NASA Astrophysics Data System (ADS)
Zeqiri, F.; Alkan, M.; Kaya, B.; Toros, S.
2018-01-01
In this paper, the effects of cutting parameters on cutting forces and surface roughness based on Taguchi experimental design method are determined. Taguchi L9 orthogonal array is used to investigate the effects of machining parameters. Optimal cutting conditions are determined using the signal/noise (S/N) ratio which is calculated by average surface roughness and cutting force. Using results of analysis, effects of parameters on both average surface roughness and cutting forces are calculated on Minitab 17 using ANOVA method. The material that was investigated is Inconel 625 steel for two cases with heat treatment and without heat treatment. The predicted and calculated values with measurement are very close to each other. Confirmation test of results showed that the Taguchi method was very successful in the optimization of machining parameters for maximum surface roughness and cutting forces in the CNC turning process.
Calculation of the effects of ice on the backscatter of a ground plane
NASA Technical Reports Server (NTRS)
Lambert, K. M.; Peters, L., Jr.
1988-01-01
Described is a technique for examining the effect of a rough ice layer on the backscatter of a ground plane. The technique is applied to the special case of a rough ice layer that is periodic in space. By assuming that the roughness is periodic, the backscatter of the ground plane can be found from the backscatter of a single period. Backscatter calculations are presented for a single period in which the thickness of the ice layer has a Gaussian shape.
Su, Peiran; Eri, Qitai; Wang, Qiang
2014-04-10
Optical roughness was introduced into the bidirectional reflectance distribution function (BRDF) model to simulate the reflectance characteristics of thermal radiation. The optical roughness BRDF model stemmed from the influence of surface roughness and wavelength on the ray reflectance calculation. This model was adopted to simulate real metal emissivity. The reverse Monte Carlo method was used to display the distribution of reflectance rays. The numerical simulations showed that the optical roughness BRDF model can calculate the wavelength effect on emissivity and simulate the real metal emissivity variance with incidence angles.
The Effect of Roughness Model on Scattering Properties of Ice Crystals.
NASA Technical Reports Server (NTRS)
Geogdzhayev, Igor V.; Van Diedenhoven, Bastiaan
2016-01-01
We compare stochastic models of microscale surface roughness assuming uniform and Weibull distributions of crystal facet tilt angles to calculate scattering by roughened hexagonal ice crystals using the geometric optics (GO) approximation. Both distributions are determined by similar roughness parameters, while the Weibull model depends on the additional shape parameter. Calculations were performed for two visible wavelengths (864 nm and 410 nm) for roughness values between 0.2 and 0.7 and Weibull shape parameters between 0 and 1.0 for crystals with aspect ratios of 0.21, 1 and 4.8. For this range of parameters we find that, for a given roughness level, varying the Weibull shape parameter can change the asymmetry parameter by up to about 0.05. The largest effect of the shape parameter variation on the phase function is found in the backscattering region, while the degree of linear polarization is most affected at the side-scattering angles. For high roughness, scattering properties calculated using the uniform and Weibull models are in relatively close agreement for a given roughness parameter, especially when a Weibull shape parameter of 0.75 is used. For smaller roughness values, a shape parameter close to unity provides a better agreement. Notable differences are observed in the phase function over the scattering angle range from 5deg to 20deg, where the uniform roughness model produces a plateau while the Weibull model does not.
Rough Interface Effects on N-S Proximity-Contact Systems
NASA Astrophysics Data System (ADS)
Nagato, Yasushi; Nagai, Katsuhiko
2003-03-01
We discuss the influence of atomic scale roughness of the interface on the properties of the N-S contact systems. To treat the interface roughness effects we extend our previous quasi-classical theory of the rough surface effect and construct a formal solution for the quasi-classical Green's function. We apply the formulation to N-S systems with two-dimensional anisotropic d
Calculations of microwave brightness temperature of rough soil surfaces: Bare field
NASA Technical Reports Server (NTRS)
Mo, T.; Schmugge, T. J.; Wang, J. R.
1985-01-01
A model for simulating the brightness temperatures of soils with rough surfaces is developed. The surface emissivity of the soil media is obtained by the integration of the bistatic scattering coefficients for rough surfaces. The roughness of a soil surface is characterized by two parameters, the surface height standard deviation sigma and its horizontal correlation length l. The model calculations are compared to the measured angular variations of the polarized brightness temperatures at both 1.4 GHz and 5 GHz frequences. A nonlinear least-squares fitting method is used to obtain the values of delta and l that best characterize the surface roughness. The effect of shadowing is incorporated by introducing a function S(theta), which represents the probability that a point on a rough surface is not shadowed by other parts of the surface. The model results for the horizontal polarization are in excellent agreement with the data. However, for the vertical polarization, some discrepancies exist between the calculations and data, particularly at the 1.4 GHz frequency. Possible causes of the discrepancy are discussed.
Determining Surface Roughness in Urban Areas Using Lidar Data
NASA Technical Reports Server (NTRS)
Holland, Donald
2009-01-01
An automated procedure has been developed to derive relevant factors, which can increase the ability to produce objective, repeatable methods for determining aerodynamic surface roughness. Aerodynamic surface roughness is used for many applications, like atmospheric dispersive models and wind-damage models. For this technique, existing lidar data was used that was originally collected for terrain analysis, and demonstrated that surface roughness values can be automatically derived, and then subsequently utilized in disaster-management and homeland security models. The developed lidar-processing algorithm effectively distinguishes buildings from trees and characterizes their size, density, orientation, and spacing (see figure); all of these variables are parameters that are required to calculate the estimated surface roughness for a specified area. By using this algorithm, aerodynamic surface roughness values in urban areas can then be extracted automatically. The user can also adjust the algorithm for local conditions and lidar characteristics, like summer/winter vegetation and dense/sparse lidar point spacing. Additionally, the user can also survey variations in surface roughness that occurs due to wind direction; for example, during a hurricane, when wind direction can change dramatically, this variable can be extremely significant. In its current state, the algorithm calculates an estimated surface roughness for a square kilometer area; techniques using the lidar data to calculate the surface roughness for a point, whereby only roughness elements that are upstream from the point of interest are used and the wind direction is a vital concern, are being investigated. This technological advancement will improve the reliability and accuracy of models that use and incorporate surface roughness.
NASA Technical Reports Server (NTRS)
Sun, W.; Loeb, N. G.; Videen, G.; Fu, Q.
2004-01-01
Natural particles such as ice crystals in cirrus clouds generally are not pristine but have additional micro-roughness on their surfaces. A two-dimensional finite-difference time-domain (FDTD) program with a perfectly matched layer absorbing boundary condition is developed to calculate the effect of surface roughness on light scattering by long ice columns. When we use a spatial cell size of 1/120 incident wavelength for ice circular cylinders with size parameters of 6 and 24 at wavelengths of 0.55 and 10.8 mum, respectively, the errors in the FDTD results in the extinction, scattering, and absorption efficiencies are smaller than similar to 0.5%. The errors in the FDTD results in the asymmetry factor are smaller than similar to 0.05%. The errors in the FDTD results in the phase-matrix elements are smaller than similar to 5%. By adding a pseudorandom change as great as 10% of the radius of a cylinder, we calculate the scattering properties of randomly oriented rough-surfaced ice columns. We conclude that, although the effect of small surface roughness on light scattering is negligible, the scattering phase-matrix elements change significantly for particles with large surface roughness. The roughness on the particle surface can make the conventional phase function smooth. The most significant effect of the surface roughness is the decay of polarization of the scattered light.
The Research of Tax Text Categorization based on Rough Set
NASA Astrophysics Data System (ADS)
Liu, Bin; Xu, Guang; Xu, Qian; Zhang, Nan
To solve the problem of effective of categorization of text data in taxation system, the paper analyses the text data and the size calculation of key issues first, then designs text categorization based on rough set model.
Effects of enviromentally imposed roughness on airfoil performance
NASA Technical Reports Server (NTRS)
Cebeci, Tuncer
1987-01-01
The experimental evidence for the effects of rain, insects, and ice on airfoil performance are examined. The extent to which the available information can be incorporated in a calculation method in terms of change of shape and surface roughness is discussed. The methods described are based on the interactive boundary layer procedure of Cebeci or on the thin layer Navier Stokes procedure developed at NASA. Cases presented show that extensive flow separation occurs on the rough surfaces.
Analysis of multi lobe journal bearings with surface roughness using finite difference method
NASA Astrophysics Data System (ADS)
PhaniRaja Kumar, K.; Bhaskar, SUdaya; Manzoor Hussain, M.
2018-04-01
Multi lobe journal bearings are used for high operating speeds and high loads in machines. In this paper symmetrical multi lobe journal bearings are analyzed to find out the effect of surface roughnessduring non linear loading. Using the fourth order RungeKutta method, time transient analysis was performed to calculate and plot the journal centre trajectories. Flow factor method is used to evaluate the roughness and the finite difference method (FDM) is used to predict the pressure distribution over the bearing surface. The Transient analysis is done on the multi lobe journal bearings for threedifferent surface roughness orientations. Longitudinal surface roughness is more effective when compared with isotopic and traverse surface roughness.
Correlation between substratum roughness and wettability, cell adhesion, and cell migration.
Lampin, M; Warocquier-Clérout; Legris, C; Degrange, M; Sigot-Luizard, M F
1997-07-01
Cell adhesion and spreading of chick embryo vascular and corneal explants grown on rough and smooth poly (methyl methacrylate) (PMMA) were analyzed to test the cell response specificity to substratum surface properties. Different degrees of roughness were obtained by sand-blasting PMMA with alumina grains. Hydrophilic and hydrophobic components of the surface free energy (SFE) were calculated according to Good-van Oss's model. Contact angles were determined using a computerized angle meter. The apolar component of the SFE gamma s(LW), increased with a slight roughness whereas the basic component, gamma s-, decreased. The acido-basic properties disappeared as roughness increased. Incubation of PMMA in culture medium, performed to test the influence if the biological environment, allowed surface adsorption of medium proteins which annihilated roughness effect and restored hydrophilic properties. An organotypic culture assay was carried out in an attempt to relate the biocompatibility to substratum surface state. Cell migration was calculated from the area of cell layer. Cellular adhesion was determined by measuring the kinetic of release of enzymatically dissociated cells. A slight roughness raised the migration are to an upper extent no matter which cell type. Enhancement of the cell adhesion potential was related to the degree of roughness and the hydrophobicity.
Roughness Length as a Measure of the Effects of a Vegetative Windbreak
NASA Astrophysics Data System (ADS)
Kenny, W.; Maurer, K.; Bohrer, G.
2012-12-01
Vegetative windbreaks are often used as barriers to block the dispersion of particulate matter, particularly around agricultural facilities. Windbreaks and narrow forest strips alter the wind pattern and affect dispersion of particles and aerosols that are carried across. Our observations during two field campaigns, conducted near animal feeding lots where large flumes of dust are advected across edge-of-field windbreaks, suggest that sensible heat flux greatly affects the interaction between the flow and the windbreak. We used measurements at multiple heights upwind and downwind of the windbreak to calculate the background roughness length and the effective roughness length of the windbreak. While the flow is not fully adjusted at the wake of the windbreak, we use measurements at different times of the day as a sensitivity analysis to the strength of the buoyancy term within the theoretical surface similarity equation that includes the effects of the wind break. Clearly, calculated roughness length downwind of the windbreak is much greater than upwind of the windbreak, but as SHF increases, the difference in roughness length across the windbreak decreases indicating a decrease in the overall effect of the windbreak on flow. Our findings indicate that as SHF increases, windbreaks may not be able to play much of a role in affecting the dispersion of particulate matter, as the overall effects of windbreaks diminish.
Transition Experiments on Blunt Bodies with Isolated Roughness Elements in Hypersonic Free Flight
NASA Technical Reports Server (NTRS)
Reda, Daniel C.; Wilder, Michael C.; Prabhu, Dinesh K.
2010-01-01
Smooth titanium hemispheres with isolated three-dimensional (3D) surface roughness elements were flown in the NASA Ames hypersonic ballistic range through quiescent CO2 and air environments. Global surface intensity (temperature) distributions were optically measured and thermal wakes behind individual roughness elements were analyzed to define tripping effectiveness. Real-gas Navier-Stokes calculations of model flowfields, including laminar boundary layer development in these flowfields, were conducted predict key dimensionless parameters used to correlate transition on blunt bodies in hypersonic flow. For isolated roughness elements totally immersed within the laminar boundary layer, critical roughness Reynolds numbers for flights in air were found to be higher than those measured for flights in CO2, i.e., it was easier to trip the CO2 boundary layer to turbulence. Tripping effectiveness was found to be dependent on trip location within the subsonic region of the blunt body flowfield, with effective tripping being most difficult to achieve for elements positioned closest to the stagnation point. Direct comparisons of critical roughness Reynolds numbers for 3D isolated versus 3D distributed roughness elements for flights in air showed that distributed roughness patterns were significantly more effective at tripping the blunt body laminar boundary layer to turbulence.
Electromagnetic wave scattering from rough terrain
NASA Astrophysics Data System (ADS)
Papa, R. J.; Lennon, J. F.; Taylor, R. L.
1980-09-01
This report presents two aspects of a program designed to calculate electromagnetic scattering from rough terrain: (1) the use of statistical estimation techniques to determine topographic parameters and (2) the results of a single-roughness-scale scattering calculation based on those parameters, including comparison with experimental data. In the statistical part of the present calculation, digitized topographic maps are used to generate data bases for the required scattering cells. The application of estimation theory to the data leads to the specification of statistical parameters for each cell. The estimated parameters are then used in a hypothesis test to decide on a probability density function (PDF) that represents the height distribution in the cell. Initially, the formulation uses a single observation of the multivariate data. A subsequent approach involves multiple observations of the heights on a bivariate basis, and further refinements are being considered. The electromagnetic scattering analysis, the second topic, calculates the amount of specular and diffuse multipath power reaching a monopulse receiver from a pulsed beacon positioned over a rough Earth. The program allows for spatial inhomogeneities and multiple specular reflection points. The analysis of shadowing by the rough surface has been extended to the case where the surface heights are distributed exponentially. The calculated loss of boresight pointing accuracy attributable to diffuse multipath is then compared with the experimental results. The extent of the specular region, the use of localized height variations, and the effect of the azimuthal variation in power pattern are all assessed.
A rough set-based measurement model study on high-speed railway safety operation.
Hu, Qizhou; Tan, Minjia; Lu, Huapu; Zhu, Yun
2018-01-01
Aiming to solve the safety problems of high-speed railway operation and management, one new method is urgently needed to construct on the basis of the rough set theory and the uncertainty measurement theory. The method should carefully consider every factor of high-speed railway operation that realizes the measurement indexes of its safety operation. After analyzing the factors that influence high-speed railway safety operation in detail, a rough measurement model is finally constructed to describe the operation process. Based on the above considerations, this paper redistricts the safety influence factors of high-speed railway operation as 16 measurement indexes which include staff index, vehicle index, equipment index and environment. And the paper also provides another reasonable and effective theoretical method to solve the safety problems of multiple attribute measurement in high-speed railway operation. As while as analyzing the operation data of 10 pivotal railway lines in China, this paper respectively uses the rough set-based measurement model and value function model (one model for calculating the safety value) for calculating the operation safety value. The calculation result shows that the curve of safety value with the proposed method has smaller error and greater stability than the value function method's, which verifies the feasibility and effectiveness.
Modeling and measurement of microwave emission and backscattering from bare soil surfaces
NASA Technical Reports Server (NTRS)
Saatchi, S.; Wegmuller, U.
1992-01-01
A multifrequency ground-based radiometer-scatterometer system working at frequencies between 3.0 GHz and 11.0 GHz has been used to study the effect of soil moisture and roughness on microwave emission and backscattering. The freezing and thawing effect of the soil surface and the changes of the surface roughness due to rain and erosion are reported. To analyze the combined active and passive data, a scattering model based on physical optics approximation for the low frequency and geometrical optics approximation for high frequency has been developed. The model is used to calculate the bistatic scattering coefficients from the surface. By considering the conservation of energy, the result has been integrated over a hemisphere above the surface to calculate the emissivity. The backscattering and emission model has been coupled with the observed data in order to extract soil moisture and surface roughness.
NASA Astrophysics Data System (ADS)
Lundberg, Oskar E.; Nordborg, Anders; Lopez Arteaga, Ines
2016-03-01
A state-dependent contact model including nonlinear contact stiffness and nonlinear contact filtering is used to calculate contact forces and rail vibrations with a time-domain wheel-track interaction model. In the proposed method, the full three-dimensional contact geometry is reduced to a point contact in order to lower the computational cost and to reduce the amount of required input roughness-data. Green's functions including the linear dynamics of the wheel and the track are coupled with a point contact model, leading to a numerically efficient model for the wheel-track interaction. Nonlinear effects due to the shape and roughness of the wheel and the rail surfaces are included in the point contact model by pre-calculation of functions for the contact stiffness and contact filters. Numerical results are compared to field measurements of rail vibrations for passenger trains running at 200 kph on a ballast track. Moreover, the influence of vehicle pre-load and different degrees of roughness excitation on the resulting wheel-track interaction is studied by means of numerical predictions.
Effects of random aspects of cutting tool wear on surface roughness and tool life
NASA Astrophysics Data System (ADS)
Nabil, Ben Fredj; Mabrouk, Mohamed
2006-10-01
The effects of random aspects of cutting tool flank wear on surface roughness and on tool lifetime, when turning the AISI 1045 carbon steel, were studied in this investigation. It was found that standard deviations corresponding to tool flank wear and to the surface roughness increase exponentially with cutting time. Under cutting conditions that correspond to finishing operations, no significant differences were found between the calculated values of the capability index C p at the steady-state region of the tool flank wear, using the best-fit method or the Box-Cox transformation, or by making the assumption that the surface roughness data are normally distributed. Hence, a method to establish cutting tool lifetime could be established that simultaneously respects the desired average of surface roughness and the required capability index.
NASA Astrophysics Data System (ADS)
Bonno, Olivier; Barraud, Sylvain; Mariolle, Denis; Andrieu, François
2008-03-01
Recently, in order to explain the long-channel electron effective mobility at a high sheet carrier density in strained silicon channel transistors, it has been suggested by [M. V. Fischetti, F. Gamiz, and W. Hansch, J. Appl. Phys. 92, 7230 (2002)] that biaxial tensile strain should smooth the Si/SiO2 interface. To address this topic, the roughness properties of biaxial strained silicon-on-insulator (s-SOI) films are investigated by means of atomic force microscopy. Through in-depth statistical analysis of the digitalized surface profiles, the roughness parameters are extracted for unstrained and strained SOI films, with 0.8% biaxial tensile strain. Especially, it is found that strain significantly reduces the roughness amplitude. Then, mobility calculations in SOI and s-SOI inversion layers are performed in the framework of the Kubo-Greenwood formalism. The model accounts for the main scattering mechanisms that are dominant in the high electron density range, namely phonon and surface roughness. Special attention has been paid to the modeling of the latter by accounting for all the contributions of the potential which arise from the deformed rough interface, and by using a multisubband wavelength-dependent screening model. This model is then applied to study the influence of the surface morphology on the mobility in s-SOI inversion layers. In this context, the mobility gain between s-SOI and unstrained SOI layers is found to agree significantly better with experimental data if the strain-induced decrease of the roughness amplitude is taken into account.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berginc, G
2013-11-30
We have developed a general formalism based on Green's functions to calculate the coherent electromagnetic field scattered by a random medium with rough boundaries. The approximate expression derived makes it possible to determine the effective permittivity, which is generalised for a layer of an inhomogeneous random medium with different types of particles and bounded with randomly rough interfaces. This effective permittivity describes the coherent propagation of an electromagnetic wave in a random medium with randomly rough boundaries. We have obtained an expression, which contains the Maxwell – Garnett formula at the low-frequency limit, and the Keller formula; the latter hasmore » been proved to be in good agreement with experiments for particles whose dimensions are larger than a wavelength. (coherent light scattering)« less
Numerical investigation of roughness effects in aircraft icing calculations
NASA Astrophysics Data System (ADS)
Matheis, Brian Daniel
2008-10-01
Icing codes are playing a role of increasing significance in the design and certification of ice protected aircraft surfaces. However, in the interest of computational efficiency certain small scale physics of the icing problem are grossly approximated by the codes. One such small scale phenomena is the effect of ice roughness on the development of the surface water film and on the convective heat transfer. This study uses computational methods to study the potential effect of ice roughness on both of these small scale phenomena. First, a two-dimensional condensed layer code is used to examine the effect of roughness on surface water development. It is found that the Couette approximation within the film breaks down as the wall shear goes to zero, depending on the film thickness. Roughness elements with initial flow separation in the air induce flow separation in the water layer at steady state, causing a trapping of the film. The amount of trapping for different roughness configurations is examined. Second, a three-dimensional incompressible Navier-Stokes code is developed to examine large scale ice roughness on the leading edge. The effect on the convective heat transfer and potential effect on the surface water dynamics is examined for a number of distributed roughness parameters including Reynolds number, roughness height, streamwise extent, roughness spacing and roughness shape. In most cases the roughness field increases the net average convective heat transfer on the leading edge while narrowing surface shear lines, indicating a choking of the surface water flow. Both effects show significant variation on the scale of the ice roughness. Both the change in heat transfer as well as the potential change in surface water dynamics are presented in terms of the development of singularities in the surface shear pattern. Of particular interest is the effect of the smooth zone upstream of the roughness which shows both a relatively large increase in convective heat transfer as well as excessive choking of the surface shear lines at the upstream end of the roughness field. A summary of the heat transfer results is presented for both the averaged heat transfer as well as the maximum heat transfer over each roughness element, indicating that the roughness Reynolds number is the primary parameter which characterizes the behavior of the roughness for the problem of interest.
On predicting receptivity to surface roughness in a compressible infinite swept wing boundary layer
NASA Astrophysics Data System (ADS)
Thomas, Christian; Mughal, Shahid; Ashworth, Richard
2017-03-01
The receptivity of crossflow disturbances on an infinite swept wing is investigated using solutions of the adjoint linearised Navier-Stokes equations. The adjoint based method for predicting the magnitude of stationary disturbances generated by randomly distributed surface roughness is described, with the analysis extended to include both surface curvature and compressible flow effects. Receptivity is predicted for a broad spectrum of spanwise wavenumbers, variable freestream Reynolds numbers, and subsonic Mach numbers. Curvature is found to play a significant role in the receptivity calculations, while compressible flow effects are only found to marginally affect the initial size of the crossflow instability. A Monte Carlo type analysis is undertaken to establish the mean amplitude and variance of crossflow disturbances generated by the randomly distributed surface roughness. Mean amplitudes are determined for a range of flow parameters that are maximised for roughness distributions containing a broad spectrum of roughness wavelengths, including those that are most effective in generating stationary crossflow disturbances. A control mechanism is then developed where the short scale roughness wavelengths are damped, leading to significant reductions in the receptivity amplitude.
NASA Astrophysics Data System (ADS)
Forooghi, Pourya; Stroh, Alexander; Schlatter, Philipp; Frohnapfel, Bettina
2018-04-01
Direct numerical simulations are used to investigate turbulent flow in rough channels, in which topographical parameters of the rough wall are systematically varied at a fixed friction Reynolds number of 500, based on a mean channel half-height h and friction velocity. The utilized roughness generation approach allows independent variation of moments of the surface height probability distribution function [thus root-mean-square (rms) surface height, skewness, and kurtosis], surface mean slope, and standard deviation of the roughness peak sizes. Particular attention is paid to the effect of the parameter Δ defined as the normalized height difference between the highest and lowest roughness peaks. This parameter is used to understand the trends of the investigated flow variables with departure from the idealized case where all roughness elements have the same height (Δ =0 ). All calculations are done in the fully rough regime and for surfaces with high slope (effective slope equal to 0.6-0.9). The rms roughness height is fixed for all cases at 0.045 h and the skewness and kurtosis of the surface height probability density function vary in the ranges -0.33 to 0.67 and 1.9 to 2.6, respectively. The goal of the paper is twofold: first, to investigate the possible effect of topographical parameters on the mean turbulent flow, Reynolds, and dispersive stresses particularly in the vicinity of the roughness crest, and second, to investigate the possibility of using the wall-normal turbulence intensity as a physical parameter for parametrization of the flow. Such a possibility, already suggested for regular roughness in the literature, is here extended to irregular roughness.
Deterministic multi-zone ice accretion modeling
NASA Technical Reports Server (NTRS)
Yamaguchi, K.; Hansman, R. John, Jr.; Kazmierczak, Michael
1991-01-01
The focus here is on a deterministic model of the surface roughness transition behavior of glaze ice. The initial smooth/rough transition location, bead formation, and the propagation of the transition location are analyzed. Based on the hypothesis that the smooth/rough transition location coincides with the laminar/turbulent boundary layer transition location, a multizone model is implemented in the LEWICE code. In order to verify the effectiveness of the model, ice accretion predictions for simple cylinders calculated by the multizone LEWICE are compared to experimental ice shapes. The glaze ice shapes are found to be sensitive to the laminar surface roughness and bead thickness parameters controlling the transition location, while the ice shapes are found to be insensitive to the turbulent surface roughness.
Analysis of Surface Roughness at Overlapping Laser Shock Peening
NASA Astrophysics Data System (ADS)
Dai, F. Z.; Zhang, Z. D.; Zhou, J. Z.; Lu, J. Z.; Zhang, Y. K.
2016-02-01
The overlapping effects on surface roughness are studied when samples are treated by laser shock peening (LSP). Surface roughness of overlapped circular laser spot is calculated by ISO 25178 height parameters. The usually used overlapping styles namely isosceles-right-triangle-style (AAP) and equilateral-triangle-style (AAA) are carefully investigated when the overlapping degree in x-axis (ηx) is below 50%. Surface roughness of isosceles-right-triangle-style attains its minimum value at ηx of 29.3%, and attains its maximum value at ηx of 43.6%. Surface roughness of equilateral-triangle-style attains its minimum value at ηx of 42.3%, and attains its maximum value at ηx of 32%. Experimental results are well consistent with theoretical analysis.
NASA Astrophysics Data System (ADS)
Chen, Y.; Liu, X.; Mankoff, K. D.; Gulley, J. D.
2016-12-01
The surfaces of subglacial conduits are very complex, coupling multi-scale roughness, large sinuosity, and cross-sectional variations together. Those features significantly affect the friction law and drainage efficiency inside the conduit by altering velocity and pressure distributions, thus posing considerable influences on the dynamic development of the conduit. Parameterizing the above surface features is a first step towards understanding their hydraulic influences. A Matlab package is developed to extract the roughness field, the conduit centerline, and associated area and curvature data from the conduit surface, acquired from 3D scanning. By using those data, the characteristic vertical and horizontal roughness scales are then estimated based on the structure functions. The centerline sinuosities, defined through three concepts, i.e., the traditional definition of a fluvial river, entropy-based sinuosity, and curvature-based sinuosity, are also calculated and compared. The cross-sectional area and equivalent circular diameter along the centerline are also calculated. Among those features, the roughness is especially important due to its pivotal role in determining the wall friction, and thus an estimation of the equivalent roughness height is of great importance. To achieve such a goal, the original conduit is firstly simplified into a straight smooth pipe with the same volume and centerline length, and the roughness field obtained above is then reconstructed into the simplified pipe. An OpenFOAM-based Large-eddy-simulation (LES) is then performed based on the reconstructed pipe. Considering that the Reynolds number is of the order 106, and the relative roughness is larger than 5% for 60% of the conduit, we test the validity of the resistance law for completely rough pipe. The friction factor is calculated based on the pressure drop and mean velocity in the simulation. Working together, the equivalent roughness height can be calculated. However, whether the assumption is applicable for the current case, i.e., high relative roughness, is a question. Two other roughness heights, i.e., the vertical roughness scale based on structure functions and viscous sublayer thickness determined from the wall boundary layer are also calculated and compared with the equivalent roughness height.
Sultan, Tipu
2016-07-01
This article describes the assessment of a numerical procedure used to determine the UV lamp configuration and surface roughness effects on an open channel water disinfection UV reactor. The performance of the open channel water disinfection UV reactor was numerically analyzed on the basis of the performance indictor reduction equivalent dose (RED). The RED values were calculated as a function of the Reynolds number to monitor the performance. The flow through the open channel UV reactor was modelled using a k-ε model with scalable wall function, a discrete ordinate (DO) model for fluence rate calculation, a volume of fluid (VOF) model to locate the unknown free surface, a discrete phase model (DPM) to track the pathogen transport, and a modified law of the wall to incorporate the reactor wall roughness effects. The performance analysis was carried out using commercial CFD software (ANSYS Fluent 15.0). Four case studies were analyzed based on open channel UV reactor type (horizontal and vertical) and lamp configuration (parallel and staggered). The results show that lamp configuration can play an important role in the performance of an open channel water disinfection UV reactor. The effects of the reactor wall roughness were Reynolds number dependent. The proposed methodology is useful for performance optimization of an open channel water disinfection UV reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
June, Tania; Meijide, Ana; Stiegler, Christian; Purba Kusuma, Alan; Knohl, Alexander
2018-05-01
Oil palm plantations are expanding vastly in Jambi, resulted in altered surface roughness and turbulence characteristics, which may influence exchange of heat and mass. Micrometeorological measurements above oil palm canopy were conducted for the period 2013–2015. The oil palms were 12.5 years old, canopy height 13 meters and 1.5 years old canopy height 2.5 m. We analyzed the influence of surface roughness and turbulence strenght on heat (sensible and latent) fluxes by investigating the profiles and gradient of wind speed, and temperature, surface roughness (roughness length, zo, and zero plane displacement, d), and friction velocity u*. Fluxes of heat were calculated using profile similarity methods taking into account atmospheric stability calculated using Richardson number Ri and the generalized stability factor ζ. We found that roughness parameters (zo, d, and u*) directly affect turbulence in oil palm canopy and hence heat fluxes; they are affected by canopy height, wind speed and atmospheric stability. There is a negative trend of d towards air temperature above the oil palm canopy, indicating the effect of plant volume and height in lowering air temperature. We propose studying the relation between zero plane displacement d with a remote sensing vegetation index for scaling up this point based analysis.
Surface Roughness Measurement on a Wing Aircraft by Speckle Correlation
Salazar, Félix; Barrientos, Alberto
2013-01-01
The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given. PMID:24013488
Surface roughness measurement on a wing aircraft by speckle correlation.
Salazar, Félix; Barrientos, Alberto
2013-09-05
The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given.
Effect of film slicks on near-surface wind
NASA Astrophysics Data System (ADS)
Charnotskii, Mikhail; Ermakov, Stanislav; Ostrovsky, Lev; Shomina, Olga
2016-09-01
The transient effects of horizontal variation of sea-surface wave roughness due to surfactant films on near-surface turbulent wind are studied theoretically and experimentally. Here we suggest two practical schemes for calculating variations of wind velocity profiles near the water surface, the average short-wave roughness of which is varying in space and time when a film slick is present. The schemes are based on a generalized two-layer model of turbulent air flow over a rough surface and on the solution of the continuous model involving the equation for turbulent kinetic energy of the air flow. Wave tank studies of wind flow over wind waves in the presence of film slicks are described and compared with theory.
Validation of SMAP Radar Vegetation Data Cubes from Agricultural Field Measurements
NASA Astrophysics Data System (ADS)
Tsang, L.; Xu, X.; Liao, T.; Kim, S.; Njoku, E. G.
2012-12-01
The NASA Soil Moisture Active/Passive (SMAP) Mission will be launched in October 2014. The objective of the SMAP mission is to provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. In the active algorithm, the retrieval is performed based on the backscattering data cube, which are characterized by two surface parameters, which are soil moisture and soil surface rms height, and one vegetation parameter, the vegetation water content. We have developed a physical-based forward scattering model to generate the data cube for agricultural fields. To represent the agricultural crops, we include a layer of cylinders and disks on top of the rough surface. The scattering cross section of the vegetation layer and its interaction with the underground soil surface were calculated by the distorted Born approximation, which give explicitly three scattering mechanisms. A) The direct volume scattering B) The double bounce effect as, and C) The double bouncing effects. The direct volume scattering is calculated by using the Body of Revolution code. The double bounce effects, exhibited by the interaction of rough surface with the vegetation layer is considered by modifying the rough surface reflectivity using the coherent wave as computed by Numerical solution of Maxwell equations of 3 Dimensional simulations (NMM3D) of bare soil scattering. The rough surface scattering of the soil was calculated by NMM3D. We have compared the physical scattering models with field measurements. In the field campaign, the measurements were made on soil moisture, rough surface rms heights and vegetation water content as well as geometric parameters of vegetation. The three main crops lands are grassland, cornfield and soybean fields. The corresponding data cubes are validated using SGP99, SMEX02 and SMEX 08 field experiments.
Lumber defect detection abilities of furniture rough mill employees
Henry A. Huber; Charles W. McMillin; John P. McKinney
1985-01-01
To cut parts from boards, rough mill employees must be able to see defects, calculate the proper location of cuts, manually position the board, and remain alert. The objective of this study was to evaluate how well rough mill employees perform the task of recognizing, locating, and identifying surface defects independent of the calculation and positioning process....
Cai, Xiang; Shen, Liguo; Zhang, Meijia; Chen, Jianrong; Hong, Huachang; Lin, Hongjun
2017-11-01
Quantitatively evaluating interaction energy between two randomly rough surfaces is the prerequisite to quantitatively understand and control membrane fouling in membrane bioreactors (MBRs). In this study, a new unified approach to construct rough topographies and to quantify interaction energy between a randomly rough particle and a randomly rough membrane was proposed. It was found that, natural rough topographies of both foulants and membrane could be well constructed by a modified two-variable Weierstrass-Mandelbrot (WM) function included in fractal theory. Spatial differential relationships between two constructed surfaces were accordingly established. Thereafter, a new approach combining these relationships, surface element integration (SEI) approach and composite Simpson's rule was deduced to calculate the interaction energy between two randomly rough surfaces in a submerged MBR. The obtained results indicate the profound effects of surface morphology on interaction energy and membrane fouling. This study provided a basic approach to investigate membrane fouling and interface behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Domínguez, Noemí; Castilla, Pau; Linzoain, María Eugenia; Durand, Géraldine; García, Cristina; Arasa, Josep
2018-04-01
This work presents the validation study of a method developed to measure contact angles with a confocal device in a set of hydrophobic samples. The use of this device allows the evaluation of the roughness of the surface and the determination of the contact angle in the same area of the sample. Furthermore, a theoretical evaluation of the impact of the roughness of a nonsmooth surface in the calculation of the contact angle when it is not taken into account according to Wenzel's model is also presented.
Roughness Induced Transition in a Supersonic Boundary Layer
NASA Technical Reports Server (NTRS)
Balakumar, Ponnampalam; Kergerise, Michael A.
2013-01-01
Direct numerical simulation is used to investigate the transition induced by threedimensional isolated roughness elements in a supersonic boundary layer at a free stream Mach number of 3.5. Simulations are performed for two different configurations: one is a square planform roughness and the other is a diamond planform roughness. The mean-flow calculations show that the roughness induces counter rotating streamwise vortices downstream of the roughness. These vortices persist for a long distance downstream and lift the low momentum fluid from the near wall region and place it near the outer part of the boundary layer. This forms highly inflectional boundary layer profiles. These observations agree with recent experimental observations. The receptivity calculations showed that the amplitudes of the mass-flux fluctuations near the neutral point for the diamond shape roughness are the same as the amplitude of the acoustic disturbances. They are three times smaller for the square shape roughness.
Form drag in rivers due to small-scale natural topographic features: 1. Regular sequences
Kean, J.W.; Smith, J.D.
2006-01-01
Small-scale topographic features are commonly found on the boundaries of natural rivers, streams, and floodplains. A simple method for determining the form drag on these features is presented, and the results of this model are compared to laboratory measurements. The roughness elements are modeled as Gaussian-shaped features defined in terms of three parameters: a protrusion height, H; a streamwise length scale, ??; and a spacing between crests, ??. This shape is shown to be a good approximation to a wide variety of natural topographic bank features. The form drag on an individual roughness element embedded in a series of identical elements is determined using the drag coefficient of the individual element and a reference velocity that includes the effects of roughness elements further upstream. In addition to calculating the drag on each element, the model determines the spatially averaged total stress, skin friction stress, and roughness height of the boundary. The effects of bank roughness on patterns of velocity and boundary shear stress are determined by combining the form drag model with a channel flow model. The combined model shows that drag on small-scale topographic features substantially alters the near-bank flow field. These methods can be used to improve predictions of flow resistance in rivers and to form the basis for fully predictive (no empirically adjusted parameters) channel flow models. They also provide a foundation for calculating the near-bank boundary shear stress fields necessary for determining rates of sediment transport and lateral erosion.
Directional bottom roughness associated with waves, currents, and ripples
Sherwood, Christopher R.; Rosati, Julie D.; Wang, Ping; Roberts, Tiffany M.
2011-01-01
Roughness lengths are used in wave-current bottom boundary layer models to parameterize drag associated with grain roughness, the effect of saltating grains during sediment transport, and small-scale bottom topography (ripples and biogenic features). We made field measurements of flow parameters and recorded sonar images of ripples at the boundary of a sorted-bedform at ~12-m depth on the inner shelf for a range of wave and current conditions over two months. We compared estimates of apparent bottom roughness inferred from the flow measurements with bottom roughness calculated using ripple geometry and the Madsen (1994) one-dimensional (vertical) wave-current bottom boundary layer model. One result of these comparisons was that the model over predicted roughness of flow from the dormant large ripples when waves were small. We developed a correction to the ripple-roughness model that incorporates an apparent ripple wavelength related to the combined wave-current flow direction. This correction provides a slight improvement for low-wave conditions, but does not address several other differences between observations and the modeled roughness.
1984-08-01
found in References 1-3. 2. Modeling of Roughness Effects on Turbulent Flow In turbulent flow analysis , use of time-averaged equations leads to the...eddy viscosity and the mixing length which are important parameters used in current algebraic modeling of the turbulence shear term. Two different ...surfaces with three-dimensional (distributed) roughness elements. Calculations using the present model have been compared with experimental data from
The effect of copper substrate’s roughness on graphene growth process via PECVD
NASA Astrophysics Data System (ADS)
Fan, Tengfei; Yan, Cuixia; Lu, Jianchen; Zhang, Lianchang; Cai, Jinming
2018-04-01
Despite many excellent properties, the synthesis of high quality graphene with low-cost way is still a challenge, thus many different factors have been researched. In this work, the effect of surface roughness to the graphene quality was studied. Graphene was synthesized by plasma enhanced chemical vapor deposition (PECVD) method on copper substrates with different roughness from 0.074 μm to 0.339 μm, which were prepared via annealing, corrosion or polishing, respectively. Ar+ plasma cleaning was applied before graphene growth in order to accommodate similar surface chemical reactivity to each other. Scanning electron microscope and Raman spectroscope were employed to investigate the effect of surface roughness, which reveals that the graphene quality decrease first and then increase again according to the ratio of ID/IG in Raman spectroscopy. When the ratio of ID/IG reaches the largest number, the substrate roughness is 0.127 μm, where is the graphene quality changing point. First principle calculation was applied to explain the phenomenon and revealed that it is strongly affected by the graphene grain size and quantity which can induce defects. This strategy is expected to guide the industrial production of graphene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selvakumar, N.; Barshilia, Harish C.; Rajam, K. S.
2010-07-15
We have studied the effect of substrate roughness on the wettability and the apparent surface free energy (SFE) of sputter deposited polytetrafluoroethylene (PTFE) coatings deposited on untreated glass (average roughness, R{sub a}=2.0 nm), plasma etched glass (R{sub a}=7.4 nm), and sandblasted glass (R{sub a}=4500 nm) substrates. The wettability of the PTFE coatings deposited on substrates with varying roughnesses was evaluated by measuring the apparent contact angle (CA) using a series of probe liquids from nonpolar aprotic to polar protic. The wettability measurements indicate that an apparent water CA of 152 deg. with a sliding angle of 8 deg. was achievedmore » for PTFE coatings deposited on a substrate with R{sub a}=4500 nm. The superhydrophobicity observed in these coatings is attributed to the presence of dual scale roughness, densely packed microstructure and the presence of CF{sub 3} groups. Unlike the bulk PTFE which is mainly dispersive, the sputter deposited PTFE coatings are expected to have some degree of polar component due to the plasma treatment. In order to calculate the dispersive SFE of PTFE coatings, we have used the Girifalco-Good-Fowkes (GGF) method and validated it with the Zisman model. Furthermore, the Owens-Wendt model has been used to calculate the dispersive and the polar components of the apparent SFE of the PTFE coatings. These results are further corroborated using the Fowkes method. Finally, an ''equation of state'' theory proposed by Neumann has been used to calculate the apparent SFE values of the PTFE coatings. The results indicate that the apparent SFE values of the PTFE coatings obtained from the Owens-Wendt and the Fowkes methods are comparable to those obtained from the Neumann's method. The analyses further demonstrate that the GGF and the Zisman methods underestimate the apparent SFE values of the sputter deposited PTFE coatings.« less
NASA Astrophysics Data System (ADS)
Ling, Hangjian; Katz, Joseph; Srinivasan, Siddarth; McKinley, Gareth; Golovin, Kevin; Tuteja, Anish; Pillutla, Venkata; Abhijeet, Abhijeet; Choi, Wonjae
2016-11-01
Digital holographic microscopy is used for measuring the mean velocity and stress in the inner part of turbulent boundary layers over sprayed or etched super-hydrophobic surfaces (SHSs). The slip velocity and wall friction are calculated directly from the mean velocity and its gradient along with the Reynolds shear stress at the top of SHSs "roughness". Effects of the normalized rms roughness height krms+, facility pressure p and streamwise distance x from the beginning of SHSs on mean flow are examined. For krms+<1 and pkrms / σ <1 (σ is surface tension), the SHSs show 10-28% wall friction reduction, 15-30% slip velocity and λ+ = 3-10 slip length. Increasing Reynolds number and/or krms to establish krms+>1, and increasing p to achieve pkrms / σ >1 suppress the drag reduction, as roughness effects and associated near wall Reynolds stress increase. When the roughness effect is not dominant, the measurements agree with previous theoretical predictions of the relationships between drag reduction and slip velocity. The significance of spanwise slip relative to streamwise slip varies with the SHSs texture. Transitions from a smooth wall to a SHS involve overshoot of Reynolds stress and undershoot of viscous stress, trends that diminish with x. Sponsored by ONR.
Comparative Study of Lunar Roughness from Multi - Source Data
NASA Astrophysics Data System (ADS)
Lou, Y.; Kang, Z.
2017-07-01
The lunar terrain can show its collision and volcanic history. The lunar surface roughness can give a deep indication of the effects of lunar surface magma, sedimentation and uplift. This paper aims to get different information from the roughness through different data sources. Besides introducing the classical Root-mean-square height method and Morphological Surface Roughness (MSR) algorithm, this paper takes the area of the Jurassic mountain uplift in the Sinus Iridum and the Plato Crater area as experimental areas. And then make the comparison and contrast of the lunar roughness derived from LRO's DEM and CE-2 DOM. The experimental results show that the roughness obtained by the traditional roughness calculation method reflect the ups and downs of the topography, while the results obtained by morphological surface roughness algorithm show the smoothness of the lunar surface. So, we can first use the surface fluctuation situation derived from RMSH to select the landing area range which ensures the lands are gentle. Then the morphological results determine whether the landing area is suitable for the detector walking and observing. The results obtained at two different scales provide a more complete evaluation system for selecting the landing site of the lunar probe.
NASA Technical Reports Server (NTRS)
Logan, E., Jr.; Fichtl, G. H.
1975-01-01
A model is proposed for low-level atmospheric flows over terrains of changing roughness length, such as those found at the windward end of landing strips adjoining rough terrain. The proposed model is used to develop a prediction technique for calculating transition wind and shear-stress profiles in the region following surface roughness discontinuity. The model for the transition region comprises two layers: a logarithmic layer and a buffer layer. The flow is assumed to be steady, two-dimensional, and incompressible, with neutral hydrostatic stability. A diagram is presented for a typical wind profile in the transition region, obtained from the logarithmic and velocity defect profiles using shear stress calculated by relevant equations.
Improved atmospheric effect elimination method for the roughness estimation of painted surfaces.
Zhang, Ying; Xuan, Jiabin; Zhao, Huijie; Song, Ping; Zhang, Yi; Xu, Wujian
2018-03-01
We propose a method for eliminating the atmospheric effect in polarimetric imaging remote sensing by using polarimetric imagers to simultaneously detect ground targets and skylight, which does not need calibrated targets. In addition, calculation efficiencies are improved by the skylight division method without losing estimation accuracy. Outdoor experiments are performed to obtain the polarimetric bidirectional reflectance distribution functions of painted surfaces and skylight under different weather conditions. Finally, the roughness of the painted surfaces is estimated. We find that the estimation accuracy with the proposed method is 6% on cloudy weather, while it is 30.72% without atmospheric effect elimination.
Photometry of icy satellites: How important is multiple scattering in diluting shadows?
NASA Technical Reports Server (NTRS)
Buratti, B.; Veverka, J.
1984-01-01
Voyager observations have shown that the photometric properties of icy satellites are influenced significantly by large-scale roughness elements on the surfaces. While recent progress was made in treating the photometric effects of macroscopic roughness, it is still the case that even the most complete models do not account for the effects of multiple scattering fully. Multiple scattering dilutes shadows caused by large-scale features, yet for any specific model it is difficult to calculate the amount of dilution as a function of albedo. Accordingly, laboratory measurements were undertaken using the Cornell Goniometer to evaluate the magnitude of the effect.
Boundary layer simulator improvement
NASA Technical Reports Server (NTRS)
Praharaj, Sarat C.; Schmitz, Craig P.; Nouri, Joseph A.
1989-01-01
Boundary Layer Integral Matrix Procedure (BLIMPJ) has been identified by the propulsion community as the rigorous boundary layer program in connection with the existing JANNAF reference programs. The improvements made to BLIMPJ and described herein have potential applications in the design of the future Orbit Transfer Vehicle engines. The turbulence model is validated to include the effects of wall roughness and a way is devised to treat multiple smooth-rough surfaces. A prediction of relaminarization regions is examined as is the combined effects of wall cooling and surface roughness on relaminarization. A turbulence model to represent the effects of constant condensed phase loading is given. A procedure is described for thrust decrement calculation in thick boundary layers by coupling the T-D Kinetics Program and BLIMPJ and a way is provided for thrust loss optimization. Potential experimental studies in rocket nozzles are identified along with the required instrumentation to provide accurate measurements in support of the presented new analytical models.
Optical properties of ultrarough silver films on silicon
NASA Astrophysics Data System (ADS)
Neff, H.; Henkel, S.; Sass, J. K.; Steinbeiss, E.; Ratz, P.; Müller, J.; Michalke, W.
1996-07-01
The optical properties of inhomogeneously grown rough silver films have been analyzed on the basis of reflectance measurements. Data have been recorded within the wave number range 50 cm-1<λ-1<50 000 cm-1. The results are compared with compact and fairly smooth films, made from the same metal. Rough films reveal very low reflectance and high absorptivity values of nearly 1, at wave numbers ≳200 cm-1. The reflectance of these films is peaking at the bulk plasma resonance hvp of silver at 3.87 eV. Smooth compact films, in contrast, show a pronounced minimum at the same energy. Based on an effective medium approach and available literature data, the dielectric function (DF) and absorption coefficient have been calculated. For rough films, the real part of the DF remains positive within the whole spectral range, but is negative for compact films below hvp, in agreement with published data. The calculated DF of the inhomogeneously grown films fully resembles the experimental observations.
Tests of bed roughness models using field data from the Middle Atlantic Bight
NASA Astrophysics Data System (ADS)
Xu, J. P.; Wright, L. D.
Four bottom roughness models are tested using field data from the inner shelf of the Middle Atlantic Bight. Bottom roughness plays a significant role in calculations of sediment concentration profiles and current velocity profiles. The importance of each of the three parts in the roughness models (grain roughness, ripple roughness and sediment motion roughness) vary depending on forcing conditions. Consistent with the observations of others e.g. Caechione and Drake, 1990 ( The sea, Vol. 9, pp. 729-773); Wiberg and Harris, 1994 ( Journal of Geophysical Research, 99(C1), 775-7879), our results show that the models of Smith and McLean (1977; Journal of Geophysical Research, 82, 1735-1746), Grant and Madsen (1982; Journal of Geophysical Research, 87, 469-481) and Nielsen (1983; Coastal Engineering, 7, 233-257) overestimate the sediment transport roughness under sheet-flow conditions. However, the Nielsen (1983) model can predict the ripple roughness under moderate energy conditions quite well. A refined bottom roughness model is proposed that combines Nielsen's ripple roughness model and a modified sediment motion roughness modelk b=d + 8ννα+ Ωd(ψ' m - ψ c This sediment motion roughness is defined in such a way that it is proportional to the maximum skin friction Shields' parameter. The proportionality constant, Ω, is determined by fitting the modeled roughnesses and shear velocities with the field observations. The calculated velocity profiles and roughness using the refined roughness model, with Ω = 5, compare well to the field observations made under both moderate and high energy conditions at a sandy inner shelf site.
Scattering of electromagnetic waves from a body over a random rough surface
NASA Astrophysics Data System (ADS)
Ripoll, J.; Madrazo, A.; Nieto-Vesperinas, M.
1997-02-01
A numerical study is made of the effect on the angular distribution of mean far field intensity due to the presence of an arbitrary body located over a random rough surface. It is found that the presence of the body decreases the coherent backscattering peak produced by the surface roughness. Also, for low dielectric constants, the reflected intensity is practically equal to the sum of the individual reflected intensities of the body and the surface respectively, namely, interaction between both bodies is almost negligible. The full interaction between object and surface only appears when both bodies are highly reflective. Results are compared with the case when the body is buried beneath the surface, and are illustrated with a 2-D calculation of a cylinder either partially immersed or above a 2-D rough profile.
Kasperek, J; Lefez, B; Beucher, E
2004-02-01
This study shows the effects of roughness on infrared spectra shapes of thin corrosion products on metallic substrates. The calculated spectra show that the baseline is mainly affected by increasing roughness and that such effects do not shift the position of the absorption bands. The model obtained has been used to extract data of artificial patina on a copper surface. Surface defects of copper substrates can be distinguished on the whole surface, from the morphological and chemical points of view, using optical profilometry and infrared microspectroscopy. An homogeneous layer of cuprite covers the surface except in the linear defects. Fourier transform infrared (FT-IR) analysis indicates that a mixture of atacamite and clinoatacamite is mainly located in these scratches. The width of these particular areas is in good agreement with profilometric observations.
NASA Astrophysics Data System (ADS)
Cawkwell, F. G.; Burgess, D. O.; Sharp, M. J.; Demuth, M.
2004-12-01
Snow and ice surface roughness affect the backscatter of the pulse emitted by a radar altimeter, and hence the accuracy of the surface elevation calculated from the waveform echo, but the influence of surface roughness has not been quantified. As part of the CryoSat calibration/validation field campaigns on the Devon Ice Cap in 2004, surface roughness measurements were made at 0.1-7km intervals along a 48km transect from near the summit to the southern margin. Measurements were made at the decimetre scale by surveying and at the centimetre scale using digital photography. The data collected were subjected to wavelet analysis to define characteristic roughness wavelengths, and the fractal dimension associated with each of these was calculated using the semi-variogram method. Vario functions were calculated for the photographic data. The survey results show that wavelength scales depend on orientation and distance from the ice cap summit, the fractal dimension depends on the wavelength scale and the orientation, and both are significantly affected by storm events. Profiles aligned with the easterly prevailing wind direction, and thus perpendicular to the predicted satellite track, proved to be more sensitive to meteorological events than those normal to the dominant winds. Wavelet and fractal analysis of the photographic data was less conclusive, potentially due to the `noisier' nature of the data at this scale, where `noise' is actually the superimposition of small scale wavelengths onto larger ones. Vario analysis showed the characteristic wavelengths at the centimetre scale to increase with distance from the summit, although the abrading effect of storm events caused a decrease in wavelength. The amplitude of the roughness also increases with distance from the summit, although following a period of calm this value is significantly decreased along the transect. Orientation with respect to the prevailing wind direction is also a significant factor. Analysis of the return waveforms acquired by an airborne radar altimeter concurrently with ground data will allow the impact of the different roughness scales and orientations to be assessed.
Roughness Sensitivity Comparisons of Wind Turbine Blade Sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilcox, Benjamin J.; White, Edward B.; Maniaci, David Charles
One explanation for wind turbine power degradation is insect roughness. Historical studies on insect-induced power degradation have used simulation methods which are either un- representative of actual insect roughness or too costly or time-consuming to be applied to wide-scale testing. Furthermore, the role of airfoil geometry in determining the relations between insect impingement locations and roughness sensitivity has not been studied. To link the effects of airfoil geometry, insect impingement locations, and roughness sensitivity, a simulation code was written to determine representative insect collection patterns for different airfoil shapes. Insect collection pattern data was then used to simulate roughness onmore » an NREL S814 airfoil that was tested in a wind tunnel at Reynolds numbers between 1.6 x 10 6 and 4.0 x 10 6. Results are compared to previous tests of a NACA 63 3 -418 airfoil. Increasing roughness height and density results in decreased maximum lift, lift curve slope, and lift-to-drag ratio. Increasing roughness height, density, or Reynolds number results in earlier bypass transition, with critical roughness Reynolds numbers lying within the historical range. Increased roughness sensitivity on the 25% thick NREL S814 is observed compared to the 18% thick NACA 63 3 -418. Blade-element-momentum analysis was used to calculate annual energy production losses of 4.9% and 6.8% for a NACA 63 3 -418 turbine and an NREL S814 turbine, respectively, operating with 200 μm roughness. These compare well to historical field measurements.« less
Roughness sensitivity comparisons of wind turbine blade sections
NASA Astrophysics Data System (ADS)
Wilcox, Benjamin Jacob
One explanation for wind turbine power degradation is insect roughness. Historical studies on insect-induced power degradation have used simulation methods which are either unrepresentative of actual insect roughness or too costly or time-consuming to be applied to wide-scale testing. Furthermore, the role of airfoil geometry in determining the relations between insect impingement locations and roughness sensitivity has not been studied. To link the effects of airfoil geometry, insect impingement locations, and roughness sensitivity, a simulation code was written to determine representative insect collection patterns for different airfoil shapes. Insect collection pattern data was then used to simulate roughness on an NREL S814 airfoil that was tested in a wind tunnel at Reynolds numbers between 1:6 x 106 and 4:0 x 106. Results are compared to previous tests of a NACA 633-418 airfoil. Increasing roughness height and density results in decreased maximum lift, lift curve slope, and lift-to-drag ratio. Increasing roughness height, density, or Reynolds number results in earlier bypass transition, with critical roughness Reynolds numbers lying within the historical range. Increased roughness sensitivity on the 25% thick NREL S814 is observed compared to the 18% thick NACA 633-418. Blade-element-momentum analysis was used to calculate annual energy production losses of 4.9% and 6.8% for a NACA 633-418 turbine and an NREL S814 turbine, respectively, operating with 200 microm roughness. These compare well to historical field measurements.
NASA Astrophysics Data System (ADS)
Vitello, Peter; Garza, Raul; Hernandez, Andy; Souers, P. Clark
2007-12-01
We explore various relations for the detonation energy and velocity as they relate to the inverse radius of the cylinder. The effective detonation rate-inverse slope relation seen in reactive flow models can be used to derive the familiar Eyring equation. Generalized inverse radii can be shown to fit large quantities of cylinder results. A rough relation between detonation energy and detonation velocity is found from collected JWL values. Cylinder test data for ammonium nitrate mixes down to 6.35 mm radii are presented, and a size energy effect is shown to exist in the Cylinder test data. The relation that detonation energy is roughly proportional to the square of the detonation velocity is shown by data and calculation.
Generalizing roughness: experiments with flow-oriented roughness
NASA Astrophysics Data System (ADS)
Trevisani, Sebastiano
2015-04-01
Surface texture analysis applied to High Resolution Digital Terrain Models (HRDTMs) improves the capability to characterize fine-scale morphology and permits the derivation of useful morphometric indexes. An important indicator to be taken into account in surface texture analysis is surface roughness, which can have a discriminant role in the detection of different geomorphic processes and factors. The evaluation of surface roughness is generally performed considering it as an isotropic surface parameter (e.g., Cavalli, 2008; Grohmann, 2011). However, surface texture has often an anisotropic character, which means that surface roughness could change according to the considered direction. In some applications, for example involving surface flow processes, the anisotropy of roughness should be taken into account (e.g., Trevisani, 2012; Smith, 2014). Accordingly, we test the application of a flow-oriented directional measure of roughness, computed considering surface gravity-driven flow. For the calculation of flow-oriented roughness we use both classical variogram-based roughness (e.g., Herzfeld,1996; Atkinson, 2000) as well as an ad-hoc developed robust modification of variogram (i.e. MAD, Trevisani, 2014). The presented approach, based on a D8 algorithm, shows the potential impact of considering directionality in the calculation of roughness indexes. The use of flow-oriented roughness could improve the definition of effective proxies of impedance to flow. Preliminary results on the integration of directional roughness operators with morphometric-based models, are promising and can be extended to more complex approaches. Atkinson, P.M., Lewis, P., 2000. Geostatistical classification for remote sensing: an introduction. Computers & Geosciences 26, 361-371. Cavalli, M. & Marchi, L. 2008, "Characterization of the surface morphology of an alpine alluvial fan using airborne LiDAR", Natural Hazards and Earth System Science, vol. 8, no. 2, pp. 323-333. Grohmann, C.H., Smith, M.J., Riccomini, C., 2011. Multiscale Analysis of Topographic Surface Roughness in the Midland Valley, Scotland. IEEE Transactions on Geoscience and Remote Sensing 49, 1220-1213. Herzfeld, U.C., Higginson, C.A., 1996. Automated geostatistical seafloor classification - Principles, parameters, feature vectors, and discrimination criteria. Computers and Geosciences, 22 (1), pp. 35-52. Smith, M.W. 2014, "Roughness in the Earth Sciences", Earth-Science Reviews, vol. 136, pp. 202-225. Trevisani, S., Cavalli, M. & Marchi, L. 2012, "Surface texture analysis of a high-resolution DTM: Interpreting an alpine basin", Geomorphology, vol. 161-162, pp. 26-39. Trevisani S., Rocca M., 2014. Geomorphometric analysis of fine-scale morphology for extensive areas: a new surface-texture operator. Geophysical Research Abstracts, Vol. 16, EGU2014-5612, 2014. EGU General Assembly 2014.
Discrete Roughness Effects on Shuttle Orbiter at Mach 6
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Hamilton, H. Harris, II
2002-01-01
Discrete roughness boundary layer transition results on a Shuttle Orbiter model in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel have been reanalyzed with new boundary layer calculations to provide consistency for comparison to other published results. The experimental results were previously obtained utilizing the phosphor thermography system to monitor the status of the boundary layer via global heat transfer images of the Orbiter windward surface. The size and location of discrete roughness elements were systematically varied along the centerline of the 0.0075-scale model at an angle of attack of 40 deg and the boundary layer response recorded. Various correlative approaches were attempted, with the roughness transition correlations based on edge properties providing the most reliable results. When a consistent computational method is used to compute edge conditions, transition datasets for different configurations at several angles of attack have been shown to collapse to a well-behaved correlation.
Fractal analysis as a potential tool for surface morphology of thin films
NASA Astrophysics Data System (ADS)
Soumya, S.; Swapna, M. S.; Raj, Vimal; Mahadevan Pillai, V. P.; Sankararaman, S.
2017-12-01
Fractal geometry developed by Mandelbrot has emerged as a potential tool for analyzing complex systems in the diversified fields of science, social science, and technology. Self-similar objects having the same details in different scales are referred to as fractals and are analyzed using the mathematics of non-Euclidean geometry. The present work is an attempt to correlate fractal dimension for surface characterization by Atomic Force Microscopy (AFM). Taking the AFM images of zinc sulphide (ZnS) thin films prepared by pulsed laser deposition (PLD) technique, under different annealing temperatures, the effect of annealing temperature and surface roughness on fractal dimension is studied. The annealing temperature and surface roughness show a strong correlation with fractal dimension. From the regression equation set, the surface roughness at a given annealing temperature can be calculated from the fractal dimension. The AFM images are processed using Photoshop and fractal dimension is calculated by box-counting method. The fractal dimension decreases from 1.986 to 1.633 while the surface roughness increases from 1.110 to 3.427, for a change of annealing temperature 30 ° C to 600 ° C. The images are also analyzed by power spectrum method to find the fractal dimension. The study reveals that the box-counting method gives better results compared to the power spectrum method.
Olafsson, Valur T; Noll, Douglas C; Fessler, Jeffrey A
2018-02-01
Penalized least-squares iterative image reconstruction algorithms used for spatial resolution-limited imaging, such as functional magnetic resonance imaging (fMRI), commonly use a quadratic roughness penalty to regularize the reconstructed images. When used for complex-valued images, the conventional roughness penalty regularizes the real and imaginary parts equally. However, these imaging methods sometimes benefit from separate penalties for each part. The spatial smoothness from the roughness penalty on the reconstructed image is dictated by the regularization parameter(s). One method to set the parameter to a desired smoothness level is to evaluate the full width at half maximum of the reconstruction method's local impulse response. Previous work has shown that when using the conventional quadratic roughness penalty, one can approximate the local impulse response using an FFT-based calculation. However, that acceleration method cannot be applied directly for separate real and imaginary regularization. This paper proposes a fast and stable calculation for this case that also uses FFT-based calculations to approximate the local impulse responses of the real and imaginary parts. This approach is demonstrated with a quadratic image reconstruction of fMRI data that uses separate roughness penalties for the real and imaginary parts.
NASA Astrophysics Data System (ADS)
Baumann, Sebastian; Robl, Jörg; Wendt, Lorenz; Willingshofer, Ernst; Hilberg, Sylke
2016-04-01
Automated lineament analysis on remotely sensed data requires two general process steps: The identification of neighboring pixels showing high contrast and the conversion of these domains into lines. The target output is the lineaments' position, extent and orientation. We developed a lineament extraction tool programmed in R using digital elevation models as input data to generate morphological lineaments defined as follows: A morphological lineament represents a zone of high relief roughness, whose length significantly exceeds the width. As relief roughness any deviation from a flat plane, defined by a roughness threshold, is considered. In our novel approach a multi-directional and multi-scale roughness filter uses moving windows of different neighborhood sizes to identify threshold limited rough domains on digital elevation models. Surface roughness is calculated as the vertical elevation difference between the center cell and the different orientated straight lines connecting two edge cells of a neighborhood, divided by the horizontal distance of the edge cells. Thus multiple roughness values depending on the neighborhood sizes and orientations of the edge connecting lines are generated for each cell and their maximum and minimum values are extracted. Thereby negative signs of the roughness parameter represent concave relief structures as valleys, positive signs convex relief structures as ridges. A threshold defines domains of high relief roughness. These domains are thinned to a representative point pattern by a 3x3 neighborhood filter, highlighting maximum and minimum roughness peaks, and representing the center points of lineament segments. The orientation and extent of the lineament segments are calculated within the roughness domains, generating a straight line segment in the direction of least roughness differences. We tested our algorithm on digital elevation models of multiple sources and scales and compared the results visually with shaded relief map of these digital elevation models. The lineament segments trace the relief structure to a great extent and the calculated roughness parameter represents the physical geometry of the digital elevation model. Modifying the threshold for the surface roughness value highlights different distinct relief structures. Also the neighborhood size at which lineament segments are detected correspond with the width of the surface structure and may be a useful additional parameter for further analysis. The discrimination of concave and convex relief structures perfectly matches with valleys and ridges of the surface.
Bourlier, Christophe
2006-08-20
The emissivity from a stationary random rough surface is derived by taking into account the multiple reflections and the shadowing effect. The model is applied to the ocean surface. The geometric optics approximation is assumed to be valid, which means that the rough surface is modeled as a collection of facets reflecting locally the light in the specular direction. In particular, the emissivity with zero, single, and double reflections are analytically calculated, and each contribution is studied numerically by considering a 1D sea surface observed in the near infrared band. The model is also compared with results computed from a Monte Carlo ray-tracing method.
NASA Astrophysics Data System (ADS)
Johnson, Erika; Cowen, Edwin
2013-11-01
The effect of increased bed roughness on the free surface turbulence signature of an open channel flow is investigated with the goal of incorporating the findings into a methodology to remotely monitor volumetric flow rates. Half of a wide (B = 2 m) open channel bed is covered with a 3 cm thick layer of loose gravel (D50 = 0.6 cm). Surface PIV (particle image velocimetry) experiments are conducted for a range of flow depths (B/H = 10-30) and Reynolds numbers (ReH = 10,000-60,000). It is well established that bed roughness in wall-bounded flows enhances the vertical velocity fluctuations (e.g. Krogstad et al. 1992). When the vertical velocity fluctuations approach the free surface they are redistributed (e.g. Cowen et al. 1995) to the surface parallel component directions. It is anticipated and confirmed that the interaction of these two phenomena result in enhanced turbulence at the free surface. The effect of the rough bed on the integral length scales and the second order velocity structure functions calculated at the free surface are investigated. These findings have important implications for developing new technologies in stream gaging.
Hydraulic Roughness and Flow Resistance in a Subglacial Conduit
NASA Astrophysics Data System (ADS)
Chen, Y.; Liu, X.; Mankoff, K. D.
2017-12-01
The hydraulic roughness significantly affects the flow resistance in real subglacial conduits, but has been poorly understood. To address this knowledge gap, this paper first proposes a procedure to define and quantify the geometry roughness, and then relates such a geometry roughness to the hydraulic roughness based on a series of computational fluid dynamics (CFD) simulations. The results indicate that by using the 2nd order structure function, the roughness field can be well quantified by the powers of the scaling-law, the vertical and horizontal length scales of the structure functions. The vertical length scale can be further chosen as the standard deviation of the roughness field σr. The friction factors calculated from either total drag force or the linear decreasing pressure agree very well with those calculated from traditional rough pipe theories when the equivalent hydraulic roughness height is corrected as ks = (1.1 ˜ 1.5)σr. This result means that the fully rough pipe resistance formula λ = [2 log(D0/2ks) + 1.74]-2, and the Moody diagram are still valid for the friction factor estimation in subglacial conduits when σr /D0<18% and ks/D0<22%. The results further show that when a proper hydraulic roughness is determined, the total flow resistance corresponding to the given hydraulic roughness height can be accurately modelled by using a rough wall function. This suggests that the flow resistance for the longer realistic subglacial conduits with large sinuosity and cross-sectional variations may be correctly predicted by CFD simulations. The results also show that the friction factors from CFD modeling are much larger than those determined from traditional rough pipe theories when σr /D0>20%.
Lobach, Ihar; Benediktovitch, Andrei; Ulyanenkov, Alexander
2017-06-01
Diffraction in multilayers in the presence of interfacial roughness is studied theoretically, the roughness being considered as a transition layer. Exact (within the framework of the two-beam dynamical diffraction theory) differential equations for field amplitudes in a crystalline structure with varying properties along its surface normal are obtained. An iterative scheme for approximate solution of the equations is developed. The presented approach to interfacial roughness is incorporated into the recursion matrix formalism in a way that obviates possible numerical problems. Fitting of the experimental rocking curve is performed in order to test the possibility of reconstructing the roughness value from a diffraction scan. The developed algorithm works substantially faster than the traditional approach to dealing with a transition layer (dividing it into a finite number of thin lamellae). Calculations by the proposed approach are only two to three times longer than calculations for corresponding structures with ideally sharp interfaces.
Friction and universal contact area law for randomly rough viscoelastic contacts.
Scaraggi, M; Persson, B N J
2015-03-18
We present accurate numerical results for the friction force and the contact area for a viscoelastic solid (rubber) in sliding contact with hard, randomly rough substrates. The rough surfaces are self-affine fractal with roughness over several decades in length scales. We calculate the contribution to the friction from the pulsating deformations induced by the substrate asperities. We also calculate how the area of real contact, A(v, p), depends on the sliding speed v and on the nominal contact pressure p, and we show how the contact area for any sliding speed can be obtained from a universal master curve A(p). The numerical results are found to be in good agreement with the predictions of an analytical contact mechanics theory.
NASA Astrophysics Data System (ADS)
Huang, Na; Liu, Richeng; Jiang, Yujing; Li, Bo; Yu, Liyuan
2018-03-01
While shear-flow behavior through fractured media has been so far studied at single fracture scale, a numerical analysis of the shear effect on the hydraulic response of 3D crossed fracture model is presented. The analysis was based on a series of crossed fracture models, in which the effects of fracture surface roughness and shear displacement were considered. The rough fracture surfaces were generated using the modified successive random additions (SRA) algorithm. The shear displacement was applied on one fracture, and at the same time another fracture shifted along with the upper and lower surfaces of the sheared fracture. The simulation results reveal the development and variation of preferential flow paths through the model during the shear, accompanied by the change of the flow rate ratios between two flow planes at the outlet boundary. The average contact area accounts for approximately 5-27% of the fracture planes during shear, but the actual calculated flow area is about 38-55% of the fracture planes, which is much smaller than the noncontact area. The equivalent permeability will either increase or decrease as shear displacement increases from 0 to 4 mm, depending on the aperture distribution of intersection part between two fractures. When the shear displacement continuously increases by up to 20 mm, the equivalent permeability increases sharply first, and then keeps increasing with a lower gradient. The equivalent permeability of rough fractured model is about 26-80% of that calculated from the parallel plate model, and the equivalent permeability in the direction perpendicular to shear direction is approximately 1.31-3.67 times larger than that in the direction parallel to shear direction. These results can provide a fundamental understanding of fluid flow through crossed fracture model under shear.
Fransisca, Lilia; Feng, Hao
2012-02-01
Surface roughness has been reported as one of the factors affecting microbial attachment and removal. Seed surfaces are complex, and different seed varieties have different surface topographies. As a result, a sanitizer effective in eliminating pathogenic bacteria on one seed may not be as effective when applied to another seed. The objectives of this research were (i) to investigate the efficacy of malic acid and thiamine dilaurylsulfate (TDS) combined treatments for inactivation of E. coli O157:H7 strain 87-23 on alfalfa, broccoli, and radish seeds, (ii) to quantify surface roughness of the seeds, and (iii) to determine the correlation between microbial removal and surface roughness. The surface roughness of each seed type was measured by confocal laser scanning microscopy (CLSM) and surface profilometry. Surface roughness (Ra) values of the seeds were then calculated from CLSM data. Seeds inoculated with E. coli O157:H7 87-23 were washed for 20 min in malic acid and TDS solutions and rinsed for 10 min in tap water. Radish seeds had the highest Ra values, followed by broccoli and alfalfa seeds. A combination of 10% malic acid and 1% TDS was more effective than 20,000 ppm of Ca(OCl)(2) for inactivation of E. coli O157:H7 87-23 on broccoli seeds, while the inactivation on radish and alfalfa seeds was not significantly different compared with the 20,000-ppm Ca(OCl)(2) wash. Overall, a negative correlation existed between the seeds' Ra values and microbial removal. Different seeds had different surface roughness, contributing to discrepancies in the ability of the sanitizers to eliminate E. coli O157:H7 87-23 on the seeds. Therefore, the effectiveness of one sanitizer on one seed type should not be translated to all seed varieties.
Roughness, resistance, and dispersion: Relationships in small streams
NASA Astrophysics Data System (ADS)
Noss, Christian; Lorke, Andreas
2016-04-01
Although relationships between roughness, flow, and transport processes in rivers and streams have been investigated for several decades, the prediction of flow resistance and longitudinal dispersion in small streams is still challenging. Major uncertainties in existing approaches for quantifying flow resistance and longitudinal dispersion at the reach scale arise from limitations in the characterization of riverbed roughness. In this study, we characterized the riverbed roughness in small moderate-gradient streams (0.1-0.5% bed slope) and investigated its effects on flow resistance and dispersion. We analyzed high-resolution transect-based measurements of stream depth and width, which resolved the complete roughness spectrum with scales ranging from the micro to the reach scale. Independently measured flow resistance and dispersion coefficients were mainly affected by roughness at spatial scales between the median grain size and the stream width, i.e., by roughness between the micro- and the mesoscale. We also compared our flow resistance measurements with calculations using various flow resistance equations. Flow resistance in our study streams was well approximated by the equations that were developed for high gradient streams (>1%) and it was overestimated by approaches developed for sand-bed streams with a smooth riverbed or ripple bed. This article was corrected on 10 MAY 2016. See the end of the full text for details.
Transition Experiments on Large Bluntness Cones with Distributed Roughness in Hypersonic Flight
NASA Technical Reports Server (NTRS)
Reda, Daniel. C.; Wilder, Michael C.; Prabhu, Dinesh K.
2012-01-01
Large bluntness cones with smooth nosetips and roughened frusta were flown in the NASA Ames hypersonic ballistic range at a Mach number of 10 through quiescent air environments. Global surface intensity (temperature) distributions were optically measured and analyzed to determine transition onset and progression over the roughened surface. Real-gas Navier-Stokes calculations of model flowfields, including laminar boundary layer development in these flowfields, were conducted to predict values of key dimensionless parameters used to correlate transition on such configurations in hypersonic flow. For these large bluntness cases, predicted axial distributions of the roughness Reynolds number showed (for each specified freestream pressure) that this parameter was a maximum at the physical beginning of the roughened zone and decreased with increasing run length along the roughened surface. Roughness-induced transition occurred downstream of this maximum roughness Reynolds number location, and progressed upstream towards the beginning of the roughened zone as freestream pressure was systematically increased. Roughness elements encountered at the upstream edge of the roughened frusta thus acted like a finite-extent trip array, consistent with published results concerning the tripping effectiveness of roughness bands placed on otherwise smooth surfaces.
Steady Boundary Layer Disturbances Created By Two-Dimensional Surface Ripples
NASA Astrophysics Data System (ADS)
Kuester, Matthew
2017-11-01
Multiple experiments have shown that surface roughness can enhance the growth of Tollmien-Schlichting (T-S) waves in a laminar boundary layer. One of the common observations from these studies is a ``wall displacement'' effect, where the boundary layer profile shape remains relatively unchanged, but the origin of the profile pushes away from the wall. The objective of this work is to calculate the steady velocity field (including this wall displacement) of a laminar boundary layer over a surface with small, 2D surface ripples. The velocity field is a combination of a Blasius boundary layer and multiple disturbance modes, calculated using the linearized Navier-Stokes equations. The method of multiple scales is used to include non-parallel boundary layer effects of O (Rδ- 1) ; the non-parallel terms are necessary, because a wall displacement is mathematically inconsistent with a parallel boundary layer assumption. This technique is used to calculate the steady velocity field over ripples of varying height and wavelength, including cases where a separation bubble forms on the leeward side of the ripple. In future work, the steady velocity field will be the input for stability calculations, which will quantify the growth of T-S waves over rough surfaces. The author would like to acknowledge the support of the Kevin T. Crofton Aerospace & Ocean Engineering Department at Virginia Tech.
Characterising soil surface roughness with a frequency modulated polarimetric radar
NASA Astrophysics Data System (ADS)
Seeger, Manuel; Gronz, Oliver; Beiske, Joshua; Klein, Tobias
2014-05-01
Soil surface roughness is considered crucial for soil erosion as it determines the effective surface exposed to the raindrop impact. It regulates surface runoff velocity and it causes runoff concentration. But a comprehensive characterisation of the shape of the soils' surface is still difficult to achieve. Photographic systems and terrestrial laser-scanning are nowadays able to generate high resolution DEMs, but the derivation of roughness parameters is still not clear. Spaceborne radar systems are used for about 3 decades for earth survey. Spatial soil moisture distribution, ice sheet monitoring and earth-wide topographic survey are the main objectives of these radar systems, working generally with frequencies <10 GHz. Contrasting with this, technologies emitting frequencies up to 77 GHz are generally used for object tracking purposes. But it is known, that the reflection characteristics, such as intensity and polarisation, strongly depend on the properties of the target object. A new design of a frequency modulated continuous wave radar, emitting a right hand shaped circular polarization and receiving both polarization directions, right and left-hand shaped, is tested here for its ability to detect and quantify different surface roughness. The reflection characteristics of 4 different materials 1) steel, 2) sand (0,5-1 mm), 3) fine (2-4 mm) and 4) coarse (15-30 mm) rock-fragments and different roughness as well as moisture content are analysed. In addition, the signals are taken at 2 different angles to the soil's surface (90° and 70°). For quantification of the roughness, a photographic method (Structure-from-Motion) is applied to generate a detailed DEM and random roughness (RR) is calculated. To characterise the radar signal, different ratios of the reflected channels and polarisations are calculated. The signals show differences for all substrates, also clearly visible between sand and fine rock fragments, despite a wavelength of 1 cm of the electromagnetic waves. A systematic change of the signals with changing roughness is also observed. Measurements show a significant influence of the angle of observation. Soil moisture shows also an influence on the reflected signal, but is quite well differentiable to the effects of the shape of the soil's surface. The results show that polarimetric radar technology may be suitable to characterise the surface of soils, but still faces a big lack of knowledge on how to quantify and differentiate the different signals, how to handle variable observation angles, and finally how to characterise roughness.
NASA Astrophysics Data System (ADS)
Huang, Kang; Xiong, Yangshou; Wang, Tao; Chen, Qi
2017-01-01
Employing high-contact-ratio (HCR) gear is an effective method of decreasing the load on a single tooth, as well as reducing vibration and noise. While the spindlier tooth leads to greater relative sliding, having more teeth participate in contact at the same time makes the HCR gear more sensitive to the surface quality. Available literature regarding HCR gear primarily investigates the geometrical optimization, load distribution, or efficiency calculation. Limited work has been conducted on the effect of rough surfaces on the dynamic performance of HCR gear. For this reason, a multi-degree-of-freedom (MDOF) model is presented mathematically to characterize the static transmission error based on fractal theory, investigate the relative sliding friction using an EHL-based friction coefficient formula, and detail the time-varying friction coefficient suitable for HCR gear. Based on numerical results, the surface roughness has little influence on system response in terms of the dynamic transmission error but has a large effect on the motion in off-line-of-action (OLOA) direction and friction force. The impact of shaft-bearing stiffness and damping ratio is also explored with results revealing that a greater shaft-bearing stiffness is beneficial in obtaining a more stable motion in OLOA direction, and a larger damping ratio results in a smaller effective friction force. The theory presented in this report outlines a new method of analyzing the dynamics of HCR gear in respect of introducing surface roughness into MDOF model directly, as well as establishing an indirect relationship between dynamic responses and surface roughness. This method is expected to guide surface roughness design and manufacturing in the future.
Numerical prediction of rail roughness growth on tangent railway tracks
NASA Astrophysics Data System (ADS)
Nielsen, J. C. O.
2003-10-01
Growth of railhead roughness (irregularities, waviness) is predicted through numerical simulation of dynamic train-track interaction on tangent track. The hypothesis is that wear is caused by longitudinal slip due to driven wheelsets, and that wear is proportional to the longitudinal frictional power in the contact patch. Emanating from an initial roughness spectrum corresponding to a new or a recent ground rail, an initial roughness profile is determined. Wheel-rail contact forces, creepages and wear for one wheelset passage are calculated in relation to location along a discretely supported track model. The calculated wear is scaled by a chosen number of wheelset passages, and is then added to the initial roughness profile. Field observations of rail corrugation on a Dutch track are used to validate the simulation model. Results from the simulations predict a large roughness growth rate for wavelengths around 30-40 mm. The large growth in this wavelength interval is explained by a low track receptance near the sleepers around the pinned-pinned resonance frequency, in combination with a large number of driven passenger wheelset passages at uniform speed. The agreement between simulations and field measurements is good with respect to dominating roughness wavelength and annual wear rate. Remedies for reducing roughness growth are discussed.
Adhesive interactions of geckos with wet and dry fluoropolymer substrates
Stark, Alyssa Y.; Dryden, Daniel M.; Olderman, Jeffrey; Peterson, Kelly A.; Niewiarowski, Peter H.; French, Roger H.; Dhinojwala, Ali
2015-01-01
Fluorinated substrates like Teflon® (poly(tetrafluoroethylene); PTFE) are well known for their role in creating non-stick surfaces. We showed previously that even geckos, which can stick to most surfaces under a wide variety of conditions, slip on PTFE. Surprisingly, however, geckos can stick reasonably well to PTFE if it is wet. In an effort to explain this effect, we have turned our attention to the role of substrate surface energy and roughness when shear adhesion occurs in media other than air. In this study, we removed the roughness component inherent to commercially available PTFE and tested geckos on relatively smooth wet and dry fluoropolymer substrates. We found that roughness had very little effect on shear adhesion in air or in water and that the level of fluorination was most important for shear adhesion, particularly in air. Surface energy calculations of the two fluorinated substrates and one control substrate using the Tabor–Winterton approximation and the Young–Dupré equation were used to determine the interfacial energy of the substrates. Using these interfacial energies we estimated the ratio of wet and dry normal adhesion for geckos clinging to the three substrates. Consistent with the results for rough PTFE, our predictions show a qualitative trend in shear adhesion based on fluorination, and the quantitative experimental differences highlight the unusually low shear adhesion of geckos on dry smooth fluorinated substrates, which is not captured by surface energy calculations. Our work has implications for bioinspired design of synthetics that can preferentially stick in water but not in air. PMID:26109635
Scattering from very rough layers under the geometric optics approximation: further investigation.
Pinel, Nicolas; Bourlier, Christophe
2008-06-01
Scattering from very rough homogeneous layers is studied in the high-frequency limit (under the geometric optics approximation) by taking the shadowing effect into account. To do so, the iterated Kirchhoff approximation, recently developed by Pinel et al. [Waves Random Complex Media17, 283 (2007)] and reduced to the geometric optics approximation, is used and investigated in more detail. The contributions from the higher orders of scattering inside the rough layer are calculated under the iterated Kirchhoff approximation. The method can be applied to rough layers of either very rough or perfectly flat lower interfaces, separating either lossless or lossy media. The results are compared with the PILE (propagation-inside-layer expansion) method, recently developed by Déchamps et al. [J. Opt. Soc. Am. A23, 359 (2006)], and accelerated by the forward-backward method with spectral acceleration. They highlight that there is very good agreement between the developed method and the reference numerical method for all scattering orders and that the method can be applied to root-mean-square (RMS) heights at least down to 0.25lambda.
Reflective properties of randomly rough surfaces under large incidence angles.
Qiu, J; Zhang, W J; Liu, L H; Hsu, P-f; Liu, L J
2014-06-01
The reflective properties of randomly rough surfaces at large incidence angles have been reported due to their potential applications in some of the radiative heat transfer research areas. The main purpose of this work is to investigate the formation mechanism of the specular reflection peak of rough surfaces at large incidence angles. The bidirectional reflectance distribution function (BRDF) of rough aluminum surfaces with different roughnesses at different incident angles is measured by a three-axis automated scatterometer. This study used a validated and accurate computational model, the rigorous coupled-wave analysis (RCWA) method, to compare and analyze the measurement BRDF results. It is found that the RCWA results show the same trend of specular peak as the measurement. This paper mainly focuses on the relative roughness at the range of 0.16<σ/λ<5.35. As the relative roughness decreases, the specular peak enhancement dramatically increases and the scattering region significantly reduces, especially under large incidence angles. The RCWA and the Rayleigh criterion results have been compared, showing that the relative error of the total integrated scatter increases as the roughness of the surface increases at large incidence angles. In addition, the zero-order diffractive power calculated by RCWA and the reflectance calculated by Fresnel equations are compared. The comparison shows that the relative error declines sharply when the incident angle is large and the roughness is small.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vitello, P; Garza, R; Hernandez, A
2007-07-10
We explore various relations for the detonation energy and velocity as they relate to the inverse radius of the cylinder. The detonation rate-inverse slope relation seen in reactive flow models can be used to derive the familiar Eyring equation. Generalized inverse radii can be shown to fit large quantities of cylinder results. A rough relation between detonation energy and detonation velocity is found from collected JWL values. Cylinder test data for ammonium nitrate mixes down to 6.35 mm radii are presented, and a size energy effect is shown to exist in the Cylinder test data. The relation that detonation energymore » is roughly proportional to the square of the detonation velocity is shown by data and calculation.« less
Rock discontinuity surface roughness variation with scale
NASA Astrophysics Data System (ADS)
Bitenc, Maja; Kieffer, D. Scott; Khoshelham, Kourosh
2017-04-01
ABSTRACT: Rock discontinuity surface roughness refers to local departures of the discontinuity surface from planarity and is an important factor influencing the shear resistance. In practice, the Joint Roughness Coefficient (JRC) roughness parameter is commonly relied upon and input to a shear strength criterion such as developed by Barton and Choubey [1977]. The estimation of roughness by JRC is hindered firstly by the subjective nature of visually comparing the joint profile to the ten standard profiles. Secondly, when correlating the standard JRC values and other objective measures of roughness, the roughness idealization is limited to a 2D profile of 10 cm length. With the advance of measuring technologies that provide accurate and high resolution 3D data of surface topography on different scales, new 3D roughness parameters have been developed. A desirable parameter is one that describes rock surface geometry as well as the direction and scale dependency of roughness. In this research a 3D roughness parameter developed by Grasselli [2001] and adapted by Tatone and Grasselli [2009] is adopted. It characterizes surface topography as the cumulative distribution of local apparent inclination of asperities with respect to the shear strength (analysis) direction. Thus, the 3D roughness parameter describes the roughness amplitude and anisotropy (direction dependency), but does not capture the scale properties. In different studies the roughness scale-dependency has been attributed to data resolution or size of the surface joint (see a summary of researches in [Tatone and Grasselli, 2012]). Clearly, the lower resolution results in lower roughness. On the other hand, have the investigations of surface size effect produced conflicting results. While some studies have shown a decrease in roughness with increasing discontinuity size (negative scale effect), others have shown the existence of positive scale effects, or both positive and negative scale effects. We hypothesize that roughness can increase or decrease with the joint size, depending on the large scale roughness (or waviness), which is entering the roughness calculation once the discontinuity size increases. Therefore, our objective is to characterize roughness at various spatial scales, rather than at changing surface size. Firstly, the rock surface is interpolated into a grid on which a Discrete Wavelet Transform (DWT) is applied. The resulting surface components have different frequencies, or in other words, they have a certain physical scale depending on the decomposition level and input grid resolution. Secondly, the Grasselli Parameter is computed for the original and each decomposed surface. Finally, the relative roughness change is analyzed with respect to increasing roughness wavelength for four different rock samples. The scale variation depends on the sample itself and thus indicates its potential mechanical behavior. References: - Barton, N. and V. Choubey (1977). "The shear strength of rock joints in theory and practice." Rock Mechanics and Rock Engineering 10(1): 1-54. - Grasselli, G. (2001). Shear strength of rock joints based on quantified surface description. École Polytechnique Fédérale de Lausanne. Lausanne, EPFL. - Tatone, B. S. A. and G. Grasselli (2009). "A method to evaluate the three-dimensional roughness of fracture surfaces in brittle geomaterials." Review of Scientific Instruments 80(12) - Tatone, B. and G. Grasselli (2012). "An Investigation of Discontinuity Roughness Scale Dependency Using High-Resolution Surface Measurements." Rock Mechanics and Rock Engineering: 1-25.
Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study.
Hu, Jiuning; Ruan, Xiulin; Chen, Yong P
2009-07-01
We have used molecular dynamics to calculate the thermal conductivity of symmetric and asymmetric graphene nanoribbons (GNRs) of several nanometers in size (up to approximately 4 nm wide and approximately 10 nm long). For symmetric nanoribbons, the calculated thermal conductivity (e.g., approximately 2000 W/m-K at 400 K for a 1.5 nm x 5.7 nm zigzag GNR) is on the similar order of magnitude of the experimentally measured value for graphene. We have investigated the effects of edge chirality and found that nanoribbons with zigzag edges have appreciably larger thermal conductivity than nanoribbons with armchair edges. For asymmetric nanoribbons, we have found significant thermal rectification. Among various triangularly shaped GNRs we investigated, the GNR with armchair bottom edge and a vertex angle of 30 degrees gives the maximal thermal rectification. We also studied the effect of defects and found that vacancies and edge roughness in the nanoribbons can significantly decrease the thermal conductivity. However, substantial thermal rectification is observed even in the presence of edge roughness.
NASA Astrophysics Data System (ADS)
Cheng, Jun; Gong, Yadong; Wang, Jinsheng
2013-11-01
The current research of micro-grinding mainly focuses on the optimal processing technology for different materials. However, the material removal mechanism in micro-grinding is the base of achieving high quality processing surface. Therefore, a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion topography is proposed in this paper. The differences of material removal mechanism between convention grinding process and micro-grinding process are analyzed. Topography characterization has been done on micro-grinding tools which are fabricated by electroplating. Models of grain density generation and grain interval are built, and new predicting model of micro-grinding surface roughness is developed. In order to verify the precision and application effect of the surface roughness prediction model proposed, a micro-grinding orthogonally experiment on soda-lime glass is designed and conducted. A series of micro-machining surfaces which are 78 nm to 0.98 μm roughness of brittle material is achieved. It is found that experimental roughness results and the predicting roughness data have an evident coincidence, and the component variable of describing the size effects in predicting model is calculated to be 1.5×107 by reverse method based on the experimental results. The proposed model builds a set of distribution to consider grains distribution densities in different protrusion heights. Finally, the characterization of micro-grinding tools which are used in the experiment has been done based on the distribution set. It is concluded that there is a significant coincidence between surface prediction data from the proposed model and measurements from experiment results. Therefore, the effectiveness of the model is demonstrated. This paper proposes a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion topography, which would provide significant research theory and experimental reference of material removal mechanism in micro-grinding of soda-lime glass.
Bottiglione, F; Carbone, G
2015-01-14
The apparent contact angle of large 2D drops with randomly rough self-affine profiles is numerically investigated. The numerical approach is based upon the assumption of large separation of length scales, i.e. it is assumed that the roughness length scales are much smaller than the drop size, thus making it possible to treat the problem through a mean-field like approach relying on the large-separation of scales. The apparent contact angle at equilibrium is calculated in all wetting regimes from full wetting (Wenzel state) to partial wetting (Cassie state). It was found that for very large values of the roughness Wenzel parameter (r(W) > -1/ cos θ(Y), where θ(Y) is the Young's contact angle), the interface approaches the perfect non-wetting condition and the apparent contact angle is almost equal to 180°. The results are compared with the case of roughness on one single scale (sinusoidal surface) and it is found that, given the same value of the Wenzel roughness parameter rW, the apparent contact angle is much larger for the case of a randomly rough surface, proving that the multi-scale character of randomly rough surfaces is a key factor to enhance superhydrophobicity. Moreover, it is shown that for millimetre-sized drops, the actual drop pressure at static equilibrium weakly affects the wetting regime, which instead seems to be dominated by the roughness parameter. For this reason a methodology to estimate the apparent contact angle is proposed, which relies only upon the micro-scale properties of the rough surface.
Poly-Gaussian model of randomly rough surface in rarefied gas flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aksenova, Olga A.; Khalidov, Iskander A.
2014-12-09
Surface roughness is simulated by the model of non-Gaussian random process. Our results for the scattering of rarefied gas atoms from a rough surface using modified approach to the DSMC calculation of rarefied gas flow near a rough surface are developed and generalized applying the poly-Gaussian model representing probability density as the mixture of Gaussian densities. The transformation of the scattering function due to the roughness is characterized by the roughness operator. Simulating rough surface of the walls by the poly-Gaussian random field expressed as integrated Wiener process, we derive a representation of the roughness operator that can be appliedmore » in numerical DSMC methods as well as in analytical investigations.« less
Eccentricity and misalignment effects on the performance of high-pressure annular seals
NASA Technical Reports Server (NTRS)
Chen, W. C.; Jackson, E. D.
1985-01-01
Annular pressure seals act as powerful hydrostatic bearings and influence the dynamic characteristics of rotating machinery. This work, using the existing concentric seal theories, provides a simple approximate method for calculation of both seal leakage and the dynamic coefficients for short seals with large eccentricity and/or misalignment of the shaft. Rotation and surface roughness effects are included for leakage and dynamic force calculation. The leakage calculations for both laminar and turbulent flow are compared with experimental results. The dynamic coefficients are compared with analytical results. Excellent agreement between the present work and published results have been observed up to the eccentricitiy ratio of 0.8.
Microtopographic evolution of lava flows at Cima volcanic field, Mojave Desert, California
NASA Technical Reports Server (NTRS)
Farr, Tom G.
1992-01-01
Microtopographic profiles were measured and power spectra calculated for dated lava flow surfaces at Cima volcanic field in the eastern Mojave Desert of California in order to quantify changes in centimeter- to meter-scale roughness as a function of age. For lava flows younger than about 0.8 m.y., roughness over all spatial scales decreases with age, with meter-scale roughness decreasing slightly more than centimeter scales. Flows older than about 0.8 m.y. show a reversal of this trend, becoming as rough as young flows at these scales. Modeling indicates that eolian deposition can explain most of the change observed in the offset, or roughness amplitude, of power spectra of flow surface profiles up to 0.8 m.y. Other processes, such as rubbing and stone pavement development, appear to have a minor effect in this age range. Changes in power spectra of surfaces older than about 0.8 m.y. are consistent with roughening due to fluvial dissection. These results agree qualitatively with a process-response model that attributes systematic changes in flow surface morphology to cyclic changes in the rates of eolian, soil formation, and fluvial processes. Identification of active surficial processes and estimation of the extent of their effects, or stage of surficial evolution, through measurement of surface roughness will help put the correlation of surficial units on a quantitative basis. This may form the basis for the use of radar remote sensing data to help in regional correlations of surficial units.
Near atomically smooth alkali antimonide photocathode thin films
Feng, Jun; Karkare, Siddharth; Nasiatka, James; ...
2017-01-24
Nano-roughness is one of the major factors degrading the emittance of electron beams that can be generated by high efficiency photocathodes, such as the thermally reacted alkali antimonide thin films. In this paper, we demonstrate a co-deposition based method for producing alkali antimonide cathodes that produce near atomic smoothness with high reproducibility. Here, we calculate the effect of the surface roughness on the emittance and show that such smooth cathode surfaces are essential for operation of alkali antimonide cathodes in high field, low emittance radio frequency electron guns and to obtain ultracold electrons for ultrafast electron diffraction applications.
Near atomically smooth alkali antimonide photocathode thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Jun; Karkare, Siddharth; Nasiatka, James
Nano-roughness is one of the major factors degrading the emittance of electron beams that can be generated by high efficiency photocathodes, such as the thermally reacted alkali antimonide thin films. In this paper, we demonstrate a co-deposition based method for producing alkali antimonide cathodes that produce near atomic smoothness with high reproducibility. Here, we calculate the effect of the surface roughness on the emittance and show that such smooth cathode surfaces are essential for operation of alkali antimonide cathodes in high field, low emittance radio frequency electron guns and to obtain ultracold electrons for ultrafast electron diffraction applications.
Allowable SEM noise for unbiased LER measurement
NASA Astrophysics Data System (ADS)
Papavieros, George; Constantoudis, Vassilios; Gogolides, Evangelos
2018-03-01
Recently, a novel method for the calculation of unbiased Line Edge Roughness based on Power Spectral Density analysis has been proposed. In this paper first an alternative method is discussed and investigated, utilizing the Height-Height Correlation Function (HHCF) of edges. The HHCF-based method enables the unbiased determination of the whole triplet of LER parameters including besides rms the correlation length and roughness exponent. The key of both methods is the sensitivity of PSD and HHCF on noise at high frequencies and short distance respectively. Secondly, we elaborate a testbed of synthesized SEM images with controlled LER and noise to justify the effectiveness of the proposed unbiased methods. Our main objective is to find out the boundaries of the method in respect to noise levels and roughness characteristics, for which the method remains reliable, i.e the maximum amount of noise allowed, for which the output results cope with the controllable known inputs. At the same time, we will also set the extremes of roughness parameters for which the methods hold their accuracy.
Surface roughness: A review of its measurement at micro-/nano-scale
NASA Astrophysics Data System (ADS)
Gong, Yuxuan; Xu, Jian; Buchanan, Relva C.
2018-01-01
The measurement of surface roughness at micro-/nano-scale is of great importance to metrological, manufacturing, engineering, and scientific applications given the critical roles of roughness in physical and chemical phenomena. The surface roughness of materials can significantly change the way of how they interact with light, phonons, molecules, and so forth, thus surface roughness ultimately determines the functionality and property of materials. In this short review, the techniques of measuring micro-/nano-scale surface roughness are discussed with special focus on the limitations and capabilities of each technique. In addition, the calculations of surface roughness and their theoretical background are discussed to offer readers a better understanding of the importance of post-measurement analysis. Recent progress on fractal analysis of surface roughness is discussed to shed light on the future efforts in surface roughness measurement.
Convection from Hemispherical and Conical Model Ice Roughness Elements in Stagnation Region Flows
NASA Technical Reports Server (NTRS)
Hughes, Michael T.; Shannon, Timothy A.; McClain, Stephen T.; Vargas, Mario; Broeren, Andy
2016-01-01
To improve ice accretion prediction codes, more data regarding ice roughness and its effects on convective heat transfer are required. The Vertical Icing Studies Tunnel (VIST) at NASA Glenn Research was used to model realistic ice roughness in the stagnation region of a NACA 0012 airfoil. In the VIST, a test plate representing the leading 2% chord of the airfoil was subjected to flows of 7.62 m/s (25 ft/s), 12.19 m/s (40 ft/s), and 16.76 m/s (55 ft/s). The test plate was fitted with multiple surfaces or sets of roughness panels, each with a different representation of ice roughness. The sets of roughness panels were constructed using two element distribution patterns that were created based on a laser scan of an iced airfoil acquired in the Icing Research Tunnel at NASA Glenn. For both roughness patterns, surfaces were constructed using plastic hemispherical elements, plastic conical elements, and aluminum conical elements. Infrared surface thermometry data from tests run in the VIST were used to calculate area averaged heat transfer coefficient values. The values from the roughness surfaces were compared to the smooth control surface, showing convective enhancement as high as 400% in some cases. The data gathered during this study will ultimately be used to improve the physical modeling in LEWICE or other ice accretion codes and produce predictions of in-flight ice accretion on aircraft surfaces with greater confidence.
Obatake, R M; Collard, S M; Martin, J; Ladd, G D
1991-10-01
Four types of intraoral magnets used for retention of overdentures and maxillofacial prostheses were exposed in vitro to SnF2 and NaF to determine the effects of fluoride rinses on surface roughness. The surface roughness (Ra) was measured, after simulated 1, 2, and 5 years' clinical exposure to fluoride (31, 62, and 155 hours). The mean change in Ra was calculated for each period of simulated exposure to fluoride for each magnet type. Two-way ANOVA was used to compare mean change in Ra between magnets within fluorides, and between fluorides within magnets. Paired t tests were used to compare mean change in Ra within fluorides within magnets. The mean change in Ra increased for all magnets after simulated 1, 2, and 5 years of exposure to SnF2 and NaF (p less than 0.03). Using the change in Ra as an indicator for corrosion, PdCo encapsulated SmCo5 magnets and their keepers demonstrated the least corrosion with either fluoride.
Effect of barnacle fouling on ship resistance and powering.
Demirel, Yigit Kemal; Uzun, Dogancan; Zhang, Yansheng; Fang, Ho-Chun; Day, Alexander H; Turan, Osman
2017-11-01
Predictions of added resistance and the effective power of ships were made for varying barnacle fouling conditions. A series of towing tests was carried out using flat plates covered with artificial barnacles. The tests were designed to allow the examination of the effects of barnacle height and percentage coverage on the resistance and effective power of ships. The drag coefficients and roughness function values were evaluated for the flat plates. The roughness effects of the fouling conditions on the ships' frictional resistances were predicted. Added resistance diagrams were then plotted using these predictions, and powering penalties for these ships were calculated using the diagrams generated. The results indicate that the effect of barnacle size is significant, since a 10% coverage of barnacles each 5 mm in height caused a similar level of added power requirements to a 50% coverage of barnacles each 1.25 mm in height.
NASA Astrophysics Data System (ADS)
Rominu, Roxana O.; Rominu, Mihai; Negrutiu, Meda Lavinia; Sinescu, Cosmin; Pop, Daniela; Petrescu, Emanuela
2010-12-01
PURPOSE: The goal of our study was to investigate the changes in enamel surface roughess induced by the application of different chemical substances by atomic force microscopy and scanning electron microscopy. METHOD: Five sound human first upper premolar teeth were chosen for the study. The buccal surface of each tooth was treated with a different chemical agent as follows: Sample 1 - 38% phosphoric acid etching (30s) , sample 2 - no surface treatment (control sample), 3 - bleaching with 37.5 % hydrogen peroxide (according to the manufacturer's instructions), 4 - conditioning with a self-etching primer (15 s), 5 - 9.6 % hydrofluoric acid etching (30s). All samples were investigated by atomic force microscopy in a non-contact mode and by scanning electron microscopy. Several images were obtained for each sample, showing evident differences regarding enamel surface morphology. The mean surface roughness and the mean square roughness were calculated and compared. RESULTS: All chemical substances led to an increased surface roughness. Phosphoric acid led to the highest roughness while the control sample showed the lowest. Hydrofluoric acid also led to an increase in surface roughness but its effects have yet to be investigated due to its potential toxicity. CONCLUSIONS: By treating the human enamel with the above mentioned chemical compounds a negative microretentive surface is obtained, with a morphology depending on the applied substance.
Scene analysis for effective visual search in rough three-dimensional-modeling scenes
NASA Astrophysics Data System (ADS)
Wang, Qi; Hu, Xiaopeng
2016-11-01
Visual search is a fundamental technology in the computer vision community. It is difficult to find an object in complex scenes when there exist similar distracters in the background. We propose a target search method in rough three-dimensional-modeling scenes based on a vision salience theory and camera imaging model. We give the definition of salience of objects (or features) and explain the way that salience measurements of objects are calculated. Also, we present one type of search path that guides to the target through salience objects. Along the search path, when the previous objects are localized, the search region of each subsequent object decreases, which is calculated through imaging model and an optimization method. The experimental results indicate that the proposed method is capable of resolving the ambiguities resulting from distracters containing similar visual features with the target, leading to an improvement of search speed by over 50%.
Stochastic road excitation and control feasibility in a 2D linear tyre model
NASA Astrophysics Data System (ADS)
Rustighi, E.; Elliott, S. J.
2007-03-01
For vehicle under normal driving conditions and speeds above 30-40 km/h the dominating internal and external noise source is the sound generated by the interaction between the tyre and the road. This paper presents a simple model to predict tyre behaviour in the frequency range up to 400 Hz, where the dominant vibration is two dimensional. The tyre is modelled as an elemental system, which permits the analysis of the low-frequency tyre response when excited by distributed stochastic displacements in the contact patch. A linear model has been used to calculate the contact forces from the road roughness and thus calculate the average spectral properties of the resulting radial velocity of the tyre in one step from the spectral properties of the road roughness. Such a model has also been used to provide an estimate of the potential effect of various active control strategies for reducing the tyre vibrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souers, P; Vitello, P; Garza, R
2007-04-20
Various relations for the detonation energy and velocity as they relate to the inverse radius of the cylinder are explored. The detonation rate-inverse slope relation seen in reactive flow models can be used to derive the familiar Eyring equation. Generalized inverse radii can be shown to fit large quantities of cylinder and sphere results. A rough relation between detonation energy and detonation velocity is found from collected JWL values. Cylinder test data for ammonium nitrate mixes down to 6.35 mm radii are presented, and a size energy effect is shown to exist in the Cylinder test data. The relation thatmore » detonation energy is roughly proportional to the square of the detonation velocity is shown by data and calculation.« less
NASA Astrophysics Data System (ADS)
Furuta, Yuma; Surblys, Donatas; Yamaguchi, Yastaka
2016-11-01
Molecular dynamics simulations of the equilibrium wetting behavior of hemi-cylindrical argon droplets on solid surfaces with a periodic roughness were carried out. The rough solid surface is located at the bottom of the calculation cell with periodic boundary conditions in surface lateral directions and mirror boundary condition at the top boundary. Similar to on a smooth surface, the change of the cosine of the droplet contact angle was linearly correlated to the potential well depth of the inter-atomic interaction between liquid and solid on a surface with a short roughness period while the correlation was deviated on one with a long roughness period. To further investigate this feature, solid-liquid, solid-vapor interfacial free energies per unit projected area of solid surface were evaluated by using the thermodynamic integration method in independent quasi-one-dimensional simulation systems with a liquid-solid interface or vapor-solid interface on various rough solid surfaces at a constant pressure. The cosine of the apparent contact angles estimated from the density profile of the droplet systems corresponded well with ones calculated from Young's equation using the interfacial energies evaluated in the quasi-one dimensional systems.
Hypersonic Viscous Flow Over Large Roughness Elements
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan; Choudhari, Meelan M.
2009-01-01
Viscous flow over discrete or distributed surface roughness has great implications for hypersonic flight due to aerothermodynamic considerations related to laminar-turbulent transition. Current prediction capability is greatly hampered by the limited knowledge base for such flows. To help fill that gap, numerical computations are used to investigate the intricate flow physics involved. An unstructured mesh, compressible Navier-Stokes code based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for two roughness shapes investigated in wind tunnel experiments at NASA Langley Research Center. It was found through 2D parametric study that at subcritical Reynolds numbers, spontaneous absolute instability accompanying by sustained vortex shedding downstream of the roughness is likely to take place at subsonic free-stream conditions. On the other hand, convective instability may be the dominant mechanism for supersonic boundary layers. Three-dimensional calculations for both a rectangular and a cylindrical roughness element at post-shock Mach numbers of 4.1 and 6.5 also confirm that no self-sustained vortex generation from the top face of the roughness is observed, despite the presence of flow unsteadiness for the smaller post-shock Mach number case.
NASA Astrophysics Data System (ADS)
De Ridder, K.; Bertrand, C.; Casanova, G.; Lefebvre, W.
2012-09-01
Increasingly, mesoscale meteorological and climate models are used to predict urban weather and climate. Yet, large uncertainties remain regarding values of some urban surface properties. In particular, information concerning urban values for thermal roughness length and thermal admittance is scarce. In this paper, we present a method to estimate values for thermal admittance in combination with an optimal scheme for thermal roughness length, based on METEOSAT-8/SEVIRI thermal infrared imagery in conjunction with a deterministic atmospheric model containing a simple urbanized land surface scheme. Given the spatial resolution of the SEVIRI sensor, the resulting parameter values are applicable at scales of the order of 5 km. As a study case we focused on the city of Paris, for the day of 29 June 2006. Land surface temperature was calculated from SEVIRI thermal radiances using a new split-window algorithm specifically designed to handle urban conditions, as described inAppendix A, including a correction for anisotropy effects. Land surface temperature was also calculated in an ensemble of simulations carried out with the ARPS mesoscale atmospheric model, combining different thermal roughness length parameterizations with a range of thermal admittance values. Particular care was taken to spatially match the simulated land surface temperature with the SEVIRI field of view, using the so-called point spread function of the latter. Using Bayesian inference, the best agreement between simulated and observed land surface temperature was obtained for the Zilitinkevich (1970) and Brutsaert (1975) thermal roughness length parameterizations, the latter with the coefficients obtained by Kanda et al. (2007). The retrieved thermal admittance values associated with either thermal roughness parameterization were, respectively, 1843 ± 108 J m-2 s-1/2 K-1 and 1926 ± 115 J m-2 s-1/2 K-1.
Optimization and Analysis of Laser Beam Machining Parameters for Al7075-TiB2 In-situ Composite
NASA Astrophysics Data System (ADS)
Manjoth, S.; Keshavamurthy, R.; Pradeep Kumar, G. S.
2016-09-01
The paper focuses on laser beam machining (LBM) of In-situ synthesized Al7075-TiB2 metal matrix composite. Optimization and influence of laser machining process parameters on surface roughness, volumetric material removal rate (VMRR) and dimensional accuracy of composites were studied. Al7075-TiB2 metal matrix composite was synthesized by in-situ reaction technique using stir casting process. Taguchi's L9 orthogonal array was used to design experimental trials. Standoff distance (SOD) (0.3 - 0.5mm), Cutting Speed (1000 - 1200 m/hr) and Gas pressure (0.5 - 0.7 bar) were considered as variable input parameters at three different levels, while power and nozzle diameter were maintained constant with air as assisting gas. Optimized process parameters for surface roughness, volumetric material removal rate (VMRR) and dimensional accuracy were calculated by generating the main effects plot for signal noise ratio (S/N ratio) for surface roughness, VMRR and dimensional error using Minitab software (version 16). The Significant of standoff distance (SOD), cutting speed and gas pressure on surface roughness, volumetric material removal rate (VMRR) and dimensional error were calculated using analysis of variance (ANOVA) method. Results indicate that, for surface roughness, cutting speed (56.38%) is most significant parameter followed by standoff distance (41.03%) and gas pressure (2.6%). For volumetric material removal (VMRR), gas pressure (42.32%) is most significant parameter followed by cutting speed (33.60%) and standoff distance (24.06%). For dimensional error, Standoff distance (53.34%) is most significant parameter followed by cutting speed (34.12%) and gas pressure (12.53%). Further, verification experiments were carried out to confirm performance of optimized process parameters.
Lin, Hongjun; Zhang, Meijia; Mei, Rongwu; Chen, Jianrong; Hong, Huachang
2014-11-01
This study proposed a novel approach for quantitative evaluation of the physicochemical interactions between a particle and rough surface. The approach adopts the composite Simpson's rule to numerically calculate the double integrals in the surface element integration of these physicochemical interactions. The calculation could be achieved by a MATLAB program based on this approach. This approach was then applied to assess the physicochemical interactions between rough membrane surface and sludge foulants in a submerged membrane bioreactor (MBR). The results showed that, as compared with smooth membrane surface, rough membrane surface had a much lower strength of interactions with sludge foulants. Meanwhile, membrane surface morphology significantly affected the strength and properties of the interactions. This study showed that the newly developed approach was feasible, and could serve as a primary tool for investigating membrane fouling in MBRs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cone Penetrometer Shear Strength Measurements of Sludge Waste in Tanks 241-AN-101 and 241-AN-106
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follett, Jordan R.
2014-03-06
This document presents the resulting shear strength profiles for sludge waste in Tanks 241-AN-101 and 241-AN-106, as determined with a full-flow cone penetrometer. Full-flow penetrometer measurements indicate shear strength profiles that increase roughly uniformly with depth. For Tank 241-AN-101, the undrained shear strength was calculated to range from 500 Pa near the sludge surface to roughly 3,300 Pa at 15 inches above the tank bottom. For 241-AN-106, the undrained shear strength was calculated to range from 500 Pa near the sludge surface to roughly 5,000 Pa at 15 inches above the tank bottom.
Missile Datcom User’s Manual - 2008 Revision
2008-08-01
and Surface Roughness ........................ 58 Table 24. Magnus derivatives calculated with SPIN Control Card...M.F.E. Dillenius (W.B. Blake) WL-TR-91-3039 (ADA 237817) 5 4/91 Inlets at sub/transonic speeds, additive drag Plume effects on body Six types...control card. This control card has no effect on input angles, input angles are always specified in degrees. Partial output results, which detail the
Xiao, Huapan; Chen, Zhi; Wang, Hairong; Wang, Jiuhong; Zhu, Nan
2018-02-19
Based on micro-indentation mechanics and kinematics of grinding processes, theoretical formulas are deduced to calculate surface roughness (SR) and subsurface damage (SSD) depth. The SRs and SSD depths of a series of fused silica samples, which are prepared under different grinding parameters, are measured. By experimental and theoretical analysis, the relationship between SR and SSD depth is discussed. The effect of grinding parameters on SR and SSD depth is investigated quantitatively. The results show that SR and SSD depth decrease with the increase of wheel speed or the decrease of feed speed as well as cutting depth. The interaction effect between wheel speed and feed speed should be emphasized greatly. Furthermore, a relationship model between SSD depth and grinding parameters is established, which could be employed to evaluate SSD depth efficiently.
Wave and setup dynamics on steeply-sloping reefs with large bottom roughness
NASA Astrophysics Data System (ADS)
Buckley, M. L.; Hansen, J.; Lowe, R.
2016-12-01
High-resolution observations from a wave flume were used to investigate the dynamics of wave setup over a steeply-sloping fringing reef profile with the effect of bottom roughness modeled using roughness elements scaled to mimic a coral reef. Results with roughness were compared with smooth bottom runs across sixteen offshore wave and still water level conditions. The time-averaged and depth-integrated force balance was evaluated from observations collected at seventeen locations across the flume, which was found to consist of cross-shore pressure and radiation stress gradients whose sum was balanced by mean quadratic bottom stresses. We found that when radiation stress gradients were calculated from observations of the radiation stress derived from linear wave theory, both wave setdown and setup were under predicted for the majority of wave and water level conditions tested. Inaccuracies in the predicted setdown and setup were improved by including a wave roller model, which provides a correction to the kinetic energy predicted by linear wave theory for breaking waves and produces a spatial delay in the wave forcing that was consistent with the observations. The introduction of roughness had two primary effects. First, the amount of wave energy dissipated during wave breaking was reduced due to frictional wave dissipation that occurred on the reef slope offshore of the breakpoint. Second, offshore directed mean bottom stresses were generated by the interaction of the combined wave-current velocity field with the roughness elements. These two mechanisms acted counter to one another. As a result, setup on the reef flat was comparable (7% mean difference) between corresponding rough and smooth runs. These findings are used to assess prior results from numerical modelling studies of reefs, and also to discuss the broader implications for how steep slopes and large roughness influences setup dynamics for general nearshore systems.
Resistivity scaling and electron relaxation times in metallic nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moors, Kristof, E-mail: kristof@itf.fys.kuleuven.be; Imec, Kapeldreef 75, B-3001 Leuven; Sorée, Bart
2014-08-14
We study the resistivity scaling in nanometer-sized metallic wires due to surface roughness and grain-boundaries, currently the main cause of electron scattering in nanoscaled interconnects. The resistivity has been obtained with the Boltzmann transport equation, adopting the relaxation time approximation of the distribution function and the effective mass approximation for the conducting electrons. The relaxation times are calculated exactly, using Fermi's golden rule, resulting in a correct relaxation time for every sub-band state contributing to the transport. In general, the relaxation time strongly depends on the sub-band state, something that remained unclear with the methods of previous work. The resistivitymore » scaling is obtained for different roughness and grain-boundary properties, showing large differences in scaling behavior and relaxation times. Our model clearly indicates that the resistivity is dominated by grain-boundary scattering, easily surpassing the surface roughness contribution by a factor of 10.« less
The effects of wedge roughness on Mach formation
NASA Astrophysics Data System (ADS)
Needham, C. E.; Happ, H. J.; Dawson, D. F.
A modified HULL hydrodynamic model was used to simulate shock reflection on wedges fitted with bumps representing varying degrees of roughness. The protuberances ranged from 0.02-0.2 cm in size. The study was directed at the feasibility of and techniques for defining parametric fits for surface roughness in the HULL code. Of interest was the self-similarity of the flows, so increasingly larger protuberances would simply enhance the resolution of the calculations. The code was designed for compressible, inviscid, nonconducting fluid flows. An equation of state provides closure and a finite difference algorithm is applied to solve governing equations for conservation of mass, momentum and energy. Self-similarity failed as the surface bumps grew larger and protruded further into the flowfield. It is noted that bumps spaced further apart produced greater interference for the passage of the Mach stem than did bumps placed closer together.
Research of Surface Roughness Anisotropy
NASA Astrophysics Data System (ADS)
Bulaha, N.; Rudzitis, J.; Lungevics, J.; Linins, O.; Krizbergs, J.
2017-04-01
The authors of the paper have investigated surfaces with irregular roughness for the purpose of determination of roughness spacing parameters perpendicularly to machining traces - RSm1 and parallel to them - RSm2, as well as checking the relationship between the surface anisotropy coefficient c and surface aspect ratio Str from the standard LVS EN ISO 25178-2. Surface roughness measurement experiments with 11 surfaces show that measuring equipment values of mean spacing of profile irregularities in the longitudinal direction are not reliable due to the divergence of surface mean plane and roughness profile mean line. After the additional calculations it was stated that parameter Str can be used for determination of parameter RSm2 and roughness anisotropy evaluation for grinded, polished, friction surfaces and other surfaces with similar characteristics.
Helicopter rotor noise investigation during ice accretion
NASA Astrophysics Data System (ADS)
Cheng, Baofeng
An investigation of helicopter rotor noise during ice accretion is conducted using experimental, theoretical, and numerical methods. This research is the acoustic part of a joint helicopter rotor icing physics, modeling, and detection project at The Pennsylvania State University Vertical Lift Research Center of Excellence (VLRCOE). The current research aims to provide acoustic insight and understanding of the rotor icing physics and investigate the feasibility of detecting rotor icing through noise measurements, especially at the early stage of ice accretion. All helicopter main rotor noise source mechanisms and their change during ice accretion are discussed. Changes of the thickness noise, steady loading noise, and especially the turbulent boundary layer - trailing edge (TBL-TE) noise due to ice accretion are identified and studied. The change of the discrete frequency noise (thickness noise and steady loading noise) due to ice accretion is calculated by using PSU-WOPWOP, an advanced rotorcraft acoustic prediction code. The change is noticeable, but too small to be used in icing detection. The small thickness noise change is due to the small volume of the accreted ice compared to that of the entire blade, although a large iced airfoil shape is used. For the loading noise calculation, two simplified methods are used to generate the loading on the rotor blades, which is the input for the loading noise calculation: 1) compact loading from blade element momentum theory, icing effects are considered by increasing the drag coefficient; and 2) pressure loading from the 2-D CFD simulation, icing effects are considered by using the iced airfoil shape. Comprehensive rotor broadband noise measurements are carried out on rotor blades with different roughness sizes and rotation speeds in two facilities: the Adverse Environment Rotor Test Stand (AERTS) facility at The Pennsylvania State University, and The University of Maryland Acoustic Chamber (UMAC). In both facilities the measured high-frequency broadband noise increases significantly with increasing surface roughness heights, which indicates that it is feasible to quantify helicopter rotor ice-induced surface roughness through acoustic measurements. Comprehensive broadband noise measurements based on different accreted ice roughness at AERTS are then used to form the data base from which a correlation between the ice-induced surface roughness and the broadband noise level is developed. Two parameters, the arithmetic average roughness height, Ra, and the averaged roughness height, based on the integrated ice thickness at the blade tip, are introduced to describe the ice-induced surface roughness at the early stage of the ice accretion. The ice roughness measurements are correlated to the measured broadband noise level. Strong correlations (absolute mean deviations of 9.3% and 11.2% for correlation using Ra and the averaged roughness height respectively) between the ice roughness and the broadband noise level are obtained, which can be used as a tool to determine the accreted ice roughness in the AERTS facility through acoustic measurement. It might be possible to use a similar approach to develop an early ice accretion detection tool for helicopters, as well as to quantify the ice-induced roughness at the early stage of rotor ice accretion. Rotor broadband noise source identification is conducted and the broadband noise related to ice accretion is argued to be turbulent boundary layer - trailing edge (TBL-TE) noise. Theory suggests TBL-TE noise scales with Mach number to the fifth power, which is also observed in the experimental data. The trailing edge noise theories developed by Ffowcs Williams and Hall, and Howe both identify two important parameters: boundary layer thickness and turbulence intensity. Numerical studies of 2-D airfoils with different ice-induced surface roughness heights are conducted to investigate the extent that surface roughness impacts the boundary layer thickness and turbulence intensity (and ultimately the TBL-TE noise). The results show that boundary layer thickness and turbulence intensity at the trailing edge increase with the increased roughness height. Using Howe's trailing edge noise model, the increased sound pressure level (SPL) of the trailing edge noise due to the increased displacement thickness and normalized integrated turbulence intensity are 6.2 dB and 1.6 dB for large and small accreted ice roughness heights, respectively. The estimated increased SPL values agree well with the experimental results, which are 5.8 dB and 2.6 dB for large and small roughness height, respectively. Finally a detailed broadband noise spectral scaling for all measured broadband noise in both AERTS and UMAC facilities is conducted. The magnitude and the frequency spectrum of the measured broadband noise are scaled on characteristic velocity and length. The peak of the laminar boundary layer - vortex shedding (LBL-VS) noise coalesces well on the Strouhal scaling in those cases. For the measured broadband noise from a rotor with relatively large roughness heights, no contribution of the LBL-VS noise is observed. The velocity scaling shows that the TBL-TE noise, which is the dominant source mechanism, scales with Mach number to the fifth power based on the absolute frequency. The length scaling shows that the TBL-TE noise scales well on the absolute roughness height based on Howe's TE noise theory.
Depth-dependent hydraulic roughness and its impact on the assessment of hydropeaking.
Kopecki, Ianina; Schneider, Matthias; Tuhtan, Jeffrey A
2017-01-01
Hydrodynamic river models in combination with physical habitat modelling serve as the basis for a wide spectrum of environmental studies. Larvae, juvenile and spawning fish, redds and benthic invertebrates belong to the biological groups most heavily affected by rapid flow variations as a consequence of peaking energy production, or "hydropeaking". As these species find their preferential habitat to a great extent in shallow regions, high prediction accuracy for these areas is essential to substantiate the use of hydrodynamic models. In this paper, a new formulation for the depth-dependent roughness originating from the boundary layer theory is derived. The modelling approach is based on the concept of a dynamic, spatio-temporal Manning's roughness which allows for considerable improvement in the accuracy of stationary and highly transient hydrodynamic simulations in shallow river areas. In addition, the approach facilitates more effective model calibration, as it allows for the preservation of the roughness sublayer thickness as a single calibration parameter for the entire range of hydropeaking discharges. The approach is tested and validated on a 7.5km long stretch of a middle-size gravel river affected by hydropeaking. Model results using conventional constant roughness and the proposed dynamic roughness approaches are compared. The implications for the stationary habitat assessment and calculation of dynamic hydropeaking parameters are analysed as well. Copyright © 2016 Elsevier B.V. All rights reserved.
Psychoacoustic and cognitive aspects of auditory roughness: definitions, models, and applications
NASA Astrophysics Data System (ADS)
Vassilakis, Pantelis N.; Kendall, Roger A.
2010-02-01
The term "auditory roughness" was first introduced in the 19th century to describe the buzzing, rattling auditory sensation accompanying narrow harmonic intervals (i.e. two tones with frequency difference in the range of ~15-150Hz, presented simultaneously). A broader definition and an overview of the psychoacoustic correlates of the auditory roughness sensation, also referred to as sensory dissonance, is followed by an examination of efforts to quantify it over the past one hundred and fifty years and leads to the introduction of a new roughness calculation model and an application that automates spectral and roughness analysis of sound signals. Implementation of spectral and roughness analysis is briefly discussed in the context of two pilot perceptual experiments, designed to assess the relationship among cultural background, music performance practice, and aesthetic attitudes towards the auditory roughness sensation.
NASA Astrophysics Data System (ADS)
Greenhagen, B.; Paige, D. A.
2007-12-01
It is well known that surface roughness affects spectral slope in the infrared. For the first time, we applied a three-dimensional thermal model to a high resolution lunar topography map to study the effects of surface roughness on lunar thermal emission spectra. We applied a numerical instrument model of the upcoming Diviner Lunar Radiometer Experiment (DLRE) to simulate the expected instrument response to surface roughness variations. The Diviner Lunar Radiometer Experiment (DLRE) will launch in late 2008 onboard the Lunar Reconnaissance Orbiter (LRO). DLRE is a nine-channel radiometer designed to study the thermal and petrologic properties of the lunar surface. DLRE has two solar channels (0.3-3.0 μm high/low sensitivity), three mid-infrared petrology channels (7.55-8.05, 8.10-8.40 8.40-8.70 μm), and four thermal infrared channels (12.5-25, 25-50, 50-100, and 100-200 μm). The topographic data we used was selected from a USGS Hadley Rille DEM (from Apollo 15 Panoramic Camera data) with 10 m resolution (M. Rosiek; personal communication). To remove large scale topographic features, we applied a 200 x 200 pixel boxcar high-pass filter to a relatively flat portion of the DEM. This "flattened" surface roughness map served as the basis for much of this study. We also examined the unaltered topography. Surface temperatures were calculated using a three-dimensional ray tracing thermal model. We created temperature maps at numerous solar incidence angles with nadir viewing geometry. A DLRE instrument model, which includes filter spectral responses and detector fields of view, was applied to the high resolution temperature maps. We studied both the thermal and petrologic effects of surface roughness. For the thermal study, the output of the optics model is a filter specific temperature, scaled to a DLRE footprint of < 500 m. For the petrologic study, we examined the effect of the surface roughness induced spectral slope on the DLRE's ability to locate the Christiansen Feature, which is a good compositional indicator. With multiple thermal infrared channels over a wide spectral range, DLRE will be well suited to measure temperature variations due to surface roughness. Any necessary compensation (e.g. correction for spectral slope) to the mid-infrared petrology data will be performed.
Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamand, S.M., E-mail: soran.mamand@univsul.net; Omar, M.S.; Muhammad, A.J.
2012-05-15
Graphical abstract: Temperature dependence of calculated lattice thermal conductivity of Wurtzite GaN nanowires. Highlights: Black-Right-Pointing-Pointer A modified Callaway model is used to calculate lattice thermal conductivity of Wurtzite GaN nanowires. Black-Right-Pointing-Pointer A direct method is used to calculate phonon group velocity for these nanowires. Black-Right-Pointing-Pointer 3-Gruneisen parameter, surface roughness, and dislocations are successfully investigated. Black-Right-Pointing-Pointer Dislocation densities are decreases with the decrease of wires diameter. -- Abstract: A detailed calculation of lattice thermal conductivity of freestanding Wurtzite GaN nanowires with diameter ranging from 97 to 160 nm in the temperature range 2-300 K, was performed using a modified Callaway model.more » Both longitudinal and transverse modes are taken into account explicitly in the model. A method is used to calculate the Debye and phonon group velocities for different nanowire diameters from their related melting points. Effect of Gruneisen parameter, surface roughness, and dislocations as structure dependent parameters are successfully used to correlate the calculated values of lattice thermal conductivity to that of the experimentally measured curves. It was observed that Gruneisen parameter will decrease with decreasing nanowire diameters. Scattering of phonons is assumed to be by nanowire boundaries, imperfections, dislocations, electrons, and other phonons via both normal and Umklapp processes. Phonon confinement and size effects as well as the role of dislocation in limiting thermal conductivity are investigated. At high temperatures and for dislocation densities greater than 10{sup 14} m{sup -2} the lattice thermal conductivity would be limited by dislocation density, but for dislocation densities less than 10{sup 14} m{sup -2}, lattice thermal conductivity would be independent of that.« less
NASA Technical Reports Server (NTRS)
Garneau, S.; Plaut, J. J.
2000-01-01
The surface roughness of the Vastitas Borealis Formation on Mars was analyzed with fractal statistics. Root mean square slopes and fractal dimensions were calculated for 74 topographic profiles. Results have implications for radar scattering models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurer, K. D.; Bohrer, G.; Kenny, W. T.
Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction.more » We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.« less
Influence of Casimir-Lifshitz forces on actuation dynamics of MEMS
NASA Astrophysics Data System (ADS)
Broer, Wijnand; Palasantzas, George; Knoester, Jasper; Svetovoy, Vitaly
2013-03-01
Electromagnetic fluctuations generate forces between neutral bodies known as Casimir-Lifshitz forces, of which van der Waals forces are special cases, and which can become important in micromechanical systems (MEMS). For surface areas big enough but gaps small enough, the Casimir force can possibly draw and lock MEMS components together, an effect called stiction, causing device malfunction. Alternatively, stiction can also be exploited to add new functionalities to MEMS architecture. Here, using as inputs the measured frequency dependent dielectric response and surface roughness statistics from Atomic Force Microscopy (AFM) images, we perform the first realistic calculation of MEMS actuation. For our analysis the Casimir force is combined with the electrostatic force between rough surfaces to counterbalance the elastic restoring force. It is found that, even though surface roughness has an adverse effect on the availability of (stable) equilibria, it ensures that those stable equilibria can be reached more easily than in the case of flat surfaces. Hence our results can have significant implications on how to design MEM surfaces. The author would like this abstract to appear in a Casimir related session.
Correlation of nosetip boundary-layer transition data measured in ballistics-range experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reda, D.C.
1979-11-01
Preablated nosetips of various carbonaceous materials were tested in a ballistics range. Surface-temperature contours, measured with image-converter cameras, were used to define boundary-layer transition-fron contours. Measurements of surface roughness, surface temperature, average transition-calculations of nosetip flowfields, and with calculations of laminar boundary-layer development in these flowfields, to transform all data into various dimensionless parameters. These parameters were defined by previous attempts to correlate existing wind-tunnel data for transition on rough/blunt bodies.
Gurbuz, Ayhan; Ozkan, Pelin; Yilmaz, Kerem; Yilmaz, Burak; Durkan, Rukiye
2013-01-01
Oxygenating agents like carbamide peroxide or H(2) O(2) are commonly used whitening agents. They have varying influence on the color and surface roughness of resin-based restorative materials and teeth. The aim of this study was to evaluate the effect of an at-home peroxide whitening agent applied through a whitening strip on the color and surface roughness of a nanofilled composite resin and an ormocer-based resin. Disc-shaped (2 mm thick, 10 mm diameter) nanofilled resin composite (n = 10) and ormocer (n = 10) specimens were prepared. All specimens were treated with a whitening strip. Whitening procedures were performed applying a 6.5% hydrogen peroxide whitening strip (Crest White Strips Professional) for 30 minutes twice each day for a period of 21 consecutive days. During the test intervals, the specimens were rinsed under running distilled water for 1 minute to remove the whitening agents and immersed in 37°C distilled water until the next treatment. Surface roughness and color of the specimens were measured with a profilometer and a colorimeter, respectively, before and after whitening. Color changes were calculated (ΔE) using L*, a*, and b* coordinates. Repeated measures of variance analysis and Duncan test were used for statistical evaluation (α= 0.05). The average surface roughness of composite increased from 1.4 Ra to 2.0 Ra, and from 0.8 Ra to 0.9 Ra for the ormocer material; however, these changes in roughness after whitening were not significant (p > 0.05). Also, when two materials were compared, the surface roughness of restorative materials was not different before and after whitening (p > 0.05). L* and b* values for each material changed significantly after whitening (p < 0.05). ΔE values (before/after whitening) calculated for composite (11.9) and ormocer (16.1) were not significantly different from each other (p > 0.05). The tested whitening agent did not affect the surface roughness of either resin-based restorative material. Both materials became brighter after whitening. The behavior of the materials in the yellow/blue axis was opposite to each other after whitening. Each material had clinically unacceptable color change after whitening (ΔE > 5.5); however, the magnitude of the color change of materials was similar (p > 0.05). According to the results of this study, with the use of materials tested, patients should be advised that existing composite restorations may bleach along with the natural teeth, and replacement of these restorations after whitening may not be required. © 2012 by the American College of Prosthodontists.
NASA Astrophysics Data System (ADS)
Wang, Y. S.; Shen, G. Q.; Guo, H.; Tang, X. L.; Hamade, T.
2013-08-01
In this paper, a roughness model, which is based on human auditory perception (HAP) and known as HAP-RM, is developed for the sound quality evaluation (SQE) of vehicle noise. First, the interior noise signals are measured for a sample vehicle and prepared for roughness modelling. The HAP-RM model is based on the process of sound transfer and perception in the human auditory system by combining the structural filtering function and nonlinear perception characteristics of the ear. The HAP-RM model is applied to the measured vehicle interior noise signals by considering the factors that affect hearing, such as the modulation and carrier frequencies, the time and frequency maskings and the correlations of the critical bands. The HAP-RM model is validated by jury tests. An anchor-scaled scoring method (ASM) is used for subjective evaluations in the jury tests. The verification results show that the novel developed model can accurately calculate vehicle noise roughness below 0.6 asper. Further investigation shows that the total roughness of the vehicle interior noise can mainly be attributed to frequency components below 12 Bark. The time masking effects of the modelling procedure enable the application of the HAP-RM model to stationary and nonstationary vehicle noise signals and the SQE of other sound-related signals in engineering problems.
Hypersonic Viscous Flow Over Large Roughness Elements
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan; Choudhari, Meelan M.
2009-01-01
Viscous flow over discrete or distributed surface roughness has great implications for hypersonic flight due to aerothermodynamic considerations related to laminar-turbulent transition. Current prediction capability is greatly hampered by the limited knowledge base for such flows. To help fill that gap, numerical computations are used to investigate the intricate flow physics involved. An unstructured mesh, compressible Navier-Stokes code based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for two roughness shapes investigated in wind tunnel experiments at NASA Langley Research Center. It was found through 2D parametric study that at subcritical Reynolds numbers of the boundary layers, absolute instability resulting in vortex shedding downstream, is likely to weaken at supersonic free-stream conditions. On the other hand, convective instability may be the dominant mechanism for supersonic boundary layers. Three-dimensional calculations for a rectangular or cylindrical roughness element at post-shock Mach numbers of 4.1 and 6.5 also confirm that no self-sustained vortex generation is present.
NASA Astrophysics Data System (ADS)
Covarrubias, Ernesto E.; Eshraghi, Mohsen
2018-03-01
Aerospace, automotive, and medical industries use selective laser melting (SLM) to produce complex parts through solidifying successive layers of powder. This additive manufacturing technique has many advantages, but one of the biggest challenges facing this process is the resulting surface quality of the as-built parts. The purpose of this research was to study the surface properties of Inconel 718 alloys fabricated by SLM. The effect of build angle on the surface properties of as-built parts was investigated. Two sets of sample geometries including cube and rectangular artifacts were considered in the study. It was found that, for angles between 15° and 75°, theoretical calculations based on the "stair-step" effect were consistent with the experimental results. Downskin surfaces showed higher average roughness values compared to the upskin surfaces. No significant difference was found between the average roughness values measured from cube and rectangular test artifacts.
Parameterized Spectral Bathymetric Roughness Using the Nonequispaced Fast Fourier Transform
NASA Astrophysics Data System (ADS)
Fabre, David Hanks
The ocean and acoustic modeling community has specifically asked for roughness from bathymetry. An effort has been undertaken to provide what can be thought of as the high frequency content of bathymetry. By contrast, the low frequency content of bathymetry is the set of contours. The two-dimensional amplitude spectrum calculated with the nonequispaced fast Fourier transform (Kunis, 2006) is exploited as the statistic to provide several parameters of roughness following the method of Fox (1996). When an area is uniformly rough, it is termed isotropically rough. When an area exhibits lineation effects (like in a trough or a ridge line in the bathymetry), the term anisotropically rough is used. A predominant spatial azimuth of lineation summarizes anisotropic roughness. The power law model fit produces a roll-off parameter that also provides insight into the roughness of the area. These four parameters give rise to several derived parameters. Algorithmic accomplishments include reviving Fox's method (1985, 1996) and improving the method with the possibly geophysically more appropriate nonequispaced fast Fourier transform. A new composite parameter, simply the overall integral length of the nonlinear parameterizing function, is used to make within-dataset comparisons. A synthetic dataset and six multibeam datasets covering practically all depth regimes have been analyzed with the tools that have been developed. Data specific contributions include possibly discovering an aspect ratio isotropic cutoff level (less than 1.2), showing a range of spectral fall-off values between about -0.5 for a sandybottomed Gulf of Mexico area, to about -1.8 for a coral reef area just outside of the Saipan harbor. We also rank the targeted type of dataset, the best resolution gridded datasets, from smoothest to roughest using a factor based on the kernel dimensions, a percentage from the windowing operation, all multiplied by the overall integration length.
NASA Technical Reports Server (NTRS)
Sun, Wenbo; Videnn, Gorden; Lin, Bing; Hu, Yongxiang
2007-01-01
Light scattering and transmission by rough surfaces are of considerable interest in a variety of applications including remote sensing and characterization of surfaces. In this work, the finite-difference time domain technique is applied to calculate the scattered and transmitted electromagnetic fields of an infinite periodic rough surface. The elements of Mueller matrix for scattered light are calculated by an integral of the near fields over a significant number of periods of the surface. The normalized Mueller matrix elements of the scattered light and the spatial distribution of the transmitted flux for a monolayer of micron-sized dielectric spheres on a silicon substrate are presented. The numerical results show that the nonzero Mueller matrix elements of the system of the monolayer of dielectric spheres on a silicon substrate have specific maxima at some scattering angles. These maxima may be used in characterization of the feature of the system. For light transmitted through the monolayer of spheres, our results show that the transmitted energy focuses around the ray passing through centers of the spheres. At other locations, the transmitted flux is very small. The technique also may be used to calculate the perturbance of the electromagnetic field due to the presence of an isolated structure on the substrate.
False-Negative Rate and Recovery Efficiency Performance of a Validated Sponge Wipe Sampling Method
Piepel, Greg F.; Boucher, Raymond; Tezak, Matt; Amidan, Brett G.; Einfeld, Wayne
2012-01-01
Recovery of spores from environmental surfaces varies due to sampling and analysis methods, spore size and characteristics, surface materials, and environmental conditions. Tests were performed to evaluate a new, validated sponge wipe method using Bacillus atrophaeus spores. Testing evaluated the effects of spore concentration and surface material on recovery efficiency (RE), false-negative rate (FNR), limit of detection (LOD), and their uncertainties. Ceramic tile and stainless steel had the highest mean RE values (48.9 and 48.1%, respectively). Faux leather, vinyl tile, and painted wood had mean RE values of 30.3, 25.6, and 25.5, respectively, while plastic had the lowest mean RE (9.8%). Results show roughly linear dependences of RE and FNR on surface roughness, with smoother surfaces resulting in higher mean REs and lower FNRs. REs were not influenced by the low spore concentrations tested (3.10 × 10−3 to 1.86 CFU/cm2). Stainless steel had the lowest mean FNR (0.123), and plastic had the highest mean FNR (0.479). The LOD90 (≥1 CFU detected 90% of the time) varied with surface material, from 0.015 CFU/cm2 on stainless steel up to 0.039 on plastic. It may be possible to improve sampling results by considering surface roughness in selecting sampling locations and interpreting spore recovery data. Further, FNR values (calculated as a function of concentration and surface material) can be used presampling to calculate the numbers of samples for statistical sampling plans with desired performance and postsampling to calculate the confidence in characterization and clearance decisions. PMID:22138998
NASA Astrophysics Data System (ADS)
Kolokolova, L.; Das, H.; Dubovik, O.; Lapyonok, T.
2013-12-01
It is widely recognized now that the main component of comet dust is aggregated particles that consist of submicron grains. It is also well known that cometary dust obey a rather wide size distribution with abundant particles whose size reaches dozens of microns. However, numerous attempts of computer simulation of light scattering by comet dust using aggregated particles have not succeeded to consider particles larger than a couple of microns due to limitations in the memory and speed of available computers. Attempts to substitute aggregates by polydisperse solid particles (spheres, spheroids, cylinders) could not consistently reproduce observed angular and spectral characteristics of comet brightness and polarization even in such a general case as polyshaped (i.e. containing particles of a variety of aspect ratios) mixture of spheroids (Kolokolova et al., In: Photopolarimetry in Remote Sensing, Kluwer Acad. Publ., 431, 2004). In this study we are checking how well cometary dust can be modeled using modeling tools for rough spheroids. With this purpose we use the software package described in Dubovik et al. (J. Geophys. Res., 111, D11208, doi:10.1029/2005JD006619d, 2006) that allows for a substantial reduction of computer time in calculating scattering properties of spheroid mixtures by means of using pre-calculated kernels - quadrature coefficients employed in the numerical integration of spheroid optical properties over size and shape. The kernels were pre-calculated for spheroids of 25 axis ratios, ranging from 0.3 to 3, and 42 size bins within the size parameter range 0.01 - 625. This software package has been recently expanded with the possibility of simulating not only smooth but also rough spheroids that is used in present study. We consider refractive indexes of the materials typical for comet dust: silicate, carbon, organics, and their mixtures. We also consider porous particles accounting on voids in the spheroids through effective medium approach. The roughness of the spheroids is considered as a normal distribution of particle surface slopes and can be of different degree depending on the standard deviation of the distribution, σ, where σ=0 corresponds to smooth surface and σ=0.5 describes severely rough surface (see Young et al., J. Atm. Sci., 70, 330, 2012). We perform computations for two wavelengths, typical for blue (447nm) and red (640nm) cometary continuum filters. We compare phase angle dependence of polarization and brightness and their spectral change obtained with the rough-spheroid model with those observed for comets (e.g. Kolokolova et al., In: Comets 2, Arizona Press, 577, 2004) to see how well rough spheroids can reproduce cometary low albedo, red color, red polarimetric color, negative polarization at small phase angles and polarization maximum at medium phase angles.
Maurer, K. D.; Bohrer, G.; Kenny, W. T.; ...
2015-04-30
Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction.more » We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.« less
NASA Astrophysics Data System (ADS)
Maurer, K. D.; Bohrer, G.; Kenny, W. T.; Ivanov, V. Y.
2015-04-01
Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction. We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.
Atom chips in the real world: the effects of wire corrugation
NASA Astrophysics Data System (ADS)
Schumm, T.; Estève, J.; Figl, C.; Trebbia, J.-B.; Aussibal, C.; Nguyen, H.; Mailly, D.; Bouchoule, I.; Westbrook, C. I.; Aspect, A.
2005-02-01
We present a detailed model describing the effects of wire corrugation on the trapping potential experienced by a cloud of atoms above a current carrying micro wire. We calculate the distortion of the current distribution due to corrugation and then derive the corresponding roughness in the magnetic field above the wire. Scaling laws are derived for the roughness as a function of height above a ribbon shaped wire. We also present experimental data on micro wire traps using cold atoms which complement some previously published measurements [CITE] and which demonstrate that wire corrugation can satisfactorily explain our observations of atom cloud fragmentation above electroplated gold wires. Finally, we present measurements of the corrugation of new wires fabricated by electron beam lithography and evaporation of gold. These wires appear to be substantially smoother than electroplated wires.
Pressure variation of developed lapping tool on surface roughness
NASA Astrophysics Data System (ADS)
Hussain, A. K.; Lee, K. Q.; Aung, L. M.; Abu, A.; Tan, L. K.; Kang, H. S.
2018-01-01
Improving the surface roughness is always one of the major concerns in the development of lapping process as high precision machining caters a great demand in manufacturing process. This paper aims to investigate the performance of a newly designed lapping tool in term of surface roughness. Polypropylene is used as the lapping tool head. The lapping tool is tested for different pressure to identify the optimum working pressure for lapping process. The theoretical surface roughness is also calculated using Vickers Hardness. The present study shows that polypropylene is able to produce good quality and smooth surface roughness. The optimum lapping pressure in the present study is found to be 45 MPa. By comparing the theoretical and experimental values, the present study shows that the newly designed lapping tool is capable to produce finer surface roughness.
2012-01-01
Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions. PMID:23151272
Khayet, Mohamed; Fernández, Victoria
2012-11-14
Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions.
Wilcox, Andrew C.; Nelson, Jonathan M.; Wohl, Ellen E.
2006-01-01
In step‐pool stream channels, flow resistance is created primarily by bed sediments, spill over step‐pool bed forms, and large woody debris (LWD). In order to measure resistance partitioning between grains, steps, and LWD in step‐pool channels we completed laboratory flume runs in which total resistance was measured with and without grains and steps, with various LWD configurations, and at multiple slopes and discharges. Tests of additive approaches to resistance partitioning found that partitioning estimates are highly sensitive to the order in which components are calculated and that such approaches inflate the values of difficult‐to‐measure components that are calculated by subtraction from measured components. This effect is especially significant where interactions between roughness features create synergistic increases in resistance such that total resistance measured for combinations of resistance components greatly exceeds the sum of those components measured separately. LWD contributes large proportions of total resistance by creating form drag on individual pieces and by increasing the spill resistance effect of steps. The combined effect of LWD and spill over steps was found to dominate total resistance, whereas grain roughness on step treads was a small component of total resistance. The relative contributions of grain, spill, and woody debris resistance were strongly influenced by discharge and to a lesser extent by LWD density. Grain resistance values based on published formulas and debris resistance values calculated using a cylinder drag approach typically underestimated analogous flume‐derived values, further illustrating sources of error in partitioning methods and the importance of accounting for interaction effects between resistance components.
NASA Astrophysics Data System (ADS)
Wilcox, Andrew C.; Nelson, Jonathan M.; Wohl, Ellen E.
2006-05-01
In step-pool stream channels, flow resistance is created primarily by bed sediments, spill over step-pool bed forms, and large woody debris (LWD). In order to measure resistance partitioning between grains, steps, and LWD in step-pool channels we completed laboratory flume runs in which total resistance was measured with and without grains and steps, with various LWD configurations, and at multiple slopes and discharges. Tests of additive approaches to resistance partitioning found that partitioning estimates are highly sensitive to the order in which components are calculated and that such approaches inflate the values of difficult-to-measure components that are calculated by subtraction from measured components. This effect is especially significant where interactions between roughness features create synergistic increases in resistance such that total resistance measured for combinations of resistance components greatly exceeds the sum of those components measured separately. LWD contributes large proportions of total resistance by creating form drag on individual pieces and by increasing the spill resistance effect of steps. The combined effect of LWD and spill over steps was found to dominate total resistance, whereas grain roughness on step treads was a small component of total resistance. The relative contributions of grain, spill, and woody debris resistance were strongly influenced by discharge and to a lesser extent by LWD density. Grain resistance values based on published formulas and debris resistance values calculated using a cylinder drag approach typically underestimated analogous flume-derived values, further illustrating sources of error in partitioning methods and the importance of accounting for interaction effects between resistance components.
NASA Astrophysics Data System (ADS)
Li, Jie; Guo, LiXin; He, Qiong; Wei, Bing
2012-10-01
An iterative strategy combining Kirchhoff approximation^(KA) with the hybrid finite element-boundary integral (FE-BI) method is presented in this paper to study the interactions between the inhomogeneous object and the underlying rough surface. KA is applied to study scattering from underlying rough surfaces, whereas FE-BI deals with scattering from the above target. Both two methods use updated excitation sources. Huygens equivalence principle and an iterative strategy are employed to consider the multi-scattering effects. This hybrid FE-BI-KA scheme is an improved and generalized version of previous hybrid Kirchhoff approximation-method of moments (KA-MoM). This newly presented hybrid method has the following advantages: (1) the feasibility of modeling multi-scale scattering problems (large scale underlying surface and small scale target); (2) low memory requirement as in hybrid KA-MoM; (3) the ability to deal with scattering from inhomogeneous (including coated or layered) scatterers above rough surfaces. The numerical results are given to evaluate the accuracy of the multi-hybrid technique; the computing time and memory requirements consumed in specific numerical simulation of FE-BI-KA are compared with those of MoM. The convergence performance is analyzed by studying the iteration number variation caused by related parameters. Then bistatic scattering from inhomogeneous object of different configurations above dielectric Gaussian rough surface is calculated and the influences of dielectric compositions and surface roughness on the scattering pattern are discussed.
Influence of surface roughness on cetyltrimethylammonium bromide adsorption from aqueous solution.
Wu, Shuqing; Shi, Liu; Garfield, Lucas B; Tabor, Rico F; Striolo, Alberto; Grady, Brian P
2011-05-17
The influence of surface roughness on surfactant adsorption was studied using a quartz crystal microbalance with dissipation (QCM-D). The sensors employed had root-mean-square (R) roughness values of 2.3, 3.1, and 5.8 nm, corresponding to fractal-calculated surface area ratios (actual/nominal) of 1.13, 1.73, and 2.53, respectively. Adsorption isotherms measured at 25 °C showed that adsorbed mass of cetyltrimethylammonium bromide per unit of actual surface area below 0.8 cmc, or above 1.2 cmc, decreases as the surface roughness increases. At the cmc, both the measured adsorbed amount and the measured dissipation increased dramatically on the rougher surfaces. These results are consistent with the presence of impurities, suggesting that roughness exacerbates well-known phenomena reported in the literature of peak impurity-related adsorption at the cmc. The magnitude of the increase, especially in dissipation, suggests that changes in adsorbed amount may not be the only reason for the observed results, as aggregates at the cmc on rougher surfaces are more flexible and likely contain larger amounts of solvent. Differences in adsorption kinetics were also found as a function of surface roughness, with data showing a second, slower adsorption rate after rapid initial adsorption. A two-rate Langmuir model was used to further examine this effect. Although adsorption completes faster on the smoother surfaces, initial adsorption at zero surface coverage is faster on the rougher surfaces, suggesting the presence of more high-energy sites on the rougher surfaces.
NASA Astrophysics Data System (ADS)
Ghanadi, Farzin; Emes, Matthew; Yu, Jeremy; Arjomandi, Maziar; Kelso, Richard
2017-06-01
Dynamic amplification and gust effects from turbulence can increase wind loads significantly over and above the static wind loads that have been used for heliostat design. This paper presents the results of analyzing the relationship between gust factor and turbulence intensity within the atmospheric boundary layer (ABL) based on the high fidelity measurements of wind velocity at the SLTEST facility in the Utah desert. Results showed that there are distinct characteristics of a low roughness ABL that deviate from semi-empirical relationships derived for open country and urban terrains with larger surface roughness heights. The analysis also indicated that gust factor is increased by 2.4% when lowering the gust period from 3s to 1s in the low roughness field experiment ABL, compared to a 3.6% increase in a suburban terrain at a 10m height. Although 3s gust periods are recommended in AS/NZS 1170.2 [1], comparison of gust factor data with a 1s gust period is recommended particularly in high roughness ABLs such as in urban areas, to ensure that buildings are adequately designed to withstand higher frequency gusts. This research proved the strength of the correlation between gust factor and turbulence intensity is dependent on the surface roughness height of the terrain. It is recommended that the coefficient in the previous semi-empirical equation must be adjusted to be fitted to the low roughness desert terrain in the field experiment ABL.
Interactions Between Raindrop Impact and Shallow Interrill Flow Under Wind-Driven Rain
USDA-ARS?s Scientific Manuscript database
Raindrops impacting shallow interrill flow create hydraulic friction in overland flow, and the roughness caused by raindrops against the shallow flow is generally explained by the Darcy-Weisbach friction coefficient, which is calculated as a function of rainfall intensity along with bed roughness. H...
Interactions between raindrop impact and shallow interrill flow under wind-driven rain (WDR)
USDA-ARS?s Scientific Manuscript database
Raindrops impacting shallow interrill flow create hydraulic friction in overland flow, and the roughness caused by raindrops against the shallow flow is generally explained by the Darcy-Weisbach friction coefficient, which is calculated as a function of rainfall intensity along with bed roughness. H...
Temperature dependency of virus and nanoparticle transport and retention in saturated porous media
NASA Astrophysics Data System (ADS)
Sasidharan, Salini; Torkzaban, Saeed; Bradford, Scott A.; Cook, Peter G.; Gupta, Vadakattu V. S. R.
2017-01-01
The influence of temperature on virus (PRD1 and ΦX174) and carboxyl-modified latex nanoparticle (50 and 100 nm) attachment was examined in sand-packed columns under various physiochemical conditions. When the solution ionic strength (IS) equaled 10 and 30 mM, the attachment rate coefficient (katt) increased up to 109% (p < 0.0002) and the percentage of the sand surface area that contributed to attachment (Sf) increased up to 160% (p < 0.002) when the temperature was increased from 4 to 20 °C. Temperature effects at IS = 10 and 30 mM were also dependent on the system hydrodynamics; i.e., enhanced retention at a lower pore water velocity (0.1 m/day). Conversely, this same temperature increase had a negligible influence on katt and Sf values when IS was 1 mM or > 50 mM. An explanation for these observations was obtained from extended interaction energy calculations that considered nanoscale roughness and chemical heterogeneity on the sand surface. Interaction energy calculations demonstrated that the energy barrier to attachment in the primary minimum (ΔΦa) decreased with increasing IS, chemical heterogeneity, and temperature, especially in the presence of small amounts of nanoscale roughness (e.g., roughness fraction of 0.05 and height of 20 nm in the zone of influence). Temperature had a negligible effect on katt and Sf when the IS = 1 mM because of the large energy barrier, and at IS = 50 mM because of the absence of an energy barrier. Conversely, temperature had a large influence on katt and Sf when the IS was 10 and 30 mM because of the presence of a small ΔΦa on sand with nanoscale roughness and a chemical (positive zeta potential) heterogeneity. This has large implications for setting parameters for the accurate modeling and transport prediction of virus and nanoparticle contaminants in ground water systems.
Diffuse characteristics study of laser target board using Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Yang, Pengling; Wu, Yong; Wang, Zhenbao; Tao, Mengmeng; Wu, Junjie; Wang, Ping; Yan, Yan; Zhang, Lei; Feng, Gang; Zhu, Jinghui; Feng, Guobin
2013-05-01
In this paper, Torrance-Sparrow and Oren-Nayar model is adopt to study diffuse characteristics of laser target board. The model which based on geometric optics, assumes that rough surfaces are made up of a series of symmetric V-groove cavities with different slopes at microscopic level. The distribution of the slopes of the V-grooves are modeled as beckman distribution function, and every microfacet of the V-groove cavity is assumed to behave like a perfect mirror, which means the reflected ray follows Fresnel law at the microfacet. The masking and shadowing effects of rough surface are also taken into account through geometric attenuation factor. Monte Carlo method is used to simulate the diffuse reflectance distribution of the laser target board with different materials and processing technology, and all the calculated results are verified by experiment. It is shown that the profile of bidirectional reflectance distribution curve is lobe-shaped with the maximum lies along the mirror reflection direction. The width of the profile is narrower for a lower roughness value, and broader for a higher roughness value. The refractive index of target material will also influence the intensity and distribution of diffuse reflectance of laser target surface.
Stability of micro-Cassie states on rough substrates
NASA Astrophysics Data System (ADS)
Guo, Zhenjiang; Liu, Yawei; Lohse, Detlef; Zhang, Xuehua; Zhang, Xianren
2015-06-01
We numerically study different forms of nanoscale gaseous domains on a model for rough surfaces. Our calculations based on the constrained lattice density functional theory show that the inter-connectivity of pores surrounded by neighboring nanoposts, which model the surface roughness, leads to the formation of stable microscopic Cassie states. We investigate the dependence of the stability of the micro-Cassie states on substrate roughness, fluid-solid interaction, and chemical potential and then address the differences between the origin of the micro-Cassie states and that of surface nanobubbles within similar models. Finally, we show that the micro-Cassie states share some features with experimentally observed micropancakes at solid-water interfaces.
Effects of Suction on Swept-Wing Transition
NASA Technical Reports Server (NTRS)
Saric, William S.
1998-01-01
Stability experiments are conducted in the Arizona State University Unsteady Wind Tunnel on a 45 deg swept airfoil. The pressure gradient is designed to provide purely crossflow-dominated transition; that is, the boundary layer is subcritical to Tollmien-Schlichting disturbances. The airfoil surface is hand polished to a 0.25 microns rms finish. Under these conditions, stationary crossflow disturbances grow to nonuniform amplitude due to submicron surface irregularities near the leading edge. Uniform stationary crossflow waves are produced by controlling the initial conditions with spanwise arrays of micron-sized roughness elements near the attachment line. Hot-wire measurements provide detailed maps of the crossflow wave structure, and accurate spectral decompositions isolate individual-mode growth rates for the fundamental and harmonic disturbances. Roughness spacing, roughness height, and Reynolds number are varied to investigate the growth of all amplified wavelengths. The measurements show early nonlinear mode interaction causing amplitude saturation well before transition. Comparisons with nonlinear parabolized stability equations calculations show excellent agreement in both the disturbance amplitude and the mode-shape profiles.
NASA Astrophysics Data System (ADS)
Li, Guo; Su, Hang; Kuhn, Uwe; Meusel, Hannah; Ammann, Markus; Shao, Min; Pöschl, Ulrich; Cheng, Yafang
2018-02-01
Coated-wall flow tube reactors are frequently used to investigate gas uptake and heterogeneous or multiphase reaction kinetics under laminar flow conditions. Coating surface roughness may potentially distort the laminar flow pattern, induce turbulence and introduce uncertainties in the calculated uptake coefficient based on molecular diffusion assumptions (e.g., Brown/Cooney-Kim-Davis (CKD)/Knopf-Pöschl-Shiraiwa (KPS) methods), which has not been fully resolved in earlier studies. Here, we investigate the influence of surface roughness and local turbulence on coated-wall flow tube experiments for gas uptake and kinetic studies. According to laminar boundary theory and considering the specific flow conditions in a coated-wall flow tube, we derive and propose a critical height δc to evaluate turbulence effects in the design and analysis of coated-wall flow tube experiments. If a geometric coating thickness δg is larger than δc, the roughness elements of the coating may cause local turbulence and result in overestimation of the real uptake coefficient (γ). We further develop modified CKD/KPS methods (i.e., CKD-LT/KPS-LT) to account for roughness-induced local turbulence effects. By combination of the original methods and their modified versions, the maximum error range of γCKD (derived with the CKD method) or γKPS (derived with the KPS method) can be quantified and finally γ can be constrained. When turbulence is generated, γCKD or γKPS can bear large difference compared to γ. Their difference becomes smaller for gas reactants with lower uptake (i.e., smaller γ) and/or for a smaller ratio of the geometric coating thickness to the flow tube radius (δg / R0). On the other hand, the critical height δc can also be adjusted by optimizing flow tube configurations and operating conditions (i.e., tube diameter, length, and flow velocity), to ensure not only unaffected laminar flow patterns but also other specific requirements for an individual flow tube experiment. We use coating thickness values from previous coated-wall flow tube studies to assess potential roughness effects using the δc criterion. In most studies, the coating thickness was sufficiently small to avoid complications, but some may have been influenced by surface roughness and local turbulence effects.
Correlation of nosetip boundary-layer transition data measured in ballistics-range experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reda, D.C.
1980-01-01
Preablated nosetips of various carbonaceous materials were tested in a ballistics range. Surface-temperature contours, measured with image-converter cameras, were used to define boundary-layer transition-front contours. Measurements of surface roughness, surface temperature, average transition-front location, and freestream environment were combined with calculations of nosetip flowfields, and with calculations of laminar boundary-layer development in these flowfields, to transform all data into various dimensionless parameters. These parameters were defined by previous attempts to correlate existing wind-tunnel data for transition on rough/blunt bodies. Of the available correlating techniques, only one, based on the concept of a constant (critical) roughness Reynolds number for transition, wasmore » found to successfully describe both the wind-tunnel and ballistics-range data, thereby validating the extrapolation of this concept to actual reentry-vehicle materials and environments.« less
NASA Astrophysics Data System (ADS)
Yurchenko, I.; Karakotin, I.; Kudinov, A.
2011-05-01
Minimization of head fairing heat protection shield weight during spacecraft injecting in atmosphere dense layers is a complicated task. The identification of heat transfer coefficient on heat protection shield surface during injection can be considered as a primary task to be solved with certain accuracy in order to minimize heat shield weight as well as meet reliability requirements. The height of the roughness around sound point on the head fairing spherical nose tip has a great influence on the heat transfer coefficient calculation. As it has found out during flight tests the height of the roughness makes possible to create boundary layer transition criterion on the head fairing in flight. Therefore the second task is an assessment how height of the roughness influences on the total incoming heat flux to the head fairing. And finally the third task is associated with correct implementation of the first task results, as there are changing boundary conditions during a flight such as bubbles within heat shield surface paint and thermal protection ablation for instance. In the article we have considered results of flight tests carried out using launch vehicles which allowed us to measure heat fluxes in flight and to estimate dispersions of heat transfer coefficient. The experimental-analytical procedure of defining heat fluxes on the LV head fairings has been presented. The procedure includes: - calculation of general-purpose dimensionless heat transfer coefficient - Nusselt number Nueff - based on the proposed effective temperature Teff method. The method allows calculate the Nusselt number values for cylindrical surfaces as well as dispersions of heat transfer coefficient; - universal criterion of turbulent-laminar transition for blunted head fairings - Reynolds number Reek = [ρеUеk/μе]TR = const , which gives the best correlation of all dates of flight experiment carried out per Reda procedure to define turbulent-laminar transition in boundary layer. The criterion allows defining time margins when turbulent flux on space head surfaces exists. It was defined that in conditions when high background disturbances of free stream flux while main LV engines operating join with integrated roughness influence the critical value of Reynolds number is an order-diminished value compared to values obtained in wind tunnels and in free flight. Influence of minimization of height of surface roughness near sound point on head fairing nose has been estimated. It has been found that the criterion of turbulent-laminar transition for smooth head fairings elements - Reynolds number - reaches the limit value which is equal to 200. This value is obtained from momentum thickness Reynolds number when roughness height is close to zero. So the turbulent- laminar flux transition occurs earlier with decreased duration of effect of high turbulent heat fluxes to the heat shield. This will allow decreasing head shield thickness up to 30%
NASA Astrophysics Data System (ADS)
Yang, Fan; Fang, Dai-Ning; Liu, Bin
2012-01-01
An oxidation kinetics model is developed to account for the effects of the oxidation interface curvature and the oxidation-induced volume change or Pilling-Bedworth ratio. For the oxidation of Fe-Cr-Al-Y alloy fiber, the predictions agree well with experimental results. By considering the influence of the oxidation interface curvature on oxidation rates, the evolution of fluctuant oxidation interface is predicted. We also developed the phase field method (PFM) to simulate the evolution of the interface roughness. Both the theoretical model and the PFM results show that the interface will become smooth during high temperature oxidation. Stress distribution and evolution are calculated by PFM, which indicates that the stress level decreases as the interface morphology evolves.
Multiresponse Optimization of Process Parameters in Turning of GFRP Using TOPSIS Method
Parida, Arun Kumar; Routara, Bharat Chandra
2014-01-01
Taguchi's design of experiment is utilized to optimize the process parameters in turning operation with dry environment. Three parameters, cutting speed (v), feed (f), and depth of cut (d), with three different levels are taken for the responses like material removal rate (MRR) and surface roughness (R a). The machining is conducted with Taguchi L9 orthogonal array, and based on the S/N analysis, the optimal process parameters for surface roughness and MRR are calculated separately. Considering the larger-the-better approach, optimal process parameters for material removal rate are cutting speed at level 3, feed at level 2, and depth of cut at level 3, that is, v 3-f 2-d 3. Similarly for surface roughness, considering smaller-the-better approach, the optimal process parameters are cutting speed at level 1, feed at level 1, and depth of cut at level 3, that is, v 1-f 1-d 3. Results of the main effects plot indicate that depth of cut is the most influencing parameter for MRR but cutting speed is the most influencing parameter for surface roughness and feed is found to be the least influencing parameter for both the responses. The confirmation test is conducted for both MRR and surface roughness separately. Finally, an attempt has been made to optimize the multiresponses using technique for order preference by similarity to ideal solution (TOPSIS) with Taguchi approach. PMID:27437503
Bourlier, Christophe; Kubické, Gildas; Déchamps, Nicolas
2008-04-01
A fast, exact numerical method based on the method of moments (MM) is developed to calculate the scattering from an object below a randomly rough surface. Déchamps et al. [J. Opt. Soc. Am. A23, 359 (2006)] have recently developed the PILE (propagation-inside-layer expansion) method for a stack of two one-dimensional rough interfaces separating homogeneous media. From the inversion of the impedance matrix by block (in which two impedance matrices of each interface and two coupling matrices are involved), this method allows one to calculate separately and exactly the multiple-scattering contributions inside the layer in which the inverses of the impedance matrices of each interface are involved. Our purpose here is to apply this method for an object below a rough surface. In addition, to invert a matrix of large size, the forward-backward spectral acceleration (FB-SA) approach of complexity O(N) (N is the number of unknowns on the interface) proposed by Chou and Johnson [Radio Sci.33, 1277 (1998)] is applied. The new method, PILE combined with FB-SA, is tested on perfectly conducting circular and elliptic cylinders located below a dielectric rough interface obeying a Gaussian process with Gaussian and exponential height autocorrelation functions.
Effects of Sediment Patches on Sediment Transport Predictions in Steep Mountain Channels
NASA Astrophysics Data System (ADS)
Monsalve Sepulveda, A.; Yager, E.
2013-12-01
Bed surface patches occur in most gravel-bedded rivers and in steep streams can be divided between relatively immobile boulders and more mobile patches of cobbles and gravel. This spatial variability in grain size, roughness and sorting impact bed load transport by altering the relative local mobility of different grain sizes and creating complex local flow fields. Large boulders also bear a significant part of the total shear stress and we hypothesize that the remaining shear stress on a given mobile patch is a distribution of values that depend on the local topography, patch type and location relative to the large roughness elements and thalweg. Current sediment transport equations do not account for the variation in roughness, local flow and grain size distributions on and between patches and often use an area-weighted approach to obtain a representative grain size distribution and reach-averaged shear stress. Such equations also do not distinguish between active (patches where at least one grain size is in motion) and inactive patches or include the difference in mobility between patch classes as result of spatial shear stress distributions. To understand the effects of sediment patches on sediment transport in steep channels, we calculated the shear stress distributions over a range of patch classes in a 10% gradient step-pool stream. We surveyed the bed with a high density resolution (every 5 cm in horizontal and vertical directions over a 40 m long reach) using a total station and terrestrial LiDAR, mapped and classified patches by their grain size distributions, and measured water surface elevations and mean velocities for low to moderate flow events. Using these data we calibrated a quasi-three dimensional model (FaSTMECH) to obtain shear stress distributions over each patch for a range of flow discharges. We modified Parker's (1990) equations to use the calculated shear stress distribution, measured grain sizes, and a specific hiding function for each patch class, and then added the bedload fluxes for each patch to calculate the reach-averaged sediment transport rate. Sediment mobility in patches was highly dependent on the patch's class and location relative to the thalweg and large roughness elements. Compared to deterministic formulations, the use of distributions of shear stress improved predictions of bedload transport in steep mountain channels.
International Roughness Index (IRI) measurement using Hilbert-Huang transform
NASA Astrophysics Data System (ADS)
Zhang, Wenjin; Wang, Ming L.
2018-03-01
International Roughness Index (IRI) is an important metric to measure condition of roadways. This index is usually used to justify the maintenance priority and scheduling for roadways. Various inspection methods and algorithms are used to assess this index through the use of road profiles. This study proposes to calculate IRI values using Hilbert-Huang Transform (HHT) algorithm. In particular, road profile data is provided using surface radar attached to a vehicle driving at highway speed. Hilbert-Huang transform (HHT) is used in this study because of its superior properties for nonstationary and nonlinear data. Empirical mode decomposition (EMD) processes the raw data into a set of intrinsic mode functions (IMFs), representing various dominating frequencies. These various frequencies represent noises from the body of the vehicle, sensor location, and the excitation induced by nature frequency of the vehicle, etc. IRI calculation can be achieved by eliminating noises that are not associated with the road profile including vehicle inertia effect. The resulting IRI values are compared favorably to the field IRI values, where the filtered IMFs captures the most characteristics of road profile while eliminating noises from the vehicle and the vehicle inertia effect. Therefore, HHT is an effect method for road profile analysis and for IRI measurement. Furthermore, the application of HHT method has the potential to eliminate the use of accelerometers attached to the vehicle as part of the displacement measurement used to offset the inertia effect.
A fundamental study of the sticking of insect residues to aircraft wings
NASA Technical Reports Server (NTRS)
Eiss, N. S., Jr.; Wightman, J. P.; Gilliam, D. R.; Siochi, E. J.
1985-01-01
The aircraft industry has long been concerned with the increase of drag on airplanes due to fouling of the wings by insects. The present research studied the effects of surface energy and surface roughness on the phenomenon of insect sticking. Aluminum plates of different roughnesses were coated with thin films of polymers with varying surface energies. The coated plates were attached to a custom jig and mounted on top of an automobile for insect collection. Contact angle measurements, X-ray photoelectron spectroscopy and specular reflectance infrared spectroscopy were used to characterize the surface before and after the insect impact experiments. Scanning electron microscopy showed the topography of insect residues on the exposed plates. Moments were calculated in order to find a correlation between the parameters studied and the amount of bugs collected on the plates. An effect of surface energy on the sticking of insect residues was demonstrated.
Free Magnetic Energy and Coronal Heating
NASA Technical Reports Server (NTRS)
Winebarger, Amy; Moore, Ron; Falconer, David
2012-01-01
Previous work has shown that the coronal X-ray luminosity of an active region increases roughly in direct proportion to the total photospheric flux of the active region's magnetic field (Fisher et al. 1998). It is also observed, however, that the coronal luminosity of active regions of nearly the same flux content can differ by an order of magnitude. In this presentation, we analyze 10 active regions with roughly the same total magnetic flux. We first determine several coronal properties, such as X-ray luminosity (calculated using Hinode XRT), peak temperature (calculated using Hinode EIS), and total Fe XVIII emission (calculated using SDO AIA). We present the dependence of these properties on a proxy of the free magnetic energy of the active region
Interfacial phonon scattering and transmission loss in >1 μm thick silicon-on-insulator thin films
NASA Astrophysics Data System (ADS)
Jiang, Puqing; Lindsay, Lucas; Huang, Xi; Koh, Yee Kan
2018-05-01
Scattering of phonons at boundaries of a crystal (grains, surfaces, or solid/solid interfaces) is characterized by the phonon wavelength, the angle of incidence, and the interface roughness, as historically evaluated using a specularity parameter p formulated by Ziman [Electrons and Phonons (Clarendon Press, Oxford, 1960)]. This parameter was initially defined to determine the probability of a phonon specularly reflecting or diffusely scattering from the rough surface of a material. The validity of Ziman's theory as extended to solid/solid interfaces has not been previously validated. To better understand the interfacial scattering of phonons and to test the validity of Ziman's theory, we precisely measured the in-plane thermal conductivity of a series of Si films in silicon-on-insulator (SOI) wafers by time-domain thermoreflectance (TDTR) for a Si film thickness range of 1-10 μm and a temperature range of 100-300 K. The Si /SiO2 interface roughness was determined to be 0.11 ±0.04 nm using transmission electron microscopy (TEM). Furthermore, we compared our in-plane thermal conductivity measurements to theoretical calculations that combine first-principles phonon transport with Ziman's theory. Calculations using Ziman's specularity parameter significantly overestimate values from the TDTR measurements. We attribute this discrepancy to phonon transmission through the solid/solid interface into the substrate, which is not accounted for by Ziman's theory for surfaces. The phonons that are specularly transmitted into an amorphous layer will be sufficiently randomized by the time they come back to the crystalline Si layer, the effect of which is practically equivalent to a diffuse reflection at the interface. We derive a simple expression for the specularity parameter at solid/amorphous interfaces and achieve good agreement between calculations and measurement values.
1987-12-01
d integer corrow, corcol , refrow, refcol C Create lower triangle of corr. matrix (symetric matrix) do 33 i~l,n2 C calculate the row point (i) is in...reference Fig.(21)) corrow = (((i-l)/n)+1) C claculate the column point (i) is in corcol = i-(corrow-l)*n) write(6,*) i do 31 jl,i C calculate the row...refrow)*space C the horizontal distance (b) b = ( corcol -refcol)*space 14 d = sqrt(a**2+b**2) S coeff(i,j) = e%-P(-d**2) 31 ]i<ontiinue .3 crnt inue
Prediction of Sliding Friction Coefficient Based on a Novel Hybrid Molecular-Mechanical Model.
Zhang, Xiaogang; Zhang, Yali; Wang, Jianmei; Sheng, Chenxing; Li, Zhixiong
2018-08-01
Sliding friction is a complex phenomenon which arises from the mechanical and molecular interactions of asperities when examined in a microscale. To reveal and further understand the effects of micro scaled mechanical and molecular components of friction coefficient on overall frictional behavior, a hybrid molecular-mechanical model is developed to investigate the effects of main factors, including different loads and surface roughness values, on the sliding friction coefficient in a boundary lubrication condition. Numerical modelling was conducted using a deterministic contact model and based on the molecular-mechanical theory of friction. In the contact model, with given external loads and surface topographies, the pressure distribution, real contact area, and elastic/plastic deformation of each single asperity contact were calculated. Then asperity friction coefficient was predicted by the sum of mechanical and molecular components of friction coefficient. The mechanical component was mainly determined by the contact width and elastic/plastic deformation, and the molecular component was estimated as a function of the contact area and interfacial shear stress. Numerical results were compared with experimental results and a good agreement was obtained. The model was then used to predict friction coefficients in different operating and surface conditions. Numerical results explain why applied load has a minimum effect on the friction coefficients. They also provide insight into the effect of surface roughness on the mechanical and molecular components of friction coefficients. It is revealed that the mechanical component dominates the friction coefficient when the surface roughness is large (Rq > 0.2 μm), while the friction coefficient is mainly determined by the molecular component when the surface is relatively smooth (Rq < 0.2 μm). Furthermore, optimal roughness values for minimizing the friction coefficient are recommended.
Zhang, Shufang; Sun, Xiaowen
2018-01-01
This paper investigates the Additional Secondary Phase Factor (ASF) characteristics of Automatic Identification System (AIS) signals spreading over a rough sea surface. According to the change of the ASFs for AIS signals in different signal form, the influences of the different propagation conditions on the ASFs are analyzed. The expression, numerical calculation, and simulation analysis of the ASFs of AIS signal are performed in the rough sea surface. The results contribute to the high-accuracy propagation delay measurement of AIS signals spreading over the rough sea surface as, well as providing a reference for reliable communication link design in marine engineering for Very High Frequency (VHF) signals. PMID:29462995
On the computation of the turbulent flow near rough surface
NASA Astrophysics Data System (ADS)
Matveev, S. K.; Jaychibekov, N. Zh.; Shalabayeva, B. S.
2018-05-01
One of the problems in constructing mathematical models of turbulence is a description of the flows near a rough surface. An experimental study of such flows is also difficult because of the impossibility of measuring "inside" the roughness. The theoretical calculation is difficult because of the lack of equations describing the flow in this zone. In this paper, a new turbulence model based on the differential equation of turbulent viscosity balance was used to describe a turbulent flow near a rough surface. The difference between the new turbulence model and the previously known consists in the choice of constants and functions that determine the generation, dissipation and diffusion of viscosity.
NASA Astrophysics Data System (ADS)
Zhou, Shiqi
2018-03-01
One recently proposed new method for accurately determining wetting temperature is applied to the wetting transition occurring in a single component nonpolar neutral molecule system near a neutral planar substrate with roughness produced by cosinusoidal modulation(s). New observations are summarized into five points: (i) for a planar substrate superimposed with one cosinusoidal modulation, with increasing of the periodicity length or the surface attraction force field, or decreasing of the amplitude, wetting temperature T_W drops accordingly and the three parameters show multiplication effect; moreover, both the periodicity length and amplitude effect curves display pole phenomena and saturation phenomena, and the T_W saturation occurs at small (for case of large amplitude) or large (for case of small amplitude) periodicity length side, respectively. (ii) In the case of the planar substrate superimposed with two cosinusoidal modulations with equal periodicity length, the initial phase difference is critical issue that influences the T_W, which decreases with the initial phase difference. (iii) In the case of the planar substrate superimposed with two cosinusoidal modulations with zero phase difference, change of the T_W with one periodicity length under the condition of another periodicity length unchanged is non-monotonous. (iv) When the parameters are chosen such that the T_W draws ever closer to the bulk critical temperature, wetting transition on the roughness substrate eventually does not occur. (v) The present microscopic calculation challenges traditional macroscopic theory by confirming that the atomic length scale roughness always renders the surface less hydrophilic and whereas the mesoscopical roughness renders the surface more hydrophilic. All of these observations summarized can be reasonably explained by the relative strength of the attraction actually enjoyed by the surface gas molecules to the attraction the gas molecules can get when in bulk.
Effect of vital tooth bleaching on solubility and roughness of dental cements.
Londono, Jimmy; Abreu, Amara; Nelson, Steve; Hernandez, Jorge; Torres, Carlos; Mettenburg, Donald; Looney, Stephen; Rueggeberg, Frederick
2009-09-01
Vital tooth bleaching may affect properties of dental cements used for fixed prostheses. The purpose of this study was to examine the effect of a combined in-office and at-home bleaching regimen on changes in surface roughness and depth loss of a variety of commercially available dental cements. Five cement classifications were tested: glass ionomer, resin-modified glass ionomer, resin,self-adhesive resin cement, and zinc phosphate. Cements were placed in multiple wells in plastic blocks. After setting,the surface profile of each block was determined, and average roughness and vertical height of cement surface from the specimen holder were recorded. Blocks were water stored (control) or subjected to in-office and at-home bleaching(n=12). Surfaces were rescanned and pre- and posttest parameter changes were calculated. Statistical analysis consisted of Mann-Whitney-Wilcoxon Rank Sum and Student t tests applied to control and bleaching parameterc hanges within the same cements. A family-wise alpha of .05 was maintained by using a Bonferroni-adjusted level of significance preset to .01 per test. Zinc phosphate showed the only significant depth increase (P=.004) from bleaching: 0.9 +/- 0.7 microm deeper than the water-control group. Only resin-modified glass ionomer showed a significant (P=.004) increase in roughness from bleaching; values increased by 0.05 +/- 0.03 microm over the water-control group. In-office and at-home bleaching significantly increased depth loss of zinc phosphate and increased resinmodified glass ionomer roughness. However, the absolute values of differences observed, as compared to the wateronly control, were considered to be clinically insignificant. (J Prosthet Dent 2009;102:148-154)
Effect of wall roughness on liquid oscillations damping in rectangular tanks
NASA Technical Reports Server (NTRS)
Bugg, F. M.
1970-01-01
Tests were conducted in two rectangular glass tanks using silicon carbide grit bonded to walls to determine effect of wall roughness for damping liquid oscillations. Tests included effects of roughness height, roughness location, roughness at various values, amplitude decay, Reynolds number, and boundary layer thickness.
Choi, Insub; Kim, JunHee; Kim, Ho-Ryong
2015-03-19
A full-scale experimental test was conducted to analyze the composite behavior of insulated concrete sandwich wall panels (ICSWPs) subjected to wind pressure and suction. The experimental program was composed of three groups of ICSWP specimens, each with a different type of insulation and number of glass-fiber-reinforced polymer (GFRP) shear grids. The degree of composite action of each specimen was analyzed according to the load direction, type of the insulation, and number of GFRP shear grids by comparing the theoretical and experimental values. The failure modes of the ICSWPs were compared to investigate the effect of bonds according to the load direction and type of insulation. Bonds based on insulation absorptiveness were effective to result in the composite behavior of ICSWP under positive loading tests only, while bonds based on insulation surface roughness were effective under both positive and negative loading tests. Therefore, the composite behavior based on surface roughness can be applied to the calculation of the design strength of ICSWPs with continuous GFRP shear connectors.
High frequency acoustic propagation under variable sea surfaces
NASA Astrophysics Data System (ADS)
Senne, Joseph
This dissertation examines the effects of rough sea surfaces and sub-surface bubbles on high frequency acoustic transmissions. Owing to the strong attenuation of electromagnetic waves in seawater, acoustic waves are used in the underwater realm much in the same way that electromagnetic waves are used in the atmosphere. The transmission and reception of acoustic waves in the underwater environment is important for a variety of fields including navigation, ocean observation, and real-time communications. Rough sea surfaces and sub-surface bubbles alter the acoustic signals that are received not only in the near-surface water column, but also at depth. This dissertation demonstrates that surface roughness and sub-surface bubbles notably affect acoustic transmissions with frequency ranges typical of underwater communications systems (10-50 kHz). The influence of rough surfaces on acoustic transmissions is determined by modeling forward propagation subject to sea surface dynamics that vary with time scales of less than a second to tens of seconds. A time-evolving rough sea surface model is combined with a rough surface formulation of a parabolic equation model for predicting time-varying acoustic fields. Linear surface waves are generated from surface wave spectra, and evolved in time using a Runge-Kutta integration technique. This evolving, range-dependent surface information is combined with other environmental parameters and fed into the acoustic model, giving an approximation of the time-varying acoustic field. The wide-angle parabolic equation model manages the rough sea surfaces by molding them into the boundary conditions for calculations of the near-surface acoustic field. The influence of sub-surface bubbles on acoustic transmissions is determined by modeling the population of bubbles near the surface and using those populations to approximate the effective changes in sound speed and attenuation. Both range-dependent and range-independent bubble models are considered, with the range-dependent model varying over the same time scales as the sea surface model and the range-independent model invariant over time. The bubble-induced sound speed and attenuation fluctuations are read in by the parabolic equation model, which allows for the effects of surface roughness and sub-surface bubbles to be computed separately or together. These merged acoustic models are validated using concurrently-collected acoustic and environmental information, including surface wave spectra. Data to model comparisons demonstrate that the models are able to approximate the ensemble-averaged acoustic intensity at ranges of at least a kilometer for acoustic signals of 10-20 kHz. The rough surface model is shown to capture variations due to surface fluctuations occurring over time scales of less than a second to tens of seconds. The separate bubble models demonstrate the abilities to account for the intermittency of bubble plumes and to determine overall effect of bubbly layers, respectively. The models are shown to capture variations in the acoustic field occurring over time scales of less than a second to tens of seconds. Comparisons against data demonstrate the ability of the model to track acoustic transmissions under evolving sea surfaces. The effects of the evolving bubble field are demonstrated through the use of idealized test cases. For frequency ranges important to communications, surface roughness is shown to have the more dominant effect, with bubbles having an ancillary effect.
The Simulation Realization of Pavement Roughness in the Time Domain
NASA Astrophysics Data System (ADS)
XU, H. L.; He, L.; An, D.
2017-10-01
As the needs for the dynamic study on the vehicle-pavement system and the simulated vibration table test, how to simulate the pavement roughness actually is important guarantee for whether calculation and test can reflect the actual situation or not. Using the power spectral density function, the simulation of pavement roughness can be realized by Fourier inverse transform. The main idea of this method was that the spectrum amplitude and random phase were obtained separately according to the power spectrum, and then the simulation of pavement roughness was obtained in the time domain through the Fourier inverse transform (IFFT). In the process, the sampling interval (Δl) was 0.1m, and the sampling points(N) was 4096, which satisfied the accuracy requirements. Using this method, the simulate results of pavement roughness (A~H grades) were obtain in the time domain.
Rough Electrode Creates Excess Capacitance in Thin-Film Capacitors
2017-01-01
The parallel-plate capacitor equation is widely used in contemporary material research for nanoscale applications and nanoelectronics. To apply this equation, flat and smooth electrodes are assumed for a capacitor. This essential assumption is often violated for thin-film capacitors because the formation of nanoscale roughness at the electrode interface is very probable for thin films grown via common deposition methods. In this work, we experimentally and theoretically show that the electrical capacitance of thin-film capacitors with realistic interface roughness is significantly larger than the value predicted by the parallel-plate capacitor equation. The degree of the deviation depends on the strength of the roughness, which is described by three roughness parameters for a self-affine fractal surface. By applying an extended parallel-plate capacitor equation that includes the roughness parameters of the electrode, we are able to calculate the excess capacitance of the electrode with weak roughness. Moreover, we introduce the roughness parameter limits for which the simple parallel-plate capacitor equation is sufficiently accurate for capacitors with one rough electrode. Our results imply that the interface roughness beyond the proposed limits cannot be dismissed unless the independence of the capacitance from the interface roughness is experimentally demonstrated. The practical protocols suggested in our work for the reliable use of the parallel-plate capacitor equation can be applied as general guidelines in various fields of interest. PMID:28745040
Rough Electrode Creates Excess Capacitance in Thin-Film Capacitors.
Torabi, Solmaz; Cherry, Megan; Duijnstee, Elisabeth A; Le Corre, Vincent M; Qiu, Li; Hummelen, Jan C; Palasantzas, George; Koster, L Jan Anton
2017-08-16
The parallel-plate capacitor equation is widely used in contemporary material research for nanoscale applications and nanoelectronics. To apply this equation, flat and smooth electrodes are assumed for a capacitor. This essential assumption is often violated for thin-film capacitors because the formation of nanoscale roughness at the electrode interface is very probable for thin films grown via common deposition methods. In this work, we experimentally and theoretically show that the electrical capacitance of thin-film capacitors with realistic interface roughness is significantly larger than the value predicted by the parallel-plate capacitor equation. The degree of the deviation depends on the strength of the roughness, which is described by three roughness parameters for a self-affine fractal surface. By applying an extended parallel-plate capacitor equation that includes the roughness parameters of the electrode, we are able to calculate the excess capacitance of the electrode with weak roughness. Moreover, we introduce the roughness parameter limits for which the simple parallel-plate capacitor equation is sufficiently accurate for capacitors with one rough electrode. Our results imply that the interface roughness beyond the proposed limits cannot be dismissed unless the independence of the capacitance from the interface roughness is experimentally demonstrated. The practical protocols suggested in our work for the reliable use of the parallel-plate capacitor equation can be applied as general guidelines in various fields of interest.
Residual Stresses in Thermal Barrier Coatings for a Cu-8Cr-4Nb Substrate System
NASA Technical Reports Server (NTRS)
Ghosn, Louis J.; Raj, Sai V.
2002-01-01
Analytical calculations were conducted to determine the thermal stresses developed in a coated copper-based alloy, Cu-8%(at.%)Cr-4%Nb (designated as GRCop-84), after plasma spraying and during heat-up in a simulated rocket engine environment. Finite element analyses were conducted for two coating systems consisting of a metallic top coat, a pure copper bond coat and the GRCop-84. The through thickness temperature variations were determined as a function of coating thickness for two metallic coatings, a Ni-17%(wt%)Cr-6%Al-0.5%Y alloy and a Ni-50%(at.%)Al alloy. The residual stresses after low-pressure plasma spraying of the NiCrAlY and NiAl coatings on GRCop-84 substrate were also evaluated. These analyses took into consideration a 50.8 mm copper bond coat and the effects of an interface coating roughness. The through the thickness thermal stresses developed in coated liners were also calculated after 15 minutes of exposure in a rocket environment with and without an interfacial roughness.
Effective field model of roughness in magnetic nano-structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepadatu, Serban, E-mail: SLepadatu@uclan.ac.uk
2015-12-28
An effective field model is introduced here within the micromagnetics formulation, to study roughness in magnetic structures, by considering sub-exchange length roughness levels as a perturbation on a smooth structure. This allows the roughness contribution to be separated, which is found to give rise to an effective configurational anisotropy for both edge and surface roughness, and accurately model its effects with fine control over the roughness depth without the explicit need to refine the computational cell size to accommodate the roughness profile. The model is validated by comparisons with directly roughened structures for a series of magnetization switching and domainmore » wall velocity simulations and found to be in excellent agreement for roughness levels up to the exchange length. The model is further applied to vortex domain wall velocity simulations with surface roughness, which is shown to significantly modify domain wall movement and result in dynamic pinning and stochastic creep effects.« less
Temperature-Dependent Effect of Boric Acid Additive on Surface Roughness and Wear Rate
NASA Astrophysics Data System (ADS)
Ekinci, Şerafettin
Wear and friction hold an important place in engineering. Currently, scientific societies are struggling to control wear by means of studies on lubricants. Boric acid constitutes an important alternative with its good tribological properties similar to MO2S and graphite alongside with low environmental impacts. Boric acid can be used as a solid lubricant itself whereas it can be added or blended into mineral oils in order to yield better mechanical and tribological properties such as low shear stress due to the lamellar structure and low friction, wear and surface roughness rates. In this study, distinguishing from the literature, boric acid addition effect considering the temperature was investigated for the conventional ranges of internal combustion engines. Surface roughness, wear and friction coefficient values were used in order to determine tribological properties of boric acid as an environmentally friendly additive and mineral oil mixture in the present study. Wear experiments were conducted with a ball on disc experimental setup immersed in an oil reservoir at room temperature, 50∘C and 80∘C. The evolution of both the friction coefficient and wear behavior was determined under 10N load, at 2m/s sliding velocity and a total sliding distance of 9000m. Surface roughness was determined using atomic-force microscopy (AFM). Wear rate was calculated utilizing scanning electron microscope (SEM) visuals and data. The test results showed that wear resistance increased as the temperature increased, and friction coefficient decreased due to the presence of boric acid additive.
NASA Astrophysics Data System (ADS)
Lee, S.; Yeo, I.; Lee, K.
2012-12-01
Understanding detailed solute transport mechanism in a single fracture is required to expand it to the complex fractured medium. Dispersion in the variable-aperture fractures occurs by combined effects of molecular diffusion, macro dispersion and Taylor dispersion. It has been reported that Taylor dispersion which is proportional to the square of the velocity dominates for the high velocity, while macro dispersion is proportional to the velocity. Contributions of each scheme are different as the velocity changes. To investigate relationship between Reynolds number and dispersion coefficient, single acrylic rough-walled fracture which has 20 cm length and 1.03 mm average aperture was designed. In this experiment, dispersion coefficient was calculated at the middle of the fracture and at the edge of the fracture via moment analysis using breakthrough curve (BTC) of fluorescent solute under the Reynolds number 0.08, 0.28, 2.78, 8.2 and 16.4. In the results, distinct dispersion regime was observed at the highly rough-walled fracture, which is inconsistent with the model that was suggested by previous research. In the range of Re < 2.78, the dispersion coefficient was proportional to the power of n (1
NASA Astrophysics Data System (ADS)
Xiang, Min; Qu, Qinqin; Chen, Cheng; Tian, Li; Zeng, Lingkang
2017-11-01
To improve the reliability of communication service in smart distribution grid (SDG), an access selection algorithm based on dynamic network status and different service types for heterogeneous wireless networks was proposed. The network performance index values were obtained in real time by multimode terminal and the variation trend of index values was analyzed by the growth matrix. The index weights were calculated by entropy-weight and then modified by rough set to get the final weights. Combining the grey relational analysis to sort the candidate networks, and the optimum communication network is selected. Simulation results show that the proposed algorithm can implement dynamically access selection in heterogeneous wireless networks of SDG effectively and reduce the network blocking probability.
The Study of Imperfection in Rough Set on the Field of Engineering and Education
NASA Astrophysics Data System (ADS)
Sheu, Tian-Wei; Liang, Jung-Chin; You, Mei-Li; Wen, Kun-Li
Based on the characteristic of rough set, rough set theory overlaps with many other theories, especially with fuzzy set theory, evidence theory and Boolean reasoning methods. And the rough set methodology has found many real-life applications, such as medical data analysis, finance, banking, engineering, voice recognition, image processing and others. Till now, there is rare research associating to this issue in the imperfection of rough set. Hence, the main purpose of this paper is to study the imperfection of rough set in the field of engineering and education. First of all, we preview the mathematics model of rough set, and a given two examples to enhance our approach, which one is the weighting of influence factor in muzzle noise suppressor, and the other is the weighting of evaluation factor in English learning. Third, we also apply Matlab to develop a complete human-machine interface type of toolbox in order to support the complex calculation and verification the huge data. Finally, some further suggestions are indicated for the research in the future.
NASA Technical Reports Server (NTRS)
Ponter, A. B.; Jones, W. R., Jr.; Jansen, R. H.
1994-01-01
Contact angles of water and methylene iodide were measured as a function of UV/O3 treatment time for three polymers: poly(methylmethacrylate) (PMMA), polycarbonate, and polytetrafluoroethylene (PTFE). Surface roughnesses were also measured. Surface free energies were then calculated using relationships developed by Kaelble and Neumann. The surface energy of polycarbonate was found to increase (60 percent) during UV/O3 treatment. However, calculations on PMMA were hampered by the formation of a water soluble surface product. On PTFE surfaces, the UV/O3 treatment etched the surface causing large increases in surface roughness, rendering contact angle measurements impossible. It is concluded that care must be taken in interpreting contact angle measurements and surface energy calculations on UV/O3 treated polymer surfaces.
Forward and inverse models of electromagnetic scattering from layered media with rough interfaces
NASA Astrophysics Data System (ADS)
Tabatabaeenejad, Seyed Alireza
This work addresses the problem of electromagnetic scattering from layered dielectric structures with rough boundaries and the associated inverse problem of retrieving the subsurface parameters of the structure using the scattered field. To this end, a forward scattering model based on the Small Perturbation Method (SPM) is developed to calculate the first-order spectral-domain bistatic scattering coefficients of a two-layer rough surface structure. SPM requires the boundaries to be slightly rough compared to the wavelength, but to understand the range of applicability of this method in scattering from two-layer rough surfaces, its region of validity is investigated by comparing its output with that of a first principle solver that does not impose roughness restrictions. The Method of Moments (MoM) is used for this purpose. Finally, for retrieval of the model parameters of the layered structure using scattered field, an inversion scheme based on the Simulated Annealing method is investigated and a strategy is proposed to address convergence to local minimum.
A Numerical Simulation of Scattering from One-Dimensional Inhomogeneous Dielectric Random Surfaces
NASA Technical Reports Server (NTRS)
Sarabandi, Kamal; Oh, Yisok; Ulaby, Fawwaz T.
1996-01-01
In this paper, an efficient numerical solution for the scattering problem of inhomogeneous dielectric rough surfaces is presented. The inhomogeneous dielectric random surface represents a bare soil surface and is considered to be comprised of a large number of randomly positioned dielectric humps of different sizes, shapes, and dielectric constants above an impedance surface. Clods with nonuniform moisture content and rocks are modeled by inhomogeneous dielectric humps and the underlying smooth wet soil surface is modeled by an impedance surface. In this technique, an efficient numerical solution for the constituent dielectric humps over an impedance surface is obtained using Green's function derived by the exact image theory in conjunction with the method of moments. The scattered field from a sample of the rough surface is obtained by summing the scattered fields from all the individual humps of the surface coherently ignoring the effect of multiple scattering between the humps. The statistical behavior of the scattering coefficient sigma(sup 0) is obtained from the calculation of scattered fields of many different realizations of the surface. Numerical results are presented for several different roughnesses and dielectric constants of the random surfaces. The numerical technique is verified by comparing the numerical solution with the solution based on the small perturbation method and the physical optics model for homogeneous rough surfaces. This technique can be used to study the behavior of scattering coefficient and phase difference statistics of rough soil surfaces for which no analytical solution exists.
Li, Juan; Guo, Li-Xin; Jiao, Yong-Chang; Li, Ke
2011-01-17
Finite-difference time-domain (FDTD) algorithm with a pulse wave excitation is used to investigate the wide-band composite scattering from a two-dimensional(2-D) infinitely long target with arbitrary cross section located above a one-dimensional(1-D) randomly rough surface. The FDTD calculation is performed with a pulse wave incidence, and the 2-D representative time-domain scattered field in the far zone is obtained directly by extrapolating the currently calculated data on the output boundary. Then the 2-D wide-band scattering result is acquired by transforming the representative time-domain field to the frequency domain with a Fourier transform. Taking the composite scattering of an infinitely long cylinder above rough surface as an example, the wide-band response in the far zone by FDTD with the pulsed excitation is computed and it shows a good agreement with the numerical result by FDTD with the sinusoidal illumination. Finally, the normalized radar cross section (NRCS) from a 2-D target above 1-D rough surface versus the incident frequency, and the representative scattered fields in the far zone versus the time are analyzed in detail.
Numerical simulations of quantum devices
NASA Astrophysics Data System (ADS)
Sandu, Titus
This work has been motivated by the tremendous effort toward the next generation of electron devices that will replace the present CMOS (Complementary Metal Oxide Semiconductor). Non-equilibrium Green's function formalism (NEGF) and empirical tight-binding (ETB) methods have been utilized in this dissertation. We studied the transport properties of Si/SiO2 resonant tunneling diodes (RTDs) by employing NEGF. We analyzed the physics of electron transport in Si/SiO2 RTDs and provided some guidelines for the fabrication of such devices by considering the effect of interface roughness scattering. Atomic scale roughness is shown to be acceptable. As the island size of the roughness increases, the peak-to-valley ratio degrades to less than 5 for 1 nm roughness and less than 2 for 2 nm roughness. By the ETB method we calculated electronic and optical properties of the relatively new Si/BeSe0.41Te0.59 system, more precisely Si/BeSe0.41Te0.59 [001] superlattices (SLs). Two interface bands were found in the band gap of bulk silicon. They were related to the polar Si/BeSe0.41Te0.59 interface. In addition, numerical calculations showed that the optical gap is close to the fundamental gap of bulk Si and the transitions are optically allowed. Two more aspects have been studied with NEGF: intrinsic bistability and off-zone center current flow of electrons in the RTD. We showed that broadening of the quasi-bound state in the emitter by scattering reduces intrinsic bistability. So far in different theoretical papers dealing with intrinsic bistability, only the scattering in the well has been considered. Finally, we demonstrated that scattering induces off-zone center current flow of electrons in RTDs. In RTDs electrons usually have a zone-center current flow. This is due to the coherent transport for which Tsu-Esaki formula is valid. On the contrary, holes have off-zone-center current flow. We show that, generally, carrier current flow is off-center, which means that the hole behavior is extended to electrons and is related to the breakdown of the Tsu-Esaki formula. Oblique flow is due to incoherent scattering represented by interface roughness and acoustic phonons. This is a quite new result and has been recently seen experimentally for hole transport.
Impact of gyro-motion and sheath acceleration on the flux distribution on rough surfaces
NASA Astrophysics Data System (ADS)
Schmid, K.; Mayer, M.; Adelhelm, C.; Balden, M.; Lindig, S.; ASDEX Upgrade Team
2010-10-01
As was already observed experimentally, the erosion of tungsten (W) coated graphite (C) tiles in ASDEX-Upgrade (AUG) exhibits regular erosion patterns on the micrometre rough surfaces whose origin is not fully understood: surfaces inclined towards the magnetic field direction show strong net W erosion while surfaces facing away from the magnetic field are shadowed from erosion and may even exhibit net W deposition. This paper presents a model which explains the observed erosion/deposition pattern. It is based on the calculation of ion trajectories dropping through the plasma sheath region to the rough surface with combined magnetic and electrical fields. The surface topography used in the calculations is taken from atomic force microscope measurement of real AUG tiles. The calculated erosion patterns are directly compared with secondary electron microscopy images of the erosion zones from the same location. The erosion on surfaces inclined towards the magnetic field is due to ions from the bulk plasma which enter the sheath gyrating along the magnetic field lines, while the deposition of W on surfaces facing away from the magnetic field is due to promptly re-deposited W that is ionized still within the magnetic pre-sheath.
A generalized theory for eccentric and misalignment effects in high-pressure annular seals
NASA Technical Reports Server (NTRS)
Chen, W. C.; Jackson, E. D.
1986-01-01
High-pressure annular seal leakage and dynamic coefficients vary with eccentricity and misalignment. Recent seal leakage data with both concentric and fully eccentric alignments support the seal leakage model with surface roughness and eccentricity effects included. In this paper, the seal dynamic coefficient calculation has been generalized and allows direct calculation of the seal dynamic coefficients at any circumferential location. The generalized solution agrees with the results obtained by using the calculated values of an earlier paper and performing a coordinate transformation. The analysis results coincide with the measured data in showing that the stiffness and damping matrices of seal coefficients are not skew symmetric, and the main diagonal seal coefficients are not equal. The measured direct stiffnesses were found higher than predicted by the concentric seal theory, but this may be explained by the presence of eccentricity in the test operating mode.
Mechanism and experimental research on ultra-precision grinding of ferrite
NASA Astrophysics Data System (ADS)
Ban, Xinxing; Zhao, Huiying; Dong, Longchao; Zhu, Xueliang; Zhang, Chupeng; Gu, Yawen
2017-02-01
Ultra-precision grinding of ferrite is conducted to investigate the removal mechanism. Effect of the accuracy of machine tool key components on grinding surface quality is analyzed. The surface generation model of ferrite ultra-precision grinding machining is established. In order to reveal the surface formation mechanism of ferrite in the process of ultraprecision grinding, furthermore, the scientific and accurate of the calculation model are taken into account to verify the grinding surface roughness, which is proposed. Orthogonal experiment is designed using the high precision aerostatic turntable and aerostatic spindle for ferrite which is a typical hard brittle materials. Based on the experimental results, the influence factors and laws of ultra-precision grinding surface of ferrite are discussed through the analysis of the surface roughness. The results show that the quality of ferrite grinding surface is the optimal parameters, when the wheel speed of 20000r/mm, feed rate of 10mm/min, grinding depth of 0.005mm, and turntable rotary speed of 5r/min, the surface roughness Ra can up to 75nm.
Evaluation of the surface roughness effect on suspended particle deposition near unpaved roads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Dongzi; Gillies, J. A.; Etyemezian, V.
2015-11-11
The downwind transport and deposition of suspended dust raised by a vehicle driving on unpaved roads was studied for four differently vegetated surfaces in the USA states of Kansas and Washington, and one barren surface in Nevada. A 10 m high tower adjacent to the source (z10 m downwind) and an array of multi-channel optical particle counters at three positions downwind of the source measured the flux of particles and the particle size distribution in the advecting dust plumes in the horizontal and vertical directions. Aerodynamic parameters such as friction velocity (u*) and surface roughness length (z0) were calculated frommore » wind speed measurements made on the tower. Particle number concentration, PM10 mass exhibited an exponential decay along the direction of transport. Coarse particles accounted for z95% of the PM10 mass, at least to a downwind distance of 200 m from the source. PM10 removed by deposition was found to increase with increasing particle size and increasing surface roughness under similar moderate wind speed conditions. The surface of dense, long grass (1.2 m high and complete surface cover) had the greatest reduction of PM10 among the five surfaces tested due to deposition induced by turbulence effects created by the rougher surface and by enhanced particle impaction/ interception effects to the grass blades.« less
Zhao, Wenguang; Qualls, Russell J; Berliner, Pedro R
2008-11-01
A two-concentric-loop iterative (TCLI) method is proposed to estimate the displacement height and roughness length for momentum and sensible heat by using the measurements of wind speed and air temperature at two heights, sensible heat flux above the crop canopy, and the surface temperature of the canopy. This method is deduced theoretically from existing formulae and equations. The main advantage of this method is that data measured not only under near neutral conditions, but also under unstable and slightly stable conditions can be used to calculate the scaling parameters. Based on the data measured above an Acacia Saligna agroforestry system, the displacement height (d0) calculated by the TCLI method and by a conventional method are compared. Under strict neutral conditions, the two methods give almost the same results. Under unstable conditions, d0 values calculated by the conventional method are systematically lower than those calculated by the TCLI method, with the latter exhibiting only slightly lower values than those seen under strictly neutral conditions. Computation of the average values of the scaling parameters for the agroforestry system showed that the displacement height and roughness length for momentum are 68% and 9.4% of the average height of the tree canopy, respectively, which are similar to percentages found in the literature. The calculated roughness length for sensible heat is 6.4% of the average height of the tree canopy, a little higher than the percentages documented in the literature. When wind direction was aligned within 5 degrees of the row direction of the trees, the average displacement height calculated was about 0.6 m lower than when the wind blew across the row direction. This difference was statistically significant at the 0.0005 probability level. This implies that when the wind blows parallel to the row direction, the logarithmic profile of wind speed is shifted lower to the ground, so that, at a given height, the wind speeds are faster than when the wind blows perpendicular to the row direction.
Critical surface roughness for wall bounded flow of viscous fluids in an electric submersible pump
NASA Astrophysics Data System (ADS)
Deshmukh, Dhairyasheel; Siddique, Md Hamid; Kenyery, Frank; Samad, Abdus
2017-11-01
Surface roughness plays a vital role in the performance of an electric submersible pump (ESP). A 3-D numerical analysis has been carried out to find the roughness effect on ESP. The performance of pump for steady wall bounded turbulent flows is evaluated at different roughness values and compared with smooth surface considering a non-dimensional roughness factor K. The k- ω SST turbulence model with fine mesh at near wall region captures the rough wall effects accurately. Computational results are validated with experimental results of water (1 cP), at a design speed (3000 RPM). Maximum head is observed for a hydraulically smooth surface (K=0). When roughness factor is increased, the head decreases till critical roughness factor (K=0.1) due to frictional loss. Further increase in roughness factor (K>0.1) increases the head due to near wall turbulence. The performance of ESP is analyzed for turbulent kinetic energy and eddy viscosity at different roughness values. The wall disturbance over the rough surface affects the pressure distribution and velocity field. The roughness effect is predominant for high viscosity oil (43cP) as compared to water. Moreover, the study at off-design conditions showed that Reynolds number influences the overall roughness effect.
A Synthesis and Comparison of Approaches for Quantifying Coral Reef Structure
NASA Astrophysics Data System (ADS)
Duvall, M. S.; Hench, J. L.
2016-02-01
The complex physical structures of coral reefs provide substrate for benthic organisms, surface area for material fluxes, and have been used as a predictor of reef-fish biomass and biodiversity. Coral reef topography has a first order effect on reef hydrodynamics by imposing drag forces and increasing momentum and scalar dispersion. Despite its importance, quantifying reef topography remains a challenge, as it is patchy and discontinuous while also varying over orders of magnitude in spatial scale. Previous studies have quantified reef structure using a range of 1D and 2D metrics that estimate vertical roughness, which is the departure from a flat geometric profile or surface. However, there is no general mathematical or conceptual framework by which to apply or compare these roughness metrics. While the specific calculations of different metrics vary, we propose that they can be classified into four categories based on: 1) vertical relief relative to a reference height; 2) gradients in vertical relief; 3) surface contour distance; or 4) variations in roughness with scale. We apply metrics from these four classes to idealized reef topography as well as natural reef topography data from Moorea, French Polynesia. Through the use of idealized profiles, we demonstrate the potential for reefs with different morphologies to possess the same value for some scale-dependent metrics (i.e. classes 1-3). Due to the superposition of variable-scale roughness elements in reef topography, we find that multi-scale metrics (i.e. class 4) can better characterize structural complexity by capturing surface roughness across a range of spatial scales. In particular, we provide evidence of the ability of 1D continuous wavelet transforms to detect changes in dominant roughness scales on idealized topography as well as within real reef systems.
Modeling earthquake magnitudes from injection-induced seismicity on rough faults
NASA Astrophysics Data System (ADS)
Maurer, J.; Dunham, E. M.; Segall, P.
2017-12-01
It is an open question whether perturbations to the in-situ stress field due to fluid injection affect the magnitudes of induced earthquakes. It has been suggested that characteristics such as the total injected fluid volume control the size of induced events (e.g., Baisch et al., 2010; Shapiro et al., 2011). On the other hand, Van der Elst et al. (2016) argue that the size distribution of induced earthquakes follows Gutenberg-Richter, the same as tectonic events. Numerical simulations support the idea that ruptures nucleating inside regions with high shear-to-effective normal stress ratio may not propagate into regions with lower stress (Dieterich et al., 2015; Schmitt et al., 2015), however, these calculations are done on geometrically smooth faults. Fang & Dunham (2013) show that rupture length on geometrically rough faults is variable, but strongly dependent on background shear/effective normal stress. In this study, we use a 2-D elasto-dynamic rupture simulator that includes rough fault geometry and off-fault plasticity (Dunham et al., 2011) to simulate earthquake ruptures under realistic conditions. We consider aggregate results for faults with and without stress perturbations due to fluid injection. We model a uniform far-field background stress (with local perturbations around the fault due to geometry), superimpose a poroelastic stress field in the medium due to injection, and compute the effective stress on the fault as inputs to the rupture simulator. Preliminary results indicate that even minor stress perturbations on the fault due to injection can have a significant impact on the resulting distribution of rupture lengths, but individual results are highly dependent on the details of the local stress perturbations on the fault due to geometric roughness.
Remote sensing of soil moisture content over bare fields at 1.4 GHz frequency
NASA Technical Reports Server (NTRS)
Wang, J. R.; Choudhury, B. J.
1980-01-01
A simple method of estimating moisture content (W) of a bare soil from the observed brightness temperature (T sub B) at 1.4 GHz is discussed. The method is based on a radiative transfer model calculation, which has been successfully used in the past to account for many observational results, with some modifications to take into account the effect of surface roughness. Besides the measured T sub B's, the three additional inputs required by the method are the effective soil thermodynamic temperature, the precise relation between W and the smooth field brightness temperature T sub B and a parameter specifying the surface roughness characteristics. The soil effective temperature can be readily measured and the procedures of estimating surface roughness parameter and obtaining the relation between W and smooth field brightness temperature are discussed in detail. Dual polarized radiometric measurements at an off-nadir incident angle are sufficient to estimate both surface roughness parameter and W, provided that the relation between W and smooth field brightness temperature at the same angle is known. The method of W estimate is demonstrated with two sets of experimental data, one from a controlled field experiment by a mobile tower and the other, from aircraft overflight. The results from both data sets are encouraging when the estimated W's are compared with the acquired ground truth of W's in the top 2 cm layer. An offset between the estimated and the measured W's exists in the results of the analyses, but that can be accounted for by the presently poor knowledge of the relationship between W and smooth field brightness temperature for various types of soils. An approach to quantify this relationship for different soils and thus improve the method of W estimate is suggested.
Depth resolution and preferential sputtering in depth profiling of sharp interfaces
NASA Astrophysics Data System (ADS)
Hofmann, S.; Han, Y. S.; Wang, J. Y.
2017-07-01
The influence of preferential sputtering on depth resolution of sputter depth profiles is studied for different sputtering rates of the two components at an A/B interface. Surface concentration and intensity depth profiles on both the sputtering time scale (as measured) and the depth scale are obtained by calculations with an extended Mixing-Roughness-Information depth (MRI)-model. The results show a clear difference for the two extreme cases (a) preponderant roughness and (b) preponderant atomic mixing. In case (a), the interface width on the time scale (Δt(16-84%)) increases with preferential sputtering if the faster sputtering component is on top of the slower sputtering component, but the true resolution on the depth scale (Δz(16-84%)) stays constant. In case (b), the interface width on the time scale stays constant but the true resolution on the depth scale varies with preferential sputtering. For similar order of magnitude of the atomic mixing and the roughness parameters, a transition state between the two extremes is obtained. While the normalized intensity profile of SIMS represents that of the surface concentration, an additional broadening effect is encountered in XPS or AES by the influence of the mean electron escape depth which may even cause an additional matrix effect at the interface.
Effect of Asperity Interactions on Scuffing.
1984-05-01
with the conventionally com - puted flash temperature, calculated film parameter, and ellipse dimensions were then examined and evaluated for evidence...persists * despite the severe working of the surface. Figure 9 is a com - parable set of photographs taken at 500X and 1000X in the scuffed area of the...through 14 were made at magnification of 5,OOOX and thus are directly com - parable. Figure 13 confirms the difference in roughness in the polished and
NASA Astrophysics Data System (ADS)
Kaboli, Shirin; McDermid, Joseph R.
2014-08-01
A galvanizing simulator was used to determine the effect of galvanizing bath antimony (Sb) content, substrate surface roughness, and cooling rate on the microstructural development of metallic zinc coatings. Substrate surface roughness was varied through the use of relatively rough hot-rolled and relatively smooth bright-rolled steels, cooling rates were varied from 0.1 to 10 K/s, and bulk bath Sb levels were varied from 0 to 0.1 wt pct. In general, it was found that increasing bath Sb content resulted in coatings with a larger grain size and strongly promoted the development of coatings with the close-packed {0002} basal plane parallel to the substrate surface. Increasing substrate surface roughness tended to decrease the coating grain size and promoted a more random coating crystallographic texture, except in the case of the highest Sb content bath (0.1 wt pct Sb), where substrate roughness had no significant effect on grain size except at higher cooling rates (10 K/s). Increased cooling rates tended to decrease the coating grain size and promote the {0002} basal orientation. Calculations showed that increasing the bath Sb content from 0 to 0.1 wt pct Sb increased the dendrite tip growth velocity from 0.06 to 0.11 cm/s by decreasing the solid-liquid interface surface energy from 0.77 to 0.45 J/m2. Increased dendrite tip velocity only partially explains the formation of larger zinc grains at higher Sb levels. It was also found that the classic nucleation theory cannot completely explain the present experimental observations, particularly the effect of increasing the bath Sb, where the classical theory predicts increased nucleation and a finer grain size. In this case, the "poisoning" theory of nucleation sites by segregated Sb may provide a partial explanation. However, any analysis is greatly hampered by the lack of fundamental thermodynamic information such as partition coefficients and surface energies and by a lack of fundamental structural studies. Overall, it was concluded that the fundamental mechanisms behind the microstructural development of solidified metallic zinc coatings have yet to be completely elucidated and require further investigation.
Effect of Blade Roughness on Transition and Wind Turbine Performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehrmann, Robert S.; White, E. B.
The real-world effect of accumulated surface roughness on wind-turbine power production is not well understood. To isolate specific blade roughness features and test their effect, field measurements of turbine-blade roughness were made and simulated on a NACA 633-418 airfoil in a wind tunnel. Insect roughness, paint chips, and erosion were characterized then manufactured. In the tests, these roughness configurations were recreated as distributed roughness, a forward-facing step, and an eroded leading edge. Distributed roughness was tested in three heights and five densities. Chord Reynolds number was varied between 0:8 to 4:8 × 10 6. Measurements included lift, drag, pitching moment,more » and boundary-layer transition location. Results indicate minimal effect from paint-chip roughness. As distributed roughness height and density increase, the lift-curve slope, maximum lift, and lift-to-drag ratio decrease. As Reynolds number increases, natural transition is replaced by bypass transition. The critical roughness Reynolds number varies between 178 to 318, within the historical range. At a chord Reynolds number of 3:2 × 10 6, the maximum lift-to-drag ratio decreases 40% for 140 μm roughness, corresponding to a 2.3% loss in annual energy production. Simulated performance loss compares well to measured performance loss of an in-service wind turbine.« less
NASA Astrophysics Data System (ADS)
Thomsen, L. M.; Baartman, J. E. M.; Barneveld, R. J.; Starkloff, T.; Stolte, J.
2015-04-01
Quantification of soil roughness, i.e. the irregularities of the soil surface due to soil texture, aggregates, rock fragments and land management, is important as it affects surface storage, infiltration, overland flow, and ultimately sediment detachment and erosion. Roughness has been measured in the field using both contact methods (such as roller chain and pinboard) and sensor methods (such as stereophotogrammetry and terrestrial laser scanning (TLS)). A novel depth-sensing technique, originating in the gaming industry, has recently become available for earth sciences: the Xtion Pro method. Roughness data obtained using various methods are assumed to be similar; this assumption is tested in this study by comparing five different methods to measure roughness in the field on 1 m2 agricultural plots with different management (ploughing, harrowing, forest and direct seeding on stubble) in southern Norway. Subsequently, the values were used as input for the LISEM soil erosion model to test their effect on the simulated hydrograph at catchment scale. Results show that statistically significant differences between the methods were obtained only for the fields with direct seeding on stubble; for the other land management types the methods were in agreement. The spatial resolution of the contact methods was much lower than for the sensor methods (10 000 versus at least 57 000 points per square metre). In terms of costs and ease of use in the field, the Xtion Pro method is promising. Results from the LISEM model indicate that especially the roller chain overestimated the random roughness (RR) values and the model subsequently calculated less surface runoff than measured. In conclusion, the choice of measurement method for roughness data matters and depends on the required accuracy, resolution, mobility in the field and available budget. It is recommended to use only one method within one study.
Potential impacts of robust surface roughness indexes on DTM-based segmentation
NASA Astrophysics Data System (ADS)
Trevisani, Sebastiano; Rocca, Michele
2017-04-01
In this study, we explore the impact of robust surface texture indexes based on MAD (median absolute differences), implemented by Trevisani and Rocca (2015), in the unsupervised morphological segmentation of an alpine basin. The area was already object of a geomorphometric analysis, consisting in the roughness-based segmentation of the landscape (Trevisani et al. 2012); the roughness indexes were calculated on a high resolution DTM derived by means of airborne Lidar using the variogram as estimator. The calculated roughness indexes have been then used for the fuzzy clustering (Odeh et al., 1992; Burrough et al., 2000) of the basin, revealing the high informative geomorphometric content of the roughness-based indexes. However, the fuzzy clustering revealed a high fuzziness and a high degree of mixing between textural classes; this was ascribed both to the morphological complexity of the basin and to the high sensitivity of variogram to non-stationarity and signal-noise. Accordingly, we explore how the new implemented roughness indexes based on MAD affect the morphological segmentation of the studied basin. References Burrough, P.A., Van Gaans, P.F.M., MacMillan, R.A., 2000. High-resolution landform classification using fuzzy k-means. Fuzzy Sets and Systems 113, 37-52. Odeh, I.O.A., McBratney, A.B., Chittleborough, D.J., 1992. Soil pattern recognition with fuzzy-c-means: application to classification and soil-landform interrelationships. Soil Sciences Society of America Journal 56, 505-516. Trevisani, S., Cavalli, M. & Marchi, L. 2012, "Surface texture analysis of a high-resolution DTM: Interpreting an alpine basin", Geomorphology, vol. 161-162, pp. 26-39. Trevisani, S. & Rocca, M. 2015, "MAD: Robust image texture analysis for applications in high resolution geomorphometry", Computers and Geosciences, vol. 81, pp. 78-92.
Boundary Layer Control for Hypersonic Airbreathing Vehicles
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Nowak, Robert J.; Horvath, Thomas J.
2004-01-01
Active and passive methods for tripping hypersonic boundary layers have been examined in NASA Langley Research Center wind tunnels using a Hyper-X model. This investigation assessed several concepts for forcing transition, including passive discrete roughness elements and active mass addition (or blowing), in the 20-Inch Mach 6 Air and the 31-Inch Mach 10 Air Tunnels. Heat transfer distributions obtained via phosphor thermography, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. The comparisons between the active and passive methods for boundary layer control were conducted at test conditions that nearly match the Hyper-X nominal Mach 7 flight test-point of an angle-of-attack of 2-deg and length Reynolds number of 5.6 million. For passive roughness, the primary parametric variation was a range of trip heights within the calculated boundary layer thickness for several trip concepts. The passive roughness study resulted in a swept ramp configuration, scaled to be roughly 0.6 of the calculated boundary layer thickness, being selected for the Mach 7 flight vehicle. For the active blowing study, the manifold pressure was systematically varied (while monitoring the mass flow) for each configuration to determine the jet penetration height, with schlieren, and transition movement, with the phosphor system, for comparison to the passive results. All the blowing concepts tested, which included various rows of sonic orifices (holes), two- and three-dimensional slots, and random porosity, provided transition onset near the trip location with manifold stagnation pressures on the order of 40 times the model surface static pressure, which is adequate to ensure sonic jets. The present results indicate that the jet penetration height for blowing was roughly half the height required with passive roughness elements for an equivalent amount of transition movement.
Comparison of selected approaches for urban roughness determination based on voronoi cells.
Ketterer, Christine; Gangwisch, Marcel; Fröhlich, Dominik; Matzarakis, Andreas
2017-01-01
Wind speed is reduced above urban areas due to their high aerodynamic roughness. This not only holds for above the urban canopy. The local vertical wind profile is modified. Aerodynamic roughness (both roughness length and displacement height) therefore is relevant for many fields within human biometeorology, e.g. for the identification of ventilation paths, the concentration and dispersion of air pollutants at street level or to simulate wind speed and direction in urban environments and everything depending on them. Roughness, thus, also shows strong influence on human thermal comfort. Currently, roughness parameters are mostly estimated using classifications. However, such classifications only provide limited assessment of roughness in urban areas. In order to calculate spatially resolved roughness on the micro-scale, three different approaches were implemented in the SkyHelios model. For all of them, the urban area is divided into reference areas for each of the obstacles using a voronoi diagram. The three approaches are based on building and [+one of them also on] vegetation (trees and forests) data. They were compared for the city of Stuttgart, Germany. Results show that the approach after Bottema and Mestayer (J Wind Eng Ind Aerodyn 74-76:163-173 1998) on the spatial basis of a voronoi diagram provides the most plausible results.
NASA Astrophysics Data System (ADS)
Chung, Juyeon; Hagishima, Aya; Ikegaya, Naoki; Tanimoto, Jun
2015-11-01
We report the result of a wind-tunnel experiment to measure the scalar transfer efficiency of three types of surfaces, wet street surfaces of cube arrays, wet smooth surfaces with dry patches, and fully wet smooth surfaces, to examine the effects of roughness topography and scalar source allocation. Scalar transfer coefficients defined by the source area {C}_{E wet} for an underlying wet street surface of dry block arrays show a convex trend against the block density λ _p. Comparison with past data, and results for wet smooth surfaces including dry patches, reveal that the positive peak of {C}_{E wet} with increasing λ _p is caused by reduced horizontal advection due to block roughness and enhanced evaporation due to a heterogeneous scalar source distribution. In contrast, scalar transfer coefficients defined by a lot-area including wet and dry areas {C}_{E lot} for smooth surfaces with dry patches indicate enhanced evaporation compared to the fully wet smooth surface (the oasis effect) for all three conditions of dry plan-area ratio up to 31 %. Relationships between the local Sherwood and Reynolds numbers derived from experimental data suggest that attenuation of {C}_{E wet} for a wet street of cube arrays against streamwise distance is weaker than for a wet smooth surface because of canopy flow around the blocks. Relevant parameters of ratio of roughness length for momentum to scalar {B}^{-1} were calculated from observational data. The result implies that {B}^{-1} possibly increases with block roughness, and decreases with the partitioning of the scalar boundary layer because of dry patches.
NASA Astrophysics Data System (ADS)
Alexakis, Dimitrios; Seiradakis, Kostas; Tsanis, Ioannis
2016-04-01
This article presents a remote sensing approach for spatio-temporal monitoring of both soil erosion and roughness using an Unmanned Aerial Vehicle (UAV). Soil erosion by water is commonly known as one of the main reasons for land degradation. Gully erosion causes considerable soil loss and soil degradation. Furthermore, quantification of soil roughness (irregularities of the soil surface due to soil texture) is important and affects surface storage and infiltration. Soil roughness is one of the most susceptible to variation in time and space characteristics and depends on different parameters such as cultivation practices and soil aggregation. A UAV equipped with a digital camera was employed to monitor soil in terms of erosion and roughness in two different study areas in Chania, Crete, Greece. The UAV followed predicted flight paths computed by the relevant flight planning software. The photogrammetric image processing enabled the development of sophisticated Digital Terrain Models (DTMs) and ortho-image mosaics with very high resolution on a sub-decimeter level. The DTMs were developed using photogrammetric processing of more than 500 images acquired with the UAV from different heights above the ground level. As the geomorphic formations can be observed from above using UAVs, shadowing effects do not generally occur and the generated point clouds have very homogeneous and high point densities. The DTMs generated from UAV were compared in terms of vertical absolute accuracies with a Global Navigation Satellite System (GNSS) survey. The developed data products were used for quantifying gully erosion and soil roughness in 3D as well as for the analysis of the surrounding areas. The significant elevation changes from multi-temporal UAV elevation data were used for estimating diachronically soil loss and sediment delivery without installing sediment traps. Concerning roughness, statistical indicators of surface elevation point measurements were estimated and various parameters such as standard deviation of DTM, deviation of residual and standard deviation of prominence were calculated directly from the extracted DTM. Sophisticated statistical filters and elevation indices were developed to quantify both soil erosion and roughness. The applied methodology for monitoring both soil erosion and roughness provides an optimum way of reducing the existing gap between field scale and satellite scale. Keywords : UAV, soil, erosion, roughness, DTM
NASA Astrophysics Data System (ADS)
Bell, A.; Hioki, S.; Wang, Y.; Yang, P.; Di Girolamo, L.
2016-12-01
Previous studies found that including ice particle surface roughness in forward light scattering calculations significantly reduces the differences between observed and simulated polarimetric and radiometric observations. While it is suggested that some degree of roughness is desirable, the appropriate degree of surface roughness to be assumed in operational cloud property retrievals and the sensitivity of retrieval products to this assumption remains uncertain. In an effort to extricate this ambiguity, we will present a sensitivity analysis of space-borne multi-angle observations of reflectivity, to varying degrees of surface roughness. This process is two fold. First, sampling information and statistics of Multi-angle Imaging SpectroRadiometer (MISR) sensor data aboard the Terra platform, will be used to define the most coming viewing observation geometries. Using these defined geometries, reflectivity will be simulated for multiple degrees of roughness using results from adding-doubling radiative transfer simulations. Sensitivity of simulated reflectivity to surface roughness can then be quantified, thus yielding a more robust retrieval system. Secondly, sensitivity of the inverse problem will be analyzed. Spherical albedo values will be computed by feeding blocks of MISR data comprising cloudy pixels over ocean into the retrieval system, with assumed values of surface roughness. The sensitivity of spherical albedo to the inclusion of surface roughness can then be quantified, and the accuracy of retrieved parameters can be determined.
Simulation of turbulence in the divertor region of tokamak edge plasma
NASA Astrophysics Data System (ADS)
Umansky, M. V.; Rognlien, T. D.; Xu, X. Q.
2005-03-01
Results are presented for turbulence simulations with the fluid edge turbulence code BOUT [X.Q. Xu, R.H. Cohen, Contr. Plas. Phys. 36 (1998) 158]. The present study is focussed on turbulence in the divertor leg region and on the role of the X-point in the structure of turbulence. Results of the present calculations indicate that the ballooning effects are important for the divertor fluctuations. The X-point shear leads to weak correlation of turbulence across the X-point regions, in particular for large toroidal wavenumber. For the saturated amplitudes of the divertor region turbulence it is found that amplitudes of density fluctuations are roughly proportional to the local density of the background plasma. The amplitudes of electron temperature and electric potential fluctuations are roughly proportional to the local electron temperature of the background plasma.
Effects of Surface Nonuniformities on the Mean Transverse Energy from Photocathodes
NASA Astrophysics Data System (ADS)
Karkare, Siddharth; Bazarov, Ivan
2015-08-01
The performance of photoinjectors is limited by the lowest value of the mean transverse energy of the electrons obtained from photocathodes. The factors that influence the mean transverse energy are poorly understood. In this paper, we develop models to calculate the effect of spatial work-function variations and subnanometer-scale roughness and surface defects on the mean transverse energy. We show that these can limit the lowest value of mean transverse energy achieved and that atomically perfect surfaces will be required to further reduce the mean transverse energy obtained from photocathodes.
NASA Astrophysics Data System (ADS)
Ghogare, Trupti T.; Kartha, Moses J.; Kendre, Subhash D.; Pathan, Habib M.
2018-04-01
Monte-Carlo Ballistic Deposition simulations have done on substrates with different initial roughness. The grown films were observed to be porous. The initial growths of the films with seed like initiations are observed for substrate with high initial roughness. In order to confirm this effect TiO2 films were deposited on different substrates using chemical bath deposition. The surface morphological and optical properties were measured using scanning electron microscopy and a UV-Vis spectrophotometer. Flower like porous structure are obtained on glass substrate and continuous porous morphology is formed on ITO substrate. The morphology of the surfaces was successfully reconstructed and the surface porosity was calculated after digitalising images and reconstructed the surfaces. The TiO2 film formed on ITO is observed to be 10% more porous than on the film formed on glass substrate. Diffusion Limited Aggregation simulations with multiple seeds confirms that the observed flower like structure formed are due to the screening effects of the diffusing ion by already deposited particles.
Transport and Clogging of Particulate Flow in Fracture Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koplik, Joel
The aim of the project is to understand the effects of confinement in narrow rough-walled fractures on the transport behavior of fluids and suspended particles in subsurface hydro- carbon reservoirs. A key motivation for the study is that such fracture systems provide the highest throughput in oil and gas extraction and have been the focus of recent industrial activity. The scientific challenge is to understand how the confined geometry alters transport phenomena, and in particular its influence on (diagnostic) tracer transport and the effects of flow channeling and clogging on fluid motion. An important complicating feature of geological fractures ismore » the self-affine fractal nature of their surface roughness, leading to irregular but correlated fluid and particle motion. The key technique used is computer simulation, augmented by analytical calculations and collaboration with outside experimental colleagues when possible. The principal topics studied were fluid permeability, tracer dispersion, flow channeling and anisotropy, particle transport in narrow channels and particle trapping in tight fractures.« less
NASA Astrophysics Data System (ADS)
Heimann, F. U. M.; Rickenmann, D.; Turowski, J. M.; Kirchner, J. W.
2014-07-01
Especially in mountainuous environments, the prediction of sediment dynamics is important for managing natural hazards, assessing in-stream habitats, and understanding geomorphic evolution. We present the new modelling tool sedFlow for simulating fractional bedload transport dynamics in mountain streams. The model can deal with the effects of adverse slopes and uses state of the art approaches for quantifying macro-roughness effects in steep channels. Local grain size distributions are dynamically adjusted according to the transport dynamics of each grain size fraction. The tool sedFlow features fast calculations and straightforward pre- and postprocessing of simulation data. The model is provided together with its complete source code free of charge under the terms of the GNU General Public License (www.wsl.ch/sedFlow). Examples of the application of sedFlow are given in a companion article by Heimann et al. (2014).
Photonic-Doppler-Velocimetry, Paraxial-Scalar Diffraction Theory and Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambrose, W. P.
2015-07-20
In this report I describe current progress on a paraxial, scalar-field theory suitable for simulating what is measured in Photonic Doppler Velocimetry (PDV) experiments in three dimensions. I have introduced a number of approximations in this work in order to bring the total computation time for one experiment down to around 20 hours. My goals were: to develop an approximate method of calculating the peak frequency in a spectral sideband at an instant of time based on an optical diffraction theory for a moving target, to compare the ‘measured’ velocity to the ‘input’ velocity to gain insights into how andmore » to what precision PDV measures the component of the mass velocity along the optical axis, and to investigate the effects of small amounts of roughness on the measured velocity. This report illustrates the progress I have made in describing how to perform such calculations with a full three dimensional picture including tilted target, tilted mass velocity (not necessarily in the same direction), and small amounts of surface roughness. With the method established for a calculation at one instant of time, measured velocities can be simulated for a sequence of times, similar to the process of sampling velocities in experiments. Improvements in these methods are certainly possible at hugely increased computational cost. I am hopeful that readers appreciate the insights possible at the current level of approximation.« less
Light trapping in thin-film solar cells with randomly rough and hybrid textures.
Kowalczewski, Piotr; Liscidini, Marco; Andreani, Lucio Claudio
2013-09-09
We study light-trapping in thin-film silicon solar cells with rough interfaces. We consider solar cells made of different materials (c-Si and μc-Si) to investigate the role of size and nature (direct/indirect) of the energy band gap in light trapping. By means of rigorous calculations we demonstrate that the Lambertian Limit of absorption can be obtained in a structure with an optimized rough interface. We gain insight into the light trapping mechanisms by analysing the optical properties of rough interfaces in terms of Angular Intensity Distribution (AID) and haze. Finally, we show the benefits of merging ordered and disordered photonic structures for light trapping by studying a hybrid interface, which is a combination of a rough interface and a diffraction grating. This approach gives a significant absorption enhancement for a roughness with a modest size of spatial features, assuring good electrical properties of the interface. All the structures presented in this work are compatible with present-day technologies, giving recent progress in fabrication of thin monocrystalline silicon films and nanoimprint lithography.
Roughness Effects on Fretting Fatigue
NASA Astrophysics Data System (ADS)
Yue, Tongyan; Abdel Wahab, Magd
2017-05-01
Fretting is a small oscillatory relative motion between two normal loaded contact surfaces. It may cause fretting fatigue, fretting wear and/or fretting corrosion damage depending on various fretting couples and working conditions. Fretting fatigue usually occurs at partial slip condition, and results in catastrophic failure at the stress levels below the fatigue limit of the material. Many parameters may affect fretting behaviour, including the applied normal load and displacement, material properties, roughness of the contact surfaces, frequency, etc. Since fretting damage is undesirable due to contacting, the effect of rough contact surfaces on fretting damage has been studied by many researchers. Experimental method on this topic is usually focusing on rough surface effects by finishing treatment and random rough surface effects in order to increase fretting fatigue life. However, most of numerical models on roughness are based on random surface. This paper reviewed both experimental and numerical methodology on the rough surface effects on fretting fatigue.
NASA Technical Reports Server (NTRS)
Von Doenhoff, Albert E; Horton, Elmer A
1958-01-01
An investigation was made in the Langley low-turbulence pressure tunnel to determine the effect of size and location of a sandpaper type of roughness on the Reynolds number for transition. Transition was observed by means of a hot-wire anemometer located at various chordwise stations for each position of the roughness. These observations indicated that when the roughness is sufficiently submerged in the boundary layer to provide a substantially linear variation of boundary-layer velocity with distance from the surface up to the top of the roughness, turbulent "spots" begin to appear immediately behind the roughness when the Reynolds number based on the velocity at the top of the roughness height exceeds a value of approximately 600. At Reynolds numbers even slightly below the critical value (value for transition), the sandpaper type of roughness introduced no measurable disturbances into the laminar layer downstream of the roughness. The extent of the roughness area does not appear to have an important effect on the critical value of the roughness Reynolds number.
Role of rough surface topography on gas slip flow in microchannels.
Zhang, Chengbin; Chen, Yongping; Deng, Zilong; Shi, Mingheng
2012-07-01
We conduct a lattice Boltzmann simulation of gas slip flow in microchannels incorporating rough surface effects as characterized by fractal geometry with a focus on gas-solid interaction. The gas slip flow in rough microchannels, which is characterized by Poiseuille number and mass flow rate, is evaluated and compared with smooth microchannels. The effects of roughness height, surface fractal dimension, and Knudsen number on slip behavior of gas flow in microchannels are all investigated and discussed. The results indicate that the presence of surface roughness reduces boundary slip for gas flow in microchannels with respect to a smooth surface. The gas flows at the valleys of rough walls are no-slip while velocity slips are observed over the top of rough walls. We find that the gas flow behavior in rough microchannels is insensitive to the surface topography irregularity (unlike the liquid flow in rough microchannels) but is influenced by the statistical height of rough surface and rarefaction effects. In particular, decrease in roughness height or increase in Knudsen number can lead to large wall slip for gas flow in microchannels.
Quantum simulation of an ultrathin body field-effect transistor with channel imperfections
NASA Astrophysics Data System (ADS)
Vyurkov, V.; Semenikhin, I.; Filippov, S.; Orlikovsky, A.
2012-04-01
An efficient program for the all-quantum simulation of nanometer field-effect transistors is elaborated. The model is based on the Landauer-Buttiker approach. Our calculation of transmission coefficients employs a transfer-matrix technique involving the arbitrary precision (multiprecision) arithmetic to cope with evanescent modes. Modified in such way, the transfer-matrix technique turns out to be much faster in practical simulations than that of scattering-matrix. Results of the simulation demonstrate the impact of realistic channel imperfections (random charged centers and wall roughness) on transistor characteristics. The Landauer-Buttiker approach is developed to incorporate calculation of the noise at an arbitrary temperature. We also validate the ballistic Landauer-Buttiker approach for the usual situation when heavily doped contacts are indispensably included into the simulation region.
Rough surface scattering based on facet model
NASA Technical Reports Server (NTRS)
Khamsi, H. R.; Fung, A. K.; Ulaby, F. T.
1974-01-01
A model for the radar return from bare ground was developed to calculate the radar cross section of bare ground and the effect of the frequency averaging on the reduction of the variance of the return. It is shown that, by assuming that the distribution of the slope to be Gaussian and that the distribution of the length of the facet to be in the form of the positive side of a Gaussian distribution, the results are in good agreement with experimental data collected by an 8- to 18-GHz radar spectrometer system. It is also shown that information on the exact correlation length of the small structure on the ground is not necessary; an effective correlation length may be calculated based on the facet model and the wavelength of the incident wave.
New Bottom Roughness Calculation from Multibeam Echo Sounders for Mine Warfare
2012-09-01
complex including craters, gullies, seaweed , rocks, sand ridges, tall obstructions, deep holes and sloping regions. Underwater mines can be hidden...and shadows for detecting objects lying on the seafloor. The seafloor is rather complex including craters, gullies, seaweed , rocks, sand ridges, tall...roughness as craters, gullies, seaweed , sand ridges, tall obstructions, deep holes, or steeply sloping regions. Slopes can make it possible for mines to
Analysis of accuracy in photogrammetric roughness measurements
NASA Astrophysics Data System (ADS)
Olkowicz, Marcin; Dąbrowski, Marcin; Pluymakers, Anne
2017-04-01
Regarding permeability, one of the most important features of shale gas reservoirs is the effective aperture of cracks opened during hydraulic fracturing, both propped and unpropped. In a propped fracture, the aperture is controlled mostly by proppant size and its embedment, and fracture surface roughness only has a minor influence. In contrast, in an unpropped fracture aperture is controlled by the fracture roughness and the wall displacement. To measure fracture surface roughness, we have used the photogrammetric method since it is time- and cost-efficient. To estimate the accuracy of this method we compare the photogrammetric measurements with reference measurements taken with a White Light Interferometer (WLI). Our photogrammetric setup is based on high resolution 50 Mpx camera combined with a focus stacking technique. The first step for photogrammetric measurements is to determine the optimal camera positions and lighting. We compare multiple scans of one sample, taken with different settings of lighting and camera positions, with the reference WLI measurement. The second step is to perform measurements of all studied fractures with the parameters that produced the best results in the first step. To compare photogrammetric and WLI measurements we regrid both data sets onto a regular 10 μm grid and determined the best fit, followed by a calculation of the difference between the measurements. The first results of the comparison show that for 90 % of measured points the absolute vertical distance between WLI and photogrammetry is less than 10 μm, while the mean absolute vertical distance is 5 μm. This proves that our setup can be used for fracture roughness measurements in shales.
Composite Behavior of Insulated Concrete Sandwich Wall Panels Subjected to Wind Pressure and Suction
Choi, Insub; Kim, JunHee; Kim, Ho-Ryong
2015-01-01
A full-scale experimental test was conducted to analyze the composite behavior of insulated concrete sandwich wall panels (ICSWPs) subjected to wind pressure and suction. The experimental program was composed of three groups of ICSWP specimens, each with a different type of insulation and number of glass-fiber-reinforced polymer (GFRP) shear grids. The degree of composite action of each specimen was analyzed according to the load direction, type of the insulation, and number of GFRP shear grids by comparing the theoretical and experimental values. The failure modes of the ICSWPs were compared to investigate the effect of bonds according to the load direction and type of insulation. Bonds based on insulation absorptiveness were effective to result in the composite behavior of ICSWP under positive loading tests only, while bonds based on insulation surface roughness were effective under both positive and negative loading tests. Therefore, the composite behavior based on surface roughness can be applied to the calculation of the design strength of ICSWPs with continuous GFRP shear connectors. PMID:28788001
Modeling Surface Roughness to Estimate Surface Moisture Using Radarsat-2 Quad Polarimetric SAR Data
NASA Astrophysics Data System (ADS)
Nurtyawan, R.; Saepuloh, A.; Budiharto, A.; Wikantika, K.
2016-08-01
Microwave backscattering from the earth's surface depends on several parameters such as surface roughness and dielectric constant of surface materials. The two parameters related to water content and porosity are crucial for estimating soil moisture. The soil moisture is an important parameter for ecological study and also a factor to maintain energy balance of land surface and atmosphere. Direct roughness measurements to a large area require extra time and cost. Heterogeneity roughness scale for some applications such as hydrology, climate, and ecology is a problem which could lead to inaccuracies of modeling. In this study, we modeled surface roughness using Radasat-2 quad Polarimetric Synthetic Aperture Radar (PolSAR) data. The statistical approaches to field roughness measurements were used to generate an appropriate roughness model. This modeling uses a physical SAR approach to predicts radar backscattering coefficient in the parameter of radar configuration (wavelength, polarization, and incidence angle) and soil parameters (surface roughness and dielectric constant). Surface roughness value is calculated using a modified Campbell and Shepard model in 1996. The modification was applied by incorporating the backscattering coefficient (σ°) of quad polarization HH, HV and VV. To obtain empirical surface roughness model from SAR backscattering intensity, we used forty-five sample points from field roughness measurements. We selected paddy field in Indramayu district, West Java, Indonesia as the study area. This area was selected due to intensive decreasing of rice productivity in the Northern Coast region of West Java. Third degree polynomial is the most suitable data fitting with coefficient of determination R2 and RMSE are about 0.82 and 1.18 cm, respectively. Therefore, this model is used as basis to generate the map of surface roughness.
In Vitro Assessment of Early Bacterial Activity on Micro/Nanostructured Ti6Al4V Surfaces.
Valdez-Salas, Benjamin; Beltrán-Partida, Ernesto; Castillo-Uribe, Sandra; Curiel-Álvarez, Mario; Zlatev, Roumen; Stoytcheva, Margarita; Montero-Alpírez, Gisela; Vargas-Osuna, Lidia
2017-05-18
It is imperative to understand and systematically compare the initial interactions between bacteria genre and surface properties. Thus, we fabricated a flat, anodized with 80 nm TiO₂ nanotubes (NTs), and a rough Ti6Al4V surface. The materials were characterized using field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM). We cultured in vitro Staphylococcus epidermidis ( S. epidermidis ) and Pseudomonas aeruginosa ( P. aeruginosa ) to evaluate the bacterial-surface behavior by FE-SEM and viability calculation. In addition, the initial effects of human osteoblasts were tested on the materials. Gram-negative bacteria showed promoted adherence and viability over the flat and rough surface, while NTs displayed opposite activity with altered morphology. Gram-positive bacteria illustrated similar cellular architecture over the surfaces but with promoted surface adhesion bonds on the flat alloy. Rough surfaces supported S. epidermidis viability, whilst NTs exhibited lower vitality. NTs advocated promoted better osteoblast organization with enhanced vitality. Gram-positive bacteria suggested preferred adhesion capability over flat and carbon-rich surfaces. Gram-negative bacteria were strongly disturbed by NTs but largely stimulated by flat and rough materials. Our work proposed that the chemical profile of the material surface and the bacterial cell wall characteristics might play an important role in the bacteria-surface interactions.
Scattering Properties of Large Irregular Cosmic Dust Particles at Visible Wavelengths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escobar-Cerezo, J.; Palmer, C.; Muñoz, O.
The effect of internal inhomogeneities and surface roughness on the scattering behavior of large cosmic dust particles is studied by comparing model simulations with laboratory measurements. The present work shows the results of an attempt to model a dust sample measured in the laboratory with simulations performed by a ray-optics model code. We consider this dust sample as a good analogue for interplanetary and interstellar dust as it shares its refractive index with known materials in these media. Several sensitivity tests have been performed for both structural cases (internal inclusions and surface roughness). Three different samples have been selected tomore » mimic inclusion/coating inhomogeneities: two measured scattering matrices of hematite and white clay, and a simulated matrix for water ice. These three matrices are selected to cover a wide range of imaginary refractive indices. The selection of these materials also seeks to study astrophysical environments of interest such as Mars, where hematite and clays have been detected, and comets. Based on the results of the sensitivity tests shown in this work, we perform calculations for a size distribution of a silicate-type host particle model with inclusions and surface roughness to reproduce the experimental measurements of a dust sample. The model fits the measurements quite well, proving that surface roughness and internal structure play a role in the scattering pattern of irregular cosmic dust particles.« less
NASA Astrophysics Data System (ADS)
Burakowski, E. A.; Tawfik, A. B.; Ouimette, A.; Lepine, L. C.; Ollinger, S. V.; Bonan, G. B.; Zarzycki, C. M.; Novick, K. A.
2016-12-01
Changes in land use, land cover, or both promote changes in surface temperature that can amplify or dampen long-term trends driven by natural and anthropogenic climate change by modifying the surface energy budget, primarily through differences in albedo, evapotranspiration, and aerodynamic roughness. Recent advances in variable resolution global models provide the tools necessary to investigate local and global impacts of land use and land cover change by embedding a high-resolution grid over areas of interest in a seamless and computationally efficient manner. Here, we used two eddy covariance tower clusters in the Eastern US (University of New Hampshire UNH and Duke Forest) to validate simulation of surface energy fluxes and properties by the uncoupled Community Land Model (PTCLM4.5) and coupled land-atmosphere Variable-Resolution Community Earth System Model (VR-CESM1.3). Surface energy fluxes and properties are generally well captured by the models for grassland sites, however forested sites tend to underestimate latent heat and overestimate sensible heat flux. Surface roughness emerged as the dominant biophysical forcing factor affecting surface temperature in the eastern United States, generally leading to warmer nighttime temperatures and cooler daytime temperatures. However, the sign and magnitude of the roughness effect on surface temperature was highly sensitive to the calculation of aerodynamic resistance to heat transfer.
Intrinsic to extrinsic phonon lifetime transition in a GaAs-AlAs superlattice.
Hofmann, F; Garg, J; Maznev, A A; Jandl, A; Bulsara, M; Fitzgerald, E A; Chen, G; Nelson, K A
2013-07-24
We have measured the lifetimes of two zone-center longitudinal acoustic phonon modes, at 320 and 640 GHz, in a 14 nm GaAs/2 nm AlAs superlattice structure. By comparing measurements at 296 and 79 K we separate the intrinsic contribution to phonon lifetime determined by phonon-phonon scattering from the extrinsic contribution due to defects and interface roughness. At 296 K, the 320 GHz phonon lifetime has approximately equal contributions from intrinsic and extrinsic scattering, whilst at 640 GHz it is dominated by extrinsic effects. These measurements are compared with intrinsic and extrinsic scattering rates in the superlattice obtained from first-principles lattice dynamics calculations. The calculated room-temperature intrinsic lifetime of longitudinal phonons at 320 GHz is in agreement with the experimentally measured value of 0.9 ns. The model correctly predicts the transition from predominantly intrinsic to predominantly extrinsic scattering; however the predicted transition occurs at higher frequencies. Our analysis indicates that the 'interfacial atomic disorder' model is not entirely adequate and that the observed frequency dependence of the extrinsic scattering rate is likely to be determined by a finite correlation length of interface roughness.
Surface characterization and adhesion and friction properties of hydrophobic leaf surfaces.
Burton, Zachary; Bhushan, Bharat
2006-01-01
Super-hydrophobic surfaces as well as low adhesion and friction are desirable for various industrial applications. Certain plant leaves are known to be hydrophobic in nature. These leaves are hydrophobic due to the presence of microbumps and a thin wax film on the surface of the leaf. The purpose of this study is to fully characterize the leaf surface and to separate out the effects of the microbumps and the wax on the hydrophobicity. Furthermore, the adhesion and friction properties of the leaves, with and without wax, are studied. Using an optical profiler and an atomic/friction force microscope (AFM/FFM), measurements on the hydrophobic leaves, both with and without wax, were made to fully characterize the leaf surface. Using a model that predicts contact angle as a function of roughness, the roughness factor for the hydrophobic leaves has been calculated, which is used to calculate the contact angle for a flat leaf surface. It is shown that both the microbumps and the wax play an equally important role in the hydrophobic nature as well as adhesion and friction of the leaf. This study will be useful in developing super-hydrophobic surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belushkin, A. V., E-mail: belushk@nf.jinr.ru; Manoshin, S. A., E-mail: manoshin@nf.jinr.ru; Rikhvitskiy, V. S.
2016-09-15
The applicability of the modified kinematic approximation to describe the off-specular neutron scattering from interfaces between media is analyzed. It is demonstrated that in some cases one can expect not only a qualitative but also a quantitative agreement between the data and the results of experiments and calculations based on more accurate techniques. Diffuse scattering from rough surfaces and thin films with correlated and noncorrelated roughness of the upper and lower interfaces and the neutron diffraction by stripe magnetic domains and magnetic domains with a random size distribution (magnetic roughness) are considered as examples.
Thermal conductivity of III-V semiconductor superlattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, S., E-mail: song.mei@wisc.edu; Knezevic, I., E-mail: irena.knezevic@wisc.edu
2015-11-07
This paper presents a semiclassical model for the anisotropic thermal transport in III-V semiconductor superlattices (SLs). An effective interface rms roughness is the only adjustable parameter. Thermal transport inside a layer is described by the Boltzmann transport equation in the relaxation time approximation and is affected by the relevant scattering mechanisms (three-phonon, mass-difference, and dopant and electron scattering of phonons), as well as by diffuse scattering from the interfaces captured via an effective interface scattering rate. The in-plane thermal conductivity is obtained from the layer conductivities connected in parallel. The cross-plane thermal conductivity is calculated from the layer thermal conductivitiesmore » in series with one another and with thermal boundary resistances (TBRs) associated with each interface; the TBRs dominate cross-plane transport. The TBR of each interface is calculated from the transmission coefficient obtained by interpolating between the acoustic mismatch model (AMM) and the diffuse mismatch model (DMM), where the weight of the AMM transmission coefficient is the same wavelength-dependent specularity parameter related to the effective interface rms roughness that is commonly used to describe diffuse interface scattering. The model is applied to multiple III-arsenide superlattices, and the results are in very good agreement with experimental findings. The method is both simple and accurate, easy to implement, and applicable to complicated SL systems, such as the active regions of quantum cascade lasers. It is also valid for other SL material systems with high-quality interfaces and predominantly incoherent phonon transport.« less
Research into Influence of Gaussian Beam on Terahertz Radar Cross Section of a Semicircular Boss
NASA Astrophysics Data System (ADS)
Li, Hui-Yu; Li, Qi; She, Jian-Yu; Zhao, Yong-Peng; Chen, De-Ying; Wang, Qi
2013-08-01
In radar cross section (RCS) calculation of a rough surface, the model can be simplified into the scattering of geometrically idealized bosses on a surface. Thus the problem of the RCS calculation of a rough surface is changed to the RCS calculation of the semicircular boss. The RCS measurement of scale model can help save time and money. The utilization of terahertz in RCS is attractive because of its special properties: the wavelength of the terahertz wave can help limit the size of the model in a suitable range in the measurement of the scale model and get more detailed data in the measurement of the real object. However, usually the incident beam of a terahertz source is a Gaussian beam; in the theoretical RCS estimation, usually a plane wave is assumed as the incident beam for sake of simplicity which may lead to an error between the measurement and calculation results. In this paper, the method of images is used to calculate the RCS of a semicircular boss at 2.52 THz and the results are compared to the one calculated when the incident beam is a plane wave.
Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shigorina, Elena; Kordilla, Jannes; Tartakovsky, Alexandre M.
We employ a pairwise force Smoothed Particle Hydrodynamics (PF-SPH) model to simulate sessile and transient droplets on rough hydrophobic and hydrophilic surfaces. PF-SPH allows for modeling of free surface flow without discretizing the air phase, which is achieved by imposing the surface tension and dynamic contact angles with pairwise interaction forces. We use the PF-SPH model to study the effect of surface roughness and microscopic contact angle on the effective contact angle and droplet dynamics. In the first part of this work, we investigate static contact angles of sessile droplets on rough surfaces in a shape of a sinusoidal functionmore » and made of rectangular bars placed on top of a flat surface. We find that the effective static contact angles of Cassie and Wenzel droplets on a rough surface are greater than the corresponding microscale static contact angles. As a result, microscale hydrophobic rough surfaces also show effective hydrophobic behavior. On the other hand, microscale hydrophilic surfaces may be macroscopically hydrophilic or hydrophobic, depending on the type of roughness. Next, we study the impact of the roughness orientation (i.e., an anisotropic roughness) and surface inclination on droplet flow velocities. Simulations show that droplet flow velocities are lower if the surface roughness is oriented perpendicular to the flow direction. If the predominant elements of surface roughness are in alignment with the flow direction, the flow velocities increase compared to smooth surfaces, which can be attributed to the decrease in fluid-solid contact area similar to the classical lotus effect. We demonstrate that linear scaling relationships between Bond and capillary number for droplet flow on flat surfaces also hold for flow on rough surfaces.« less
Effects of Surface Roughness on Conical Squeeze Film Bearings with Micropolar fluid
NASA Astrophysics Data System (ADS)
Rajani, C. B.; Hanumagowda, B. N.; Shigehalli, Vijayalaxmi S.
2018-04-01
In the current paper, a hypothetical analysis of the impact of surface roughness on squeeze film lubrication of rough conical bearing using Micropolar fluid is examined using Eringen’sMicropolar fluid model. The generalized averaged Reynolds type equation for roughness has been determined analytically using the Christensen’s stochastic theory of roughness effects and the closed form expressions are obtained for the fluid film pressure, load carrying capacity and squeezing time. Further, the impacts of surface roughness using micropolar fluids on the squeeze film lubrication of rough conical bearings has been discussed and according to the outcomes arrived, pressure, load carrying capacity and squeezing time increases for azimuthal roughness pattern and decreases for radial roughness patterns comparatively to the smooth case.
Analysis for leakage and rotordynamic coefficients of surface-roughened tapered annular gas seals
NASA Technical Reports Server (NTRS)
Nelson, C. C.
1984-01-01
The present analysis calculates the leakage and rotor-dynamic coefficients for tapered annular gas seals whose rotor and stator have been subjected to different surface roughness treatments. The analysis is demonstrated for the effects of changes in the Space Shuttle Main Engine High Pressure Oxygen Turbopump's turbine interstage seal length, taper, clearance, and fluid prerotation. It is noted that changes in these parameters generally resulted in major changes in leakage and rotordynamic coefficients.
1989-05-01
approximately true, theoretical and experimental studies indicate that roughnesses below 50 A (peak to valley) should have little effect on the...52 - 72. These sensitivities are those supplied by Surface Science Laboratories in the ESCA 8.OB software. They are the photoionization cross...sections calculated by Scofield , corrected for the dependence of the escape depth of an electron on its energy. Scofield , J. H. . Electon S 1976, IL, 129
Theoretical coefficient of restitution for planer impact of rough elasto-plastic bodies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stronge, W.J.
1995-12-31
During an inelastic collision the normal component of force between colliding bodies is a nonlinear function of indentation. In the cycle of loading and unloading which occurs in a collision this force exhibits hysteresis due to internal inelastic deformations near the contact point. Energy dissipation during impact can be calculated for any incident velocity and impact configuration by integration of rate-of-work throughout the contact period. In {open_quote}rigid body{close_quote} impact there is negligible displacement during the contact period - in this case work done by the normal component of contact force can be calculated to obtain the part of the initialmore » kinetic energy of relative motion that is lost to irreversible internal dissipation. This energy loss is directly related to the energetic coefficient of restitution. For a non-collinear collision between rough bodies, this paper obtains an analytical expression for the energetic coefficient of restitution; this expression is appropriate for moderate speed impacts between compact bodies where maximum indentation remains small. The coefficient of restitution depends on the incident relative velocity, material properties and an effective mass as well as a secondary effect of friction. For impacts that result in fully plastic indentation, this theory obtains a coefficient of restitution proportional to normal impact speed to the 1/4 power a result that agrees with Goldsmith`s compilation of experimental evidence.« less
Dissolution of minerals with rough surfaces
NASA Astrophysics Data System (ADS)
de Assis, Thiago A.; Aarão Reis, Fábio D. A.
2018-05-01
We study dissolution of minerals with initial rough surfaces using kinetic Monte Carlo simulations and a scaling approach. We consider a simple cubic lattice structure, a thermally activated rate of detachment of a molecule (site), and rough surface configurations produced by fractional Brownian motion algorithm. First we revisit the problem of dissolution of initial flat surfaces, in which the dissolution rate rF reaches an approximately constant value at short times and is controlled by detachment of step edge sites. For initial rough surfaces, the dissolution rate r at short times is much larger than rF ; after dissolution of some hundreds of molecular layers, r decreases by some orders of magnitude across several time decades. Meanwhile, the surface evolves through configurations of decreasing energy, beginning with dissolution of isolated sites, then formation of terraces with disordered boundaries, their growth, and final smoothing. A crossover time to a smooth configuration is defined when r = 1.5rF ; the surface retreat at the crossover is approximately 3 times the initial roughness and is temperature-independent, while the crossover time is proportional to the initial roughness and is controlled by step-edge site detachment. The initial dissolution process is described by the so-called rough rates, which are measured for fixed ratios between the surface retreat and the initial roughness. The temperature dependence of the rough rates indicates control by kink site detachment; in general, it suggests that rough rates are controlled by the weakest microscopic bonds during the nucleation and formation of the lowest energy configurations of the crystalline surface. Our results are related to recent laboratory studies which show enhanced dissolution in polished calcite surfaces. In the application to calcite dissolution in alkaline environment, the minimal values of recently measured dissolution rate spectra give rF ∼10-9 mol/(m2 s), and the calculated rate laws of our model give rough rates in the range 10-6 -10-5 mol/(m2 s). This estimate is consistent with the range of calcite dissolution rates obtained in a recent work after treatment of literature data, which suggests the universal control of kink site dissolution in short term laboratory works. The weak effects of lattice size on our results also suggest that smoothing of mineral grain surfaces across geological times may be a microscopic explanation for the difference of chemical weathering rate of silicate minerals in laboratory and in the environment.
Simulating the Surface Relief of Nanoaerosols Obtained via the Rapid Cooling of Droplets
NASA Astrophysics Data System (ADS)
Tovbin, Yu. K.; Zaitseva, E. S.; Rabinovich, A. B.
2018-03-01
An approach is formulated that theoretically describes the structure of a rough surface of small aerosol particles obtained from a liquid droplet upon its rapid cooling. The problem consists of two stages. In the first stage, a concentration profile of the droplet-vapor transition region is calculated. In the second stage, local fractions of vacant sites and their pairs are found on the basis of this profile, and the rough structure of a frozen droplet surface transitioning to the solid state is calculated. Model parameters are the temperature of the initial droplet and those of the lateral interaction between droplet atoms. Information on vacant sites inside the region of transition allows us to identify adsorption centers and estimate the monolayer capacity, compared to that of the total space of the region of transition. The approach is oriented toward calculating adsorption isotherms on real surfaces.
A theoretical analysis of colloid attachment and straining in chemically heterogeneous porous media.
Bradford, Scott A; Torkzaban, Saeed; Shapiro, Alexander
2013-06-11
A balance of applied hydrodynamic (T(H)) and resisting adhesive (T(A)) torques was conducted over a chemically heterogeneous porous medium that contained random roughness of height h(r) to determine the fraction of the solid surface area that contributes to colloid immobilization (S(f)*) under unfavorable attachment conditions. This model considers resistance due to deformation and the horizontal component of the adhesive force (F(AT)), spatial variations in the pore scale velocity distribution, and the influence of hr on lever arms for T(H) and T(A). Values of S(f)* were calculated for a wide range of physicochemical properties to gain insight into mechanisms and factors influencing colloid immobilization. Colloid attachment processes were demonstrated to depend on solution ionic strength (IS), the colloid radius (r(c)), the Young's modulus (K), the amount of chemical heterogeneity (P+), and the Darcy velocity (q). Colloid immobilization was also demonstrated to occur on a rough surface in the absence of attachment. In this case, S(f)* depended on IS, r(c), the roughness fraction (f0), h(r), and q. Roughness tended to enhance T(A) and diminish T(H). Consequently, the effect of IS on S(f)* was enhanced by h(r) relative to attachment. In contrast, the effects of r(c) and q on S(f)* were diminished by hr in comparison to attachment. Colloid immobilization adjacent to macroscopic roughness locations shares many similarities to grain-grain contact points and may be viewed as a type of straining process. In general, attachment was more important for higher IS and variance in the secondary minimum, and for smaller r(c), q, and K, but diffusion decreased these values. Conversely, straining was dominant for the opposite conditions. Discrepancies in the literature on mechanisms of colloid retention are likely due to a lack of consideration of all of these factors.
Interfacial phonon scattering and transmission loss in > 1 µm thick silicon-on-insulator thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Puqing; Lindsay, Lucas R.; Huang, Xi
Scattering of phonons at boundaries of a crystal (grains, surfaces, or solid/solid interfaces) is characterized by the phonon wavelength, the angle of incidence, and the interface roughness, as historically evaluated using a specularity parameter p formulated by Ziman [Electrons and Phonons (Clarendon Press, Oxford, 1960)]. This parameter was initially defined to determine the probability of a phonon specularly reflecting or diffusely scattering from the rough surface of a material. The validity of Ziman's theory as extended to solid/solid interfaces has not been previously validated. Here, to better understand the interfacial scattering of phonons and to test the validity of Ziman'smore » theory, we precisely measured the in-plane thermal conductivity of a series of Si films in silicon-on-insulator (SOI) wafers by time-domain thermoreflectance (TDTR) for a Si film thickness range of 1–10 μm and a temperature range of 100–300 K. The Si/SiO 2 interface roughness was determined to be 0.11±0.04nm using transmission electron microscopy (TEM). Furthermore, we compared our in-plane thermal conductivity measurements to theoretical calculations that combine first-principles phonon transport with Ziman's theory. Calculations using Ziman's specularity parameter significantly overestimate values from the TDTR measurements. We attribute this discrepancy to phonon transmission through the solid/solid interface into the substrate, which is not accounted for by Ziman's theory for surfaces. The phonons that are specularly transmitted into an amorphous layer will be sufficiently randomized by the time they come back to the crystalline Si layer, the effect of which is practically equivalent to a diffuse reflection at the interface. Finally, we derive a simple expression for the specularity parameter at solid/amorphous interfaces and achieve good agreement between calculations and measurement values.« less
Interfacial phonon scattering and transmission loss in > 1 µm thick silicon-on-insulator thin films
Jiang, Puqing; Lindsay, Lucas R.; Huang, Xi; ...
2018-05-17
Scattering of phonons at boundaries of a crystal (grains, surfaces, or solid/solid interfaces) is characterized by the phonon wavelength, the angle of incidence, and the interface roughness, as historically evaluated using a specularity parameter p formulated by Ziman [Electrons and Phonons (Clarendon Press, Oxford, 1960)]. This parameter was initially defined to determine the probability of a phonon specularly reflecting or diffusely scattering from the rough surface of a material. The validity of Ziman's theory as extended to solid/solid interfaces has not been previously validated. Here, to better understand the interfacial scattering of phonons and to test the validity of Ziman'smore » theory, we precisely measured the in-plane thermal conductivity of a series of Si films in silicon-on-insulator (SOI) wafers by time-domain thermoreflectance (TDTR) for a Si film thickness range of 1–10 μm and a temperature range of 100–300 K. The Si/SiO 2 interface roughness was determined to be 0.11±0.04nm using transmission electron microscopy (TEM). Furthermore, we compared our in-plane thermal conductivity measurements to theoretical calculations that combine first-principles phonon transport with Ziman's theory. Calculations using Ziman's specularity parameter significantly overestimate values from the TDTR measurements. We attribute this discrepancy to phonon transmission through the solid/solid interface into the substrate, which is not accounted for by Ziman's theory for surfaces. The phonons that are specularly transmitted into an amorphous layer will be sufficiently randomized by the time they come back to the crystalline Si layer, the effect of which is practically equivalent to a diffuse reflection at the interface. Finally, we derive a simple expression for the specularity parameter at solid/amorphous interfaces and achieve good agreement between calculations and measurement values.« less
Cassini/VIMS observes rough surfaces on Titan's Punga Mare in specular reflection.
Barnes, Jason W; Sotin, Christophe; Soderblom, Jason M; Brown, Robert H; Hayes, Alexander G; Donelan, Mark; Rodriguez, Sebastien; Mouélic, Stéphane Le; Baines, Kevin H; McCord, Thomas B
Cassini /VIMS high-phase specular observations of Titan's north pole during the T85 flyby show evidence for isolated patches of rough liquid surface within the boundaries of the sea Punga Mare. The roughness shows typical slopes of 6°±1°. These rough areas could be either wet mudflats or a wavy sea. Because of their large areal extent, patchy geographic distribution, and uniform appearance at low phase, we prefer a waves interpretation. Applying theoretical wave calculations based on Titan conditions our slope determination allows us to infer winds of 0.76±0.09 m/s and significant wave heights of [Formula: see text] cm at the time and locations of the observation. If correct, these would represent the first waves seen on Titan's seas, and also the first extraterrestrial sea-surface waves in general.
Addressing scale dependence in roughness and morphometric statistics derived from point cloud data.
NASA Astrophysics Data System (ADS)
Buscombe, D.; Wheaton, J. M.; Hensleigh, J.; Grams, P. E.; Welcker, C. W.; Anderson, K.; Kaplinski, M. A.
2015-12-01
The heights of natural surfaces can be measured with such spatial density that almost the entire spectrum of physical roughness scales can be characterized, down to the morphological form and grain scales. With an ability to measure 'microtopography' comes a demand for analytical/computational tools for spatially explicit statistical characterization of surface roughness. Detrended standard deviation of surface heights is a popular means to create continuous maps of roughness from point cloud data, using moving windows and reporting window-centered statistics of variations from a trend surface. If 'roughness' is the statistical variation in the distribution of relief of a surface, then 'texture' is the frequency of change and spatial arrangement of roughness. The variance in surface height as a function of frequency obeys a power law. In consequence, roughness is dependent on the window size through which it is examined, which has a number of potential disadvantages: 1) the choice of window size becomes crucial, and obstructs comparisons between data; 2) if windows are large relative to multiple roughness scales, it is harder to discriminate between those scales; 3) if roughness is not scaled by the texture length scale, information on the spacing and clustering of roughness `elements' can be lost; and 4) such practice is not amenable to models describing the scattering of light and sound from rough natural surfaces. We discuss the relationship between roughness and texture. Some useful parameters which scale vertical roughness to characteristic horizontal length scales are suggested, with examples of bathymetric point clouds obtained using multibeam from two contrasting riverbeds, namely those of the Colorado River in Grand Canyon, and the Snake River in Hells Canyon. Such work, aside from automated texture characterization and texture segmentation, roughness and grain size calculation, might also be useful for feature detection and classification from point clouds.
NASA Astrophysics Data System (ADS)
Jafari Nodoushan, Emad; Ebrahimi, Nadereh Golshan; Ayazi, Masoumeh
2017-11-01
In this paper, we introduced thermal annealing treatment as an effective way of increasing the nanoscale roughness of a semi-crystalline polymer surface. Annealing treatment applied to a biomimetic microscale pattern of rice leaf to achieve a superhydrophobic surface with a hierarchical roughness. Resulted surfaces was characterized by XRD, AFM and FE-SEM instruments and showed an increase of roughness and cristallinity within both time and temperature of treatment. These two parameters also impact on measured static contact angle up to 158°. Bacterial attachment potency has an inverse relationship with the similarity of surface pattern dimensions and bacterial size and due to that, thermal annealing could be an effective way to create anti-bacterial surface beyond its effect on water repellency. Point in case, the anti-bacterial properties of produced water-repellence surfaces of PP were measured and counted colonies of both gram-negative (E. coli) and gram-positive (S. aureus) bacteria reduced with the nature of PP and hierarchical pattern on that. Anti-bacterial characterization of the resulted surface reveals a stunning reduction in adhesion of gram-positive bacteria to the surface. S. aureus reduction rates equaled to 95% and 66% when compared to control blank plate and smooth surface of PP. Moreover, it also could affect the other type of bacteria, gram-negative (E. coli). In the latter case, adhesion reduction rates calculated 66% and 53% when against to the same controls, respectively.
Non-linear boundary-layer receptivity due to distributed surface roughness
NASA Technical Reports Server (NTRS)
Amer, Tahani Reffet
1995-01-01
The process by which a laminar boundary layer internalizes the external disturbances in the form of instability waves is known as boundary-layer receptivity. The objective of the present research was to determine the effect of acoustic excitation on boundary-layer receptivity for a flat plate with distributed variable-amplitude surface roughness through measurements with a hot-wire probe. Tollmien-Schlichting mode shapes due to surface roughness receptivity have also been determined, analyzed, and shown to be in agreement with theory and other experimental work. It has been shown that there is a linear relationship between the surface roughness and receptivity for certain roughness configurations with constant roughness wavelength. In addition, strong non-linear receptivity effects exist for certain surface roughness configurations over a band where the surface roughness and T-S wavelength are matched. The results from the present experiment follow the trends predicted by theory and other experimental work for linear receptivity. In addition, the results show the existence of non-linear receptivity effects for certain combinations of surface roughness elements.
Modeling of surface roughness effects on Stokes flow in circular pipes
NASA Astrophysics Data System (ADS)
Song, Siyuan; Yang, Xiaohu; Xin, Fengxian; Lu, Tian Jian
2018-02-01
Fluid flow and pressure drop across a channel are significantly influenced by surface roughness on a channel wall. The present study investigates the effects of periodically structured surface roughness upon flow field and pressure drop in a circular pipe at low Reynolds numbers. The periodic roughness considered exhibits sinusoidal, triangular, and rectangular morphologies, with the relative roughness (i.e., ratio of the amplitude of surface roughness to hydraulic diameter of the pipe) no more than 0.2. Based upon a revised perturbation theory, a theoretical model is developed to quantify the effect of roughness on fully developed Stokes flow in the pipe. The ratio of static flow resistivity and the ratio of the Darcy friction factor between rough and smooth pipes are expressed in four-order approximate formulations, which are validated against numerical simulation results. The relative roughness and the wave number are identified as the two key parameters affecting the static flow resistivity and the Darcy friction factor.
Experimental Study on Effects of Ground Roughness on Flow Characteristics of Tornado-Like Vortices
NASA Astrophysics Data System (ADS)
Wang, Jin; Cao, Shuyang; Pang, Weichiang; Cao, Jinxin
2017-02-01
The three-dimensional wind velocity and dynamic pressure for stationary tornado-like vortices that developed over ground of different roughness categories were investigated to clarify the effects of ground roughness. Measurements were performed for various roughness categories and two swirl ratios. Variations of the vertical and horizontal distributions of velocity and pressure with roughness are presented, with the results showing that the tangential, radial, and axial velocity components increase inside the vortex core near the ground under rough surface conditions. Meanwhile, clearly decreased tangential components are found outside the core radius at low elevations. The high axial velocity inside the vortex core over rough ground surface indicates that roughness produces an effect similar to a reduced swirl ratio. In addition, the pressure drop accompanying a tornado is more significant at elevations closer to the ground under rough compared with smooth surface conditions. We show that the variations of the flow characteristics with roughness are dependent on the vortex-generating mechanism, indicating the need for appropriate modelling of tornado-like vortices.
Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow.
Shigorina, Elena; Kordilla, Jannes; Tartakovsky, Alexandre M
2017-09-01
We employ a pairwise force smoothed particle hydrodynamics (PF-SPH) model to simulate sessile and transient droplets on rough hydrophobic and hydrophilic surfaces. PF-SPH allows modeling of free-surface flows without discretizing the air phase, which is achieved by imposing the surface tension and dynamic contact angles with pairwise interaction forces. We use the PF-SPH model to study the effect of surface roughness and microscopic contact angle on the effective contact angle and droplet dynamics. In the first part of this work, we investigate static contact angles of sessile droplets on different types of rough surfaces. We find that the effective static contact angles of Cassie and Wenzel droplets on a rough surface are greater than the corresponding microscale static contact angles. As a result, microscale hydrophobic rough surfaces also show effective hydrophobic behavior. On the other hand, microscale hydrophilic surfaces may be macroscopically hydrophilic or hydrophobic, depending on the type of roughness. We study the dependence of the transition between Cassie and Wenzel states on roughness and droplet size, which can be linked to the critical pressure for the given fluid-substrate combination. We observe good agreement between simulations and theoretical predictions. Finally, we study the impact of the roughness orientation (i.e., an anisotropic roughness) and surface inclination on droplet flow velocities. Simulations show that droplet flow velocities are lower if the surface roughness is oriented perpendicular to the flow direction. If the predominant elements of surface roughness are in alignment with the flow direction, the flow velocities increase compared to smooth surfaces, which can be attributed to the decrease in fluid-solid contact area similar to the lotus effect. We demonstrate that classical linear scaling relationships between Bond and capillary numbers for droplet flow on flat surfaces also hold for flow on rough surfaces.
NASA Astrophysics Data System (ADS)
Chiu, YenTing
This dissertation examines two types of III-V semiconductor quantum well systems: two-dimensional holes in GaAs, and mid-infrared Quantum Cascade lasers. GaAs holes have a much reduced hyperfine interaction with the nuclei due to the p-like orbital, resulting in a longer hole spin coherence time comparing to the electron spin coherence time. Therefore, holes' spins are promising candidates for quantum computing qubits, but the effective mass and the Lande g-factor, whose product determines the spin-susceptibility of holes, are not well known. In this thesis, we measure the effective hole mass through analyzing the temperature dependence of Shubnikov-de Haas oscillations in a relatively strong interacting two-dimensional hole systems confined to a 20 nm-wide, (311)A GaAs quantum well. The holes in this system occupy two nearly-degenerate spin subbands whose effective mass we measure to be ˜ 0.2 me. We then apply a sufficiently strong parallel magnetic field to fully depopulate one of the spin subbands, and the spin susceptibility of the two-dimensional hole system is deduced from the depopulation field. We also confine holes in closely spaced bilayer GaAs quantum wells to study the interlayer tunneling spectrum as a function of interlayer bias and in-plane magnetic field, in hope of probing the hole's Fermi contour. Quantum Cascade lasers are one of the major mid-infrared light sources well suited for applications in health and environmental sensing. One of the important factors that affect Quantum Cascade laser performance is the quality of the interfaces between the epitaxial layers. What has long been neglected is that interface roughness causes intersubband scattering, and thus affecting the relation between the lifetimes of the upper and lower laser states, which determines if population inversion is possible. We first utilize strategically added interface roughness in the laser design to engineer the intersubband scattering lifetimes. We further experimentally prove the importance of interface roughness on intersubband scattering by measuring the electron transit time of different quantum cascade lasers and comparing them to the calculated upper laser level lifetimes with and without taking into account interface roughness induced intersubband scattering. A significantly better correlation is found between the experimental results and the calculation when the interface roughness scattering is included. Lastly, we study the effect of growth asymmetry on scattering mechanisms in mid-infrared Quantum Cascade lasers. Due to the dopant migration of around 10 nm along the growth direction of InGaAs/InAlAs Quantum Cascade laser structures, ionized impurity scattering is found to have a non-negligible influence on the lifetime of the upper laser level when the laser is biased in the polarity that electrons flow along the growth direction, in sharp contrast to the situation for the opposite polarity.
Surface correlations of hydrodynamic drag for transitionally rough engineering surfaces
NASA Astrophysics Data System (ADS)
Thakkar, Manan; Busse, Angela; Sandham, Neil
2017-02-01
Rough surfaces are usually characterised by a single equivalent sand-grain roughness height scale that typically needs to be determined from laboratory experiments. Recently, this method has been complemented by a direct numerical simulation approach, whereby representative surfaces can be scanned and the roughness effects computed over a range of Reynolds number. This development raises the prospect over the coming years of having enough data for different types of rough surfaces to be able to relate surface characteristics to roughness effects, such as the roughness function that quantifies the downward displacement of the logarithmic law of the wall. In the present contribution, we use simulation data for 17 irregular surfaces at the same friction Reynolds number, for which they are in the transitionally rough regime. All surfaces are scaled to the same physical roughness height. Mean streamwise velocity profiles show a wide range of roughness function values, while the velocity defect profiles show a good collapse. Profile peaks of the turbulent kinetic energy also vary depending on the surface. We then consider which surface properties are important and how new properties can be incorporated into an empirical model, the accuracy of which can then be tested. Optimised models with several roughness parameters are systematically developed for the roughness function and profile peak turbulent kinetic energy. In determining the roughness function, besides the known parameters of solidity (or frontal area ratio) and skewness, it is shown that the streamwise correlation length and the root-mean-square roughness height are also significant. The peak turbulent kinetic energy is determined by the skewness and root-mean-square roughness height, along with the mean forward-facing surface angle and spanwise effective slope. The results suggest feasibility of relating rough-wall flow properties (throughout the range from hydrodynamically smooth to fully rough) to surface parameters.
NASA Astrophysics Data System (ADS)
Kamali, Reza; Soloklou, Mohsen Nasiri; Hadidi, Hooman
2018-05-01
In this study, coupled Lattice Boltzmann method is applied to solve the dynamic model for an electroosmotic flow and investigate the effects of roughness in a 2-D flat microchannel. In the present model, the Poisson equation is solved for the electrical potential, the Nernst- Planck equation is solved for the ion concentration. In the analysis of electroosmotic flows, when the electric double layers fully overlap or the convective effects are not negligible, the Nernst-Planck equation must be used to find the ionic distribution throughout the microchannel. The effects of surface roughness height, roughness interval spacing and roughness surface potential on flow conditions are investigated for two different configurations of the roughness, when the EDL layers fully overlap through the microchannel. The results show that in both arrangements of roughness in homogeneously charged rough channels, the flow rate decreases by increasing the roughness height. A discrepancy in the mass flow rate is observed when the roughness height is about 0.15 of the channel width, which its average is higher for the asymmetric configuration and this difference grows by increasing the roughness height. In the symmetric roughness arrangement, the mass flow rate increases until the roughness interval space is almost 1.5 times the roughness width and it decreases for higher values of the roughness interval space. For the heterogeneously charged rough channel, when the roughness surface potential ψr is less than channel surface potential ψs , the net charge density increases by getting far from the roughness surface, while in the opposite situation, when ψs is more than ψr , the net charge density decreases from roughness surface to the microchannel middle center. Increasing the roughness surface potential induces stronger electric driving force on the fluid which results in larger velocities in the flow.
NASA Astrophysics Data System (ADS)
Johnson, J. P.; Aronovitz, A. C.
2012-12-01
We conducted laboratory flume experiments to quantify changes in multiple factors leading to mountain river bed stability (i.e., minimal bed changes in space and time), and to understand how stable beds respond to perturbations in sediment supply. Experiments were run in a small flume 4 m long by 0.1 m wide. We imposed an initial well-graded size distribution of sediment (from coarse sand to up to 4 cm clasts), a steady water discharge (0.9 L/s), and initial bed surface slopes (8% and 12%). We measured outlet sediment flux and size distribution, bed topography and surface size distributions, and water depths; from these we calculated total shear stress, form drag and skin friction stress partitioning, and hydraulic roughness. The bed was initially allowed to stabilize with no imposed upstream sediment flux. This stabilization occurred due to significant changes in all of the factors listed in the title, and resulted in incipient step-pool like bed morphologies. In addition, this study was designed to explore possible long-term effects of gravel augmentation on mountain channel morphology and surface grain size. While the short-term goal of gravel augmentation is usually to cause fining of surface sediment patches, we find that the long-term effects may be opposite. We perturbed the stabilized channels by temporarily imposing an upstream sediment flux of the finest sediment size fraction (sand to granules). Median surface sizes initially decreased due to fine sediment deposition, although transport rates of intermediate-sized grains increased. When the fine sediment supply was stopped, beds evolved to be both rougher and coarser than they had been previously, because the largest grains remained on the bed but intermediate-sized grains were preferentially transported out, leaving higher fractions of larger grains on the surface. Existing models for mixed grain size transport actually predict changes in mobilization reasonably well, but do not explicity account for surface roughness evolution. Our results indicate a nonlinear relationship between surface median grain size and bed roughness.
NASA Astrophysics Data System (ADS)
Lukosi, Eric D.; Herrera, Elan H.; Hamm, Daniel S.; Burger, Arnold; Stowe, Ashley C.
2017-11-01
An array of lithium indium diselenide (LISe) scintillators were investigated for application in neutron imaging. The sensors, varying in thickness and surface roughness, were tested using both reflective and anti-reflective mounting to an aluminum window. The spatial resolution of each LISe scintillator was calculated using the knife-edge test and a modulation transfer function analysis. It was found that the anti-reflective backing case yielded higher spatial resolutions by up to a factor of two over the reflective backing case despite a reduction in measured light yield by an average of 1.97. In most cases, the use of an anti-reflective backing resulted in a higher spatial resolution than the 50 μm-thick ZnS(Cu):6 LiF comparison scintillation screen. The effect of surface roughness was not directly correlated to measured light yield or observed spatial resolution, but weighting the reflective backing case by the random surface roughness revealed that a linear relationship exists between the fractional change (RB/ARB) of the two. Finally, the LISe scintillator array was used in neutron computed tomography to investigate the features of halyomorpha halys with the reflective and anti-reflective backing.
NASA Technical Reports Server (NTRS)
Whelley, Patrick L.; Garry, W. Brent; Hamilton, Christopher W.; Bleacher, Jacob E.
2017-01-01
We used light detection and ranging (LiDAR) data to calculate roughness patterns (homogeneity, mean-roughness, and entropy) for five lava types at two different resolutions (1.5 and 0.1 m/pixel). We found that end-member types (a a and pahoehoe) are separable (with 95% confidence) at both scales, indicating that roughness patterns are well suited for analyzing types of lava. Intermediate lavas were also explored, and we found that slabby-pahoehoe is separable from the other end-members using 1.5 m/pixel data, but not in the 0.1 m/pixel analysis. This suggests that the conversion from pahoehoe to slabby-pahoehoe is a meter-scale process, and the finer roughness characteristics of pahoehoe, such as ropes and toes, are not significantly affected. Furthermore, we introduce the ratio ENT/HOM (derived from lava roughness) as a proxy for assessing local lava flow rate from topographic data. High entropy and low homogeneity regions correlate with high flow rate while low entropy and high homogeneity regions correlate with low flow rate.We suggest that this relationship is not directional, rather it is apparent through roughness differences of the associated lava type emplaced at the high and low rates, respectively.
Sakhaei Manesh, Vahid; Giacomin, Paul; Stoll, Richard
2017-06-01
Obtaining clean and smooth root canal walls is the ideal clinical outcome of the cleaning and shaping stage in root canal treatment. This study compares the surface roughness of root canal surfaces instrumented with a NiTi filing system with either adaptive reciprocating (AR) or continuous rotation (CR). Root canal cleaning and shaping was carried out on the mesial canals of 24 extracted first molars roots with either AR or CR. Roots were split in half and the surface roughness of their canals was evaluated in 12 three dimensional roughness reconstructions using a scanning electron microscope. Rz (nm) values were calculated in three areas of each reconstruction and analyzed (α = 0.05). Mann-Whitney tests showed that surface roughness was significantly higher overall in the AR group (Rz = 967 ± 250 nm) compared with the CR group (Rz = 739 ± 239 nm; p = 0.044). The roughness values generally increased from apical towards the coronal third in both groups. A less aggressive finishing file or a continuous rotary system to end the cleaning and shaping stage may be beneficial to reduce roughness of the root canal surface. © 2017 Wiley Periodicals, Inc.
Effect of surface roughness on droplet splashing
NASA Astrophysics Data System (ADS)
Hao, Jiguang
2017-12-01
It is well known that rough surfaces trigger prompt splashing and suppress corona splashing on droplet impact. Upon water droplet impact, we experimentally found that a slightly rough substrate triggers corona splashing which is suppressed to prompt splashing by both further increase and further decrease of surface roughness. The nonmonotonic effect of surface roughness on corona splashing weakens with decreasing droplet surface tension. The threshold velocities for prompt splashing and corona splashing are quantified under different conditions including surface roughness, droplet diameter, and droplet surface tension. It is determined that slight roughness significantly enhances both prompt splashing and corona splashing of a water droplet, whereas it weakly affects low-surface-tension droplet splashing. Consistent with previous studies, high roughness triggers prompt splashing and suppresses corona splashing. Further experiments on droplet spreading propose that the mechanism of slight roughness enhancing water droplet splashing is due to the decrease of the wetted area with increasing surface roughness.
Effects of vegetation canopy on the radar backscattering coefficient
NASA Technical Reports Server (NTRS)
Mo, T.; Blanchard, B. J.; Schmugge, T. J.
1983-01-01
Airborne L- and C-band scatterometer data, taken over both vegetation-covered and bare fields, were systematically analyzed and theoretically reproduced, using a recently developed model for calculating radar backscattering coefficients of rough soil surfaces. The results show that the model can reproduce the observed angular variations of radar backscattering coefficient quite well via a least-squares fit method. Best fits to the data provide estimates of the statistical properties of the surface roughness, which is characterized by two parameters: the standard deviation of surface height, and the surface correlation length. In addition, the processes of vegetation attenuation and volume scattering require two canopy parameters, the canopy optical thickness and a volume scattering factor. Canopy parameter values for individual vegetation types, including alfalfa, milo and corn, were also determined from the best-fit results. The uncertainties in the scatterometer data were also explored.
Study on Huizhou architecture of point cloud registration based on optimized ICP algorithm
NASA Astrophysics Data System (ADS)
Zhang, Runmei; Wu, Yulu; Zhang, Guangbin; Zhou, Wei; Tao, Yuqian
2018-03-01
In view of the current point cloud registration software has high hardware requirements, heavy workload and moltiple interactive definition, the source of software with better processing effect is not open, a two--step registration method based on normal vector distribution feature and coarse feature based iterative closest point (ICP) algorithm is proposed in this paper. This method combines fast point feature histogram (FPFH) algorithm, define the adjacency region of point cloud and the calculation model of the distribution of normal vectors, setting up the local coordinate system for each key point, and obtaining the transformation matrix to finish rough registration, the rough registration results of two stations are accurately registered by using the ICP algorithm. Experimental results show that, compared with the traditional ICP algorithm, the method used in this paper has obvious time and precision advantages for large amount of point clouds.
Ozone Depletion from Nearby Supernovae
NASA Technical Reports Server (NTRS)
Gehrels, Neil; Laird, Claude M.; Jackman, Charles H.; Cannizzo, John K.; Mattson, Barbara J.; Chen, Wan; Bhartia, P. K. (Technical Monitor)
2002-01-01
Estimates made in the 1970's indicated that a supernova occurring within tens of parsecs of Earth could have significant effects on the ozone layer. Since that time improved tools for detailed modeling of atmospheric chemistry have been developed to calculate ozone depletion, and advances have been made also in theoretical modeling of supernovae and of the resultant gamma ray spectra. In addition, one now has better knowledge of the occurrence rate of supernovae in the galaxy, and of the spatial distribution of progenitors to core-collapse supernovae. We report here the results of two-dimensional atmospheric model calculations that take as input the spectral energy distribution of a supernova, adopting various distances from Earth and various latitude impact angles. In separate simulations we calculate the ozone depletion due to both gamma rays and cosmic rays. We find that for the combined ozone depletion from these effects roughly to double the 'biologically active' UV flux received at the surface of the Earth, the supernova must occur at approximately or less than 8 parsecs.
Analogies to Demonstrate the Effect of Roughness on Surface Wettability
ERIC Educational Resources Information Center
Yolcu, Hasan
2017-01-01
This article presents an analogy to illustrate the effect of surface roughness on surface wettability. I used a water-filled balloon to represent water droplet, a toothpick to represent surface roughness and Styrofoam as the surface. The analogies presented in this article will help visualize how roughness affects the wettability of the surface…
NASA Astrophysics Data System (ADS)
Barros, Julio; Schultz, Michael; Flack, Karen
2016-11-01
Engineering systems are affected by surface roughness which cause an increase in drag leading to significant performance penalties. One important question is how to predict frictional drag purely based upon surface topography. Although significant progress has been made in recent years, this has proven to be challenging. The present work takes a systematic approach by generating surface roughness in which surfaces parameters, such as rms , skewness, can be controlled. Surfaces were produced using the random Fourier modes method with enforced power-law spectral slopes. The surfaces were manufactured using high resolution 3D-printing. In this study three surfaces with constant amplitude and varying slope, P, were investigated (P = - 0 . 5 , - 1 . 0 , - 1 . 5). Skin-friction measurements were conducted in a high Reynolds number turbulent channel flow facility, covering a wide range of Reynolds numbers, from hydraulic-smooth to fully-rough regimes. Results show that some long wavelength roughness scales do not contribute significantly to the frictional drag, thus highlighting the need for filtering in the calculation of surface statistics. Upon high-pass filtering, it was found that krms is highly correlated with the measured ks.
NASA Technical Reports Server (NTRS)
Wilder, Michael C.; Reda, Daniel C.; Prabhu, Dinesh K.
2015-01-01
Blunt-body geometries were flown through carbon dioxide in the NASA Ames Hypervelocity Free Flight Aerodynamic Facility to investigate the influence of distributed surface roughness on transition to turbulence in CO2-dominated atmospheres, such as those of Mars and Venus. Tests were also performed in air for direct comparison with archival results. Models of hemispherical and spherically-blunted large-angle conical geometries were flown at speeds between 2.8 km/s and 5.1 km/s and freestream pressures between 50 Torr and 228 Torr. Transition fronts were determined from global surface heat flux distributions measured using thermal imaging techniques. Distributed surface roughness was produced by grit-blasting the model surfaces. Real-gas Navier-Stokes solutions were used to calculate non-dimensional correlating parameters at the measured transition onset locations. Transition-onset locations correlated well with a constant roughness Reynolds number based on the mean roughness element height. The critical roughness Reynolds number for transition onset determined for flight in CO2 was 223 +/- 25%. This mean value is lower than the critical value of 250 +/- 20% previously-established from tests conducted in air, but within the bounds of the expected measurement uncertainty.
Scattering by Artificial Wind and Rain Roughened Water Surfaces at Oblique Incidences
NASA Technical Reports Server (NTRS)
Craeye, C.; Sobieski, P. W.; Bliven, L. F.
1997-01-01
Rain affects wind retrievals from scatterometric measurements of the sea surface. To depict the additional roughness caused by rain on a wind driven surface, we use a ring-wave spectral model. This enables us to analyse the rain effect on K(u) band scatterometric observations from two laboratory experiments. Calculations based on the small perturbation method provide good simulation of scattering measurements for the rain-only case, whereas for combined wind and rain cases, the boundary perturbation method is appropriate.
NASA Astrophysics Data System (ADS)
Edmunds, C.; Tang, L.; Cervantes, M.; Shirazi-HD, M.; Shao, J.; Grier, A.; Valavanis, A.; Cooper, J. D.; Li, D.; Gardner, G.; Zakharov, D. N.; Ikonić, Z.; Indjin, D.; Harrison, P.; Manfra, M. J.; Malis, O.
2013-12-01
We report a systematic and quantitative study of near-infrared intersubband absorption in strained AlGaN/GaN and lattice-matched AlInN/GaN superlattices grown by plasma-assisted molecular-beam epitaxy as a function of Si-doping profile with and without δ doping. For AlGaN/GaN, we obtained good theoretical agreement with experimental measurements of transition energy, integrated absorbance and linewidth by considering many-body effects, interface roughness, and calculations of the transition lifetime that include dephasing. For the AlInN/GaN system, experimental measurements of the integrated absorbance due to the superlattice transitions produced values more than one order of magnitude lower than AlGaN/GaN heterostructures at similar doping levels. Furthermore, observed transition energies were roughly 150 meV higher than expected. The weak absorption and high transition energies measured in these structures is attributed to columnar alloy inhomogeneity in the AlInN barriers observed in high-angle annular dark-field scanning transmission electron microscopy. We simulated the effect of these inhomogeneities using three-dimensional band-structure calculations. The inhomogeneities were modeled as AlInN nanorods with radially varying In composition embedded in the barrier material of the superlattice. We show that inclusion of the nanorods leads to the depletion of the quantum wells (QWs) due to localization of charge carriers in high-In-containing regions. The higher energy of the intersubband transitions was attributed to the relatively uniform regions of the QWs surrounded by high Al (95%) composition barriers. The calculated transition energy assuming Al0.95In0.05N barriers was in good agreement with experimental results.
Vassall, Anna; Pickles, Michael; Chandrashekar, Sudhashree; Boily, Marie-Claude; Shetty, Govindraj; Guinness, Lorna; Lowndes, Catherine M; Bradley, Janet; Moses, Stephen; Alary, Michel; Vickerman, Peter
2014-09-01
Avahan is a large-scale, HIV preventive intervention, targeting high-risk populations in south India. We assessed the cost-effectiveness of Avahan to inform global and national funding institutions who are considering investing in worldwide HIV prevention in concentrated epidemics. We estimated cost effectiveness from a programme perspective in 22 districts in four high-prevalence states. We used the UNAIDS Costing Guidelines for HIV Prevention Strategies as the basis for our costing method, and calculated effect estimates using a dynamic transmission model of HIV and sexually transmitted disease transmission that was parameterised and fitted to locally observed behavioural and prevalence trends. We calculated incremental cost-effective ratios (ICERs), comparing the incremental cost of Avahan per disability-adjusted life-year (DALY) averted versus a no-Avahan counterfactual scenario. We also estimated incremental cost per HIV infection averted and incremental cost per person reached. Avahan reached roughly 150 000 high-risk individuals between 2004 and 2008 in the 22 districts studied, at a mean cost per person reached of US$327 during the 4 years. This reach resulted in an estimated 61 000 HIV infections averted, with roughly 11 000 HIV infections averted in the general population, at a mean incremental cost per HIV infection averted of $785 (SD 166). We estimate that roughly 1 million DALYs were averted across the 22 districts, at a mean incremental cost per DALY averted of $46 (SD 10). Future antiretroviral treatment (ART) cost savings during the lifetime of the cohort exposed to HIV prevention were estimated to be more than $77 million (compared with the slightly more than $50 million spent on Avahan in the 22 districts during the 4 years of the study). This study provides evidence that the investment in targeted HIV prevention programmes in south India has been cost effective, and is likely to be cost saving if a commitment is made to provide ART to all that can benefit from it. Policy makers should consider funding and sustaining large-scale targeted HIV prevention programmes in India and beyond. Bill & Melinda Gates Foundation. Copyright © 2014 Vassall et al. Open Access article distributed under the terms of CC BY-NC-ND. Published by .. All rights reserved.
Irregular wall roughness in turbulent Taylor-Couette flow
NASA Astrophysics Data System (ADS)
Berghout, Pieter; Zhu, Xiaojue; Verzicco, Roberto; Lohse, Detlef; Stevens, Richard
2017-11-01
Many wall bounded flows in nature, engineering and transport are affected by surface roughness. Often, this has adverse effects, e.g. drag increase leading to higher energy costs. A major difficulty is the infinite number of roughness geometries, which makes it impossible to systematically investigate all possibilities. Here we present Direct Numerical Simulations (DNS) of turbulent Taylor-Couette flow. We focus on the transitionally rough regime, in which both viscous and pressure forces contribute to the total wall stress. We investigate the effect of the mean roughness height and the effective slope on the roughness function, ΔU+ . Also, we present simulations of varying Ta (Re) numbers for a constant mean roughness height (kmean+). Alongside, we show the behavior of the large scale structures (e.g. plume ejection, Taylor rolls) and flow structures in the vicinity of the wall.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Hua-Sheng
2013-09-15
A unified, fast, and effective approach is developed for numerical calculation of the well-known plasma dispersion function with extensions from Maxwellian distribution to almost arbitrary distribution functions, such as the δ, flat top, triangular, κ or Lorentzian, slowing down, and incomplete Maxwellian distributions. The singularity and analytic continuation problems are also solved generally. Given that the usual conclusion γ∝∂f{sub 0}/∂v is only a rough approximation when discussing the distribution function effects on Landau damping, this approach provides a useful tool for rigorous calculations of the linear wave and instability properties of plasma for general distribution functions. The results are alsomore » verified via a linear initial value simulation approach. Intuitive visualizations of the generalized plasma dispersion function are also provided.« less
NASA Astrophysics Data System (ADS)
Muravsky, Leonid I.; Kmet', Arkady B.; Stasyshyn, Ihor V.; Voronyak, Taras I.; Bobitski, Yaroslav V.
2018-06-01
A new three-step interferometric method with blind phase shifts to retrieve phase maps (PMs) of smooth and low-roughness engineering surfaces is proposed. Evaluating of two unknown phase shifts is fulfilled by using the interframe correlation between interferograms. The method consists of two stages. The first stage provides recording of three interferograms of a test object and their processing including calculation of unknown phase shifts, and retrieval of a coarse PM. The second stage implements firstly separation of high-frequency and low-frequency PMs and secondly producing of a fine PM consisting of areal surface roughness and waviness PMs. Extraction of the areal surface roughness and waviness PMs is fulfilled by using a linear low-pass filter. The computer simulation and experiments fulfilled to retrieve a gauge block surface area and its areal surface roughness and waviness have confirmed the reliability of the proposed three-step method.
Modeling of normal contact of elastic bodies with surface relief taken into account
NASA Astrophysics Data System (ADS)
Goryacheva, I. G.; Tsukanov, I. Yu
2018-04-01
An approach to account the surface relief in normal contact problems for rough bodies on the basis of an additional displacement function for asperities is considered. The method and analytic expressions for calculating the additional displacement function for one-scale and two-scale wavy relief are presented. The influence of the microrelief geometric parameters, including the number of scales and asperities density, on additional displacements of the rough layer is analyzed.
NASA Technical Reports Server (NTRS)
Jung, Hahn Chul; Jasinski, Michael; Kim, Jin-Woo; Shum, C. K.; Bates, Paul; Neal, Jeffrey; Lee, Hyongki; Alsdorf, Doug
2011-01-01
This study focuses on the feasibility of using SAR interferometry to support 2D hydrodynamic model calibration and provide water storage change in the floodplain. Two-dimensional (2D) flood inundation modeling has been widely studied using storage cell approaches with the availability of high resolution, remotely sensed floodplain topography. The development of coupled 1D/2D flood modeling has shown improved calculation of 2D floodplain inundation as well as channel water elevation. Most floodplain model results have been validated using remote sensing methods for inundation extent. However, few studies show the quantitative validation of spatial variations in floodplain water elevations in the 2D modeling since most of the gauges are located along main river channels and traditional single track satellite altimetry over the floodplain are limited. Synthetic Aperture Radar (SAR) interferometry recently has been proven to be useful for measuring centimeter-scale water elevation changes over the floodplain. In the current study, we apply the LISFLOOD hydrodynamic model to the central Atchafalaya River Basin, Louisiana, during a 62 day period from 1 April to 1 June 2008 using two different calibration schemes for Manning's n. First, the model is calibrated in terms of water elevations from a single in situ gauge that represents a more traditional approach. Due to the gauge location in the channel, the calibration shows more sensitivity to channel roughness relative to floodplain roughness. Second, the model is calibrated in terms of water elevation changes calculated from ALOS PALSAR interferometry during 46 days of the image acquisition interval from 16 April 2008 to 1 June 2009. Since SAR interferometry receives strongly scatters in floodplain due to double bounce effect as compared to specular scattering of open water, the calibration shows more dependency to floodplain roughness. An iterative approach is used to determine the best-fit Manning's n for the two different calibration approaches. Results suggest similar floodplain roughness but slightly different channel roughness. However, application of SAR interferometry provides a unique view of the floodplain flow gradients, not possible with a single gauge calibration. These gradients, allow improved computation of water storage change over the 46-day simulation period. Overall, the results suggest that the use of 2D SAR water elevation changes in the Atchafalaya basin offers improved understanding and modeling of floodplain hydrodynamics.
NASA Astrophysics Data System (ADS)
Thomsen, L. M.; Baartman, J. E. M.; Barneveld, R. J.; Starkloff, T.; Stolte, J.
2014-11-01
Quantification of soil roughness, i.e. the irregularities of the soil surface due to soil texture, aggregates, rock fragments and land management, is important as it affects surface storage, infiltration, overland flow and ultimately sediment detachment and erosion. Roughness has been measured in the field using both contact methods, such as roller chain and pinboard, and sensor methods, such as stereophotogrammetry and terrestrial laser scanning (TLS). A novel depth sensing technique, originating in the gaming industry, has recently become available for earth sciences; the Xtion Pro method. Roughness data obtained using various methods are assumed to be similar; this assumption is tested in this study by comparing five different methods to measure roughness in the field on 1 m2 agricultural plots with different management (ploughing, harrowing, forest and direct seeding on stubble) in southern Norway. Subsequently, the values were used as input for the LISEM soil erosion model to test their effect on the simulated hydrograph on catchment scale. Results show that statistically significant differences between the methods were obtained only for the fields with direct drilling on stubble; for the other land management types the methods were in agreement. The spatial resolution of the contact methods was much lower than for the sensor methods (10 000 versus at least 57 000 points per m2 respectively). In terms of costs and ease of handling in the field, the Xtion Pro method is promising. Results from the LISEM model indicate that especially the roller chain underestimated the RR values and the model thereby calculated less surface runoff than measured. In conclusion: the choice of measurement method for roughness data matters and depends on the required accuracy, resolution, mobility in the field and available budget. It is recommended to use only one method within one study.
Numerical analysis of the bucket surface roughness effects in Pelton turbine
NASA Astrophysics Data System (ADS)
Xiao, Y. X.; Zeng, C. J.; Zhang, J.; Yan, Z. G.; Wang, Z. W.
2013-12-01
The internal flow of a Pelton turbine is quite complex. It is difficult to analyse the unsteady free water sheet flow in the rotating bucket owing to the lack of a sound theory. Affected by manufacturing technique and silt abrasion during the operation, the bucket surface roughness of Pelton turbine may be too great, and thereby influence unit performance. To investigate the effect of bucket roughness on Pelton turbine performance, this paper presents the numerical simulation of the interaction between the jet and the bucket in a Pelton turbine. The unsteady three-dimensional numerical simulations were performed with CFX code by using the SST turbulence model coupling the two-phase flow volume of fluid method. Different magnitude orders of bucket surface roughness were analysed and compared. Unsteady numerical results of the free water sheet flow patterns on bucket surface, torque and unit performance for each bucket surface roughness were generated. The total pressure distribution on bucket surface is used to show the free water sheet flow pattern on bucket surface. By comparing the variation of water sheet flow patterns on bucket surface with different roughness, this paper qualitatively analyses how the bucket surface roughness magnitude influences the impeding effect on free water sheet flow. Comparison of the torque variation of different bucket surface roughness highlighted the effect of the bucket surface roughness on the Pelton turbine output capacity. To further investigate the effect of bucket surface roughness on Pelton turbine performance, the relation between the relative efficiency loss rate and bucket surface roughness magnitude is quantitatively analysed. The result can be used to predict and evaluate the Pelton turbine performance.
Gloss measurements and rugometric inspection in dental biomaterials
NASA Astrophysics Data System (ADS)
Fernández-Oliveras, Alicia; Costa, Manuel F. M.; Yebra, Ana; Rubiño, Manuel; Pérez, María. M.
2013-11-01
In dental applications, optimizing appearance is desirable and increasingly demanded by patients. The specular gloss is among the major appearance properties of dental biomaterials, and its relationship with surface roughness has been reported. Roughness and gloss are key surface aspects that complement each other. We have experimentally analyzed the specular gloss and surface roughness of two different types of dental-resin composites and pre-sintered and sintered zirconia ceramics. We have studied two shades of both composite types and two sintered zirconia ceramics: colored and uncolored. Moreover, a surface treatment was applied to one specimen of each dental resin. Gloss measurements were performed with a standardized reflectometer and the corresponding gloss percentages were calculated. All the samples were submitted to rugometric non-invasive inspection with the MICROTOP.06.MFC laser microtopographer in order to determine meaningful statistical parameters such as the average roughness (Ra) and the root-mean-square deviation (Rq). For a comparison of the different biomaterials, the uncertainties associated to the measure of the surface gloss and roughness were also determined. The differences between the two shades of both kinds of composites proved significant in the case of the roughness parameters but not for the specular gloss. The surface treatment applied to the dental-resin composites increased the average roughness but the changes in the specular gloss were significant only for the A2 enamel nano-composite. For the zirconia ceramic the sintered process resulted in an increase in the surface roughness with a decrease of the specular gloss, corroborating that the relationship between the gloss and the roughness shows the expected behavior.
Cai, Yi-Hong; Wang, Yi-Sheng
2018-04-01
This work discusses the correlation between the mass resolving power of matrix-assisted laser desorption/ionization time-of-flight mass analyzers and extraction condition with an uneven sample morphology. Previous theoretical calculations show that the optimum extraction condition for flat samples involves an ideal ion source design and extraction delay. A general expression of spectral feature takes into account ion initial velocity, and extraction delay is derived in the current study. The new expression extends the comprehensive calculation to uneven sample surfaces and above 90% Maxell-Boltzmann initial velocity distribution of ions to account for imperfect ionization condition. Calculation shows that the impact of uneven sample surface or initial spatial spread of ions is negligible when the extraction delay is away from the ideal value. When the extraction delay approaches the optimum value, the flight-time topology shows a characteristic curve shape, and the time-domain mass spectral feature broadens with an increase in initial spatial spread of ions. For protonated 2,5-dihydroxybenzoic acid, the mass resolving power obtained from a sample of 3-μm surface roughness is approximately 3.3 times lower than that of flat samples. For ions of m/z 3000 coexpanded with 2,5-dihydroxybenzoic acid, the mass resolving power in the 3-μm surface roughness case only reduces roughly 7%. Comprehensive calculations also show that the mass resolving power of lighter ions is more sensitive to the accuracy of the extraction delay than heavier ions. Copyright © 2018 John Wiley & Sons, Ltd.
Effect of surface roughness of trench sidewalls on electrical properties in 4H-SiC trench MOSFETs
NASA Astrophysics Data System (ADS)
Kutsuki, Katsuhiro; Murakami, Yuki; Watanabe, Yukihiko; Onishi, Toru; Yamamoto, Kensaku; Fujiwara, Hirokazu; Ito, Takahiro
2018-04-01
The effects of the surface roughness of trench sidewalls on electrical properties have been investigated in 4H-SiC trench MOSFETs. The surface roughness of trench sidewalls was well controlled and evaluated by atomic force microscopy. The effective channel mobility at each measurement temperature was analyzed on the basis of the mobility model including optical phonon scattering. The results revealed that surface roughness scattering had a small contribution to channel mobility, and at the arithmetic average roughness in the range of 0.4-1.4 nm, there was no correlation between the experimental surface roughness and the surface roughness scattering mobility. On the other hand, the characteristics of the gate leakage current and constant current stress time-dependent dielectric breakdown tests demonstrated that surface morphology had great impact on the long-term reliability of gate oxides.
DEM simulation of flow of dumbbells on a rough inclined plane
NASA Astrophysics Data System (ADS)
Mandal, Sandip; Khakhar, Devang
2015-11-01
The rheology of non-spherical granular materials such as food grains, sugar cubes, sand, pharmaceutical pills, among others, is not understood well. We study the flow of non-spherical dumbbells of different aspect ratios on a rough inclined plane by using soft sphere DEM simulations. The dumbbells are generated by fusing two spheres together and a linear spring dashpot model along with Coulombic friction is employed to calculate inter-particle forces. At steady state, a uni-directional shear flow is obtained which allows for a detailed study of the rheology. The effect of aspect ratio and inclination angle on mean velocity, volume fraction, shear rate, shear stress, pressure and viscosity profiles is examined. The effect of aspect ratio on probability distribution of angles, made by the major axes of the dumbbells with the flow direction, average angle and order parameter is analyzed. The dense flow rheology is well explained by Bagnold's law and the constitutive laws of JFP model. The dependencies of first and second normal stress differences on aspect ratio are studied. The probability distributions of translational and rotational velocity are analyzed.
Effect of leading-edge roughness on stability and transition of wind turbine blades
NASA Astrophysics Data System (ADS)
Kutz, Douglas; Freels, Justin; Hidore, John; White, Edward
2011-11-01
Over time, wind turbine blades erode due to impacts with sand and other debris. The resulting surface roughness degrades the blades' aerodynamic performance. Experimental studies conducted at the Texas A&M University Low-Speed Wind Tunnel examine roughness effects using a 2D NACA 63-418 airfoil with interchangeable leading edges of varying roughness at chord Reynolds numbers up to 3 . 0 ×106 . These data reveal decreased CL , max and increased CD , min as roughness increases. At very high roughness levels, even the lift curve slope is reduced. To better understand these findings and improve modeling of roughness effects, extensive boundary layer measurements including surface-mounted hotfilms and boundary-layer velocity profiles are used to assess how laminar-to-turbulent transition is promoted by roughness. As expected, roughness accelerates transition. Tollmien-Schlichting (TS) transition is observed only for a smooth leading edge while bypass transition is observed for the moderate and high roughness levels. Results are compared to N-factor transition predictions generated with software used by the wind industry. Predictions are successful for the smooth leading edge but even the low roughness level prevents correct transition prediction using TS-based methods. Support for this work by Vestas Technology Americas, Inc., is gratefully acknowledged as is the support of the wind-energy research group and the Low-Speed Wind Tunnel staff.
Yang, X I A; Meneveau, C
2017-04-13
In recent years, there has been growing interest in large-eddy simulation (LES) modelling of atmospheric boundary layers interacting with arrays of wind turbines on complex terrain. However, such terrain typically contains geometric features and roughness elements reaching down to small scales that typically cannot be resolved numerically. Thus subgrid-scale models for the unresolved features of the bottom roughness are needed for LES. Such knowledge is also required to model the effects of the ground surface 'underneath' a wind farm. Here we adapt a dynamic approach to determine subgrid-scale roughness parametrizations and apply it for the case of rough surfaces composed of cuboidal elements with broad size distributions, containing many scales. We first investigate the flow response to ground roughness of a few scales. LES with the dynamic roughness model which accounts for the drag of unresolved roughness is shown to provide resolution-independent results for the mean velocity distribution. Moreover, we develop an analytical roughness model that accounts for the sheltering effects of large-scale on small-scale roughness elements. Taking into account the shading effect, constraints from fundamental conservation laws, and assumptions of geometric self-similarity, the analytical roughness model is shown to provide analytical predictions that agree well with roughness parameters determined from LES.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).
Photomask CD and LER characterization using Mueller matrix spectroscopic ellipsometry
NASA Astrophysics Data System (ADS)
Heinrich, A.; Dirnstorfer, I.; Bischoff, J.; Meiner, K.; Ketelsen, H.; Richter, U.; Mikolajick, T.
2014-10-01
Critical dimension and line edge roughness on photomask arrays are determined with Mueller matrix spectroscopic ellipsometry. Arrays with large sinusoidal perturbations are measured for different azimuth angels and compared with simulations based on rigorous coupled wave analysis. Experiment and simulation show that line edge roughness leads to characteristic changes in the different Mueller matrix elements. The influence of line edge roughness is interpreted as an increase of isotropic character of the sample. The changes in the Mueller matrix elements are very similar when the arrays are statistically perturbed with rms roughness values in the nanometer range suggesting that the results on the sinusoidal test structures are also relevant for "real" mask errors. Critical dimension errors and line edge roughness have similar impact on the SE MM measurement. To distinguish between both deviations, a strategy based on the calculation of sensitivities and correlation coefficients for all Mueller matrix elements is shown. The Mueller matrix elements M13/M31 and M34/M43 are the most suitable elements due to their high sensitivities to critical dimension errors and line edge roughness and, at the same time, to a low correlation coefficient between both influences. From the simulated sensitivities, it is estimated that the measurement accuracy has to be in the order of 0.01 and 0.001 for the detection of 1 nm critical dimension error and 1 nm line edge roughness, respectively.
Relationships between aerodynamic roughness and land use and land cover in Baltimore, Maryland
Nicholas, F.W.; Lewis, J.E.
1980-01-01
Urbanization changes the radiative, thermal, hydrologic, and aerodynamic properties of the Earth's surface. Knowledge of these surface characteristics, therefore, is essential to urban climate analysis. Aerodynamic or surface roughness of urban areas is not well documented, however, because of practical constraints in measuring the wind profile in the presence of large buildings. Using an empirical method designed by Lettau, and an analysis of variance of surface roughness values calculated for 324 samples averaging 0.8 hectare (ha) of land use and land cover sample in Baltimore, Md., a strong statistical relation was found between aerodynamic roughness and urban land use and land cover types. Assessment of three land use and land cover systems indicates that some of these types have significantly different surface roughness characteristics. The tests further indicate that statistically significant differences exist in estimated surface roughness values when categories (classes) from different land use and land cover classification systems are used as surrogates. A Level III extension of the U.S. Geological Survey Level II land use and land cover classification system provided the most reliable results. An evaluation of the physical association between the aerodynamic properties of land use and land cover and the surface climate by numerical simulation of the surface energy balance indicates that changes in surface roughness within the range of values typical of the Level III categories induce important changes in the surface climate.
NASA Astrophysics Data System (ADS)
Sazonov, D. S.
2017-12-01
A correlation analysis of the model calculations and experimental measurements of wind-speed sensitivity of a rough sea-surface microwave emission at a frequency of 37.5 GHz are presented. The field data used in the research were collected over 3 years in the summer and autumn periods at the oceanographic platform of the Marine Hydrophysical Institute, Russian Academy of Sciences (RAS). A hypothesis about a significant correlation between the model calculations and experimentally measured sea-surface emission ability caused by wind forcing was formulated and tested to reveal this correlation. An evaluation of the discrepancy between the model and experimental data has been performed by an analysis of residuals. Our studies have shown that among the selected models not a single one adequately describes the experimental data.
A comparative study of transport properties of monolayer graphene and AlGaN-GaN heterostructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozdemir, M. D.; Atasever, O.; Ozdemir, B.
2015-07-15
The electronic transport properties of monolayer graphene are presented with an Ensemble Monte Carlo method where a rejection technique is used to account for the occupancy of the final states after scattering. Acoustic and optic phonon scatterings are considered for intrinsic graphene and in addition, ionized impurity and surface roughness scatterings are considered for the case of dirty graphene. The effect of screening is considered in the ionized impurity scattering of electrons. The time dependence of drift velocity of carriers is obtained where overshoot and undershoot effects are observed for certain values of applied field and material parameters for intrinsicmore » graphene. The field dependence of drift velocity of carriers showed negative differential resistance and disappeared as acoustic scattering becomes dominant for intrinsic graphene. The variation of electron mobility with temperature is calculated for intrinsic (suspended) and dirty monolayer graphene sheets separately and they are compared. These are also compared with the mobility of two dimensional electrons at an AlGaN/GaN heterostructure. It is observed that interface roughness may become very effective in limiting the mobility of electrons in graphene.« less
NASA Astrophysics Data System (ADS)
Krtička, J.; Kurfürst, P.; Krtičková, I.
2015-01-01
Context. Evolutionary models of fast-rotating stars show that the stellar rotational velocity may approach the critical speed. Critically rotating stars cannot spin up more, therefore they lose their excess angular momentum through an equatorial outflowing disk. The radial extension of such disks is unknown, partly because we lack information about the radial variations of the viscosity. Aims: We study the magnetorotational instability, which is considered to be the origin of anomalous viscosity in outflowing disks. Methods: We used analytic calculations to study the stability of outflowing disks submerged in the magnetic field. Results: The magnetorotational instability develops close to the star if the plasma parameter is large enough. At large radii the instability disappears in the region where the disk orbital velocity is roughly equal to the sound speed. Conclusions: The magnetorotational instability is a plausible source of anomalous viscosity in outflowing disks. This is also true in the region where the disk radial velocity approaches the sound speed. The disk sonic radius can therefore be roughly considered as an effective outer disk radius, although disk material may escape from the star to the insterstellar medium. The radial profile of the angular momentum-loss rate already flattens there, consequently, the disk mass-loss rate can be calculated with the sonic radius as the effective disk outer radius. We discuss a possible observation determination of the outer disk radius by using Be and Be/X-ray binaries.
Effects of roughness and permeability on solute transfer at the sediment water interface.
Han, Xu; Fang, Hongwei; He, Guojian; Reible, Danny
2018-02-01
Understanding the mechanisms of solute transfer across the sediment-water interface plays a crucial role in water quality prediction and management. In this study, different arranged particles are used to form typical rough and permeable beds. Large Eddy Simulation (LES) is used to model the solute transfer from the overlying water to sediment beds. Three rough wall turbulence regimes, i.e., smooth, transitional and rough regime, are separately considered and the effects of bed roughness on solute transfer are quantitatively analyzed. Results show that the classic laws related to Schmidt numbers can well reflect the solute transfer under the smooth regime with small roughness Reynolds numbers. Under the transitional regime, the solute transfer coefficient (K L + ) is enhanced and the effect of Schmidt number is weakened by increasing roughness Reynolds number. Under the rough regime, the solute transfer is suppressed by the transition layer (Brinkman layer) and controlled by the bed permeability. Moreover, it is found that water depth, friction velocity and bed permeability can be used to estimate the solute transfer velocity (K L ) under the completely rough regime. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Barros, Julio; Flack, Karen; Schultz, Michael
2017-11-01
Real-world engineering systems which feature either external or internal wall-bounded turbulent flow are routinely affected by surface roughness. This gives rise to performance degradation in the form of increased drag or head loss. However, at present there is no reliable means to predict these performance losses based upon the roughness topography alone. This work takes a systematic approach by generating random surface roughness in which the surface statistics are closely controlled. Skin friction and roughness function results will be presented for two groups of these rough surfaces. The first group is Gaussian (i.e. zero skewness) in which the root-mean-square roughness height (krms) is varied. The second group has a fixed krms, and the skewness is varied from approximately -1 to +1. The effect of the roughness amplitude and skewness on the skin friction will be discussed. Particular attention will be paid to the effect of these parameters on the roughness function in the transitionally-rough flow regime. For example, the role these parameters play in the monotonic or inflectional nature of the roughness function will be addressed. Future research into the details of the turbulence structure over these rough surfaces will also be outlined. Research funded by U.S. Office of Naval Research (ONR).
Roughness of biopores and cracks in Bt-horizons by confocal laser scanning microscopy
NASA Astrophysics Data System (ADS)
Leue, Martin; Gerke, Horst H.
2016-04-01
During preferential flow events in structured soils, the movement of water and reactive solutes is mostly restricted to larger inter-aggregate pores, cracks, and biopores. The micro-topography of such macropores in terms of pore shapes, geometry, and roughness is crucial for describing the exchange of water and solutes between macropores and the soil matrix. The objective of this study was to determine the surface roughness of intact structural surfaces from the Bt-horizon of Luvisols by confocal laser scanning microscopy. For this purpose, samples with the structural surface types including cracks with and without clay-organic coatings from Bt-horizons developed on loess and glacial till were compared. The surface roughness of these structures was calculated in terms of three parameters from selected surface regions of 0.36 mm² determined with a confocal laser scanning microscope of the type Keyence VK-X100K. These data were evaluated in terms of the root-mean-squared roughness, Rq, the curvature, Rku, and the ratio between surface area and base area, RA. Values of Rq and RA were smaller for coated as compared to uncoated cracks and earthworm burrows of the Bt-horizons from both parent materials. The results indicated that the illuviation of clayey material led to a "smoothing" of the crack surfaces, which was similar for the coarser textured till-Bt and the finer-textured loess-Bt surfaces. The roughness indicated by Rq and RA values was only slightly smaller and that indicated by Rku slightly higher for the structural surfaces from the loess as compared to those from the glacial till. These results suggest a minor importance of the parent material on the roughness of structural surfaces in the Bt-horizon. The similarity of Rq, RA, and Rku values between surfaces of earthworm burrows and uncoated cracks did not confirm an expected smoothing effect of the burrow walls by the earthworm. In contrast to burrow walls, root channels from the loess-Bt were smoother than the surfaces of the other structure types, suggesting that the two types of biopores have to be distinguished when describing preferential flow and macropore-matrix exchange. Nevertheless, the confocal laser microscopy technique proved useful for characterizing the roughness of intact structural surfaces.
Exclusive π0 electroproduction at W >2 GeV with CLAS
NASA Astrophysics Data System (ADS)
Bedlinskiy, I.; Kubarovsky, V.; Niccolai, S.; Stoler, P.; Adhikari, K. P.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Biselli, A. S.; Boiarinov, S.; Bono, J.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Forest, T. A.; Garillon, B.; Garçon, M.; Gavalian, G.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guo, L.; Hafidi, K.; Hakobyan, H.; Harrison, N.; Hattawy, M.; Hicks, K.; Holtrop, M.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kuhn, S. E.; Kuleshov, S. V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moody, C. I.; Moutarde, H.; Movsisyan, A.; Munoz Camacho, C.; Nadel-Turonski, P.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Park, K.; Park, S.; Pasyuk, E.; Phelps, E.; Phelps, W.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Price, J. W.; Prok, Y.; Protopopescu, D.; Procureur, S.; Puckett, A. J. R.; Raue, B. A.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Senderovich, I.; Sharabian, Y. G.; Simonyan, A.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Strauch, S.; Sytnik, V.; Tang, W.; Tian, Ye; Ungaro, M.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D.; Wei, X.; Weinstein, L. B.; Yurov, M.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration
2014-08-01
Exclusive neutral-pion electroproduction (ep→e'p'π0) was measured at Jefferson Lab with a 5.75-GeV electron beam and the CLAS detector. Differential cross sections d4σ/dtdQ2dxBdϕπ and structure functions σT+ɛσL,σTT, and σLT as functions of t were obtained over a wide range of Q2 and xB. The data are compared with Regge and handbag theoretical calculations. Analyses in both frameworks find that a large dominance of transverse processes is necessary to explain the experimental results. For the Regge analysis it is found that the inclusion of vector meson rescattering processes is necessary to bring the magnitude of the calculated and measured structure functions into rough agreement. In the handbag framework, there are two independent calculations, both of which appear to roughly explain the magnitude of the structure functions in terms of transversity generalized parton distributions.
Optical measurements of degradation in aircraft boundary layers
NASA Technical Reports Server (NTRS)
Kelsall, D.
1980-01-01
Visible wavelength measurements of the degradation of optical beams when transmitted through the thin aerodynamic boundary layers around an aircraft are reviewed. The measured results indicated degradation levels for the KC-135 airplanes between 0.10 to 0.13 lambda increasing to 0.18 lambda (rms wavefront distortion). For the Lear Jet, degradation with a 25 mm diameter optics was roughly 0.07 lambda. The corresponding infinite aperture degradation levels are also calculated. The corresponding measured correlation lengths of roughly 12 mm for the KC-135 aircraft and 6 mm for the Lear Jet scale to roughly 20 and 25 mm, respectively, for infinite apertures. These boundary layer correlation lengths do not appear to reflect the different boundary layer thicknesses on the two different aircraft.
Effect of Soil Roughness on Overland Flow Connectivity at Different Slope Scenarios
NASA Astrophysics Data System (ADS)
Penuela Fernandez, A.; Javaux, M.; Bielders, C.
2013-12-01
Runoff generation, which involves the gradual depression filling and connection of overflowing depressions, is affected by surface roughness and slope. Therefore, quantifying and understanding the effects of surface roughness and slope on overland flow connectivity at the sub-grid scale can potentially improve current hydrological modeling and runoff prediction. However, little work has been conducted on quantifying these effects. This study examines the role of surface roughness on overland flow connectivity at the plot scale at different slopes. For this purpose, standard multi-Gaussian synthetic fields (6 × 6 m) with contrasting surface roughnesses, as defined by the parameters of the variogram (sill and range) of surface elevation, were used. In order to quantify the effects of soil roughness and slope on overland flow connectivity a functional connectivity indicator, so-called the Relative Surface Connection function (Antoine et al., 2009), was applied. This indicator, that represents the ratio of area connected to the outflow boundary (C) in function of the depression storage (DS), is able to capture runoff-relevant connectivity properties. Three parameters characterizing the connectivity function were used to quantify the effects of roughness and slope. These parameters are: C at DS = 0 (CDS=0), connectivity threshold (CT) and maximum depression storage (MDS). Results showed that variations on soil roughness and slope greatly affect the three parameters showing in some cases a clear relationship between structural connectivity and functional connectivity, such as between the ratio sill/range and MDS and between CDS=0 and range. This relationship, described by mathematical expressions, not only allows the quantification and comparison of the effects of soil roughness and slope in overland flow connectivity but also the prediction of these effects by the study of the variogram.
Effect of surface morphology on drag and roughness sublayer in flows over regular roughness elements
NASA Astrophysics Data System (ADS)
Placidi, Marco; Ganapathisubramani, Bharathram
2014-11-01
The effects of systematically varied roughness morphology on bulk drag and on the spatial structure of turbulent boundary layers are examined by performing a series of wind tunnel experiments. In this study, rough surfaces consisting of regularly and uniformly distributed LEGO™ bricks are employed. Twelve different patterns are adopted in order to methodically examine the individual effects of frontal solidity (λF, frontal area of the roughness elements per unit wall-parallel area) and plan solidity (λP, plan area of roughness elements per unit wall-parallel area), on both the bulk drag and the turbulence structure. A floating element friction balance based on Krogstad & Efros (2010) was designed and manufactured to measure the drag generated by the different surfaces. In parallel, high resolution planar and stereoscopic Particle Image Velocimetry (PIV) was applied to investigate the flow features. This talk will focus on the effects of each solidity parameter on the bulk drag and attempt to relate the observed trends to the flow structures in the roughness sublayer. Currently at City University London.
Surface and Basal Roughness in Radar Sounding Data: Obstacle and Opportunity
NASA Astrophysics Data System (ADS)
Schroeder, D. M.; Grima, C.; Haynes, M.
2015-12-01
The surface and basal roughness of glaciers, ice sheets, and ice shelves can pose a significant obstacle to the visual interpretation and quantitative analysis of radar sounding data. Areas of high surface roughness - including grounding zones, shear margins, and crevasse fields - can produce clutter and side-lobe signals that obscure the interpretation of englacial and subglacial features. These areas can also introduce significant variation in bed echo strength profiles as a result of losses from two-way propagation through rough ice surfaces. Similarly, reflections from rough basal interfaces beneath ice sheets and ice shelves can also result in large, spatially variable losses in bed echo power. If unmitigated and uncorrected, these effects can degrade or prevent the definitive interpretation of material and geometric properties at the base of ice sheets and ice shelves using radar reflectivity and bed echo character. However, these effects also provide geophysical signatures of surface and basal interface character - including surface roughness, firn density, subglacial bedform geometry, ice shelf basal roughness, marine-ice/brine detection, and crevasse geometry - that can be observed and constrained by exploiting roughness effects in radar sounding data. We present a series of applications and approaches for characterizing and correcting surface and basal roughness effects for airborne radar sounding data collected in Antarctica. We also present challenges, insights, and opportunities for extending these techniques to the orbital radar sounding of Europa's ice shell.
Theoretical study of the two-dimensional electron mobility in strained III-nitride heterostructures
NASA Astrophysics Data System (ADS)
Yu, Tsung-Hsing; Brennan, Kevin F.
2001-04-01
We present calculations of the two-dimensional (2D) electron mobility in III-nitride heterojunction structures in the presence of spontaneous and piezoelectrically induced polarization effects. The calculations are made using a self-consistent solution of the Schrödinger, Poisson, charge and potential balance equations. It is found that the polarization fields act to significantly increase the 2D sheet charge concentration while reducing the mobility. The mobility reduction results from the enhanced band bending and subsequent attraction of the electrons to the heterointerface where they experience increased surface roughness scattering. Good agreement is obtained between the theoretical calculations and experimental measurements over the full temperature range examined. Comparison of the mobility in InGaN/GaN to AlGaN/GaN heterostructures is made. It is found that the mobility is significantly higher in the InGaN/GaN structure than in the AlGaN/GaN structure.
Variational calculation of macrostate transition rates
NASA Astrophysics Data System (ADS)
Ulitsky, Alex; Shalloway, David
1998-08-01
We develop the macrostate variational method (MVM) for computing reaction rates of diffusive conformational transitions in multidimensional systems by a variational coarse-grained "macrostate" decomposition of the Smoluchowski equation. MVM uses multidimensional Gaussian packets to identify and focus computational effort on the "transition region," a localized, self-consistently determined region in conformational space positioned roughly between the macrostates. It also determines the "transition direction" which optimally specifies the projected potential of mean force for mean first-passage time calculations. MVM is complementary to variational transition state theory in that it can efficiently solve multidimensional problems but does not accommodate memory-friction effects. It has been tested on model 1- and 2-dimensional potentials and on the 12-dimensional conformational transition between the isoforms of a microcluster of six-atoms having only van der Waals interactions. Comparison with Brownian dynamics calculations shows that MVM obtains equivalent results at a fraction of the computational cost.
MacKinnon, D.J.; Clow, G.D.; Tigges, R.K.; Reynolds, R.L.; Chavez, P.S.
2004-01-01
The vulnerability of dryland surfaces to wind erosion depends importantly on the absence or the presence and character of surface roughness elements, such as plants, clasts, and topographic irregularities that diminish wind speed near the surface. A model for the friction velocity ratio has been developed to account for wind sheltering by many different types of co-existing roughness elements. Such conditions typify a monitored area in the central Mojave Desert, California, that experiences frequent sand movement and dust emission. Two additional models are used to convert the friction velocity ratio to the surface roughness length (zo) for momentum. To calculate roughness lengths from these models, measurements were made at 11 sites within the monitored area to characterize the surface roughness element. Measurements included (1) the number of roughness species (e.g., plants, small-scale topography, clasts), and their associated heights and widths, (2) spacing among species, and (3) vegetation porosity (a measurement of the spatial distribution of woody elements of a plant). Documented or estimated values of drag coefficients for different species were included in the modeling. At these sites, wind-speed profiles were measured during periods of neutral atmospheric stability using three 9-m towers with three or four calibrated anemometers on each. Modeled roughness lengths show a close correspondence (correlation coefficient, 0.84-0.86) to the aerodynamically determined values at the field sites. The geometric properties of the roughness elements in the model are amenable to measurement at much higher temporal and spatial resolutions using remote-sensing techniques than can be accomplished through laborious ground-based methods. A remote-sensing approach to acquire values of the modeled roughness length is particularly important for the development of linked surface/atmosphere wind-erosion models sensitive to climate variability and land-use changes in areas such as the southwestern United States, where surface roughness has large spatial and temporal variations. ?? 2004 Elsevier B.V. All rights reserved.
Acharya, B L Guruprasanna; Nadiger, Ramesh; Shetty, Bharathraj; Gururaj, G; Kumar, K Naveen; Darshan, D D
2014-01-01
Background: Alloys with high nickel content have been increasingly used in dentistry. Alloys have high corrosion rates when exposed to chemical or physical forces that are common intra orally. Titanium is the most biocompatible materials for crowns, fixed partial dentures and implants in the present use, but paradoxically the self-protective oxide film on the titanium can be affected by excessive use of the most common preventive agents in dentistry. Therefore, this study is undertaken in order to draw attention toward the potential effect of prophylactic brushing in a saline medium. Materials and Methods: Forty-five wax patterns in equal dimensions of 10 mm × 10 mm × 2 mm were cast in titanium (Grade II) and nickel-chromium. Of the 45 wax patterns, 15 wax patterns were used for preparing cast titanium samples and 30 wax patterns were used for preparing cast nickel-chromium samples and polished. These samples were divided into three groups of 15 samples each. They are brushed for 48 h each clinically simulating 2 years of brushing in a saline tooth paste medium. The surface roughnesses of the samples were evaluated using profilometer, scanning electron microscopes and energy dispersive spectroscopy. Results were subjected to statistical analysis. Results: The statistical analysis of the Rz and Ra surface roughness values were calculated. Significant difference of surface roughness was present in the titanium samples compared to that of the machine-readable cataloguing and Wirolloy (nickel-chromium) samples after the study. To know the difference in the values of all samples before and after, Student’s paired t-test was carried out. Results showed that there is a significant change in the Rz and Ra values of titanium samples. Conclusion: The present findings suggest that, prophylactic brushing with the fluoridated toothpaste have an effect on the surface roughness of titanium and also to a certain extent, on nickel-chromium. Therefore, careful consideration must be given to the selection of the toothbrushes and toothpastes with the medium abrasives in patients with these restorations. How to cite the article: Acharya BL, Nadiger R, Shetty B, Gururaj G, Kumar KN, Darshan DD. Brushing induced surface roughness of two nickel based alloys and a titanium based alloy: A comparative study - In vitro study. J Int Oral Health 2014;6(3):36-49. PMID:25083031
On the role of acoustic feedback in boundary-layer instability.
Wu, Xuesong
2014-07-28
In this paper, the classical triple-deck formalism is employed to investigate two instability problems in which an acoustic feedback loop plays an essential role. The first concerns a subsonic boundary layer over a flat plate on which two well-separated roughness elements are present. A spatially amplifying Tollmien-Schlichting (T-S) wave between the roughness elements is scattered by the downstream roughness to emit a sound wave that propagates upstream and impinges on the upstream roughness to regenerate the T-S wave, thereby forming a closed feedback loop in the streamwise direction. Numerical calculations suggest that, at high Reynolds numbers and for moderate roughness heights, the long-range acoustic coupling may lead to absolute instability, which is characterized by self-sustained oscillations at discrete frequencies. The dominant peak frequency may jump from one value to another as the Reynolds number, or the distance between the roughness elements, is varied gradually. The second problem concerns the supersonic 'twin boundary layers' that develop along two well-separated parallel flat plates. The two boundary layers are in mutual interaction through the impinging and reflected acoustic waves. It is found that the interaction leads to a new instability that is absent in the unconfined boundary layer. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Scaling law governing the roughness of the swash edge line
NASA Astrophysics Data System (ADS)
Bormashenko, E.; Musin, A.; Grynyov, R.
2014-09-01
The paper is devoted to the analysis of the shape of the swash edge line. Formation of the swash boundary is treated as an interfacial phenomenon. The simplest quantitative characteristic of the roughness of interface is its width w, defined as the root-mean-square fluctuation around the average position. For rough interfaces, the scaling with size of the system L is observed in the form w(L)~Lζ. The concept of scaling supplies a simple framework for classifying interfaces. It is suggested that the fine structure of the swash boundary results from the combined action of the pinning force applied by random defects of the beach and elasticity of distorted swash boundary. The roughness of the swash front was studied at the Mediterranean Sea coast for uprush and backwash flows. Value of exponent ζ for receding swash front line was 0.64 +/- 0.02, when in the case of advancing swash the value 0.73 +/- 0.03 was calculated. The scaling exponent established for the receding phase of the swash is very close to the values of the exponent established for the roughness of the triple line for water droplets deposited on rough surfaces, crack propagation front in Plexiglas, and for the motion of a magnetic domain walls.
NASA Astrophysics Data System (ADS)
Uslu, Salih; Yarar, Zeki
2017-02-01
The Ensemble Monte Carlo method is used to calculate the transport characteristics of two dimensional electron gas (2DEG) at a ZnMgO/ZnO hetero structure. The spontaneous and piezoelectric polarizations are considered and there is no intentional doping in either material. Numerical Schrödinger and Poisson equations are solved self consistently to obtain the scattering rates of various scattering mechanisms. The density of carriers, each energy sub bands, potential profile and corresponding wave functions are obtained from the self consistent calculations. The self consistent sub band wave functions of acoustic and optic phonon scattering and interface roughness scattering are used in Monte Carlo method to obtain transport characteristics at ZnMgO/ZnO junction. Two dimensional electron gas confined to ZnMgO/ZnO hetero structure is studied and the effect of temperature and Mg content are investigated.
Investigation of surface wave amplitudes in 3-D velocity and 3-D Q models
NASA Astrophysics Data System (ADS)
Ruan, Y.; Zhou, Y.
2010-12-01
It has been long recognized that seismic amplitudes depend on both wave speed structures and anelasticity (Q) structures. However, the effects of lateral heterogeneities in wave speed and Q structures on seismic amplitudes has not been well understood. We investigate the effects of 3-D wave speed and 3-D anelasticity (Q) structures on surface-wave amplitudes based upon wave propagation simulations of twelve globally-distributed earthquakes and 801 stations in Earth models with and without lateral heterogeneities in wave speed and anelasticity using a Spectral Element Method (SEM). Our tomographic-like 3-D Q models are converted from a velocity model S20RTS using a set of reasonable mineralogical parameters, assuming lateral perturbations in both velocity and Q are due to temperature perturbations. Surface-wave amplitude variations of SEM seismograms are measured in the period range of 50--200 s using boxcar taper, cosine taper and Slepian multi-tapers. We calculate ray-theoretical predictions of surface-wave amplitude perturbations due to elastic focusing, attenuation, and anelastic focusing which respectively depend upon the second spatial derivative (''roughness'') of perturbations in phase velocity, 1/Q, and the roughness of perturbations in 1/Q. Both numerical experiments and theoretical calculations show that (1) for short-period (~ 50 s) surface waves, the effects of amplitude attenuation due to 3-D Q structures are comparable with elastic focusing effects due to 3-D wave speed structures; and (2) for long-period (> 100 s) surface waves, the effects of attenuation become much weaker than elastic focusing; and (3) elastic focusing effects are correlated with anelastic focusing at all periods due to the correlation between velocity and Q models; and (4) amplitude perturbations are depend on measurement techniques and therefore cannot be directly compared with ray-theoretical predictions because ray theory does not account for the effects of measurement techniques. We calculate 3-D finite-frequency sensitivity of surface-wave amplitude to perturbations in wave speed and anelasticity (Q) which fully account for the effects of elastic focusing, attenuation, anelastic focusing as well as measurement techniques. We show that amplitude perturbations calculated using wave speed and Q sensitivity kernels agree reasonably well with SEM measurements and therefore the sensitivity kernels can be used in a joint inversion of seismic phase delays and amplitudes to simultaneously image high resolution 3-D wave speed and 3-D Q structures in the upper mantle.
Acoustic and electromagnetic wave interaction in the detection and identification of buried objects
NASA Astrophysics Data System (ADS)
Lawrence, Daniel Edward
2002-09-01
In order to facilitate the development of a hybrid acoustic and electromagnetic (EM) system for buried object detection, a number of analytical solutions and a novel numerical technique are developed to analyze the complex interaction between acoustic and EM scattering. The essence of the interaction lies in the fact that identifiable acoustic properties of an object, such as acoustic resonances, can be observed in the scattered EM Doppler spectrum. Using a perturbation approach, analytical solutions are derived for the EM scattering from infinitely long circular cylinders, both metallic and dielectric, under acoustic vibration in a homogeneous background medium. Results indicate that both the shape variation and dielectric constant contribute to the scattered EM Doppler spectrum. To model the effect of a cylinder beneath an acoustically excited half-space, a new analytical solution is presented for EM scattering from a cylinder beneath a slightly rough surface. The solution is achieved by using plane-wave expansion of the fields and an iterative technique to account for the multiple interactions between the cylinder and rough surface. Following a similar procedure, a novel solution for elastic-wave scattering from a solid cylinder embedded in a solid half-space is developed and used to calculate the surface displacement. Simulations indicate that only a finite range of spatial surface frequencies, corresponding to surface roughness on the order of the EM wavelength; affect the EM scattering from buried objects and suggest that object detection can be improved if the acoustic excitation induces surface roughness outside this range. To extend the study to non-canonical scenarios, a novel numerical approach is introduced in which time-varying impedance boundary conditions (IBCs) are used in conjunction with the method of moments (MoM) to model the EM scattering from vibrating metallic objects of arbitrary shape. It is shown that the standard IBC provides a first order solution for TM polarization, but a second order IBC is needed for TE polarization. The crucial factor in the calculation of the potentially small Doppler components is that the time-varying nature of the cylinder boundary, contained within the surface impedance expressions, can be isolated from the unperturbed terms in the scattered field.
Relation between skin micro-topography, roughness, and skin age.
Trojahn, C; Dobos, G; Schario, M; Ludriksone, L; Blume-Peytavi, U; Kottner, J
2015-02-01
The topography of the skin surface consists of lines, wrinkles, and scales. Primary and secondary lines form a network like structure that may be identified as polygons. Skin surface roughness measurements are widely applied in dermatological research and practice but the relation between roughness parameters and their anatomical equivalents are unclear. This study aimed to investigate whether the number of closed polygons (NCP) per measurement field can be used as a reliable parameter to measure skin surface topography. For this purpose, we analysed the relation between skin surface roughness parameters and NCP in different age groups. Images of the volar forearm skin of 38 subjects (14 children, 12 younger, and 12 older adults) were obtained with the VisioScan VC98. The NCP was counted by three independent researchers and selected roughness parameters were measured. Interrater reliability of counting the number of closed polygons and correlations between NCP, roughness parameters, and age were calculated. The mean NCP/mm² in children was 3.1 (SD 1.1), in younger adults 1.0 (SD 0.7), and in older adults 1.0 (SD 0.9). The interrater reliability was 0.9. A negative correlation of NCP/mm² with age was observed, whereas measured roughness parameters were positively associated with age. NCP/mm² was weakly related to skin roughness. The NCP/mm² is a reproducible parameter for characterizing the skin surface topography. It is proposed as an additional parameter in dermatological research and practice because it represents distinct aspects of the cutaneous profile not covered by established roughness parameters. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Roughness effects on thermal-infrared emissivities estimated from remotely sensed images
NASA Astrophysics Data System (ADS)
Mushkin, Amit; Danilina, Iryna; Gillespie, Alan R.; Balick, Lee K.; McCabe, Matthew F.
2007-10-01
Multispectral thermal-infrared images from the Mauna Loa caldera in Hawaii, USA are examined to study the effects of surface roughness on remotely retrieved emissivities. We find up to a 3% decrease in spectral contrast in ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) 90-m/pixel emissivities due to sub-pixel surface roughness variations on the caldera floor. A similar decrease in spectral contrast of emissivities extracted from MASTER (MODIS/ASTER Airborne Simulator) ~12.5-m/pixel data can be described as a function of increasing surface roughness, which was measured remotely from ASTER 15-m/pixel stereo images. The ratio between ASTER stereo images provides a measure of sub-pixel surface-roughness variations across the scene. These independent roughness estimates complement a radiosity model designed to quantify the unresolved effects of multiple scattering and differential solar heating due to sub-pixel roughness elements and to compensate for both sub-pixel temperature dispersion and cavity radiation on TIR measurements.
NASA Technical Reports Server (NTRS)
Wang, J. R.
1983-01-01
Microwave radiometric measurements over bare fields of different surface roughness were made at frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz to study the frequency dependence, as well as the possible time variation, of surface roughness. An increase in surface roughness was found to increase the brightness temperature of soils and reduce the slope of regression between brightness temperature and soil moisture content. The frequency dependence of the surface roughness effect was relatively weak when compared with that of the vegetation effect. Radiometric time-series observations over a given field indicate that field surface roughness might gradually diminish with time, especially after a rainfall or irrigation. The variation of surface roughness increases the uncertainty of remote soil moisture estimates by microwave radiometry. Three years of radiometric measurements over a test site revealed a possible inconsistency in the soil bulk density determination, which is an important factor in the interpretation of radiometric data.
On the Effects of Surface Roughness on Boundary Layer Transition
NASA Technical Reports Server (NTRS)
Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan; Edwards, Jack
2009-01-01
Surface roughness can influence laminar-turbulent transition in many different ways. This paper outlines selected analyses performed at the NASA Langley Research Center, ranging in speed from subsonic to hypersonic Mach numbers and highlighting the beneficial as well as adverse roles of the surface roughness in technological applications. The first theme pertains to boundary-layer tripping on the forebody of a hypersonic airbreathing configuration via a spanwise periodic array of trip elements, with the goal of understanding the physical mechanisms underlying roughness-induced transition in a high-speed boundary layer. The effect of an isolated, finite amplitude roughness element on a supersonic boundary layer is considered next. The other set of flow configurations examined herein corresponds to roughness based laminar flow control in subsonic and supersonic swept wing boundary layers. A common theme to all of the above configurations is the need to apply higher fidelity, physics based techniques to develop reliable predictions of roughness effects on laminar-turbulent transition.
Effects of surface roughness and electrokinetic heterogeneity on electroosmotic flow in microchannel
NASA Astrophysics Data System (ADS)
Masilamani, Kannan; Ganguly, Suvankar; Feichtinger, Christian; Bartuschat, Dominik; Rüde, Ulrich
2015-06-01
In this paper, a hybrid lattice-Boltzmann and finite-difference (LB-FD) model is applied to simulate the effects of three-dimensional surface roughness and electrokinetic heterogeneity on electroosmotic flow (EOF) in a microchannel. The lattice-Boltzmann (LB) method has been employed to obtain the flow field and a finite-difference (FD) method is used to solve the Poisson-Boltzmann (PB) equation for the electrostatic potential distribution. Numerical simulation of flow through a square cross-section microchannel with designed roughness is conducted and the results are critically analysed. The effects of surface heterogeneity on the electroosmotic transport are investigated for different roughness height, width, roughness interval spacing, and roughness surface potential. Numerical simulations reveal that the presence of surface roughness changes the nature of electroosmotic transport through the microchannel. It is found that the electroosmotic velocity decreases with the increase in roughness height and the velocity profile becomes asymmetric. For the same height of the roughness elements, the EOF velocity rises with the increase in roughness width. For the heterogeneously charged rough channel, the velocity profile shows a distinct deviation from the conventional plug-like flow pattern. The simulation results also indicate locally induced flow vortices which can be utilized to enhance the flow and mixing within the microchannel. The present study has important implications towards electrokinetic flow control in the microchannel, and can provide an efficient way to design a microfluidic system of practical interest.
Graphene thickness dependent adhesion force and its correlation to surface roughness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pourzand, Hoorad; Tabib-Azar, Massood, E-mail: azar.m@utah.edu; Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112
2014-04-28
In this paper, adhesion force of graphene layers on 300 nm silicon oxide is studied. A simple model for measuring adhesion force for a flat surface with sub-nanometer roughness was developed and is shown that small surface roughness decreases adhesion force while large roughness results in an effectively larger adhesion forces. We also show that surface roughness over scales comparable to the tip radius increase by nearly a factor of two, the effective adhesion force measured by the atomic force microscopy. Thus, we demonstrate that surface roughness is an important parameter that should be taken into account in analyzing the adhesionmore » force measurement results.« less
Gas flow through rough microchannels in the transition flow regime.
Deng, Zilong; Chen, Yongping; Shao, Chenxi
2016-01-01
A multiple-relaxation-time lattice Boltzmann model of Couette flow is developed to investigate the rarified gas flow through microchannels with roughness characterized by fractal geometry, especially to elucidate the coupled effects of roughness and rarefaction on microscale gas flow in the transition flow regime. The results indicate that the surface roughness effect on gas flow behavior becomes more significant in rarefied gas flow with the increase of Knudsen number. We find the gas flow behavior in the transition flow regime is more sensitive to roughness height than that in the slip flow regime. In particular, the influence of fractal dimension on rarefied gas flow behavior is less significant than roughness height.
Identifying Degenerative Brain Disease Using Rough Set Classifier Based on Wavelet Packet Method.
Cheng, Ching-Hsue; Liu, Wei-Xiang
2018-05-28
Population aging has become a worldwide phenomenon, which causes many serious problems. The medical issues related to degenerative brain disease have gradually become a concern. Magnetic Resonance Imaging is one of the most advanced methods for medical imaging and is especially suitable for brain scans. From the literature, although the automatic segmentation method is less laborious and time-consuming, it is restricted in several specific types of images. In addition, hybrid techniques segmentation improves the shortcomings of the single segmentation method. Therefore, this study proposed a hybrid segmentation combined with rough set classifier and wavelet packet method to identify degenerative brain disease. The proposed method is a three-stage image process method to enhance accuracy of brain disease classification. In the first stage, this study used the proposed hybrid segmentation algorithms to segment the brain ROI (region of interest). In the second stage, wavelet packet was used to conduct the image decomposition and calculate the feature values. In the final stage, the rough set classifier was utilized to identify the degenerative brain disease. In verification and comparison, two experiments were employed to verify the effectiveness of the proposed method and compare with the TV-seg (total variation segmentation) algorithm, Discrete Cosine Transform, and the listing classifiers. Overall, the results indicated that the proposed method outperforms the listing methods.
NASA Astrophysics Data System (ADS)
Ze, LIU; Guogang, YU; Anping, HE; Ling, WANG
2017-09-01
The physical vapor deposition method is an effective way to deposit Al2O3 and Er2O3 on 316L stainless steel substrates acting as tritium permeation barriers in a fusion reactor. The distribution of residual thermal stress is calculated both in Al2O3 and Er2O3 coating systems with planar and rough substrates using finite element analysis. The parameters influencing the thermal stress in the sputter process are analyzed, such as coating and substrate properties, temperature and Young’s modulus. This work shows that the thermal stress in Al2O3 and Er2O3 coating systems exhibit a linear relationship with substrate thickness, temperature and Young’s modulus. However, this relationship is inversed with coating thickness. In addition, the rough substrate surface can increase the thermal stress in the process of coating deposition. The adhesive strength between the coating and the substrate is evaluated by the shear stress. Due to the higher compressive shear stress, the Al2O3 coating has a better adhesive strength with a 316L stainless steel substrate than the Er2O3 coating. Furthermore, the analysis shows that it is a useful way to improve adhesive strength with increasing interface roughness.
NASA Astrophysics Data System (ADS)
Ahmad Kamal, Shafarina Azlinda; Ritikos, Richard; Abdul Rahman, Saadah
2015-02-01
Tuning the wettability of various coating materials by simply controlling the deposition parameters is essential for various specific applications. In this work, carbon nitride (CNx) films were deposited on silicon (1 1 1) substrates using radio-frequency plasma enhanced chemical vapour deposition employing parallel plate electrode configuration. Effects of varying the electrode distance (DE) on the films' structure and bonding properties were investigated using Field emission scanning electron microscopy, Atomic force microscopy, Fourier transform infrared and X-ray photoemission spectroscopy. The wettability of the films was analyzed using water contact angle measurements. At high DE, the CNx films' surface was smooth and uniform. This changed into fibrous nanostructures when DE was decreased. Surface roughness of the films increased with this morphological transformation. Nitrogen incorporation increased with decrease in DE which manifested the increase in both relative intensities of Cdbnd N to Cdbnd C and Nsbnd H to Osbnd H bonds. sp2-C to sp3-C ratio increased as DE decreased due to greater deformation of sp2 bonded carbon at lower DE. The films' characteristics changed from hydrophilic to super-hydrophobic with the decrease in DE. Roughness ratio, surface porosity and surface energy calculated from contact angle measurements were strongly dependent on the morphology, surface roughness and bonding properties of the films.
An in vitro atomic force microscopic study of commercially available dental luting materials.
Djordje, Antonijevic; Denis, Brajkovic; Nenadovic, Milos; Petar, Milovanovic; Marija, Djuric; Zlatko, Rakocevic
2013-09-01
The aim of this in vitro study was to compare the surface roughness parameters of four different types of dental luting agents used for cementation of implant restorations. Five specimens (8 mm high and 1 mm thick) of each cement were made using metal ring steelless molds. Atomic Force Microscope was employed to analyze different surface texture parameters of the materials. Bearing ratio analysis was used to calculate the potential microgap size between the cement and implant material and to calculate the depth of the valleys on the cement surface, while power spectral density (PSD) measurements were performed to measure the percentage of the surface prone to bacterial adhesion. Glass ionomer cement showed significantly lower value of average surface roughness then the other groups of the materials (P < 0.05) which was in line with the results of Bearing ratio analysis. On the other side, PSD analysis showed that zinc phosphate cement experience the lowest percentage of the surface which promote bacterial colonization. Glas ionomer cements present the surface roughness parameters that are less favorable for bacterial adhesion than that of zinc phosphate, resin-modified glass ionomer and resin cements. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Romanova, V.; Balokhonov, R.; Batukhtina, E.; Zinovieva, O.; Bezmozgiy, I.
2015-10-01
The results of a numerical analysis of the mesoscale surface roughening in a polycrystalline aluminum alloy exposed to uniaxial tension are presented. A 3D finite-element model taking an explicit account of grain structure is developed. The model describes a constitutive behavior of the material on the grain scale, using anisotropic elasticity and crystal plasticity theory. The effects of the grain shape and texture on the deformation-induced roughening are investigated. Calculation results have shown that surface roughness is much higher and develops at the highest rate in a polycrystal with equiaxed grains where both the micro- and mesoscale surface displacements are observed.
Roughness configuration matters for aeolian sediment flux
USDA-ARS?s Scientific Manuscript database
The parameterisation of surface roughness effects on aeolian sediment transport is a key source of uncertainty in wind erosion models. Roughness effects are typically represented by bulk drag-partitioning schemes that scale the threshold friction velocity (u*t) for soil entrainment by the ratio of s...
Surface Wave Effects on High-Frequency Currents Over a Shelf Edge Bank
2013-08-01
as part of projects sponsored by the Naval Research Laboratory (NRL) [Mixing Over Rough Topography (MORT)] and by the Bureau of Ocean Energy Management ...random wave fieldUS(z) is calculated as an ensemble average of wave components (Kenyon 1969), where US(z)5 4p ðf c f min ð2p 0 fkE(f , u)G(f , z) du df...Energy Management (BOEM; formerly Min- erals Management Service) in the project referred to as ‘‘Currents Over Banks (COB)’’ through the Interagency
NASA Astrophysics Data System (ADS)
Fong, Kahei Danny
The current understanding and research efforts on surface roughness effects in hypersonic boundary-layer flows focus, almost exclusively, on how roughness elements trip a hypersonic boundary layer to turbulence. However, there were a few reports in the literature suggesting that roughness elements in hypersonic boundary-layer flows could sometimes suppress the transition process and delay the formation of turbulent flow. These reports were not common and had not attracted much attention from the research community. Furthermore, the mechanisms of how the delay and stabilization happened were unknown. A recent study by Duan et al. showed that when 2-D roughness elements were placed downstream of the so-called synchronization point, the unstable second-mode wave in a hypersonic boundary layer was damped. Since the second-mode wave is typically the most dangerous and dominant unstable mode in a hypersonic boundary layer for sharp geometries at a zero angle of attack, this result has pointed to an explanation on how roughness elements delay transition in a hypersonic boundary layer. Such an understanding can potentially have significant practical applications for the development of passive flow control techniques to suppress hypersonic boundary-layer transition, for the purpose of aero-heating reduction. Nevertheless, the previous study was preliminary because only one particular flow condition with one fixed roughness parameter was considered. The study also lacked an examination on the mechanism of the damping effect of the second mode by roughness. Hence, the objective of the current research is to conduct an extensive investigation of the effects of 2-D roughness elements on the growth of instability waves in a hypersonic boundary layer. The goal is to provide a full physical picture of how and when 2-D roughness elements stabilize a hypersonic boundary layer. Rigorous parametric studies using numerical simulation, linear stability theory (LST), and parabolized stability equation (PSE) are performed to ensure the fidelity of the data and to study the relevant flow physics. All results unanimously confirm the conclusion that the relative location of the synchronization point with respect to the roughness element determines the roughness effect on the second mode. Namely, a roughness placed upstream of the synchronization point amplifies the unstable waves while placing a roughness downstream of the synchronization point damps the second-mode waves. The parametric study also shows that a tall roughness element within the local boundary-layer thickness results in a stronger damping effect, while the effect of the roughness width is relatively insignificant compared with the other roughness parameters. On the other hand, the fact that both LST and PSE successfully predict the damping effect only by analyzing the meanflow suggests the mechanism of the damping is by the meanflow alteration due to the existence of roughness elements, rather than new mode generation. In addition to studying the unstable waves, the drag force and heating with and without roughness have been investigated by comparing the numerical simulation data with experimental correlations. It is shown that the increase in drag force generated by the Mach wave around a roughness element in a hypersonic boundary layer is insignificant compared to the reduction of drag force by suppressing turbulent flow. The study also shows that, for a cold wall flow which is the case for practical flight applications, the Stanton number decreases as roughness elements smooth out the temperature gradient in the wall-normal direction. Based on the knowledge of roughness elements damping the second mode gained from the current study, a novel passive transition control method using judiciously placed roughness elements has been developed, and patented, during the course of this research. The main idea of the control method is that, with a given geometry and flow condition, it is possible to find the most unstable second-mode frequency that can lead to transition. And by doing a theoretical analysis such as LST, the synchronization location for the most unstable frequency can be found. Roughness elements are then strategically placed downstream of the synchronization point to damp out this dangerous second-mode wave, thus stabilizing the boundary layer and suppressing the transition process. This method is later experimentally validated in Purdue's Mach 6 quiet wind tunnel. Overall, this research has not only provided details of when and how 2-D roughness stabilizes a hypersonic boundary layer, it also has led to a successful application of numerical simulation data to the development of a new roughness-based transition delay method, which could potentially have significant contributions to the design of future generation hypersonic vehicles.
Microwave remote sensing and its application to soil moisture detection
NASA Technical Reports Server (NTRS)
Newton, R. W. (Principal Investigator)
1977-01-01
The author has identified the following significant results. Experimental measurements were utilized to demonstrate a procedure for estimating soil moisture, using a passive microwave sensor. The investigation showed that 1.4 GHz and 10.6 GHz can be used to estimate the average soil moisture within two depths; however, it appeared that a frequency less than 10.6 GHz would be preferable for the surface measurement. Average soil moisture within two depths would provide information on the slope of the soil moisture gradient near the surface. Measurements showed that a uniform surface roughness similar to flat tilled fields reduced the sensitivity of the microwave emission to soil moisture changes. Assuming that the surface roughness was known, the approximate soil moisture estimation accuracy at 1.4 GHz calculated for a 25% average soil moisture and an 80% degree of confidence, was +3% and -6% for a smooth bare surface, +4% and -5% for a medium rough surface, and +5.5% and -6% for a rough surface.
Subgap in the Surface Bound States Spectrum of Superfluid (3) 3 He-B with Rough Surface
NASA Astrophysics Data System (ADS)
Nagato, Y.; Higashitani, S.; Nagai, K.
2018-03-01
The subgap structure in the surface bound states spectrum of superfluid ^3He-B with rough surface is discussed. The subgap is formed by the level repulsion between the surface bound state and the continuum states in the course of multiple scattering by the surface roughness. We show that the level repulsion is originated from the nature of the wave function of the surface bound state that is now recognized as Majorana fermion. We study the superfluid ^3He-B with a rough surface and in a magnetic field perpendicular to the surface using the quasi-classical Green function together with a random S-matrix model. We calculate the self-consistent order parameters, the spin polarization density and the surface density of states. It is shown that the subgap is found also in a magnetic field perpendicular to the surface. The magnetic field dependence of the transverse acoustic impedance is also discussed.
An intermittency model for predicting roughness induced transition
NASA Astrophysics Data System (ADS)
Ge, Xuan; Durbin, Paul
2014-11-01
An extended model for roughness-induced transition is proposed based on an intermittency transport equation for RANS modeling formulated in local variables. To predict roughness effects in the fully turbulent boundary layer, published boundary conditions for k and ω are used, which depend on the equivalent sand grain roughness height, and account for the effective displacement of wall distance origin. Similarly in our approach, wall distance in the transition model for smooth surfaces is modified by an effective origin, which depends on roughness. Flat plate test cases are computed to show that the proposed model is able to predict the transition onset in agreement with a data correlation of transition location versus roughness height, Reynolds number, and inlet turbulence intensity. Experimental data for a turbine cascade are compared with the predicted results to validate the applicability of the proposed model. Supported by NSF Award Number 1228195.
A new look at photometry of the Moon
Goguen, J.D.; Stone, T.C.; Kieffer, H.H.; Buratti, B.J.
2010-01-01
We use ROLO photometry (Kieffer, H.H., Stone, T.C. [2005]. Astron. J. 129, 2887-2901) to characterize the before and after full Moon radiance variation for a typical highlands site and a typical mare site. Focusing on the phase angle range 45??. ) to calculate the scattering matrix and solve the radiative transfer equation for I/. F. The mean single scattering albedo is ??=0.808, the asymmetry parameter is ???cos. ?????=0.77 and the phase function is very strongly peaked in both the forward and backward scattering directions. The fit to the observations for the highland site is excellent and multiply scattered photons contribute 80% of I/. F. We conclude that either model, roughness or multiple scattering, can match the observations, but that the strongly anisotropic phase functions of realistic particles require rigorous calculation of many orders of scattering or spurious photometric roughness estimates are guaranteed. Our multiple scattering calculation is the first to combine: (1) a regolith model matched to the measured particle size distribution and index of refraction of the lunar soil, (2) a rigorous calculation of the particle phase function and solution of the radiative transfer equation, and (3) application to lunar photometry with absolute radiance calibration. ?? 2010 Elsevier Inc.
a Predictive Model of Permeability for Fractal-Based Rough Rock Fractures during Shear
NASA Astrophysics Data System (ADS)
Huang, Na; Jiang, Yujing; Liu, Richeng; Li, Bo; Zhang, Zhenyu
This study investigates the roles of fracture roughness, normal stress and shear displacement on the fluid flow characteristics through three-dimensional (3D) self-affine fractal rock fractures, whose surfaces are generated using the modified successive random additions (SRA) algorithm. A series of numerical shear-flow tests under different normal stresses were conducted on rough rock fractures to calculate the evolutions of fracture aperture and permeability. The results show that the rough surfaces of fractal-based fractures can be described using the scaling parameter Hurst exponent (H), in which H = 3 - Df, where Df is the fractal dimension of 3D single fractures. The joint roughness coefficient (JRC) distribution of fracture profiles follows a Gauss function with a negative linear relationship between H and average JRC. The frequency curves of aperture distributions change from sharp to flat with increasing shear displacement, indicating a more anisotropic and heterogeneous flow pattern. Both the mean aperture and permeability of fracture increase with the increment of surface roughness and decrement of normal stress. At the beginning of shear, the permeability increases remarkably and then gradually becomes steady. A predictive model of permeability using the mean mechanical aperture is proposed and the validity is verified by comparisons with the experimental results reported in literature. The proposed model provides a simple method to approximate permeability of fractal-based rough rock fractures during shear using fracture aperture distribution that can be easily obtained from digitized fracture surface information.
Markl, Daniel; Wahl, Patrick; Pichler, Heinz; Sacher, Stephan; Khinast, Johannes G
2018-01-30
This study demonstrates the use of optical coherence tomography (OCT) to simultaneously characterize the roughness of the tablet core and coating of pharmaceutical tablets. OCT is a high resolution non-destructive and contactless imaging methodology to characterize structural properties of solid dosage forms. Besides measuring the coating thickness, it also facilitates the analysis of the tablet core and coating roughness. An automated data evaluation algorithm extracts information about coating thickness, as well as tablet core and coating roughness. Samples removed periodically from a pan coating process were investigated, on the basis of thickness and profile maps of the tablet core and coating computed from about 480,000 depth measurements (i.e., 3D data) per sample. This data enables the calculation of the root mean square deviation, the skewness and the kurtosis of the assessed profiles. Analyzing these roughness parameters revealed that, for the given coating formulation, small valleys in the tablet core are filled with coating, whereas coarse features of the tablet core are still visible on the final film-coated tablet. Moreover, the impact of the tablet core roughness on the coating thickness is analyzed by correlating the tablet core profile and the coating thickness map. The presented measurement method and processing could be in the future transferred to in-line OCT measurements, to investigate core and coating roughness during the production of film-coated tablets. Copyright © 2017. Published by Elsevier B.V.
USDA-ARS?s Scientific Manuscript database
Soil surface roughness significantly impacts runoff and erosion under rainfall. Few previous studies on runoff generation focused on the effects of soil surface roughness on the sediment particle size distribution (PSD), which greatly affects interrill erosion and sedimentation processes. To address...
RANS Based Methodology for Predicting the Influence of Leading Edge Erosion on Airfoil Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langel, Christopher M.; Chow, Raymond C.; van Dam, C. P.
The impact of surface roughness on flows over aerodynamically designed surfaces is of interested in a number of different fields. It has long been known the surface roughness will likely accelerate the laminar- turbulent transition process by creating additional disturbances in the boundary layer. However, there are very few tools available to predict the effects surface roughness will have on boundary layer flow. There are numerous implications of the premature appearance of a turbulent boundary layer. Increases in local skin friction, boundary layer thickness, and turbulent mixing can impact global flow properties compounding the effects of surface roughness. With thismore » motivation, an investigation into the effects of surface roughness on boundary layer transition has been conducted. The effort involved both an extensive experimental campaign, and the development of a high fidelity roughness model implemented in a R ANS solver. Vast a mounts of experimental data was generated at the Texas A&M Oran W. Nicks Low Speed Wind Tunnel for the calibration and validation of the roughness model described in this work, as well as future efforts. The present work focuses on the development of the computational model including a description of the calibration process. The primary methodology presented introduces a scalar field variable and associated transport equation that interacts with a correlation based transition model. The additional equation allows for non-local effects of surface roughness to be accounted for downstream of rough wall sections while maintaining a "local" formulation. The scalar field is determined through a boundary condition function that has been calibrated to flat plate cases with sand grain roughness. The model was initially tested on a NACA 0012 airfoil with roughness strips applied to the leading edge. Further calibration of the roughness model was performed using results from the companion experimental study on a NACA 63 3 -418 airfoil. The refined model demonstrates favorable agreement predicting changes to the transition location, as well as drag, for a number of different leading edge roughness configurations on the NACA 63 3-418 airfoil. Additional tests were conducted on a thicker S814 airfoil, with similar roughness configurations to the NACA 63 3-418. Simulations run with the roughness model compare favorably with the results obtained in the experimental study for both airfoils.« less
Spin Hall effect originated from fractal surface
NASA Astrophysics Data System (ADS)
Hajzadeh, I.; Mohseni, S. M.; Movahed, S. M. S.; Jafari, G. R.
2018-05-01
The spin Hall effect (SHE) has shown promising impact in the field of spintronics and magnonics from fundamental and practical points of view. This effect originates from several mechanisms of spin scatterers based on spin–orbit coupling (SOC) and also can be manipulated through the surface roughness. Here, the effect of correlated surface roughness on the SHE in metallic thin films with small SOC is investigated theoretically. Toward this, the self-affine fractal surface in the framework of the Born approximation is exploited. The surface roughness is described by the k-correlation model and is characterized by the roughness exponent H , the in-plane correlation length ξ and the rms roughness amplitude δ. It is found that the spin Hall angle in metallic thin film increases by two orders of magnitude when H decreases from H = 1 to H = 0. In addition, the source of SHE for surface roughness with Gaussian profile distribution function is found to be mainly the side jump scattering while that with a non-Gaussian profile suggests both of the side jump and skew scatterings are present. Our achievements address how details of the surface roughness profile can adjust the SHE in non-heavy metals.
Inner-outer interactions in a turbulent boundary layer overlying complex roughness
NASA Astrophysics Data System (ADS)
Pathikonda, Gokul; Christensen, Kenneth T.
2017-04-01
Hot-wire measurements were performed in a zero-pressure-gradient turbulent boundary layer overlying both a smooth and a rough wall for the purpose of investigating the details of inner-outer flow interactions. The roughness considered embodies a broad range of topographical scales arranged in an irregular manner and reflects the topographical complexity often encountered in practical flow systems. Single-probe point-wise measurements with a traversing probe were made at two different regions of the rough-wall flow, which was previously shown to be heterogeneous in the spanwise direction, to investigate the distribution of streamwise turbulent kinetic energy and large scale-small scale interactions. In addition, two-probe simultaneous measurements were conducted enabling investigation of inner-outer interactions, wherein the large scales were independently sampled in the outer layer. Roughness-induced changes to the near-wall behavior were investigated, particularly by contrasting the amplitude and frequency modulation effects of inner-outer interactions in the rough-wall flow with well-established smooth-wall flow phenomena. It was observed that the rough-wall flow exhibits both amplitude and frequency modulation features close to the wall in a manner very similar to smooth-wall flow, though the correlated nature of these effects was found to be more intense in the rough-wall flow. In particular, frequency modulation was found to illuminate these enhanced modulation effects in the rough-wall flow. The two-probe measurements helped in evaluating the suitability of the interaction-schematic recently proposed by Baars et al., Exp. Fluids 56, 1 (2015), 10.1007/s00348-014-1876-4 for rough-wall flows. This model was found to be suitable for the rough-wall flow considered herein, and it was found that frequency modulation is a "cleaner" measure of the inner-outer modulation interactions for this rough-wall flow.
Comparative bone tissue integration of nanostructured and microroughened dental implants.
Salou, Laëtitia; Hoornaert, Alain; Stanovici, Julien; Briand, Sylvain; Louarn, Guy; Layrolle, Pierre
2015-01-01
The aim was to compare osteointegration of nanostructured implants to a microsurface widely used for titanium dental implants. Commercial titanium dental implants with smooth or microroughened surfaces were nanostructured. Implants were inserted into the femoral condyles of rabbits. After 2 and 4 weeks, histomorphometry calculation was performed. Nanotubes measuring 60 nm in diameter were observed on both S-NANO (roughness: 0.05 μm) and R-NANO (roughness: 0.40 μm) surfaces. The MICRO surface exhibited typical random cavities (roughness: 2.09 μm). At 4 weeks, bone-to-implant contact values were significantly higher for the R-NANO than for the MICRO surface while no differences were observed at 2 weeks. Overall, this study shows that the nanostructured surfaces improved osteointegration similar or higher than the MICRO.
Appearance of the octupole ordered phase IV in CexLa1 -x B6
NASA Astrophysics Data System (ADS)
Sera, M.; Kunimori, K.; Matsumura, T.; Kondo, A.; Tanida, H.; Tou, H.; Iga, F.
2018-05-01
We investigated the physical properties of CexLa1 -xB6 at x ˜0.8 , below which the Tβ-type antiferro-octupole (AFO) ordered phase IV appears as a result of the larger suppression rate of TQ than TN by La doping. The most important result is that while the peak of the specific heat at TQ is rapidly suppressed and broadened by La doping, that at TIV is sharp and large. This indicates that although the Tβ-AFO order in the phase IV is robust against the local lattice distortion induced by La doping, the Ox y-type antiferroquadrupole (AFQ) ordered phase II is very weak. The Tx y z-AFO interaction is robust against La doping from the observation of the pronounced enhancement of TQ even in a small x region. Based on these La-doping effect of the multipole interactions, we carried out the mean-field calculation for the four-sublattice model to reproduce the magnetic phase diagrams of CexLa1 -xB6 . Based on the calculated results, we propose that the small splitting of the quartet is induced by La doping in phase I to explain the magnetic phase diagram for x <0.65 . We could obtain the calculated results roughly consistent with the experimental results, although there appear new problems. We classified the mechanisms of the four different types of the competition among the four interactions with roughly the same magnitude, which induce the interesting and complicated properties in CexLa1 -xB6 .
NASA Astrophysics Data System (ADS)
Zhou, Yunlong; Zhao, Yunfei; Xu, Dan; Chai, Zhenxia; Liu, Wei
2016-10-01
The roughness-induced laminar-turbulent boundary layer transition is significant for high-speed aerospace applications. The transition mechanism is closely related to the roughness shape. In this paper, high-order numerical method is used to investigate the effect of roughness shape on the flat-plate laminar-to-turbulent boundary layer transition. Computations are performed in both the supersonic and hypersonic regimes (free-stream Mach number from 3.37 up to 6.63) for the square, cylinder, diamond and hemisphere roughness elements. It is observed that the square and diamond roughness elements are more effective in inducing transition compared with the cylinder and hemisphere ones. The square roughness element has the longest separated region in which strong unsteadiness exists and the absolute instability is formed, thus resulting in the earliest transition. The diamond roughness element has a maximum width of the separated region leading to the widest turbulent wake region far downstream. Furthermore, transition location moves backward as the Mach number increases, which indicates that the compressibility significantly suppresses the roughness-induced boundary layer transition.
CFD Based Prediction of Discharge Coefficient of Sonic Nozzle with Surface Roughness
NASA Astrophysics Data System (ADS)
Bagaskara, Agastya; Agoes Moelyadi, Mochammad
2018-04-01
Due to its simplicity and accuracy, sonic nozzle is widely used in gas flow measurement, gas flow meter calibration standard, and flow control. The nozzle obtains mass flow rate by measuring temperature and pressure in the inlet during choked flow condition and calculate the flow rate using the one-dimensional isentropic flow equation multiplied by a discharge coefficient, which takes into account multiple non-isentropic effects, which causes the reduction in mass flow. Proper determination of discharge coefficient is crucial to ensure the accuracy of mass flow measurement by the nozzle. Available analytical solution for the prediction of discharge coefficient assumes that the nozzle wall is hydraulically smooth which causes disagreement with experimental results. In this paper, the discharge coefficient of sonic nozzle is determined using computational fluid dynamics method by taking into account the roughness of the wall. It is found that the result shows better agreement with the experiment data compared to the analytical result.
Microwave remote sensing and radar polarization signatures of natural fields
NASA Technical Reports Server (NTRS)
Mo, Tsan
1989-01-01
Theoretical models developed for simulation of microwave remote sensing of the Earth surface from airborne/spaceborne sensors are described. Theoretical model calculations were performed and the results were compared with data of field measurements. Data studied included polarimetric images at the frequencies of P band, L band, and C band, acquired with airborne polarimeters over a agricultural field test site. Radar polarization signatures from bare soil surfaces and from tree covered fields were obtained from the data. The models developed in this report include: (1) Small perturbation model of wave scatterings from randomly rough surfaces, (2) Physical optics model, (3) Geometrical optics model, and (4) Electromagnetic wave scattering from dielectric cylinders of finite lengths, which replace the trees and branches in the modeling of tree covered field. Additionally, a three-layer emissivity model for passive sensing of a vegetation covered soil surface is also developed. The effects of surface roughness, soil moisture contents, and tree parameters on the polarization signatures were investigated.
Investigation of wall-bounded turbulence over sparsely distributed roughness
NASA Astrophysics Data System (ADS)
Placidi, Marco; Ganapathisubramani, Bharath
2011-11-01
The effects of sparsely distributed roughness elements on the structure of a turbulent boundary layer are examined by performing a series of Particle Image Velocimetry (PIV) experiments in a wind tunnel. From the literature, the best way to characterise a rough wall, especially one where the density of roughness elements is sparse, is unclear. In this study, rough surfaces consisting of sparsely and uniformly distributed LEGO® blocks are used. Five different patterns are adopted in order to examine the effects of frontal solidity (λf, frontal area of the roughness elements per unit wall-parallel area), plan solidity (λp, plan area of roughness elements per unit wall-parallel area) and the geometry of the roughness element (square and cylindrical elements), on the turbulence structure. The Karman number, Reτ , has been matched, at the value of approximately 2300, in order to compare across the different cases. In the talk, we will present detailed analysis of mean and rms velocity profiles, Reynolds stresses and quadrant decomposition.
Bonomo, Anthony L; Isakson, Marcia J; Chotiros, Nicholas P
2015-04-01
The finite element method is used to model acoustic scattering from rough poroelastic surfaces. Both monostatic and bistatic scattering strengths are calculated and compared with three analytic models: Perturbation theory, the Kirchhoff approximation, and the small-slope approximation. It is found that the small-slope approximation is in very close agreement with the finite element results for all cases studied and that perturbation theory and the Kirchhoff approximation can be considered valid in those instances where their predictions match those given by the small-slope approximation.
The radio power reflected from rough and undulating ionospheric surfaces
NASA Astrophysics Data System (ADS)
Whitehead, J. D.; From, W. R.; Smith, L. G.
1984-08-01
It is shown for both rough and undulating surfaces that the mean radio power reflected by the ionosphere averaged over a sufficiently long time is exactly the same as for a smooth flat surface at the same height provided the sounder is equally sensitive for echoes from all directions. When making radio wave absorption measurements under spread conditions the total integrated power over the whole time the direct echoes are being received must be used but the distance attenuation factor must be calculated from the time of arrival of the first echo.
Astrophysical Applications of Quantum Corrections to the Equation of State of a Plasma
NASA Technical Reports Server (NTRS)
Heckler, Andrew F.
1994-01-01
The quantum electrodynamic correction to the equation of state of a plasma at finite temperature is applied to the areas of solar physics and cosmology. A previously neglected, purely quantum term in the correction is found to change the equation of state in the solar core by -0.37%, which is roughly estimated to decrease the calculated high energy neutrino flux by about 2.2%. We also show that a previous calculation of the effect of this correction on big bang nucleosynthesis is incomplete, and we estimate the correction to the primordial helium abundance Y to be Delta A= 1.4 x 10(exp -4). A physical explanation for the correction is found in terms of corrections to the dispersion relation of the electron, positron, and photon.
Dripping from Rough Multi-Segmented Fracture Sets into Unsaturated Rock Underground Excavations
NASA Astrophysics Data System (ADS)
Cesano, D.; Bagtzoglou, A. C.
2001-05-01
The aim of this paper is to present a probabilistic analytical formulation of unsaturated flow through a single rough multi-segmented fracture, with the ultimate goal to provide a numerical platform with which to perform calculations on the dripping initiation time and to explain the fast flow-paths detected and reported by Fabryka-Martin et al. (1996). To accomplish this, an enhanced version of the Wang and Narasimhan model (Wang and Narasimhan, 1985; 1993), the Enhanced Wang and Narasimhan Model (EWNM), has been used. In the EWNM, a fracture is formed by a finite number of connected fracture segments of given strike and dip. These parameters are sampled from hypothetical probability density functions. Unsaturated water flow occurs in these fracture segments, and in order for dripping to occur it is assumed that local saturation conditions exist at the surface and the tunnel level, where dripping occurs. The current version of the EWNM ignores transient flow processes, and thus it assumes the flow system being at equilibrium. The fracture segments are considered as rough fractures, with their roughness characterized by an aperture distribution function that can be derived from real field data. The roughness along each fracture segment is considered to be constant, leading to a constant effective aperture, and it is randomly assigned. An effective flow area is also included in the model, which accounts for three-dimensional variations of the fracture area that can be possibly occupied by water. The model takes into account the possibility that the fracture crosses multiple layers, each of which can have a different configuration in the values of the input parameters. Monte Carlo simulations calculate average times for water to flow from the top to the bottom of the fracture for a specified number of random realizations. The random component of the realizations comprises the different geometric configurations of the fracture flow path, while the value of all the input parameters and the statistical distribution they honor are kept constant from realization to realization. This travel time, called the dripping initiation time, is the cumulative sum of the time it takes for the water to drip through all fracture segments and eventually reach the tunnel. Based on the results of a sensitivity analysis, three different scenarios of input parameters were used to test the validity of the model with the fast flow-paths detected and reported in the Fabryka-Martin et al. (1996) study. The three scenarios differed from each other for the response of the dripping initiation times. These three different parameter configurations were then tested at three different depths. Each depth represented a different location where fast-flow has been detected at Yucca Mountain and reported by Fabryka-Martin et al. (1996). The first depth is considered representative of a location in correspondence to the Bow Ridge Fault. The second location represents a network of steep fractures and cooling joints with large variability in dip reaching the ESF at a depth of 180 meters. The third location, which is probably connected to the Diabolous Ridge Fault, is 290 meters deep and the flow path is low-dipping. Monte Carlo simulations were run for each configuration at each depth to calculate average dripping initiation times, so that results from 9 scenarios were produced. The final conclusion is that the model is able to produce results quite consistent with the Fabryka-Martin et al. (1996) study.
Characterizing the SWOT discharge error budget on the Sacramento River, CA
NASA Astrophysics Data System (ADS)
Yoon, Y.; Durand, M. T.; Minear, J. T.; Smith, L.; Merry, C. J.
2013-12-01
The Surface Water and Ocean Topography (SWOT) is an upcoming satellite mission (2020 year) that will provide surface-water elevation and surface-water extent globally. One goal of SWOT is the estimation of river discharge directly from SWOT measurements. SWOT discharge uncertainty is due to two sources. First, SWOT cannot measure channel bathymetry and determine roughness coefficient data necessary for discharge calculations directly; these parameters must be estimated from the measurements or from a priori information. Second, SWOT measurement errors directly impact the discharge estimate accuracy. This study focuses on characterizing parameter and measurement uncertainties for SWOT river discharge estimation. A Bayesian Markov Chain Monte Carlo scheme is used to calculate parameter estimates, given the measurements of river height, slope and width, and mass and momentum constraints. The algorithm is evaluated using simulated both SWOT and AirSWOT (the airborne version of SWOT) observations over seven reaches (about 40 km) of the Sacramento River. The SWOT and AirSWOT observations are simulated by corrupting the ';true' HEC-RAS hydraulic modeling results with the instrument error. This experiment answers how unknown bathymetry and roughness coefficients affect the accuracy of the river discharge algorithm. From the experiment, the discharge error budget is almost completely dominated by unknown bathymetry and roughness; 81% of the variance error is explained by uncertainties in bathymetry and roughness. Second, we show how the errors in water surface, slope, and width observations influence the accuracy of discharge estimates. Indeed, there is a significant sensitivity to water surface, slope, and width errors due to the sensitivity of bathymetry and roughness to measurement errors. Increasing water-surface error above 10 cm leads to a corresponding sharper increase of errors in bathymetry and roughness. Increasing slope error above 1.5 cm/km leads to a significant degradation due to direct error in the discharge estimates. As the width error increases past 20%, the discharge error budget is dominated by the width error. Above two experiments are performed based on AirSWOT scenarios. In addition, we explore the sensitivity of the algorithm to the SWOT scenarios.
NASA Technical Reports Server (NTRS)
King, James; Nickling, William G.; Gillies, John A.
2005-01-01
The presence of nonerodible elements is well understood to be a reducing factor for soil erosion by wind, but the limits of its protection of the surface and erosion threshold prediction are complicated by the varying geometry, spatial organization, and density of the elements. The predictive capabilities of the most recent models for estimating wind driven particle fluxes are reduced because of the poor representation of the effectiveness of vegetation to reduce wind erosion. Two approaches have been taken to account for roughness effects on sediment transport thresholds. Marticorena and Bergametti (1995) in their dust emission model parameterize the effect of roughness on threshold with the assumption that there is a relationship between roughness density and the aerodynamic roughness length of a surface. Raupach et al. (1993) offer a different approach based on physical modeling of wake development behind individual roughness elements and the partition of the surface stress and the total stress over a roughened surface. A comparison between the models shows the partitioning approach to be a good framework to explain the effect of roughness on entrainment of sediment by wind. Both models provided very good agreement for wind tunnel experiments using solid objects on a nonerodible surface. However, the Marticorena and Bergametti (1995) approach displays a scaling dependency when the difference between the roughness length of the surface and the overall roughness length is too great, while the Raupach et al. (1993) model's predictions perform better owing to the incorporation of the roughness geometry and the alterations to the flow they can cause.
NASA Astrophysics Data System (ADS)
Guilhem, Yoann; Basseville, Stéphanie; Curtit, François; Stéphan, Jean-Michel; Cailletaud, Georges
2018-06-01
This paper is dedicated to the study of the influence of surface roughness on local stress and strain fields in polycrystalline aggregates. Finite element computations are performed with a crystal plasticity model on a 316L stainless steel polycrystalline material element with different roughness states on its free surface. The subsequent analysis of the plastic strain localization patterns shows that surface roughness strongly affects the plastic strain localization induced by crystallography. Nevertheless, this effect mainly takes place at the surface and vanishes under the first layer of grains, which implies the existence of a critical perturbed depth. A statistical analysis based on the plastic strain distribution obtained for different roughness levels provides a simple rule to define the size of the affected zone depending on the rough surface parameters.
Effects of surface roughness and absorption on light propagation in graded-profile waveguides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danilenko, S S; Osovitskii, A N
2011-06-30
This paper examines the effects of surface roughness and absorption on laser light propagation in graded-profile waveguiding structures. We derive analytical expressions for the scattering and absorption coefficients of guided waves and analyse these coefficients in relation to parameters of the waveguiding structure and the roughness of its boundary. A new approach is proposed to measuring roughness parameters of precision dielectric surfaces. Experimental evidence is presented which supports the main conclusions of the theory. (integraled-optical waweguides)
Matsushita, Bunkei; Yang, Wei; Chen, Jin; Onda, Yuyichi; Qiu, Guoyu
2007-11-05
Vegetation indices play an important role in monitoring variations in vegetation.The Enhanced Vegetation Index (EVI) proposed by the MODIS Land Discipline Groupand the Normalized Difference Vegetation Index (NDVI) are both global-based vegetationindices aimed at providing consistent spatial and temporal information regarding globalvegetation. However, many environmental factors such as atmospheric conditions and soilbackground may produce errors in these indices. The topographic effect is another veryimportant factor, especially when the indices are used in areas of rough terrain. In thispaper, we theoretically analyzed differences in the topographic effect on the EVI and theNDVI based on a non-Lambertian model and two airborne-based images acquired from amountainous area covered by high-density Japanese cypress plantation were used as a casestudy. The results indicate that the soil adjustment factor "L" in the EVI makes it moresensitive to topographic conditions than is the NDVI. Based on these results, we stronglyrecommend that the topographic effect should be removed in the reflectance data beforethe EVI was calculated-as well as from other vegetation indices that similarly include a term without a band ratio format (e.g., the PVI and SAVI)-when these indices are used in the area of rough terrain, where the topographic effect on the vegetation indices having only a band ratio format (e.g., the NDVI) can usually be ignored.
Micro-topography, rock surface modelling and minerology of notches in Mount Carmel
NASA Astrophysics Data System (ADS)
Brook, Anna; Ben-Binyamin, Atzmon; Shtober-Zisu, Nurit
2016-04-01
Notches are defined as horizontal concaved indentations developed on slopes or cliffs in a basic "C" shape regardless of their location or formation process. Many studies have proclaimed that notches are associated with coastal processes where rocky shore faces are back carved, parallel to sea level by a combination of physical and biological abrasion, and by chemical and biological dissolution. The notches morphologies are various and depend on the lithology, climate, and environment history. These changes involve complex volumetric effects such as weathering and surface mineral dissolution. The main impetus for the present paper is to advance the modeling and the 3D complex pattern reconstruction of notch's cavity surface and detailed shapes and to assess the association between the morphological structures observed upon the notch parts and the fine scale mineralogical composition of the rock. The reconstruction of 3D surfaces using point clouds scanned data is a known problem in computer graphics. Several approaches are based on combinatorial structures, such as Delaunay triangulations, alpha shapes, or Voronoi diagrams. These schemes typically create a triangle mesh that interpolates all or most of the points. In the presence of noisy data, resulting surface is often jagged, and is therefore smoothed or refit to the points in subsequent processing. Fast Fourier Transform (FFT) is a common technique for solving dense, periodic Poisson systems. However, the FFT requires longer time and larger space, quickly becoming prohibitive for fine resolutions. The Poisson approach's key element is the observation that inward normal field of the boundary can be inferred as the gradient of a three dimensional solid indicator function. Thus, the generation of a watertight mesh can be obtained by: (1) transforming the oriented point samples into a continuous vector field referred to as the relationship between the gradient of the indicator function and an integral of surface normals. The computation of the indicator function is reduced to (2) finding a scalar function whose gradients best match the vector field. Point cloud input gives enough information for the approximation of the surface integral with discrete summation. A set of points used for the portioning of the whole scene into distinct patches and also for the surface integral scaled by the patch's area. (3) Extracting the appropriate iso-surface. The roughness spatial variation was calculated according to: 1) removal of the regional slope effect is a pre-step for the surface roughness indices calculation (regression surface is reduced from the original iso-surface model to produce residuals features, surface roughness, from which it possible to calculate the variogram of the residuals), 2) Semivariogram is used to determine the optimal window size for image texture analysis. Mineral composition and structure of the different patches and components define its solubility implying thus upon the micro-morphological differences. Spectral measurements taken in the field and in the lab will be constructed to spectral libraries representing the notch's visor, cavity and floor. The VIS-NIR, SWIR and MIR reflectance data measured by the different types of spectrometers will not be mixed for future evaluation of mineral identification. The constructed spectral libraries was analyzed and processed for the characterization of spectral features of samples. The spectral features were compared with various well characterized resampled mineral spectral libraries for identification of the forming minerals. The mineral composition is defined by spectroscopy and used to capture the areas corresponding to different patterns of micro roughness along the notch's surface. The suggested roughness and 3D surface reconstruction employ real data acquired by the Terrestrial Light and Range Detection (t-LiDAR) scanner. The project stresses an interdisciplinary approach to map the mineral variations along the notch's different components corresponding to the roughness surface changes.
John M. Buffington; David R. Montgomery
1997-01-01
Data compiled from eight decades of incipient motion studies were used to calculate dimensionless critical shear stress values of the median grain size, T*c50. Calculated T*c50 values were stratified by initial motion definition, median grain size type (surface, subsurface, or laboratory mixture), relative roughness, and flow regime. A traditional Shields plot...
Parameterizing Urban Canopy Layer transport in an Lagrangian Particle Dispersion Model
NASA Astrophysics Data System (ADS)
Stöckl, Stefan; Rotach, Mathias W.
2016-04-01
The percentage of people living in urban areas is rising worldwide, crossed 50% in 2007 and is even higher in developed countries. High population density and numerous sources of air pollution in close proximity can lead to health issues. Therefore it is important to understand the nature of urban pollutant dispersion. In the last decades this field has experienced considerable progress, however the influence of large roughness elements is complex and has as of yet not been completely described. Hence, this work studied urban particle dispersion close to source and ground. It used an existing, steady state, three-dimensional Lagrangian particle dispersion model, which includes Roughness Sublayer parameterizations of turbulence and flow. The model is valid for convective and neutral to stable conditions and uses the kernel method for concentration calculation. As most Lagrangian models, its lower boundary is the zero-plane displacement, which means that roughly the lower two-thirds of the mean building height are not included in the model. This missing layer roughly coincides with the Urban Canopy Layer. An earlier work "traps" particles hitting the lower model boundary for a recirculation period, which is calculated under the assumption of a vortex in skimming flow, before "releasing" them again. The authors hypothesize that improving the lower boundary condition by including Urban Canopy Layer transport could improve model predictions. This was tested herein by not only trapping the particles, but also advecting them with a mean, parameterized flow in the Urban Canopy Layer. Now the model calculates the trapping period based on either recirculation due to vortex motion in skimming flow regimes or vertical velocity if no vortex forms, depending on incidence angle of the wind on a randomly chosen street canyon. The influence of this modification, as well as the model's sensitivity to parameterization constants, was investigated. To reach this goal, the model was initialized and compared with meteorological and SF6 tracer measurements from the Basel UrBan Boundary Layer Experiment (BUBBLE). The proposed modification does not improve the model's agreement with concentration observations, even though the trapping time shows promising agreement with measurements. Additionally, the modification's influence is smaller than those of different turbulence profiles, zero-plane displacement height and Roughness Sublayer height.
Energy-harvesting potential of automobile suspension
NASA Astrophysics Data System (ADS)
Múčka, Peter
2016-12-01
This study is aimed quantify dissipated power in a damper of automobile suspension to predict energy harvesting potential of a passenger car more accurately. Field measurements of power dissipation in a regenerative damper are still rare. The novelty is in using the broad database of real road profiles, a 9 degrees-of-freedom full-car model with real parameters, and a tyre-enveloping contact model. Results were presented as a function of road surface type, velocity and road roughness characterised by International Roughness Index. Results were calculated for 1600 test sections of a total length about 253.5 km. Root mean square of a dissipated power was calculated from 19 to 46 W for all four suspension dampers and velocity 60 km/h and from 24 to 58 W for velocity 90 km/h. Results were compared for a full-car model with a tyre-enveloping road contact, full-car and quarter-car models with a tyre-road point contact. Mean difference among three models in calculated power was a few per cent.
Li, Zheng; Venable, Richard M.; Rogers, Laura A.; Murray, Diana; Pastor, Richard W.
2009-01-01
Abstract Molecular dynamics (MD) simulations of phosphatidylinositol (4,5)-bisphosphate (PIP2) and phosphatidylinositol (3,4,5)-trisphosphate (PIP3) in 1-palmitoyl 2-oleoyl phosphatidylcholine (POPC) bilayers indicate that the inositol rings are tilted ∼40° with respect to the bilayer surface, as compared with 17° for the P-N vector of POPC. Multiple minima were obtained for the ring twist (analogous to roll for an airplane). The phosphates at position 1 of PIP2 and PIP3 are within an Ångström of the plane formed by the phosphates of POPC; lipids in the surrounding shell are depressed by 0.5–0.8 Å, but otherwise the phosphoinositides do not substantially perturb the bilayer. Finite size artifacts for ion distributions are apparent for systems of ∼26 waters/lipid, but, based on simulations with a fourfold increase of the aqueous phase, the phosphoinositide positions and orientations do not show significant size effects. Electrostatic potentials evaluated from Poisson-Boltzmann (PB) calculations show a strong dependence of potential height and ring orientation, with the maxima on the −25 mV surfaces (17.1 ± 0.1 Å for PIP2 and 19.4 ± 0.3 Å for PIP3) occurring near the most populated orientations from MD. These surfaces are well above the background height of 10 Å estimated for negatively charged cell membranes, as would be expected for lipids involved in cellular signaling. PB calculations on microscopically flat bilayers yield similar maxima as the MD-based (microscopically rough) systems, but show less fine structure and do not clearly indicate the most probable regions. Electrostatic free energies of interaction with pentalysine are also similar for the rough and flat systems. These results support the utility of a rigid/flat bilayer model for PB-based studies of PIP2 and PIP3 as long as the orientations are judiciously chosen. PMID:19580753
Laminar-Turbulent Transition Behind Discrete Roughness Elements in a High-Speed Boundary Layer
NASA Technical Reports Server (NTRS)
Choudhari, Meelan M.; Li, Fei; Wu, Minwei; Chang, Chau-Lyan; Edwards, Jack R., Jr.; Kegerise, Michael; King, Rudolph
2010-01-01
Computations are performed to study the flow past an isolated roughness element in a Mach 3.5, laminar, flat plate boundary layer. To determine the effects of the roughness element on the location of laminar-turbulent transition inside the boundary layer, the instability characteristics of the stationary wake behind the roughness element are investigated over a range of roughness heights. The wake flow adjacent to the spanwise plane of symmetry is characterized by a narrow region of increased boundary layer thickness. Beyond the near wake region, the centerline streak is surrounded by a pair of high-speed streaks with reduced boundary layer thickness and a secondary, outer pair of lower-speed streaks. Similar to the spanwise periodic pattern of streaks behind an array of regularly spaced roughness elements, the above wake structure persists over large distances and can sustain strong enough convective instabilities to cause an earlier onset of transition when the roughness height is sufficiently large. Time accurate computations are performed to clarify additional issues such as the role of the nearfield of the roughness element during the generation of streak instabilities, as well as to reveal selected details of their nonlinear evolution. Effects of roughness element shape on the streak amplitudes and the interactions between multiple roughness elements aligned along the flow direction are also investigated.
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Nowak, Robert J.
2003-01-01
Active and passive methods for control of hypersonic boundary layers have been experimentally examined in NASA Langley Research Center wind tunnels on a Hyper-X model. Several configurations for forcing transition using passive discrete roughness elements and active mass addition, or blowing, methods were compared in two hypersonic facilities, the 20-Inch Mach 6 Air and the 31-Inch Mach 10 Air tunnels. Heat transfer distributions, obtained via phosphor thermography, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. The comparisons between the active and passive methods for boundary layer control were conducted at test conditions that nearly match the nominal Mach 7 flight trajectory of an angle-of-attack of 2-deg and length Reynolds number of 5.6 million. For the passive roughness examination, the primary parametric variation was a range of trip heights within the calculated boundary layer thickness for several trip concepts. The prior passive roughness study resulted in a swept ramp configuration being selected for the Mach 7 flight vehicle that was scaled to be roughly 0.6 of the calculated boundary layer thickness. For the active jet blowing study, the blowing manifold pressure was systematically varied for each configuration, while monitoring the mass flow, to determine the jet penetration height with schlieren and transition movement with the phosphor system for comparison to the passive results. All the blowing concepts tested were adequate for providing transition onset near the trip location with manifold stagnation pressures on the order of 40 times the model static pressure or higher.
Effect of fault roughness on aftershock distribution and post co-seismic strain accumulation.
NASA Astrophysics Data System (ADS)
Aslam, K.; Daub, E. G.
2017-12-01
We perform physics-based simulations of earthquake rupture propagation on geometrically complex strike-slip faults. We consider many different realization of the fault roughness and obtain heterogeneous stress fields by performing dynamic rupture simulation of large earthquakes. We calculate the Coulomb failure function (CFF) for all these realizations so that we can quantify zones of stress increase/shadows surrounding the main fault and compare our results to seismic catalogs. To do this comparison, we use relocated earthquake catalogs from Northern and Southern California. We specify the range of fault roughness parameters based on past observational studies. The Hurst exponent (H) varies in range from 0.5 to 1 and RMS height to wavelength ratio ( RMS deviation of a fault profile from planarity) has values between 10-2 to 10-3. For any realization of fault roughness, the Probability density function (PDF) values relative to the mean CFF change show a wider spread near the fault and this spread squeezes into a narrow band as we move away from fault. For lower value of RMS ratio ( 10-3), we see bigger zones of stress change near the hypocenter and for higher value of RMS ratio ( 10-2), we see alternate zones of stress increase/decrease surrounding the fault to have comparable lengths. We also couple short-term dynamic rupture simulation with long-term tectonic modelling. We do this by giving the stress output from one of the dynamic rupture simulation (of a single realization of fault roughness) to long term tectonic model (LTM) as initial condition and then run LTM over duration of seismic cycle. This short term and long term coupling enables us to understand how heterogeneous stresses due to fault geometry influence the dynamics of strain accumulation in the post-seismic and inter-seismic phase of seismic cycle.
Effect of sealer coating and storage methods on the surface roughness of soft liners.
Usta Kutlu, Ilknur; Yanikoğlu, Nuran Dinckal; Kul, Esra; Duymuş, Zeynep Yesïl; Sağsöz, Nurdan Polat
2016-03-01
A soft lining is applied under a removable prosthesis for various reasons. The porosity of the lining material may increase colonization by microorganisms and cause tissue inflammation. The purpose of this in vitro study was to evaluate the effect of sealer coating on the surface roughness of soft lining materials under 4 different conditions. A total of 125 specimens were prepared. One high-temperature silicone-based soft lining material and 2 room-temperature-polymerized soft lining materials (1 silicone-based and 1 methacrylate-based) were used. Twenty-five specimens of each room-temperature soft lining material were coated with 2 layers of surface sealer. Additionally, 5 specimens of each material were stored in either distilled water, Coca-Cola, denture cleanser, saliva, or air. The surface roughness was measured at baseline and after 1, 7, 14, and 28 days. Surface roughness values were analyzed with repeated measures analysis of variance, and the Bonferroni multiple comparison test was performed using time-dependent groups and storage methods. In the time-dependent groups, methacrylate-based sealer-coated soft liners exhibited a significant increase in roughness (1.74-2.09 μm, P<.001), and silicone-based sealer-coated soft liners exhibited a decrease in roughness, but it was not significant (2.16-2.02 μm, P>.05). Therefore, the sealer coating was not effective in reducing surface roughness. Among the time-dependent storage methods, the denture cleanser exhibited an almost significant increase in roughness (1.83-1.99 μm, P=.054). Coca-Cola and artificial saliva did not show a significant difference (P>.05). However, a significant decrease in roughness was found with distilled water (P=.02) and air (P<.001). Statistically significant differences in surface roughness were found among the different types of soft liners. The sealer coating had no significant effect, and denture cleanser slightly increased the surface roughness. Contrary to expectations, the roughness did not increase in all groups over time. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Tribological Properties of PVD Ti/C-N Nanocoatnigs
NASA Astrophysics Data System (ADS)
Leitans, A.; Lungevics, J.; Rudzitis, J.; Filipovs, A.
2017-04-01
The present paper discusses and analyses tribological properties of various coatings that increase surface wear resistance. Four Ti/C-N nanocoatings with different coating deposition settings are analysed. Tribological and metrological tests on the samples are performed: 2D and 3D parameters of the surface roughness are measured with modern profilometer, and friction coefficient is measured with CSM Instruments equipment. Roughness parameters Ra, Sa, Sz, Str, Sds, Vmp, Vmc and friction coefficient at 6N load are determined during the experiment. The examined samples have many pores, which is the main reason for relatively large values of roughness parameter. A slight wear is identified in all four samples as well; its friction coefficient values range from 0,.21 to 0.29. Wear rate values are not calculated for the investigated coatings, as no expressed tribotracks are detected on the coating surface.
Spin relaxation in graphene nanoribbons in the presence of substrate surface roughness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaghazardi, Zahra; Faez, Rahim; Touski, Shoeib Babaee
2016-08-07
In this work, spin transport in corrugated armchair graphene nanoribbons (AGNRs) is studied. We survey combined effects of spin-orbit interaction and surface roughness, employing the non-equilibrium Green's function formalism and multi-orbitals tight-binding model. Rough substrate surfaces have been statistically generated and the hopping parameters are modulated based on the bending and distance of corrugated carbon atoms. The effects of surface roughness parameters, such as roughness amplitude and correlation length, on spin transport in AGNRs are studied. The increase of surface roughness amplitude results in the coupling of σ and π bands in neighboring atoms, leading to larger spin flipping ratemore » and therefore reduction of the spin-polarization, whereas a longer correlation length makes AGNR surface smoother and increases spin-polarization. Moreover, spin diffusion length of carriers is extracted and its dependency on the roughness parameters is investigated. In agreement with experimental data, the spin diffusion length for various substrate ranges between 2 and 340 μm. Our results indicate the importance of surface roughness on spin-transport in graphene.« less
Effect of Macrogeometry on the Surface Topography of Dental Implants.
Naves, Marina Melo; Menezes, Helder Henrique Machado; Magalhães, Denildo; Ferreira, Jessica Afonso; Ribeiro, Sara Ferreira; de Mello, José Daniel Biasoli; Costa, Henara Lillian
2015-01-01
Because the microtopography of titanium implants influences the biomaterial-tissue interaction, surface microtexturing treatments are frequently used for dental implants. However, surface treatment alone may not determine the final microtopography of a dental implant, which can also be influenced by the implant macrogeometry. This work analyzed the effects on surface roughness parameters of the same treatment applied by the same manufacturer to implants with differing macro-designs. Three groups of titanium implants with different macro-designs were investigated using laser interferometry and scanning electron microscopy. Relevant surface roughness parameters were calculated for different regions of each implant. Two flat disks (treated and untreated) were also investigated for comparison. The tops of the threads and the nonthreaded regions of all implants had very similar roughness parameters, independent of the geometry of the implant, which were also very similar to those of flat disks treated with the same process. In contrast, the flanks and valleys of the threads presented larger irregularities (Sa) with higher slopes (Sdq) and larger developed surface areas (Sdr) on all implants, particularly for implants with threads with smaller heights. The flanks and valleys displayed stronger textures (Str), particularly on the implants with threads with larger internal angles. Parameters associated with the height of the irregularities (Sa), the slope of the asperities (Sdq), the presence of a surface texture (Str), and the developed surface area of the irregularities (Sdr) were significantly affected by the macrogeometry of the implants. Flat disks subjected to the same surface treatment as dental implants reproduced only the surface topography of the flat regions of the implants.
A wind tunnel study of flows over idealised urban surfaces with roughness sublayer corrections
NASA Astrophysics Data System (ADS)
Ho, Yat-Kiu; Liu, Chun-Ho
2017-10-01
Dynamics in the roughness (RSLs) and inertial (ISLs) sublayers in the turbulent boundary layers (TBLs) over idealised urban surfaces are investigated analytically and experimentally. In this paper, we derive an analytical solution to the mean velocity profile, which is a continuous function applicable to both RSL and ISL, over rough surfaces in isothermal conditions. Afterwards, a modified mixing-length model for RSL/ISL transport is developed that elucidates how surface roughness affects the turbulence motions. A series of wind tunnel experiments are conducted to measure the vertical profiles of mean and fluctuating velocities, together with momentum flux over various configurations of surface-mounted ribs in cross flows using hot-wire anemometry (HWA). The analytical solution agrees well with the wind tunnel result that improves the estimate to mean velocity profile over urban surfaces and TBL dynamics as well. The thicknesses of RSL and ISL are calculated by monitoring the convergence/divergence between the temporally averaged and spatio-temporally averaged profiles of momentum flux. It is found that the height of RSL/ISL interface is a function of surface roughness. Examining the direct, physical influence of roughness elements on near-surface RSL flows reveals that the TBL flows over rough surfaces exhibit turbulence motions of two different length scales which are functions of the RSL and ISL structure. Conclusively, given a TBL, the rougher the surface, the higher is the RSL intruding upward that would thinner the ISL up to 50 %. Therefore, the conventional ISL log-law approximation to TBL flows over urban surfaces should be applied with caution.
Hydrophobic properties of a wavy rough substrate.
Carbone, G; Mangialardi, L
2005-01-01
The wetting/non-wetting properties of a liquid drop in contact with a chemically hydrophobic rough surface (thermodynamic contact angle theta(e)>pi/2) are studied for the case of an extremely idealized rough profile: the liquid drop is considered to lie on a simple sinusoidal profile. Depending on surface geometry and pressure values, it is found that the Cassie and Wenzel states can coexist. But if the amplitude h of the substrate is sufficiently large the only possible stable state is the Cassie one, whereas if h is below a certain critical value hcr a transition to the Wenzel state occurs. Since in many potential applications of such super-hydrophobic surfaces, liquid drops often collide with the substrate (e.g. vehicle windscreens), in the paper the critical drop pressure pW is calculated at which the Cassie state is no longer stable and the liquid jumps into full contact with the substrate (Wenzel state). By analyzing the asymptotic behavior of the systems in the limiting case of a large substrate corrugation, a simple criterion is also proposed to calculate the minimum height asperity h necessary to prevent the Wenzel state from being formed, to preserve the super-hydrophobic properties of the substrate, and, hence, to design a robust super-hydrophobic surface.
A general law of fault wear and its implication to gouge zone evolution
NASA Astrophysics Data System (ADS)
Boneh, Yuval; Reches, Ze'ev
2017-04-01
Fault wear and gouge production are universal components of frictional sliding. Wear models commonly consider fault roughness, normal stress and rock strength, but ignore the effects of gouge presence and slip-velocity. In contrast, our experimental observations indicate that wear continues while gouge layer is fully developed, and that wear-rates vary by orders-of-magnitude during slip along experimental faults made of carbonites, sandstones and granites (Boneh et al., 2013, 2014). We derive here a new universal law for fault wear by incorporating the gouge layer and slip-velocity. Slip between two rock-blocks undergoes a transition from a 'two-body' mode, during which the blocks interact at surface roughness contacts, to 'three-body' mode, during which a gouge layer separates the two blocks. Our wear model considers 'effective roughness' as the mechanism for failure at resisting, interacting sites that control the global wear. The effective roughness is comprised of a time dependent, dynamic asperities which are different in population and scale from original surfaces asperities. The model assumes that the intensity of this failure is proportional to the mechanical impulse, which is the integrated force over loading time at the interacting sites. We use this concept to calculate the wear-rate as function of the impulse-density, which is the ratio [shear-stress/slip-velocity], during fault slip. The compilation of experimental wear-rates in a large range of slip-velocities (10 μm/s - 1 m/s) and normal stresses (0.2 - 200 MPa) reveal very good agreement with the model predictions. The model provides the first explanation why fault slip at seismic velocity, e.g., 1 m/s, generates significantly less wear and gouge than fault slip at creeping velocity. Thus, the model provides a tool to use the gouge thickness of fault-zones for estimation of paleo-velocity. Boneh, Y., Sagy, A., Reches, Z., 2013. Frictional strength and wear-rate of carbonate faults during high-velocity, steady-state sliding. Earth and Planetary Science Letters 381, 127-137. Boneh, Y., Chang, J.C., Lockner, D.A., Reches, Z., 2014. Evolution of Wear and Friction Along Experimental Faults. Pure and Applied Geophysics, 1-17.
NASA Astrophysics Data System (ADS)
Blachut, Gregory; Sirard, Stephen M.; Liang, Andrew; Mack, Chris A.; Maher, Michael J.; Rincon-Delgadillo, Paulina A.; Chan, Boon Teik; Mannaert, Geert; Vandenberghe, Geert; Willson, C. Grant; Ellison, Christopher J.; Hymes, Diane
2018-03-01
A pattern transfer study was conducted to monitor the evolution of roughness in sub-10 nm half-pitch lines generated by the directed self-assembly (DSA) of a high-chi, silicon-containing block copolymer, poly(4-trimethylsilylstyrene)-block-poly(4-methoxystyrene). Unbiased roughness measurements were used to characterize the roughness of the structures before and after pattern transfer into silicon nitride. Parameters of the reactive ion etch process used as a dry development were systematically modified to minimize undesired line walking created by the DSA pre-pattern and to determine their impacts on roughness. The results of this study indicate that an optimized dry development can mitigate the effects of pre-pattern inhomogeneity, and that both dry development and pattern transfer steps effect the roughness of the final structures.
An extrapolation scheme for solid-state NMR chemical shift calculations
NASA Astrophysics Data System (ADS)
Nakajima, Takahito
2017-06-01
Conventional quantum chemical and solid-state physical approaches include several problems to accurately calculate solid-state nuclear magnetic resonance (NMR) properties. We propose a reliable computational scheme for solid-state NMR chemical shifts using an extrapolation scheme that retains the advantages of these approaches but reduces their disadvantages. Our scheme can satisfactorily yield solid-state NMR magnetic shielding constants. The estimated values have only a small dependence on the low-level density functional theory calculation with the extrapolation scheme. Thus, our approach is efficient because the rough calculation can be performed in the extrapolation scheme.
Effects of polishing on surface roughness, gloss, and color of resin composites.
Hosoya, Yumiko; Shiraishi, Takanobu; Odatsu, Tetsuro; Nagafuji, Junichi; Kotaku, Mayumi; Miyazaki, Masashi; Powers, John M
2011-09-01
This study evaluated the effects of polishing on surface roughness, gloss, and color of regular, opaque, and enamel shades for each of three resin composites. Two-mm-thick resin disks made with Estelite Σ Quick, Clearfil Majesty, and Beautifil II were final polished with 180-, 1000-, and 3000-grit silicon carbide paper. Surface roughness, gloss, and color were measured one week after curing. Estelite Σ Quick had significantly lower roughness values and significantly higher gloss values as compared with Clearfil Majesty and Beautifil II. The effects of surface roughness and gloss on color (L*a*b*) differed among resin composites and by shade. Correlation coefficients between surface roughness and L*a*b* color factors were generally high for Clearfil Majesty, partially high (i.e., between roughness and L*) for Beautifil II, and low for Estelite Σ Quick. Correlation coefficients between gloss and L*a*b* color parameters were generally high for Beautifil II and low for Estelite Σ Quick and Clearfil Majesty. However, for all resin composites, the values of the color differences between 3000-grit and 180-grit polishing groups for all shades were imperceptible by the naked eye.
NASA Astrophysics Data System (ADS)
Orłowska-Szostak, Maria; Orłowski, Ryszard
2017-11-01
The paper discusses some relevant aspects of the calibration of a computer model describing flows in the water supply system. The authors described an exemplary water supply system and used it as a practical illustration of calibration. A range of measures was discussed and applied, which improve the convergence and effective use of calculations in the calibration process and also the effect of such calibration which is the validity of the results obtained. Drawing up results of performed measurements, i.e. estimating pipe roughnesses, the authors performed using the genetic algorithm implementation of which is a software developed by Resan Labs company from Brazil.
Effect of engraving speeds of CO₂ laser irradiation on In-Ceram Alumina roughness: a pilot study.
Ersu, Bahadır; Ersoy, Orkun; Yuzugullu, Bulem; Canay, Senay
2015-05-01
The aim of the study was to determine the effect of CO₂ laser on surface roughness of In-Ceram-Alumina-ceramic. Four aluminum-oxide ceramic disc specimens were prepared of In-Ceram Alumina. Discs received CO₂ laser irradiation with different engraving speeds (100, 400, 600 and 800 mm/min) as a surface treatment. The roughness of the surfaces was measured on digital elevation models reconstructed from stereoscopic images acquired by scanning-electron-microscope. Surface roughness data were analyzed with One-Way-Analysis-of-Variance at a significance level of p<0.05. There was no significant difference between the roughness values (p=0.82). Due to higher laser durations, partial melting signs were observed on the surfaces. Tearing, smearing and swelling occurred on melted surfaces. Swelling accompanying melting increased the surface roughness, while laser power was fixed and different laser engraving speeds were applied. Although different laser irradiation speeds did not affect the roughness of ceramic surfaces, swelling was observed which led to changes on surfaces.
Passive microwave sensing of soil moisture content: Soil bulk density and surface roughness
NASA Technical Reports Server (NTRS)
Wang, J. R.
1982-01-01
Microwave radiometric measurements over bare fields of different surface roughnesses were made at the frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz to study the frequency dependence as well as the possible time variation of surface roughness. The presence of surface roughness was found to increase the brightness temperature of soils and reduce the slope of regression between brightness temperature and soil moisture content. The frequency dependence of the surface roughness effect was relatively weak when compared with that of the vegetation effect. Radiometric time series observation over a given field indicated that field surface roughness might gradually diminish with time, especially after a rainfall or irrigation. This time variation of surface roughness served to enhance the uncertainty in remote soil moisture estimate by microwave radiometry. Three years of radiometric measurements over a test site revealed a possible inconsistency in the soil bulk density determination, which turned out to be an important factor in the interpretation of radiometric data.
Aerodynamic comparison of a butterfly-like flapping wing-body model and a revolving-wing model
NASA Astrophysics Data System (ADS)
Suzuki, Kosuke; Yoshino, Masato
2017-06-01
The aerodynamic performance of flapping- and revolving-wing models is investigated by numerical simulations based on an immersed boundary-lattice Boltzmann method. As wing models, we use (i) a butterfly-like model with a body and flapping-rectangular wings and (ii) a revolving-wing model with the same wings as the flapping case. Firstly, we calculate aerodynamic performance factors such as the lift force, the power, and the power loading of the two models for Reynolds numbers in the range of 50-1000. For the flapping-wing model, the power loading is maximal for the maximum angle of attack of 90°, a flapping amplitude of roughly 45°, and a phase shift between the flapping angle and the angle of attack of roughly 90°. For the revolving-wing model, the power loading peaks for an angle of attack of roughly 45°. In addition, we examine the ground effect on the aerodynamic performance of the revolving-wing model. Secondly, we compare the aerodynamic performance of the flapping- and revolving-wing models at their respective maximal power loadings. It is found that the revolving-wing model is more efficient than the flapping-wing model both when the body of the latter is fixed and where it can move freely. Finally, we discuss the relative agilities of the flapping- and revolving-wing models.
Livi, Kenneth J T; Villalobos, Mario; Leary, Rowan; Varela, Maria; Barnard, Jon; Villacís-García, Milton; Zanella, Rodolfo; Goodridge, Anna; Midgley, Paul
2017-09-12
Two synthetic goethites of varying crystal size distributions were analyzed by BET, conventional TEM, cryo-TEM, atomic resolution STEM and HRTEM, and electron tomography in order to determine the effects of crystal size, shape, and atomic scale surface roughness on their adsorption capacities. The two samples were determined by BET to have very different site densities based on Cr VI adsorption experiments. Model specific surface areas generated from TEM observations showed that, based on size and shape, there should be little difference in their adsorption capacities. Electron tomography revealed that both samples crystallized with an asymmetric {101} tablet habit. STEM and HRTEM images showed a significant increase in atomic-scale surface roughness of the larger goethite. This difference in roughness was quantified based on measurements of relative abundances of crystal faces {101} and {201} for the two goethites, and a reactive surface site density was calculated for each goethite. Singly coordinated sites on face {210} are 2.5 more dense than on face {101}, and the larger goethite showed an average total of 36% {210} as compared to 14% for the smaller goethite. This difference explains the considerably larger adsorption capacitiy of the larger goethite vs the smaller sample and points toward the necessity of knowing the atomic scale surface structure in predicting mineral adsorption processes.
NASA Technical Reports Server (NTRS)
Taylor, Robert P.; Luck, Rogelio
1995-01-01
The view factors which are used in diffuse-gray radiation enclosure calculations are often computed by approximate numerical integrations. These approximately calculated view factors will usually not satisfy the important physical constraints of reciprocity and closure. In this paper several view-factor rectification algorithms are reviewed and a rectification algorithm based on a least-squares numerical filtering scheme is proposed with both weighted and unweighted classes. A Monte-Carlo investigation is undertaken to study the propagation of view-factor and surface-area uncertainties into the heat transfer results of the diffuse-gray enclosure calculations. It is found that the weighted least-squares algorithm is vastly superior to the other rectification schemes for the reduction of the heat-flux sensitivities to view-factor uncertainties. In a sample problem, which has proven to be very sensitive to uncertainties in view factor, the heat transfer calculations with weighted least-squares rectified view factors are very good with an original view-factor matrix computed to only one-digit accuracy. All of the algorithms had roughly equivalent effects on the reduction in sensitivity to area uncertainty in this case study.
NASA Technical Reports Server (NTRS)
Gordon, Howard R.; Wang, Menghua
1992-01-01
The first step in the Coastal Zone Color Scanner (CZCS) atmospheric-correction algorithm is the computation of the Rayleigh-scattering (RS) contribution, L sub r, to the radiance leaving the top of the atmosphere over the ocean. In the present algorithm, L sub r is computed by assuming that the ocean surface is flat. Calculations of the radiance leaving an RS atmosphere overlying a rough Fresnel-reflecting ocean are presented to evaluate the radiance error caused by the flat-ocean assumption. Simulations are carried out to evaluate the error incurred when the CZCS-type algorithm is applied to a realistic ocean in which the surface is roughened by the wind. In situations where there is no direct sun glitter, it is concluded that the error induced by ignoring the Rayleigh-aerosol interaction is usually larger than that caused by ignoring the surface roughness. This suggests that, in refining algorithms for future sensors, more effort should be focused on dealing with the Rayleigh-aerosol interaction than on the roughness of the sea surface.
Nanopolishing by colloidal nanodiamond in elastohydrodynamic lubrication
NASA Astrophysics Data System (ADS)
Shirvani, Khosro A.; Mosleh, Mohsen; Smith, Sonya T.
2016-08-01
In this paper, the feasibility of using explosion synthesized diamond nanoparticles with an average particle size (APS) of 3-5 nm with a concentration of 1 % by weight for improving lubrication and friction in elastohydrodynamic lubrication (EHL) was investigated. Owing to the orders of magnitude increase in the viscosity of the lubricant in the EHL contact zone, diamond nanoparticles in the lubricant polish the surfaces at the nanoscale which decreases the composite roughness of contacting surfaces. The reduced composite roughness results in an increased film thickness ratio which yields lower friction. In the numerical analysis, governing equations of lubricant flow in the full elastohydrodynamic lubrication were solved, and the shear stress distribution over the fluid film was calculated. Using an abrasion model and the shear stress distribution profile, the material removal by the nanofluid containing nanoparticles and the resultant surface roughness were determined. The numerical analysis showed that in full EHL regime, the nanolubricant can reduce the composite roughness of moving surfaces. Experimental results from prior studies which exhibited surface polishing by such nanolubricants in boundary, mixed, and full elastohydrodynamic lubrication were used for comparison to the numerical model.
Butler, Samuel D; Nauyoks, Stephen E; Marciniak, Michael A
2015-11-02
A popular class of BRDF models is the microfacet models, where geometric optics is assumed. In contrast, more complex physical optics models may more accurately predict the BRDF, but the calculation is more resource intensive. These seemingly disparate approaches are compared in detail for the rough and smooth surface approximations of the modified Beckmann-Kirchhoff BRDF model, assuming Gaussian surface statistics. An approximation relating standard Fresnel reflection with the semi-rough surface polarization term, Q, is presented for unpolarized light. For rough surfaces, the angular dependence of direction cosine space is shown to be identical to the angular dependence in the microfacet distribution function. For polished surfaces, the same comparison shows a breakdown in the microfacet models. Similarities and differences between microfacet BRDF models and the modified Beckmann-Kirchhoff model are identified. The rationale for the original Beckmann-Kirchhoff F(bk)(2) geometric term relative to both microfacet models and generalized Harvey-Shack model is presented. A modification to the geometric F(bk)(2) term in original Beckmann-Kirchhoff BRDF theory is proposed.
Studies of the 3D surface roughness height
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avisane, Anita; Rudzitis, Janis; Kumermanis, Maris
2013-12-16
Nowadays nano-coatings occupy more and more significant place in technology. Innovative, functional coatings acquire new aspects from the point of view of modern technologies, considering the aggregate of physical properties that can be achieved manipulating in the production process with the properties of coatings’ surfaces on micro- and nano-level. Nano-coatings are applied on machine parts, friction surfaces, contacting parts, corrosion surfaces, transparent conducting films (TCF), etc. The equipment available at present for the production of transparent conducting oxide (TCO) coatings with highest quality is based on expensive indium tin oxide (ITO) material; therefore cheaper alternatives are being searched for. Onemore » such offered alternative is zink oxide (ZnO) nano-coatings. Evaluating the TCF physical and mechanical properties and in view of the new ISO standard (EN ISO 25178) on the introduction of surface texture (3D surface roughness) in the engineering calculations, it is necessary to examine the height of 3D surface roughness, which is one of the most significant roughness parameters. The given paper studies the average values of 3D surface roughness height and the most often applied distribution laws are as follows: the normal distribution and Rayleigh distribution. The 3D surface is simulated by a normal random field.« less
Thermodynamics of rough colloidal surfaces
NASA Astrophysics Data System (ADS)
Goldstein, Raymond E.; Halsey, Thomas C.; Leibig, Michael
1991-03-01
In Debye-Hückel theory, the free energy of an electric double layer near a colloidal (or any other) surface can be related to the statistics of random walks near that surface. We present a numerical method based on this correspondence for the calculation of the double-layer free energy for an arbitrary charged or conducting surface. For self-similar surfaces, we propose a scaling law for the behavior of the free energy as a function of the screening length and the surface dimension. This scaling law is verified by numerical computation. Capacitance measurements on rough surfaces of, e.g., colloids can test these predictions.
Two photon excitation of atomic oxygen
NASA Technical Reports Server (NTRS)
Pindzola, M. S.
1977-01-01
A standard perturbation expansion in the atom-radiation field interaction is used to calculate the two photon excitation cross section for 1s(2) 2s(2) 2p(4) p3 to 1s(2) 2s(2) 2p(3) (s4) 3p p3 transition in atomic oxygen. The summation over bound and continuum intermediate states is handled by solving the equivalent inhomogeneous differential equation. Exact summation results differ by a factor of 2 from a rough estimate obtained by limiting the intermediate state summation to one bound state. Higher order electron correlation effects are also examined.
Characterization of technical surfaces by structure function analysis
NASA Astrophysics Data System (ADS)
Kalms, Michael; Kreis, Thomas; Bergmann, Ralf B.
2018-03-01
The structure function is a tool for characterizing technical surfaces that exhibits a number of advantages over Fourierbased analysis methods. So it is optimally suited for analyzing the height distributions of surfaces measured by full-field non-contacting methods. The structure function is thus a useful method to extract global or local criteria like e. g. periodicities, waviness, lay, or roughness to analyze and evaluate technical surfaces. After the definition of line- and area-structure function and offering effective procedures for their calculation this paper presents examples using simulated and measured data of technical surfaces including aircraft parts.
Mechanisms of dust grain charging in plasma with allowance for electron emission processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mol’kov, S. I.; Savin, V. N., E-mail: moped@onego.ru
2017-02-15
The process of dust grain charging is described with allowance for secondary, ion-induced, photoelectric, and thermal electron emission from the grain surface. The roughness of the grain surface is taken into account. An intermediate charging regime involving ion–atom collisions and electron ionization in the perturbed plasma region is analyzed using the moment equations and Poisson’s equation. A calculation method is proposed that allows one to take into account the influence of all the above effects and determine the radius of the plasma region perturbed by the dust grain.
Roughness in Lattice Ordered Effect Algebras
Xin, Xiao Long; Hua, Xiu Juan; Zhu, Xi
2014-01-01
Many authors have studied roughness on various algebraic systems. In this paper, we consider a lattice ordered effect algebra and discuss its roughness in this context. Moreover, we introduce the notions of the interior and the closure of a subset and give some of their properties in effect algebras. Finally, we use a Riesz ideal induced congruence and define a function e(a, b) in a lattice ordered effect algebra E and build a relationship between it and congruence classes. Then we study some properties about approximation of lattice ordered effect algebras. PMID:25170523
Wang, Zhengjia; Chen, Jiahao; Oyola-Reynoso, Stephanie; Thuo, Martin
2016-08-16
Substrate roughness influences the wetting properties of self-assembled monolayers (SAMs), but details on this dependency at the sub-nanometer level are still lacking. This study investigates the effect of surface roughness on interfacial properties of n-alkanethiolate SAMs, specifically wetting, and confirms the predicted limit to the observation of the odd-even effect in hydrophobicity. This article studies static contact angles of polar and nonpolar probe liquids on a series of n-alkanethiolate SAMs on surfaces with tunable roughness. We prepared Ag surfaces with root-mean-square roughness (Rrms) of ∼0.6-2.2 nm and compared the wetting properties of n-alkanethiolate SAMs fabricated on these surfaces. We measured the static contact angles, θs, formed between SAM and probe liquids [water, glycerol, and hexadecane]. Hexadecane showed an odd-even effect on all surfaces irrespective of the degree of roughness. Polar liquids (water and glycerol), however, showed a dependency on the roughness of the substrate with an odd-even effect observable only on smooth, but not rougher (Rrms ≥ 1.15 nm), surfaces. These results confirm that the previously predicted limit to observation of the odd-even effect in hydrophobicity (here extended to polar liquids) is real. From the results with glycerol, we infer that this limit is not limited just to hydrophobicity but may extend to other polar liquids. Results from hexadecane, however, suggest that this limit may not be a universal property of the SAM.
The effect of welding parameters on surface quality of AA6351 aluminium alloy
NASA Astrophysics Data System (ADS)
Yacob, S.; MAli, M. A.; Ahsan, Q.; Ariffin, N.; Ali, R.; Arshad, A.; Wahab, M. I. A.; Ismail, S. A.; Roji, NS M.; Din, W. B. W.; Zakaria, M. H.; Abdullah, A.; Yusof, M. I.; Kamarulzaman, K. Z.; Mahyuddin, A.; Hamzah, M. N.; Roslan, R.
2015-12-01
In the present work, the effects of gas metal arc welding-cold metal transfer (GMAW-CMT) parameters on surface roughness are experimentally assessed. The purpose of this study is to develop a better understanding of the effects of welding speed, material thickness and contact tip to work distance on the surface roughness. Experiments are conducted using single pass gas metal arc welding-cold metal transfer (GMAW-CMT) welding technique to join the material. The material used in this experiment was AA6351 aluminum alloy with the thickness of 5mm and 6mm. A Mahr Marsuft XR 20 machine was used to measure the average roughness (Ra) of AA6351 joints. The main and interaction effect analysis was carried out to identify process parameters that affect the surface roughness. The results show that all the input process parameters affect the surface roughness of AA6351 joints. Additionally, the average roughness (Ra) results also show a decreasing trend with increased of welding speed. It is proven that gas metal arc welding-cold metal transfer (GMAW-CMT)welding process has been successful in term of providing weld joint of good surface quality for AA6351 based on the low value surface roughness condition obtained in this setup. The outcome of this experimental shall be valuable for future fabrication process in order to obtained high good quality weld.
Modeling and analysis of the solar concentrator in photovoltaic systems
NASA Astrophysics Data System (ADS)
Mroczka, Janusz; Plachta, Kamil
2015-06-01
The paper presents the Λ-ridge and V-trough concentrator system with a low concentration ratio. Calculations and simulations have been made in the program created by the author. The results of simulation allow to choose the best parameters of photovoltaic system: the opening angle between the surface of the photovoltaic module and mirrors, resolution of the tracking system and the material for construction of the concentrator mirrors. The research shows the effect each of these parameters on the efficiency of the photovoltaic system and method of surface modeling using BRDF function. The parameters of concentrator surface (eg. surface roughness) were calculated using a new algorithm based on the BRDF function. The algorithm uses a combination of model Torrance-Sparrow and HTSG. The simulation shows the change in voltage, current and output power depending on system parameters.
NASA Astrophysics Data System (ADS)
Aghajani, M.; Hadipour, H.; Akhavan, M.
2018-05-01
Pressure dependence of the onsite Coulomb interactions of the BaFe2As2 has been studied by employing the constrained random phase approximation within first-principle calculations. Analyzing total and projected density of states, a pseudogap is found for dxy band at the energy roughly 0.25 eV higher than the Fermi level. Also, by applying pressure the spectral weight of the dxy orbital vanishes while other orbitals remain metallic. The different screening channels, as discussed in four different models, affect significantly on the Hubbard U while the Hund J remains almost unchanged. The average onsite bare and partially and fully screened Coulomb interactions increase with different rates upon compression. These different rates can be explained by competition between the electronic screening and reduction of bond lengths.
The Challenges of Plasma Modeling: Current Status and Future Plans
NASA Astrophysics Data System (ADS)
Foster, A. R.; Smith, R. K.; Brickhouse, N. S.; Kallman, T. R.; Witthoeft, M. C.
2010-12-01
Successfully modeling X-ray emission from astrophysical plasmas requires a wide range of atomic data to be rapidly accessible by modeling codes, enabling calculation of synthetic spectra for fitting with observations. Over many years the astrophysical databases have roughly kept pace with the advances in detector and spectrometer technology. We outline here the basic atomic processes contributing to the emission from different types of plasmas and briefly touch on the difference between the methods used to calculate this data. We then discuss in more detail the different issues addressed by atomic databases in regards to what data to store and how to make it accessible. Finally, the question of the effect of uncertainties in atomic data is explored, as a reminder to observers that atomic data is not known to infinite precision, and should not be treated as such.
A summary of special coatings projects conducted in support of the Die Casting Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selle, J.E.
1988-09-12
The usefulness of various kinds of coatings to the die casting program has been studied. This work includes heat transfer and fluid flow calculations, as well as experimental work, to examine the feasibility and characteristics of various types of coatings. Calculations include the effect of surface roughness on fluid flow, conductance as a function of coating thickness, conductivity as a function of coating porosity, and solidification and possible remelting of microspheres of metal. In each case, the model is described and the results are presented. Experimental work involved evaluating the relative insulating value of various coatings and an analysis ofmore » commercial flame-sprayed coatings, low-density coatings, and release coatings. In each case, description of the experimental arrangement is given and the results are described. 5 refs., 28 figs., 6 tabs.« less
Lift estimation of Half-Rotating Wing in hovering flight
NASA Astrophysics Data System (ADS)
Wang, X. Y.; Dong, Y. P.; Qiu, Z. Z.; Zhang, Y. Q.; Shan, J. H.
2016-11-01
Half-Rotating Wing (HRW) is a new kind of flapping wing system with rotating flapping instead of oscillating flapping. Estimating approach of hovering lift which generated in hovering flight was important theoretical foundation to design aircraft using HRW. The working principle of HRW based on Half-Rotating Mechanism (HRM) was firstly introduced in this paper. Generating process of lift by HRW was also given. The calculating models of two lift mechanisms for HRW, including Lift of Flow Around Wing (LFAW) and Lift of Flow Dragging Wing (LFDW), were respectively established. The lift estimating model of HRW was further deduced, by which hovering lift for HRW with different angular velocity could be calculated. Case study using XFLOW software simulation indicates that the above estimating method was effective and feasible to predict roughly the hovering lift for a new HRW system.
NASA Astrophysics Data System (ADS)
Priye, Aashish; Marlow, William H.
2013-10-01
The phenomenon of particle resuspension plays a vital role in numerous fields. Among many aspects of particle resuspension dynamics, a dominant concern is the accurate description and formulation of the van der Waals (vdW) interactions between the particle and substrate. Current models treat adhesion by incorporating a material-dependent Hamaker's constant which relies on the heuristic Hamaker's two-body interactions. However, this assumption of pairwise summation of interaction energies can lead to significant errors in condensed matter as it does not take into account the many-body interaction and retardation effects. To address these issues, an approach based on Lifshitz continuum theory of vdW interactions has been developed to calculate the principal many-body interactions between arbitrary geometries at all separation distances to a high degree of accuracy through Lifshitz's theory. We have applied this numerical implementation to calculate the many-body vdW interactions between spherical particles and surfaces with sinusoidally varying roughness profile and also to non-spherical particles (cubes, cylinders, tetrahedron etc) orientated differently with respect to the surface. Our calculations revealed that increasing the surface roughness amplitude decreases the adhesion force and non-spherical particles adhere to the surfaces more strongly when their flatter sides are oriented towards the surface. Such practical shapes and structures of particle-surface systems have not been previously considered in resuspension models and this rigorous treatment of vdW interactions provides more realistic adhesion forces between the particle and the surface which can then be coupled with computational fluid dynamics models to improve the predictive capabilities of particle resuspension dynamics.
A Description for Rock Joint Roughness Based on Terrestrial Laser Scanner and Image Analysis
Ge, Yunfeng; Tang, Huiming; Eldin, M. A. M Ez; Chen, Pengyu; Wang, Liangqing; Wang, Jinge
2015-01-01
Shear behavior of rock mass greatly depends upon the rock joint roughness which is generally characterized by anisotropy, scale effect and interval effect. A new index enabling to capture all the three features, namely brightness area percentage (BAP), is presented to express the roughness based on synthetic illumination of a digital terrain model derived from terrestrial laser scanner (TLS). Since only tiny planes facing opposite to shear direction make contribution to resistance during shear failure, therefore these planes are recognized through the image processing technique by taking advantage of the fact that they appear brighter than other ones under the same light source. Comparison with existing roughness indexes and two case studies were illustrated to test the performance of BAP description. The results reveal that the rock joint roughness estimated by the presented description has a good match with existing roughness methods and displays a wider applicability. PMID:26585247
He, Min; Zhang, Zutai; Zheng, Dongxiang; Ding, Ning; Liu, Yan
2014-01-01
This study aims to investigate the effect of sandblasting on the surface roughness of zirconia and the shear bond strength of the veneering porcelain. Pre-sintered zirconia plates were prepared and divided into four groups. Group A were not treated at all; group B were first sandblasted under 0.2 MPa pressure and then densely sintered; group C and D were sintered first, and then sandblasted under 0.2 MPa and 0.4 MPa pressures respectively. Surface roughness was measured and 3D roughness was reconstructed for the specimens, which were also analyzed with X-ray diffractometry. Finally after veneering porcelain sintering, shear bond tests were conducted. Sandblasting zirconia before sintering significantly increased surface roughness and the shear bond strength between zirconia and veneering porcelain (p<0.05). Sandblasting zirconia before sintering is a useful method to increase surface roughness and could successfully improve the bonding strength of veneering porcelain.
The influence of interfacial slip on two-phase flow in rough pores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kucala, Alec; Martinez, Mario J.; Wang, Yifeng
The migration and trapping of supercritical CO 2 (scCO 2) in geologic carbon storage is strongly dependent on the geometry and wettability of the pore network in the reservoir rock. During displacement, resident fluids may become trapped in the pits of a rough pore surface forming an immiscible two-phase fluid interface with the invading fluid, allowing apparent slip flow at this interface. We present a two-phase fluid dynamics model, including interfacial tension, to characterize the impact of mineral surface roughness on this slip flow. We show that the slip flow can be cast in more familiar terms as a contact-anglemore » (wettability)-dependent effective permeability to the invading fluid, a nondimensional measurement which relates the interfacial slip to the pore geometry. The analysis shows the surface roughness-induced slip flow can effectively increase or decrease this effective permeability, depending on the wettability and roughness of the mineral surfaces. Configurations of the pore geometry where interfacial slip has a tangible influence on permeability have been identified. The results suggest that for large roughness features, permeability to CO 2 may be enhanced by approximately 30% during drainage, while the permeability to brine during reimbibition may be enhanced or diminished by 60%, depending on the contact angle with the mineral surfaces and degrees of roughness. For smaller roughness features, the changes in permeability through interfacial slip are small. As a result, a much larger range of effective permeabilities are suggested for general fluid pairs and contact angles, including occlusion of the pore by the trapped phase.« less
The influence of interfacial slip on two-phase flow in rough pores
Kucala, Alec; Martinez, Mario J.; Wang, Yifeng; ...
2017-08-01
The migration and trapping of supercritical CO 2 (scCO 2) in geologic carbon storage is strongly dependent on the geometry and wettability of the pore network in the reservoir rock. During displacement, resident fluids may become trapped in the pits of a rough pore surface forming an immiscible two-phase fluid interface with the invading fluid, allowing apparent slip flow at this interface. We present a two-phase fluid dynamics model, including interfacial tension, to characterize the impact of mineral surface roughness on this slip flow. We show that the slip flow can be cast in more familiar terms as a contact-anglemore » (wettability)-dependent effective permeability to the invading fluid, a nondimensional measurement which relates the interfacial slip to the pore geometry. The analysis shows the surface roughness-induced slip flow can effectively increase or decrease this effective permeability, depending on the wettability and roughness of the mineral surfaces. Configurations of the pore geometry where interfacial slip has a tangible influence on permeability have been identified. The results suggest that for large roughness features, permeability to CO 2 may be enhanced by approximately 30% during drainage, while the permeability to brine during reimbibition may be enhanced or diminished by 60%, depending on the contact angle with the mineral surfaces and degrees of roughness. For smaller roughness features, the changes in permeability through interfacial slip are small. As a result, a much larger range of effective permeabilities are suggested for general fluid pairs and contact angles, including occlusion of the pore by the trapped phase.« less
The influence of interfacial slip on two-phase flow in rough pores
NASA Astrophysics Data System (ADS)
Kucala, Alec; Martinez, Mario J.; Wang, Yifeng; Noble, David R.
2017-08-01
The migration and trapping of supercritical CO2 (scCO2) in geologic carbon storage is strongly dependent on the geometry and wettability of the pore network in the reservoir rock. During displacement, resident fluids may become trapped in the pits of a rough pore surface forming an immiscible two-phase fluid interface with the invading fluid, allowing apparent slip flow at this interface. We present a two-phase fluid dynamics model, including interfacial tension, to characterize the impact of mineral surface roughness on this slip flow. We show that the slip flow can be cast in more familiar terms as a contact-angle (wettability)-dependent effective permeability to the invading fluid, a nondimensional measurement which relates the interfacial slip to the pore geometry. The analysis shows the surface roughness-induced slip flow can effectively increase or decrease this effective permeability, depending on the wettability and roughness of the mineral surfaces. Configurations of the pore geometry where interfacial slip has a tangible influence on permeability have been identified. The results suggest that for large roughness features, permeability to CO2 may be enhanced by approximately 30% during drainage, while the permeability to brine during reimbibition may be enhanced or diminished by 60%, depending on the contact angle with the mineral surfaces and degrees of roughness. For smaller roughness features, the changes in permeability through interfacial slip are small. A much larger range of effective permeabilities are suggested for general fluid pairs and contact angles, including occlusion of the pore by the trapped phase.
SPH modelling of depth-limited turbulent open channel flows over rough boundaries.
Kazemi, Ehsan; Nichols, Andrew; Tait, Simon; Shao, Songdong
2017-01-10
A numerical model based on the smoothed particle hydrodynamics method is developed to simulate depth-limited turbulent open channel flows over hydraulically rough beds. The 2D Lagrangian form of the Navier-Stokes equations is solved, in which a drag-based formulation is used based on an effective roughness zone near the bed to account for the roughness effect of bed spheres and an improved sub-particle-scale model is applied to account for the effect of turbulence. The sub-particle-scale model is constructed based on the mixing-length assumption rather than the standard Smagorinsky approach to compute the eddy-viscosity. A robust in/out-flow boundary technique is also proposed to achieve stable uniform flow conditions at the inlet and outlet boundaries where the flow characteristics are unknown. The model is applied to simulate uniform open channel flows over a rough bed composed of regular spheres and validated by experimental velocity data. To investigate the influence of the bed roughness on different flow conditions, data from 12 experimental tests with different bed slopes and uniform water depths are simulated, and a good agreement has been observed between the model and experimental results of the streamwise velocity and turbulent shear stress. This shows that both the roughness effect and flow turbulence should be addressed in order to simulate the correct mechanisms of turbulent flow over a rough bed boundary and that the presented smoothed particle hydrodynamics model accomplishes this successfully. © 2016 The Authors International Journal for Numerical Methods in Fluids Published by John Wiley & Sons Ltd.
Characteristics of surface roughness associated with leading edge ice accretion
NASA Technical Reports Server (NTRS)
Shin, Jaiwon
1994-01-01
Detailed size measurements of surface roughness associated with leading edge ice accretions are presented to provide information on characteristics of roughness and trends of roughness development with various icing parameters. Data was obtained from icing tests conducted in the Icing Research Tunnel (IRT) at NASA Lewis Research Center (LeRC) using a NACA 0012 airfoil. Measurements include diameters, heights, and spacing of roughness elements along with chordwise icing limits. Results confirm the existence of smooth and rough ice zones and that the boundary between the two zones (surface roughness transition region) moves upstream towards stagnation region with time. The height of roughness grows as the air temperature and the liquid water content increase, however, the airspeed has little effect on the roughness height. Results also show that the roughness in the surface roughness transition region grows during a very early stage of accretion but reaches a critical height and then remains fairly constant. Results also indicate that a uniformly distributed roughness model is only valid at a very initial stage of the ice accretion process.
Al Kheraif, Abdulaziz Abdullah
2013-05-01
Autoclave sterilization and microwave sterilization has been suggested as the effective methods for the disinfection of elastomeric impressions, but subjecting elastomeric impressions to extreme temperature may have adverse effects on critical properties of the elastomers. To evaluate the effect of chemical disinfection as well as autoclave and microwave sterilization on the surface roughness of elastomeric impression materials. The surface roughness of five commercially available polyvinyl siloxane impression materials (Coltene President, Affinis Perfect impression, Aquasil, 3M ESPE Express and GC Exafast) were evaluated after subjecting them to chemical disinfection, autoclaving and microwave sterilization using a Talysurf Intra 50 instrument. Twenty specimens from each material were fabricated and divided into four equal groups, three experimental and one control (n=25). The differences in the mean surface roughness between the treatment groups were recorded and statistically analyzed. No statistically significant increase in the surface roughness was observed when the specimens were subjected to chemical disinfection and autoclave sterilization, increase in roughness and discoloration was observed in all the materials when specimens were subjected to microwave sterilization. Chemical disinfection did not have a significant effect but, since it is less effective, autoclave sterilization can be considered effective and autoclaving did not show any specimen discoloration as in microwave sterilization. Microwave sterilization may be considered when impressions are used to make diagnostic casts. A significant increase in surface roughness may produce rougher casts, resulting in rougher tissue surfaces for denture and cast restorations. Autoclave sterilization of vinyl polysiloxane elastomeric impressions for 5 minutes at 134°C at 20 psi may be considered an effective method over chemical disinfection and microwave sterilization, because chemical disinfection does not eliminate all disease-causing microorganisms and microwave sterilization leads to a rougher impression surface.
The VHCF experimental investigation of FV520B-I with surface roughness Ry
NASA Astrophysics Data System (ADS)
Wang, J. L.; Zhang, Y. L.; Ding, M. C.; Zhao, Q. C.
2018-05-01
Different surface roughness type (Ra and Ry) has different effect on the VHCF failure and life. Ra is widely employed as the quantitative expression of the surface roughness, but there are few fatigue failure mechanism analysis and experimental study under surface roughness Ry. The VHCF experiment is conducted out using the specimen with different surface roughness values. The surface roughness Ry is employed as the major research object to investigate the relationship and distribution tendency between the Ry, fatigue life and the distance between internal inclusion and surface, and a new VHCF failure character is proposed.
Application of theoretical models to active and passive remote sensing of saline ice
NASA Technical Reports Server (NTRS)
Han, H. C.; Kong, J. A.; Shin, R. T.; Nghiem, S. V.; Kwok, R.
1992-01-01
The random medium model is used to interpret the polarimetric active and passive measurements of saline ice. The ice layer is described as a host ice medium embedded with randomly distributed inhomogeneities, and the underlying sea water is considered as a homogeneous half-space. The scatterers in the ice layer are modeled with an ellipsoidal correlation function. The orientation of the scatterers is vertically aligned and azimuthally random. The strong permittivity fluctuation theory is used to calculate the effective permittivity and the distorted Born approximation is used to obtain the polarimetric scattering coefficients. Thermal emissions based on the reciprocity and energy conservation principles are calculated. The effects of the random roughness at the air-ice, and ice-water interfaces are explained by adding the surface scattering to the volume scattering return incoherently. The theoretical model, which has been successfully applied to analyze the radar backscatter data of first-year sea ice, is used to interpret the measurements performed in the Cold Regions Research and Engineering Laboratory's CRRELEX program.
2011-09-01
and Imaging Framework First, the parallelized 3-D FDTD algorithm is applied to simulate composite scattering from targets in a rough ground...solver as pertinent to forward-looking radar sensing , the effects of surface clutter on multistatic target imaging are illustrated with large-scale...Full-wave Characterization of Rough Terrain Surface Effects for Forward-looking Radar Applications: A Scattering and Imaging Study from the
NASA Astrophysics Data System (ADS)
Goharrizi, A. Yazdanpanah; Sanaeepur, M.; Sharifi, M. J.
2015-09-01
Device performance of 10 nm length armchair graphene nanoribbon field effect transistors with 1.5 nm and 4 nm width (13 and 33 atoms in width respectively) are compared in terms of Ion /Ioff , trans-conductance, and sub-threshold swing. While narrow devices suffer from edge roughness wider devices are subject to more substrate surface roughness and reduced bandgap. Boron Nitride doping is employed to compensate reduced bandgap in wider devices. Simultaneous effects of edge and substrate surface roughness are considered. Results show that in the presence of both the edge and substrate surface roughness the 4 nm wide device with boron nitride doping shows improved performance with respect to the 1.5 nm one (both of which incorporate the same bandgap AGNR as channel material). Electronic simulations are performed via NEGF method along with tight-binding Hamiltonian. Edge and surface roughness are created by means of one and two dimensional auto correlation functions respectively. Electronic characteristics are averaged over a large number of devices due to statistic nature of both the edge and surface roughness.
NASA Astrophysics Data System (ADS)
Li, Yonggang; Yang, Yang; Short, Michael P.; Ding, Zejun; Zeng, Zhi; Li, Ju
2017-01-01
In fusion devices, ion retention and sputtering of materials are major concerns in the selection of compatible plasma-facing materials (PFMs), especially in the context of their microstructural conditions and surface morphologies. We demonstrate how surface roughness changes ion implantation and sputtering of materials under energetic ion irradiation. Using a new, sophisticated 3D Monte Carlo (MC) code, IM3D, and a random rough surface model, ion implantation and the sputtering yields of tungsten (W) with a surface roughness varying between 0-2 µm have been studied for irradiation by 0.1-1 keV D+, He+ and Ar+ ions. It is found that both ion backscattering and sputtering yields decrease with increasing roughness; this is hereafter called the ion radiation albedo effect. This effect is mainly dominated by the direct, line-of-sight deposition of a fraction of emitted atoms onto neighboring asperities. Backscattering and sputtering increase with more oblique irradiation angles. We propose a simple analytical formula to relate rough-surface and smooth-surface results.
Simple model of surface roughness for binary collision sputtering simulations
NASA Astrophysics Data System (ADS)
Lindsey, Sloan J.; Hobler, Gerhard; Maciążek, Dawid; Postawa, Zbigniew
2017-02-01
It has been shown that surface roughness can strongly influence the sputtering yield - especially at glancing incidence angles where the inclusion of surface roughness leads to an increase in sputtering yields. In this work, we propose a simple one-parameter model (the "density gradient model") which imitates surface roughness effects. In the model, the target's atomic density is assumed to vary linearly between the actual material density and zero. The layer width is the sole model parameter. The model has been implemented in the binary collision simulator IMSIL and has been evaluated against various geometric surface models for 5 keV Ga ions impinging an amorphous Si target. To aid the construction of a realistic rough surface topography, we have performed MD simulations of sequential 5 keV Ga impacts on an initially crystalline Si target. We show that our new model effectively reproduces the sputtering yield, with only minor variations in the energy and angular distributions of sputtered particles. The success of the density gradient model is attributed to a reduction of the reflection coefficient - leading to increased sputtering yields, similar in effect to surface roughness.
Electric cars. Advantages and disadvantages
NASA Astrophysics Data System (ADS)
Gelmanova, Z. S.; Zhabalova, G. G.; Sivyakova, G. A.; Lelikova, O. N.; Onishchenko, O. N.; Smailova, A. A.; Kamarova, S. N.
2018-05-01
The article considers the positive and negative aspects of the use of electric vehicles. A rough calculation of the energy efficiency and average cost per month was made. Also priorities to avoid the existing problems in the market of electric vehicles were set.
NASA Astrophysics Data System (ADS)
Andersson, P. B. U.; Kropp, W.
2008-11-01
Rolling resistance, traction, wear, excitation of vibrations, and noise generation are all attributes to consider in optimisation of the interaction between automotive tyres and wearing courses of roads. The key to understand and describe the interaction is to include a wide range of length scales in the description of the contact geometry. This means including scales on the order of micrometres that have been neglected in previous tyre/road interaction models. A time domain contact model for the tyre/road interaction that includes interfacial details is presented. The contact geometry is discretised into multiple elements forming pairs of matching points. The dynamic response of the tyre is calculated by convolving the contact forces with pre-calculated Green's functions. The smaller-length scales are included by using constitutive interfacial relations, i.e. by using nonlinear contact springs, for each pair of contact elements. The method is presented for normal (out-of-plane) contact and a method for assessing the stiffness of the nonlinear springs based on detailed geometry and elastic data of the tread is suggested. The governing equations of the nonlinear contact problem are solved with the Newton-Raphson iterative scheme. Relations between force, indentation, and contact stiffness are calculated for a single tread block in contact with a road surface. The calculated results have the same character as results from measurements found in literature. Comparison to traditional contact formulations shows that the effect of the small-scale roughness is large; the contact stiffness is only up to half of the stiffness that would result if contact is made over the whole element directly to the bulk of the tread. It is concluded that the suggested contact formulation is a suitable model to include more details of the contact interface. Further, the presented result for the tread block in contact with the road is a suitable input for a global tyre/road interaction model that is also based on the presented contact formulation.
NASA Astrophysics Data System (ADS)
Tang, Guanglin; Panetta, R. Lee; Yang, Ping; Kattawar, George W.; Zhai, Peng-Wang
2017-07-01
We study the combined effects of surface roughness and inhomogeneity on the optical scattering properties of ice crystals and explore the consequent implications to remote sensing of cirrus cloud properties. Specifically, surface roughness and inhomogeneity are added to the Moderate Resolution Imaging Spectroradiometer (MODIS) collection 6 (MC6) cirrus cloud particle habit model. Light scattering properties of the new habit model are simulated using a modified version of the Improved Geometric Optics Method (IGOM). Both inhomogeneity and surface roughness affect the single scattering properties significantly. In visible bands, inhomogeneity and surface roughness both tend to smooth the phase function and eliminate halos and the backscattering peak. The asymmetry parameter varies with the degree of surface roughness following a U shape - decreases and then increases - with a minimum at around 0.15, whereas it decreases monotonically with the air bubble volume fraction. Air bubble inclusions significantly increase phase matrix element -P12 for scattering angles between 20°-120°, whereas surface roughness has a much weaker effect, increasing -P12 slightly from 60°-120°. Radiative transfer simulations and cirrus cloud property retrievals are conducted by including both the factors. In terms of surface roughness and air bubble volume fraction, retrievals of cirrus cloud optical thickness or the asymmetry parameter using solar bands show similar patterns of variation. Polarimetric simulations using the MC6 cirrus cloud particle habit model are shown to be more consistent with observations when both surface roughness and inhomogeneity are simultaneously considered.
Kasem, Haytam; Cohen, Yossi
2017-08-04
Hairy adhesive systems involved in gecko locomotion have drawn the interest of many researchers regarding the development of bionic solutions for fast and reversible adhesive technologies. To date, despite extensive efforts to design gecko-inspired adhesive surfaces, adhesion and friction capacities are often evaluated using smooth and rigid counterfaces, in general glass, whereas most natural and artificial surfaces inevitably have a certain level of roughness. For that reason, in this study experiments tested the effects of the substrate roughness on the friction of bionic wale-shaped microstructures for gecko-like attachments. To this end, 12 substrates with different isotropic roughness were prepared using the same Epoxy material. Friction force was measured under various normal loads. It was concluded that classical roughness parameters, considered separately, are not appropriate to explain roughness-related variations in friction force. This has led us to develop a new integrative roughness parameter that combines characteristics of the surface. The parameter is capable of classifying the obtained experimental results in a readable way. An analytical model based on the experimental results has been developed to predict the variation of the friction force as a function of counterface roughness and applied normal load.
Surface Modifications and Their Effects on Titanium Dental Implants
Jemat, A.; Ghazali, M. J.; Razali, M.; Otsuka, Y.
2015-01-01
This review covers several basic methodologies of surface treatment and their effects on titanium (Ti) implants. The importance of each treatment and its effects will be discussed in detail in order to compare their effectiveness in promoting osseointegration. Published literature for the last 18 years was selected with the use of keywords like titanium dental implant, surface roughness, coating, and osseointegration. Significant surface roughness played an important role in providing effective surface for bone implant contact, cell proliferation, and removal torque, despite having good mechanical properties. Overall, published studies indicated that an acid etched surface-modified and a coating application on commercial pure titanium implant was most preferable in producing the good surface roughness. Thus, a combination of a good surface roughness and mechanical properties of titanium could lead to successful dental implants. PMID:26436097
The contact sport of rough surfaces
NASA Astrophysics Data System (ADS)
Carpick, Robert W.
2018-01-01
Describing the way two surfaces touch and make contact may seem simple, but it is not. Fully describing the elastic deformation of ideally smooth contacting bodies, under even low applied pressure, involves second-order partial differential equations and fourth-rank elastic constant tensors. For more realistic rough surfaces, the problem becomes a multiscale exercise in surface-height statistics, even before including complex phenomena such as adhesion, plasticity, and fracture. A recent research competition, the “Contact Mechanics Challenge” (1), was designed to test various approximate methods for solving this problem. A hypothetical rough surface was generated, and the community was invited to model contact with this surface with competing theories for the calculation of properties, including contact area and pressure. A supercomputer-generated numerical solution was kept secret until competition entries were received. The comparison of results (2) provides insights into the relative merits of competing models and even experimental approaches to the problem.
Simulations of roughness initiation and growth on railway rails
NASA Astrophysics Data System (ADS)
Sheng, X.; Thompson, D. J.; Jones, C. J. C.; Xie, G.; Iwnicki, S. D.; Allen, P.; Hsu, S. S.
2006-06-01
A model for the prediction of the initiation and growth of roughness on the rail is presented. The vertical interaction between a train and the track is calculated as a time history for single or multiple wheels moving on periodically supported rails, using a wavenumber-based approach. This vertical dynamic wheel/rail force arises from the varying stiffness due to discrete supports (i.e. parametric excitation) and the roughness excitation on the railhead. The tangential contact problem between the wheel and rail is modelled using an unsteady two-dimensional approach and also using the three-dimensional contact model, FASTSIM. This enables the slip and stick regions in the contact patch to be identified from the input geometry and creepage between the wheel and rail. The long-term wear growth is then predicted by applying repeated passages of the vehicle wheelsets, as part of an iterative solution.
NASA Astrophysics Data System (ADS)
Kozawa, Takahiro; Santillan, Julius Joseph; Itani, Toshiro
2017-10-01
The role of photons in lithography is to transfer the energy and information required for resist pattern formation. In the information-deficit region, a trade-off relationship is observed between line edge roughness (LER) and sensitivity. However, the sensitivity can be increased without increasing LER in the energy-deficit region. In this study, the sensitivity enhancement limit was investigated, assuming line-and-space patterns with a half-pitch of 11 nm. LER was calculated by a Monte Carlo method. It was unrealistic to increase the sensitivity twofold while keeping the line width roughness (LWR) within 10% critical dimension (CD), whereas the twofold sensitivity enhancement with 20% CD LWR was feasible. The requirements are roughly that the sensitization distance should be less than 2 nm and that the total sensitizer concentration should be higher than 0.3 nm-3.
NASA Astrophysics Data System (ADS)
Zhang, Qiang
The effects of surface roughness, turbulence intensity, Mach number, and streamline curvature-airfoil shape on the aerodynamic performance of turbine airfoils are investigated in compressible, high speed flows. The University of Utah Transonic Wind Tunnel is employed for the experimental part of the study. Two different test sections are designed to produce Mach numbers, Reynolds numbers, passage mass flow rates, and physical dimensions, which match values along turbine blades in operating engines: (i) a nonturning test section with a symmetric airfoil, and (ii) a cascade test section with a cambered turbine vane. The nonuniform, irregular, three-dimensional surface roughness is characterized using the equivalent sand grain roughness size. Changing the airfoil surface roughness condition has a substantial effect on wake profiles of total pressure loss coefficients, normalized Mach number, normalized kinetic energy, and on the normalized and dimensional magnitudes of Integrated Aerodynamic Losses produced by the airfoils. Comparisons with results for a symmetric airfoil and a cambered vane show that roughness has more substantial effects on losses produced by the symmetric airfoil than the cambered vane. Data are also provided that illustrate the larger loss magnitudes are generally present with flow turning and cambered airfoils, than with symmetric airfoils. Wake turbulence structure of symmetric airfoils and cambered vanes are also studied experimentally. The effects of surface roughness and freestream turbulence levels on wake distributions of mean velocity, turbulence intensity, and power spectral density profiles and vortex shedding frequencies are quantified one axial chord length downstream of the test airfoils. As the level of surface roughness increases, all wake profile quantities broaden significantly and nondimensional vortex shedding frequencies decrease. Wake profiles produced by the symmetric airfoil are more sensitive to variations of surface roughness and freestream turbulence, compared with data from the cambered vane airfoil. Stanton numbers, skin friction coefficients, aerodynamic losses, and Reynolds analogy behavior are numerically predicted for a turbine vane using the FLUENT with a k-epsilon RNG model to show the effects of Mach number, mainstream turbulence level, and surface roughness. Comparisons with wake aerodynamic loss experimental data are made. Numerically predicted skin friction coefficients and Stanton numbers are also used to deduce Reynolds analogy behavior on the vane suction and pressure sides.
NASA Astrophysics Data System (ADS)
Loy, G. E.; Furbish, D. J.; Covey, A.
2010-12-01
Landsliding of the White Bluffs along the Columbia River in Washington State has constricted the width of the river on one side of Locke Island, a two-kilometer long island positioned in the middle of the channel. Associated changes in flow are thought to be causing relatively rapid erosion of Locke Island on the constricted side. This island is of cultural significance to Native American tribes of south-central Washington, so there are social as well as scientific reasons to understand how the alteration of stream channel processes resulting from the landsliding might be influencing observed erosion rates. Simple hydrodynamic calculations suggest that the constriction on one side of the island creates an upstream backwater effect. As a consequence a cross-stream pressure gradient upstream of the island results in steering of flow around the island into the unobstructed thread. This diversion of water decreases the discharge through the constriction. Therefore, flow velocities within the constriction are not necessarily expected to be higher than those in the unobstructed thread, contrary to initial reports suggesting that higher velocities within the constriction are the main cause of erosion. We set up streamtable experiments with lapse rate imaging to illustrate the backwater effects of the channel constriction and the associated cross-stream steering of flow around a model island. Our experiments are scaled by channel roughness and slope rather than geometrically, as the main focus is to understand the mechanical behavior of flow in this type of island-landslide system. In addition, we studied the stream velocities and flow steering as well as the magnitude of the backwater effect in both the constricted and unobstructed channels using tracer particles in the time-lapse images. These experimental data are compared with calculated upstream backwater distances determined from the known water-surface slope, flow depth, total discharge, and bed roughness. Furthermore, this experimental work will inform subsequent numerical modeling of flow and field-based measurements at Locke Island.
Ground-motion signature of dynamic ruptures on rough faults
NASA Astrophysics Data System (ADS)
Mai, P. Martin; Galis, Martin; Thingbaijam, Kiran K. S.; Vyas, Jagdish C.
2016-04-01
Natural earthquakes occur on faults characterized by large-scale segmentation and small-scale roughness. This multi-scale geometrical complexity controls the dynamic rupture process, and hence strongly affects the radiated seismic waves and near-field shaking. For a fault system with given segmentation, the question arises what are the conditions for producing large-magnitude multi-segment ruptures, as opposed to smaller single-segment events. Similarly, for variable degrees of roughness, ruptures may be arrested prematurely or may break the entire fault. In addition, fault roughness induces rupture incoherence that determines the level of high-frequency radiation. Using HPC-enabled dynamic-rupture simulations, we generate physically self-consistent rough-fault earthquake scenarios (M~6.8) and their associated near-source seismic radiation. Because these computations are too expensive to be conducted routinely for simulation-based seismic hazard assessment, we thrive to develop an effective pseudo-dynamic source characterization that produces (almost) the same ground-motion characteristics. Therefore, we examine how variable degrees of fault roughness affect rupture properties and the seismic wavefield, and develop a planar-fault kinematic source representation that emulates the observed dynamic behaviour. We propose an effective workflow for improved pseudo-dynamic source modelling that incorporates rough-fault effects and its associated high-frequency radiation in broadband ground-motion computation for simulation-based seismic hazard assessment.
Numerical reproduction and explanation of road surface mirages under grazing-angle scattering.
Lu, Jia; Zhou, Huaichun
2017-07-01
The mirror-like reflection image of the road surface under grazing-angle scattering can be easily observed in daily life. It was suggested that road surface mirages may occur due to a light-enhancing effect of the rough surface under grazing-angle scattering. The main purpose of this work is to explain the light-enhancing mechanism of rough surfaces under grazing-angle scattering. The off-specular reflection from a random rough magnesium oxide ceramic surface is analyzed by using the geometric optics approximation method. Then, the geometric optics approximation method is employed to develop a theoretical model to predict the observation effect of the grazing-angle scattering phenomenon of the road surface. The rough surface is assumed to consist of small-scale rough surface facets. The road surface mirage is reproduced from a large number of small-scale rough surface facets within the eye's resolution limit at grazing scattering angles, as the average bidirectional reflectance distribution function value at the bright location is about twice that of the surface in front of the mirage. It is suggested that the light-enhancing effect of the rough surface under grazing-angle scattering is not proper to be termed as "off-specular reflection," since it has nothing to do with the "specular" direction with respect to the incident direction.
EM Bias-Correction for Ice Thickness and Surface Roughness Retrievals over Rough Deformed Sea Ice
NASA Astrophysics Data System (ADS)
Li, L.; Gaiser, P. W.; Allard, R.; Posey, P. G.; Hebert, D. A.; Richter-Menge, J.; Polashenski, C. M.
2016-12-01
The very rough ridge sea ice accounts for significant percentage of total ice areas and even larger percentage of total volume. The commonly used Radar altimeter surface detection techniques are empirical in nature and work well only over level/smooth sea ice. Rough sea ice surfaces can modify the return waveforms, resulting in significant Electromagnetic (EM) bias in the estimated surface elevations, and thus large errors in the ice thickness retrievals. To understand and quantify such sea ice surface roughness effects, a combined EM rough surface and volume scattering model was developed to simulate radar returns from the rough sea ice `layer cake' structure. A waveform matching technique was also developed to fit observed waveforms to a physically-based waveform model and subsequently correct the roughness induced EM bias in the estimated freeboard. This new EM Bias Corrected (EMBC) algorithm was able to better retrieve surface elevations and estimate the surface roughness parameter simultaneously. In situ data from multi-instrument airborne and ground campaigns were used to validate the ice thickness and surface roughness retrievals. For the surface roughness retrievals, we applied this EMBC algorithm to co-incident LiDAR/Radar measurements collected during a Cryosat-2 under-flight by the NASA IceBridge missions. Results show that not only does the waveform model fit very well to the measured radar waveform, but also the roughness parameters derived independently from the LiDAR and radar data agree very well for both level and deformed sea ice. For sea ice thickness retrievals, validation based on in-situ data from the coordinated CRREL/NRL field campaign demonstrates that the physically-based EMBC algorithm performs fundamentally better than the empirical algorithm over very rough deformed sea ice, suggesting that sea ice surface roughness effects can be modeled and corrected based solely on the radar return waveforms.
Srinivasan, Murali; Vazquez, Lydia; Rieder, Philippe; Moraguez, Osvaldo; Bernard, Jean-Pierre; Belser, Urs C
2014-05-01
The aim of this review was to test the hypothesis that 6 mm micro-rough short Straumann(®) implants provide predictable survival rates and verify that most failures occurring are early failures. A PubMed and hand search was performed to identify studies involving micro-rough 6-mm-short implants published between January 1987 and August 2011. Studies were included that (i) involve Straumann(®) 6 mm implants placed in the human jaws, (ii) provide data on the survival rate, (iii) mention the time of failure, and (iv) report a minimum follow-up period of 12 months following placement. A meta-analysis was performed on the extracted data. From a total of 842 publications that were screened, 12 methodologically sound articles qualified to be included for the statistical evaluation based on our inclusion criteria. A total of 690 Straumann(®) 6-mm-short implants were evaluated in the reviewed studies (Total: placed-690, failed-25; maxilla: placed-266, failed-14; mandible: placed-364, failed-5; follow-up period: 1-8 years). A meta-analysis was performed on the calculated early cumulative survival rates (CSR%). The pooled early CSR% calculated in this meta-analysis was 93.7%, whereas the overall survival rates in the maxilla and mandible were 94.7% and 98.6% respectively. Implant failures observed were predominantly early failures (76%). This meta-analysis provides robust evidence that micro-rough 6-mm-short dental implants are a predictable treatment option, providing favorable survival rates. The failures encountered with 6-mm-short implants were predominantly early and their survival in the mandible was slightly superior. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Kim, Nayoung; Kim, Hyunseok; Park, Hyungmin
2015-08-01
The present study investigates the effect that rough hydrophobic (or superhydrophobic) surfaces have on the flow separation and subsequent vortex structures in a turbulent wake behind a circular cylinder. The velocity fields were measured using two-dimensional particle image velocimetry in a water tunnel with Reynolds numbers of 0.7-2.3 × 104. The spray-coating of hydrophobic nanoparticles and roughened Teflon was used to produce the rough hydrophobic surfaces, and sandpapers with two different grit sizes were used to sand the Teflon into streamwise and spanwise directions, respectively, in order to examine the effect of the slip direction. The rough hydrophobic surface was found to enhance the turbulence in the flows above the circular cylinder and along the separating shear layers, resulting in a delay of the flow separation and early vortex roll-up in the wake. As a result, the size of the recirculation bubble in the wake was reduced by up to 40%, while the drag reduction of less than 10% is estimated from a wake survey. However, these effects are reversed as the Reynolds number increases. The surface texture normal to the flow direction (spanwise slip) was found to be more effective than that aligned to the flow (streamwise slip), supporting the suggested mechanism. In addition, the superhydrophobic surface is locally applied by varying the installation angle and that applied around the separation point is most effective, indicating that the rough hydrophobic surface directly affects the boundary layer at flow separation. In order to control the flow around a circular cylinder using rough hydrophobic surfaces, it is suggested to have a smaller roughness width, which can stably retain air pockets. In addition, a higher gas fraction and a more uniform distribution of the roughness size are helpful to enhance the performance such as the separation delay and drag reduction.
A note on ``critical roughness height'' and ``transitional roughness''
NASA Astrophysics Data System (ADS)
Bradshaw, P.
2000-06-01
An unrigorous but plausible analysis suggests that the concept of a critical roughness height, below which roughness does not affect a turbulent wall flow, is erroneous. The Oseen approximation implies that the effect of roughness on the additive constant in the logarithmic law of the wall should vary as the square of the roughness Reynolds number (specifically the roughness height in "wall units"). This is an important point in determining whether surfaces used in experiments at high unit Reynolds number can be regarded as hydraulically smooth. Attention is also called to the qualitative difference between Nikuradse's measurements of friction factor in pipe flow with uniform-size sand-grain roughness in the "transitional" range of Reynolds number and the data correlation in the Moody chart of 1944; the latter was derived from tests on miscellaneous real-life rough surfaces in the 1930s. Nearly all textbooks on elementary fluid dynamics present, but practically none discuss, this difference. Nikuradse's monodisperse roughness is a very rare case with untypical behavior in the transitional range.
The effect of toothbrush bristle stiffness on nanohybrid surface roughness
NASA Astrophysics Data System (ADS)
Zairani, O.; Irawan, B.; Damiyanti, M.
2017-08-01
The surface of a restoration can be affected by toothpaste containing abrasive agents and the stiffness of toothbrush bristles. Objective: To identify the effect of toothbrush bristle stiffness on nanohybrid surface roughness. Methods: Sixteen nanohybrid specimens were separated into two groups. The first group was brushed using soft-bristle toothbrushes, and the second group was brushed using medium-bristle toothbrushes. Media such as aqua bides was used for brushing in both groups. Brushing was done 3 times for 5 minutes. Surface roughness was measured initially and at 5, 10, and 15 minutes using a surface roughness tester. Results: The results, tested with One-Way ANOVA and Independent Samples t Test, demonstrated that after brushing for 15 minutes, the soft-bristle toothbrush group showed a significantly different value (p < 0.05) of nanohybrid surface roughness. The group using medium-bristle toothbrushes showed the value of nano hybrid surface roughness significant difference after brushing for 10 minutes. Conclusion: Roughness occurs more rapidly when brushing with medium-bristle tooth brushes than when brushing with soft-bristle toothbrushes.
Experiments on Hypersonic Roughness Induced Transition by Means of Infrared Thermography
NASA Astrophysics Data System (ADS)
Schrijer, F. F. J.; Scarano, F.; van Oudheusden, B. W.; Bannink, W. J.
2005-02-01
Roughness induced boundary layer transition is experimentally investigated in the hypersonic flow regime at M = 9. The primary interest is the possible effect of stepwise geometry imperfections (2D isolated roughness) on (boundary layer) transition which may be caused on the EXPERT vehicle by the difference in thermal expansion due to the different materials used in the vehicle-nose construction. Also 3D isolated and 3D distributed roughness configurations were studied. Quantitative Infra-Red Thermography (QIRT) is used as primary diagnostic technique to measure the surface convective heat transfer and to detect boundary layer laminar-to-turbulent transition. The investigation shows that for a given height of the roughness element, the boundary layer is least sensitive to a step-like disturbance, whereas distributed 3D roughness was found to be effective in triggering transition. The experimental results have been compared to existing hypersonic transition correlations (PANT and Shuttle). Finally a transition criterion is evaluated which is based on the critical roughness height Reynolds number. Usage of this criterion enables a straightforward extrapolation to flight. Key words: hypersonic flow, boundary layer transition.
Chemical and quantum simulation of electron transfer through a polypeptide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ungar, L.W.; Voth, G.A.; Newton, M.D.
1999-08-26
Quantum rate theory, molecular dynamics simulations, and semiempirical electronic structure calculations are used to fully investigate electron transfer mediated by a solvated polypeptide for the first time. Using a stationary-phase approximation, the nonadiabatic electron-transfer rate constant is calculated from the nuclear free energies and the electronic coupling between the initial and final states. The former are obtained from quantum path integral and classical molecular dynamics simulations; the latter are calculated using semiempirical electronic structure calculations and the generalized Mulliken-Hush method. Importantly, no parameters are fit to kinetic data. The simulated system consists of a solvated four-proline polypeptide with a tris(bipyridine)rutheniummore » donor group and an oxypentamminecobalt acceptor group. From the simulation data entropy and energy contributions to the free energies are distinguished. Quantum suppression of the barrier, including important solvent contributions, is demonstrated. Although free energy profiles along the reaction coordinate are nearly parabolic, pronounced departures from harmonic behavior are found for the separate energy and entropy functions. Harmonic models of the system are compared to simulation results in order to quantify anharmonic effects. Electronic structure calculations show that electronic coupling elements vary considerably with system conformation, even when the effective donor-acceptor separation remains roughly constant. The calculations indicate that electron transfer in a significant range of conformations linking the polypeptide to the acceptor may contribute to the overall rate constant. After correction for limitations of the solvent model, the simulations and calculations agree well with the experimental activation energy and Arrhenius prefactor.« less
Kakinuma, Shohei; Shirota, Hideaki
2015-04-02
The intermolecular dynamics of five six-membered-ring molecular liquids having different aromaticities-benzene, 1,3-cyclohexadiene, 1,4-cyclohexadiene, cyclohexene, and cyclohexane-measured by femtosecond Raman-induced Kerr effect spectroscopy have been compared in this study. The line shapes of the Fourier transform low-frequency spectra, which arise from the intermolecular vibrational dynamics, are trapezoidal for benzene and 1,3-cyclohexadiene, triangular for 1,4-cyclohexadiene and cyclohexene, and monomodal for cyclohexane. The trapezoidal shapes of the low-frequency spectra of benzene and 1,3-cyclohexadiene are due to the librational motions of their aromatic planar structures, which cause damped nuclear response features. The time integrals of the nuclear responses of the five liquids correlate to the squares of the polarizability anisotropies of the molecules calculated on the basis of density functional theory. The first moments of the low-frequency spectra roughly linearly correlate to the bulk parameters of the square roots of the surface tensions divided by the densities and the square roots of the surface tensions divided by the molecular weights, but the plots for cyclohexene deviate slightly from the correlations. The picosecond overdamped transients of the liquids are well fitted by a biexponential function. The fast time constants of all of the liquids are approximately 1.1-1.4 ps, and they do not obey the Stokes-Einstein-Debye hydrodynamic model. On the other hand, the slow time constants are roughly linearly proportional to the products of the shear viscosities and the molar volumes. The observed intramolecular vibrational modes at less than 700 cm(-1) for all of the liquids are also assigned on the basis of quantum chemistry calculations.
Metal-on-metal hip joint tribology.
Dowson, D; Jin, Z M
2006-02-01
The basic tribological features of metal-on-metal total hip replacements have been reviewed to facilitate an understanding of the engineering science underpinning the renaissance of these hard-on-hard joints. Metal-on-polymer hip replacements operate in the boundary lubrication regime, thus leading to the design guidance to reduce the femoral head diameter as much as is feasible to minimize frictional torque and volumetric wear. This explains why the gold-standard implant of this form from the past half-century had a diameter of only 22.225 mm (7/8 in). Metal-on-metal implants can operate in the mild mixed lubrication regime in which much of the applied load is supported by elastohydrodynamic films. Correct tribological design leads to remarkably low steady state wear rates. Promotion of the most effective elastohydrodynamic films calls for the largest possible head diameters and the smallest clearances that can reasonably be adopted, consistent with fine surface finishes, good sphericity and minimal structural elastic deformation of the cup on its foundations. This guidance, which is opposite in form to that developed for metal-on-polymer joints, is equally valid for solid (monolithic) metallic heads on metallic femoral stems and surface replacement femoral shells. Laboratory measurements of friction and wear in metal-on-metal joints have confirmed their potential to achieve a very mild form of mixed lubrication. The key lies in the generation of effective elastohydrodynamic lubricating films of adequate thickness compared with the composite roughness of the head and cup. The calculation of the film thickness is by no means easy, but the full procedure is outlined and the use of an empirical formula that displays good agreement with calculations based upon the full numerical solutions is explained. The representation of the lambda ratio, lambda, embracing both film thickness and composite roughness, is described.
NASA Astrophysics Data System (ADS)
Ramadhani, A. M.; Herda, E.; Triaminingsih, S.
2017-08-01
This study aims to determine the effect of brushing with toothpaste containing nanocalcium carbonate on the roughness of nanofill composite resin surface. Brushing was conducted with 3 types of materials for 3 consecutive brushing periods of 10 minutes each. Surface roughness was measured using a surface-roughness tester and the results were analyzed using the repeated ANOVA and the one-way ANOVA test. The surface morphology was observed using SEM after 3 months’ worth of brushing with the 3 materials. It was found that the nanofill composite resin surface-roughness value increased significantly (p<0.005) after brushing with toothpaste containing nano calcium carbonate for 3 months, but the value was not as high as that obtained when brushing with other types of toothpaste.
A sensitivity analysis of a surface energy balance model to LAI (Leaf Area Index)
NASA Astrophysics Data System (ADS)
Maltese, A.; Cannarozzo, M.; Capodici, F.; La Loggia, G.; Santangelo, T.
2008-10-01
The LAI is a key parameter in hydrological processes, especially in the physically based distribution models. It is a critical ecosystem attribute since physiological processes such as photosynthesis, transpiration and evaporation depend on it. The diffusion of water vapor, momentum, heat and light through the canopy is regulated by the distribution and density of the leaves, branches, twigs and stems. The LAI influences the sensible heat flux H in the surface energy balance single source models through the calculation of the roughness length and of the displacement height. The aerodynamic resistance between the soil and within-canopy source height is a function of the LAI through the roughness length. This research carried out a sensitivity analysis of some of the most important parameters of surface energy balance models to the LAI time variation, in order to take into account the effects of the LAI variation with the phenological period. Finally empirical retrieved relationships between field spectroradiometric data and the field LAI measured via a light-sensitive instrument are presented for a cereal field.
Electromagnetic field computation at fractal dimensions
NASA Astrophysics Data System (ADS)
Zubair, M.; Ang, Y. S.; Ang, L. K.
According to Mandelbrot's work on fractals, many objects are in fractional dimensions that the traditional calculus or differential equations are not sufficient. Thus fractional models solving the relevant differential equations are critical to understand the physical dynamics of such objects. In this work, we develop computational electromagnetics or Maxwell equations in fractional dimensions. For a given degree of imperfection, impurity, roughness, anisotropy or inhomogeneity, we consider the complicated object can be formulated into a fractional dimensional continuous object characterized by an effective fractional dimension D, which can be calculated from a self-developed algorithm. With this non-integer value of D, we develop the computational methods to design and analyze the EM scattering problems involving rough surfaces or irregularities in an efficient framework. The fractional electromagnetic based model can be extended to other key differential equations such as Schrodinger or Dirac equations, which will be useful for design of novel 2D materials stacked up in complicated device configuration for applications in electronics and photonics. This work is supported by Singapore Temasek Laboratories (TL) Seed Grant (IGDS S16 02 05 1).
Comprehensive analysis of line-edge and line-width roughness for EUV lithography
NASA Astrophysics Data System (ADS)
Bonam, Ravi; Liu, Chi-Chun; Breton, Mary; Sieg, Stuart; Seshadri, Indira; Saulnier, Nicole; Shearer, Jeffrey; Muthinti, Raja; Patlolla, Raghuveer; Huang, Huai
2017-03-01
Pattern transfer fidelity is always a major challenge for any lithography process and needs continuous improvement. Lithographic processes in semiconductor industry are primarily driven by optical imaging on photosensitive polymeric material (resists). Quality of pattern transfer can be assessed by quantifying multiple parameters such as, feature size uniformity (CD), placement, roughness, sidewall angles etc. Roughness in features primarily corresponds to variation of line edge or line width and has gained considerable significance, particularly due to shrinking feature sizes and variations of features in the same order. This has caused downstream processes (Etch (RIE), Chemical Mechanical Polish (CMP) etc.) to reconsider respective tolerance levels. A very important aspect of this work is relevance of roughness metrology from pattern formation at resist to subsequent processes, particularly electrical validity. A major drawback of current LER/LWR metric (sigma) is its lack of relevance across multiple downstream processes which effects material selection at various unit processes. In this work we present a comprehensive assessment of Line Edge and Line Width Roughness at multiple lithographic transfer processes. To simulate effect of roughness a pattern was designed with periodic jogs on the edges of lines with varying amplitudes and frequencies. There are numerous methodologies proposed to analyze roughness and in this work we apply them to programmed roughness structures to assess each technique's sensitivity. This work also aims to identify a relevant methodology to quantify roughness with relevance across downstream processes.
Distributed Roughness Effects on Blunt-Body Transition and Turbulent Heating
NASA Technical Reports Server (NTRS)
Hollis, Brian R.
2014-01-01
An experimental program has been conducted to obtain data on the effects of surface roughness on blunt bodies at laminar, transitional, and turbulent conditions. Wind tunnel models with distributed surface roughness heights from 0.06 mm to 1.75 mm were tested and heating data were obtained using global surface thermography. Heating rates of up to 85% higher than predicted, smooth-surface turbulent levels were measured.
NASA Astrophysics Data System (ADS)
Munoz, Raul C.; Arenas, Claudio
2017-03-01
We discuss recent progress regarding size effects and their incidence upon the coefficients describing charge transport (resistivity, magnetoresistance, and Hall effect) induced by electron scattering from disordered grain boundaries and from rough surfaces on metallic nanostructures; we review recent measurements of the magneto transport coefficients that elucidate the electron scattering mechanisms at work. We review as well theoretical developments regarding quantum transport theories that allow calculating the increase in resistivity induced by electron-rough surface scattering (in the absence of grain boundaries) from first principles—from the parameters that describe the surface roughness that can be measured with a Scanning Tunnelling Microscope (STM). We evaluate the predicting power of the quantum version of the Fuchs-Sondheimer theory and of the model proposed by Calecki, abandoning the method of parameter fitting used for decades, but comparing instead theoretical predictions with resistivity measured in thin films where surface roughness has also been measured with a STM, and where electron-grain boundary scattering can be neglected. We also review the theory of Mayadas and Shatzkes (MS) [Phys. Rev. B 1, 1382 (1970)] used for decades, and discuss its severe conceptual difficulties that arise out of the fact that: (i) MS employed plane waves to describe the electronic states within the metal sample having periodic grain boundaries, rather than the Bloch states known since the thirties to be the solutions of the Schrödinger equation describing electrons propagating through a Krönig-Penney [Proc. R. Soc. London Ser. A 130, 499 (1931)] periodic potential; (ii) MS ignored the fact that the wave functions describing electrons propagating through a 1-D disordered potential are expected to decay exponentially with increasing distance, a fact known since the work of Anderson [Phys. Rev. 109, 1492 (1958)] in 1958 for which he was awarded the Nobel Prize in 1977; (iii) The current in the sample should be proportional to TN, the probability that an electron traverses N consecutive (disordered) grains found along a mean free path; MS assumed that TN = 1. We review unpublished details of a quantum transport theory based upon a model of diffusive transport and Kubo's linear response formalism recently published [Arenas et al., Appl. Surf. Sci. 329, 184 (2015)], which permits estimating the increase in resistivity of a metallic specimen (over the bulk resistivity) under the combined effects of electron scattering by phonons, impurities, disordered grain boundaries, and rough surfaces limiting the sample. We evaluate the predicting power of both the MS theory and of the new quantum model on samples where the temperature dependence of the resistivity has been measured between 4 K and 300 K, and where surface roughness and grain size distribution has been measured on each sample via independent experiments. We find that the quantum theory does exhibit a predicting power, whereas the predicting power of the MS model as well as the significance and reliability of its fitting parameters seems questionable. We explore the power of the new theory by comparing, for the first time, the resistivity predicted and measured on nanometric Cu wires of (approximately) rectangular cross section employed in building integrated circuits, based upon a quantum description of electron motion.
Protein surface roughness accounts for binding free energy of Plasmepsin II-ligand complexes.
Valdés-Tresanco, Mario E; Valdés-Tresanco, Mario S; Valiente, Pedro A; Cocho, Germinal; Mansilla, Ricardo; Nieto-Villar, J M
2018-01-01
The calculation of absolute binding affinities for protein-inhibitor complexes remains as one of the main challenges in computational structure-based ligand design. The present work explored the calculations of surface fractal dimension (as a measure of surface roughness) and the relationship with experimental binding free energies of Plasmepsin II complexes. Plasmepsin II is an attractive target for novel therapeutic compounds to treat malaria. However, the structural flexibility of this enzyme is a drawback when searching for specific inhibitors. Concerning that, we performed separate explicitly solvated molecular dynamics simulations using the available high-resolution crystal structures of different Plasmepsin II complexes. Molecular dynamics simulations allowed a better approximation to systems dynamics and, therefore, a more reliable estimation of surface roughness. This constitutes a novel approximation in order to obtain more realistic values of fractal dimension, because previous works considered only x-ray structures. Binding site fractal dimension was calculated considering the ensemble of structures generated at different simulation times. A linear relationship between binding site fractal dimension and experimental binding free energies of the complexes was observed within 20 ns. Previous studies of the subject did not uncover this relationship. Regression model, coined FD model, was built to estimate binding free energies from binding site fractal dimension values. Leave-one-out cross-validation showed that our model reproduced accurately the absolute binding free energies for our training set (R 2 = 0.76; <|error|> =0.55 kcal/mol; SD error = 0.19 kcal/mol). The fact that such a simple model may be applied raises some questions that are addressed in the article. Copyright © 2017 John Wiley & Sons, Ltd.
Pseudospectral calculation of helium wave functions, expectation values, and oscillator strength
NASA Astrophysics Data System (ADS)
Grabowski, Paul E.; Chernoff, David F.
2011-10-01
We show that the pseudospectral method is a powerful tool for finding precise solutions of Schrödinger’s equation for two-electron atoms with general angular momentum. Realizing the method’s full promise for atomic calculations requires special handling of singularities due to two-particle Coulomb interactions. We give a prescription for choosing coordinates and subdomains whose efficacy we illustrate by solving several challenging problems. One test centers on the determination of the nonrelativistic electric dipole oscillator strength for the helium 11S→21P transition. The result achieved, 0.27616499(27), is comparable to the best in the literature. The formally equivalent length, velocity, and acceleration expressions for the oscillator strength all yield roughly the same accuracy. We also calculate a diverse set of helium ground-state expectation values, reaching near state-of-the-art accuracy without the necessity of implementing any special-purpose numerics. These successes imply that general matrix elements are directly and reliably calculable with pseudospectral methods. A striking result is that all the relevant quantities tested in this paper—energy eigenvalues, S-state expectation values and a bound-bound dipole transition between the lowest energy S and P states—converge exponentially with increasing resolution and at roughly the same rate. Each individual calculation samples and weights the configuration space wave function uniquely but all behave in a qualitatively similar manner. These results suggest that the method has great promise for similarly accurate treatment of few-particle systems.
Effects of uniform surface roughness on vortex-induced vibration of towed vertical cylinders
NASA Astrophysics Data System (ADS)
Kiu, K. Y.; Stappenbelt, B.; Thiagarajan, K. P.
2011-09-01
The present study was motivated by a desire to understand the vortex-induced vibration (VIV) of cylindrical offshore structures such as spars in strong currents. In particular, the consequences of marine growth on the surface as well as natural surface roughness that occurs with years in service are studied. Of special interest is the effect of surface roughness on the response amplitudes and the forces experienced by these structures while undergoing VIV. The experimental apparatus employed for the present study consisted of an elastically mounted rigid vertical cylinder with no end plates, towed along the length of a water tank. The cylinder was attached to a parallel linkage mechanism allowing motion in the transverse direction only. The cylinder surface was covered by sandpapers with known mean particle diameters, thus providing controlled values of roughness coefficient from 0.28×10 -3 to 1.38×10 -2. The tests covered the subcritical range of Reynolds number from 1.7×10 4 to 8.3×10 4, and a reduced velocity range from 4 to 16. It was found that as the roughness of the cylinder was increased the maximum response amplitude and the maximum mean drag coefficient decreased, levelling off to constant values. The onset of lock-in was progressively delayed for rougher cylinders, and the width of the lock-in region showed remarkable reduction at higher roughness values. The Strouhal number was found to display a modest increase with roughness. The dynamic mean drag of the rough cylinders was also found to be lower than that for a smooth cylinder. It is felt that uniform roughness such as caused in marine environments may act favorably to lower VIV incidence and effects in the range of Reynolds number tested.
2016-12-01
roughness that is an input variable. For the FP2 site in Kansas, we searched for the climatological surface roughness height used in the Navy’s...COAMPS model for the latitude and longitude of FP2 and in the month of June/July. The climatological roughness height was found to be 0.25m. This is the...mean surface roughness for an area of 1 km on the side near FP2 as the climatological data has a horizontal grid resolution of 1 km. This roughness
Asiry, Moshabab A; AlShahrani, Ibrahim; Alaqeel, Samer M; Durgesh, Bangalore H; Ramakrishnaiah, Ravikumar
2018-08-01
The adhesion strength of orthodontic brackets bonded to dental glass ceramics was evaluated after ceramic surface was treated with two-step and one-step surface conditioning systems, and subjecting to thermo-cycling. A total of forty specimens were fabricated from silica based glass ceramic (lithium disilicate) by duplicating the buccal surface of maxillary first premolar. The specimens were randomly assigned to two experimental groups (n = 20), group one specimens were treated with two-step surface conditioning system (IPS ceramic etching gel™ and Monobond plus™) and group two specimens were treated with one-step surface conditioning system (Monobond etch and prime™). The surface roughness of the specimens after treatment with two-step and one-step surface conditioning system was measured using non-contact surface profilometer. Ten randomly selected specimens from each group were subjected to thermo-cycling and the remaining ten served as baseline. The shear bond strength of the specimens was measured using universal material testing machine. The adhesive remnant index score was calculated, and the results of surface roughness and bond strength were tabulated and subjected to analysis of variance and post hoc tukey's test at a significance level of p < 0.05. The results of the study showed that the specimens treated with two-step conditioning system had higher surface roughness and bond strength than one-step conditioning system. The majority of the specimens treated with both two-step and one-step conditioned specimens showed adhesive failure after subjecting thermo-cycling. Traditional two-step conditioning provides better bond strength. The clinical importance of the study is that, the silane promoted adhesion significantly reduces on exposure to thermo-cycling. Copyright © 2018 Elsevier Ltd. All rights reserved.
MacDonald, Daniel E.; Rapuano, Bruce E.; Schniepp, Hannes C.
2010-01-01
In the current study, we have compared the effects of heat and radiofrequency plasma glow discharge (RFGD) treatment of a Ti6Al4V alloy on the physico-chemical properties of the alloy’s surface oxide. Titanium alloy (Ti6Al4V) disks were passivated alone, heated to 600 °C, or RFGD plasma treated in pure oxygen. RFGD treatment did not alter the roughness, topography, elemental composition or thickness of the alloy’s surface oxide layer. In contrast, heat treatment altered oxide topography by creating a pattern of oxide elevations approximately 50–100 nm in diameter. These nanostructures exhibited a three-fold increase in roughness compared to untreated surfaces when RMS roughness was calculated after applying a spatial high-pass filter with a 200 nm cutoff wavelength. Heat treatment also produced a surface enrichment in aluminum and vanadium oxides. Both RFGD and heat treatment produced similar increases in oxide wettability. Atomic force microscopy (AFM) measurements of metal surface oxide net charge signified by a long range force of attraction to or repulsion from a (negatively charged) silicon nitride AFM probe were also obtained for all three experimental groups. Force measurements showed that the RFGD-treated Ti6Al4V samples demonstrated a higher net positive surface charge at pH values below 6 and a higher net negative surface charge at physiological pH (pH values between 7 and 8) compared to control and heat-treated samples These findings suggest that RFGD treatment of metallic implant materials can be used to study the role of negatively charged surface oxide functional groups in protein bioactivity, osteogenic cell behavior and osseointegration independently of oxide topography. PMID:20880672
The influence of rough surface thermal-infrared beaming on the Yarkovsky and YORP effects
NASA Astrophysics Data System (ADS)
Rozitis, B.; Green, S. F.
2012-06-01
It is now becoming widely accepted that photon recoil forces from the asymmetric reflection and thermal re-radiation of absorbed sunlight are, together with collisions and gravitational forces, primary mechanisms governing the dynamical and physical evolution of asteroids. The Yarkovsky effect causes orbital semimajor axis drift, and the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect causes changes in the rotation rate and pole orientation. We present an adaptation of the Advanced Thermophysical Model to simultaneously predict the Yarkovsky and YORP effects in the presence of thermal-infrared beaming caused by surface roughness, which has been neglected or dismissed in all previous models. Tests on Gaussian random sphere shaped asteroids, and on the real shapes of asteroids (1620) Geographos and (6489) Golevka, show that rough surface thermal-infrared beaming enhances the Yarkovsky orbital drift by typically tens of per cent but it can be as much as a factor of 2. The YORP rotational acceleration is on average dampened by up to a third typically but can be as much as one-half. We find that the Yarkovsky orbital drift is only sensitive to the average degree, and not to the spatial distribution, of roughness across an asteroid surface. However, the YORP rotational acceleration is sensitive to the surface roughness spatial distribution, and can add significant uncertainties to the predictions for asteroids with relatively weak YORP effects. To accurately predict either effect the degree and spatial distribution of roughness across an asteroid surface must be known.
NASA Astrophysics Data System (ADS)
Langel, Christopher Michael
A computational investigation has been performed to better understand the impact of surface roughness on the flow over a contaminated surface. This thesis highlights the implementation and development of the roughness amplification model in the flow solver OVERFLOW-2. The model, originally proposed by Dassler, Kozulovic, and Fiala, introduces an additional scalar field roughness amplification quantity. This value is explicitly set at rough wall boundaries using surface roughness parameters and local flow quantities. This additional transport equation allows non-local effects of surface roughness to be accounted for downstream of rough sections. This roughness amplification variable is coupled with the Langtry-Menter model and used to modify the criteria for transition. Results from flat plate test cases show good agreement with experimental transition behavior on the flow over varying sand grain roughness heights. Additional validation studies were performed on a NACA 0012 airfoil with leading edge roughness. The computationally predicted boundary layer development demonstrates good agreement with experimental results. New tests using varying roughness configurations are being carried out at the Texas A&M Oran W. Nicks Low Speed Wind Tunnel to provide further calibration of the roughness amplification method. An overview and preliminary results are provided of this concurrent experimental investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stimpson, Shane G.; Liu, Yuxuan; Collins, Benjamin S.
An essential component of the neutron transport solver is the resonance self-shielding calculation used to determine equivalence cross sections. The neutron transport code, MPACT, is currently using the subgroup self-shielding method, in which the method of characteristics (MOC) is used to solve purely absorbing fixed-source problems. Recent efforts incorporating multigroup kernels to the MOC solvers in MPACT have reduced runtime by roughly 2×. Applying the same concepts for self-shielding and developing a novel lumped parameter approach to MOC, substantial improvements have also been made to the self-shielding computational efficiency without sacrificing any accuracy. These new multigroup and lumped parameter capabilitiesmore » have been demonstrated on two test cases: (1) a single lattice with quarter symmetry known as VERA (Virtual Environment for Reactor Applications) Progression Problem 2a and (2) a two-dimensional quarter-core slice known as Problem 5a-2D. From these cases, self-shielding computational time was reduced by roughly 3–4×, with a corresponding 15–20% increase in overall memory burden. An azimuthal angle sensitivity study also shows that only half as many angles are needed, yielding an additional speedup of 2×. In total, the improvements yield roughly a 7–8× speedup. Furthermore given these performance benefits, these approaches have been adopted as the default in MPACT.« less
Stimpson, Shane G.; Liu, Yuxuan; Collins, Benjamin S.; ...
2017-07-17
An essential component of the neutron transport solver is the resonance self-shielding calculation used to determine equivalence cross sections. The neutron transport code, MPACT, is currently using the subgroup self-shielding method, in which the method of characteristics (MOC) is used to solve purely absorbing fixed-source problems. Recent efforts incorporating multigroup kernels to the MOC solvers in MPACT have reduced runtime by roughly 2×. Applying the same concepts for self-shielding and developing a novel lumped parameter approach to MOC, substantial improvements have also been made to the self-shielding computational efficiency without sacrificing any accuracy. These new multigroup and lumped parameter capabilitiesmore » have been demonstrated on two test cases: (1) a single lattice with quarter symmetry known as VERA (Virtual Environment for Reactor Applications) Progression Problem 2a and (2) a two-dimensional quarter-core slice known as Problem 5a-2D. From these cases, self-shielding computational time was reduced by roughly 3–4×, with a corresponding 15–20% increase in overall memory burden. An azimuthal angle sensitivity study also shows that only half as many angles are needed, yielding an additional speedup of 2×. In total, the improvements yield roughly a 7–8× speedup. Furthermore given these performance benefits, these approaches have been adopted as the default in MPACT.« less
Patil, Chetan R; Uppin, Veerendra
2011-01-01
To evaluate the effect of widely used endodontic irrigating solutions on root dentin microhardness and surface roughness. One hundred twenty, non-carious extracted human permanent incisor teeth were selected. The crowns of the teeth were sectioned and the roots were separated longitudinally to get 240 specimens. These specimens were then divided into six groups according to the irrigating solutions used. The solutions used were 5% and 2.5% NaOCl solutions, 3% H2 O2 , 17% EDTA solution, 0.2% chlorhexidine gluconate, and distilled water. Then, the specimens were subjected to microhardness and roughness testing. The data were analyzed using ANOVA and Tukey's multiple comparison tests. The results of this study indicated that all irrigation solutions, except 0.2% chlorhexidine gluconate, decreased the microhardness of root dentin, and 3% H2 O2 and 0.2% chlorhexidine gluconate had no effect on surface roughness. Within the limitation of this study, it is concluded that 0.2% chlorhexidine gluconate seems to be an appropriate irrigation solution, because of its harmless effect on the microhardness and surface roughness of root canal dentin.
The velocity and composition of supernova ejecta
NASA Technical Reports Server (NTRS)
Colgate, S. A.
1971-01-01
In case of the Gum nebula, a pulsar - a presumed neutron star - is believed to be a relic of the supernova explosion. Regardless of the mechanism of the explosion, the velocity distribution and composition of the ejected matter will be roughly the same. The reimploding mass fraction is presumed to be neutron rich. The final composition is thought to be roughly 1/3 iron and 2/3 silicon, with many small fractions of elements from helium to iron. The termination of helium shell burning occurs because the shell is expanded and cooled by radiation stress. The mass fraction of the helium burning shell was calculated.
Selection of representative embankments based on rough set - fuzzy clustering method
NASA Astrophysics Data System (ADS)
Bin, Ou; Lin, Zhi-xiang; Fu, Shu-yan; Gao, Sheng-song
2018-02-01
The premise condition of comprehensive evaluation of embankment safety is selection of representative unit embankment, on the basis of dividing the unit levee the influencing factors and classification of the unit embankment are drafted.Based on the rough set-fuzzy clustering, the influence factors of the unit embankment are measured by quantitative and qualitative indexes.Construct to fuzzy similarity matrix of standard embankment then calculate fuzzy equivalent matrix of fuzzy similarity matrix by square method. By setting the threshold of the fuzzy equivalence matrix, the unit embankment is clustered, and the representative unit embankment is selected from the classification of the embankment.
Steps wandering on the lysozyme and KDP crystals during growth in solution
NASA Astrophysics Data System (ADS)
Rashkovich, L. N.; Chernevich, T. G.; Gvozdev, N. V.; Shustin, O. A.; Yaminsky, I. V.
2001-10-01
We have applied atomic force microscopy for the study in solution of time evolution of step roughness on the crystal faces with high (pottasium dihydrophosphate: KDP) and low (lysozyme) density of kinks. It was found that the roughness increases with time revealing the time dependence as t1/4. Step velocity does not depend upon distance between steps, that is why the experimental data were interpreted on the basis of Voronkov theory, which assume, that the attachment and detachment of building units in the kinks is major limitation for crystal growth. In the frame of this theoretical model the calculation of material parameters is performed.
Effect of inlet conditions for numerical modelling of the urban boundary layer
NASA Astrophysics Data System (ADS)
Gnatowska, Renata
2018-01-01
The paper presents the numerical results obtained with the use of the ANSYS FLUENT commercial code for analysing the flow structure around two rectangular inline surface-mounted bluff bodies immersed in a boundary layer. The effects of the inflow boundary layer for the accuracy of the numerical modelling of the flow field around a simple system of objects are described. The analysis was performed for two concepts. In the former case, the inlet velocity profile was defined using the power law, whereas the kinetic and dissipation energy was defined from the equations according to Richards and Hoxey [1]. In the latter case, the inlet conditions were calculated for the flow over the rough area composed of the rectangular components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeda, Masatoshi; Komura, Toshiyuki; Hirotani, Tsutomu
1995-12-01
Annual failure probabilities of buildings and equipment were roughly evaluated for two fusion-reactor-like buildings, with and without seismic base isolation, in order to examine the effectiveness of the base isolation system regarding siting issues. The probabilities are calculated considering nonlinearity and rupture of isolators. While the probability of building failure for both buildings on the same site was almost equal, the function failures for equipment showed that the base-isolated building had higher reliability than the non-isolated building. Even if the base-isolated building alone is located on a higher seismic hazard area, it could compete favorably with the ordinary one inmore » reliability of equipment.« less
Surface roughness effects on turbulent Couette flow
NASA Astrophysics Data System (ADS)
Lee, Young Mo; Lee, Jae Hwa
2017-11-01
Direct numerical simulation of a turbulent Couette flow with two-dimensional (2-D) rod roughness is performed to examine the effects of the surface roughness. The Reynolds number based on the channel centerline laminar velocity (Uco) and channel half height (h) is Re =7200. The 2-D rods are periodically arranged with a streamwise pitch of λ = 8 k on the bottom wall, and the roughness height is k = 0.12 h. It is shown that the wall-normal extent for the logarithmic layer is significantly shortened in the rough-wall turbulent Couette flow, compared to a turbulent Couette flow with smooth wall. Although the Reynolds stresses are increased in a turbulent channel flow with surface roughness in the outer layer due to large-scale ejection motions produced by the 2-D rods, those of the rough-wall Couette flow are decreased. Isosurfaces of the u-structures averaged in time suggest that the decrease of the turbulent activity near the centerline is associated with weakened large-scale counter-rotating roll modes by the surface roughness. This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000537) and the Ministry of Science, ICT & Future Planning (NRF-2017R1A5A1015311).
Investigation of the influence of a step change in surface roughness on turbulent heat transfer
NASA Technical Reports Server (NTRS)
Taylor, Robert P.; Coleman, Hugh W.; Taylor, J. Keith; Hosni, M. H.
1991-01-01
The use is studied of smooth heat flux gages on the otherwise very rough SSME fuel pump turbine blades. To gain insights into behavior of such installations, fluid mechanics and heat transfer data were collected and are reported for a turbulent boundary layer over a surface with a step change from a rough surface to a smooth surface. The first 0.9 m length of the flat plate test surface was roughened with 1.27 mm hemispheres in a staggered, uniform array spaced 2 base diameters apart. The remaining 1.5 m length was smooth. The effect of the alignment of the smooth surface with respect to the rough surface was also studied by conducting experiments with the smooth surface aligned with the bases or alternatively with the crests of the roughness elements. Stanton number distributions, skin friction distributions, and boundary layer profiles of temperature and velocity are reported and are compared to previous data for both all rough and all smooth wall cases. The experiments show that the step change from rough to smooth has a dramatic effect on the convective heat transfer. It is concluded that use of smooth heat flux gages on otherwise rough surfaces could cause large errors.
Role of urban surface roughness in road-deposited sediment build-up and wash-off
NASA Astrophysics Data System (ADS)
Zhao, Hongtao; Jiang, Qian; Xie, Wenxia; Li, Xuyong; Yin, Chengqing
2018-05-01
Urban road surface roughness is one of the most important factors in estimation of surface runoff loads caused by road-deposited sediment (RDS) wash-off and design of its control measures. However, because of a lack of experimental data to distinguish the role of surface roughness, the effects of surface roughness on RDS accumulation and release are not clear. In this study, paired asphalt and concrete road surfaces and rainfall simulation designs were used to distinguish the role of surface roughness in RDS build-up and wash-off. Our results showed that typical asphalt surfaces often have higher depression depths than typical concrete surfaces, indicating that asphalt surfaces are relatively rougher than concrete surface. Asphalt surfaces can retain a larger RDS amount, relative higher percentage of coarser particles, larger RDS wash-off loads, and lower wash-off percentage, than concrete surfaces. Surface roughness has different effects in RDS motilities with different particle sizes during rainfall runoff, and the settleable particles (44-149 μm) were notably influenced by it. Furthermore, the first flush phenomenon tended to be greater on relatively smooth surfaces than relatively rough surfaces. Overall, surface roughness plays an important role in influencing the complete process of RDS build-up and wash-off on different road characteristics.
NASA Astrophysics Data System (ADS)
Anisja, D. H.; Indrani, D. J.; Herda, E.
2017-08-01
Nanotechnology developments in dentistry have resulted in the development of nano-ionomer, a new restorative material. The surface roughness of restorative materials can increase bacteria adhesion and lead to poor oral hygiene. Abrasive agents in toothpaste can alter tooth and restorative material surfaces. The aim of this study is to identify the effect of brushing with nano calcium carbonate, and calcium carbonate toothpaste on surface roughness of nano-ionomer. Eighteen nano-ionomer specimens were brushed with Aquabidest (doubledistilled water), nano calcium carbonate and calcium carbonate toothpaste. Brushing lasted 30 minutes, and the roughness value (Ra) was measured after each 10 minute segment using a surface roughness tester. The data was analyzed using repeated ANOVA and one-way ANOVA test. The value of nano-ionomer surface roughness increased significantly (p<0.05) after 20 minutes of brushing with the nano calcium carbonate toothpaste. Brushing with calcium carbonate toothpaste leaves nano-ionomer surfaces more rugged than brushing with nano calcium carbonate toothpaste.
Study on surface roughness evolvement of Nd-doped phosphate glass after IBF
NASA Astrophysics Data System (ADS)
Li, Furen; Xie, Xuhui; Zhou, Lin; Tie, Guipeng; Hu, Hao
2016-10-01
Nd doped phosphate glass is widely used as gain media in high power laser system. It is traditionally polished with the annular polishing technology. The edge effect is inevitable in annular polishing process and it results in the low manufacturing efficiency. Ion Beam Figuring (IBF) is a highly deterministic, non-contact method for the ultra-precision optics fabrication. So the edge effect is avoided. Nanometer and sub-nanometer precision is realizable in IBF. In this paper, Nd doped phosphate glass was polished with IBF, and the evolvement of surface roughness was emphasized. The roughness of surface polished with ion beam at normal and oblique incidence was researched. The oblique incident angle was 45°. The surface roughness was measured with the white light interferometer. No evident change was observed. This means that the pre-finish roughness can be preserved in IBF. The results denote that IBF is a feasible method to correct the contour errors of Nd doped phosphate glass, and the roughness will not be coarsened.
Distributed-Roughness Effects on Stability and Transition In Swept-Wing Boundary Layers
NASA Technical Reports Server (NTRS)
Carrillo, Ruben B., Jr.; Reibert, Mark S.; Saric, William S.
1997-01-01
Boundary-layer stability experiments are conducted in the Arizona State University Unsteady Wind Tunnel on a 45 deg swept airfoil. The pressure distribution and test conditions are designed to suppress Tollmien-Schlichting disturbances and provide crossflow-dominated transition. The surface of the airfoil is finely polished to a near mirror finish. Under these conditions, submicron surface irregularities cause the naturally occurring stationary crossflow waves to grow to nonuniform amplitudes. Spanwise-uniform stationary crossflow disturbances are generated through careful control of the initial conditions with full-span arrays of micron-high roughness elements near the attachment line. Detailed hot-wire measurements are taken to document the stationary crossflow structure and determine growth rates for the total and individual-mode disturbances. Naphthalene flow visualization provides transition location information. Roughness spacing and roughness height are varied to examine the effects on transition location and all amplified wavelengths. The measurements show that roughness spacings that do not contain harmonics equal to the most unstable wavelength as computed by linear stability theory effectively suppress the most unstable mode. Under certain conditions, subcritical roughness spacing delays transition past that of the corresponding smooth surface.
NASA Technical Reports Server (NTRS)
Press, Harry; Mazelsky, Bernard
1954-01-01
The applicability of some results from the theory of generalized harmonic analysis (or power-spectral analysis) to the analysis of gust loads on airplanes in continuous rough air is examined. The general relations for linear systems between power spectrums of a random input disturbance and an output response are used to relate the spectrum of airplane load in rough air to the spectrum of atmospheric gust velocity. The power spectrum of loads is shown to provide a measure of the load intensity in terms of the standard deviation (root mean square) of the load distribution for an airplane in flight through continuous rough air. For the case of a load output having a normal distribution, which appears from experimental evidence to apply to homogeneous rough air, the standard deviation is shown to describe the probability distribution of loads or the proportion of total time that the load has given values. Thus, for airplane in flight through homogeneous rough air, the probability distribution of loads may be determined from a power-spectral analysis. In order to illustrate the application of power-spectral analysis to gust-load analysis and to obtain an insight into the relations between loads and airplane gust-response characteristics, two selected series of calculations are presented. The results indicate that both methods of analysis yield results that are consistent to a first approximation.
a Method Using Gnss Lh-Reflected Signals for Soil Roughness Estimation
NASA Astrophysics Data System (ADS)
Jia, Y.; Li, W.; Chen, Y.; Lv, H.; Pei, Y.
2018-04-01
Global Navigation Satellite System Reflectometry (GNSS-R) is based on the concept of receiving GPS signals reflected by the ground using a passive receiver. The receiver can be on the ground or installed on a small aircraft or UAV and collects the electromagnetic field scattered from the surface of the Earth. The received signals are then analyzed to determine the characteristics of the surface. Many research has been reported showing the capability of the GNSS-R technique. However, the roughness of the surface impacts the phase and amplitude of the received signals, which is still a worthwhile study. This paper presented a method can be used by GNSS-R to estimate the surface roughness. First, the data was calculated in the specular reflection with the assumption of a flat surface with different permittivity. Since the power reflectivity can be evaluated as the ratio of left-hand (LH) reflected signal to the direct right-hand (RH) signal. Then a semi-empirical roughness model was applied to the data for testing. The results showed the method can distinguish the water and the soil surface. The sensitivity of the parameters was also analyzed. It indicates this method for soil roughness estimation can be used by GNSS-R LH reflected signals. In the next step, several experiments need to be done for improving the model and exploring the way of the estimation.
Tactile roughness perception in the presence of olfactory and trigeminal stimulants
Koijck, Lara A.; Van Erp, Jan B.F.
2015-01-01
Previous research has shown that odorants consistently evoke associations with textures and their tactile properties like smoothness and roughness. Also, it has been observed that olfaction can modulate tactile perception. We therefore hypothesized that tactile roughness perception may be biased towards the somatosensory connotation of an ambient odorant. We performed two experiments to test this hypothesis. In the first experiment, we investigated the influence of ambient chemosensory stimuli with different roughness connotations on tactile roughness perception. In addition to a pleasant odor with a connotation of softness (PEA), we also included a trigeminal stimulant with a rough, sharp or prickly connotation (Ethanol). We expected that—compared to a No-odorant control condition—tactile texture perception would be biased towards smoothness in the presence of PEA and towards roughness in the presence of Ethanol. However, our results show no significant interaction between chemosensory stimulation and perceived tactile surface roughness. It could be argued that ambient odors may be less effective in stimulating crossmodal associations, since they are by definition extraneous to the tactile stimuli. In an attempt to optimize the conditions for sensory integration, we therefore performed a second experiment in which the olfactory and tactile stimuli were presented in synchrony and in close spatial proximity. In addition, we included pleasant (Lemon) and unpleasant (Indole) odorants that are known to have the ability to affect tactile perception. We expected that tactile stimuli would be perceived as less rough when simultaneously presented with Lemon or PEA (both associated with softness) than when presented with Ethanol or Indole (odors that can be associated with roughness). Again, we found no significant main effect of chemosensory condition on perceived tactile roughness. We discuss the limitations of this study and we present suggestions for future research. PMID:26020010
The evolution of fracture surface roughness and its dependence on slip
NASA Astrophysics Data System (ADS)
Wells, Olivia L.
Under effective compression, impingement of opposing rough surfaces of a fracture can force the walls of the fracture apart during slip. Therefore, a fracture's surface roughness exerts a primary control on the amount of dilation that can be sustained on a fracture since the opposing surfaces need to remain in contact. Previous work has attempted to characterize fracture surface roughness through topographic profiles and power spectral density analysis, but these metrics describing the geometry of a fracture's surface are often non-unique when used independently. However, when combined these metrics are affective at characterizing fracture surface roughness, as well as the mechanisms affecting changes in roughness with increasing slip, and therefore changes in dilation. These mechanisms include the influence of primary grains and pores on initial fracture roughness, the effect of linkage on locally increasing roughness, and asperity destruction that limits the heights of asperities and forms gouge. This analysis reveals four essential stages of dilation during the lifecycle of a natural fracture, whereas previous slip-dilation models do not adequately address the evolution of fracture surface roughness: (1) initial slip companied by small dilation is mediated by roughness controlled by the primary grain and pore dimensions; (2) rapid dilation during and immediately following fracture growth by linkage of formerly isolated fractures; (3) wear of the fracture surface and gouge formation that minimizes dilation; and (4) between slip events cementation that modifies the mineral constituents in the fracture. By identifying these fundamental mechanisms that influence fracture surface roughness, this new conceptual model relating dilation to slip has specific applications to Enhanced Geothermal Systems (EGS), which attempt to produce long-lived dilation in natural fractures by inducing slip.
Investigation of ellipsometric parameters of 2D microrough surfaces by FDTD.
Qiu, J; Ran, D F; Liu, Y B; Liu, L H
2016-07-10
Ellipsometry is a powerful method for measuring the optical constants of materials and is very sensitive to surface roughness. In previous ellipsometric measurement of optical constants of solid materials with rough surfaces, researchers frequently used effective medium approximation (EMA) with roughness already known to fit the complex refractive index of the material. However, the ignored correlation length, the other important parameter of rough surfaces, will definitely result in fitting errors. Hence it is necessary to consider the influence of surface roughness and correlation length on the ellipsometric parameters Δ (phase difference) and Ψ (azimuth) characterizing practical systems. In this paper, the influence of roughness of two-dimensional randomly microrough surfaces (relative roughness σ/λ ranges from 0.001 to 0.025) of silicon on ellipsometric parameters was simulated by the finite-difference time-domain method which was validated with experimental results. The effects of incident angle, relative roughness, and correlation length were numerically investigated for two-dimensional Gaussian distributed randomly microrough surfaces, respectively. The simulated results showed that compared with the smooth surface, only tiny changes of the ellipsometric parameter Δ could be observed for microrough silicon surface in the vicinity of the Brewster angle, but obviously changes of Ψ occur especially in the vicinity of the Brewster angle. More differences between the ellipsometric parameters of the rough surface and smooth surface can been seen especially in the vicinity of the Brewster angle as the relative roughness σ/λ increases or correlation length τ decreases. The results reveal that when we measure the optical constants of solid materials by ellipsometry, the smaller roughness, larger correlation length and larger incident wavelength will lead to the higher precision of measurements.
Colloid interaction energies for physically and chemically heterogeneous porous media
USDA-ARS?s Scientific Manuscript database
The mean and variance of the colloid interaction energy (phi*) as a function of separation distance (h) were calculated on physically and/or chemically heterogeneous solid surfaces at the representative elementary area (REA) scale. Nanoscale roughness was demonstrated to have a significant influence...
MODAS Validation in Littoral Areas Using GRASP
2002-09-30
result (4 hr) is guiding new work on calculation efficiency. Figure 4. Near-optimal coordinated passive search plan against a complex transitor ... Transitor tracks form a river of roughly parallel potential paths. The two searcher tracks criss- cross this river like shoe lacings over much of
NASA Astrophysics Data System (ADS)
Hirouchi, Jun; Takahara, Shogo; Iijima, Masashi; Watanabe, Masatoshi; Munakata, Masahiro
2017-11-01
In order to lift of an evacuation order in evacuation areas and return residents to their homes, human dose assessments are required. However, it is difficult to exactly assess indoor external dose rate because the indoor distribution and infiltration pathways of radionuclides are unclear. This paper describes indoor and outdoor dose rates measured in eight houses in the difficult-to-return area in Fukushima Prefecture and identifies the distribution and main infiltration pathway of radionuclides in houses. In addition, it describes dose rates calculated with a Monte Carlo photon transport code to aid a thorough understanding of the measurements. The measurements and calculations indicate that radionuclides mainly infiltrate through visible openings such as vents, windows, and doors, and then deposit near these visible openings; however, they hardly infiltrate through sockets and air conditioning outlets. The measurements on rough surfaces such as bookshelves implies that radionuclides discharged from the Fukushima-Daiichi nuclear power plant did not deposit locally on rough surfaces.
Aerodynamic penalties of heavy rain on a landing aircraft
NASA Technical Reports Server (NTRS)
Haines, P. A.; Luers, J. K.
1982-01-01
The aerodynamic penalties of very heavy rain on landing aircraft were investigated. Based on severity and frequency of occurrence, the rainfall rates of 100 mm/hr, 500 mm/hr, and 2000 mm/hr were designated, respectively, as heavy, severe, and incredible. The overall and local collection efficiencies of an aircraft encountering these rains were calculated. The analysis was based on raindrop trajectories in potential flow about an aircraft. All raindrops impinging on the aircraft are assumed to take on its speed. The momentum loss from the rain impact was later used in a landing simulation program. The local collection efficiency was used in estimating the aerodynamic roughness of an aircraft in heavy rain. The drag increase from this roughness was calculated. A number of landing simulations under a fixed stick assumption were done. Serious landing shortfalls were found for either momentum or drag penalties and especially large shortfalls for the combination of both. The latter shortfalls are comparable to those found for severe wind shear conditions.
Intelligent Flow Friction Estimation.
Brkić, Dejan; Ćojbašić, Žarko
2016-01-01
Nowadays, the Colebrook equation is used as a mostly accepted relation for the calculation of fluid flow friction factor. However, the Colebrook equation is implicit with respect to the friction factor (λ). In the present study, a noniterative approach using Artificial Neural Network (ANN) was developed to calculate the friction factor. To configure the ANN model, the input parameters of the Reynolds Number (Re) and the relative roughness of pipe (ε/D) were transformed to logarithmic scales. The 90,000 sets of data were fed to the ANN model involving three layers: input, hidden, and output layers with, 2, 50, and 1 neurons, respectively. This configuration was capable of predicting the values of friction factor in the Colebrook equation for any given values of the Reynolds number (Re) and the relative roughness (ε/D) ranging between 5000 and 10(8) and between 10(-7) and 0.1, respectively. The proposed ANN demonstrates the relative error up to 0.07% which had the high accuracy compared with the vast majority of the precise explicit approximations of the Colebrook equation.
NASA Astrophysics Data System (ADS)
Cai, Danyun; Mo, Yunjie; Feng, Xiaofang; He, Yingyou; Jiang, Shaoji
2017-06-01
In this study, a model based on the First Principles calculations and Kinetic Monte Carlo simulation were established to study the growth characteristic of Ag thin film at low substrate temperature. On the basis of the interaction between the adatom and nearest-neighbor atoms, some simplifications and assumptions were made to categorize the diffusion behaviors of Ag adatoms on Ag(001). Then the barriers of all possible diffusion behaviors were calculated using the Climbing Image Nudged Elastic Band method (CI-NEB). Based on the Arrhenius formula, the morphology variation, which is attributed to the surface diffusion behaviors during the growth, was simulated with a temperature-dependent KMC model. With this model, a non-monotonic relation between the surface roughness and the substrate temperature (decreasing from 300 K to 100 K) were discovered. The analysis of the temperature dependence on diffusion behaviors presents a theoretical explanation of diffusion mechanism for the non-monotonic variation of roughness at low substrate temperature.
A fully polarimetric scattering model for a coniferous forest
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.; Lopes, A.; Mougin, E.
1991-01-01
For an elliptically polarized plane wave exciting a coniferous forested canopy a fully polarimetric scattering model has been developed to account for the size and orientation distributions of each forest constituent. A canopy is divided into three layers over a rough interface. The upper two layers represent the crown with its constituents (leaves, stems, and branches). The lower layer stands for the trunks and the rough interface is the canopy-ground interface. For a plane wave exciting the canopy, the explicit expressions for the bistatic scattering coefficient associated with each scattering mechanism are given. For an elliptically polarized incidence wave, the present model can be recast in a form suitable for polarimetric wave synthesis. The model validation is justified by comparing the measured and the calculated values of the backscattering coefficients for a linearly polarized incident wave. The comparison is made over a wide range of frequencies and incident angles. Numerical simulations are conducted to calculate the radar polarization signature of the canopy for different incident frequencies and angles.
Radiative transfer theory for active remote sensing of a forested canopy
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1989-01-01
A canopy is modeled as a two-layer medium above a rough interface. The upper layer stands for the forest crown, with the leaves modeled as randomly oriented and distributed disks and needles and the branches modeled as randomly oriented finite dielectric cylinders. The lower layer contains the tree trunks, modeled as randomly positioned vertical cylinders above the rough soil. Radiative-transfer theory is applied to calculate EM scattering from such a canopy, is expressed in terms of the scattering-amplitude tensors (SATs). For leaves, the generalized Rayleigh-Gans approximation is applied, whereas the branch and trunk SATs are obtained by estimating the inner field by fields inside a similar cylinder of infinite length. The Kirchhoff method is used to calculate the soil SAT. For a plane wave exciting the canopy, the radiative-transfer equations are solved by iteration to the first order in albedo of the leaves and the branches. Numerical results are illustrated as a function of the incidence angle.
Li, Kui; Wang, Lei; Lv, Yanhong; Gao, Pengyu; Song, Tianxiao
2015-01-01
Getting a land vehicle’s accurate position, azimuth and attitude rapidly is significant for vehicle based weapons’ combat effectiveness. In this paper, a new approach to acquire vehicle’s accurate position and orientation is proposed. It uses biaxial optical detection platform (BODP) to aim at and lock in no less than three pre-set cooperative targets, whose accurate positions are measured beforehand. Then, it calculates the vehicle’s accurate position, azimuth and attitudes by the rough position and orientation provided by vehicle based navigation systems and no less than three couples of azimuth and pitch angles measured by BODP. The proposed approach does not depend on Global Navigation Satellite System (GNSS), thus it is autonomous and difficult to interfere. Meanwhile, it only needs a rough position and orientation as algorithm’s iterative initial value, consequently, it does not have high performance requirement for Inertial Navigation System (INS), odometer and other vehicle based navigation systems, even in high precise applications. This paper described the system’s working procedure, presented theoretical deviation of the algorithm, and then verified its effectiveness through simulation and vehicle experiments. The simulation and experimental results indicate that the proposed approach can achieve positioning and orientation accuracy of 0.2 m and 20″ respectively in less than 3 min. PMID:26492249
NASA Astrophysics Data System (ADS)
Wang, Chengan; Tan, Jianyu; Lai, Qingzhi
2016-12-01
The “blue-green window” in the ocean plays an important role in functions such as communication between vessels, underwater target identification, and remote sensing. In this study, the transmission process of blue-green light in the upper ocean is analyzed numerically using the Monte Carlo method. First, the effect of total number of photons on the numerical results is evaluated, and the most favorable number is chosen to ensure accuracy without excessive costs for calculation. Then, the physical and mathematical models are constructed. The rough sea surface is generated under windy conditions and the transmission signals are measured in the far field. Therefore, it can be conceptualized as a 1D slab with a rough boundary surface. Under windy conditions, these bubbles form layers that are horizontally homogeneous and decay exponentially with depth under the influence of gravity. The effects of bubble populations on the process of blue-green light transmission at different wind speeds, wavelengths, angle of incidence and chlorophyll-a concentrations are studied for both air-incident and water-incident cases. The results of this study indicate that the transmission process of blue-green light is significantly influenced by bubbles under high wind-speed conditions.
Optical properties of metals: Infrared emissivity in the anomalous skin effect spectral region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Echániz, T.; Pérez-Sáez, R. B., E-mail: raul.perez@ehu.es; Tello, M. J.
When the penetration depth of an electromagnetic wave in a metal is similar to the mean free path of the conduction electrons, the Drude classical theory is no longer satisfied and the skin effect becomes anomalous. Physical parameters of this theory for twelve metals were calculated and analyzed. The theory predicts an emissivity peak ε{sub peak} at room temperature in the mid-infrared for smooth surface metals that moves towards larger wavelengths as temperature decreases. Furthermore, the theory states that ε{sub peak} increases with the emission angle but its position, λ{sub peak}, is constant. Copper directional emissivity measurements as well asmore » emissivity obtained using optical constants data confirm the predictions of the theory. Considering the relationship between the specularity parameter p and the sample roughness, it is concluded that p is not the simple parameter it is usually assumed to be. Quantitative comparison between experimental data and theoretical predictions shows that the specularity parameter can be equal to one for roughness values larger than those predicted. An exhaustive analysis of the experimental optical parameters shows signs of a reflectance broad peak in Cu, Al, Au, and Mo around the wavelength predicted by the theory for p = 1.« less
Li, Kui; Wang, Lei; Lv, Yanhong; Gao, Pengyu; Song, Tianxiao
2015-10-20
Getting a land vehicle's accurate position, azimuth and attitude rapidly is significant for vehicle based weapons' combat effectiveness. In this paper, a new approach to acquire vehicle's accurate position and orientation is proposed. It uses biaxial optical detection platform (BODP) to aim at and lock in no less than three pre-set cooperative targets, whose accurate positions are measured beforehand. Then, it calculates the vehicle's accurate position, azimuth and attitudes by the rough position and orientation provided by vehicle based navigation systems and no less than three couples of azimuth and pitch angles measured by BODP. The proposed approach does not depend on Global Navigation Satellite System (GNSS), thus it is autonomous and difficult to interfere. Meanwhile, it only needs a rough position and orientation as algorithm's iterative initial value, consequently, it does not have high performance requirement for Inertial Navigation System (INS), odometer and other vehicle based navigation systems, even in high precise applications. This paper described the system's working procedure, presented theoretical deviation of the algorithm, and then verified its effectiveness through simulation and vehicle experiments. The simulation and experimental results indicate that the proposed approach can achieve positioning and orientation accuracy of 0.2 m and 20″ respectively in less than 3 min.
Modeling of surface roughness effects on glaze ice accretion
NASA Technical Reports Server (NTRS)
Hansman, R. John, Jr.; Yamaguchi, Keiko; Berkowitz, Brian M.; Potapczuk, Mark
1990-01-01
A series of experimental investigations focused on studying the cause and effect of roughness on accreting glaze ice surfaces were conducted. Detailed microvideo observations were made of glaze ice accretions on 1 to 4 inch diameter cylinders in three icing wind tunnels (the Data Products of New England six inch test facility, the NASA Lewis Icing Research Tunnel, and the B. F. Goodrich Ice Protection Research Facility). Infrared thermal video recordings were made of accreting ice surfaces in the Goodrich facility. Distinct zones of surface water behavior were observed; a smooth wet zone in the stagnation region with a uniform water film; a rough zone where surface tension effects caused coalescence of surface water into stationary beads; a horn zone where roughness elements grow into horn shapes; a runback zone where surface water ran back as rivulets; and a dry zone where rime feathers formed. The location of the transition from the smooth to the rough zone was found to migrate with time towards the stagnation point. The behavior of the transition appeared to be controlled by boundary layer transition and bead formation mechanisms at the interface between the smooth and rough zones. Regions of wet ice growth and enhanced heat transfer were clearly visible in the infrared video recordings of glaze ice surfaces. A simple multi-zone modification to the current glaze ice accretion model was proposed to include spatial variability in surface roughness.
Random deposition of particles of different sizes.
Forgerini, F L; Figueiredo, W
2009-04-01
We study the surface growth generated by the random deposition of particles of different sizes. A model is proposed where the particles are aggregated on an initially flat surface, giving rise to a rough interface and a porous bulk. By using Monte Carlo simulations, a surface has grown by adding particles of different sizes, as well as identical particles on the substrate in (1+1) dimensions. In the case of deposition of particles of different sizes, they are selected from a Poisson distribution, where the particle sizes may vary by 1 order of magnitude. For the deposition of identical particles, only particles which are larger than one lattice parameter of the substrate are considered. We calculate the usual scaling exponents: the roughness, growth, and dynamic exponents alpha, beta, and z, respectively, as well as, the porosity in the bulk, determining the porosity as a function of the particle size. The results of our simulations show that the roughness evolves in time following three different behaviors. The roughness in the initial times behaves as in the random deposition model. At intermediate times, the surface roughness grows slowly and finally, at long times, it enters into the saturation regime. The bulk formed by depositing large particles reveals a porosity that increases very fast at the initial times and also reaches a saturation value. Excepting the case where particles have the size of one lattice spacing, we always find that the surface roughness and porosity reach limiting values at long times. Surprisingly, we find that the scaling exponents are the same as those predicted by the Villain-Lai-Das Sarma equation.
Excitation of Crossflow Instabilities in a Swept Wing Boundary Layer
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Choudhari, Meelan; Li, Fei; Streett, Craig L.; Chang, Chau-Lyan
2010-01-01
The problem of crossflow receptivity is considered in the context of a canonical 3D boundary layer (viz., the swept Hiemenz boundary layer) and a swept airfoil used recently in the SWIFT flight experiment performed at Texas A&M University. First, Hiemenz flow is used to analyze localized receptivity due to a spanwise periodic array of small amplitude roughness elements, with the goal of quantifying the effects of array size and location. Excitation of crossflow modes via nonlocalized but deterministic distribution of surface nonuniformity is also considered and contrasted with roughness induced acoustic excitation of Tollmien-Schlichting waves. Finally, roughness measurements on the SWIFT model are used to model the effects of random, spatially distributed roughness of sufficiently small amplitude with the eventual goal of enabling predictions of initial crossflow disturbance amplitudes as functions of surface roughness parameters.
Evaluation of Surface Fatigue Strength Based on Surface Temperature
NASA Astrophysics Data System (ADS)
Deng, Gang; Nakanishi, Tsutomu
Surface temperature is considered to be an integrated index that is dependent on not only the load and the dimensions at the contact point but also the sliding velocity, rolling velocity, surface roughness, and lubrication conditions. Therefore, the surface durability of rollers and gears can be evaluated more exactly and simply by the use of surface temperature rather than Hertzian stress. In this research, surface temperatures of rollers under different rolling and sliding conditions are measured using a thermocouple. The effects of load P, mean velocity Vm and sliding velocity Vs on surface temperature are clarified. An experimental formula, which expresses the linear relationship between surface temperature and the P0.86Vs1.31Vm-0.83 value, is used to determine surface temperature. By comparing calculated and measured temperature on the tooth surface of a gear, this formula is confirmed to be applicable for gear tooth surface temperature calculation.
Rubber friction on road surfaces: Experiment and theory for low sliding speeds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenz, B.; Persson, B. N. J.; Oh, Y. R.
We study rubber friction for tire tread compounds on asphalt road surfaces. The road surface topographies are measured using a stylus instrument and atomic force microscopy, and the surface roughness power spectra are calculated. The rubber viscoelastic modulus mastercurves are obtained from dynamic mechanical analysis measurements and the large-strain effective modulus is obtained from strain sweep data. The rubber friction is measured at different temperatures and sliding velocities, and is compared to the calculated data obtained using the Persson contact mechanics theory. We conclude that in addition to the viscoelastic deformations of the rubber surface by the road asperities, theremore » is an important contribution to the rubber friction from shear processes in the area of contact. The analysis shows that the latter contribution may arise from rubber molecules (or patches of rubber) undergoing bonding-stretching-debonding cycles as discussed in a classic paper by Schallamach.« less
Method of accurate thickness measurement of boron carbide coating on copper foil
Lacy, Jeffrey L.; Regmi, Murari
2017-11-07
A method is disclosed of measuring the thickness of a thin coating on a substrate comprising dissolving the coating and substrate in a reagent and using the post-dissolution concentration of the coating in the reagent to calculate an effective thickness of the coating. The preferred method includes measuring non-conducting films on flexible and rough substrates, but other kinds of thin films can be measure by matching a reliable film-substrate dissolution technique. One preferred method includes determining the thickness of Boron Carbide films deposited on copper foil. The preferred method uses a standard technique known as inductively coupled plasma optical emission spectroscopy (ICPOES) to measure boron concentration in a liquid sample prepared by dissolving boron carbide films and the Copper substrates, preferably using a chemical etch known as ceric ammonium nitrate (CAN). Measured boron concentration values can then be calculated.
NASA Astrophysics Data System (ADS)
Yongzhi, WANG; hui, WANG; Lixia, LIAO; Dongsen, LI
2017-02-01
In order to analyse the geological characteristics of salt rock and stability of salt caverns, rough three-dimensional (3D) models of salt rock stratum and the 3D models of salt caverns on study areas are built by 3D GIS spatial modeling technique. During implementing, multi-source data, such as basic geographic data, DEM, geological plane map, geological section map, engineering geological data, and sonar data are used. In this study, the 3D spatial analyzing and calculation methods, such as 3D GIS intersection detection method in three-dimensional space, Boolean operations between three-dimensional space entities, three-dimensional space grid discretization, are used to build 3D models on wall rock of salt caverns. Our methods can provide effective calculation models for numerical simulation and analysis of the creep characteristics of wall rock in salt caverns.
The importance of media roughness considerations for describing particle deposition in porous media
NASA Astrophysics Data System (ADS)
Jin, C.; Emelko, M.
2016-12-01
The morphology of media/collector surfaces (i.e., roughness) is one of the most important factors that has been recognized for decades; however, literature has been, for the most part, contradictory, non-mechanistic, and non-quantitative. A one-site kinetic model for attachment/detachment using a convection-diffusion model was used to evaluate particle deposition on collector surfaces in the packed beds. Rigorous controlled experiments addressing the impacts of surface roughness on particle deposition were conducted in parallel plate and packed bed systems; they demonstrated that a) surface roughness consistently influenced colloid deposition in a nonlinear, non-monotonic manner such that a critical roughness size associated with minimum particle deposition could be identified and b) collector surface roughness and background ionic strength concurrently influenced particle deposition. Excellent agreement between experimental data and numerical simulations was found when the most current knowledge representing hydrodynamic and interfacial forces associated with collector media roughness was represented. Although surface roughness also had a non-linear, non-monotonic impact on DLVO interaction energy at all separation distances, it was inadequate for describing and simulating particle deposition on surfaces with variable roughness. Notably, this work demonstrates that hydrodynamic effects can significantly alter particle deposition relative to expectations when only the DLVO force is considered. Moreover, the combined effects of hydrodynamics and interaction forces on particle deposition on rough, spherical media are not additive, but synergistic. Consideration of hydrodynamic contributions to particle deposition may help to explain discrepancies between model-based expectations and experimental outcomes and improve descriptions of particle deposition during physicochemical filtration in systems with non-smooth collector surfaces.
Contact mechanics for layered materials with randomly rough surfaces.
Persson, B N J
2012-03-07
The contact mechanics model of Persson is applied to layered materials. We calculate the M function, which relates the surface stress to the surface displacement, for a layered material, where the top layer (thickness d) has different elastic properties than the semi-infinite solid below. Numerical results for the contact area as a function of the magnification are presented for several cases. As an application, we calculate the fluid leak rate for laminated rubber seals.
A Simple Sensor Model for THUNDER Actuators
NASA Technical Reports Server (NTRS)
Campbell, Joel F.; Bryant, Robert G.
2009-01-01
A quasi-static (low frequency) model is developed for THUNDER actuators configured as displacement sensors based on a simple Raleigh-Ritz technique. This model is used to calculate charge as a function of displacement. Using this and the calculated capacitance, voltage vs. displacement and voltage vs. electrical load curves are generated and compared with measurements. It is shown this model gives acceptable results and is useful for determining rough estimates of sensor output for various loads, laminate configurations and thicknesses.
Surface roughness effects in elastohydrodynamic contacts
NASA Technical Reports Server (NTRS)
Tripp, J. H.; Hamrock, B. J.
1985-01-01
Surface roughness effects in full-film EHL contacts were studied. A flow factor modification to the Reynolds equation was applied to piezoviscous-elastic line contacts. Results for ensemble-averaged film shape, pressure distribution, and other mechanical quantities were obtained. Asperities elongated in the flow direction by a factor exceeding two decreased both film shape and pressure extrema at constant load; isotropic or transverse asperities increased these extrema. The largest effects are displayed by traction, which increased by over 5% for isotropic or transverse asperities and by slightly less for longitudinal roughness.
Maden, E Arat; Altun, C; Polat, G Guven; Basak, F
2018-03-01
The aim of this study was to evaluate the effect of fluoride, Xylitol, Probiotic, and Whitening toothpastes on the permanent teeth enamel roughness and microhardness. One hundred and twenty teeth were randomly divided into 2 groups, each group having 60 samples. G1: The group in which enamel roughness was examined (n = 60). G2: The group in which enamel microhardness was examined (n = 60). Then, these groups were randomly divided into 4 groups among themselves (n = 15). Each group was brushed using four different toothpastes for 1 week with a battery-powered toothbrush in the morning and evening for 2 min. Vicker's hardness tester was used to measure the changes in microhardness, and the profilometer was used to measure the changes in surface roughness. No statistically significant differences were found on surface roughness and microhardness values measured after tooth brushing process in group brushed with Colgate MaxFresh toothpaste (P > 0.01). Statistically significant decrease was observed on Vicker's hardness values measured after tooth brushing process in groups brushed with Ipana White Power Carbonate toothpaste, Xyliwhite Toothpaste Gel, and Periobiotic Probiotic Toothpaste (P < 0.01). Statistically significant increase was observed on surface roughness values in groups brushed with Ipana White Power Carbonate toothpaste, Xyliwhite Toothpaste Gel, Periobiotic Probiotic Toothpaste (P < 0.01). As a result, Colgate MaxFresh abrasive-free toothpaste with fluoride has no effect on permanent tooth enamel surface roughness and microhardness. Xyliwhite, Periobiotic, and Ipana White Power Carbonate-containing abrasive toothpastes led to changes negatively on permanent tooth enamel surface roughness and microhardness.
NASA Astrophysics Data System (ADS)
Sandbach, S. D.; Lane, S. N.; Hardy, R. J.; Amsler, M. L.; Ashworth, P. J.; Best, J. L.; Nicholas, A. P.; Orfeo, O.; Parsons, D. R.; Reesink, A. J. H.; Szupiany, R. N.
2012-12-01
Recent technological advances in remote sensing have enabled investigation of the morphodynamics and hydrodynamics of large rivers. However, measuring topography and flow in these very large rivers is time consuming and thus often constrains the spatial resolution and reach-length scales that can be monitored. Similar constraints exist for computational fluid dynamics (CFD) studies of large rivers, requiring maximization of mesh- or grid-cell dimensions and implying a reduction in the representation of bedform-roughness elements that are of the order of a model grid cell or less, even if they are represented in available topographic data. These "subgrid" elements must be parameterized, and this paper applies and considers the impact of roughness-length treatments that include the effect of bed roughness due to "unmeasured" topography. CFD predictions were found to be sensitive to the roughness-length specification. Model optimization was based on acoustic Doppler current profiler measurements and estimates of the water surface slope for a variety of roughness lengths. This proved difficult as the metrics used to assess optimal model performance diverged due to the effects of large bedforms that are not well parameterized in roughness-length treatments. However, the general spatial flow patterns are effectively predicted by the model. Changes in roughness length were shown to have a major impact upon flow routing at the channel scale. The results also indicate an absence of secondary flow circulation cells in the reached studied, and suggest simpler two-dimensional models may have great utility in the investigation of flow within large rivers.
Investigation of secondary flows in turbulent pipe flows with three-dimensional sinusoidal walls
NASA Astrophysics Data System (ADS)
Chan, Leon; MacDonald, Michael; Chung, Daniel; Hutchins, Nicholas; Ooi, Andrew
2017-11-01
The occurrence of secondary flows is systematically investigated via Direct Numerical Simulations (DNS) of turbulent flow in a rough wall pipe at friction Reynolds numbers of 540. In this study, the peak-to-trough height of the roughness elements, which consist of three-dimensional sinusoidal roughness, is fixed at 120 viscous units while the wavelength of the roughness elements is varied. The solidity or effective slope (ES) of the roughness ranges from the sparse regime (ES = 0.18) to the closely packed roughness/dense regime (ES = 0.72). The time-independent dispersive stresses, which arise due to the stationary features of the flow, are analysed and are found to increase with increasing roughness wavelength. These dispersive stresses are related to the occurrence of secondary flows and are maximum within the roughness canopy. Above the crest of the roughness elements, the dispersive stresses reduce to zero at wall-normal heights greater than half of the roughness wavelength. This study has found that the size and wall-normal extent of the secondary flows scales with the roughness wavelength and can reach wall-normal heights of almost half of the pipe radius.
NASA Technical Reports Server (NTRS)
Braun, M. J.; Adams, M. L.; Mullen, R. L.
1985-01-01
A computer algorithm for simulation of hydrostatic journal bearing pressure-flow behavior has been generated. The effects taken into account are inertia, cavitation, variable properties (isothermal bearing) and roughness. The program has been specifically tailored for simulation of the hybrid bearing of the cryogenic turbopumps of the main shuttle engine. Due to the high pressure (515 psia) of the supply line no cavitation has been found. The influence of the roughness effects have been found to become important only when the surface-roughness order of magnitude is comparable with that of the bearing clearance itself. Pocket edge inertia and variable properties have been found to have quite an important influence upon the pocket pressure, field pressure distribution and lubricant mass flow.
Świetlicka, Izabela; Muszyński, Siemowit; Tomaszewska, Ewa; Dobrowolski, Piotr; Kwaśniewska, Anita; Świetlicki, Michał; Skic, Anna; Gołacki, Krzysztof
2016-10-01
The aim of this research was to check the effect of the prenatally administered β-hydroxy β-methylbutyrate (HMB) on the development of enamel surface of the spiny mice offspring. The spiny mice dams were randomly assigned into three groups: control group (not supplemented with HMB) and two experimental groups in which powdered HMB was given at the daily dosage of 0.2g/kg of body weight (group I) and 0.02g/kg of body weight (group II) during the last period of gestation. Newborn pups were euthanized by CO 2 inhalation. The morphology of incisor teeth was analysed using atomic force microscopy (AFM) in semi-contact mode in the height, magnitude and phase domains. Height images became a basis for determination of surface roughness parameters. Conducted study indicated that maternal HMB administration markedly influences enamel development. Enamel of offspring's teeth in both experimental groups was characterized by significantly smaller values of indices describing surface roughness and profile. HMB supplementation influenced the calculated parameters regardless of the diet type and offspring sex, however higher dose of HMB caused stronger changes in enamel surface's physical properties and could be observed in higher intensity in the male group. HMB administration caused reduction in the irregularities of enamel surface, thereby possibly reducing the probability of bacteria adhesion and caries development. These observations may serve to improve nutrition and supplementation of animals and could be a lead for further research. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Xiangzhen; Qi, Xiao; Han, Xiang'e.
2015-10-01
The characteristics of laser scattering from sea surface have a great influence on application performance, from submarine communication, laser detection to laser diffusion communication. Foams will appear when the wind speed exceeds a certain value, so the foam can be seen everywhere in the upper layer of the ocean. Aiming at the volume-surface composite model of rough sea surface with foam layer driven by wind, and the similarities and differences of scattering characteristics between blue-green laser and microwave, an improved two-scale method for blue-green laser to calculate the scattering coefficient is presented in this paper. Based on the improved two-scale rough surface scattering theory, MIE theory and VRT( vector radiative transfer ) theory, the relations between the foam coverage of the sea surface and wind speed and air-sea temperature difference are analyzed. Aiming at the Gauss sea surface in blue-green laser, the dependence of back- and bistatie-scattering coefficient on the incident and azimuth angle, the coverage of foams, as well as the wind speed are discussed in detail. The results of numerical simulations are compared and analyzed in this paper. It can be concluded that the foam layer has a considerable effect on the laser scattering with the increase of wind speed, especially for a large incident angle. Theoretical analysis and numerical simulations show that the improved two-scale method is reasonable and efficient.
Bruce, Neil C
2008-08-01
This paper presents a new formulation of the 3D Kirchhoff approximation that allows calculation of the scattering of vector waves from 2D rough surfaces containing structures with infinite slopes. This type of surface has applications, for example, in remote sensing and in testing or imaging of printed circuits. Some preliminary calculations for rectangular-shaped grooves in a plane are presented for the 2D surface method and are compared with the equivalent 1D surface calculations for the Kirchhoff and integral equation methods. Good agreement is found between the methods.
Investigation of wall-bounded turbulence over regularly distributed roughness
NASA Astrophysics Data System (ADS)
Placidi, Marco; Ganapathisubramani, Bharathram
2012-11-01
The effects of regularly distributed roughness elements on the structure of a turbulent boundary layer are examined by performing a series of Planar (high resolution l+ ~ 30) and Stereoscopic Particle Image Velocimetry (PIV) experiments in a wind tunnel. An adequate description of how to best characterise a rough wall, especially one where the density of roughness elements is sparse, is yet to be developed. In this study, rough surfaces consisting of regularly and uniformly distributed LEGO® blocks are used. Twelve different patterns are adopted in order to systematically examine the effects of frontal solidity (λf, frontal area of the roughness elements per unit wall-parallel area) and plan solidity (λp, plan area of roughness elements per unit wall-parallel area), on the turbulence structure. The Karman number, Reτ , is approximately 4000 across the different cases. Spanwise 3D vector fields at two different wall-normal locations (top of the canopy and within the log-region) are also compared to examine the spanwise homogeneity of the flow across different surfaces. In the talk, a detailed analysis of mean and rms velocity profiles, Reynolds stresses, and quadrant decomposition for the different patterns will be presented.
Wall roughness effect on gas dynamics in supersonic ejector
NASA Astrophysics Data System (ADS)
Aronson, K. E.; Brezgin, D. V.
2016-10-01
The paper presents the numerical simulations results in order to figure out the influence of the wall surface roughness on gas-dynamic processes inside the supersonic ejector. For these purposes two commercial CFD-solvers (Star-CCM+ and Fluent) were used. A detailed comparative study of the built-in tools and approaches in both CFD-packages for evaluation of surface roughness effects on the logarithmic law velocity distribution inside the boundary layer is carried out. Influence of ejector surface roughness is compared with the influence of the backpressure. It is found out that either increasing the backpressure behind the ejector or increasing the surface roughness height, the appearance section of a pressure shock is displaced upstream (closer to the primary nozzle). The numerical simulations results of the ejector with rough walls in both CFD-solvers are well quantitative agreed between each other in terms of the mass flow rates and are well qualitative consistent in terms of the local flow parameters distribution. It is found out that in case of exceeding the "critical roughness height" for the given geometry and boundary conditions, the ejector switches to the "off-design" mode and its performance is significantly reduced.
Effects of roughness and compressibility of flooring on cow locomotion.
Rushen, J; de Passillé, A M
2006-08-01
We examined the effects of roughness and degree of compressibility of flooring on the locomotion of dairy cows. We observed 16 cows walking down specially constructed walkways with materials that differed in surface roughness and degree of compressibility. Use of a commercially available soft rubber flooring material decreased slipping, number of strides, and time to traverse the corridor. These effects were most apparent at difficult sections of the corridor, such as at the start, at a right-angle turn, and across a gutter. Covering the walkway with a thin layer of slurry increased frequency of slipping, number of strides, and time taken to traverse the walkway. Effects of adding slurry were not overcome by increasing surface roughness or compressibility. Placing more compressible materials under a slip-resistant material reduced the time and number of steps needed to traverse the corridor but did not reduce slips, and the effects on cow locomotion varied nonlinearly with the degree of compressibility of the floor. Use of commercially available rubber floors improved cow locomotion compared with concrete floors. However, standard engineering measures of the floor properties may not predict effects of the floor on cow behavior well. Increasing compressibility of the flooring on which cows walk, independently of the roughness of the surface, can improve cow locomotion.
Characterizing low-Z erosion and deposition in the DIII-D divertor using aluminum
Chrobak, Chris P.; Doerner, R. P.; Stangeby, Peter C.; ...
2017-01-28
Here, we present measurements and modeling of aluminum erosion and redeposition experiments in separate helium and deuterium low power, low density L-mode plasmas at the outer divertor strike point of DIII-D to provide a low-Z material benchmark dataset for tokamak erosion-deposition modeling codes. Coatings of Al ~100nm thick were applied to ideal (smooth) and realistic (rough) surfaces and exposed to repeat plasma discharges using the DiMES probe. Redeposition and re-erosion in all cases was primarily in the downstream toroidal field direction, evident from both in-situ spectroscopic and post-mortem non spectroscopic measurements. The gross Al erosion yield estimated from both Hemore » and D plasma exposures was ~40-70% of the expected erosion yield based on theoretical physical sputtering yields. However, the multi-step redeposition and re-erosion process, and hence the measured net erosion yield and material migration, was found to be influenced by the surface roughness and/or porosity. On rough surfaces, the fraction of the eroded Al coating found redeposited outside the original coating area was 25x higher than on smooth surfaces. The amount of Al found redeposited on the rough substrate was in fact proportional to the net eroded Al, suggesting an accumulation of deposited Al in surface pores and other areas shadowed from re-erosion. In order to determine the fraction and distribution of eroded Al returning to the surface, a simple model for erosion and redeposition was developed and fitted to the measurements. The model presented here reproduces many of the observed results in these experiments by using theoretically calculated sputtering yields, calculating surface composition changes and erosion rates in time, assuming a spatial distribution function for redepositing atoms, and accounting for deposit trapping in pores. The results of the model fits reveal that total redeposition fraction increases with higher plasma temperature (~30% for 15-18eV plasmas, and ~45% for 25-30eV plasmas), and that 50% of the atoms redepositing on rough surfaces accumulated in shadowed areas.« less
Tsukanaka, Masako; Fujibayashi, Shunsuke; Takemoto, Mitsuru; Matsushita, Tomiharu; Kokubo, Tadashi; Nakamura, Takashi; Sasaki, Kiyoyuki; Matsuda, Shuichi
2016-01-01
Selective laser melting (SLM) technology is useful for the fabrication of porous titanium implants with complex shapes and structures. The materials fabricated by SLM characteristically have a very rough surface (average surface roughness, Ra=24.58 µm). In this study, we evaluated morphologically and biochemically the specific effects of this very rough surface and the additional effects of a bioactive treatment on osteoblast proliferation and differentiation. Flat-rolled titanium materials (Ra=1.02 µm) were used as the controls. On the treated materials fabricated by SLM, we observed enhanced osteoblast differentiation compared with the flat-rolled materials and the untreated materials fabricated by SLM. No significant differences were observed between the flat-rolled materials and the untreated materials fabricated by SLM in their effects on osteoblast differentiation. We concluded that the very rough surface fabricated by SLM had to undergo a bioactive treatment to obtain a positive effect on osteoblast differentiation.
Improvement in storage stability of infrared dried rough rice
USDA-ARS?s Scientific Manuscript database
The objective of this study was to develop infrared drying (IRD) method to improve the stability of physicochemical properties of rough rice during storage. The effect of IRD on the physicochemical properties of stored rough rice was compared with that of hot air drying (HAD) and ambient air drying ...
Drying characteristics and quality of rough rice under infrared radiation heating
USDA-ARS?s Scientific Manuscript database
Infrared (IR) radiation heating could provide high heating rate and rapid moisture removal for rough rice drying. The objective of this research was to investigate the effect of the drying bed thickness on drying characteristics and quality of rough rice subjected to IR heating. Samples of freshly ...
Specular Reflection from Rough Surfaces Revisited
ERIC Educational Resources Information Center
Yasuda, Kensei; Kim, Alvin; Cho, Hayley; Timofejev, Timofej; Walecki, Wojciech J.; Klep, James; Edelson, Amy S.; Walecki, Abigail S.; Walecki, Eve S.; Walecki, Peter S.
2016-01-01
In his beautiful paper, Hasan Fakhruddin reported observations of mirror-like reflections in the rough surface of a ground glass plate. Similar effects have been recently employed for metrology of the roughness of optical diffusers used in modern light emitting device illumination systems. We report the observations of specular reflection in…
NASA Astrophysics Data System (ADS)
Leon, J. X.; Baldock, T.; Callaghan, D. P.; Hoegh-guldberg, O.; Mumby, P.; Phinn, S. R.; Roelfsema, C. M.; Saunders, M. I.
2013-12-01
Coral reef hydrodynamics operate at several and overlapping spatial-temporal scales. Waves have the most important forcing function on shallow (< 5 m) reefs as they drive most ecological and biogeochemical processes by exerting direct physical stress, directly mixing water (temperature and nutrients) and transporting sediments, nutrients and plankton. Reef flats are very effective at dissipating wave energy and providing an important ecosystem service by protecting highly valued shorelines. The effectiveness of reef flats to dissipate wave energy is related to the extreme hydraulic roughness of the benthos and substrate composition. Hydraulic roughness is usually obtained empirically from frictional-dissipation calculations, as detailed field measurements of bottom roughness (e.g. chain-method or profile gauges) is a very labour and time-consuming task. In this study we measured the impact of coral structures on wave directional spreading. Field data was collected during October 2012 across a reef flat on Lizard Island, northern Great Barrier Reef. Wave surface levels were measured using an array of self-logging pressure sensors. A rapid in situ close-range photogrammetric method was used to create a high-resolution (0.5 cm) image mosaic and digital elevation model. Individual coral heads were extracted from these datasets using geo-morphometric and object-based image analysis techniques. Wave propagation was modelled using a modified version of the SWAN model which includes the measured coral structures in 2m by 1m cells across the reef. The approach followed a cylinder drag approach, neglecting skin friction and inertial components. Testing against field data included bed skin friction. Our results show, for the first time, how the variability of the reef benthos structures affects wave dissipation across a shallow reef flat. This has important implications globally for coral reefs, due to the large extent of their area occupied by reef flats, particularly, as global-scale degradation in coral reef health is causing a lowering of reef carbonate production that might lead to a decrease in reef structure and roughness.
DOT National Transportation Integrated Search
2012-01-01
The New Mexico Department of Transportation (NMDOT) has a program to collect distress data through visual surveys and uses this information at the network level, together with roughness and rutting data, to calculate its pavement serviceability index...
Tantalum films with well-controlled roughness grown by oblique incidence deposition
NASA Astrophysics Data System (ADS)
Rechendorff, K.; Hovgaard, M. B.; Chevallier, J.; Foss, M.; Besenbacher, F.
2005-08-01
We have investigated how tantalum films with well-controlled surface roughness can be grown by e-gun evaporation with oblique angle of incidence between the evaporation flux and the surface normal. Due to a more pronounced shadowing effect the root-mean-square roughness increases from about 2 to 33 nm as grazing incidence is approached. The exponent, characterizing the scaling of the root-mean-square roughness with length scale (α), varies from 0.75 to 0.93, and a clear correlation is found between the angle of incidence and root-mean-square roughness.
Walsh, W R; Svehla, M J; Russell, J; Saito, M; Nakashima, T; Gillies, R M; Bruce, W; Hori, R
2004-09-01
Implant surface roughness is an important parameter governing the overall mechanical properties at the implant-cement interface. This study investigated the influence of surface roughness using polymethylmethcrylate (PMMA) and a Bisphenol-a-glycidylmethacyrlate resin-hydroxyapatite cement (CAP). Mechanical fixation at the implant-cement interface was evaluated in vitro using static shear and fatigue loading with cobalt chrome alloy (CoCr) dowels with different surface roughness preparations. Increasing surface roughness improved the mechanical properties at the implant-cement interface for both types of cement. CAP cement fixation was superior to PMMA under static and dynamic loading.
NASA Technical Reports Server (NTRS)
Creel, T. R., Jr.; Beckwith, I. E.; Chen, F. J.
1985-01-01
An investigation at Mach 3.5 into the effects of nozzle wall roughness on free stream pressure fluctuations and cone transition Reynolds numbers was conducted in the pilot low disturbance tunnel at the Langley Research Center. Nozzle wall roughness caused by either particle deposits or imperfections in surface finish increased free stream noise levels and reduced the transition Reynolds numbers on a cone mounted in the test rhombus.
NASA Astrophysics Data System (ADS)
Umbu Kondi Maliwemu, Erich; Malau, Viktor; Iswanto, Priyo Tri
2018-01-01
Shot peening is a mechanical surface treatment with a beneficial effect to generate compressive residual stress caused by plastic deformation on the surface of material. This plastic deformation can improve the surface characteristics of metallic materials, such as modification of surface morphology, surface roughness, and surface hardness. The objective of this study is to investigate the effect of shot peening in different shot distance and shot angle on surface morphology, surface roughness, and surface hardness of 316L biomaterial. Shot distance was varied at 6, 8, 10, and 12 cm and shot angle at 30, 60, and 90°, working pressure at 7 kg/cm2, shot duration for 20 minutes, and using steel balls S-170 with diameter of 0.6 mm. The results present that the shot distance and shot angle of shot peening give the significant effect to improve the surface morphology, surface roughness, and surface hardness of 316 L biomaterial. Shot peening can increase the surface roughness by the increasing of shot distance and by the decreasing of shot angle. The nearest shot distance (6 cm) and the largest shot angle (90°) give the best results on the grain refinement with the surface roughness of 1.04 μm and surface hardness of 534 kg/mm2.
Jin, Chao; Glawdel, Tomasz; Ren, Carolyn L.; Emelko, Monica B.
2015-01-01
Deposition of colloidal- and nano-scale particles on surfaces is critical to numerous natural and engineered environmental, health, and industrial applications ranging from drinking water treatment to semi-conductor manufacturing. Nano-scale surface roughness-induced hydrodynamic impacts on particle deposition were evaluated in the absence of an energy barrier to deposition in a parallel plate system. A non-linear, non-monotonic relationship between deposition surface roughness and particle deposition flux was observed and a critical roughness size associated with minimum deposition flux or “sag effect” was identified. This effect was more significant for nanoparticles (<1 μm) than for colloids and was numerically simulated using a Convective-Diffusion model and experimentally validated. Inclusion of flow field and hydrodynamic retardation effects explained particle deposition profiles better than when only the Derjaguin-Landau-Verwey-Overbeek (DLVO) force was considered. This work provides 1) a first comprehensive framework for describing the hydrodynamic impacts of nano-scale surface roughness on particle deposition by unifying hydrodynamic forces (using the most current approaches for describing flow field profiles and hydrodynamic retardation effects) with appropriately modified expressions for DLVO interaction energies, and gravity forces in one model and 2) a foundation for further describing the impacts of more complicated scales of deposition surface roughness on particle deposition. PMID:26658159
Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitrov, D. A.; Bell, G. I.; Smedley, J.
Here, detailed measurements of momentum distributions of emitted electrons have allowed the investigation of the thermal limit of the transverse emittance from metal photocathodes. Furthermore, recent developments in material design and growth have resulted in photocathodes that can deliver high quantum efficiency and are sufficiently robust to use in high electric field gradient photoinjectors and free electron lasers. The growth process usually produces photoemissive material layers with rough surface profiles that lead to transverse accelerating fields and possible work function variations, resulting in emittance growth. To better understand the effects of temperature, density of states, and surface roughness on themore » properties of emitted electrons, we have developed realistic three-dimensional models for photocathode materials with grated surface structures. They include general modeling of electron excitation due to photon absorption, charge transport, and emission from flat and rough metallic surfaces. The models also include image charge and field enhancement effects. We report results from simulations with flat and rough surfaces to investigate how electron scattering, controlled roughness, work function variation, and field enhancement affect emission properties. Comparison of simulation results with measurements of the quantum yield and transverse emittance from flat Sb emission surfaces shows the importance of including efficient modeling of photon absorption, temperature effects, and the material density of states to achieve agreement with the experimental data.« less
Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes
Dimitrov, D. A.; Bell, G. I.; Smedley, J.; ...
2017-10-26
Here, detailed measurements of momentum distributions of emitted electrons have allowed the investigation of the thermal limit of the transverse emittance from metal photocathodes. Furthermore, recent developments in material design and growth have resulted in photocathodes that can deliver high quantum efficiency and are sufficiently robust to use in high electric field gradient photoinjectors and free electron lasers. The growth process usually produces photoemissive material layers with rough surface profiles that lead to transverse accelerating fields and possible work function variations, resulting in emittance growth. To better understand the effects of temperature, density of states, and surface roughness on themore » properties of emitted electrons, we have developed realistic three-dimensional models for photocathode materials with grated surface structures. They include general modeling of electron excitation due to photon absorption, charge transport, and emission from flat and rough metallic surfaces. The models also include image charge and field enhancement effects. We report results from simulations with flat and rough surfaces to investigate how electron scattering, controlled roughness, work function variation, and field enhancement affect emission properties. Comparison of simulation results with measurements of the quantum yield and transverse emittance from flat Sb emission surfaces shows the importance of including efficient modeling of photon absorption, temperature effects, and the material density of states to achieve agreement with the experimental data.« less
NASA Astrophysics Data System (ADS)
Jin, Chao; Glawdel, Tomasz; Ren, Carolyn L.; Emelko, Monica B.
2015-12-01
Deposition of colloidal- and nano-scale particles on surfaces is critical to numerous natural and engineered environmental, health, and industrial applications ranging from drinking water treatment to semi-conductor manufacturing. Nano-scale surface roughness-induced hydrodynamic impacts on particle deposition were evaluated in the absence of an energy barrier to deposition in a parallel plate system. A non-linear, non-monotonic relationship between deposition surface roughness and particle deposition flux was observed and a critical roughness size associated with minimum deposition flux or “sag effect” was identified. This effect was more significant for nanoparticles (<1 μm) than for colloids and was numerically simulated using a Convective-Diffusion model and experimentally validated. Inclusion of flow field and hydrodynamic retardation effects explained particle deposition profiles better than when only the Derjaguin-Landau-Verwey-Overbeek (DLVO) force was considered. This work provides 1) a first comprehensive framework for describing the hydrodynamic impacts of nano-scale surface roughness on particle deposition by unifying hydrodynamic forces (using the most current approaches for describing flow field profiles and hydrodynamic retardation effects) with appropriately modified expressions for DLVO interaction energies, and gravity forces in one model and 2) a foundation for further describing the impacts of more complicated scales of deposition surface roughness on particle deposition.
Calculations of the electrostatic potential adjacent to model phospholipid bilayers.
Peitzsch, R M; Eisenberg, M; Sharp, K A; McLaughlin, S
1995-03-01
We used the nonlinear Poisson-Boltzmann equation to calculate electrostatic potentials in the aqueous phase adjacent to model phospholipid bilayers containing mixtures of zwitterionic lipids (phosphatidylcholine) and acidic lipids (phosphatidylserine or phosphatidylglycerol). The aqueous phase (relative permittivity, epsilon r = 80) contains 0.1 M monovalent salt. When the bilayers contain < 11% acidic lipid, the -25 mV equipotential surfaces are discrete domes centered over the negatively charged lipids and are approximately twice the value calculated using Debye-Hückel theory. When the bilayers contain > 25% acidic lipid, the -25 mV equipotential profiles are essentially flat and agree well with the values calculated using Gouy-Chapman theory. When the bilayers contain 100% acidic lipid, all of the equipotential surfaces are flat and agree with Gouy-Chapman predictions (including the -100 mV surface, which is located only 1 A from the outermost atoms). Even our model bilayers are not simple systems: the charge on each lipid is distributed over several atoms, these partial charges are non-coplanar, there is a 2 A ion-exclusion region (epsilon r = 80) adjacent to the polar headgroups, and the molecular surface is rough. We investigated the effect of these four factors using smooth (or bumpy) epsilon r = 2 slabs with embedded point charges: these factors had only minor effects on the potential in the aqueous phase.
Calculations of the electrostatic potential adjacent to model phospholipid bilayers.
Peitzsch, R M; Eisenberg, M; Sharp, K A; McLaughlin, S
1995-01-01
We used the nonlinear Poisson-Boltzmann equation to calculate electrostatic potentials in the aqueous phase adjacent to model phospholipid bilayers containing mixtures of zwitterionic lipids (phosphatidylcholine) and acidic lipids (phosphatidylserine or phosphatidylglycerol). The aqueous phase (relative permittivity, epsilon r = 80) contains 0.1 M monovalent salt. When the bilayers contain < 11% acidic lipid, the -25 mV equipotential surfaces are discrete domes centered over the negatively charged lipids and are approximately twice the value calculated using Debye-Hückel theory. When the bilayers contain > 25% acidic lipid, the -25 mV equipotential profiles are essentially flat and agree well with the values calculated using Gouy-Chapman theory. When the bilayers contain 100% acidic lipid, all of the equipotential surfaces are flat and agree with Gouy-Chapman predictions (including the -100 mV surface, which is located only 1 A from the outermost atoms). Even our model bilayers are not simple systems: the charge on each lipid is distributed over several atoms, these partial charges are non-coplanar, there is a 2 A ion-exclusion region (epsilon r = 80) adjacent to the polar headgroups, and the molecular surface is rough. We investigated the effect of these four factors using smooth (or bumpy) epsilon r = 2 slabs with embedded point charges: these factors had only minor effects on the potential in the aqueous phase. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 PMID:7756540
Effect of surface roughness on substrate-tuned gold nanoparticle gap plasmon resonances.
Lumdee, Chatdanai; Yun, Binfeng; Kik, Pieter G
2015-03-07
The effect of nanoscale surface roughness on the gap plasmon resonance of gold nanoparticles on thermally evaporated gold films is investigated experimentally and numerically. Single-particle scattering spectra obtained from 80 nm diameter gold particles on a gold film show significant particle-to-particle variation of the peak scattering wavelength of ±28 nm. The experimental results are compared with numerical simulations of gold nanoparticles positioned on representative rough gold surfaces, modeled based on atomic force microscopy measurements. The predicted spectral variation and average resonance wavelength show good agreement with the measured data. The study shows that nanometer scale surface roughness can significantly affect the performance of gap plasmon-based devices.
NASA Astrophysics Data System (ADS)
Li, Bo; Liu, Richeng; Jiang, Yujing
2016-07-01
Fluid flow tests were conducted on two crossed fracture models for which the geometries of fracture segments and intersections were measured by utilizing a visualization technique using a CCD (charged coupled device) camera. Numerical simulations by solving the Navier-Stokes equations were performed to characterize the fluid flow at fracture intersections. The roles of hydraulic gradient, surface roughness, intersecting angle, and scale effect in the nonlinear fluid flow behavior through single fracture intersections were investigated. The simulation results of flow rate agreed well with the experimental results for both models. The experimental and simulation results showed that with the increment of the hydraulic gradient, the ratio of the flow rate to the hydraulic gradient, Q/J, decreases and the relative difference of Q/J between the calculation results employing the Navier-Stokes equations and the cubic law, δ, increases. When taking into account the fracture surface roughness quantified by Z2 ranging 0-0.42 for J = 1, the value of δ would increase by 0-10.3%. The influences of the intersecting angle on the normalized flow rate that represents the ratio of the flow rate in a segment to the total flow rate, Ra, and the ratio of the hydraulic aperture to the mechanical aperture, e/E, are negligible when J < 10-3, whereas their values change significantly when J > 10-2. Based on the regression analysis on simulation results, a mathematical expression was proposed to quantify e/E, involving variables of J and Rr, where Rr is the radius of truncating circles centered at an intersection. For E/Rr > 10-2, e/E varies significantly and the scale of model has large impacts on the nonlinear flow behavior through intersections, while for E/Rr < 10-3, the scale effect is negligibly small. Finally, a necessary condition to apply the cubic law to fluid flow through fracture intersections is suggested as J < 10-3, E/Rr < 10-3, and Z2 = 0.
NASA Technical Reports Server (NTRS)
Hollis, Brian R.
2017-01-01
An experimental investigation of the effects of distributed surface roughness on boundary-layer transition and turbulent heating has been conducted. Hypersonic wind tunnel testing was performed using hemispherical models with surface roughness patterns simulating those produced by heat shield ablation. Global aeroheating and transition onset data were obtained using phosphor thermography at Mach 6 and Mach 10 over a range of roughness heights and free stream Reynolds numbers sufficient to produce laminar, transitional and turbulent flow. Upstream movement of the transition onset location and increasing heating augmentation over predicted smooth-wall levels were observed with both increasing roughness heights and increasing free stream Reynolds numbers. The experimental heating data are presented herein, as are comparisons to smooth-wall heat transfer distributions from computational flow-field simulations. The transition onset data are also tabulated, and correlations of these data are presented.
NASA Astrophysics Data System (ADS)
Conti, J.; De Coninck, J.; Ghazzal, M. N.
2018-04-01
The dual-scale size of the silica nanoparticles is commonly aimed at producing dual-scale roughness, also called hierarchical roughness (Lotus effect). In this study, we describe a method to build a stable water-repellant coating with controlled roughness. Hybrid silica nanoparticles are self-assembled over a polymeric surface by alternating consecutive layers. Each one uses homogenously distributed silica nanoparticles of a particular size. The effect of the nanoparticle size of the first layer on the final roughness of the coating is studied. The first layer enables to adjust the distance between the silica nanoparticles of the upper layer, leading to a tuneable and controlled final roughness. An optimal size nanoparticle has been found for higher water-repellency. Furthermore, the stability of the coating on polymeric surface (Polycarbonate substrate) is ensured by photopolymerization of hybridized silica nanoparticles using Vinyl functional groups.
Surface roughness model based on force sensors for the prediction of the tool wear.
de Agustina, Beatriz; Rubio, Eva María; Sebastián, Miguel Ángel
2014-04-04
In this study, a methodology has been developed with the objective of evaluating the surface roughness obtained during turning processes by measuring the signals detected by a force sensor under the same cutting conditions. In this way, the surface quality achieved along the process is correlated to several parameters of the cutting forces (thrust forces, feed forces and cutting forces), so the effect that the tool wear causes on the surface roughness is evaluated. In a first step, the best cutting conditions (cutting parameters and radius of tool) for a certain quality surface requirement were found for pieces of UNS A97075. Next, with this selection a model of surface roughness based on the cutting forces was developed for different states of wear that simulate the behaviour of the tool throughout its life. The validation of this model reveals that it was effective for approximately 70% of the surface roughness values obtained.
Surface roughness effects on bidirectional reflectance
NASA Technical Reports Server (NTRS)
Smith, T. F.; Hering, R. G.
1972-01-01
An experimental study of surface roughness effects on bidirectional reflectance of metallic surfaces is presented. A facility capable of irradiating a sample from normal to grazing incidence and recording plane of incidence bidirectional reflectance measurements was developed. Samples consisting of glass, aluminum alloy, and stainless steel materials were selected for examination. Samples were roughened using standard grinding techniques and coated with a radiatively opaque layer of pure aluminum. Mechanical surface roughness parameters, rms heights and rms slopes, evaluated from digitized surface profile measurements are less than 1.0 micrometers and 0.28, respectively. Rough surface specular, bidirectional, and directional reflectance measurements for selected values of polar angle of incidence and wavelength of incident energy within the spectral range of 1 to 14 micrometers are reported. The Beckmann bidirectional reflectance model is compared with reflectance measurements to establish its usefulness in describing the magnitude and spatial distribution of energy reflected from rough surfaces.
Dede, Doğu Ömür; Şahin, Onur; Koroglu, Aysegül; Yilmaz, Burak
2016-07-01
The effect of sealant agents on the surface roughness and color stability of nanohybrid composite resins is unknown. The purpose of this in vitro study was to evaluate the effect of sealant agents on the surface roughness and color stability of 4 nanohybrid composite resin materials. Forty disks (10×2 mm) were fabricated for each nanohybrid composite resin material (Z-550, Tetric EvoCeram, Clearfill Majesty, Ice) (N=160) and divided into 4 surface treatment groups: 1 conventional polishing (control) and 3 different sealant agent (Palaseal, Optiglaze, BisCover) coupling groups (n=10). The specimens were thermocycled, and surface roughness (Ra) values were obtained with a profilometer. Scanning electron microscope images were also recorded. CIELab color parameters of each specimen were measured with a spectrophotometer before and after 7 days of storage in a coffee solution. Color differences were calculated by the CIEDE 2000 (ΔE00) formula. The data were statistically analyzed by 2-way ANOVA and by the Tukey HSD test (α=.05). The surface treatment technique significantly affected the Ra values of the composite resins tested (P<.001). The interaction between the surface treatment technique and composite resin material was also significant for ΔE00 values (P<.05). Within the composite resin groups, significant decreases in Ra were observed only for the Palaseal agent coupled composite resin groups (except Ice) compared with the control groups (P<.05). Scanning electron microscope images revealed rougher surfaces with conventionally polished groups compared with test groups. Conventionally polished groups had the highest ΔE00 (3.09 to 3.49) values for each composite resin group, except for BisCover applied Clearfill Majesty (P<.05). Within the composite resin groups, significant differences were observed between the color change seen with BisCover and other sealants for Clearfill Majesty composite resin (P<.05). Using Palaseal agent on all tested composite resins except for Ice produced smoother surfaces. All surface sealant agents provided less discoloration of nanohybrid composite resins after coffee staining compared with conventional polishing except for BisCover applied Clearfill Majesty composite resin. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Effect of Blade-surface Finish on Performance of a Single-stage Axial-flow Compressor
NASA Technical Reports Server (NTRS)
Moses, Jason J; Serovy, George, K
1951-01-01
A set of modified NACA 5509-34 rotor and stator blades was investigated with rough-machine, hand-filed, and highly polished surface finishes over a range of weight flows at six equivalent tip speeds from 672 to 1092 feet per second to determine the effect of blade-surface finish on the performance of a single-stage axial-flow compressor. Surface-finish effects decreased with increasing compressor speed and with decreasing flow at a given speed. In general, finishing blade surfaces below the roughness that may be considered aerodynamically smooth on the basis of an admissible-roughness formula will have no effect on compressor performance.
Deflection and Flexural Strength Effects on the Roughness of Aesthetic-Coated Orthodontic Wires.
Albuquerque, Cibele Gonçalves de; Correr, Américo Bortolazzo; Venezian, Giovana Cherubini; Santamaria, Milton; Tubel, Carlos Alberto; Vedovello, Silvia Amélia Scudeler
2017-01-01
The aim was to evaluate the flexural strength and the effects of deflection on the surface roughness of esthetic orthodontic wires. The sample consisted of 70 archwire 0.014-inch: polytetrafluorethylene (PTFE)-coated Nickel-Titanium (Niti) archwires (Titanol Cosmetic-TC, Flexy Super Elastic Esthetic-FSE, esthetic Nickel Titanium Wire-ANT); epoxy resin-coated Niti archwires (Spectra-S, Niticosmetic-TEC); gold and rhodium coated Niti (Sentalloy-STC) and a control group (superelastic Niti (Nitinol-NS). The initial roughness was evaluated with a rugosimeter. After that, the wires were submitted to flexural test in an universal testing machine. Each wire was deflected up to 2 mm at a speed of 1 mm/min. After flexural test, the roughness of the wires was evaluted on the same surface as that used for the initial evaluation. The data of roughness and flexural strength were analyzed by one-way ANOVA and Tukey's test (a=0.05). Student t-test compared roughness before and after deflection (a =0.05). The roughness of S and ANT (epoxy resin and PTFE-coated wires, respectively), before and after deflection, was significantly higher than the other groups (p<0.05). Wire deflection significantly increased the roughness of the wires S and STC (p<0.05). The flexural strength of groups FSE and NS (PTFE and uncoated) was higher compared with that of the other groups (p<0.05). We concluded that the roughness and flexural strength of the orthodontic wires does not depend on the type of the esthetic coating, but it is influenced by the method of application of this coating. The deflection can increase the roughness of the esthetic orthodontic wires.
NASA Astrophysics Data System (ADS)
Mia, Mozammel; Bashir, Mahmood Al; Dhar, Nikhil Ranjan
2016-07-01
Hard turning is gradually replacing the time consuming conventional turning process, which is typically followed by grinding, by producing surface quality compatible to grinding. The hard turned surface roughness depends on the cutting parameters, machining environments and tool insert configurations. In this article the variation of the surface roughness of the produced surfaces with the changes in tool insert configuration, use of coolant and different cutting parameters (cutting speed, feed rate) has been investigated. This investigation was performed in machining AISI 1060 steel, hardened to 56 HRC by heat treatment, using coated carbide inserts under two different machining environments. The depth of cut, fluid pressure and material hardness were kept constant. The Design of Experiment (DOE) was performed to determine the number and combination sets of different cutting parameters. A full factorial analysis has been performed to examine the effect of main factors as well as interaction effect of factors on surface roughness. A statistical analysis of variance (ANOVA) was employed to determine the combined effect of cutting parameters, environment and tool configuration. The result of this analysis reveals that environment has the most significant impact on surface roughness followed by feed rate and tool configuration respectively.
Korkut, Derya Sevim; Guller, Bilgin
2008-05-01
Heat treatment is often used to improve the dimensional stability of wood. In this study, the effects of heat treatment on physical properties and surface roughness of red-bud maple (Acer trautvetteri Medw.) wood were examined. Samples obtained from Düzce Forest Enterprises, Turkey, were subjected to heat treatment at varying temperatures and durations. The physical properties of heat-treated samples were compared against controls in order to determine their; oven-dry density, air-dry density, and swelling properties. A stylus method was employed to evaluate the surface characteristics of the samples. Roughness measurements, using the stylus method, were made in the direction perpendicular to the fiber. Three main roughness parameters; mean arithmetic deviation of profile (Ra), mean peak-to-valley height (Rz), and maximum roughness (Rmax) obtained from the surface of wood, were used to evaluate the effect of heat treatment on the surface characteristics of the specimens. Significant differences were determined (p>0.05) between surface roughness parameters (Ra, Rz, Rmax) at three different temperatures and three periods of heat treatment. The results showed that the values of density, swelling and surface roughness decreased with increasing temperature treatment and treatment times. Red-bud maple wood could be utilized successfully by applying proper heat treatment techniques without any losses in investigated parameters. This is vital in areas, such as window frames, where working stability and surface smoothness are important factors.
Influence of in-hole roughness and high freestream turbulence on film cooling from a shaped hole
NASA Astrophysics Data System (ADS)
Schroeder, Robert P.
Gas turbines are heavily used for electricity generation and aircraft propulsion with a strong desire in both uses to maximize thermal efficiency while maintaining reasonable power output. As a consequence, gas turbines run at high turbine inlet temperatures that require sophisticated cooling technologies to ensure survival of turbine components. One such technology is film cooling with shaped holes, where air is withdrawn from latter stages of the compressor, is bypassed around the combustor, and is eventually ejected out holes in turbine component surfaces. Air ejected from these shaped holes helps maintain components at temperatures lower than flow from the combustor. Many studies have investigated different factors that influence shaped hole performance. However, no studies in open literature have investigated how cooling performance is affected by roughness along interior walls of the shaped hole. The effect of in-hole roughness on shaped hole film cooling was the focus of this research. Investigation of in-hole roughness effects first required the determination of behavior for a shaped hole with smooth walls. A public shaped hole, now used by other investigators as well, was designed with a diffused outlet having 7º expansion angles and an area ratio of 2.5. At low freestream turbulence intensity of 0.5%, film cooling adiabatic effectiveness for this smooth hole was found to peak at a blowing ratio of 1.5. Measurements of flowfields and thermal fields revealed causes of this behavior. Blowing ratio increases above 1.5 caused the jet from the smooth hole to penetrate higher into the surrounding mainstream, exhibit a stronger counter-rotating vortex pair, and have narrower contact with the wall than at lower blowing ratios. Experiments performed at high freestream turbulence intensity of 13% revealed dynamics of how freestream turbulence both diluted and laterally spread coolant. At the high blowing ratio of 3 the dilution and spreading were competing effects, such that elevated freestream turbulence did not cause a decrease in area-averaged effectiveness. At the blowing ratio of 1.5, high freestream turbulence caused area-averaged effectiveness to decrease 17% relative to the low freestream turbulence case. Film cooling performance was measured for the shaped hole geometry with several different configurations of in-hole roughness. At low freestream turbulence intensity, in hole roughness caused decreases in area-averaged adiabatic effectiveness up to 61% relative to the smooth hole performance. These percent decreases in adiabatic effectiveness were more severe with increasing roughness levels and with increasing blowing ratios. Flowfield and thermal field measurements for the configuration with largest roughness size showed that the decrease in adiabatic effectiveness for rough holes as compared to smooth holes was due to thicker boundary layers along the interior walls of the cooling holes. The thicker boundary layers resulted in faster jet core flow, which in turn caused increased penetration of coolant into the mainstream and increased turbulence intensity inside the jet, with both leading to reduced adiabatic effectiveness. Detrimental effects of in-hole roughness persisted at the high freestream turbulence conditions as well.