Park, Doori; Park, Su-Hyun; Ban, Yong Wook; Kim, Youn Shic; Park, Kyoung-Cheul; Kim, Nam-Soo; Kim, Ju-Kon; Choi, Ik-Young
2017-08-15
Genetically modified crops (GM crops) have been developed to improve the agricultural traits of modern crop cultivars. Safety assessments of GM crops are of paramount importance in research at developmental stages and before releasing transgenic plants into the marketplace. Sequencing technology is developing rapidly, with higher output and labor efficiencies, and will eventually replace existing methods for the molecular characterization of genetically modified organisms. To detect the transgenic insertion locations in the three GM rice gnomes, Illumina sequencing reads are mapped and classified to the rice genome and plasmid sequence. The both mapped reads are classified to characterize the junction site between plant and transgene sequence by sequence alignment. Herein, we present a next generation sequencing (NGS)-based molecular characterization method, using transgenic rice plants SNU-Bt9-5, SNU-Bt9-30, and SNU-Bt9-109. Specifically, using bioinformatics tools, we detected the precise insertion locations and copy numbers of transfer DNA, genetic rearrangements, and the absence of backbone sequences, which were equivalent to results obtained from Southern blot analyses. NGS methods have been suggested as an effective means of characterizing and detecting transgenic insertion locations in genomes. Our results demonstrate the use of a combination of NGS technology and bioinformatics approaches that offers cost- and time-effective methods for assessing the safety of transgenic plants.
Molecular Characterization of Transgenic Events Using Next Generation Sequencing Approach.
Guttikonda, Satish K; Marri, Pradeep; Mammadov, Jafar; Ye, Liang; Soe, Khaing; Richey, Kimberly; Cruse, James; Zhuang, Meibao; Gao, Zhifang; Evans, Clive; Rounsley, Steve; Kumpatla, Siva P
2016-01-01
Demand for the commercial use of genetically modified (GM) crops has been increasing in light of the projected growth of world population to nine billion by 2050. A prerequisite of paramount importance for regulatory submissions is the rigorous safety assessment of GM crops. One of the components of safety assessment is molecular characterization at DNA level which helps to determine the copy number, integrity and stability of a transgene; characterize the integration site within a host genome; and confirm the absence of vector DNA. Historically, molecular characterization has been carried out using Southern blot analysis coupled with Sanger sequencing. While this is a robust approach to characterize the transgenic crops, it is both time- and resource-consuming. The emergence of next-generation sequencing (NGS) technologies has provided highly sensitive and cost- and labor-effective alternative for molecular characterization compared to traditional Southern blot analysis. Herein, we have demonstrated the successful application of both whole genome sequencing and target capture sequencing approaches for the characterization of single and stacked transgenic events and compared the results and inferences with traditional method with respect to key criteria required for regulatory submissions.
Robustness of Reconstructed Ancestral Protein Functions to Statistical Uncertainty.
Eick, Geeta N; Bridgham, Jamie T; Anderson, Douglas P; Harms, Michael J; Thornton, Joseph W
2017-02-01
Hypotheses about the functions of ancient proteins and the effects of historical mutations on them are often tested using ancestral protein reconstruction (APR)-phylogenetic inference of ancestral sequences followed by synthesis and experimental characterization. Usually, some sequence sites are ambiguously reconstructed, with two or more statistically plausible states. The extent to which the inferred functions and mutational effects are robust to uncertainty about the ancestral sequence has not been studied systematically. To address this issue, we reconstructed ancestral proteins in three domain families that have different functions, architectures, and degrees of uncertainty; we then experimentally characterized the functional robustness of these proteins when uncertainty was incorporated using several approaches, including sampling amino acid states from the posterior distribution at each site and incorporating the alternative amino acid state at every ambiguous site in the sequence into a single "worst plausible case" protein. In every case, qualitative conclusions about the ancestral proteins' functions and the effects of key historical mutations were robust to sequence uncertainty, with similar functions observed even when scores of alternate amino acids were incorporated. There was some variation in quantitative descriptors of function among plausible sequences, suggesting that experimentally characterizing robustness is particularly important when quantitative estimates of ancient biochemical parameters are desired. The worst plausible case method appears to provide an efficient strategy for characterizing the functional robustness of ancestral proteins to large amounts of sequence uncertainty. Sampling from the posterior distribution sometimes produced artifactually nonfunctional proteins for sequences reconstructed with substantial ambiguity. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Coffey, Lark L; Page, Brady L; Greninger, Alexander L; Herring, Belinda L; Russell, Richard C; Doggett, Stephen L; Haniotis, John; Wang, Chunlin; Deng, Xutao; Delwart, Eric L
2014-01-05
Viral metagenomics characterizes known and identifies unknown viruses based on sequence similarities to any previously sequenced viral genomes. A metagenomics approach was used to identify virus sequences in Australian mosquitoes causing cytopathic effects in inoculated mammalian cell cultures. Sequence comparisons revealed strains of Liao Ning virus (Reovirus, Seadornavirus), previously detected only in China, livestock-infecting Stretch Lagoon virus (Reovirus, Orbivirus), two novel dimarhabdoviruses, named Beaumont and North Creek viruses, and two novel orthobunyaviruses, named Murrumbidgee and Salt Ash viruses. The novel virus proteomes diverged by ≥ 50% relative to their closest previously genetically characterized viral relatives. Deep sequencing also generated genomes of Warrego and Wallal viruses, orbiviruses linked to kangaroo blindness, whose genomes had not been fully characterized. This study highlights viral metagenomics in concert with traditional arbovirus surveillance to characterize known and new arboviruses in field-collected mosquitoes. Follow-up epidemiological studies are required to determine whether the novel viruses infect humans. © 2013 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Next generation fungal amplicon sequencing is being used with increasing frequency to study fungal diversity in various ecosystems; however, the influence of sample preparation on the characterization of fungal community is poorly understood. We investigated the effects of four procedural modificati...
USDA-ARS?s Scientific Manuscript database
We conducted genomic sequencing to identify viruses associated with mosaic disease of an apple tree using the high-throughput sequencing (HTS) Illumina RNA-seq platform. The objective was to examine if rapid identification and characterization of viruses could be effectively achieved by RNA-seq anal...
Zhang, Ran; Yin, Yinliang; Zhang, Yujun; Li, Kexin; Zhu, Hongxia; Gong, Qin; Wang, Jianwu; Hu, Xiaoxiang; Li, Ning
2012-01-01
As the number of transgenic livestock increases, reliable detection and molecular characterization of transgene integration sites and copy number are crucial not only for interpreting the relationship between the integration site and the specific phenotype but also for commercial and economic demands. However, the ability of conventional PCR techniques to detect incomplete and multiple integration events is limited, making it technically challenging to characterize transgenes. Next-generation sequencing has enabled cost-effective, routine and widespread high-throughput genomic analysis. Here, we demonstrate the use of next-generation sequencing to extensively characterize cattle harboring a 150-kb human lactoferrin transgene that was initially analyzed by chromosome walking without success. Using this approach, the sites upstream and downstream of the target gene integration site in the host genome were identified at the single nucleotide level. The sequencing result was verified by event-specific PCR for the integration sites and FISH for the chromosomal location. Sequencing depth analysis revealed that multiple copies of the incomplete target gene and the vector backbone were present in the host genome. Upon integration, complex recombination was also observed between the target gene and the vector backbone. These findings indicate that next-generation sequencing is a reliable and accurate approach for the molecular characterization of the transgene sequence, integration sites and copy number in transgenic species. PMID:23185606
Li, Fan; Ma, Liying; Feng, Yi; Hu, Jing; Ni, Na; Ruan, Yuhua; Shao, Yiming
2017-06-01
HIV-1 transmission in intravenous drug users (IDUs) has been characterized by high genetic multiplicity and suggests a greater challenge for HIV-1 infection blocking. We investigated a total of 749 sequences of full-length gp160 gene obtained by single genome sequencing (SGS) from 22 HIV-1 early infected IDUs in Xinjiang province, northwest China, and generated a transmitted and founder virus (T/F virus) consensus sequence (IDU.CON). The T/F virus was classified as subtype CRF07_BC and predicted to be CCR5-tropic virus. The variable region (V1, V2, and V4 loop) of IDU.CON showed length variation compared with the heterosexual T/F virus consensus sequence (HSX.CON) and homosexual T/F virus consensus sequence (MSM.CON). A total of 26 N-linked glycosylation sites were discovered in the IDU.CON sequence, which is less than that of MSM.CON and HSX.CON. Characterization of T/F virus from IDUs highlights the genetic make-up and complexity of virus near the moment of transmission or in early infection preceding systemic dissemination and is important toward the development of an effective HIV-1 preventive methods, including vaccines.
Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area.
Nakano, Kazuma; Shiroma, Akino; Shimoji, Makiko; Tamotsu, Hinako; Ashimine, Noriko; Ohki, Shun; Shinzato, Misuzu; Minami, Maiko; Nakanishi, Tetsuhiro; Teruya, Kuniko; Satou, Kazuhito; Hirano, Takashi
2017-07-01
PacBio RS II is the first commercialized third-generation DNA sequencer able to sequence a single molecule DNA in real-time without amplification. PacBio RS II's sequencing technology is novel and unique, enabling the direct observation of DNA synthesis by DNA polymerase. PacBio RS II confers four major advantages compared to other sequencing technologies: long read lengths, high consensus accuracy, a low degree of bias, and simultaneous capability of epigenetic characterization. These advantages surmount the obstacle of sequencing genomic regions such as high/low G+C, tandem repeat, and interspersed repeat regions. Moreover, PacBio RS II is ideal for whole genome sequencing, targeted sequencing, complex population analysis, RNA sequencing, and epigenetics characterization. With PacBio RS II, we have sequenced and analyzed the genomes of many species, from viruses to humans. Herein, we summarize and review some of our key genome sequencing projects, including full-length viral sequencing, complete bacterial genome and almost-complete plant genome assemblies, and long amplicon sequencing of a disease-associated gene region. We believe that PacBio RS II is not only an effective tool for use in the basic biological sciences but also in the medical/clinical setting.
Isoform-level gene expression patterns in single-cell RNA-sequencing data.
Vu, Trung Nghia; Wills, Quin F; Kalari, Krishna R; Niu, Nifang; Wang, Liewei; Pawitan, Yudi; Rantalainen, Mattias
2018-02-27
RNA sequencing of single cells enables characterization of transcriptional heterogeneity in seemingly homogeneous cell populations. Single-cell sequencing has been applied in a wide range of researches fields. However, few studies have focus on characterization of isoform-level expression patterns at the single-cell level. In this study we propose and apply a novel method, ISOform-Patterns (ISOP), based on mixture modeling, to characterize the expression patterns of isoform pairs from the same gene in single-cell isoform-level expression data. We define six principal patterns of isoform expression relationships and describe a method for differential-pattern analysis. We demonstrate ISOP through analysis of single-cell RNA-sequencing data from a breast cancer cell line, with replication in three independent datasets. We assigned the pattern types to each of 16,562 isoform-pairs from 4,929 genes. Among those, 26% of the discovered patterns were significant (p<0.05), while remaining patterns are possibly effects of transcriptional bursting, drop-out and stochastic biological heterogeneity. Furthermore, 32% of genes discovered through differential-pattern analysis were not detected by differential-expression analysis. The effect of drop-out events, mean expression level, and properties of the expression distribution on the performances of ISOP were also investigated through simulated datasets. To conclude, ISOP provides a novel approach for characterization of isoformlevel preference, commitment and heterogeneity in single-cell RNA-sequencing data. The ISOP method has been implemented as a R package and is available at https://github.com/nghiavtr/ISOP under a GPL-3 license. mattias.rantalainen@ki.se. Supplementary data are available at Bioinformatics online.
Isakov, Ofer; Bordería, Antonio V; Golan, David; Hamenahem, Amir; Celniker, Gershon; Yoffe, Liron; Blanc, Hervé; Vignuzzi, Marco; Shomron, Noam
2015-07-01
The study of RNA virus populations is a challenging task. Each population of RNA virus is composed of a collection of different, yet related genomes often referred to as mutant spectra or quasispecies. Virologists using deep sequencing technologies face major obstacles when studying virus population dynamics, both experimentally and in natural settings due to the relatively high error rates of these technologies and the lack of high performance pipelines. In order to overcome these hurdles we developed a computational pipeline, termed ViVan (Viral Variance Analysis). ViVan is a complete pipeline facilitating the identification, characterization and comparison of sequence variance in deep sequenced virus populations. Applying ViVan on deep sequenced data obtained from samples that were previously characterized by more classical approaches, we uncovered novel and potentially crucial aspects of virus populations. With our experimental work, we illustrate how ViVan can be used for studies ranging from the more practical, detection of resistant mutations and effects of antiviral treatments, to the more theoretical temporal characterization of the population in evolutionary studies. Freely available on the web at http://www.vivanbioinfo.org : nshomron@post.tau.ac.il Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.
Li, Yantao; Fu, Tuo; Liu, Tao; Guo, Huaizu; Guo, Qingcheng; Xu, Jin; Zhang, Dapeng; Qian, Weizhu; Dai, Jianxin; Li, Bohua; Guo, Yajun; Hou, Sheng; Wang, Hao
2016-07-01
Nivolumab is a therapeutic fully human IgG4 antibody to programmed death 1 (PD-1). In this study, a nivolumab biosimilar, which was produced in our laboratory, was analyzed and characterized. Sequence variants that contain undesired amino acid sequences may cause concern during biosimilar bioprocess development. We found that low levels of sequence variants were detected in the heavy chain of the nivolumab biosimilar by ultra performance liquid chromatography (UPLC) and tandem mass spectrometry. It was further identified with UPLC-MS/MS by IdeS or trypsin digestion. The sequence variant was confirmed through addition of synthetic mutant peptide. Subsequently, the mixing base signal of normal and mutant sequence was detected through DNA sequencing. The relative levels of mutant A424V in the Fc region of the heavy chain have been detected and demonstrated to be 12.25% and 13.54%, via base peak intensity (BPI) and UV chromatography of the tryptic peptide mapping, respectively. A424V variant was also quantified by real-time PCR (RT-PCR) at the DNA and RNA level, which was 19.2% and 16.8%, respectively. The relative content of the mutant was consistent at the DNA, RNA and protein level, indicating that the A424V mutation may have little influence at transcriptional or translational levels. These results demonstrate that orthogonal state-of-the-art techniques such as LC- UV- MS and RT-PCR should be implemented to characterize recombinant proteins and cell lines for development of biosimilars. Our study suggests that it is important to establish an integrated and effective analytical method to monitor and characterize sequence variants during antibody drug development, especially for antibody biosimilar products.
Taylor, James; Tyekucheva, Svitlana; King, David C; Hardison, Ross C; Miller, Webb; Chiaromonte, Francesca
2006-12-01
Genomic sequence signals - such as base composition, presence of particular motifs, or evolutionary constraint - have been used effectively to identify functional elements. However, approaches based only on specific signals known to correlate with function can be quite limiting. When training data are available, application of computational learning algorithms to multispecies alignments has the potential to capture broader and more informative sequence and evolutionary patterns that better characterize a class of elements. However, effective exploitation of patterns in multispecies alignments is impeded by the vast number of possible alignment columns and by a limited understanding of which particular strings of columns may characterize a given class. We have developed a computational method, called ESPERR (evolutionary and sequence pattern extraction through reduced representations), which uses training examples to learn encodings of multispecies alignments into reduced forms tailored for the prediction of chosen classes of functional elements. ESPERR produces a greatly improved Regulatory Potential score, which can discriminate regulatory regions from neutral sites with excellent accuracy ( approximately 94%). This score captures strong signals (GC content and conservation), as well as subtler signals (with small contributions from many different alignment patterns) that characterize the regulatory elements in our training set. ESPERR is also effective for predicting other classes of functional elements, as we show for DNaseI hypersensitive sites and highly conserved regions with developmental enhancer activity. Our software, training data, and genome-wide predictions are available from our Web site (http://www.bx.psu.edu/projects/esperr).
Orrù, Luigi; Salvetti, Elisa; Cattivelli, Luigi; Lamontanara, Antonella; Michelotti, Vania; Capozzi, Vittorio; Spano, Giuseppe; Keller, David; Cash, Howard; Martina, Alessia; Felis, Giovanna E.
2014-01-01
Bacillus coagulans GBI-30, 6086 is a safe strain, already available on the market, and characterized by certified beneficial effects. The draft genome sequence presented here constitutes the first pillar toward the identification of the molecular mechanisms responsible for its positive features and safety. PMID:25377698
A pulsed magnetic stress applied to Drosophila melanogaster flies
NASA Astrophysics Data System (ADS)
Delle Side, D.; Bozzetti, M. P.; Friscini, A.; Giuffreda, E.; Nassisi, V.; Specchia, V.; Velardi, L.
2014-04-01
We report the development of a system to feed pulsed magnetic stress to biological samples. The device is based on a RLC circuit that transforms the energy stored in a high voltage capacitor into a magnetic field inside a coil. The field has been characterized and we found that charging the capacitor with 24 kV results in a peak field of 0.4 T. In order to test its effect, we applied such a stress to the Drosophila melanogaster model and we examined its bio-effects. We analysed, in the germ cells, the effects on the control of specific DNA repetitive sequences that are activated after different environmental stresses. The deregulation of these sequences causes genomic instability and chromosomes breaks leading to sterility. The magnetic field treatment did not produce effects on repetitive sequences in the germ cells of Drosophila. Hence, this field doesn't produce deleterious effects linked to repetitive sequences derepression.
A comparison of serial order short-term memory effects across verbal and musical domains.
Gorin, Simon; Mengal, Pierre; Majerus, Steve
2018-04-01
Recent studies suggest that the mechanisms involved in the short-term retention of serial order information may be shared across short-term memory (STM) domains such as verbal and visuospatial STM. Given the intrinsic sequential organization of musical material, the study of STM for musical information may be particularly informative about serial order retention processes and their domain-generality. The present experiment examined serial order STM for verbal and musical sequences in participants with no advanced musical expertise and experienced musicians. Serial order STM for verbal information was assessed via a serial order reconstruction task for digit sequences. In the musical domain, serial order STM was assessed using a novel melodic sequence reconstruction task maximizing the retention of tone order information. We observed that performance for the verbal and musical tasks was characterized by sequence length as well as primacy and recency effects. Serial order errors in both tasks were characterized by similar transposition gradients and ratios of fill-in:infill errors. These effects were observed for both participant groups, although the transposition gradients and ratios of fill-in:infill errors showed additional specificities for musician participants in the musical task. The data support domain-general serial order STM effects but also suggest the existence of additional domain-specific effects. Implications for models of serial order STM in verbal and musical domains are discussed.
Genome Wide Characterization of Simple Sequence Repeats in Cucumber
USDA-ARS?s Scientific Manuscript database
The whole genome sequence of the cucumber cultivar Gy14 was recently sequenced at 15× coverage with the Roche 454 Titanium technology. The microsatellite DNA sequences (simple sequence repeats, SSRs) in the assembled scaffolds were computationally explored and characterized. A total of 112,073 SSRs ...
NASA Astrophysics Data System (ADS)
Abdel-Fattah, Mohamed I.; Slatt, Roger M.
2013-12-01
Understanding sequence stratigraphy architecture in the incised-valley is a crucial step to understanding the effect of relative sea level changes on reservoir characterization and architecture. This paper presents a sequence stratigraphic framework of the incised-valley strata within the late Messinian Abu Madi Formation based on seismic and borehole data. Analysis of sand-body distribution reveals that fluvial channel sandstones in the Abu Madi Formation in the Baltim Fields, offshore Nile Delta, Egypt, are not randomly distributed but are predictable in their spatial and stratigraphic position. Elucidation of the distribution of sandstones in the Abu Madi incised-valley fill within a sequence stratigraphic framework allows a better understanding of their characterization and architecture during burial. Strata of the Abu Madi Formation are interpreted to comprise two sequences, which are the most complex stratigraphically; their deposits comprise a complex incised valley fill. The lower sequence (SQ1) consists of a thick incised valley-fill of a Lowstand Systems Tract (LST1)) overlain by a Transgressive Systems Tract (TST1) and Highstand Systems Tract (HST1). The upper sequence (SQ2) contains channel-fill and is interpreted as a LST2 which has a thin sandstone channel deposits. Above this, channel-fill sandstone and related strata with tidal influence delineates the base of TST2, which is overlain by a HST2. Gas reservoirs of the Abu Madi Formation (present-day depth ˜3552 m), the Baltim Fields, Egypt, consist of fluvial lowstand systems tract (LST) sandstones deposited in an incised valley. LST sandstones have a wide range of porosity (15 to 28%) and permeability (1 to 5080mD), which reflect both depositional facies and diagenetic controls. This work demonstrates the value of constraining and evaluating the impact of sequence stratigraphic distribution on reservoir characterization and architecture in incised-valley deposits, and thus has an important impact on reservoir quality evolution in hydrocarbon exploration in such settings.
USDA-ARS?s Scientific Manuscript database
The effect of refrigeration on bacterial communities within raw and pasteurized buffalo milk was studied using high-throughput sequencing. High quality samples of raw buffalo milk were obtained from five dairy farms in the Guangxi province of China. A sample of each milk was pasteurized, and both r...
Anand, Prachi; Grigoryan, Alexandre; Bhuiyan, Mohammed H; Ueberheide, Beatrix; Russell, Victoria; Quinoñez, Jose; Moy, Patrick; Chait, Brian T; Poget, Sébastien F; Holford, Mandë
2014-01-01
Disulfide-rich peptide toxins found in the secretions of venomous organisms such as snakes, spiders, scorpions, leeches, and marine snails are highly efficient and effective tools for novel therapeutic drug development. Venom peptide toxins have been used extensively to characterize ion channels in the nervous system and platelet aggregation in haemostatic systems. A significant hurdle in characterizing disulfide-rich peptide toxins from venomous animals is obtaining significant quantities needed for sequence and structural analyses. Presented here is a strategy for the structural characterization of venom peptide toxins from sample limited (4 ng) specimens via direct mass spectrometry sequencing, chemical synthesis and NMR structure elucidation. Using this integrated approach, venom peptide Tv1 from Terebra variegata was discovered. Tv1 displays a unique fold not witnessed in prior snail neuropeptides. The novel structural features found for Tv1 suggest that the terebrid pool of peptide toxins may target different neuronal agents with varying specificities compared to previously characterized snail neuropeptides.
Klein, Donald A.; Flores, Romeo M.; Venot, Christophe; Gabbert, Kendra; Schmidt, Raleigh; Stricker, Gary D.; Pruden, Amy; Mandernack, Kevin
2008-01-01
Coalbed methane regeneration is of increasing interest, and is gaining global attention with respect to enhancement of gas recovery. The objective of this study is to determine if there are differences in methanogen nucleic acid sequences associated with low rank coals from the Powder River Basin, Wyoming, in comparison with sequences that can be recovered from coal bed-associated produced waters. Based on results obtained to date, the sequences from the coals appear to be associated with putatively deep-rooted thermophilic autotrophic methanogens, whereas the sequences from the waters are associated with thermophilic autotrophic and heterotrophic methanogens. The recovered sequences associated with coal thus appear to be both phylogenetically and functionally distinct from those that are more closely associated with the produced water. To be able to relate such recovered sequences to organisms that might be present and possibly active in these environments, it is suggested that direct observation, followed by isolation and single cell-based physiological/molecular analyses, be used to characterize methanogenic consortia possibly associated with coals and/or produced waters. It is also important to characterize the microenvironment where these microbes might be found, in both ecological and geological contexts, to be able to develop effective, ecologically relevant coalbed methane regeneration processes.
López-Abarrategui, Carlos; Alba, Annia; Silva, Osmar N; Reyes-Acosta, Osvaldo; Vasconcelos, Ilka M; Oliveira, Jose T A; Migliolo, Ludovico; Costa, Maysa P; Costa, Carolina R; Silva, Maria R R; Garay, Hilda E; Dias, Simoni C; Franco, Octávio L; Otero-González, Anselmo J
2012-04-01
Antimicrobial peptides have been found in mollusks and other sea animals. In this report, a crude extract of the marine snail Cenchritis muricatus was evaluated against human pathogens responsible for multiple deleterious effects and diseases. A peptide of 1485.26 Da was purified by reversed-phase HPLC and functionally characterized. This trypsinized peptide was sequenced by MS/MS technology, and a sequence (SRSELIVHQR), named Cm-p1 was recovered, chemically synthesized and functionally characterized. This peptide demonstrated the capacity to prevent the development of yeasts and filamentous fungi. Otherwise, Cm-p1 displayed no toxic effects against mammalian cells. Molecular modeling analyses showed that this peptide possible forms a single hydrophilic α-helix and the probable cationic residue involved in antifungal activity action is proposed. The data reported here demonstrate the importance of sea animals peptide discovery for biotechnological tools development that could be useful in solving human health and agribusiness problems. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Spinney, Patrick; Collins, Scott D.; Howitt, David G.; Smith, Rosemary L.
2012-06-01
Rapid and cost-effective DNA sequencing is a pivotal prerequisite for the genomics era. Many of the recent advances in forensics, medicine, agriculture, taxonomy, and drug discovery have paralleled critical advances in DNA sequencing technology. Nanopore modalities for DNA sequencing have recently surfaced including the electrical interrogation of protein ion channels and/or solid-state nanopores during translocation of DNA. However to date, most of this work has met with mixed success. In this work, we present a unique nanofabrication strategy that realizes an artificial nanopore articulated with carbon electrodes to sense the current modulations during the transport of DNA through the nanopore. This embodiment overcomes most of the technical difficulties inherent in other artificial nanopore embodiments and present a versatile platform for the testing of DNA single nucleotide detection. Characterization of the device using gold nanoparticles, silica nanoparticles, lambda dsDNA and 16-mer ssDNA are presented. Although single molecule DNA sequencing is still not demonstrated, the device shows a path towards this goal.
1991-04-10
Partial nucleotide sequence of viri? clone pAEH122 102 14. Effects of VirR’ activity on Ipa expression 106 15. Sequencing strategy for the 2.3 kb EcoRl...Confluent monolayers of mammalian cells are challenged with virulent organisms and invasion and intercellular spread result in a cytopathic effect ...destruction of the mucosal surface and an inflammatory response ensues which mimics the effects of invasion and intercellular spread in the mucosa of the
Characterization of Bleomycin-Mediated Cleavage of a Hairpin DNA Library
Segerman, Zachary J.; Roy, Basab; Hecht, Sidney M.
2013-01-01
A study of BLM A5 was conducted using a previously isolated library of hairpin DNAs found to bind strongly to metal free BLM. The ability of Fe(II)•BLM to effect cleavage on both the 3' and 5'-arms of the hairpin DNAs was characterized. The strongly bound DNAs were found to be efficient substrates for Fe•BLM A5-mediated hairpin DNA cleavage. Surprisingly, the most prevalent site of BLM-mediated cleavage was found to be the 5′-AT-3′ dinucleotide sequence. This dinucleotide sequence, and other sequences generally not cleaved well by BLM when examined using arbitrarily chosen DNA substrates, were apparent when examining the library of ten hairpin DNAs. In total, 132 sites of DNA cleavage were produced by exposure of the hairpin DNA library to Fe•BLM A5. The existence of multiple sites of cleavage on both the 3′- and 5′-arms of the hairpin DNAs suggested that some of these might be double-strand cleavage events. Accordingly, an assay was developed with which to test the propensity of the hairpin DNAs to undergo double-strand DNA damage. One hairpin DNA was characterized using this method, and gave results consistent with earlier reports of double-strand DNA cleavage, but with a sequence selectivity different from those reported previously. PMID:23834496
Skin Microbiome Surveys Are Strongly Influenced by Experimental Design.
Meisel, Jacquelyn S; Hannigan, Geoffrey D; Tyldsley, Amanda S; SanMiguel, Adam J; Hodkinson, Brendan P; Zheng, Qi; Grice, Elizabeth A
2016-05-01
Culture-independent studies to characterize skin microbiota are increasingly common, due in part to affordable and accessible sequencing and analysis platforms. Compared to culture-based techniques, DNA sequencing of the bacterial 16S ribosomal RNA (rRNA) gene or whole metagenome shotgun (WMS) sequencing provides more precise microbial community characterizations. Most widely used protocols were developed to characterize microbiota of other habitats (i.e., gastrointestinal) and have not been systematically compared for their utility in skin microbiome surveys. Here we establish a resource for the cutaneous research community to guide experimental design in characterizing skin microbiota. We compare two widely sequenced regions of the 16S rRNA gene to WMS sequencing for recapitulating skin microbiome community composition, diversity, and genetic functional enrichment. We show that WMS sequencing most accurately recapitulates microbial communities, but sequencing of hypervariable regions 1-3 of the 16S rRNA gene provides highly similar results. Sequencing of hypervariable region 4 poorly captures skin commensal microbiota, especially Propionibacterium. WMS sequencing, which is resource and cost intensive, provides evidence of a community's functional potential; however, metagenome predictions based on 16S rRNA sequence tags closely approximate WMS genetic functional profiles. This study highlights the importance of experimental design for downstream results in skin microbiome surveys. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Skin microbiome surveys are strongly influenced by experimental design
Meisel, Jacquelyn S.; Hannigan, Geoffrey D.; Tyldsley, Amanda S.; SanMiguel, Adam J.; Hodkinson, Brendan P.; Zheng, Qi; Grice, Elizabeth A.
2016-01-01
Culture-independent studies to characterize skin microbiota are increasingly common, due in part to affordable and accessible sequencing and analysis platforms. Compared to culture-based techniques, DNA sequencing of the bacterial 16S ribosomal RNA (rRNA) gene or whole metagenome shotgun (WMS) sequencing provide more precise microbial community characterizations. Most widely used protocols were developed to characterize microbiota of other habitats (i.e. gastrointestinal), and have not been systematically compared for their utility in skin microbiome surveys. Here we establish a resource for the cutaneous research community to guide experimental design in characterizing skin microbiota. We compare two widely sequenced regions of the 16S rRNA gene to WMS sequencing for recapitulating skin microbiome community composition, diversity, and genetic functional enrichment. We show that WMS sequencing most accurately recapitulates microbial communities, but sequencing of hypervariable regions 1-3 of the 16S rRNA gene provides highly similar results. Sequencing of hypervariable region 4 poorly captures skin commensal microbiota, especially Propionibacterium. WMS sequencing, which is resource- and cost-intensive, provides evidence of a community’s functional potential; however, metagenome predictions based on 16S rRNA sequence tags closely approximate WMS genetic functional profiles. This work highlights the importance of experimental design for downstream results in skin microbiome surveys. PMID:26829039
Evolving discriminators for querying video sequences
NASA Astrophysics Data System (ADS)
Iyengar, Giridharan; Lippman, Andrew B.
1997-01-01
In this paper we present a framework for content based query and retrieval of information from large video databases. This framework enables content based retrieval of video sequences by characterizing the sequences using motion, texture and colorimetry cues. This characterization is biologically inspired and results in a compact parameter space where every segment of video is represented by an 8 dimensional vector. Searching and retrieval is done in real- time with accuracy in this parameter space. Using this characterization, we then evolve a set of discriminators using Genetic Programming Experiments indicate that these discriminators are capable of analyzing and characterizing video. The VideoBook is able to search and retrieve video sequences with 92% accuracy in real-time. Experiments thus demonstrate that the characterization is capable of extracting higher level structure from raw pixel values.
Performance Characterization of a Three-Axis Hall Effect Thruster
2010-12-01
mounted to the vacuum tank overhead and were individually connected to CVI CBST 6.0 scroll compressor units via flexible tubing. The pumps were capable...and Support Equipment . . . . . . . . . 23 3.2.1 Vacuum Chamber . . . . . . . . . . . . . . . . . 23 3.2.2 Pumps and Pump -down Sequence...Sequence. Chamber pressure monitoring and control of vacuum pumps was accomplished using a combination of two gauge systems. The first was used when tank
Mechanistic and Technical Challenges in Studying the Human Microbiome and Cancer Epidemiology.
Verma, Mukesh
2017-04-01
This article reviews the significance of the microbiome in cancer epidemiology, mechanistic and technical challenges in the field, and characterization of the microbiome in different tumor types to identify biomarkers of risk, progression, and prognosis. Publications on the microbiome and cancer epidemiology were reviewed to analyze sample collection and processing, microbiome taxa characterization by 16S ribosomal RNA sequencing, and microbiome metabolite characterization (metabotyping) by nuclear magnetic resonance and mass spectrometry. The analysis identified methodology types, research design, sample types, and issues in integrating data from different platforms. Aerodigestive cancer epidemiology studies conducted by different groups demonstrated the significance of microbiome information in developing approaches to improve health. Challenges exist in sample preparation and processing (eg, standardization of methods for collection and analysis). These challenges relate to technology, data integration from "omics" studies, inherent bias in primer selection during 16S ribosomal RNA sequencing, the need for large consortia with well-characterized biospecimens, cause and effect issues, resilience of microbiota to exposure events (requires longitudinal studies), and expanding studies for fungal and viral diversity (most studies used bacterial 16S ribosomal RNA sequencing for microbiota characterization). Despite these challenges, microbiome and cancer epidemiology studies are significant and may facilitate cancer risk assessment, diagnosis, and prognosis. In the future, clinical trials likely will use microbiota modifications to improve the efficacy of existing treatments.
Mechanistic and Technical Challenges in Studying the Human Microbiome and Cancer Epidemiology
2016-01-01
This article reviews the significance of the microbiome in cancer epidemiology, mechanistic and technical challenges in the field, and characterization of the microbiome in different tumor types to identify biomarkers of risk, progression, and prognosis. Publications on the microbiome and cancer epidemiology were reviewed to analyze sample collection and processing, microbiome taxa characterization by 16S ribosomal RNA sequencing, and microbiome metabolite characterization (metabotyping) by nuclear magnetic resonance and mass spectrometry. The analysis identified methodology types, research design, sample types, and issues in integrating data from different platforms. Aerodigestive cancer epidemiology studies conducted by different groups demonstrated the significance of microbiome information in developing approaches to improve health. Challenges exist in sample preparation and processing (eg, standardization of methods for collection and analysis). These challenges relate to technology, data integration from “omics” studies, inherent bias in primer selection during 16S ribosomal RNA sequencing, the need for large consortia with well-characterized biospecimens, cause and effect issues, resilience of microbiota to exposure events (requires longitudinal studies), and expanding studies for fungal and viral diversity (most studies used bacterial 16S ribosomal RNA sequencing for microbiota characterization). Despite these challenges, microbiome and cancer epidemiology studies are significant and may facilitate cancer risk assessment, diagnosis, and prognosis. In the future, clinical trials likely will use microbiota modifications to improve the efficacy of existing treatments. PMID:27121074
Fluorescent DNA-templated silver nanoclusters
NASA Astrophysics Data System (ADS)
Lin, Ruoqian
Because of the ultra-small size and biocompatibility of silver nanoclusters, they have attracted much research interest for their applications in biolabeling. Among the many ways of synthesizing silver nanoclusters, DNA templated method is particularly attractive---the high tunability of DNA sequences provides another degree of freedom for controlling the chemical and photophysical properties. However, systematic studies about how DNA sequences and concentrations are controlling the photophysical properties are still lacking. The aim of this thesis is to investigate the binding mechanisms of silver clusters binding and single stranded DNAs. Here in this thesis, we report synthesis and characterization of DNA-templated silver nanoclusters and provide a systematic interrogation of the effects of DNA concentrations and sequences, including lengths and secondary structures. We performed a series of syntheses utilizing five different sequences to explore the optimal synthesis condition. By characterizing samples with UV-vis and fluorescence spectroscopy, we achieved the most proper reactants ratio and synthesis conditions. Two of them were chosen for further concentration dependence studies and sequence dependence studies. We found that cytosine-rich sequences are more likely to produce silver nanoclusters with stronger fluorescence signals; however, sequences with hairpin secondary structures are more capable in stabilizing silver nanoclusters. In addition, the fluorescence peak emission intensities and wavelengths of the DNA templated silver clusters have sequence dependent fingerprints. This potentially can be applied to sequence sensing in the future. However all the current conclusions are not warranted; there is still difficulty in formulating general rules in DNA strand design and silver nanocluster production. Further investigation of more sequences could solve these questions in the future.
Jeanbille, M; Buée, M; Bach, C; Cébron, A; Frey-Klett, P; Turpault, M P; Uroz, S
2016-02-01
Soil and climatic conditions as well as land cover and land management have been shown to strongly impact the structure and diversity of the soil bacterial communities. Here, we addressed under a same land cover the potential effect of the edaphic parameters on the soil bacterial communities, excluding potential confounding factors as climate. To do this, we characterized two natural soil sequences occurring in the Montiers experimental site. Spatially distant soil samples were collected below Fagus sylvatica tree stands to assess the effect of soil sequences on the edaphic parameters, as well as the structure and diversity of the bacterial communities. Soil analyses revealed that the two soil sequences were characterized by higher pH and calcium and magnesium contents in the lower plots. Metabolic assays based on Biolog Ecoplates highlighted higher intensity and richness in usable carbon substrates in the lower plots than in the middle and upper plots, although no significant differences occurred in the abundance of bacterial and fungal communities along the soil sequences as assessed using quantitative PCR. Pyrosequencing analysis of 16S ribosomal RNA (rRNA) gene amplicons revealed that Proteobacteria, Acidobacteria and Bacteroidetes were the most abundantly represented phyla. Acidobacteria, Proteobacteria and Chlamydiae were significantly enriched in the most acidic and nutrient-poor soils compared to the Bacteroidetes, which were significantly enriched in the soils presenting the higher pH and nutrient contents. Interestingly, aluminium, nitrogen, calcium, nutrient availability and pH appeared to be the best predictors of the bacterial community structures along the soil sequences.
Characterization of GM events by insert knowledge adapted re-sequencing approaches
Yang, Litao; Wang, Congmao; Holst-Jensen, Arne; Morisset, Dany; Lin, Yongjun; Zhang, Dabing
2013-01-01
Detection methods and data from molecular characterization of genetically modified (GM) events are needed by stakeholders of public risk assessors and regulators. Generally, the molecular characteristics of GM events are incomprehensively revealed by current approaches and biased towards detecting transformation vector derived sequences. GM events are classified based on available knowledge of the sequences of vectors and inserts (insert knowledge). Herein we present three insert knowledge-adapted approaches for characterization GM events (TT51-1 and T1c-19 rice as examples) based on paired-end re-sequencing with the advantages of comprehensiveness, accuracy, and automation. The comprehensive molecular characteristics of two rice events were revealed with additional unintended insertions comparing with the results from PCR and Southern blotting. Comprehensive transgene characterization of TT51-1 and T1c-19 is shown to be independent of a priori knowledge of the insert and vector sequences employing the developed approaches. This provides an opportunity to identify and characterize also unknown GM events. PMID:24088728
Characterization of GM events by insert knowledge adapted re-sequencing approaches.
Yang, Litao; Wang, Congmao; Holst-Jensen, Arne; Morisset, Dany; Lin, Yongjun; Zhang, Dabing
2013-10-03
Detection methods and data from molecular characterization of genetically modified (GM) events are needed by stakeholders of public risk assessors and regulators. Generally, the molecular characteristics of GM events are incomprehensively revealed by current approaches and biased towards detecting transformation vector derived sequences. GM events are classified based on available knowledge of the sequences of vectors and inserts (insert knowledge). Herein we present three insert knowledge-adapted approaches for characterization GM events (TT51-1 and T1c-19 rice as examples) based on paired-end re-sequencing with the advantages of comprehensiveness, accuracy, and automation. The comprehensive molecular characteristics of two rice events were revealed with additional unintended insertions comparing with the results from PCR and Southern blotting. Comprehensive transgene characterization of TT51-1 and T1c-19 is shown to be independent of a priori knowledge of the insert and vector sequences employing the developed approaches. This provides an opportunity to identify and characterize also unknown GM events.
Hadji Sfaxi, Imen; Ezzine, Aymen; Coquet, Laurent; Cosette, Pascal; Jouenne, Thierry; Marzouki, M Nejib
2012-09-01
Superoxide dismutases (SODs; EC 1.15.1.1) are key enzymes in the cells protection against oxidant agents. Thus, SODs play a major role in the protection of aerobic organisms against oxygen-mediated damages. Three SOD isoforms were previously identified by zymogram staining from Allium sativum bulbs. The purified Cu, Zn-SOD2 shows an antagonist effect to an anticancer drug and alleviate cytotoxicity inside tumor cells lines B16F0 (mouse melanoma cells) and PAE (porcine aortic endothelial cells). To extend the characterization of Allium SODs and their corresponding genes, a proteomic approach was applied involving two-dimensional gel electrophoresis and LC-MS/MS analyses. From peptide sequence data obtained by mass spectrometry and sequences homologies, primers were defined and a cDNA fragment of 456 bp was amplified by RT-PCR. The cDNA nucleotide sequence analysis revealed an open reading frame coding for 152 residues. The deduced amino acid sequence showed high identity (82-87%) with sequences of Cu, Zn-SODs from other plant species. Molecular analysis was achieved by a protein 3D structural model.
High-Throughput Analysis of T-DNA Location and Structure Using Sequence Capture.
Inagaki, Soichi; Henry, Isabelle M; Lieberman, Meric C; Comai, Luca
2015-01-01
Agrobacterium-mediated transformation of plants with T-DNA is used both to introduce transgenes and for mutagenesis. Conventional approaches used to identify the genomic location and the structure of the inserted T-DNA are laborious and high-throughput methods using next-generation sequencing are being developed to address these problems. Here, we present a cost-effective approach that uses sequence capture targeted to the T-DNA borders to select genomic DNA fragments containing T-DNA-genome junctions, followed by Illumina sequencing to determine the location and junction structure of T-DNA insertions. Multiple probes can be mixed so that transgenic lines transformed with different T-DNA types can be processed simultaneously, using a simple, index-based pooling approach. We also developed a simple bioinformatic tool to find sequence read pairs that span the junction between the genome and T-DNA or any foreign DNA. We analyzed 29 transgenic lines of Arabidopsis thaliana, each containing inserts from 4 different T-DNA vectors. We determined the location of T-DNA insertions in 22 lines, 4 of which carried multiple insertion sites. Additionally, our analysis uncovered a high frequency of unconventional and complex T-DNA insertions, highlighting the needs for high-throughput methods for T-DNA localization and structural characterization. Transgene insertion events have to be fully characterized prior to use as commercial products. Our method greatly facilitates the first step of this characterization of transgenic plants by providing an efficient screen for the selection of promising lines.
USDA-ARS?s Scientific Manuscript database
Expressed sequence tag (EST) simple sequence repeats (SSRs) in Prunus were mined, and flanking primers designed and used for genome-wide characterization and selection of primers to optimize marker distribution and reliability. A total of 12,618 contigs were assembled from 84,727 ESTs, along with 34...
RECOVIR Software for Identifying Viruses
NASA Technical Reports Server (NTRS)
Chakravarty, Sugoto; Fox, George E.; Zhu, Dianhui
2013-01-01
Most single-stranded RNA (ssRNA) viruses mutate rapidly to generate a large number of strains with highly divergent capsid sequences. Determining the capsid residues or nucleotides that uniquely characterize these strains is critical in understanding the strain diversity of these viruses. RECOVIR (an acronym for "recognize viruses") software predicts the strains of some ssRNA viruses from their limited sequence data. Novel phylogenetic-tree-based databases of protein or nucleic acid residues that uniquely characterize these virus strains are created. Strains of input virus sequences (partial or complete) are predicted through residue-wise comparisons with the databases. RECOVIR uses unique characterizing residues to identify automatically strains of partial or complete capsid sequences of picorna and caliciviruses, two of the most highly diverse ssRNA virus families. Partition-wise comparisons of the database residues with the corresponding residues of more than 300 complete and partial sequences of these viruses resulted in correct strain identification for all of these sequences. This study shows the feasibility of creating databases of hitherto unknown residues uniquely characterizing the capsid sequences of two of the most highly divergent ssRNA virus families. These databases enable automated strain identification from partial or complete capsid sequences of these human and animal pathogens.
Lane, Todd
2018-05-18
Todd Lane on "RapTOR: Automated sequencing library preparation and suppression for rapid pathogen characterization" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane, Todd
2012-06-01
Todd Lane on "RapTOR: Automated sequencing library preparation and suppression for rapid pathogen characterization" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.
Boehm; Gibson; Lubzens
2000-01-01
This study was initiated to search for species-specific and strain-specific satellite DNA sequences for which oligonucleotide primers could be designed to differentiate between various commercially important strains of the marine monogonont rotifers Brachionus rotundiformis and Brachionus plicatilis. Two unrelated, highly reiterated satellite sequences were cloned and characterized. The eight sequenced monomers from B. rotundiformis and six from B. plicatilis had low intrarepeat variability and were similar in their overall lengths, A + T compositions, and high degrees of repeated motif substructure. However, hybridizations to 19 representative strains, sequence characterizations, and GenBank searches indicated that these two satellites are morphotype-specific and population-specific, respectively, and share little homology to each other or to other characterized sequences in the database. Primer pairs designed for the B. rotundiformis satellite confirmed hybridization specificities on polymerase chain reaction and could serve as a useful molecular diagnostic tool to identify strains belonging to the SS morphotype, which are gaining widespread usage as first feeds for marine fish in commercial production.
Genome-wide characterization of centromeric satellites from multiple mammalian genomes.
Alkan, Can; Cardone, Maria Francesca; Catacchio, Claudia Rita; Antonacci, Francesca; O'Brien, Stephen J; Ryder, Oliver A; Purgato, Stefania; Zoli, Monica; Della Valle, Giuliano; Eichler, Evan E; Ventura, Mario
2011-01-01
Despite its importance in cell biology and evolution, the centromere has remained the final frontier in genome assembly and annotation due to its complex repeat structure. However, isolation and characterization of the centromeric repeats from newly sequenced species are necessary for a complete understanding of genome evolution and function. In recent years, various genomes have been sequenced, but the characterization of the corresponding centromeric DNA has lagged behind. Here, we present a computational method (RepeatNet) to systematically identify higher-order repeat structures from unassembled whole-genome shotgun sequence and test whether these sequence elements correspond to functional centromeric sequences. We analyzed genome datasets from six species of mammals representing the diversity of the mammalian lineage, namely, horse, dog, elephant, armadillo, opossum, and platypus. We define candidate monomer satellite repeats and demonstrate centromeric localization for five of the six genomes. Our analysis revealed the greatest diversity of centromeric sequences in horse and dog in contrast to elephant and armadillo, which showed high-centromeric sequence homogeneity. We could not isolate centromeric sequences within the platypus genome, suggesting that centromeres in platypus are not enriched in satellite DNA. Our method can be applied to the characterization of thousands of other vertebrate genomes anticipated for sequencing in the near future, providing an important tool for annotation of centromeres.
Thomas, N Simon; Harvey, John F; Bunyan, David J; Rankin, Julia; Grigelioniene, Giedre; Bruno, Damien L; Tan, Tiong Y; Tomkins, Susan; Hastings, Robert
2009-07-01
Deletions of the SHOX gene are well documented and cause disproportionate short stature and variable skeletal abnormalities. In contrast interstitial SHOX duplications limited to PAR1 appear to be very rare and the clinical significance of the only case report in the literature is unclear. Mapping of this duplication has now shown that it includes the entire SHOX gene but little flanking sequence and so will not encompass any of the long-range enhancers required for SHOX transcription. We now describe the clinical and molecular characterization of three additional cases. The duplications all included the SHOX coding sequence but varied in the amount of flanking sequence involved. The probands were ascertained for a variety of reasons: hypotonia and features of Asperger syndrome, Leri-Weill dyschondrosteosis (LWD), and a family history of cleft palate. However, the presence of a duplication did not correlate with any of these features or with evidence of skeletal abnormality. Remarkably, the proband with LWD had inherited both a SHOX deletion and a duplication. The effect of the duplications on stature was variable: height appeared to be elevated in some carriers, particularly in those with the largest duplications, but was still within the normal range. SHOX duplications are likely to be under ascertained and more cases need to be identified and characterized in detail in order to accurately determine their phenotypic consequences.
Shteingart, Hanan; Loewenstein, Yonatan
2016-01-01
There is a long history of experiments in which participants are instructed to generate a long sequence of binary random numbers. The scope of this line of research has shifted over the years from identifying the basic psychological principles and/or the heuristics that lead to deviations from randomness, to one of predicting future choices. In this paper, we used generalized linear regression and the framework of Reinforcement Learning in order to address both points. In particular, we used logistic regression analysis in order to characterize the temporal sequence of participants' choices. Surprisingly, a population analysis indicated that the contribution of the most recent trial has only a weak effect on behavior, compared to more preceding trials, a result that seems irreconcilable with standard sequential effects that decay monotonously with the delay. However, when considering each participant separately, we found that the magnitudes of the sequential effect are a monotonous decreasing function of the delay, yet these individual sequential effects are largely averaged out in a population analysis because of heterogeneity. The substantial behavioral heterogeneity in this task is further demonstrated quantitatively by considering the predictive power of the model. We show that a heterogeneous model of sequential dependencies captures the structure available in random sequence generation. Finally, we show that the results of the logistic regression analysis can be interpreted in the framework of reinforcement learning, allowing us to compare the sequential effects in the random sequence generation task to those in an operant learning task. We show that in contrast to the random sequence generation task, sequential effects in operant learning are far more homogenous across the population. These results suggest that in the random sequence generation task, different participants adopt different cognitive strategies to suppress sequential dependencies when generating the "random" sequences.
Efficient iris recognition by characterizing key local variations.
Ma, Li; Tan, Tieniu; Wang, Yunhong; Zhang, Dexin
2004-06-01
Unlike other biometrics such as fingerprints and face, the distinct aspect of iris comes from randomly distributed features. This leads to its high reliability for personal identification, and at the same time, the difficulty in effectively representing such details in an image. This paper describes an efficient algorithm for iris recognition by characterizing key local variations. The basic idea is that local sharp variation points, denoting the appearing or vanishing of an important image structure, are utilized to represent the characteristics of the iris. The whole procedure of feature extraction includes two steps: 1) a set of one-dimensional intensity signals is constructed to effectively characterize the most important information of the original two-dimensional image; 2) using a particular class of wavelets, a position sequence of local sharp variation points in such signals is recorded as features. We also present a fast matching scheme based on exclusive OR operation to compute the similarity between a pair of position sequences. Experimental results on 2255 iris images show that the performance of the proposed method is encouraging and comparable to the best iris recognition algorithm found in the current literature.
Buxbaum, Joseph D; Daly, Mark J; Devlin, Bernie; Lehner, Thomas; Roeder, Kathryn; State, Matthew W
2012-12-20
Research during the past decade has seen significant progress in the understanding of the genetic architecture of autism spectrum disorders (ASDs), with gene discovery accelerating as the characterization of genomic variation has become increasingly comprehensive. At the same time, this research has highlighted ongoing challenges. Here we address the enormous impact of high-throughput sequencing (HTS) on ASD gene discovery, outline a consensus view for leveraging this technology, and describe a large multisite collaboration developed to accomplish these goals. Similar approaches could prove effective for severe neurodevelopmental disorders more broadly. Copyright © 2012 Elsevier Inc. All rights reserved.
The invention of new approaches to DNA sequencing commonly referred to as next generation sequencing technologies is revolutionizing the study of microbial diversity. In this chapter, we discuss the characterization of microbial population structures in recreational waters and p...
Berthier, Y; Thierry, D; Lemattre, M; Guesdon, J L
1994-01-01
A new insertion sequence was isolated from Xanthomonas campestris pv. dieffenbachiae. Sequence analysis showed that this element is 1,158 bp long and has 15-bp inverted repeat ends containing two mismatches. Comparison of this sequence with sequences in data bases revealed significant homology with Escherichia coli IS5. IS1051, which detected multiple restriction fragment length polymorphisms, was used as a probe to characterize strains from the pathovar dieffenbachiae. Images PMID:7906933
A Case Study into Microbial Genome Assembly Gap Sequences and Finishing Strategies.
Utturkar, Sagar M; Klingeman, Dawn M; Hurt, Richard A; Brown, Steven D
2017-01-01
This study characterized regions of DNA which remained unassembled by either PacBio and Illumina sequencing technologies for seven bacterial genomes. Two genomes were manually finished using bioinformatics and PCR/Sanger sequencing approaches and regions not assembled by automated software were analyzed. Gaps present within Illumina assemblies mostly correspond to repetitive DNA regions such as multiple rRNA operon sequences. PacBio gap sequences were evaluated for several properties such as GC content, read coverage, gap length, ability to form strong secondary structures, and corresponding annotations. Our hypothesis that strong secondary DNA structures blocked DNA polymerases and contributed to gap sequences was not accepted. PacBio assemblies had few limitations overall and gaps were explained as cumulative effect of lower than average sequence coverage and repetitive sequences at contig termini. An important aspect of the present study is the compilation of biological features that interfered with assembly and included active transposons, multiple plasmid sequences, phage DNA integration, and large sequence duplication. Our targeted genome finishing approach and systematic evaluation of the unassembled DNA will be useful for others looking to close, finish, and polish microbial genome sequences.
Differential Effects of Alcohol on Working Memory: Distinguishing Multiple Processes
Saults, J. Scott; Cowan, Nelson; Sher, Kenneth J.; Moreno, Matthew V.
2008-01-01
We assessed effects of alcohol consumption on different types of working memory (WM) tasks in an attempt to characterize the nature of alcohol effects on cognition. The WM tasks varied in two properties of materials to be retained in a two-stimulus comparison procedure. Conditions included (1) spatial arrays of colors, (2) temporal sequences of colors, (3) spatial arrays of spoken digits, and (4) temporal sequences of spoken digits. Alcohol consumption impaired memory for auditory and visual sequences, but not memory for simultaneous arrays of auditory or visual stimuli. These results suggest that processes needed to encode and maintain stimulus sequences, such as rehearsal, are more sensitive to alcohol intoxication than other WM mechanisms needed to maintain multiple concurrent items, such as focusing attention on them. These findings help to resolve disparate findings from prior research into alcohol’s effect on WM and on divided attention. The results suggest that moderate doses of alcohol impair WM by affecting certain mnemonic strategies and executive processes rather than by shrinking the basic holding capacity of WM. PMID:18179311
Differential effects of alcohol on working memory: distinguishing multiple processes.
Saults, J Scott; Cowan, Nelson; Sher, Kenneth J; Moreno, Matthew V
2007-12-01
The authors assessed effects of alcohol consumption on different types of working memory (WM) tasks in an attempt to characterize the nature of alcohol effects on cognition. The WM tasks varied in 2 properties of materials to be retained in a 2-stimulus comparison procedure. Conditions included (a) spatial arrays of colors, (b) temporal sequences of colors, (c) spatial arrays of spoken digits, and (d) temporal sequences of spoken digits. Alcohol consumption impaired memory for auditory and visual sequences but not memory for simultaneous arrays of auditory or visual stimuli. These results suggest that processes needed to encode and maintain stimulus sequences, such as rehearsal, are more sensitive to alcohol intoxication than other WM mechanisms needed to maintain multiple concurrent items, such as focusing attention on them. These findings help to resolve disparate findings from prior research on alcohol's effect on WM and on divided attention. The results suggest that moderate doses of alcohol impair WM by affecting certain mnemonic strategies and executive processes rather than by shrinking the basic holding capacity of WM. (c) 2008 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Ruohoniemi, J. M.; Greenwald, R. A.; Oksavik, K.; Baker, J. B.
2007-12-01
The electric fields at high latitudes are often modeled as a static pattern in the absence of variation in solar wind parameters or geomagnetic disturbance. However, temporal variability in the local electric fields on time scales of minutes for stable conditions has been reported and characterized statistically as an intrinsic property amounting to turbulence. We describe the results of applying a new technique to SuperDARN HF radar observations of ionospheric plasma convection at middle and high latitudes that gives views of the variability of the electric fields at sub-second time scales. We address the question of whether there is a limit to the temporal scale of the electric field variability and consider whether the turbulence on minute time scales is due to organized but unresolved behavior. The basis of the measurements is the ability to record raw samples from the individual multipulse sequences that are transmitted during the standard 3 or 6-second SuperDARN integration period; a backscattering volume is then effectively sampled at a cadence of 200 ms. The returns from the individual sequences are often sufficiently well-ordered to permit a sequence-by-sequence characterization of the electric field and backscattered power. We attempt a statistical characterization of the variability at these heretofore inaccessible time scales and consider how variability is influenced by solar wind and magentospheric factors.
Ketchum, Myles J; Weyand, Theodore G; Weed, Peter F; Winsauer, Peter J
2016-05-01
Learning is believed to be reflected in the activity of the hippocampus. However, neural correlates of learning have been difficult to characterize because hippocampal activity is integrated with ongoing behavior. To address this issue, male rats (n = 5) implanted with electrodes (n = 14) in the CA1 subfield responded during two tasks within a single test session. In one task, subjects acquired a new 3-response sequence (acquisition), whereas in the other task, subjects completed a well-rehearsed 3-response sequence (performance). Both tasks though could be completed using an identical response topography and used the same sensory stimuli and schedule of reinforcement. More important, comparing neural patterns during sequence acquisition to those during sequence performance allows for a subtractive approach whereby activity associated with learning could potentially be dissociated from the activity associated with ongoing behavior. At sites where CA1 activity was closely associated with behavior, the patterns of activity were differentially modulated by key position and the serial position of a response within the schedule of reinforcement. Temporal shifts between peak activity and responding on particular keys also occurred during sequence acquisition, but not during sequence performance. Ethanol disrupted CA1 activity while producing rate-decreasing effects in both tasks and error-increasing effects that were more selective for sequence acquisition than sequence performance. Ethanol also produced alterations in the magnitude of modulations and temporal pattern of CA1 activity, although these effects were not selective for sequence acquisition. Similar to ethanol, hippocampal micro-stimulation decreased response rate in both tasks and selectively increased the percentage of errors during sequence acquisition, and provided a more direct demonstration of hippocampal involvement during sequence acquisition. Together, these results strongly support the notion that ethanol disrupts sequence acquisition by disrupting hippocampal activity and that the hippocampus is necessary for the conditioned associations required for sequence acquisition. © 2015 Wiley Periodicals, Inc.
Ketchum, Myles J.; Weyand, Theodore G.; Weed, Peter F.; Winsauer, Peter J.
2015-01-01
Learning is believed to be reflected in the activity of the hippocampus. However, neural correlates of learning have been difficult to characterize because hippocampal activity is integrated with ongoing behavior. To address this issue, male rats (n=5) implanted with electrodes (n=14) in the CA1 subfield responded during two tasks within a single test session. In one task, subjects acquired a new 3-response sequence (acquisition), whereas in the other task, subjects completed a well-rehearsed 3-response sequence (performance). Both tasks though could be completed using an identical response topography and used the same sensory stimuli and schedule of reinforcement. More important, comparing neural patterns during sequence acquisition to those during sequence performance allows for a subtractive approach whereby activity associated with learning could potentially be dissociated from the activity associated with ongoing behavior. At sites where CA1 activity was closely associated with behavior, the patterns of activity were differentially modulated by key position and the serial position of a response within the schedule of reinforcement. Temporal shifts between peak activity and responding on particular keys also occurred during sequence acquisition, but not during sequence performance. Ethanol disrupted CA1 activity while producing rate-decreasing effects in both tasks and error-increasing effects that were more selective for sequence acquisition than sequence performance. Ethanol also produced alterations in the magnitude of modulations and temporal pattern of CA1 activity, although these effects were not selective for sequence acquisition. Similar to ethanol, hippocampal micro-stimulation decreased response rate in both tasks and selectively increased the percentage of errors during sequence acquisition, and provided a more direct demonstration of hippocampal involvement during sequence acquisition. Together, these results strongly support the notion that ethanol disrupts sequence acquisition by disrupting hippocampal activity and that the hippocampus is necessary for the conditioned associations required for sequence acquisition. PMID:26482846
A Novel Cylindrical Representation for Characterizing Intrinsic Properties of Protein Sequences.
Yu, Jia-Feng; Dou, Xiang-Hua; Wang, Hong-Bo; Sun, Xiao; Zhao, Hui-Ying; Wang, Ji-Hua
2015-06-22
The composition and sequence order of amino acid residues are the two most important characteristics to describe a protein sequence. Graphical representations facilitate visualization of biological sequences and produce biologically useful numerical descriptors. In this paper, we propose a novel cylindrical representation by placing the 20 amino acid residue types in a circle and sequence positions along the z axis. This representation allows visualization of the composition and sequence order of amino acids at the same time. Ten numerical descriptors and one weighted numerical descriptor have been developed to quantitatively describe intrinsic properties of protein sequences on the basis of the cylindrical model. Their applications to similarity/dissimilarity analysis of nine ND5 proteins indicated that these numerical descriptors are more effective than several classical numerical matrices. Thus, the cylindrical representation obtained here provides a new useful tool for visualizing and charactering protein sequences. An online server is available at http://biophy.dzu.edu.cn:8080/CNumD/input.jsp .
Mary E. Lucero; Jerry R. Barrow; Ruth Sedillo; Pedro Osuna-Avila; Isaac Reyes-Vera
2008-01-01
Obligate fungal endophytes form cryptic communities in vascular plants that can defy detection and isolation by microscopic examination of reproductive structures. Molecular detection by PCR amplification of fungal DNA sequences alone is insufficient, since target endophyte sequences are unknown and difficult to distinguish from sequences already characterized as plant...
Using high throughput sequencing to explore the biodiversity in oral bacterial communities.
Diaz, P I; Dupuy, A K; Abusleme, L; Reese, B; Obergfell, C; Choquette, L; Dongari-Bagtzoglou, A; Peterson, D E; Terzi, E; Strausbaugh, L D
2012-06-01
High throughput sequencing of 16S ribosomal RNA gene amplicons is a cost-effective method for characterization of oral bacterial communities. However, before undertaking large-scale studies, it is necessary to understand the technique-associated limitations and intrinsic variability of the oral ecosystem. In this work we evaluated bias in species representation using an in vitro-assembled mock community of oral bacteria. We then characterized the bacterial communities in saliva and buccal mucosa of five healthy subjects to investigate the power of high throughput sequencing in revealing their diversity and biogeography patterns. Mock community analysis showed primer and DNA isolation biases and an overestimation of diversity that was reduced after eliminating singleton operational taxonomic units (OTUs). Sequencing of salivary and mucosal communities found a total of 455 OTUs (0.3% dissimilarity) with only 78 of these present in all subjects. We demonstrate that this variability was partly the result of incomplete richness coverage even at great sequencing depths, and so comparing communities by their structure was more effective than comparisons based solely on membership. With respect to oral biogeography, we found inter-subject variability in community structure was lower than site differences between salivary and mucosal communities within subjects. These differences were evident at very low sequencing depths and were mostly caused by the abundance of Streptococcus mitis and Gemella haemolysans in mucosa. In summary, we present an experimental and data analysis framework that will facilitate design and interpretation of pyrosequencing-based studies. Despite challenges associated with this technique, we demonstrate its power for evaluation of oral diversity and biogeography patterns. © 2012 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Choudhary, Kuldeep; Kumar, Santosh
2017-05-01
The application of electro-optic effect in lithium-niobate-based Mach-Zehnder interferometer to design a 3-bit optical pseudorandom binary sequence (PRBS) generator has been proposed, which is characterized by its simplicity of generation and stability. The proposed device is optoelectronic in nature. The PBRS generator is immensely applicable for pattern generation, encryption, and coding applications in optical networks. The study is carried out by simulating the proposed device with beam propagation method.
Inference of Functionally-Relevant N-acetyltransferase Residues Based on Statistical Correlations.
Neuwald, Andrew F; Altschul, Stephen F
2016-12-01
Over evolutionary time, members of a superfamily of homologous proteins sharing a common structural core diverge into subgroups filling various functional niches. At the sequence level, such divergence appears as correlations that arise from residue patterns distinct to each subgroup. Such a superfamily may be viewed as a population of sequences corresponding to a complex, high-dimensional probability distribution. Here we model this distribution as hierarchical interrelated hidden Markov models (hiHMMs), which describe these sequence correlations implicitly. By characterizing such correlations one may hope to obtain information regarding functionally-relevant properties that have thus far evaded detection. To do so, we infer a hiHMM distribution from sequence data using Bayes' theorem and Markov chain Monte Carlo (MCMC) sampling, which is widely recognized as the most effective approach for characterizing a complex, high dimensional distribution. Other routines then map correlated residue patterns to available structures with a view to hypothesis generation. When applied to N-acetyltransferases, this reveals sequence and structural features indicative of functionally important, yet generally unknown biochemical properties. Even for sets of proteins for which nothing is known beyond unannotated sequences and structures, this can lead to helpful insights. We describe, for example, a putative coenzyme-A-induced-fit substrate binding mechanism mediated by arginine residue switching between salt bridge and π-π stacking interactions. A suite of programs implementing this approach is available (psed.igs.umaryland.edu).
High-throughput analysis of T-DNA location and structure using sequence capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inagaki, Soichi; Henry, Isabelle M.; Lieberman, Meric C.
Agrobacterium-mediated transformation of plants with T-DNA is used both to introduce transgenes and for mutagenesis. Conventional approaches used to identify the genomic location and the structure of the inserted T-DNA are laborious and high-throughput methods using next-generation sequencing are being developed to address these problems. Here, we present a cost-effective approach that uses sequence capture targeted to the T-DNA borders to select genomic DNA fragments containing T-DNA—genome junctions, followed by Illumina sequencing to determine the location and junction structure of T-DNA insertions. Multiple probes can be mixed so that transgenic lines transformed with different T-DNA types can be processed simultaneously,more » using a simple, index-based pooling approach. We also developed a simple bioinformatic tool to find sequence read pairs that span the junction between the genome and T-DNA or any foreign DNA. We analyzed 29 transgenic lines of Arabidopsis thaliana, each containing inserts from 4 different T-DNA vectors. We determined the location of T-DNA insertions in 22 lines, 4 of which carried multiple insertion sites. Additionally, our analysis uncovered a high frequency of unconventional and complex T-DNA insertions, highlighting the needs for high-throughput methods for T-DNA localization and structural characterization. Transgene insertion events have to be fully characterized prior to use as commercial products. As a result, our method greatly facilitates the first step of this characterization of transgenic plants by providing an efficient screen for the selection of promising lines.« less
High-throughput analysis of T-DNA location and structure using sequence capture
Inagaki, Soichi; Henry, Isabelle M.; Lieberman, Meric C.; ...
2015-10-07
Agrobacterium-mediated transformation of plants with T-DNA is used both to introduce transgenes and for mutagenesis. Conventional approaches used to identify the genomic location and the structure of the inserted T-DNA are laborious and high-throughput methods using next-generation sequencing are being developed to address these problems. Here, we present a cost-effective approach that uses sequence capture targeted to the T-DNA borders to select genomic DNA fragments containing T-DNA—genome junctions, followed by Illumina sequencing to determine the location and junction structure of T-DNA insertions. Multiple probes can be mixed so that transgenic lines transformed with different T-DNA types can be processed simultaneously,more » using a simple, index-based pooling approach. We also developed a simple bioinformatic tool to find sequence read pairs that span the junction between the genome and T-DNA or any foreign DNA. We analyzed 29 transgenic lines of Arabidopsis thaliana, each containing inserts from 4 different T-DNA vectors. We determined the location of T-DNA insertions in 22 lines, 4 of which carried multiple insertion sites. Additionally, our analysis uncovered a high frequency of unconventional and complex T-DNA insertions, highlighting the needs for high-throughput methods for T-DNA localization and structural characterization. Transgene insertion events have to be fully characterized prior to use as commercial products. As a result, our method greatly facilitates the first step of this characterization of transgenic plants by providing an efficient screen for the selection of promising lines.« less
Holst-Jensen, Arne; Spilsberg, Bjørn; Arulandhu, Alfred J; Kok, Esther; Shi, Jianxin; Zel, Jana
2016-07-01
The emergence of high-throughput, massive or next-generation sequencing technologies has created a completely new foundation for molecular analyses. Various selective enrichment processes are commonly applied to facilitate detection of predefined (known) targets. Such approaches, however, inevitably introduce a bias and are prone to miss unknown targets. Here we review the application of high-throughput sequencing technologies and the preparation of fit-for-purpose whole genome shotgun sequencing libraries for the detection and characterization of genetically modified and derived products. The potential impact of these new sequencing technologies for the characterization, breeding selection, risk assessment, and traceability of genetically modified organisms and genetically modified products is yet to be fully acknowledged. The published literature is reviewed, and the prospects for future developments and use of the new sequencing technologies for these purposes are discussed.
ERIC Educational Resources Information Center
Hughes, Robert W.; Vachon, Francois; Jones, Dylan M.
2007-01-01
The disruption of short-term memory by to-be-ignored auditory sequences (the changing-state effect) has often been characterized as attentional capture by deviant events (deviation effect). However, the present study demonstrates that changing-state and deviation effects are functionally distinct forms of auditory distraction: The disruption of…
Characterization and Amplification of Gene-Based Simple Sequence Repeat (SSR) Markers in Date Palm.
Zhao, Yongli; Keremane, Manjunath; Prakash, Channapatna S; He, Guohao
2017-01-01
The paucity of molecular markers limits the application of genetic and genomic research in date palm (Phoenix dactylifera L.). Availability of expressed sequence tag (EST) sequences in date palm may provide a good resource for developing gene-based markers. This study characterizes a substantial fraction of transcriptome sequences containing simple sequence repeats (SSRs) from the EST sequences in date palm. The EST sequences studied are mainly homologous to those of Elaeis guineensis and Musa acuminata. A total of 911 gene-based SSR markers, characterized with functional annotations, have provided a useful basis not only for discovering candidate genes and understanding genetic basis of traits of interest but also for developing genetic and genomic tools for molecular research in date palm, such as diversity study, quantitative trait locus (QTL) mapping, and molecular breeding. The procedures of DNA extraction, polymerase chain reaction (PCR) amplification of these gene-based SSR markers, and gel electrophoresis of PCR products are described in this chapter.
Genetic characterization of K13965, a strain of Oak Vale virus from Western Australia
Quan, Phenix-Lan; Williams, David T.; Johansen, Cheryl A.; Jain, Komal; Petrosov, Alexandra; Diviney, Sinead M.; Tashmukhamedova, Alla; Hutchison, Stephen K.; Tesh, Robert B.; Mackenzie, John S.; Briese, Thomas; Lipkin, W. Ian
2011-01-01
K13965, an uncharacterized virus, was isolated in 1993 from Anopheles annulipes mosquitoes collected in the Kimberley region of northern Western Australia. Here, we report its genomic sequence, identify it as a rhabdovirus, and characterize its phylogenetic relationships. The genome comprises a P′ (C) and SH protein similar to the recently characterized Tupaia and Durham viruses, and shows overlap between G and L genes. Comparison of K13965 genome sequence to other rhabdoviruses identified K13965 as a strain of the unclassified Australian Oak Vale rhabdovirus, whose complete genome sequence we also determined. Phylogenetic analysis of N and L sequences indicated genetic relationship to a recently proposed Sandjima virus clade, although the Oak Vale virus sequences form a branch separate from the African members of that group. PMID:21740935
Carnivore-specific SINEs (Can-SINEs): distribution, evolution, and genomic impact.
Walters-Conte, Kathryn B; Johnson, Diana L E; Allard, Marc W; Pecon-Slattery, Jill
2011-01-01
Short interspersed nuclear elements (SINEs) are a type of class 1 transposable element (retrotransposon) with features that allow investigators to resolve evolutionary relationships between populations and species while providing insight into genome composition and function. Characterization of a Carnivora-specific SINE family, Can-SINEs, has, has aided comparative genomic studies by providing rare genomic changes, and neutral sequence variants often needed to resolve difficult evolutionary questions. In addition, Can-SINEs constitute a significant source of functional diversity with Carnivora. Publication of the whole-genome sequence of domestic dog, domestic cat, and giant panda serves as a valuable resource in comparative genomic inferences gleaned from Can-SINEs. In anticipation of forthcoming studies bolstered by new genomic data, this review describes the discovery and characterization of Can-SINE motifs as well as describes composition, distribution, and effect on genome function. As the contribution of noncoding sequences to genomic diversity becomes more apparent, SINEs and other transposable elements will play an increasingly large role in mammalian comparative genomics.
Carnivore-Specific SINEs (Can-SINEs): Distribution, Evolution, and Genomic Impact
Johnson, Diana L.E.; Allard, Marc W.; Pecon-Slattery, Jill
2011-01-01
Short interspersed nuclear elements (SINEs) are a type of class 1 transposable element (retrotransposon) with features that allow investigators to resolve evolutionary relationships between populations and species while providing insight into genome composition and function. Characterization of a Carnivora-specific SINE family, Can-SINEs, has, has aided comparative genomic studies by providing rare genomic changes, and neutral sequence variants often needed to resolve difficult evolutionary questions. In addition, Can-SINEs constitute a significant source of functional diversity with Carnivora. Publication of the whole-genome sequence of domestic dog, domestic cat, and giant panda serves as a valuable resource in comparative genomic inferences gleaned from Can-SINEs. In anticipation of forthcoming studies bolstered by new genomic data, this review describes the discovery and characterization of Can-SINE motifs as well as describes composition, distribution, and effect on genome function. As the contribution of noncoding sequences to genomic diversity becomes more apparent, SINEs and other transposable elements will play an increasingly large role in mammalian comparative genomics. PMID:21846743
Ye, Xueting; Zhao, Nan; Yu, Xi; Han, Xiaoli; Gao, Huiyuan; Zhang, Xiaozhe
2016-11-01
Panax ginseng is an important herb that has clear effects on the treatment of diverse diseases. Until now, the natural peptide constitution of this herb remains unclear. Here, we conduct an extensive characterization of Ginseng peptidome using MS-based data mining and sequencing. The screen on the charge states of precursor ions indicated that Ginseng is a peptide-rich herb in comparison of a number of commonly used herbs. The Ginseng peptides were then extracted and submitted to nano-LC-MS/MS analysis using different fragmentation modes, including CID, high-energy collisional dissociation, and electron transfer dissociation. Further database search and de novo sequencing allowed the identification of total 308 peptides, some of which might have important biological activities. This study illustrates the abundance and sequences of endogenous Ginseng peptides, thus providing the information of more candidates for the screening of active compounds for future biological research and drug discovery studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Complete genome sequence of Ikoma lyssavirus.
Marston, Denise A; Ellis, Richard J; Horton, Daniel L; Kuzmin, Ivan V; Wise, Emma L; McElhinney, Lorraine M; Banyard, Ashley C; Ngeleja, Chanasa; Keyyu, Julius; Cleaveland, Sarah; Lembo, Tiziana; Rupprecht, Charles E; Fooks, Anthony R
2012-09-01
Lyssaviruses (family Rhabdoviridae) constitute one of the most important groups of viral zoonoses globally. All lyssaviruses cause the disease rabies, an acute progressive encephalitis for which, once symptoms occur, there is no effective cure. Currently available vaccines are highly protective against the predominantly circulating lyssavirus species. Using next-generation sequencing technologies, we have obtained the whole-genome sequence for a novel lyssavirus, Ikoma lyssavirus (IKOV), isolated from an African civet in Tanzania displaying clinical signs of rabies. Genetically, this virus is the most divergent within the genus Lyssavirus. Characterization of the genome will help to improve our understanding of lyssavirus diversity and enable investigation into vaccine-induced immunity and protection.
Augmented brain function by coordinated reset stimulation with slowly varying sequences.
Zeitler, Magteld; Tass, Peter A
2015-01-01
Several brain disorders are characterized by abnormally strong neuronal synchrony. Coordinated Reset (CR) stimulation was developed to selectively counteract abnormal neuronal synchrony by desynchronization. For this, phase resetting stimuli are delivered to different subpopulations in a timely coordinated way. In neural networks with spike timing-dependent plasticity CR stimulation may eventually lead to an anti-kindling, i.e., an unlearning of abnormal synaptic connectivity and abnormal synchrony. The spatiotemporal sequence by which all stimulation sites are stimulated exactly once is called the stimulation site sequence, or briefly sequence. So far, in simulations, pre-clinical and clinical applications CR was applied either with fixed sequences or rapidly varying sequences (RVS). In this computational study we show that appropriate repetition of the sequence with occasional random switching to the next sequence may significantly improve the anti-kindling effect of CR. To this end, a sequence is applied many times before randomly switching to the next sequence. This new method is called SVS CR stimulation, i.e., CR with slowly varying sequences. In a neuronal network with strong short-range excitatory and weak long-range inhibitory dynamic couplings SVS CR stimulation turns out to be superior to CR stimulation with fixed sequences or RVS.
Augmented brain function by coordinated reset stimulation with slowly varying sequences
Zeitler, Magteld; Tass, Peter A.
2015-01-01
Several brain disorders are characterized by abnormally strong neuronal synchrony. Coordinated Reset (CR) stimulation was developed to selectively counteract abnormal neuronal synchrony by desynchronization. For this, phase resetting stimuli are delivered to different subpopulations in a timely coordinated way. In neural networks with spike timing-dependent plasticity CR stimulation may eventually lead to an anti-kindling, i.e., an unlearning of abnormal synaptic connectivity and abnormal synchrony. The spatiotemporal sequence by which all stimulation sites are stimulated exactly once is called the stimulation site sequence, or briefly sequence. So far, in simulations, pre-clinical and clinical applications CR was applied either with fixed sequences or rapidly varying sequences (RVS). In this computational study we show that appropriate repetition of the sequence with occasional random switching to the next sequence may significantly improve the anti-kindling effect of CR. To this end, a sequence is applied many times before randomly switching to the next sequence. This new method is called SVS CR stimulation, i.e., CR with slowly varying sequences. In a neuronal network with strong short-range excitatory and weak long-range inhibitory dynamic couplings SVS CR stimulation turns out to be superior to CR stimulation with fixed sequences or RVS. PMID:25873867
Manríquez, René A; Vera, Tamara; Villalba, Melina V; Mancilla, Alejandra; Vakharia, Vikram N; Yañez, Alejandro J; Cárcamo, Juan G
2017-01-31
The infectious pancreatic necrosis virus (IPNV) causes significant economic losses in Chilean salmon farming. For effective sanitary management, the IPNV strains present in Chile need to be fully studied, characterized, and constantly updated at the molecular level. In this study, 36 Chilean IPNV isolates collected over 6 years (2006-2011) from Salmo salar, Oncorhynchus mykiss, and Oncorhynchus kisutch were genotypically characterized. Salmonid samples were obtained from freshwater, estuary, and seawater sources from central, southern, and the extreme-south of Chile (35° to 53°S). Sequence analysis of the VP2 gene classified 10 IPNV isolates as genogroup 1 and 26 as genogroup 5. Analyses indicated a preferential, but not obligate, relationship between genogroup 5 isolates and S. salar infection. Fifteen genogroup 5 and nine genogroup 1 isolates presented VP2 gene residues associated with high virulence (i.e. Thr, Ala, and Thr at positions 217, 221, and 247, respectively). Four genogroup 5 isolates presented an oddly long VP5 deduced amino acid sequence (29.6 kDa). Analysis of the VP2 amino acid motifs associated with clinical and subclinical infections identified the clinical fingerprint in only genogroup 5 isolates; in contrast, the genogroup 1 isolates presented sequences predominantly associated with the subclinical fingerprint. Predictive analysis of VP5 showed an absence of transmembrane domains and plasma membrane tropism signals. WebLogo analysis of the VP5 BH domains revealed high identities with the marine birnavirus Y-6 and Japanese IPNV strain E1-S. Sequence analysis for putative 25 kDa proteins, coded by the ORF between VP2 and VP4, exhibited three putative nuclear localization sequences and signals of mitochondrial tropism in two isolates. This study provides important advances in updating the characterizations of IPNV strains present in Chile. The results from this study will help in identifying epidemiological links and generating specific biotechnological tools for controlling IPNV outbreaks in Chilean salmon farming.
BLAST and FASTA similarity searching for multiple sequence alignment.
Pearson, William R
2014-01-01
BLAST, FASTA, and other similarity searching programs seek to identify homologous proteins and DNA sequences based on excess sequence similarity. If two sequences share much more similarity than expected by chance, the simplest explanation for the excess similarity is common ancestry-homology. The most effective similarity searches compare protein sequences, rather than DNA sequences, for sequences that encode proteins, and use expectation values, rather than percent identity, to infer homology. The BLAST and FASTA packages of sequence comparison programs provide programs for comparing protein and DNA sequences to protein databases (the most sensitive searches). Protein and translated-DNA comparisons to protein databases routinely allow evolutionary look back times from 1 to 2 billion years; DNA:DNA searches are 5-10-fold less sensitive. BLAST and FASTA can be run on popular web sites, but can also be downloaded and installed on local computers. With local installation, target databases can be customized for the sequence data being characterized. With today's very large protein databases, search sensitivity can also be improved by searching smaller comprehensive databases, for example, a complete protein set from an evolutionarily neighboring model organism. By default, BLAST and FASTA use scoring strategies target for distant evolutionary relationships; for comparisons involving short domains or queries, or searches that seek relatively close homologs (e.g. mouse-human), shallower scoring matrices will be more effective. Both BLAST and FASTA provide very accurate statistical estimates, which can be used to reliably identify protein sequences that diverged more than 2 billion years ago.
Genetic characterization of K13965, a strain of Oak Vale virus from Western Australia.
Quan, Phenix-Lan; Williams, David T; Johansen, Cheryl A; Jain, Komal; Petrosov, Alexandra; Diviney, Sinead M; Tashmukhamedova, Alla; Hutchison, Stephen K; Tesh, Robert B; Mackenzie, John S; Briese, Thomas; Lipkin, W Ian
2011-09-01
K13965, an uncharacterized virus, was isolated in 1993 from Anopheles annulipes mosquitoes collected in the Kimberley region of northern Western Australia. Here, we report its genomic sequence, identify it as a rhabdovirus, and characterize its phylogenetic relationships. The genome comprises a P' (C) and SH protein similar to the recently characterized Tupaia and Durham viruses, and shows overlap between G and L genes. Comparison of K13965 genome sequence to other rhabdoviruses identified K13965 as a strain of the unclassified Australian Oak Vale rhabdovirus, whose complete genome sequence we also determined. Phylogenetic analysis of N and L sequences indicated genetic relationship to a recently proposed Sandjima virus clade, although the Oak Vale virus sequences form a branch separate from the African members of that group. Copyright © 2011 Elsevier B.V. All rights reserved.
Spotorno O, Angel E; Córdova, Luis; Solari I, Aldo
2008-12-01
To identify and characterize chilean samples of Trypanosoma cruzi and their association with hosts, the first 516 bp of the mitochondrial cytochrome b gene were sequenced from eight biological samples, and phylogenetically compared with other known 20 American sequences. The molecular characterization of these 28 sequences in a maximum likelihood phylogram (-lnL = 1255.12, tree length = 180, consistency index = 0.79) allowed the robust identification (bootstrap % > 99) of three previously known discrete typing units (DTU): DTU IIb, IIa, and I. An apparently undescribed new sequence found in four new chilean samples was detected and designated as DTU Ib; they were separated by 24.7 differences, but robustly related (bootstrap % = 97 in 500 replicates) to those of DTU I by sharing 12 substitutions, among which four were nonsynonymous ones. Such new DTU Ib was also robust (bootstrap % = 100), and characterized by 10 unambiguous substitutions, with a single nonsynonymous G to T change at site 409. The fact that two of such new sequences were found in parasites from a chilean endemic caviomorph rodent, Octodon degus, and that they were closely related to the ancient DTU I suggested old origins and a long association to caviomorph hosts.
The multilocus sequence typing network: mlst.net.
Aanensen, David M; Spratt, Brian G
2005-07-01
The unambiguous characterization of strains of a pathogen is crucial for addressing questions relating to its epidemiology, population and evolutionary biology. Multilocus sequence typing (MLST), which defines strains from the sequences at seven house-keeping loci, has become the method of choice for molecular typing of many bacterial and fungal pathogens (and non-pathogens), and MLST schemes and strain databases are available for a growing number of prokaryotic and eukaryotic organisms. Sequence data are ideal for strain characterization as they are unambiguous, meaning strains can readily be compared between laboratories via the Internet. Laboratories undertaking MLST can quickly progress from sequencing the seven gene fragments to characterizing their strains and relating them to those submitted by others and to the population as a whole. We provide the gateway to a number of MLST schemes, each of which contain a set of tools for the initial characterization of strains, and methods for relating query strains to other strains of the species, including clustering based on differences in allelic profiles, phylogenetic trees based on concatenated sequences, and a recently developed method (eBURST) for identifying clonal complexes within a species and displaying the overall structure of the population. This network of MLST websites is available at http://www.mlst.net.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aw, Tiong Gim; Howe, Adina; Rose, Joan B.
2014-12-01
Genomic-based molecular techniques are emerging as powerful tools that allow a comprehensive characterization of water and wastewater microbiomes. Most recently, next generation sequencing (NGS) technologies which produce large amounts of sequence data are beginning to impact the field of environmental virology. In this study, NGS and bioinformatics have been employed for the direct detection and characterization of viruses in wastewater and of viruses isolated after cell culture. Viral particles were concentrated and purified from sewage samples by polyethylene glycol precipitation. Viral nucleic acid was extracted and randomly amplified prior to sequencing using Illumina technology, yielding a total of 18 millionmore » sequence reads. Most of the viral sequences detected could not be characterized, indicating the great viral diversity that is yet to be discovered. This sewage virome was dominated by bacteriophages and contained sequences related to known human pathogenic viruses such as adenoviruses (species B, C and F), polyomaviruses JC and BK and enteroviruses (type B). An array of other animal viruses was also found, suggesting unknown zoonotic viruses. This study demonstrated the feasibility of metagenomic approaches to characterize viruses in complex environmental water samples.« less
Jongsma, Marijtje L A; Gerrits, Niels J H M; van Rijn, Clementina M; Quiroga, Rodrigo Quian; Maes, Joseph H R
2012-07-01
The aim of this study was to track recall performance and event-related potentials (ERPs) across multiple trials in a digit-learning task. When a sequence is practiced by repetition, the number of errors typically decreases and a learning curve emerges. Until now, almost all ERP learning and memory research has focused on effects after a single presentation and, therefore, fails to capture the dynamic changes that characterize a learning process. However, the current study used a free-recall task in which a sequence of ten auditory digits was presented repeatedly. Auditory sequences of ten digits were presented in a logical order (control sequences) or in a random order (experimental sequences). Each sequence was presented six times. Participants had to reproduce the sequence after each presentation. EEG recordings were made at the time of the digit presentations. Recall performance for the control sequences was close to asymptote right after the first learning trial, whereas performance for the experimental sequences initially displayed primacy and recency effects. However, these latter effects gradually disappeared over the six repetitions, resulting in near-asymptotic recall performance for all digits. The performance improvement for the middle items of the list was accompanied by an increase in P300 amplitude, implying a close correspondence between this ERP component and the behavioral data. These results, which were discussed in the framework of theories on the functional significance of the P300 amplitude, add to the scarce empirical data on the dynamics of ERP responses in the process of intentional learning. Copyright © 2011 Elsevier B.V. All rights reserved.
A Case Study into Microbial Genome Assembly Gap Sequences and Finishing Strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Utturkar, Sagar M.; Klingeman, Dawn M.; Hurt, Jr., Richard A.
This study characterized regions of DNA which remained unassembled by either PacBio and Illumina sequencing technologies for seven bacterial genomes. Two genomes were manually finished using bioinformatics and PCR/Sanger sequencing approaches and regions not assembled by automated software were analyzed. Gaps present within Illumina assemblies mostly correspond to repetitive DNA regions such as multiple rRNA operon sequences. PacBio gap sequences were evaluated for several properties such as GC content, read coverage, gap length, ability to form strong secondary structures, and corresponding annotations. Our hypothesis that strong secondary DNA structures blocked DNA polymerases and contributed to gap sequences was not accepted.more » PacBio assemblies had few limitations overall and gaps were explained as cumulative effect of lower than average sequence coverage and repetitive sequences at contig termini. An important aspect of the present study is the compilation of biological features that interfered with assembly and included active transposons, multiple plasmid sequences, phage DNA integration, and large sequence duplication. Furthermore, our targeted genome finishing approach and systematic evaluation of the unassembled DNA will be useful for others looking to close, finish, and polish microbial genome sequences.« less
A Case Study into Microbial Genome Assembly Gap Sequences and Finishing Strategies
Utturkar, Sagar M.; Klingeman, Dawn M.; Hurt, Jr., Richard A.; ...
2017-07-18
This study characterized regions of DNA which remained unassembled by either PacBio and Illumina sequencing technologies for seven bacterial genomes. Two genomes were manually finished using bioinformatics and PCR/Sanger sequencing approaches and regions not assembled by automated software were analyzed. Gaps present within Illumina assemblies mostly correspond to repetitive DNA regions such as multiple rRNA operon sequences. PacBio gap sequences were evaluated for several properties such as GC content, read coverage, gap length, ability to form strong secondary structures, and corresponding annotations. Our hypothesis that strong secondary DNA structures blocked DNA polymerases and contributed to gap sequences was not accepted.more » PacBio assemblies had few limitations overall and gaps were explained as cumulative effect of lower than average sequence coverage and repetitive sequences at contig termini. An important aspect of the present study is the compilation of biological features that interfered with assembly and included active transposons, multiple plasmid sequences, phage DNA integration, and large sequence duplication. Furthermore, our targeted genome finishing approach and systematic evaluation of the unassembled DNA will be useful for others looking to close, finish, and polish microbial genome sequences.« less
A Case Study into Microbial Genome Assembly Gap Sequences and Finishing Strategies
Utturkar, Sagar M.; Klingeman, Dawn M.; Hurt, Richard A.; Brown, Steven D.
2017-01-01
This study characterized regions of DNA which remained unassembled by either PacBio and Illumina sequencing technologies for seven bacterial genomes. Two genomes were manually finished using bioinformatics and PCR/Sanger sequencing approaches and regions not assembled by automated software were analyzed. Gaps present within Illumina assemblies mostly correspond to repetitive DNA regions such as multiple rRNA operon sequences. PacBio gap sequences were evaluated for several properties such as GC content, read coverage, gap length, ability to form strong secondary structures, and corresponding annotations. Our hypothesis that strong secondary DNA structures blocked DNA polymerases and contributed to gap sequences was not accepted. PacBio assemblies had few limitations overall and gaps were explained as cumulative effect of lower than average sequence coverage and repetitive sequences at contig termini. An important aspect of the present study is the compilation of biological features that interfered with assembly and included active transposons, multiple plasmid sequences, phage DNA integration, and large sequence duplication. Our targeted genome finishing approach and systematic evaluation of the unassembled DNA will be useful for others looking to close, finish, and polish microbial genome sequences. PMID:28769883
Rapid resistome mapping using nanopore sequencing
Imamovic, Lejla; Hashim Ellabaan, Mostafa M.; van Schaik, Willem; Koza, Anna
2017-01-01
Abstract The emergence of antibiotic resistance in human pathogens has become a major threat to modern medicine. The outcome of antibiotic treatment can be affected by the composition of the gut. Accordingly, knowledge of the gut resistome composition could enable more effective and individualized treatment of bacterial infections. Yet, rapid workflows for resistome characterization are lacking. To address this challenge we developed the poreFUME workflow that deploys functional metagenomic selections and nanopore sequencing to resistome mapping. We demonstrate the approach by functionally characterizing the gut resistome of an ICU (intensive care unit) patient. The accuracy of the poreFUME pipeline is with >97% sufficient for the annotation of antibiotic resistance genes. The poreFUME pipeline provides a promising approach for efficient resistome profiling that could inform antibiotic treatment decisions in the future. PMID:28062856
Mendes, Maria Anita; Palma, Mario Sergio
2006-11-01
Two bradykinin-related peptides (Protopolybiakinin-I and Protopolybiakinin-II) were isolated from the venom of the social wasp Protopolybia exigua by RP-HPLC, and sequenced by Edman degradation method. Peptide sequences of Protopolybiakinin-I and Protopolybiakinin-II were DKNKKPIRVGGRRPPGFTR-OH and DKNKKPIWMAGFPGFTPIR-OH, respectively. Synthetic peptides with identical sequences to the bradykinin-related peptides and their biological functions were characterized. Protopolybiakinin-I caused less potent constriction of the isolated rat ileum muscles than bradykinin (BK). In addition, it caused degranulation of mast cells which was seven times more potent than BK. This peptide causes algesic effects due to the direct activation of B(2)-receptors. Protopolybiakinin-II is not an agonist of rat ileum muscle and had no algesic effects. However, Protopolybiakinin-II was found to be 10 times more potent as a mast cell degranulator than BK. The amino acid sequence of Protopolybiakinin-I is the longest among the known wasp kinins.
Cumulative Axial and Torsional Fatigue: An Investigation of Load-Type Sequencing Effects
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh; Bonacuse, Peter J.
2000-01-01
Cumulative fatigue behavior of a wrought cobalt-base superalloy, Haynes 188 was investigated at 538 C under various single-step sequences of axial and torsional loading conditions. Initially, fully-reversed, axial and torsional fatigue tests were conducted under strain control at 538 C on thin-walled tubular specimens to establish baseline fatigue life relationships. Subsequently, four sequences (axial/axial, torsional/torsional, axial/torsional, and torsional/axial) of two load-level fatigue tests were conducted to characterize both the load-order (high/low) and load-type sequencing effects. For the two load-level tests, summations of life fractions and the remaining fatigue lives at the second load-level were computed by the Miner's Linear Damage Rule (LDR) and a nonlinear Damage Curve Approach (DCA). In general, for all four cases predictions by LDR were unconservative. Predictions by the DCA were within a factor of two of the experimentally observed fatigue lives for a majority of the cumulative axial and torsional fatigue tests.
Chandra, Saket; Kazmi, Andaleeb Z; Ahmed, Zainab; Roychowdhury, Gargi; Kumari, Veena; Kumar, Manish; Mukhopadhyay, Kunal
2017-07-01
NB-ARC domain-containing resistance genes from the wheat genome were identified, characterized and localized on chromosome arms that displayed differential yet positive response during incompatible and compatible leaf rust interactions. Wheat (Triticum aestivum L.) is an important cereal crop; however, its production is affected severely by numerous diseases including rusts. An efficient, cost-effective and ecologically viable approach to control pathogens is through host resistance. In wheat, high numbers of resistance loci are present but only few have been identified and cloned. A comprehensive analysis of the NB-ARC-containing genes in complete wheat genome was accomplished in this study. Complete NB-ARC encoding genes were mined from the Ensembl Plants database to predict 604 NB-ARC containing sequences using the HMM approach. Genome-wide analysis of orthologous clusters in the NB-ARC-containing sequences of wheat and other members of the Poaceae family revealed maximum homology with Oryza sativa indica and Brachypodium distachyon. The identification of overlap between orthologous clusters enabled the elucidation of the function and evolution of resistance proteins. The distributions of the NB-ARC domain-containing sequences were found to be balanced among the three wheat sub-genomes. Wheat chromosome arms 4AL and 7BL had the most NB-ARC domain-containing contigs. The spatio-temporal expression profiling studies exemplified the positive role of these genes in resistant and susceptible wheat plants during incompatible and compatible interaction in response to the leaf rust pathogen Puccinia triticina. Two NB-ARC domain-containing sequences were modelled in silico, cloned and sequenced to analyze their fine structures. The data obtained in this study will augment isolation, characterization and application NB-ARC resistance genes in marker-assisted selection based breeding programs for improving rust resistance in wheat.
Tavares, D; Tully, K; Dobner, P R
1999-10-15
The promoter region of the mouse high affinity neurotensin receptor (Ntr-1) gene was characterized, and sequences required for expression in neuroblastoma cell lines that express high affinity NT-binding sites were characterized. Me(2)SO-induced neuronal differentiation of N1E-115 neuroblastoma cells increased both the expression of the endogenous Ntr-1 gene and reporter genes driven by NTR-1 promoter sequences by 3-4-fold. Deletion analysis revealed that an 83-base pair promoter region containing the transcriptional start site is required for Me(2)SO activation. Detailed mutational analysis of this region revealed that a CACCC box and the central region of a large GC-rich palindrome are the crucial cis-regulatory elements required for Me(2)SO induction. The CACCC box is bound by at least one factor that is induced upon Me(2)SO treatment of N1E-115 cells. The Me(2)SO effect was found to be both selective and cell type-restricted. Basal expression in the neuroblastoma cell lines required a distinct set of sequences, including an Sp1-like sequence, and a sequence resembling an NGFI-A-binding site; however, a more distal 5' sequence was found to repress basal activity in N1E-115 cells. These results provide evidence that Ntr-1 gene regulation involves both positive and negative regulatory elements located in the 5'-flanking region and that Ntr-1 gene activation involves the coordinate activation or induction of several factors, including a CACCC box binding complex.
Carney, Laura T.; Wilkenfeld, Joshua S.; Lane, Pam D.; ...
2016-06-02
Productivity of algal mass culture can be severely reduced by contaminating organisms. It is, therefore, important to identify contaminants, determine their effect on productivity and, ultimately, develop countermeasures against such contamination. In this paper, we utilized microbiome analysis by second-generation sequencing of small subunit rRNA genes to characterize the predator and pathogen burden of open raceway cultures of Nannochloropsis salina. Samples were analyzed from replicate raceways before and after crashes. In one culture cycle, we identified two algivorous species, the rotifer Brachionus and gastrotrich Chaetonotus, the presence of which may have contributed to the loss of algal biomass. In themore » second culture cycle, the raceways were treated with hypochlorite in an unsuccessful attempt to interdict the crash. Finally, our analyses were shown to be an effective strategy for the identification of the biological contaminants and the characterization of intervention strategies.« less
Characterization of a native hammerhead ribozyme derived from schistosomes
OSBORNE, EDITH M.; SCHAAK, JANELL E.; DEROSE, VICTORIA J.
2005-01-01
A recent re-examination of the role of the helices surrounding the conserved core of the hammerhead ribozyme has identified putative loop–loop interactions between stems I and II in native hammerhead sequences. These extended hammerhead sequences are more active at low concentrations of divalent cations than are minimal hammerheads. The loop–loop interactions are proposed to stabilize a more active conformation of the conserved core. Here, a kinetic and thermodynamic characterization of an extended hammerhead sequence derived from Schistosoma mansoni is performed. Biphasic kinetics are observed, suggesting the presence of at least two conformers, one cleaving with a fast rate and the other with a slow rate. Replacing loop II with a poly(U) sequence designed to eliminate the interaction between the two loops results in greatly diminished activity, suggesting that the loop–loop interactions do aid in forming a more active conformation. Previous studies with minimal hammerheads have shown deleterious effects of Rp-phosphorothioate substitutions at the cleavage site and 5′ to A9, both of which could be rescued with Cd2+. Here, phosphorothioate modifications at the cleavage site and 5′ to A9 were made in the schistosome-derived sequence. In Mg2+, both phosphorothioate substitutions decreased the overall fraction cleaved without significantly affecting the observed rate of cleavage. The addition of Cd2+ rescued cleavage in both cases, suggesting that these are still putative metal binding sites in this native sequence. PMID:15659358
Next Generation Sequencing Technologies: The Doorway to the Unexplored Genomics of Non-Model Plants
Unamba, Chibuikem I. N.; Nag, Akshay; Sharma, Ram K.
2015-01-01
Non-model plants i.e., the species which have one or all of the characters such as long life cycle, difficulty to grow in the laboratory or poor fecundity, have been schemed out of sequencing projects earlier, due to high running cost of Sanger sequencing. Consequently, the information about their genomics and key biological processes are inadequate. However, the advent of fast and cost effective next generation sequencing (NGS) platforms in the recent past has enabled the unearthing of certain characteristic gene structures unique to these species. It has also aided in gaining insight about mechanisms underlying processes of gene expression and secondary metabolism as well as facilitated development of genomic resources for diversity characterization, evolutionary analysis and marker assisted breeding even without prior availability of genomic sequence information. In this review we explore how different Next Gen Sequencing platforms, as well as recent advances in NGS based high throughput genotyping technologies are rewarding efforts on de-novo whole genome/transcriptome sequencing, development of genome wide sequence based markers resources for improvement of non-model crops that are less costly than phenotyping. PMID:26734016
NASA Astrophysics Data System (ADS)
Moreland, Blythe; Oman, Kenji; Curfman, John; Yan, Pearlly; Bundschuh, Ralf
Methyl-binding domain (MBD) protein pulldown experiments have been a valuable tool in measuring the levels of methylated CpG dinucleotides. Due to the frequent use of this technique, high-throughput sequencing data sets are available that allow a detailed quantitative characterization of the underlying interaction between methylated DNA and MBD proteins. Analyzing such data sets, we first found that two such proteins cannot bind closer to each other than 2 bp, consistent with structural models of the DNA-protein interaction. Second, the large amount of sequencing data allowed us to find rather weak but nevertheless clearly statistically significant sequence preferences for several bases around the required CpG. These results demonstrate that pulldown sequencing is a high-precision tool in characterizing DNA-protein interactions. This material is based upon work supported by the National Science Foundation under Grant No. DMR-1410172.
Song, Zewei; Schlatter, Dan; Kennedy, Peter; Kinkel, Linda L.; Kistler, H. Corby; Nguyen, Nhu; Bates, Scott T.
2015-01-01
Next generation fungal amplicon sequencing is being used with increasing frequency to study fungal diversity in various ecosystems; however, the influence of sample preparation on the characterization of fungal community is poorly understood. We investigated the effects of four procedural modifications to library preparation for high-throughput sequencing (HTS). The following treatments were considered: 1) the amount of soil used in DNA extraction, 2) the inclusion of additional steps (freeze/thaw cycles, sonication, or hot water bath incubation) in the extraction procedure, 3) the amount of DNA template used in PCR, and 4) the effect of sample pooling, either physically or computationally. Soils from two different ecosystems in Minnesota, USA, one prairie and one forest site, were used to assess the generality of our results. The first three treatments did not significantly influence observed fungal OTU richness or community structure at either site. Physical pooling captured more OTU richness compared to individual samples, but total OTU richness at each site was highest when individual samples were computationally combined. We conclude that standard extraction kit protocols are well optimized for fungal HTS surveys, but because sample pooling can significantly influence OTU richness estimates, it is important to carefully consider the study aims when planning sampling procedures. PMID:25974078
Differential Effects of Paced and Unpaced Responding on delayed Serial Order Recall in Schizophrenia
Hill, S. Kristian; Griffin, Ginny B.; Houk, James C.; Sweeney, John A.
2011-01-01
Working memory for temporal order is a component of working memory that is especially dependent on striatal systems, but has not been extensively studied in schizophrenia. This study was designed to characterize serial order reproduction by adapting a spatial serial order task developed for nonhuman primate studies, while controlling for working memory load and whether responses were initiated freely (unpaced) or in an externally paced format. Clinically stable schizophrenia patients (n=27) and psychiatrically healthy individuals (n=25) were comparable on demographic variables and performance on standardized tests of immediate serial order recall (Digit Span, Spatial Span). No group differences were observed for serial order recall when read sequence reproduction was unpaced. However, schizophrenia patients exhibited significant impairments when responding was paced, regardless of sequence length or retention delay. Intact performance by schizophrenia patients during the unpaced condition indicates that prefrontal storage and striatal output systems are sufficiently intact to learn novel response sequences and hold them in working memory to perform serial order tasks. However, retention for newly learned response sequences was disrupted in schizophrenia patients by paced responding, when read-out of each element in the response sequence was externally controlled. The disruption of memory for serial order in paced read-out condition indicates a deficit in frontostriatal interaction characterized by an inability to update working memory stores and deconstruct ‘chunked’ information. PMID:21705197
Rudnizky, Sergei; Khamis, Hadeel; Malik, Omri; Squires, Allison H; Meller, Amit; Melamed, Philippa
2018-01-01
Abstract Most functional transcription factor (TF) binding sites deviate from their ‘consensus’ recognition motif, although their sites and flanking sequences are often conserved across species. Here, we used single-molecule DNA unzipping with optical tweezers to study how Egr-1, a TF harboring three zinc fingers (ZF1, ZF2 and ZF3), is modulated by the sequence and context of its functional sites in the Lhb gene promoter. We find that both the core 9 bp bound to Egr-1 in each of the sites, and the base pairs flanking them, modulate the affinity and structure of the protein–DNA complex. The effect of the flanking sequences is asymmetric, with a stronger effect for the sequence flanking ZF3. Characterization of the dissociation time of Egr-1 revealed that a local, mechanical perturbation of the interactions of ZF3 destabilizes the complex more effectively than a perturbation of the ZF1 interactions. Our results reveal a novel role for ZF3 in the interaction of Egr-1 with other proteins and the DNA, providing insight on the regulation of Lhb and other genes by Egr-1. Moreover, our findings reveal the potential of small changes in DNA sequence to alter transcriptional regulation, and may shed light on the organization of regulatory elements at promoters. PMID:29253225
Biochemical and molecular characterization of the venom from the Cuban scorpion Rhopalurus junceus.
García-Gómez, B I; Coronas, F I V; Restano-Cassulini, R; Rodríguez, R R; Possani, L D
2011-07-01
This communication describes the first general biochemical, molecular and functional characterization of the venom from the Cuban blue scorpion Rhopalurus junceus, which is often used as a natural product for anti-cancer therapy in Cuba. The soluble venom of this arachnid is not toxic to mice, injected intraperitoneally at doses up to 200 μg/20 g body weight, but it is deadly to insects at doses of 10 μg per animal. The venom causes typical alpha and beta-effects on Na+ channels, when assayed using patch-clamp techniques in neuroblastoma cells in vitro. It also affects K+ currents conducted by ERG (ether-a-go-go related gene) channels. The soluble venom was shown to display phospholipase, hyaluronidase and anti-microbial activities. High performance liquid chromatography of the soluble venom can separate at least 50 components, among which are peptides lethal to crickets. Four such peptides were isolated to homogeneity and their molecular masses and N-terminal amino acid sequence were determined. The major component (RjAa12f) was fully sequenced by Edman degradation. It contains 64 amino acid residues and four disulfide bridges, similar to other known scorpion toxins. A cDNA library prepared from the venomous glands of one scorpion allowed cloning 18 genes that code for peptides of the venom, including RjA12f and eleven other closely related genes. Sequence analyses and phylogenetic reconstruction of the amino acid sequences deduced from the cloned genes showed that this scorpion contains sodium channel like toxin sequences clearly segregated into two monophyletic clusters. Considering the complex set of effects on Na+ currents verified here, this venom certainly warrant further investigation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Silva, S P; Silva, L N P P; Rodrigues, E D L; Cardoso, J F; Tavares, F N; Souza, W M; Santos, C M P; Martins, F M S; Jesus, I S; Brito, T C; Moura, T P C; Nunes, M R T; Casseb, L M N; Silva Filho, E; Casseb, A R
2017-09-21
With the objective of characterizing Canine parvovirus (CPV) from some suspected fecal samples of dogs collected from the Veterinarian Hospital in Belém city, five positive samples were found by PCR assay and an update molecular characterization was provided of the CPV-2 circulation in Belém. Through sequencing of the complete DNA sequences (NS1, NS2, VP1, and VP2 genes), the CPV-2 strain was identified as CPV-2b (Asn426Asp) circulating in Belém. The CPV-2b strain with a different change at the position Tyr324Leu was detected in all samples assessed and thus reported for the first time for the scientific community. Phylogenetic analysis indicated that Belém CPV-2b and CPV-2a strains would be related to a cluster with samples after the 1990s, suggesting that CPV-2b in Belém originated from CPV-2a circulating in Brazil after the 1990s. Potential recombination events were analyzed using RDP4 and SplitsTree4; therefore, results suggest that CPV-2 sequences here described were not potentially recombination events. Continuous monitoring and molecular characterization of CPV-2 samples are needed not only to identify possible genetic and antigenic changes that may interfere with the effectiveness of vaccines but also to bring a better understanding of the mechanisms that drive the evolution of CPV-2 in Brazil.
Position specific variation in the rate of evolution in transcription factor binding sites
Moses, Alan M; Chiang, Derek Y; Kellis, Manolis; Lander, Eric S; Eisen, Michael B
2003-01-01
Background The binding sites of sequence specific transcription factors are an important and relatively well-understood class of functional non-coding DNAs. Although a wide variety of experimental and computational methods have been developed to characterize transcription factor binding sites, they remain difficult to identify. Comparison of non-coding DNA from related species has shown considerable promise in identifying these functional non-coding sequences, even though relatively little is known about their evolution. Results Here we analyse the genome sequences of the budding yeasts Saccharomyces cerevisiae, S. bayanus, S. paradoxus and S. mikatae to study the evolution of transcription factor binding sites. As expected, we find that both experimentally characterized and computationally predicted binding sites evolve slower than surrounding sequence, consistent with the hypothesis that they are under purifying selection. We also observe position-specific variation in the rate of evolution within binding sites. We find that the position-specific rate of evolution is positively correlated with degeneracy among binding sites within S. cerevisiae. We test theoretical predictions for the rate of evolution at positions where the base frequencies deviate from background due to purifying selection and find reasonable agreement with the observed rates of evolution. Finally, we show how the evolutionary characteristics of real binding motifs can be used to distinguish them from artefacts of computational motif finding algorithms. Conclusion As has been observed for protein sequences, the rate of evolution in transcription factor binding sites varies with position, suggesting that some regions are under stronger functional constraint than others. This variation likely reflects the varying importance of different positions in the formation of the protein-DNA complex. The characterization of the pattern of evolution in known binding sites will likely contribute to the effective use of comparative sequence data in the identification of transcription factor binding sites and is an important step toward understanding the evolution of functional non-coding DNA. PMID:12946282
Torque measurements reveal sequence-specific cooperative transitions in supercoiled DNA
Oberstrass, Florian C.; Fernandes, Louis E.; Bryant, Zev
2012-01-01
B-DNA becomes unstable under superhelical stress and is able to adopt a wide range of alternative conformations including strand-separated DNA and Z-DNA. Localized sequence-dependent structural transitions are important for the regulation of biological processes such as DNA replication and transcription. To directly probe the effect of sequence on structural transitions driven by torque, we have measured the torsional response of a panel of DNA sequences using single molecule assays that employ nanosphere rotational probes to achieve high torque resolution. The responses of Z-forming d(pGpC)n sequences match our predictions based on a theoretical treatment of cooperative transitions in helical polymers. “Bubble” templates containing 50–100 bp mismatch regions show cooperative structural transitions similar to B-DNA, although less torque is required to disrupt strand–strand interactions. Our mechanical measurements, including direct characterization of the torsional rigidity of strand-separated DNA, establish a framework for quantitative predictions of the complex torsional response of arbitrary sequences in their biological context. PMID:22474350
Clonal architecture of secondary acute myeloid leukemia defined by single-cell sequencing.
Hughes, Andrew E O; Magrini, Vincent; Demeter, Ryan; Miller, Christopher A; Fulton, Robert; Fulton, Lucinda L; Eades, William C; Elliott, Kevin; Heath, Sharon; Westervelt, Peter; Ding, Li; Conrad, Donald F; White, Brian S; Shao, Jin; Link, Daniel C; DiPersio, John F; Mardis, Elaine R; Wilson, Richard K; Ley, Timothy J; Walter, Matthew J; Graubert, Timothy A
2014-07-01
Next-generation sequencing has been used to infer the clonality of heterogeneous tumor samples. These analyses yield specific predictions-the population frequency of individual clones, their genetic composition, and their evolutionary relationships-which we set out to test by sequencing individual cells from three subjects diagnosed with secondary acute myeloid leukemia, each of whom had been previously characterized by whole genome sequencing of unfractionated tumor samples. Single-cell mutation profiling strongly supported the clonal architecture implied by the analysis of bulk material. In addition, it resolved the clonal assignment of single nucleotide variants that had been initially ambiguous and identified areas of previously unappreciated complexity. Accordingly, we find that many of the key assumptions underlying the analysis of tumor clonality by deep sequencing of unfractionated material are valid. Furthermore, we illustrate a single-cell sequencing strategy for interrogating the clonal relationships among known variants that is cost-effective, scalable, and adaptable to the analysis of both hematopoietic and solid tumors, or any heterogeneous population of cells.
Caridha, Rozina; Ha, Tran Thi Thanh; Gaseitsiwe, Simani; Hung, Pham Viet; Anh, Nguyen Mai; Bao, Nguyen Huy; Khang, Dinh Duy; Hien, Nguyen Tran; Cam, Phung Dac; Chiodi, Francesca
2012-01-01
Abstract Characterization of HIV-1 strains is important for surveillance of the HIV-1 epidemic. In Vietnam HIV-1-infected pregnant women often fail to receive the care they are entitled to. Here, we analyzed phylogenetically HIV-1 env sequences from 37 HIV-1-infected pregnant women from Ha Noi (n=22) and Hai Phong (n=15), where they delivered in 2005–2007. All carried CRF01_AE in the gp120 V3 region. In 21 women CRF01_AE was also found in the reverse transcriptase gene. We compared their env gp120 V3 sequences phylogenetically in a maximum likelihood tree to those of 198 other CRF01_AE sequences in Vietnam and 229 from neighboring countries, predominantly Thailand, from the HIV-1 database. Altogether 464 sequences were analyzed. All but one of the maternal sequences colocalized with sequences from northern Vietnam. The maternal sequences had evolved the least when compared to sequences collected in Ha Noi in 2002, as shown by analysis of synonymous and nonsynonymous changes, than to other Vietnamese sequences collected earlier and/or elsewhere. Since the HIV-1 epidemic in women in Vietnam may still be underestimated, characterization of HIV-1 in pregnant women is important to observe how HIV-1 has evolved and follow its molecular epidemiology. PMID:21936713
In silico Analysis of 2085 Clones from a Normalized Rat Vestibular Periphery 3′ cDNA Library
Roche, Joseph P.; Cioffi, Joseph A.; Kwitek, Anne E.; Erbe, Christy B.; Popper, Paul
2005-01-01
The inserts from 2400 cDNA clones isolated from a normalized Rattus norvegicus vestibular periphery cDNA library were sequenced and characterized. The Wackym-Soares vestibular 3′ cDNA library was constructed from the saccular and utricular maculae, the ampullae of all three semicircular canals and Scarpa's ganglia containing the somata of the primary afferent neurons, microdissected from 104 male and female rats. The inserts from 2400 randomly selected clones were sequenced from the 5′ end. Each sequence was analyzed using the BLAST algorithm compared to the Genbank nonredundant, rat genome, mouse genome and human genome databases to search for high homology alignments. Of the initial 2400 clones, 315 (13%) were found to be of poor quality and did not yield useful information, and therefore were eliminated from the analysis. Of the remaining 2085 sequences, 918 (44%) were found to represent 758 unique genes having useful annotations that were identified in databases within the public domain or in the published literature; these sequences were designated as known characterized sequences. 1141 sequences (55%) aligned with 1011 unique sequences had no useful annotations and were designated as known but uncharacterized sequences. Of the remaining 26 sequences (1%), 24 aligned with rat genomic sequences, but none matched previously described rat expressed sequence tags or mRNAs. No significant alignment to the rat or human genomic sequences could be found for the remaining 2 sequences. Of the 2085 sequences analyzed, 86% were singletons. The known, characterized sequences were analyzed with the FatiGO online data-mining tool (http://fatigo.bioinfo.cnio.es/) to identify level 5 biological process gene ontology (GO) terms for each alignment and to group alignments with similar or identical GO terms. Numerous genes were identified that have not been previously shown to be expressed in the vestibular system. Further characterization of the novel cDNA sequences may lead to the identification of genes with vestibular-specific functions. Continued analysis of the rat vestibular periphery transcriptome should provide new insights into vestibular function and generate new hypotheses. Physiological studies are necessary to further elucidate the roles of the identified genes and novel sequences in vestibular function. PMID:16103642
USDA-ARS?s Scientific Manuscript database
Two ghrelin receptor (GHS-R) genes were isolated from channel catfish tissue and a bacterial artificial chromosome (BAC) library. The two receptors were characterized by determining tissue distribution, ontogeny of receptor mRNA expression, and effects of exogenous homologous ghrelin administration ...
Guo, Bingfu; Guo, Yong; Hong, Huilong; Qiu, Li-Juan
2016-01-01
Molecular characterization of sequence flanking exogenous fragment insertion is essential for safety assessment and labeling of genetically modified organism (GMO). In this study, the T-DNA insertion sites and flanking sequences were identified in two newly developed transgenic glyphosate-tolerant soybeans GE-J16 and ZH10-6 based on whole genome sequencing (WGS) method. More than 22.4 Gb sequence data (∼21 × coverage) for each line was generated on Illumina HiSeq 2500 platform. The junction reads mapped to boundaries of T-DNA and flanking sequences in these two events were identified by comparing all sequencing reads with soybean reference genome and sequence of transgenic vector. The putative insertion loci and flanking sequences were further confirmed by PCR amplification, Sanger sequencing, and co-segregation analysis. All these analyses supported that exogenous T-DNA fragments were integrated in positions of Chr19: 50543767-50543792 and Chr17: 7980527-7980541 in these two transgenic lines. Identification of genomic insertion sites of G2-EPSPS and GAT transgenes will facilitate the utilization of their glyphosate-tolerant traits in soybean breeding program. These results also demonstrated that WGS was a cost-effective and rapid method for identifying sites of T-DNA insertions and flanking sequences in soybean.
Solieri, Lisa; Giudici, Paolo
2010-01-01
Control over malolactic fermentation (MLF) is a difficult goal in winemaking and needs rapid methods to monitor Oenococcus oeni malolactic starters (MLS) in a stressful environment such as wine. In this study, we describe a novel quantitative PCR (QPCR) assay enabling the detection of an O. oeni strain during MLF without culturing. O. oeni strain LB221 was used as a model to develop a strain-specific sequence-characterized amplified region (SCAR) marker derived from a discriminatory OPA20-based randomly amplified polymorphic DNA (RAPD) band. The 5′ and 3′ flanking regions and the copy number of the SCAR marker were characterized using inverse PCR and Southern blotting, respectively. Primer pairs targeting the SCAR sequence enabled strain-specific detection without cross amplification of other O. oeni strains or wine species of lactic acid bacteria (LAB), acetic acid bacteria (AAB), and yeasts. The SCAR-QPCR assay was linear over a range of cell concentrations (7 log units) and detected as few as 2.2 × 102 CFU per ml of red wine with good quantification effectiveness, as shown by the correlation of QPCR and plate counting results. Therefore, the cultivation-independent monitoring of a single O. oeni strain in wine based on a SCAR marker represents a rapid and effective strain-specific approach. This strategy can be adopted to develop easy and rapid detection techniques for monitoring the implantation of inoculated O. oeni MLS on the indigenous LAB population, reducing the risk of unsuccessful MLF. PMID:20935116
Cornman, R Scott; Otto, Clint R V; Iwanowicz, Deborah; Pettis, Jeffery S
2015-01-01
Identifying plant taxa that honey bees (Apis mellifera) forage upon is of great apicultural interest, but traditional methods are labor intensive and may lack resolution. Here we evaluate a high-throughput genetic barcoding approach to characterize trap-collected pollen from multiple North Dakota apiaries across multiple years. We used the Illumina MiSeq platform to generate sequence scaffolds from non-overlapping 300-bp paired-end sequencing reads of the ribosomal internal transcribed spacers (ITS). Full-length sequence scaffolds represented ~530 bp of ITS sequence after adapter trimming, drawn from the 5' of ITS1 and the 3' of ITS2, while skipping the uninformative 5.8S region. Operational taxonomic units (OTUs) were picked from scaffolds clustered at 97% identity, searched by BLAST against the nt database, and given taxonomic assignments using the paired-read lowest common ancestor approach. Taxonomic assignments and quantitative patterns were consistent with known plant distributions, phenology, and observational reports of pollen foraging, but revealed an unexpected contribution from non-crop graminoids and wetland plants. The mean number of plant species assignments per sample was 23.0 (+/- 5.5) and the mean species diversity (effective number of equally abundant species) was 3.3 (+/- 1.2). Bray-Curtis similarities showed good agreement among samples from the same apiary and sampling date. Rarefaction plots indicated that fewer than 50,000 reads are typically needed to characterize pollen samples of this complexity. Our results show that a pre-compiled, curated reference database is not essential for genus-level assignments, but species-level assignments are hindered by database gaps, reference length variation, and probable errors in the taxonomic assignment, requiring post-hoc evaluation. Although the effective per-sample yield achieved using custom MiSeq amplicon primers was less than the machine maximum, primarily due to lower "read2" quality, further protocol optimization and/or a modest reduction in multiplex scale should offset this difficulty. As small quantities of pollen are sufficient for amplification, our approach might be extendable to other questions or species for which large pollen samples are not available.
Cornman, R. Scott; Otto, Clint R. V.; Iwanowicz, Deborah; Pettis, Jeffery S.
2015-01-01
Identifying plant taxa that honey bees (Apis mellifera) forage upon is of great apicultural interest, but traditional methods are labor intensive and may lack resolution. Here we evaluate a high-throughput genetic barcoding approach to characterize trap-collected pollen from multiple North Dakota apiaries across multiple years. We used the Illumina MiSeq platform to generate sequence scaffolds from non-overlapping 300-bp paired-end sequencing reads of the ribosomal internal transcribed spacers (ITS). Full-length sequence scaffolds represented ~530 bp of ITS sequence after adapter trimming, drawn from the 5’ of ITS1 and the 3’ of ITS2, while skipping the uninformative 5.8S region. Operational taxonomic units (OTUs) were picked from scaffolds clustered at 97% identity, searched by BLAST against the nt database, and given taxonomic assignments using the paired-read lowest common ancestor approach. Taxonomic assignments and quantitative patterns were consistent with known plant distributions, phenology, and observational reports of pollen foraging, but revealed an unexpected contribution from non-crop graminoids and wetland plants. The mean number of plant species assignments per sample was 23.0 (+/- 5.5) and the mean species diversity (effective number of equally abundant species) was 3.3 (+/- 1.2). Bray-Curtis similarities showed good agreement among samples from the same apiary and sampling date. Rarefaction plots indicated that fewer than 50,000 reads are typically needed to characterize pollen samples of this complexity. Our results show that a pre-compiled, curated reference database is not essential for genus-level assignments, but species-level assignments are hindered by database gaps, reference length variation, and probable errors in the taxonomic assignment, requiring post-hoc evaluation. Although the effective per-sample yield achieved using custom MiSeq amplicon primers was less than the machine maximum, primarily due to lower “read2” quality, further protocol optimization and/or a modest reduction in multiplex scale should offset this difficulty. As small quantities of pollen are sufficient for amplification, our approach might be extendable to other questions or species for which large pollen samples are not available. PMID:26700168
Cornman, Robert S.; Otto, Clint R.; Iwanowicz, Deborah; Pettis, Jeffery S
2015-01-01
Identifying plant taxa that honey bees (Apis mellifera) forage upon is of great apicultural interest, but traditional methods are labor intensive and may lack resolution. Here we evaluate a high-throughput genetic barcoding approach to characterize trap-collected pollen from multiple North Dakota apiaries across multiple years. We used the Illumina MiSeq platform to generate sequence scaffolds from non-overlapping 300-bp paired-end sequencing reads of the ribosomal internal transcribed spacers (ITS). Full-length sequence scaffolds represented ~530 bp of ITS sequence after adapter trimming, drawn from the 5’ of ITS1 and the 3’ of ITS2, while skipping the uninformative 5.8S region. Operational taxonomic units (OTUs) were picked from scaffolds clustered at 97% identity, searched by BLAST against the nt database, and given taxonomic assignments using the paired-read lowest common ancestor approach. Taxonomic assignments and quantitative patterns were consistent with known plant distributions, phenology, and observational reports of pollen foraging, but revealed an unexpected contribution from non-crop graminoids and wetland plants. The mean number of plant species assignments per sample was 23.0 (+/- 5.5) and the mean species diversity (effective number of equally abundant species) was 3.3 (+/- 1.2). Bray-Curtis similarities showed good agreement among samples from the same apiary and sampling date. Rarefaction plots indicated that fewer than 50,000 reads are typically needed to characterize pollen samples of this complexity. Our results show that a pre-compiled, curated reference database is not essential for genus-level assignments, but species-level assignments are hindered by database gaps, reference length variation, and probable errors in the taxonomic assignment, requiring post-hoc evaluation. Although the effective per-sample yield achieved using custom MiSeq amplicon primers was less than the machine maximum, primarily due to lower “read2” quality, further protocol optimization and/or a modest reduction in multiplex scale should offset this difficulty. As small quantities of pollen are sufficient for amplification, our approach might be extendable to other questions or species for which large pollen samples are not available.
Jones, Darryl R; Thomas, Dallas; Alger, Nicholas; Ghavidel, Ata; Inglis, G Douglas; Abbott, D Wade
2018-01-01
Deposition of new genetic sequences in online databases is expanding at an unprecedented rate. As a result, sequence identification continues to outpace functional characterization of carbohydrate active enzymes (CAZymes). In this paradigm, the discovery of enzymes with novel functions is often hindered by high volumes of uncharacterized sequences particularly when the enzyme sequence belongs to a family that exhibits diverse functional specificities (i.e., polyspecificity). Therefore, to direct sequence-based discovery and characterization of new enzyme activities we have developed an automated in silico pipeline entitled: Sequence Analysis and Clustering of CarboHydrate Active enzymes for Rapid Informed prediction of Specificity (SACCHARIS). This pipeline streamlines the selection of uncharacterized sequences for discovery of new CAZyme or CBM specificity from families currently maintained on the CAZy website or within user-defined datasets. SACCHARIS was used to generate a phylogenetic tree of a GH43, a CAZyme family with defined subfamily designations. This analysis confirmed that large datasets can be organized into sequence clusters of manageable sizes that possess related functions. Seeding this tree with a GH43 sequence from Bacteroides dorei DSM 17855 (BdGH43b, revealed it partitioned as a single sequence within the tree. This pattern was consistent with it possessing a unique enzyme activity for GH43 as BdGH43b is the first described α-glucanase described for this family. The capacity of SACCHARIS to extract and cluster characterized carbohydrate binding module sequences was demonstrated using family 6 CBMs (i.e., CBM6s). This CBM family displays a polyspecific ligand binding profile and contains many structurally determined members. Using SACCHARIS to identify a cluster of divergent sequences, a CBM6 sequence from a unique clade was demonstrated to bind yeast mannan, which represents the first description of an α-mannan binding CBM. Additionally, we have performed a CAZome analysis of an in-house sequenced bacterial genome and a comparative analysis of B. thetaiotaomicron VPI-5482 and B. thetaiotaomicron 7330, to demonstrate that SACCHARIS can generate "CAZome fingerprints", which differentiate between the saccharolytic potential of two related strains in silico. Establishing sequence-function and sequence-structure relationships in polyspecific CAZyme families are promising approaches for streamlining enzyme discovery. SACCHARIS facilitates this process by embedding CAZyme and CBM family trees generated from biochemically to structurally characterized sequences, with protein sequences that have unknown functions. In addition, these trees can be integrated with user-defined datasets (e.g., genomics, metagenomics, and transcriptomics) to inform experimental characterization of new CAZymes or CBMs not currently curated, and for researchers to compare differential sequence patterns between entire CAZomes. In this light, SACCHARIS provides an in silico tool that can be tailored for enzyme bioprospecting in datasets of increasing complexity and for diverse applications in glycobiotechnology.
Bai, Yu; Iwasaki, Yuki; Kanaya, Shigehiko; Zhao, Yue; Ikemura, Toshimichi
2014-01-01
With remarkable increase of genomic sequence data of a wide range of species, novel tools are needed for comprehensive analyses of the big sequence data. Self-Organizing Map (SOM) is an effective tool for clustering and visualizing high-dimensional data such as oligonucleotide composition on one map. By modifying the conventional SOM, we have previously developed Batch-Learning SOM (BLSOM), which allows classification of sequence fragments according to species, solely depending on the oligonucleotide composition. In the present study, we introduce the oligonucleotide BLSOM used for characterization of vertebrate genome sequences. We first analyzed pentanucleotide compositions in 100 kb sequences derived from a wide range of vertebrate genomes and then the compositions in the human and mouse genomes in order to investigate an efficient method for detecting differences between the closely related genomes. BLSOM can recognize the species-specific key combination of oligonucleotide frequencies in each genome, which is called a "genome signature," and the specific regions specifically enriched in transcription-factor-binding sequences. Because the classification and visualization power is very high, BLSOM is an efficient powerful tool for extracting a wide range of information from massive amounts of genomic sequences (i.e., big sequence data).
Novel application of the MSSCP method in biodiversity studies.
Tomczyk-Żak, Karolina; Kaczanowski, Szymon; Górecka, Magdalena; Zielenkiewicz, Urszula
2012-02-01
Analysis of 16S rRNA sequence diversity is widely performed for characterizing the biodiversity of microbial samples. The number of determined sequences has a considerable impact on complete results. Although the cost of mass sequencing is decreasing, it is often still too high for individual projects. We applied the multi-temperature single-strand conformational polymorphism (MSSCP) method to decrease the number of analysed sequences. This was a novel application of this method. As a control, the same sample was analysed using random sequencing. In this paper, we adapted the MSSCP technique for screening of unique sequences of the 16S rRNA gene library and bacterial strains isolated from biofilms growing on the walls of an ancient gold mine in Poland and determined whether the results obtained by both methods differed and whether random sequencing could be replaced by MSSCP. Although it was biased towards the detection of rare sequences in the samples, the qualitative results of MSSCP were not different than those of random sequencing. Unambiguous discrimination of unique clones and strains creates an opportunity to effectively estimate the biodiversity of natural communities, especially in populations which are numerous but species poor. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Wen Hui; Jia, Wan Zhong; Qu, Zi Gang; Xie, Zhi Zhou; Luo, Jian Xun; Yin, Hong; Sun, Xiao Lin; Blaga, Radu; Fu, Bao Quan
2013-04-01
A total of 16 Taenia multiceps isolates collected from naturally infected sheep or goats in Gansu Province, China were characterized by sequences of mitochondrial cytochrome c oxidase subunit 1 (cox1) gene. The complete cox1 gene was amplified for individual T. multiceps isolates by PCR, ligated to pMD18T vector, and sequenced. Sequence analysis indicated that out of 16 T. multiceps isolates 10 unique cox1 gene sequences of 1,623 bp were obtained with sequence variation of 0.12-0.68%. The results showed that the cox1 gene sequences were highly conserved among the examined T. multiceps isolates. However, they were quite different from those of the other Taenia species. Phylogenetic analysis based on complete cox1 gene sequences revealed that T. multiceps isolates were composed of 3 genotypes and distinguished from the other Taenia species.
Li, Wen Hui; Jia, Wan Zhong; Qu, Zi Gang; Xie, Zhi Zhou; Luo, Jian Xun; Yin, Hong; Sun, Xiao Lin; Blaga, Radu
2013-01-01
A total of 16 Taenia multiceps isolates collected from naturally infected sheep or goats in Gansu Province, China were characterized by sequences of mitochondrial cytochrome c oxidase subunit 1 (cox1) gene. The complete cox1 gene was amplified for individual T. multiceps isolates by PCR, ligated to pMD18T vector, and sequenced. Sequence analysis indicated that out of 16 T. multiceps isolates 10 unique cox1 gene sequences of 1,623 bp were obtained with sequence variation of 0.12-0.68%. The results showed that the cox1 gene sequences were highly conserved among the examined T. multiceps isolates. However, they were quite different from those of the other Taenia species. Phylogenetic analysis based on complete cox1 gene sequences revealed that T. multiceps isolates were composed of 3 genotypes and distinguished from the other Taenia species. PMID:23710087
Cao, Yu; Fanning, Séamus; Proos, Sinéad; Jordan, Kieran; Srikumar, Shabarinath
2017-01-01
The development of next generation sequencing (NGS) techniques has enabled researchers to study and understand the world of microorganisms from broader and deeper perspectives. The contemporary advances in DNA sequencing technologies have not only enabled finer characterization of bacterial genomes but also provided deeper taxonomic identification of complex microbiomes which in its genomic essence is the combined genetic material of the microorganisms inhabiting an environment, whether the environment be a particular body econiche (e.g., human intestinal contents) or a food manufacturing facility econiche (e.g., floor drain). To date, 16S rDNA sequencing, metagenomics and metatranscriptomics are the three basic sequencing strategies used in the taxonomic identification and characterization of food-related microbiomes. These sequencing strategies have used different NGS platforms for DNA and RNA sequence identification. Traditionally, 16S rDNA sequencing has played a key role in understanding the taxonomic composition of a food-related microbiome. Recently, metagenomic approaches have resulted in improved understanding of a microbiome by providing a species-level/strain-level characterization. Further, metatranscriptomic approaches have contributed to the functional characterization of the complex interactions between different microbial communities within a single microbiome. Many studies have highlighted the use of NGS techniques in investigating the microbiome of fermented foods. However, the utilization of NGS techniques in studying the microbiome of non-fermented foods are limited. This review provides a brief overview of the advances in DNA sequencing chemistries as the technology progressed from first, next and third generations and highlights how NGS provided a deeper understanding of food-related microbiomes with special focus on non-fermented foods. PMID:29033905
Using Wikis to Develop Collaborative Communities in an Environmental Chemistry Course
ERIC Educational Resources Information Center
Pence, Laura E.; Pence, Harry E.
2015-01-01
Group construction of wikis in an environmental chemistry course provided an effective framework for students to develop and to manage collaborative communities, characterized by interactive projects designed to deepen learning. A sequence of assignments facilitated improvement of the students' wiki construction and editing skills and these…
Zou, Xiaohui; Tang, Guangpeng; Zhao, Xiang; Huang, Yan; Chen, Tao; Lei, Mingyu; Chen, Wenbing; Yang, Lei; Zhu, Wenfei; Zhuang, Li; Yang, Jing; Feng, Zhaomin; Wang, Dayan; Wang, Dingming; Shu, Yuelong
2017-03-01
Many viruses can cause respiratory diseases in humans. Although great advances have been achieved in methods of diagnosis, it remains challenging to identify pathogens in unexplained pneumonia (UP) cases. In this study, we applied next-generation sequencing (NGS) technology and a metagenomic approach to detect and characterize respiratory viruses in UP cases from Guizhou Province, China. A total of 33 oropharyngeal swabs were obtained from hospitalized UP patients and subjected to NGS. An unbiased metagenomic analysis pipeline identified 13 virus species in 16 samples. Human rhinovirus C was the virus most frequently detected and was identified in seven samples. Human measles virus, adenovirus B 55 and coxsackievirus A10 were also identified. Metagenomic sequencing also provided virus genomic sequences, which enabled genotype characterization and phylogenetic analysis. For cases of multiple infection, metagenomic sequencing afforded information regarding the quantity of each virus in the sample, which could be used to evaluate each viruses' role in the disease. Our study highlights the potential of metagenomic sequencing for pathogen identification in UP cases.
Gao, Wei; Alcauter, Sarael; Elton, Amanda; Hernandez-Castillo, Carlos R.; Smith, J. Keith; Ramirez, Juanita; Lin, Weili
2015-01-01
The first postnatal year is characterized by the most dramatic functional network development of the human lifespan. Yet, the relative sequence of the maturation of different networks and the impact of socioeconomic status (SES) on their development during this critical period remains poorly characterized. Leveraging a large, normally developing infant sample with multiple longitudinal resting-state functional magnetic resonance imaging scans during the first year (N = 65, scanned every 3 months), we aimed to delineate the relative maturation sequence of 9 key brain functional networks and examine their SES correlations. Our results revealed a maturation sequence from primary sensorimotor/auditory to visual to attention/default-mode, and finally to executive control networks. Network-specific critical growth periods were also identified. Finally, marginally significant positive SES–brain correlations were observed at 6 months of age for both the sensorimotor and default-mode networks, indicating interesting SES effects on functional brain maturation. To the best of our knowledge, this is the first study delineating detailed longitudinal growth trajectories of all major functional networks during the first year of life and their SES correlations. Insights from this study not only improve our understanding of early brain development, but may also inform the critical periods for SES expression during infancy. PMID:24812084
Molecular cloning and characterization of Aspergillus nidulans cyclophilin B.
Joseph, J D; Heitman, J; Means, A R
1999-06-01
Cyclophilins are an evolutionarily conserved family of proteins which serve as the intracellular receptors for the immunosuppressive drug cyclosporin A. Here we report the characterization of the first cyclophilin cloned from the filamentous fungus Aspergillus nidulans (CYPB). Sequence analysis of the cypB gene predicts an encoded protein with highest homology to the murine cyclophilin B protein. The sequence similarity includes an N-terminal sequence predicted to target the protein to the endoplasmic reticulum (ER) as well as a C-terminal sequence predicted to retain the mature protein in the ER. The bacterially expressed hexa-histidine tagged protein displays peptidyl-prolyl isomerase activity which is inhibited by cyclosporin A. In the presence of cyclosporin A, the expressed protein also inhibits purified calcineurin. When the endogenous cypB gene was disrupted and placed under the control of the regulatable alcohol dehydrogenase promoter, the strain demonstrated no detectable growth phenotype under conditions which induce or repress cypB transcription. Induction or repression of the cypB gene also did not effect sensitivity of A. nidulans to cyclosporin A. cypB mRNA levels were significantly elevated under severe heat shock conditions, indicating a possible role for the A. nidulans cyclophilin B protein during growth in high stress environments. Copyright 1999 Academic Press.
2009-01-01
Background Conifers are a large group of gymnosperm trees which are separated from the angiosperms by more than 300 million years of independent evolution. Conifer genomes are extremely large and contain considerable amounts of repetitive DNA. Currently, conifer sequence resources exist predominantly as expressed sequence tags (ESTs) and full-length (FL)cDNAs. There is no genome sequence available for a conifer or any other gymnosperm. Conifer defence-related genes often group into large families with closely related members. The goals of this study are to assess the feasibility of targeted isolation and sequence assembly of conifer BAC clones containing specific genes from two large gene families, and to characterize large segments of genomic DNA sequence for the first time from a conifer. Results We used a PCR-based approach to identify BAC clones for two target genes, a terpene synthase (3-carene synthase; 3CAR) and a cytochrome P450 (CYP720B4) from a non-arrayed genomic BAC library of white spruce (Picea glauca). Shotgun genomic fragments isolated from the BAC clones were sequenced to a depth of 15.6- and 16.0-fold coverage, respectively. Assembly and manual curation yielded sequence scaffolds of 172 kbp (3CAR) and 94 kbp (CYP720B4) long. Inspection of the genomic sequences revealed the intron-exon structures, the putative promoter regions and putative cis-regulatory elements of these genes. Sequences related to transposable elements (TEs), high complexity repeats and simple repeats were prevalent and comprised approximately 40% of the sequenced genomic DNA. An in silico simulation of the effect of sequencing depth on the quality of the sequence assembly provides direction for future efforts of conifer genome sequencing. Conclusion We report the first targeted cloning, sequencing, assembly, and annotation of large segments of genomic DNA from a conifer. We demonstrate that genomic BAC clones for individual members of multi-member gene families can be isolated in a gene-specific fashion. The results of the present work provide important new information about the structure and content of conifer genomic DNA that will guide future efforts to sequence and assemble conifer genomes. PMID:19656416
Hamberger, Björn; Hall, Dawn; Yuen, Mack; Oddy, Claire; Hamberger, Britta; Keeling, Christopher I; Ritland, Carol; Ritland, Kermit; Bohlmann, Jörg
2009-08-06
Conifers are a large group of gymnosperm trees which are separated from the angiosperms by more than 300 million years of independent evolution. Conifer genomes are extremely large and contain considerable amounts of repetitive DNA. Currently, conifer sequence resources exist predominantly as expressed sequence tags (ESTs) and full-length (FL)cDNAs. There is no genome sequence available for a conifer or any other gymnosperm. Conifer defence-related genes often group into large families with closely related members. The goals of this study are to assess the feasibility of targeted isolation and sequence assembly of conifer BAC clones containing specific genes from two large gene families, and to characterize large segments of genomic DNA sequence for the first time from a conifer. We used a PCR-based approach to identify BAC clones for two target genes, a terpene synthase (3-carene synthase; 3CAR) and a cytochrome P450 (CYP720B4) from a non-arrayed genomic BAC library of white spruce (Picea glauca). Shotgun genomic fragments isolated from the BAC clones were sequenced to a depth of 15.6- and 16.0-fold coverage, respectively. Assembly and manual curation yielded sequence scaffolds of 172 kbp (3CAR) and 94 kbp (CYP720B4) long. Inspection of the genomic sequences revealed the intron-exon structures, the putative promoter regions and putative cis-regulatory elements of these genes. Sequences related to transposable elements (TEs), high complexity repeats and simple repeats were prevalent and comprised approximately 40% of the sequenced genomic DNA. An in silico simulation of the effect of sequencing depth on the quality of the sequence assembly provides direction for future efforts of conifer genome sequencing. We report the first targeted cloning, sequencing, assembly, and annotation of large segments of genomic DNA from a conifer. We demonstrate that genomic BAC clones for individual members of multi-member gene families can be isolated in a gene-specific fashion. The results of the present work provide important new information about the structure and content of conifer genomic DNA that will guide future efforts to sequence and assemble conifer genomes.
Shaukat, Shahzad; Angez, Mehar; Alam, Muhammad Masroor; Jebbink, Maarten F; Deijs, Martin; Canuti, Marta; Sharif, Salmaan; de Vries, Michel; Khurshid, Adnan; Mahmood, Tariq; van der Hoek, Lia; Zaidi, Syed Sohail Zahoor
2014-08-12
The use of sequence independent methods combined with next generation sequencing for identification purposes in clinical samples appears promising and exciting results have been achieved to understand unexplained infections. One sequence independent method, Virus Discovery based on cDNA Amplified Fragment Length Polymorphism (VIDISCA) is capable of identifying viruses that would have remained unidentified in standard diagnostics or cell cultures. VIDISCA is normally combined with next generation sequencing, however, we set up a simplified VIDISCA which can be used in case next generation sequencing is not possible. Stool samples of 10 patients with unexplained acute flaccid paralysis showing cytopathic effect in rhabdomyosarcoma cells and/or mouse cells were used to test the efficiency of this method. To further characterize the viruses, VIDISCA-positive samples were amplified and sequenced with gene specific primers. Simplified VIDISCA detected seven viruses (70%) and the proportion of eukaryotic viral sequences from each sample ranged from 8.3 to 45.8%. Human enterovirus EV-B97, EV-B100, echovirus-9 and echovirus-21, human parechovirus type-3, human astrovirus probably a type-3/5 recombinant, and tetnovirus-1 were identified. Phylogenetic analysis based on the VP1 region demonstrated that the human enteroviruses are more divergent isolates circulating in the community. Our data support that a simplified VIDISCA protocol can efficiently identify unrecognized viruses grown in cell culture with low cost, limited time without need of advanced technical expertise. Also complex data interpretation is avoided thus the method can be used as a powerful diagnostic tool in limited resources. Redesigning the routine diagnostics might lead to additional detection of previously undiagnosed viruses in clinical samples of patients.
Chen, Guiqian; Qiu, Yuan; Zhuang, Qingye; Wang, Suchun; Wang, Tong; Chen, Jiming; Wang, Kaicheng
2018-05-09
Next generation sequencing (NGS) is a powerful tool for the characterization, discovery, and molecular identification of RNA viruses. There were multiple NGS library preparation methods published for strand-specific RNA-seq, but some methods are not suitable for identifying and characterizing RNA viruses. In this study, we report a NGS library preparation method to identify RNA viruses using the Ion Torrent PGM platform. The NGS sequencing adapters were directly inserted into the sequencing library through reverse transcription and polymerase chain reaction, without fragmentation and ligation of nucleic acids. The results show that this method is simple to perform, able to identify multiple species of RNA viruses in clinical samples.
Yuan, Siqi; Zheng, Yuchi; Zeng, Xiaomao
2016-01-01
Recent improvements in next-generation sequencing (NGS) technologies can facilitate the obtainment of mitochondrial genomes. However, it is not clear whether NGS could be effectively used to reconstruct the mitogenome with high gene rearrangement. These high rearrangements would cause amplification failure, and/or assembly and alignment errors. Here, we choose two frogs with rearranged gene order, Amolops chunganensis and Quasipaa boulengeri, to test whether gene rearrangements affect the mitogenome assembly and alignment by using NGS. The mitogenomes with gene rearrangements are sequenced through Illumina MiSeq genomic sequencing and assembled effectively by Trinity v2.1.0 and SOAPdenovo2. Gene order and contents in the mitogenome of A. chunganensis and Q. boulengeri are typical neobatrachian pattern except for rearrangements at the position of “WANCY” tRNA genes cluster. Further, the mitogenome of Q. boulengeri is characterized with a tandem duplication of trnM. Moreover, we utilize 13 protein-coding genes of A. chunganensis, Q. boulengeri and other neobatrachians to reconstruct the phylogenetic tree for evaluating mitochondrial sequence authenticity of A. chunganensis and Q. boulengeri. In this work, we provide nearly complete mitochondrial genomes of A. chunganensis and Q. boulengeri. PMID:27994980
Investigation of Post-mortem Tissue Effects Using Long-time Decorrelation Ultrasound
NASA Astrophysics Data System (ADS)
Csány, Gergely; Balogh, Lajos; Gyöngy, Miklós
Decorrelation ultrasound is being increasingly used to investigate long-term biological phenomena. In the current work, ultrasound image sequences of mice who did not survive anesthesia (in a separate investigation) were analyzed and post-mortem tissue effects were observed via decorrelation calculation. A method was developed to obtain a quantitative parameter characterizing the rate of decorrelation. The results show that ultrasound decorrelation imaging is an effective method of observing post-mortem tissue effects and point to further studies elucidating the mechanism behind these effects.
Characterization of circulating transfer RNA-Derived RNA fragments in cattle
USDA-ARS?s Scientific Manuscript database
The objective was to characterize naturally occurring circulating transfer RNA-derived RNA Fragments (tRFs) in cattle. Serum from eight clinically normal adult dairy cows was collected, and small non-coding RNAs were extracted immediately after collection and sequenced by Illumina MiSeq. Sequences a...
Sensitivity to sequencing depth in single-cell cancer genomics.
Alves, João M; Posada, David
2018-04-16
Querying cancer genomes at single-cell resolution is expected to provide a powerful framework to understand in detail the dynamics of cancer evolution. However, given the high costs currently associated with single-cell sequencing, together with the inevitable technical noise arising from single-cell genome amplification, cost-effective strategies that maximize the quality of single-cell data are critically needed. Taking advantage of previously published single-cell whole-genome and whole-exome cancer datasets, we studied the impact of sequencing depth and sampling effort towards single-cell variant detection. Five single-cell whole-genome and whole-exome cancer datasets were independently downscaled to 25, 10, 5, and 1× sequencing depth. For each depth level, ten technical replicates were generated, resulting in a total of 6280 single-cell BAM files. The sensitivity of variant detection, including structural and driver mutations, genotyping, clonal inference, and phylogenetic reconstruction to sequencing depth was evaluated using recent tools specifically designed for single-cell data. Altogether, our results suggest that for relatively large sample sizes (25 or more cells) sequencing single tumor cells at depths > 5× does not drastically improve somatic variant discovery, characterization of clonal genotypes, or estimation of single-cell phylogenies. We suggest that sequencing multiple individual tumor cells at a modest depth represents an effective alternative to explore the mutational landscape and clonal evolutionary patterns of cancer genomes.
Kowalczyk, Marek; Jakubczak, Andrzej; Horecka, Beata; Kostro, Krzysztof
2018-05-29
The Aleutian mink disease virus (AMDV) is one of the most serious threats to modern mink breeding. The disease can have various courses, from progressive to subclinical infections. The objective of the study was to provide a comparative molecular characterization of isolates of AMDV from farms with a clinical and subclinical course of the disease. The qPCR analysis showed a difference of two orders of magnitude between the number of copies of the viral DNA on the farm with the clinical course of the disease (10 5 ) and the farm with the subclinical course (10 3 ). The sequencing results confirm a high level of homogeneity within each farm and variation between them. The phylogenetic analysis indicates that the variants belonging to different farms are closely related and occupy different branches of the same clade. The in silico analysis of the effect of differences in the sequence encoding the VP2 protein between the farms revealed no effect of the polymorphism on its functionality. The close phylogenetic relationship between the isolates from the two farms, the synonymous nature of most of the polymorphisms and the potentially minor effect on the functionality of the protein indicate that the differences in the clinical picture may be due not only to polymorphisms in the nucleotide and amino acid sequences, but also to the stage of infection on the farm and the degree of stabilization of the pathogen-host relationship.
Franklin, Jayaseelan Benjamin; Rajesh, Rajaian Pushpabai; Vinithkumar, Nambali Valsalan; Kirubagaran, Ramalingam
2017-06-15
We identified 12 short single disulfide-containing conopeptides from the venom of Conus coronatus, C. leopardus, C. lividus and C. zonatus. Interestingly, we detected the shortest contryphan sequence thus far characterized which contains only six amino acid residues. We also identified three distinct contryphan sequences of C. lividus without any proline residues and one sequence with an unusual post-translational modification (bromination of tryptophan). Furthermore, we characterized venom peptides of C. zonatus for the first time. Copyright © 2017 Elsevier Ltd. All rights reserved.
Oishi, M; Gohma, H; Lejukole, H Y; Taniguchi, Y; Yamada, T; Suzuki, K; Shinkai, H; Uenishi, H; Yasue, H; Sasaki, Y
2004-05-01
Expressed sequence tags (ESTs) generated based on characterization of clones isolated randomly from cDNA libraries are used to study gene expression profiles in specific tissues and to provide useful information for characterizing tissue physiology. In this study, two directionally cloned cDNA libraries were constructed from 60 day-old bovine whole fetus and fetal placenta. We have characterized 5357 and 1126 clones, and then identified 3464 and 795 unique sequences for the fetus and placenta cDNA libraries: 1851 and 504 showed homology to already identified genes, and 1613 and 291 showed no significant matches to any of the sequences in DNA databases, respectively. Further, we found 94 unique sequences overlapping in both the fetus and the placenta, leading to a catalog of 4165 genes expressed in 60 day-old fetus and placenta. The catalog is used to examine expression profile of genes in 60 day-old bovine fetus and placenta.
Blocks in cycles and k-commuting permutations.
Moreno, Rutilo; Rivera, Luis Manuel
2016-01-01
We introduce and study k -commuting permutations. One of our main results is a characterization of permutations that k -commute with a given permutation. Using this characterization, we obtain formulas for the number of permutations that k -commute with a permutation [Formula: see text], for some cycle types of [Formula: see text]. Our enumerative results are related with integer sequences in "The On-line Encyclopedia of Integer Sequences", and in some cases provide new interpretations for such sequences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnakumar, Raga; Sinha, Anupama; Bird, Sara W.
Emerging sequencing technologies are allowing us to characterize environmental, clinical and laboratory samples with increasing speed and detail, including real-time analysis and interpretation of data. One example of this is being able to rapidly and accurately detect a wide range of pathogenic organisms, both in the clinic and the field. Genomes can have radically different GC content however, such that accurate sequence analysis can be challenging depending upon the technology used. Here, we have characterized the performance of the Oxford MinION nanopore sequencer for detection and evaluation of organisms with a range of genomic nucleotide bias. We have diagnosed themore » quality of base-calling across individual reads and discovered that the position within the read affects base-calling and quality scores. Finally, we have evaluated the performance of the current state-of-the-art neural network-based MinION basecaller, characterizing its behavior with respect to systemic errors as well as context- and sequence-specific errors. Overall, we present a detailed characterization the capabilities of the MinION in terms of generating high-accuracy sequence data from genomes with a wide range of nucleotide content. This study provides a framework for designing the appropriate experiments that are the likely to lead to accurate and rapid field-forward diagnostics.« less
Krishnakumar, Raga; Sinha, Anupama; Bird, Sara W.; ...
2018-02-16
Emerging sequencing technologies are allowing us to characterize environmental, clinical and laboratory samples with increasing speed and detail, including real-time analysis and interpretation of data. One example of this is being able to rapidly and accurately detect a wide range of pathogenic organisms, both in the clinic and the field. Genomes can have radically different GC content however, such that accurate sequence analysis can be challenging depending upon the technology used. Here, we have characterized the performance of the Oxford MinION nanopore sequencer for detection and evaluation of organisms with a range of genomic nucleotide bias. We have diagnosed themore » quality of base-calling across individual reads and discovered that the position within the read affects base-calling and quality scores. Finally, we have evaluated the performance of the current state-of-the-art neural network-based MinION basecaller, characterizing its behavior with respect to systemic errors as well as context- and sequence-specific errors. Overall, we present a detailed characterization the capabilities of the MinION in terms of generating high-accuracy sequence data from genomes with a wide range of nucleotide content. This study provides a framework for designing the appropriate experiments that are the likely to lead to accurate and rapid field-forward diagnostics.« less
USDA-ARS?s Scientific Manuscript database
Lipase gene (lip) of a biodegradable polyhydroxyalkanoate- (PHA-) synthesizing bacterium P. resinovorans NRRL B-2649 was cloned, sequenced and characterized by using consensus primers and PCR-based genome walking method. The ORF of the putative Lip (314 amino acids) and its active site (Ser111, Asp...
Molecular Characterization of an Avian Astrovirus
Koci, Matthew D.; Seal, Bruce S.; Schultz-Cherry, Stacey
2000-01-01
Astroviruses are known to cause enteric disease in several animal species, including turkeys. However, only human astroviruses have been well characterized at the nucleotide level. Herein we report the nucleotide sequence, genomic organization, and predicted amino acid sequence of a turkey astrovirus isolated from poults with an emerging enteric disease. PMID:10846102
Effective normalization for copy number variation detection from whole genome sequencing.
Janevski, Angel; Varadan, Vinay; Kamalakaran, Sitharthan; Banerjee, Nilanjana; Dimitrova, Nevenka
2012-01-01
Whole genome sequencing enables a high resolution view of the human genome and provides unique insights into genome structure at an unprecedented scale. There have been a number of tools to infer copy number variation in the genome. These tools, while validated, also include a number of parameters that are configurable to genome data being analyzed. These algorithms allow for normalization to account for individual and population-specific effects on individual genome CNV estimates but the impact of these changes on the estimated CNVs is not well characterized. We evaluate in detail the effect of normalization methodologies in two CNV algorithms FREEC and CNV-seq using whole genome sequencing data from 8 individuals spanning four populations. We apply FREEC and CNV-seq to a sequencing data set consisting of 8 genomes. We use multiple configurations corresponding to different read-count normalization methodologies in FREEC, and statistically characterize the concordance of the CNV calls between FREEC configurations and the analogous output from CNV-seq. The normalization methodologies evaluated in FREEC are: GC content, mappability and control genome. We further stratify the concordance analysis within genic, non-genic, and a collection of validated variant regions. The GC content normalization methodology generates the highest number of altered copy number regions. Both mappability and control genome normalization reduce the total number and length of copy number regions. Mappability normalization yields Jaccard indices in the 0.07 - 0.3 range, whereas using a control genome normalization yields Jaccard index values around 0.4 with normalization based on GC content. The most critical impact of using mappability as a normalization factor is substantial reduction of deletion CNV calls. The output of another method based on control genome normalization, CNV-seq, resulted in comparable CNV call profiles, and substantial agreement in variable gene and CNV region calls. Choice of read-count normalization methodology has a substantial effect on CNV calls and the use of genomic mappability or an appropriately chosen control genome can optimize the output of CNV analysis.
An Exploration of Rhythmic Grouping of Speech Sequences by French- and German-Learning Infants
Abboub, Nawal; Boll-Avetisyan, Natalie; Bhatara, Anjali; Höhle, Barbara; Nazzi, Thierry
2016-01-01
Rhythm in music and speech can be characterized by a constellation of several acoustic cues. Individually, these cues have different effects on rhythmic perception: sequences of sounds alternating in duration are perceived as short-long pairs (weak-strong/iambic pattern), whereas sequences of sounds alternating in intensity or pitch are perceived as loud-soft, or high-low pairs (strong-weak/trochaic pattern). This perceptual bias—called the Iambic-Trochaic Law (ITL)–has been claimed to be an universal property of the auditory system applying in both the music and the language domains. Recent studies have shown that language experience can modulate the effects of the ITL on rhythmic perception of both speech and non-speech sequences in adults, and of non-speech sequences in 7.5-month-old infants. The goal of the present study was to explore whether language experience also modulates infants’ grouping of speech. To do so, we presented sequences of syllables to monolingual French- and German-learning 7.5-month-olds. Using the Headturn Preference Procedure (HPP), we examined whether they were able to perceive a rhythmic structure in sequences of syllables that alternated in duration, pitch, or intensity. Our findings show that both French- and German-learning infants perceived a rhythmic structure when it was cued by duration or pitch but not intensity. Our findings also show differences in how these infants use duration and pitch cues to group syllable sequences, suggesting that pitch cues were the easier ones to use. Moreover, performance did not differ across languages, failing to reveal early language effects on rhythmic perception. These results contribute to our understanding of the origin of rhythmic perception and perceptual mechanisms shared across music and speech, which may bootstrap language acquisition. PMID:27378887
Goettel, Wolfgang; Xia, Eric; Upchurch, Robert; Wang, Ming-Li; Chen, Pengyin; An, Yong-Qiang Charles
2014-04-23
Variation in seed oil composition and content among soybean varieties is largely attributed to differences in transcript sequences and/or transcript accumulation of oil production related genes in seeds. Discovery and analysis of sequence and expression variations in these genes will accelerate soybean oil quality improvement. In an effort to identify these variations, we sequenced the transcriptomes of soybean seeds from nine lines varying in oil composition and/or total oil content. Our results showed that 69,338 distinct transcripts from 32,885 annotated genes were expressed in seeds. A total of 8,037 transcript expression polymorphisms and 50,485 transcript sequence polymorphisms (48,792 SNPs and 1,693 small Indels) were identified among the lines. Effects of the transcript polymorphisms on their encoded protein sequences and functions were predicted. The studies also provided independent evidence that the lack of FAD2-1A gene activity and a non-synonymous SNP in the coding sequence of FAB2C caused elevated oleic acid and stearic acid levels in soybean lines M23 and FAM94-41, respectively. As a proof-of-concept, we developed an integrated RNA-seq and bioinformatics approach to identify and functionally annotate transcript polymorphisms, and demonstrated its high effectiveness for discovery of genetic and transcript variations that result in altered oil quality traits. The collection of transcript polymorphisms coupled with their predicted functional effects will be a valuable asset for further discovery of genes, gene variants, and functional markers to improve soybean oil quality.
Sequence Ready Characterization of the Pericentromeric Region of 19p12
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evan E. Eichler
2006-08-31
Current mapping and sequencing strategies have been inadequate within the proximal portion of 19p12 due, in part, to the presence of a recently expanded ZNF (zinc-finger) gene family and the presence of large (25-50 kb) inverted beta-satellite repeat structures which bracket this tandemly duplicated gene family. The virtual of absence of classically defined “unique” sequence within the region has hampered efforts to identify and characterize a suitable minimal tiling path of clones which can be used as templates required for finished sequencing of the region. The goal of this proposal is to develop and implement a novel sequence-anchor strategy tomore » generate a contiguous BAC map of the most proximal portion of chromosome 19p12 for the purpose of complete sequence characterization. The target region will be an estimated 4.5 Mb of DNA extending from STS marker D19S450 (the beginning of the ZNF gene cluster) to the centromeric (alpha-satellite) junction of 19p11. The approach will entail 1) pre-selection of 19p12 BAC and cosmid clones (NIH approved library) utilizing both 19p12 -unique and 19p12-SPECIFIC repeat probes (Eichler et al., 1998); 2) the generation of a BAC/cosmid end-sequence map across the region with a density of one marker every 8kb; 3) the development of a second-generation of STS (sequence tagged sites) which will be used to identify and verify clonal overlap at the level of the sequence; 4) incorporation of these sequence-anchored overlapping clones into existing cosmid/BAC restriction maps developed at Livermore National Laboratory; and 5) validation of the organization of this region utilizing high-resolution FISH techniques (extended chromatin analysis) on monochromosomal 19 somatic cell hybrids and parental cell lines of source material. The data generated will be used in the selection of the most parsimonious tiling path of BAC clones to be sequenced as part of the JGI effort on chromosome 19 and should serve as a model for the sequence characterization of other difficult regions of the human genome« less
Fast Dissemination of New HIV-1 CRF02/A1 Recombinants in Pakistan
Chen, Yue; Hora, Bhavna; DeMarco, Todd; Shah, Sharaf Ali; Ahmed, Manzoor; Sanchez, Ana M.; Su, Chang; Carter, Meredith; Stone, Mars; Hasan, Rumina; Hasan, Zahra; Busch, Michael P.; Denny, Thomas N.; Gao, Feng
2016-01-01
A number of HIV-1 subtypes are identified in Pakistan by characterization of partial viral gene sequences. Little is known whether new recombinants are generated and how they disseminate since whole genome sequences for these viruses have not been characterized. Near full-length genome (NFLG) sequences were obtained by amplifying two overlapping half genomes or next generation sequencing from 34 HIV-1-infected individuals in Pakistan. Phylogenetic tree analysis showed that the newly characterized sequences were 16 subtype As, one subtype C, and 17 A/G recombinants. Further analysis showed that all 16 subtype A1 sequences (47%), together with the vast majority of sequences from Pakistan from other studies, formed a tight subcluster (A1a) within the subtype A1 clade, suggesting that they were derived from a single introduction. More in-depth analysis of 17 A/G NFLG sequences showed that five shared similar recombination breakpoints as in CRF02 (15%) but were phylogenetically distinct from the prototype CRF02 by forming a tight subcluster (CRF02a) while 12 (38%) were new recombinants between CRF02a and A1a or a divergent A1b viruses. Unique recombination patterns among the majority of the newly characterized recombinants indicated ongoing recombination. Interestingly, recombination breakpoints in these CRF02/A1 recombinants were similar to those in prototype CRF02 viruses, indicating that recombination at these sites more likely generate variable recombinant viruses. The dominance and fast dissemination of new CRF02a/A1 recombinants over prototype CRF02 suggest that these recombinant have more adapted and may become major epidemic strains in Pakistan. PMID:27973597
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abraham, Paul E.; Wang, Xiaojing; Ranjan, Priya
The availability of next-generation sequencing technologies has rapidly transformed our ability to link genotypes to phenotypes, and as such, promises to facilitate the dissection of genetic contribution to complex traits. Although discoveries of genetic associations will further our understanding of biology, once candidate variants have been identified, investigators are faced with the challenge of characterizing the functional effects on proteins encoded by such genes. Here we show how next-generation RNA sequencing data can be exploited to construct genotype-specific protein sequence databases, which provide a clearer picture of the molecular toolbox underlying cellular and organismal processes and their variation in amore » natural population. For this study, we used two individual genotypes (DENA-17-3 and VNDL-27-4) from a recent genome wide association (GWA) study of Populus trichocarpa, an obligate outcrosser that exhibits tremendous phenotypic variation across the natural population. This strategy allowed us to comprehensively catalogue proteins containing single amino acid polymorphisms (SAAPs) and insertions and deletions (INDELS). Based on large-scale identification of SAAPs, we profiled the frequency of 128 types of naturally occurring amino acid substitutions, with a subset of SAAPs occurring in regions of the genome having strong polymorphism patterns consistent with recent positive and/or divergent selection. In addition, we were able to explore the diploid landscape of Populus at the proteome-level, allowing the characterization of heterozygous variants.« less
Abraham, Paul E.; Wang, Xiaojing; Ranjan, Priya; ...
2015-10-20
The availability of next-generation sequencing technologies has rapidly transformed our ability to link genotypes to phenotypes, and as such, promises to facilitate the dissection of genetic contribution to complex traits. Although discoveries of genetic associations will further our understanding of biology, once candidate variants have been identified, investigators are faced with the challenge of characterizing the functional effects on proteins encoded by such genes. Here we show how next-generation RNA sequencing data can be exploited to construct genotype-specific protein sequence databases, which provide a clearer picture of the molecular toolbox underlying cellular and organismal processes and their variation in amore » natural population. For this study, we used two individual genotypes (DENA-17-3 and VNDL-27-4) from a recent genome wide association (GWA) study of Populus trichocarpa, an obligate outcrosser that exhibits tremendous phenotypic variation across the natural population. This strategy allowed us to comprehensively catalogue proteins containing single amino acid polymorphisms (SAAPs) and insertions and deletions (INDELS). Based on large-scale identification of SAAPs, we profiled the frequency of 128 types of naturally occurring amino acid substitutions, with a subset of SAAPs occurring in regions of the genome having strong polymorphism patterns consistent with recent positive and/or divergent selection. In addition, we were able to explore the diploid landscape of Populus at the proteome-level, allowing the characterization of heterozygous variants.« less
Santagati, Vito Davide; Sestili, Francesco; Lafiandra, Domenico; D'Ovidio, Renato; Rogniaux, Helene; Masci, Stefania
2016-07-01
Wheat high molecular weight glutenin subunit variation is important because of its great influence on glutenin polymer structure, that is related to dough technological properties. Among the different subunits, the pair Bx20 and By20 is known to have a negative effect on quality, but the reasons are not clear: Bx20 has two cysteines, which theoretically make this subunit a chain extender of the glutenin polymer, just like the other Bx subunits, showing four cysteines, two of which should be involved in intra-molecular disulfide bonds. By20 has never been characterized so far at molecular level. Here we report the nucleotide sequences of Bx20 and By20 genes isolated from the durum wheat cultivar 'Lira 45' and the validation of the corresponding deduced amino acid sequences by using MALDI-TOF and LC-MS/MS. Four nucleotide differences were identified in the Bx20 gene with respect to the deduced sequence present in NCBI, causing two amino acid substitutions. For the By20 subunit, nucleotide and amino acid sequences revealed a great similarity to By15, both at gene and protein levels, showing five nucleotide changes generating two amino acid differences. No evidence of post-translational modifications has been found. Hypotheses are formulated in regard to relationships with technological quality. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
USDA-ARS?s Scientific Manuscript database
Polymorphic genetic markers were identified and characterized using a partial genomic library of Heliothis virescens enriched for simple sequence repeats (SSR) and nucleotide sequences of expressed sequence tags (EST). Nucleotide sequences of 192 clones from the partial genomic library yielded 147 u...
NASA Astrophysics Data System (ADS)
Benito, S.; Ferrer, A.; Benabou, S.; Aviñó, A.; Eritja, R.; Gargallo, R.
2018-05-01
Guanine-rich sequences may fold into highly ordered structures known as G-quadruplexes. Apart from the monomeric G-quadruplex, these sequences may form multimeric structures that are not usually considered when studying interaction with ligands. This work studies the interaction of a ligand, crystal violet, with three guanine-rich DNA sequences with the capacity to form multimeric structures. These sequences correspond to short stretches found near the promoter regions of c-kit and SMARCA4 genes. Instrumental techniques (circular dichroism, molecular fluorescence, size-exclusion chromatography and electrospray ionization mass spectrometry) and multivariate data analysis were used for this purpose. The polymorphism of G-quadruplexes was characterized prior to the interaction studies. The ligand was shown to interact preferentially with the monomeric G-quadruplex; the binding stoichiometry was 1:1 and the binding constant was in the order of 105 M-1 for all three sequences. The results highlight the importance of DNA treatment prior to interaction studies.
Fagot, Joël; De Lillo, Carlo
2011-12-01
Two experiments assessed if non-human primates can be meaningfully compared to humans in a non-verbal test of serial recall. A procedure was used that was derived from variations of the Corsi test, designed to test the effects of sequence structure and movement path length in humans. Two baboons were tested in Experiment 1. The monkeys showed several attributes of human serial recall. These included an easier recall of sequences with a shorter number of items and of sequences characterized by a shorter path length when the number of items was kept constant. However, the accuracy and speed of processing did not indicate that the monkeys were able to benefit from the spatiotemporal structure of sequences. Humans tested in Experiment 2 showed a quantitatively longer memory span, and, in contrast with monkeys, benefitted from sequence structure. The results are discussed in relation to differences in how human and non-human primates segment complex visual patterns. Copyright © 2011 Elsevier Ltd. All rights reserved.
Molecular Characterization of Epithelial Ovarian Cancer: Implications for Diagnosis and Treatment.
Rojas, Veronica; Hirshfield, Kim M; Ganesan, Shridar; Rodriguez-Rodriguez, Lorna
2016-12-15
Epithelial ovarian cancer is a highly heterogeneous disease characterized by multiple histological subtypes. Molecular diversity has been shown to occur within specific histological subtypes of epithelial ovarian cancer, between different tumors of an individual patient, as well as within individual tumors. Recent advances in the molecular characterization of epithelial ovarian cancer tumors have provided the basis for a simplified classification scheme in which these cancers are classified as either type I or type II tumors, and these two categories have implications regarding disease pathogenesis and prognosis. Molecular analyses, primarily based on next-generation sequencing, otherwise known as high-throughput sequencing, are allowing for further refinement of ovarian cancer classification, facilitating the elucidation of the site(s) of precursor lesions of high-grade serous ovarian cancer, and providing insight into the processes of clonal selection and evolution that may be associated with development of chemoresistance. Potential therapeutic targets have been identified from recent molecular profiling studies of these tumors, and the effectiveness and safety of a number of specific targeted therapies have been evaluated or are currently being studied for the treatment of women with this disease.
Molecular Characterization of Epithelial Ovarian Cancer: Implications for Diagnosis and Treatment
Rojas, Veronica; Hirshfield, Kim M.; Ganesan, Shridar; Rodriguez-Rodriguez, Lorna
2016-01-01
Epithelial ovarian cancer is a highly heterogeneous disease characterized by multiple histological subtypes. Molecular diversity has been shown to occur within specific histological subtypes of epithelial ovarian cancer, between different tumors of an individual patient, as well as within individual tumors. Recent advances in the molecular characterization of epithelial ovarian cancer tumors have provided the basis for a simplified classification scheme in which these cancers are classified as either type I or type II tumors, and these two categories have implications regarding disease pathogenesis and prognosis. Molecular analyses, primarily based on next-generation sequencing, otherwise known as high-throughput sequencing, are allowing for further refinement of ovarian cancer classification, facilitating the elucidation of the site(s) of precursor lesions of high-grade serous ovarian cancer, and providing insight into the processes of clonal selection and evolution that may be associated with development of chemoresistance. Potential therapeutic targets have been identified from recent molecular profiling studies of these tumors, and the effectiveness and safety of a number of specific targeted therapies have been evaluated or are currently being studied for the treatment of women with this disease. PMID:27983698
Luo, C; Zhang, F; Zhang, Q L; Guo, D Y; Luo, Z R
2013-01-09
We developed and characterized expressed sequence tags (ESTs)-simple sequence repeats (SSRs) and targeted region amplified polymorphism (TRAP) markers to examine genetic relationships in the persimmon genus Diospyros gene pool. In total, we characterized 14 EST-SSR primer pairs and 36 TRAP primer combinations, which were amplified across 20 germplasms of 4 species in the genus Diospyros. We used various genetic parameters, including effective multiplex ratio (EMR), diversity index (DI), and marker index (MI), to test the utility of these markers. TRAP markers gave higher EMR (24.85) but lower DI (0.33), compared to EST-SSRs (EMR = 3.65, DI = 0.34). TRAP gave a very high MI (8.08), which was about 8 times than the MI of EST-SSR (1.25). These markers were utilized for phylogenetic inference of 20 genotypes of Diospyros kaki Thunb. and allied species, with a result that all kaki genotypes clustered closely and 3 allied species formed an independent group. These markers could be further exploited for large-scale genetic relationship inference.
NASA Astrophysics Data System (ADS)
Rachanamol, R. S.; Lipton, A. P.; Thankamani, V.; Sarika, A. R.; Selvin, J.
2014-06-01
The pigmented, rod-shaped, Gram-negative, motile bacteria isolated from marine sponge Callyspongia diffusa exhibiting bioactivity was characterized as Shewanella algae (GenBank: KC623651). The 16S rRNA gene sequence-based phylogenetic analysis showed its similarity with the member of Shewanella and placed in a separate cluster with the recognized bacteria S. algae (PSB-05 FJ86678) with which it showed 99.0 % sequence similarity. Growth of the strain was optimum at temperature 30 °C, pH 8.0 in the presence of 2.0-4.0 % of NaCl. High antibiotic activity against microbes such as Escherichia coli (MTCC 40), S. typhii (MTCC 98), P. vulgaris (MTCC 426), V. fluvialis, V. anguillarum, E. cloacae, and L. lactis was recorded. The growth of fungal pathogens such as Aspergillus niger, Aspergillus fumigatus, Saccharomyces cerevisiae, and Colletotrichum gloeosporioides was effectively controlled.
Bozzi, Jorge A.; Liepelt, Sascha; Ohneiser, Sebastian; Gallo, Leonardo A.; Marchelli, Paula; Leyer, Ilona; Ziegenhagen, Birgit; Mengel, Christina
2015-01-01
Premise of the study: We present a set of 23 polymorphic nuclear microsatellite loci, 18 of which are identified for the first time within the riparian species Salix humboldtiana (Salicaceae) using next-generation sequencing. Methods and Results To characterize the 23 loci, up to 60 individuals were sampled and genotyped at each locus. The number of alleles ranged from two to eight, with an average of 4.43 alleles per locus. The effective number of alleles ranged from 1.15 to 3.09 per locus, and allelic richness ranged from 2.00 to 7.73 alleles per locus. Conclusions The new marker set will be used for future studies of genetic diversity and differentiation as well as for unraveling spatial genetic structures in S. humboldtiana populations in northern Patagonia, Argentina. PMID:25909042
Rapid resistome mapping using nanopore sequencing.
van der Helm, Eric; Imamovic, Lejla; Hashim Ellabaan, Mostafa M; van Schaik, Willem; Koza, Anna; Sommer, Morten O A
2017-05-05
The emergence of antibiotic resistance in human pathogens has become a major threat to modern medicine. The outcome of antibiotic treatment can be affected by the composition of the gut. Accordingly, knowledge of the gut resistome composition could enable more effective and individualized treatment of bacterial infections. Yet, rapid workflows for resistome characterization are lacking. To address this challenge we developed the poreFUME workflow that deploys functional metagenomic selections and nanopore sequencing to resistome mapping. We demonstrate the approach by functionally characterizing the gut resistome of an ICU (intensive care unit) patient. The accuracy of the poreFUME pipeline is with >97% sufficient for the annotation of antibiotic resistance genes. The poreFUME pipeline provides a promising approach for efficient resistome profiling that could inform antibiotic treatment decisions in the future. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Detection of microRNAs in color space.
Marco, Antonio; Griffiths-Jones, Sam
2012-02-01
Deep sequencing provides inexpensive opportunities to characterize the transcriptional diversity of known genomes. The AB SOLiD technology generates millions of short sequencing reads in color-space; that is, the raw data is a sequence of colors, where each color represents 2 nt and each nucleotide is represented by two consecutive colors. This strategy is purported to have several advantages, including increased ability to distinguish sequencing errors from polymorphisms. Several programs have been developed to map short reads to genomes in color space. However, a number of previously unexplored technical issues arise when using SOLiD technology to characterize microRNAs. Here we explore these technical difficulties. First, since the sequenced reads are longer than the biological sequences, every read is expected to contain linker fragments. The color-calling error rate increases toward the 3(') end of the read such that recognizing the linker sequence for removal becomes problematic. Second, mapping in color space may lead to the loss of the first nucleotide of each read. We propose a sequential trimming and mapping approach to map small RNAs. Using our strategy, we reanalyze three published insect small RNA deep sequencing datasets and characterize 22 new microRNAs. A bash shell script to perform the sequential trimming and mapping procedure, called SeqTrimMap, is available at: http://www.mirbase.org/tools/seqtrimmap/ antonio.marco@manchester.ac.uk Supplementary data are available at Bioinformatics online.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernest A. Mancini
Characterization of stratigraphic sequences (T-R cycles or sequences) included outcrop studies, well log analysis and seismic reflection interpretation. These studies were performed by researchers at the University of Alabama, Wichita State University and McGill University. The outcrop, well log and seismic characterization studies were used to develop a depositional sequence model, a T-R cycle (sequence) model, and a sequence stratigraphy predictive model. The sequence stratigraphy predictive model developed in this study is based primarily on the modified T-R cycle (sequence) model. The T-R cycle (sequence) model using transgressive and regressive systems tracts and aggrading, backstepping, and infilling intervals or sectionsmore » was found to be the most appropriate sequence stratigraphy model for the strata in the onshore interior salt basins of the Gulf of Mexico to improve petroleum stratigraphic trap and specific reservoir facies imaging, detection and delineation. The known petroleum reservoirs of the Mississippi Interior and North Louisiana Salt Basins were classified using T-R cycle (sequence) terminology. The transgressive backstepping reservoirs have been the most productive of oil, and the transgressive backstepping and regressive infilling reservoirs have been the most productive of gas. Exploration strategies were formulated using the sequence stratigraphy predictive model and the classification of the known petroleum reservoirs utilizing T-R cycle (sequence) terminology. The well log signatures and seismic reflector patterns were determined to be distinctive for the aggrading, backstepping and infilling sections of the T-R cycle (sequence) and as such, well log and seismic data are useful for recognizing and defining potential reservoir facies. The use of the sequence stratigraphy predictive model, in combination with the knowledge of how the distinctive characteristics of the T-R system tracts and their subdivisions are expressed in well log patterns and seismic reflection configurations and terminations, improves the ability to identify and define the limits of potential stratigraphic traps and the stratigraphic component of combination stratigraphic and structural traps and the associated continental, coastal plain and marine potential reservoir facies. The assessment of the underdeveloped and undiscovered reservoirs and resources in the Mississippi Interior and North Louisiana Salt Basins resulted in the confirmation of the Monroe Uplift as a feature characterized by a major regional unconformity, which serves as a combination stratigraphic and structural trap with a significant stratigraphic component, and the characterization of a developing play in southwest Alabama, which involves a stratigraphic trap, located updip near the pinchout of the potential reservoir facies. Potential undiscovered and underdeveloped reservoirs in the onshore interior salt basins are identified as Jurassic and Cretaceous aggrading continental and coastal, backstepping nearshore marine and marine shelf, and infilling fluvial, deltaic, coastal plain and marine shelf.« less
Simões-Araújo, Jean Luiz; Leite, Jakson; Marie Rouws, Luc Felicianus; Passos, Samuel Ribeiro; Xavier, Gustavo Ribeiro; Rumjanek, Norma Gouvêa; Zilli, Jerri Édson
The strain BR 3262 was isolated from nodule of cowpea (Vigna unguiculata L. Walp) growing in soil of the Atlantic Forest area in Brazil and it is reported as an efficient nitrogen fixing bacterium associated to cowpea. Firstly, this strain was assigned as Bradyrhizobium elkanii, however, recently a more detailed genetic and molecular characterization has indicated it could be a Bradyrhizobium pachyrhizi species. We report here the draft genome sequence of B. pachyrhizi strain BR 3262, an elite bacterium used as inoculant for cowpea. The whole genome with 116 scaffolds, 8,965,178bp and 63.8% of C+G content for BR 3262 was obtained using Illumina MiSeq sequencing technology. Annotation was added by the RAST prokaryotic genome annotation service and shown 8369 coding sequences, 52 RNAs genes, classified in 504 subsystems. Published by Elsevier Editora Ltda.
Mansouri, Maria; Kayserili, Hülya; Elalaoui, Siham Chafai; Nishimura, Gen; Iida, Aritoshi; Lyahyai, Jaber; Miyake, Noriko; Matsumoto, Naomichi; Sefiani, Abdelaziz; Ikegawa, Shiro
2016-02-01
Spondylo-meta-epiphyseal dysplasia (SMED), short limb-abnormal calcification type (SMED, SL-AC), is a very rare autosomal recessive disorder with various skeletal changes characterized by premature calcification leading to severe disproportionate short stature. Twenty-two patients have been reported until now, but only five mutations (four missense and one splice-site) in the conserved sequence encoding the tyrosine kinase domain of the DDR2 gene has been identified. We report here a novel DDR2 missense mutation, c.370C > T (p.Arg124Trp) in a Moroccan girl with SMED, SL-AC, identified by whole exome sequencing. Our study has expanded the mutational spectrum of this rare disease and it has shown that exome sequencing is a powerful and cost-effective tool for the diagnosis of clinically heterogeneous disorders such as SMED. © 2015 Wiley Periodicals, Inc.
Recovering complete and draft population genomes from metagenome datasets
Sangwan, Naseer; Xia, Fangfang; Gilbert, Jack A.
2016-03-08
Assembly of metagenomic sequence data into microbial genomes is of fundamental value to improving our understanding of microbial ecology and metabolism by elucidating the functional potential of hard-to-culture microorganisms. Here, we provide a synthesis of available methods to bin metagenomic contigs into species-level groups and highlight how genetic diversity, sequencing depth, and coverage influence binning success. Despite the computational cost on application to deeply sequenced complex metagenomes (e.g., soil), covarying patterns of contig coverage across multiple datasets significantly improves the binning process. We also discuss and compare current genome validation methods and reveal how these methods tackle the problem ofmore » chimeric genome bins i.e., sequences from multiple species. Finally, we explore how population genome assembly can be used to uncover biogeographic trends and to characterize the effect of in situ functional constraints on the genome-wide evolution.« less
Recovering complete and draft population genomes from metagenome datasets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sangwan, Naseer; Xia, Fangfang; Gilbert, Jack A.
Assembly of metagenomic sequence data into microbial genomes is of fundamental value to improving our understanding of microbial ecology and metabolism by elucidating the functional potential of hard-to-culture microorganisms. Here, we provide a synthesis of available methods to bin metagenomic contigs into species-level groups and highlight how genetic diversity, sequencing depth, and coverage influence binning success. Despite the computational cost on application to deeply sequenced complex metagenomes (e.g., soil), covarying patterns of contig coverage across multiple datasets significantly improves the binning process. We also discuss and compare current genome validation methods and reveal how these methods tackle the problem ofmore » chimeric genome bins i.e., sequences from multiple species. Finally, we explore how population genome assembly can be used to uncover biogeographic trends and to characterize the effect of in situ functional constraints on the genome-wide evolution.« less
Chandok, Harshpreet; Shah, Pratik; Akare, Uday Raj; Hindala, Maliram; Bhadoriya, Sneha Singh; Ravi, G V; Sharma, Varsha; Bandaru, Srinivas; Rathore, Pragya; Nayarisseri, Anuraj
2015-09-01
16S rDNA sequencing which has gained wide popularity amongst microbiologists for the molecular characterization and identification of newly discovered isolates provides accurate identification of isolates down to the level of sub-species (strain). Its most important advantage over the traditional biochemical characterization methods is that it can provide an accurate identification of strains with atypical phenotypic characters as well. The following work is an application of 16S rRNA gene sequencing approach to identify a novel species of Probiotic Lactobacillus acidophilus. The sample was collected from pond water samples of rural and urban areas of Krishna district, Vijayawada, Andhra Pradesh, India. Subsequently, the sample was serially diluted and the aliquots were incubated for a suitable time period following which the suspected colony was subjected to 16S rDNA sequencing. The sequence aligned against other species was concluded to be a novel, Probiotic L. acidophilus bacteria, further which were named L. acidophilus strain EMBS081 & EMBS082. After the sequence characterization, the isolate was deposited in GenBank Database, maintained by the National Centre for Biotechnology Information NCBI. The sequence can also be retrieve from EMBL and DDBJ repositories with accession numbers JX255677 and KC150145.
Characterization of a new apple luteovirus identified by high-throughput sequencing.
Liu, Huawei; Wu, Liping; Nikolaeva, Ekaterina; Peter, Kari; Liu, Zongrang; Mollov, Dimitre; Cao, Mengji; Li, Ruhui
2018-05-15
'Rapid Apple Decline' (RAD) is a newly emerging problem of young, dwarf apple trees in the Northeastern USA. The affected trees show trunk necrosis, cracking and canker before collapse in summer. In this study, we discovered and characterized a new luteovirus from apple trees in RAD-affected orchards using high-throughput sequencing (HTS) technology and subsequent Sanger sequencing. Illumina NextSeq sequencing was applied to total RNAs prepared from three diseased apple trees. Sequence reads were de novo assembled, and contigs were annotated by BLASTx. RT-PCR and 5'/3' RACE sequencing were used to obtain the complete genome of a new virus. RT-PCR was used to detect the virus. Three common apple viruses and a new luteovirus were identified from the diseased trees by HTS and RT-PCR. Sequence analyses of the complete genome of the new virus show that it is a new species of the genus Luteovirus in the family Luteoviridae. The virus is graft transmissible and detected by RT-PCR in apple trees in a couple of orchards. A new luteovirus and/or three known viruses were found to be associated with RAD. Molecular characterization of the new luteovirus provides important information for further investigation of its distribution and etiological role.
From genomics to functional markers in the era of next-generation sequencing.
Salgotra, R K; Gupta, B B; Stewart, C N
2014-03-01
The availability of complete genome sequences, along with other genomic resources for Arabidopsis, rice, pigeon pea, soybean and other crops, has revolutionized our understanding of the genetic make-up of plants. Next-generation DNA sequencing (NGS) has facilitated single nucleotide polymorphism discovery in plants. Functionally-characterized sequences can be identified and functional markers (FMs) for important traits can be developed at an ever-increasing ease. FMs are derived from sequence polymorphisms found in allelic variants of a functional gene. Linkage disequilibrium-based association mapping and homologous recombinants have been developed for identification of "perfect" markers for their use in crop improvement practices. Compared with many other molecular markers, FMs derived from the functionally characterized sequence genes using NGS techniques and their use provide opportunities to develop high-yielding plant genotypes resistant to various stresses at a fast pace.
Ghahremani, Enayat; Mardani, Mahnaz; Rezapour, Sadegh
2015-03-01
Lactic acid bacteria (LAB) with proteolitic activity are used as aromatic and antibacterial substances, cholesterol reduces, bile salt hydrolyses, and probiotic. The aims of this project were to isolate and identify natural LAB flora involved in traditional fermentation in cheeses of Khoramabad city and also to survey their probiotic potential. In order to achieve this goal, LAB were isolated and characterized using phenotypic and genotypic methods (PCR-sequencing); in the next stage, they were analyzed lowering cholesterol medium, hydrolysis of the bile, resistance to bile-resistant PH acidic stomach. At the end of the study, 88 cocci and 3 bacill were found: 58 Enterococcus faecium, 16 Enterococcus hirae, 5 Lactococcus lactis, 3 Lactobacillus plantarum, and 9 undetermined. The probiotic results of the bacteria had effects on the reduction of cholesterol, resistance to stomach acid, had relative antibacterial effects, and some strains had effects on hydrolyzing the bile. For further identification, the PCR method and the application of 16s-DNA-ITS genes and its sequencing were found useful. This study showed that lactic acid bacteria in the traditional cheese of the Khorramabad city have relative probiotic effect and that these lactic acid bacteria in fermented milk are suitable.
The Consolidation of Implicit Sequence Memory in Obstructive Sleep Apnea
Malecek, Nick
2014-01-01
Obstructive Sleep Apnea (OSA) Syndrome is a relatively frequent sleep disorder characterized by disrupted sleep patterns. It is a well-established fact that sleep has beneficial effect on memory consolidation by enhancing neural plasticity. Implicit sequence learning is a prominent component of skill learning. However, the formation and consolidation of this fundamental learning mechanism remains poorly understood in OSA. In the present study we examined the consolidation of different aspects of implicit sequence learning in patients with OSA. We used the Alternating Serial Reaction Time task to measure general skill learning and sequence-specific learning. There were two sessions: a learning phase and a testing phase, separated by a 10-hour offline period with sleep. Our data showed differences in offline changes of general skill learning between the OSA and control group. The control group demonstrated offline improvement from evening to morning, while the OSA group did not. In contrast, we did not observe differences between the groups in offline changes in sequence-specific learning. Our findings suggest that disrupted sleep in OSA differently affects neural circuits involved in the consolidation of sequence learning. PMID:25329462
USDA-ARS?s Scientific Manuscript database
The characterization of genes determining compatibility or incompatibility between plant pathogenic fungi and their hosts is important for the management of crop disease. The major focus of these interactions has typically been the identification and characterization of host genes, but it is equally...
Isolation and characterization of microsatellite markers in Fraser fir (Abies fraseri)
S.A. Josserand; K.M. Potter; G. Johnson; J.A. Bowen; J. Frampton; C.D. Nelson
2006-01-01
We describe the isolation and characterization of 14 microsatellite loci from Fraser fir (Abies fraseri). These markers originated from cloned inserts enriched for DNA sequences containing tandem di- and tri-nucleotide repeats. In total, 36 clones were selected, sequenced and evaluated. Polymerase chain reaction (PCR) primers for 14 of these...
USDA-ARS?s Scientific Manuscript database
Citrus viroid VI (CVd-VI) was originally found from citrus and persimmon in Japan. We report here the identification and molecular characterization of CVd-VI from four production regions of China. A total of 90 cDNA clones from nine infected citrus cultivars were sequenced. The sequence homologies o...
USDA-ARS?s Scientific Manuscript database
The application of genotyping by sequencing (GBS) approaches, combined with data imputation methodologies, is narrowing the genetic knowledge gap between major and understudied, minor crops. GBS is an excellent tool to characterize the genomic structure of recently domesticated (~200 years) and unde...
Ex utero intrapartum treatment for an infant with cerebro-costo-mandibular syndrome.
Ogasawara, Kei; Honda, Yoshinobu; Hosoya, Mitsuaki
2014-08-01
Cerebro-costo-mandibular syndrome (CCMS) is a rare disorder characterized by multiple rib abnormalities, micrognathia described as Pierre-Robin sequence, and cerebral involvement. Appropriate management of respiratory distress immediately after birth is crucial to rescue these patients. A boy, having a mother with Pierre-Robin sequence and a sister with CCMS, was diagnosed prenatally with CCMS and successfully treated with ex utero intrapartum treatment (EXIT) at 36 weeks 6 days of gestation. EXIT would be an effective option for rescuing patients with prenatally diagnosed CCMS and preventing neonatal hypoxia. © 2014 Japan Pediatric Society.
De Lillo, Carlo; Kirby, Melissa; Poole, Daniel
2016-01-01
Immediate serial spatial recall measures the ability to retain sequences of locations in short-term memory and is considered the spatial equivalent of digit span. It is tested by requiring participants to reproduce sequences of movements performed by an experimenter or displayed on a monitor. Different organizational factors dramatically affect serial spatial recall but they are often confounded or underspecified. Untangling them is crucial for the characterization of working-memory models and for establishing the contribution of structure and memory capacity to spatial span. We report five experiments assessing the relative role and independence of factors that have been reported in the literature. Experiment 1 disentangled the effects of spatial clustering and path-length by manipulating the distance of items displayed on a touchscreen monitor. Long-path sequences segregated by spatial clusters were compared with short-path sequences not segregated by clusters. Recall was more accurate for sequences segregated by clusters independently from path-length. Experiment 2 featured conditions where temporal pauses were introduced between or within cluster boundaries during the presentation of sequences with the same paths. Thus, the temporal structure of the sequences was either consistent or inconsistent with a hierarchical representation based on segmentation by spatial clusters but the effect of structure could not be confounded with effects of path-characteristics. Pauses at cluster boundaries yielded more accurate recall, as predicted by a hierarchical model. In Experiment 3, the systematic manipulation of sequence structure, path-length, and presence of path-crossings of sequences showed that structure explained most of the variance, followed by the presence/absence of path-crossings, and path-length. Experiments 4 and 5 replicated the results of the previous experiments in immersive virtual reality navigation tasks where the viewpoint of the observer changed dynamically during encoding and recall. This suggested that the effects of structure in spatial span are not dependent on perceptual grouping processes induced by the aerial view of the stimulus array typically afforded by spatial recall tasks. These results demonstrate the independence of coding strategies based on structure from effects of path characteristics and perceptual grouping in immediate serial spatial recall. PMID:27891101
Strain, Errol; Melka, David; Bunning, Kelly; Musser, Steven M.; Brown, Eric W.; Timme, Ruth
2016-01-01
The FDA has created a United States-based open-source whole-genome sequencing network of state, federal, international, and commercial partners. The GenomeTrakr network represents a first-of-its-kind distributed genomic food shield for characterizing and tracing foodborne outbreak pathogens back to their sources. The GenomeTrakr network is leading investigations of outbreaks of foodborne illnesses and compliance actions with more accurate and rapid recalls of contaminated foods as well as more effective monitoring of preventive controls for food manufacturing environments. An expanded network would serve to provide an international rapid surveillance system for pathogen traceback, which is critical to support an effective public health response to bacterial outbreaks. PMID:27008877
USDA-ARS?s Scientific Manuscript database
Contigs with sequence similarities to several nucleorhabdoviruses were identified by high-throughput sequencing analysis from a black currant (Ribes nigrum L.) cultivar. The complete genomic sequence of this new nucleorhabdovirus is 14,432 nucleotides. Its genomic organization is typical of nucleorh...
USDA-ARS?s Scientific Manuscript database
Current technologies with next generation sequencing have revolutionized metagenomics analysis of clinical samples. To achieve the non-selective amplification and recovery of low abundance genetic sequences, a simplified Sequence-Independent, Single-Primer Amplification (SISPA) technique in combinat...
Ho, Cynthia K. Y.; Raghwani, Jayna; Koekkoek, Sylvie; Liang, Richard H.; Van der Meer, Jan T. M.; Van Der Valk, Marc; De Jong, Menno; Pybus, Oliver G.
2016-01-01
ABSTRACT In contrast to other available next-generation sequencing platforms, PacBio single-molecule, real-time (SMRT) sequencing has the advantage of generating long reads albeit with a relatively higher error rate in unprocessed data. Using this platform, we longitudinally sampled and sequenced the hepatitis C virus (HCV) envelope genome region (1,680 nucleotides [nt]) from individuals belonging to a cluster of sexually transmitted cases. All five subjects were coinfected with HIV-1 and a closely related strain of HCV genotype 4d. In total, 50 samples were analyzed by using SMRT sequencing. By using 7 passes of circular consensus sequencing, the error rate was reduced to 0.37%, and the median number of sequences was 612 per sample. A further reduction of insertions was achieved by alignment against a sample-specific reference sequence. However, in vitro recombination during PCR amplification could not be excluded. Phylogenetic analysis supported close relationships among HCV sequences from the four male subjects and subsequent transmission from one subject to his female partner. Transmission was characterized by a strong genetic bottleneck. Viral genetic diversity was low during acute infection and increased upon progression to chronicity but subsequently fluctuated during chronic infection, caused by the alternate detection of distinct coexisting lineages. SMRT sequencing combines long reads with sufficient depth for many phylogenetic analyses and can therefore provide insights into within-host HCV evolutionary dynamics without the need for haplotype reconstruction using statistical algorithms. IMPORTANCE Next-generation sequencing has revolutionized the study of genetically variable RNA virus populations, but for phylogenetic and evolutionary analyses, longer sequences than those generated by most available platforms, while minimizing the intrinsic error rate, are desired. Here, we demonstrate for the first time that PacBio SMRT sequencing technology can be used to generate full-length HCV envelope sequences at the single-molecule level, providing a data set with large sequencing depth for the characterization of intrahost viral dynamics. The selection of consensus reads derived from at least 7 full circular consensus sequencing rounds significantly reduced the intrinsic high error rate of this method. We used this method to genetically characterize a unique transmission cluster of sexually transmitted HCV infections, providing insight into the distinct evolutionary pathways in each patient over time and identifying the transmission-associated genetic bottleneck as well as fluctuations in viral genetic diversity over time, accompanied by dynamic shifts in viral subpopulations. PMID:28077634
Kaya, Hilal Betul; Cetin, Oznur; Kaya, Hulya; Sahin, Mustafa; Sefer, Filiz; Kahraman, Abdullah; Tanyolac, Bahattin
2013-01-01
Background The olive tree (Olea europaea L.) is a diploid (2n = 2x = 46) outcrossing species mainly grown in the Mediterranean area, where it is the most important oil-producing crop. Because of its economic, cultural and ecological importance, various DNA markers have been used in the olive to characterize and elucidate homonyms, synonyms and unknown accessions. However, a comprehensive characterization and a full sequence of its transcriptome are unavailable, leading to the importance of an efficient large-scale single nucleotide polymorphism (SNP) discovery in olive. The objectives of this study were (1) to discover olive SNPs using next-generation sequencing and to identify SNP primers for cultivar identification and (2) to characterize 96 olive genotypes originating from different regions of Turkey. Methodology/Principal Findings Next-generation sequencing technology was used with five distinct olive genotypes and generated cDNA, producing 126,542,413 reads using an Illumina Genome Analyzer IIx. Following quality and size trimming, the high-quality reads were assembled into 22,052 contigs with an average length of 1,321 bases and 45 singletons. The SNPs were filtered and 2,987 high-quality putative SNP primers were identified. The assembled sequences and singletons were subjected to BLAST similarity searches and annotated with a Gene Ontology identifier. To identify the 96 olive genotypes, these SNP primers were applied to the genotypes in combination with amplified fragment length polymorphism (AFLP) and simple sequence repeats (SSR) markers. Conclusions/Significance This study marks the highest number of SNP markers discovered to date from olive genotypes using transcriptome sequencing. The developed SNP markers will provide a useful source for molecular genetic studies, such as genetic diversity and characterization, high density quantitative trait locus (QTL) analysis, association mapping and map-based gene cloning in the olive. High levels of genetic variation among Turkish olive genotypes revealed by SNPs, AFLPs and SSRs allowed us to characterize the Turkish olive genotype. PMID:24058483
Rainetová, P; Jiřincová, H; Musílek, M; Nováková, L; Vodičková, I; Štruncová, V; Švecová, M; Pazdiora, P; Piskunová, N; Trubač, P; Zajíc, T; Havlíčková, M
2015-06-01
Introducing enterovirus sequencing as an advanced approach to classify the viruses isolated according to the novel nomenclature and to characterize isolates in detail. Seventy-five specimens collected from 64 patients in two hospitals, Liberec Regional Hospital, and Plzeň University Hospital, were analyzed. The study patients' age ranged from four to 54 years, with a median of 15 years in males and 16 years in females. In most patients, the reasons for admission were intense headache, fever, vomiting, tiredness, meningeal symptoms, intestinal symptoms (in two patients), and skin symptoms (in one patient). The specimens collected were rectal and throat swabs, cerebrospinal fluid (CSF) and stool specimens. Molecular detection and typing were performed using the RT-PCR method. A segment of the 5´non-coding RNA was selected for typing. Specimens were amplified using single-step PCR with external primers and with the same primers extended to include M13 sequences (Generi-Biotech). The LASERGENE software (DIASTAR) was used in sequence editing, alignment, and quality check. The sequences obtained were checked against the central GenBank sequence database using the BLAST algorithm. The identification of the study isolates resulted in 61 ECHO viruses 30, three coxsackie viruses B1, one coxsackie virus B3, one coxsackie virus A9, one enterovirus 86, one enterovirus 71, Two ECHO viruses 13/coxsackie virus B5, one ECHO virus 7/30/coxsackie virus B4, one coxsackie virus B4/enterovirus B, one enterovirus 87/ECHO virus 30/enterovirus B, and one ECHO virus 3. All viruses isolated, except enterovirus 71 classified into group A, were of group B. The enteroviruses were identified unambigously, although the sequencing only targeted a short, conserved segment that showed considerable variability. The sequencing was an effective alternative to enterovirus identification by the neutralisation test and allowed for detailed characterization of the isolates. The predominance of ECHO 30 as the cause of aseptic meningitis is in accordance with the literature data.
Molecular characterization of a novel Luteovirus from peach identified by high-throughput sequencing
USDA-ARS?s Scientific Manuscript database
Contigs with sequence homologies to Cherry-associated luteovirus were identified by high-throughput sequencing analysis of two peach accessions undergoing quarantine testing. The complete genomic sequences of the two isolates of this virus are 5,819 and 5,814 nucleotides. Their genome organization i...
Long-read sequencing and de novo assembly of a Chinese genome
USDA-ARS?s Scientific Manuscript database
Short-read sequencing has enabled the de novo assembly of several individual human genomes, but with inherent limitations in characterizing repeat elements. Here we sequence a Chinese individual HX1 by single-molecule real-time (SMRT) long-read sequencing, construct a physical map by NanoChannel arr...
Position-dependent effects of locked nucleic acid (LNA) on DNA sequencing and PCR primers
Levin, Joshua D.; Fiala, Dean; Samala, Meinrado F.; Kahn, Jason D.; Peterson, Raymond J.
2006-01-01
Genomes are becoming heavily annotated with important features. Analysis of these features often employs oligonucleotides that hybridize at defined locations. When the defined location lies in a poor sequence context, traditional design strategies may fail. Locked Nucleic Acid (LNA) can enhance oligonucleotide affinity and specificity. Though LNA has been used in many applications, formal design rules are still being defined. To further this effort we have investigated the effect of LNA on the performance of sequencing and PCR primers in AT-rich regions, where short primers yield poor sequencing reads or PCR yields. LNA was used in three positional patterns: near the 5′ end (LNA-5′), near the 3′ end (LNA-3′) and distributed throughout (LNA-Even). Quantitative measures of sequencing read length (Phred Q30 count) and real-time PCR signal (cycle threshold, CT) were characterized using two-way ANOVA. LNA-5′ increased the average Phred Q30 score by 60% and it was never observed to decrease performance. LNA-5′ generated cycle thresholds in quantitative PCR that were comparable to high-yielding conventional primers. In contrast, LNA-3′ and LNA-Even did not improve read lengths or CT. ANOVA demonstrated the statistical significance of these results and identified significant interaction between the positional design rule and primer sequence. PMID:17071964
de Muinck, Eric J; Trosvik, Pål; Gilfillan, Gregor D; Hov, Johannes R; Sundaram, Arvind Y M
2017-07-06
Advances in sequencing technologies and bioinformatics have made the analysis of microbial communities almost routine. Nonetheless, the need remains to improve on the techniques used for gathering such data, including increasing throughput while lowering cost and benchmarking the techniques so that potential sources of bias can be better characterized. We present a triple-index amplicon sequencing strategy to sequence large numbers of samples at significantly lower c ost and in a shorter timeframe compared to existing methods. The design employs a two-stage PCR protocol, incorpo rating three barcodes to each sample, with the possibility to add a fourth-index. It also includes heterogeneity spacers to overcome low complexity issues faced when sequencing amplicons on Illumina platforms. The library preparation method was extensively benchmarked through analysis of a mock community in order to assess biases introduced by sample indexing, number of PCR cycles, and template concentration. We further evaluated the method through re-sequencing of a standardized environmental sample. Finally, we evaluated our protocol on a set of fecal samples from a small cohort of healthy adults, demonstrating good performance in a realistic experimental setting. Between-sample variation was mainly related to batch effects, such as DNA extraction, while sample indexing was also a significant source of bias. PCR cycle number strongly influenced chimera formation and affected relative abundance estimates of species with high GC content. Libraries were sequenced using the Illumina HiSeq and MiSeq platforms to demonstrate that this protocol is highly scalable to sequence thousands of samples at a very low cost. Here, we provide the most comprehensive study of performance and bias inherent to a 16S rRNA gene amplicon sequencing method to date. Triple-indexing greatly reduces the number of long custom DNA oligos required for library preparation, while the inclusion of variable length heterogeneity spacers minimizes the need for PhiX spike-in. This design results in a significant cost reduction of highly multiplexed amplicon sequencing. The biases we characterize highlight the need for highly standardized protocols. Reassuringly, we find that the biological signal is a far stronger structuring factor than the various sources of bias.
Accurate phylogenetic classification of DNA fragments based onsequence composition
DOE Office of Scientific and Technical Information (OSTI.GOV)
McHardy, Alice C.; Garcia Martin, Hector; Tsirigos, Aristotelis
2006-05-01
Metagenome studies have retrieved vast amounts of sequenceout of a variety of environments, leading to novel discoveries and greatinsights into the uncultured microbial world. Except for very simplecommunities, diversity makes sequence assembly and analysis a verychallenging problem. To understand the structure a 5 nd function ofmicrobial communities, a taxonomic characterization of the obtainedsequence fragments is highly desirable, yet currently limited mostly tothose sequences that contain phylogenetic marker genes. We show that forclades at the rank of domain down to genus, sequence composition allowsthe very accurate phylogenetic 10 characterization of genomic sequence.We developed a composition-based classifier, PhyloPythia, for de novophylogenetic sequencemore » characterization and have trained it on adata setof 340 genomes. By extensive evaluation experiments we show that themethodis accurate across all taxonomic ranks considered, even forsequences that originate fromnovel organisms and are as short as 1kb.Application to two metagenome datasets 15 obtained from samples ofphosphorus-removing sludge showed that the method allows the accurateclassification at genus level of most sequence fragments from thedominant populations, while at the same time correctly characterizingeven larger parts of the samples at higher taxonomic levels.« less
Lei, Haiyan; Li, Tianwei; Hung, Guo-Chiuan; Li, Bingjie; Tsai, Shien; Lo, Shyh-Ching
2013-11-19
We conducted genomic sequencing to identify Epstein Barr Virus (EBV) genomes in 2 human peripheral blood B lymphocytes that underwent spontaneous immortalization promoted by mycoplasma infections in culture, using the high-throughput sequencing (HTS) Illumina MiSeq platform. The purpose of this study was to examine if rapid detection and characterization of a viral agent could be effectively achieved by HTS using a platform that has become readily available in general biology laboratories. Raw read sequences, averaging 175 bps in length, were mapped with DNA databases of human, bacteria, fungi and virus genomes using the CLC Genomics Workbench bioinformatics tool. Overall 37,757 out of 49,520,834 total reads in one lymphocyte line (# K4413-Mi) and 28,178 out of 45,335,960 reads in the other lymphocyte line (# K4123-Mi) were identified as EBV sequences. The two EBV genomes with estimated 35.22-fold and 31.06-fold sequence coverage respectively, designated K4413-Mi EBV and K4123-Mi EBV (GenBank accession number KC440852 and KC440851 respectively), are characteristic of type-1 EBV. Sequence comparison and phylogenetic analysis among K4413-Mi EBV, K4123-Mi EBV and the EBV genomes previously reported to GenBank as well as the NA12878 EBV genome assembled from database of the 1000 Genome Project showed that these 2 EBVs are most closely related to B95-8, an EBV previously isolated from a patient with infectious mononucleosis and WT-EBV. They are less similar to EBVs associated with nasopharyngeal carcinoma (NPC) from Hong Kong and China as well as the Akata strain of a case of Burkitt's lymphoma from Japan. They are most different from type 2 EBV found in Western African Burkitt's lymphoma.
Khong, Wei Xin; Marimuthu, Kalisvar; Teo, Jeanette; Ding, Yichen; Xia, Eryu; Lee, Jia Jun; Ong, Rick Twee-Hee; Venkatachalam, Indumathi; Cherng, Benjamin; Pada, Surinder Kaur; Choong, Weng Lam; Smitasin, Nares; Ooi, Say Tat; Deepak, Rama Narayana; Kurup, Asok; Fong, Raymond; Van La, My; Tan, Thean Yen; Koh, Tse Hsien; Lin, Raymond Tzer Pin; Tan, Eng Lee; Krishnan, Prabha Unny; Singh, Siddharth; Pitout, Johann D; Teo, Yik-Ying; Yang, Liang; Ng, Oon Tek
2016-11-01
Owing to gene transposition and plasmid conjugation, New Delhi metallo-β-lactamase (NDM) is typically identified among varied Enterobacteriaceae species and STs. We used WGS to characterize the chromosomal and plasmid molecular epidemiology of NDM transmission involving four institutions in Singapore. Thirty-three Enterobacteriaceae isolates (collection years 2010-14) were sequenced using short-read sequencing-by-synthesis and analysed. Long-read single molecule, real-time sequencing (SMRTS) was used to characterize genetically a novel plasmid pSg1-NDM carried on Klebsiella pneumoniae ST147. In 20 (61%) isolates, bla NDM was located on the pNDM-ECS01 plasmid in the background of multiple bacterial STs, including eight K. pneumoniae STs and five Escherichia coli STs. In six (18%) isolates, a novel bla NDM -positive plasmid, pSg1-NDM, was found only in K. pneumoniae ST147. The pSg1-NDM-K. pneumoniae ST147 clone (Sg1-NDM) was fully sequenced using SMRTS. pSg1-NDM, a 90 103 bp IncR plasmid, carried genes responsible for resistance to six classes of antimicrobials. A large portion of pSg1-NDM had no significant homology to any known plasmids in GenBank. pSg1-NDM had no conjugative transfer region. Combined chromosomal-plasmid phylogenetic analysis revealed five clusters of clonal bacterial NDM-positive plasmid transmission, of which two were inter-institution clusters. The largest inter-institution cluster involved six K. pneumoniae ST147-pSg1-NDM isolates. Fifteen patients were involved in transmission clusters, of which four had ward contact, six had hospital contact and five had an unknown transmission link. A combined sequencing-by-synthesis and SMRTS approach can determine effectively the transmission clusters of bla NDM and genetically characterize novel plasmids. Plasmid molecular epidemiology is important to understanding NDM spread as bla NDM -positive plasmids can conjugate extensively across species and STs. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Borozan, Ivan; Watt, Stuart; Ferretti, Vincent
2015-05-01
Alignment-based sequence similarity searches, while accurate for some type of sequences, can produce incorrect results when used on more divergent but functionally related sequences that have undergone the sequence rearrangements observed in many bacterial and viral genomes. Here, we propose a classification model that exploits the complementary nature of alignment-based and alignment-free similarity measures with the aim to improve the accuracy with which DNA and protein sequences are characterized. Our model classifies sequences using a combined sequence similarity score calculated by adaptively weighting the contribution of different sequence similarity measures. Weights are determined independently for each sequence in the test set and reflect the discriminatory ability of individual similarity measures in the training set. Because the similarity between some sequences is determined more accurately with one type of measure rather than another, our classifier allows different sets of weights to be associated with different sequences. Using five different similarity measures, we show that our model significantly improves the classification accuracy over the current composition- and alignment-based models, when predicting the taxonomic lineage for both short viral sequence fragments and complete viral sequences. We also show that our model can be used effectively for the classification of reads from a real metagenome dataset as well as protein sequences. All the datasets and the code used in this study are freely available at https://collaborators.oicr.on.ca/vferretti/borozan_csss/csss.html. ivan.borozan@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.
Borozan, Ivan; Watt, Stuart; Ferretti, Vincent
2015-01-01
Motivation: Alignment-based sequence similarity searches, while accurate for some type of sequences, can produce incorrect results when used on more divergent but functionally related sequences that have undergone the sequence rearrangements observed in many bacterial and viral genomes. Here, we propose a classification model that exploits the complementary nature of alignment-based and alignment-free similarity measures with the aim to improve the accuracy with which DNA and protein sequences are characterized. Results: Our model classifies sequences using a combined sequence similarity score calculated by adaptively weighting the contribution of different sequence similarity measures. Weights are determined independently for each sequence in the test set and reflect the discriminatory ability of individual similarity measures in the training set. Because the similarity between some sequences is determined more accurately with one type of measure rather than another, our classifier allows different sets of weights to be associated with different sequences. Using five different similarity measures, we show that our model significantly improves the classification accuracy over the current composition- and alignment-based models, when predicting the taxonomic lineage for both short viral sequence fragments and complete viral sequences. We also show that our model can be used effectively for the classification of reads from a real metagenome dataset as well as protein sequences. Availability and implementation: All the datasets and the code used in this study are freely available at https://collaborators.oicr.on.ca/vferretti/borozan_csss/csss.html. Contact: ivan.borozan@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25573913
Isolation and characterization of major histocompatibility complex class II B genes in cranes.
Kohyama, Tetsuo I; Akiyama, Takuya; Nishida, Chizuko; Takami, Kazutoshi; Onuma, Manabu; Momose, Kunikazu; Masuda, Ryuichi
2015-11-01
In this study, we isolated and characterized the major histocompatibility complex (MHC) class II B genes in cranes. Genomic sequences spanning exons 1 to 4 were amplified and determined in 13 crane species and three other species closely related to cranes. In all, 55 unique sequences were identified, and at least two polymorphic MHC class II B loci were found in most species. An analysis of sequence polymorphisms showed the signature of positive selection and recombination. A phylogenetic reconstruction based on exon 2 sequences indicated that trans-species polymorphism has persisted for at least 10 million years, whereas phylogenetic analyses of the sequences flanking exon 2 revealed a pattern of concerted evolution. These results suggest that both balancing selection and recombination play important roles in the crane MHC evolution.
Powis, Zöe; Espenschied, Carin R; LaDuca, Holly; Hagman, Kelly D; Paudyal, Tripti; Li, Shuwei; Inaba, Hiroto; Mauer, Ann; Nathanson, Katherine L; Knost, James; Chao, Elizabeth C; Tang, Sha
2018-08-01
Clinical diagnostic exome sequencing (DES) has been effective in diagnosing individuals with suspected genetic conditions; nevertheless little has been described regarding its clinical utility in individuals with a personal and family history of cancer. This study aimed to assess diagnostic yield and clinical characteristics of pediatric and adult patients undergoing germline DES for hereditary cancer. We retrospectively reviewed 2171 patients referred for DES; cases with a personal and/or family history of cancer were further studied. Of 39 cancer patients, relevant alterations were found in eight individuals (21%), including one (3%) positive pathogenic alteration within a characterized gene, two (5%) uncertain findings in characterized genes, and five (13%) alterations in novel candidate genes. Two of the 5 pediatric patients, undergoing testing, (40%) had findings in novel candidate genes, with the remainder being negative. We include brief case studies to illustrate the variety of challenging issues related to these patients. Our observations demonstrate utility of family-based exome sequencing in patients for suspected hereditary cancer, including familial co-segregation analysis, and comprehensive medical review. DES may be particularly useful when traditional approaches do not result in a diagnosis or in families with unique phenotypes. This work also highlights the importance and complexity of analysis of uncharacterized genes in exome sequencing for hereditary cancer. Copyright © 2018 Elsevier Inc. All rights reserved.
Quantum-Sequencing: Biophysics of quantum tunneling through nucleic acids
NASA Astrophysics Data System (ADS)
Casamada Ribot, Josep; Chatterjee, Anushree; Nagpal, Prashant
2014-03-01
Tunneling microscopy and spectroscopy has extensively been used in physical surface sciences to study quantum tunneling to measure electronic local density of states of nanomaterials and to characterize adsorbed species. Quantum-Sequencing (Q-Seq) is a new method based on tunneling microscopy for electronic sequencing of single molecule of nucleic acids. A major goal of third-generation sequencing technologies is to develop a fast, reliable, enzyme-free single-molecule sequencing method. Here, we present the unique ``electronic fingerprints'' for all nucleotides on DNA and RNA using Q-Seq along their intrinsic biophysical parameters. We have analyzed tunneling spectra for the nucleotides at different pH conditions and analyzed the HOMO, LUMO and energy gap for all of them. In addition we show a number of biophysical parameters to further characterize all nucleobases (electron and hole transition voltage and energy barriers). These results highlight the robustness of Q-Seq as a technique for next-generation sequencing.
Gini, Beatrice; Mischel, Paul S
2014-08-01
Single-cell sequencing approaches are needed to characterize the genomic diversity of complex tumors, shedding light on their evolutionary paths and potentially suggesting more effective therapies. In this issue of Cancer Discovery, Francis and colleagues develop a novel integrative approach to identify distinct tumor subpopulations based on joint detection of clonal and subclonal events from bulk tumor and single-nucleus whole-genome sequencing, allowing them to infer a subclonal architecture. Surprisingly, the authors identify convergent evolution of multiple, mutually exclusive, independent EGFR gain-of-function variants in a single tumor. This study demonstrates the value of integrative single-cell genomics and highlights the biologic primacy of EGFR as an actionable target in glioblastoma. ©2014 American Association for Cancer Research.
Venuti, A; Di Russo, C; del Grosso, N; Patti, A M; Ruggeri, F; De Stasio, P R; Martiniello, M G; Pagnotti, P; Degener, A M; Midulla, M
1985-01-01
A fast-growing strain of human hepatitis A virus was selected and characterized. The virus has the unusual property of developing a strong cytopathic effect in tissue culture in 7 to 10 days. Sequences of the viral genome were cloned into recombinant plasmids with the double-stranded replicative form as a template for the reverse transcription of cDNA. Restriction analysis and direct sequencing indicate that this strain is different from that described by Ticehurst et al. (Proc. Natl. Acad. Sci. USA 80:5885-5889, 1983) in the region that presumptively codes for the major capsid protein VP1, but both isolates have conserved large areas of homology in the untranslated 5'-terminal sequences of the genome. Images PMID:2997478
Lara Carrillo, John Alejandro; Fierro Medina, Ricardo; Manríquez Rocha, Juan; Bustos Bustos, Erika; Insuasty Cepeda, Diego Sebastián; García Castañeda, Javier Eduardo; Rivera Monroy, Zuly Jenny
2017-11-14
In order to obtain gold electrode surfaces modified with Human Papillomavirus L1 protein (HPV L1)-derived peptides, two sequences, SPINNTKPHEAR and YIK, were chosen. Both have been recognized by means of sera from patients infected with HPV. The molecules, Fc-Ahx-SPINNTKPHEAR, Ac-C- Ahx -(Fc)KSPINNTKPHEAR, Ac-C- Ahx -SPINNTKPHEAR(Fc)K, C- Ahx -SPINNTKPHEAR, and (YIK)₂- Ahx -C, were designed, synthesized, and characterized. Our results suggest that peptides derived from the SPINNTKPHEAR sequence, containing ferrocene and cysteine residues, are not stable and not adequate for electrode surface modification. The surface of polycrystalline gold electrodes was modified with the peptides C-Ahx-SPINNTKPHEAR or (YIK)₂-Ahx-C through self-assembly. The modified polycrystalline gold electrodes were characterized via infrared spectroscopy and electrochemical measurements. The thermodynamic parameters, surface coverage factor, and medium pH effect were determined for these surfaces. The results indicate that surface modification depends on the peptide sequence (length, amino acid composition, polyvalence, etc.). The influence of antipeptide antibodies on the voltammetric response of the modified electrode was evaluated by comparing results obtained with pre-immune and post-immune serum samples.
Rickettsia asembonensis Characterization by Multilocus Sequence Typing of Complete Genes, Peru.
Loyola, Steev; Flores-Mendoza, Carmen; Torre, Armando; Kocher, Claudine; Melendrez, Melanie; Luce-Fedrow, Alison; Maina, Alice N; Richards, Allen L; Leguia, Mariana
2018-05-01
While studying rickettsial infections in Peru, we detected Rickettsia asembonensis in fleas from domestic animals. We characterized 5 complete genomic regions (17kDa, gltA, ompA, ompB, and sca4) and conducted multilocus sequence typing and phylogenetic analyses. The molecular isolate from Peru is distinct from the original R. asembonensis strain from Kenya.
Morphological and molecular characterization of Fusarium spp pathogenic to pecan tree in Brazil.
Lazarotto, M; Milanesi, P M; Muniz, M F B; Reiniger, L R S; Beltrame, R; Harakava, R; Blume, E
2014-11-11
The occurrence of Fusarium spp associated with pecan tree (Carya illinoinensis) diseases in Brazil has been observed in recent laboratory analyses in Rio Grande do Sul State. Thus, in this study, we i) obtained Fusarium isolates from plants with disease symptoms; ii) tested the pathogenicity of these Fusarium isolates to pecan; iii) characterized and grouped Fusarium isolates that were pathogenic to the pecan tree based on morphological characteristics; iv) identified Fusarium spp to the species complex level through TEF-1α sequencing; and v) compared the identification methods used in the study. Fifteen isolates collected from the inflorescences, roots, and seeds of symptomatic plants (leaf necrosis or root rot) were used for pathogenicity tests. Morphological characterization was conducted using only pathogenic isolates, for a total of 11 isolates, based on the mycelial growth rate, sporulation, colony pigmentation, and conidial length and width variables. Pathogenic isolates were grouped based on morphological characteristics, and molecular characterization was performed by sequencing TEF-1α genes. Pathogenic isolates belonging to the Fusarium chlamydosporum species complex, Fusarium graminearum species complex, Fusarium proliferatum, and Fusarium oxysporum were identified based on the TEF-1α region. Morphological characteristics were used to effectively differentiate isolates and group the isolates according to genetic similarity, particularly conidial width, which emerged as a key morphological descriptor in this study.
Random Amplification and Pyrosequencing for Identification of Novel Viral Genome Sequences
Hang, Jun; Forshey, Brett M.; Kochel, Tadeusz J.; Li, Tao; Solórzano, Víctor Fiestas; Halsey, Eric S.; Kuschner, Robert A.
2012-01-01
ssRNA viruses have high levels of genomic divergence, which can lead to difficulty in genomic characterization of new viruses using traditional PCR amplification and sequencing methods. In this study, random reverse transcription, anchored random PCR amplification, and high-throughput pyrosequencing were used to identify orthobunyavirus sequences from total RNA extracted from viral cultures of acute febrile illness specimens. Draft genome sequence for the orthobunyavirus L segment was assembled and sequentially extended using de novo assembly contigs from pyrosequencing reads and orthobunyavirus sequences in GenBank as guidance. Accuracy and continuous coverage were achieved by mapping all reads to the L segment draft sequence. Subsequently, RT-PCR and Sanger sequencing were used to complete the genome sequence. The complete L segment was found to be 6936 bases in length, encoding a 2248-aa putative RNA polymerase. The identified L segment was distinct from previously published South American orthobunyaviruses, sharing 63% and 54% identity at the nucleotide and amino acid level, respectively, with the complete Oropouche virus L segment and 73% and 81% identity at the nucleotide and amino acid level, respectively, with a partial Caraparu virus L segment. The result demonstrated the effectiveness of a sequence-independent amplification and next-generation sequencing approach for obtaining complete viral genomes from total nucleic acid extracts and its use in pathogen discovery. PMID:22468136
Jakupciak, John P; Wells, Jeffrey M; Karalus, Richard J; Pawlowski, David R; Lin, Jeffrey S; Feldman, Andrew B
2013-01-01
Large-scale genomics projects are identifying biomarkers to detect human disease. B. pseudomallei and B. mallei are two closely related select agents that cause melioidosis and glanders. Accurate characterization of metagenomic samples is dependent on accurate measurements of genetic variation between isolates with resolution down to strain level. Often single biomarker sensitivity is augmented by use of multiple or panels of biomarkers. In parallel with single biomarker validation, advances in DNA sequencing enable analysis of entire genomes in a single run: population-sequencing. Potentially, direct sequencing could be used to analyze an entire genome to serve as the biomarker for genome identification. However, genome variation and population diversity complicate use of direct sequencing, as well as differences caused by sample preparation protocols including sequencing artifacts and mistakes. As part of a Department of Homeland Security program in bacterial forensics, we examined how to implement whole genome sequencing (WGS) analysis as a judicially defensible forensic method for attributing microbial sample relatedness; and also to determine the strengths and limitations of whole genome sequence analysis in a forensics context. Herein, we demonstrate use of sequencing to provide genetic characterization of populations: direct sequencing of populations.
Jakupciak, John P.; Wells, Jeffrey M.; Karalus, Richard J.; Pawlowski, David R.; Lin, Jeffrey S.; Feldman, Andrew B.
2013-01-01
Large-scale genomics projects are identifying biomarkers to detect human disease. B. pseudomallei and B. mallei are two closely related select agents that cause melioidosis and glanders. Accurate characterization of metagenomic samples is dependent on accurate measurements of genetic variation between isolates with resolution down to strain level. Often single biomarker sensitivity is augmented by use of multiple or panels of biomarkers. In parallel with single biomarker validation, advances in DNA sequencing enable analysis of entire genomes in a single run: population-sequencing. Potentially, direct sequencing could be used to analyze an entire genome to serve as the biomarker for genome identification. However, genome variation and population diversity complicate use of direct sequencing, as well as differences caused by sample preparation protocols including sequencing artifacts and mistakes. As part of a Department of Homeland Security program in bacterial forensics, we examined how to implement whole genome sequencing (WGS) analysis as a judicially defensible forensic method for attributing microbial sample relatedness; and also to determine the strengths and limitations of whole genome sequence analysis in a forensics context. Herein, we demonstrate use of sequencing to provide genetic characterization of populations: direct sequencing of populations. PMID:24455204
Investigation of SnSPR1, a novel and abundant surface protein of Sarcocystis neurona merozoites.
Zhang, Deqing; Howe, Daniel K
2008-04-15
An expressed sequence tag (EST) sequencing project has produced over 15,000 partial cDNA sequences from the equine pathogen Sarcocystis neurona. While many of the sequences are clear homologues of previously characterized genes, a significant number of the S. neurona ESTs do not exhibit similarity to anything in the extensive sequence databases that have been generated. In an effort to characterize parasite proteins that are novel to S. neurona, a seemingly unique gene was selected for further investigation based on its abundant representation in the collection of ESTs and the predicted presence of a signal peptide and glycolipid anchor addition on the encoded protein. The gene was expressed in E. coli, and monospecific polyclonal antiserum against the recombinant protein was produced by immunization of a rabbit. Characterization of the native protein in S. neurona merozoites and schizonts revealed that it is a low molecular weight surface protein that is expressed throughout intracellular development of the parasite. The protein was designated Surface Protein 1 (SPR1) to reflect its display on the outer surface of merozoites and to distinguish it from the ubiquitous SAG/SRS surface antigens of the heteroxenous Coccidia. Interestingly, infection assays in the presence of the polyclonal antiserum suggested that SnSPR1 plays some role in attachment and/or invasion of host cells by S. neurona merozoites. The work described herein represents a general template for selecting and characterizing the various unidentified gene sequences that are plentiful in the EST databases for S. neurona and other apicomplexans. Furthermore, this study illustrates the value of investigating these novel sequences since it can offer new candidates for diagnostic or vaccine development while also providing greater insight into the biology of these parasites.
Neural Encoding and Integration of Learned Probabilistic Sequences in Avian Sensory-Motor Circuitry
Brainard, Michael S.
2013-01-01
Many complex behaviors, such as human speech and birdsong, reflect a set of categorical actions that can be flexibly organized into variable sequences. However, little is known about how the brain encodes the probabilities of such sequences. Behavioral sequences are typically characterized by the probability of transitioning from a given action to any subsequent action (which we term “divergence probability”). In contrast, we hypothesized that neural circuits might encode the probability of transitioning to a given action from any preceding action (which we term “convergence probability”). The convergence probability of repeatedly experienced sequences could naturally become encoded by Hebbian plasticity operating on the patterns of neural activity associated with those sequences. To determine whether convergence probability is encoded in the nervous system, we investigated how auditory-motor neurons in vocal premotor nucleus HVC of songbirds encode different probabilistic characterizations of produced syllable sequences. We recorded responses to auditory playback of pseudorandomly sequenced syllables from the bird's repertoire, and found that variations in responses to a given syllable could be explained by a positive linear dependence on the convergence probability of preceding sequences. Furthermore, convergence probability accounted for more response variation than other probabilistic characterizations, including divergence probability. Finally, we found that responses integrated over >7–10 syllables (∼700–1000 ms) with the sign, gain, and temporal extent of integration depending on convergence probability. Our results demonstrate that convergence probability is encoded in sensory-motor circuitry of the song-system, and suggest that encoding of convergence probability is a general feature of sensory-motor circuits. PMID:24198363
Using the structure-function linkage database to characterize functional domains in enzymes.
Brown, Shoshana; Babbitt, Patricia
2014-12-12
The Structure-Function Linkage Database (SFLD; http://sfld.rbvi.ucsf.edu/) is a Web-accessible database designed to link enzyme sequence, structure, and functional information. This unit describes the protocols by which a user may query the database to predict the function of uncharacterized enzymes and to correct misannotated functional assignments. The information in this unit is especially useful in helping a user discriminate functional capabilities of a sequence that is only distantly related to characterized sequences in publicly available databases. Copyright © 2014 John Wiley & Sons, Inc.
Detection and characterization of hepatitis A virus circulating in Egypt.
Hamza, Hazem; Abd-Elshafy, Dina Nadeem; Fayed, Sayed A; Bahgat, Mahmoud Mohamed; El-Esnawy, Nagwa Abass; Abdel-Mobdy, Emam
2017-07-01
Hepatitis A virus (HAV) still poses a considerable problem worldwide. In the current study, hepatitis A virus was recovered from wastewater samples collected from three wastewater treatment plants over one year. Using RT-PCR, HAV was detected in 43 out of 68 samples (63.2%) representing both inlet and outlet. Eleven positive samples were subjected to sequencing targeting the VP1-2A junction region. Phylogenetic analysis revealed that all samples belonged to subgenotype IB with few substitutions at the amino acid level. The complete sequence of one isolate (HAV/Egy/BI-11/2015) showed that the similarity at the amino acid level was not reflected at the nucleotide level. However, the deduced amino acid sequence derived from the complete nucleotide sequence showed distinct substitutions in the 2B, 2C, and 3A regions. Recombination analysis revealed a recombination event between X75215 (subgenotype IA) and AF268396 (subgenotype IB) involving a portion of the 2B nonstructural protein coding region (nucleotides 3757-3868) assuming the herein characterized sequence an actual recombinant. Despite the role of recombination in picornaviruses evolution, its involvement in HAV evolution has rarely been reported, and this may be due to the limited available complete HAV sequences. To our knowledge, this represents the first characterized complete sequence of an Egyptian isolate and the described recombination event provides an important update on the circulating HAV strains in Egypt.
2014-01-01
Background Variation in seed oil composition and content among soybean varieties is largely attributed to differences in transcript sequences and/or transcript accumulation of oil production related genes in seeds. Discovery and analysis of sequence and expression variations in these genes will accelerate soybean oil quality improvement. Results In an effort to identify these variations, we sequenced the transcriptomes of soybean seeds from nine lines varying in oil composition and/or total oil content. Our results showed that 69,338 distinct transcripts from 32,885 annotated genes were expressed in seeds. A total of 8,037 transcript expression polymorphisms and 50,485 transcript sequence polymorphisms (48,792 SNPs and 1,693 small Indels) were identified among the lines. Effects of the transcript polymorphisms on their encoded protein sequences and functions were predicted. The studies also provided independent evidence that the lack of FAD2-1A gene activity and a non-synonymous SNP in the coding sequence of FAB2C caused elevated oleic acid and stearic acid levels in soybean lines M23 and FAM94-41, respectively. Conclusions As a proof-of-concept, we developed an integrated RNA-seq and bioinformatics approach to identify and functionally annotate transcript polymorphisms, and demonstrated its high effectiveness for discovery of genetic and transcript variations that result in altered oil quality traits. The collection of transcript polymorphisms coupled with their predicted functional effects will be a valuable asset for further discovery of genes, gene variants, and functional markers to improve soybean oil quality. PMID:24755115
Grahn, Jessica A.; Henry, Molly J.; McAuley, J. Devin
2011-01-01
How we measure time and integrate temporal cues from different sensory modalities are fundamental questions in neuroscience. Sensitivity to a “beat” (such as that routinely perceived in music) differs substantially between auditory and visual modalities. Here we examined beat sensitivity in each modality, and examined cross-modal influences, using functional magnetic resonance imaging (fMRI) to characterize brain activity during perception of auditory and visual rhythms. In separate fMRI sessions, participants listened to auditory sequences or watched visual sequences. The order of auditory and visual sequence presentation was counterbalanced so that cross-modal order effects could be investigated. Participants judged whether sequences were speeding up or slowing down, and the pattern of tempo judgments was used to derive a measure of sensitivity to an implied beat. As expected, participants were less sensitive to an implied beat in visual sequences than in auditory sequences. However, visual sequences produced a stronger sense of beat when preceded by auditory sequences with identical temporal structure. Moreover, increases in brain activity were observed in the bilateral putamen for visual sequences preceded by auditory sequences when compared to visual sequences without prior auditory exposure. No such order-dependent differences (behavioral or neural) were found for the auditory sequences. The results provide further evidence for the role of the basal ganglia in internal generation of the beat and suggest that an internal auditory rhythm representation may be activated during visual rhythm perception. PMID:20858544
NASA Astrophysics Data System (ADS)
Wang, S.; Huang, G. H.; Veawab, A.
2013-03-01
This study proposes a sequential factorial analysis (SFA) approach for supporting regional air quality management under uncertainty. SFA is capable not only of examining the interactive effects of input parameters, but also of analyzing the effects of constraints. When there are too many factors involved in practical applications, SFA has the advantage of conducting a sequence of factorial analyses for characterizing the effects of factors in a systematic manner. The factor-screening strategy employed in SFA is effective in greatly reducing the computational effort. The proposed SFA approach is applied to a regional air quality management problem for demonstrating its applicability. The results indicate that the effects of factors are evaluated quantitatively, which can help decision makers identify the key factors that have significant influence on system performance and explore the valuable information that may be veiled beneath their interrelationships.
2011-01-01
Background The genus Silene is widely used as a model system for addressing ecological and evolutionary questions in plants, but advances in using the genus as a model system are impeded by the lack of available resources for studying its genome. Massively parallel sequencing cDNA has recently developed into an efficient method for characterizing the transcriptomes of non-model organisms, generating massive amounts of data that enable the study of multiple species in a comparative framework. The sequences generated provide an excellent resource for identifying expressed genes, characterizing functional variation and developing molecular markers, thereby laying the foundations for future studies on gene sequence and gene expression divergence. Here, we report the results of a comparative transcriptome sequencing study of eight individuals representing four Silene and one Dianthus species as outgroup. All sequences and annotations have been deposited in a newly developed and publicly available database called SiESTa, the Silene EST annotation database. Results A total of 1,041,122 EST reads were generated in two runs on a Roche GS-FLX 454 pyrosequencing platform. EST reads were analyzed separately for all eight individuals sequenced and were assembled into contigs using TGICL. These were annotated with results from BLASTX searches and Gene Ontology (GO) terms, and thousands of single-nucleotide polymorphisms (SNPs) were characterized. Unassembled reads were kept as singletons and together with the contigs contributed to the unigenes characterized in each individual. The high quality of unigenes is evidenced by the proportion (49%) that have significant hits in similarity searches with the A. thaliana proteome. The SiESTa database is accessible at http://www.siesta.ethz.ch. Conclusion The sequence collections established in the present study provide an important genomic resource for four Silene and one Dianthus species and will help to further develop Silene as a plant model system. The genes characterized will be useful for future research not only in the species included in the present study, but also in related species for which no genomic resources are yet available. Our results demonstrate the efficiency of massively parallel transcriptome sequencing in a comparative framework as an approach for developing genomic resources in diverse groups of non-model organisms. PMID:21791039
USDA-ARS?s Scientific Manuscript database
Bermuda grass samples were examined by transmission electron microscopy and 28-30 nm spherical virus particles were observed. Total RNA from these plants was subjected to high throughput sequencing (HTS). The nearly full genome sequence of a previously uncharacterized Panicovirus was identified from...
Molecular Characterization of Epiphytic Bacterial Communities on Charophycean Green Algae
Fisher, Madeline M.; Wilcox, Lee W.; Graham, Linda E.
1998-01-01
Epiphytic bacterial communities within the sheath material of three filamentous green algae, Desmidium grevillii, Hyalotheca dissiliens, and Spondylosium pulchrum (class Charophyceae, order Zygnematales), collected from a Sphagnum bog were characterized by PCR amplification, cloning, and sequencing of 16S ribosomal DNA. A total of 20 partial sequences and nine different sequence types were obtained, and one sequence type was recovered from the bacterial communities on all three algae. By phylogenetic analysis, the cloned sequences were placed into several major lineages of the Bacteria domain: the Flexibacter/Cytophaga/Bacteroides phylum and the α, β, and γ subdivisions of the phylum Proteobacteria. Analysis at the subphylum level revealed that the majority of our sequences were not closely affiliated with those of known, cultured taxa, although the estimated evolutionary distances between our sequences and their nearest neighbors were always less than 0.1 (i.e., greater than 90% similar). This result suggests that the majority of sequences obtained in this study represent as yet phenotypically undescribed bacterial species and that the range of bacterial-algal interactions that occur in nature has not yet been fully described. PMID:9797295
Jones, Ryan T; Robeson, Michael S; Lauber, Christian L; Hamady, Micah; Knight, Rob; Fierer, Noah
2010-01-01
Acidobacteria are ubiquitous and abundant members of soil bacterial communities. However, an ecological understanding of this important phylum has remained elusive because its members have been difficult to culture and few molecular investigations have focused exclusively on this group. We generated an unprecedented number of acidobacterial DNA sequence data using pyrosequencing and clone libraries (39 707 and 1787 sequences, respectively) to characterize the relative abundance, diversity and composition of acidobacterial communities across a range of soil types. To gain insight into the ecological characteristics of acidobacterial taxa, we investigated the large-scale biogeographic patterns exhibited by acidobacterial communities, and related soil and site characteristics to acidobacterial community assemblage patterns. The 87 soils analyzed by pyrosequencing contained more than 8600 unique acidobacterial phylotypes (at the 97% sequence similarity level). One phylotype belonging to Acidobacteria subgroup 1, but not closely related to any cultured representatives, was particularly abundant, accounting for 7.4% of bacterial sequences and 17.6% of acidobacterial sequences, on average, across the soils. The abundance of Acidobacteria relative to other bacterial taxa was highly variable across the soils examined, but correlated strongly with soil pH (R = −0.80, P<0.001). Soil pH was also the best predictor of acidobacterial community composition, regardless of how the communities were characterized, and the relative abundances of the dominant Acidobacteria subgroups were readily predictable. Acidobacterial communities were more phylogenetically clustered as soil pH departed from neutrality, suggesting that pH is an effective habitat filter, restricting community membership to progressively more narrowly defined lineages as pH deviates from neutrality. PMID:19129864
Wang, Qian; Hu, Chunjin; Ke, Fanggang; Huang, Siliang; Li, Qiqin
2010-09-01
Anthracnose caused by Colletotrichum gloeosporioides (Penz.) Sacc. is a main disease in citrus production. To develop an effective biocontrol measure against citrus postharvest anthracnose, we screened antagonistic microbes and obtained a bacterial strain 1404 from the rhizospheric soil of chili plants in Nanning city, Guangxi, China. The objectives of the present study were to: (1) identify and characterize the antagonistic bacterium; and (2) to evaluate the efficacy of the antagonistic strain in controlling citrus postharvest anthracnose disease. Strain 1404 was identified by comparing its 16S rDNA sequence with related bacteria from GenBank database, as well as analyzing its morphological, physiological and biochemical characters. The antagonistic stability of the strain 1404 was determined by continuously transferring it on artificial media. The effect of the strain on suppressing citrus anthracnose at postharvest stage was tested by stab inoculation method. The 16S rDNA of strain 1404 was amplified with primers PF1 (5'-AGAGTTTGATCATGGCTCAG-3') and PR1 (5'-TACGGTTACCTTGTTACGACTT-3') and its sequence submitted to GenBank (accession number: GU361113). Strain 1404 clustered with the GenBank-derived Brevibacillus brevis strains in the 16S-rDNA-sequence-based phylogenetic tree at 100% bootstrap level. The morphological traits, physiological and biochemical characters of strain 1404 agreed with that of Brevibacillus brevis. Less change in the suppressive ability of antagonist against growth of Colletotrichum gloeosporioides was observed during four continuous transfers on artificial media. The average control efficacy of the strain was 64. 9 % against the disease 20 days after the antagonist application. Strain 1404 was identified as Brevibacillus brevis based on its morphological traits, phyiological and biochemical characters as well as 16S rDNA sequence analysis. The antagonist was approved to be a promising biocontrol agent. This is the first report of Brevibacillus brevis as an effective antagonist against citrus postharvest anthracnose disease.
Metagenetic Sequencing of Zooplankton Communities in the High-Diversity Central North Pacific
NASA Astrophysics Data System (ADS)
Matthews, S. A.; van Woudenberg, L.; Iacchei, M.; Lenz, P. H.; Goetze, E.
2016-02-01
Marine zooplankton are important intermediate trophic level consumers in the ocean, and the subtropical North Pacific holds global maxima in species diversity for these communities. Zooplankton assemblages in this region include several species complexes, with many understudied and morphologically cryptic species. We used metagenetic sequencing to characterize zooplankton community composition across depth (0-1500m) at an open ocean time series site in the central North Pacific (Station ALOHA), using depth-stratified 1m2 MOCNESS samples that were size fractionated into 5 size classes (0.2-0.5 mm, 0.5-1 mm, 1-2 mm, 2-5 mm, >5 mm). Our goals were to quantify the fraction of the community that is currently undescribed, identify taxonomic groups that contain large numbers of undescribed species and may be important to biogeochemical cycling in the ocean, and establish a metagenetic method that can be used to effectively characterize the species richness of epipelagic and mesopelagic communities in this region. Amplicons from several DNA loci, including mitochondrial cytochrome c oxidase subunit I and 12S rRNA, and nuclear 18S and 28S rRNA genes were sequenced on the MiSeq Illumina platform to characterize community composition. We evaluate species composition across metagenetic marker regions, pelagic depth zones, day and night-time MOCNESS tows, and compare our findings with prior species lists from the region. Our results are an important contribution to establishing standardized metagenetic methods for marine zooplankton communities.
Nakano, Michiharu; Shimada, Takehiko; Endo, Tomoko; Fujii, Hiroshi; Nesumi, Hirohisa; Kita, Masayuki; Ebina, Masumi; Shimizu, Tokurou; Omura, Mitsuo
2012-02-01
Polyembryony, in which multiple somatic nucellar cell-derived embryos develop in addition to the zygotic embryo in a seed, is common in the genus Citrus. Previous genetic studies indicated polyembryony is mainly determined by a single locus, but the underlying molecular mechanism is still unclear. As a step towards identification and characterization of the gene or genes responsible for nucellar embryogenesis in Citrus, haplotype-specific physical maps around the polyembryony locus were constructed. By sequencing three BAC clones aligned on the polyembryony haplotype, a single contiguous draft sequence consisting of 380 kb containing 70 predicted open reading frames (ORFs) was reconstructed. Single nucleotide polymorphism genotypes detected in the sequenced genomic region showed strong association with embryo type in Citrus, indicating a common polyembryony locus is shared among widely diverse Citrus cultivars and species. The arrangement of the predicted ORFs in the characterized genomic region showed high collinearity to the genomic sequence of chromosome 4 of Vitis vinifera and linkage group VI of Populus trichocarpa, suggesting that the syntenic relationship among these species is conserved even though V. vinifera and P. trichocarpa are non-apomictic species. This is the first study to characterize in detail the genomic structure of an apomixis locus determining adventitious embryony. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Ip, Hon S.; Wiley, Michael R.; Long, Renee; Gustavo, Palacios; Shearn-Bochsler, Valerie; Whitehouse, Chris A.
2014-01-01
Advances in massively parallel DNA sequencing platforms, commonly termed next-generation sequencing (NGS) technologies, have greatly reduced time, labor, and cost associated with DNA sequencing. Thus, NGS has become a routine tool for new viral pathogen discovery and will likely become the standard for routine laboratory diagnostics of infectious diseases in the near future. This study demonstrated the application of NGS for the rapid identification and characterization of a virus isolated from the brain of an endangered Mississippi sandhill crane. This bird was part of a population restoration effort and was found in an emaciated state several days after Hurricane Isaac passed over the refuge in Mississippi in 2012. Post-mortem examination had identified trichostrongyliasis as the possible cause of death, but because a virus with morphology consistent with a togavirus was isolated from the brain of the bird, an arboviral etiology was strongly suspected. Because individual molecular assays for several known arboviruses were negative, unbiased NGS by Illumina MiSeq was used to definitively identify and characterize the causative viral agent. Whole genome sequencing and phylogenetic analysis revealed the viral isolate to be the Highlands J virus, a known avian pathogen. This study demonstrates the use of unbiased NGS for the rapid detection and characterization of an unidentified viral pathogen and the application of this technology to wildlife disease diagnostics and conservation medicine.
NASA Astrophysics Data System (ADS)
Skoumal, R.; Brudzinski, M.; Currie, B.
2015-12-01
Induced seismic sequences often occur as swarms that can include thousands of small (< M 2) earthquakes. While the identification of this microseismicity would invariably aid in the characterization and modeling of induced sequences, traditional earthquake detection techniques often provide incomplete catalogs, even when local networks are deployed. Because induced sequences often include scores of micro-earthquakes that prelude larger magnitude events, the identification of these small magnitude events would be crucial for the early identification of induced sequences. By taking advantage of the repeating, swarm-like nature of induced seismicity, a more robust catalog can be created using complementary correlation algorithms in near real-time without the reliance on traditional earthquake detection and association routines. Since traditional earthquake catalog methodologies using regional networks have a relatively high detection threshold (M 2+), we have sought to develop correlation routines that can detect smaller magnitude sequences. While short-term/long-term amplitude average detection algorithms requires significant signal-to-noise ratio at multiple stations for confident identification, a correlation detector is capable of identifying earthquakes with high confidence using just a single station. The result is an embarrassingly parallel task that can be employed for a network to be used as an early warning system for potentially induced seismicity while also better characterizing tectonic sequences beyond what traditional methods allow.
Riman, Sarah; Kiesler, Kevin M; Borsuk, Lisa A; Vallone, Peter M
2017-07-01
Standard Reference Materials SRM 2392 and 2392-I are intended to provide quality control when amplifying and sequencing human mitochondrial genome sequences. The National Institute of Standards and Technology (NIST) offers these SRMs to laboratories performing DNA-based forensic human identification, molecular diagnosis of mitochondrial diseases, mutation detection, evolutionary anthropology, and genetic genealogy. The entire mtGenome (∼16569bp) of SRM 2392 and 2392-I have previously been characterized at NIST by Sanger sequencing. Herein, we used the sensitivity, specificity, and accuracy offered by next generation sequencing (NGS) to: (1) re-sequence the certified values of the SRM 2392 and 2392-I; (2) confirm Sanger data with a high coverage new sequencing technology; (3) detect lower level heteroplasmies (<20%); and thus (4) support mitochondrial sequencing communities in the adoption of NGS methods. To obtain a consensus sequence for the SRMs as well as identify and control any bias, sequencing was performed using two NGS platforms and data was analyzed using different bioinformatics pipelines. Our results confirm five low level heteroplasmy sites that were not previously observed with Sanger sequencing: three sites in the GM09947A template in SRM 2392 and two sites in the HL-60 template in SRM 2392-I. Copyright © 2017 Elsevier B.V. All rights reserved.
Characterization of the complete chloroplast genome of Platycarya strobilacea (Juglandaceae)
Jing Yan; Kai Han; Shuyun Zeng; Peng Zhao; Keith Woeste; Jianfang Li; Zhan-Lin Liu
2017-01-01
The whole chloroplast genome (cp genome) sequence of Platycarya strobilacea was characterized from Illumina pair-end sequencing data. The complete cp genome was 160,994 bp in length and contained a large single copy region (LSC) of 90,225 bp and a small single copy region (SSC) of 18,371 bp, which were separated by a pair of inverted repeat regions...
USDA-ARS?s Scientific Manuscript database
This report includes the complete genome of the Campylobacter concisus type strain ATCC 33237T and the draft genomes of eight additional well characterized C. concisus genomes. C. concisus has been shown to be a genetically heterogeneous species and these nine genomes provide valuable information re...
Panzenhagen, P H N; Cabral, C C; Suffys, P N; Franco, R M; Rodrigues, D P; Conte-Junior, C A
2018-04-01
Salmonella pathogenicity relies on virulence factors many of which are clustered within the Salmonella pathogenicity islands. Salmonella also harbours mobile genetic elements such as virulence plasmids, prophage-like elements and antimicrobial resistance genes which can contribute to increase its pathogenicity. Here, we have genetically characterized a selected S. Typhimurium strain (CCRJ_26) from our previous study with Multiple Drugs Resistant profile and high-frequency PFGE clonal profile which apparently persists in the pork production centre of Rio de Janeiro State, Brazil. By whole-genome sequencing, we described the strain's genome virulent content and characterized the repertoire of bacterial plasmids, antibiotic resistance genes and prophage-like elements. Here, we have shown evidence that strain CCRJ_26 genome possible represent a virulence-associated phenotype which may be potentially virulent in human infection. Whole-genome sequencing technologies are still costly and remain underexplored for applied microbiology in Brazil. Hence, this genomic description of S. Typhimurium strain CCRJ_26 will provide help in future molecular epidemiological studies. The analysis described here reveals a quick and useful pipeline for bacterial virulence characterization using whole-genome sequencing approach. © 2018 The Society for Applied Microbiology.
TaxI: a software tool for DNA barcoding using distance methods
Steinke, Dirk; Vences, Miguel; Salzburger, Walter; Meyer, Axel
2005-01-01
DNA barcoding is a promising approach to the diagnosis of biological diversity in which DNA sequences serve as the primary key for information retrieval. Most existing software for evolutionary analysis of DNA sequences was designed for phylogenetic analyses and, hence, those algorithms do not offer appropriate solutions for the rapid, but precise analyses needed for DNA barcoding, and are also unable to process the often large comparative datasets. We developed a flexible software tool for DNA taxonomy, named TaxI. This program calculates sequence divergences between a query sequence (taxon to be barcoded) and each sequence of a dataset of reference sequences defined by the user. Because the analysis is based on separate pairwise alignments this software is also able to work with sequences characterized by multiple insertions and deletions that are difficult to align in large sequence sets (i.e. thousands of sequences) by multiple alignment algorithms because of computational restrictions. Here, we demonstrate the utility of this approach with two datasets of fish larvae and juveniles from Lake Constance and juvenile land snails under different models of sequence evolution. Sets of ribosomal 16S rRNA sequences, characterized by multiple indels, performed as good as or better than cox1 sequence sets in assigning sequences to species, demonstrating the suitability of rRNA genes for DNA barcoding. PMID:16214755
Cloning and characterization of the gene encoding IMP dehydrogenase from Arabidopsis thaliana.
Collart, F R; Osipiuk, J; Trent, J; Olsen, G J; Huberman, E
1996-10-03
We have cloned and characterized the gene encoding inosine monophosphate dehydrogenase (IMPDH) from Arabidopsis thaliana (At). The transcription unit of the At gene spans approximately 1900 bp and specifies a protein of 503 amino acids with a calculated relative molecular mass (M(r)) of 54,190. The gene is comprised of a minimum of four introns and five exons with all donor and acceptor splice sequences conforming to previously proposed consensus sequences. The deduced IMPDH amino-acid sequence from At shows a remarkable similarity to other eukaryotic IMPDH sequences, with a 48% identity to human Type II enzyme. Allowing for conservative substitutions, the enzyme is 69% similar to human Type II IMPDH. The putative active-site sequence of At IMPDH conforms to the IMP dehydrogenase/guanosine monophosphate reductase motif and contains an essential active-site cysteine residue.
Petruzziello, Filomena; Fouillen, Laetitia; Wadensten, Henrik; Kretz, Robert; Andren, Per E; Rainer, Gregor; Zhang, Xiaozhe
2012-02-03
Neuropeptidomics is used to characterize endogenous peptides in the brain of tree shrews (Tupaia belangeri). Tree shrews are small animals similar to rodents in size but close relatives of primates, and are excellent models for brain research. Currently, tree shrews have no complete proteome information available on which direct database search can be allowed for neuropeptide identification. To increase the capability in the identification of neuropeptides in tree shrews, we developed an integrated mass spectrometry (MS)-based approach that combines methods including data-dependent, directed, and targeted liquid chromatography (LC)-Fourier transform (FT)-tandem MS (MS/MS) analysis, database construction, de novo sequencing, precursor protein search, and homology analysis. Using this integrated approach, we identified 107 endogenous peptides that have sequences identical or similar to those from other mammalian species. High accuracy MS and tandem MS information, with BLAST analysis and chromatographic characteristics were used to confirm the sequences of all the identified peptides. Interestingly, further sequence homology analysis demonstrated that tree shrew peptides have a significantly higher degree of homology to equivalent sequences in humans than those in mice or rats, consistent with the close phylogenetic relationship between tree shrews and primates. Our results provide the first extensive characterization of the peptidome in tree shrews, which now permits characterization of their function in nervous and endocrine system. As the approach developed fully used the conservative properties of neuropeptides in evolution and the advantage of high accuracy MS, it can be portable for identification of neuropeptides in other species for which the fully sequenced genomes or proteomes are not available.
Characterization of an endogenous retrovirus class in elephants and their relatives
Greenwood, Alex D; Englbrecht, Claudia C; MacPhee, Ross DE
2004-01-01
Background Endogenous retrovirus-like elements (ERV-Ls, primed with tRNA leucine) are a diverse group of reiterated sequences related to foamy viruses and widely distributed among mammals. As shown in previous investigations, in many primates and rodents this class of elements has remained transpositionally active, as reflected by increased copy number and high sequence diversity within and among taxa. Results Here we examine whether proviral-like sequences may be suitable molecular probes for investigating the phylogeny of groups known to have high element diversity. As a test we characterized ERV-Ls occurring in a sample of extant members of superorder Uranotheria (Asian and African elephants, manatees, and hyraxes). The ERV-L complement in this group is even more diverse than previously suspected, and there is sequence evidence for active expansion, particularly in elephantids. Many of the elements characterized have protein coding potential suggestive of activity. Conclusions In general, the evidence supports the hypothesis that the complement had a single origin within basal Uranotheria. PMID:15476555
A Statistical Guide to the Design of Deep Mutational Scanning Experiments
Matuszewski, Sebastian; Hildebrandt, Marcel E.; Ghenu, Ana-Hermina; Jensen, Jeffrey D.; Bank, Claudia
2016-01-01
The characterization of the distribution of mutational effects is a key goal in evolutionary biology. Recently developed deep-sequencing approaches allow for accurate and simultaneous estimation of the fitness effects of hundreds of engineered mutations by monitoring their relative abundance across time points in a single bulk competition. Naturally, the achievable resolution of the estimated fitness effects depends on the specific experimental setup, the organism and type of mutations studied, and the sequencing technology utilized, among other factors. By means of analytical approximations and simulations, we provide guidelines for optimizing time-sampled deep-sequencing bulk competition experiments, focusing on the number of mutants, the sequencing depth, and the number of sampled time points. Our analytical results show that sampling more time points together with extending the duration of the experiment improves the achievable precision disproportionately compared with increasing the sequencing depth or reducing the number of competing mutants. Even if the duration of the experiment is fixed, sampling more time points and clustering these at the beginning and the end of the experiment increase experimental power and allow for efficient and precise assessment of the entire range of selection coefficients. Finally, we provide a formula for calculating the 95%-confidence interval for the measurement error estimate, which we implement as an interactive web tool. This allows for quantification of the maximum expected a priori precision of the experimental setup, as well as for a statistical threshold for determining deviations from neutrality for specific selection coefficient estimates. PMID:27412710
Allard, Marc W; Strain, Errol; Melka, David; Bunning, Kelly; Musser, Steven M; Brown, Eric W; Timme, Ruth
2016-08-01
The FDA has created a United States-based open-source whole-genome sequencing network of state, federal, international, and commercial partners. The GenomeTrakr network represents a first-of-its-kind distributed genomic food shield for characterizing and tracing foodborne outbreak pathogens back to their sources. The GenomeTrakr network is leading investigations of outbreaks of foodborne illnesses and compliance actions with more accurate and rapid recalls of contaminated foods as well as more effective monitoring of preventive controls for food manufacturing environments. An expanded network would serve to provide an international rapid surveillance system for pathogen traceback, which is critical to support an effective public health response to bacterial outbreaks. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Singh, Swati; Gupta, Sanchita; Mani, Ashutosh; Chaturvedi, Anoop
2012-01-01
Humulus lupulus is commonly known as hops, a member of the family moraceae. Currently many projects are underway leading to the accumulation of voluminous genomic and expressed sequence tag sequences in public databases. The genetically characterized domains in these databases are limited due to non-availability of reliable molecular markers. The large data of EST sequences are available in hops. The simple sequence repeat markers extracted from EST data are used as molecular markers for genetic characterization, in the present study. 25,495 EST sequences were examined and assembled to get full-length sequences. Maximum frequency distribution was shown by mononucleotide SSR motifs i.e. 60.44% in contig and 62.16% in singleton where as minimum frequency are observed for hexanucleotide SSR in contig (0.09%) and pentanucleotide SSR in singletons (0.12%). Maximum trinucleotide motifs code for Glutamic acid (GAA) while AT/TA were the most frequent repeat of dinucleotide SSRs. Flanking primer pairs were designed in-silico for the SSR containing sequences. Functional categorization of SSRs containing sequences was done through gene ontology terms like biological process, cellular component and molecular function. PMID:22368382
De novo characterization of Lentinula edodes C(91-3) transcriptome by deep Solexa sequencing.
Zhong, Mintao; Liu, Ben; Wang, Xiaoli; Liu, Lei; Lun, Yongzhi; Li, Xingyun; Ning, Anhong; Cao, Jing; Huang, Min
2013-02-01
Lentinula edodes, has been utilized as food, as well as, in popular medicine, moreover, its extract isolated from its mycelium and fruiting body have shown several therapeutic properties. Yet little is understood about its genes involved in these properties, and the absence of L.edodes genomes has been a barrier to the development of functional genomics research. However, high throughput sequencing technologies are now being widely applied to non-model species. To facilitate research on L.edodes, we leveraged Solexa sequencing technology in de novo assembly of L.edodes C(91-3) transcriptome. In a single run, we produced more than 57 million sequencing reads. These reads were assembled into 28,923 unigene sequences (mean size=689bp) including 18,120 unigenes with coding sequence (CDS). Based on similarity search with known proteins, assembled unigene sequences were annotated with gene descriptions, gene ontology (GO) and clusters of orthologous group (COG) terms. Our data provides the first comprehensive sequence resource available for functional genomics studies in L.edodes, and demonstrates the utility of Illumina/Solexa sequencing for de novo transcriptome characterization and gene discovery in a non-model mushroom. Copyright © 2012 Elsevier Inc. All rights reserved.
Quantiprot - a Python package for quantitative analysis of protein sequences.
Konopka, Bogumił M; Marciniak, Marta; Dyrka, Witold
2017-07-17
The field of protein sequence analysis is dominated by tools rooted in substitution matrices and alignments. A complementary approach is provided by methods of quantitative characterization. A major advantage of the approach is that quantitative properties defines a multidimensional solution space, where sequences can be related to each other and differences can be meaningfully interpreted. Quantiprot is a software package in Python, which provides a simple and consistent interface to multiple methods for quantitative characterization of protein sequences. The package can be used to calculate dozens of characteristics directly from sequences or using physico-chemical properties of amino acids. Besides basic measures, Quantiprot performs quantitative analysis of recurrence and determinism in the sequence, calculates distribution of n-grams and computes the Zipf's law coefficient. We propose three main fields of application of the Quantiprot package. First, quantitative characteristics can be used in alignment-free similarity searches, and in clustering of large and/or divergent sequence sets. Second, a feature space defined by quantitative properties can be used in comparative studies of protein families and organisms. Third, the feature space can be used for evaluating generative models, where large number of sequences generated by the model can be compared to actually observed sequences.
Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics.
Straub, Shannon C K; Parks, Matthew; Weitemier, Kevin; Fishbein, Mark; Cronn, Richard C; Liston, Aaron
2012-02-01
Just as Sanger sequencing did more than 20 years ago, next-generation sequencing (NGS) is poised to revolutionize plant systematics. By combining multiplexing approaches with NGS throughput, systematists may no longer need to choose between more taxa or more characters. Here we describe a genome skimming (shallow sequencing) approach for plant systematics. Through simulations, we evaluated optimal sequencing depth and performance of single-end and paired-end short read sequences for assembly of nuclear ribosomal DNA (rDNA) and plastomes and addressed the effect of divergence on reference-guided plastome assembly. We also used simulations to identify potential phylogenetic markers from low-copy nuclear loci at different sequencing depths. We demonstrated the utility of genome skimming through phylogenetic analysis of the Sonoran Desert clade (SDC) of Asclepias (Apocynaceae). Paired-end reads performed better than single-end reads. Minimum sequencing depths for high quality rDNA and plastome assemblies were 40× and 30×, respectively. Divergence from the reference significantly affected plastome assembly, but relatively similar references are available for most seed plants. Deeper rDNA sequencing is necessary to characterize intragenomic polymorphism. The low-copy fraction of the nuclear genome was readily surveyed, even at low sequencing depths. Nearly 160000 bp of sequence from three organelles provided evidence of phylogenetic incongruence in the SDC. Adoption of NGS will facilitate progress in plant systematics, as whole plastome and rDNA cistrons, partial mitochondrial genomes, and low-copy nuclear markers can now be efficiently obtained for molecular phylogenetics studies.
Genetic mutation analysis of human gastric adenocarcinomas using ion torrent sequencing platform.
Xu, Zhi; Huo, Xinying; Ye, Hua; Tang, Chuanning; Nandakumar, Vijayalakshmi; Lou, Feng; Zhang, Dandan; Dong, Haichao; Sun, Hong; Jiang, Shouwen; Zhang, Guangchun; Liu, Zhiyuan; Dong, Zhishou; Guo, Baishuai; He, Yan; Yan, Chaowei; Wang, Lu; Su, Ziyi; Li, Yangyang; Gu, Dongying; Zhang, Xiaojing; Wu, Xiaomin; Wei, Xiaowei; Hong, Lingzhi; Zhang, Yangmei; Yang, Jinsong; Gong, Yonglin; Tang, Cuiju; Jones, Lindsey; Huang, Xue F; Chen, Si-Yi; Chen, Jinfei
2014-01-01
Gastric cancer is the one of the major causes of cancer-related death, especially in Asia. Gastric adenocarcinoma, the most common type of gastric cancer, is heterogeneous and its incidence and cause varies widely with geographical regions, gender, ethnicity, and diet. Since unique mutations have been observed in individual human cancer samples, identification and characterization of the molecular alterations underlying individual gastric adenocarcinomas is a critical step for developing more effective, personalized therapies. Until recently, identifying genetic mutations on an individual basis by DNA sequencing remained a daunting task. Recent advances in new next-generation DNA sequencing technologies, such as the semiconductor-based Ion Torrent sequencing platform, makes DNA sequencing cheaper, faster, and more reliable. In this study, we aim to identify genetic mutations in the genes which are targeted by drugs in clinical use or are under development in individual human gastric adenocarcinoma samples using Ion Torrent sequencing. We sequenced 737 loci from 45 cancer-related genes in 238 human gastric adenocarcinoma samples using the Ion Torrent Ampliseq Cancer Panel. The sequencing analysis revealed a high occurrence of mutations along the TP53 locus (9.7%) in our sample set. Thus, this study indicates the utility of a cost and time efficient tool such as Ion Torrent sequencing to screen cancer mutations for the development of personalized cancer therapy.
Wohlwend, Nadia; Francey, Thierry
2015-01-01
Characterization of third-generation-cephalosporin-resistant Klebsiella pneumoniae isolates originating mainly from one human hospital (n = 22) and one companion animal hospital (n = 25) in Bern (Switzerland) revealed the absence of epidemiological links between human and animal isolates. Human infections were not associated with the spread of any specific clone, while the majority of animal infections were due to K. pneumoniae sequence type 11 isolates producing plasmidic DHA AmpC. This clonal dissemination within the veterinary hospital emphasizes the need for effective infection control practices. PMID:25733505
Expanding the functionality and applications of nanopore sensors
NASA Astrophysics Data System (ADS)
Venta, Kimberly E.
Nanopore sensors have developed into powerful tools for single-molecule studies since their inception two decades ago. Nanopore sensors function as nanoscale Coulter counters, by monitoring ionic current modulations as particles pass through a nanopore. While nanopore sensors can be used to study any nanoscale particle, their most notable application is as a low cost, fast alternative to current DNA sequencing technologies. In recent years, signifcant progress has been made toward the goal of nanopore-based DNA sequencing, which requires an ambitious combination of a low-noise and high-bandwidth nanopore measurement system and spatial resolution. In this dissertation, nanopore sensors in thin membranes are developed to improve dimensional resolution, and these membranes are used in parallel with a high-bandwidth amplfier. Using this nanopore sensor system, the signals of three DNA homopolymers are differentiated for the first time in solid-state nanopores. The nanopore noise is also reduced through the addition of a layer of SU8, a spin-on polymer, to the supporting chip structure. By increasing the temporal and spatial resolution of nanopore sensors, studies of shorter molecules are now possible. Nanopore sensors are beginning to be used for the study and characterization of nanoparticles. Nanoparticles have found many uses from biomedical imaging to next-generation solar cells. However, further insights into the formation and characterization of nanoparticles would aid in developing improved synthesis methods leading to more effective and customizable nanoparticles. This dissertation presents two methods of employing nanopore sensors to benet nanoparticle characterization and fabrication. Nanopores were used to study the formation of individual nanoparticles and serve as nanoparticle growth templates that could be exploited to create custom nanoparticle arrays. Additionally, nanopore sensors were used to characterize the surface charge density of anisotropic nanopores, which previously could not be reliably measured. Current nanopore sensor resolution levels have facilitated innovative research on nanoscale systems, including studies of DNA and nanoparticle characterization. Further nanopore system improvements will enable vastly improved DNA sequencing capabilities and open the door to additional nanopore sensing applications.
Bonham, Andrew J.; Wenta, Nikola; Osslund, Leah M.; Prussin, Aaron J.; Vinkemeier, Uwe; Reich, Norbert O.
2013-01-01
The DNA-binding specificity and affinity of the dimeric human transcription factor (TF) STAT1, were assessed by total internal reflectance fluorescence protein-binding microarrays (TIRF-PBM) to evaluate the effects of protein phosphorylation, higher-order polymerization and small-molecule inhibition. Active, phosphorylated STAT1 showed binding preferences consistent with prior characterization, whereas unphosphorylated STAT1 showed a weak-binding preference for one-half of the GAS consensus site, consistent with recent models of STAT1 structure and function in response to phosphorylation. This altered-binding preference was further tested by use of the inhibitor LLL3, which we show to disrupt STAT1 binding in a sequence-dependent fashion. To determine if this sequence-dependence is specific to STAT1 and not a general feature of human TF biology, the TF Myc/Max was analysed and tested with the inhibitor Mycro3. Myc/Max inhibition by Mycro3 is sequence independent, suggesting that the sequence-dependent inhibition of STAT1 may be specific to this system and a useful target for future inhibitor design. PMID:23180800
Chen, Hui; Luthra, Rajyalakshmi; Goswami, Rashmi S; Singh, Rajesh R; Roy-Chowdhuri, Sinchita
2015-08-28
Application of next-generation sequencing (NGS) technology to routine clinical practice has enabled characterization of personalized cancer genomes to identify patients likely to have a response to targeted therapy. The proper selection of tumor sample for downstream NGS based mutational analysis is critical to generate accurate results and to guide therapeutic intervention. However, multiple pre-analytic factors come into play in determining the success of NGS testing. In this review, we discuss pre-analytic requirements for AmpliSeq PCR-based sequencing using Ion Torrent Personal Genome Machine (PGM) (Life Technologies), a NGS sequencing platform that is often used by clinical laboratories for sequencing solid tumors because of its low input DNA requirement from formalin fixed and paraffin embedded tissue. The success of NGS mutational analysis is affected not only by the input DNA quantity but also by several other factors, including the specimen type, the DNA quality, and the tumor cellularity. Here, we review tissue requirements for solid tumor NGS based mutational analysis, including procedure types, tissue types, tumor volume and fraction, decalcification, and treatment effects.
Microsatellite DNA capture from enriched libraries.
Gonzalez, Elena G; Zardoya, Rafael
2013-01-01
Microsatellites are DNA sequences of tandem repeats of one to six nucleotides, which are highly polymorphic, and thus the molecular markers of choice in many kinship, population genetic, and conservation studies. There have been significant technical improvements since the early methods for microsatellite isolation were developed, and today the most common procedures take advantage of the hybrid capture methods of enriched-targeted microsatellite DNA. Furthermore, recent advents in sequencing technologies (i.e., next-generation sequencing, NGS) have fostered the mining of microsatellite markers in non-model organisms, affording a cost-effective way of obtaining a large amount of sequence data potentially useful for loci characterization. The rapid improvements of NGS platforms together with the increase in available microsatellite information open new avenues to the understanding of the evolutionary forces that shape genetic structuring in wild populations. Here, we provide detailed methodological procedures for microsatellite isolation based on the screening of GT microsatellite-enriched libraries, either by cloning and Sanger sequencing of positive clones or by direct NGS. Guides for designing new species-specific primers and basic genotyping are also given.
Sequence-specific procedural learning deficits in children with specific language impairment.
Hsu, Hsinjen Julie; Bishop, Dorothy V M
2014-05-01
This study tested the procedural deficit hypothesis of specific language impairment (SLI) by comparing children's performance in two motor procedural learning tasks and an implicit verbal sequence learning task. Participants were 7- to 11-year-old children with SLI (n = 48), typically developing age-matched children (n = 20) and younger typically developing children matched for receptive grammar (n = 28). In a serial reaction time task, the children with SLI performed at the same level as the grammar-matched children, but poorer than age-matched controls in learning motor sequences. When tested with a motor procedural learning task that did not involve learning sequential relationships between discrete elements (i.e. pursuit rotor), the children with SLI performed comparably with age-matched children and better than younger grammar-matched controls. In addition, poor implicit learning of word sequences in a verbal memory task (the Hebb effect) was found in the children with SLI. Together, these findings suggest that SLI might be characterized by deficits in learning sequence-specific information, rather than generally weak procedural learning. © 2014 The Authors. Developmental Science Published by John Wiley & Sons Ltd.
Allen, Michelle A.; Cavicchioli, Ricardo
2017-01-01
Heard Island in the Southern Ocean is a biological hotspot that is suffering the effects of climate change. Significant glacier retreat has generated proglacial lagoons, some of which are open to the ocean. We used pyrotag sequencing of SSU rRNA genes and environmental data to characterize microorganisms from two pools adjacent to animal breeding areas, two glacial lagoons and Atlas Cove (marine site). The more abundant taxa included Actinobacteria, Bacteroidetes and Proteobacteria, ciliates and picoflagellates (e.g. Micromonas), and relatively few Archaea. Seal Pool, which is rich in organic matter, was characterized by a heterotrophic degradative community, while the less eutrophic Atlas Pool had more eucaryotic primary producers. Brown Lagoon, with the lowest nutrient levels, had Eucarya and Bacteria predicted to be oligotrophs, possess small cell sizes, and have the ability to metabolize organic matter. The marine influence on Winston Lagoon was evident by its salinity and the abundance of marine-like Gammaproteobacteria, while also lacking typical marine eucaryotes indicating the system was still functioning as a distinct niche. This is the first microbiology study of Heard Island and revealed that communities are distinct at each location and heavily influenced by local environmental factors. PMID:28290555
Videogrammetry Using Projected Circular Targets: Proof-of-Concept Test
NASA Technical Reports Server (NTRS)
Pappa, Richard S.; Black, Jonathan T.
2003-01-01
Videogrammetry is the science of calculating 3D object coordinates as a function of time from image sequences. It expands the method of photogrammetry to multiple time steps enabling the object to be characterized dynamically. Photogrammetry achieves the greatest accuracy with high contrast, solid-colored, circular targets. The high contrast is most often effected using retro-reflective targets attached to the measurement article. Knowledge of the location of each target allows those points to be tracked in a sequence of images, thus yielding dynamic characterization of the overall object. For ultra-lightweight and inflatable gossamer structures (e.g. solar sails, inflatable antennae, sun shields, etc.) where it may be desirable to avoid physically attaching retro-targets, a high-density grid of projected circular targets - called dot projection - is a viable alternative. Over time the object changes shape or position independently of the dots. Dynamic behavior, such as deployment or vibration, can be characterized by tracking the overall 3D shape of the object instead of tracking specific object points. To develop this method, an oscillating rigid object was measured using both retroreflective targets and dot projection. This paper details these tests, compares the results, and discusses the overall accuracy of dot projection videogrammetry.
Videogrammetry Using Projected Circular Targets: Proof-of-Concept Test
NASA Technical Reports Server (NTRS)
Black, Jonathan T.; Pappa, Richard S.
2003-01-01
Videogrammetry is the science of calculating 3D object coordinates as a function of time from image sequences. It expands the method of photogrammetry to multiple time steps enabling the object to be characterized dynamically. Photogrammetry achieves the greatest accuracy with high contrast, solid-colored circular targets. The high contrast is most often effected using retro-reflective targets attached to the measurement article. Knowledge of the location of each target allows those points to be tracked in a sequence of images, thus yielding dynamic characterization of the overall object. For ultra-lightweight and inflatable gossamer structures (e.g. solar sails, inflatable antennae, sun shields, etc.) where it may be desirable to avoid physically attaching retro-targets, a high-density grid of projected circular targets - called dot projection - is a viable alternative. Over time the object changes shape or position independently of the dots. Dynamic behavior, such as deployment or vibration, can be characterized by tracking the overall 3D shape of the object instead of tracking specific object points. To develop this method, an oscillating rigid object was measured using both retro- reflective targets and dot projection. This paper details these tests, compares the results, and discusses the overall accuracy of dot projection videogrammetry.
NASA Astrophysics Data System (ADS)
Allen, Michelle A.; Cavicchioli, Ricardo
2017-03-01
Heard Island in the Southern Ocean is a biological hotspot that is suffering the effects of climate change. Significant glacier retreat has generated proglacial lagoons, some of which are open to the ocean. We used pyrotag sequencing of SSU rRNA genes and environmental data to characterize microorganisms from two pools adjacent to animal breeding areas, two glacial lagoons and Atlas Cove (marine site). The more abundant taxa included Actinobacteria, Bacteroidetes and Proteobacteria, ciliates and picoflagellates (e.g. Micromonas), and relatively few Archaea. Seal Pool, which is rich in organic matter, was characterized by a heterotrophic degradative community, while the less eutrophic Atlas Pool had more eucaryotic primary producers. Brown Lagoon, with the lowest nutrient levels, had Eucarya and Bacteria predicted to be oligotrophs, possess small cell sizes, and have the ability to metabolize organic matter. The marine influence on Winston Lagoon was evident by its salinity and the abundance of marine-like Gammaproteobacteria, while also lacking typical marine eucaryotes indicating the system was still functioning as a distinct niche. This is the first microbiology study of Heard Island and revealed that communities are distinct at each location and heavily influenced by local environmental factors.
Effects of temperature and mass conservation on the typical chemical sequences of hydrogen oxidation
NASA Astrophysics Data System (ADS)
Nicholson, Schuyler B.; Alaghemandi, Mohammad; Green, Jason R.
2018-01-01
Macroscopic properties of reacting mixtures are necessary to design synthetic strategies, determine yield, and improve the energy and atom efficiency of many chemical processes. The set of time-ordered sequences of chemical species are one representation of the evolution from reactants to products. However, only a fraction of the possible sequences is typical, having the majority of the joint probability and characterizing the succession of chemical nonequilibrium states. Here, we extend a variational measure of typicality and apply it to atomistic simulations of a model for hydrogen oxidation over a range of temperatures. We demonstrate an information-theoretic methodology to identify typical sequences under the constraints of mass conservation. Including these constraints leads to an improved ability to learn the chemical sequence mechanism from experimentally accessible data. From these typical sequences, we show that two quantities defining the variational typical set of sequences—the joint entropy rate and the topological entropy rate—increase linearly with temperature. These results suggest that, away from explosion limits, data over a narrow range of thermodynamic parameters could be sufficient to extrapolate these typical features of combustion chemistry to other conditions.
An image processing study of a reentrant discotic cholesteric - biaxial cholesteric phase transition
NASA Astrophysics Data System (ADS)
Luders, D. D.; Zoner, G. A.; Santos, O. R.; Braga, W. S.; Sampaio, A. R.; Kimura, N. M.; Palangana, A. J.; Simões, M.
2018-04-01
In this work, we study and characterize the cholesteric sequence of phases (ChDr - ChB - ChD), where the first ChDr is the reentrant cholesteric discotic phase, ChB is the cholesteric biaxial phase and the second ChD is the cholesteric discotic phase. This sequence of phases is studied through polarized light microscopy and image processing technique, where, for the first time, the domains and borders of these transitions are established and characterized. They are also investigated and optically characterized throughout their textures.
Statistical characterization of the fatigue behavior of composite lamina
NASA Technical Reports Server (NTRS)
Yang, J. N.; Jones, D. L.
1979-01-01
A theoretical model was developed to predict statistically the effects of constant and variable amplitude fatigue loadings on the residual strength and fatigue life of composite lamina. The parameters in the model were established from the results of a series of static tensile tests and a fatigue scan and a number of verification tests were performed. Abstracts for two other papers on the effect of load sequence on the statistical fatigue of composites are also presented.
NASA Astrophysics Data System (ADS)
Lasota, Rafal; Pierscieniak, Karolina; Garcia, Pascale; Simon-Bouhet, Benoit; Wolowicz, Maciej
2016-11-01
The aim of the study was to determine genetic diversity in the soft-shell clam Mya arenaria on a wide geographical scale using mtDNA COI gene sequences. Low levels of genetic diversity was found, which can most likely be explained by a bottleneck effect during Pleistocene glaciations and/or selection. The geographical genetic structuring of the studied populations was also very low. The star-like phylogeny of the haplotypes indicates a relatively recent, rapid population expansion following the glaciation period and repeated expansion following the founder effect(s) after the initial introduction of the soft-shell clam to Europe. North American populations are characterized by the largest number of haplotypes, including rare ones, as expected for native populations. Because of the founder effect connected with initial and repeated expansion events, European populations have significantly lower numbers of haplotypes in comparison with those of North America. We also observed subtle differentiations among populations from the North and Baltic seas. The recently founded soft-shell clam population in the Black Sea exhibited the highest genetic similarity to Baltic populations, which confirmed the hypothesis that M. arenaria was introduced to the Gulf of Odessa from the Baltic Sea. The most enigmatic results were obtained for populations from the White Sea, which were characterized by high genetic affinity with American populations.
Characterization of circulating transfer RNA-derived RNA fragments in cattle
Casas, Eduardo; Cai, Guohong; Neill, John D.
2015-01-01
The objective was to characterize naturally occurring circulating transfer RNA-derived RNA fragments (tRFs) in cattle1. Serum from eight clinically normal adult dairy cows was collected, and small non-coding RNAs were extracted immediately after collection and sequenced by Illumina MiSeq. Sequences aligned to transfer RNA (tRNA) genes or their flanking sequences were characterized. Sequences aligned to the beginning of 5′ end of the mature tRNA were classified as tRF5; those aligned to the 3′ end of mature tRNA were classified as tRF3; and those aligned to the beginning of the 3′ end flanking sequences were classified as tRF1. There were 3,190,962 sequences that mapped to transfer RNA and small non-coding RNAs in the bovine genome. Of these, 2,323,520 were identified as tRF5s, 562 were tRF3s, and 81 were tRF1s. There were 866,799 sequences identified as other small non-coding RNAs (microRNA, rRNA, snoRNA, etc.) and were excluded from the study. The tRF5s ranged from 28 to 40 nucleotides; and 98.7% ranged from 30 to 34 nucleotides in length. The tRFs with the greatest number of sequences were derived from tRNA of histidine, glutamic acid, lysine, glycine, and valine. There was no association between number of codons for each amino acid and number of tRFs in the samples. The reason for tRF5s being the most abundant can only be explained if these sequences are associated with function within the animal. PMID:26379699
Busk, Peter Kamp; Lange, Lene
2013-06-01
Functional prediction of carbohydrate-active enzymes is difficult due to low sequence identity. However, similar enzymes often share a few short motifs, e.g., around the active site, even when the overall sequences are very different. To exploit this notion for functional prediction of carbohydrate-active enzymes, we developed a simple algorithm, peptide pattern recognition (PPR), that can divide proteins into groups of sequences that share a set of short conserved sequences. When this method was used on 118 glycoside hydrolase 5 proteins with 9% average pairwise identity and representing four characterized enzymatic functions, 97% of the proteins were sorted into groups correlating with their enzymatic activity. Furthermore, we analyzed 8,138 glycoside hydrolase 13 proteins including 204 experimentally characterized enzymes with 28 different functions. There was a 91% correlation between group and enzyme activity. These results indicate that the function of carbohydrate-active enzymes can be predicted with high precision by finding short, conserved motifs in their sequences. The glycoside hydrolase 61 family is important for fungal biomass conversion, but only a few proteins of this family have been functionally characterized. Interestingly, PPR divided 743 glycoside hydrolase 61 proteins into 16 subfamilies useful for targeted investigation of the function of these proteins and pinpointed three conserved motifs with putative importance for enzyme activity. Furthermore, the conserved sequences were useful for cloning of new, subfamily-specific glycoside hydrolase 61 proteins from 14 fungi. In conclusion, identification of conserved sequence motifs is a new approach to sequence analysis that can predict carbohydrate-active enzyme functions with high precision.
Centromere reference models for human chromosomes X and Y satellite arrays
Miga, Karen H.; Newton, Yulia; Jain, Miten; Altemose, Nicolas; Willard, Huntington F.; Kent, W. James
2014-01-01
The human genome sequence remains incomplete, with multimegabase-sized gaps representing the endogenous centromeres and other heterochromatic regions. Available sequence-based studies within these sites in the genome have demonstrated a role in centromere function and chromosome pairing, necessary to ensure proper chromosome segregation during cell division. A common genomic feature of these regions is the enrichment of long arrays of near-identical tandem repeats, known as satellite DNAs, which offer a limited number of variant sites to differentiate individual repeat copies across millions of bases. This substantial sequence homogeneity challenges available assembly strategies and, as a result, centromeric regions are omitted from ongoing genomic studies. To address this problem, we utilize monomer sequence and ordering information obtained from whole-genome shotgun reads to model two haploid human satellite arrays on chromosomes X and Y, resulting in an initial characterization of 3.83 Mb of centromeric DNA within an individual genome. To further expand the utility of each centromeric reference sequence model, we evaluate sites within the arrays for short-read mappability and chromosome specificity. Because satellite DNAs evolve in a concerted manner, we use these centromeric assemblies to assess the extent of sequence variation among 366 individuals from distinct human populations. We thus identify two satellite array variants in both X and Y centromeres, as determined by array length and sequence composition. This study provides an initial sequence characterization of a regional centromere and establishes a foundation to extend genomic characterization to these sites as well as to other repeat-rich regions within complex genomes. PMID:24501022
Muzaffer Ahmet Karaaslan; Mandla A. Tshabalala; Gisela Buschle-Diller
2012-01-01
Semi-interpenetrating network hydrogel films were prepared using hemicellulose and chemically crosslinked chitosan. Hemicellulose was extracted from aspen by using a novel alkaline treatment and characterized by HPSEC, and consisted of a mixture of high and low molecular weight polymeric fractions. HPLC analysis of the acid hydrolysate of the hemicellulose showed that...
Evolution of Functional Diversification within Quasispecies
Colizzi, Enrico Sandro; Hogeweg, Paulien
2014-01-01
According to quasispecies theory, high mutation rates limit the amount of information genomes can store (Eigen’s Paradox), whereas genomes with higher degrees of neutrality may be selected even at the expenses of higher replication rates (the “survival of the flattest” effect). Introducing a complex genotype to phenotype map, such as RNA folding, epitomizes such effect because of the existence of neutral networks and their exploitation by evolution, affecting both population structure and genome composition. We reexamine these classical results in the light of an RNA-based system that can evolve its own ecology. Contrary to expectations, we find that quasispecies evolving at high mutation rates are steep and characterized by one master sequence. Importantly, the analysis of the system and the characterization of the evolved quasispecies reveal the emergence of functionalities as phenotypes of nonreplicating genotypes, whose presence is crucial for the overall viability and stability of the system. In other words, the master sequence codes for the information of the entire ecosystem, whereas the decoding happens, stochastically, through mutations. We show that this solution quickly outcompetes strategies based on genomes with a high degree of neutrality. In conclusion, individually coded but ecosystem-based diversity evolves and persists indefinitely close to the Information Threshold. PMID:25056399
ERIC Educational Resources Information Center
Timerman, Anthony P.; Fenrick, Angela M.; Zamis, Thomas M.
2009-01-01
A sequence of exercises for the isolation and characterization of invertase (E.C. 3.1.2.26) from baker's yeast obtained from a local grocery store is outlined. Because the enzyme is colorless, the use of colored markers and the sequence of purification steps are designed to "visualize" the process by which a colorless protein is selectively…
Li, Bing; Shi, Xiao-Yu; Liao, Dai-Xiang; Cao, Bang-Rong; Luo, Cheng-Hua; Cheng, Shu-Jun
2015-01-01
There are still no absolute parameters predicting progression of adenoma into cancer. The present study aimed to characterize functional differences on the multistep carcinogenetic process from the adenoma-carcinoma sequence. All samples were collected and mRNA expression profiling was performed by using Agilent Microarray high-throughput gene-chip technology. Then, the characteristics of mRNA expression profiles of adenoma-carcinoma sequence were described with bioinformatics software, and we analyzed the relationship between gene expression profiles of adenoma-adenocarcinoma sequence and clinical prognosis of colorectal cancer. The mRNA expressions of adenoma-carcinoma sequence were significantly different between high-grade intraepithelial neoplasia group and adenocarcinoma group. The biological process of gene ontology function enrichment analysis on differentially expressed genes between high-grade intraepithelial neoplasia group and adenocarcinoma group showed that genes enriched in the extracellular structure organization, skeletal system development, biological adhesion and itself regulated growth regulation, with the P value after FDR correction of less than 0.05. In addition, IPR-related protein mainly focused on the insulin-like growth factor binding proteins. The variable trends of gene expression profiles for adenoma-carcinoma sequence were mainly concentrated in high-grade intraepithelial neoplasia and adenocarcinoma. The differentially expressed genes are significantly correlated between high-grade intraepithelial neoplasia group and adenocarcinoma group. Bioinformatics analysis is an effective way to study the gene expression profiles in the adenoma-carcinoma sequence, and may provide an effective tool to involve colorectal cancer research strategy into colorectal adenoma or advanced adenoma.
TP53, PIK3CA, FBXW7 and KRAS Mutations in Esophageal Cancer Identified by Targeted Sequencing.
Zheng, Huili; Wang, Yan; Tang, Chuanning; Jones, Lindsey; Ye, Hua; Zhang, Guangchun; Cao, Weihai; Li, Jingwen; Liu, Lifeng; Liu, Zhencong; Zhang, Chao; Lou, Feng; Liu, Zhiyuan; Li, Yangyang; Shi, Zhenfen; Zhang, Jingbo; Zhang, Dandan; Sun, Hong; Dong, Haichao; Dong, Zhishou; Guo, Baishuai; Yan, H E; Lu, Qingyu; Huang, Xue; Chen, Si-Yi
2016-01-01
Esophageal cancer (EC) is a common malignancy with significant morbidity and mortality. As individual cancers exhibit unique mutation patterns, identifying and characterizing gene mutations in EC that may serve as biomarkers might help predict patient outcome and guide treatment. Traditionally, personalized cancer DNA sequencing was impractical and expensive. Recent technological advancements have made targeted DNA sequencing more cost- and time-effective with reliable results. This technology may be useful for clinicians to direct patient treatment. The Ion PGM and AmpliSeq Cancer Panel was used to identify mutations at 737 hotspot loci of 45 cancer-related genes in 64 EC samples from Chinese patients. Frequent mutations were found in TP53 and less frequent mutations in PIK3CA, FBXW7 and KRAS. These results demonstrate that targeted sequencing can reliably identify mutations in individual tumors that make this technology a possibility for clinical use. Copyright© 2016, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.
Sanitá Lima, Matheus; Woods, Laura C; Cartwright, Matthew W; Smith, David Roy
2016-11-01
Not long ago, scientists paid dearly in time, money and skill for every nucleotide that they sequenced. Today, DNA sequencing technologies epitomize the slogan 'faster, easier, cheaper and more', and in many ways, sequencing an entire genome has become routine, even for the smallest laboratory groups. This is especially true for mitochondrial and plastid genomes. Given their relatively small sizes and high copy numbers per cell, organelle DNAs are currently among the most highly sequenced kind of chromosome. But accurately characterizing an organelle genome and the information it encodes can require much more than DNA sequencing and bioinformatics analyses. Organelle genomes can be surprisingly complex and can exhibit convoluted and unconventional modes of gene expression. Unravelling this complexity can demand a wide assortment of experiments, from pulsed-field gel electrophoresis to Southern and Northern blots to RNA analyses. Here, we show that it is exactly these types of 'complementary' analyses that are often lacking from contemporary organelle genome papers, particularly short 'genome announcement' articles. Consequently, crucial and interesting features of organelle chromosomes are going undescribed, which could ultimately lead to a poor understanding and even a misrepresentation of these genomes and the genes they express. High-throughput sequencing and bioinformatics have made it easy to sequence and assemble entire chromosomes, but they should not be used as a substitute for or at the expense of other types of genomic characterization methods. © 2016 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.
3' terminal diversity of MRP RNA and other human noncoding RNAs revealed by deep sequencing.
Goldfarb, Katherine C; Cech, Thomas R
2013-09-21
Post-transcriptional 3' end processing is a key component of RNA regulation. The abundant and essential RNA subunit of RNase MRP has been proposed to function in three distinct cellular compartments and therefore may utilize this mode of regulation. Here we employ 3' RACE coupled with high-throughput sequencing to characterize the 3' terminal sequences of human MRP RNA and other noncoding RNAs that form RNP complexes. The 3' terminal sequence of MRP RNA from HEK293T cells has a distinctive distribution of genomically encoded termini (including an assortment of U residues) with a portion of these selectively tagged by oligo(A) tails. This profile contrasts with the relatively homogenous 3' terminus of an in vitro transcribed MRP RNA control and the differing 3' terminal profiles of U3 snoRNA, RNase P RNA, and telomerase RNA (hTR). 3' RACE coupled with deep sequencing provides a valuable framework for the functional characterization of 3' terminal sequences of noncoding RNAs.
Acceleration of the Smith-Waterman algorithm using single and multiple graphics processors
NASA Astrophysics Data System (ADS)
Khajeh-Saeed, Ali; Poole, Stephen; Blair Perot, J.
2010-06-01
Finding regions of similarity between two very long data streams is a computationally intensive problem referred to as sequence alignment. Alignment algorithms must allow for imperfect sequence matching with different starting locations and some gaps and errors between the two data sequences. Perhaps the most well known application of sequence matching is the testing of DNA or protein sequences against genome databases. The Smith-Waterman algorithm is a method for precisely characterizing how well two sequences can be aligned and for determining the optimal alignment of those two sequences. Like many applications in computational science, the Smith-Waterman algorithm is constrained by the memory access speed and can be accelerated significantly by using graphics processors (GPUs) as the compute engine. In this work we show that effective use of the GPU requires a novel reformulation of the Smith-Waterman algorithm. The performance of this new version of the algorithm is demonstrated using the SSCA#1 (Bioinformatics) benchmark running on one GPU and on up to four GPUs executing in parallel. The results indicate that for large problems a single GPU is up to 45 times faster than a CPU for this application, and the parallel implementation shows linear speed up on up to 4 GPUs.
Study design requirements for RNA sequencing-based breast cancer diagnostics.
Mer, Arvind Singh; Klevebring, Daniel; Grönberg, Henrik; Rantalainen, Mattias
2016-02-01
Sequencing-based molecular characterization of tumors provides information required for individualized cancer treatment. There are well-defined molecular subtypes of breast cancer that provide improved prognostication compared to routine biomarkers. However, molecular subtyping is not yet implemented in routine breast cancer care. Clinical translation is dependent on subtype prediction models providing high sensitivity and specificity. In this study we evaluate sample size and RNA-sequencing read requirements for breast cancer subtyping to facilitate rational design of translational studies. We applied subsampling to ascertain the effect of training sample size and the number of RNA sequencing reads on classification accuracy of molecular subtype and routine biomarker prediction models (unsupervised and supervised). Subtype classification accuracy improved with increasing sample size up to N = 750 (accuracy = 0.93), although with a modest improvement beyond N = 350 (accuracy = 0.92). Prediction of routine biomarkers achieved accuracy of 0.94 (ER) and 0.92 (Her2) at N = 200. Subtype classification improved with RNA-sequencing library size up to 5 million reads. Development of molecular subtyping models for cancer diagnostics requires well-designed studies. Sample size and the number of RNA sequencing reads directly influence accuracy of molecular subtyping. Results in this study provide key information for rational design of translational studies aiming to bring sequencing-based diagnostics to the clinic.
Azab, Marwa Mohamed; Fayyad, Dalia Mukhtar
2018-01-01
The use of high throughput next generation technologies has allowed more comprehensive analysis than traditional Sanger sequencing. The specific aim of this study was to investigate the microbial diversity of primary endodontic infections using Illumina MiSeq sequencing platform in Egyptian patients. Samples were collected from 19 patients in Suez Canal University Hospital (Endodontic Department) using sterile # 15K file and paper points. DNA was extracted using Mo Bio power soil DNA isolation extraction kit followed by PCR amplification and agarose gel electrophoresis. The microbiome was characterized on the basis of the V3 and V4 hypervariable region of the 16S rRNA gene by using paired-end sequencing on Illumina MiSeq device. MOTHUR software was used in sequence filtration and analysis of sequenced data. A total of 1858 operational taxonomic units at 97% similarity were assigned to 26 phyla, 245 families, and 705 genera. Four main phyla Firmicutes, Bacteroidetes, Proteobacteria, and Synergistetes were predominant in all samples. At genus level, Prevotella, Bacillus, Porphyromonas, Streptococcus, and Bacteroides were the most abundant. Illumina MiSeq platform sequencing can be used to investigate oral microbiome composition of endodontic infections. Elucidating the ecology of endodontic infections is a necessary step in developing effective intracanal antimicrobials. PMID:29849646
Leyva-Mir, Santos G; Velázquez-Martínez, Guadalupe C; Tlapal-Bolaños, Bertha; Tovar-Pedraza, Juan M; Rosas-Saito, Greta H; Alvarado-Gómez, Omar G
2015-01-01
Charcoal rot caused by Macrophomina phaseolina is an important disease of sugarcane in Mexico. This study was carried out to characterize isolates of M. phaseolina obtained from sugarcane by the combination of morphological and molecular analyses. The morphological characterization of 10 isolates was performed using scanning electron microscopy and light microscopy. To confirm the morphological identification, rDNA from two representative isolates was extracted, and the internal transcribed spacer (ITS) region was amplified by polymerase chain reaction and sequenced using specific primers MpKF1 and MpKR1. Based on their morphological characteristics, all isolates were identified as M. phaseolina. Moreover, the analysis of two ITS sequences showed 100% similarity with the M. phaseolina sequences deposited in the GenBank. To our knowledge, this is the first study in the world aimed at characterizing isolates of M. phaseolina obtained from sugarcane. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Peña, Alejandro; Del Carratore, Francesco; Cummings, Matthew; Takano, Eriko; Breitling, Rainer
2017-12-18
The rapid increase of publicly available microbial genome sequences has highlighted the presence of hundreds of thousands of biosynthetic gene clusters (BGCs) encoding valuable secondary metabolites. The experimental characterization of new BGCs is extremely laborious and struggles to keep pace with the in silico identification of potential BGCs. Therefore, the prioritisation of promising candidates among computationally predicted BGCs represents a pressing need. Here, we propose an output ordering and prioritisation system (OOPS) which helps sorting identified BGCs by a wide variety of custom-weighted biological and biochemical criteria in a flexible and user-friendly interface. OOPS facilitates a judicious prioritisation of BGCs using G+C content, coding sequence length, gene number, cluster self-similarity and codon bias parameters, as well as enabling the user to rank BGCs based upon BGC type, novelty, and taxonomic distribution. Effective prioritisation of BGCs will help to reduce experimental attrition rates and improve the breadth of bioactive metabolites characterized.
Sobti, Ranbir Chander; Kumari, Mamtesh; Sharma, Vijay Lakshmi; Sodhi, Monika; Mukesh, Manishi; Shouche, Yogesh
2009-11-01
The present study was aimed to get the nucleotide sequences of a part of COII mitochondrial gene amplified from individuals of five species of Termites (Isoptera: Termitidae: Macrotermitinae). Four of them belonged to the genus Odontotermes (O. obesus, O. horni, O. bhagwatii and Odontotermes sp.) and one to Microtermes (M. obesi). Partial COII gene fragments were amplified by using specific primers. The sequences so obtained were characterized to calculate the frequencies of each nucleotide bases and a high A + T content was observed. The interspecific pairwise sequence divergence in Odontotermes species ranged from 6.5% to 17.1% across COII fragment. M. obesi sequence diversity ranged from 2.5 with Odontotermes sp. to 19.0% with O. bhagwatii. Phylogenetic trees drawn on the basis of distance neighbour-joining method revealed three main clades clustering all the individuals according to their genera and families.
Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana.
Mayer, K; Schüller, C; Wambutt, R; Murphy, G; Volckaert, G; Pohl, T; Düsterhöft, A; Stiekema, W; Entian, K D; Terryn, N; Harris, B; Ansorge, W; Brandt, P; Grivell, L; Rieger, M; Weichselgartner, M; de Simone, V; Obermaier, B; Mache, R; Müller, M; Kreis, M; Delseny, M; Puigdomenech, P; Watson, M; Schmidtheini, T; Reichert, B; Portatelle, D; Perez-Alonso, M; Boutry, M; Bancroft, I; Vos, P; Hoheisel, J; Zimmermann, W; Wedler, H; Ridley, P; Langham, S A; McCullagh, B; Bilham, L; Robben, J; Van der Schueren, J; Grymonprez, B; Chuang, Y J; Vandenbussche, F; Braeken, M; Weltjens, I; Voet, M; Bastiaens, I; Aert, R; Defoor, E; Weitzenegger, T; Bothe, G; Ramsperger, U; Hilbert, H; Braun, M; Holzer, E; Brandt, A; Peters, S; van Staveren, M; Dirske, W; Mooijman, P; Klein Lankhorst, R; Rose, M; Hauf, J; Kötter, P; Berneiser, S; Hempel, S; Feldpausch, M; Lamberth, S; Van den Daele, H; De Keyser, A; Buysshaert, C; Gielen, J; Villarroel, R; De Clercq, R; Van Montagu, M; Rogers, J; Cronin, A; Quail, M; Bray-Allen, S; Clark, L; Doggett, J; Hall, S; Kay, M; Lennard, N; McLay, K; Mayes, R; Pettett, A; Rajandream, M A; Lyne, M; Benes, V; Rechmann, S; Borkova, D; Blöcker, H; Scharfe, M; Grimm, M; Löhnert, T H; Dose, S; de Haan, M; Maarse, A; Schäfer, M; Müller-Auer, S; Gabel, C; Fuchs, M; Fartmann, B; Granderath, K; Dauner, D; Herzl, A; Neumann, S; Argiriou, A; Vitale, D; Liguori, R; Piravandi, E; Massenet, O; Quigley, F; Clabauld, G; Mündlein, A; Felber, R; Schnabl, S; Hiller, R; Schmidt, W; Lecharny, A; Aubourg, S; Chefdor, F; Cooke, R; Berger, C; Montfort, A; Casacuberta, E; Gibbons, T; Weber, N; Vandenbol, M; Bargues, M; Terol, J; Torres, A; Perez-Perez, A; Purnelle, B; Bent, E; Johnson, S; Tacon, D; Jesse, T; Heijnen, L; Schwarz, S; Scholler, P; Heber, S; Francs, P; Bielke, C; Frishman, D; Haase, D; Lemcke, K; Mewes, H W; Stocker, S; Zaccaria, P; Bevan, M; Wilson, R K; de la Bastide, M; Habermann, K; Parnell, L; Dedhia, N; Gnoj, L; Schutz, K; Huang, E; Spiegel, L; Sehkon, M; Murray, J; Sheet, P; Cordes, M; Abu-Threideh, J; Stoneking, T; Kalicki, J; Graves, T; Harmon, G; Edwards, J; Latreille, P; Courtney, L; Cloud, J; Abbott, A; Scott, K; Johnson, D; Minx, P; Bentley, D; Fulton, B; Miller, N; Greco, T; Kemp, K; Kramer, J; Fulton, L; Mardis, E; Dante, M; Pepin, K; Hillier, L; Nelson, J; Spieth, J; Ryan, E; Andrews, S; Geisel, C; Layman, D; Du, H; Ali, J; Berghoff, A; Jones, K; Drone, K; Cotton, M; Joshu, C; Antonoiu, B; Zidanic, M; Strong, C; Sun, H; Lamar, B; Yordan, C; Ma, P; Zhong, J; Preston, R; Vil, D; Shekher, M; Matero, A; Shah, R; Swaby, I K; O'Shaughnessy, A; Rodriguez, M; Hoffmann, J; Till, S; Granat, S; Shohdy, N; Hasegawa, A; Hameed, A; Lodhi, M; Johnson, A; Chen, E; Marra, M; Martienssen, R; McCombie, W R
1999-12-16
The higher plant Arabidopsis thaliana (Arabidopsis) is an important model for identifying plant genes and determining their function. To assist biological investigations and to define chromosome structure, a coordinated effort to sequence the Arabidopsis genome was initiated in late 1996. Here we report one of the first milestones of this project, the sequence of chromosome 4. Analysis of 17.38 megabases of unique sequence, representing about 17% of the genome, reveals 3,744 protein coding genes, 81 transfer RNAs and numerous repeat elements. Heterochromatic regions surrounding the putative centromere, which has not yet been completely sequenced, are characterized by an increased frequency of a variety of repeats, new repeats, reduced recombination, lowered gene density and lowered gene expression. Roughly 60% of the predicted protein-coding genes have been functionally characterized on the basis of their homology to known genes. Many genes encode predicted proteins that are homologous to human and Caenorhabditis elegans proteins.
Hjouj, Mohammad; Rubinsky, Boris
2010-07-01
We introduce and characterize the use of MRI for studying nonthermal irreversible electroporation (NTIRE) in a vegetative tissue model. NTIRE is a new minimally invasive surgical technique for tissue ablation in which microsecond, high electric-field pulses form nanoscale defects in the cell membrane that lead to cell death. Clinical NTIRE sequences were applied to a potato tuber tissue model. The potato is used for NTIRE studies because cell damage is readily visible with optical means through a natural oxidation process of released intracellular enzymes (polyphenol oxidase) and the formation of brown-black melanins. MRI sequences of the treated area were taken at various times before and after NTIRE and compared with photographic images. A comparison was made between T1W, T2W, FLAIR and STIR MRIs of NTIRE and photographic images. Some MRI sequences show changes in areas treated by irreversible electroporation. T1W and FLAIR produce brighter images of the treated areas. In contrast, the signal was lost from the treated area when a suppression technique, STIR, was used. There was similarity between optical photographic images of the treated tissue and MRIs of the same areas. This is the first study to characterize MRI of NTIRE in vegetative tissue. We find that NTIRE produces changes in vegetative tissue that can be imaged by certain MRI sequences. This could make MRI an effective tool to study the fundamentals of NTIRE in nonanimal tissue.
Mishra, Chinmoy; Kumar, Subodh; Sonwane, Arvind Asaram; Yathish, H M; Chaudhary, Rajni
2017-01-02
The exploration of candidate genes for immune response in cattle may be vital for improving our understanding regarding the species specific response to pathogens. Toll-like receptor 4 (TLR4) is mostly involved in protection against the deleterious effects of Gram negative pathogens. Approximately 2.6 kb long cDNA sequence of TLR4 gene covering the entire coding region was characterized in two Indian milk cattle (Vrindavani and Tharparkar). The phylogenetic analysis confirmed that the bovine TLR4 was apparently evolved from an ancestral form that predated the appearance of vertebrates, and it is grouped with buffalo, yak, and mithun TLR4s. Sequence analysis revealed a 2526-nucleotide long open reading frame (ORF) encoding 841 amino acids, similar to other cattle breeds. The calculated molecular weight of the translated ORF was 96144 and 96040.9 Da; the isoelectric point was 6.35 and 6.42 in Vrindavani and Tharparkar cattle, respectively. The Simple Modular Architecture Research Tool (SMART) analysis identified 14 leucine rich repeats (LRR) motifs in bovine TLR4 protein. The deduced TLR4 amino acid sequence of Tharparkar had 4 different substitutions as compared to Bos taurus, Sahiwal, and Vrindavani. The signal peptide cleavage site predicted to lie between 16th and 17th amino acid of mature peptide. The transmebrane helix was identified between 635-657 amino acids in the mature peptide.
Pharmacological characterization of a β-adrenergic-like octopamine receptor in Plutella xylostella.
Huang, Qing-Ting; Ma, Hai-Hao; Deng, Xi-Le; Zhu, Hang; Liu, Jia; Zhou, Yong; Zhou, Xiao-Mao
2018-04-25
The β-adrenergic-like octopamine receptor (OA2B2) belongs to the class of G-protein coupled receptors. It regulates important physiological functions in insects, thus is potentially a good target for insecticides. In this study, the putative open reading frame sequence of the Pxoa2b2 gene in Plutella xylostella was cloned. Orthologous sequence alignment, phylogenetic tree analysis, and protein sequence analysis all showed that the cloned receptor belongs to the OA2B2 protein family. PxOA2B2 was transiently expressed in HEK-293 cells. It was found that PxOA2B2 could be activated by both octopamine and tyramine, resulting in increased intracellular cyclic AMP (cAMP) levels, whereas dopamine and serotonin were not effective in eliciting cAMP production. Further studies with series of PxOA2B2 agonists and antagonists showed that all four tested agonists (e.g., naphazoline, clonidine, 2-phenylethylamine, and amitraz) could activate the PxOA2B2 receptor, and two of tested antagonists (e.g., phentolamine and mianserin) had significant antagonistic effects. However, antagonist of yohimbine had no effects. Quantitative real-time polymerase chain reaction analysis showed that Pxoa2b2 gene was expressed in all developmental stages of P. xylostella and that the highest expression occurred in male adults. Further analysis with fourth-instar P. xylostella larvae showed that the Pxoa2b2 gene was mainly expressed in Malpighian tubule, epidermal, and head tissues. This study provides both a pharmacological characterization and the gene expression patterns of the OA2B2 in P. xylostella, facilitating further research for insecticides using PxOA2B2 as a target. © 2018 Wiley Periodicals, Inc.
Arias-Pulido, Hugo; Peyton, Cheri L; Torrez-Martínez, Norah; Anderson, D Nelson; Wheeler, Cosette M
2005-07-20
While HPV 16 variant lineages have been well characterized, the knowledge about HPV 18 variants is limited. In this study, HPV 18 nucleotide variations in the E2 hinge region were characterized by sequence analysis in 47 control and 51 tumor specimens. Fifty of these specimens were randomly selected for sequencing of an LCR-E6 segment and 20 samples representative of LCR-E6 and E2 sequence variants were examined across the L1 region. A total of 2770 nucleotides per HPV 18 variant genome were considered in this study. HPV 18 variant nucleotides were linked among all gene segments analyzed and grouped into three main branches: Asian-American (AA), European (E), and African (Af). These three branches were equally distributed among controls and cases and when stratified by Hispanic and non-Hispanic ethnicities. Among invasive cervical cancer cases, no significant differences in the three HPV variant branches were observed among ethnic groups or when stratified by histopathology (squamous vs. adenocarcinoma). The Af branch showed the greatest nucleotide variability when compared to the HPV 18 reference sequence and was more closely related to HPV 45 than either AA or E branches. Our data also characterize nucleotide and amino acid variations in the L1 capsid gene among HPV 18 variants, which may be relevant to vaccine strategies and subsequent studies of naturally occurring HPV 18 variants. Several novel HPV 18 nucleotide variations were identified in this study.
Serotype IV Sequence Type 468 Group B Streptococcus Neonatal Invasive Disease, Minnesota, USA.
Teatero, Sarah; Ferrieri, Patricia; Fittipaldi, Nahuel
2016-11-01
To further understand the emergence of serotype IV group B Streptococcus (GBS) invasive disease, we used whole-genome sequencing to characterize 3 sequence type 468 strains isolated from neonates in Minnesota, USA. We found that strains of tetracycline-resistant sequence type 468 GBS have acquired virulence genes from a putative clonal complex 17 GBS donor by recombination.
Deorphanizing the human transmembrane genome: A landscape of uncharacterized membrane proteins.
Babcock, Joseph J; Li, Min
2014-01-01
The sequencing of the human genome has fueled the last decade of work to functionally characterize genome content. An important subset of genes encodes membrane proteins, which are the targets of many drugs. They reside in lipid bilayers, restricting their endogenous activity to a relatively specialized biochemical environment. Without a reference phenotype, the application of systematic screens to profile candidate membrane proteins is not immediately possible. Bioinformatics has begun to show its effectiveness in focusing the functional characterization of orphan proteins of a particular functional class, such as channels or receptors. Here we discuss integration of experimental and bioinformatics approaches for characterizing the orphan membrane proteome. By analyzing the human genome, a landscape reference for the human transmembrane genome is provided.
Bacterial diversity in permanently cold and alkaline ikaite columns from Greenland.
Schmidt, Mariane; Priemé, Anders; Stougaard, Peter
2006-12-01
Bacterial diversity in alkaline (pH 10.4) and permanently cold (4 degrees C) ikaite tufa columns from the Ikka Fjord, SW Greenland, was investigated using growth characterization of cultured bacterial isolates with Terminal-restriction fragment length polymorphism (T-RFLP) and sequence analysis of bacterial 16S rRNA gene fragments. More than 200 bacterial isolates were characterized with respect to pH and temperature tolerance, and it was shown that the majority were cold-active alkaliphiles. T-RFLP analysis revealed distinct bacterial communities in different fractions of three ikaite columns, and, along with sequence analysis, it showed the presence of rich and diverse bacterial communities. Rarefaction analysis showed that the 109 sequenced clones in the 16S rRNA gene library represented between 25 and 65% of the predicted species richness in the three ikaite columns investigated. Phylogenetic analysis of the 16S rRNA gene sequences revealed many sequences with similarity to alkaliphilic or psychrophilic bacteria, and showed that 33% of the cloned sequences and 33% of the cultured bacteria showed less than 97% sequence identity to known sequences in databases, and may therefore represent yet unknown species.
Korber, B T; Osmanov, S; Esparza, J; Myers, G
1994-11-01
The World Health Organization Global Programme on AIDS (WHO/GPA) is conducting a large-scale collaborative study of human immunodeficiency virus type 1 (HIV-1) variation, based in four potential vaccine-trial site countries: Brazil, Rwanda, Thailand, and Uganda. Through the course of this study, it was crucial to keep track of certain attributes of the samples from which the viral nucleotide sequences were derived (e.g., country of origin and viral culture characterization), so that meaningful sequence comparisons could be made. Here we describe a system developed in the context of the WHO/GPA study that summarizes such critical attributes by representing them as standardized characters directly incorporated into sequence names. This nomenclature allows linkage of clinical, phenotypic, and geographic information with molecular data. We propose that other investigators involved in human immunodeficiency virus (HIV) nucleotide sequencing efforts adopt a similar standardized sequence nomenclature to facilitate cross-study sequence comparison. HIV sequence data are being generated at an ever-increasing rate; directly coupled to this increase is our deepening understanding of biological parameters that influence or result from sequence variability. A standardized sequence nomenclature that includes relevant biological information would enable researchers to better utilize the growing body of sequence data, and enhance their ability to interpret the biological implications of their own data through facilitating comparisons with previously published work.
USDA-ARS?s Scientific Manuscript database
Lipase (lip) and lipase-specific foldase (lif) genes of a biodegradable polyhydroxyalkanoate- (PHA-) synthesizing Pseudomonas resinovorans NRRL B-2649 were cloned using primers based on consensus sequences, followed by PCR-based genome walking. Sequence analyses showed a putative Lip gene-product (...
Draft genome sequences of Actinomyces timonensis strain 7400942T and its prophage.
Gorlas, Aurore; Gimenez, Grégory; Raoult, Didier; Roux, Véronique
2012-12-01
A draft genome sequence of Actinomyces timonensis, an anaerobic bacterium isolated from a human clinical osteoarticular sample, is described here. CRISPR-associated proteins, insertion sequence, and toxin-antitoxin loci were found on the genome. A new virus or provirus, AT-1, was characterized.
Hennebert, Elise; Maldonado, Barbara; Ladurner, Peter; Flammang, Patrick; Santos, Romana
2015-01-01
Adhesive secretions occur in both aquatic and terrestrial animals, in which they perform diverse functions. Biological adhesives can therefore be remarkably complex and involve a large range of components with different functions and interactions. However, being mainly protein based, biological adhesives can be characterized by classical molecular methods. This review compiles experimental strategies that were successfully used to identify, characterize and obtain the full-length sequence of adhesive proteins from nine biological models: echinoderms, barnacles, tubeworms, mussels, sticklebacks, slugs, velvet worms, spiders and ticks. A brief description and practical examples are given for a variety of tools used to study adhesive molecules at different levels from genes to secreted proteins. In most studies, proteins, extracted from secreted materials or from adhesive organs, are analysed for the presence of post-translational modifications and submitted to peptide sequencing. The peptide sequences are then used directly for a BLAST search in genomic or transcriptomic databases, or to design degenerate primers to perform RT-PCR, both allowing the recovery of the sequence of the cDNA coding for the investigated protein. These sequences can then be used for functional validation and recombinant production. In recent years, the dual proteomic and transcriptomic approach has emerged as the best way leading to the identification of novel adhesive proteins and retrieval of their complete sequences. PMID:25657842
The Construction of Impossibility: A Logic-Based Analysis of Conjuring Tricks
Smith, Wally; Dignum, Frank; Sonenberg, Liz
2016-01-01
Psychologists and cognitive scientists have long drawn insights and evidence from stage magic about human perceptual and attentional errors. We present a complementary analysis of conjuring tricks that seeks to understand the experience of impossibility that they produce. Our account is first motivated by insights about the constructional aspects of conjuring drawn from magicians' instructional texts. A view is then presented of the logical nature of impossibility as an unresolvable contradiction between a perception-supported belief about a situation and a memory-supported expectation. We argue that this condition of impossibility is constructed not simply through misperceptions and misattentions, but rather it is an outcome of a trick's whole structure of events. This structure is conceptualized as two parallel event sequences: an effect sequence that the spectator is intended to believe; and a method sequence that the magician understands as happening. We illustrate the value of this approach through an analysis of a simple close-up trick, Martin Gardner's Turnabout. A formalism called propositional dynamic logic is used to describe some of its logical aspects. This elucidates the nature and importance of the relationship between a trick's effect sequence and its method sequence, characterized by the careful arrangement of four evidence relationships: similarity, perceptual equivalence, structural equivalence, and congruence. The analysis further identifies two characteristics of magical apparatus that enable the construction of apparent impossibility: substitutable elements and stable occlusion. PMID:27378959
A DNA Barcoding Approach to Characterize Pollen Collected by Honeybees
Bruni, Ilaria; Scaccabarozzi, Daniela; Sandionigi, Anna; Barbuto, Michela; Casiraghi, Maurizio; Labra, Massimo
2014-01-01
In the present study, we investigated DNA barcoding effectiveness to characterize honeybee pollen pellets, a food supplement largely used for human nutrition due to its therapeutic properties. We collected pollen pellets using modified beehives placed in three zones within an alpine protected area (Grigna Settentrionale Regional Park, Italy). A DNA barcoding reference database, including rbcL and trnH-psbA sequences from 693 plant species (104 sequenced in this study) was assembled. The database was used to identify pollen collected from the hives. Fifty-two plant species were identified at the molecular level. Results suggested rbcL alone could not distinguish among congeneric plants; however, psbA-trnH identified most of the pollen samples at the species level. Substantial variability in pollen composition was observed between the highest elevation locality (Alpe Moconodeno), characterized by arid grasslands and a rocky substrate, and the other two sites (Cornisella and Ortanella) at lower altitudes. Pollen from Ortanella and Cornisella showed the presence of typical deciduous forest species; however in samples collected at Ortanella, pollen of the invasive Lonicera japonica, and the ornamental Pelargonium x hortorum were observed. Our results indicated pollen composition was largely influenced by floristic local biodiversity, plant phenology, and the presence of alien flowering species. Therefore, pollen molecular characterization based on DNA barcoding might serve useful to beekeepers in obtaining honeybee products with specific nutritional or therapeutic characteristics desired by food market demands. PMID:25296114
USDA-ARS?s Scientific Manuscript database
Two different alleles of an ethylene receptor gene (CaETR-1) of chickpea (Cicer aritinum) were isolated and characterized through synteny analysis with genome sequences of Medicago truncatula. The full length of CaETR-1 in cultivar FLIP84-92C (CaETR-1a) is 4,428 bp including the polyadenylation sig...
Boscaro, Vittorio; Fokin, Sergei I; Schrallhammer, Martina; Schweikert, Michael; Petroni, Giulio
2013-01-01
The genus Holospora (Rickettsiales) includes highly infectious nuclear symbionts of the ciliate Paramecium with unique morphology and life cycle. To date, nine species have been described, but a molecular characterization is lacking for most of them. In this study, we have characterized a novel Holospora-like bacterium (HLB) living in the macronuclei of a Paramecium jenningsi population. This bacterium was morphologically and ultrastructurally investigated in detail, and its life cycle and infection capabilities were described. We also obtained its 16S rRNA gene sequence and developed a specific probe for fluorescence in situ hybridization experiments. A new taxon, "Candidatus Gortzia infectiva", was established for this HLB according to its unique characteristics and the relatively low DNA sequence similarities shared with other bacteria. The phylogeny of the order Rickettsiales based on 16S rRNA gene sequences has been inferred, adding to the available data the sequence of the novel bacterium and those of two Holospora species (Holospora obtusa and Holospora undulata) characterized for the purpose. Our phylogenetic analysis provided molecular support for the monophyly of HLBs and showed a possible pattern of evolution for some of their features. We suggested to classify inside the family Holosporaceae only HLBs, excluding other more distantly related and phenotypically different Paramecium endosymbionts.
Development and characterization of genomic SSR markers in Cynodon transvaalensis Burtt-Davy.
Tan, Chengcheng; Wu, Yanqi; Taliaferro, Charles M; Bell, Greg E; Martin, Dennis L; Smith, Mike W
2014-08-01
Simple sequence repeat (SSR) markers are a major molecular tool for genetic and genomic research that have been extensively developed and used in major crops. However, few are available in African bermudagrass (Cynodon transvaalensis Burtt-Davy), an economically important warm-season turfgrass species. African bermudagrass is mainly used for hybridizations with common bermudagrass [C. dactylon var. dactylon (L.) Pers.] in the development of superior interspecific hybrid turfgrass cultivars. Accordingly, the major objective of this study was to develop and characterize a large set of SSR markers. Genomic DNA of C. transvaalensis '4200TN 24-2' from an Oklahoma State University (OSU) turf nursery was extracted for construction of four SSR genomic libraries enriched with [CA](n), [GA](n), [AAG](n), and [AAT](n) as core repeat motifs. A total of 3,064 clones were sequenced at the OSU core facility. The sequences were categorized into singletons and contiguous sequences to exclude redundancy. From the two sequence categories, 1,795 SSR loci were identified. After excluding duplicate SSRs by comparison with previously developed SSR markers using a nucleotide basic local alignment tool, 1,426 unique primer pairs (PPs) were designed. Out of the 1,426 designed PPs, 981 (68.8 %) amplified alleles of the expected size in the donor DNA. Polymorphisms of the SSR PPs tested in eight C. transvaalensis plants were 93 % polymorphic with 544 markers effective in all genotypes. Inheritance of the SSRs was examined in six F(1) progeny of African parents 'T577' × 'Uganda', indicating 917 markers amplified heritable alleles. The SSR markers developed in the study are the first large set of co-dominant markers in African bermudagrass and should be highly valuable for molecular and traditional breeding research.
Isolation and characterization of the fall Chinook aquareovirus
Makhsous, Negar; Jensen, Nicole L.; Haman, Katherine H.; Batts, William N.; Jerome, Keith R.; Winton, James; Greninger, Alexander L.
2017-01-01
BackgroundSalmon are paramount to the economy, ecology, and history of the Pacific Northwest. Viruses constitute one of the major threats to salmon health and well-being, with more than twenty known virus species that infect salmon. Here, we describe the isolation and characterization of the fall Chinook aquareovirus, a divergent member of the species Aquareovirus B within the family Reoviridae.MethodsThe virus was first found in 2014 as part of a routine adult broodstock screening program in which kidney and spleen tissue samples from healthy-appearing, adult fall Chinook salmon (Oncorhynchus tshawytscha) returning to a hatchery in Washington State produced cytopathic effects when inoculated onto a Chinook salmon embryo cell line (CHSE-214). The virus was not able to be confirmed by an RT-PCR assay using existing aquareovirus pan-species primers, and instead was identified by metagenomic next-generation sequencing. Metagenomic next-generation sequencing was used to recover the full genome and completed using 3′ RACE.ResultsThe genome of the fall Chinook aquareovirus contains 11 segments of double-stranded RNA totaling 23.3 kb, with each segment flanked by the canonical sequence termini found in the aquareoviruses. Sequence comparisons and a phylogenetic analysis revealed a nucleotide identity of 63.2% in the VP7 gene with the Green River Chinook virus, placing the new isolate in the species Aquareovirus B. A qRT-PCR assay was developed targeting the VP2, which showed rapid growth of the isolate during the initial 5 days in culture using CHSE-214 cells.ConclusionsThis sequence represents the first complete genome of an Aquareovirus B species. Future studies will be required to understand the potential pathogenicity and epidemiology of the fall Chinook aquareovirus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chengyuan; De Grijs, Richard; Deng, Licai, E-mail: joshuali@pku.edu.cn, E-mail: grijs@pku.edu.cn
2014-04-01
Using a combination of high-resolution Hubble Space Telescope/Wide-Field and Planetary Camera-2 observations, we explore the physical properties of the stellar populations in two intermediate-age star clusters, NGC 1831 and NGC 1868, in the Large Magellanic Cloud based on their color-magnitude diagrams. We show that both clusters exhibit extended main-sequence turn offs. To explain the observations, we consider variations in helium abundance, binarity, age dispersions, and the fast rotation of the clusters' member stars. The observed narrow main sequence excludes significant variations in helium abundance in both clusters. We first establish the clusters' main-sequence binary fractions using the bulk of themore » clusters' main-sequence stellar populations ≳ 1 mag below their turn-offs. The extent of the turn-off regions in color-magnitude space, corrected for the effects of binarity, implies that age spreads of order 300 Myr may be inferred for both clusters if the stellar distributions in color-magnitude space were entirely due to the presence of multiple populations characterized by an age range. Invoking rapid rotation of the population of cluster members characterized by a single age also allows us to match the observed data in detail. However, when taking into account the extent of the red clump in color-magnitude space, we encounter an apparent conflict for NGC 1831 between the age dispersion derived from that based on the extent of the main-sequence turn off and that implied by the compact red clump. We therefore conclude that, for this cluster, variations in stellar rotation rate are preferred over an age dispersion. For NGC 1868, both models perform equally well.« less
Hulse-Kemp, Amanda M; Maheshwari, Shamoni; Stoffel, Kevin; Hill, Theresa A; Jaffe, David; Williams, Stephen R; Weisenfeld, Neil; Ramakrishnan, Srividya; Kumar, Vijay; Shah, Preyas; Schatz, Michael C; Church, Deanna M; Van Deynze, Allen
2018-01-01
Linked-Read sequencing technology has recently been employed successfully for de novo assembly of human genomes, however, the utility of this technology for complex plant genomes is unproven. We evaluated the technology for this purpose by sequencing the 3.5-gigabase (Gb) diploid pepper ( Capsicum annuum ) genome with a single Linked-Read library. Plant genomes, including pepper, are characterized by long, highly similar repetitive sequences. Accordingly, significant effort is used to ensure that the sequenced plant is highly homozygous and the resulting assembly is a haploid consensus. With a phased assembly approach, we targeted a heterozygous F 1 derived from a wide cross to assess the ability to derive both haplotypes and characterize a pungency gene with a large insertion/deletion. The Supernova software generated a highly ordered, more contiguous sequence assembly than all currently available C. annuum reference genomes. Over 83% of the final assembly was anchored and oriented using four publicly available de novo linkage maps. A comparison of the annotation of conserved eukaryotic genes indicated the completeness of assembly. The validity of the phased assembly is further demonstrated with the complete recovery of both 2.5-Kb insertion/deletion haplotypes of the PUN1 locus in the F 1 sample that represents pungent and nonpungent peppers, as well as nearly full recovery of the BUSCO2 gene set within each of the two haplotypes. The most contiguous pepper genome assembly to date has been generated which demonstrates that Linked-Read library technology provides a tool to de novo assemble complex highly repetitive heterozygous plant genomes. This technology can provide an opportunity to cost-effectively develop high-quality genome assemblies for other complex plants and compare structural and gene differences through accurate haplotype reconstruction.
Fei, Peng; Jiang, Yichao; Jiang, Yan; Yuan, Xiujuan; Yang, Tongxiang; Chen, Junliang; Wang, Ziyuan; Kang, Huaibin; Forsythe, Stephen J.
2017-01-01
Cronobacter sakazakii is an opportunistic pathogen that causes severe infections in neonates and infants through contaminated powdered infant formula (PIF). Therefore, the aim of this study was a large-scale study on determine the prevalence, molecular characterization and antibiotic susceptibility of C. sakazakii isolates from PIF purchased from Chinese retail markets. Two thousand and twenty PIF samples were collected from different institutions. Fifty-six C. sakazakii strains were isolated, and identified using fusA sequencing analysis, giving a contamination rate of 2.8%. Multilocus sequence typing (MLST) was more discriminatory than other genotyping methods. The C. sakazakii isolates were divided into 14 sequence types (STs) by MLST, compared with only seven clusters by ompA and rpoB sequence analysis, and four C. sakazakii serotypes by PCR-based O-antigen serotyping. C. sakazakii ST4 (19/56, 33.9%), ST1 (12/56, 21.4%), and ST64 (11/56, 16.1%) were the dominant sequence types isolated. C. sakazakii serotype O2 (34/56, 60.7%) was the primary serotype, along with ompA6 and rpoB1 as the main allele profiles, respectively. Antibiotic susceptibility testing indicated that all C. sakazakii isolates were susceptible to ampicillin-sulbactam, cefotaxime, ciprofloxacin, meropenem, tetracycline, piperacillin-tazobactam, and trimethoprim-sulfamethoxazole. The majority of C. sakazakii strains were susceptible to chloramphenicol and gentamicin (87.5 and 92.9%, respectively). In contrast, 55.4% C. sakazakii strains were resistant to cephalothin. In conclusion, this large-scale study revealed the prevalence and characteristics of C. sakazakii from PIF in Chinese retail markets, demonstrating a potential risk for neonates and infants, and provide a guided to effective control the contamination of C. sakazakii in production process. PMID:29089940
Terpolilli, Jason; Hill, Yvette; Tian, Rui; Howieson, John; Bräu, Lambert; Goodwin, Lynne; Han, James; Liolios, Konstantinos; Huntemann, Marcel; Pati, Amrita; Woyke, Tanja; Mavromatis, Konstantinos; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos; Reeve, Wayne
2013-12-20
Ensifer meliloti WSM1022 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Medicago. WSM1022 was isolated in 1987 from a nodule recovered from the roots of the annual Medicago orbicularis growing on the Cyclades Island of Naxos in Greece. WSM1022 is highly effective at fixing nitrogen with M. truncatula and other annual species such as M. tornata and M. littoralis and is also highly effective with the perennial M. sativa (alfalfa or lucerne). In common with other characterized E. meliloti strains, WSM1022 will nodulate but fixes poorly with M. polymorpha and M. sphaerocarpos and does not nodulate M. murex. Here we describe the features of E. meliloti WSM1022, together with genome sequence information and its annotation. The 6,649,661 bp high-quality-draft genome is arranged into 121 scaffolds of 125 contigs containing 6,323 protein-coding genes and 75 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.
High-throughput sequencing reveals unprecedented diversities of Aspergillus species in outdoor air.
Lee, S; An, C; Xu, S; Lee, S; Yamamoto, N
2016-09-01
This study used the Illumina MiSeq to analyse compositions and diversities of Aspergillus species in outdoor air. The seasonal air samplings were performed at two locations in Seoul, South Korea. The results showed the relative abundances of all Aspergillus species combined ranging from 0·20 to 18% and from 0·19 to 21% based on the number of the internal transcribed spacer 1 (ITS1) and β-tubulin (BenA) gene sequences respectively. Aspergillus fumigatus was the most dominant species with the mean relative abundances of 1·2 and 5·5% based on the number of the ITS1 and BenA sequences respectively. A total of 29 Aspergillus species were detected and identified down to the species rank, among which nine species were known opportunistic pathogens. Remarkably, eight of the nine pathogenic species were detected by either one of the two markers, suggesting the need of using multiple markers and/or primer pairs when the assessments are made based on the high-throughput sequencing. Due to diversity of species within the genus Aspergillus, the high-throughput sequencing was useful to characterize their compositions and diversities in outdoor air, which are thought to be difficult to be accurately characterized by conventional culture and/or Sanger sequencing-based techniques. Aspergillus is a diverse genus of fungi with more than 300 species reported in literature. Aspergillus is important since some species are known allergens and opportunistic human pathogens. Traditionally, growth-dependent methods have been used to detect Aspergillus species in air. However, these methods are limited in the number of isolates that can be analysed for their identities, resulting in inaccurate characterizations of Aspergillus diversities. This study used the high-throughput sequencing to explore Aspergillus diversities in outdoor, which are thought to be difficult to be accurately characterized by traditional growth-dependent techniques. © 2016 The Society for Applied Microbiology.
Amor, Nabil; Farjallah, Sarra; Salem, Mohamed; Lamine, Dia Mamadou; Merella, Paolo; Said, Khaled; Ben Slimane, Badreddine
2011-10-01
Fasciolosis caused by Fasciola hepatica and Fasciola gigantica (Platyhelminthes: Trematoda: Digenea) is considered the most important helminth infection of ruminants in tropical countries, causing considerable socioeconomic problems. From Africa, F. gigantica has been previously characterized from Burkina Faso, Senegal, Kenya, Zambia and Mali, while F. hepatica has been reported from Morocco and Tunisia, and both species have been observed from Ethiopia and Egypt on the basis of morphometric differences, while the use of molecular markers is necessary to distinguish exactly between species. Samples identified morphologically as F. gigantica (n=60) from sheep and cattle from different geographical localities of Mauritania were genetically characterized by sequences of the first (ITS-1), the 5.8S, and second (ITS-2) Internal Transcribed Spacers (ITS) of nuclear ribosomal DNA (rDNA) genes and the mitochondrial Cytochrome c Oxidase I (COI) gene. Comparison of the sequences of the Mauritanian samples with sequences of Fasciola spp. from GenBank confirmed that all samples belong to the species F. gigantica. The nucleotide sequencing of ITS rDNA of F. gigantica showed no nucleotide variation in the ITS-1, 5.8S, and ITS-2 rDNA sequences among all samples examined and those from Burkina Faso, Kenya, Egypt and Iran. The phylogenetic trees based on the ITS-1 and ITS-2 sequences showed a close relationship of the Mauritanian samples with isolates of F. gigantica from different localities of Africa and Asia. The COI genotypes of the Mauritanian specimens of F. gigantica had a high level of diversity, and they belonged to the F. gigantica phylogenically distinguishable clade. The present study is the first molecular characterization of F. gigantica in sheep and cattle from Mauritania, allowing a reliable approach for the genetic differentiation of Fasciola spp. and providing basis for further studies on liver flukes in the African countries. Copyright © 2011 Elsevier Inc. All rights reserved.
Extreme weather-year sequences have nonadditive effects on environmental nitrogen losses.
Iqbal, Javed; Necpalova, Magdalena; Archontoulis, Sotirios V; Anex, Robert P; Bourguignon, Marie; Herzmann, Daryl; Mitchell, David C; Sawyer, John E; Zhu, Qing; Castellano, Michael J
2018-01-01
The frequency and intensity of extreme weather years, characterized by abnormal precipitation and temperature, are increasing. In isolation, these years have disproportionately large effects on environmental N losses. However, the sequence of extreme weather years (e.g., wet-dry vs. dry-wet) may affect cumulative N losses. We calibrated and validated the DAYCENT ecosystem process model with a comprehensive set of biogeophysical measurements from a corn-soybean rotation managed at three N fertilizer inputs with and without a winter cover crop in Iowa, USA. Our objectives were to determine: (i) how 2-year sequences of extreme weather affect 2-year cumulative N losses across the crop rotation, and (ii) if N fertilizer management and the inclusion of a winter cover crop between corn and soybean mitigate the effect of extreme weather on N losses. Using historical weather (1951-2013), we created nine 2-year scenarios with all possible combinations of the driest ("dry"), wettest ("wet"), and average ("normal") weather years. We analyzed the effects of these scenarios following several consecutive years of relatively normal weather. Compared with the normal-normal 2-year weather scenario, 2-year extreme weather scenarios affected 2-year cumulative NO 3 - leaching (range: -93 to +290%) more than N 2 O emissions (range: -49 to +18%). The 2-year weather scenarios had nonadditive effects on N losses: compared with the normal-normal scenario, the dry-wet sequence decreased 2-year cumulative N 2 O emissions while the wet-dry sequence increased 2-year cumulative N 2 O emissions. Although dry weather decreased NO 3 - leaching and N 2 O emissions in isolation, 2-year cumulative N losses from the wet-dry scenario were greater than the dry-wet scenario. Cover crops reduced the effects of extreme weather on NO 3 - leaching but had a lesser effect on N 2 O emissions. As the frequency of extreme weather is expected to increase, these data suggest that the sequence of interannual weather patterns can be used to develop short-term mitigation strategies that manipulate N fertilizer and crop rotation to maximize crop N uptake while reducing environmental N losses. © 2017 John Wiley & Sons Ltd.
Baindara, Piyush; Chaudhry, Vasvi; Mittal, Garima; Liao, Luciano M.; Matos, Carolina O.; Khatri, Neeraj; Franco, Octavio L.; Patil, Prabhu B.
2015-01-01
Attempts to isolate novel antimicrobial peptides from microbial sources have been on the rise recently, despite their low efficacy in therapeutic applications. Here, we report identification and characterization of a new efficient antimicrobial peptide from a bacterial strain designated A3 that exhibited highest identity with Paenibacillus ehimensis. Upon purification and subsequent molecular characterization of the antimicrobial peptide, referred to as penisin, we found the peptide to be a bacteriocin-like peptide. Consistent with these results, RAST analysis of the entire genome sequence revealed the presence of a lantibiotic gene cluster containing genes necessary for synthesis and maturation of a lantibiotic. While circular dichroism and one-dimension nuclear magnetic resonance experiments confirmed a random coil structure of the peptide, similar to other known lantibiotics, additional biochemical evidence suggests posttranslational modifications of the core peptide yield six thioether cross-links. The deduced amino acid sequence of the putative biosynthetic gene penA showed approximately 74% similarity with elgicin A and 50% similarity with the lantibiotic paenicidin A. Penisin effectively killed methicillin-resistant Staphylococcus aureus (MRSA) and did not exhibit hemolysis activity. Unlike other lantibiotics, it effectively inhibited the growth of Gram-negative bacteria. Furthermore, 80 mg/kg of body weight of penisin significantly reduced bacterial burden in a mouse thigh infection model and protected BALB/c mice in a bacteremia model entailing infection with Staphylococcus aureus MTCC 96, suggesting that it could be a promising new antimicrobial peptide. PMID:26574006
Nagymáté, Zsuzsanna; Homonnay, Zalán G; Márialigeti, Károly
2016-01-01
Total microbial community structure, and particularly nitrifying communities inhabiting five different small drinking water networks characterized with different water physical and chemical parameters was investigated, using cultivation-based methods and sequence aided Terminal Restriction Fragment Length Polymorphism (T-RFLP) analysis. Ammonium ion, originated from well water, was only partially oxidized via nitrite to nitrate in the drinking water distribution systems. Nitrification occurred at low ammonium ion concentration (27-46μM), relatively high pH (7.6-8.2) and over a wide range of dissolved oxygen concentrations (0.4-9.0mgL(-1)). The nitrifying communities of the distribution systems were characterized by variable most probable numbers (2×10(2)-7.1×10(4) MPN L(-1)) and probably originated from the non-treated well water. The sequence aided T-RFLP method revealed that ammonia-oxidizing microorganisms and nitrite-oxidizing Bacteria (Nitrosomonas oligotropha, Nitrosopumilus maritimus, and Nitrospira moscoviensis, 'Candidatus Nitrospira defluvii') were present in different ratios in the total microbial communities of the distinct parts of the water network systems. The nitrate generated by nitrification was partly utilized by nitrate-reducing (and denitrifying) Bacteria, present in low MPN and characterized by sequence aided T-RFLP as Comamonas sp. and Pseudomonas spp. Different environmental factors, like pH, chemical oxygen demand, calculated total inorganic nitrogen content (moreover nitrite and nitrate concentration), temperature had important effect on the total bacterial and archaeal community distribution. Copyright © 2016 Elsevier GmbH. All rights reserved.
Peroxidase gene discovery from the horseradish transcriptome.
Näätsaari, Laura; Krainer, Florian W; Schubert, Michael; Glieder, Anton; Thallinger, Gerhard G
2014-03-24
Horseradish peroxidases (HRPs) from Armoracia rusticana have long been utilized as reporters in various diagnostic assays and histochemical stainings. Regardless of their increasing importance in the field of life sciences and suggested uses in medical applications, chemical synthesis and other industrial applications, the HRP isoenzymes, their substrate specificities and enzymatic properties are poorly characterized. Due to lacking sequence information of natural isoenzymes and the low levels of HRP expression in heterologous hosts, commercially available HRP is still extracted as a mixture of isoenzymes from the roots of A. rusticana. In this study, a normalized, size-selected A. rusticana transcriptome library was sequenced using 454 Titanium technology. The resulting reads were assembled into 14871 isotigs with an average length of 1133 bp. Sequence databases, ORF finding and ORF characterization were utilized to identify peroxidase genes from the 14871 isotigs generated by de novo assembly. The sequences were manually reviewed and verified with Sanger sequencing of PCR amplified genomic fragments, resulting in the discovery of 28 secretory peroxidases, 23 of them previously unknown. A total of 22 isoenzymes including allelic variants were successfully expressed in Pichia pastoris and showed peroxidase activity with at least one of the substrates tested, thus enabling their development into commercial pure isoenzymes. This study demonstrates that transcriptome sequencing combined with sequence motif search is a powerful concept for the discovery and quick supply of new enzymes and isoenzymes from any plant or other eukaryotic organisms. Identification and manual verification of the sequences of 28 HRP isoenzymes do not only contribute a set of peroxidases for industrial, biological and biomedical applications, but also provide valuable information on the reliability of the approach in identifying and characterizing a large group of isoenzymes.
Peroxidase gene discovery from the horseradish transcriptome
2014-01-01
Background Horseradish peroxidases (HRPs) from Armoracia rusticana have long been utilized as reporters in various diagnostic assays and histochemical stainings. Regardless of their increasing importance in the field of life sciences and suggested uses in medical applications, chemical synthesis and other industrial applications, the HRP isoenzymes, their substrate specificities and enzymatic properties are poorly characterized. Due to lacking sequence information of natural isoenzymes and the low levels of HRP expression in heterologous hosts, commercially available HRP is still extracted as a mixture of isoenzymes from the roots of A. rusticana. Results In this study, a normalized, size-selected A. rusticana transcriptome library was sequenced using 454 Titanium technology. The resulting reads were assembled into 14871 isotigs with an average length of 1133 bp. Sequence databases, ORF finding and ORF characterization were utilized to identify peroxidase genes from the 14871 isotigs generated by de novo assembly. The sequences were manually reviewed and verified with Sanger sequencing of PCR amplified genomic fragments, resulting in the discovery of 28 secretory peroxidases, 23 of them previously unknown. A total of 22 isoenzymes including allelic variants were successfully expressed in Pichia pastoris and showed peroxidase activity with at least one of the substrates tested, thus enabling their development into commercial pure isoenzymes. Conclusions This study demonstrates that transcriptome sequencing combined with sequence motif search is a powerful concept for the discovery and quick supply of new enzymes and isoenzymes from any plant or other eukaryotic organisms. Identification and manual verification of the sequences of 28 HRP isoenzymes do not only contribute a set of peroxidases for industrial, biological and biomedical applications, but also provide valuable information on the reliability of the approach in identifying and characterizing a large group of isoenzymes. PMID:24666710
Liang, Winnie S.; Aldrich, Jessica; Nasser, Sara; Kurdoglu, Ahmet; Phillips, Lori; Reiman, Rebecca; McDonald, Jacquelyn; Izatt, Tyler; Christoforides, Alexis; Baker, Angela; Craig, Christine; Egan, Jan B.; Chase, Dana M.; Farley, John H.; Bryce, Alan H.; Stewart, A. Keith; Borad, Mitesh J.; Carpten, John D.; Craig, David W.; Monk, Bradley J.
2014-01-01
Objective Integration of carcinogenic human papillomaviruses (HPVs) into the host genome is a significant tumorigenic factor in specific cancers including cervical carcinoma. Although major strides have been made with respect to HPV diagnosis and prevention, identification and development of efficacious treatments for cervical cancer patients remains a goal and thus requires additional detailed characterization of both somatic events and HPV integration. Given this need, the goal of this study was to use the next generation sequencing to simultaneously evaluate somatic alterations and expression changes in a patient’s cervical squamous carcinoma lesion metastatic to the lung and to detect and analyze HPV infection in the same sample. Materials and Methods We performed tumor and normal exome, tumor and normal shallow whole-genome sequencing, and RNA sequencing of the patient’s lung metastasis. Results We generated over 1.2 billion mapped reads and identified 130 somatic point mutations and indels, 21 genic translocations, 16 coding regions demonstrating copy number changes, and over 36 genes demonstrating altered expression in the tumor (corrected P < 0.05). Sequencing also revealed the HPV type 18 (HPV-18) integration in the metastasis. Using both DNA and RNA reads, we pinpointed 3 major events indicating HPV-18 integration into an intronic region of chromosome 6p25.1 in the patient’s tumor and validated these events with Sanger sequencing. This integration site has not been reported for HPV-18. Conclusions We demonstrate that DNA and RNA sequencing can be used to concurrently characterize somatic alterations and expression changes in a biopsy and delineate HPV integration at base resolution in cervical cancer. Further sequencing will allow us to better understand the molecular basis of cervical cancer pathogenesis. PMID:24418928
de Oliveira Ceita, Geruza; Vilas-Boas, Laurival Antônio; Castilho, Marcelo Santos; Carazzolle, Marcelo Falsarella; Pirovani, Carlos Priminho; Selbach-Schnadelbach, Alessandra; Gramacho, Karina Peres; Ramos, Pablo Ivan Pereira; Barbosa, Luciana Veiga; Pereira, Gonçalo Amarante Guimarães; Góes-Neto, Aristóteles
2014-10-01
The phytopathogenic fungus Moniliophthora perniciosa (Stahel) Aime & Philips-Mora, causal agent of witches' broom disease of cocoa, causes countless damage to cocoa production in Brazil. Molecular studies have attempted to identify genes that play important roles in fungal survival and virulence. In this study, sequences deposited in the M. perniciosa Genome Sequencing Project database were analyzed to identify potential biological targets. For the first time, the ergosterol biosynthetic pathway in M. perniciosa was studied and the lanosterol 14α-demethylase gene (ERG11) that encodes the main enzyme of this pathway and is a target for fungicides was cloned, characterized molecularly and its phylogeny analyzed. ERG11 genomic DNA and cDNA were characterized and sequence analysis of the ERG11 protein identified highly conserved domains typical of this enzyme, such as SRS1, SRS4, EXXR and the heme-binding region (HBR). Comparison of the protein sequences and phylogenetic analysis revealed that the M. perniciosa enzyme was most closely related to that of Coprinopsis cinerea.
de Oliveira Ceita, Geruza; Vilas-Boas, Laurival Antônio; Castilho, Marcelo Santos; Carazzolle, Marcelo Falsarella; Pirovani, Carlos Priminho; Selbach-Schnadelbach, Alessandra; Gramacho, Karina Peres; Ramos, Pablo Ivan Pereira; Barbosa, Luciana Veiga; Pereira, Gonçalo Amarante Guimarães; Góes-Neto, Aristóteles
2014-01-01
The phytopathogenic fungus Moniliophthora perniciosa (Stahel) Aime & Philips-Mora, causal agent of witches’ broom disease of cocoa, causes countless damage to cocoa production in Brazil. Molecular studies have attempted to identify genes that play important roles in fungal survival and virulence. In this study, sequences deposited in the M. perniciosa Genome Sequencing Project database were analyzed to identify potential biological targets. For the first time, the ergosterol biosynthetic pathway in M. perniciosa was studied and the lanosterol 14α-demethylase gene (ERG11) that encodes the main enzyme of this pathway and is a target for fungicides was cloned, characterized molecularly and its phylogeny analyzed. ERG11 genomic DNA and cDNA were characterized and sequence analysis of the ERG11 protein identified highly conserved domains typical of this enzyme, such as SRS1, SRS4, EXXR and the heme-binding region (HBR). Comparison of the protein sequences and phylogenetic analysis revealed that the M. perniciosa enzyme was most closely related to that of Coprinopsis cinerea. PMID:25505843
Takeo, Toshinori; Tanaka, Tetsuya; Matsubayashi, Makoto; Maeda, Hiroki; Kusakisako, Kodai; Matsui, Toshihiro; Mochizuki, Masami; Matsuo, Tomohide
2014-08-01
Previously, we characterized an undocumented strain of Eimeria krijgsmanni by morphological and biological features. Here, we present a detailed molecular phylogenetic analysis of this organism. Namely, 18S ribosomal RNA gene (rDNA) sequences of E. krijgsmanni were analyzed to incorporate this species into a comprehensive Eimeria phylogeny. As a result, partial 18S rDNA sequence from E. krijgsmanni was successfully determined, and two different types, Type A and Type B, that differed by 1 base pair were identified. E. krijgsmanni was originally isolated from a single oocyst, and thus the result show that the two types might have allelic sequence heterogeneity in the 18S rDNA. Based on phylogenetic analyses, the two types of E. krijgsmanni 18S rDNA formed one of two clades among murine Eimeria spp.; these Eimeria clades reflected morphological similarity among the Eimeria spp. This is the third molecular phylogenetic characterization of a murine Eimeria spp. in addition to E. falciformis and E. papillata. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
A Survey of Protein Structures from Archaeal Viruses
Dellas, Nikki; Lawrence, C. Martin; Young, Mark J.
2013-01-01
Viruses that infect the third domain of life, Archaea, are a newly emerging field of interest. To date, all characterized archaeal viruses infect archaea that thrive in extreme conditions, such as halophilic, hyperthermophilic, and methanogenic environments. Viruses in general, especially those replicating in extreme environments, contain highly mosaic genomes with open reading frames (ORFs) whose sequences are often dissimilar to all other known ORFs. It has been estimated that approximately 85% of virally encoded ORFs do not match known sequences in the nucleic acid databases, and this percentage is even higher for archaeal viruses (typically 90%–100%). This statistic suggests that either virus genomes represent a larger segment of sequence space and/or that viruses encode genes of novel fold and/or function. Because the overall three-dimensional fold of a protein evolves more slowly than its sequence, efforts have been geared toward structural characterization of proteins encoded by archaeal viruses in order to gain insight into their potential functions. In this short review, we provide multiple examples where structural characterization of archaeal viral proteins has indeed provided significant functional and evolutionary insight. PMID:25371334
Application of single-cell sequencing in human cancer.
Rantalainen, Mattias
2017-11-02
Precision medicine is emerging as a cornerstone of future cancer care with the objective of providing targeted therapies based on the molecular phenotype of each individual patient. Traditional bulk-level molecular phenotyping of tumours leads to significant information loss, as the molecular profile represents an average phenotype over large numbers of cells, while cancer is a disease with inherent intra-tumour heterogeneity at the cellular level caused by several factors, including clonal evolution, tissue hierarchies, rare cells and dynamic cell states. Single-cell sequencing provides means to characterize heterogeneity in a large population of cells and opens up opportunity to determine key molecular properties that influence clinical outcomes, including prognosis and probability of treatment response. Single-cell sequencing methods are now reliable enough to be used in many research laboratories, and we are starting to see applications of these technologies for characterization of human primary cancer cells. In this review, we provide an overview of studies that have applied single-cell sequencing to characterize human cancers at the single-cell level, and we discuss some of the current challenges in the field. © The Author 2017. Published by Oxford University Press.
Method and apparatus for characterizing reflected ultrasonic pulses
NASA Technical Reports Server (NTRS)
Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor)
1991-01-01
The invention is a method of and apparatus for characterizing the amplitudes of a sequence of reflected pulses R1, R2, and R3 by converting them into corresponding electric signals E1, E2, and E3 to substantially the same value during each sequence thereby restoring the reflected pulses R1, R2, and R3 to their initial reflection values by timing means, an exponential generator, and a time gain compensator. Envelope and baseline reject circuits permit the display and accurate location of the time spaced sequence of electric signals having substantially the same amplitude on a measurement scale on a suitable video display or oscilloscope.
Characterization of minimal sequences associated with self-similar interval exchange maps
NASA Astrophysics Data System (ADS)
Cobo, Milton; Gutiérrez-Romo, Rodolfo; Maass, Alejandro
2018-04-01
The construction of affine interval exchange maps (IEMs) with wandering intervals that are semi-conjugate to a given self-similar IEM is strongly related to the existence of the so-called minimal sequences associated with local potentials, which are certain elements of the substitution subshift arising from the given IEM. In this article, under the condition called unique representation property, we characterize such minimal sequences for potentials coming from non-real eigenvalues of the substitution matrix. We also give conditions on the slopes of the affine extensions of a self-similar IEM that determine whether it exhibits a wandering interval or not.
Characterization of rabies virus from a human case in Nepal.
Pant, G R; Horton, D L; Dahal, M; Rai, J N; Ide, S; Leech, S; Marston, D A; McElhinney, L M; Fooks, A R
2011-04-01
Rabies is endemic throughout most of Asia, with the majority of human cases transmitted by domestic dogs (Canis familiaris). Here, we report a case of rabies in a 12-year-old girl in the Lalitpur district of Nepal that might have been prevented by better public awareness and timely post-exposure prophylaxis. Molecular characterization of the virus showed 100% identity over a partial nucleoprotein gene sequence to previous isolates from Nepal belonging to the 'arctic-like' lineage of rabies virus. Sequence analysis of both partial nucleoprotein and glycoprotein genes showed differences in consensus sequence after passage in vitro but not after passage in vivo.
Caboche, Ségolène; Even, Gaël; Loywick, Alexandre; Audebert, Christophe; Hot, David
2017-12-19
The increase in available sequence data has advanced the field of microbiology; however, making sense of these data without bioinformatics skills is still problematic. We describe MICRA, an automatic pipeline, available as a web interface, for microbial identification and characterization through reads analysis. MICRA uses iterative mapping against reference genomes to identify genes and variations. Additional modules allow prediction of antibiotic susceptibility and resistance and comparing the results of several samples. MICRA is fast, producing few false-positive annotations and variant calls compared to current methods, making it a tool of great interest for fully exploiting sequencing data.
A Statistical Guide to the Design of Deep Mutational Scanning Experiments.
Matuszewski, Sebastian; Hildebrandt, Marcel E; Ghenu, Ana-Hermina; Jensen, Jeffrey D; Bank, Claudia
2016-09-01
The characterization of the distribution of mutational effects is a key goal in evolutionary biology. Recently developed deep-sequencing approaches allow for accurate and simultaneous estimation of the fitness effects of hundreds of engineered mutations by monitoring their relative abundance across time points in a single bulk competition. Naturally, the achievable resolution of the estimated fitness effects depends on the specific experimental setup, the organism and type of mutations studied, and the sequencing technology utilized, among other factors. By means of analytical approximations and simulations, we provide guidelines for optimizing time-sampled deep-sequencing bulk competition experiments, focusing on the number of mutants, the sequencing depth, and the number of sampled time points. Our analytical results show that sampling more time points together with extending the duration of the experiment improves the achievable precision disproportionately compared with increasing the sequencing depth or reducing the number of competing mutants. Even if the duration of the experiment is fixed, sampling more time points and clustering these at the beginning and the end of the experiment increase experimental power and allow for efficient and precise assessment of the entire range of selection coefficients. Finally, we provide a formula for calculating the 95%-confidence interval for the measurement error estimate, which we implement as an interactive web tool. This allows for quantification of the maximum expected a priori precision of the experimental setup, as well as for a statistical threshold for determining deviations from neutrality for specific selection coefficient estimates. Copyright © 2016 by the Genetics Society of America.
Mulkern, Robert V; Balasubramanian, Mukund; Orbach, Darren B; Mitsouras, Dimitrios; Haker, Steven J
2013-04-01
Among the multiple sequences available for functional magnetic resonance imaging (fMRI), the Steady State Free Precession (SSFP) sequence offers the highest signal-to-noise ratio (SNR) per unit time as well as distortion free images not feasible with the more commonly employed single-shot echo planar imaging (EPI) approaches. Signal changes occurring with activation in SSFP sequences reflect underlying changes in both irreversible and reversible transverse relaxation processes. The latter are characterized by changes in the central frequencies and widths of the inherent frequency distribution present within a voxel. In this work, the well-known frequency response of the SSFP signal intensity is generalized to include the widths and central frequencies of some common frequency distributions on SSFP signal intensities. The approach, using a previously unnoted series expansion, allows for a separation of reversible from irreversible transverse relaxation effects on SSFP signal intensity changes. The formalism described here should prove useful for identifying and modeling mechanisms associated with SSFP signal changes accompanying neural activation. Copyright © 2013 Elsevier Inc. All rights reserved.
Jeong, Hae Min; Kim, Ryong Nam; Kwon, Mi Jeong; Oh, Ensel; Han, Jinil; Lee, Se Kyung; Choi, Jong-Sun; Park, Sara; Nam, Seok Jin; Gong, Gyung Yup; Nam, Jin Wu; Choi, Doo Ho; Lee, Hannah; Nam, Byung-Ho; Choi, Yoon-La; Shin, Young Kee
2017-01-01
Triple-negative breast cancer is characterized by the absence of estrogen and progesterone receptors and human epidermal growth factor receptor 2, and is associated with a poorer outcome than other subtypes of breast cancer. Moreover, there are no accurate prognostic genes or effective therapeutic targets, thereby necessitating continued intensive investigation. This study analyzed the genetic mutation landscape in 70 patients with triple-negative breast cancer by targeted exome sequencing of tumor and matched normal samples. Sequencing showed that more than 50% of these patients had deleterious mutations and homozygous deletions of DNA repair genes, such as ATM, BRCA1, BRCA2, WRN, and CHEK2. These findings suggested that a large number of patients with triple-negative breast cancer have impaired DNA repair function and that therefore a poly ADP-ribose polymerase inhibitor may be an effective drug in the treatment of this disease. Notably, homozygous deletion of three genes, EPHA5, MITF, and ACSL3, was significantly associated with an increased risk of recurrence or distant metastasis in adjuvant chemotherapy-treated patients. PMID:28977883
Martins, C; Galetti, P M
2001-10-01
To address understanding the organization of the 5S rRNA multigene family in the fish genome, the nucleotide sequence and organization array of 5S rDNA were investigated in the genus Leporinus, a representative freshwater fish group of South American fauna. PCR, subgenomic library screening, genomic blotting, fluorescence in situ hybridization, and DNA sequencing were employed in this study. Two arrays of 5S rDNA were identified for all species investigated, one consisting of monomeric repeat units of around 200 bp and another one with monomers of 900 bp. These 5S rDNA arrays were characterized by distinct NTS sequences (designated NTS-I and NTS-II for the 200- and 900-bp monomers, respectively); however, their coding sequences were nearly identical. The 5S rRNA genes were clustered in two chromosome loci, a major one corresponding to the NTS-I sites and a minor one corresponding to the NTS-II sites. The NTS-I sequence was variable among Leporinus spp., whereas the NTS-II was conserved among them and even in the related genus Schizodon. The distinct 5S rDNA arrays might characterize two 5S rRNA gene subfamilies that have been evolving independently in the genome.
Cytogenetic Diversity of Simple Sequences Repeats in Morphotypes of Brassica rapa ssp. chinensis
Zheng, Jin-shuang; Sun, Cheng-zhen; Zhang, Shu-ning; Hou, Xi-lin; Bonnema, Guusje
2016-01-01
A significant fraction of the nuclear DNA of all eukaryotes is comprised of simple sequence repeats (SSRs). Although these sequences are widely used for studying genetic variation, linkage mapping and evolution, little attention had been paid to the chromosomal distribution and cytogenetic diversity of these sequences. In this paper, we report the distribution characterization of mono-, di-, and tri-nucleotide SSRs in Brassica rapa ssp. chinensis. Fluorescence in situ hybridization was used to characterize the cytogenetic diversity of SSRs among morphotypes of B. rapa ssp. chinensis. The proportion of different SSR motifs varied among morphotypes of B. rapa ssp. chinensis, with tri-nucleotide SSRs being more prevalent in the genome of B. rapa ssp. chinensis. We determined the chromosomal locations of mono-, di-, and tri-nucleotide repeat loci. The results showed that the chromosomal distribution of SSRs in the different morphotypes is non-random and motif-dependent, and allowed us to characterize the relative variability in terms of SSR numbers and similar chromosomal distributions in centromeric/peri-centromeric heterochromatin. The differences between SSR repeats with respect to abundance and distribution indicate that SSRs are a driving force in the genomic evolution of B. rapa species. Our results provide a comprehensive view of the SSR sequence distribution and evolution for comparison among morphotypes B. rapa ssp. chinensis. PMID:27507974
Cytogenetic Diversity of Simple Sequences Repeats in Morphotypes of Brassica rapa ssp. chinensis.
Zheng, Jin-Shuang; Sun, Cheng-Zhen; Zhang, Shu-Ning; Hou, Xi-Lin; Bonnema, Guusje
2016-01-01
A significant fraction of the nuclear DNA of all eukaryotes is comprised of simple sequence repeats (SSRs). Although these sequences are widely used for studying genetic variation, linkage mapping and evolution, little attention had been paid to the chromosomal distribution and cytogenetic diversity of these sequences. In this paper, we report the distribution characterization of mono-, di-, and tri-nucleotide SSRs in Brassica rapa ssp. chinensis. Fluorescence in situ hybridization was used to characterize the cytogenetic diversity of SSRs among morphotypes of B. rapa ssp. chinensis. The proportion of different SSR motifs varied among morphotypes of B. rapa ssp. chinensis, with tri-nucleotide SSRs being more prevalent in the genome of B. rapa ssp. chinensis. We determined the chromosomal locations of mono-, di-, and tri-nucleotide repeat loci. The results showed that the chromosomal distribution of SSRs in the different morphotypes is non-random and motif-dependent, and allowed us to characterize the relative variability in terms of SSR numbers and similar chromosomal distributions in centromeric/peri-centromeric heterochromatin. The differences between SSR repeats with respect to abundance and distribution indicate that SSRs are a driving force in the genomic evolution of B. rapa species. Our results provide a comprehensive view of the SSR sequence distribution and evolution for comparison among morphotypes B. rapa ssp. chinensis.
Krzywinski, Jaroslaw; Nusskern, Deborah R; Kern, Marcia K; Besansky, Nora J
2004-01-01
The karyotype of the African malaria mosquito Anopheles gambiae contains two pairs of autosomes and a pair of sex chromosomes. The Y chromosome, constituting approximately 10% of the genome, remains virtually unexplored, despite the recent completion of the A. gambiae genome project. Here we report the identification and characterization of Y chromosome sequences of total length approaching 150 kb. We developed 11 Y-specific PCR markers that consistently yielded male-specific products in specimens from both laboratory colony and natural populations. The markers are characterized by low sequence polymorphism in samples collected across Africa and by presence in more than one copy on the Y. Screening of the A. gambiae BAC library using these markers allowed detection of 90 Y-linked BAC clones. Analysis of the BAC sequences and other Y-derived fragments showed massive accumulation of a few transposable elements. Nevertheless, more complex sequences are apparently present on the Y; these include portions of an approximately 48-kb-long unmapped AAAB01008227 scaffold from the whole genome shotgun assembly. Anopheles Y appears not to harbor any of the genes identified in Drosophila Y. However, experiments suggest that one of the ORFs from the AAAB01008227 scaffold represents a fragment of a gene with male-specific expression. PMID:15082548
Characterization of species-specific repeated DNA sequences from B. nigra.
Gupta, V; Lakshmisita, G; Shaila, M S; Jagannathan, V; Lakshmikumaran, M S
1992-07-01
The construction and characterization of two genome-specific recombinant DNA clones from B. nigra are described. Southern analysis showed that the two clones belong to a dispersed repeat family. They differ from each other in their length, distribution and sequence, though the average GC content is nearly the same (45%). These B genome-specific repeats have been used to analyse the phylogenetic relationships between cultivated and wild species of the family Brassicaceae.
Alu repeat discovery and characterization within human genomes
Hormozdiari, Fereydoun; Alkan, Can; Ventura, Mario; Hajirasouliha, Iman; Malig, Maika; Hach, Faraz; Yorukoglu, Deniz; Dao, Phuong; Bakhshi, Marzieh; Sahinalp, S. Cenk; Eichler, Evan E.
2011-01-01
Human genomes are now being rapidly sequenced, but not all forms of genetic variation are routinely characterized. In this study, we focus on Alu retrotransposition events and seek to characterize differences in the pattern of mobile insertion between individuals based on the analysis of eight human genomes sequenced using next-generation sequencing. Applying a rapid read-pair analysis algorithm, we discover 4342 Alu insertions not found in the human reference genome and show that 98% of a selected subset (63/64) experimentally validate. Of these new insertions, 89% correspond to AluY elements, suggesting that they arose by retrotransposition. Eighty percent of the Alu insertions have not been previously reported and more novel events were detected in Africans when compared with non-African samples (76% vs. 69%). Using these data, we develop an experimental and computational screen to identify ancestry informative Alu retrotransposition events among different human populations. PMID:21131385
Danielsson, Frida; Wiking, Mikaela; Mahdessian, Diana; Skogs, Marie; Ait Blal, Hammou; Hjelmare, Martin; Stadler, Charlotte; Uhlén, Mathias; Lundberg, Emma
2013-01-04
One of the major challenges of a chromosome-centric proteome project is to explore in a systematic manner the potential proteins identified from the chromosomal genome sequence, but not yet characterized on a protein level. Here, we describe the use of RNA deep sequencing to screen human cell lines for RNA profiles and to use this information to select cell lines suitable for characterization of the corresponding gene product. In this manner, the subcellular localization of proteins can be analyzed systematically using antibody-based confocal microscopy. We demonstrate the usefulness of selecting cell lines with high expression levels of RNA transcripts to increase the likelihood of high quality immunofluorescence staining and subsequent successful subcellular localization of the corresponding protein. The results show a path to combine transcriptomics with affinity proteomics to characterize the proteins in a gene- or chromosome-centric manner.
Petroli, César D.; Sansaloni, Carolina P.; Carling, Jason; Steane, Dorothy A.; Vaillancourt, René E.; Myburg, Alexander A.; da Silva, Orzenil Bonfim; Pappas, Georgios Joannis; Kilian, Andrzej; Grattapaglia, Dario
2012-01-01
Diversity Arrays Technology (DArT) provides a robust, high throughput, cost-effective method to query thousands of sequence polymorphisms in a single assay. Despite the extensive use of this genotyping platform for numerous plant species, little is known regarding the sequence attributes and genome-wide distribution of DArT markers. We investigated the genomic properties of the 7,680 DArT marker probes of a Eucalyptus array, by sequencing them, constructing a high density linkage map and carrying out detailed physical mapping analyses to the Eucalyptus grandis reference genome. A consensus linkage map with 2,274 DArT markers anchored to 210 microsatellites and a framework map, with improved support for ordering, displayed extensive collinearity with the genome sequence. Only 1.4 Mbp of the 75 Mbp of still unplaced scaffold sequence was captured by 45 linkage mapped but physically unaligned markers to the 11 main Eucalyptus pseudochromosomes, providing compelling evidence for the quality and completeness of the current Eucalyptus genome assembly. A highly significant correspondence was found between the locations of DArT markers and predicted gene models, while most of the 89 DArT probes unaligned to the genome correspond to sequences likely absent in E. grandis, consistent with the pan-genomic feature of this multi-Eucalyptus species DArT array. These comprehensive linkage-to-physical mapping analyses provide novel data regarding the genomic attributes of DArT markers in plant genomes in general and for Eucalyptus in particular. DArT markers preferentially target the gene space and display a largely homogeneous distribution across the genome, thereby providing superb coverage for mapping and genome-wide applications in breeding and diversity studies. Data reported on these ubiquitous properties of DArT markers will be particularly valuable to researchers working on less-studied crop species who already count on DArT genotyping arrays but for which no reference genome is yet available to allow such detailed characterization. PMID:22984541
A wide extent of inter-strain diversity in virulent and vaccine strains of alphaherpesviruses.
Szpara, Moriah L; Tafuri, Yolanda R; Parsons, Lance; Shamim, S Rafi; Verstrepen, Kevin J; Legendre, Matthieu; Enquist, L W
2011-10-01
Alphaherpesviruses are widespread in the human population, and include herpes simplex virus 1 (HSV-1) and 2, and varicella zoster virus (VZV). These viral pathogens cause epithelial lesions, and then infect the nervous system to cause lifelong latency, reactivation, and spread. A related veterinary herpesvirus, pseudorabies (PRV), causes similar disease in livestock that result in significant economic losses. Vaccines developed for VZV and PRV serve as useful models for the development of an HSV-1 vaccine. We present full genome sequence comparisons of the PRV vaccine strain Bartha, and two virulent PRV isolates, Kaplan and Becker. These genome sequences were determined by high-throughput sequencing and assembly, and present new insights into the attenuation of a mammalian alphaherpesvirus vaccine strain. We find many previously unknown coding differences between PRV Bartha and the virulent strains, including changes to the fusion proteins gH and gB, and over forty other viral proteins. Inter-strain variation in PRV protein sequences is much closer to levels previously observed for HSV-1 than for the highly stable VZV proteome. Almost 20% of the PRV genome contains tandem short sequence repeats (SSRs), a class of nucleic acids motifs whose length-variation has been associated with changes in DNA binding site efficiency, transcriptional regulation, and protein interactions. We find SSRs throughout the herpesvirus family, and provide the first global characterization of SSRs in viruses, both within and between strains. We find SSR length variation between different isolates of PRV and HSV-1, which may provide a new mechanism for phenotypic variation between strains. Finally, we detected a small number of polymorphic bases within each plaque-purified PRV strain, and we characterize the effect of passage and plaque-purification on these polymorphisms. These data add to growing evidence that even plaque-purified stocks of stable DNA viruses exhibit limited sequence heterogeneity, which likely seeds future strain evolution.
Molecular characterization of freshwater snails in the genus Bulinus: a role for barcodes?
Kane, Richard A; Stothard, J Russell; Emery, Aidan M; Rollinson, David
2008-01-01
Background Reliable and consistent methods are required for the identification and classification of freshwater snails belonging to the genus Bulinus (Gastropoda, Planorbidae) which act as intermediate hosts for schistosomes of both medical and veterinary importance. The current project worked towards two main objectives, the development of a cost effective, simple screening method for the routine identification of Bulinus isolates and the use of resultant sequencing data to produce a model of relationships within the group. Results Phylogenetic analysis of the DNA sequence for a large section (1009 bp) of the mitochondrial gene cytochrome oxidase subunit 1 (cox1) for isolates of Bulinus demonstrated superior resolution over that employing the second internal transcribed spacer (its2) of the ribosomal gene complex. Removal of transitional substitutions within cox1 because of saturation effects still allowed identification of snails at species group level. Within groups, some species could be identified with ease but there were regions where the high degree of molecular diversity meant that clear identification of species was problematic, this was particularly so within the B. africanus group. Conclusion The sequence diversity within cox1 is such that a barcoding approach may offer the best method for characterization of populations and species within the genus from different geographical locations. The study has confirmed the definition of some accepted species within the species groups but additionally has revealed some unrecognized isolates which underlines the need to use molecular markers in addition to more traditional methods of identification. A barcoding approach based on part of the cox1 gene as defined by the Folmer primers is proposed. PMID:18544153
Morabito, Marco; Crisci, Alfonso; Grifoni, Daniele; Orlandini, Simone; Cecchi, Lorenzo; Bacci, Laura; Modesti, Pietro Amedeo; Gensini, Gian Franco; Maracchi, Giampiero
2006-09-01
The aim of this study was to evaluate the relationship between the risk of hospital admission for myocardial infarction (MI) and the daily weather conditions during the winters of 1998-2003, according to an air-mass-based synoptic climatological approach. The effects of time lag and 2-day sequences with specific air mass types were also investigated. Studies concerning the relationship between atmospheric conditions and human health need to take into consideration simultaneous effects of many weather variables. At the moment few studies have surveyed these effects on hospitalizations for MI. Analyses were concentrated on winter, when the maximum peak of hospitalization occurred. An objective daily air mass classification by means of statistical analyses based on ground meteorological data was carried out. A comparison between air mass classification and hospital admissions was made by the calculation of a MI admission index, and to detect significant relationships the Mann-Whitney U test, the analysis of variance, and the Bonferroni test were used. Significant increases in hospital admissions for MI were evident 24h after a day characterized by an anticyclonic continental air mass and 6 days after a day characterized by a cyclonic air mass. Increased risk of hospitalization was found even when specific 2-day air mass sequences occurred. These results represent an important step in identifying reliable linkages between weather and health.
USDA-ARS?s Scientific Manuscript database
The ARS Culture Collection (NRRL) currently contains 7569 strains within the family Streptomycetaceae but 4368 of them have not been characterized to the species level. A gene sequence database using the Bacterial Isolate Genomic Sequence Database package (BIGSdb) (Jolley & Maiden, 2010) is availabl...
The complete nucleotide sequence and genomic characterization of tropical soda apple mosaic virus
USDA-ARS?s Scientific Manuscript database
Tropical soda apple mosaic virus (TSAMV) was first identified in tropical soda apple (Solanum viarum), a noxious weed, in Florida in 2002. This report provides the first full genome sequence of TSAMV. The full genome sequence of this virus will enable research scientists to develop additional spec...
USDA-ARS?s Scientific Manuscript database
Simple sequence repeats (SSR) markers were developed from a small insert genomic library for Bipolaris sorokiniana, a mitosporic fungal pathogen that causes spot blotch and root rot in switchgrass. About 59% of sequenced clones (n=384) harbored various SSR motifs. After eliminating the redundant seq...
3′ terminal diversity of MRP RNA and other human noncoding RNAs revealed by deep sequencing
2013-01-01
Background Post-transcriptional 3′ end processing is a key component of RNA regulation. The abundant and essential RNA subunit of RNase MRP has been proposed to function in three distinct cellular compartments and therefore may utilize this mode of regulation. Here we employ 3′ RACE coupled with high-throughput sequencing to characterize the 3′ terminal sequences of human MRP RNA and other noncoding RNAs that form RNP complexes. Results The 3′ terminal sequence of MRP RNA from HEK293T cells has a distinctive distribution of genomically encoded termini (including an assortment of U residues) with a portion of these selectively tagged by oligo(A) tails. This profile contrasts with the relatively homogenous 3′ terminus of an in vitro transcribed MRP RNA control and the differing 3′ terminal profiles of U3 snoRNA, RNase P RNA, and telomerase RNA (hTR). Conclusions 3′ RACE coupled with deep sequencing provides a valuable framework for the functional characterization of 3′ terminal sequences of noncoding RNAs. PMID:24053768
Barua, Anita; Kumar, Ashu; Thavaselvam, Duraipandian; Mangalgi, Smita; Prakash, Archana; Tiwari, Sapana; Arora, Sonia; Sathyaseelan, Kannusamy
2016-01-01
Background & objectives: Brucellosis is endemic in the southern part of India. A combination of biochemical, serological and molecular methods is required for identification and biotyping of Brucella. The present study describes the isolation and biochemical, molecular characterization of Brucella melitensis from patients suspected for human brucellosis. Methods: The blood samples were collected from febrile patients suspected to have brucellosis. A total of 18 isolates were obtained from 102 blood samples subjected to culture. The characterization of these 18 isolates was done by growth on Brucella specific medium, biochemical reactions, CO2 requirement, H2S production, agglutination with A and M mono-specific antiserum, dye sensitivity to basic fuchsin and thionin. Further, molecular characterization of the isolates was done by amplification of B. melitensis species specific IS711 repetitive DNA fragment and 16S (rRNA) sequence analysis. PCR-restriction fragment length polymorphism (RFLP) analysis of omp2 locus and IS711 gene was also done for molecular characterization. Results: All 102 suspected samples were subjected to bacteria isolation and of these, 18 isolates could be recovered on blood culture. The biochemical, PCR and PCR-RFLP and 16s rRNA sequencing revealed that all isolates were of B. melitensis and matched exactly with reference strain B. melitensis 16M. Interpretation & conclusions: The present study showed an overall isolation rate of 17.64 per cent for B. melitensis. There is a need to establish facilities for isolation and characterization of Brucella species for effective clinical management of the disease among patients as well as surveillance and control of infection in domestic animals. Further studies are needed from different geographical areas of the country with different level of endemicity to plan and execute control strategies against human brucellosis. PMID:27488010
Venet, Sophie; Ravn, Ulla; Buatois, Vanessa; Gueneau, Franck; Calloud, Sébastien; Kosco-Vilbois, Marie; Fischer, Nicolas
2012-01-01
Antibody repertoires are characterized by diversity as they vary not only amongst individuals and post antigen exposure but also differ significantly between vertebrate species. Such plasticity can be exploited to generate human antibody libraries featuring hallmarks of these diverse repertoires. In this study, the focus was to capture CDRH3 sequences, as this region generally accounts for most of the interaction energy with antigen. Sequences from human as well as non-human sources were successfully integrated into human antibody libraries. Next generation sequencing of these libraries proved that the CDRH3 lengths and amino acid composition corresponded to the species of origin. Specific CDRH3 sequences, biased towards the recognition of a model antigen either by immunizing mice or by selecting with phage display, were then integrated into another set of libraries. From these antigen biased libraries, highly potent antibodies were more frequently isolated, indicating that the characteristics of an immune repertoire is transferrable via CDRH3 sequences into a human antibody library. Taken together, these data demonstrate that the properties of naturally or experimentally biased repertoires can be effectively harnessed for the generation of targeted human antibody libraries, substantially increasing the probability of isolating antibodies suitable for therapeutic and diagnostic applications. PMID:22937053
Demnerová, Katerina; Mackova, Martina; Spevákova, Veronika; Beranova, Katarina; Kochánková, Lucie; Lovecká, Petra; Ryslavá, Edita; Macek, Tomas
2005-09-01
As part of the EU project MULTIBARRIERS, six new endogenous aerobic bacterial isolates able to grow in the presence of BTmX (benzene, toluene, m-xylene) were characterized with respect to their growth specificities. Preliminary analysis included restriction fragment length polymorphism profiles and 16S rDNA sequencing. The diversity of these strains was confirmed by denaturing gradient gel electrophoresis. Additional aerobic bacterial strains were isolated from the rhizospheres of plants grown in polychlorinated biphenyl (PCB)-contaminated soils. Pot experiments were designed to show the beneficial effect of plants on the bacterial degradation of PCBs. The effect of PCB removal from soil was evaluated and bacteria isolated from three different plant species were examined for the presence of the bph operon.
Kim, Dayeong; Soundrarajan, Nagasundarapandian; Lee, Juyeon; Cho, Hye-Sun; Choi, Minkyeung; Cha, Se-Yeoun; Ahn, Byeongyong; Jeon, Hyoim; Le, Minh Thong; Song, Hyuk; Kim, Jin-Hoi; Park, Chankyu
2017-09-01
In this study, we sought to identify novel antimicrobial peptides (AMPs) in Python bivittatus through bioinformatic analyses of publicly available genome information and experimental validation. In our analysis of the python genome, we identified 29 AMP-related candidate sequences. Of these, we selected five cathelicidin-like sequences and subjected them to further in silico analyses. The results showed that these sequences likely have antimicrobial activity. The sequences were named Pb-CATH1 to Pb-CATH5 according to their sequence similarity to previously reported snake cathelicidins. We predicted their molecular structure and then chemically synthesized the mature peptide for three putative cathelicidins and subjected them to biological activity tests. Interestingly, all three peptides showed potent antimicrobial effects against Gram-negative bacteria but very weak activity against Gram-positive bacteria. Remarkably, ΔPb-CATH4 showed potent activity against antibiotic-resistant clinical isolates and also was observed to possess very low hemolytic activity and cytotoxicity. ΔPb-CATH4 also showed considerable serum stability. Electron microscopic analysis indicated that ΔPb-CATH4 exerts its effects via toroidal pore preformation. Structural comparison of the cathelicidins identified in this study to previously reported ones revealed that these Pb-CATHs are representatives of a new group of reptilian cathelicidins lacking the acidic connecting domain. Furthermore, Pb-CATH4 possesses a completely different mature peptide sequence from those of previously described reptilian cathelicidins. These new AMPs may be candidates for the development of alternatives to or complements of antibiotics to control multidrug-resistant pathogens. Copyright © 2017 American Society for Microbiology.
Kim, Dayeong; Soundrarajan, Nagasundarapandian; Lee, Juyeon; Cho, Hye-sun; Choi, Minkyeung; Cha, Se-Yeoun; Ahn, Byeongyong; Jeon, Hyoim; Le, Minh Thong; Song, Hyuk; Kim, Jin-Hoi
2017-01-01
ABSTRACT In this study, we sought to identify novel antimicrobial peptides (AMPs) in Python bivittatus through bioinformatic analyses of publicly available genome information and experimental validation. In our analysis of the python genome, we identified 29 AMP-related candidate sequences. Of these, we selected five cathelicidin-like sequences and subjected them to further in silico analyses. The results showed that these sequences likely have antimicrobial activity. The sequences were named Pb-CATH1 to Pb-CATH5 according to their sequence similarity to previously reported snake cathelicidins. We predicted their molecular structure and then chemically synthesized the mature peptide for three putative cathelicidins and subjected them to biological activity tests. Interestingly, all three peptides showed potent antimicrobial effects against Gram-negative bacteria but very weak activity against Gram-positive bacteria. Remarkably, ΔPb-CATH4 showed potent activity against antibiotic-resistant clinical isolates and also was observed to possess very low hemolytic activity and cytotoxicity. ΔPb-CATH4 also showed considerable serum stability. Electron microscopic analysis indicated that ΔPb-CATH4 exerts its effects via toroidal pore preformation. Structural comparison of the cathelicidins identified in this study to previously reported ones revealed that these Pb-CATHs are representatives of a new group of reptilian cathelicidins lacking the acidic connecting domain. Furthermore, Pb-CATH4 possesses a completely different mature peptide sequence from those of previously described reptilian cathelicidins. These new AMPs may be candidates for the development of alternatives to or complements of antibiotics to control multidrug-resistant pathogens. PMID:28630199
Proteomic Identification of Monoclonal Antibodies from Serum
2015-01-01
Characterizing the in vivo dynamics of the polyclonal antibody repertoire in serum, such as that which might arise in response to stimulation with an antigen, is difficult due to the presence of many highly similar immunoglobulin proteins, each specified by distinct B lymphocytes. These challenges have precluded the use of conventional mass spectrometry for antibody identification based on peptide mass spectral matches to a genomic reference database. Recently, progress has been made using bottom-up analysis of serum antibodies by nanoflow liquid chromatography/high-resolution tandem mass spectrometry combined with a sample-specific antibody sequence database generated by high-throughput sequencing of individual B cell immunoglobulin variable domains (V genes). Here, we describe how intrinsic features of antibody primary structure, most notably the interspersed segments of variable and conserved amino acid sequences, generate recurring patterns in the corresponding peptide mass spectra of V gene peptides, greatly complicating the assignment of correct sequences to mass spectral data. We show that the standard method of decoy-based error modeling fails to account for the error introduced by these highly similar sequences, leading to a significant underestimation of the false discovery rate. Because of these effects, antibody-derived peptide mass spectra require increased stringency in their interpretation. The use of filters based on the mean precursor ion mass accuracy of peptide-spectrum matches is shown to be particularly effective in distinguishing between “true” and “false” identifications. These findings highlight important caveats associated with the use of standard database search and error-modeling methods with nonstandard data sets and custom sequence databases. PMID:24684310
Biedrzycka, Aleksandra; Kloch, Agnieszka; Migalska, Magdalena; Bielański, Wojciech
2013-05-01
We characterized partial sequences of 18S rDNA from sedge warblers infected with a parasite described previously as Hepatozoon kabeeni. Prevalence was 47% in sampled birds.We detected 3 parasite haplotypes in 62 sequenced samples from infected animals. In phylogenetic analyses, 2 of the putative Hepatozoon haplotypes closely resembled Lankesterella minima and L. valsainensis. The third haplotype grouped in a wider clade composed of Caryospora and Eimeria. None of the haplotypes showed resemblance to sequences of Hepatozoon from reptiles and mammals. Molecular detection results were consistent with those from microscopy of stained blood smears, confirming that the primers indeed amplified the parasite sequences. Here we provide evidence that the avian Hepatozoon-like parasites are most likely Lankesterella, supporting the suggestion that the systematic position of avian Hepatozoon-like species needs to be revised.
Horn, T; Chang, C A; Urdea, M S
1997-12-01
The divergent synthesis of branched DNA (bDNA) comb structures is described. This new type of bDNA contains one unique oligonucleotide, the primary sequence, covalently attached through a comb-like branch network to many identical copies of a different oligonucleotide, the secondary sequence. The bDNA comb structures were assembled on a solid support and several synthesis parameters were investigated and optimized. The bDNA comb molecules were characterized by polyacrylamide gel electrophoretic methods and by controlled cleavage at periodate-cleavable moieties incorporated during synthesis. The developed chemistry allows synthesis of bDNA comb molecules containing multiple secondary sequences. In the accompanying article we describe the synthesis and characterization of large bDNA combs containing all four deoxynucleotides for use as signal amplifiers in nucleic acid quantification assays.
Horn, T; Chang, C A; Urdea, M S
1997-01-01
The divergent synthesis of branched DNA (bDNA) comb structures is described. This new type of bDNA contains one unique oligonucleotide, the primary sequence, covalently attached through a comb-like branch network to many identical copies of a different oligonucleotide, the secondary sequence. The bDNA comb structures were assembled on a solid support and several synthesis parameters were investigated and optimized. The bDNA comb molecules were characterized by polyacrylamide gel electrophoretic methods and by controlled cleavage at periodate-cleavable moieties incorporated during synthesis. The developed chemistry allows synthesis of bDNA comb molecules containing multiple secondary sequences. In the accompanying article we describe the synthesis and characterization of large bDNA combs containing all four deoxynucleotides for use as signal amplifiers in nucleic acid quantification assays. PMID:9365265
Perea Palazón, R J; Solé Arqués, M; Prat González, S; de Caralt Robira, T M; Cibeira López, M T; Ortiz Pérez, J T
2015-01-01
Cardiac magnetic resonance imaging is considered the reference technique for characterizing myocardial tissue; for example, T2-weighted sequences make it possible to evaluate areas of edema or myocardial inflammation. However, traditional sequences have many limitations and provide only qualitative information. Moreover, traditional sequences depend on the reference to remote myocardium or skeletal muscle, which limits their ability to detect and quantify diffuse myocardial damage. Recently developed magnetic resonance myocardial mapping techniques enable quantitative assessment of parameters indicative of edema. These techniques have proven better than traditional sequences both in acute cardiomyopathy and in acute ischemic heart disease. This article synthesizes current developments in T2 mapping as well as their clinical applications and limitations. Copyright © 2014 SERAM. Published by Elsevier España, S.L.U. All rights reserved.
Cornforth, Michael N; Anur, Pavana; Wang, Nicholas; Robinson, Erin; Ray, F Andrew; Bedford, Joel S; Loucas, Bradford D; Williams, Eli S; Peto, Myron; Spellman, Paul; Kollipara, Rahul; Kittler, Ralf; Gray, Joe W; Bailey, Susan M
2018-05-11
Chromosome rearrangements are large-scale structural variants that are recognized drivers of oncogenic events in cancers of all types. Cytogenetics allows for their rapid, genome-wide detection, but does not provide gene-level resolution. Massively parallel sequencing (MPS) promises DNA sequence-level characterization of the specific breakpoints involved, but is strongly influenced by bioinformatics filters that affect detection efficiency. We sought to characterize the breakpoint junctions of chromosomal translocations and inversions in the clonal derivatives of human cells exposed to ionizing radiation. Here, we describe the first successful use of DNA paired-end analysis to locate and sequence across the breakpoint junctions of a radiation-induced reciprocal translocation. The analyses employed, with varying degrees of success, several well-known bioinformatics algorithms, a task made difficult by the involvement of repetitive DNA sequences. As for underlying mechanisms, the results of Sanger sequencing suggested that the translocation in question was likely formed via microhomology-mediated non-homologous end joining (mmNHEJ). To our knowledge, this represents the first use of MPS to characterize the breakpoint junctions of a radiation-induced chromosomal translocation in human cells. Curiously, these same approaches were unsuccessful when applied to the analysis of inversions previously identified by directional genomic hybridization (dGH). We conclude that molecular cytogenetics continues to provide critical guidance for structural variant discovery, validation and in "tuning" analysis filters to enable robust breakpoint identification at the base pair level.
USDA-ARS?s Scientific Manuscript database
We recently described the complete genome of enterohemorrhagic Escherichia coli (EHEC) O157:H7 strain NADC 6564, an isolate of strain 86-24 linked to the 1986 disease outbreak. In the current study, we compared the chromosomal sequence of NADC 6564 to the well-characterized chromosomal sequences of ...
Klein, Günter
2011-07-01
Bacillus cereus var. toyoi strain NCIMB 40112 (Toyocerin), a probiotic authorized in the European Union as feed additive for swine, bovines, poultry, and rabbits, was characterized by DNA fingerprinting applying pulsed-field gel electrophoresis and multilocus sequence typing and was compared with reference strains (of clinical and environmental origins). The probiotic strain was clearly characterized by pulsed-field gel electrophoresis using the restriction enzymes Apa I and Sma I resulting in unique DNA patterns. The comparison to the clinical reference strain B. cereus DSM 4312 was done with the same restriction enzymes, and again a clear differentiation of the two strains was possible by the resulting DNA patterns. The use of the restriction enzymes Apa I and Sma I is recommended for further studies. Furthermore, multilocus sequence typing analysis revealed a sequence type (ST 111) that was different from all known STs of B. cereus strains from food poisoning incidents. Thus, a strain characterization and differentiation from food poisoning strains for the probiotic strain was possible. Copyright ©, International Association for Food Protection
Hanson, Blake; Zhou, Yanjiao; Bautista, Eddy J; Urch, Bruce; Speck, Mary; Silverman, Frances; Muilenberg, Michael; Phipatanakul, Wanda; Weinstock, George; Sodergren, Erica; Gold, Diane R; Sordillo, Joanne E
2016-06-15
Environmental microbes have been associated with both protective and adverse health effects in children and adults. Epidemiological studies often rely on broad biomarkers of microbial exposure (i.e. endotoxin, 1 → 3-beta-d-glucan), but fail to identify the taxonomic composition of the microbial community. Our aim was to characterize the bacterial and fungal microbiome in different types of environmental samples collected in studies of human health effects. We determined the composition of microbial communities present in home, school and outdoor air samples by amplifying and sequencing regions of rRNA genes from bacteria (16S) and fungi (18S and ITS). Samples for this pilot study included indoor settled dust (from both a Boston area birth cohort study on Home Allergens and Asthma (HAA) (n = 12) and a study of school exposures and asthma symptoms (SICAS) (n = 1)), as well as fine and coarse concentrated outdoor ambient particulate (CAP) samples (n = 9). Sequencing of amplified 16S, 18S, and ITS regions was performed on the Roche-454 Life Sciences Titanium pyrosequencing platform. Indoor dust samples were dominated by Gram-positive bacteria (Firmicutes and Actinobacteria); the most abundant bacterial genera were those related to human flora (Streptococcus, Staphylococcus, Corynebacterium and Lactobacillus). Outdoor CAPs were dominated by Gram-negative Proteobacteria from water and soil sources, in particular the genera Acidovorax, and Brevundimonas (which were present at very low levels or entirely absent in indoor dust). Phylum-level fungal distributions identified by 18S or ITS regions showed very similar findings: a predominance of Ascomycota in indoor dust and Basidiomycota in outdoor CAPs. ITS sequencing of fungal genera in indoor dust showed significant proportions of Aureobasidium and Leptosphaerulina along with some contribution from Cryptococcus, Epicoccum, Aspergillus and the human commensal Malassezia. ITS sequencing detected more than 70 fungal genera in indoor dust not observed by culture. Microbiome sequencing is feasible for different types of archived environmental samples (indoor dust, and low biomass air particulate samples), and offers the potential to study how whole communities of microbes (including unculturable taxa) influence human health.
Hanson, Blake; Zhou, Yanjiao; Bautista, Eddy J.; Urch, Bruce; Speck, Mary; Silverman, Frances; Muilenberg, Michael; Phipatanakul, Wanda; Weinstock, George; Sodergren, Erica; Gold, Diane R.; Sordillo, Joanne E.
2016-01-01
Environmental microbes have been associated with both protective and adverse health effects in children and adults. Epidemiological studies often rely on broad biomarkers of microbial exposure (i.e. endotoxin, 1→3, Beta-D glucan), but fail to identify the taxonomic composition of the microbial community. Our aim was to characterize the bacterial and fungal microbiome in different types of environmental samples collected in studies of human health effects. We determined the composition of microbial communities present in home, school and outdoor air samples by amplifying and sequencing regions of rRNA genes from bacteria (16S) and fungi (18S and ITS). Samples for this pilot study included indoor settled dust (from both a Boston area birth cohort study on Home Allergens and Asthma (HAA)(n=12) and a study of school exposures and asthma symptoms (SICAS) (n=1)), as well as fine and coarse concentrated outdoor ambient particulate (CAP) samples (n=9). Sequencing of amplified 16S, 18S, and ITS regions was performed on the Roche-454 Life Sciences Titanium pyrosequencing platform. Indoor dust samples were dominated by gram-positive bacteria (Firmicutes and Actinobacteria); the most abundant bacterial genera were those related to human flora (Streptococcus, Staphylococcus, Corynebacterium and Lactobacillus). Outdoor CAPs were dominated by gram-negative Proteobacteria from water and soil sources, in particular the genera Acidovorax, and Brevundimonas (which were present at very low levels or entirely absent in indoor dust). Phylum-level fungal distributions identified by 18S or ITS regions showed very similar findings: a predominance of Ascomycota in indoor dust and Basidiomycota in outdoor CAPs. ITS sequencing of fungal genera in indoor dust showed significant proportions of Aureobasidium and Leptosphaerulina along with some contribution from Cryptococcus, Epicoccum, Aspergillus and the human commensal Malassezia. ITS sequencing detected an additional 70 fungal genera in indoor dust not observed by culture. Microbiome sequencing is feasible for different types of archived environmental samples (indoor dust, and low biomass air particulate samples), and offers the potential to study how whole communities of microbes (including unculturable taxa) influence human health. PMID:27213188
Sveinsson, Saemundur; Gill, Navdeep; Kane, Nolan C; Cronk, Quentin
2013-07-24
Transposable elements (TEs) and other repetitive elements are a large and dynamically evolving part of eukaryotic genomes, especially in plants where they can account for a significant proportion of genome size. Their dynamic nature gives them the potential for use in identifying and characterizing crop germplasm. However, their repetitive nature makes them challenging to study using conventional methods of molecular biology. Next generation sequencing and new computational tools have greatly facilitated the investigation of TE variation within species and among closely related species. (i) We generated low-coverage Illumina whole genome shotgun sequencing reads for multiple individuals of cacao (Theobroma cacao) and related species. These reads were analysed using both an alignment/mapping approach and a de novo (graph based clustering) approach. (ii) A standard set of ultra-conserved orthologous sequences (UCOS) standardized TE data between samples and provided phylogenetic information on the relatedness of samples. (iii) The mapping approach proved highly effective within the reference species but underestimated TE abundance in interspecific comparisons relative to the de novo methods. (iv) Individual T. cacao accessions have unique patterns of TE abundance indicating that the TE composition of the genome is evolving actively within this species. (v) LTR/Gypsy elements are the most abundant, comprising c.10% of the genome. (vi) Within T. cacao the retroelement families show an order of magnitude greater sequence variability than the DNA transposon families. (vii) Theobroma grandiflorum has a similar TE composition to T. cacao, but the related genus Herrania is rather different, with LTRs making up a lower proportion of the genome, perhaps because of a massive presence (c. 20%) of distinctive low complexity satellite-like repeats in this genome. (i) Short read alignment/mapping to reference TE contigs provides a simple and effective method of investigating intraspecific differences in TE composition. It is not appropriate for comparing repetitive elements across the species boundaries, for which de novo methods are more appropriate. (ii) Individual T. cacao accessions have unique spectra of TE composition indicating active evolution of TE abundance within this species. TE patterns could potentially be used as a "fingerprint" to identify and characterize cacao accessions.
Ahn, Yul-Kyun; Tripathi, Swati; Kim, Jeong-Ho; Cho, Young-Il; Lee, Hye-Eun; Kim, Do-Sun; Woo, Jong-Gyu; Cho, Myeong-Cheoul
2014-01-10
Next generation sequencing technologies have proven to be a rapid and cost-effective means to assemble and characterize gene content and identify molecular markers in various organisms. Pepper (Capsicum annuum L., Solanaceae) is a major staple vegetable crop, which is economically important and has worldwide distribution. High-throughput transcriptome profiling of two pepper cultivars, Mandarin and Blackcluster, using 454 GS-FLX pyrosequencing yielded 279,221 and 316,357 sequenced reads with a total 120.44 and 142.54Mb of sequence data (average read length of 431 and 450 nucleotides). These reads resulted from 17,525 and 16,341 'isogroups' and were assembled into 19,388 and 18,057 isotigs, and 22,217 and 13,153 singletons for both the cultivars, respectively. Assembled sequences were annotated functionally based on homology to genes in multiple public databases. Detailed sequence variant analysis identified a total of 9701 and 12,741 potential SNPs which eventually resulted in 1025 and 1059 genotype specific SNPs, for both the varieties, respectively, after examining SNP frequency distribution for each mapped unigenes. These markers for pepper will be highly valuable for marker-assisted breeding and other genetic studies. © 2013 Elsevier B.V. All rights reserved.
Virtual Cross-Linking of the Active Nemorubicin Metabolite PNU-159682 to Double-Stranded DNA.
Scalabrin, Matteo; Quintieri, Luigi; Palumbo, Manlio; Riccardi Sirtori, Federico; Gatto, Barbara
2017-02-20
The DNA alkylating mechanism of PNU-159682 (PNU), a highly potent metabolite of the anthracycline nemorubicin, was investigated by gel-electrophoretic, HPLC-UV, and micro-HPLC/mass spectrometry (MS) measurements. PNU quickly reacted with double-stranded oligonucleotides, but not with single-stranded sequences, to form covalent adducts which were detectable by denaturing polyacrylamide gel electrophoresis (DPAGE). Ion-pair reverse-phase HPLC-UV analysis on CG rich duplex sequences having a 5'-CCCGGG-3' central core showed the formation of two types of adducts with PNU, which were stable and could be characterized by micro-HPLC/MS. The first type contained one alkylated species (and possibly one reversibly bound species), and the second contained two alkylated species per duplex DNA. The covalent adducts were found to produce effective bridging of DNA complementary strands through the formation of virtual cross-links reminiscent of those produced by classical anthracyclines in the presence of formaldehyde. Furthermore, the absence of reactivity of PNU with CG-rich sequence containing a TA core (CGTACG), and the minor reactivity between PNU and CGC sequences (TACGCG·CGCGTA) pointed out the importance of guanine sequence context in modulating DNA alkylation.
Zhang, Huibin; Artiles, Karen L.; Fire, Andrew Z.
2015-01-01
The founding heterochronic microRNAs, lin-4 and let-7, together with their validated targets and well-characterized phenotypes in C. elegans, offer an opportunity to test functionality of microRNAs in a developmental context. In this study, we defined sequence requirements at the microRNA level for these two microRNAs, evaluating lin-4 and let-7 mutant microRNAs for their ability to support temporal development under conditions where the wild-type lin-4 and let-7 gene products are absent. For lin-4, we found a strong requirement for seed sequences, with function drastically affected by several central mutations in the seed sequence, while rescue was retained by a set of mutations peripheral to the seed. let-7 rescuing activity was retained to a surprising degree by a variety of central seed mutations, while several non-seed mutant effects support potential noncanonical contributions to let-7 function. Taken together, this work illustrates both the functional partnership between seed and non-seed sequences in mediating C. elegans temporal development and a diversity among microRNA effectors in the contributions of seed and non-seed regions to activity. PMID:26385508
Genetic Characterization of a Panel of Diverse HIV-1 Isolates at Seven International Sites
Chen, Yue; Sanchez, Ana M.; Sabino, Ester; Hunt, Gillian; Ledwaba, Johanna; Hackett, John; Swanson, Priscilla; Hewlett, Indira; Ragupathy, Viswanath; Vikram Vemula, Sai; Zeng, Peibin; Tee, Kok-Keng; Chow, Wei Zhen; Ji, Hezhao; Sandstrom, Paul; Denny, Thomas N.; Busch, Michael P.; Gao, Feng
2016-01-01
HIV-1 subtypes and drug resistance are routinely tested by many international surveillance groups. However, results from different sites often vary. A systematic comparison of results from multiple sites is needed to determine whether a standardized protocol is required for consistent and accurate data analysis. A panel of well-characterized HIV-1 isolates (N = 50) from the External Quality Assurance Program Oversight Laboratory (EQAPOL) was assembled for evaluation at seven international sites. This virus panel included seven subtypes, six circulating recombinant forms (CRFs), nine unique recombinant forms (URFs) and three group O viruses. Seven viruses contained 10 major drug resistance mutations (DRMs). HIV-1 isolates were prepared at a concentration of 107 copies/ml and compiled into blinded panels. Subtypes and DRMs were determined with partial or full pol gene sequences by conventional Sanger sequencing and/or Next Generation Sequencing (NGS). Subtype and DRM results were reported and decoded for comparison with full-length genome sequences generated by EQAPOL. The partial pol gene was amplified by RT-PCR and sequenced for 89.4%-100% of group M viruses at six sites. Subtyping results of majority of the viruses (83%-97.9%) were correctly determined for the partial pol sequences. All 10 major DRMs in seven isolates were detected at these six sites. The complete pol gene sequence was also obtained by NGS at one site. However, this method missed six group M viruses and sequences contained host chromosome fragments. Three group O viruses were only characterized with additional group O-specific RT-PCR primers employed by one site. These results indicate that PCR protocols and subtyping tools should be standardized to efficiently amplify diverse viruses and more consistently assign virus genotypes, which is critical for accurate global subtype and drug resistance surveillance. Targeted NGS analysis of partial pol sequences can serve as an alternative approach, especially for detection of low-abundance DRMs. PMID:27314585
Genetic Characterization of a Panel of Diverse HIV-1 Isolates at Seven International Sites.
Hora, Bhavna; Keating, Sheila M; Chen, Yue; Sanchez, Ana M; Sabino, Ester; Hunt, Gillian; Ledwaba, Johanna; Hackett, John; Swanson, Priscilla; Hewlett, Indira; Ragupathy, Viswanath; Vikram Vemula, Sai; Zeng, Peibin; Tee, Kok-Keng; Chow, Wei Zhen; Ji, Hezhao; Sandstrom, Paul; Denny, Thomas N; Busch, Michael P; Gao, Feng
2016-01-01
HIV-1 subtypes and drug resistance are routinely tested by many international surveillance groups. However, results from different sites often vary. A systematic comparison of results from multiple sites is needed to determine whether a standardized protocol is required for consistent and accurate data analysis. A panel of well-characterized HIV-1 isolates (N = 50) from the External Quality Assurance Program Oversight Laboratory (EQAPOL) was assembled for evaluation at seven international sites. This virus panel included seven subtypes, six circulating recombinant forms (CRFs), nine unique recombinant forms (URFs) and three group O viruses. Seven viruses contained 10 major drug resistance mutations (DRMs). HIV-1 isolates were prepared at a concentration of 107 copies/ml and compiled into blinded panels. Subtypes and DRMs were determined with partial or full pol gene sequences by conventional Sanger sequencing and/or Next Generation Sequencing (NGS). Subtype and DRM results were reported and decoded for comparison with full-length genome sequences generated by EQAPOL. The partial pol gene was amplified by RT-PCR and sequenced for 89.4%-100% of group M viruses at six sites. Subtyping results of majority of the viruses (83%-97.9%) were correctly determined for the partial pol sequences. All 10 major DRMs in seven isolates were detected at these six sites. The complete pol gene sequence was also obtained by NGS at one site. However, this method missed six group M viruses and sequences contained host chromosome fragments. Three group O viruses were only characterized with additional group O-specific RT-PCR primers employed by one site. These results indicate that PCR protocols and subtyping tools should be standardized to efficiently amplify diverse viruses and more consistently assign virus genotypes, which is critical for accurate global subtype and drug resistance surveillance. Targeted NGS analysis of partial pol sequences can serve as an alternative approach, especially for detection of low-abundance DRMs.
Rueckert, Sonja; Simdyanov, Timur G.; Aleoshin, Vladimir V.; Leander, Brian S.
2011-01-01
Background Environmental SSU rDNA surveys have significantly improved our understanding of microeukaryotic diversity. Many of the sequences acquired using this approach are closely related to lineages previously characterized at both morphological and molecular levels, making interpretation of these data relatively straightforward. Some sequences, by contrast, appear to be phylogenetic orphans and are sometimes inferred to represent “novel lineages” of unknown cellular identity. Consequently, interpretation of environmental DNA surveys of cellular diversity rely on an adequately comprehensive database of DNA sequences derived from identified species. Several major taxa of microeukaryotes, however, are still very poorly represented in these databases, and this is especially true for diverse groups of single-celled parasites, such as gregarine apicomplexans. Methodology/Principal Findings This study attempts to address this paucity of DNA sequence data by characterizing four different gregarine species, isolated from the intestines of crustaceans, at both morphological and molecular levels: Thiriotia pugettiae sp. n. from the graceful kelp crab (Pugettia gracilis), Cephaloidophora cf. communis from two different species of barnacles (Balanus glandula and B. balanus), Heliospora cf. longissima from two different species of freshwater amphipods (Eulimnogammarus verrucosus and E. vittatus), and Heliospora caprellae comb. n. from a skeleton shrimp (Caprella alaskana). SSU rDNA sequences were acquired from isolates of these gregarine species and added to a global apicomplexan alignment containing all major groups of gregarines characterized so far. Molecular phylogenetic analyses of these data demonstrated that all of the gregarines collected from crustacean hosts formed a very strongly supported clade with 48 previously unidentified environmental DNA sequences. Conclusions/Significance This expanded molecular phylogenetic context enabled us to establish a major clade of intestinal gregarine parasites and infer the cellular identities of several previously unidentified environmental SSU rDNA sequences, including several sequences that have formerly been discussed broadly in the literature as a suspected “novel” lineage of eukaryotes. PMID:21483868
Virus characterization and discovery in formalin-fixed paraffin-embedded tissues.
Bodewes, Rogier; van Run, Peter R W A; Schürch, Anita C; Koopmans, Marion P G; Osterhaus, Albert D M E; Baumgärtner, Wolfgang; Kuiken, Thijs; Smits, Saskia L
2015-03-01
Detection and characterization of novel viruses is hampered frequently by the lack of properly stored materials. Especially for the retrospective identification of viruses responsible for past disease outbreaks, often only formalin-fixed paraffin-embedded (FFPE) tissue samples are available. Although FFPE tissues can be used to detect known viral sequences, the application of FFPE tissues for detection of novel viruses is currently unclear. In the present study it was shown that sequence-independent amplification in combination with next-generation sequencing can be used to detect sequences of known and unknown viruses, although with relatively low sensitivity. These findings indicate that this technique could be useful for detecting novel viral sequences in FFPE tissues collected from humans and animals with disease of unknown origin, when other samples are not available. In addition, application of this method to FFPE tissues allows to correlate with the presence of histopathological changes in the corresponding tissue sections. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sheynkman, Gloria M.; Shortreed, Michael R.; Cesnik, Anthony J.; Smith, Lloyd M.
2016-06-01
Mass spectrometry-based proteomics has emerged as the leading method for detection, quantification, and characterization of proteins. Nearly all proteomic workflows rely on proteomic databases to identify peptides and proteins, but these databases typically contain a generic set of proteins that lack variations unique to a given sample, precluding their detection. Fortunately, proteogenomics enables the detection of such proteomic variations and can be defined, broadly, as the use of nucleotide sequences to generate candidate protein sequences for mass spectrometry database searching. Proteogenomics is experiencing heightened significance due to two developments: (a) advances in DNA sequencing technologies that have made complete sequencing of human genomes and transcriptomes routine, and (b) the unveiling of the tremendous complexity of the human proteome as expressed at the levels of genes, cells, tissues, individuals, and populations. We review here the field of human proteogenomics, with an emphasis on its history, current implementations, the types of proteomic variations it reveals, and several important applications.
Lin, Jinke; Kudrna, Dave; Wing, Rod A.
2011-01-01
We describe the construction and characterization of a publicly available BAC library for the tea plant, Camellia sinensis. Using modified methods, the library was constructed with the aim of developing public molecular resources to advance tea plant genomics research. The library consists of a total of 401,280 clones with an average insert size of 135 kb, providing an approximate coverage of 13.5 haploid genome equivalents. No empty vector clones were observed in a random sampling of 576 BAC clones. Further analysis of 182 BAC-end sequences from randomly selected clones revealed a GC content of 40.35% and low chloroplast and mitochondrial contamination. Repetitive sequence analyses indicated that LTR retrotransposons were the most predominant sequence class (86.93%–87.24%), followed by DNA retrotransposons (11.16%–11.69%). Additionally, we found 25 simple sequence repeats (SSRs) that could potentially be used as genetic markers. PMID:21234344
Sheynkman, Gloria M.; Shortreed, Michael R.; Cesnik, Anthony J.; Smith, Lloyd M.
2016-01-01
Mass spectrometry–based proteomics has emerged as the leading method for detection, quantification, and characterization of proteins. Nearly all proteomic workflows rely on proteomic databases to identify peptides and proteins, but these databases typically contain a generic set of proteins that lack variations unique to a given sample, precluding their detection. Fortunately, proteogenomics enables the detection of such proteomic variations and can be defined, broadly, as the use of nucleotide sequences to generate candidate protein sequences for mass spectrometry database searching. Proteogenomics is experiencing heightened significance due to two developments: (a) advances in DNA sequencing technologies that have made complete sequencing of human genomes and transcriptomes routine, and (b) the unveiling of the tremendous complexity of the human proteome as expressed at the levels of genes, cells, tissues, individuals, and populations. We review here the field of human proteogenomics, with an emphasis on its history, current implementations, the types of proteomic variations it reveals, and several important applications. PMID:27049631
Huang, Ying; Chen, Shi-Yi; Deng, Feilong
2016-01-01
In silico analysis of DNA sequences is an important area of computational biology in the post-genomic era. Over the past two decades, computational approaches for ab initio prediction of gene structure from genome sequence alone have largely facilitated our understanding on a variety of biological questions. Although the computational prediction of protein-coding genes has already been well-established, we are also facing challenges to robustly find the non-coding RNA genes, such as miRNA and lncRNA. Two main aspects of ab initio gene prediction include the computed values for describing sequence features and used algorithm for training the discriminant function, and by which different combinations are employed into various bioinformatic tools. Herein, we briefly review these well-characterized sequence features in eukaryote genomes and applications to ab initio gene prediction. The main purpose of this article is to provide an overview to beginners who aim to develop the related bioinformatic tools.
On the Detection and Characterization of Polluted White Dwarfs
NASA Astrophysics Data System (ADS)
Steele, Amy; Debes, John H.; Deming, Drake
2017-06-01
There is evidence of circumstellar material around main sequence, giant, and white dwarf stars. What happens to this material after the main sequence? With this work, we focus on the characterization of the material around WD 1145+017. The goals are to monitor the white dwarf—which has a transiting, disintegrating planetesimal and determine the composition of the evaporated material for that same white dwarf by looking at high-resolution spectra. We also present preliminary results of follow-up photometric observations of known polluted WDs. If rocky bodies survive red giant branch evolution, then the material raining down on a WD atmosphere is a direct probe of main sequence cosmochemistry. If rocky bodies do not survive the evolution, then this informs the degree of post-main-sequence processing. These case studies will provide the community with further insight about debris disk modeling, the degree of post-main-sequence processing of circumstellar material, and the composition of a disintegrating planetesimal.
Cunningham, Kevin J.; Robinson, Edward
2017-07-18
Rock core and sediment from U.S. Geological Survey test corehole G–2984 completed in 2011 in Broward County, Florida, provide an opportunity to improve the understanding of the lithostratigraphic, sequence stratigraphic, and hydrogeologic framework of the intermediate confining unit and Floridan aquifer system in southeastern Florida. A multidisciplinary approach including characterization of sequence stratigraphy, lithofacies, ichnology, foraminiferal paleontology, depositional environments, porosity, and permeability was used to describe the geologic samples from this test corehole. This information has produced a detailed characterization of the lithofacies and sequence stratigraphy of the upper part of the middle Eocene Avon Park Formation and Oligocene to middle Miocene Arcadia Formation. This enhancement of the knowledge of the sequence stratigraphic framework is especially important, because subaerial karst unconformities at the upper boundary of depositional cycles at various hierarchical scales are commonly associated with secondary porosity and enhanced permeability in the Floridan aquifer system.
The Complete Exosome Workflow Solution: From Isolation to Characterization of RNA Cargo
Schageman, Jeoffrey; Li, Mu; Barta, Tim; Lea, Kristi; Gu, Jian; Magdaleno, Susan; Setterquist, Robert; Vlassov, Alexander V.
2013-01-01
Exosomes are small (30–150 nm) vesicles containing unique RNA and protein cargo, secreted by all cell types in culture. They are also found in abundance in body fluids including blood, saliva, and urine. At the moment, the mechanism of exosome formation, the makeup of the cargo, biological pathways, and resulting functions are incompletely understood. One of their most intriguing roles is intercellular communication—exosomes function as the messengers, delivering various effector or signaling macromolecules between specific cells. There is an exponentially growing need to dissect structure and the function of exosomes and utilize them for development of minimally invasive diagnostics and therapeutics. Critical to further our understanding of exosomes is the development of reagents, tools, and protocols for their isolation, characterization, and analysis of their RNA and protein contents. Here we describe a complete exosome workflow solution, starting from fast and efficient extraction of exosomes from cell culture media and serum to isolation of RNA followed by characterization of exosomal RNA content using qRT-PCR and next-generation sequencing techniques. Effectiveness of this workflow is exemplified by analysis of the RNA content of exosomes derived from HeLa cell culture media and human serum, using Ion Torrent PGM as a sequencing platform. PMID:24205503
Zienius, D; Lelešius, R; Kavaliauskis, H; Stankevičius, A; Šalomskas, A
2016-01-01
The aim of the present study was to detect canine parvovirus (CPV) from faecal samples of clinically ill domestic dogs by polymerase chain reaction (PCR) followed by VP2 gene partial sequencing and molecular characterization of circulating strains in Lithuania. Eleven clinically and antigen-tested positive dog faecal samples, collected during the period of 2014-2015, were investigated by using PCR. The phylogenetic investigations indicated that the Lithuanian CPV VP2 partial sequences (3025-3706 cds) were closely related and showed 99.0-99.9% identity. All Lithuanian sequences were associated with one phylogroup, but grouped in different clusters. Ten of investigated Lithuanian CPV VP2 sequences were closely associated with CPV 2a antigenic variant (99.4% nt identity). Five CPV VP2 sequences from Lithuania were related to CPV-2a, but were rather divergent (6.8 nt differences). Only one CPV VP2 sequence from Lithuania was associated (99.3% nt identity) with CPV-2b VP2 sequences from France, Italy, USA and Korea. The four of eleven investigated Lithuanian dogs with CPV infection symptoms were vaccinated with CPV-2 vaccine, but their VP2 sequences were phylogenetically distantly associated with CPV vaccine strains VP2 sequences (11.5-15.8 nt differences). Ten Lithuanian CPV VP2 sequences had monophyletic relations among the close geographically associated samples, but five of them were rather divergent (1.0% less sequence similarity). The one Lithuanian CPV VP2 sequence was closely related with CPV-2b antigenic variant. All the Lithuanian CPV VP2 partial sequences were conservative and phylogenetically low associated with most commonly used CPV vaccine strains.
2012-01-01
Background In rubber tree, bark is one of important agricultural and biological organs. However, the molecular mechanism involved in the bark formation and development in rubber tree remains largely unknown, which is at least partially due to lack of bark transcriptomic and genomic information. Therefore, it is necessary to carried out high-throughput transcriptome sequencing of rubber tree bark to generate enormous transcript sequences for the functional characterization and molecular marker development. Results In this study, more than 30 million sequencing reads were generated using Illumina paired-end sequencing technology. In total, 22,756 unigenes with an average length of 485 bp were obtained with de novo assembly. The similarity search indicated that 16,520 and 12,558 unigenes showed significant similarities to known proteins from NCBI non-redundant and Swissprot protein databases, respectively. Among these annotated unigenes, 6,867 and 5,559 unigenes were separately assigned to Gene Ontology (GO) and Clusters of Orthologous Group (COG). When 22,756 unigenes searched against the Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG) database, 12,097 unigenes were assigned to 5 main categories including 123 KEGG pathways. Among the main KEGG categories, metabolism was the biggest category (9,043, 74.75%), suggesting the active metabolic processes in rubber tree bark. In addition, a total of 39,257 EST-SSRs were identified from 22,756 unigenes, and the characterizations of EST-SSRs were further analyzed in rubber tree. 110 potential marker sites were randomly selected to validate the assembly quality and develop EST-SSR markers. Among 13 Hevea germplasms, PCR success rate and polymorphism rate of 110 markers were separately 96.36% and 55.45% in this study. Conclusion By assembling and analyzing de novo transcriptome sequencing data, we reported the comprehensive functional characterization of rubber tree bark. This research generated a substantial fraction of rubber tree transcriptome sequences, which were very useful resources for gene annotation and discovery, molecular markers development, genome assembly and annotation, and microarrays development in rubber tree. The EST-SSR markers identified and developed in this study will facilitate marker-assisted selection breeding in rubber tree. Moreover, this study also supported that transcriptome analysis based on Illumina paired-end sequencing is a powerful tool for transcriptome characterization and molecular marker development in non-model species, especially those with large and complex genomes. PMID:22607098
Characterization and mapping of cDNA encoding aspartate aminotransferase in rice, Oryza sativa L.
Song, J; Yamamoto, K; Shomura, A; Yano, M; Minobe, Y; Sasaki, T
1996-10-31
Fifteen cDNA clones, putatively identified as encoding aspartate aminotransferase (AST, EC 2.6.1.1.), were isolated and partially sequenced. Together with six previously isolated clones putatively identified to encode ASTs (Sasaki, et al. 1994, Plant Journal 6, 615-624), their sequences were characterized and classified into 4 cDNA species. Two of the isolated clones, C60213 and C2079, were full-length cDNAs, and their complete nucleotide sequences were determined. C60213 was 1612 bp long and its deduced amino acid sequence showed 88% homology with that of Panicum miliaceum L. mitochondrial AST. The C60213-encoded protein had an N-terminal amino acid sequence that was characteristic of a mitochondrial transit peptide. On the other hand, C2079 was 1546 bp long and had 91% amino acid sequence homology with P. miliaceum L. cytosolic AST but lacked in the transit peptide sequence. The homologies of nucleotide sequences and deduced amino acid sequences of C2079 and C60213 were 54% and 52%, respectively. C2079 and C60213 were mapped on chromosomes 1 and 6, respectively, by restriction fragment length polymorphism linkage analysis. Northern blot analysis using C2079 as a probe revealed much higher transcript levels in callus and root than in green and etiolated shoots, suggesting tissue-specific variations of AST gene expression.
Echinococcus granulosus Sensu Stricto in Dogs and Jackals from Caspian Sea Region, Northern Iran
GHOLAMI, Shirzad; JAHANDAR, Hefzallah; ABASTABAR, Mahdi; PAGHEH, Abdolsatar; MOBEDI, Iraj; SHARBATKHORI, Mitra
2016-01-01
Background: The aim of the present study was genotyping of Echinococcus granulosus isolates from dogs and jackals in Mazandaran Province, northern Iran, and using partial sequence of the mitochondrial cytochrome c oxidase subunit 1 gene (cox1). Methods: E. granulosus isolates (n = 15) were collected from 42 stray dogs and 16 jackals found in south of the Caspian Sea in northern Iran. After morphological study, the isolates were genetically characterized using consensus sequences (366bp) of the cox1 gene. Phylogenetic analysis of cox1 nucleotide sequence data was performed using a Bayesian Inference approach. Results: Four different sequences were observed among the isolates. Two genotypes [G1 (66.7%) and G3 (33.3%)] were identified among the isolates. The G1 sequences indicated three sequence profiles. One profile (Maz1) had 100% homology with reference sequence (AN: KP339045). Two other profiles, designated Maz2 and Maz3, had 99% homology with the G1 genotype (ANs: KP339046 and KP339047). A G3 sequence designated Maz4 showed 100% homology with a G3 reference sequence (AN: KP339048). Conclusion: The occurrence of the G1 genotype of E. granulosus sensu stricto as a frequent genotype in dogs is emphasized. This study established the first molecular characterization of E. granulosus in the province. PMID:28096852
Mousavi, Soraya; Mariotti, Roberto; Regni, Luca; Nasini, Luigi; Bufacchi, Marina; Pandolfi, Saverio; Baldoni, Luciana; Proietti, Primo
2017-01-01
Germplasm collections of tree crop species represent fundamental tools for conservation of diversity and key steps for its characterization and evaluation. For the olive tree, several collections were created all over the world, but only few of them have been fully characterized and molecularly identified. The olive collection of Perugia University (UNIPG), established in the years' 60, represents one of the first attempts to gather and safeguard olive diversity, keeping together cultivars from different countries. In the present study, a set of 370 olive trees previously uncharacterized was screened with 10 standard simple sequence repeats (SSRs) and nine new EST-SSR markers, to correctly and thoroughly identify all genotypes, verify their representativeness of the entire cultivated olive variation, and validate the effectiveness of new markers in comparison to standard genotyping tools. The SSR analysis revealed the presence of 59 genotypes, corresponding to 72 well known cultivars, 13 of them resulting exclusively present in this collection. The new EST-SSRs have shown values of diversity parameters quite similar to those of best standard SSRs. When compared to hundreds of Mediterranean cultivars, the UNIPG olive accessions were splitted into the three main populations (East, Center and West Mediterranean), confirming that the collection has a good representativeness of the entire olive variability. Furthermore, Bayesian analysis, performed on the 59 genotypes of the collection by the use of both sets of markers, have demonstrated their splitting into four clusters, with a well balanced membership obtained by EST respect to standard SSRs. The new OLEST ( Olea expressed sequence tags) SSR markers resulted as effective as the best standard markers. The information obtained from this study represents a high valuable tool for ex situ conservation and management of olive genetic resources, useful to build a common database from worldwide olive cultivar collections, also based on recently developed markers.
Molecular characterization of canine parvovirus (CPV) infection in dogs in Turkey.
Timurkan, Mehmet; Oğuzoğlu, Tuba
2015-01-01
This study provides data about canine parvovirus (CPV) types circulating among dogs in Turkey. Sixty-five samples from dogs with and without clinical signs of parvovirus infection were collected between April 2009 and February 2010. The samples were subsequently tested for CPV using polymerase chain reaction (PCR). Twenty-five samples (38.4%) were positive; when positive samples were characterized by sequence analysis, results showed that both CPV-2a (17/25, 68%) and CPV-2b (8/25, 32%) strains are circulating among domestic dogs in Turkey. This is the first molecular characterization study of CPVs from dogs based on partial VP2 gene sequences in Turkey.
Mchinda, Samira; Varma, Gopal; Prevost, Valentin H; Le Troter, Arnaud; Rapacchi, Stanislas; Guye, Maxime; Pelletier, Jean; Ranjeva, Jean-Philippe; Alsop, David C; Duhamel, Guillaume; Girard, Olivier M
2018-05-01
To implement, characterize, and optimize an interleaved inhomogeneous magnetization transfer (ihMT) gradient echo sequence allowing for whole-brain imaging within a clinically compatible scan time. A general framework for ihMT modelling was developed based on the Provotorov theory of radiofrequency saturation, which accounts for the dipolar order underpinning the ihMT effect. Experimental studies and numerical simulations were performed to characterize and optimize the ihMT-gradient echo dependency with sequence timings, saturation power, and offset frequency. The protocol was optimized in terms of maximum signal intensity and the reproducibility assessed for a nominal resolution of 1.5 mm isotropic. All experiments were performed on healthy volunteers at 1.5T. An important mechanism driving signal optimization and leading to strong ihMT signal enhancement that relies on the dynamics of radiofrequency energy deposition has been identified. By taking advantage of the delay allowed for readout between ihMT pulse bursts, it was possible to boost the ihMT signal by almost 2-fold compared to previous implementation. Reproducibility of the optimal protocol was very good, with an intra-individual error < 2%. The proposed sensitivity-boosted and time-efficient steady-state ihMT-gradient echo sequence, implemented and optimized at 1.5T, allowed robust high-resolution 3D ihMT imaging of the whole brain within a clinically compatible scan time. Magn Reson Med 79:2607-2619, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Sulaiman, Irshad M; Jacobs, Emily; Simpson, Steven; Kerdahi, Khalil
2017-06-01
The primary mission of the U.S. Food and Drug Administration is to enforce the Food, Drug, and Cosmetic Act and regulate food, drug, and cosmetic products. Thus, this agency monitors the presence of pathogenic microorganisms in these products, including canned foods, as one of the regulatory action criteria and also ensures that these products are safe for human consumption. This study was carried out to investigate the effectiveness of pathogen control and integrity of ready-to-eat canned food containing Black Bean Corn Poblano Salsa. A total of nine unopened and recalled canned glass jars from the same lot were examined initially by conventional microbiologic protocols that involved a two-step enrichment, followed by streaking on selective agar plates, for the presence of gram-positive and gram-negative bacteria. Of the eight subsamples examined for each sample, all subsamples of one of the containers were found positive for the presence of slow-growing rod-shaped, gram-positive, facultative anaerobic bacteria. The recovered isolates were subsequently sequenced at rRNA and gyrB loci. Afterward, multilocus sequence typing (MLST) was performed characterizing 11 additional known MLST loci (clpX, dnaA, dnaK, groEL, murC, murE, pepX, pyrG, recA, rpoB, and uvrC). Analyses of the nucleotide sequences of rRNA, gyrB, and 11 MLST loci confirmed these gram-positive bacteria recovered from canned food to be Lactobacillus fermentum . Thus, the DNA sequencing of housekeeping MLST genes can provide species identification of L. fermentum and can be used in the canned food monitoring program of public health importance.
Fusion genes with ALK as recurrent partner in ependymoma-like gliomas: a new brain tumor entity?
Olsen, Thale Kristin; Panagopoulos, Ioannis; Meling, Torstein R.; Micci, Francesca; Gorunova, Ludmila; Thorsen, Jim; Due-Tønnessen, Bernt; Scheie, David; Lund-Iversen, Marius; Krossnes, Bård; Saxhaug, Cathrine; Heim, Sverre; Brandal, Petter
2015-01-01
Background We have previously characterized 19 ependymal tumors using Giemsa banding and high-resolution comparative genomic hybridization. The aim of this study was to analyze these tumors searching for fusion genes. Methods RNA sequencing was performed in 12 samples. Potential fusion transcripts were assessed by seed count and structural chromosomal aberrations. Transcripts of interest were validated using fluorescence in situ hybridization and PCR followed by direct sequencing. Results RNA sequencing identified rearrangements of the anaplastic lymphoma kinase gene (ALK) in 2 samples. Both tumors harbored structural aberrations involving the ALK locus 2p23. Tumor 1 had an unbalanced t(2;14)(p23;q22) translocation which led to the fusion gene KTN1-ALK. Tumor 2 had an interstitial del(2)(p16p23) deletion causing the fusion of CCDC88A and ALK. In both samples, the breakpoint of ALK was located between exons 19 and 20. Both patients were infants and both tumors were supratentorial. The tumors were well demarcated from surrounding tissue and had both ependymal and astrocytic features but were diagnosed and treated as ependymomas. Conclusions By combining karyotyping and RNA sequencing, we identified the 2 first ever reported ALK rearrangements in CNS tumors. Such rearrangements may represent the hallmark of a new entity of pediatric glioma characterized by both ependymal and astrocytic features. Our findings are of particular importance because crizotinib, a selective ALK inhibitor, has demonstrated effect in patients with lung cancer harboring ALK rearrangements. Thus, ALK emerges as an interesting therapeutic target in patients with ependymal tumors carrying ALK fusions. PMID:25795305
Chen, Shi-Yi; Huang, Yi; Zhu, Qing; Fontanesi, Luca; Yao, Yong-Gang; Liu, Yi-Ping
2009-01-01
Melanocortin 1 receptor (MC1R) gene plays a key role in determining coat color in several species, including the cattle. However, up to now there is no report regarding the MC1R gene and the potential association of its mutations with coat colors in yak (Poephagus grunniens). In this study, we sequenced the encoding region of the MC1R gene in three yak breeds with completely white (Tianzhu breed) or black coat color (Jiulong and Maiwa breeds). The predicted coding region of the yak MC1R gene resulted of 954 bp, the same to that of the wild-type cattle sequence, with >99% identity. None of the mutation events reported in cattle was found. Comparing the yak obtained sequences, five nucleotide substitutions were detected, which defined three haplotypes (EY1, EY2, and EY3). Of the five mutations, two, characterizing the EY1 haplotype, were nonsynonymous substitutions (c.340C>A and c.871G>A) causing amino acid changes located in the first extracellular loop (p.Q114K) and in the seventh transmembrane region (p.A291T). In silico prediction might indicate a functional effect of the latter substitution. However, all three haplotypes were present in the three yak breeds with relatively consistent frequency distribution, despite of their distinguished coat colors, which suggested that there was no across-breed association between haplotypes or genotypes and black/white phenotypes, at least in the investigated breeds. Other genes may be involved in affecting coat color in the analyzed yaks. PMID:19584942
Li, Yu-Ping; Xia, Run-Xi; Wang, Huan; Li, Xi-Sheng; Liu, Yan-Qun; Wei, Zhao-Jun; Lu, Cheng; Xiang, Zhong-Huai
2009-06-24
In this study we successfully constructed a full-length cDNA library from Chinese oak silkworm, Antheraea pernyi, the most well-known wild silkworm used for silk production and insect food. Total RNA was extracted from a single fresh female pupa at the diapause stage. The titer of the library was 5 x 10(5) cfu/ml and the proportion of recombinant clones was approximately 95%. Expressed sequence tag (EST) analysis was used to characterize the library. A total of 175 clustered ESTs consisting of 24 contigs and 151 singlets were generated from 250 effective sequences. Of the 175 unigenes, 97 (55.4%) were known genes but only five from A. pernyi, 37 (21.2%) were known ESTs without function annotation, and 41 (23.4%) were novel ESTs. By EST sequencing, a gene coding KK-42-binding protein in A. pernyi (named as ApKK42-BP; GenBank accession no. FJ744151) was identified and characterized. Protein sequence analysis showed that ApKK42-BP was not a membrane protein but an extracellular protein with a signal peptide at position 1-18, and contained two putative conserved domains, abhydro_lipase and abhydrolase_1, suggesting it may be a member of lipase superfamily. Expression analysis based on number of ESTs showed that ApKK42-BP was an abundant gene in the period of diapause stage, suggesting it may also be involved in pupa-diapause termination.
Li, Yu-Ping; Xia, Run-Xi; Wang, Huan; Li, Xi-Sheng; Liu, Yan-Qun; Wei, Zhao-Jun; Lu, Cheng; Xiang, Zhong-Huai
2009-01-01
In this study we successfully constructed a full-length cDNA library from Chinese oak silkworm, Antheraea pernyi, the most well-known wild silkworm used for silk production and insect food. Total RNA was extracted from a single fresh female pupa at the diapause stage. The titer of the library was 5 × 105 cfu/ml and the proportion of recombinant clones was approximately 95%. Expressed sequence tag (EST) analysis was used to characterize the library. A total of 175 clustered ESTs consisting of 24 contigs and 151 singlets were generated from 250 effective sequences. Of the 175 unigenes, 97 (55.4%) were known genes but only five from A. pernyi, 37 (21.2%) were known ESTs without function annotation, and 41 (23.4%) were novel ESTs. By EST sequencing, a gene coding KK-42-binding protein in A. pernyi (named as ApKK42-BP; GenBank accession no. FJ744151) was identified and characterized. Protein sequence analysis showed that ApKK42-BP was not a membrane protein but an extracellular protein with a signal peptide at position 1-18, and contained two putative conserved domains, abhydro_lipase and abhydrolase_1, suggesting it may be a member of lipase superfamily. Expression analysis based on number of ESTs showed that ApKK42-BP was an abundant gene in the period of diapause stage, suggesting it may also be involved in pupa-diapause termination. PMID:19564928
Pandey, Ram Vinay; Kofler, Robert; Orozco-terWengel, Pablo; Nolte, Viola; Schlötterer, Christian
2011-03-02
The enormous potential of natural variation for the functional characterization of genes has been neglected for a long time. Only since recently, functional geneticists are starting to account for natural variation in their analyses. With the new sequencing technologies it has become feasible to collect sequence information for multiple individuals on a genomic scale. In particular sequencing pooled DNA samples has been shown to provide a cost-effective approach for characterizing variation in natural populations. While a range of software tools have been developed for mapping these reads onto a reference genome and extracting SNPs, linking this information to population genetic estimators and functional information still poses a major challenge to many researchers. We developed PoPoolation DB a user-friendly integrated database. Popoolation DB links variation in natural populations with functional information, allowing a wide range of researchers to take advantage of population genetic data. PoPoolation DB provides the user with population genetic parameters (Watterson's θ or Tajima's π), Tajima's D, SNPs, allele frequencies and indels in regions of interest. The database can be queried by gene name, chromosomal position, or a user-provided query sequence or GTF file. We anticipate that PoPoolation DB will be a highly versatile tool for functional geneticists as well as evolutionary biologists. PoPoolation DB, available at http://www.popoolation.at/pgt, provides an integrated platform for researchers to investigate natural polymorphism and associated functional annotations from UCSC and Flybase genome browsers, population genetic estimators and RNA-seq information.
Shaw, Jennifer L. A.; Weyrich, Laura S.; Sawade, Emma; Drikas, Mary; Cooper, Alan J.
2015-01-01
Drinking water assessments use a variety of microbial, physical, and chemical indicators to evaluate water treatment efficiency and product water quality. However, these indicators do not allow the complex biological communities, which can adversely impact the performance of drinking water distribution systems (DWDSs), to be characterized. Entire bacterial communities can be studied quickly and inexpensively using targeted metagenomic amplicon sequencing. Here, amplicon sequencing of the 16S rRNA gene region was performed alongside traditional water quality measures to assess the health, quality, and efficiency of two distinct, full-scale DWDSs: (i) a linear DWDS supplied with unfiltered water subjected to basic disinfection before distribution and (ii) a complex, branching DWDS treated by a four-stage water treatment plant (WTP) prior to disinfection and distribution. In both DWDSs bacterial communities differed significantly after disinfection, demonstrating the effectiveness of both treatment regimes. However, bacterial repopulation occurred further along in the DWDSs, and some end-user samples were more similar to the source water than to the postdisinfection water. Three sample locations appeared to be nitrified, displaying elevated nitrate levels and decreased ammonia levels, and nitrifying bacterial species, such as Nitrospira, were detected. Burkholderiales were abundant in samples containing large amounts of monochloramine, indicating resistance to disinfection. Genera known to contain pathogenic and fecal-associated species were also identified in several locations. From this study, we conclude that metagenomic amplicon sequencing is an informative method to support current compliance-based methods and can be used to reveal bacterial community interactions with the chemical and physical properties of DWDSs. PMID:26162884
Chiu, Elliott S; Hoover, Edward A; VandeWoude, Sue
2018-01-10
Feline leukemia virus (FeLV) was the first feline retrovirus discovered, and is associated with multiple fatal disease syndromes in cats, including lymphoma. The original research conducted on FeLV employed classical virological techniques. As methods have evolved to allow FeLV genetic characterization, investigators have continued to unravel the molecular pathology associated with this fascinating agent. In this review, we discuss how FeLV classification, transmission, and disease-inducing potential have been defined sequentially by viral interference assays, Sanger sequencing, PCR, and next-generation sequencing. In particular, we highlight the influences of endogenous FeLV and host genetics that represent FeLV research opportunities on the near horizon.
Giudicelli, Véronique; Duroux, Patrice; Kossida, Sofia; Lefranc, Marie-Paule
2017-06-26
IMGT®, the international ImMunoGeneTics information system® ( http://www.imgt.org ), was created in 1989 in Montpellier, France (CNRS and Montpellier University) to manage the huge and complex diversity of the antigen receptors, and is at the origin of immunoinformatics, a science at the interface between immunogenetics and bioinformatics. Immunoglobulins (IG) or antibodies and T cell receptors (TR) are managed and described in the IMGT® databases and tools at the level of receptor, chain and domain. The analysis of the IG and TR variable (V) domain rearranged nucleotide sequences is performed by IMGT/V-QUEST (online since 1997, 50 sequences per batch) and, for next generation sequencing (NGS), by IMGT/HighV-QUEST, the high throughput version of IMGT/V-QUEST (portal begun in 2010, 500,000 sequences per batch). In vitro combinatorial libraries of engineered antibody single chain Fragment variable (scFv) which mimic the in vivo natural diversity of the immune adaptive responses are extensively screened for the discovery of novel antigen binding specificities. However the analysis of NGS full length scFv (~850 bp) represents a challenge as they contain two V domains connected by a linker and there is no tool for the analysis of two V domains in a single chain. The functionality "Analyis of single chain Fragment variable (scFv)" has been implemented in IMGT/V-QUEST and, for NGS, in IMGT/HighV-QUEST for the analysis of the two V domains of IG and TR scFv. It proceeds in five steps: search for a first closest V-REGION, full characterization of the first V-(D)-J-REGION, then search for a second V-REGION and full characterization of the second V-(D)-J-REGION, and finally linker delimitation. For each sequence or NGS read, positions of the 5'V-DOMAIN, linker and 3'V-DOMAIN in the scFv are provided in the 'V-orientated' sense. Each V-DOMAIN is fully characterized (gene identification, sequence description, junction analysis, characterization of mutations and amino changes). The functionality is generic and can analyse any IG or TR single chain nucleotide sequence containing two V domains, provided that the corresponding species IMGT reference directory is available. The "Analysis of single chain Fragment variable (scFv)" implemented in IMGT/V-QUEST and, for NGS, in IMGT/HighV-QUEST provides the identification and full characterization of the two V domains of full-length scFv (~850 bp) nucleotide sequences from combinatorial libraries. The analysis can also be performed on concatenated paired chains of expressed antigen receptor IG or TR repertoires.
Ramos, María Laura; Altieri, Emiliano; Bulos, Mariano; Sala, Carlos A
2013-01-01
Reduced height germplasm has the potential to increase stem strength, standability, and also yields potential of the sunflower crop (Helianthus annuus L. var. macrocarpus Ckll.). In this study, we report on the inheritance, mapping, phenotypic and molecular characterization of a reduced plant height trait in inbred lines derived from the source DDR. This trait is controlled by a semidominant allele, Rht1, which maps on linkage group 12 of the sunflower public consensus map. Phenotypic effects of this allele include shorter height and internode length, insensibility to exogenous gibberellin application, normal skotomorphogenetic response, and reduced seed set under self-pollination conditions. This later effect presumably is related to the reduced pollen viability observed in all DDR-derived lines studied. Rht1 completely cosegregated with a haplotype of the HaDella1 gene sequence. This haplotype consists of a point mutation converting a leucine residue in a proline within the conserved DELLA domain. Taken together, the phenotypic, genetic, and molecular results reported here indicate that Rht1 in sunflower likely encodes an altered DELLA protein. If the DELPA motif of the HaDELLA1 sequence in the Rht1-encoded protein determines by itself the observed reduction in height is a matter that remains to be investigated.
Water mass dynamics shape Ross Sea protist communities in mesopelagic and bathypelagic layers
NASA Astrophysics Data System (ADS)
Zoccarato, Luca; Pallavicini, Alberto; Cerino, Federica; Fonda Umani, Serena; Celussi, Mauro
2016-12-01
Deep-sea environments host the largest pool of microbes and represent the last largely unexplored and poorly known ecosystems on Earth. The Ross Sea is characterized by unique oceanographic dynamics and harbors several water masses deeply involved in cooling and ventilation of deep oceans. In this study the V9 region of the 18S rDNA was targeted and sequenced with the Ion Torrent high-throughput sequencing technology to unveil differences in protist communities (>2 μm) correlated with biogeochemical properties of the water masses. The analyzed samples were significantly different in terms of environmental parameters and community composition outlining significant structuring effects of temperature and salinity. Overall, Alveolata (especially Dinophyta), Stramenopiles and Excavata groups dominated mesopelagic and bathypelagic layers, and protist communities were shaped according to the biogeochemistry of the water masses (advection effect and mixing events). Newly-formed High Salinity Shelf Water (HSSW) was characterized by high relative abundance of phototrophic organisms that bloom at the surface during the austral summer. Oxygen-depleted Circumpolar Deep Water (CDW) showed higher abundance of Excavata, common bacterivores in deep water masses. At the shelf-break, Antarctic Bottom Water (AABW), formed by the entrainment of shelf waters in CDW, maintained the eukaryotic genetic signature typical of both parental water masses.
Directional Emissivity Effects on Martian Surface Brightness Temperatures
NASA Astrophysics Data System (ADS)
Pitman, K. M.; Wolff, M. J.; Bandfield, J. L.; Clancy, R. T.; Clayton, G. C.
2001-11-01
The angular dependence of thermal emission from the surface of Mars has not been well characterized. Although nadir sequences constitute most of the MGS/TES Martian surface observations [1,2], a significant number scans of Martian surfaces at multiple emission angles (emission phase function (EPF) sequences) also exist. Such data can provide insight into surface structures, thermal inertias, and non-isotropic corrections to thermal emission measurements [3]. The availability of abundant EPF data as well as the added utility of such observations for atmospheric characterization provide the impetus for examining the phenomenon of directional emissivity. We present examples of directional emissivity effects on brightness temperature spectra for a variety of typical Martian surfaces. We examine the theoretical development by Hapke (1993, 1996) [4,5] and compare his algorithm to that of Mishchenko et al. (1999) [6]. These results are then compared to relevant TES EPF data. This work is supported through NASA grant NAGS-9820 (MJW) and JPL contract no. 961471 (RTC). [1] Smith et al. (1998), AAS-DPS meeting # 30, # 11.P07. [2] Kieffer, Mullins, & Titus (1998), EOS, 79, 533. [3] Jakosky, Finiol, & Henderson (1990), JGR, 17, 985--988. [4] Hapke, B. (1993), Theory of Reflectance & Emittance Spectroscopy, Cambridge Univ. Press, NY. [5] Hapke, B. (1996), JGR, 101, E7, 16817--16831. [6] Mishchenko et al. (1999), JQSRT, 63, 409--432.
Expression and characterization of novel laccase gene from Pandoraea sp. ISTKB and its application.
Kumar, Madan; Mishra, Arti; Singh, Shashi Shekhar; Srivastava, Shaili; Thakur, Indu Shekhar
2018-04-14
In the present study, a non-blue laccase gene from previously reported lignin degrading bacterium, Pandoraea sp. ISTKB, was isolated, cloned and expressed in E. coli. Bioinformatics analysis of sequence discovered twin-arginine translocation signal sequence, copper binding motifs and presence of more random coil compare to helices and sheets in structure. The enzyme was found to be active on wide pH range and the pH optima was observed at pH 4 and 8 on substrate 2,2'-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) and 2,6-Dimethoxyphenol respectively. This is a thermophilic enzyme with maximum activity around 50-70 °C. The enzyme was further characterized by spectroscopy, reaction kinetics and effect of metal ions and inhibitors were studied. Compared to laccase alone; the treatment of dyes with laccase plus mediator resulted in enhanced decolorization of crystal violet, methylene blue, azure B, carmine and Congo red but the effect of mediator was not observed on trypan blue. Laccase treatment triggered polymerization on vanillic acid (VA) and kraft lignin (KL). Laccase plus mediator treatment reversed the polymerization and resulted in transformation or degradation of VA and KL. This thermophilic and alkalophilic non-blue laccase from Pandoraea sp. ISTKB is promising with prospective biotechnological application. Copyright © 2018. Published by Elsevier B.V.
Bugno-Poniewierska, Monika; Solek, Przemysław; Wronski, Mariusz; Potocki, Leszek; Jezewska-Witkowska, Grażyna; Wnuk, Maciej
2014-12-01
The molecular structure of B chromosomes (Bs) is relatively well studied. Previous research demonstrates that Bs of various species usually contain two types of repetitive DNA sequences, satellite DNA and ribosomal DNA, but Bs also contain genes encoding histone proteins and many others. However, many questions remain regarding the origin and function of these chromosomes. Here, we focused on the comparative cytogenetic characteristics of the red fox and Chinese raccoon dog B chromosomes with particular attention to the distribution of repetitive DNA sequences and their methylation status. We confirmed that the small Bs of the red fox show a typical fluorescent telomeric distal signal, whereas medium-sized Bs of the Chinese raccoon dog were characterized by clusters of telomeric sequences along their length. We also found different DNA methylation patterns for the B chromosomes of both species. Therefore, we concluded that DNA methylation may maintain the transcriptional inactivation of DNA sequences localized to B chromosomes and may prevent genetic unbalancing and several negative phenotypic effects. © 2014 The Authors.
2016-01-01
Comprehensive next generation sequencing virus detection was used to detect the whole spectrum of viruses and viroids in selected grapevines from the Czech Republic. The novel NGS approach was based on sequencing libraries of small RNA isolated from grapevine vascular tissues. Eight previously partially-characterized grapevines of diverse varieties were selected and subjected to analysis: Chardonnay, Laurot, Guzal Kara, and rootstock Kober 125AA from the Moravia wine-producing region; plus Müller-Thurgau and Pinot Noir from the Bohemia wine-producing region, both in the Czech Republic. Using next generation sequencing of small RNA, the presence of 8 viruses and 2 viroids were detected in a set of eight grapevines; therefore, confirming the high effectiveness of the technique in plant virology and producing results supporting previous data on multiple infected grapevines in Czech vineyards. Among the pathogens detected, the Grapevine rupestris vein feathering virus and Grapevine yellow speckle viroid 1 were recorded in the Czech Republic for the first time. PMID:27959951
Eichmeier, Aleš; Komínková, Marcela; Komínek, Petr; Baránek, Miroslav
2016-01-01
Comprehensive next generation sequencing virus detection was used to detect the whole spectrum of viruses and viroids in selected grapevines from the Czech Republic. The novel NGS approach was based on sequencing libraries of small RNA isolated from grapevine vascular tissues. Eight previously partially-characterized grapevines of diverse varieties were selected and subjected to analysis: Chardonnay, Laurot, Guzal Kara, and rootstock Kober 125AA from the Moravia wine-producing region; plus Müller-Thurgau and Pinot Noir from the Bohemia wine-producing region, both in the Czech Republic. Using next generation sequencing of small RNA, the presence of 8 viruses and 2 viroids were detected in a set of eight grapevines; therefore, confirming the high effectiveness of the technique in plant virology and producing results supporting previous data on multiple infected grapevines in Czech vineyards. Among the pathogens detected, the Grapevine rupestris vein feathering virus and Grapevine yellow speckle viroid 1 were recorded in the Czech Republic for the first time.
Predicting the binding preference of transcription factors to individual DNA k-mers.
Alleyne, Trevis M; Peña-Castillo, Lourdes; Badis, Gwenael; Talukder, Shaheynoor; Berger, Michael F; Gehrke, Andrew R; Philippakis, Anthony A; Bulyk, Martha L; Morris, Quaid D; Hughes, Timothy R
2009-04-15
Recognition of specific DNA sequences is a central mechanism by which transcription factors (TFs) control gene expression. Many TF-binding preferences, however, are unknown or poorly characterized, in part due to the difficulty associated with determining their specificity experimentally, and an incomplete understanding of the mechanisms governing sequence specificity. New techniques that estimate the affinity of TFs to all possible k-mers provide a new opportunity to study DNA-protein interaction mechanisms, and may facilitate inference of binding preferences for members of a given TF family when such information is available for other family members. We employed a new dataset consisting of the relative preferences of mouse homeodomains for all eight-base DNA sequences in order to ask how well we can predict the binding profiles of homeodomains when only their protein sequences are given. We evaluated a panel of standard statistical inference techniques, as well as variations of the protein features considered. Nearest neighbour among functionally important residues emerged among the most effective methods. Our results underscore the complexity of TF-DNA recognition, and suggest a rational approach for future analyses of TF families.
Lam, Kelly Y C; Chan, Gallant K L; Xin, Gui-Zhong; Xu, Hong; Ku, Chuen-Fai; Chen, Jian-Ping; Yao, Ping; Lin, Huang-Quan; Dong, Tina T X; Tsim, Karl W K
2015-12-15
Cordyceps sinensis is an endoparasitic fungus widely used as a tonic and medicinal food in the practice of traditional Chinese medicine (TCM). In historical usage, Cordyceps specifically is referring to the species of C. sinensis. However, a number of closely related species are named themselves as Cordyceps, and they are sold commonly as C. sinensis. The substitutes and adulterants of C. sinensis are often introduced either intentionally or accidentally in the herbal market, which seriously affects the therapeutic effects or even leads to life-threatening poisoning. Here, we aim to identify Cordyceps by DNA sequencing technology. Two different DNA-based approaches were compared. The internal transcribed spacer (ITS) sequences and the random amplified polymorphic DNA (RAPD)-sequence characterized amplified region (SCAR) were developed here to authenticate different species of Cordyceps. Both approaches generally enabled discrimination of C. sinensis from others. The application of the two methods, supporting each other, increases the security of identification. For better reproducibility and faster analysis, the SCAR markers derived from the RAPD results provide a new method for quick authentication of Cordyceps.
Minimizing the average distance to a closest leaf in a phylogenetic tree.
Matsen, Frederick A; Gallagher, Aaron; McCoy, Connor O
2013-11-01
When performing an analysis on a collection of molecular sequences, it can be convenient to reduce the number of sequences under consideration while maintaining some characteristic of a larger collection of sequences. For example, one may wish to select a subset of high-quality sequences that represent the diversity of a larger collection of sequences. One may also wish to specialize a large database of characterized "reference sequences" to a smaller subset that is as close as possible on average to a collection of "query sequences" of interest. Such a representative subset can be useful whenever one wishes to find a set of reference sequences that is appropriate to use for comparative analysis of environmentally derived sequences, such as for selecting "reference tree" sequences for phylogenetic placement of metagenomic reads. In this article, we formalize these problems in terms of the minimization of the Average Distance to the Closest Leaf (ADCL) and investigate algorithms to perform the relevant minimization. We show that the greedy algorithm is not effective, show that a variant of the Partitioning Around Medoids (PAM) heuristic gets stuck in local minima, and develop an exact dynamic programming approach. Using this exact program we note that the performance of PAM appears to be good for simulated trees, and is faster than the exact algorithm for small trees. On the other hand, the exact program gives solutions for all numbers of leaves less than or equal to the given desired number of leaves, whereas PAM only gives a solution for the prespecified number of leaves. Via application to real data, we show that the ADCL criterion chooses chimeric sequences less often than random subsets, whereas the maximization of phylogenetic diversity chooses them more often than random. These algorithms have been implemented in publicly available software.
USDA-ARS?s Scientific Manuscript database
Next generation sequencing (NGS) technology was used to analyze the occurrence of viruses in Sorghum almum plants in Florida exhibiting mosaic symptoms. Total RNA was extracted from symptomatic leaves and used as a template for cDNA library preparation. The resulting library was sequenced on an Illu...
Draft Genome Sequence of “Cohnella kolymensis” B-2846
Kudryashova, Ekaterina B.; Ariskina, Elena V.
2016-01-01
A draft genome sequence of “Cohnella kolymensis” strain B-2846 was derived using IonTorrent sequencing technology. The size of the assembly and G+C content were in agreement with those of other species of this genus. Characterization of the genome of a novel species of Cohnella will assist in bacterial systematics. PMID:26769947
USDA-ARS?s Scientific Manuscript database
The Kauffman White (KW) serotyping method requires more than 250 antisera to characterize more than 2,500 Salmonella serovars. The complexity of serotyping could be overcome using molecular methods. In this study, a dkgB-linked intergenic sequence ribotyping (ISR) method that generates sequence occu...
Genomic Sequence of the WHO International Standard for Hepatitis A Virus RNA.
Jenkins, Adrian; Minhas, Rehan; Morris, Clare; Berry, Neil
2018-05-10
The World Health Organization (WHO) international standard for hepatitis A virus (HAV) RNA nucleic acid assays was characterized by complete genome sequencing. The entire coding sequence and noncoding regions were assigned HAV genotype IB. This information will aid the design, development, and evaluation of HAV RNA amplification assays. Copyright © 2018 Jenkins et al.
Non-biological synthetic spike-in controls and the AMPtk software pipeline improve mycobiome data
Jonathan M. Palmer; Michelle A. Jusino; Mark T. Banik; Daniel L. Lindner
2018-01-01
High-throughput amplicon sequencing (HTAS) of conserved DNA regions is a powerful technique to characterize microbial communities. Recently, spike-in mock communities have been used to measure accuracy of sequencing platforms and data analysis pipelines. To assess the ability of sequencing platforms and data processing pipelines using fungal internal transcribed spacer...
Kerschner, Joseph E; Erdos, Geza; Hu, Fen Ze; Burrows, Amy; Cioffi, Joseph; Khampang, Pawjai; Dahlgren, Margaret; Hayes, Jay; Keefe, Randy; Janto, Benjamin; Post, J Christopher; Ehrlich, Garth D
2010-04-01
We sought to construct and partially characterize complementary DNA (cDNA) libraries prepared from the middle ear mucosa (MEM) of chinchillas to better understand pathogenic aspects of infection and inflammation, particularly with respect to leukotriene biogenesis and response. Chinchilla MEM was harvested from controls and after middle ear inoculation with nontypeable Haemophilus influenzae. RNA was extracted to generate cDNA libraries. Randomly selected clones were subjected to sequence analysis to characterize the libraries and to provide DNA sequence for phylogenetic analyses. Reverse transcription-polymerase chain reaction of the RNA pools was used to generate cDNA sequences corresponding to genes associated with leukotriene biosynthesis and metabolism. Sequence analysis of 921 randomly selected clones from the uninfected MEM cDNA library produced approximately 250,000 nucleotides of almost entirely novel sequence data. Searches of the GenBank database with the Basic Local Alignment Search Tool provided for identification of 515 unique genes expressed in the MEM and not previously described in chinchillas. In almost all cases, the chinchilla cDNA sequences displayed much greater homology to human or other primate genes than with rodent species. Genes associated with leukotriene metabolism were present in both normal and infected MEM. Based on both phylogenetic comparisons and gene expression similarities with humans, chinchilla MEM appears to be an excellent model for the study of middle ear inflammation and infection. The higher degree of sequence similarity between chinchillas and humans compared to chinchillas and rodents was unexpected. The cDNA libraries from normal and infected chinchilla MEM will serve as useful molecular tools in the study of otitis media and should yield important information with respect to middle ear pathogenesis.
Kerschner, Joseph E.; Erdos, Geza; Hu, Fen Ze; Burrows, Amy; Cioffi, Joseph; Khampang, Pawjai; Dahlgren, Margaret; Hayes, Jay; Keefe, Randy; Janto, Benjamin; Post, J. Christopher; Ehrlich, Garth D.
2010-01-01
Objectives We sought to construct and partially characterize complementary DNA (cDNA) libraries prepared from the middle ear mucosa (MEM) of chinchillas to better understand pathogenic aspects of infection and inflammation, particularly with respect to leukotriene biogenesis and response. Methods Chinchilla MEM was harvested from controls and after middle ear inoculation with nontypeable Haemophilus influenzae. RNA was extracted to generate cDNA libraries. Randomly selected clones were subjected to sequence analysis to characterize the libraries and to provide DNA sequence for phylogenetic analyses. Reverse transcription–polymerase chain reaction of the RNA pools was used to generate cDNA sequences corresponding to genes associated with leukotriene biosynthesis and metabolism. Results Sequence analysis of 921 randomly selected clones from the uninfected MEM cDNA library produced approximately 250,000 nucleotides of almost entirely novel sequence data. Searches of the GenBank database with the Basic Local Alignment Search Tool provided for identification of 515 unique genes expressed in the MEM and not previously described in chinchillas. In almost all cases, the chinchilla cDNA sequences displayed much greater homology to human or other primate genes than with rodent species. Genes associated with leukotriene metabolism were present in both normal and infected MEM. Conclusions Based on both phylogenetic comparisons and gene expression similarities with humans, chinchilla MEM appears to be an excellent model for the study of middle ear inflammation and infection. The higher degree of sequence similarity between chinchillas and humans compared to chinchillas and rodents was unexpected. The cDNA libraries from normal and infected chinchilla MEM will serve as useful molecular tools in the study of otitis media and should yield important information with respect to middle ear pathogenesis. PMID:20433028
Aleza, Pablo; Juárez, José; Hernández, María; Pina, José A; Ollitrault, Patrick; Navarro, Luis
2009-08-22
In recent years, the development of structural genomics has generated a growing interest in obtaining haploid plants. The use of homozygous lines presents a significant advantage for the accomplishment of sequencing projects. Commercial citrus species are characterized by high heterozygosity, making it difficult to assemble large genome sequences. Thus, the International Citrus Genomic Consortium (ICGC) decided to establish a reference whole citrus genome sequence from a homozygous plant. Due to the existence of important molecular resources and previous success in obtaining haploid clementine plants, haploid clementine was selected as the target for the implementation of the reference whole genome citrus sequence. To obtain haploid clementine lines we used the technique of in situ gynogenesis induced by irradiated pollen. Flow cytometry, chromosome counts and SSR marker (Simple Sequence Repeats) analysis facilitated the identification of six different haploid lines (2n = x = 9), one aneuploid line (2n = 2x+4 = 22) and one doubled haploid plant (2n = 2x = 18) of 'Clemenules' clementine. One of the haploids, obtained directly from an original haploid embryo, grew vigorously and produced flowers after four years. This is the first haploid plant of clementine that has bloomed and we have, for the first time, characterized the histology of haploid and diploid flowers of clementine. Additionally a double haploid plant was obtained spontaneously from this haploid line. The first haploid plant of 'Clemenules' clementine produced directly by germination of a haploid embryo, which grew vigorously and produced flowers, has been obtained in this work. This haploid line has been selected and it is being used by the ICGC to establish the reference sequence of the nuclear genome of citrus.
GALAVANI, Hossein; GHOLIZADEH, Saber; HAZRATI TAPPEH, Khosrow
2016-01-01
Background: Fascioliasis, caused by Fasciola hepatica and F. gigantica, has medical and economic importance in the world. Molecular approaches comparing traditional methods using for identification and characterization of Fasciola spp. are precise and reliable. The aims of current study were molecular characterization of Fasciola spp. in West Azerbaijan Province, Iran and then comparative analysis of them using GenBank sequences. Methods: A total number of 580 isolates were collected from different hosts in five cities of West Azerbaijan Province, in 2014 from 90 slaughtered cattle (n=50) and sheep (n=40). After morphological identification and DNA extraction, designing specific primer were used to amplification of ITS1, 5.8s and ITS2 regions, 50 samples were conducted to sequence, randomly. Result: Using morphometric characters 99.14% and 0.86% of isolates identified as F. hepatica and F. gigantica, respectively. PCR amplification of 1081 bp fragment and sequencing result showed 100% similarity with F. hepatica in ITS1 (428 bp), 5.8s (158 bp), and ITS2 (366 bp) regions. Sequence comparison among current study sequences and GenBank data showed 98% identity with 11 nucleotide mismatches. However, in phylogenetic tree F. hepatica sequences of West Azerbaijan Province, Iran, were in a close relationship with Iranian, Asian, and African isolates. Conclusions: Only F. hepatica species is distributed among sheep and cattle in West Azerbaijan Province Iran. However, 5 and 6 bp variation in ITS1 and ITS2 regions, respectively, is not enough to separate of Fasciola spp. Therefore, more studies are essential for designing new molecular markers to correct species identification. PMID:27095969
Kalamatianos, T; du Toit, L; Hrabovszky, E; Kalló, I; Marsh, P J; Bennett, N C; Coen, C W
2005-05-01
Regulation of pituitary gonadotrophins by the decapeptide gonadotrophin-releasing hormone 1 (GnRH1) is crucial for the development and maintenance of reproductive functions. A common amino acid sequence for this decapeptide, designated as 'mammalian' GnRH, has been identified in all mammals thus far investigated with the exception of the guinea pig, in which there are two amino acid substitutions. Among hystricognath rodents, the members of the family Bathyergidae regulate reproduction in response to diverse cues. Thus, highveld mole-rats (Cryptomys hottentotus pretoriae) are social bathyergids in which breeding is restricted to a particular season in the dominant female, but continuously suppressed in subordinate colony members. Elucidation of reproductive control in these animals will be facilitated by characterization of their GnRH1 gene. A partial sequence of GnRH1 precursor cDNA was isolated and characterized. Comparative analysis revealed the highest degree of identity (86%) to guinea pig GnRH1 precursor mRNA. Nevertheless, the deduced amino acid sequence of the mole-rat decapeptide is identical to the 'mammalian' sequence rather than that of guinea pigs. Successful detection of GnRH1-synthesizing neurones using either a guinea pig GnRH1 riboprobe or an antibody against the 'mammalian' decapeptide is consistent with the guinea pig-like sequence for the precursor and the classic 'mammalian' form for the decapeptide. The high degree of identity in the GnRH1 precursor sequence between this Old World mole-rat and the New World guinea pig is consistent with the theory that caviomorphs and phiomorphs originated from a common ancestral line in the Palaeocene to mid Eocene, some 63-45 million years ago.
Concatenated shift registers generating maximally spaced phase shifts of PN-sequences
NASA Technical Reports Server (NTRS)
Hurd, W. J.; Welch, L. R.
1977-01-01
A large class of linearly concatenated shift registers is shown to generate approximately maximally spaced phase shifts of pn-sequences, for use in pseudorandom number generation. A constructive method is presented for finding members of this class, for almost all degrees for which primitive trinomials exist. The sequences which result are not normally characterized by trinomial recursions, which is desirable since trinomial sequences can have some undesirable randomness properties.
Reiman, Mario; Laan, Maris; Rull, Kristiina; Sõber, Siim
2017-08-01
RNA degradation is a ubiquitous process that occurs in living and dead cells, as well as during handling and storage of extracted RNA. Reduced RNA quality caused by degradation is an established source of uncertainty for all RNA-based gene expression quantification techniques. RNA sequencing is an increasingly preferred method for transcriptome analyses, and dependence of its results on input RNA integrity is of significant practical importance. This study aimed to characterize the effects of varying input RNA integrity [estimated as RNA integrity number (RIN)] on transcript level estimates and delineate the characteristic differences between transcripts that differ in degradation rate. The study used ribodepleted total RNA sequencing data from a real-life clinically collected set ( n = 32) of human solid tissue (placenta) samples. RIN-dependent alterations in gene expression profiles were quantified by using DESeq2 software. Our results indicate that small differences in RNA integrity affect gene expression quantification by introducing a moderate and pervasive bias in expression level estimates that significantly affected 8.1% of studied genes. The rapidly degrading transcript pool was enriched in pseudogenes, short noncoding RNAs, and transcripts with extended 3' untranslated regions. Typical slowly degrading transcripts (median length, 2389 nt) represented protein coding genes with 4-10 exons and high guanine-cytosine content.-Reiman, M., Laan, M., Rull, K., Sõber, S. Effects of RNA integrity on transcript quantification by total RNA sequencing of clinically collected human placental samples. © FASEB.
Ascarrunz, F G; Kisley, M A; Flach, K A; Hamilton, R W; MacGregor, R J
1995-07-01
This paper applies a general mathematical system for characterizing and scaling functional connectivity and information flow across the diffuse (EC) and discrete (DG) input junctions to the CA3 hippocampus. Both gross connectivity and coordinated multiunit informational firing patterns are quantitatively characterized in terms of 32 defining parameters interrelated by 17 equations, and then scaled down according to rules for uniformly proportional scaling and for partial representation. The diffuse EC-CA3 junction is shown to be uniformly scalable with realistic representation of both essential spatiotemporal cooperativity and coordinated firing patterns down to populations of a few hundred neurons. Scaling of the discrete DG-CA3 junction can be effected with a two-step process, which necessarily deviates from uniform proportionality but nonetheless produces a valuable and readily interpretable reduced model, also utilizing a few hundred neurons in the receiving population. Partial representation produces a reduced model of only a portion of the full network where each model neuron corresponds directly to a biological neuron. The mathematical analysis illustrated here shows that although omissions and distortions are inescapable in such an application, satisfactorily complete and accurate models the size of pattern modules are possible. Finally, the mathematical characterization of these junctions generates a theory which sees the DG as a definer of the fine structure of embedded traces in the hippocampus and entire coordinated patterns of sequences of 14-cell links in CA3 as triggered by the firing of sequences of individual neurons in DG.
Benamrouche, N; Hasnaoui, S; Badell, E; Guettou, B; Lazri, M; Guiso, N; Rahal, K
2016-12-01
The objectives of this study were to undertake the microbiological and molecular characterization of Corynebacterium diphtheriae isolates collected in Algeria during epidemic and post-epidemic periods between 1992 and 2015. Microbiological characterization includes the determination of biotype and toxigenicity status using phenotypic and genotypic methods. Antimicrobial susceptibility was determined by the E-test method. Molecular characterization was performed by multi-locus sequence typing. In total, there were 157 cases of C. diphtheriae isolates, 127 in patients with respiratory diphtheria and 30 with ozena. Isolates with a mitis biotype were predominant (122 out of 157; 77.7%) followed by belfanti (28 out of 157; 17.8%) and gravis biotype (seven out of 157; 4.5%). Toxigenic isolates were predominant in the period 1992-2006 (74 out of 134) whereas in the period 2007-2015, only non-toxigenic isolates circulated (23 out of 23). All 157 isolates were susceptible to erythromycin, gentamicin, vancomycin and cotrimoxazole. Reduced susceptibility to penicillin G, cefotaxime, tetracycline and chloramphenicol was detected in 90 (57.3%), 88 (56.1%), 112 (71.3%) and 90 (57.3%) isolates, respectively. Multi-locus sequence typing analysis indicates that sequence type 116 (ST-116) was the most frequent, with 65 out of 100 isolates analysed, in particular during the epidemic period 1992-1999 (57 out of 65 isolates). In the post-epidemic period, 2000-2015, 13 different sequence types were isolated. All belfanti isolates (ten out of 100 isolates) belonged to closely related sequence types grouped in a phylogenetically distinct eBurst group and were collected exclusively in ozena cases. In conclusion, the epidemic period was associated with ST-116 while the post-epidemic period was characterized by more diversity. Belfanti isolates are grouped in a phylogenetically distinct clonal complex. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
2012-01-01
Background The feline genome is valuable to the veterinary and model organism genomics communities because the cat is an obligate carnivore and a model for endangered felids. The initial public release of the Felis catus genome assembly provided a framework for investigating the genomic basis of feline biology. However, the entire set of protein coding genes has not been elucidated. Results We identified and characterized 1227 protein coding feline sequences, of which 913 map to public sequences and 314 are novel. These sequences have been deposited into NCBI's genbank database and complement public genomic resources by providing additional protein coding sequences that fill in some of the gaps in the feline genome assembly. Through functional and comparative genomic analyses, we gained an understanding of the role of these sequences in feline development, nutrition and health. Specifically, we identified 104 orthologs of human genes associated with Mendelian disorders. We detected negative selection within sequences with gene ontology annotations associated with intracellular trafficking, cytoskeleton and muscle functions. We detected relatively less negative selection on protein sequences encoding extracellular networks, apoptotic pathways and mitochondrial gene ontology annotations. Additionally, we characterized feline cDNA sequences that have mouse orthologs associated with clinical, nutritional and developmental phenotypes. Together, this analysis provides an overview of the value of our cDNA sequences and enhances our understanding of how the feline genome is similar to, and different from other mammalian genomes. Conclusions The cDNA sequences reported here expand existing feline genomic resources by providing high-quality sequences annotated with comparative genomic information providing functional, clinical, nutritional and orthologous gene information. PMID:22257742
Efficient search, mapping, and optimization of multi-protein genetic systems in diverse bacteria
Farasat, Iman; Kushwaha, Manish; Collens, Jason; Easterbrook, Michael; Guido, Matthew; Salis, Howard M
2014-01-01
Developing predictive models of multi-protein genetic systems to understand and optimize their behavior remains a combinatorial challenge, particularly when measurement throughput is limited. We developed a computational approach to build predictive models and identify optimal sequences and expression levels, while circumventing combinatorial explosion. Maximally informative genetic system variants were first designed by the RBS Library Calculator, an algorithm to design sequences for efficiently searching a multi-protein expression space across a > 10,000-fold range with tailored search parameters and well-predicted translation rates. We validated the algorithm's predictions by characterizing 646 genetic system variants, encoded in plasmids and genomes, expressed in six gram-positive and gram-negative bacterial hosts. We then combined the search algorithm with system-level kinetic modeling, requiring the construction and characterization of 73 variants to build a sequence-expression-activity map (SEAMAP) for a biosynthesis pathway. Using model predictions, we designed and characterized 47 additional pathway variants to navigate its activity space, find optimal expression regions with desired activity response curves, and relieve rate-limiting steps in metabolism. Creating sequence-expression-activity maps accelerates the optimization of many protein systems and allows previous measurements to quantitatively inform future designs. PMID:24952589
Genomic deletion of a long-range bone enhancer misregulatessclerostin in Van Buchem disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loots, Gabriela G.; Kneissel, Michaela; Keller, Hansjoerg
2005-04-15
Mutations in distant regulatory elements can negatively impact human development and health, yet due to the difficulty of detecting these critical sequences we predominantly focus on coding sequences for diagnostic purposes. We have undertaken a comparative sequence-based approach to characterize a large noncoding region deleted in patients affected by Van Buchem disease (VB), a severe sclerosing bone dysplasia. Using BAC recombination and transgenesis we characterized the expression of human sclerostin (sost) from normal (hSOSTwt) or Van Buchem(hSOSTvb D) alleles. Only the hSOSTwt allele faithfully expressed high levels of human sost in the adult bone and impacted bone metabolism, consistent withmore » the model that the VB noncoding deletion removes a sost specific regulatory element. By exploiting cross-species sequence comparisons with in vitro and in vivo enhancer assays we were able to identify a candidate enhancer element that drives human sost expression in osteoblast-like cell lines in vitro and in the skeletal anlage of the E14.5 mouse embryo, and discovered a novel function for sclerostin during limb development. Our approach represents a framework for characterizing distant regulatory elements associated with abnormal human phenotypes.« less
Population Structure in Nontypeable Haemophilus influenzae
LaCross, Nathan C.; Marrs, Carl F.; Gilsdorf, Janet R.
2013-01-01
Nontypeable Haemophilus influenzae (NTHi) frequently colonize the human pharynx asymptomatically, and are an important cause of otitis media in children. Past studies have identified typeable H. influenzae as being clonal, but the population structure of NTHi has not been extensively characterized. The research presented here investigated the diversity and population structure in a well-characterized collection of NTHi isolated from the middle ears of children with otitis media or the pharynges of healthy children in three disparate geographic regions. Multilocus sequence typing identified 109 unique sequence types among 170 commensal and otitis media-associated NTHi isolates from Finland, Israel, and the US. The largest clonal complex contained only five sequence types, indicating a high level of genetic diversity. The eBURST v3, ClonalFrame 1.1, and structure 2.3.3 programs were used to further characterize diversity and population structure from the sequence typing data. Little clustering was apparent by either disease state (otitis media or commensalism) or geography in the ClonalFrame phylogeny. Population structure was clearly evident, with support for eight populations when all 170 isolates were analyzed. Interestingly, one population contained only commensal isolates, while two others consisted solely of otitis media isolates, suggesting associations between population structure and disease. PMID:23266487
de Miranda, R L; O'Dwyer, L H; de Castro, J R; Metzger, B; Rubini, A S; Mundim, A V; Eyal, O; Talmi-Frank, D; Cury, M C; Baneth, G
2014-10-01
The objective of this survey was to investigate the prevalence of Hepatozoon infection in dogs in the rural and urban areas of Uberlândia, Brazil by PCR and molecular characterization. DNA was obtained from blood samples collected from 346 local dogs from both genders and various ages. Seventeen PCR products from positive blood samples of urban dogs and 13 from the rural dogs were sequenced. Partial sequences of the 18S rRNA gene indicated that all 30 dogs were infected with Hepatozoon canis similar in sequence to H. canis from southern Europe. Four local dog sequences were submitted to GenBank (accessions JN835188; KF692038; KF692039; KF692040). This study indicates that H. canis is the cause of canine hepatozoonosis in Uberlândia and that infection is similarly widespread in rural and urban dogs. Copyright © 2014. Published by Elsevier Ltd.
Consensus statement: Virus taxonomy in the age of metagenomics.
Simmonds, Peter; Adams, Mike J; Benkő, Mária; Breitbart, Mya; Brister, J Rodney; Carstens, Eric B; Davison, Andrew J; Delwart, Eric; Gorbalenya, Alexander E; Harrach, Balázs; Hull, Roger; King, Andrew M Q; Koonin, Eugene V; Krupovic, Mart; Kuhn, Jens H; Lefkowitz, Elliot J; Nibert, Max L; Orton, Richard; Roossinck, Marilyn J; Sabanadzovic, Sead; Sullivan, Matthew B; Suttle, Curtis A; Tesh, Robert B; van der Vlugt, René A; Varsani, Arvind; Zerbini, F Murilo
2017-03-01
The number and diversity of viral sequences that are identified in metagenomic data far exceeds that of experimentally characterized virus isolates. In a recent workshop, a panel of experts discussed the proposal that, with appropriate quality control, viruses that are known only from metagenomic data can, and should be, incorporated into the official classification scheme of the International Committee on Taxonomy of Viruses (ICTV). Although a taxonomy that is based on metagenomic sequence data alone represents a substantial departure from the traditional reliance on phenotypic properties, the development of a robust framework for sequence-based virus taxonomy is indispensable for the comprehensive characterization of the global virome. In this Consensus Statement article, we consider the rationale for why metagenomic sequence data should, and how it can, be incorporated into the ICTV taxonomy, and present proposals that have been endorsed by the Executive Committee of the ICTV.
Aguiar, Daniel M.; Hagiwara, Mitika K.; Labruna, Marcelo B.
2008-01-01
An Ehrlichia canis isolate was obtained from an naturally infected dog exhibiting clinical signs of ehrlichiosis in São Paulo Municipality, state of São Paulo, Brazil. The isolate was characterized by PCR and DNA sequencing of portions of the ehrlichial genes dsb, 16SrRNA, and p28. Partial dsb and 16S rRNA sequences were identical to three and five other E. canis strains, respectively, from different countries and continents (including North America, Africa, Asia and Europe). Conversely, the p28 partial sequence for this E. canis (São Paulo) differed by 1, 2, and 2 nucleotides from the corresponding sequences of the E. canis strains Jake (from USA), Oklahoma (USA), and VHE (Venezuela), respectively. The results in this study indicate that E. canis is the only recognized Ehrlichia species infecting dogs in Brazil. PMID:24031251
A TALE-inspired computational screen for proteins that contain approximate tandem repeats.
Perycz, Malgorzata; Krwawicz, Joanna; Bochtler, Matthias
2017-01-01
TAL (transcription activator-like) effectors (TALEs) are bacterial proteins that are secreted from bacteria to plant cells to act as transcriptional activators. TALEs and related proteins (RipTALs, BurrH, MOrTL1 and MOrTL2) contain approximate tandem repeats that differ in conserved positions that define specificity. Using PERL, we screened ~47 million protein sequences for TALE-like architecture characterized by approximate tandem repeats (between 30 and 43 amino acids in length) and sequence variability in conserved positions, without requiring sequence similarity to TALEs. Candidate proteins were scored according to their propensity for nuclear localization, secondary structure, repeat sequence complexity, as well as covariation and predicted structural proximity of variable residues. Biological context was tentatively inferred from co-occurrence of other domains and interactome predictions. Approximate repeats with TALE-like features that merit experimental characterization were found in a protein of chestnut blight fungus, a eukaryotic plant pathogen.
A TALE-inspired computational screen for proteins that contain approximate tandem repeats
Krwawicz, Joanna
2017-01-01
TAL (transcription activator-like) effectors (TALEs) are bacterial proteins that are secreted from bacteria to plant cells to act as transcriptional activators. TALEs and related proteins (RipTALs, BurrH, MOrTL1 and MOrTL2) contain approximate tandem repeats that differ in conserved positions that define specificity. Using PERL, we screened ~47 million protein sequences for TALE-like architecture characterized by approximate tandem repeats (between 30 and 43 amino acids in length) and sequence variability in conserved positions, without requiring sequence similarity to TALEs. Candidate proteins were scored according to their propensity for nuclear localization, secondary structure, repeat sequence complexity, as well as covariation and predicted structural proximity of variable residues. Biological context was tentatively inferred from co-occurrence of other domains and interactome predictions. Approximate repeats with TALE-like features that merit experimental characterization were found in a protein of chestnut blight fungus, a eukaryotic plant pathogen. PMID:28617832
Utilizing Gene Tree Variation to Identify Candidate Effector Genes in Zymoseptoria tritici
McDonald, Megan C.; McGinness, Lachlan; Hane, James K.; Williams, Angela H.; Milgate, Andrew; Solomon, Peter S.
2016-01-01
Zymoseptoria tritici is a host-specific, necrotrophic pathogen of wheat. Infection by Z. tritici is characterized by its extended latent period, which typically lasts 2 wks, and is followed by extensive host cell death, and rapid proliferation of fungal biomass. This work characterizes the level of genomic variation in 13 isolates, for which we have measured virulence on 11 wheat cultivars with differential resistance genes. Between the reference isolate, IPO323, and the 13 Australian isolates we identified over 800,000 single nucleotide polymorphisms, of which ∼10% had an effect on the coding regions of the genome. Furthermore, we identified over 1700 probable presence/absence polymorphisms in genes across the Australian isolates using de novo assembly. Finally, we developed a gene tree sorting method that quickly identifies groups of isolates within a single gene alignment whose sequence haplotypes correspond with virulence scores on a single wheat cultivar. Using this method, we have identified < 100 candidate effector genes whose gene sequence correlates with virulence toward a wheat cultivar carrying a major resistance gene. PMID:26837952
Characterization of an Equine α-S2-Casein Variant Due to a 1.3 kb Deletion Spanning Two Coding Exons
Brinkmann, Julia; Koudelka, Tomas; Keppler, Julia K.; Tholey, Andreas; Schwarz, Karin; Thaller, Georg; Tetens, Jens
2015-01-01
The production and consumption of mare’s milk in Europe has gained importance, mainly based on positive health effects and a lower allergenic potential as compared to cows’ milk. The allergenicity of milk is to a certain extent affected by different genetic variants. In classical dairy species, much research has been conducted into the genetic variability of milk proteins, but the knowledge in horses is scarce. Here, we characterize two major forms of equine αS2-casein arising from genomic 1.3 kb in-frame deletion involving two coding exons, one of which represents an equid specific duplication. Findings at the DNA-level have been verified by cDNA sequencing from horse milk of mares with different genotypes. At the protein-level, we were able to show by SDS-page and in-gel digestion with subsequent LC-MS analysis that both proteins are actually expressed. The comparison with published sequences of other equids revealed that the deletion has probably occurred before the ancestor of present-day asses and zebras diverged from the horse lineage. PMID:26444874
NASA Astrophysics Data System (ADS)
Péron, Mael; Jacquemin, Frédéric; Casari, Pascal; Orange, Gilles; Bailleul, Jean-Luc; Boyard, Nicolas
2017-10-01
The prediction of process induced stresses during the cooling of thermoplastic composites still represents a challenge for the scientific community. However, a precise determination of these stresses is necessary in order to optimize the process conditions and thus lower the stresses effects on the final part health. A model is presented here, that permits the estimation of residual stresses during cooling. It relies on the nonlinear laminate theory, which has been adapted to arbitrary layup sequences. The developed model takes into account the heat transfers through the thickness of the laminate, together with the crystallization kinetics. The development of the composite mechanical properties during cooling is addressed by an incremental linear elastic constitutive law, which also considers thermal and crystallization strains. In order to feed the aforementioned model, a glass fiber and PA6.6 matrix unidirectional (UD) composite has been characterized. This work finally focuses on the identification of the material and process related parameters that lower the residual stresses level, including the ply sequence, the fiber volume fraction and the cooling rate.
Mukherjee, Koel; Pandey, Dev Mani; Vidyarthi, Ambarish Saran
2015-02-06
Gaining access to sequence and structure information of telomere binding proteins helps in understanding the essential biological processes involve in conserved sequence specific interaction between DNA and the proteins. Rice telomere binding protein (RTBP1) and Nicotiana glutinosa telomere repeat binding factor (NgTRF1) are helix turn helix motif type of proteins that plays role in telomeric DNA protection and length regulation. Both the proteins share same type of domain but till now there is very less communication on the in silico studies of these complete proteins.Here we intend to do a comparative study between two proteins through modeling of the complete proteins, physiochemical characterization, MD simulation and DNA-protein docking. I-TASSER and CLC protein work bench was performed to find out the protein 3D structure as well as the different parameters to characterize the proteins. MD simulation was completed by GROMOS forcefield of GROMACS for 10 ns of time stretch. The simulated 3D structures were docked with template DNA (3D DNA modeled through 3D-DART) of TTTAGGG conserved sequence motif using HADDOCK web server.Digging up all the facts about the proteins it was reveled that around 120 amino acids in the tail part was showing a good sequence similarity between the proteins. Molecular modeling, sequence characterization and secondary structure prediction also indicates the similarity between the protein's structure and sequence. The result of MD simulation highlights on the RMSD, RMSF, Rg, PCA and Energy plots which also conveys the similar type of motional behavior between them. The best complex formation for both the proteins in docking result also indicates for the first interaction site which is mainly the helix3 region of the DNA binding domain. The overall computational analysis reveals that RTBP1 and NgTRF1 proteins display good amount of similarity in their physicochemical properties, structure, dynamics and binding mode.
Mukherjee, Koel; Pandey, Dev Mani; Vidyarthi, Ambarish Saran
2015-09-01
Gaining access to sequence and structure information of telomere-binding proteins helps in understanding the essential biological processes involve in conserved sequence-specific interaction between DNA and the proteins. Rice telomere-binding protein (RTBP1) and Nicotiana glutinosa telomere repeat binding factor (NgTRF1) are helix-turn-helix motif type of proteins that plays role in telomeric DNA protection and length regulation. Both the proteins share same type of domain, but till now there is very less communication on the in silico studies of these complete proteins. Here we intend to do a comparative study between two proteins through modeling of the complete proteins, physiochemical characterization, MD simulation and DNA-protein docking. I-TASSER and CLC protein work bench was performed to find out the protein 3D structure as well as the different parameters to characterize the proteins. MD simulation was completed by GROMOS forcefield of GROMACS for 10 ns of time stretch. The simulated 3D structures were docked with template DNA (3D DNA modeled through 3D-DART) of TTTAGGG conserved sequence motif using HADDOCK Web server. By digging up all the facts about the proteins, it was revealed that around 120 amino acids in the tail part were showing a good sequence similarity between the proteins. Molecular modeling, sequence characterization and secondary structure prediction also indicate the similarity between the protein's structure and sequence. The result of MD simulation highlights on the RMSD, RMSF, Rg, PCA and energy plots which also conveys the similar type of motional behavior between them. The best complex formation for both the proteins in docking result also indicates for the first interaction site which is mainly the helix3 region of the DNA-binding domain. The overall computational analysis reveals that RTBP1 and NgTRF1 proteins display good amount of similarity in their physicochemical properties, structure, dynamics and binding mode.
DNA polymerase preference determines PCR priming efficiency.
Pan, Wenjing; Byrne-Steele, Miranda; Wang, Chunlin; Lu, Stanley; Clemmons, Scott; Zahorchak, Robert J; Han, Jian
2014-01-30
Polymerase chain reaction (PCR) is one of the most important developments in modern biotechnology. However, PCR is known to introduce biases, especially during multiplex reactions. Recent studies have implicated the DNA polymerase as the primary source of bias, particularly initiation of polymerization on the template strand. In our study, amplification from a synthetic library containing a 12 nucleotide random portion was used to provide an in-depth characterization of DNA polymerase priming bias. The synthetic library was amplified with three commercially available DNA polymerases using an anchored primer with a random 3' hexamer end. After normalization, the next generation sequencing (NGS) results of the amplified libraries were directly compared to the unamplified synthetic library. Here, high throughput sequencing was used to systematically demonstrate and characterize DNA polymerase priming bias. We demonstrate that certain sequence motifs are preferred over others as primers where the six nucleotide sequences at the 3' end of the primer, as well as the sequences four base pairs downstream of the priming site, may influence priming efficiencies. DNA polymerases in the same family from two different commercial vendors prefer similar motifs, while another commercially available enzyme from a different DNA polymerase family prefers different motifs. Furthermore, the preferred priming motifs are GC-rich. The DNA polymerase preference for certain sequence motifs was verified by amplification from single-primer templates. We incorporated the observed DNA polymerase preference into a primer-design program that guides the placement of the primer to an optimal location on the template. DNA polymerase priming bias was characterized using a synthetic library amplification system and NGS. The characterization of DNA polymerase priming bias was then utilized to guide the primer-design process and demonstrate varying amplification efficiencies among three commercially available DNA polymerases. The results suggest that the interaction of the DNA polymerase with the primer:template junction during the initiation of DNA polymerization is very important in terms of overall amplification bias and has broader implications for both the primer design process and multiplex PCR.
Duraisamy, Raja; Rota, Paul A; Palani, Gunasekaran; Elango, Varalakshmi; Sambasivam, Mohana; Lowe, Luis; Lopareva, Elena; Ramamurty, Nalini
2012-02-01
Molecular characterization of measles viruses is a valuable tool for measuring the effectiveness of measles control and elimination programmes. WHO recommends that virological surveillance be conducted during all phases of measles control to document circulation of indigenous strains and trace future importation. This report describes the genetic characterization of wild type measles viruses from Tamil Nadu, India isolated between January 2005 and January 2006. In the study, 304 suspected measles cases (292 from 56 outbreaks and 12 sporadic cases) were investigated. Blood samples were collected from suspected measles outbreaks and 11 suspected sporadic cases and tested for the presence of measles and rubella specific IgM. Based on serological results, 53 outbreaks were confirmed as measles, 2 as a combination of measles and rubella, and 1 negative for both. Eight sporadic cases were confirmed as measles and one as rubella. Throat swab and urine samples were collected for virus isolation and 28 isolates were obtained. Sequencing and analysis showed that 3 isolates belonged to genotype D4 and 25 to genotype D8. Comparison of the genotype D8 sequences from Tamil Nadu with previously reported genotype D8 sequences from India and abroad showed six distinct clusters with Tamil Nadu strains forming two clusters. This study has established baseline molecular data and is the first report that describes genetic diversity of circulating measles strains in Tamil Nadu, a state in India. D8 has multiple lineages and this has been linked with importation of measles into the USA and UK. Copyright © 2011 Wiley Periodicals, Inc.
An Assessment of Cumulative Axial and Torsional Fatigue in a Cobalt-Base Superalloy
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh; Bonacuse, Peter J.
2010-01-01
Cumulative fatigue under axial and torsional loading conditions can include both load-order (higMow and low/high) as well as load-type sequence (axial/torsional and torsional/axial) effects. Previously reported experimental studies on a cobalt-base superalloy, Haynes 188 at 538 C, addressed these effects. These studies characterized the cumulative axial and torsional fatigue behavior under high amplitude followed by low amplitude (Kalluri, S. and Bonacuse, P. J., "Cumulative Axial and Torsional Fatigue: An Investigation of Load-Type Sequance Effects," in Multiaxial Fatigue and Deformation: Testing and Prediction, ASTM STP 1387, S. Kalluri, and P. J. Bonacuse, Eds., American Society for Testing and Materials, West Conshohocken, PA, 2000, pp. 281-301) and low amplitude followed by high amplitude (Bonacuse, P. and Kalluri, S. "Sequenced Axial and Torsional Cumulative Fatigue: Low Amplitude Followed by High Amplitude Loading," Biaxial/Multiaxial Fatigue and Fracture, ESIS Publication 31, A. Carpinteri, M. De Freitas, and A. Spagnoli, Eds., Elsevier, New York, 2003, pp. 165-182) conditions. In both studies, experiments with the following four load-type sequences were performed: (a) axial/axial, (b) torsional/torsional, (c) axial/torsional, and (d) torsional/axial. In this paper, the cumulative axial and torsional fatigue data generated in the two previous studies are combined to generate a comprehensive cumulative fatigue database on both the load-order and load-type sequence effects. This comprehensive database is used to examine applicability of the Palmgren-langer-Miner linear damage rule and a nonlinear damage curve approach for Haynes 188 subjected to the load-order and load-type sequencing described above. Summations of life fractions from the experiments are compared to the predictions from both the linear and nonlinear cumulative fatigue damage approaches. The significance of load-order versus load-type sequence effects for axial and torsional loading conditions is discussed. Possible reasons for the observed differences between the computed and observed summations of cycle fractions are rationalized in terms of the observed ever lutions of cyclic axial and shear stress ranges in the cumulative fatigue tests.
Research Associate | Center for Cancer Research
The Basic Science Program (BSP) at the Frederick National Laboratory for Cancer Research (FNLCR) pursues independent, multidisciplinary research programs in basic or applied molecular biology, immunology, retrovirology, cancer biology or human genetics. As part of the BSP, the Microbiome and Genetics Core (the Core) characterizes microbiomes by next-generation sequencing to determine their composition and variation, as influenced by immune, genetic, and host health factors. The Core provides support across a spectrum of processes, from nucleic acid isolation through bioinformatics and statistical analysis. KEY ROLES/RESPONSIBILITIES The Research Associate II will provide support in the areas of automated isolation, preparation, PCR and sequencing of DNA on next generation platforms (Illumina MiSeq and NextSeq). An opportunity exists to join the Core’s team of highly trained experimentalists and bioinformaticians working to characterize microbiome samples. The following represent requirements of the position: A minimum of five (5) years related of biomedical experience. Experience with high-throughput nucleic acid (DNA/RNA) extraction. Experience in performing PCR amplification (including quantitative real-time PCR). Experience or familiarity with robotic liquid handling protocols (especially on the Eppendorf epMotion 5073 or 5075 platforms). Experience in operating and maintaining benchtop Illumina sequencers (MiSeq and NextSeq). Ability to evaluate experimental quality and to troubleshoot molecular biology protocols. Experience with sample tracking, inventory management and biobanking. Ability to operate and communicate effectively in a team-oriented work environment.
NASA Astrophysics Data System (ADS)
Cawood, Adam J.; Bond, Clare E.
2018-01-01
Stratigraphic influence on structural style and strain distribution in deformed sedimentary sequences is well established, in models of 2D mechanical stratigraphy. In this study we attempt to refine existing models of stratigraphic-structure interaction by examining outcrop scale 3D variations in sedimentary architecture and the effects on subsequent deformation. At Monkstone Point, Pembrokeshire, SW Wales, digital mapping and virtual scanline data from a high resolution virtual outcrop have been combined with field observations, sedimentary logs and thin section analysis. Results show that significant variation in strain partitioning is controlled by changes, at a scale of tens of metres, in sedimentary architecture within Upper Carboniferous fluvio-deltaic deposits. Coupled vs uncoupled deformation of the sequence is defined by the composition and lateral continuity of mechanical units and unit interfaces. Where the sedimentary sequence is characterized by gradational changes in composition and grain size, we find that deformation structures are best characterized by patterns of distributed strain. In contrast, distinct compositional changes vertically and in laterally equivalent deposits results in highly partitioned deformation and strain. The mechanical stratigraphy of the study area is inherently 3D in nature, due to lateral and vertical compositional variability. Consideration should be given to 3D variations in mechanical stratigraphy, such as those outlined here, when predicting subsurface deformation in multi-layers.
George, Susan; Bhasker, Salini; Madhav, Harish; Nair, Archana; Chinnamma, Mohankumar
2014-02-01
Bromelain (BRM) is a defense protein present in the fruit and stem of pineapple (Ananas comosus) and it is grouped as a cysteine protease enzyme with diversified medicinal uses. Based on its therapeutic applications, bromelain has got sufficient attention in pharmaceutical industries. In the present study, the full coding gene of bromelain in pineapple stem (1,093 bp) was amplified by RT-PCR. The PCR product was cloned, sequenced, and characterized. The sequence analysis of the gene revealed the single nucleotide polymorphism and its phylogenetic relatedness. The peptide sequence deduced from the gene showed the amino acid variations, physicochemical properties and secondary and tertiary structural features of the protein. The full BRM gene was transformed to prokaryotic vector pET32b and expressed in Escherichia coli BL21 DE3pLysS host cells successfully. The identity of the recombinant bromelain (rBRM) protein was confirmed by Western blot analysis using anti-BRM-rabbit IgG antibody. The activity of recombinant bromelain compared with purified native bromelain was determined by protease assay. The inhibitory effect of rBRM compared with native BRM in the growth of Gram-positive and Gram-negative strains of Streptococcus agalactiae and Escherichia coli O111 was evident from the antibacterial sensitivity test. To the best of our knowledge, this is the first report showing the bactericidal property of rBRM expressed in a prokaryotic system.
Identification and characterization of microRNAs in Phaseolus vulgaris by high-throughput sequencing
2012-01-01
Background MicroRNAs (miRNAs) are endogenously encoded small RNAs that post-transcriptionally regulate gene expression. MiRNAs play essential roles in almost all plant biological processes. Currently, few miRNAs have been identified in the model food legume Phaseolus vulgaris (common bean). Recent advances in next generation sequencing technologies have allowed the identification of conserved and novel miRNAs in many plant species. Here, we used Illumina's sequencing by synthesis (SBS) technology to identify and characterize the miRNA population of Phaseolus vulgaris. Results Small RNA libraries were generated from roots, flowers, leaves, and seedlings of P. vulgaris. Based on similarity to previously reported plant miRNAs,114 miRNAs belonging to 33 conserved miRNA families were identified. Stem-loop precursors and target gene sequences for several conserved common bean miRNAs were determined from publicly available databases. Less conserved miRNA families and species-specific common bean miRNA isoforms were also characterized. Moreover, novel miRNAs based on the small RNAs were found and their potential precursors were predicted. In addition, new target candidates for novel and conserved miRNAs were proposed. Finally, we studied organ-specific miRNA family expression levels through miRNA read frequencies. Conclusions This work represents the first massive-scale RNA sequencing study performed in Phaseolus vulgaris to identify and characterize its miRNA population. It significantly increases the number of miRNAs, precursors, and targets identified in this agronomically important species. The miRNA expression analysis provides a foundation for understanding common bean miRNA organ-specific expression patterns. The present study offers an expanded picture of P. vulgaris miRNAs in relation to those of other legumes. PMID:22394504
SCMPSP: Prediction and characterization of photosynthetic proteins based on a scoring card method.
Vasylenko, Tamara; Liou, Yi-Fan; Chen, Hong-An; Charoenkwan, Phasit; Huang, Hui-Ling; Ho, Shinn-Ying
2015-01-01
Photosynthetic proteins (PSPs) greatly differ in their structure and function as they are involved in numerous subprocesses that take place inside an organelle called a chloroplast. Few studies predict PSPs from sequences due to their high variety of sequences and structues. This work aims to predict and characterize PSPs by establishing the datasets of PSP and non-PSP sequences and developing prediction methods. A novel bioinformatics method of predicting and characterizing PSPs based on scoring card method (SCMPSP) was used. First, a dataset consisting of 649 PSPs was established by using a Gene Ontology term GO:0015979 and 649 non-PSPs from the SwissProt database with sequence identity <= 25%.- Several prediction methods are presented based on support vector machine (SVM), decision tree J48, Bayes, BLAST, and SCM. The SVM method using dipeptide features-performed well and yielded - a test accuracy of 72.31%. The SCMPSP method uses the estimated propensity scores of 400 dipeptides - as PSPs and has a test accuracy of 71.54%, which is comparable to that of the SVM method. The derived propensity scores of 20 amino acids were further used to identify informative physicochemical properties for characterizing PSPs. The analytical results reveal the following four characteristics of PSPs: 1) PSPs favour hydrophobic side chain amino acids; 2) PSPs are composed of the amino acids prone to form helices in membrane environments; 3) PSPs have low interaction with water; and 4) PSPs prefer to be composed of the amino acids of electron-reactive side chains. The SCMPSP method not only estimates the propensity of a sequence to be PSPs, it also discovers characteristics that further improve understanding of PSPs. The SCMPSP source code and the datasets used in this study are available at http://iclab.life.nctu.edu.tw/SCMPSP/.
The biological features and genetic diversity of novel fish rhabdovirus isolates in China.
Fu, Xiaozhe; Lin, Qiang; Liang, Hongru; Liu, Lihui; Huang, Zhibin; Li, Ningqiu; Su, Jianguo
2017-09-01
The Rhabdoviridae is a diverse family of negative-sense single-stranded RNA viruses which infects mammals, birds, reptiles, fish, insects and plants. Herein, we reported the isolation and characterization of 6 novel viruses from diseased fish collected from China including SCRV-QY, SCRV-SS, SCRV-GM, CmRV-FS, MsRV-SS, OmbRV-JM. The typical clinical symptom of diseased fish was hemorrhaging. Efficient propagation of these isolates in a Chinese perch brain cell line was determined by means of observation of cytopathic effect, RT-PCR and electron microscopy. Sequence alignment and phylogenetic analysis of the complete G protein sequences revealed that these isolates were clustered into one monophyletic lineage belonging to the species Siniperca chuatsi rhabdovirus.
Stüken, Anke; Haverkamp, Thomas H A; Dirven, Hubert A A M; Gilfillan, Gregor D; Leithaug, Magnus; Lund, Vidar
2018-03-20
Copper-silver ionization (CSI) is an in-house water disinfection method primarily installed to eradicate Legionella bacteria from drinking water distribution systems (DWDS). Its effect on the abundance of culturable Legionella and Legionella infections has been documented in several studies. However, the effect of CSI on other bacteria in DWDS is largely unknown. To investigate these effects, we characterized drinking water and biofilm communities in a hospital using CSI, in a neighboring building without CSI, and in treated drinking water at the local water treatment plant. We used 16S rDNA amplicon sequencing and Legionella culturing. The sequencing results revealed three distinct water groups: (1) cold-water samples (no CSI), (2) warm-water samples at the research institute (no CSI), and (3) warm-water samples at the hospital (after CSI; ANOSIM, p < 0.001). Differences between the biofilm communities exposed and not exposed to CSI were less clear (ANOSIM, p = 0.022). No Legionella were cultured, but limited numbers of Legionella sequences were recovered from all 25 water samples (0.2-1.4% relative abundance). The clustering pattern indicated local selection of Legionella types (Kruskal-Wallis, p < 0.001). Furthermore, one unclassified Betaproteobacteria OTU was highly enriched in CSI-treated warm water samples at the hospital (Kruskal-Wallis, p < 0.001).
Unexpected substrate specificity of T4 DNA ligase revealed by in vitro selection
NASA Technical Reports Server (NTRS)
Harada, Kazuo; Orgel, Leslie E.
1993-01-01
We have used in vitro selection techniques to characterize DNA sequences that are ligated efficiently by T4 DNA ligase. We find that the ensemble of selected sequences ligates about 50 times as efficiently as the random mixture of sequences used as the input for selection. Surprisingly many of the selected sequences failed to produce a match at or close to the ligation junction. None of the 20 selected oligomers that we sequenced produced a match two bases upstream from the ligation junction.
Chauhan, Sushma; Rahman, Hifzur; Mastan, Shaik G; Pamidimarri, D V N Sudheer; Reddy, Muppala P
2018-07-20
Begomoviruses belong to the family Geminiviridae are associated with several disease symptoms, such as mosaic and leaf curling in Jatropha curcas. The molecular characterization of these viral strains will help in developing management strategies to control the disease. In this study, J. curcas that was infected with begomovirus and showed acute leaf curling symptoms were identified. DNA-A segment from pathogenic viral strain was isolated and sequenced. The sequenced genome was assembled and characterized in detail. The full-length DNA-A sequence was covered by primer walking. The genome sequence showed the general organization of DNA-A from begomovirus by the distribution of ORFs in both viral and anti-viral strands. The genome size ranged from 2844 bp-2852 bp. Three strains with minor nucleotide variations were identified, and a phylogenetic analysis was performed by comparing the DNA-A segments from other reported begomovirus isolates. The maximum sequence similarity was observed with Euphorbia yellow mosaic virus (FN435995). In the phylogenetic tree, no clustering was observed with previously reported begomovirus strains isolated from J. curcas host. The strains isolated in this study belong to new begomoviral strain that elicits symptoms of leaf curling in J. curcas. The results indicate that the probable origin of the strains is from Jatropha mosaic virus infecting J. gassypifolia. The strains isolated in this study are referred as Jatropha curcas leaf curl India virus (JCLCIV) based on the major symptoms exhibited by host J. curcas. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Vieira, Lucas Valadares; Scherer, Claiton Marlon dos Santos
2017-07-01
The Pennsylvanian Piauí Formation records the deposition of aeolian, fluvial and shallow marine systems accumulated in the cratonic sag Parnaíba basin. Characterization of the facies associations and sequence stratigraphic framework was done by detailed description and logging of outcrops. Six facies associations were recognized: aeolian dunes and interdunes, aeolian sandsheets, fluvial channels, tidally-influenced fluvial channels, shoreface and shoreface-shelf transition. Through correlation of stratigraphic surfaces, the facies associations were organized in system tracts, which formed eight high frequency depositional sequences, bounded by subaerial unconformities. These sequences are composed of a lowstand system tract (LST), that is aeolian-dominated or fluvial-dominated, a transgressive system tract (TST) that is formed by tidally-influenced fluvial channels and/or shoreface and shoreface-shelf transition deposits with retrogradational stacking, and a highstand system tract (HST), which is formed by shoreface-shelf transition and shoreface deposits with progradational stacking. Two low frequency cycles were determined by observing the stacking of the high frequency cycles. The Lower Sequence is characterized by aeolian deposits of the LST and an aggradational base followed by a progressive transgression, defining a general TST. The Upper Sequence is characterized by fluvial deposits and interfluve pedogenesis concurring with the aeolian deposits of the LST and records a subtle regression followed by transgression. The main control on sedimentation in the Piauí Formation was glacioeustasy, which was responsible for the changes in relative sea level. Even though, climate changes were associated with glacioeustatic phases and influenced the aeolian and fluvial deposition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hraber, Peter; Korber, Bette; Wagh, Kshitij
Within-host genetic sequencing from samples collected over time provides a dynamic view of how viruses evade host immunity. Immune-driven mutations might stimulate neutralization breadth by selecting antibodies adapted to cycles of immune escape that generate within-subject epitope diversity. Comprehensive identification of immune-escape mutations is experimentally and computationally challenging. With current technology, many more viral sequences can readily be obtained than can be tested for binding and neutralization, making down-selection necessary. Typically, this is done manually, by picking variants that represent different time-points and branches on a phylogenetic tree. Such strategies are likely to miss many relevant mutations and combinations ofmore » mutations, and to be redundant for other mutations. Longitudinal Antigenic Sequences and Sites from Intrahost Evolution (LASSIE) uses transmitted founder loss to identify virus “hot-spots” under putative immune selection and chooses sequences that represent recurrent mutations in selected sites. LASSIE favors earliest sequences in which mutations arise. Here, with well-characterized longitudinal Env sequences, we confirmed selected sites were concentrated in antibody contacts and selected sequences represented diverse antigenic phenotypes. Finally, practical applications include rapidly identifying immune targets under selective pressure within a subject, selecting minimal sets of reagents for immunological assays that characterize evolving antibody responses, and for immunogens in polyvalent “cocktail” vaccines.« less
Animal vocal sequences: not the Markov chains we thought they were
Kershenbaum, Arik; Bowles, Ann E.; Freeberg, Todd M.; Jin, Dezhe Z.; Lameira, Adriano R.; Bohn, Kirsten
2014-01-01
Many animals produce vocal sequences that appear complex. Most researchers assume that these sequences are well characterized as Markov chains (i.e. that the probability of a particular vocal element can be calculated from the history of only a finite number of preceding elements). However, this assumption has never been explicitly tested. Furthermore, it is unclear how language could evolve in a single step from a Markovian origin, as is frequently assumed, as no intermediate forms have been found between animal communication and human language. Here, we assess whether animal taxa produce vocal sequences that are better described by Markov chains, or by non-Markovian dynamics such as the ‘renewal process’ (RP), characterized by a strong tendency to repeat elements. We examined vocal sequences of seven taxa: Bengalese finches Lonchura striata domestica, Carolina chickadees Poecile carolinensis, free-tailed bats Tadarida brasiliensis, rock hyraxes Procavia capensis, pilot whales Globicephala macrorhynchus, killer whales Orcinus orca and orangutans Pongo spp. The vocal systems of most of these species are more consistent with a non-Markovian RP than with the Markovian models traditionally assumed. Our data suggest that non-Markovian vocal sequences may be more common than Markov sequences, which must be taken into account when evaluating alternative hypotheses for the evolution of signalling complexity, and perhaps human language origins. PMID:25143037
Molecular characterization of the vitamin D receptor (VDR) gene in Holstein cows.
Ali, Mayar O; El-Adl, Mohamed A; Ibrahim, Hussam M M; Elseedy, Youssef Y; Rizk, Mohamed A; El-Khodery, Sabry A
2018-06-01
Vitamin D plays a vital role in calcium homeostasis, growth, and immunoregulation. Because little is known about the vitamin D receptor (VDR) gene in cattle, the aim of the present investigation was to present the molecular characterization of exons 5 and 6 of the VDR gene in Holstein cows. DNA extraction, genomic sequencing, phylogenetic analysis, synteny mapping and single nucleotide gene polymorphism analysis of the VDR gene were performed to assess blood samples collected from 50 clinically healthy Holstein cows. The results revealed the presence of a 450-base pair (bp) nucleotide sequence that resembled exons 5 and 6 with intron 5 enclosed between these exons. Sequence alignment and phylogenetic analysis revealed a close relationship between the sequenced VDR region and that found in Hereford cattle. A close association between this region and the corresponding region in small ruminants was also documented. Moreover, a single nucleotide polymorphism (SNP) that caused the replacement of a glutamate with an arginine in the deduced amino acid sequence was detected at position 7 of exon 5. In conclusion, Holstein and Hereford cattle differ with respect to exon 5 of the VDR gene. Phylogenetic analysis of the VDR gene based on nucleotide sequence produced different results from prior analyses based on amino acid sequence. Copyright © 2018 Elsevier Ltd. All rights reserved.
Analysis of levels of support and resonance demonstrated by an elite singing teacher
NASA Astrophysics Data System (ADS)
Scherer, Ronald C.; Radhakrishnan, Nandhakumar; Poulimenos, Andreas
2003-04-01
This was a study of levels of singing expertise demonstrated by an elite operatic singer and teacher. This approach may prove advantageous because the teacher demonstrates what he thinks is important, not what the nonsinging scientist thinks should be important. Two pedagogical sequences were studied: (1) the location of support-glottis (poor), chest (better), abdomen (best); (2) locations of resonance-hard palate/straight tone (poor), mouth (better), sinus/head (best). Measures were obtained for a single frequency (196 Hz), the vowel /ae/, and for mezzo-forte loudness using the /pae pae pae/ technique. Sequence differences: The support sequence was characterized by formant frequency lowering suggestive of vocal tract lengthening. The resonance sequence was characterized by flow (AC, mean flow) and abduction increases. Sequence similarities: The best locations had the widest F2 bandwidths. The better and best locations had the largest dB difference between F2 and F3. Although acoustic power increased through the sequences, the acoustic efficiency was not a discriminating factor. Open and speed quotients were not differentiating. The flow resistance was highest and aerodynamic power the lowest for the first of each sequence. Combined data: The maximum flow declination rate correlated highly with the AC flow (r=-0.92) and SPL (r=0.901).
Thermodynamic characterization of tandem mismatches found in naturally occurring RNA
Christiansen, Martha E.; Znosko, Brent M.
2009-01-01
Although all sequence symmetric tandem mismatches and some sequence asymmetric tandem mismatches have been thermodynamically characterized and a model has been proposed to predict the stability of previously unmeasured sequence asymmetric tandem mismatches [Christiansen,M.E. and Znosko,B.M. (2008) Biochemistry, 47, 4329–4336], experimental thermodynamic data for frequently occurring tandem mismatches is lacking. Since experimental data is preferred over a predictive model, the thermodynamic parameters for 25 frequently occurring tandem mismatches were determined. These new experimental values, on average, are 1.0 kcal/mol different from the values predicted for these mismatches using the previous model. The data for the sequence asymmetric tandem mismatches reported here were then combined with the data for 72 sequence asymmetric tandem mismatches that were published previously, and the parameters used to predict the thermodynamics of previously unmeasured sequence asymmetric tandem mismatches were updated. The average absolute difference between the measured values and the values predicted using these updated parameters is 0.5 kcal/mol. This updated model improves the prediction for tandem mismatches that were predicted rather poorly by the previous model. This new experimental data and updated predictive model allow for more accurate calculations of the free energy of RNA duplexes containing tandem mismatches, and, furthermore, should allow for improved prediction of secondary structure from sequence. PMID:19509311
A Pan-HIV Strategy for Complete Genome Sequencing
Yamaguchi, Julie; Alessandri-Gradt, Elodie; Tell, Robert W.; Brennan, Catherine A.
2015-01-01
Molecular surveillance is essential to monitor HIV diversity and track emerging strains. We have developed a universal library preparation method (HIV-SMART [i.e., switching mechanism at 5′ end of RNA transcript]) for next-generation sequencing that harnesses the specificity of HIV-directed priming to enable full genome characterization of all HIV-1 groups (M, N, O, and P) and HIV-2. Broad application of the HIV-SMART approach was demonstrated using a panel of diverse cell-cultured virus isolates. HIV-1 non-subtype B-infected clinical specimens from Cameroon were then used to optimize the protocol to sequence directly from plasma. When multiplexing 8 or more libraries per MiSeq run, full genome coverage at a median ∼2,000× depth was routinely obtained for either sample type. The method reproducibly generated the same consensus sequence, consistently identified viral sequence heterogeneity present in specimens, and at viral loads of ≤4.5 log copies/ml yielded sufficient coverage to permit strain classification. HIV-SMART provides an unparalleled opportunity to identify diverse HIV strains in patient specimens and to determine phylogenetic classification based on the entire viral genome. Easily adapted to sequence any RNA virus, this technology illustrates the utility of next-generation sequencing (NGS) for viral characterization and surveillance. PMID:26699702
Rapid Sequencing of Complete env Genes from Primary HIV-1 Samples.
Laird Smith, Melissa; Murrell, Ben; Eren, Kemal; Ignacio, Caroline; Landais, Elise; Weaver, Steven; Phung, Pham; Ludka, Colleen; Hepler, Lance; Caballero, Gemma; Pollner, Tristan; Guo, Yan; Richman, Douglas; Poignard, Pascal; Paxinos, Ellen E; Kosakovsky Pond, Sergei L; Smith, Davey M
2016-07-01
The ability to study rapidly evolving viral populations has been constrained by the read length of next-generation sequencing approaches and the sampling depth of single-genome amplification methods. Here, we develop and characterize a method using Pacific Biosciences' Single Molecule, Real-Time (SMRT®) sequencing technology to sequence multiple, intact full-length human immunodeficiency virus-1 env genes amplified from viral RNA populations circulating in blood, and provide computational tools for analyzing and visualizing these data.
Hraber, Peter; Korber, Bette; Wagh, Kshitij; ...
2015-10-21
Within-host genetic sequencing from samples collected over time provides a dynamic view of how viruses evade host immunity. Immune-driven mutations might stimulate neutralization breadth by selecting antibodies adapted to cycles of immune escape that generate within-subject epitope diversity. Comprehensive identification of immune-escape mutations is experimentally and computationally challenging. With current technology, many more viral sequences can readily be obtained than can be tested for binding and neutralization, making down-selection necessary. Typically, this is done manually, by picking variants that represent different time-points and branches on a phylogenetic tree. Such strategies are likely to miss many relevant mutations and combinations ofmore » mutations, and to be redundant for other mutations. Longitudinal Antigenic Sequences and Sites from Intrahost Evolution (LASSIE) uses transmitted founder loss to identify virus “hot-spots” under putative immune selection and chooses sequences that represent recurrent mutations in selected sites. LASSIE favors earliest sequences in which mutations arise. Here, with well-characterized longitudinal Env sequences, we confirmed selected sites were concentrated in antibody contacts and selected sequences represented diverse antigenic phenotypes. Finally, practical applications include rapidly identifying immune targets under selective pressure within a subject, selecting minimal sets of reagents for immunological assays that characterize evolving antibody responses, and for immunogens in polyvalent “cocktail” vaccines.« less
Characterization of 47 MHC class I sequences in Filipino cynomolgus macaques
Campbell, Kevin J.; Detmer, Ann M.; Karl, Julie A.; Wiseman, Roger W.; Blasky, Alex J.; Hughes, Austin L.; Bimber, Benjamin N.; O’Connor, Shelby L.; O’Connor, David H.
2009-01-01
Cynomolgus macaques (Macaca fascicularis) provide increasingly common models for infectious disease research. Several geographically distinct populations of these macaques from Southeast Asia and the Indian Ocean island of Mauritius are available for pathogenesis studies. Though host genetics may profoundly impact results of such studies, similarities and differences between populations are often overlooked. In this study we identified 47 full-length MHC class I nucleotide sequences in 16 cynomolgus macaques of Filipino origin. The majority of MHC class I sequences characterized (39 of 47) were unique to this regional population. However, we discovered eight sequences with perfect identity and six sequences with close similarity to previously defined MHC class I sequences from other macaque populations. We identified two ancestral MHC haplotypes that appear to be shared between Filipino and Mauritian cynomolgus macaques, notably a Mafa-B haplotype that has previously been shown to protect Mauritian cynomolgus macaques against challenge with a simian/human immunodeficiency virus, SHIV89.6P. We also identified a Filipino cynomolgus macaque MHC class I sequence for which the predicted protein sequence differs from Mamu-B*17 by a single amino acid. This is important because Mamu-B*17 is strongly associated with protection against simian immunodeficiency virus (SIV) challenge in Indian rhesus macaques. These findings have implications for the evolutionary history of Filipino cynomolgus macaques as well as for the use of this model in SIV/SHIV research protocols. PMID:19107381
Ochirkhuu, Nyamsuren; Konnai, Satoru; Odbileg, Raadan; Murata, Shiro; Ohashi, Kazuhiko
2017-08-01
Anaplasma species are obligate intracellular rickettsial pathogens that cause great economic loss to the animal industry. Few studies on Anaplasma infections in Mongolian livestock have been conducted. This study examined the prevalence of Anaplasma marginale, Anaplasma ovis, Anaplasma phagocytophilum, and Anaplasma bovis by polymerase chain reaction assay in 928 blood samples collected from native cattle and dairy cattle (Bos taurus), yaks (Bos grunniens), sheep (Ovis aries), and goats (Capra aegagrus hircus) in four provinces of Ulaanbaatar city in Mongolia. We genetically characterized positive samples through sequencing analysis based on the heat-shock protein groEL, major surface protein 4 (msp4), and 16S rRNA genes. Only A. ovis was detected in Mongolian livestock (cattle, yaks, sheep, and goats), with 413 animals (44.5%) positive for groEL and 308 animals (33.2%) positive for msp4 genes. In the phylogenetic tree, we separated A. ovis sequences into two distinct clusters based on the groEL gene. One cluster comprised sequences derived mainly from sheep and goats, which was similar to that in A. ovis isolates from other countries. The other divergent cluster comprised sequences derived from cattle and yaks and appeared to be newly branched from that in previously published single isolates in Mongolian cattle. In addition, the msp4 gene of A. ovis using same and different samples with groEL gene of the pathogen demonstrated that all sequences derived from all animal species, except for three sequences derived from cattle and yak, were clustered together, and were identical or similar to those in isolates from other countries. We used 16S rRNA gene sequences to investigate the genetically divergent A. ovis and identified high homology of 99.3-100%. However, the sequences derived from cattle did not match those derived from sheep and goats. The results of this study on the prevalence and molecular characterization of A. ovis in Mongolian livestock can facilitate the control of infectious diseases in livestock.
Figueroa-Montiel, Andrea; Ramos, Marco A; Mares, Rosa E; Dueñas, Salvador; Pimienta, Genaro; Ortiz, Ernesto; Possani, Lourival D; Licea-Navarro, Alexei F
2016-01-01
Small peptides isolated from the venom of the marine snails belonging to the genus Conus have been largely studied because of their therapeutic value. These peptides can be classified in two groups. The largest one is composed by peptides rich in disulfide bonds, and referred to as conotoxins. Despite the importance of conotoxins given their pharmacology value, little is known about the protein disulfide isomerase (PDI) enzymes that are required to catalyze their correct folding. To discover the PDIs that may participate in the folding and structural maturation of conotoxins, the transcriptomes of the venom duct of four different species of Conus from the peninsula of Baja California (Mexico) were assembled. Complementary DNA (cDNA) libraries were constructed for each species and sequenced using a Genome Analyzer Illumina platform. The raw RNA-seq data was converted into transcript sequences using Trinity, a de novo assembler that allows the grouping of reads into contigs without a reference genome. An N50 value of 605 was established as a reference for future assemblies of Conus transcriptomes using this software. Transdecoder was used to extract likely coding sequences from Trinity transcripts, and PDI-specific sequence motif "APWCGHCK" was used to capture potential PDIs. An in silico analysis was performed to characterize the group of PDI protein sequences encoded by the duct-transcriptome of each species. The computational approach entailed a structural homology characterization, based on the presence of functional Thioredoxin-like domains. Four different PDI families were characterized, which are constituted by a total of 41 different gene sequences. The sequences had an average of 65% identity with other PDIs. Using MODELLER 9.14, the homology-based three-dimensional structure prediction of a subset of the sequences reported, showed the expected thioredoxin fold which was confirmed by a "simulated annealing" method.
Zhang, Yong; Hong, Mei; Sun, Qiang; Zhu, Shuangli; Tsewang; Li, Xiaolei; Yan, Dongmei; Wang, Dongyan; Xu, Wenbo
2014-04-01
Molecular methods, based on sequencing the region encoding the complete VP1 or P1 protein, have enabled the rapid identification of new enterovirus serotypes. In the present study, the complete genome of a newly discovered enterovirus serotype, strain Q0011/XZ/CHN/2000 (hereafter referred to as Q0011), was sequenced and analyzed. The virus, isolated from a stool sample from a patient with acute flaccid paralysis in the Tibet region of China in 2000, was characterized by amplicon sequencing and comparison to a GenBank database of enterovirus nucleotide sequences. The nucleotide sequence encoding the complete VP1 capsid protein is most closely related to the sequences of viruses within the species enterovirus B (EV-B), but is less than 72.1% identical to the homologous sequences of the recognized human enterovirus serotypes, with the greatest homology to EV-B101 and echovirus 32. Moreover, the deduced amino acid sequence of the complete VP1 region is less than 84.7% identical to those of the recognized serotypes, suggesting that the strain is a new serotype of enterovirus within EV-B. The virus was characterized as a new enterovirus type, named EV-B111, by the Picornaviridae Study Group of the International Committee on Taxonomy of Viruses. Low positive rate and titer of neutralizing antibody against EV-B111 were found in the Tibet region of China. Nearly 50% of children ≤5 years had no neutralizing antibody against EV-B111. So the extent of transmission and the exposure of the population to this new EV are very limited. This is the first identification of a new serotype of human enterovirus in China, and strain Q0011 was designated the prototype strain of EV-B111. Copyright © 2014 Elsevier B.V. All rights reserved.
DRS is far less divergent than streptococcal inhibitor of complement of group A streptococcus.
Sagar, Vivek; Kumar, Rajesh; Ganguly, Nirmal K; Menon, Thangam; Chakraborti, Anuradha
2007-04-01
When 100 group A streptococcus isolates were screened, drs, a variant of sic, was identified in emm12 and emm55 isolates. Molecular characterization showed that the drs gene sequence is highly conserved, unlike the sic gene sequence. However, the variation in gene size observed was due to the presence of extra internal repeat sequences.
DRS Is Far Less Divergent than Streptococcal Inhibitor of Complement of Group A Streptococcus▿
Sagar, Vivek; Kumar, Rajesh; Ganguly, Nirmal K.; Menon, Thangam; Chakraborti, Anuradha
2007-01-01
When 100 group A streptococcus isolates were screened, drs, a variant of sic, was identified in emm12 and emm55 isolates. Molecular characterization showed that the drs gene sequence is highly conserved, unlike the sic gene sequence. However, the variation in gene size observed was due to the presence of extra internal repeat sequences. PMID:17237170
Liu, Guo-Hua; Li, Chun; Li, Jia-Yuan; Zhou, Dong-Hui; Xiong, Rong-Chuan; Lin, Rui-Qing; Zou, Feng-Cai; Zhu, Xing-Quan
2012-01-01
Sparganosis, caused by the plerocercoid larvae of members of the genus Spirometra, can cause significant public health problem and considerable economic losses. In the present study, the complete mitochondrial DNA (mtDNA) sequence of Spirometra erinaceieuropaei from China was determined, characterized and compared with that of S. erinaceieuropaei from Japan. The gene arrangement in the mt genome sequences of S. erinaceieuropaei from China and Japan is identical. The identity of the mt genomes was 99.1% between S. erinaceieuropaei from China and Japan, and the complete mtDNA sequence of S. erinaceieuropaei from China is slightly shorter (2 bp) than that from Japan. Phylogenetic analysis of S. erinaceieuropaei with other representative cestodes using two different computational algorithms [Bayesian inference (BI) and maximum likelihood (ML)] based on concatenated amino acid sequences of 12 protein-coding genes, revealed that S. erinaceieuropaei is closely related to Diphyllobothrium spp., supporting classification based on morphological features. The present study determined the complete mtDNA sequences of S. erinaceieuropaei from China that provides novel genetic markers for studying the population genetics and molecular epidemiology of S. erinaceieuropaei in humans and animals. PMID:22553464
Liu, Siyang; Huang, Shujia; Rao, Junhua; Ye, Weijian; Krogh, Anders; Wang, Jun
2015-01-01
Comprehensive recognition of genomic variation in one individual is important for understanding disease and developing personalized medication and treatment. Many tools based on DNA re-sequencing exist for identification of single nucleotide polymorphisms, small insertions and deletions (indels) as well as large deletions. However, these approaches consistently display a substantial bias against the recovery of complex structural variants and novel sequence in individual genomes and do not provide interpretation information such as the annotation of ancestral state and formation mechanism. We present a novel approach implemented in a single software package, AsmVar, to discover, genotype and characterize different forms of structural variation and novel sequence from population-scale de novo genome assemblies up to nucleotide resolution. Application of AsmVar to several human de novo genome assemblies captures a wide spectrum of structural variants and novel sequences present in the human population in high sensitivity and specificity. Our method provides a direct solution for investigating structural variants and novel sequences from de novo genome assemblies, facilitating the construction of population-scale pan-genomes. Our study also highlights the usefulness of the de novo assembly strategy for definition of genome structure.
Characterizing the D2 statistic: word matches in biological sequences.
Forêt, Sylvain; Wilson, Susan R; Burden, Conrad J
2009-01-01
Word matches are often used in sequence comparison methods, either as a measure of sequence similarity or in the first search steps of algorithms such as BLAST or BLAT. The D2 statistic is the number of matches of words of k letters between two sequences. Recent advances have been made in the characterization of this statistic and in the approximation of its distribution. Here, these results are extended to the case of approximate word matches. We compute the exact value of the variance of the D2 statistic for the case of a uniform letter distribution, and introduce a method to provide accurate approximations of the variance in the remaining cases. This enables the distribution of D2 to be approximated for typical situations arising in biological research. We apply these results to the identification of cis-regulatory modules, and show that this method detects such sequences with a high accuracy. The ability to approximate the distribution of D2 for both exact and approximate word matches will enable the use of this statistic in a more precise manner for sequence comparison, database searches, and identification of transcription factor binding sites.
Munchel, Sarah; Hoang, Yen; Zhao, Yue; Cottrell, Joseph; Klotzle, Brandy; Godwin, Andrew K; Koestler, Devin; Beyerlein, Peter; Fan, Jian-Bing; Bibikova, Marina; Chien, Jeremy
2015-09-22
Current genomic studies are limited by the poor availability of fresh-frozen tissue samples. Although formalin-fixed diagnostic samples are in abundance, they are seldom used in current genomic studies because of the concern of formalin-fixation artifacts. Better characterization of these artifacts will allow the use of archived clinical specimens in translational and clinical research studies. To provide a systematic analysis of formalin-fixation artifacts on Illumina sequencing, we generated 26 DNA sequencing data sets from 13 pairs of matched formalin-fixed paraffin-embedded (FFPE) and fresh-frozen (FF) tissue samples. The results indicate high rate of concordant calls between matched FF/FFPE pairs at reference and variant positions in three commonly used sequencing approaches (whole genome, whole exome, and targeted exon sequencing). Global mismatch rates and C · G > T · A substitutions were comparable between matched FF/FFPE samples, and discordant rates were low (<0.26%) in all samples. Finally, low-pass whole genome sequencing produces similar pattern of copy number alterations between FF/FFPE pairs. The results from our studies suggest the potential use of diagnostic FFPE samples for cancer genomic studies to characterize and catalog variations in cancer genomes.
Shu, Fan-Fan; Lv, Rui-Qing; Zhang, Yi-Fang; Duan, Gang; Wu, Ding-Yu; Li, Bi-Feng; Yang, Jian-Fa; Zou, Feng-Cai
2012-08-01
On mainland China, liver flukes of Fasciola spp. (Digenea: Fasciolidae) can cause serious acute and chronic morbidity in numerous species of mammals such as sheep, goats, cattle, and humans. The objective of the present study was to examine the taxonomic identity of Fasciola species in Yunnan province by sequences of the first and second internal transcribed spacers (ITS-1 and ITS-2) of nuclear ribosomal DNA (rDNA). The ITS rDNA was amplified from 10 samples representing Fasciola species in cattle from 2 geographical locations in Yunnan Province, by polymerase chain reaction (PCR), and the products were sequenced directly. The lengths of the ITS-1 and ITS-2 sequences were 422 and 361-362 base pairs, respectively, for all samples sequenced. Using ITS sequences, 2 Fasciola species were revealed, namely Fasciola hepatica and Fasciola gigantica. This is the first demonstration of F. gigantica in cattle in Yunnan Province, China using a molecular approach; our findings have implications for studying the population genetic characterization of the Chinese Fasciola species and for the prevention and control of Fasciola spp. in this province.
Aramrak, Attawan; Kidwell, Kimberlee K; Steber, Camille M; Burke, Ian C
2015-10-23
5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the sixth and penultimate enzyme in the shikimate biosynthesis pathway, and is the target of the herbicide glyphosate. The EPSPS genes of allohexaploid wheat (Triticum aestivum, AABBDD) have not been well characterized. Herein, the three homoeologous copies of the allohexaploid wheat EPSPS gene were cloned and characterized. Genomic and coding DNA sequences of EPSPS from the three related genomes of allohexaploid wheat were isolated using PCR and inverse PCR approaches from soft white spring "Louise'. Development of genome-specific primers allowed the mapping and expression analysis of TaEPSPS-7A1, TaEPSPS-7D1, and TaEPSPS-4A1 on chromosomes 7A, 7D, and 4A, respectively. Sequence alignments of cDNA sequences from wheat and wheat relatives served as a basis for phylogenetic analysis. The three genomic copies of wheat EPSPS differed by insertion/deletion and single nucleotide polymorphisms (SNPs), largely in intron sequences. RT-PCR analysis and cDNA cloning revealed that EPSPS is expressed from all three genomic copies. However, TaEPSPS-4A1 is expressed at much lower levels than TaEPSPS-7A1 and TaEPSPS-7D1 in wheat seedlings. Phylogenetic analysis of 1190-bp cDNA clones from wheat and wheat relatives revealed that: 1) TaEPSPS-7A1 is most similar to EPSPS from the tetraploid AB genome donor, T. turgidum (99.7 % identity); 2) TaEPSPS-7D1 most resembles EPSPS from the diploid D genome donor, Aegilops tauschii (100 % identity); and 3) TaEPSPS-4A1 resembles EPSPS from the diploid B genome relative, Ae. speltoides (97.7 % identity). Thus, EPSPS sequences in allohexaploid wheat are preserved from the most two recent ancestors. The wheat EPSPS genes are more closely related to Lolium multiflorum and Brachypodium distachyon than to Oryza sativa (rice). The three related EPSPS homoeologues of wheat exhibited conservation of the exon/intron structure and of coding region sequence, but contained significant sequence variation within intron regions. The genome-specific primers developed will enable future characterization of natural and induced variation in EPSPS sequence and expression. This can be useful in investigating new causes of glyphosate herbicide resistance.
Generalized species sampling priors with latent Beta reinforcements
Airoldi, Edoardo M.; Costa, Thiago; Bassetti, Federico; Leisen, Fabrizio; Guindani, Michele
2014-01-01
Many popular Bayesian nonparametric priors can be characterized in terms of exchangeable species sampling sequences. However, in some applications, exchangeability may not be appropriate. We introduce a novel and probabilistically coherent family of non-exchangeable species sampling sequences characterized by a tractable predictive probability function with weights driven by a sequence of independent Beta random variables. We compare their theoretical clustering properties with those of the Dirichlet Process and the two parameters Poisson-Dirichlet process. The proposed construction provides a complete characterization of the joint process, differently from existing work. We then propose the use of such process as prior distribution in a hierarchical Bayes modeling framework, and we describe a Markov Chain Monte Carlo sampler for posterior inference. We evaluate the performance of the prior and the robustness of the resulting inference in a simulation study, providing a comparison with popular Dirichlet Processes mixtures and Hidden Markov Models. Finally, we develop an application to the detection of chromosomal aberrations in breast cancer by leveraging array CGH data. PMID:25870462
Bhagwat, Basdeo; Dickison, Virginia; Ding, Xinlun; Walker, Melanie; Bernardy, Michael; Bouthillier, Michel; Creelman, Alexa; DeYoung, Robyn; Li, Yinzi; Nie, Xianzhou; Wang, Aiming; Xiang, Yu; Sanfaçon, Hélène
2016-06-01
In this study, we report the genome sequence of five isolates of strawberry mottle virus (family Secoviridae, order Picornavirales) from strawberry field samples with decline symptoms collected in Eastern Canada. The Canadian isolates differed from the previously characterized European isolate 1134 in that they had a longer RNA2, resulting in a 239-amino-acid extension of the C-terminal region of the polyprotein. Sequence analysis suggests that reassortment and recombination occurred among the isolates. Phylogenetic analysis revealed that the Canadian isolates are diverse, grouping in two separate branches along with isolates from Europe and the Americas.
Nanopore with Transverse Nanoelectrodes for Electrical Characterization and Sequencing of DNA
Gierhart, Brian C.; Howitt, David G.; Chen, Shiahn J.; Zhu, Zhineng; Kotecki, David E.; Smith, Rosemary L.; Collins, Scott D.
2009-01-01
A DNA sequencing device which integrates transverse conducting electrodes for the measurement of electrode currents during DNA translocation through a nanopore has been nanofabricated and characterized. A focused electron beam (FEB) milling technique, capable of creating features on the order of 1 nm in diameter, was used to create the nanopore. The device was characterized electrically using gold nanoparticles as an artificial analyte with both DC and AC measurement methods. Single nanoparticle/electrode interaction events were recorded. A low-noise, high-speed transimpedance current amplifier for the detection of nano to picoampere currents at microsecond time scales was designed, fabricated and tested for future integration with the nanopore device. PMID:19584949
Nanopore with Transverse Nanoelectrodes for Electrical Characterization and Sequencing of DNA.
Gierhart, Brian C; Howitt, David G; Chen, Shiahn J; Zhu, Zhineng; Kotecki, David E; Smith, Rosemary L; Collins, Scott D
2008-06-16
A DNA sequencing device which integrates transverse conducting electrodes for the measurement of electrode currents during DNA translocation through a nanopore has been nanofabricated and characterized. A focused electron beam (FEB) milling technique, capable of creating features on the order of 1 nm in diameter, was used to create the nanopore. The device was characterized electrically using gold nanoparticles as an artificial analyte with both DC and AC measurement methods. Single nanoparticle/electrode interaction events were recorded. A low-noise, high-speed transimpedance current amplifier for the detection of nano to picoampere currents at microsecond time scales was designed, fabricated and tested for future integration with the nanopore device.
[Characterization and comparison of interferon reference standards using UPLC-MS].
Tao, Lei; Pei, De-ning; Han, Chun-mei; Chen, Wei; Rao, Chun-ming; Wang, Jun-zhi
2015-01-01
The study aims to characterize and compare interferon reference standards from 5 manufacturers. By testing molecular mass and trypsin-digested peptide mass mapping, the amino acid sequence was verified and post-translational modifications such as disulfide bond were identified. Results show that the molecular mass and amino acid sequence were consistent with theory; the disulfide bonds of 4 lots of interferon were Cys1-Cys98/Cys29-Cys138, 1 lot was Cys29-Cys139/Cys86-Cys99; N-terminal "+Met", acetyl N-terminal and Met oxidation were identified in part of the sample. UPLC-MS can be used to characterize and compare interferon reference standards from different manufacturers.
Kenney, Joan L.; Solberg, Owen D.; Langevin, Stanley A.; ...
2014-01-12
In the past decade, there has been an upsurge in the number of newly described insect-specific flaviviruses isolated pan-globally. We recently described the isolation of a novel flavivirus (tentatively designated ‘Nhumirim virus’; NHUV) that represents an example of a unique subset of apparently insect-specific viruses that phylogenetically affiliate with dual-host mosquito-borne flaviviruses despite appearing to be limited to replication in mosquito cells. We characterized the in vitro growth potential and 3' untranslated region (UTR) sequence homology with alternative flaviviruses, and evaluated the virus’s capacity to suppress replication of representative Culex spp.-vectored pathogenic flaviviruses in mosquito cells. Only mosquito cell linesmore » were found to support NHUV replication, further reinforcing the insect-specific phenotype of this virus. Analysis of the sequence and predicted RNA secondary structures of the 3' UTR indicated NHUV to be most similar to viruses within the yellow fever serogroup and Japanese encephalitis serogroup, and viruses in the tick-borne flavivirus clade. NHUV was found to share the fewest conserved sequence elements when compared with traditional insect-specific flaviviruses. This suggests that, despite apparently being insect specific, this virus probably diverged from an ancestral mosquito-borne flavivirus. Co-infection experiments indicated that prior or concurrent infection of mosquito cells with NHUV resulted in a significant reduction in virus production of West Nile virus (WNV), St Louis encephalitis virus (SLEV) and Japanese encephalitis virus. As a result, the inhibitory effect was most effective against WNV and SLEV with over a 106-fold and 104-fold reduction in peak titres, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenney, Joan L.; Solberg, Owen D.; Langevin, Stanley A.
In the past decade, there has been an upsurge in the number of newly described insect-specific flaviviruses isolated pan-globally. We recently described the isolation of a novel flavivirus (tentatively designated ‘Nhumirim virus’; NHUV) that represents an example of a unique subset of apparently insect-specific viruses that phylogenetically affiliate with dual-host mosquito-borne flaviviruses despite appearing to be limited to replication in mosquito cells. We characterized the in vitro growth potential and 3' untranslated region (UTR) sequence homology with alternative flaviviruses, and evaluated the virus’s capacity to suppress replication of representative Culex spp.-vectored pathogenic flaviviruses in mosquito cells. Only mosquito cell linesmore » were found to support NHUV replication, further reinforcing the insect-specific phenotype of this virus. Analysis of the sequence and predicted RNA secondary structures of the 3' UTR indicated NHUV to be most similar to viruses within the yellow fever serogroup and Japanese encephalitis serogroup, and viruses in the tick-borne flavivirus clade. NHUV was found to share the fewest conserved sequence elements when compared with traditional insect-specific flaviviruses. This suggests that, despite apparently being insect specific, this virus probably diverged from an ancestral mosquito-borne flavivirus. Co-infection experiments indicated that prior or concurrent infection of mosquito cells with NHUV resulted in a significant reduction in virus production of West Nile virus (WNV), St Louis encephalitis virus (SLEV) and Japanese encephalitis virus. As a result, the inhibitory effect was most effective against WNV and SLEV with over a 106-fold and 104-fold reduction in peak titres, respectively.« less
Comparative transcriptome analysis of the Asteraceae halophyte Karelinia caspica under salt stress.
Zhang, Xia; Liao, Maoseng; Chang, Dan; Zhang, Fuchun
2014-12-17
Much attention has been given to the potential of halophytes as sources of tolerance traits for introduction into cereals. However, a great deal remains unknown about the diverse mechanisms employed by halophytes to cope with salinity. To characterize salt tolerance mechanisms underlying Karelinia caspica, an Asteraceae halophyte, we performed Large-scale transcriptomic analysis using a high-throughput Illumina sequencing platform. Comparative gene expression analysis was performed to correlate the effects of salt stress and ABA regulation at the molecular level. Total sequence reads generated by pyrosequencing were assembled into 287,185 non-redundant transcripts with an average length of 652 bp. Using the BLAST function in the Swiss-Prot, NCBI nr, GO, KEGG, and KOG databases, a total of 216,416 coding sequences associated with known proteins were annotated. Among these, 35,533 unigenes were classified into 69 gene ontology categories, and 18,378 unigenes were classified into 202 known pathways. Based on the fold changes observed when comparing the salt stress and control samples, 60,127 unigenes were differentially expressed, with 38,122 and 22,005 up- and down-regulated, respectively. Several of the differentially expressed genes are known to be involved in the signaling pathway of the plant hormone ABA, including ABA metabolism, transport, and sensing as well as the ABA signaling cascade. Transcriptome profiling of K. caspica contribute to a comprehensive understanding of K. caspica at the molecular level. Moreover, the global survey of differentially expressed genes in this species under salt stress and analyses of the effects of salt stress and ABA regulation will contribute to the identification and characterization of genes and molecular mechanisms underlying salt stress responses in Asteraceae plants.
Yu, Xiumei; Cloutier, Sylvie; Tambong, James T.
2014-01-01
Sixteen strains of symbiotic bacteria from root nodules of Glycine max grown in Ottawa, Canada, were previously characterized and placed in a novel group within the genus Bradyrhizobium. To verify their taxonomic status, these strains were further characterized using a polyphasic approach. All strains possessed identical 16S rRNA gene sequences that were 99.79 % similar to the closest relative, Bradyrhizobium liaoningense LMG 18230T. Phylogenetic analysis of concatenated atpD, glnII, recA, gyrB, rpoB and dnaK genes divided the 16 strains into three multilocus sequence types that were placed in a highly supported lineage distinct from named species of the genus Bradyrhizobium consistent with results of DNA–DNA hybridization. Based on analysis of symbiosis gene sequences (nodC and nifH), all novel strains were placed in a phylogenetic group with five species of the genus Bradyrhizobium that nodulate soybeans. The combination of phenotypic characteristics from several tests including carbon and nitrogen source utilization and antibiotic resistance could be used to differentiate representative strains from recognized species of the genus Bradyrhizobium. Novel strain OO99T elicits effective nodules on Glycine max, Glycine soja and Macroptilium atropurpureum, partially effective nodules on Desmodium canadense and Vigna unguiculata, and ineffective nodules on Amphicarpaea bracteata and Phaseolus vulgaris. Based on the data presented, we conclude that our strains represent a novel species for which the name Bradyrhizobium ottawaense sp. nov. is proposed, with OO99T ( = LMG 26739T = HAMBI 3284T) as the type strain. The DNA G+C content is 62.6 mol%. PMID:24969302
Kenney, Joan L.; Solberg, Owen D.; Langevin, Stanley A.; Brault, Aaron C.
2015-01-01
In the past decade there has been an upsurge in the number of newly described insect-specific flaviviruses isolated pan-globally. We recently described the isolation of a novel flavivirus (tentatively designated “Nhumirim virus”; NHUV) (Pauvolid-Correa et al., in review) that represents an example of a unique subset of apparently insect-specific viruses that phylogenetically affiliate with dual-host mosquito-borne flaviviruses despite appearing to be limited to replication in mosquito cells. We characterized the in vitro growth potential, 3’ untranslated region (UTR) sequence homology with alternative flaviviruses, and evaluated the virus’s capacity to suppress replication of representative Culex spp. vectored pathogenic flaviviruses in mosquito cells. Only mosquito cell lines were found to support NHUV replication, further reinforcing the insect-specific phenotype of this virus. Analysis of the sequence and predicted RNA secondary structures of the 3’ UTR indicate NHUV to be most similar to viruses within the yellow fever serogroup, Japanese encephalitis serogroup, and viruses in the tick-borne flavivirus clade. NHUV was found to share the fewest conserved sequence elements when compared to traditional insect-specific flaviviruses. This suggests that, despite being apparently insect-specific, this virus likely diverged from an ancestral mosquito-borne flavivirus. Co-infection experiments indicated that prior or concurrent infection of mosquito cells with NHUV resulted in significant reduction in viral production of West Nile virus (WNV), St. Louis encephalitis virus (SLEV) and Japanese encephalitis virus. The inhibitory effect was most effective against WNV and SLEV with over a million-fold and 10,000-fold reduction in peak titers, respectively. PMID:25146007
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolakowski, J.E.; DeFrank, J.J.; Lai, K.
1995-11-01
Organophosphorus Hydrolase (OPH) is a fully characterized and cloned enzyme, derived from Pseudomonas diminuta, consisting of 365 amino acids with a total molecular weight of 38,0(X). The enzyme has a leader sequence of 29 amino acids which has been removed in the construction used in this study. OPH was evaluated for its effectiveness in catalyzing the S-(2-diisopwpylaminoethyl) methylphosphonothioate (VX) and its analogs.
Characterization and Modulation of Proteins Involved in Sulfur Mustard Vesication
2000-06-01
PARP staining was present throughout the nucleus, the DBD showed a more localized punctate pattern in the region of the nucleolus and throughout the...34 oligonucleotide is synthesized that is identical in base composition to the antisense, but had a randomly generated sequence. This is an important control...reversed this inhibitory effect. The roles of PARP in modulating the composition and enzyme activities of the DNA synthesome were further investigated by
De novo design and engineering of functional metal and porphyrin-binding protein domains
NASA Astrophysics Data System (ADS)
Everson, Bernard H.
In this work, I describe an approach to the rational, iterative design and characterization of two functional cofactor-binding protein domains. First, a hybrid computational/experimental method was developed with the aim of algorithmically generating a suite of porphyrin-binding protein sequences with minimal mutual sequence information. This method was explored by generating libraries of sequences, which were then expressed and evaluated for function. One successful sequence is shown to bind a variety of porphyrin-like cofactors, and exhibits light- activated electron transfer in mixed hemin:chlorin e6 and hemin:Zn(II)-protoporphyrin IX complexes. These results imply that many sophisticated functions such as cofactor binding and electron transfer require only a very small number of residue positions in a protein sequence to be fixed. Net charge and hydrophobic content are important in determining protein solubility and stability. Accordingly, rational modifications were made to the aforementioned design procedure in order to improve its overall success rate. The effects of these modifications are explored using two `next-generation' sequence libraries, which were separately expressed and evaluated. Particular modifications to these design parameters are demonstrated to effectively double the purification success rate of the procedure. Finally, I describe the redesign of the artificial di-iron protein DF2 into CDM13, a single chain di-Manganese four-helix bundle. CDM13 acts as a functional model of natural manganese catalase, exhibiting a kcat of 0.08s-1 under steady-state conditions. The bound manganese cofactors have a reduction potential of +805 mV vs NHE, which is too high for efficient dismutation of hydrogen peroxide. These results indicate that as a high-potential manganese complex, CDM13 may represent a promising first step toward a polypeptide model of the Oxygen Evolving Complex of the photosynthetic enzyme Photosystem II.
Vasilchenko, Alexey S; Rogozhin, Eugene A; Valyshev, Alexander V
2017-06-01
The aim of this work was to purify and characterize a bacteriocin-like antimicrobial substance produced by an antagonistic active strain of Enterococcus faecium. A novel bacteriocin-like inhibitory substance (BLIS) produced by the E. faecium ICIS 8 strain was purified and characterized using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and N-terminal amino acid sequencing revealed the following partial sequence: NH 2 -APKEKCFPKYCV. The proteinaceous nature of purified BLIS was assessed by treatment with proteolytic enzyme. Studies of the action of BLIS using bacteriological and bioluminescence assays revealed a dose-dependent inhibition of Listeria monocytogenes 88BK and Escherichia coli K12 TG1 lac::lux viability. The interaction of the BLIS with the bacterial surface led to the compensation of a negative charge value, as shown by zeta-potential measurements. Assessments of membrane integrity using fluorescent probes and atomic force microscopy revealed the permeabilization of the cellular barrier structures in both L. monocytogenes and E. coli. The novel BLIS from E. faecium ICIS 8 was characterized by a unique primary peptide sequence and exerted bactericidal activity against L. monocytogenes and E. coli by disrupting membrane integrity.
NASA Astrophysics Data System (ADS)
Yang, Rong-Sheng; Tang, Weijuan; Sheng, Huaming; Meng, Fanyu
2018-01-01
Discovery of novel insulin analogs as therapeutics has remained an active area of research. Compared with native human insulin, insulin analog molecules normally incorporate either covalent modifications or amino acid sequence variations. From the drug discovery and development perspective, methods for efficient and detailed characterization of these primary structural changes are very important. In this report, we demonstrate that proteinase K digestion coupled with UPLC-ESI-MS analysis provides a simple and rapid approach to characterize the modifications and sequence variations of insulin molecules. A commercially available proteinase K digestion kit was used to process recombinant human insulin (RHI), insulin glargine, and fluorescein isothiocynate-labeled recombinant human insulin (FITC-RHI) samples. The LC-MS data clearly showed that RHI and insulin glargine samples can be differentiated, and the FITC modifications in all three amine sites of the RHI molecule are well characterized. The end-to-end experiment and data interpretation was achieved within 60 min. This approach is fast and simple, and can be easily implemented in early drug discovery laboratories to facilitate research on more advanced insulin therapeutics. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Yang, Rong-Sheng; Tang, Weijuan; Sheng, Huaming; Meng, Fanyu
2018-05-01
Discovery of novel insulin analogs as therapeutics has remained an active area of research. Compared with native human insulin, insulin analog molecules normally incorporate either covalent modifications or amino acid sequence variations. From the drug discovery and development perspective, methods for efficient and detailed characterization of these primary structural changes are very important. In this report, we demonstrate that proteinase K digestion coupled with UPLC-ESI-MS analysis provides a simple and rapid approach to characterize the modifications and sequence variations of insulin molecules. A commercially available proteinase K digestion kit was used to process recombinant human insulin (RHI), insulin glargine, and fluorescein isothiocynate-labeled recombinant human insulin (FITC-RHI) samples. The LC-MS data clearly showed that RHI and insulin glargine samples can be differentiated, and the FITC modifications in all three amine sites of the RHI molecule are well characterized. The end-to-end experiment and data interpretation was achieved within 60 min. This approach is fast and simple, and can be easily implemented in early drug discovery laboratories to facilitate research on more advanced insulin therapeutics. [Figure not available: see fulltext.
MICROBIAL FERMENTATION OF ABUNDANT BIOPOLYMERS: CELLULOSE AND CHITIN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leschine, Susan
Our research has dealt with seven major areas of investigation: i) characterization of cellulolytic members of microbial consortia, with special attention recently given to Clostridium phytofermentans, a bacterium that decomposes cellulose and produces uncommonly large amounts of ethanol, ii) investigations of the chitinase system of Cellulomonas uda; including the purification and characterization of ChiA, the major component of this enzyme system, iii) molecular cloning, sequence and structural analysis of the gene that encodes ChiA in C. uda, iv) biofilm formation by C. uda on nutritive surfaces, v) investigations of the effects of humic substances on cellulose degradation by anaerobic cellulolyticmore » microbes, vi) studies of nitrogen metabolism in cellulolytic anaerobes, and vii) understanding the molecular architecture of the multicomplex cellulase-xylanase system of Clostridium papyrosolvens. Also, progress toward completing the research of more recent projects is briefly summarized. Major accomplishments include: 1. Characterization of Clostridium phytofermentans, a cellulose-fermenting, ethanol-producing bacterium from forest soil. The characterization of a new cellulolytic species isolated from a cellulose-decomposing microbial consortium from forest soil was completed. This bacterium is remarkable for the high concentrations of ethanol produced during cellulose fermentation, typically more than twice the concentration produced by other species of cellulolytic clostridia. 2. Examination of the use of chitin as a source of carbon and nitrogen by cellulolytic microbes. We discovered that many cellulolytic anaerobes and facultative aerobes are able to use chitin as a source of both carbon and nitrogen. This major discovery expands our understanding of the biology of cellulose-fermenting bacteria and may lead to new applications for these microbes. 3. Comparative studies of the cellulase and chitinase systems of Cellulomonas uda. Results of these studies indicate that the chitinase and cellulase systems of this bacterium are distinct in terms of the proteins involved and the regulation of their production. 4. Characterization of the chitinase system of C. uda. A 70,000-Mr endochitinase, designated ChiA, was purified from C. uda culture supernatant fluids and characterized. 5. Analysis of chiA, which codes for the major enzymatic component of the chitinase system of C. uda. The gene encoding the endochitinase ChiA in C. uda was cloned, its complete nucleotide sequence was determined and its implications were investigated. 6. Formation of biofilms by C. uda on cellulose and chitin. Microscopic observations indicated that, under conditions of nitrogen limitation, C. uda cells grew as a biofilm attached tightly to the surface of cellulose or chitin. 7. Development of tools for a genetic approach to studies of cellulose fermentation by cellulolytic clostridia. We have explored the potential of various techniques, and obtained evidence indicating that Tn916 mutagenesis may be particularly effective in this regard. As part of this research, we identified the presence of a plasmid in one strain, which was cloned, sequenced, and analyzed for its utility in the development of vectors for genetic studies. 8. Effects of humic substances on cellulose degradation by anaerobic cellulolytic microbes. We determined that humic substances play an important role in the anaerobic cellulose decomposition and in the physiology of cellulose-fermenting soil bacteria. 9. Nitrogenases of cellulolytic clostridia. We described a nitrogenase gene from a cellulolytic clostridium and presented evidence, based on sequence analyses and conserved gene order, for lateral gene transfer between this bacterium and a methanogenic archaeon. 10. Characterization of Clostridium hungatei, a new N2-fixing cellulolytic species isolated from a methanogenic consortium from soil. 11. Understanding the molecular architecture of the multicomplex cellulase-xylanase system of Clostridium papyrosolvens. We discovered that C. papyrosolvens produces a multiprotein, multicomplex cellulase-xylanase enzyme system that hydrolyzes crystalline cellulose, and we have described this system in detail.« less
Tahir, Muhammad N; Lockhart, Ben; Grinstead, Samuel; Mollov, Dimitre
2017-04-01
Bermuda grass samples were examined by transmission electron microscopy and 28-30 nm spherical virus particles were observed. Total RNA from these plants was subjected to high-throughput sequencing (HTS). The nearly full genome sequence of a panicovirus was identified from one HTS scaffold. Sanger sequencing was used to confirm the HTS results and complete the genome sequence of 4404 nt. This virus was provisionally named Bermuda grass latent virus (BGLV). Its predicted open reading frames follow the typical arrangement of the genus Panicovirus. Based on sequence comparisons and phylogenetic analyses BGLV differs from other viruses and therefore taxonomically it is a new member of the genus Panicovirus, family Tombusviridae.
Sequence Determinants of Compaction in Intrinsically Disordered Proteins
Marsh, Joseph A.; Forman-Kay, Julie D.
2010-01-01
Abstract Intrinsically disordered proteins (IDPs), which lack folded structure and are disordered under nondenaturing conditions, have been shown to perform important functions in a large number of cellular processes. These proteins have interesting structural properties that deviate from the random-coil-like behavior exhibited by chemically denatured proteins. In particular, IDPs are often observed to exhibit significant compaction. In this study, we have analyzed the hydrodynamic radii of a number of IDPs to investigate the sequence determinants of this compaction. Net charge and proline content are observed to be strongly correlated with increased hydrodynamic radii, suggesting that these are the dominant contributors to compaction. Hydrophobicity and secondary structure, on the other hand, appear to have negligible effects on compaction, which implies that the determinants of structure in folded and intrinsically disordered proteins are profoundly different. Finally, we observe that polyhistidine tags seem to increase IDP compaction, which suggests that these tags have significant perturbing effects and thus should be removed before any structural characterizations of IDPs. Using the relationships observed in this analysis, we have developed a sequence-based predictor of hydrodynamic radius for IDPs that shows substantial improvement over a simple model based upon chain length alone. PMID:20483348
Using Poisson mixed-effects model to quantify transcript-level gene expression in RNA-Seq.
Hu, Ming; Zhu, Yu; Taylor, Jeremy M G; Liu, Jun S; Qin, Zhaohui S
2012-01-01
RNA sequencing (RNA-Seq) is a powerful new technology for mapping and quantifying transcriptomes using ultra high-throughput next-generation sequencing technologies. Using deep sequencing, gene expression levels of all transcripts including novel ones can be quantified digitally. Although extremely promising, the massive amounts of data generated by RNA-Seq, substantial biases and uncertainty in short read alignment pose challenges for data analysis. In particular, large base-specific variation and between-base dependence make simple approaches, such as those that use averaging to normalize RNA-Seq data and quantify gene expressions, ineffective. In this study, we propose a Poisson mixed-effects (POME) model to characterize base-level read coverage within each transcript. The underlying expression level is included as a key parameter in this model. Since the proposed model is capable of incorporating base-specific variation as well as between-base dependence that affect read coverage profile throughout the transcript, it can lead to improved quantification of the true underlying expression level. POME can be freely downloaded at http://www.stat.purdue.edu/~yuzhu/pome.html. yuzhu@purdue.edu; zhaohui.qin@emory.edu Supplementary data are available at Bioinformatics online.
Statistical Features of the 2010 Beni-Ilmane, Algeria, Aftershock Sequence
NASA Astrophysics Data System (ADS)
Hamdache, M.; Peláez, J. A.; Gospodinov, D.; Henares, J.
2018-03-01
The aftershock sequence of the 2010 Beni-Ilmane ( M W 5.5) earthquake is studied in depth to analyze the spatial and temporal variability of seismicity parameters of the relationships modeling the sequence. The b value of the frequency-magnitude distribution is examined rigorously. A threshold magnitude of completeness equal to 2.1, using the maximum curvature procedure or the changing point algorithm, and a b value equal to 0.96 ± 0.03 have been obtained for the entire sequence. Two clusters have been identified and characterized by their faulting type, exhibiting b values equal to 0.99 ± 0.05 and 1.04 ± 0.05. Additionally, the temporal decay of the aftershock sequence was examined using a stochastic point process. The analysis was done through the restricted epidemic-type aftershock sequence (RETAS) stochastic model, which allows the possibility to recognize the prevailing clustering pattern of the relaxation process in the examined area. The analysis selected the epidemic-type aftershock sequence (ETAS) model to offer the most appropriate description of the temporal distribution, which presumes that all events in the sequence can cause secondary aftershocks. Finally, the fractal dimensions are estimated using the integral correlation. The obtained D 2 values are 2.15 ± 0.01, 2.23 ± 0.01 and 2.17 ± 0.02 for the entire sequence, and for the first and second cluster, respectively. An analysis of the temporal evolution of the fractal dimensions D -2, D 0, D 2 and the spectral slope has been also performed to derive and characterize the different clusters included in the sequence.
VaDiR: an integrated approach to Variant Detection in RNA.
Neums, Lisa; Suenaga, Seiji; Beyerlein, Peter; Anders, Sara; Koestler, Devin; Mariani, Andrea; Chien, Jeremy
2018-02-01
Advances in next-generation DNA sequencing technologies are now enabling detailed characterization of sequence variations in cancer genomes. With whole-genome sequencing, variations in coding and non-coding sequences can be discovered. But the cost associated with it is currently limiting its general use in research. Whole-exome sequencing is used to characterize sequence variations in coding regions, but the cost associated with capture reagents and biases in capture rate limit its full use in research. Additional limitations include uncertainty in assigning the functional significance of the mutations when these mutations are observed in the non-coding region or in genes that are not expressed in cancer tissue. We investigated the feasibility of uncovering mutations from expressed genes using RNA sequencing datasets with a method called Variant Detection in RNA(VaDiR) that integrates 3 variant callers, namely: SNPiR, RVBoost, and MuTect2. The combination of all 3 methods, which we called Tier 1 variants, produced the highest precision with true positive mutations from RNA-seq that could be validated at the DNA level. We also found that the integration of Tier 1 variants with those called by MuTect2 and SNPiR produced the highest recall with acceptable precision. Finally, we observed a higher rate of mutation discovery in genes that are expressed at higher levels. Our method, VaDiR, provides a possibility of uncovering mutations from RNA sequencing datasets that could be useful in further functional analysis. In addition, our approach allows orthogonal validation of DNA-based mutation discovery by providing complementary sequence variation analysis from paired RNA/DNA sequencing datasets.
Computational analysis of gene-gene interactions using multifactor dimensionality reduction.
Moore, Jason H
2004-11-01
Understanding the relationship between DNA sequence variations and biologic traits is expected to improve the diagnosis, prevention and treatment of common human diseases. Success in characterizing genetic architecture will depend on our ability to address nonlinearities in the genotype-to-phenotype mapping relationship as a result of gene-gene interactions, or epistasis. This review addresses the challenges associated with the detection and characterization of epistasis. A novel strategy known as multifactor dimensionality reduction that was specifically designed for the identification of multilocus genetic effects is presented. Several case studies that demonstrate the detection of gene-gene interactions in common diseases such as atrial fibrillation, Type II diabetes and essential hypertension are also discussed.
Comprehensive comparison of three commercial human whole-exome capture platforms.
Asan; Xu, Yu; Jiang, Hui; Tyler-Smith, Chris; Xue, Yali; Jiang, Tao; Wang, Jiawei; Wu, Mingzhi; Liu, Xiao; Tian, Geng; Wang, Jun; Wang, Jian; Yang, Huangming; Zhang, Xiuqing
2011-09-28
Exome sequencing, which allows the global analysis of protein coding sequences in the human genome, has become an effective and affordable approach to detecting causative genetic mutations in diseases. Currently, there are several commercial human exome capture platforms; however, the relative performances of these have not been characterized sufficiently to know which is best for a particular study. We comprehensively compared three platforms: NimbleGen's Sequence Capture Array and SeqCap EZ, and Agilent's SureSelect. We assessed their performance in a variety of ways, including number of genes covered and capture efficacy. Differences that may impact on the choice of platform were that Agilent SureSelect covered approximately 1,100 more genes, while NimbleGen provided better flanking sequence capture. Although all three platforms achieved similar capture specificity of targeted regions, the NimbleGen platforms showed better uniformity of coverage and greater genotype sensitivity at 30- to 100-fold sequencing depth. All three platforms showed similar power in exome SNP calling, including medically relevant SNPs. Compared with genotyping and whole-genome sequencing data, the three platforms achieved a similar accuracy of genotype assignment and SNP detection. Importantly, all three platforms showed similar levels of reproducibility, GC bias and reference allele bias. We demonstrate key differences between the three platforms, particularly advantages of solutions over array capture and the importance of a large gene target set.
Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma.
Linehan, W Marston; Spellman, Paul T; Ricketts, Christopher J; Creighton, Chad J; Fei, Suzanne S; Davis, Caleb; Wheeler, David A; Murray, Bradley A; Schmidt, Laura; Vocke, Cathy D; Peto, Myron; Al Mamun, Abu Amar M; Shinbrot, Eve; Sethi, Anurag; Brooks, Samira; Rathmell, W Kimryn; Brooks, Angela N; Hoadley, Katherine A; Robertson, A Gordon; Brooks, Denise; Bowlby, Reanne; Sadeghi, Sara; Shen, Hui; Weisenberger, Daniel J; Bootwalla, Moiz; Baylin, Stephen B; Laird, Peter W; Cherniack, Andrew D; Saksena, Gordon; Haake, Scott; Li, Jun; Liang, Han; Lu, Yiling; Mills, Gordon B; Akbani, Rehan; Leiserson, Mark D M; Raphael, Benjamin J; Anur, Pavana; Bottaro, Donald; Albiges, Laurence; Barnabas, Nandita; Choueiri, Toni K; Czerniak, Bogdan; Godwin, Andrew K; Hakimi, A Ari; Ho, Thai H; Hsieh, James; Ittmann, Michael; Kim, William Y; Krishnan, Bhavani; Merino, Maria J; Mills Shaw, Kenna R; Reuter, Victor E; Reznik, Ed; Shelley, Carl S; Shuch, Brian; Signoretti, Sabina; Srinivasan, Ramaprasad; Tamboli, Pheroze; Thomas, George; Tickoo, Satish; Burnett, Kenneth; Crain, Daniel; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph D; Penny, Robert J; Shelton, Candace; Shelton, W Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Avedon, Melissa T; Bowen, Jay; Gastier-Foster, Julie M; Gerken, Mark; Leraas, Kristen M; Lichtenberg, Tara M; Ramirez, Nilsa C; Santos, Tracie; Wise, Lisa; Zmuda, Erik; Demchok, John A; Felau, Ina; Hutter, Carolyn M; Sheth, Margi; Sofia, Heidi J; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C; Zhang, Jiashan; Ayala, Brenda; Baboud, Julien; Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Ally, Adrian; Balasundaram, Miruna; Balu, Saianand; Beroukhim, Rameen; Bodenheimer, Tom; Buhay, Christian; Butterfield, Yaron S N; Carlsen, Rebecca; Carter, Scott L; Chao, Hsu; Chuah, Eric; Clarke, Amanda; Covington, Kyle R; Dahdouli, Mahmoud; Dewal, Ninad; Dhalla, Noreen; Doddapaneni, Harsha V; Drummond, Jennifer A; Gabriel, Stacey B; Gibbs, Richard A; Guin, Ranabir; Hale, Walker; Hawes, Alicia; Hayes, D Neil; Holt, Robert A; Hoyle, Alan P; Jefferys, Stuart R; Jones, Steven J M; Jones, Corbin D; Kalra, Divya; Kovar, Christie; Lewis, Lora; Li, Jie; Ma, Yussanne; Marra, Marco A; Mayo, Michael; Meng, Shaowu; Meyerson, Matthew; Mieczkowski, Piotr A; Moore, Richard A; Morton, Donna; Mose, Lisle E; Mungall, Andrew J; Muzny, Donna; Parker, Joel S; Perou, Charles M; Roach, Jeffrey; Schein, Jacqueline E; Schumacher, Steven E; Shi, Yan; Simons, Janae V; Sipahimalani, Payal; Skelly, Tara; Soloway, Matthew G; Sougnez, Carrie; Tam, Angela; Tan, Donghui; Thiessen, Nina; Veluvolu, Umadevi; Wang, Min; Wilkerson, Matthew D; Wong, Tina; Wu, Junyuan; Xi, Liu; Zhou, Jane; Bedford, Jason; Chen, Fengju; Fu, Yao; Gerstein, Mark; Haussler, David; Kasaian, Katayoon; Lai, Phillip; Ling, Shiyun; Radenbaugh, Amie; Van Den Berg, David; Weinstein, John N; Zhu, Jingchun; Albert, Monique; Alexopoulou, Iakovina; Andersen, Jeremiah J; Auman, J Todd; Bartlett, John; Bastacky, Sheldon; Bergsten, Julie; Blute, Michael L; Boice, Lori; Bollag, Roni J; Boyd, Jeff; Castle, Erik; Chen, Ying-Bei; Cheville, John C; Curley, Erin; Davies, Benjamin; DeVolk, April; Dhir, Rajiv; Dike, Laura; Eckman, John; Engel, Jay; Harr, Jodi; Hrebinko, Ronald; Huang, Mei; Huelsenbeck-Dill, Lori; Iacocca, Mary; Jacobs, Bruce; Lobis, Michael; Maranchie, Jodi K; McMeekin, Scott; Myers, Jerome; Nelson, Joel; Parfitt, Jeremy; Parwani, Anil; Petrelli, Nicholas; Rabeno, Brenda; Roy, Somak; Salner, Andrew L; Slaton, Joel; Stanton, Melissa; Thompson, R Houston; Thorne, Leigh; Tucker, Kelinda; Weinberger, Paul M; Winemiller, Cynthia; Zach, Leigh Anne; Zuna, Rosemary
2016-01-14
Papillary renal-cell carcinoma, which accounts for 15 to 20% of renal-cell carcinomas, is a heterogeneous disease that consists of various types of renal cancer, including tumors with indolent, multifocal presentation and solitary tumors with an aggressive, highly lethal phenotype. Little is known about the genetic basis of sporadic papillary renal-cell carcinoma, and no effective forms of therapy for advanced disease exist. We performed comprehensive molecular characterization of 161 primary papillary renal-cell carcinomas, using whole-exome sequencing, copy-number analysis, messenger RNA and microRNA sequencing, DNA-methylation analysis, and proteomic analysis. Type 1 and type 2 papillary renal-cell carcinomas were shown to be different types of renal cancer characterized by specific genetic alterations, with type 2 further classified into three individual subgroups on the basis of molecular differences associated with patient survival. Type 1 tumors were associated with MET alterations, whereas type 2 tumors were characterized by CDKN2A silencing, SETD2 mutations, TFE3 fusions, and increased expression of the NRF2-antioxidant response element (ARE) pathway. A CpG island methylator phenotype (CIMP) was observed in a distinct subgroup of type 2 papillary renal-cell carcinomas that was characterized by poor survival and mutation of the gene encoding fumarate hydratase (FH). Type 1 and type 2 papillary renal-cell carcinomas were shown to be clinically and biologically distinct. Alterations in the MET pathway were associated with type 1, and activation of the NRF2-ARE pathway was associated with type 2; CDKN2A loss and CIMP in type 2 conveyed a poor prognosis. Furthermore, type 2 papillary renal-cell carcinoma consisted of at least three subtypes based on molecular and phenotypic features. (Funded by the National Institutes of Health.).
Ramzan, Khushnooda; Al-Owain, Mohammed; Huma, Rozeena; Al-Hazzaa, Selwa A F; Al-Ageel, Sarah; Imtiaz, Faiqa; Al-Sayed, Moeenaldeen
2018-05-01
Next generation sequencing (NGS), such as targeted panel sequencing, whole-exome sequencing and whole-genome sequencing has led to an exponential increase of elucidated genetic causes in both rare diseases, and common but heterogeneous disorders. NGS is applied in both research and clinical settings, and the clinical exome sequencing (CES), which provides not only the sequence variation data but also clinical interpretation, aids in reaching a final conclusion with regards to a genetic diagnosis. Usher syndrome is a group of disorders, characterized by bilateral sensorineural hearing loss, with or without vestibular dysfunction and retinitis pigmentosa. The index patient, a 2-year-old child was initially diagnosed with nonsyndromic hearing impairment. Homozygosity mapping followed by CES was utilized as a diagnostic tool to identify the genetic basis of his hearing loss. A paternally inherited novel insertion, c.198_199insA (p.Val67Serfs*73) and a maternally inherited novel deletion, c.1219_1226del (p.Phe407Aspfs*33) in gene MYO7A were found in compound heterozygous state in the index patient. The result expands the mutational spectrum of MYO7A. In addition it helped in early diagnosis of the syndrome, for planning and adjustments for the patient, and as well as for future family planning. This study highlights the clinical effectiveness of CES for Usher syndrome diagnosis in a child presented with congenital hearing loss. Copyright © 2018. Published by Elsevier B.V.
Krawitz, Peter M; Schiska, Daniela; Krüger, Ulrike; Appelt, Sandra; Heinrich, Verena; Parkhomchuk, Dmitri; Timmermann, Bernd; Millan, Jose M; Robinson, Peter N; Mundlos, Stefan; Hecht, Jochen; Gross, Manfred
2014-01-01
Usher syndrome is an autosomal recessive disorder characterized both by deafness and blindness. For the three clinical subtypes of Usher syndrome causal mutations in altogether 12 genes and a modifier gene have been identified. Due to the genetic heterogeneity of Usher syndrome, the molecular analysis is predestined for a comprehensive and parallelized analysis of all known genes by next-generation sequencing (NGS) approaches. We describe here the targeted enrichment and deep sequencing for exons of Usher genes and compare the costs and workload of this approach compared to Sanger sequencing. We also present a bioinformatics analysis pipeline that allows us to detect single-nucleotide variants, short insertions and deletions, as well as copy number variations of one or more exons on the same sequence data. Additionally, we present a flexible in silico gene panel for the analysis of sequence variants, in which newly identified genes can easily be included. We applied this approach to a cohort of 44 Usher patients and detected biallelic pathogenic mutations in 35 individuals and monoallelic mutations in eight individuals of our cohort. Thirty-nine of the sequence variants, including two heterozygous deletions comprising several exons of USH2A, have not been reported so far. Our NGS-based approach allowed us to assess single-nucleotide variants, small indels, and whole exon deletions in a single test. The described diagnostic approach is fast and cost-effective with a high molecular diagnostic yield. PMID:25333064
Krawitz, Peter M; Schiska, Daniela; Krüger, Ulrike; Appelt, Sandra; Heinrich, Verena; Parkhomchuk, Dmitri; Timmermann, Bernd; Millan, Jose M; Robinson, Peter N; Mundlos, Stefan; Hecht, Jochen; Gross, Manfred
2014-09-01
Usher syndrome is an autosomal recessive disorder characterized both by deafness and blindness. For the three clinical subtypes of Usher syndrome causal mutations in altogether 12 genes and a modifier gene have been identified. Due to the genetic heterogeneity of Usher syndrome, the molecular analysis is predestined for a comprehensive and parallelized analysis of all known genes by next-generation sequencing (NGS) approaches. We describe here the targeted enrichment and deep sequencing for exons of Usher genes and compare the costs and workload of this approach compared to Sanger sequencing. We also present a bioinformatics analysis pipeline that allows us to detect single-nucleotide variants, short insertions and deletions, as well as copy number variations of one or more exons on the same sequence data. Additionally, we present a flexible in silico gene panel for the analysis of sequence variants, in which newly identified genes can easily be included. We applied this approach to a cohort of 44 Usher patients and detected biallelic pathogenic mutations in 35 individuals and monoallelic mutations in eight individuals of our cohort. Thirty-nine of the sequence variants, including two heterozygous deletions comprising several exons of USH2A, have not been reported so far. Our NGS-based approach allowed us to assess single-nucleotide variants, small indels, and whole exon deletions in a single test. The described diagnostic approach is fast and cost-effective with a high molecular diagnostic yield.
Gouveia, Juceli Gonzalez; Wolf, Ivan Rodrigo; de Moraes-Manécolo, Vivian Patrícia Oliveira; Bardella, Vanessa Belline; Ferracin, Lara Munique; Giuliano-Caetano, Lucia; da Rosa, Renata; Dias, Ana Lúcia
2016-12-01
Sequences of 5S ribosomal RNA (rRNA) are extensively used in fish cytogenomic studies, once they have a flexible organization at the chromosomal level, showing inter- and intra-specific variation in number and position in karyotypes. Sequences from the genome of Imparfinis schubarti (Heptapteridae) were isolated, aiming to understand the organization of 5S rDNA families in the fish genome. The isolation of 5S rDNA from the genome of I. schubarti was carried out by reassociation kinetics (C 0 t) and PCR amplification. The obtained sequences were cloned for the construction of a micro-library. The obtained clones were sequenced and hybridized in I. schubarti and Microglanis cottoides (Pseudopimelodidae) for chromosome mapping. An analysis of the sequence alignments with other fish groups was accomplished. Both methods were effective when using 5S rDNA for hybridization in I. schubarti genome. However, the C 0 t method enabled the use of a complete 5S rRNA gene, which was also successful in the hybridization of M. cottoides. Nevertheless, this gene was obtained only partially by PCR. The hybridization results and sequence analyses showed that intact 5S regions are more appropriate for the probe operation, due to conserved structure and motifs. This study contributes to a better understanding of the organization of multigene families in catfish's genomes.
Identification and characterization of cell-specific enhancer elements for the mouse ETF/Tead2 gene.
Tanoue, Y; Yasunami, M; Suzuki, K; Ohkubo, H
2001-12-21
We have identified and characterized by transient transfection assays the cell-specific 117-bp enhancer sequence in the first intron of the mouse ETF (Embryonic TEA domain-containing factor)/Tead2 gene required for transcriptional activation in ETF/Tead2 gene-expressing cells, such as P19 cells. The 117-bp enhancer contains one GC-rich sequence (5'-GGGGCGGGG-3'), termed the GC box, and two tandemly repeated GA-rich sequences (5'-GGGGGAGGGG-3'), termed the proximal and distal GA elements. Further analyses, including transfection studies and electrophoretic mobility shift assays using a series of deletion and mutation constructs, indicated that Sp1, a putative activator, may be required to predominate over its competition with another unknown putative repressor, termed the GA element-binding factor, for binding to both the GC box, which overlapped with the proximal GA element, and the distal GA element in the 117-bp sequence in order to achieve a full enhancer activity. We also discuss a possible mechanism underlying the cell-specific enhancer activity of the 117-bp sequence.
Isolation and characterization of the chicken trypsinogen gene family.
Wang, K; Gan, L; Lee, I; Hood, L
1995-01-01
Based on genomic Southern hybridizations and cDNA sequence analyses, the chicken trypsinogen gene family can be divided into two multi-member subfamilies, a six-member trypsinogen I subfamily which encodes the cationic trypsin isoenzymes and a three-member trypsinogen II subfamily which encodes the anionic trypsin isoenzymes. The chicken cDNA and genomic clones containing these two subfamilies were isolated and characterized by DNA sequence analysis. The results indicated that the chicken trypsinogen genes encoded a signal peptide of 15 to 16 amino acid residues, an activation peptide of 9 to 10 residues and a trypsin of 223 amino acid residues. The chicken trypsinogens contain all the common catalytic and structural features for trypsins, including the catalytic triad His, Asp and Ser and the six disulphide bonds. The trypsinogen I and II subfamilies share approximately 70% sequence identity at the nucleotide and amino acid level. The sequence comparison among chicken trypsinogen subfamily members and trypsin sequences from other species suggested that the chicken trypsinogen genes may have evolved in coincidental or concerted fashion. Images Figure 6 Figure 7 PMID:7733885
Teng, Y; Liu, H; Lv, J Q; Fan, W H; Zhang, Q Y; Qin, Q W
2007-01-01
The complete genome of spring viraemia of carp virus (SVCV) strain A-1 isolated from cultured common carp (Cyprinus carpio) in China was sequenced and characterized. Reverse transcription-polymerase chain reaction (RT-PCR) derived clones were constructed and the DNA was sequenced. It showed that the entire genome of SVCV A-1 consists of 11,100 nucleotide base pairs, the predicted size of the viral RNA of rhabdoviruses. However, the additional insertions in bp 4633-4676 and bp 4684-4724 of SVCV A-1 were different from the other two published SVCV complete genomes. Five open reading frames (ORFs) of SVCV A-1 were identified and further confirmed by RT-PCR and DNA sequencing of their respective RT-PCR products. The 5 structural proteins encoded by the viral RNA were ordered 3'-N-P-M-G-L-5'. This is the first report of a complete genome sequence of SVCV isolated from cultured carp in China. Phylogenetic analysis indicates that SVCV A-1 is closely related to the members of the genus Vesiculovirus, family Rhabdoviridae.
Characterization of rat calcitonin mRNA.
Amara, S G; David, D N; Rosenfeld, M G; Roos, B A; Evans, R M
1980-01-01
A chimeric plasmic containing cDNA complementary to rat calcitonin mRNA has been constructed. Partial sequence analysis shows that the insert contains a nucleotide sequence encoding the complete amino acid sequence of calcitonin. Two basic amino acids precede and three basic amino acids follow the hormone sequence, suggesting that calcitonin is generated by the proteolytic cleavage of a larger precursor in a manner analogous to that of other small polypeptide hormones. The COOH-terminal proline, known to be amidated in the secreted hormone, is followed by a glycine in the precursor. The cloned calcitonin DNA was used to characterize the expression of calcitonin mRNA. Cytoplasmic mRNAs from calcitonin-producing rat medullary thyroid carcinoma lines and from normal rat thyroid glands contain a single species, 1050 nucleotides long, whch hybridizes to the cloned calcitonin cDNA. The concentration of calcitonin mRNA sequences is greater in those tumors that produce larger amounts of immunoreactive calcitonin. RNAs from other endocrine tissues, including anterior and neurointermediate lobes of rat pituitary, contain no detectable calcitonin mRNA. Images PMID:6933496
Mapping Challenging Mutations by Whole-Genome Sequencing
Smith, Harold E.; Fabritius, Amy S.; Jaramillo-Lambert, Aimee; Golden, Andy
2016-01-01
Whole-genome sequencing provides a rapid and powerful method for identifying mutations on a global scale, and has spurred a renewed enthusiasm for classical genetic screens in model organisms. The most commonly characterized category of mutation consists of monogenic, recessive traits, due to their genetic tractability. Therefore, most of the mapping methods for mutation identification by whole-genome sequencing are directed toward alleles that fulfill those criteria (i.e., single-gene, homozygous variants). However, such approaches are not entirely suitable for the characterization of a variety of more challenging mutations, such as dominant and semidominant alleles or multigenic traits. Therefore, we have developed strategies for the identification of those classes of mutations, using polymorphism mapping in Caenorhabditis elegans as our model for validation. We also report an alternative approach for mutation identification from traditional recombinant crosses, and a solution to the technical challenge of sequencing sterile or terminally arrested strains where population size is limiting. The methods described herein extend the applicability of whole-genome sequencing to a broader spectrum of mutations, including classes that are difficult to map by traditional means. PMID:26945029
Choi, Man-Yeon; Ahn, Seung-Joon; Kim, A Young; Koh, Youngho
2017-05-15
The family of FXPRLamide peptides serves as a major insect hormone. It is characterized by a core active amino acid sequence conserved at the C-terminal ends, and provides various physiological roles across the Insecta. In this study we identified and characterized pyrokinin (PK) and CAPA cDNAs encoding two FXPRLamide peptides, pyrokinin and CAPA-DH (diapause hormone), and two corresponding G protein-coupled receptors (GPCRs) from spotted wing drosophila (SWD), Drosophila suzukii. Expressions of PK and CAPA mRNAs were differentially observed during all life stages except the embryo, and the detection of CAPA transcription was relatively strong compared with the PK gene in SWD. Both D. suzukii pyrokinin receptor (DrosuPKr) and CAPA-DH receptor (DrosuCAPA-DHr) were functionally expressed and confirmed through binding to PK and DH peptides. Differential expression of two GPCRs occurred during all life stages; a strong transcription of DrosuPKr was observed in the 3rd instar. DrosuCAPA-DHr was clearly expressed from the embryo to the larva, but not detected in the adult. Gene regulation during the life stages was not synchronized between ligand and receptor. For example, SWD CAPA mRNA has been up-regulated in the adult while CAPA-DHr was down-regulated. The difference could be from the CAPA mRNA translating multiple peptides including CAPA-DH and two CAPA-PVK (periviscerokinin) peptides to act on different receptors. Comparing the genes of SWD PK, CAPA, PKr and CAPA-DHr to four corresponding genes of D. melanogaster, SWD CAPA and the receptor are more similar to D. melanogaster than PK and the receptor. These data suggest that the CAPA gene could be evolutionally more conserved to have a common biological role in insects. In addition, the effect of Kozak sequences was investigated by the expression of the GPCRs with or without Kozak sequences in Sf9 insect cells. The Kozak sequenced PK receptor was significantly less active than the original (= no Kozak sequenced) receptor. Our results provide a knowledge for potential biological function(s) of PK and CAPA-DH peptides in SWD, and possibly offer a novel control method for this pest insect in the future. Published by Elsevier Inc.
Weeraratne, Thilini Chathurika; Surendran, Sinnathamby Noble; Parakrama Karunaratne, S H P
2018-04-25
Vectors of mosquito-borne diseases in Sri Lanka, except for malaria, belong to the subfamily Culicinae, which includes nearly 84% of the mosquito fauna of the country. Hence, accurate and precise species identification of culicine mosquitoes is a crucial factor in implementing effective vector control strategies. During the present study, a combined effort using morphology and DNA barcoding was made to characterize mosquitoes of the subfamily Culicinae for the first time from nine districts of Sri Lanka. Cytochrome c oxidase subunit 1 (cox1) gene from the mitochondrial genome and the internal transcribed spacer 2 (ITS2) region from the nuclear ribosomal DNA were used for molecular characterization. According to morphological identification, the field collected adult mosquitoes belonged to 5 genera and 14 species, i.e. Aedes aegypti, Ae. albopictus, Ae. pallidostriatus, Aedes sp. 1, Armigeres sp. 1, Culex bitaeniorhynchus, Cx. fuscocephala, Cx. gelidus, Cx. pseudovishnui, Cx. quinquefasciatus, Cx. tritaeniorhynchus, Cx. whitmorei, Mansonia uniformis and Mimomyia chamberlaini. Molecular analyses of 62 cox1 and 36 ITS2 sequences were exclusively comparable with the morphological identifications of all the species except for Ae. pallidostriatus and Aedes sp. 1. Although the species identification of Armigeres sp. 1 specimens using morphological features was not possible during this study, DNA barcodes of the specimens matched 100% with the publicly available Ar. subalbatus sequences, giving their species status. Analysis of all the cox1 sequences (14 clades supported by strong bootstrap value in the Neighbor-Joining tree and interspecific distances of > 3%) showed the presence of 14 different species. This is the first available DNA sequence in the GenBank records for morphologically identified Ae. pallidostriatus. Aedes sp. 1 could not be identified morphologically or by publicly available sequences. Aedes aegypti, Ae. albopictus and all Culex species reported during the current study are vectors of human diseases. All these vector species showed comparatively high diversity. The current study reflects the significance of integrated systematic approach and use of cox1 and ITS genetic markers in mosquito taxonomy. Results of DNA barcoding were comparable with morphological identifications and, more importantly, DNA barcoding could accurately identify the species in the instances where the traditional morphological identification failed due to indistinguishable characters of damaged specimens and the presence of subspecies.
Molecular confirmation of Hepatozoon canis in Mauritius.
Daskalaki, Aikaterini Alexandra; Ionică, Angela Monica; Jeetah, Keshav; Gherman, Călin Mircea; Mihalca, Andrei Daniel
2018-01-01
In this study, Hepatozoon species was molecularly identified and characterized for the first time on the Indian Ocean island of Mauritius. Partial sequences of the 18S rRNA gene of the Hepatozoon isolates were analysed from three naturally infected dogs. The sequences of H. canis were similar to the 18S rRNA partial sequences (JX112783, AB365071 99%) from dog blood samples from West Indies and Nigeria. Our sequences were deposited in the GenBank database. Copyright © 2017 Elsevier B.V. All rights reserved.
Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor L.; Brow, Mary Ann D.; Dahlberg, James E.
2007-12-11
The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.
Invasive cleavage of nucleic acids
Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.
1999-01-01
The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.
Invasive cleavage of nucleic acids
Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.
2002-01-01
The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.
Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow; Mary Ann D.; Dahlberg, James E.
2010-11-09
The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.
Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.
2000-01-01
The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.
Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann; Dahlberg, James E.
2005-04-05
The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.
Rapid Sequencing of Complete env Genes from Primary HIV-1 Samples
Eren, Kemal; Ignacio, Caroline; Landais, Elise; Weaver, Steven; Phung, Pham; Ludka, Colleen; Hepler, Lance; Caballero, Gemma; Pollner, Tristan; Guo, Yan; Richman, Douglas; Poignard, Pascal; Paxinos, Ellen E.; Kosakovsky Pond, Sergei L.
2016-01-01
Abstract The ability to study rapidly evolving viral populations has been constrained by the read length of next-generation sequencing approaches and the sampling depth of single-genome amplification methods. Here, we develop and characterize a method using Pacific Biosciences’ Single Molecule, Real-Time (SMRT®) sequencing technology to sequence multiple, intact full-length human immunodeficiency virus-1 env genes amplified from viral RNA populations circulating in blood, and provide computational tools for analyzing and visualizing these data. PMID:29492273
Effect of hot acid hydrolysis and hot chlorine dioxide stage on bleaching effluent biodegradability.
Gomes, C M; Colodette, J L; Delantonio, N R N; Mounteer, A H; Silva, C M
2007-01-01
The hot acid hydrolysis followed by chlorine dioxide (A/D*) and hot chlorine dioxide (D*) technologies have proven very useful for bleaching of eucalyptus kraft pulp. Although the characteristics and biodegradability of effluents from conventional chlorine dioxide bleaching are well known, such information is not yet available for effluents derived from hot acid hydrolysis and hot chorine dioxide bleaching. This study discusses the characteristics and biodegradability of such effluents. Combined whole effluents from the complete sequences DEpD, D*EpD, A/D*EpD and ADEpD, and from the pre-bleaching sequences DEp, D*Ep, A/D*Ep and ADEp were characterized by quantifying their colour, AOX and organic load (BOD, COD, TOC). These effluents were also evaluated for their treatability by simulation of an activated sludge system. It was concluded that treatment in the laboratory sequencing batch reactor was efficient for removal of COD, BOD and TOC of all effluents. However, colour increased after biological treatment, with the greatest increase found for the effluent produced using the AD technology. Biological treatment was less efficient at removing AOX of effluents from the sequences with D*, A/D* and AD as the first stages, when compared to the reference D stage; there was evidence of the lower treatability of these organochlorine compounds from these sequences.
NASA Technical Reports Server (NTRS)
Zhang, Zhengdong; Willson, Richard C.; Fox, George E.
2002-01-01
MOTIVATION: The phylogenetic structure of the bacterial world has been intensively studied by comparing sequences of 16S ribosomal RNA (16S rRNA). This database of sequences is now widely used to design probes for the detection of specific bacteria or groups of bacteria one at a time. The success of such methods reflects the fact that there are local sequence segments that are highly characteristic of particular organisms or groups of organisms. It is not clear, however, the extent to which such signature sequences exist in the 16S rRNA dataset. A better understanding of the numbers and distribution of highly informative oligonucleotide sequences may facilitate the design of hybridization arrays that can characterize the phylogenetic position of an unknown organism or serve as the basis for the development of novel approaches for use in bacterial identification. RESULTS: A computer-based algorithm that characterizes the extent to which any individual oligonucleotide sequence in 16S rRNA is characteristic of any particular bacterial grouping was developed. A measure of signature quality, Q(s), was formulated and subsequently calculated for every individual oligonucleotide sequence in the size range of 5-11 nucleotides and for 15mers with reference to each cluster and subcluster in a 929 organism representative phylogenetic tree. Subsequently, the perfect signature sequences were compared to the full set of 7322 sequences to see how common false positives were. The work completed here establishes beyond any doubt that highly characteristic oligonucleotides exist in the bacterial 16S rRNA sequence dataset in large numbers. Over 16,000 15mers were identified that might be useful as signatures. Signature oligonucleotides are available for over 80% of the nodes in the representative tree.
Real-time, portable genome sequencing for Ebola surveillance.
Quick, Joshua; Loman, Nicholas J; Duraffour, Sophie; Simpson, Jared T; Severi, Ettore; Cowley, Lauren; Bore, Joseph Akoi; Koundouno, Raymond; Dudas, Gytis; Mikhail, Amy; Ouédraogo, Nobila; Afrough, Babak; Bah, Amadou; Baum, Jonathan Hj; Becker-Ziaja, Beate; Boettcher, Jan-Peter; Cabeza-Cabrerizo, Mar; Camino-Sanchez, Alvaro; Carter, Lisa L; Doerrbecker, Juiliane; Enkirch, Theresa; Dorival, Isabel Graciela García; Hetzelt, Nicole; Hinzmann, Julia; Holm, Tobias; Kafetzopoulou, Liana Eleni; Koropogui, Michel; Kosgey, Abigail; Kuisma, Eeva; Logue, Christopher H; Mazzarelli, Antonio; Meisel, Sarah; Mertens, Marc; Michel, Janine; Ngabo, Didier; Nitzsche, Katja; Pallash, Elisa; Patrono, Livia Victoria; Portmann, Jasmine; Repits, Johanna Gabriella; Rickett, Natasha Yasmin; Sachse, Andrea; Singethan, Katrin; Vitoriano, Inês; Yemanaberhan, Rahel L; Zekeng, Elsa G; Trina, Racine; Bello, Alexander; Sall, Amadou Alpha; Faye, Ousmane; Faye, Oumar; Magassouba, N'Faly; Williams, Cecelia V; Amburgey, Victoria; Winona, Linda; Davis, Emily; Gerlach, Jon; Washington, Franck; Monteil, Vanessa; Jourdain, Marine; Bererd, Marion; Camara, Alimou; Somlare, Hermann; Camara, Abdoulaye; Gerard, Marianne; Bado, Guillaume; Baillet, Bernard; Delaune, Déborah; Nebie, Koumpingnin Yacouba; Diarra, Abdoulaye; Savane, Yacouba; Pallawo, Raymond Bernard; Gutierrez, Giovanna Jaramillo; Milhano, Natacha; Roger, Isabelle; Williams, Christopher J; Yattara, Facinet; Lewandowski, Kuiama; Taylor, Jamie; Rachwal, Philip; Turner, Daniel; Pollakis, Georgios; Hiscox, Julian A; Matthews, David A; O'Shea, Matthew K; Johnston, Andrew McD; Wilson, Duncan; Hutley, Emma; Smit, Erasmus; Di Caro, Antonino; Woelfel, Roman; Stoecker, Kilian; Fleischmann, Erna; Gabriel, Martin; Weller, Simon A; Koivogui, Lamine; Diallo, Boubacar; Keita, Sakoba; Rambaut, Andrew; Formenty, Pierre; Gunther, Stephan; Carroll, Miles W
2016-02-11
The Ebola virus disease epidemic in West Africa is the largest on record, responsible for over 28,599 cases and more than 11,299 deaths. Genome sequencing in viral outbreaks is desirable to characterize the infectious agent and determine its evolutionary rate. Genome sequencing also allows the identification of signatures of host adaptation, identification and monitoring of diagnostic targets, and characterization of responses to vaccines and treatments. The Ebola virus (EBOV) genome substitution rate in the Makona strain has been estimated at between 0.87 × 10(-3) and 1.42 × 10(-3) mutations per site per year. This is equivalent to 16-27 mutations in each genome, meaning that sequences diverge rapidly enough to identify distinct sub-lineages during a prolonged epidemic. Genome sequencing provides a high-resolution view of pathogen evolution and is increasingly sought after for outbreak surveillance. Sequence data may be used to guide control measures, but only if the results are generated quickly enough to inform interventions. Genomic surveillance during the epidemic has been sporadic owing to a lack of local sequencing capacity coupled with practical difficulties transporting samples to remote sequencing facilities. To address this problem, here we devise a genomic surveillance system that utilizes a novel nanopore DNA sequencing instrument. In April 2015 this system was transported in standard airline luggage to Guinea and used for real-time genomic surveillance of the ongoing epidemic. We present sequence data and analysis of 142 EBOV samples collected during the period March to October 2015. We were able to generate results less than 24 h after receiving an Ebola-positive sample, with the sequencing process taking as little as 15-60 min. We show that real-time genomic surveillance is possible in resource-limited settings and can be established rapidly to monitor outbreaks.
Goettel, Wolfgang; Ramirez, Martha; Upchurch, Robert G; An, Yong-Qiang Charles
2016-08-01
Identification and characterization of a 254-kb genomic deletion on a duplicated chromosome segment that resulted in a low level of palmitic acid in soybean seeds using transcriptome sequencing. A large number of soybean genotypes varying in seed oil composition and content have been identified. Understanding the molecular mechanisms underlying these variations is important for breeders to effectively utilize them as a genetic resource. Through design and application of a bioinformatics approach, we identified nine co-regulated gene clusters by comparing seed transcriptomes of nine soybean genotypes varying in oil composition and content. We demonstrated that four gene clusters in the genotypes M23, Jack and N0304-303-3 coincided with large-scale genome rearrangements. The co-regulated gene clusters in M23 and Jack mapped to a previously described 164-kb deletion and a copy number amplification of the Rhg1 locus, respectively. The coordinately down-regulated gene clusters in N0304-303-3 were caused by a 254-kb deletion containing 19 genes including a fatty acyl-ACP thioesterase B gene (FATB1a). This deletion was associated with reduced palmitic acid content in seeds and was the molecular cause of a previously reported nonfunctional FATB1a allele, fap nc . The M23 and N0304-304-3 deletions were located in duplicated genome segments retained from the Glycine-specific whole genome duplication that occurred 13 million years ago. The homoeologous genes in these duplicated regions shared a strong similarity in both their encoded protein sequences and transcript accumulation levels, suggesting that they may have conserved and important functions in seeds. The functional conservation of homoeologous genes may result in genetic redundancy and gene dosage effects for their associated seed traits, explaining why the large deletion did not cause lethal effects or completely eliminate palmitic acid in N0304-303-3.
Comparison of next generation sequencing technologies for transcriptome characterization
2009-01-01
Background We have developed a simulation approach to help determine the optimal mixture of sequencing methods for most complete and cost effective transcriptome sequencing. We compared simulation results for traditional capillary sequencing with "Next Generation" (NG) ultra high-throughput technologies. The simulation model was parameterized using mappings of 130,000 cDNA sequence reads to the Arabidopsis genome (NCBI Accession SRA008180.19). We also generated 454-GS20 sequences and de novo assemblies for the basal eudicot California poppy (Eschscholzia californica) and the magnoliid avocado (Persea americana) using a variety of methods for cDNA synthesis. Results The Arabidopsis reads tagged more than 15,000 genes, including new splice variants and extended UTR regions. Of the total 134,791 reads (13.8 MB), 119,518 (88.7%) mapped exactly to known exons, while 1,117 (0.8%) mapped to introns, 11,524 (8.6%) spanned annotated intron/exon boundaries, and 3,066 (2.3%) extended beyond the end of annotated UTRs. Sequence-based inference of relative gene expression levels correlated significantly with microarray data. As expected, NG sequencing of normalized libraries tagged more genes than non-normalized libraries, although non-normalized libraries yielded more full-length cDNA sequences. The Arabidopsis data were used to simulate additional rounds of NG and traditional EST sequencing, and various combinations of each. Our simulations suggest a combination of FLX and Solexa sequencing for optimal transcriptome coverage at modest cost. We have also developed ESTcalc http://fgp.huck.psu.edu/NG_Sims/ngsim.pl, an online webtool, which allows users to explore the results of this study by specifying individualized costs and sequencing characteristics. Conclusion NG sequencing technologies are a highly flexible set of platforms that can be scaled to suit different project goals. In terms of sequence coverage alone, the NG sequencing is a dramatic advance over capillary-based sequencing, but NG sequencing also presents significant challenges in assembly and sequence accuracy due to short read lengths, method-specific sequencing errors, and the absence of physical clones. These problems may be overcome by hybrid sequencing strategies using a mixture of sequencing methodologies, by new assemblers, and by sequencing more deeply. Sequencing and microarray outcomes from multiple experiments suggest that our simulator will be useful for guiding NG transcriptome sequencing projects in a wide range of organisms. PMID:19646272
Molecular Simulations of Sequence-Specific Association of Transmembrane Proteins in Lipid Bilayers
NASA Astrophysics Data System (ADS)
Doxastakis, Manolis; Prakash, Anupam; Janosi, Lorant
2011-03-01
Association of membrane proteins is central in material and information flow across the cellular membranes. Amino-acid sequence and the membrane environment are two critical factors controlling association, however, quantitative knowledge on such contributions is limited. In this work, we study the dimerization of helices in lipid bilayers using extensive parallel Monte Carlo simulations with recently developed algorithms. The dimerization of Glycophorin A is examined employing a coarse-grain model that retains a level of amino-acid specificity, in three different phospholipid bilayers. Association is driven by a balance of protein-protein and lipid-induced interactions with the latter playing a major role at short separations. Following a different approach, the effect of amino-acid sequence is studied using the four transmembrane domains of the epidermal growth factor receptor family in identical lipid environments. Detailed characterization of dimer formation and estimates of the free energy of association reveal that these helices present significant affinity to self-associate with certain dimers forming non-specific interfaces.
Protein model discrimination using mutational sensitivity derived from deep sequencing.
Adkar, Bharat V; Tripathi, Arti; Sahoo, Anusmita; Bajaj, Kanika; Goswami, Devrishi; Chakrabarti, Purbani; Swarnkar, Mohit K; Gokhale, Rajesh S; Varadarajan, Raghavan
2012-02-08
A major bottleneck in protein structure prediction is the selection of correct models from a pool of decoys. Relative activities of ∼1,200 individual single-site mutants in a saturation library of the bacterial toxin CcdB were estimated by determining their relative populations using deep sequencing. This phenotypic information was used to define an empirical score for each residue (RankScore), which correlated with the residue depth, and identify active-site residues. Using these correlations, ∼98% of correct models of CcdB (RMSD ≤ 4Å) were identified from a large set of decoys. The model-discrimination methodology was further validated on eleven different monomeric proteins using simulated RankScore values. The methodology is also a rapid, accurate way to obtain relative activities of each mutant in a large pool and derive sequence-structure-function relationships without protein isolation or characterization. It can be applied to any system in which mutational effects can be monitored by a phenotypic readout. Copyright © 2012 Elsevier Ltd. All rights reserved.
Fiore, Nicola; Fajardo, Thor V M; Prodan, Simona; Herranz, María Carmen; Aparicio, Frederic; Montealegre, Jaime; Elena, Santiago F; Pallás, Vicente; Sánchez-Navarro, Jesús
2008-01-01
Prunus necrotic ringspot virus (PNRSV) is distributed worldwide, but no molecular data have been previously reported from South American isolates. The nucleotide sequences corresponding to the movement (MP) and coat (CP) proteins of 23 isolates of PNRSV from Chile, Brazil, and Uruguay, and from different Prunus species, have been obtained. Phylogenetic analysis performed with full-length MP and CP sequences from all the PNRSV isolates confirmed the clustering of the isolates into the previously reported PV32-I, PV96-II and PE5-III phylogroups. No association was found between specific sequences and host, geographic origin or symptomatology. Comparative analysis showed that both MP and CP have phylogroup-specific amino acids and all of the motifs previously characterized for both proteins. The study of the distribution of synonymous and nonsynonymous changes along both open reading frames revealed that most amino acid sites are under the effect of negative purifying selection.
Surveying the repair of ancient DNA from bones via high-throughput sequencing.
Mouttham, Nathalie; Klunk, Jennifer; Kuch, Melanie; Fourney, Ron; Poinar, Hendrik
2015-07-01
DNA damage in the form of abasic sites, chemically altered nucleotides, and strand fragmentation is the foremost limitation in obtaining genetic information from many ancient samples. Upon cell death, DNA continues to endure various chemical attacks such as hydrolysis and oxidation, but repair pathways found in vivo no longer operate. By incubating degraded DNA with specific enzyme combinations adopted from these pathways, it is possible to reverse some of the post-mortem nucleic acid damage prior to downstream analyses such as library preparation, targeted enrichment, and high-throughput sequencing. Here, we evaluate the performance of two available repair protocols on previously characterized DNA extracts from four mammoths. Both methods use endonucleases and glycosylases along with a DNA polymerase-ligase combination. PreCR Repair Mix increases the number of molecules converted to sequencing libraries, leading to an increase in endogenous content and a decrease in cytosine-to-thymine transitions due to cytosine deamination. However, the effects of Nelson Repair Mix on repair of DNA damage remain inconclusive.
In silico analysis of Mn transporters (NRAMP1) in various plant species.
Vatansever, Recep; Filiz, Ertugrul; Ozyigit, Ibrahim Ilker
2016-03-01
Manganese (Mn) is an essential micronutrient in plant life cycle. It may be involved in photosynthesis, carbohydrate and lipid biosynthesis, and oxidative stress protection. Mn deficiency inhibits the plant growth and development, and causes the various plant symptoms such as interveinal chlorosis and tissue necrosis. Despite its importance in plant life cycle, we still have limited knowledge about Mn transporters in many plant species. Therefore, this study aimed to identify and characterize high affinity Arabidopsis Mn root transporter NRAMP1 orthologs in 17 different plant species. Various in silico methods and digital gene expression data were used in identification and characterization of NRAMP1 homologs; physico-chemical properties of sequences were calculated, putative transmembrane domains (TMDs) and conserved motif signatures were determined, phylogenetic tree was constructed, 3D models and interactome map were generated, and gene expression data was analyzed. 49 NRAMP1 homologs were identified from proteome datasets of 17 plant species using AtNRAMP1 as query. Identified sequences were characterized with a NRAMP domain structure, 10-12 putative TMDs with cytosolic N- and C-terminuses, and 10-14 exons encoding a protein of 500-588 amino acids and 53.8-64.3 kDa molecular weight with basic characteristics. Consensus transport residues, GQSSTITGTYAGQY(/F)V(/I)MQGFLD(/E/N) between TMD-8 and 9 were identified in all sequences but putative N-linked glycosylation sites were not highly conserved. In phylogeny, NRAMP1 sequences demonstrated divergence in lower and higher plants as well as in monocots and dicots. Despite divergence of lower plant Physcomitrella patens in phylogeny, it showed similarity in superposed 3D models. Phylogenetic distribution of AtNRAMP1 and 6 homologs inferred a functional relationship to NRAMP6 sequences in Mn transport, while distribution of OsNRAMP1 and 5 homologs implicated an involvement of NRAMP1 sequences in Mn transport or a cross-talk between in Fe-Mn homeostasis. Interactome analysis further confirmed this cross-talk between Mn and Fe pathways. Gene expression profile of AtNRAMP1 under Fe-, K-, P- and S-deficiencies, and cold, drought, heat and salt stresses revealed various proteins involving in transcription regulation, cofactor biosynthesis, diverse developmental roles, carbohydrate metabolism, oxidation-reduction reactions, cellular signaling and protein degradation pathways. Mn deficiency or toxicity could cause serious adverse effects in plants as well as in humans. To reduce these adversities mainly rely on understanding the molecular mechanisms underlying Mn uptake from the soil. However, we still have limited knowledge regarding the structural and functional roles of Mn transporters in many plant species. Therefore, identification and characterization of Mn root uptake transporter, NRAMP1 orthologs in various plant species will provide valuable theoretical knowledge to better understand Mn transporters as well as it may become an insight for future studies aiming to develop genetically engineered and biofortified plants.
ERIC Educational Resources Information Center
Liu, Bin; Bi, Qing-sheng
2010-01-01
The Verhulst model can be used to forecast the sequence, which is characterized as non-monotone and fluctuant sequence or saturated S-form sequence. According to the situation of national enrollment scale of college, this paper forecasts the quantity of students taking entrance examination to college with a Verhulst model with remedy based on data…
M. -S. Kim; N. B. Klopfenstein; J. W. Hanna; G. I. McDonald
2006-01-01
Phylogenetic and genetic relationships among 10 North American Armillaria species were analysed using sequence data from ribosomal DNA (rDNA), including intergenic spacer (IGS-1), internal transcribed spacers with associated 5.8S (ITS + 5.8S), and nuclear large subunit rDNA (nLSU), and amplified fragment length polymorphism (AFLP) markers. Based on rDNA sequence data,...
Ghio, Silvina; Martinez Cáceres, Alfredo I.; Talia, Paola; Grasso, Daniel H.
2015-01-01
Paenibacillus sp. A59 was isolated from decaying forest soil in Argentina and characterized as a xylanolytic strain. We report the draft genome sequence of this isolate, with an estimated genome size of 7 Mb which harbor 6,424 coding sequences. Genes coding for hydrolytic enzymes involved in lignocellulose deconstruction were predicted. PMID:26494679
Complete genome sequence of Bifidobacterium breve CECT 7263, a strain isolated from human milk.
Jiménez, Esther; Villar-Tajadura, M Antonia; Marín, María; Fontecha, Javier; Requena, Teresa; Arroyo, Rebeca; Fernández, Leónides; Rodríguez, Juan M
2012-07-01
Bifidobacterium breve is an actinobacterium frequently isolated from colonic microbiota of breastfeeding babies. Here, we report the complete and annotated genome sequence of a B. breve strain isolated from human milk, B. breve CECT 7263. The genome sequence will provide new insights into the biology of this potential probiotic organism and will allow the characterization of genes related to beneficial properties.
Genotype and biotype of invasive Anopheles stephensi in Mannar Island of Sri Lanka.
Surendran, Sinnathamby N; Sivabalakrishnan, Kokila; Gajapathy, Kanapathy; Arthiyan, Sivasingham; Jayadas, Tibutius T P; Karvannan, Kalingarajah; Raveendran, Selvarajah; Parakrama Karunaratne, S H P; Ramasamy, Ranjan
2018-01-03
Anopheles stephensi, the major vector of urban malaria in India, was recently detected for the first time in Sri Lanka in Mannar Island on the northwestern coast. Since there are different biotypes of An. stephensi with different vector capacities in India, a study was undertaken to further characterise the genotype and biotype of An. stephensi in Mannar Island. Mosquito larvae were collected in Pesalai village in Mannar and maintained in the insectary until adulthood. Adult An. stephensi were identified morphologically using published keys. Identified adult An. stephensi were molecularly characterized using two mitochondrial (cox1 and cytb) and one nuclear (ITS2) markers. Their PCR-amplified target fragments were sequenced and checked against available sequences in GenBank for phylogenetic analysis. The average spiracular and thoracic lengths and the spiracular index were determined to identify biotypes based on corresponding indices for Indian An. stephensi. All DNA sequences for the Mannar samples matched reported sequences for An. stephensi from the Middle East and India. However, a single nucleotide variation in the cox1 sequence suggested an amino acid change from valine to methionine in the cox1 protein in Sri Lankan An. stephensi. Morphological data was consistent with the presence of the Indian urban vector An. stephensi type-form in Sri Lanka. The present study provides a more detailed molecular characterization of An. stephensi and suggests the presence of the type-form of the vector for the first time in Sri Lanka. The single mutation in the cox1 gene may be indicative of a founder effect causing the initial diversification of An. stephensi in Sri Lanka from the Indian form. The distribution of the potent urban vector An. stephensi type-form needs to be established by studies throughout the island as its spread adds to the challenge of maintaining the country's malaria-free status.
[Study on sequence characterized amplified region (SCAR) markers of Cornus officinalis].
Chen, Suiqing; Lu, Xiaolei; Wang, Lili
2011-05-01
To establish sequence characterized amplified region markers of Cornus officinalis and provide a scientific basis for molecular identification of C. officinalis. The random primer was screened through RAPD to obtain specific RAPD marker bands. The RAPD marker bands were separated, extracted, cloned and sequenced. Both ends of the sequence of RAPD marker bands were determined. A pair of specific primers was designed for conventional PCR reaction, and SCAR marker was acquired. Four pairs of primers were designed based on the sequence of RAPD marker bands. The DNA of the seven varieties of C. officinalis was amplified by using YST38 and YST43 primer. The results showed that seven varieties of C. officinalis were able to produce a single PCR product. It was an effective way to identify C. officinalis. The varieties with cylindrical and long-pear shape fruits amplified by YST38 showed a specific band, which could be used as the evidence of variety identification. Seven varieties of C. oficinalis were amplified by using primer YST39. But the size of band of the variety with spindly shape fruit (35,0400 bp) was about 300 bp, which was shorter than those of the variety with the other shape fruits of C. officinalis (650-700 bp). The variety with the spindly shape fruit could be identified through this difference. The primer YST92 could produce a fragment from 600-700 bp in the varieties with cylindrical and long-pear shape fruits, a fragment from 200-300 bp in the varieties with oval and short-cylindrical shape fruits and had no fragment in the varieties with long cylindrical, elliptic and short-pear shape fruits, which could be used to select the different shapes of C. officinalis. SCAR mark is established and can be used as the basis for breeding and distinguishing the verieties of C. officinalis.
Ellenbecker, Mary; St Goddard, Jeremy; Sundet, Alec; Lanchy, Jean-Marc; Raiford, Douglas; Lodmell, J Stephen
2015-10-01
Rift Valley fever virus (RVFV) is a potent human and livestock pathogen endemic to sub-Saharan Africa and the Arabian Peninsula that has potential to spread to other parts of the world. Although there is no proven effective and safe treatment for RVFV infections, a potential therapeutic target is the virally encoded nucleocapsid protein (N). During the course of infection, N binds to viral RNA, and perturbation of this interaction can inhibit viral replication. To gain insight into how N recognizes viral RNA specifically, we designed an algorithm that uses a distance matrix and multidimensional scaling to compare the predicted secondary structures of known N-binding RNAs, or aptamers, that were isolated and characterized in previous in vitro evolution experiment. These aptamers did not exhibit overt sequence or predicted structure similarity, so we employed bioinformatic methods to propose novel aptamers based on analysis and clustering of secondary structures. We screened and scored the predicted secondary structures of novel randomly generated RNA sequences in silico and selected several of these putative N-binding RNAs whose secondary structures were similar to those of known N-binding RNAs. We found that overall the in silico generated RNA sequences bound well to N in vitro. Furthermore, introduction of these RNAs into cells prior to infection with RVFV inhibited viral replication in cell culture. This proof of concept study demonstrates how the predictive power of bioinformatics and the empirical power of biochemistry can be jointly harnessed to discover, synthesize, and test new RNA sequences that bind tightly to RVFV N protein. The approach would be easily generalizable to other applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Shaw, Jennifer L A; Monis, Paul; Weyrich, Laura S; Sawade, Emma; Drikas, Mary; Cooper, Alan J
2015-09-01
Drinking water assessments use a variety of microbial, physical, and chemical indicators to evaluate water treatment efficiency and product water quality. However, these indicators do not allow the complex biological communities, which can adversely impact the performance of drinking water distribution systems (DWDSs), to be characterized. Entire bacterial communities can be studied quickly and inexpensively using targeted metagenomic amplicon sequencing. Here, amplicon sequencing of the 16S rRNA gene region was performed alongside traditional water quality measures to assess the health, quality, and efficiency of two distinct, full-scale DWDSs: (i) a linear DWDS supplied with unfiltered water subjected to basic disinfection before distribution and (ii) a complex, branching DWDS treated by a four-stage water treatment plant (WTP) prior to disinfection and distribution. In both DWDSs bacterial communities differed significantly after disinfection, demonstrating the effectiveness of both treatment regimes. However, bacterial repopulation occurred further along in the DWDSs, and some end-user samples were more similar to the source water than to the postdisinfection water. Three sample locations appeared to be nitrified, displaying elevated nitrate levels and decreased ammonia levels, and nitrifying bacterial species, such as Nitrospira, were detected. Burkholderiales were abundant in samples containing large amounts of monochloramine, indicating resistance to disinfection. Genera known to contain pathogenic and fecal-associated species were also identified in several locations. From this study, we conclude that metagenomic amplicon sequencing is an informative method to support current compliance-based methods and can be used to reveal bacterial community interactions with the chemical and physical properties of DWDSs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barron, L.S.; Ettensohn, F.R.
The Devonian-Mississippian black-shale sequence of eastern North America is a distinctive stratigraphic interval generally characterized by low clastic influx, high organic production in the water column, anaerobic bottom conditions, and the relative absence of fossil evidence for biologic activity. The laminated black shales which constitute most of the black-shale sequence are broken by two major sequences of interbedded greenish-gray, clayey shales which contain bioturbation and pyritized micromorph invertebrates. The black shales contain abundant evidence of life from upper parts of the water column such as fish fossils, conodonts, algae and other phytoplankton; however, there is a lack of evidence ofmore » benthic life. The rare brachiopods, crinoids, and molluscs that occur in the black shales were probably epiplanktic. A significant physical distinction between the environment in which the black sediments were deposited and that in which the greenish-gray sediments were deposited was the level of dissolved oxygen. The laminated black shales point to anaerobic conditions and the bioturbated greenish-gray shales suggest dysaerobic to marginally aerobic-dysaerobic conditions. A paleoenvironmental model in which quasi-estuarine circulation compliments and enhances the effect of a stratified water column can account for both depletion of dissolved oxygen in the bottom environments and the absence of oxygen replenishment during black-shale deposition. Periods of abundant clastic influx from fluvial environments to the east probably account for the abundance of clays in the greenish-gray shale as well as the small amounts of oxygen necessary to support the depauparate, opportunistic, benthic faunas found there. These pulses of greenish-gray clastics were short-lived and eventually were replaced by anaerobic conditions and low rates of clastic sedimentation which characterized most of black-shale deposition.« less
Maus, Irena; Kim, Yong Sung; Wibberg, Daniel; Stolze, Yvonne; Off, Sandra; Antonczyk, Sebastian; Pühler, Alfred; Scherer, Paul; Schlüter, Andreas
2017-02-28
Process surveillance within agricultural biogas plants (BGPs) was concurrently studied by high-throughput 16S rRNA gene amplicon sequencing and an optimized quantitative microscopic fingerprinting (QMF) technique. In contrast to 16S rRNA gene amplicons, digitalized microscopy is a rapid and cost-effective method that facilitates enumeration and morphological differentiation of the most significant groups of methanogens regarding their shape and characteristic autofluorescent factor 420. Moreover, the fluorescence signal mirrors cell vitality. In this study, four different BGPs were investigated. The results indicated stable process performance in the mesophilic BGPs and in the thermophilic reactor. Bacterial subcommunity characterization revealed significant differences between the four BGPs. Most remarkably, the genera Defluviitoga and Halocella dominated the thermophilic bacterial subcommunity, whereas members of another taxon, Syntrophaceticus , were found to be abundant in the mesophilic BGP. The domain Archaea was dominated by the genus Methanoculleus in all four BGPs, followed by Methanosaeta in BGP1 and BGP3. In contrast, Methanothermobacter members were highly abundant in the thermophilic BGP4. Furthermore, a high consistency between the sequencing approach and the QMF method was shown, especially for the thermophilic BGP. The differences elucidated that using this biphasic approach for mesophilic BGPs provided novel insights regarding disaggregated single cells of Methanosarcina and Methanosaeta species. Both dominated the archaeal subcommunity and replaced coccoid Methanoculleus members belonging to the same group of Methanomicrobiales that have been frequently observed in similar BGPs. This work demonstrates that combining QMF and 16S rRNA gene amplicon sequencing is a complementary strategy to describe archaeal community structures within biogas processes.
In silico modeling of epigenetic-induced changes in photoreceptor cis-regulatory elements.
Hossain, Reafa A; Dunham, Nicholas R; Enke, Raymond A; Berndsen, Christopher E
2018-01-01
DNA methylation is a well-characterized epigenetic repressor of mRNA transcription in many plant and vertebrate systems. However, the mechanism of this repression is not fully understood. The process of transcription is controlled by proteins that regulate recruitment and activity of RNA polymerase by binding to specific cis-regulatory sequences. Cone-rod homeobox (CRX) is a well-characterized mammalian transcription factor that controls photoreceptor cell-specific gene expression. Although much is known about the functions and DNA binding specificity of CRX, little is known about how DNA methylation modulates CRX binding affinity to genomic cis-regulatory elements. We used bisulfite pyrosequencing of human ocular tissues to measure DNA methylation levels of the regulatory regions of RHO , PDE6B, PAX6 , and LINE1 retrotransposon repeats. To describe the molecular mechanism of repression, we used molecular modeling to illustrate the effect of DNA methylation on human RHO regulatory sequences. In this study, we demonstrate an inverse correlation between DNA methylation in regulatory regions adjacent to the human RHO and PDE6B genes and their subsequent transcription in human ocular tissues. Docking of CRX to the DNA models shows that CRX interacts with the grooves of these sequences, suggesting changes in groove structure could regulate binding. Molecular dynamics simulations of the RHO promoter and enhancer regions show changes in the flexibility and groove width upon epigenetic modification. Models also demonstrate changes in the local dynamics of CRX binding sites within RHO regulatory sequences which may account for the repression of CRX-dependent transcription. Collectively, these data demonstrate epigenetic regulation of CRX binding sites in human retinal tissue and provide insight into the mechanism of this mode of epigenetic regulation to be tested in future experiments.
Vengerfeldt, Veiko; Špilka, Katerina; Saag, Mare; Preem, Jens-Konrad; Oopkaup, Kristjan; Truu, Jaak; Mändar, Reet
2014-11-01
Chronic apical periodontitis (CAP) is a frequent condition that has a considerable effect on a patient's quality of life. We aimed to reveal root canal microbial communities in antibiotic-naive patients by applying Illumina sequencing (Illumina Inc, San Diego, CA). Samples were collected under strict aseptic conditions from 12 teeth (5 with primary CAP, 3 with secondary CAP, and 4 with a periapical abscess [PA]) and characterized by profiling the microbial community on the basis of the V6 hypervariable region of the 16S ribosomal RNA gene by using Illumina HiSeq2000 sequencing combinatorial sequence-tagged polymerase chain reaction products. Root canal specimens displayed highly polymicrobial communities in all 3 patient groups. One sample contained 5-8 (mean = 6.5) phyla of bacteria. The most numerous were Firmicutes and Bacteroidetes, but Actinobacteria, Fusobacteria, Proteobacteria, Spirochaetes, Tenericutes, and Synergistetes were also present in most of the patients. One sample contained 30-70 different operational taxonomic units; the mean (± standard deviation) was lower in the primary CAP group (36 ± 4) than in the PA (45 ± 4) and secondary CAP (43 ± 13) groups (P < .05). The communities were individually different, but anaerobic bacteria predominated as the rule. Enterococcus faecalis was found only in patients with secondary CAP. One PA sample displayed a significantly high proportion (47%) of Proteobacteria, mainly at the expense of Janthinobacterium lividum. This study provided an in-depth characterization of the microbiota of periapical tissues, revealing highly polymicrobial communities and minor differences between the study groups. A full understanding of the etiology of periodontal disease will only be possible through further in-depth systems-level analyses of the host-microbiome interaction. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Zeng, Zhaolin; Zhao, Wei; Liu, Aiqin; Piao, Daxun; Jiang, Tao; Cao, Jianping; Shen, Yujuan; Liu, Hua; Zhang, Weizhe
2014-01-01
Cystic echinococcosis (CE) caused by the larval stage of Echinococcus granulosus sensu lato (s.l.) is one of the most important zoonotic parasitic diseases worldwide and 10 genotypes (G1–G10) have been reported. In China, almost all the epidemiological and genotyping studies of E. granulosus s.l. are from the west and northwest pasturing areas. However, in Heilongjiang Province of northeastern China, no molecular information is available on E. granulosus s.l. To understand and to speculate on possible transmission patterns of E. granulosus s.l., we molecularly identified and genotyped 10 hydatid cysts from hepatic CE patients in Heilongjiang Province based on mitochondrial cytochrome c oxidase subunit I (cox1), cytochrome b (cytb) and NADH dehydrogenase subunit 1 (nad1) genes. Two genotypes were identified, G1 genotype (n = 6) and G7 genotype (n = 4). All the six G1 genotype isolates were identical to each other at the cox1 locus; three and two different sequences were obtained at the cytb and nad1 loci, respectively, with two cytb gene sequences not being described previously. G7 genotype isolates were identical to each other at the cox1, cytb and nad1 loci; however, the cytb gene sequence was not described previously. This is the first report of G7 genotype in humans in China. Three new cytb gene sequences from G1 and G7 genotypes might reflect endemic genetic characterizations. Pigs might be the main intermediate hosts of G7 genotype in our investigated area by homology analysis. The results will aid in making more effective control strategies for the prevention of transmission of E. granulosus s.l. PMID:25329820
Ginther, Jennifer L.; Mayo, Mark; Warrington, Stephanie D.; Kaestli, Mirjam; Mullins, Travis; Wagner, David M.; Currie, Bart J.; Tuanyok, Apichai; Keim, Paul
2015-01-01
Identification and characterization of near-neighbor species are critical to the development of robust molecular diagnostic tools for biothreat agents. One such agent, Burkholderia pseudomallei, a soil bacterium and the causative agent of melioidosis, is lacking in this area because of its genomic diversity and widespread geographic distribution. The Burkholderia genus contains over 60 species and occupies a large range of environments including soil, plants, rhizospheres, water, animals and humans. The identification of novel species in new locations necessitates the need to identify the true global distribution of Burkholderia species, especially the members that are closely related to B. pseudomallei. In our current study, we used the Burkholderia-specific recA sequencing assay to analyze environmental samples from the Darwin region in the Northern Territory of Australia where melioidosis is endemic. Burkholderia recA PCR negative samples were further characterized using 16s rRNA sequencing for species identification. Phylogenetic analysis demonstrated that over 70% of the bacterial isolates were identified as B. ubonensis indicating that this species is common in the soil where B. pseudomallei is endemic. Bayesian phylogenetic analysis reveals many novel branches within the B. cepacia complex, one novel B. oklahomensis-like species, and one novel branch containing one isolate that is distinct from all other samples on the phylogenetic tree. During the analysis with recA sequencing, we discovered 2 single nucleotide polymorphisms in the reverse priming region of B. oklahomensis. A degenerate primer was developed and is proposed for future use. We conclude that the recA sequencing technique is an effective tool to classify Burkholderia and identify soil organisms in a melioidosis endemic area. PMID:26121041
Characterization of the Eimeria maxima sporozoite surface protein IMP1.
Jenkins, M C; Fetterer, R; Miska, K; Tuo, W; Kwok, O; Dubey, J P
2015-07-30
The purpose of this study was to characterize Eimeria maxima immune-mapped protein 1 (IMP1) that is hypothesized to play a role in eliciting protective immunity against E. maxima infection in chickens. RT-PCR analysis of RNA from unsporulated and sporulating E. maxima oocysts revealed highest transcription levels at 6-12h of sporulation with a considerable downregulation thereafter. Alignment of IMP1 coding sequence from Houghton, Weybridge, and APU-1 strains of E. maxima revealed single nucleotide polymorphisms that in some instances led to amino acid changes in the encoded protein sequence. The E. maxima (APU-1) IMP1 cDNA sequence was cloned and expressed in 2 different polyHis Escherichia coli expression vectors. Regardless of expression vector, recombinant E. maxima IMP1 (rEmaxIMP1) was fairly unstable in non-denaturing buffer, which is consistent with stability analysis of the primary amino acid sequence. Antisera specific for rEmaxIMP1 identified a single 72 kDa protein or a 61 kDa protein by non-reducing or reducing SDS-PAGE/immunoblotting. Immunofluorescence staining with anti-rEmaxIMP1, revealed intense surface staining of E. maxima sporozoites, with negligible staining of merozoite stages. Immuno-histochemical staining of E. maxima-infected chicken intestinal tissue revealed staining of E. maxima developmental stages in the lamnia propia and crypts at both 24 and 48 h post-infection, and negligible staining thereafter. The expression of IMP1 during early stages of in vivo development and its location on the sporozoite surface may explain in part the immunoprotective effect of this protein against E. maxima infection. Published by Elsevier B.V.
Long-range correlations and charge transport properties of DNA sequences
NASA Astrophysics Data System (ADS)
Liu, Xiao-liang; Ren, Yi; Xie, Qiong-tao; Deng, Chao-sheng; Xu, Hui
2010-04-01
By using Hurst's analysis and transfer approach, the rescaled range functions and Hurst exponents of human chromosome 22 and enterobacteria phage lambda DNA sequences are investigated and the transmission coefficients, Landauer resistances and Lyapunov coefficients of finite segments based on above genomic DNA sequences are calculated. In a comparison with quasiperiodic and random artificial DNA sequences, we find that λ-DNA exhibits anticorrelation behavior characterized by a Hurst exponent 0.5
De Franceschi, Paolo; Bianco, Luca; Cestaro, Alessandro; Dondini, Luca; Velasco, Riccardo
2018-06-01
Data obtained from Illumina resequencing of 63 apple cultivars were used to obtain full-length S-RNase sequences using a strategy based on both alignment and de novo assembly of reads. The reproductive biology of apple is regulated by the S-RNase-based gametophytic self-incompatibility system, that is genetically controlled by the single, multi-genic and multi-allelic S locus. Resequencing of apple cultivars provided a huge amount of genetic data, that can be aligned to the reference genome in order to characterize variation to a genome-wide level. However, this approach is not immediately adaptable to the S-locus, due to some peculiar features such as the high degree of polymorphism, lack of colinearity between haplotypes and extensive presence of repetitive elements. In this study we describe a dedicated procedure aimed at characterizing S-RNase alleles from resequenced cultivars. The S-genotype of 63 apple accessions is reported; the full length coding sequence was determined for the 25 S-RNase alleles present in the 63 resequenced cultivars; these included 10 previously incomplete sequences (S 5 , S 6a , S 6b , S 8 , S 11 , S 23 , S 39 , S 46 , S 50 and S 58 ). Moreover, sequence divergence clearly suggests that alleles S 6a and S 6b , proposed to be neutral variants of the same alleles, should be instead considered different specificities. The promoter sequences have also been analyzed, highlighting regions of homology conserved among all the alleles.
Sharan, Malvika; Förstner, Konrad U; Eulalio, Ana; Vogel, Jörg
2017-06-20
RNA-binding proteins (RBPs) have been established as core components of several post-transcriptional gene regulation mechanisms. Experimental techniques such as cross-linking and co-immunoprecipitation have enabled the identification of RBPs, RNA-binding domains (RBDs) and their regulatory roles in the eukaryotic species such as human and yeast in large-scale. In contrast, our knowledge of the number and potential diversity of RBPs in bacteria is poorer due to the technical challenges associated with the existing global screening approaches. We introduce APRICOT, a computational pipeline for the sequence-based identification and characterization of proteins using RBDs known from experimental studies. The pipeline identifies functional motifs in protein sequences using position-specific scoring matrices and Hidden Markov Models of the functional domains and statistically scores them based on a series of sequence-based features. Subsequently, APRICOT identifies putative RBPs and characterizes them by several biological properties. Here we demonstrate the application and adaptability of the pipeline on large-scale protein sets, including the bacterial proteome of Escherichia coli. APRICOT showed better performance on various datasets compared to other existing tools for the sequence-based prediction of RBPs by achieving an average sensitivity and specificity of 0.90 and 0.91 respectively. The command-line tool and its documentation are available at https://pypi.python.org/pypi/bio-apricot. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.