; Sperl, Alexander; Mizuno, Tomoya; Thumm, Uwe; Pfeifer, Thomas; Moshammer, Robert

    2015-04-01

    We study dissociative photoionization of molecular oxygen in a kinematically complete XUV-IR pump-probe experiment. Detecting charged fragments and photoelectrons in coincidence using a reaction microscope, we observe a pump-probe delay-dependent yield of very low energetic O+ ions which oscillates with a period of 40 fs . This feature is caused by a time-dependent vibrational wave packet in the potential of the binding O2+(a Π4u) state, which is probed by resonant absorption of a single infrared photon to the weakly repulsive O2+(f Π4g) state. By quantitative comparison of the experimental kinetic-energy-release (KER) and quantum-beat (QB) spectra with the results of a coupled-channel simulation, we are able to discriminate between the calculated adiabatic O2+ potential-energy curves (PECs) of Marian et al. [Marian, Marian, Peyerimhoff, Hess, Buenker, and Seger, Mol. Phys. 46, 779 (1982), 10.1080/00268978200101591] and Magrakvelidze et al. [Magrakvelidze, Aikens, and Thumm, Phys. Rev. A 86, 023402 (2012), 10.1103/PhysRevA.86.023402]. In general, we find a good agreement between experimental and simulated KER and QB spectra. However, we could not reproduce all features of the experimental data with these PECs. In contrast, adjusting a Morse potential to the experimental data, most features of the experimental spectra are well reproduced by our simulation. By comparing this Morse potential to theoretically predicted PECs, we demonstrate the sensitivity of our experimental method to small changes in the shape of the binding potential.

  18. Pyridine adsorbed on H-Faujasite zeolite: Electrostatic effect of the infinite crystal lattice calculated from a point charge representation

    NASA Astrophysics Data System (ADS)

    Injan, Natcha; Pannorad, Narong; Probst, Michael; Limtrakul, Jumras

    Calculations on cluster models of infinite systems require less computational effort and are technically simpler than periodic calculations, but they neglect, among other contributions, the effect of long-range electrostatic interaction from the infinite crystal lattice. In the case of zeolites, such contributions can be important for adsorption processes and surface reactions. We test a simple method for including this effect into the calculation by generating a finite number of point charges placed on the lattice sites. These point charges reproduce the infinite electrostatic potential at the chemically important region of the zeolite. We apply this method to the adsorption of pyridine on H-Faujasite zeolite. The embedding method gives an adsorption energy of -42.8 kcal/mol, which agrees well with the experimental value of -43.1 ± 1 kcal/mol. Without the electrostatic effect of the crystal field, the value is ˜9 kcal/mol higher.

  19. Why can water cages adsorb aqueous methane? A potential of mean force calculation on hydrate nucleation mechanisms.

    PubMed

    Guo, Guang-Jun; Li, Meng; Zhang, Yi-Gang; Wu, Chang-Hua

    2009-11-28

    By performing constrained molecular dynamics simulations in the methane-water system, we successfully calculated the potential of mean force (PMF) between a dodecahedral water cage (DWC) and dissolved methane for the first time. As a function of the distance between DWC and methane, this is characterized by a deep well at approximately 6.2 A and a shallow well at approximately 10.2 A, separated by a potential barrier at approximately 8.8 A. We investigated how the guest molecule, cage rigidity and the cage orientation affected the PMF. The most important finding is that the DWC itself strongly adsorbs methane and the adsorption interaction is independent of the guests. Moreover, the activation energy of the DWC adsorbing methane is comparable to that of hydrogen bonds, despite differing by a factor of approximately 10% when considering different water-methane interaction potentials. We explain that the cage-methane adsorption interaction is a special case of the hydrophobic interaction between methane molecules. The strong net attraction in the DWC shell with radii between 6.2 and 8.8 A may act as the inherent driving force that controls hydrate formation. A cage adsorption hypothesis for hydrate nucleation is thus proposed and discussed.

  20. Calculation of total effective dose equivalent and collective dose in the event of a LOCA in Bushehr Nuclear Power Plant.

    PubMed

    Raisali, G; Davilu, H; Haghighishad, A; Khodadadi, R; Sabet, M

    2006-01-01

    In this research, total effective dose equivalent (TEDE) and collective dose (CD) are calculated for the most adverse potential accident in Bushehr Nuclear Power Plant from the viewpoint of radionuclides release to the environment. Calculations are performed using a Gaussian diffusion model and a slightly modified version of AIREM computer code to adopt for conditions in Bushehr. The results are comparable with the final safety analysis report which used DOZAM code. Results of our calculations show no excessive dose in populated regions. Maximum TEDE is determined to be in the WSW direction. CD in the area around the nuclear power plant by a distance of 30 km (138 man Sv) is far below the accepted limits. Thyroid equivalent dose is also calculated for the WSW direction (maximum 25.6 mSv) and is below the limits at various distances from the reactor stack.

  1. Computer program for calculating full potential transonic, quasi-three-dimensional flow through a rotating turbomachinery blade row

    NASA Technical Reports Server (NTRS)

    Farrell, C. A.

    1982-01-01

    A fast, reliable computer code is described for calculating the flow field about a cascade of arbitrary two dimensional airfoils. The method approximates the three dimensional flow in a turbomachinery blade row by correcting for stream tube convergence and radius change in the throughflow direction. A fully conservative solution of the full potential equation is combined with the finite volume technique on a body-fitted periodic mesh, with an artificial density imposed in the transonic region to insure stability and the capture of shock waves. The instructions required to set up and use the code are included. The name of the code is QSONIC. A numerical example is also given to illustrate the output of the program.

  2. Calculations of H2O microwave line broadening in collisions with He atoms - Sensitivity to potential energy surfaces

    NASA Technical Reports Server (NTRS)

    Green, Sheldon; Defrees, D. J.; Mclean, A. D.

    1991-01-01

    Theoretical computations of broadening parameters are reported for three microwave lines of H2O in a bath of He atoms. The potential-energy surfaces employed are corrected for basis-set superposition error, and their reliability is checked by repeating the calculations with a different basis set for orbital expansion. The results are presented in extensive tables and discussed in detail. The corrections applied are shown to have a significant impact on the accuracy of the room-temperature broadenings determined: 8.9 sq A for the 22.2-GHz line, 11.8 sq A for the 183,3-GHz line, and 10.0 sq A for the 380.2-GHz line, in good agreement with published experimental data. The importance of collisional broadening for the atmospheric transmission of radiation and for remote-sensing applications is indicated.

  3. Anharmonic Rovibrational Calculations of Singlet Cyclic C4 Using a New Ab Initio Potential and a Quartic Force

    NASA Technical Reports Server (NTRS)

    Wang, Xiaohong; Huang, Xinchuan; Bowman, Joel M.; Lee, Timothy J.

    2013-01-01

    We report a CCSD(T)/cc-pCV5Z quartic force field (QFF) and a semi-global CCSD(T)-F12b/aug-cc-pVTZ potential energy surface (PES) for singlet, cyclic C4. Vibrational fundamentals, combinations and overtones are obtained using vibrational second-order perturbation theory (VPT2) and the vibrational configurationinteraction (VCI) approach. Agreement is within 10 cm(exp -1) between the VCI calculated fundamentals on the QFF and PES using the MULTIMODE (MM) program, and VPT2 and VCI results agree for the fundamentals. The agreement between VPT2- QFF and MM-QFF results is also good for the C4 combinations and overtones. The J = 1 and J = 2 rovibrational energies are reported from both VCI (MM) on the PES and VPT2 on the QFF calculations. The spectroscopic constants of (12)C4 and two C(sub 2v)-symmetry, single (13)C-substituted isotopologues are presented, which may help identification of cyclic C4 in future experimental analyses or astronomical observations.

  4. Potential of mean force calculation of the free energy of adsorption of Type I winter flounder antifreeze protein on ice

    NASA Astrophysics Data System (ADS)

    Battle, Keith; Alan Salter, E.; Wesley Edmunds, R.; Wierzbicki, Andrzej

    2010-04-01

    Antifreeze proteins (AFPs) are a unique class of proteins that inhibit ice growth without changing the melting point of ice. In this work, we study the detailed molecular mechanism of interactions between the hydrophobic side of the winter flounder (WF) AFP and two mutants, AAAA and SSSS, in which threonine residues are substituted by serines and alanines, respectively. Umbrella sampling molecular dynamics simulations of the separation of the proteins from the (2 0 1) surface in an explicit water box is carried out to calculate the potential of mean force free energies of adsorption using AMBER10i. We estimate wild-type WF's free energy of adsorption to ice to be about -12.0 kcal/mol. Gas-phase pseudopotential plane-wave calculations of methane adsorption onto select surfaces of ice are also carried out under periodic boundary conditions to address the possible enthalpic role of WF's methyl groups in binding. The contributions of hydrophobic residues to the free energy of adsorption are discussed.

  5. Theoretical Calculations on the Feasibility of Microalgal Biofuels: Utilization of Marine Resources Could Help Realizing the Potential of Microalgae

    PubMed Central

    Park, Hanwool

    2016-01-01

    Abstract Microalgae have long been considered as one of most promising feedstocks with better characteristics for biofuels production over conventional energy crops. There have been a wide range of estimations on the feasibility of microalgal biofuels based on various productivity assumptions and data from different scales. The theoretical maximum algal biofuel productivity, however, can be calculated by the amount of solar irradiance and photosynthetic efficiency (PE), assuming other conditions are within the optimal range. Using the actual surface solar irradiance data around the world and PE of algal culture systems, maximum algal biomass and biofuel productivities were calculated, and feasibility of algal biofuel were assessed with the estimation. The results revealed that biofuel production would not easily meet the economic break‐even point and may not be sustainable at a large‐scale with the current algal biotechnology. Substantial reductions in the production cost, improvements in lipid productivity, recycling of resources, and utilization of non‐conventional resources will be necessary for feasible mass production of algal biofuel. Among the emerging technologies, cultivation of microalgae in the ocean shows great potentials to meet the resource requirements and economic feasibility in algal biofuel production by utilizing various marine resources. PMID:27782372

  6. Collisional excitation of CH(X²Π) by He: new ab initio potential energy surfaces and scattering calculations.

    PubMed

    Marinakis, Sarantos; Dean, Indigo Lily; Kłos, Jacek; Lique, François

    2015-09-07

    We present a new set of potential energy surfaces (PESs) for the CH(X(2)Π)-He van der Waals system. Ab initio calculations of the CH-He PES were carried out using the open-shell single- and double-excitation coupled cluster approach with non-iterative perturbational treatment of triple excitations [RCCSD(T)]. The augmented correlation-consistent polarized valence quadruple-zeta (aug-cc-pVQZ) basis set was employed augmented by mid-bond functions. Integral cross sections for the rotational excitation in CH-He collisions were calculated using the new PES and compared with available experimental results. The newly constructed PES reproduces the available experimental results for CH(X(2)Π, v = 0)-He collisions better than any previously available PES. Differential cross sections (DCS) are presented for the first time for this system and discussed within the context of rotational rainbows. Finally, our work provides the first rate thermal coefficients for this system that are crucially needed for astrochemical modelling and future anticipated experiments in CH(X(2)Π)-He collisions.

  7. Ab initio calculations, potential representation and vibrational dynamics of He2Br2 van der Waals complex.

    PubMed

    Valdés, Alvaro; Prosmiti, Rita; Villarreal, Pablo; Delgado-Barrio, Gerardo

    2005-01-22

    An intermolecular potential energy surface for He(2)Br(2) complex in the ground state is calculated at the levels of fourth-order (MP4) Moller-Plesset and coupled-cluster [CCSD(T)] approximations, using large-core pseudopotential for Br atoms and the aug-cc-pV5Z basis set for He. The surface is characterized by three minima and the minimum energy pathways through them. The global minimum corresponds to a linear He-Br(2)-He configuration, while the two other ones to "police-nightstick" and tetrahedral structures. The corresponding well depths are -90.39/-89.18, -81.23/-80.78 and -74.40/-74.02 cm(-1), respectively, at MP4/CCSD(T) levels of theory. It is found that results obtained by summing three-body parametrized HeBr(2) interactions and the He-He interaction are in very good accord with the corresponding MP4/CSSD(T) configuration energies of the He(2)Br(2). Variational calculations using a sum of three-body interactions are presented to study the bound states of the vdW He(2)Br(2) complex. The binding energy D(0) and the corresponding vibrationally averaged structure are determined for different isomers of the cluster and their comparison with the available experimental data is discussed.

  8. Theoretical Calculations on the Feasibility of Microalgal Biofuels: Utilization of Marine Resources Could Help Realizing the Potential of Microalgae.

    PubMed

    Park, Hanwool; Lee, Choul-Gyun

    2016-11-01

    Microalgae have long been considered as one of most promising feedstocks with better characteristics for biofuels production over conventional energy crops. There have been a wide range of estimations on the feasibility of microalgal biofuels based on various productivity assumptions and data from different scales. The theoretical maximum algal biofuel productivity, however, can be calculated by the amount of solar irradiance and photosynthetic efficiency (PE), assuming other conditions are within the optimal range. Using the actual surface solar irradiance data around the world and PE of algal culture systems, maximum algal biomass and biofuel productivities were calculated, and feasibility of algal biofuel were assessed with the estimation. The results revealed that biofuel production would not easily meet the economic break-even point and may not be sustainable at a large-scale with the current algal biotechnology. Substantial reductions in the production cost, improvements in lipid productivity, recycling of resources, and utilization of non-conventional resources will be necessary for feasible mass production of algal biofuel. Among the emerging technologies, cultivation of microalgae in the ocean shows great potentials to meet the resource requirements and economic feasibility in algal biofuel production by utilizing various marine resources.

  9. Liquid drops on a surface: Using density functional theory to calculate the binding potential and drop profiles and comparing with results from mesoscopic modelling

    NASA Astrophysics Data System (ADS)

    Hughes, Adam P.; Thiele, Uwe; Archer, Andrew J.

    2015-02-01

    The contribution to the free energy for a film of liquid of thickness h on a solid surface due to the interactions between the solid-liquid and liquid-gas interfaces is given by the binding potential, g(h). The precise form of g(h) determines whether or not the liquid wets the surface. Note that differentiating g(h) gives the Derjaguin or disjoining pressure. We develop a microscopic density functional theory (DFT) based method for calculating g(h), allowing us to relate the form of g(h) to the nature of the molecular interactions in the system. We present results based on using a simple lattice gas model, to demonstrate the procedure. In order to describe the static and dynamic behaviour of non-uniform liquid films and drops on surfaces, a mesoscopic free energy based on g(h) is often used. We calculate such equilibrium film height profiles and also directly calculate using DFT the corresponding density profiles for liquid drops on surfaces. Comparing quantities such as the contact angle and also the shape of the drops, we find good agreement between the two methods. We also study in detail the effect on g(h) of truncating the range of the dispersion forces, both those between the fluid molecules and those between the fluid and wall. We find that truncating can have a significant effect on g(h) and the associated wetting behaviour of the fluid.

  10. Effects of (18)O isotopic substitution on the rotational spectra and potential splitting in the OH-OH2 complex: improved measurements for (16)OH-(16)OH2 and (18)OH-(18)OH2, new measurements for the mixed isotopic forms, and ab initio calculations of the (2)A'-(2)A" energy separation.

    PubMed

    Brauer, Carolyn S; Sedo, Galen; Dahlke, Erin; Wu, Shenghai; Grumstrup, Erik M; Leopold, Kenneth R; Marshall, Mark D; Leung, Helen O; Truhlar, Donald G

    2008-09-14

    Rotational spectra have been observed for (16)OH-(16)OH(2), (16)OH-(18)OH(2), (18)OH-(16)OH(2), and (18)OH-(18)OH(2) with complete resolution of the nuclear magnetic hyperfine structure from the OH and water protons. Transition frequencies have been analyzed for each isotopic form using the model of Marshall and Lester [J. Chem. Phys. 121, 3019 (2004)], which accounts for partial quenching of the OH orbital angular momentum and the decoupling of the electronic spin from the OH molecular axis. The analysis accounts for both the ground ((2)A(')) and first electronically excited ((2)A(")) states of the system, which correspond roughly to occupancy by the odd electron in the p(y) and p(x) orbitals, respectively (where p(y) is in the mirror plane of the complex and p(x) is perpendicular to p(y) and the OH bond axis). The spectroscopic measurements yield a parameter, rho, which is equal to the vibrationally averaged (2)A(')-(2)A(") energy separation that would be obtained if spin-orbit coupling and rotation were absent. For the parent species, rho = -146.560 27(9) cm(-1). (18)O substitution on the water increases /rho/ by 0.105 29(10) cm(-1), while substitution on the OH decreases /rho/ by 0.068 64(11) cm(-1). In the OH-OH(2) complex, the observed value of rho implies an energy spacing between the rotationless levels of the (2)A(') and (2)A(") states of 203.76 cm(-1). Ab initio calculations have been performed with quadratic configuration interaction with single and double excitations (QCISD), as well as multireference configuration interaction (MRCI), both with and without the inclusion of spin-orbit coupling. The MRCI calculations with spin-orbit coupling perform the best, giving a value of 171 cm(-1) for the (2)A(')-(2)A(") energy spacing at the equilibrium geometry. Calculations along the large-amplitude bending coordinates of the OH and OH(2) moieties within the complex are presented and are shown to be consistent with a vibrational averaging effect as the main

  11. Effective Semi-empirical Interaction Potential for Dusty Particles

    SciTech Connect

    Ramazanov, T. S.; Dzhumagulova, K. N.; Omarbakiyeva, Y. A.; Dosbolayev, M. K.; Jumabekov, A. N.

    2008-09-07

    The Poisson equation was numerically solved on the basis of the experimental correlation functions of dusty particles. Calculations were performed with real parameters of dusty plasma. Reconstructed potential has oscillated character; the minimums coincide to maximums of correlation functions.

  12. Measurement effects on the calculation of in-flight thrust for an F404 turbofan engine

    NASA Technical Reports Server (NTRS)

    Conners, Timothy R.

    1989-01-01

    A study was performed that investigates parameter measurement effects on calculated in-flight thrust for the General Electric F404-GE-400 afterburning turbofan engine which powered the X-29A forward-swept wing research aircraft. Net-thrust uncertainty and influence coefficients were calculated and are presented. Six flight conditions were analyzed at five engine power settings each. Results were obtained using the mass flow-temperature and area-pressure thrust calculation methods, both based on the commonly used gas generator technique. Thrust uncertainty was determined using a common procedure based on the use of measurement uncertainty and influence coefficients. The effects of data nonlinearity on the uncertainty calculation procedure were studied and results are presented. The advantages and disadvantages of using this particular uncertainty procedure are discussed. A brief description of the thrust-calculation technique along with the uncertainty calculation procedure is included.

  13. Effective Potential Energies and Transport Cross Sections for Atom-Molecule Interactions of Nitrogen and Nitrogen

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene; Arnold, Jim (Technical Monitor)

    2001-01-01

    The potential energy surfaces for H2-N and N2-N interactions are calculated by accurate ab initio methods and applied to determine transport data. The results confirm that an effective potential energy for accurately determining transport properties can be calculated using a single orientation. A simple method is developed to determine the dispersion coefficients of effective potential energies Effective potential energies required for O2-O collisions are determ=ined. The H2-N, N2-N, O2-H, and O2-O collision integrals are calculated and tabulated for a large range of temperatures. The theoretical values of the N2-N and O2-O diffusion coefficients compare well with measured data available at room temperature.

  14. An Effective Method to Accurately Calculate the Phase Space Factors for β - β - Decay

    DOE PAGES

    Neacsu, Andrei; Horoi, Mihai

    2016-01-01

    Accurate calculations of the electron phase space factors are necessary for reliable predictions of double-beta decay rates and for the analysis of the associated electron angular and energy distributions. We present an effective method to calculate these phase space factors that takes into account the distorted Coulomb field of the daughter nucleus, yet it allows one to easily calculate the phase space factors with good accuracy relative to the most exact methods available in the recent literature.

  15. Advanced Quantum Mechanical Calculation of Superheavy Ions: Energy Levels, Radiation and Finite Nuclear Size Effects

    SciTech Connect

    Glushkov, Alexander V.; Gurnitskaya, E.P.; Loboda, A.V.

    2005-10-26

    Advanced quantum approach to calculation of spectra for superheavy ions with an account of relativistic, correlation, nuclear, radiative effects is developed and based on the gauge invariant quantum electrodynamics (QED) perturbation theory (PT). The Lamb shift polarization part is calculated in the Ueling approximation, self-energy part is defined within a new non-PT procedure of Ivanov-Ivanova. Calculation results for energy levels, hyperfine structure parameters of some heavy elements ions are presented.

  16. Pair potential modeling of atomic rearrangement in GeTe-Sb2Te3 superlattice via first-principles calculations

    NASA Astrophysics Data System (ADS)

    Song, Young-Sun; Kim, Jeongwoo; Jhi, Seung-Hoon

    2017-03-01

    We study the nature of atomic rearrangement during the phase-change processes in the superlattice of GeTe and Sb2Te3 by developing a new approach combining the first-principles calculations and a pair-potential model. We investigate the phase-change process in terms of energy changes from individual pairs or atoms by applying the pair (atom)-projection analysis to the intermediate structures between the initial and final states obtained from the climbing-image nudged elastic band method. Among the prototypical steps that can lead to the atomic layer rearrangement, we find that the required energy for the phase change is dominated by specific atoms responsible for the intrinsic energy barrier and the response to external pressure. Our approach of combining the first-principles methods and pair potential model with the projecting analysis can be a very efficient method in revealing the detailed atomic motions and the mechanism of fast atomic transition of the phase-change materials.

  17. Landauer's blow-torch effect in systems with entropic potential

    NASA Astrophysics Data System (ADS)

    Das, Moupriya; Ray, Deb Shankar

    2015-11-01

    We consider local heating of a part of a two-dimensional bilobal enclosure of a varying cross section confining a system of overdamped Brownian particles. Since varying cross section in higher dimension results in an entropic potential in lower dimension, local heating alters the relative stability of the entropic states. We show that this blow-torch effect modifies the entropic potential in a significant way so that the resultant effective entropic potential carries both the features of variation of width of the confinement and variation of temperature along the direction of transport. The reduced probability distribution along the direction of transport calculated by full numerical simulations in two dimensions agrees well with our analytical findings. The extent of population transfer in the steady state quantified in terms of the integrated probability of residence of the particles in either of the two lobes exhibits interesting variation with the mean position of the heated region. Our study reveals that heating around two particular zones of a given lobe maximizes population transfer to the other.

  18. Spin-orbit effects in iridates via electronic structure calculations: effects of tension and dimensionality

    NASA Astrophysics Data System (ADS)

    Pardo, Victor; Lado, Jose L.

    2015-03-01

    Ab initio calculations have been performed in 5d5-electron-based oxides in the large spin-orbit coupling limit. Our work tries to analyze the effects of strain and dimensionality in the electronic structure properties of iridates with Ir4+:5d5 electronic configuration in order to understand the different set of properties these materials present: they can be either metals or insulators, e.g. We focus on studying how close to the fully ionic jeff=1/2 limit the system is by analyzing the Lz/Sz ratio. We observe that it varies continuously as a function of strain or pressure, changing drastically with relatively small variations. We also analyze what effects on the band structure accompany this variation. In order to do this, we needed to include a full non-collinearity in the calculation of spin-orbit interaction. We have explored SrIrO3, Sr2IrO4, Sr3Ir2O7, thin films of SrIrO3 so as to analyze the dimensionality effects and the structural implications. We acknowledge support of the MINECO through the Ramon y Cajal Program, Xunta de Galicia through Project No. EM2013/037 and the EU through the Marie-Curie ITN ``Spinograph''.

  19. Calculation of 29Si NMR shifts of silicate complexes with carbohydrates, amino acids, and muhicarboxylic acids: potential role in biological silica utilization

    NASA Astrophysics Data System (ADS)

    Sahai, Nita

    2004-01-01

    The existence of ether or ester-like complexes of silicate with organic compounds has long been debated in the literature on biological utilization of silicon. Comparison of theoretically calculated 29Si NMR chemical shifts for such complexes with experimentally measured values in biological systems could provide a diagnostic tool for identifying which, if any of these molecules exist under physiological conditions. Results are presented here for ab initio molecular orbital calculations of 29Si NMR shifts and formation energies of silicate complexes with polyalcohols, sugar-acids, pyranose sugars, amino acids and multicarboxylic acids. The effects of functional group and molecular structure including ligand size, denticity, ring size, silicon polymerization and coordination number on calculated 29Si shifts were considered. The potential role of such compounds in biological silica utilization pathways is discussed. 29Si NMR shifts and energies were calculated at the HF/6-311+G(2d,p)//HF/6-31G* level. The main result is that only five-membered rings containing penta- and hexa-coordinated Si can explain experimentally observed resonances at ˜ -101 and -141 ppm. Further, the heptet observed in 1H- 29Si coupled spectra can only be explained by structures where Si bonds to oxygens atoms in H-C-O-Si linkages with six symmetrically equivalent H atoms. While compounds containing quadra-coordinated silicon may exist in intracellular silicon storage pools within diatoms, calculated reaction energies suggest that the organism has no thermodynamic advantage in taking up extracellular organ-silicate compounds, instead of silicic acid, from the ambient aqueous environment. Hyper-coordinated complexes are deemed unlikely for transport and storage, though they may exist as transient reactive intermediates or activated complexes during enzymatically- catalyzed silica polymerization, as known previously from sol-gel silica synthesis studies.

  20. Quantum mechanics of effective potential at a metal surface

    NASA Astrophysics Data System (ADS)

    Solomatin, Alexander

    is a finite correlation-kinetic contribution. It is only for metals of high density that the KS exchange potential is the same as its Pauli component. We have also determined the structure of the Pauli-correlation and correlation-kinetic components about the surface extending into the metal bulk. Once again, the KS exchange potential is comprised primarily of its Pauli component, the correlation-kinetic part being an order of magnitude smaller. Similar calculations for atoms then show the intershell bumps in the KS exchange potential to be due to correlation-kinetic effects. We have also constructed an approximate KS exchange potential for the metal surface via the concept of restricted functional differentiation developed by us. This potential is then shown to satisfy essentially all integral and differential sum rules for this property, as well as possess the correct asymptotic structure in the metal bulk and vacuum regions. Finally, we have constructed separate approximate KS exchange and correlation energy functionals such that the potentials improve upon the local density approximation by possessing the correct asymptotic structure in the vacuum.

  1. A method for the evaluation of dose-effect data utilizing a programmable calculator.

    PubMed

    Carmines, E L; Carchman, R A; Borzelleca, J F

    1980-08-01

    A program for the calculation of the median effective dose (ED50) and the slope of the dose-effect line was developed for a programmable calculator. The method employed approximated the solution described by Bliss. Experimental data were evaluated and compared to both hand calculated results and results of other computer methods. This method produced results which differed from other computer methods by less than 1 percent. This program provided information necessary for the test for parallelism and estimate of relative potency of two dose-effect lines.

  2. Prediction of Thermal Properties and Effect of OH Substituent for Poly(vinyl alcohol)s by Molecular Dynamics Calculations

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Yooko; Yoshii, Noriyuki; Iwatsubo, Tetsushiro

    2004-08-01

    Since heat storage technology contributes greatly to the effective use of energy, we are attempting to develop latent heat storage materials. If computer simulations enable the estimation of material properties prior to experiments, they will provide us with very effective tools for the development of new materials. We use molecular dynamics calculations to predict the melting points and latent heats of fusion, which are crucial thermal properties for evaluating the suitability of heat-storage materials. As the object of calculation, poly(vinyl alcohol) (PVA) was chosen, because polymer materials are effective in that they can be made to cover all temperature ranges by changing the molecular weight. The melting points were determined from the volume change, and the latent heats of fusion were determined from the internal energy. As for these calculations, it was ascertained that these thermal properties were suitable values in comparison with the results of actual calorimetry. From the comparative calculation of the polymer consistent force field (PCFF) and optimized potentials for liquid simulations (OPLS) force field, it was shown that the intermolecular potential could be simplified. Moreover, the stability of the structural isomer of PVA and the state of the hydrogen bond were evaluated, because a strong intermolecular bond leads to structural stability and a high melting temperature.

  3. Incorporation of solvation effects into the fragment molecular orbital calculations with the Poisson-Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Watanabe, Hirofumi; Okiyama, Yoshio; Nakano, Tatsuya; Tanaka, Shigenori

    2010-11-01

    We developed FMO-PB method, which incorporates solvation effects into the Fragment Molecular Orbital calculation with the Poisson-Boltzmann equation. This method retains good accuracy in energy calculations with reduced computational time. We calculated the solvation free energies for polyalanines, Alpha-1 peptide, tryptophan cage, and complex of estrogen receptor and 17 β-estradiol to show the applicability of this method for practical systems. From the calculated results, it has been confirmed that the FMO-PB method is useful for large biomolecules in solution. We also discussed the electric charges which are used in solving the Poisson-Boltzmann equation.

  4. A comparison of methods used to calculate normal background concentrations of potentially toxic elements for urban soil.

    PubMed

    Rothwell, Katherine A; Cooke, Martin P

    2015-11-01

    To meet the requirements of regulation and to provide realistic remedial targets there is a need for the background concentration of potentially toxic elements (PTEs) in soils to be considered when assessing contaminated land. In England, normal background concentrations (NBCs) have been published for several priority contaminants for a number of spatial domains however updated regulatory guidance places the responsibility on Local Authorities to set NBCs for their jurisdiction. Due to the unique geochemical nature of urban areas, Local Authorities need to define NBC values specific to their area, which the national data is unable to provide. This study aims to calculate NBC levels for Gateshead, an urban Metropolitan Borough in the North East of England, using freely available data. The 'median + 2MAD', boxplot upper whisker and English NBC (according to the method adopted by the British Geological Survey) methods were compared for test PTEs lead, arsenic and cadmium. Due to the lack of systematically collected data for Gateshead in the national soil chemistry database, the use of site investigation (SI) data collected during the planning process was investigated. 12,087 SI soil chemistry data points were incorporated into a database and 27 comparison samples were taken from undisturbed locations across Gateshead. The SI data gave high resolution coverage of the area and Mann-Whitney tests confirmed statistical similarity for the undisturbed comparison samples and the SI data. SI data was successfully used to calculate NBCs for Gateshead and the median+2MAD method was selected as most appropriate by the Local Authority according to the precautionary principle as it consistently provided the most conservative NBC values. The use of this data set provides a freely available, high resolution source of data that can be used for a range of environmental applications.

  5. Prebiotic Atmospheric Chemistry on Titan: Formation Kinetics via Ab Initio Calculations for Potential Energy Surface (PES) Mapping

    NASA Astrophysics Data System (ADS)

    Gonzalez, Dayana; Mebel, Alexander

    2016-03-01

    It has been recently shown that Titan provides a unique perspective in our solar system: its atmosphere is comparable to a model of prebiotic Earth's. Provided the organic cationic and anionic molecular species identified by the Cassini spacecraft, this research characterizes reaction pathways for the reactions of methyl derivatives of the cyclopropenyl cation, the methyl cation with methyl- and dimethyl-acetylene, and reactions of resonance structures of protonated acrylonitrile with CH2NH. Isomerization and dissociation reactions involving methyl-cyclopropenyl cations, the perinaphthenyl cation and anion, and cations of pyrimidine and purine precursors of nucleobases will be examined to locate reaction pathways, intermediates, transition states, and products of the reactions. Gaussian '09 software is used for ab initio calculations to map out the PES. Geometry optimizations and vibrational frequency computations are preformed via the double-hybrid density functional B2PLYP-D3. Single-point energies are refined by use of the explicitly-correlated coupled-cluster CCSD(T)-F12 method. Rate constants are calculated using microcanonical RRKM theory, and pressure effects evaluated used the Master Equation approach; these allow for prediction of absolute rate constants and product branching ratios at different pressures and temperatures.

  6. An improved potential energy surface and multi-temperature quasiclassical trajectory calculations of N2 + N2 dissociation reactions

    NASA Astrophysics Data System (ADS)

    Bender, Jason D.; Valentini, Paolo; Nompelis, Ioannis; Paukku, Yuliya; Varga, Zoltan; Truhlar, Donald G.; Schwartzentruber, Thomas; Candler, Graham V.

    2015-08-01

    Accurate modeling of high-temperature hypersonic flows in the atmosphere requires consideration of collision-induced dissociation of molecular species and energy transfer between the translational and internal modes of the gas molecules. Here, we describe a study of the N2 + N2⟶N2 + 2N and N2 + N2⟶4N nitrogen dissociation reactions using the quasiclassical trajectory (QCT) method. The simulations used a new potential energy surface for the N4 system; the surface is an improved version of one that was presented previously. In the QCT calculations, initial conditions were determined based on a two-temperature model that approximately separates the translational-rotational temperature from the vibrational temperature of the N2 diatoms. Five values from 8000 K to 30 000 K were considered for each of the two temperatures. Over 2.4 × 109 trajectories were calculated. We present results for ensemble-averaged dissociation rate constants as functions of the translational-rotational temperature T and the vibrational temperature Tv. The rate constant depends more strongly on T when Tv is low, and it depends more strongly on Tv when T is low. Quasibound reactant states contribute significantly to the rate constants, as do exchange processes at higher temperatures. We discuss two sets of runs in detail: an equilibrium test set in which T = Tv and a nonequilibrium test set in which Tv < T. In the equilibrium test set, high-v and moderately-low-j molecules contribute most significantly to the overall dissociation rate, and this state specificity becomes stronger as the temperature decreases. Dissociating trajectories tend to result in a major loss of vibrational energy and a minor loss of rotational energy. In the nonequilibrium test set, as Tv decreases while T is fixed, higher-j molecules contribute more significantly to the dissociation rate, dissociating trajectories tend to result in a greater rotational energy loss, and the dissociation probability's dependence on v

  7. An improved potential energy surface and multi-temperature quasiclassical trajectory calculations of N2 + N2 dissociation reactions.

    PubMed

    Bender, Jason D; Valentini, Paolo; Nompelis, Ioannis; Paukku, Yuliya; Varga, Zoltan; Truhlar, Donald G; Schwartzentruber, Thomas; Candler, Graham V

    2015-08-07

    Accurate modeling of high-temperature hypersonic flows in the atmosphere requires consideration of collision-induced dissociation of molecular species and energy transfer between the translational and internal modes of the gas molecules. Here, we describe a study of the N2 + N2⟶N2 + 2N and N2 + N2⟶4N nitrogen dissociation reactions using the quasiclassical trajectory (QCT) method. The simulations used a new potential energy surface for the N4 system; the surface is an improved version of one that was presented previously. In the QCT calculations, initial conditions were determined based on a two-temperature model that approximately separates the translational-rotational temperature from the vibrational temperature of the N2 diatoms. Five values from 8000 K to 30,000 K were considered for each of the two temperatures. Over 2.4 × 10(9) trajectories were calculated. We present results for ensemble-averaged dissociation rate constants as functions of the translational-rotational temperature T and the vibrational temperature T(v). The rate constant depends more strongly on T when T(v) is low, and it depends more strongly on T(v) when T is low. Quasibound reactant states contribute significantly to the rate constants, as do exchange processes at higher temperatures. We discuss two sets of runs in detail: an equilibrium test set in which T = T(v) and a nonequilibrium test set in which T(v) < T. In the equilibrium test set, high-v and moderately-low-j molecules contribute most significantly to the overall dissociation rate, and this state specificity becomes stronger as the temperature decreases. Dissociating trajectories tend to result in a major loss of vibrational energy and a minor loss of rotational energy. In the nonequilibrium test set, as T(v) decreases while T is fixed, higher-j molecules contribute more significantly to the dissociation rate, dissociating trajectories tend to result in a greater rotational energy loss, and the dissociation probability

  8. Effective potential kinetic theory for strongly coupled plasmas

    NASA Astrophysics Data System (ADS)

    Baalrud, Scott D.; Daligault, Jérôme

    2016-11-01

    The effective potential theory (EPT) is a recently proposed method for extending traditional plasma kinetic and transport theory into the strongly coupled regime. Validation from experiments and molecular dynamics simulations have shown it to be accurate up to the onset of liquid-like correlation parameters (corresponding to Γ ≃ 10-50 for the one-component plasma, depending on the process of interest). Here, this theory is briefly reviewed along with comparisons between the theory and molecular dynamics simulations for self-diffusivity and viscosity of the one-component plasma. A number of new results are also provided, including calculations of friction coefficients, energy exchange rates, stopping power, and mobility. The theory is also cast in the Landau and Fokker-Planck kinetic forms, which may prove useful for enabling efficient kinetic computations.

  9. On the calculation of the structure of charge-stabilized colloidal dispersions using density-dependent potentials.

    PubMed

    Castañeda-Priego, R; Lobaskin, V; Mixteco-Sánchez, J C; Rojas-Ochoa, L F; Linse, P

    2012-02-15

    The structure of charge-stabilized colloidal dispersions has been studied through a one-component model using a Yukawa potential with density-dependent parameters examined with integral equation theory and Monte Carlo simulations. Partial thermodynamic consistency was guaranteed by considering the osmotic pressure of the dispersion from the approximate mean-field renormalized jellium and Poisson-Boltzmann cell models. The colloidal structures could be accurately described by the Ornstein-Zernike equation with the Rogers-Young closure by using the osmotic pressure from the renormalized jellium model. Although we explicitly show that the correct effective pair-potential obtained from the inverse Monte Carlo method deviates from the Yukawa shape, the osmotic pressure constraint allows us to have a good description of the colloidal structure without losing information on the system thermodynamics. Our findings are corroborated by primitive model simulations of salt-free colloidal dispersions.

  10. Gas-phase reaction between calcium monocation and fluoromethane: Analysis of the potential energy hypersurface and kinetics calculations.

    PubMed

    Varela-Alvarez, Adrián; Rayón, V M; Redondo, P; Barrientos, C; Sordo, José A

    2009-10-14

    The gas-phase reaction between calcium monocation and fluoromethane: Ca(+)+CH(3)F-->CaF(+)+CH(3) was theoretically analyzed. The potential energy hypersurface was explored by using density functional theory methodology with different functionals and Pople's, Dunning's, Ahlrichs', and Stuttgart-Dresden basis sets. Kinetics calculations (energy and total angular momentum resolved microcanonical variational/conventional theory) were accomplished. The theoretically predicted range for the global kinetic rate constant values at 295 K (7.2x10(-11)-5.9x10(-10) cm(3) molecule(-1) s(-1)) agrees reasonably well with the experimental value at the same temperature [(2.6+/-0.8)x10(-10) cm(3) molecule(-1) s(-1)]. Explicit consideration of a two transition state model, where the formation of a weakly bounded prereactive complex is preceded by an outer transition state (entrance channel) and followed by an inner transition state connecting with a second intermediate that finally leads to products, is mandatory. Experimental observations on the correlation, or lack of correlation, between reaction rate constants and second ionization energies of the metal might well be rationalized in terms of this two transition state model.

  11. Angular Dependence of Ionization by Circularly Polarized Light Calculated with Time-Dependent Configuration Interaction with an Absorbing Potential.

    PubMed

    Hoerner, Paul; Schlegel, H Bernhard

    2017-02-16

    The angular dependence of ionization by linear and circularly polarized light has been examined for N2, NH3, H2O, CO2, CH2O, pyrazine, methyloxirane, and vinyloxirane. Time-dependent configuration interaction with single excitations and a complex absorbing potential was used to simulate ionization by a seven cycle 800 nm cosine squared pulse with intensities ranging from 0.56 × 10(14) to 5.05 × 10(14) W cm(-2). The shapes of the ionization yield for linearly polarized light can be understood primarily in terms of the nodal structure of the highest occupied orbitals. Depending on the orbital energies, ionization from lower-lying orbitals may also make significant contributions to the shapes. The shapes of the ionization yield for circularly polarized light can be readily explained in terms of the shapes for linearly polarized light. Averaging the results for linear polarization over orientations perpendicular to the direction of propagation yields shapes that are in very good agreement with direct calculations of the ionization yield by circularly polarized light.

  12. Molecular dynamics - potential of mean force calculations as a tool for understanding ion permeation and selectivity in narrow channels.

    PubMed

    Allen, Toby W; Andersen, Olaf S; Roux, Benoit

    2006-12-01

    Ion channels catalyze the permeation of charged molecules across cell membranes and are essential for many vital physiological functions, including nerve and muscle activity. To understand better the mechanisms underlying ion conduction and valence selectivity of narrow ion channels, we have employed free energy techniques to calculate the potential of mean force (PMF) for ion movement through the prototypical gramicidin A channel. Employing modern all-atom molecular dynamics (MD) force fields with umbrella sampling methods that incorporate one hundred 1-2 ns trajectories, we find that it is possible to achieve semi-quantitative agreement with experimental binding and conductance measurements. We also examine the sensitivity of the MD-PMF results to the choice of MD force field and compare PMFs for potassium, calcium and chloride ions to explore the basis for the valence selectivity of this narrow and uncharged ion channel. A large central barrier is observed for both anions and divalent ions, consistent with lack of experimental conductance. Neither anion or divalent cation is seen to be stabilized inside the channel relative to the bulk electrolyte and each leads to large disruptions to the protein and membrane structure when held deep inside the channel. Weak binding of calcium ions outside the channel corresponds to a free energy well that is too shallow to demonstrate channel blocking. Our findings emphasize the success of the MD-PMF approach and the sensitivity of ion energetics to the choice of biomolecular force field.

  13. Gas-phase reaction between calcium monocation and fluoromethane: Analysis of the potential energy hypersurface and kinetics calculations

    SciTech Connect

    Varela-Alvarez, Adrian; Sordo, Jose A.; Rayon, V. M.; Redondo, P.; Barrientos, C.

    2009-10-14

    The gas-phase reaction between calcium monocation and fluoromethane: Ca{sup +}+CH{sub 3}F{yields}CaF{sup +}+CH{sub 3} was theoretically analyzed. The potential energy hypersurface was explored by using density functional theory methodology with different functionals and Pople's, Dunning's, Ahlrichs', and Stuttgart-Dresden basis sets. Kinetics calculations (energy and total angular momentum resolved microcanonical variational/conventional theory) were accomplished. The theoretically predicted range for the global kinetic rate constant values at 295 K (7.2x10{sup -11}-5.9x10{sup -10} cm{sup 3} molecule{sup -1} s{sup -1}) agrees reasonably well with the experimental value at the same temperature [(2.6{+-}0.8)x10{sup -10} cm{sup 3} molecule{sup -1} s{sup -1}]. Explicit consideration of a two transition state model, where the formation of a weakly bounded prereactive complex is preceded by an outer transition state (entrance channel) and followed by an inner transition state connecting with a second intermediate that finally leads to products, is mandatory. Experimental observations on the correlation, or lack of correlation, between reaction rate constants and second ionization energies of the metal might well be rationalized in terms of this two transition state model.

  14. Extension of the characteristic potential method for noise calculation and its application to shot noise in semiconductor devices

    NASA Astrophysics Data System (ADS)

    Hong, Sung-Min; Min, Hong S.; Park, Chan H.; Park, Young J.

    2004-05-01

    Characteristic potential method (CPM) for noise calculation has been developed for multi-terminal semiconductor devices under the drift-diffusion scheme. Merit of the CPM is that clear cut definitions of the terminal thermal noise currents and the terminal excess noise currents can be made for unipolar devices and homogeneous resistors. We prove that the terminal thermal noise currents and the terminal excess noise currents are uncorrelated for unipolar devices even when they come from the same local noise sources. We also suggest a way to define thermal noise and excess noise in bipolar devices using the derived formulas from the CPM. As applications of the CPM, we show that the high frequency excess noise observed in homogenous semiconductor resistors is really shot noise whose noise generating mechanism is just the same as that of vacuum diodes. We also show that the dominant high frequency noise in long-channel MOSFETs is thermal noise in the linear region, but the excess noise is getting more significant as the drain bias increases, and is important in the saturation region. The excess noise in the saturation region of the long-channel MOSFETs is shown to be shot noise. Finally, we try to explain the shot noise-like behaviors observed in forward-biased pn junction diodes by the conventional corpuscular theory of shot noise even though the impedance field method confirms that the shot noise behaviors are caused by the local noise sources in the neutral regions, not in the depletion regions.

  15. Performance of heterogeneous computing with graphics processing unit and many integrated core for hartree potential calculations on a numerical grid.

    PubMed

    Choi, Sunghwan; Kwon, Oh-Kyoung; Kim, Jaewook; Kim, Woo Youn

    2016-09-15

    We investigated the performance of heterogeneous computing with graphics processing units (GPUs) and many integrated core (MIC) with 20 CPU cores (20×CPU). As a practical example toward large scale electronic structure calculations using grid-based methods, we evaluated the Hartree potentials of silver nanoparticles with various sizes (3.1, 3.7, 4.9, 6.1, and 6.9 nm) via a direct integral method supported by the sinc basis set. The so-called work stealing scheduler was used for efficient heterogeneous computing via the balanced dynamic distribution of workloads between all processors on a given architecture without any prior information on their individual performances. 20×CPU + 1GPU was up to ∼1.5 and ∼3.1 times faster than 1GPU and 20×CPU, respectively. 20×CPU + 2GPU was ∼4.3 times faster than 20×CPU. The performance enhancement by CPU + MIC was considerably lower than expected because of the large initialization overhead of MIC, although its theoretical performance is similar with that of CPU + GPU. © 2016 Wiley Periodicals, Inc.

  16. Quantum Calculations On Hydrogen Bonds In Certain Water Clusters Show Cooperative Effects

    PubMed Central

    ZNAMENSKIY, VASILIY S.; GREEN, MICHAEL E.

    2008-01-01

    Water molecules in clefts and small clusters are in a significantly different environment than in bulk water. We have carried out ab initio calculations that demonstrate this in a series of clusters, showing that cooperative effects must be taken into account in the treatment of hydrogen bonds and water clusters in such bounded systems. Hydrogen bonds between water molecules in simulations are treated most frequently by using point charge water potentials, such as TIP3P or SPC, sometimes with a polarizable extension. These produce excellent results in bulk water, for which they are calibrated. Clefts are different from bulk; it is necessary to look at smaller systems, and investigate the effect of limited numbers of neighbors. We start with a study of isolated clusters of water with varying numbers of neighbors of a hydrogen bonded pair of water molecules. The cluster as a whole is in vacuum. The clusters are defined so as to provide the possible arrangements of nearest neighbors of a central hydrogen bonded pair of water molecules. We then scan the length and angles of the central hydrogen bond of the clusters, using density functional theory, for each possible arrangement of donor and acceptor hydrogen bonds on the central hydrogen bonding pair; the potential of interaction of two water molecules varies with the number of donor and of acceptor neighbors. This also involves changes in charge on the water molecules as a function of bond length, and changes in energy and length as a function of number of neighboring donor and acceptor molecules. Energy varies by approximately 6 kBT near room temperature from the highest to the lowest energy when bond length alone is varied, enough to seriously affect simulations. PMID:19169381

  17. Training software using virtual-reality technology and pre-calculated effective dose data.

    PubMed

    Ding, Aiping; Zhang, Di; Xu, X George

    2009-05-01

    This paper describes the development of a software package, called VR Dose Simulator, which aims to provide interactive radiation safety and ALARA training to radiation workers using virtual-reality (VR) simulations. Combined with a pre-calculated effective dose equivalent (EDE) database, a virtual radiation environment was constructed in VR authoring software, EON Studio, using 3-D models of a real nuclear power plant building. Models of avatars representing two workers were adopted with arms and legs of the avatar being controlled in the software to simulate walking and other postures. Collision detection algorithms were developed for various parts of the 3-D power plant building and avatars to confine the avatars to certain regions of the virtual environment. Ten different camera viewpoints were assigned to conveniently cover the entire virtual scenery in different viewing angles. A user can control the avatar to carry out radiological engineering tasks using two modes of avatar navigation. A user can also specify two types of radiation source: Cs and Co. The location of the avatar inside the virtual environment during the course of the avatar's movement is linked to the EDE database. The accumulative dose is calculated and displayed on the screen in real-time. Based on the final accumulated dose and the completion status of all virtual tasks, a score is given to evaluate the performance of the user. The paper concludes that VR-based simulation technologies are interactive and engaging, thus potentially useful in improving the quality of radiation safety training. The paper also summarizes several challenges: more streamlined data conversion, realistic avatar movement and posture, more intuitive implementation of the data communication between EON Studio and VB.NET, and more versatile utilization of EDE data such as a source near the body, etc., all of which needs to be addressed in future efforts to develop this type of software.

  18. Tunable potentials and decoherence effect on polaron in nanostructures

    NASA Astrophysics Data System (ADS)

    Fotue, A. J.; Fobasso, M. F. C.; Kenfack, S. C.; Tiotsop, M.; Djomou, J.-R. D.; Ekosso, C. M.; Nguimeya, G.-P.; Danga, J. E.; Keumo Tsiaze, R. M.; Fai, L. C.

    2016-06-01

    We studied the effect of the tunable potential and decoherence of polaron in nanostructures. We have arbitrarily chosen eight potentials: the elliptical potential, square potential, triangular potential, the quadratic potential, the delta potential, the Gaussian potential, the pseudo-harmonic potential and Coulombic potential. In order to evaluate different polaronic parameters, we used the unitary transformation of LLP and the Pekar-type variational method (PTVM). This system can be considered as a two-level quantum system. We demonstrate in this work that the elliptical potential best confines the polaron and provides interesting information transfer, whereas, Gaussian, pseudo-harmonic and Coulombic potentials transfer information slowly. It is also found in this work that the Coulomb potential seems to be the most chaotic compared to the seven other used. This work confirms that the choice of a potential is crucial for the study of decoherence in nanostructures.

  19. Gaussian effective potential for the standard model SU(2)xU(1) electroweak theory

    SciTech Connect

    Siringo, Fabio; Marotta, Luca

    2008-07-01

    The Gaussian effective potential is derived for the non-Abelian SU(2)xU(1) gauge theory of electroweak interactions. At variance with naive derivations, the Gaussian effective potential is proven to be a genuine variational tool in any gauge. The role of ghosts is discussed and the unitarity gauge is shown to be the only choice which allows calculability without insertion of further approximations. The full non-Abelian calculation confirms the existence of a light Higgs boson in the nonperturbative strong coupling regime of the Higgs sector.

  20. Calculation of the structure, potential energy surface, vibrational dynamics, and electric dipole properties for the Xe:HI van der Waals complex.

    PubMed

    Preller, M; Grunenberg, J; Bulychev, V P; Bulanin, M O

    2011-05-07

    We report the structure and spectroscopic characteristics for the Xe:HI van der Waals binary isomers determined from variational solutions of two-dimensional and three-dimensional (3D) vibrational Schrödinger equations. The solutions are based on a potential energy surface computed at the coupled-cluster level of theory including single and double excitations and a non-iterative perturbation treatment of triple excitations [CCSD(T)]. The dipole moment surface was calculated using quadratic configuration interaction (QCISD). The global potential minimum is shown to be located at the anti-hydrogen-bonded Xe-IH isomer, 21 cm(-1) below the secondary local minimum associated with the hydrogen-bonded Xe-HI isomeric form. The dissociation energy from the global minimum is 245.9 cm(-1). 3D Schrödinger equations are solved for the rotational quantum numbers J = k = 0, 1, and 2, without invoking an adiabatic separation of high- and low-frequency degrees of freedom. The vibrational ground state resides in the Xe-HI potential well, while the first excited state, 8.59 cm(-1) above the ground, occupies the Xe-IH well. We find that intra-complex dynamics exhibits a sudden transformation upon increase of the r(HI) bond length, accompanied by abrupt changes in the geometric and dipole parameters. A similar chaotic behavior is predicted to occur for Xe:DI at a shorter r(DI) bond length, which implies stronger coupling between low- and high-frequency motions in the heavier complex. Our calculations confirm a strong enhancement for the r(HI) stretch fundamental and a significant weakening for the first overtone vibrational transitions in Xe:HI, as compared to those in the free HI molecule. A qualitative explanation of this, earlier experimentally detected effect is suggested.

  1. Effects of electron emission on sheath potential

    NASA Astrophysics Data System (ADS)

    Dow, Ansel; Khrabrov, Alexander; Kaganovich, Igor; Schamis, Hanna

    2015-11-01

    We investigate the potential profile of a sheath under the influence of surface electron emission. The plasma and sheath profiles are simulated using the Large Scale Plasma (LSP) particle-in-cell code. Using one dimensional models we corroborate the analytical relationship between sheath potential and plasma electron and emitted electron temperatures derived earlier. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No. DE-AC02-09CH11466.

  2. Calculation of real-gas effects on blunt-body trim angles

    NASA Technical Reports Server (NTRS)

    Park, Chul; Yoon, Seokkwan

    1989-01-01

    The effect of vibrational excitation and dissociation at high temperatures on the trim angle of attack of a blunt lifting body is calculated for a nonequilibrium flow regime in air using a CFD technique. The vibrational-electronic temperature and the species densities are calculated assuming the flow to be in a nonequilibrium state. The forebody flow of a two-dimensional blunt body of the shape of the Apollo Command Module at a finite angle of attack is calculated. The results show that the pitching moment around a reference point is larger and the trim angle of attack is smaller for a reacting gas than for a perfect gas. The calculated shift in the trim angle due to the real-gas effect is of the same order as that seen during the Apollo flights.

  3. Calculation of the biological effective dose for piecewise defined dose-rate fits

    SciTech Connect

    Hobbs, Robert F.; Sgouros, George

    2009-03-15

    An algorithmic solution to the biological effective dose (BED) calculation from the Lea-Catcheside formula for a piecewise defined function is presented. Data from patients treated for metastatic thyroid cancer were used to illustrate the solution. The Lea-Catcheside formula for the G-factor of the BED is integrated numerically using a large number of small trapezoidal fits to each integral. The algorithmically calculated BED is compatible with an analytic calculation for a similarly valued exponentially fitted dose-rate plot and is the only resolution for piecewise defined dose-rate functions.

  4. The effects of digital elevation model resolution on the calculation and predictions of topographic wetness indices.

    SciTech Connect

    Drover, Damion, Ryan

    2011-12-01

    One of the largest exports in the Southeast U.S. is forest products. Interest in biofuels using forest biomass has increased recently, leading to more research into better forest management BMPs. The USDA Forest Service, along with the Oak Ridge National Laboratory, University of Georgia and Oregon State University are researching the impacts of intensive forest management for biofuels on water quality and quantity at the Savannah River Site in South Carolina. Surface runoff of saturated areas, transporting excess nutrients and contaminants, is a potential water quality issue under investigation. Detailed maps of variable source areas and soil characteristics would therefore be helpful prior to treatment. The availability of remotely sensed and computed digital elevation models (DEMs) and spatial analysis tools make it easy to calculate terrain attributes. These terrain attributes can be used in models to predict saturated areas or other attributes in the landscape. With laser altimetry, an area can be flown to produce very high resolution data, and the resulting data can be resampled into any resolution of DEM desired. Additionally, there exist many maps that are in various resolutions of DEM, such as those acquired from the U.S. Geological Survey. Problems arise when using maps derived from different resolution DEMs. For example, saturated areas can be under or overestimated depending on the resolution used. The purpose of this study was to examine the effects of DEM resolution on the calculation of topographic wetness indices used to predict variable source areas of saturation, and to find the best resolutions to produce prediction maps of soil attributes like nitrogen, carbon, bulk density and soil texture for low-relief, humid-temperate forested hillslopes. Topographic wetness indices were calculated based on the derived terrain attributes, slope and specific catchment area, from five different DEM resolutions. The DEMs were resampled from LiDAR, which is a

  5. 30 CFR 254.44 - Calculating response equipment effective daily recovery capacities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... recovery capacities. 254.44 Section 254.44 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT... equipment effective daily recovery capacities. (a) You are required by § 254.26(d)(1) to calculate the effective daily recovery capacity of the response equipment identified in your response plan that you...

  6. Cepa calculations of potential energy surfaces for open-shell systems. I. The reaction of O( 3P) with H 2( 1Σ g+)

    NASA Astrophysics Data System (ADS)

    Jaquet, Ralph; Staemmler, Volker

    1981-08-01

    Ab initio calculations including electron correlation effects (mainly on CEPA-PNO level) have been performed for the potential energy surface of the reaction of 3P oxygen atoms with molecular hydrogen. The collinear abstraction reaction (C ∞v symmetry) and the vertical insertion reaction (C 2v) have been investigated with particular emphasis.The influence of the orbital basis size and of electron correlation both on the reaction energy and on the barrier height and location for the abstraction reaction has been studied in some detail. Our extrapolated value for the barrier for this reaction is 13.4 ± 1.0 kcal/mol, in fair agreement with the experimental activation energy, while the insertion reaction has to pass over a barrier of =48 kcal/mol. The analysis of electron correlation effects reveals that it is compulsory to include all singly and doubly substituted configurations, to correct for unlinked cluster contributions and to use fairly large basis sets if one wants to get accurate ab initio potential surfaces for the reactions of triplet oxygen atoms.

  7. Gauge potential formulations of the spin Hall effect in graphene

    NASA Astrophysics Data System (ADS)

    Dayi, Ömer F.; Yunt, Elif

    2011-06-01

    Two different gauge potential methods are engaged to calculate explicitly the spin Hall conductivity in graphene. The graphene Hamiltonian with spin-orbit interaction is expressed in terms of kinematic momenta by introducing a gauge potential. A formulation of the spin Hall conductivity is established by requiring that the time evolution of this kinematic momentum vector vanishes. We then calculated the conductivity employing the Berry gauge fields. We show that both of the gauge fields can be deduced from the pure gauge field arising from the Foldy-Wouthuysen transformations.

  8. A Mathematical Model for Calculating the Effect of Toroidal Geometry on the Measured Magnetic Field

    NASA Astrophysics Data System (ADS)

    Skoczelas, Brenda; Wijesinghe, Ranjith

    2008-03-01

    A mathematical model to calculate the measured magnetic field from a stimulated nerve has been presented in the past. Traditionally, electrodes have been used to measure these propagating action signals in nerves, but a less invasive technique is to use toroids. However, up until now, when using a toroidal transformer to record the nerve action currents, the thickness of the toroid has yet to be considered in the model and how it may affect the propagating compound action potential. In this presentation, we will discuss the development of a new model, to which the thickness of the toroid is taken into account. These dimensions are important because the toroid represents an inhomogeneity in the extracellular medium that redistributes the extracellular current. In the past, toroids with very small diameters have been used and as they may not disrupt the action current. With a better understanding of the toroidal effects, we may be able to increase the accuracy and dependency of such measured magnetic signals. The final goal will be to compare our theoretical model to experimentally gathered data.

  9. An isotopic mass effect on the intermolecular potential

    SciTech Connect

    Herman, Michael F.; Currier, Robert Patrick; Clegg, Samuel M.

    2015-09-28

    The impact of isotopic variation on the electronic energy and intermolecular potentials is often suppressed when calculating isotopologue thermodynamics. Intramolecular potential energy surfaces for distinct isotopologues are in fact equivalent under the Born–Oppenheimer approximation, which is sometimes used to imply that the intermolecular interactions are independent of isotopic mass. In this paper, the intermolecular dipole–dipole interaction between hetero-nuclear diatomic molecules is considered. It is shown that the intermolecular potential contains mass-dependent terms even though each nucleus moves on a Born–Oppenheimer surface. Finally, the analysis suggests that mass dependent variations in intermolecular potentials should be included in comprehensive descriptions of isotopologue thermodynamics.

  10. Radiative Convective Transfer Calculations for Effective Stellar Fluxes of Habitable and Life Supporting Zones

    NASA Astrophysics Data System (ADS)

    Ludwig, Wolfgang; Eggl, Siegfried; Neubauer, David; Leitner, Johannes; Firneis, Maria; Hitzenberger, Regina

    2014-05-01

    Recent fields of interest in exoplanetary research include studies of potentially habitable planets orbiting stars outside of our Solar System. Habitable Zones (HZs) are currently defined by calculating the inner and the outer limits of the mean distance between exoplanets and their central stars based on effective solar fluxes that allow for maintaining liquid water on the planet's surface. Kasting et al. (1993), Selsis et al. (2007), and recently Kopparapu et al. (2013) provided stellar flux limits for such scenarios. We compute effective solar fluxes for Earth-like planets using Earth-like and other atmospheric scenarios including atmospheres with high level and low level clouds. Furthermore we provide habitability limits for solvents other than water, i.e. limits for the so called Life Supporting Zone, introduced by Leitner et al. (2010). The Life Supporting Zone (LSZ) encompasses many habitable zones based on a variety of liquid solvents. Solvents like ammonia and sulfuric acid have been identified for instance by Leitner et al (2012) as possibly life supporting. Assuming planets on circular orbits, the extent of the individual HZ is then calculated via the following equation, d(i,o) = [L/Lsun*1/S(i,o)]**0.5 au, where L is the star's luminosity, and d(i,o) and S(i,o) are the distances to the central star for the inner and the outer edge and effective insolation for inner and the outer edge of the HZ, respectively. After generating S(i,o) values for a selection of solvents, we provide the means to determine LSZ boundaries for main sequence stars. Effective flux calculations are done using a one dimensional radiative convective model (Neubauer et al. 2011) based on a modified version of the open source radiative transfer software Streamer (Key and Schweiger, 1998). Modifications include convective adjustments, additional gases for absorption and the use of an offline cloud model, which allow us to observe the influence of clouds on effective stellar fluxes

  11. Potential Environmental Effects of Aircraft Emissions.

    DTIC Science & Technology

    1979-10-15

    Impact Assessment Program in 1975 and to provide a comprehensive discussion of the current modeling results. Assessments are made of the potential...developed in other countries and that new SSTs might be developed in the U. S. in the future, the Climatic Impact Assessment Program (CLAP) was...the CIAP studies, a concurrent and independent study was conducted by the Climatic Impact Committee of the National Academy of Sciences, and their

  12. The Aharonov-Bohm effect and classical potentials

    SciTech Connect

    Mijatovic, M.; Trencevski, K.; Veljanoski, B.

    1993-06-01

    Using the inverse scattering method we derive the classical potential which produces the same cross section as the Ahaxonov-Bohm effect. Because the potential is velocity dependent it shows that this effect of quantum scattering theory can reduce to non-potential classical mechanics, only. 7 refs., 3 figs.

  13. Calculation of total free energy yield as an alternative approach for predicting the importance of potential chemolithotrophic reactions in geothermal springs.

    PubMed

    Dodsworth, Jeremy A; McDonald, Austin I; Hedlund, Brian P

    2012-08-01

    To inform hypotheses regarding the relative importance of chemolithotrophic metabolisms in geothermal environments, we calculated free energy yields of 26 chemical reactions potentially supporting chemolithotrophy in two US Great Basin hot springs, taking into account the effects of changing reactant and product activities on the Gibbs free energy as each reaction progressed. Results ranged from 1.2 × 10(-5) to 3.6 J kg(-1) spring water, or 3.7 × 10(-5) to 11.5 J s(-1) based on measured flow rates, with aerobic oxidation of CH(4) or NH4 + giving the highest average yields. Energy yields calculated without constraining pH were similar to those at constant pH except for reactions where H(+) was consumed, which often had significantly lower yields when pH was unconstrained. In contrast to the commonly used normalization of reaction chemical affinities per mole of electrons transferred, reaction energy yields for a given oxidant varied by several orders of magnitude and were more sensitive to differences in the activities of products and reactants. The high energy yield of aerobic ammonia oxidation is consistent with previous observations of significant ammonia oxidation rates and abundant ammonia-oxidizing archaea in sediments of these springs. This approach offers an additional lens through which to view the thermodynamic landscape of geothermal springs.

  14. A comparison of two types of explicitly correlated Gaussian functions for non-Born-Oppenheimer molecular calculations using a model potential

    NASA Astrophysics Data System (ADS)

    Formanek, Martin; Sharkey, Keeper L.; Kirnosov, Nikita; Adamowicz, Ludwik

    2014-10-01

    A new functional form of the explicitly correlated Gaussian-type functions (later called Gaussians or ECGs) for performing non-Born-Oppenheimer (BO) calculations of molecular systems with an arbitrary number of nuclei is presented. In these functions, the exponential part explicitly depends on all interparticle distances and the preexponential part depends only on the distances between the nuclei. The new Gaussians are called sin/cos-Gaussians and their preexponential part is a product of sin and/or cos factors. The effectiveness of the new Gaussians in describing non-BO pure vibrational states is investigated by comparing them with rm-Gaussians containing preexponential multipliers in the form of non-negative powers of internuclear distances (the internuclear distance in the diatomic case). The testing is performed for a diatomic system with the nuclei interacting through a Morse potential. It shows that the new sin/cos-Gaussian basis set is capable of providing equally accurate results as obtained with the rm-Gaussians. However, especially for lower vibrational states, more sin/cos-Gaussians are needed to reach a similar accuracy level as obtained with the rm-Gaussians. Implementation of the sin/cos-Gaussians in non-BO calculations of diatomic and, in particular, of triatomic systems, which will follow, will provide further assessment of the efficiency of the new functions.

  15. Substituent Inductive Effects on the Electrochemical Oxidation of Flavonoids Studied by Square Wave Voltammetry and Ab Initio Calculations.

    PubMed

    Arroyo-Currás, Netzahualcóyotl; Rosas-García, Víctor M; Videa, Marcelo

    2016-10-27

    Flavonoids are natural products commonly found in the human diet that show antioxidant, anti-inflammatory and anti-hepatotoxic activities. These nutraceutical properties may relate to the electrochemical activity of flavonoids. To increase the understanding of structure-electrochemical activity relations and the inductive effects that OH substituents have on the redox potential of flavonoids, we carried out square-wave voltammetry experiments and ab initio calculations of eight flavonoids selected following a systematic variation in the number of hydroxyl substituents and their location on the flavan backbone: three flavonols, three anthocyanidins, one anthocyanin and the flavonoid backbone flavone. We compared the effect that the number of -OH groups in the ring B of flavan has on the oxidation potential of the flavonoids considered, finding linear correlations for both flavonols and anthocyanidins ( R 2 = 0.98 ). We analyzed the effects that position and number of -OH substituents have on electron density distributions via ab initio quantum chemical calculations. We present direct correlations between structural features and oxidation potentials that provide a deeper insight into the redox chemistry of these molecules.

  16. Calculation of NMR chemical shifts in organic solids: accounting for motional effects.

    PubMed

    Dumez, Jean-Nicolas; Pickard, Chris J

    2009-03-14

    NMR chemical shifts were calculated from first principles for well defined crystalline organic solids. These density functional theory calculations were carried out within the plane-wave pseudopotential framework, in which truly extended systems are implicitly considered. The influence of motional effects was assessed by averaging over vibrational modes or over snapshots taken from ab initio molecular dynamics simulations. It is observed that the zero-point correction to chemical shifts can be significant, and that thermal effects are particularly noticeable for shielding anisotropies and for a temperature-dependent chemical shift. This study provides insight into the development of highly accurate first principles calculations of chemical shifts in solids, highlighting the role of motional effects on well defined systems.

  17. Calculations of the IR spectra of bend fundamentals of (H2O)n=3,4,5 using the WHBB_2 potential and dipole moment surfaces.

    PubMed

    Wang, Yimin; Bowman, Joel M

    2016-09-14

    Stimulated by new experiments from the Havenith group, we report IR spectra of the bend fundamentals of (H2O)n=3,4,5, using anharmonic, coupled-mode VSCF/VCI calculations, done in a subspace of modes consisting of all the monomer bends plus the hydrogen-bonded OH stretches. Double-harmonic spectra are also reported. All calculations employ a faster version of the ab initio WHBB potential and also a more accurate representation of the dipole moment surface, reported previously. Comparisons at the harmonic level are made with previous high-level ab initio calculations, notably those of Howard and Tschumper and also with harmonic frequencies from the semi-empirical TTM3-F potential, which have been reported previously by Howard and Tschumper. The calculations provide energies and intensities of the hydrogen-bonded OH stretches and these are also presented and briefly discussed.

  18. Effect of the Pauli principle on the deformed quasiparticle random-phase approximation calculations and its consequence for β -decay calculations of deformed even-even nuclei

    NASA Astrophysics Data System (ADS)

    Fang, Dong-Liang

    2016-03-01

    In this work, I take into consideration the Pauli exclusion principle (PEP) in the quasiparticle random-phase approximation (QRPA) calculations for the deformed systems by replacing the traditional quasiboson approximation (QBA) with the renormalized one. With this new formalism, the parametrization of QRPA calculations has been changed and the collapse of QRPA solutions could be avoid for realistic gp p values. I further find that the necessity of the renormalization parameter of particle-particle residual interaction gp p in QRPA calculations is due to the exclusion of PEP. So with the inclusion of PEP, I could easily extend the deformed QRPA calculations to the less-explored region where lack of experimental data prevent effective parametrization of gp p for QRPA methods. With this theoretical improvement, I give predictions of weak decay rates for even-even isotopes in the rare-earth region and compare the results with existing calculations.

  19. The Effect of Measurement Bias on Nuclear Criticality Safety Calculations for WIPP TRUPACT-II Shipments

    SciTech Connect

    Blackwood, Larry G.; Harker, Yale D.

    2000-12-15

    Current nuclear criticality safety limit requirements for transporting TRUPACT-II waste containers to the U.S. Department of Energy's Waste Isolation Pilot Plant (WIPP) specify that the {sup 239}Pu fissile gram equivalent (FGE) plus two times its measurement error must be {<=}325 g for a payload of fourteen 55-gal drums. The authorized method for calculating a TRUPACT-II FGE measurement error value is to take the square root of the sum of the squared error values for the individual containers (often called root-sum-squares or simply RSS). However, to the extent that the individual drum measurements contain common bias effects (e.g., due to common calibration or other adjustment factors), the corresponding measurement errors are correlated, and simple RSS calculations will underestimate the true error in the TRUPACT-II FGE value.The RSS calculations assume independence, while common bias effects can induce strong correlations between the errors in measurements. Significant bias effects can occur when the matrix characteristics for a particular waste type are not fully accounted for in the measurement process. Depending on the relative size of the bias error compared to precision error, the true measurement error can be greater than twice that calculated by RSS. In such cases, the FGE shipping requirement may not be met. To avoid underestimating the error, bias components should be estimated and propagated separately (combined only at the final step in the TRUPACT-II FGE calculation), or the effect of bias on covariance between measurements must be calculated. These covariance terms then need to be included in the final uncertainty calculations.

  20. Variational transition state theory calculations of tunneling effects on concerted hydrogen motion in water clusters and formaldehyde/water clusters

    SciTech Connect

    Garrett, B.C. ); Melius, C.F. )

    1990-08-01

    The direct participation of water molecules in aqueous phase reaction processes has been postulated to occur via both single-step mechanisms as well as concerted hydrogen atom or proton shifts. In the present work, simple prototypes of concerted hydrogen atom transfer processes are examined for small hydrogen-bonded water clusters -- cyclic trimers and tetramers -- and hydrogen-bonded clusters of formaldehyde with one and two water molecules. Rate constants for the rearrangement processes are computed using variational transition state theory, accounting for quantum mechanical tunneling effects by semiclassical ground-state adiabatic transmission coefficients. The variational transition state theory calculations directly utilize selected information about the potential energy surface along the minimum energy path as parameters of the reaction path Hamiltonian. The potential energy information is obtained from ab ignite electronic structure calculations with an empirical bond additivity correction (the BAC-MP4 method). Tunneling is found to be very important for these concerted rearrangement processes -- the semiclassical ground-state adiabatic transmission coefficients are estimated to be as high as four order of magnitude at room temperature. Effects of the size of the cluster (number of water molecules in the cyclic complex) are also dramatic -- addition of a water molecule is seen to change the calculated rates by orders of magnitude. 36 refs., 10 figs.

  1. The calculated free energy effects of 5-methyl cytosine on the B to Z transition in DNA.

    PubMed

    Pearlman, D A; Kollman, P A

    We have examined the free energy effects of 5-methylation of cytosine on the B in equilibrium Z conformational equilibrium in DNA. Free energy differences were calculated using the free energy perturbation approach, which uses an easily derived equation from classical statistical mechanics to relate the free energy difference between two states to the ensemble average of the potential energy difference between the states. Calculations were carried both in explicit solvent and (for comparison) in vacuo. The free energy values obtained for the explicit solvent systems are total free energies, with contributions from all parts of the system (solvent + solute), and so are relevant to the B in equilibrium Z transitions observed under real (physiological) conditions. We calculate that in solution, methylation makes the B in equilibrium Z transition more favorable by about -0.4 kcal/mole base pair (bp) in free energy. This value compares well with approximate experimentally derived values of about -0.3 kcal/mole-bp. We also discuss a method for determining the free energy difference between conformational states poorly maintained by a potential energy model. Finally, the effects of methylation on the melting temperature of DNA are examined.

  2. Ab initio calculations of vibrational frequencies and infrared intensities for global warning potential of CFC substitutes. CF{sub 3}CH{sub 2}F (HFC-134a)

    SciTech Connect

    Papasavva, S.; Tai, S.; Esslinger, A.; Illinger, K.H.; Kenny, J.E.

    1995-03-16

    We have investigated the feasibility of using ab initio molecular orbital methods for predicting the global warming potential of the proposed chlorofluorocarbon (CFC) substitute CF{sub 3}CH{sub 2}F, HFC-134a. Various levels of theory and basis sets were used to optimize geometry and calculate harmonic vibrational frequencies and infrared intensities for the molecule using the GAUSSIAN 92 software package. In attempting to assess the quality of the computations, we found it necessary to reconsider the vibrational assignments available in the literature. On the basis of the current assignment, we find that for the highest level calculation, MP2/6-31G{sup **}, the calculated harmonic frequencies agree extremely well with the experimentally observed ones at frequencies below 800 cm{sup {minus}1}, with a systematic error toward higher calculated frequencies becoming apparent above 800 cm{sup {minus}1}. At lower levels of theory, the systematic error is apparent at all frequencies. The regularity of the deviation between calculated and observed frequencies makes ab initio calculations of vibrational frequencies much more useful than semiempirical calculations, which tend to show random deviations, as demonstrated with a PM3-UHF calculation in this work. The calculated absolute intensities are in good agreement with the limited experimental measurements previously reported. 23 refs., 3 figs., 5 tabs.

  3. Accurate high level ab initio-based global potential energy surface and dynamics calculations for ground state of CH{sub 2}{sup +}

    SciTech Connect

    Li, Y. Q.; Zhang, P. Y.; Han, K. L.

    2015-03-28

    A global many-body expansion potential energy surface is reported for the electronic ground state of CH{sub 2}{sup +} by fitting high level ab initio energies calculated at the multireference configuration interaction level with the aug-cc-pV6Z basis set. The topographical features of the new global potential energy surface are examined in detail and found to be in good agreement with those calculated directly from the raw ab initio energies, as well as previous calculations available in the literature. In turn, in order to validate the potential energy surface, a test theoretical study of the reaction CH{sup +}(X{sup 1}Σ{sup +})+H({sup 2}S)→C{sup +}({sup 2}P)+H{sub 2}(X{sup 1}Σ{sub g}{sup +}) has been carried out with the method of time dependent wavepacket on the title potential energy surface. The total integral cross sections and the rate coefficients have been calculated; the results determined that the new potential energy surface can both be recommended for dynamics studies of any type and as building blocks for constructing the potential energy surfaces of larger C{sup +}/H containing systems.

  4. The effect of different calculation methods of flywheel parameters on the Wingate Anaerobic Test.

    PubMed

    Coleman, S G; Hale, T

    1998-08-01

    Researchers compared different methods of calculating kinetic parameters of friction-braked cycle ergometers, and the subsequent effects on calculating power outputs in the Wingate Anaerobic Test (WAnT). Three methods of determining flywheel moment of inertia and frictional torque were investigated, requiring "run-down" tests and segmental geometry. Parameters were used to calculate corrected power outputs from 10 males in a 30-s WAnT against a load related to body mass (0.075 kg.kg-1). Wingate Indices of maximum (5 s) power, work, and fatigue index were also compared. Significant differences were found between uncorrected and corrected power outputs and between correction methods (p < .05). The same finding was evident for all Wingate Indices (p < .05). Results suggest that WAnT must be corrected to give true power outputs and that choosing an appropriate correction calculation is important. Determining flywheel moment of inertia and frictional torque using unloaded run-down tests is recommended.

  5. Solvent effects in time-dependent self-consistent field methods. I. Optical response calculations

    DOE PAGES

    Bjorgaard, J. A.; Kuzmenko, V.; Velizhanin, K. A.; ...

    2015-01-22

    In this study, we implement and examine three excited state solvent models in time-dependent self-consistent field methods using a consistent formalism which unambiguously shows their relationship. These are the linear response, state specific, and vertical excitation solvent models. Their effects on energies calculated with the equivalent of COSMO/CIS/AM1 are given for a set of test molecules with varying excited state charge transfer character. The resulting solvent effects are explained qualitatively using a dipole approximation. It is shown that the fundamental differences between these solvent models are reflected by the character of the calculated excitations.

  6. Calculation of thermodynamic potentials with the inclusion of fractional occupation numbers and investigation of FCC-BCC structural phase transitions in alkaline-earth metals

    NASA Astrophysics Data System (ADS)

    Pozhivatenko, V. V.

    2013-10-01

    The smearing near the Fermi level has been taken into account in the calculations of the thermodynamic characteristics of metals in order to improve the convergence of the performed calculations and to increase the quality of the obtained results. The choice of the smearing parameter usually has not been explained, although the results of the calculations differ significantly for different values of this parameter. Possible schemes for calculating the thermodynamic potentials with the inclusion of the smearing parameter and additional parameters of the volume and energy shifts have been considered. The influence of these parameters on the calculations of the thermodynamic properties of alkaline-earth metals under pressure and on the description of the structural phase transition has been analyzed.

  7. Effect of transition metal-doped Ni(211) for CO dissociation: Insights from DFT calculations

    NASA Astrophysics Data System (ADS)

    Yang, Kuiwei; Zhang, Minhua; Yu, Yingzhe

    2017-03-01

    Density functional theory slab calculations were performed to investigate the adsorption and dissociation of CO over pure and M-doped Ni(211) (M = Fe, Co, Ru and Rh) with the aim to elucidate the effect of transition metal doping for CO activation. Doping the step edge of Ni(211) with Fe, Co and Ru is found to enhance the binding of CO in the initial state (IS) (in the sequence by the improvement degree: Fe > Ru > Co) as well as the co-adsorption of C and O in the final state (FS) (Ru > Fe > Co). In contrast, Rh doping is unfavorable both in the IS and in the FS. Analysis of the overall potential energy surfaces (PES) suggests CO dissociation is facilitated by Fe, Ru and Co doping both kinetically and thermodynamically, wherein Fe and Ru behave extraordinary. Interestingly, Fe substitute is slightly superior to Ru in kinetics whereas the contrary is the case in thermodynamics. Rh doping elevates the energy height from 0.97 eV on Ni(211) to 1.32 eV and releases 0.39 eV less heat relative to Ni(211), again manifesting a negative effect. Besides the classical Brønsted-Evans-Polanyi relationship, we put forward another two neat linear relations, which can well describe the feature of CO dissociation. The differences of CO adsorption and activation in the IS over pure and doped Ni(211) surfaces are rationalized via electronic structure analysis. The findings presented herein are expected to provide theoretical guidance for catalyst design and optimization in relevant processes.

  8. Extension of the Effective Fragment Potential Method to Macromolecules.

    PubMed

    Gurunathan, Pradeep Kumar; Acharya, Atanu; Ghosh, Debashree; Kosenkov, Dmytro; Kaliman, Ilya; Shao, Yihan; Krylov, Anna I; Slipchenko, Lyudmila V

    2016-07-14

    The effective fragment potential (EFP) approach, which can be described as a nonempirical polarizable force field, affords an accurate first-principles treatment of noncovalent interactions in extended systems. EFP can also describe the effect of the environment on the electronic properties (e.g., electronic excitation energies and ionization and electron-attachment energies) of a subsystem via the QM/EFP (quantum mechanics/EFP) polarizable embedding scheme. The original formulation of the method assumes that the system can be separated, without breaking covalent bonds, into closed-shell fragments, such as solvent and solute molecules. Here, we present an extension of the EFP method to macromolecules (mEFP). Several schemes for breaking a large molecule into small fragments described by EFP are presented and benchmarked. We focus on the electronic properties of molecules embedded into a protein environment and consider ionization, electron-attachment, and excitation energies (single-point calculations only). The model systems include chromophores of green and red fluorescent proteins surrounded by several nearby amino acid residues and phenolate bound to the T4 lysozyme. All mEFP schemes show robust performance and accurately reproduce the reference full QM calculations. For further applications of mEFP, we recommend either the scheme in which the peptide is cut along the Cα-C bond, giving rise to one fragment per amino acid, or the scheme with two cuts per amino acid, along the Cα-C and Cα-N bonds. While using these fragmentation schemes, the errors in solvatochromic shifts in electronic energy differences (excitation, ionization, electron detachment, or electron-attachment) do not exceed 0.1 eV. The largest error of QM/mEFP against QM/EFP (no fragmentation of the EFP part) is 0.06 eV (in most cases, the errors are 0.01-0.02 eV). The errors in the QM/molecular mechanics calculations with standard point charges can be as large as 0.3 eV.

  9. A Numerical Method of Calculating Propeller Noise Including Acoustic Nonlinear Effects

    NASA Technical Reports Server (NTRS)

    Korkan, K. D.

    1985-01-01

    Using the transonic flow fields(s) generated by the NASPROP-E computer code for an eight blade SR3-series propeller, a theoretical method is investigated to calculate the total noise values and frequency content in the acoustic near and far field without using the Ffowcs Williams - Hawkings equation. The flow field is numerically generated using an implicit three dimensional Euler equation solver in weak conservation law form. Numerical damping is required by the differencing method for stability in three dimensions, and the influence of the damping on the calculated acoustic values is investigated. The acoustic near field is solved by integrating with respect to time the pressure oscillations induced at a stationary observer location. The acoustic far field is calculated from the near field primitive variables as generated by NASPROP-E computer code using a method involving a perturbation velocity potential as suggested by Hawkings in the calculation of the acoustic pressure time-history at a specified far field observed location. the methodologies described are valid for calculating total noise levels and are applicable to any propeller geometry for which a flow field solution is available.

  10. Cropping system effects on wind erosion potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind erosion of soil is a destructive process impacting crop productivity and human health and safety. The mechanics of wind erosion and soil properties that influence erosion are well understood. Less well-studied are the effects that cropping intensity has upon those soil properties. We collected ...

  11. The exterior tidal potential acting on a satellite. [satellite orbits/satellite perturbation - gravitation effects

    NASA Technical Reports Server (NTRS)

    Musen, P.

    1975-01-01

    A theory is presented that points out the existence of several long period and 'cross effects' in the coefficients in the expansion of the geopotential and in the motion of satellites. The tidal potential, defined as small periodic variations in the geopotential, was calculated. The influence of these geopotential variations on satellite perturbation is examined. Spherical harmonics were employed.

  12. PIMC Validation of Effective Quantum Potentials for MD Simulations of Dense Plasmas

    NASA Astrophysics Data System (ADS)

    Whitley, Heather D.; Castor, John I.; Langdon, A. Bruce; Khairallah, Saad A.; Surh, Michael P.; Dubois, Jonathan L.; Alder, Berni J.; Draeger, Erik W.; Schwegler, Eric; Graziani, Frank R.; Murillo, Michael S.

    2010-11-01

    Molecular dynamics (MD) simulations of dense plasmas, such as those found in non-equilibrium laser fusion experiments, are challenging due to the importance of several quantum mechanical effects. We currently employ approximate statistical potentials, obtained exactly in the pair approximation from a numerical solution of the Bloch equation for the Coulomb density matrix. The fermionic character of the electrons is handled via an effective Pauli potential. We first study the accuracy of existing pair potentials and their extension to lower temperature and high Z ions by examining the exact pair density matrix. We then perform classical hypernetted chain and MD simulations using those effective potentials to study equilibrium thermodynamics of dense plasmas. Fully quantum path integral Monte Carlo (PIMC) simulations are used to gauge the accuracy of the classical calculations for dense hydrogen. Using feedback from the PIMC, we can further refine the effective Coulomb and Pauli potentials. Prepared by LLNL under Contract DE-AC52-07NA27344.

  13. Calculation of intermolecular potentials for H2sbnd H2 and H2sbnd O2 dimers ab initio and prediction of second virial coefficients

    NASA Astrophysics Data System (ADS)

    Pham Van, Tat; Deiters, Ulrich K.

    2015-08-01

    The intermolecular interaction potentials of the dimers H2sbnd H2 and H2sbnd O2 were calculated from quantum mechanics, using coupled-cluster theory CCSD(T) and correlation-consistent basis sets aug-cc-pVmZ (m = 2, 3); the results were extrapolated to the basis set limit aug-cc-pV23Z. The interaction energies were corrected for the basis set superposition error with the counterpoise scheme. For comparison also Møller-Plesset perturbation theory (at levels 2-4) with the basis sets aug-cc-pVTZ were considered, but the results proved inferior. The quantum mechanical results were used to construct analytical pair potential functions. From these functions the second virial coefficients of hydrogen and the cross virial coefficients of the hydrogen-oxygen system were obtained by integration; in both cases corrections for quantum effects were included. The results agree well with experimental data, if available, or with empirical correlations.

  14. Calculation of eta-meson-nucleus quasibound states with optical potentials of the square-well and woods-saxon forms

    SciTech Connect

    Tryasuchev, V. A.; Isaev, A. V.

    2010-11-15

    The results obtained by calculating bound states of eta mesons and nuclei by using a squarewell optical potential are compared with their counterparts based on the use of an optical potential in the Woods-Saxon form. For any reasonable choice of range for a potential that has a sharp boundary, the results for the case of a diffuse boundary demonstrate the need for a greater baryon charge in order that an eta meson form a bound state with nuclei. The dependence of the probability for the formation of etamesonic nuclei on the diffuseness parameter of the optical potential involving the Woods-Saxon radial dependence is revealed.

  15. Calculation of molecular final states and their effect on a precision neutrino mass experiment

    SciTech Connect

    Fackler, O.; Mugge, M.; Sticker, H.; Winter, N.; Woerner, R.

    1984-02-01

    An experiment to determine the electron neutrino mass is being performed with the precision of a few electron volts by measuring the tritium beta decay energy distribution near the endpoint. At the few electron volt level, a major consideration in the choice of a tritium source is the effect of excited final atomic or molecular states on the beta decay distribution. It is important to choose a source for which the initial and final states can be accurately calculated. Frozen tritium was chosen as the source since the states of molecular tritium and those of the HeT/sup +/ daughter ion have electronic wavefunctions that can be calculated with high accuracy. The effects of final excited states on the neutrino mass determination and the results of these calculations are described.

  16. Calculation of Radiofrequency Electromagnetic Fields and Their Effects in MRI of Human Subjects

    PubMed Central

    Collins, Christopher M.; Wang, Zhangwei

    2011-01-01

    Radiofrequency magnetic fields are critical to nuclear excitation and signal reception in Magnetic Resonance Imaging (MRI). The interactions between these fields and human tissues in anatomical geometries results in a variety of effects regarding image integrity and safety of the human subject. In recent decades numerical methods of calculation have been used increasingly to understand the effects of these interactions and aid in engineering better, faster, and safer equipment and methods. As MRI techniques and technology have evolved through the years, so too have the requirements for meaningful interpretation of calculation results. Here we review the basic physics of RF electromagnetics in MRI and discuss a variety of ways RF field calculations are used in MRI in engineering and safety assurance from simple systems and sequences through advanced methods of development for the future. PMID:21381106

  17. Potential Influenza Effects on Military Populations

    DTIC Science & Technology

    2003-12-01

    reviewers for their many helpful comments and suggestions: Dr. Martin Meltzer (Centers for Disease Control and Prevention), Dr. Gene McClellan (General...sequences for 1918 hemagglutinin, neuraminidase and matrix genes , (c) generated recombinant influenza viruses containing these genes , and (d) demonstrated...Mikulasova et alia, “Existing antivirals are effective against influenza viruses with genes from the 1918 pandemic virus,” Proceedings of the National

  18. Effect of an improved molecular potential on strong-field tunneling ionization of molecules

    SciTech Connect

    Zhao Songfeng; Jin Cheng; Le, Anh-Thu; Lin, C. D.

    2010-09-15

    We study the effect of one-electron model potentials on the tunneling ionization rates of molecules in strong fields. By including electron correlation using the modified Leeuwen-Baerends (LB {alpha}) model, the binding energies of outer shells of molecules are significantly improved. However, we show that the tunneling ionization rates from the LB {alpha} do not differ much from the earlier calculations [Phys. Rev. A 81, 033423 (2010)], in which the local correlation potential was neglected.

  19. Thermochemical modeling of nuclear fuel and the effects of oxygen potential buffers

    NASA Astrophysics Data System (ADS)

    Loukusa, Henri; Ikonen, Timo; Valtavirta, Ville; Tulkki, Ville

    2016-12-01

    The elemental and chemical composition of nuclear fuel pellets are key factors influencing the material properties of the pellets. The oxidation state of the fuel is one of the most important chemical properties influencing the material properties of the fuel, and it can only be determined with the knowledge of the chemical composition. A measure of the oxidation state is the oxygen chemical potential of the fuel. It can be buffered by redox pairs, such as the well-known Mo/MoO2 pair. In this work, the elemental composition of the fuel is obtained from a burnup calculation and the temperature and pressure calculated with a fuel performance code. An estimate of the oxygen potential of fuel is calculated with Gibbs energy minimization. The results are compared against experimental data from the literature. The significance of the UMoO6 compound and its buffering effect on the oxygen potential is emphasized.

  20. Simple estimation of thermal capture rates for ion-dipole collisions by canonical effective potential methods

    NASA Astrophysics Data System (ADS)

    Marković, Nikola; Nordholm, Sture

    1989-07-01

    Thermal capture rate coefficients are considered for collision partners which at long range interact by ion-dipole plus polarization potentials. The simple Langevin-Gioumousis-Stevenson theory is extended by mapping the true asymmetric multidimensional interaction potential onto an effective spherically symmetric potential obtained by analysis of canonical probability or flux equalities. Bound states are eliminated in the mapping as well as in the final rate coefficient. Capture rate coefficients are calculated for H 3+ ions colliding with HCl, CS and HCN in a model where the ion is represented as a point charge and the target as a diatomic molecule. Corresponding calculations are carried out using canonical variational transition state theory. The theoretical results are compared with corresponding results obtained in classical trajectory calculations wherein the diatomic target (HCl, CS or HCN) is modeled as two point charges.

  1. Effectiveness of a computer based medication calculation education and testing programme for nurses.

    PubMed

    Sherriff, Karen; Burston, Sarah; Wallis, Marianne

    2012-01-01

    The aim of the study was to evaluate the effect of an on-line, medication calculation education and testing programme. The outcome measures were medication calculation proficiency and self efficacy. This quasi-experimental study involved the administration of questionnaires before and after nurses completed annual medication calculation testing. The study was conducted in two hospitals in south-east Queensland, Australia, which provide a variety of clinical services including obstetrics, paediatrics, ambulatory, mental health, acute and critical care and community services. Participants were registered nurses (RNs) and enrolled nurses with a medication endorsement (EN(Med)) working as clinicians (n=107). Data pertaining to success rate, number of test attempts, self-efficacy, medication calculation error rates and nurses' satisfaction with the programme were collected. Medication calculation scores at first test attempt showed improvement following one year of access to the programme. Two of the self-efficacy subscales improved over time and nurses reported satisfaction with the online programme. Results of this study may facilitate the continuation and expansion of medication calculation and administration education to improve nursing knowledge, inform practise and directly improve patient safety.

  2. Effects of Web-Based Instruction on Nursing Students' Arithmetical and Drug Dosage Calculation Skills.

    PubMed

    Karabag Aydin, Arzu; Dinç, Leyla

    2016-12-29

    Drug dosage calculation skill is critical for all nursing students to ensure patient safety, particularly during clinical practice. The study purpose was to evaluate the effectiveness of Web-based instruction on improving nursing students' arithmetical and drug dosage calculation skills using a pretest-posttest design. A total of 63 nursing students participated. Data were collected through the Demographic Information Form, and the Arithmetic Skill Test and Drug Dosage Calculation Skill Test were used as pre and posttests. The pretest was conducted in the classroom. A Web site was then constructed, which included audio presentations of lectures, quizzes, and online posttests. Students had Web-based training for 8 weeks and then they completed the posttest. Pretest and posttest scores were compared using the Wilcoxon test and correlation coefficients were used to identify the relationship between arithmetic and calculation skills scores. The results demonstrated that Web-based teaching improves students' arithmetic and drug dosage calculation skills. There was a positive correlation between the arithmetic skill and drug dosage calculation skill scores of students. Web-based teaching programs can be used to improve knowledge and skills at a cognitive level in nursing students.

  3. The effects of calculator-based laboratories on standardized test scores

    NASA Astrophysics Data System (ADS)

    Stevens, Charlotte Bethany Rains

    Nationwide, the goal of providing a productive science and math education to our youth in today's educational institutions is centering itself around the technology being utilized in these classrooms. In this age of digital technology, educational software and calculator-based laboratories (CBL) have become significant devices in the teaching of science and math for many states across the United States. Among the technology, the Texas Instruments graphing calculator and Vernier Labpro interface, are among some of the calculator-based laboratories becoming increasingly popular among middle and high school science and math teachers in many school districts across this country. In Tennessee, however, it is reported that this type of technology is not regularly utilized at the student level in most high school science classrooms, especially in the area of Physical Science (Vernier, 2006). This research explored the effect of calculator based laboratory instruction on standardized test scores. The purpose of this study was to determine the effect of traditional teaching methods versus graphing calculator teaching methods on the state mandated End-of-Course (EOC) Physical Science exam based on ability, gender, and ethnicity. The sample included 187 total tenth and eleventh grade physical science students, 101 of which belonged to a control group and 87 of which belonged to the experimental group. Physical Science End-of-Course scores obtained from the Tennessee Department of Education during the spring of 2005 and the spring of 2006 were used to examine the hypotheses. The findings of this research study suggested the type of teaching method, traditional or calculator based, did not have an effect on standardized test scores. However, the students' ability level, as demonstrated on the End-of-Course test, had a significant effect on End-of-Course test scores. This study focused on a limited population of high school physical science students in the middle Tennessee

  4. Potential effect of ultrasound on carbohydrates.

    PubMed

    Bera, Smritilekha; Mondal, Dhananjoy; Martin, Jacob T; Singh, Man

    2015-06-17

    The use of ultrasound has emerged as one of the most useful alternative energy sources for the synthesis of carbohydrate-derived biologically and pharmaceutically potential compounds. Spectacular advances have been made in the field of sonication-assisted organic reactions, which are known for producing superior yields, enhanced reactivity of the reactant, improved stereoselectivity, and shortened reaction times. Orthogonal protection-deprotection reactions and/or modification and manipulation of functional groups in carbohydrates are common synthetic steps in carbohydrate chemistry. These reaction steps can be driven by the ultrasonic energy generated by acoustic cavitation via the formation and subsequent collapse of ultrasound-induced bubbles. The ultrasound-assisted synthesis of differently functionalised monosaccharides is useful in a wide variety of applications of carbohydrate chemistry such as the glycosylation of oligosaccharides, one pot domino reactions, thioglycoside syntheses, azidoglycoside syntheses, 1,3-dipolar cycloaddition reactions, and syntheses of natural products. This review article covers ultrasound-mediated reactions on carbohydrates that have been described in the literature since 2000.

  5. Calculation and evaluation of sediment effect concentrations for the amphipod Hyalella azteca and the midge Chironomus riparius

    USGS Publications Warehouse

    Ingersoll, Christopher G.; Haverland, Pamela S.; Brunson, Eric L.; Canfield, Timothy J.; Dwyer, F. James; Henke, Chris; Kemble, Nile E.; Mount, David R.; Fox, Richard G.

    1996-01-01

    Procedures are described for calculating and evaluating sediment effect concentrations (SECs) using laboratory data on the toxicity of contaminants associated with field-collected sediment to the amphipod Hyalella azteca and the midge Chironomus riparius. SECs are defined as the concentrations of individual contaminants in sediment below which toxicity is rarely observed and above which toxicity is frequently observed. The objective of the present study was to develop SECs to classify toxicity data for Great Lake sediment samples tested with Hyalella azteca and Chironomus riparius. This SEC database included samples from additional sites across the United States in order to make the database as robust as possible. Three types of SECs were calculated from these data: (1) Effect Range Low (ERL) and Effect Range Median (ERM), (2) Threshold Effect Level (TEL) and Probable Effect Level (PEL), and (3) No Effect Concentration (NEC). We were able to calculate SECs primarily for total metals, simultaneously extracted metals, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). The ranges of concentrations in sediment were too narrow in our database to adequately evaluate SECs for butyltins, methyl mercury, polychlorinated dioxins and furans, or chlorinated pesticides. About 60 to 80% of the sediment samples in the database are correctly classified as toxic or not toxic depending on type of SEC evaluated. ERMs and ERLs are generally as reliable as paired PELs and TELs at classifying both toxic and non-toxic samples in our database. Reliability of the SECs in terms of correctly classifying sediment samples is similar between ERMs and NECs; however, ERMs minimize Type I error (false positives) relative to ERLs and minimize Type II error (false negatives) relative to NECs. Correct classification of samples can be improved by using only the most reliable individual SECs for chemicals (i.e., those with a higher percentage of correct classification). SECs

  6. The Development of Effective Classical Potentials and the Quantum Statistical Mechanical Second Virial Coefficient of Water

    SciTech Connect

    Schenter, Gregory K.

    2002-10-08

    The second virial coefficient of water is calculated at low temperature by considering full quantum statistical mechanical effects. At low enough temperatures experimental results are limited and molecular models can be used for accurate extrapolation. In doing so, one must separate inaccuracies of the intermolecular potential from limitations of simulation such as the neglect of higher-order quantum corrections. Effective classical potentials may be used to understand the limitations of classical simulation. In this work we calculate the exact quantum statistical mechanical second virial coefficient and find that using a simple form for the effective classical potential introduced by Miller we are able to reproduce the exact quantum statistical results. This approach provides a significant improvement to conventional first order expansions of the second virial coefficient.

  7. Comparison of velocity distribution functions in an argon shock wave between experiments and Monte Carlo calculations for Lennard-Jones potential

    NASA Astrophysics Data System (ADS)

    Matsumoto, Hiroaki; Koura, Katsuhisa

    1991-12-01

    The velocity distribution functions (VDF's) in an argon normal shock wave at an upstream high Mach number 7.183 and low temperature 16 K are calculated using the null-collision direct-simulation Monte Carlo method for the Lennard-Jones (LJ) potential to compare with the experimental results of Holtz and Muntz (1983). The convolved VDF's for the LJ potential are in reasonable agreement with the measured data in early and late regions of the shock wave but significantly different in the middle region. This discrepancy cannot be explained by a possible uncertainty in the potential well depth. Moreover, the difference in the convolved VDF's between the LJ potential and the softest and hardest unrealistic molecular models with no attractive force, i.e., the Maxwell molecule and hard sphere, is much smaller than the discrepancy between the experiments and Monte Carlo calculations.

  8. Comparison of velocity distribution functions in an argon shock wave between experiments and Monte Carlo calculations for Lennard-Jones potential

    NASA Astrophysics Data System (ADS)

    Matsumoto, Hiroaki; Koura, Katsuhisa

    1991-12-01

    The velocity distribution functions (VDF's) in an argon normal shock wave at an upstream high Mach number 7.183 and low temperature 16 K are calculated using the null-collision direct-simulation Monte Carlo method for the Lennard-Jones (LJ) potential to compare with the experimental results of Holtz and Muntz [Phys. Fluids 26, 2425 (1983)]. The convolved VDF's for the LJ potential are in reasonable agreement with the measured data in early and late regions of the shock wave but significantly different in the middle region. This discrepancy cannot be explained by a possible uncertainty in the potential well depth. Moreover, the difference in the convolved VDF's between the LJ potential and the softest and hardest unrealistic molecular models with no attractive force, i.e., the Maxwell molecule and hard sphere, is much smaller than the discrepancy between the experiments and Monte Carlo calculations.

  9. Bending of I-beam with the transvers shear effect included - FEM calculated

    NASA Astrophysics Data System (ADS)

    Grygorowicz, Magdalena; Lewiński, Jerzy

    2016-06-01

    The paper is devoted to three-point bending of an I-beam with include of transvers shear effect. Numerical calculations were conducted independently with the use of the SolidWorks system and the multi-purpose software package ANSYS The results of FEM study conducted with the use of two systems were compared and presented in tables and figures.

  10. Thermodynamic method of calculating the effect of alloying additives on interphase interaction in composite materials

    NASA Technical Reports Server (NTRS)

    Tuchinsky, L. I.

    1986-01-01

    The effect of alloying additives to the matrix of a composite on the high temperature solubility rate of a single component fiber was analyzed thermodynamically. With an example of binary Ni alloys, with Group IV-VI transition metals reinforced with W fibers, agreement between the calculated and experimental data was demonstrated.

  11. Double blind study of the effect of caffeine on the mental calculation.

    PubMed

    Shiraishi, F; Takahashi, F; Goto, T; Harada, K; Kusaba, A; Morimoto, S

    2000-04-01

    The double blind study of the effect of caffeine on the mental calculation has been carried out in the practical exercise course for the undergraduate students of clinical pharmacology, in the Medical School, Kyushu University. The results obtained from 1997 to 1999 were summarized and evaluated.

  12. 30 CFR 254.44 - Calculating response equipment effective daily recovery capacities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... recovery capacities. 254.44 Section 254.44 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE... recovery capacities. (a) You are required by § 254.26(d)(1) to calculate the effective daily recovery capacity of the response equipment identified in your response plan that you would use to contain...

  13. The Effects of Statistical Analysis Software and Calculators on Statistics Achievement

    ERIC Educational Resources Information Center

    Christmann, Edwin P.

    2009-01-01

    This study compared the effects of microcomputer-based statistical software and hand-held calculators on the statistics achievement of university males and females. The subjects, 73 graduate students enrolled in univariate statistics classes at a public comprehensive university, were randomly assigned to groups that used either microcomputer-based…

  14. Analysis of nominal dose-effect data with an advanced programmable calculator.

    PubMed

    Baird, J B; Balster, R L

    1979-01-01

    A step by step procedure is described for programming the method of Bliss for analyzing nominal dose-effect data for use with an advanced programmable calculator. A comparison of the results using this method with the results of others shows a good correspondence.

  15. Analytical Fractal Model for Calculating Effective Thermal Conductivity of the Fibrous Porous Materials.

    PubMed

    Kan, An-Kang; Cao, Dan; Zhang, Xue-Lai

    2015-04-01

    Accurately predicting the effective thermal conductivity of the fibrous materials is highly desirable but remains to be a challenging work. In this paper, the microstructure of the porous fiber materials is analyzed, approximated and modeled on basis of the statistical self-similarity of fractal theory. A fractal model is presented to accurately calculate the effective thermal conductivity of fibrous porous materials. Taking the two-phase heat transfer effect into account, the existing statistical microscopic geometrical characteristics are analyzed and the Hertzian Contact solution is introduced to calculate the thermal resistance of contact points. Using the fractal method, the impacts of various factors, including the porosity, fiber orientation, fractal diameter and dimension, rarified air pressure, bulk thermal conductivity coefficient, thickness and environment condition, on the effective thermal conductivity, are analyzed. The calculation results show that the fiber orientation angle caused the material effective thermal conductivity to be anisotropic, and normal distribution is introduced into the mathematic function. The effective thermal conductivity of fibrous material increases with the fiber fractal diameter, fractal dimension and rarefied air pressure within the materials, but decreases with the increase of vacancy porosity.

  16. A Full-Potential Linearized Augmented Plane-Wave Method for Calculating Transport Properties: Application to Fe/MgO/Fe Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Bluegel, Stefan

    2005-03-01

    In order to calculate on the basis of the single particle picture as provided by the density-functional theory (DFT), the spin-dependent tunneling through barriers and interfaces of materials with increasing chemical and structural complexity, an extention of the full-potential linearized augmented plane- wave method (FLAPW) as realized in the FLEUR code is introduced. The volume in which the electrons scatter is sandwiched between two semi-infinite leads. The leads and the scattering volume are described by an embedding Green function formalism. Different scenarios of electron transport such as sequential and coherent tunneling is formulated and will be compared. Several applications will be presented. The method is used to understand the spin-polarized scanning tunneling microscope. For a three- layer heterosystem SrRuO3/SrTiO3/SrRuO3, the effect of different orbital characters of the states at the Fermi level on the tunneling conductance was investigated. The main focus is on the Fe/MgO/Fe system for which we show that very small changes at the interface can have drastic effects on the conductance.

  17. A potential energy surface for the process H2 + H2O yielding H + H + H2O - Ab initio calculations and analytical representation

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Walch, Stephen P.; Taylor, Peter R.

    1991-01-01

    Extensive ab initio calculations on the ground state potential energy surface of H2 + H2O were performed using a large contracted Gaussian basis set and a high level of correlation treatment. An analytical representation of the potential energy surface was then obtained which reproduces the calculated energies with an overall root-mean-square error of only 0.64 mEh. The analytic representation explicitly includes all nine internal degrees of freedom and is also well behaved as the H2 dissociates; it thus can be used to study collision-induced dissociation or recombination of H2. The strategy used to minimize the number of energy calculations is discussed, as well as other advantages of the present method for determining the analytical representation.

  18. CALCULATED MOLECULAR STRUCTURES AND POTENTIAL ENERGY FUNCTIONS OF PAHS WITH METHYL CROWDING IN THE BAY REGION AND THEIR METABOLITES: COMPARISON TO EXPERIMENTAL STRUCTURES

    EPA Science Inventory

    Abstract Title: Calculated molecular structures and potential energy functions of P AHs with methyl crowding in the bay region and their metabolites: Comparison to experimental structures.

    Abstract:
    PAHs with methyl group substitution near a bay region represent a cl...

  19. CALCULATED MOLECULAR STRUCTURES AND POTENTIAL ENERGY FUNCTIONS OF PAHS WITH METHYL CROWDING IN THE BAY REGION AND THEIR METABOLITES: COMPARISON TO EXPERIMENTAL STRUCTURES

    EPA Science Inventory

    Calculated molecular structures and potential energy functions ofP AHs with methyl crowding in the bay region and their metabolites: Comparison to experimental structures

    PAHs with methyl group substitution near a bay region represent a class of chemicals associated with ...

  20. Future aircraft and potential effects on stratospheric ozone and climate

    SciTech Connect

    Kinnison, D.E.; Wuebbles, D.J.

    1991-10-01

    The purpose of this study is to extend the recent research examining the global environmental effects from potential fleets of subsonic and supersonic commercial aircraft. Initial studies with LLNL models of global atmospheric chemical, radiative, and transport processes have indicated that substantial decreases in stratospheric ozone concentrations could result from emissions of NO{sub x} from aircraft flying in the stratosphere, depending on fleet size and magnitude of the engine emissions. These studies used homogeneous chemical reaction rates (e.g. gas-phase chemistry). Recent evidence indicates that reactions on particles in the stratosphere may be important. Heterogeneous chemical reactions, for instance, N{sub 2}O{sub 5}and ClONO{sub 2} on background sulfuric acid aerosols, convert NO{sub x}(NO and NO{sub 2}) molecules to HNO{sub 3}. This decreases the odd oxygen loss from the NO{sub x} catalytic cycle and increases the odd oxygen loss from the Cl{sub x} catalytic cycle. By including these heterogeneous reactions in the LLNL model, the relative partitioning of odd oxygen loss between these two families changes, with the result that emissions of NO{sub x} from proposed aircraft fleets flying in the stratosphere now increase zone. Having these heterogeneous processes present also increases ozone concentration in the troposphere relative to gas-phase only chemistry calculations for emissions of NO{sub x} from subsonic aircraft. 26 refs., 5 figs., 3 tabs.

  1. Effects of interactions between stations on the calculation of geomagnetically induced currents in an electric power transmission system

    NASA Astrophysics Data System (ADS)

    Pirjola, R.

    2008-07-01

    "Geomagnetically induced currents" (GIC) in ground-based technological networks are a manifestation of space weather. GIC are a potential source of problems to the systems and therefore important in practice. GIC in a power system (or in principle in any other discretely-earthed system) can be calculated conveniently by using matrix equations presented earlier. Since temporal variations associated with GIC are slow compared to the 50/60 Hz frequency used in power transmission, a dc treatment is acceptable. An essential quantity in calculations of GIC in a power grid is the earthing impedance matrix, which is the transfer function coupling GIC flowing to (from) the Earth with the voltages between the earthing points, called nodes or (sub)stations, and a remote earth. The diagonal elements of the matrix equal the earthing resistances of the nodes whereas an off-diagonal element expresses how much GIC at one earthing point affects the voltage at another node. In GIC calculations, except for some special treatments of individual sites, the off-diagonal elements are usually neglected by saying simply that the earthing points (are assumed to) lie distantly enough. In this paper, we examine the effects of off-diagonal elements of the earthing impedance matrix, i.e. the effects of interactions between different stations, on GIC calculations in greater detail and more quantitatively than before. We consider a fictitious system that represents a high-voltage power grid and a simple "network" consisting of two stations with a line connecting them. For both systems, the conclusion can be drawn that the off-diagonal elements do not play a major role in practice. Modelling them only approximately, or even ignoring them, is not of great significance compared to other shortcomings involved in GIC calculations. This is particularly true when looking at a power grid as a whole although at some individual stations the neglect may lead to larger errors in GIC values.

  2. Calculation of doublet capture rate for muon capture in deuterium within chiral effective field theory

    NASA Astrophysics Data System (ADS)

    Adam, J.; Tater, M.; Truhlík, E.; Epelbaum, E.; Machleidt, R.; Ricci, P.

    2012-03-01

    The doublet capture rate Λ1 / 2 of the negative muon capture in deuterium is calculated employing the nuclear wave functions generated from accurate nucleon-nucleon (NN) potentials constructed at next-to-next-to-next-to-leading order of heavy-baryon chiral perturbation theory and the weak meson exchange current operator derived within the same formalism. All but one of the low-energy constants that enter the calculation were fixed from pion-nucleon and nucleon-nucleon scattering data. The low-energy constant dˆR (cD), which cannot be determined from the purely two-nucleon data, was extracted recently from the triton β-decay and the binding energies of the three-nucleon systems. The calculated values of Λ1 / 2 show a rather large spread for the used values of the dˆR. Precise measurement of Λ1 / 2 in the future will not only help to constrain the value of dˆR, but also provide a highly nontrivial test of the nuclear chiral EFT framework. Besides, the precise knowledge of the constant dˆR will allow for consistent calculations of other two-nucleon weak processes, such as proton-proton fusion and solar neutrino scattering on deuterons, which are important for astrophysics.

  3. Accurate quantum wave packet calculations for the F + HCl → Cl + HF reaction on the ground 1(2)A' potential energy surface.

    PubMed

    Bulut, Niyazi; Kłos, Jacek; Alexander, Millard H

    2012-03-14

    We present converged exact quantum wave packet calculations of reaction probabilities, integral cross sections, and thermal rate coefficients for the title reaction. Calculations have been carried out on the ground 1(2)A' global adiabatic potential energy surface of Deskevich et al. [J. Chem. Phys. 124, 224303 (2006)]. Converged wave packet reaction probabilities at selected values of the total angular momentum up to a partial wave of J = 140 with the HCl reagent initially selected in the v = 0, j = 0-16 rovibrational states have been obtained for the collision energy range from threshold up to 0.8 eV. The present calculations confirm an important enhancement of reactivity with rotational excitation of the HCl molecule. First, accurate integral cross sections and rate constants have been calculated and compared with the available experimental data.

  4. Electronic properties of amino acid side chains: quantum mechanics calculation of substituent effects

    PubMed Central

    Dwyer, Donard S

    2005-01-01

    Background Electronic properties of amino acid side chains such as inductive and field effects have not been characterized in any detail. Quantum mechanics (QM) calculations and fundamental equations that account for substituent effects may provide insight into these important properties. PM3 analysis of electron distribution and polarizability was used to derive quantitative scales that describe steric factors, inductive effects, resonance effects, and field effects of amino acid side chains. Results These studies revealed that: (1) different semiempirical QM methods yield similar results for the electronic effects of side chain groups, (2) polarizability, which reflects molecular deformability, represents steric factors in electronic terms, and (3) inductive effects contribute to the propensity of an amino acid for α-helices. Conclusion The data provide initial characterization of the substituent effects of amino acid side chains and suggest that these properties affect electron density along the peptide backbone. PMID:16078995

  5. 2D calculations of the thermal effects due to femtosecond laser-metal interaction

    NASA Astrophysics Data System (ADS)

    Valette, S.; Le Harzic, R.; Huot, N.; Audouard, E.; Fortunier, R.

    2005-07-01

    Experimental results previously published have shown that the radial heat affected zone (HAZ) for a 500 nm thick Al sample in the femtosecond case is less than 2 μm [Appl. Phys. Lett. 80 (2002) 3886]. The spread of radial thermal effects for femtosecond pulses is calculated, by developing a two-dimensional version of the two temperature model (TTM). The case of an axi-symmetrical geometry is simulated by a finite element technique. A physical metallurgy approach is used to define and to estimate the radial HAZ width from the calculations. The evolution of the temperature as a function of time is studied, leading to a radial HAZ width of 220 nm for 500 nm thick Al samples. Similar calculations in the nanosecond regime are also performed and compared to the femtosecond case.

  6. Benchmark Calculations for Reflector Effect in Fast Cores by Using the Latest Evaluated Nuclear Data Libraries

    NASA Astrophysics Data System (ADS)

    Fukushima, M.; Ishikawa, M.; Numata, K.; Jin, T.; Kugo, T.

    2014-04-01

    Benchmark calculations for reflector effects in fast cores were performed to validate the reliability of scattering data of structural materials in the major evaluated nuclear data libraries, JENDL-4.0, ENDF/B-VII.1 and JEFF-3.1.2. The criticalities of two FCA and two ZPR cores were analyzed by using a continuous energy Monte Carlo calculation code. The ratios of calculation to experimental values were compared between these cores and the sensitivity analyses were performed. From the results, the replacement reactivity from blanket to SS and Na reflector is better evaluated by JENDL-4.0 than by ENDF/B-VII.1 mainly due to the μbar values of Na and 52Cr.

  7. Finite temperature effective potential in a Kaluza-Klein universe

    SciTech Connect

    Roy, P. )

    1990-01-20

    The authors evaluate the finite temperature one-loop effective potential for scalar fields in Kaluza-Klein universe consisting of the product of a space with open Robertson-Walker metric and the N sphere S{sup N}. The one-loop effective potential has been computed in both high and low temperature limits.

  8. A study of the effects of numerical dissipation on the calculation of supersonic separated flows

    NASA Technical Reports Server (NTRS)

    Kuruvila, G.; Anderson, J. D., Jr.

    1985-01-01

    An extensive investigation of the effect of numerical dissipation on the calculation of supersonic, separated flow over a rearward-facing step is carried out. The complete two-dimensional Navier-Stokes equations are solved by means of MacCormack's standard explicit, unsplit, time-dependent, finite difference method. A fourth-order numerical dissipation term is added explicitly. The magnitude of this term is progressively varied, and its consequences on the flowfield calculations are identified and studied. For a cold-wall, heat transfer case, numerical dissipation had a major effect on the results, particularly in the separated region. However, rather dramatically for an adiabatic wall case, numerical dissipation had virtually no effect on the results. The role of grid size on both the influence of numerical dissipation, and on the overall accuracy of the separated flow solutions is discussed.

  9. Simple and effective calculations about spectral power distributions of outdoor light sources for computer vision.

    PubMed

    Tian, Jiandong; Duan, Zhigang; Ren, Weihong; Han, Zhi; Tang, Yandong

    2016-04-04

    The spectral power distributions (SPD) of outdoor light sources are not constant over time and atmospheric conditions, which causes the appearance variation of a scene and common natural illumination phenomena, such as twilight, shadow, and haze/fog. Calculating the SPD of outdoor light sources at different time (or zenith angles) and under different atmospheric conditions is of interest to physically-based vision. In this paper, for computer vision and its applications, we propose a feasible, simple, and effective SPD calculating method based on analyzing the transmittance functions of absorption and scattering along the path of solar radiation through the atmosphere in the visible spectrum. Compared with previous SPD calculation methods, our model has less parameters and is accurate enough to be directly applied in computer vision. It can be applied in computer vision tasks including spectral inverse calculation, lighting conversion, and shadowed image processing. The experimental results of the applications demonstrate that our calculation methods have practical values in computer vision. It establishes a bridge between image and physical environmental information, e.g., time, location, and weather conditions.

  10. Taming the Goldstone contributions to the effective potential

    SciTech Connect

    Martin, Stephen P.

    2014-07-28

    The standard perturbative effective potential suffers from two related problems of principle involving the field-dependent Goldstone boson squared mass, G. First, in general G can be negative, and it actually is negative in the Standard Model; this leads to imaginary contributions to the effective potential that are not associated with a physical instability, and therefore spurious. Second, in the limit that G approaches zero, the effective potential minimization condition is logarithmically divergent already at two-loop order, and has increasingly severe power-law singularities at higher loop orders. I resolve both issues by resumming the Goldstone boson contributions to the effective potential. For the resulting resummed effective potential, the minimum value and the minimization condition that gives the vacuum expectation value are obtained in forms that do not involve G at all.

  11. A computational study of barium blockades in the KcsA potassium channel based on multi-ion potential of mean force calculations and free energy perturbation.

    PubMed

    Rowley, Christopher N; Roux, Benoît

    2013-10-01

    Electrophysiological studies have established that the permeation of Ba(2+) ions through the KcsA K(+)-channel is impeded by the presence of K(+) ions in the external solution, while no effect is observed for external Na(+) ions. This Ba(2+) "lock-in" effect suggests that at least one of the external binding sites of the KcsA channel is thermodynamically selective for K(+). We used molecular dynamics simulations to interpret these lock-in experiments in the context of the crystallographic structure of KcsA. Assuming that the Ba(2+) is bound in site S(2) in the dominant blocked state, we examine the conditions that could impede its translocation and cause the observed "lock-in" effect. Although the binding of a K(+) ion to site S(1) when site S(2) is occupied by Ba(2+) is prohibitively high in energy (>10 kcal/mol), binding to site S0 appears to be more plausible (ΔG > 4 kcal/mol). The 2D potential of mean force (PMF) for the simultaneous translocation of Ba(2+) from site S(2) to site S(1) and of a K(+) ion on the extracellular side shows a barrier that is consistent with the concept of external lock-in. The barrier opposing the movement of Ba(2+) is very high when a cation is in site S(0), and considerably smaller when the site is unoccupied. Furthermore, free energy perturbation calculations show that site S(0) is selective for K(+) by 1.8 kcal/mol when S(2) is occupied by Ba(2+). However, the same site S(0) is nonselective when site S(2) is occupied by K(+), which shows that the presence of Ba(2+) affects the selectivity of the pore. A theoretical framework within classical rate theory is presented to incorporate the concentration dependence of the external ions on the lock-in effect.

  12. Lattice calculation of thermal properties of low-density neutron matter with pionless NN effective field theory

    SciTech Connect

    Abe, T.; Seki, R.

    2009-05-15

    Thermal properties of low-density neutron matter are investigated by determinantal quantum Monte Carlo lattice calculations on 3+1 dimensional cubic lattices. Nuclear effective field theory (EFT) is applied using the pionless single- and two-parameter neutron-neutron interactions, determined from the {sup 1}S{sub 0} scattering length and effective range. The determination of the interactions and the calculations of neutron matter are carried out consistently by applying EFT power counting rules. The thermodynamic limit is taken by the method of finite-size scaling, and the continuum limit is examined in the vanishing lattice filling limit. The {sup 1}S{sub 0} pairing gap at T{approx_equal}0 is computed directly from the off-diagonal long-range order of the spin pair-pair correlation function and is found to be approximately 30% smaller than BCS calculations with the conventional nucleon-nucleon potentials. The critical temperature T{sub c} of the normal-to-superfluid phase transition and the pairing temperature scale T* are determined, and the temperature-density phase diagram is constructed. The physics of low-density neutron matter is clearly identified as being a BCS-Bose-Einstein condensation crossover.

  13. Effects of grid size and aggregation on regional scale landuse scenario calculations using SVAT schemes

    NASA Astrophysics Data System (ADS)

    Bormann, H.

    2006-09-01

    This paper analyses the effect of spatial input data resolution on the simulated effects of regional scale landuse scenarios using the TOPLATS model. A data set of 25 m resolution of the central German Dill catchment (693 km2) and three different landuse scenarios are used for the investigation. Landuse scenarios in this study are field size scenarios, and depending on a specific target field size (0.5 ha, 1.5 ha and 5.0 ha) landuse is determined by optimising economic outcome of agricultural used areas and forest. After an aggregation of digital elevation model, soil map, current landuse and landuse scenarios to 50 m, 75 m, 100 m, 150 m, 200 m, 300 m, 500 m, 1 km and 2 km, water balances and water flow components for a 20 years time period are calculated for the entire Dill catchment as well as for 3 subcatchments without any recalibration. Additionally water balances based on the three landuse scenarios as well as changes between current conditions and scenarios are calculated. The study reveals that both model performance measures (for current landuse) as well as water balances (for current landuse and landuse scenarios) almost remain constant for most of the aggregation steps for all investigated catchments. Small deviations are detected at the resolution of 50 m to 500 m, while significant differences occur at the resolution of 1 km and 2 km which can be explained by changes in the statistics of the input data. Calculating the scenario effects based on increasing grid sizes yields similar results. However, the change effects react more sensitive to data aggregation than simple water balance calculations. Increasing deviations between simulations based on small grid sizes and simulations using grid sizes of 300 m and more are observed. Summarizing, this study indicates that an aggregation of input data for the calculation of regional water balances using TOPLATS type models does not lead to significant errors up to a resolution of 500 m. Focusing on scenario

  14. The relationship between calculated effect-site sevoflurane levels and awakening from anaesthesia.

    PubMed

    Kennedy, R R; Sakowska, M M

    2006-12-01

    We have previously described a system that displays real-time estimates of effect-site sevoflurane concentrations. Estimates of effect-site levels should be similar to minimum alveolar concentration (MAC) values, which are determined after allowing time for equilibrium. This study aimed to determine estimated effect-site sevoflurane concentrations at awakening from routine anaesthesia and to compare this with published estimates of MAC-awake. If these values were similar; this would validate our approach to the calculation of effect-site concentration. Sixty-five patients undergoing a variety of surgical procedures were observed. Prior to disconnection from the breathing circuit, forward estimates of effect-site sevoflurane were recorded. Patients were observed in the post-anaesthesia care unit and the time at which they responded to command was recorded.Age-adjusted effect-site sevoflurane at the time of awakening was determined. Correlation with patient, surgical and anaesthetic factors including age, gender; ASA status and intraoperative opioid usage were explored. Mean age-adjusted calculated effect-site concentration at awakening was 0.59 (SD 0.27) vol%. This value is within the range of values determined for MAC-awake of sevoflurane. There was no correlation with any of the demographic or anaesthetic factors, but patients undergoing major surgery woke at a significantly lower mean sevoflurane level. These results support the use of effect-site sevoflurane concentration to guide administration of anaesthesia.

  15. Computer subroutines for the estimation of nuclear reaction effects in proton-tissue-dose calculations

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Khandelwal, G. S.

    1976-01-01

    Calculational methods for estimation of dose from external proton exposure of arbitrary convex bodies are briefly reviewed. All the necessary information for the estimation of dose in soft tissue is presented. Special emphasis is placed on retaining the effects of nuclear reaction, especially in relation to the dose equivalent. Computer subroutines to evaluate all of the relevant functions are discussed. Nuclear reaction contributions for standard space radiations are in most cases found to be significant. Many of the existing computer programs for estimating dose in which nuclear reaction effects are neglected can be readily converted to include nuclear reaction effects by use of the subroutines described herein.

  16. The effect of gamma-ray transport on afterheat calculations for accident analysis

    SciTech Connect

    Reyes, S.; Latkowski, J.F.; Sanz, J.

    2000-05-01

    Radioactive afterheat is an important source term for the release of radionuclides in fusion systems under accident conditions. Heat transfer calculations are used to determine time-temperature histories in regions of interest, but the true source term needs to be the effective afterheat, which considers the transport of penetrating gamma rays. Without consideration of photon transport, accident temperatures may be overestimated in others. The importance of this effect is demonstrated for a simple, one-dimensional problem. The significance of this effect depends strongly on the accident scenario being analyzed.

  17. CFD-CAA Coupled Calculations of a Tandem Cylinder Configuration to Assess Facility Installation Effects

    NASA Technical Reports Server (NTRS)

    Redonnet, Stephane; Lockard, David P.; Khorrami, Mehdi R.; Choudhari, Meelan M.

    2011-01-01

    This paper presents a numerical assessment of acoustic installation effects in the tandem cylinder (TC) experiments conducted in the NASA Langley Quiet Flow Facility (QFF), an open-jet, anechoic wind tunnel. Calculations that couple the Computational Fluid Dynamics (CFD) and Computational Aeroacoustics (CAA) of the TC configuration within the QFF are conducted using the CFD simulation results previously obtained at NASA LaRC. The coupled simulations enable the assessment of installation effects associated with several specific features in the QFF facility that may have impacted the measured acoustic signature during the experiment. The CFD-CAA coupling is based on CFD data along a suitably chosen surface, and employs a technique that was recently improved to account for installed configurations involving acoustic backscatter into the CFD domain. First, a CFD-CAA calculation is conducted for an isolated TC configuration to assess the coupling approach, as well as to generate a reference solution for subsequent assessments of QFF installation effects. Direct comparisons between the CFD-CAA calculations associated with the various installed configurations allow the assessment of the effects of each component (nozzle, collector, etc.) or feature (confined vs. free jet flow, etc.) characterizing the NASA LaRC QFF facility.

  18. An isotopic mass effect on the intermolecular potential

    DOE PAGES

    Herman, Michael F.; Currier, Robert Patrick; Clegg, Samuel M.

    2015-09-28

    The impact of isotopic variation on the electronic energy and intermolecular potentials is often suppressed when calculating isotopologue thermodynamics. Intramolecular potential energy surfaces for distinct isotopologues are in fact equivalent under the Born–Oppenheimer approximation, which is sometimes used to imply that the intermolecular interactions are independent of isotopic mass. In this paper, the intermolecular dipole–dipole interaction between hetero-nuclear diatomic molecules is considered. It is shown that the intermolecular potential contains mass-dependent terms even though each nucleus moves on a Born–Oppenheimer surface. Finally, the analysis suggests that mass dependent variations in intermolecular potentials should be included in comprehensive descriptions of isotopologuemore » thermodynamics.« less

  19. Heavy quark potential from QCD-related effective coupling

    NASA Astrophysics Data System (ADS)

    Ayala, César; González, Pedro; Vento, Vicente

    2016-12-01

    We implement our past investigations of quark-antiquark interaction through a non-perturbative running coupling defined in terms of a gluon mass function, similar to that used in some Schwinger-Dyson approaches. This coupling leads to a quark-antiquark potential, which satisfies not only asymptotic freedom but also describes linear confinement correctly. From this potential, we calculate the bottomonium and charmonium spectra below the first open flavor meson-meson thresholds and show that for a small range of values of the free parameter determining the gluon mass function an excellent agreement with data is attained.

  20. Toward order-by-order calculations of the nuclear and neutron matter equations of state in chiral effective field theory

    NASA Astrophysics Data System (ADS)

    Sammarruca, F.; Coraggio, L.; Holt, J. W.; Itaco, N.; Machleidt, R.; Marcucci, L. E.

    2015-05-01

    We calculate the nuclear and neutron matter equations of state from microscopic nuclear forces at different orders in chiral effective field theory and with varying momentum-space cutoff scales. We focus attention on how the order-by-order convergence depends on the choice of resolution scale and the implications for theoretical uncertainty estimates on the isospin asymmetry energy. Specifically we study the equations of state using consistent NLO and N2LO (next-to-next-to-leading order) chiral potentials where the low-energy constants cD and cE associated with contact vertices in the N2LO chiral three-nucleon force are fitted to reproduce the binding energies of H3 and He3 as well as the beta-decay lifetime of H3 . At these low orders in the chiral expansion there is little sign of convergence, while an exploratory study employing the N3LO two-nucleon force together with the N2LO three-nucleon force give first indications for (slow) convergence with low-cutoff potentials and poor convergence with higher-cutoff potentials. The consistent NLO and N2LO potentials described in the present work provide the basis for estimating theoretical uncertainties associated with the order-by-order convergence of nuclear many-body calculations in chiral effective field theory.

  1. The Computer Code NOVO for the Calculation of Wake Potentials of the Very Short Ultra-relativistic Bunches

    SciTech Connect

    Novokhatski, Alexander; /SLAC

    2005-12-01

    The problem of electromagnetic interaction of a beam and accelerator elements is very important for linear colliders, electron-positron factories, and free electron lasers. Precise calculation of wake fields is required for beam dynamics study in these machines. We describe a method which allows computation of wake fields of the very short bunches. Computer code NOVO was developed based on this method. This method is free of unphysical solutions like ''self-acceleration'' of a bunch head, which is common to well known wake field codes. Code NOVO was used for the wake fields study for many accelerator projects all over the world.

  2. Precise calculation of the triple-α reaction rates using the transmission-free complex absorbing potential method

    NASA Astrophysics Data System (ADS)

    Suno, Hiroya; Suzuki, Yasuyuki; Descouvemont, Pierre

    2016-11-01

    We study the triple-α reaction process at low temperatures, which is known to play an important role in stellar physics. The Schrödinger equation for three α particles is solved by using hyperspherical coordinates, while a complex absorbing potential is introduced in order to describe correctly the three-body continuum states. We use an angular-momentum-independent α -α potential and introduce three-body potentials to reproduce the energies of both the Hoyle state and the first 2+ state. The triple-α reaction rate is computed accurately at temperatures from T =0.01 to 10 GK and compared with those available in the literature. Our reaction rate is found to be up to three orders of magnitude larger than the NACRE rate at low temperatures T ≈0.01 GK, while we find a reasonable agreement between them at higher temperatures T ≳0.1 GK.

  3. Ab initio path-integral calculations of kinetic and equilibrium isotope effects on base-catalyzed RNA transphosphorylation models.

    PubMed

    Wong, Kin-Yiu; Xu, Yuqing; York, Darrin M

    2014-06-30

    Detailed understandings of the reaction mechanisms of RNA catalysis in various environments can have profound importance for many applications, ranging from the design of new biotechnologies to the unraveling of the evolutionary origin of life. An integral step in the nucleolytic RNA catalysis is self-cleavage of RNA strands by 2'-O-transphosphorylation. Key to elucidating a reaction mechanism is determining the molecular structure and bonding characteristics of transition state. A direct and powerful probe of transition state is measuring isotope effects on biochemical reactions, particularly if we can reproduce isotope effect values from quantum calculations. This article significantly extends the scope of our previous joint experimental and theoretical work in examining isotope effects on enzymatic and nonenzymatic 2'-O-transphosphorylation reaction models that mimic reactions catalyzed by RNA enzymes (ribozymes), and protein enzymes such as ribonuclease A (RNase A). Native reactions are studied, as well as reactions with thio substitutions representing chemical modifications often used in experiments to probe mechanism. Here, we report and compare results from eight levels of electronic-structure calculations for constructing the potential energy surfaces in kinetic and equilibrium isotope effects (KIE and EIE) computations, including a "gold-standard" coupled-cluster level of theory [CCSD(T)]. In addition to the widely used Bigeleisen equation for estimating KIE and EIE values, internuclear anharmonicity and quantum tunneling effects were also computed using our recently developed ab initio path-integral method, that is, automated integration-free path-integral method. The results of this work establish an important set of benchmarks that serve to guide calculations of KIE and EIE for RNA catalysis.

  4. An exchange-Coulomb model potential energy surface for the Ne-CO interaction. I. Calculation of Ne-CO van der Waals spectra.

    PubMed

    Dham, Ashok K; McCourt, Frederick R W; Meath, William J

    2009-06-28

    Exchange-Coulomb model potential energy surfaces have been developed for the Ne-CO interaction. The initial model is a three-dimensional potential energy surface based upon computed Heitler-London interaction energies and literature results for the long-range induction and dispersion energies, all as functions of interspecies distance, the orientation of CO relative to the interspecies axis, and the bond length of the CO molecule. Both a rigid-rotor model potential energy surface, obtained by setting the CO bond length equal to its experimental spectroscopic equilibrium value, and a vibrationally averaged model potential energy surface, obtained by averaging the stretching dependence over the ground vibrational motion of the CO molecule, have been constructed from the full data set. Adjustable parameters in each model potential energy surface have been determined through fitting a selected subset of pure rotational transition frequencies calculated for the (20)Ne-(12)C(12)O isotopolog to precisely known experimental values. Both potential energy surfaces provide calculated results for a wide range of available experimental microwave, millimeter-wave, and midinfrared Ne-CO transition frequencies that are generally far superior to those obtained using the best current literature potential energy surfaces. The vibrationally averaged CO ground state potential energy surface, employed together with a potential energy surface obtained from it by replacing the ground vibrational state average of the CO stretching dependence of the potential energy surface by an average over the first excited CO vibrational state, has been found to be particularly useful for computing and/or interpreting mid-IR transition frequencies in the Ne-CO dimer.

  5. Calculation of wing response to gusts and blast waves with vortex lift effect

    NASA Technical Reports Server (NTRS)

    Chao, D. C.; Lan, C. E.

    1983-01-01

    A numerical study of the response of aircraft wings to atmospheric gusts and to nuclear explosions when flying at subsonic speeds is presented. The method is based upon unsteady quasi-vortex-lattice method, unsteady suction analogy, and Pade approximate. The calculated results, showing vortex lag effect, yield reasonable agreement with experimental data for incremental lift on wings in gust penetration and due to nuclear blast waves.

  6. Calculation of wing response to gusts and blast waves with vortex lift effect

    NASA Technical Reports Server (NTRS)

    Chao, D. C.; Lan, C. E.

    1983-01-01

    A numerical study of the response of aircraft wings to atmospheric gusts and to nuclear explosions when flying at subsonic speeds is presented. The method is based upon unsteady quasi-vortex lattice method, unsteady suction analogy and Pade approximant. The calculated results, showing vortex lag effect, yield reasonable agreement with experimental data for incremental lift on wings in gust penetration and due to nuclear blast waves.

  7. Calculation of the effects of ice on the backscatter of a ground plane

    NASA Technical Reports Server (NTRS)

    Lambert, K. M.; Peters, L., Jr.

    1988-01-01

    Described is a technique for examining the effect of a rough ice layer on the backscatter of a ground plane. The technique is applied to the special case of a rough ice layer that is periodic in space. By assuming that the roughness is periodic, the backscatter of the ground plane can be found from the backscatter of a single period. Backscatter calculations are presented for a single period in which the thickness of the ice layer has a Gaussian shape.

  8. Free-energy calculations using classical molecular simulation: application to the determination of the melting point and chemical potential of a flexible RDX model.

    PubMed

    Sellers, Michael S; Lísal, Martin; Brennan, John K

    2016-03-21

    We present an extension of various free-energy methodologies to determine the chemical potential of the solid and liquid phases of a fully-flexible molecule using classical simulation. The methods are applied to the Smith-Bharadwaj atomistic potential representation of cyclotrimethylene trinitramine (RDX), a well-studied energetic material, to accurately determine the solid and liquid phase Gibbs free energies, and the melting point (Tm). We outline an efficient technique to find the absolute chemical potential and melting point of a fully-flexible molecule using one set of simulations to compute the solid absolute chemical potential and one set of simulations to compute the solid-liquid free energy difference. With this combination, only a handful of simulations are needed, whereby the absolute quantities of the chemical potentials are obtained, for use in other property calculations, such as the characterization of crystal polymorphs or the determination of the entropy. Using the LAMMPS molecular simulator, the Frenkel and Ladd and pseudo-supercritical path techniques are adapted to generate 3rd order fits of the solid and liquid chemical potentials. Results yield the thermodynamic melting point Tm = 488.75 K at 1.0 atm. We also validate these calculations and compare this melting point to one obtained from a typical superheated simulation technique.

  9. General methodology to optimize damping functions to account for charge penetration effects in electrostatic calculations using multicentered multipolar expansions.

    PubMed

    Werneck, Araken S; Filho, Tarcísio M Rocha; Dardenne, Laurent E

    2008-01-17

    We developed a methodology to optimize exponential damping functions to account for charge penetration effects when computing molecular electrostatic properties using the multicentered multipolar expansion method (MME). This methodology is based in the optimization of a damping parameter set using a two-step fast local fitting procedure and the ab initio (Hartree-Fock/6-31G** and 6-31G**+) electrostatic potential calculated in a set of concentric grid of points as reference. The principal aspect of the methodology is a first local fitting step which generates a focused initial guess to improve the performance of a simplex method avoiding the use of multiple runs and the choice of initial guesses. Three different strategies for the determination of optimized damping parameters were tested in the following studies: (1) investigation of the error in the calculation of the electrostatic interaction energy for five hydrogen-bonded dimers at standard and nonstandard hydrogen-bonded geometries and at nonequilibrium geometries; (2) calculation of the electrostatic molecular properties (potential and electric field) for eight small molecular systems (methanol, ammonia, water, formamide, dichloromethane, acetone, dimethyl sulfoxide, and acetonitrile) and for the 20 amino acids. Our results show that the methodology performs well not only for small molecules but also for relatively larger molecular systems. The analysis of the distinct parameter sets associated with different optimization strategies show that (i) a specific parameter set is more suitable and more general for electrostatic interaction energy calculations, with an average absolute error of 0.46 kcal/mol at hydrogen-bond geometries; (ii) a second parameter set is more suitable for electrostatic potential and electric field calculations at and outside the van der Waals (vdW) envelope, with an average error decrease >72% at the vdW surface. A more general amino acid damping parameter set was constructed from the

  10. Effects of energy spectrum on dose distribution calculations for high energy electron beams.

    PubMed

    Toutaoui, Abdelkader; Khelassi-Toutaoui, Nadia; Brahimi, Zakia; Chami, Ahmed Chafik

    2009-01-01

    In an early work we have demonstrated the possibility of using Monte Carlo generated pencil beams for 3D electron beam dose calculations. However, in this model the electron beam was considered as monoenergetic and the effects of the energy spectrum were taken into account by correction factors, derived from measuring central-axis depth dose curves. In the present model, the electron beam is considered as polyenergetic and the pencil beam distribution of a clinical electron beam, of a given nominal energy, is represented as a linear combination of Monte Carlo monoenergetic pencil beams. The coefficients of the linear combination describe the energy spectrum of the clinical electron beam, and are chosen to provide the best-fit between the calculated and measured central axis depth dose, in water. The energy spectrum is determined by the constrained least square method. The angular distribution of the clinical electron beam is determined by in-air penumbra measurements. The predictions of this algorithm agree very well with the measurements in the region near the surface, and the discrepancies between the measured and calculated dose distributions, behind 3D heterogeneities, are reduced to less than 10%. We have demonstrated a new algorithm for 3D electron beam dose calculations, which takes into account the energy spectra. Results indicate that the use of this algorithm leads to a better modeling of dose distributions downstream, from complex heterogeneities.

  11. Effects of energy spectrum on dose distribution calculations for high energy electron beams

    PubMed Central

    Toutaoui, Abdelkader; Khelassi-Toutaoui, Nadia; Brahimi, Zakia; Chami, Ahmed Chafik

    2009-01-01

    In an early work we have demonstrated the possibility of using Monte Carlo generated pencil beams for 3D electron beam dose calculations. However, in this model the electron beam was considered as monoenergetic and the effects of the energy spectrum were taken into account by correction factors, derived from measuring central-axis depth dose curves. In the present model, the electron beam is considered as polyenergetic and the pencil beam distribution of a clinical electron beam, of a given nominal energy, is represented as a linear combination of Monte Carlo monoenergetic pencil beams. The coefficients of the linear combination describe the energy spectrum of the clinical electron beam, and are chosen to provide the best-fit between the calculated and measured central axis depth dose, in water. The energy spectrum is determined by the constrained least square method. The angular distribution of the clinical electron beam is determined by in-air penumbra measurements. The predictions of this algorithm agree very well with the measurements in the region near the surface, and the discrepancies between the measured and calculated dose distributions, behind 3D heterogeneities, are reduced to less than 10%. We have demonstrated a new algorithm for 3D electron beam dose calculations, which takes into account the energy spectra. Results indicate that the use of this algorithm leads to a better modeling of dose distributions downstream, from complex heterogeneities. PMID:20126560

  12. A Comparison of Teacher Effectiveness Measures Calculated Using Three Multilevel Models for Raters Effects

    ERIC Educational Resources Information Center

    Murphy, Daniel L.; Beretvas, S. Natasha

    2015-01-01

    This study examines the use of cross-classified random effects models (CCrem) and cross-classified multiple membership random effects models (CCMMrem) to model rater bias and estimate teacher effectiveness. Effect estimates are compared using CTT versus item response theory (IRT) scaling methods and three models (i.e., conventional multilevel…

  13. Using design effects from previous cluster surveys to guide sample size calculation in emergency settings.

    PubMed

    Kaiser, Reinhard; Woodruff, Bradley A; Bilukha, Oleg; Spiegel, Paul B; Salama, Peter

    2006-06-01

    A good estimate of the design effect is critical for calculating the most efficient sample size for cluster surveys. We reviewed the design effects for seven nutrition and health outcomes from nine population-based cluster surveys conducted in emergency settings. Most of the design effects for outcomes in children, and one-half of the design effects for crude mortality, were below two. A reassessment of mortality data from Kosovo and Badghis, Afghanistan revealed that, given the same number of clusters, changing sample size had a relatively small impact on the precision of the estimate of mortality. We concluded that, in most surveys, assuming a design effect of 1.5 for acute malnutrition in children and two or less for crude mortality would produce a more efficient sample size. In addition, enhancing the sample size in cluster surveys without increasing the number of clusters may not result in substantial improvements in precision.

  14. Using quantum chemical modeling and calculations for evaluation of cellulose potential for estrogen micropollutants removal from water effluents.

    PubMed

    Ghasemi, Amin; Asgarpour Khansary, Milad; Marjani, Azam; Shirazian, Saeed

    2017-03-03

    This paper is devoted to investigate the suitability of cellulose for estrogens micropollutants removal from water effluent. For this purpose, the sorption of eight estrogens including Estradiol, Estrone, Testosterone, Progesterone, Estriol, Mestranol, Ethinylestradiol and Diethylstilbestrol were investigated. The charge density profiles and sorption curves were obtained and discussed using quantum chemical calculations where the Accelrys Materials Studio software and COSMO-SAC model were employed. The geometry optimization of compound molecule and energy minimizations was performed using the Dmol3 Module and density functional theory of generalized gradient approximate and Volsko-Wilk-Nusair functional. We found that cellulose cannot be a reliable choice of sorbent for removal of Estrone and Estradiol, but it is a poor choice of sorbent for removal of Estriol, Ethinylestradiol. Cellulose can be used for Diethylstilbestrol, Mestranol, Testosterone and Progesterone removal from estrogens containing effluents.

  15. Simulation of FREE→FREE Absorption Spectra and the Calculation of Interaction Potentials for Alkali-Rare Gas Atom Pairs

    NASA Astrophysics Data System (ADS)

    Hewitt, J. Darby; Spinka, Thomas M.; Readle, Jason. D.; Eden, J. Gary

    2013-06-01

    We have simulated free→free (X^2Σ^+_{1/2}→B^2Σ^+_{1/2}) absorption spectra for alkali-rare gas pairs. By comparing simulation results with experimental data, we have been able to iteratively determine the form for the B^2Σ^+_{1/2} interaction potential for the system for a range in internuclear separation of 1.5-20 Å. Simulation methods will be presented, as will our results pertaining to Cs-Ar.

  16. Temperature effects in first-principles solid state calculations of the chemical shielding tensor made simple

    SciTech Connect

    Monserrat, Bartomeu Needs, Richard J.; Pickard, Chris J.

    2014-10-07

    We study the effects of atomic vibrations on the solid-state chemical shielding tensor using first principles density functional theory calculations. At the harmonic level, we use a Monte Carlo method and a perturbative expansion. The Monte Carlo method is accurate but computationally expensive, while the perturbative method is computationally more efficient, but approximate. We find excellent agreement between the two methods for both the isotropic shift and the shielding anisotropy. The effects of zero-point quantum mechanical nuclear motion are important up to relatively high temperatures: at 500 K they still represent about half of the overall vibrational contribution. We also investigate the effects of anharmonic vibrations, finding that their contribution to the zero-point correction to the chemical shielding tensor is small. We exemplify these ideas using magnesium oxide and the molecular crystals L-alanine and β-aspartyl-L-alanine. We therefore propose as the method of choice to incorporate the effects of temperature in solid state chemical shielding tensor calculations using the perturbative expansion within the harmonic approximation. This approach is accurate and requires a computational effort that is about an order of magnitude smaller than that of dynamical or Monte Carlo approaches, so these effects might be routinely accounted for.

  17. Temperature effects in first-principles solid state calculations of the chemical shielding tensor made simple

    NASA Astrophysics Data System (ADS)

    Monserrat, Bartomeu; Needs, Richard J.; Pickard, Chris J.

    2014-10-01

    We study the effects of atomic vibrations on the solid-state chemical shielding tensor using first principles density functional theory calculations. At the harmonic level, we use a Monte Carlo method and a perturbative expansion. The Monte Carlo method is accurate but computationally expensive, while the perturbative method is computationally more efficient, but approximate. We find excellent agreement between the two methods for both the isotropic shift and the shielding anisotropy. The effects of zero-point quantum mechanical nuclear motion are important up to relatively high temperatures: at 500 K they still represent about half of the overall vibrational contribution. We also investigate the effects of anharmonic vibrations, finding that their contribution to the zero-point correction to the chemical shielding tensor is small. We exemplify these ideas using magnesium oxide and the molecular crystals L-alanine and β-aspartyl-L-alanine. We therefore propose as the method of choice to incorporate the effects of temperature in solid state chemical shielding tensor calculations using the perturbative expansion within the harmonic approximation. This approach is accurate and requires a computational effort that is about an order of magnitude smaller than that of dynamical or Monte Carlo approaches, so these effects might be routinely accounted for.

  18. NOTE: The effect of tomotherapy imaging beam output instabilities on dose calculation

    NASA Astrophysics Data System (ADS)

    Duchateau, Michael; Tournel, Koen; Verellen, Dirk; Van de Vondel, Iwein; Reynders, Truus; Linthout, Nadine; Gevaert, Thierry; de Coninck, Peter; Depuydt, Tom; Storme, Guy

    2010-06-01

    A radiotherapy treatment plan is based on an anatomical 'snapshot' of the patient acquired during the preparation stage using a kVCT (kilovolt computed tomography) scanner. Anatomical changes will occur during the treatment course, in some cases requiring a new treatment plan to deliver the prescribed dose. With the introduction of 3D volumetric on-board imaging devices, it became feasible to use the produced images for dose recalculation. However, the use of these on-board imaging devices in clinical routine for the calculation of dose depends on the stability of the images. In this study the validation of tomotherapy MVCT (megavolt computed tomography) produced images, for the purpose of dose recalculation by the Planned Adaptive software, has been performed. To investigate the validity of MVCT images for dose calculation, a treatment plan was created based on kVCT-acquired images of a solid water phantom. During a period of 4 months, MVCT images of the phantom have been acquired and were used by the planned adaptive software to recalculate the initial kVCT-based dose on the MVCT images. The influence of the adapted IVDTs (image value-to-density tables) has been investigated as well as the effect of image acquisition with or without preceding airscan. Output fluctuations and/or instabilities of the imaging beam result in MV images of different quality yielding different results when used for dose calculation. It was shown that the output of the imaging beam is not stable, leading to differences of nearly 3% between the original kV-based dose and the recalculated MV-based dose, for solid water only. MVCT images can be used for dose calculation purposes bearing in mind that the output beam is liable to fluctuations. The acquisition of an IVDT together with the MVCT image set, that is going to be used for dose calculation, is highly recommended.

  19. TD-DFT calculations of the potential energy curves for the trans-cis photo-isomerization of protonated Schiff base of retinal.

    PubMed

    Tachikawa, Hiroto; Iyama, Tetsuji

    2004-10-25

    One-dimensional potential energy curves for the isomerization of protonated Schiff base of retinal (PSBR) in bacteriorhodopsin (bR), i.e., isomerization from all-trans- to 13-cis-forms, have been calculated by means of time-dependent density functional theory (TD-DFT) calculations, in order to elucidate the mechanism of initial step in photo-absorption. The transition state of the isomerization in the first excited state is located at theta(13-14)=58 degrees , where theta(13-14) means twist angle around the C(13)=C(14) double bond of PSBR The potential barrier is formed by the avoided crossing between S(1) (B(u)-like) and S(2) (A(g)-like) states. The mechanism of the isomerization was discussed on the basis of theoretical results.

  20. Ab initio calculations of cooperativity effects on clusters of methanol, ethanol, 1-propanol, and methanethiol

    SciTech Connect

    Sum, A.K.; Sandler, S.I.

    2000-02-17

    The results of ab initio calculations for cyclic clusters of methanol, ethanol, 1-propanol, and methanethiol are presented. Dimer, trimer, and tetramer clusters of all four compounds are studied, as are pentamer and hexamer clusters of methanol. From optimized clusters at HG/6--31G**, total energies and binding energies were calculated with both the HF and MP2 theories using the aug-cc-pVDZ basis set. Accurate binding energies were also calculated for the dimer and trimer of methanol using symmetry-adapted perturbation theory with the same basis set. Intermolecular and intramolecular distances, charge distribution of binding sites, binding energies, and equilibrium constants were computed to determine the hydrogen bond cooperativity effect for each species. The cooperativity effect, exclusive to hydrogen bonding systems, results form specific forces among the molecules, in particular charge-transfer processes and the greater importance of interactions between molecules not directly hydrogen bonded because of the longer range of the interactions. The ratios of equilibrium constants for forming multimer hydrogen bonds to that for dimer hydrogen bond formation increase rapidly with the cluster size, in contrast to the constant value commonly used in thermodynamic models for hydrogen bonding liquids.

  1. Chemical potential effects on neutrino diffusion in supernovae

    NASA Technical Reports Server (NTRS)

    Mazurek, T. J.

    1975-01-01

    The validity of imposing a zero chemical potential for neutrinos in hydrodynamic calculations of collapsing supernovae is investigated in the diffusion approximation of neutrino transport. A coupled system of equations is solved for neutrino and energy diffusion fluxes as well as lepton diffusion in a collapsing supernovae ambient medium, and the results indicate a substantial growth in the neutrino chemical potential for densities greater than 10 to the 12th power gm/cu cm. The rate of energy transport is shown to be significantly affected by increases in Fermi integrals and chemical-potential gradients accompanied by decreases in temperature, and the extent of neutrino particle/antiparticle reactions is found also to affect energy diffusion rates. It is concluded that the photon-like behavior usually assumed for neutrinos may be incorrect and that an extension of the Sn transport approximation to include lepton characteristics is necessary for a definitive answer to the question of neutrino transport in supernovae.

  2. Magnetoconductance of a hybrid quantum ring: Effects of antidot potentials

    NASA Astrophysics Data System (ADS)

    Kim, Nammee; Park, Dae-Han; Kim, Heesang

    2016-05-01

    The electronic structures and two-terminal magnetoconductance of a hybrid quantum ring are studied. The backscattering due to energy-resonance is considered in the conductance calculation. The hybrid magnetic-electric quantum ring is fabricated by applying an antidot electrostatic potential in the middle of a magnetic quantum dot. Electrons are both magnetically and electrically confined in the plane. The antidot potential repelling electrons from the center of the dot plays a critical role in the energy spectra and magnetoconductance. The angular momentum transition in the energy dispersion and the magnetoconductance behavior are investigated in consideration of the antidot potential variation. Results are shown using a comparison of the results of the conventional magnetic quantum dot.

  3. A chiral rhenium complex with predicted high parity violation effects: synthesis, stereochemical characterization by VCD spectroscopy and quantum chemical calculations.

    PubMed

    Saleh, Nidal; Zrig, Samia; Roisnel, Thierry; Guy, Laure; Bast, Radovan; Saue, Trond; Darquié, Benoît; Crassous, Jeanne

    2013-07-14

    With their rich electronic, vibrational, rotational and hyperfine structure, molecular systems have the potential to play a decisive role in precision tests of fundamental physics. For example, electroweak nuclear interactions should cause small energy differences between the two enantiomers of chiral molecules, a signature of parity symmetry breaking. Enantioenriched oxorhenium(VII) complexes S-(-)- and R-(+)-3 bearing a chiral 2-methyl-1-thio-propanol ligand have been prepared as potential candidates for probing molecular parity violation effects via high resolution laser spectroscopy of the Re=O stretching. Although the rhenium atom is not a stereogenic centre in itself, experimental vibrational circular dichroism (VCD) spectra revealed a surrounding chiral environment, evidenced by the Re=O bond stretching mode signal. The calculated VCD spectrum of the R enantiomer confirmed the position of the sulfur atom cis to the methyl, as observed in the solid-state X-ray crystallographic structure, and showed the presence of two conformers of comparable stability. Relativistic quantum chemistry calculations indicate that the vibrational shift between enantiomers due to parity violation is above the target sensitivity of an ultra-high resolution infrared spectroscopy experiment under active preparation.

  4. The Strain-Potential Effect of Silver Iodide.

    DTIC Science & Technology

    SILVER COMPOUNDS, SEEBECK EFFECT ), IODIDES, IMPURITIES, CONCENTRATION(CHEMISTRY), IONS, IONIZATION, IONIZATION POTENTIALS, ELECTRODES, ELECTROLYTES, INTERFACES, MOBILE, DISLOCATIONS, DEFORMATION, CRYSTAL DEFECTS, ELECTRICAL CONDUCTIVITY, SENSITIVITY, STRAIN GAGES, STRAIN(MECHANICS).

  5. Emerging evidence of ozone metabolic effects and potential mechanisms

    EPA Science Inventory

    SOT 2014 Abstract: Invitational Emerging evidence of ozone metabolic effects and potential mechanisms U.P. Kodavanti NHEERL, USEPA, Research Triangle Park, NC Recent evidence suggests that air pollutants are linked to metabolic syndrome and impact several key metabolic proce...

  6. Energy disposal and thermal rate constants for the OH + HBr and OH + DBr reactions: quasiclassical trajectory calculations on an accurate potential energy surface.

    PubMed

    de Oliveira-Filho, Antonio G S; Ornellas, Fernando R; Bowman, Joel M

    2014-12-26

    We report reaction cross sections, energy disposal, and rate constants for the OH + HBr → Br + H2O and OH + DBr → Br + HDO reactions from quasiclassical trajectory calculations using an ab initio potential energy surface [ de Oliveira-Filho , A. G. S. ; Ornellas , F. R. ; Bowman , J. M. J. Phys. Chem. Lett. 2014 , 5 , 706 - 712 ]. Comparison with available experiments are made and generally show good agreement.

  7. Relativistic Coupled Cluster Calculations with Variational Quantum Electrodynamics Resolve the Discrepancy between Experiment and Theory Concerning the Electron Affinity and Ionization Potential of Gold

    NASA Astrophysics Data System (ADS)

    Pašteka, L. F.; Eliav, E.; Borschevsky, A.; Kaldor, U.; Schwerdtfeger, P.

    2017-01-01

    The first ionization potential (IP) and electron affinity (EA) of the gold atom have been determined to an unprecedented accuracy using relativistic coupled cluster calculations up to the pentuple excitation level including the Breit and QED contributions. We reach meV accuracy (with respect to the experimental values) by carefully accounting for all individual contributions beyond the standard relativistic coupled cluster approach. Thus, we are able to resolve the long-standing discrepancy between experimental and theoretical IP and EA of gold.

  8. Relativistic Coupled Cluster Calculations with Variational Quantum Electrodynamics Resolve the Discrepancy between Experiment and Theory Concerning the Electron Affinity and Ionization Potential of Gold.

    PubMed

    Pašteka, L F; Eliav, E; Borschevsky, A; Kaldor, U; Schwerdtfeger, P

    2017-01-13

    The first ionization potential (IP) and electron affinity (EA) of the gold atom have been determined to an unprecedented accuracy using relativistic coupled cluster calculations up to the pentuple excitation level including the Breit and QED contributions. We reach meV accuracy (with respect to the experimental values) by carefully accounting for all individual contributions beyond the standard relativistic coupled cluster approach. Thus, we are able to resolve the long-standing discrepancy between experimental and theoretical IP and EA of gold.

  9. Theoretical characterization of the potential energy surface for H + N2 yields HN2. III - Calculations for the excited state surfaces

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1991-01-01

    Additional calculations which characterize potential energy sources (PESs) for the excited 3A-double-prime state, for a bound 2(2A-prime) state, for HN2(+), and for the Rydberg states associated with HN2(+). It is anticipated that these excited state PESs will be important in interpreting and designing experiments to characterize the ground state HN2 species via neutralized ion beam techniques.

  10. Ab Initio and Improved Empirical Potentials for the Calculation of the Anharmonic Vibrational States and Intramolecular Mode Coupling of N-Methylacetamide

    NASA Technical Reports Server (NTRS)

    Gregurick, Susan K.; Chaban, Galina M.; Gerber, R. Benny; Kwak, Dochou (Technical Monitor)

    2001-01-01

    The second-order Moller-Plesset ab initio electronic structure method is used to compute points for the anharmonic mode-coupled potential energy surface of N-methylacetamide (NMA) in the trans(sub ct) configuration, including all degrees of freedom. The vibrational states and the spectroscopy are directly computed from this potential surface using the Correlation Corrected Vibrational Self-Consistent Field (CC-VSCF) method. The results are compared with CC-VSCF calculations using both the standard and improved empirical Amber-like force fields and available low temperature experimental matrix data. Analysis of our calculated spectroscopic results show that: (1) The excellent agreement between the ab initio CC-VSCF calculated frequencies and the experimental data suggest that the computed anharmonic potentials for N-methylacetamide are of a very high quality; (2) For most transitions, the vibrational frequencies obtained from the ab initio CC-VSCF method are superior to those obtained using the empirical CC-VSCF methods, when compared with experimental data. However, the improved empirical force field yields better agreement with the experimental frequencies as compared with a standard AMBER-type force field; (3) The empirical force field in particular overestimates anharmonic couplings for the amide-2 mode, the methyl asymmetric bending modes, the out-of-plane methyl bending modes, and the methyl distortions; (4) Disagreement between the ab initio and empirical anharmonic couplings is greater than the disagreement between the frequencies, and thus the anharmonic part of the empirical potential seems to be less accurate than the harmonic contribution;and (5) Both the empirical and ab initio CC-VSCF calculations predict a negligible anharmonic coupling between the amide-1 and other internal modes. The implication of this is that the intramolecular energy flow between the amide-1 and the other internal modes may be smaller than anticipated. These results may have

  11. Localized N, {lambda}, {sigma}, and {xi} single-particle potentials in finite nuclei calculated with SU{sub 6} quark-model baryon-baryon interactions

    SciTech Connect

    Kohno, M.; Fujiwara, Y.

    2009-05-15

    Localized single-particle potentials for all octet baryons, N, {lambda}, {sigma}, and {xi}, in finite nuclei, {sup 12}C, {sup 16}O, {sup 28}Si, {sup 40}Ca, {sup 56}Fe, and {sup 90}Zr, are calculated using the quark-model baryon-baryon interactions. G matrices evaluated in symmetric nuclear matter in the lowest order Brueckner theory (LOBT) are applied to finite nuclei in local density approximation. Nonlocal potentials are localized by a zero-momentum Wigner transformation. Empirical single-particle properties of the nucleon and the {lambda} hyperon in a nuclear medium have been known to be explained semiquantitatively in the LOBT framework. Attention is focused in the present consideration on predictions for the {sigma} and {xi} hyperons. The unified description for the octet baryon-baryon interactions by the SU{sub 6} quark model enables us to obtain less ambiguous extrapolation to the S=-1 and S=-2 sectors based on the knowledge in the NN sector than other potential models. The {sigma} mean field is shown to be weakly attractive at the surface, but turns out to be repulsive inside, which is consistent with the experimental evidence. The {xi} hyperon s.p. potential is also attractive at the nuclear surface region, and inside it fluctuates around zero. Hence {xi} hypernuclear bound states are unlikely. We also evaluate energy shifts of the {sigma}{sup -} and {xi}{sup -} atomic levels in {sup 28}Si and {sup 56}Fe, using the calculated s.p. potentials.

  12. The First-Principle Calculation of La-doping Effect on Piezoelectricity in Tetragonal KNN Crystal

    NASA Astrophysics Data System (ADS)

    Zhang, Qiaoli; Zhu, Jiliang; Yuan, Daqing; Zhu, Bo; Wang, Mingsong; Zhu, Xiaohong; Fan, Ping; Zuo, Yi; Zheng, Yongnan; Zhu, Shengyun

    2012-05-01

    The La-dopping effect on the piezoelectricity in the K0.5Na0.5NbO3 (KNN) crystal with a tetragonal phase is investigated for the first time using the first-principle calculation based on density functional theory. The full potentiallinearized augumented plane wave plus local orbitals (APW-LO) method and the supercell method are used in the calculation for the KNN crystal with and without the La doping. The results show that the piezoelectricity originates from the strong hybridization between the Nb atom and the O atom, and the substitution of the K or Na atom by the La impurity atom introduces the anisotropic relaxation and enhances the piezoelectricity at first and then restrains the hybridization of the Nb-O atoms when the La doping content further increases.

  13. Effects of inflow distortion profiles on fan tone noise calculated using a 3-D theory

    NASA Technical Reports Server (NTRS)

    Kobayashi, H.; Groeneweg, J. F.

    1979-01-01

    Calculations of the fan tone acoustic power and modal structure generated by complex distortions in axial inflow velocity are presented. The model used treats the motor as a rotating three-dimensional cascade and calculates the acoustic field from the distortion-produced dipole distribution on the blades including noncompact source effects. Radial and circumferential distortion shapes are synthesized from Fourier-Bessel components representing individual distortion modes. The relation between individual distortion modes and the generated acoustic modes is examined for particular distortion cases. Comparisons between theoretical and experimental results for distortions produced by wakes from upstream radial rods show that the analysis is a good predictor of acoustic power dependence on disturbance strength.

  14. Effect of Clouds on the Calculated Vertical Distribution of Shortwave Absorption in the Tropics

    SciTech Connect

    McFarlane, Sally A.; Mather, James H.; Ackerman, Thomas P.; Liu, Zheng

    2008-09-23

    High vertical resolution profiles of cloud properties were obtained from cloud radars operated by the Atmospheric Radiation Measurement (ARM) program on the islands of Nauru and Manus in the Tropical Western Pacific (TWP). Broadband flux calculations using a correlated k-distribution model were performed to estimate the effect of clouds on the total column and vertical distribution of shortwave absorption at these tropical sites. Sensitivity studies were performed to examine the role of precipitable water vapor, cloud vertical location, optical depth, and particle size on the SW column absorption. On average, observed clouds had little impact on the calculated total SW column absorption at the two sites, but a significant impact on the vertical distribution of SW absorption. Differences in the column amount, vertical profiles, and diurnal cycle of SW absorption at the two sites were due primarily to differences in cirrus cloud frequency.

  15. Monte Carlo calculations of the magnetoresistance in magnetic multilayer structures with giant magnetoresistance effects

    NASA Astrophysics Data System (ADS)

    Prudnikov, V. V.; Prudnikov, P. V.; Romanovskiy, D. E.

    2016-06-01

    A Monte Carlo study of trilayer and spin-valve magnetic structures with giant magnetoresistance effects is carried out. The anisotropic Heisenberg model is used for description of magnetic properties of ultrathin ferromagnetic films forming these structures. The temperature and magnetic field dependences of magnetic characteristics are considered for ferromagnetic and antiferromagnetic configurations of these multilayer structures. The methodology for determination of the magnetoresistance by the Monte Carlo method is introduced; this permits us to calculate the magnetoresistance of multilayer structures for different thicknesses of the ferromagnetic films. The calculated temperature dependence of the magnetoresistance agrees very well with the experimental results measured for the Fe(0 0 1)-Cr(0 0 1) multilayer structure and CFAS-Ag-CFAS-IrMn spin-valve structure based on the half-metallic Heusler alloy Co2FeAl0.5Si0.5.

  16. Calculating intensities using effective Hamiltonians in terms of Coriolis-adapted normal modes.

    PubMed

    Karthikeyan, S; Krishnan, Mangala Sunder; Carrington, Tucker

    2005-01-15

    The calculation of rovibrational transition energies and intensities is often hampered by the fact that vibrational states are strongly coupled by Coriolis terms. Because it invalidates the use of perturbation theory for the purpose of decoupling these states, the coupling makes it difficult to analyze spectra and to extract information from them. One either ignores the problem and hopes that the effect of the coupling is minimal or one is forced to diagonalize effective rovibrational matrices (rather than diagonalizing effective rotational matrices). In this paper we apply a procedure, based on a quantum mechanical canonical transformation for deriving decoupled effective rotational Hamiltonians. In previous papers we have used this technique to compute energy levels. In this paper we show that it can also be applied to determine intensities. The ideas are applied to the ethylene molecule.

  17. Theoretical reduction potentials for nitrogen oxides from CBS-QB3 energetics and (C)PCM solvation calculations.

    PubMed

    Dutton, Andrew S; Fukuto, Jon M; Houk, Kendall N

    2005-05-30

    The complete basis set method, CBS-QB3, is used in combination with two continuum solvation models for aqueous solvation to compute reduction potentials previously determined experimentally for 36 nitrogen oxides and related species of the general formula H(V)C(W)N(X)O(Y)Cl(Z). The PCM model led to the correlation E(o)exp (vs NHE) = 0.84E(o)calc + 0.03 V with an average error of 0.12 V (2.8 kcal/mol) and a maximum error of 0.32 V (7.4 kcal/mol). The CPCM/UAKS model gave E(o)exp (vs NHE) = 0.83E(o)calc + 0.11 V with the same average error. This general method was used to predict reduction potentials (+/-0.3 V) for nitrogen oxides for which reduction potentials are not known with certainty: NO2/NO2- (0.6 V), NO3/NO3- (1.9 V), N2O3-/N2O3(2-) (0.5 V), HN2O3/HN2O3- (0.9 V), HONNO,H+/HONNOH (1.6 V), 2NO,H+/HONNO (0.0 V), 2NO/ONNO- (-0.1 V), ONNO-/ONNO(2-) (-0.4 V), HNO,H+/H2NO (0.6 V), H2NO,H+/H2NOH (0.9 V), HNO,2H+/H2NOH (0.8 V), and HNO/HNO- (-0.7 V).

  18. Evaluation of soil temperature effect on herbicide leaching potential into groundwater in the Brazilian Cerrado.

    PubMed

    Paraíba, Lourival Costa; Cerdeira, Antonio Luiz; da Silva, Enio Fraga; Martins, João Souza; Coutinho, Heitor Luiz da Costa

    2003-12-01

    The effect of annual variations in the daily average soil temperatures, at different depths, on the calculation of pesticide leaching potential indices is presented. This index can be applied to assess the risk of groundwater contamination by a pesticide. It considers the effects of water table depth, daily recharge net rate, pesticide sorption coefficient, and degradation rate of the pesticide in the soil. The leaching potential index is frequently used as a screening indicator in pesticide groundwater contamination studies, and the temperature effect involved in its calculation is usually not considered. It is well known that soil temperature affects pesticide degradation rates, air-water partition coefficient, and water-soil partition coefficient. These three parameters are components of the attenuation and retardation factors, as well as the leaching potential index, and contribute to determine pesticide behavior in the environment. The Arrhenius, van't Hoff, and Clausius-Clapeyron equations were used in this work to estimate the soil temperature effect on pesticide degradation rate, air-water partition coefficient, and water-soil partition coefficient, respectively. The relationship between leaching potential index and soil temperature at different depths is presented and aids in the understanding of how potential pesticide groundwater contamination varies on different climatic conditions. Numerical results will be presented for 31 herbicides known to be used in corn and soybean crops grown on the municipality of São Gabriel do Oeste, Mato Grosso do Sul State, Brazil.

  19. Effect of Ionic Diffusion on Extracellular Potentials in Neural Tissue

    PubMed Central

    Halnes, Geir; Mäki-Marttunen, Tuomo; Keller, Daniel; Pettersen, Klas H.; Andreassen, Ole A.

    2016-01-01

    Recorded potentials in the extracellular space (ECS) of the brain is a standard measure of population activity in neural tissue. Computational models that simulate the relationship between the ECS potential and its underlying neurophysiological processes are commonly used in the interpretation of such measurements. Standard methods, such as volume-conductor theory and current-source density theory, assume that diffusion has a negligible effect on the ECS potential, at least in the range of frequencies picked up by most recording systems. This assumption remains to be verified. We here present a hybrid simulation framework that accounts for diffusive effects on the ECS potential. The framework uses (1) the NEURON simulator to compute the activity and ionic output currents from multicompartmental neuron models, and (2) the electrodiffusive Kirchhoff-Nernst-Planck framework to simulate the resulting dynamics of the potential and ion concentrations in the ECS, accounting for the effect of electrical migration as well as diffusion. Using this framework, we explore the effect that ECS diffusion has on the electrical potential surrounding a small population of 10 pyramidal neurons. The neural model was tuned so that simulations over ∼100 seconds of biological time led to shifts in ECS concentrations by a few millimolars, similar to what has been seen in experiments. By comparing simulations where ECS diffusion was absent with simulations where ECS diffusion was included, we made the following key findings: (i) ECS diffusion shifted the local potential by up to ∼0.2 mV. (ii) The power spectral density (PSD) of the diffusion-evoked potential shifts followed a 1/f2 power law. (iii) Diffusion effects dominated the PSD of the ECS potential for frequencies up to several hertz. In scenarios with large, but physiologically realistic ECS concentration gradients, diffusion was thus found to affect the ECS potential well within the frequency range picked up in experimental

  20. MULTIMODE quantum calculations of vibrational energies and IR spectrum of the NO{sup +}(H{sub 2}O) cluster using accurate potential energy and dipole moment surfaces

    SciTech Connect

    Homayoon, Zahra

    2014-09-28

    A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO{sup +}(H{sub 2}O) cluster is reported. The PES is based on fitting of roughly 32 000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO{sup +}(H{sub 2}O) and NO{sup +}(D{sub 2}O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO{sup +}(H{sub 2}O) and NO{sup +}(D{sub 2}O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO{sup +}(H{sub 2}O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water “antisymmetric” stretching mode with the low-frequency intermolecular modes results in intensity borrowing.

  1. Single-degree-of-freedom-flutter calculations for a wing in subsonic potential flow and comparison with an experiment

    NASA Technical Reports Server (NTRS)

    Runyan, Harry L

    1952-01-01

    The effect of Mach number and structural damping on single-degree-of-freedom pitching of a wing is presented. Some experimental results are compared with theory and good agreement is found for certain ranges of an inertia parameter.

  2. A systematic review of intervention effects on potential mediators of children’s physical activity

    PubMed Central

    2013-01-01

    Background Many interventions aiming to increase children’s physical activity have been developed and implemented in a variety of settings, and these interventions have previously been reviewed; however the focus of these reviews tends to be on the intervention effects on physical activity outcomes without consideration of the reasons and pathways leading to intervention success or otherwise. To systematically review the efficacy of physical activity interventions targeting 5-12 year old children on potential mediators and, where possible, to calculate the size of the intervention effect on the potential mediator. Methods A systematic search identified intervention studies that reported outcomes on potential mediators of physical activity among 5-12 year old children. Original research articles published between 1985 and April 2012 were reviewed. Results Eighteen potential mediators were identified from 31 studies. Positive effects on cognitive/psychological potential mediators were reported in 15 out of 31 studies. Positive effects on social environmental potential mediators were reported in three out of seven studies, and no effects on the physical environment were reported. Although no studies were identified that performed a mediating analysis, 33 positive intervention effects were found on targeted potential mediators (with effect sizes ranging from small to large) and 73% of the time a positive effect on the physical activity outcome was reported. Conclusions Many studies have reported null intervention effects on potential mediators of children’s physical activity; however, it is important that intervention studies statistically examine the mediating effects of interventions so the most effective strategies can be implemented in future programs. PMID:23433143

  3. Ratchet effect in an underdamped periodic potential and its characterisation

    NASA Astrophysics Data System (ADS)

    Saikia, Shantu

    2017-02-01

    Ratchet effect in a driven underdamped periodic potential system is studied. The presence of a space dependent and periodic friction coefficient, but with a phase difference with the symmetric periodic potential is shown to generate substantial ratchet current. The ratchet performance is characterised in terms of the various parameters of transport. The performance of this ratchet is compared with a ratchet with an underlying periodic and asymmetric potential. It is shown that an optimum combination of inhomogeneity in the system and asymmetry of the potential can substantially enhance the performance of an underdamped ratchet.

  4. Finite-element method for calculation of the effective permittivity of random inhomogeneous media

    NASA Astrophysics Data System (ADS)

    Myroshnychenko, Viktor; Brosseau, Christian

    2005-01-01

    The challenge of designing new solid-state materials from calculations performed with the help of computers applied to models of spatial randomness has attracted an increasing amount of interest in recent years. In particular, dispersions of particles in a host matrix are scientifically and technologically important for a variety of reasons. Herein, we report our development of an efficient computer code to calculate the effective (bulk) permittivity of two-phase disordered composite media consisting of hard circular disks made of a lossless dielectric (permittivity ɛ2 ) randomly placed in a plane made of a lossless homogeneous dielectric (permittivity ɛ1 ) at different surface fractions. Specifically, the method is based on (i) a finite-element description of composites in which both the host and the randomly distributed inclusions are isotropic phases, and (ii) an ordinary Monte Carlo sampling. Periodic boundary conditions are employed throughout the simulation and various numbers of disks have been considered in the calculations. From this systematic study, we show how the number of Monte Carlo steps needed to achieve equilibrated distributions of disks increases monotonically with the surface fraction. Furthermore, a detailed study is made of the dependence of the results on a minimum separation distance between disks. Numerical examples are presented to connect the macroscopic property such as the effective permittivity to microstructural characteristics such as the mean coordination number and radial distribution function. In addition, several approximate effective medium theories, exact bounds, exact results for two-dimensional regular arrays, and the exact dilute limit are used to test and validate the finite-element algorithm. Numerical results indicate that the fourth-order bounds provide an excellent estimate of the effective permittivity for a wide range of surface fractions, in accordance with the fact that the bounds become progressively narrower as

  5. Calculation of effective transport properties of partially saturated gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Bednarek, Tomasz; Tsotridis, Georgios

    2017-02-01

    A large number of currently available Computational Fluid Dynamics numerical models of Polymer Electrolyte Membrane Fuel Cells (PEMFC) are based on the assumption that porous structures are mainly considered as thin and homogenous layers, hence the mass transport equations in structures such as Gas Diffusion Layers (GDL) are usually modelled according to the Darcy assumptions. Application of homogenous models implies that the effects of porous structures are taken into consideration via the effective transport properties of porosity, tortuosity, permeability (or flow resistance), diffusivity, electric and thermal conductivity. Therefore, reliable values of those effective properties of GDL play a significant role for PEMFC modelling when employing Computational Fluid Dynamics, since these parameters are required as input values for performing the numerical calculations. The objective of the current study is to calculate the effective transport properties of GDL, namely gas permeability, diffusivity and thermal conductivity, as a function of liquid water saturation by using the Lattice-Boltzmann approach. The study proposes a method of uniform water impregnation of the GDL based on the "Fine-Mist" assumption by taking into account the surface tension of water droplets and the actual shape of GDL pores.

  6. Monte Carlo calculation of multi-electron effects on synchrotron radiation

    SciTech Connect

    Wang, C.

    1993-07-01

    The phase space distribution and time structure of an electron beam have fundamental influences on synchrotron radiation properties. These influences are due to the superposition of radiation from all electrons, each following a different trajectory. When the radiation wavelength is longer than the electron bunch length, coherent superposition occurs and results in the observed coherent synchrotron radiation. Usually the wavelength we use is much shorter, so incoherent superposition occurs and the emittance effect is the dominant multi-electron effect. The Monte Carlo simulation is a straightforward and generally valid approach to compute the multi-electron effects on synchrotron radiation. In this paper, we show how the Monte Carlo method can model these multi-electron effects systematically and discuss the statistical principles governing such simulation and their implication on the computing power requirement. We also describe the implementation of an efficient algorithm to calculate a single electron radiation spectrum, which is important to make the Monte Carlo simulation practical. Some calculated results are shown to demonstrate the methods. Comments on the usefulness and limitation of the Monte Carlo method are presented.

  7. Sex-specific tissue weighting factors for effective dose equivalent calculations

    SciTech Connect

    Xu, X.G.; Reece, W.D.

    1996-01-01

    The effective dose equivalent was defined in the International Commission on Radiological Protection Publication 26 in 1977 and later adopted by the U.S. Nuclear REgulatory Commission. To calculate organ doses and effective dose equivalent for external exposures using Monte Carlo simulations, sex-specific anthropomorphic phantoms and sex-specific weighting factors are always employed. This paper presents detailed mathematical derivation of a set of sex-specific tissue weighting factors and the conditions which the weighting factors must satisfy. Results of effective dose equivalent calculations using female and male phantoms exposed to monoenergetic photon beams of 0.08, 0.3, and 1.0 MeV are provided and compared with results published by other authors using different sex-specific weighting factors and phantoms. The results indicate that females always receive higher effective dose equivalent than males for the photon energies and geometries considered and that some published data may be wrong due to mistakes in deriving the sex-specific weighting factors. 17 refs., 2 figs., 2 tabs.

  8. Effects of surface potential fluctuations on DLTS of MOS structure

    NASA Astrophysics Data System (ADS)

    Özder, Serhat; Atilgan, İsmai˙l.; Katircioǧlu, Bayram

    1996-02-01

    Although the conventional large signal deep-level transient spectroscopy (DLTS) technique is immune to surface potential fluctuations resulting from interface charge inhomogeneities in a MOS structure, in energy resolved, small signal DLTS, the eventual surface potential fluctuation should be considered. In this paper, the effect of the potential fluctuation on the temperature-scan DLTS signal for a given gate bias has been carried out. In fact, this effect shifts the DLTS peak position to lower temperatures and decreases the peak amplitude, leading to an apparent energy position and lower Dit values, respectively.

  9. The missing dimension: effects of lateral variation on 1-D calculations of fluvial bedload transport

    NASA Astrophysics Data System (ADS)

    Ferguson, R. I.

    2003-11-01

    Most calculations of bedload transport in rivers, including those in numerical models of aggradation and degradation, are 1-D: all hydraulic and transport-rate calculations are averaged over the channel width. Because bedload transport laws are nonlinear, width-averaged calculations will underestimate the true bedload flux if there is any local spatial variation in either the bed or the flow. This paper analyses the effects on bedload transport capacity of spatial variation in applied ( τ) and critical ( τc) shear stress, separately and in combination. A simple but versatile statistical model is used to represent variability in τ, with allowance for differences between sand- and gravel-bed rivers and for below-bankfull flow. Bedload flux is shown to increase greatly with the variance of τ, especially in gravel-bed rivers. Variability in τc through bed patchiness may increase, reduce, or make little difference to bedload flux depending on the correlation between τ and τc. Simple width averaging leads to severe underestimation of bedload transport in most conditions; some alternatives are considered. The findings have implications for sediment routing models (SRMs), but further research is needed to explore the issue fully.

  10. WHAT IS A MOMENT ARM? CALCULATING MUSCLE EFFECTIVENESS IN BIOMECHANICAL MODELS USING GENERALIZED COORDINATES.

    PubMed

    Sherman, Michael A; Seth, Ajay; Delp, Scott L

    2013-08-01

    Biomechanics researchers often use multibody models to represent biological systems. However, the mapping from biology to mechanics and back can be problematic. OpenSim is a popular open source tool used for this purpose, mapping between biological specifications and an underlying generalized coordinate multibody system called Simbody. One quantity of interest to biomechanical researchers and clinicians is "muscle moment arm," a measure of the effectiveness of a muscle at contributing to a particular motion over a range of configurations. OpenSim can automatically calculate these quantities for any muscle once a model has been built. For simple cases, this calculation is the same as the conventional moment arm calculation in mechanical engineering. But a muscle may span several joints (e.g., wrist, neck, back) and may follow a convoluted path over various curved surfaces. A biological joint may require several bodies or even a mechanism to accurately represent in the multibody model (e.g., knee, shoulder). In these situations we need a careful definition of muscle moment arm that is analogous to the mechanical engineering concept, yet generalized to be of use to biomedical researchers. Here we present some biomechanical modeling challenges and how they are resolved in OpenSim and Simbody to yield biologically meaningful muscle moment arms.

  11. Electron correlation and relativistic effects in atomic structure calculations of the thorium atom.

    PubMed

    Roy, S K; Prasad, Rajendra; Chandra, P

    2011-06-21

    Relativistic two-component ab initio calculations have been performed for the Th atom. The spin free low lying states have been calculated at state-averaged complete active space self-consistent field (SA-CASSCF) and multi-state complete active space second-order perturbation (MS-CASPT2) level of theories using different sets of active orbitals. The spin-orbit states have been computed using Douglas-Kroll type of atomic mean-field integral approach. The effects of dynamic electron correlation have been studied at the MS-CASPT2 level. The energy levels of spin-orbit states below 30,000 cm(-1) obtained by the inclusion of dynamic electron correlation are in very good agreement with the experimental values. The radiative properties such as weighted transition probabilities (gA) and oscillator strengths (gf) among several spin-orbit states have been calculated at the SA-CASSCF and MS-CASPT2 levels and are expected to be very helpful for future experiments.

  12. Effect of RELAP5/MOD3.2 user options on calculated results

    SciTech Connect

    Burtt, J.D.; Shotkin, L.M.; Staudenmeier, J.L.

    1997-09-01

    Calculations were performed for the same accident scenario in the same power plant geometry using the same version of the RELAP5/MOD3.2 computer code, but each calculation was performed using different user options in the code input deck. The accident scenario analyzed was a 1-in. cold-leg break in the new Westinghouse AP600 design. The calculations were analyzed for those key events leading to actuation of the AP600 automatic depressurization system. Three different user choices for plant system noding were used: (a) a detailed noding with a quasi-three-dimensional vessel; (b) a simplified system noding with a quasi-three-dimensional core, lower plenum, and upper plenum, but a simplified downcomer noding; and (c) a detailed system and downcomer noding, but a one-dimensional core, lower plenum, and upper plenum. Two other user options were separately exercised, i.e., shutting off the model for thermal stratification and using different initial temperatures for the core. The discussion focuses on the relative effect of these different user options on flow through the P-loop hot leg, initial reversal in flow through the pressure balance line, timing of draining of the core makeup tanks, and timing of actuation of the automatic depressurization system.

  13. K-effective of the world: and other concerns for Monte Carlo Eigenvalue calculations

    SciTech Connect

    Brown, Forrest B

    2010-01-01

    Monte Carlo methods have been used to compute k{sub eff} and the fundamental model eigenfunction of critical systems since the 1950s. Despite the sophistication of today's Monte Carlo codes for representing realistic geometry and physics interactions, correct results can be obtained in criticality problems only if users pay attention to source convergence in the Monte Carlo iterations and to running a sufficient number of neutron histories to adequately sample all significant regions of the problem. Recommended best practices for criticality calculations are reviewed and applied to several practical problems for nuclear reactors and criticality safety, including the 'K-effective of the World' problem. Numerical results illustrate the concerns about convergence and bias. The general conclusion is that with today's high-performance computers, improved understanding of the theory, new tools for diagnosing convergence (e.g., Shannon entropy of the fission distribution), and clear practical guidance for performing calculations, practitioners will have a greater degree of confidence than ever of obtaining correct results for Monte Carlo criticality calculations.

  14. A kernel method for calculating effective radiative forcing in transient climate simulations

    NASA Astrophysics Data System (ADS)

    Larson, E. J. L.; Portmann, R. W.

    2015-12-01

    Effective radiative forcing (ERF) is calculated as the flux change at the top of the atmosphere, after allowing fast adjustments, due to a forcing agent such as greenhouse gasses or volcanic events. Accurate estimates of the ERF are necessary in order to understand the drivers of climate change. ERF cannot be observed directly and is difficult to estimate from indirect observations due to the complexity of climate responses to individual forcing factors. We present a new method of calculating ERF using a kernel populated from a time series of a model variable (e.g. global mean surface temperature) in a CO2 step change experiment. The top of atmosphere (TOA) radiative imbalance has the best noise tolerance for retrieving the ERF of the model variables we tested. We compare the kernel method with the energy balance method for estimating ERF in the CMIP5 models. The energy balance method uses the regression between the TOA imbalance and temperature change in a CO2 step change experiment to estimate the climate feedback parameter. It then assumes the feedback parameter is constant to calculate the forcing time series. This method is sensitive to the number of years chosen for the regression and the nonlinearity in the regression leads to a bias. We quantify the sensitivities and biases of these methods and compare their estimates of forcing. The kernel method is more accurate for models in which a linear fit is a poor approximation for the relationship between temperature change and TOA imbalance.

  15. Parameter-free effective field theory calculation for the solar proton-fusion and hep processes

    SciTech Connect

    T.S. Park; L.E. Marcucci; R. Schiavilla; M. Viviani; A. Kievsky; S. Rosati; K. Kubodera; D.P. Min; M. Rho

    2002-08-01

    Spurred by the recent complete determination of the weak currents in two-nucleon systems up to {Omicron}(Q{sup 3}) in heavy-baryon chiral perturbation theory, we carry out a parameter-free calculation of the threshold S-factors for the solar pp (proton-fusion) and hep processes in an effective field theory that combines the merits of the standard nuclear physics method and systematic chiral expansion. The power of the EFT adopted here is that one can correlate in a unified formalism the weak-current matrix elements of two-, three- and four-nucleon systems. Using the tritium {beta}-decay rate as an input to fix the only unknown parameter in the theory, we can evaluate the threshold S factors with drastically improved precision; the results are S{sub pp}(0) = 3.94 x (1 {+-} 0.004) x 10{sup -25} MeV-b and S{sub hep}(0) = (8.6 {+-} 1.3) x 10{sup -20} keV-b. The dependence of the calculated S-factors on the momentum cutoff parameter {Lambda} has been examined for a physically reasonable range of {Lambda}. This dependence is found to be extremely small for the pp process, and to be within acceptable levels for the hep process, substantiating the consistency of our calculational scheme.

  16. WHAT IS A MOMENT ARM? CALCULATING MUSCLE EFFECTIVENESS IN BIOMECHANICAL MODELS USING GENERALIZED COORDINATES

    PubMed Central

    Seth, Ajay; Delp, Scott L.

    2015-01-01

    Biomechanics researchers often use multibody models to represent biological systems. However, the mapping from biology to mechanics and back can be problematic. OpenSim is a popular open source tool used for this purpose, mapping between biological specifications and an underlying generalized coordinate multibody system called Simbody. One quantity of interest to biomechanical researchers and clinicians is “muscle moment arm,” a measure of the effectiveness of a muscle at contributing to a particular motion over a range of configurations. OpenSim can automatically calculate these quantities for any muscle once a model has been built. For simple cases, this calculation is the same as the conventional moment arm calculation in mechanical engineering. But a muscle may span several joints (e.g., wrist, neck, back) and may follow a convoluted path over various curved surfaces. A biological joint may require several bodies or even a mechanism to accurately represent in the multibody model (e.g., knee, shoulder). In these situations we need a careful definition of muscle moment arm that is analogous to the mechanical engineering concept, yet generalized to be of use to biomedical researchers. Here we present some biomechanical modeling challenges and how they are resolved in OpenSim and Simbody to yield biologically meaningful muscle moment arms. PMID:25905111

  17. Communication: A new ab initio potential energy surface for HCl-H2O, diffusion Monte Carlo calculations of D0 and a delocalized zero-point wavefunction

    NASA Astrophysics Data System (ADS)

    Mancini, John S.; Bowman, Joel M.

    2013-03-01

    We report a global, full-dimensional, ab initio potential energy surface describing the HCl-H2O dimer. The potential is constructed from a permutationally invariant fit, using Morse-like variables, to over 44 000 CCSD(T)-F12b/aug-cc-pVTZ energies. The surface describes the complex and dissociated monomers with a total RMS fitting error of 24 cm-1. The normal modes of the minima, low-energy saddle point and separated monomers, the double minimum isomerization pathway and electronic dissociation energy are accurately described by the surface. Rigorous quantum mechanical diffusion Monte Carlo (DMC) calculations are performed to determine the zero-point energy and wavefunction of the complex and the separated fragments. The calculated zero-point energies together with a De value calculated from CCSD(T) with a complete basis set extrapolation gives a D0 value of 1348 ± 3 cm-1, in good agreement with the recent experimentally reported value of 1334 ± 10 cm-1 [B. E. Casterline, A. K. Mollner, L. C. Ch'ng, and H. Reisler, J. Phys. Chem. A 114, 9774 (2010), 10.1021/jp102532m]. Examination of the DMC wavefunction allows for confident characterization of the zero-point geometry to be dominant at the C2v double-well saddle point and not the Cs global minimum. Additional support for the delocalized zero-point geometry is given by numerical solutions to the 1D Schrödinger equation along the imaginary-frequency out-of-plane bending mode, where the zero-point energy is calculated to be 52 cm-1 above the isomerization barrier. The D0 of the fully deuterated isotopologue is calculated to be 1476 ± 3 cm-1, which we hope will stand as a benchmark for future experimental work.

  18. Communication: A new ab initio potential energy surface for HCl-H2O, diffusion Monte Carlo calculations of D0 and a delocalized zero-point wavefunction.

    PubMed

    Mancini, John S; Bowman, Joel M

    2013-03-28

    We report a global, full-dimensional, ab initio potential energy surface describing the HCl-H2O dimer. The potential is constructed from a permutationally invariant fit, using Morse-like variables, to over 44,000 CCSD(T)-F12b∕aug-cc-pVTZ energies. The surface describes the complex and dissociated monomers with a total RMS fitting error of 24 cm(-1). The normal modes of the minima, low-energy saddle point and separated monomers, the double minimum isomerization pathway and electronic dissociation energy are accurately described by the surface. Rigorous quantum mechanical diffusion Monte Carlo (DMC) calculations are performed to determine the zero-point energy and wavefunction of the complex and the separated fragments. The calculated zero-point energies together with a De value calculated from CCSD(T) with a complete basis set extrapolation gives a D0 value of 1348 ± 3 cm(-1), in good agreement with the recent experimentally reported value of 1334 ± 10 cm(-1) [B. E. Casterline, A. K. Mollner, L. C. Ch'ng, and H. Reisler, J. Phys. Chem. A 114, 9774 (2010)]. Examination of the DMC wavefunction allows for confident characterization of the zero-point geometry to be dominant at the C(2v) double-well saddle point and not the C(s) global minimum. Additional support for the delocalized zero-point geometry is given by numerical solutions to the 1D Schrödinger equation along the imaginary-frequency out-of-plane bending mode, where the zero-point energy is calculated to be 52 cm(-1) above the isomerization barrier. The D0 of the fully deuterated isotopologue is calculated to be 1476 ± 3 cm(-1), which we hope will stand as a benchmark for future experimental work.

  19. Including Aeroelastic Effects in the Calculation of X-33 Loads and Control Characteristics

    NASA Technical Reports Server (NTRS)

    Zeiler, Thomas A.

    1998-01-01

    Up until now, loads analyses of the X-33 RLV have been done at Marshall Space Flight Center (MSFC) using aerodynamic loads derived from CFD and wind tunnel models of a rigid vehicle. Control forces and moments are determined using a rigid vehicle trajectory analysis and the detailed control load distributions for achieving the desired control forces and moments, again on the rigid vehicle, are determined by Lockheed Martin Skunk Works. However, static aeroelastic effects upon the load distributions are not known. The static aeroelastic effects will generally redistribute external loads thereby affecting both the internal structural loads as well as the forces and moments generated by aerodynamic control surfaces. Therefore, predicted structural sizes as well as maneuvering requirements can be altered by consideration of static aeroelastic effects. The objective of the present work is the development of models and solutions for including static aeroelasticity in the calculation of X-33 loads and in the determination of stability and control derivatives.

  20. Neutron Detector Signal Processing to Calculate the Effective Neutron Multiplication Factor of Subcritical Assemblies

    SciTech Connect

    Talamo, Alberto; Gohar, Yousry

    2016-06-01

    This report describes different methodologies to calculate the effective neutron multiplication factor of subcritical assemblies by processing the neutron detector signals using MATLAB scripts. The subcritical assembly can be driven either by a spontaneous fission neutron source (e.g. californium) or by a neutron source generated from the interactions of accelerated particles with target materials. In the latter case, when the particle accelerator operates in a pulsed mode, the signals are typically stored into two files. One file contains the time when neutron reactions occur and the other contains the times when the neutron pulses start. In both files, the time is given by an integer representing the number of time bins since the start of the counting. These signal files are used to construct the neutron count distribution from a single neutron pulse. The built-in functions of MATLAB are used to calculate the effective neutron multiplication factor through the application of the prompt decay fitting or the area method to the neutron count distribution. If the subcritical assembly is driven by a spontaneous fission neutron source, then the effective multiplication factor can be evaluated either using the prompt neutron decay constant obtained from Rossi or Feynman distributions or the Modified Source Multiplication (MSM) method.