Sample records for effective surface brightness

  1. Brightness and transparency in the early visual cortex.

    PubMed

    Salmela, Viljami R; Vanni, Simo

    2013-06-24

    Several psychophysical studies have shown that transparency can have drastic effects on brightness and lightness. However, the neural processes generating these effects have remained unresolved. Several lines of evidence suggest that the early visual cortex is important for brightness perception. While single cell recordings suggest that surface brightness is represented in the primary visual cortex, the results of functional magnetic resonance imaging (fMRI) studies have been discrepant. In addition, the location of the neural representation of transparency is not yet known. We investigated whether the fMRI responses in areas V1, V2, and V3 correlate with brightness and transparency. To dissociate the blood oxygen level-dependent (BOLD) response to brightness from the response to local border contrast and mean luminance, we used variants of White's brightness illusion, both opaque and transparent, in which luminance increments and decrements cancel each other out. The stimuli consisted of a target surface and a surround. The surround luminance was always sinusoidally modulated at 0.5 Hz to induce brightness modulation to the target. The target luminance was constant or modulated in counterphase to null brightness modulation. The mean signal changes were calculated from the voxels in V1, V2, and V3 corresponding to the retinotopic location of the target surface. The BOLD responses were significantly stronger for modulating brightness than for stimuli with constant brightness. In addition, the responses were stronger for transparent than for opaque stimuli, but there was more individual variation. No interaction between brightness and transparency was found. The results show that the early visual areas V1-V3 are sensitive to surface brightness and transparency and suggest that brightness and transparency are represented separately.

  2. THE DISCOVERY OF SEVEN EXTREMELY LOW SURFACE BRIGHTNESS GALAXIES IN THE FIELD OF THE NEARBY SPIRAL GALAXY M101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merritt, Allison; Van Dokkum, Pieter; Abraham, Roberto, E-mail: allison.merritt@yale.edu

    2014-06-01

    Dwarf satellite galaxies are a key probe of dark matter and of galaxy formation on small scales and of the dark matter halo masses of their central galaxies. They have very low surface brightness, which makes it difficult to identify and study them outside of the Local Group. We used a low surface brightness-optimized telescope, the Dragonfly Telephoto Array, to search for dwarf galaxies in the field of the massive spiral galaxy M101. We identify seven large, low surface brightness objects in this field, with effective radii of 10-30 arcseconds and central surface brightnesses of μ {sub g} ∼ 25.5-27.5 magmore » arcsec{sup –2}. Given their large apparent sizes and low surface brightnesses, these objects would likely be missed by standard galaxy searches in deep fields. Assuming the galaxies are dwarf satellites of M101, their absolute magnitudes are in the range –11.6 ≲ M{sub V} ≲ –9.3 and their effective radii are 350 pc-1.3 kpc. Their radial surface brightness profiles are well fit by Sersic profiles with a very low Sersic index (n ∼ 0.3-0.7). The properties of the sample are similar to those of well-studied dwarf galaxies in the Local Group, such as Sextans I and Phoenix. Distance measurements are required to determine whether these galaxies are in fact associated with M101 or are in its foreground or background.« less

  3. Do Low Surface Brightness Galaxies Host Stellar Bars?

    NASA Astrophysics Data System (ADS)

    Cervantes Sodi, Bernardo; Sánchez García, Osbaldo

    2017-09-01

    With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness is mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.

  4. Do Low Surface Brightness Galaxies Host Stellar Bars?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cervantes Sodi, Bernardo; Sánchez García, Osbaldo, E-mail: b.cervantes@irya.unam.mx, E-mail: o.sanchez@irya.unam.mx

    With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness ismore » mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.« less

  5. The X-ray surface brightness distribution and spectral properties of six early-type galaxies

    NASA Technical Reports Server (NTRS)

    Trinchieri, G.; Fabbiano, G.; Canizares, C. R.

    1986-01-01

    Detailed analysis is presented of the Einstein X-ray observations of six early-type galaxies. The results show that effective cooling is probably present in these systems, at least in the innermost regions. Interaction with the surrounding medium has a major effect on the X-ray surface brightness distribution at large radii, at least for galaxies in clusters. The data do not warrant the general assumptions of isothermality and gravitational hydrostatic equilibrium at large radii. Comparison of the X-ray surface brightness profiles with model predictions indicate that 1/r-squared halos with masses of the order of 10 times the stellar masses are required to match the data. The physical model of White and Chevalier (1984) for steady cooling flows in a King law potential with no heavy halo gives a surface brightness distribution that resembles the data if supernovae heating is present.

  6. The effect of monomolecular surface films on the microwave brightness temperature of the sea surface

    NASA Technical Reports Server (NTRS)

    Alpers, W.; Blume, H.-J. C.; Garrett, W. D.; Huehnerfuss, H.

    1982-01-01

    It is pointed out that monomolecular surface films of biological origin are often encountered on the ocean surface, especially in coastal regions. The thicknesses of the monomolecular films are of the order of 3 x 10 to the -9th m. Huehnerfuss et al. (1978, 1981) have shown that monomolecular surface films damp surface waves quite strongly in the centimeter to decimeter wavelength regime. Other effects caused by films are related to the reduction of the gas exchange at the air-sea interface and the decrease of the wind stress. The present investigation is concerned with experiments which reveal an unexpectedly large response of the microwave brightness temperature to a monomolecular oleyl alcohol slick at 1.43 GHz. Brightness temperature is a function of the complex dielectric constant of thy upper layer of the ocean. During six overflights over an ocean area covered with an artificial monomolecular alcohol film, a large decrease of the brightness temperature at the L-band was measured, while at the S-band almost no decrease was observed.

  7. Surface-induced brightness temperature variations and their effects on detecting thin cirrus clouds using IR emission channels in the 8-12 microns region

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Wiscombe, W. J.

    1994-01-01

    A method for detecting cirrus clouds in terms of brightness temperature differences between narrowbands at 8, 11, and 12 microns has been proposed by Ackerman et al. In this method, the variation of emissivity with wavelength for different surface targets was not taken into consideration. Based on state-of-the-art laboratory measurements of reflectance spectra of terrestrial materials by Salisbury and D'Aria, it is found that the brightness temperature differences between the 8- and 11-microns bands for soils, rocks, and minerals, and dry vegetation can vary between approximately -8 and +8 K due solely to surface emissivity variations. The large brightness temperature differences are sufficient to cause false detection of cirrus clouds from remote sensing data acquired over certain surface targets using the 8-11-12-microns method directly. It is suggested that the 8-11-12-microns method should be improved to include the surface emissivity effects. In addition, it is recommended that in the future the variation of surface emissivity with wavelength should be taken into account in algorithms for retrieving surface temperatures and low-level atmospheric temperature and water vapor profiles.

  8. IMPACT OF SUPERNOVA AND COSMIC-RAY DRIVING ON THE SURFACE BRIGHTNESS OF THE GALACTIC HALO IN SOFT X-RAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Thomas; Girichidis, Philipp; Gatto, Andrea

    2015-11-10

    The halo of the Milky Way contains a hot plasma with a surface brightness in soft X-rays of the order 10{sup −12} erg cm{sup −2} s{sup −1} deg{sup −2}. The origin of this gas is unclear, but so far numerical models of galactic star formation have failed to reproduce such a large surface brightness by several orders of magnitude. In this paper, we analyze simulations of the turbulent, magnetized, multi-phase interstellar medium including thermal feedback by supernova explosions as well as cosmic-ray feedback. We include a time-dependent chemical network, self-shielding by gas and dust, and self-gravity. Pure thermal feedback alonemore » is sufficient to produce the observed surface brightness, although it is very sensitive to the supernova rate. Cosmic rays suppress this sensitivity and reduce the surface brightness because they drive cooler outflows. Self-gravity has by far the largest effect because it accumulates the diffuse gas in the disk in dense clumps and filaments, so that supernovae exploding in voids can eject a large amount of hot gas into the halo. This can boost the surface brightness by several orders of magnitude. Although our simulations do not reach a steady state, all simulations produce surface brightness values of the same order of magnitude as the observations, with the exact value depending sensitively on the simulation parameters. We conclude that star formation feedback alone is sufficient to explain the origin of the hot halo gas, but measurements of the surface brightness alone do not provide useful diagnostics for the study of galactic star formation.« less

  9. Pinacate-gran Desierto Region, Mexico: SIR-A Data Analysis

    NASA Technical Reports Server (NTRS)

    Christensen, P.; Greeley, R.; Mchone, J.; Asmerom, Y.; Barnett, S.

    1984-01-01

    Radar images (SIR-A) from the Columbia space shuttle were used to assess the radar returns of terrain shaped by volcanic, aeolian, and fluvial processes in northwest Sonora. Field studies and photointerpretation show that sand dunes are poorly imaged by SIR-A, in contrast to SEASAT, evidently a consequence of the greater SIR-A incidence angle; star dunes are visible only as small bright spots representing merging arms at dune apices which may act as corner reflectors. Desert grasses and bushes (approx. 2 m high) have little effect on radar brightness. Only larger trees with woody trunks approx. 0.5 m across are effective radar reflectors; their presence contributes to radar bright zones along some arroyos. The radar brightness of lava flows decreases with surface roughness and presence of mantling windblown sediments and weathering products; however, old uplifted (faulted) flows are of equal brightness to fresh, unmantled aa flows. Maar craters display circular patterns of varying radar brightness which represent a combination of geometry, slope, and distribution of surface materials. Some radar bright rings in the Pinacates resemble craters on radar but are observed to be playas encircled by trees.

  10. Generalized dark-bright vector soliton solution to the mixed coupled nonlinear Schrödinger equations.

    PubMed

    Manikandan, N; Radhakrishnan, R; Aravinthan, K

    2014-08-01

    We have constructed a dark-bright N-soliton solution with 4N+3 real parameters for the physically interesting system of mixed coupled nonlinear Schrödinger equations. Using this as well as an asymptotic analysis we have investigated the interaction between dark-bright vector solitons. Each colliding dark-bright one-soliton at the asymptotic limits includes more coupling parameters not only in the polarization vector but also in the amplitude part. Our present solution generalizes the dark-bright soliton in the literature with parametric constraints. By exploiting the role of such coupling parameters we are able to control certain interaction effects, namely beating, breathing, bouncing, attraction, jumping, etc., without affecting other soliton parameters. Particularly, the results of the interactions between the bound state dark-bright vector solitons reveal oscillations in their amplitudes under certain parametric choices. A similar kind of effect was also observed experimentally in the BECs. We have also characterized the solutions with complicated structure and nonobvious wrinkle to define polarization vector, envelope speed, envelope width, envelope amplitude, grayness, and complex modulation. It is interesting to identify that the polarization vector of the dark-bright one-soliton evolves on a spherical surface instead of a hyperboloid surface as in the bright-bright case of the mixed coupled nonlinear Schrödinger equations.

  11. GLOBAL PROPERTIES OF M31'S STELLAR HALO FROM THE SPLASH SURVEY. I. SURFACE BRIGHTNESS PROFILE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Karoline M.; Guhathakurta, Puragra; Beaton, Rachael L.

    2012-11-20

    We present the surface brightness profile of M31's stellar halo out to a projected radius of 175 kpc. The surface brightness estimates are based on confirmed samples of M31 red giant branch stars derived from Keck/DEIMOS spectroscopic observations. A set of empirical spectroscopic and photometric M31 membership diagnostics is used to identify and reject foreground and background contaminants. This enables us to trace the stellar halo of M31 to larger projected distances and fainter surface brightnesses than previous photometric studies. The surface brightness profile of M31's halo follows a power law with index -2.2 {+-} 0.2 and extends to amore » projected distance of at least {approx}175 kpc ({approx}2/3 of M31's virial radius), with no evidence of a downward break at large radii. The best-fit elliptical isophotes have b/a = 0.94 with the major axis of the halo aligned along the minor axis of M31's disk, consistent with a prolate halo, although the data are also consistent with M31's halo having spherical symmetry. The fact that tidal debris features are kinematically cold is used to identify substructure in the spectroscopic fields out to projected radii of 90 kpc and investigate the effect of this substructure on the surface brightness profile. The scatter in the surface brightness profile is reduced when kinematically identified tidal debris features in M31 are statistically subtracted; the remaining profile indicates that a comparatively diffuse stellar component to M31's stellar halo exists to large distances. Beyond 90 kpc, kinematically cold tidal debris features cannot be identified due to small number statistics; nevertheless, the significant field-to-field variation in surface brightness beyond 90 kpc suggests that the outermost region of M31's halo is also comprised to a significant degree of stars stripped from accreted objects.« less

  12. Pupil size reflects the focus of feature-based attention.

    PubMed

    Binda, Paola; Pereverzeva, Maria; Murray, Scott O

    2014-12-15

    We measured pupil size in adult human subjects while they selectively attended to one of two surfaces, bright and dark, defined by coherently moving dots. The two surfaces were presented at the same location; therefore, subjects could select the cued surface only on the basis of its features. With no luminance change in the stimulus, we find that pupil size was smaller when the bright surface was attended and larger when the dark surface was attended: an effect of feature-based (or surface-based) attention. With the same surfaces at nonoverlapping locations, we find a similar effect of spatial attention. The pupil size modulation cannot be accounted for by differences in eye position and by other variables known to affect pupil size such as task difficulty, accommodation, or the mere anticipation (imagery) of bright/dark stimuli. We conclude that pupil size reflects not just luminance or cognitive state, but the interaction between the two: it reflects which luminance level in the visual scene is relevant for the task at hand. Copyright © 2014 the American Physiological Society.

  13. The effect of precipitation on measuring sea surface salinity from space

    NASA Astrophysics Data System (ADS)

    Jin, Xuchen; Pan, Delu; He, Xianqiang; Wang, Difeng; Zhu, Qiankun; Gong, Fang

    2017-10-01

    The sea surface salinity (SSS) can be measured from space by using L-band (1.4 GHz) microwave radiometers. The L-band has been chosen for its sensitivity of brightness temperature to the change of salinity. However, SSS remote sensing is still challenging due to the low sensitivity of brightness temperature to SSS variation: for the vertical polarization, the sensitivity is about 0.4 to 0.8 K/psu with different incident angles and sea surface temperature; for horizontal polarization, the sensitivity is about 0.2 to 0.6 K/psu. It means that we have to make radiometric measurements with accuracy better than 1K even for the best sensitivity of brightness temperature to SSS. Therefore, in order to retrieve SSS, the measured brightness temperature at the top of atmosphere (TOA) needs to be corrected for many sources of error. One main geophysical source of error comes from atmosphere. Currently, the atmospheric effect at L-band is usually corrected by absorption and emission model, which estimate the radiation absorbed and emitted by atmosphere. However, the radiation scattered by precipitation is neglected in absorption and emission models, which might be significant under heavy precipitation. In this paper, a vector radiative transfer model for coupled atmosphere and ocean systems with a rough surface is developed to simulate the brightness temperature at the TOA under different precipitations. The model is based on the adding-doubling method, which includes oceanic emission and reflection, atmospheric absorption and scattering. For the ocean system with a rough surface, an empirical emission model established by Gabarro and the isotropic Cox-Munk wave model considering shadowing effect are used to simulate the emission and reflection of sea surface. For the atmospheric attenuation, it is divided into two parts: For the rain layer, a Marshall-Palmer distribution is used and the scattering properties of the hydrometeors are calculated by Mie theory (the scattering hydrometeors are assumed to be spherical). For the other atmosphere layers, which are assumed to be clear sky, Liebe's millimeter wave propagation model (MPM93) is used to calculate the absorption coefficients of oxygen, water vapor, and cloud droplets. To simulate the change of brightness temperature caused by different rain rate (0-50 mm/h), we assume a 26-layer precipitation structure corresponding to NCEP FNL data. Our radiative transfer simulations showed that the brightness temperature at TOA can be influenced significantly by the heavy precipitation, the results indicate that the atmospheric attenuation of L-band at incidence angle of 42.5° should be a positive bias, and when rain rate rise up to 50 mm/h, the brightness temperature increases are close to 0.6 K and 0.8 K for horizontally and vertically polarized brightness temperature, respectively. Thus, in the case of heavy precipitation, the current absorption and emission model is not accurate enough to correct atmospheric effect, and a radiative transfer model which considers the effect of radiation scattering should be used.

  14. The nucleus of Comet Borrelly: A study of morphology and surface brightness

    USGS Publications Warehouse

    Oberst, J.; Howington-Kraus, E.; Kirk, R.; Soderblom, L.; Buratti, B.; Hicks, M.; Nelson, R.; Britt, D.

    2004-01-01

    Stereo images obtained during the DS1 flyby were analyzed to derive a topographic model for the nucleus of Comet 19P/Borrelly for morphologic and photometric studies. The elongated nucleus has an overall concave shape, resembling a peanut, with the lower end tilted towards the camera. The bimodal character of surface-slopes and curvatures support the idea that the nucleus is a gravitational aggregate, consisting of two fragments in contact. Our photometric modeling suggests that topographic shading effects on Borrelly's surface are very minor (<10%) at the given resolution of the terrain model. Instead, albedo effects are thought to dominate Borrelly's large variations in surface brightness. With 90% of the visible surface having single scattering albedos between 0.008 and 0.024, Borrelly is confirmed to be among the darkest of the known Solar System objects. Photometrically corrected images emphasize that the nucleus has distinct, contiguous terrains covered with either bright or dark, smooth or mottled materials. Also, mapping of the changes in surface brightness with phase angle suggests that terrain roughness at subpixel scale is not uniform over the nucleus. High surface roughness is noted in particular near the transition between the upper and lower end of the nucleus, as well as near the presumed source region of Borrelly's main jets. Borrelly's surface is complex and characterized by distinct types of materials that have different compositional and/or physical properties. ?? 2003 Elsevier Inc. All rights reserved.

  15. The GALEX/S4G Surface Brightness and Color Profiles Catalog. I. Surface Photometry and Color Gradients of Galaxies

    NASA Astrophysics Data System (ADS)

    Bouquin, Alexandre Y. K.; Gil de Paz, Armando; Muñoz-Mateos, Juan Carlos; Boissier, Samuel; Sheth, Kartik; Zaritsky, Dennis; Peletier, Reynier F.; Knapen, Johan H.; Gallego, Jesús

    2018-02-01

    We present new spatially resolved surface photometry in the far-ultraviolet (FUV) and near-ultraviolet (NUV) from images obtained by the Galaxy Evolution Explorer (GALEX) and IRAC1 (3.6 μm) photometry from the Spitzer Survey of Stellar Structure in Galaxies (S4G). We analyze the radial surface brightness profiles μ FUV, μ NUV, and μ [3.6], as well as the radial profiles of (FUV ‑ NUV), (NUV ‑ [3.6]), and (FUV ‑ [3.6]) colors in 1931 nearby galaxies (z < 0.01). The analysis of the 3.6 μm surface brightness profiles also allows us to separate the bulge and disk components in a quasi-automatic way and to compare their light and color distribution with those predicted by the chemo-spectrophotometric models for the evolution of galaxy disks of Boissier & Prantzos. The exponential disk component is best isolated by setting an inner radial cutoff and an upper surface brightness limit in stellar mass surface density. The best-fitting models to the measured scale length and central surface brightness values yield distributions of spin and circular velocity within a factor of two of those obtained via direct kinematic measurements. We find that at a surface brightness fainter than μ [3.6] = 20.89 mag arcsec‑2, or below 3 × 108 M ⊙ kpc‑2 in stellar mass surface density, the average specific star formation rate (sSFR) for star-forming and quiescent galaxies remains relatively flat with radius. However, a large fraction of GALEX Green Valley galaxies show a radial decrease in sSFR. This behavior suggests that an outside-in damping mechanism, possibly related to environmental effects, could be testimony of an early evolution of galaxies from the blue sequence of star-forming galaxies toward the red sequence of quiescent galaxies.

  16. The Fundamental Plane and the Surface Brightness Test for the Expansion of the Universe

    NASA Astrophysics Data System (ADS)

    Kjaergaard, Per; Jorgensen, Inger; Moles, Mariano

    1993-12-01

    We have determined the Petrosian radius, rη , and the enclosed mean surface brightness within the Petrosian radius, <μ>η, for 33 elliptical and S0 galaxies in the Coma cluster from new accurate CCD surface photometry. For the Petrosian parameter η = 1.39, rη and <μ>η are compared with the effective radius, re, and the effective mean surface brightness, <μ>e derived from fitting a de Vaucouleurs law. The fundamental plane (FP) expressed using rη and <μ>η is the same as the FP found by Jørgensen, Franx, & Kjaergaard (1993) using re and <μ>e. The FP can be used to predict the mean surface brightness within the effective radius or the corresponding Petrosian radius (η = 1.39) with an uncertainty of ±0.14 mag for Coma cluster ellipticals. Thus the FP, applied to clusters, appears to be a suitable tool for performing the surface brightness test (SBT) for the expansion of the universe. We suggest that instead of correcting individual galaxies to some standard conditions, e.g., the same metric radius, the fundamental plane itself should be considered the standard. It is argued that the metric size enclosing around 75% of the total light represents a reasonable compromise between resolution and faint level detection when performing the SBT. This radius could be derived as the Petrosian radius corresponding to η = 2.0 or from a global fit to that part of the observed profile which encompasses 75% of the total light. In case both small and large galaxies are well described by a de Vaucouleurs law the global fit can be performed on a smaller central part of the brightness profile. The use of the FP involves the time consuming determinations of velocity dispersions. We find that <μ>η (η = 1.39) can be predicted from the log rη alone with an accuracy of 0.3 mag for the Coma cluster ellipticals. Our discussion of the various error contributions to the predicted mean surface brightness for faint cluster ellipticals at redshifts z < 0.5 shows that the final error is probably dominated by extra scatter due to, e.g., environmental and evolutionary effects. Thus it might be possible that the use of velocity dispersions are not necessary. To get significant results for the SBT, clusters out to a redshift of approximately z = 0.3 have to be observed. For the most distant galaxies light levels down to about 25-26 mag arcsec-2 in the red and sizes as small as approximately 2" have to be accurately measured. We outline an observational program which will allow the control of the different sources of scatter, including cosmic evolution, producing conclusive results about the expansion of the universe.

  17. Calculations of microwave brightness temperature of rough soil surfaces: Bare field

    NASA Technical Reports Server (NTRS)

    Mo, T.; Schmugge, T. J.; Wang, J. R.

    1985-01-01

    A model for simulating the brightness temperatures of soils with rough surfaces is developed. The surface emissivity of the soil media is obtained by the integration of the bistatic scattering coefficients for rough surfaces. The roughness of a soil surface is characterized by two parameters, the surface height standard deviation sigma and its horizontal correlation length l. The model calculations are compared to the measured angular variations of the polarized brightness temperatures at both 1.4 GHz and 5 GHz frequences. A nonlinear least-squares fitting method is used to obtain the values of delta and l that best characterize the surface roughness. The effect of shadowing is incorporated by introducing a function S(theta), which represents the probability that a point on a rough surface is not shadowed by other parts of the surface. The model results for the horizontal polarization are in excellent agreement with the data. However, for the vertical polarization, some discrepancies exist between the calculations and data, particularly at the 1.4 GHz frequency. Possible causes of the discrepancy are discussed.

  18. Remote sensing of soil moisture content over bare fields at 1.4 GHz frequency

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Choudhury, B. J.

    1980-01-01

    A simple method of estimating moisture content (W) of a bare soil from the observed brightness temperature (T sub B) at 1.4 GHz is discussed. The method is based on a radiative transfer model calculation, which has been successfully used in the past to account for many observational results, with some modifications to take into account the effect of surface roughness. Besides the measured T sub B's, the three additional inputs required by the method are the effective soil thermodynamic temperature, the precise relation between W and the smooth field brightness temperature T sub B and a parameter specifying the surface roughness characteristics. The soil effective temperature can be readily measured and the procedures of estimating surface roughness parameter and obtaining the relation between W and smooth field brightness temperature are discussed in detail. Dual polarized radiometric measurements at an off-nadir incident angle are sufficient to estimate both surface roughness parameter and W, provided that the relation between W and smooth field brightness temperature at the same angle is known. The method of W estimate is demonstrated with two sets of experimental data, one from a controlled field experiment by a mobile tower and the other, from aircraft overflight. The results from both data sets are encouraging when the estimated W's are compared with the acquired ground truth of W's in the top 2 cm layer. An offset between the estimated and the measured W's exists in the results of the analyses, but that can be accounted for by the presently poor knowledge of the relationship between W and smooth field brightness temperature for various types of soils. An approach to quantify this relationship for different soils and thus improve the method of W estimate is suggested.

  19. THE DOMINANCE OF METAL-RICH STREAMS IN STELLAR HALOS: A COMPARISON BETWEEN SUBSTRUCTURE IN M31 AND {lambda}CDM MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Karoline M.; Font, Andreea S.; Johnston, Kathryn V.

    2009-08-10

    Extensive photometric and spectroscopic surveys of the Andromeda galaxy (M31) have discovered tidal debris features throughout M31's stellar halo. We present stellar kinematics and metallicities in fields with identified substructure from our on-going SPLASH survey of M31 red giant branch stars with the DEIMOS spectrograph on the Keck II 10 m telescope. Radial velocity criteria are used to isolate members of the kinematically cold substructures. The substructures are shown to be metal-rich relative to the rest of the dynamically hot stellar population in the fields in which they are found. We calculate the mean metallicity and average surface brightness ofmore » the various kinematical components in each field, and show that, on average, higher surface brightness features tend to be more metal-rich than lower surface brightness features. Simulations of stellar halo formation via accretion in a cosmological context are used to illustrate that the observed trend can be explained as a natural consequence of the observed dwarf galaxy mass-metallicity relation. A significant spread in metallicity at a given surface brightness is seen in the data; we show that this is due to time effects, namely, the variation in the time since accretion of the tidal streams' progenitor onto the host halo. We show that in this theoretical framework a relationship between the alpha-enhancement and surface brightness of tidal streams is expected, which arises from the varying times of accretion of the progenitor satellites onto the host halo. Thus, measurements of the alpha-enrichment, metallicity, and surface brightness of tidal debris can be used to reconstruct the luminosity and time of accretion onto the host halo of the progenitors of tidal streams.« less

  20. The response of the SSM/I to the marine environment. I - An analytic model for the atmospheric component of observed brightness temperatures

    NASA Technical Reports Server (NTRS)

    Petty, Grant W.; Katsaros, Kristina B.

    1992-01-01

    A detailed parameterization is developed for the contribution of the nonprecipitating atmosphere to the microwave brightness temperatures observed by the Special Sensor Microwave/Imager (SSM/I). The atmospheric variables considered include the viewing angle, the integrated water vapor amount and scale height, the effective tropospheric lapse rate and near-surface temperature, the total cloud liquid water, the effective cloud height, and the surface pressure. The dependence of the radiative variables on meteorological variables is determined for each of the SSM/I frequencies 19.35, 22.235, 37.0, and 85.5 GHz, based on the values computed from 16,893 maritime temperature and humidity profiles representing all latitude belts and all seasons. A comparison of the predicted brightness temperatures with brightness temperatures obtained by direct numerical integration of the radiative transfer equation for the radiosonde-profile dataset yielded rms differences well below 1 K for all four SSM/I frequencies.

  1. Global Properties of M31's Stellar Halo from the SPLASH Survey. I. Surface Brightness Profile

    NASA Astrophysics Data System (ADS)

    Gilbert, Karoline M.; Guhathakurta, Puragra; Beaton, Rachael L.; Bullock, James; Geha, Marla C.; Kalirai, Jason S.; Kirby, Evan N.; Majewski, Steven R.; Ostheimer, James C.; Patterson, Richard J.; Tollerud, Erik J.; Tanaka, Mikito; Chiba, Masashi

    2012-11-01

    We present the surface brightness profile of M31's stellar halo out to a projected radius of 175 kpc. The surface brightness estimates are based on confirmed samples of M31 red giant branch stars derived from Keck/DEIMOS spectroscopic observations. A set of empirical spectroscopic and photometric M31 membership diagnostics is used to identify and reject foreground and background contaminants. This enables us to trace the stellar halo of M31 to larger projected distances and fainter surface brightnesses than previous photometric studies. The surface brightness profile of M31's halo follows a power law with index -2.2 ± 0.2 and extends to a projected distance of at least ~175 kpc (~2/3 of M31's virial radius), with no evidence of a downward break at large radii. The best-fit elliptical isophotes have b/a = 0.94 with the major axis of the halo aligned along the minor axis of M31's disk, consistent with a prolate halo, although the data are also consistent with M31's halo having spherical symmetry. The fact that tidal debris features are kinematically cold is used to identify substructure in the spectroscopic fields out to projected radii of 90 kpc and investigate the effect of this substructure on the surface brightness profile. The scatter in the surface brightness profile is reduced when kinematically identified tidal debris features in M31 are statistically subtracted; the remaining profile indicates that a comparatively diffuse stellar component to M31's stellar halo exists to large distances. Beyond 90 kpc, kinematically cold tidal debris features cannot be identified due to small number statistics; nevertheless, the significant field-to-field variation in surface brightness beyond 90 kpc suggests that the outermost region of M31's halo is also comprised to a significant degree of stars stripped from accreted objects. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  2. Brightness masking is modulated by disparity structure.

    PubMed

    Pelekanos, Vassilis; Ban, Hiroshi; Welchman, Andrew E

    2015-05-01

    The luminance contrast at the borders of a surface strongly influences surface's apparent brightness, as demonstrated by a number of classic visual illusions. Such phenomena are compatible with a propagation mechanism believed to spread contrast information from borders to the interior. This process is disrupted by masking, where the perceived brightness of a target is reduced by the brief presentation of a mask (Paradiso & Nakayama, 1991), but the exact visual stage that this happens remains unclear. In the present study, we examined whether brightness masking occurs at a monocular-, or a binocular-level of the visual hierarchy. We used backward masking, whereby a briefly presented target stimulus is disrupted by a mask coming soon afterwards, to show that brightness masking is affected by binocular stages of the visual processing. We manipulated the 3-D configurations (slant direction) of the target and mask and measured the differential disruption that masking causes on brightness estimation. We found that the masking effect was weaker when stimuli had a different slant. We suggest that brightness masking is partly mediated by mid-level neuronal mechanisms, at a stage where binocular disparity edge structure has been extracted. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Estimation of surface temperature in remote pollution measurement experiments

    NASA Technical Reports Server (NTRS)

    Gupta, S. K.; Tiwari, S. N.

    1978-01-01

    A simple algorithm has been developed for estimating the actual surface temperature by applying corrections to the effective brightness temperature measured by radiometers mounted on remote sensing platforms. Corrections to effective brightness temperature are computed using an accurate radiative transfer model for the 'basic atmosphere' and several modifications of this caused by deviations of the various atmospheric and surface parameters from their base model values. Model calculations are employed to establish simple analytical relations between the deviations of these parameters and the additional temperature corrections required to compensate for them. Effects of simultaneous variation of two parameters are also examined. Use of these analytical relations instead of detailed radiative transfer calculations for routine data analysis results in a severalfold reduction in computation costs.

  4. Passive microwave sensing of soil moisture content - The effects of soil bulk density and surface roughness

    NASA Technical Reports Server (NTRS)

    Wang, J. R.

    1983-01-01

    Microwave radiometric measurements over bare fields of different surface roughness were made at frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz to study the frequency dependence, as well as the possible time variation, of surface roughness. An increase in surface roughness was found to increase the brightness temperature of soils and reduce the slope of regression between brightness temperature and soil moisture content. The frequency dependence of the surface roughness effect was relatively weak when compared with that of the vegetation effect. Radiometric time-series observations over a given field indicate that field surface roughness might gradually diminish with time, especially after a rainfall or irrigation. The variation of surface roughness increases the uncertainty of remote soil moisture estimates by microwave radiometry. Three years of radiometric measurements over a test site revealed a possible inconsistency in the soil bulk density determination, which is an important factor in the interpretation of radiometric data.

  5. Surface-induced brightness temperature variations and their effects on detecting thin cirrus clouds using IR emission channels in the 8-12 micrometer region

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Wiscombe, W. J.

    1993-01-01

    A method for detecting cirrus clouds in terms of brightness temperature differences between narrow bands at 8, 11, and 12 mu m has been proposed by Ackerman et al. (1990). In this method, the variation of emissivity with wavelength for different surface targets was not taken into consideration. Based on state-of-the-art laboratory measurements of reflectance spectra of terrestrial materials by Salisbury and D'Aria (1992), we have found that the brightness temperature differences between the 8 and 11 mu m bands for soils, rocks and minerals, and dry vegetation can vary between approximately -8 K and +8 K due solely to surface emissivity variations. We conclude that although the method of Ackerman et al. is useful for detecting cirrus clouds over areas covered by green vegetation, water, and ice, it is less effective for detecting cirrus clouds over areas covered by bare soils, rocks and minerals, and dry vegetation. In addition, we recommend that in future the variation of surface emissivity with wavelength should be taken into account in algorithms for retrieving surface temperatures and low-level atmospheric temperature and water vapor profiles.

  6. Galaxy Selection and the Surface Brightness Distribution

    NASA Astrophysics Data System (ADS)

    McGaugh, Stacy S.; Bothun, Gregory D.; Schombert, James M.

    1995-08-01

    Optical surveys for galaxies are biased against the inclusion of low surface brightness (LSB) galaxies. Disney [Nature, 263,573(1976)] suggested that the constancy of disk central surface brightness noticed by Freeman [ApJ, 160,811(1970)] was not a physical result, but instead was an artifact of sample selection. Since LSB galaxies do exist, the pertinent and still controversial issue is if these newly discovered galaxies constitute a significant percentage of the general galaxy population. In this paper, we address this issue by determining the space density of galaxies as a function of disk central surface brightness. Using the physically reasonable assumption (which is motivated by the data) that central surface brightness is independent of disk scale length, we arrive at a distribution which is roughly flat (i.e., approximately equal numbers of galaxies at each surface brightness) faintwards of the Freeman (1970) value. Brightwards of this, we find a sharp decline in the distribution which is analogous to the turn down in the luminosity function at L^*^. An intrinsically sharply peaked "Freeman law" distribution can be completely ruled out, and no Gaussian distribution can fit the data. Low surface brightness galaxies (those with central surface brightness fainter than 22 B mag arcsec^-2^) comprise >~ 1/2 the general galaxy population, so a representative sample of galaxies at z = 0 does not really exist at present since past surveys have been insensitive to this component of the general galaxy population.

  7. Application of Reflected Global Navigation Satellite System (GNSS-R) Signals in the Estimation of Sea Roughness Effects in Microwave Radiometry

    NASA Technical Reports Server (NTRS)

    Voo, Justin K.; Garrison, James L.; Yueh, Simon H.; Grant, Michael S.; Fore, Alexander G.; Haase, Jennifer S.; Clauss, Bryan

    2010-01-01

    In February-March 2009 NASA JPL conducted an airborne field campaign using the Passive Active L-band System (PALS) and the Ku-band Polarimetric Scatterometer (PolSCAT) collecting measurements of brightness temperature and near surface wind speeds. Flights were conducted over a region of expected high-speed winds in the Atlantic Ocean, for the purposes of algorithm development for salinity retrievals. Wind speeds encountered were in the range of 5 to 25 m/s during the two weeks deployment. The NASA-Langley GPS delay-mapping receiver (DMR) was also flown to collect GPS signals reflected from the ocean surface and generate post-correlation power vs. delay measurements. This data was used to estimate ocean surface roughness and a strong correlation with brightness temperature was found. Initial results suggest that reflected GPS signals, using small low-power instruments, will provide an additional source of data for correcting brightness temperature measurements for the purpose of sea surface salinity retrievals.

  8. Surface and Atmospheric Contributions to Passive Microwave Brightness Temperatures

    NASA Technical Reports Server (NTRS)

    Jackson, Gail Skofronick; Johnson, Benjamin T.

    2010-01-01

    Physically-based passive microwave precipitation retrieval algorithms require a set of relationships between satellite observed brightness temperatures (TB) and the physical state of the underlying atmosphere and surface. These relationships are typically non-linear, such that inversions are ill-posed especially over variable land surfaces. In order to better understand these relationships, this work presents a theoretical analysis using brightness temperature weighting functions to quantify the percentage of the TB resulting from absorption/emission/reflection from the surface, absorption/emission/scattering by liquid and frozen hydrometeors in the cloud, the emission from atmospheric water vapor, and other contributors. The results are presented for frequencies from 10 to 874 GHz and for several individual precipitation profiles as well as for three cloud resolving model simulations of falling snow. As expected, low frequency channels (<89 GHz) respond to liquid hydrometeors and the surface, while the higher frequency channels become increasingly sensitive to ice hydrometeors and the water vapor sounding channels react to water vapor in the atmosphere. Low emissivity surfaces (water and snow-covered land) permit energy downwelling from clouds to be reflected at the surface thereby increasing the percentage of the TB resulting from the hydrometeors. The slant path at a 53deg viewing angle increases the hydrometeor contributions relative to nadir viewing channels and show sensitivity to surface polarization effects. The TB percentage information presented in this paper answers questions about the relative contributions to the brightness temperatures and provides a key piece of information required to develop and improve precipitation retrievals over land surfaces.

  9. Passive microwave sensing of soil moisture content: Soil bulk density and surface roughness

    NASA Technical Reports Server (NTRS)

    Wang, J. R.

    1982-01-01

    Microwave radiometric measurements over bare fields of different surface roughnesses were made at the frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz to study the frequency dependence as well as the possible time variation of surface roughness. The presence of surface roughness was found to increase the brightness temperature of soils and reduce the slope of regression between brightness temperature and soil moisture content. The frequency dependence of the surface roughness effect was relatively weak when compared with that of the vegetation effect. Radiometric time series observation over a given field indicated that field surface roughness might gradually diminish with time, especially after a rainfall or irrigation. This time variation of surface roughness served to enhance the uncertainty in remote soil moisture estimate by microwave radiometry. Three years of radiometric measurements over a test site revealed a possible inconsistency in the soil bulk density determination, which turned out to be an important factor in the interpretation of radiometric data.

  10. Analysis of Mass Profiles and Cooling Flows of Bright, Early-Type Galaxies AO2, AO3 and Surface Brightness Profiles and Energetics of Intracluster Gas in Cool Galaxy Clusters AO3

    NASA Technical Reports Server (NTRS)

    White, Raymond E., III

    1998-01-01

    This final report uses ROSAT observations to analyze two different studies. These studies are: Analysis of Mass Profiles and Cooling Flows of Bright, Early-Type Galaxies; and Surface Brightness Profiles and Energetics of Intracluster Gas in Cool Galaxy Clusters.

  11. Comparative study of icy patches on comet nuclei

    NASA Astrophysics Data System (ADS)

    Oklay, Nilda; Pommerol, Antoine; Barucci, Maria Antonietta; Sunshine, Jessica; Sierks, Holger; Pajola, Maurizio

    2016-07-01

    Cometary missions Deep Impact, EPOXI and Rosetta investigated the nuclei of comets 9P/Tempel 1, 103P/Hartley 2 and 67P/Churyumov-Gerasimenko respectively. Bright patches were observed on the surfaces of each of these three comets [1-5]. Of these, the surface of 67P is mapped at the highest spatial resolution via narrow angle camera (NAC) of the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS, [6]) on board the Rosetta spacecraft. OSIRIS NAC is equipped with twelve filters covering the wavelength range of 250 nm to 1000 nm. Various filters combinations are used during surface mapping. With high spatial resolution data of comet 67P, three types of bright features were detected on the comet surface: Clustered, isolated and bright boulders [2]. In the visible spectral range, clustered bright features on comet 67P display bluer spectral slopes than the average surface [2, 4] while isolated bright features on comet 67P have flat spectra [4]. Icy patches observed on the surface of comets 9P and 103P display bluer spectral slopes than the average surface [1, 5]. Clustered and isolated bright features are blue in the RGB composites generated by using the images taken in NIR, visible and NUV wavelengths [2, 4]. This is valid for the icy patches observed on comets 9P and 103P [1, 5]. Spectroscopic observations of bright patches on comets 9P and 103P confirmed the existence of water [1, 5]. There were more than a hundred of bright features detected on the northern hemisphere of comet 67P [2]. Analysis of those features from both multispectral data and spectroscopic data is an ongoing work. Water ice is detected in eight of the bright features so far [7]. Additionally, spectroscopic observations of two clustered bright features on the surface of comet 67P revealed the existence of water ice [3]. The spectral properties of one of the icy patches were studied by [4] using OSIRIS NAC images and compared with the spectral properties of the active regions observed on comet 67P. Additionally jets rising from the same clustered bright feature were detected visually [4]. We analyzed bright patches on the surface of comets 9P, 103P and 67P using multispectral data obtained by the high-resolution instrument (HRI), medium- resolution instrument (MRI) and OSIRIS NAC using various spectral analysis techniques. Clustered bright features on comet 67P have similar visible spectra to the bright patches on comets 9P and 103P. The comparison of the bright patches includes the published results of the IR spectra. References: [1] Sunshine et al., 2006, Science, 311, 1453 [2] Pommerol et al., 2015, A&A, 583, A25 [3] Filacchione et al., 2016, Nature, 529, 368-372 [4] Oklay et al., 2016, A&A, 586, A80 [5] Sunshine et al. 2012, ACM [6] Keller et al., 2007, Space Sci. Rev., 128, 433 [7] Barucci et al., 2016, COSPAR, B04

  12. Exploring the extremely low surface brightness sky: distances to 23 newly discovered objects in Dragonfly fields

    NASA Astrophysics Data System (ADS)

    van Dokkum, Pieter

    2016-10-01

    We are obtaining deep, wide field images of nearby galaxies with the Dragonfly Telephoto Array. This telescope is optimized for low surface brightness imaging, and we are finding many low surface brightness objects in the Dragonfly fields. In Cycle 22 we obtained ACS imaging for 7 galaxies that we had discovered in a Dragonfly image of the galaxy M101. Unexpectedly, the ACS data show that only 3 of the galaxies are members of the M101 group, and the other 4 are very large Ultra Diffuse Galaxies (UDGs) at much greater distance. Building on our Cycle 22 program, here we request ACS imaging for 23 newly discovered low surface brightness objects in four Dragonfly fields centered on the galaxies NGC 1052, NGC 1084, NGC 3384, and NGC 4258. The immediate goals are to construct the satellite luminosity functions in these four fields and to constrain the number density of UDGs that are not in rich clusters. More generally, this complete sample of extremely low surface brightness objects provides the first systematic insight into galaxies whose brightness peaks at >25 mag/arcsec^2.

  13. Attitude angle effects on Nimbus-7 Scanning Multichannel Microwave Radiometer radiances and geophysical parameter retrievals

    NASA Technical Reports Server (NTRS)

    Macmillan, Daniel S.; Han, Daesoo

    1989-01-01

    The attitude of the Nimbus-7 spacecraft has varied significantly over its lifetime. A summary of the orbital and long-term behavior of the attitude angles and the effects of attitude variations on Scanning Multichannel Microwave Radiometer (SMMR) brightness temperatures is presented. One of the principal effects of these variations is to change the incident angle at which the SMMR views the Earth's surface. The brightness temperatures depend upon the incident angle sensitivities of both the ocean surface emissivity and the atmospheric path length. Ocean surface emissivity is quite sensitive to incident angle variation near the SMMR incident angle, which is about 50 degrees. This sensitivity was estimated theoretically for a smooth ocean surface and no atmosphere. A 1-degree increase in the angle of incidence produces a 2.9 C increase in the retrieved sea surface temperature and a 5.7 m/sec decrease in retrieved sea surface wind speed. An incident angle correction is applied to the SMMR radiances before using them in the geophysical parameter retrieval algorithms. The corrected retrieval data is compared with data obtained without applying the correction.

  14. The Barnes-Evans color-surface brightness relation: A preliminary theoretical interpretation

    NASA Technical Reports Server (NTRS)

    Shipman, H. L.

    1980-01-01

    Model atmosphere calculations are used to assess whether an empirically derived relation between V-R and surface brightness is independent of a variety of stellar paramters, including surface gravity. This relationship is used in a variety of applications, including the determination of the distances of Cepheid variables using a method based on the Beade-Wesselink method. It is concluded that the use of a main sequence relation between V-R color and surface brightness in determining radii of giant stars is subject to systematic errors that are smaller than 10% in the determination of a radius or distance for temperature cooler than 12,000 K. The error in white dwarf radii determined from a main sequence color surface brightness relation is roughly 10%.

  15. Study of the model of calibrating differences of brightness temperature from geostationary satellite generated by time zone differences

    NASA Astrophysics Data System (ADS)

    Li, Weidong; Shan, Xinjian; Qu, Chunyan

    2010-11-01

    In comparison with polar-orbiting satellites, geostationary satellites have a higher time resolution and wider field of visions, which can cover eleven time zones (an image covers about one third of the Earth's surface). For a geostationary satellite panorama graph at a point of time, the brightness temperature of different zones is unable to represent the thermal radiation information of the surface at the same point of time because of the effect of different sun solar radiation. So it is necessary to calibrate brightness temperature of different zones with respect to the same point of time. A model of calibrating the differences of the brightness temperature of geostationary satellite generated by time zone differences is suggested in this study. A total of 16 curves of four positions in four different stages are given through sample statistics of brightness temperature of every 5 days synthetic data which are from four different time zones (time zones 4, 6, 8, and 9). The above four stages span January -March (winter), April-June (spring), July-September (summer), and October-December (autumn). Three kinds of correct situations and correct formulas based on curves changes are able to better eliminate brightness temperature rising or dropping caused by time zone differences.

  16. Low-Surface-Brightness Galaxies: Hidden Galaxies Revealed

    NASA Astrophysics Data System (ADS)

    Bothun, G.; Impey, C.; McGaugh, S.

    1997-07-01

    In twenty years, low surface brightness (LSB) galaxies have evolved from being an idiosyncratic notion to being one of the major baryonic repositories in the Universe. The story of their discovery and the characterization of their properties is told here. Their recovery from the noise of the night sky background is a strong testament to the severity of surface brightness selection effects. LSB galaxies have a number of remarkable properties which distinguish them from the more familiar Hubble Sequence of spirals. The two most important are 1) they evolve at a significantly slower rate and may well experience star formation outside of the molecular cloud environment, 2) they are embedded in dark matter halos which are of lower density and more extended than the halos around high surface brightness (HSB) disk galaxies. Compared to HSB disks, LSB disks are strongly dark matter dominated at all radii and show a systematic increase in $M/L$ with decreasing central surface brightness. In addition, the recognition that large numbers of LSB galaxies actually exist has changed the form of the galaxy luminosity function and has clearly increased the space density of galaxies at z =0. Recent CCD surveys have uncovered a population of red LSB disks that may be related to the excess of faint blue galaxies detected at moderate redshifts. LSB galaxies offer us a new window into galaxy evolution and formation which is every bit as important as those processes which have produced easy to detect galaxies. Indeed, the apparent youth of some LSB galaxies suggest that galaxy formation is a greatly extended process. While the discovery of LSB galaxies have lead to new insights, it remains unwise to presume that we now have a representative sample which encompasses all galaxy types and forms. (SECTION: Invited Review Paper)

  17. Ground temperature measurement by PRT-5 for maps experiment

    NASA Technical Reports Server (NTRS)

    Gupta, S. K.; Tiwari, S. N.

    1978-01-01

    A simple algorithm and computer program were developed for determining the actual surface temperature from the effective brightness temperature as measured remotely by a radiation thermometer called PRT-5. This procedure allows the computation of atmospheric correction to the effective brightness temperature without performing detailed radiative transfer calculations. Model radiative transfer calculations were performed to compute atmospheric corrections for several values of the surface and atmospheric parameters individually and in combination. Polynomial regressions were performed between the magnitudes or deviations of these parameters and the corresponding computed corrections to establish simple analytical relations between them. Analytical relations were also developed to represent combined correction for simultaneous variation of parameters in terms of their individual corrections.

  18. KECK/LRIS SPECTROSCOPIC CONFIRMATION OF COMA CLUSTER DWARF GALAXY MEMBERSHIP ASSIGNMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiboucas, Kristin; Tully, R. Brent; Marzke, Ronald O.

    2010-11-01

    Keck/LRIS multi-object spectroscopy has been carried out on 140 of some of the lowest and highest surface brightness faint (19 < R < 22) dwarf galaxy candidates in the core region of the Coma Cluster. These spectra are used to measure redshifts and establish membership for these faint dwarf populations. The primary goal of the low surface brightness sample is to test our ability to use morphological and surface brightness criteria to distinguish between Coma Cluster members and background galaxies using high resolution Hubble Space Telescope/Advanced Camera for Surveys images. Candidates were rated as expected members, uncertain, or expected background.more » From 93 spectra, 51 dwarf galaxy members and 20 background galaxies are identified. Our morphological membership estimation success rate is {approx}100% for objects expected to be members and better than {approx}90% for galaxies expected to be in the background. We confirm that low surface brightness is a very good indicator of cluster membership. High surface brightness galaxies are almost always background with confusion arising only from the cases of the rare compact elliptical (cE) galaxies. The more problematic cases occur at intermediate surface brightness. Many of these galaxies are given uncertain membership ratings, and these were found to be members about half of the time. Including color information will improve membership determination but will fail for some of the same objects that are already misidentified when using only surface brightness and morphology criteria. cE galaxies with B-V colors {approx}0.2 mag redward of the red sequence in particular require spectroscopic follow up. In a sample of 47 high surface brightness, ultracompact dwarf candidates, 19 objects have redshifts which place them in the Coma Cluster, while another 6 have questionable redshift measurements but may also prove to be members. Redshift measurements are presented and the use of indirect means for establishing cluster membership is discussed.« less

  19. Tracers of Stellar Mass-loss. II. Mid-IR Colors and Surface Brightness Fluctuations

    NASA Astrophysics Data System (ADS)

    González-Lópezlira, Rosa A.

    2018-04-01

    I present integrated colors and surface brightness fluctuation magnitudes in the mid-infrared (IR), derived from stellar population synthesis models that include the effects of the dusty envelopes around thermally pulsing asymptotic giant branch (TP-AGB) stars. The models are based on the Bruzual & Charlot CB* isochrones; they are single-burst, range in age from a few Myr to 14 Gyr, and comprise metallicities between Z = 0.0001 and Z = 0.04. I compare these models to mid-IR data of AGB stars and star clusters in the Magellanic Clouds, and study the effects of varying self-consistently the mass-loss rate, the stellar parameters, and the output spectra of the stars plus their dusty envelopes. I find that models with a higher than fiducial mass-loss rate are needed to fit the mid-IR colors of “extreme” single AGB stars in the Large Magellanic Cloud. Surface brightness fluctuation magnitudes are quite sensitive to metallicity for 4.5 μm and longer wavelengths at all stellar population ages, and powerful diagnostics of mass-loss rate in the TP-AGB for intermediate-age populations, between 100 Myr and 2–3 Gyr.

  20. Modelling the phase curve and occultation of WASP-43b with SPIDERMAN

    NASA Astrophysics Data System (ADS)

    Louden, Tom

    2017-06-01

    Presenting SPIDERMAN, a fast code for calculating exoplanet phase curves and secondary eclipses with arbitrary two dimensional surface brightness distributions. SPIDERMAN uses an exact geometric algorithm to calculate the area of sub-regions of the planet that are occulted by the star, with no loss in numerical precision. The speed of this calculation makes it possible to run MCMCs to marginalise effectively over the underlying parameters controlling the brightness distribution of exoplanets. The code is fully open source and available over Github. We apply the code to the phase curve of WASP-43b using an analytical surface brightness distribution, and find an excellent fit to the data. We are able to place direct constraints on the physics of heat transport in the atmosphere, such as the ratio between advective and radiative timescales at different altitudes.

  1. Multipass holographic interferometer improves image resolution

    NASA Technical Reports Server (NTRS)

    Brooks, R. E.; Heflinger, L. O.

    1970-01-01

    Multipass holographic interferometer forms a hologram of high diffraction efficiency, and hence provides a bright and high contrast interferogram. It is used to study any effect which changes the index of refraction and to study surface deformations of a flat reflecting surface.

  2. Andromeda (M31) optical and infrared disk survey. I. Insights in wide-field near-IR surface photometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sick, Jonathan; Courteau, Stéphane; Cuillandre, Jean-Charles

    We present wide-field near-infrared J and K{sub s} images of the Andromeda Galaxy (M31) taken with WIRCam at the Canada-France-Hawaii Telescope as part of the Andromeda Optical and Infrared Disk Survey. This data set allows simultaneous observations of resolved stars and near-infrared (NIR) surface brightness across M31's entire bulge and disk (within R = 22 kpc), permitting a direct test of the stellar composition of near-infrared light in a nearby galaxy. Here we develop NIR observation and reduction methods to recover a uniform surface brightness map across the 3° × 1° disk of M31 with 27 WIRCam fields. Two sky-targetmore » nodding strategies are tested, and we find that strictly minimizing sky sampling latency cannot improve background subtraction accuracy to better than 2% of the background level due to spatio-temporal variations in the NIR skyglow. We fully describe our WIRCam reduction pipeline and advocate using flats built from night-sky images over a single night, rather than dome flats that do not capture the WIRCam illumination field. Contamination from scattered light and thermal background in sky flats has a negligible effect on the surface brightness shape compared to the stochastic differences in background shape between sky and galaxy disk fields, which are ∼0.3% of the background level. The most dramatic calibration step is the introduction of scalar sky offsets to each image that optimizes surface brightness continuity. Sky offsets reduce the mean surface brightness difference between observation blocks from 1% to <0.1% of the background level, though the absolute background level remains statistically uncertain to 0.15% of the background level. We present our WIRCam reduction pipeline and performance analysis to give specific recommendations for the improvement of NIR wide-field imaging methods.« less

  3. Arsia Mons by Day and Night

    NASA Image and Video Library

    2004-06-22

    Released 22 June 2004 This pair of images shows part of Arsia Mons. Day/Night Infrared Pairs The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top. Infrared image interpretation Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark. Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images. Image information: IR instrument. Latitude -19.6, Longitude 241.9 East (118.1 West). 100 meter/pixel resolution. http://photojournal.jpl.nasa.gov/catalog/PIA06399

  4. Crater Ejecta by Day and Night

    NASA Image and Video Library

    2004-06-24

    Released 24 June 2004 This pair of images shows a crater and its ejecta. Day/Night Infrared Pairs The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top. Infrared image interpretation Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark. Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images. Image information: IR instrument. Latitude -9, Longitude 164.2 East (195.8 West). 100 meter/pixel resolution. http://photojournal.jpl.nasa.gov/catalog/PIA06445

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagen, Lea M. Z.; Hagen, Alex; Seibert, Mark

    We provide evidence that UGC 1382, long believed to be a passive elliptical galaxy, is actually a giant low surface brightness (GLSB) galaxy that rivals the archetypical GLSB Malin 1 in size. Like other GLSB galaxies, it has two components: a high surface brightness disk galaxy surrounded by an extended low surface brightness (LSB) disk. For UGC 1382, the central component is a lenticular system with an effective radius of 6 kpc. Beyond this, the LSB disk has an effective radius of ∼38 kpc and an extrapolated central surface brightness of ∼26 mag arcsec{sup 2}. Both components have a combinedmore » stellar mass of ∼8 × 10{sup 10} M {sub ⊙}, and are embedded in a massive (10{sup 10} M {sub ⊙}) low-density (<3 M {sub ⊙} pc{sup 2}) HI disk with a radius of 110 kpc, making this one of the largest isolated disk galaxies known. The system resides in a massive dark matter halo of at least 2 × 10{sup 12} M {sub ⊙}. Although possibly part of a small group, its low-density environment likely plays a role in the formation and retention of the giant LSB and HI disks. We model the spectral energy distributions and find that the LSB disk is likely older than the lenticular component. UGC 1382 has UV–optical colors typical of galaxies transitioning through the green valley. Within the LSB disk are spiral arms forming stars at extremely low efficiencies. The gas depletion timescale of ∼10{sup 11} years suggests that UGC 1382 may be a very-long-term resident of the green valley. We find that the formation and evolution of the LSB disk in UGC 1382 is best explained by the accretion of gas-rich LSB dwarf galaxies.« less

  6. Implementation of an Ultra-Bright Thermographic Phosphor for Gas Turbine Engine Temperature Measurements

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Bencic, Timothy J.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.; Allison, Stephen W.; Beshears, David L.; Jenkins, Thomas P.; Heeg, Bauke; Howard, Robert P.; hide

    2014-01-01

    The overall goal of the Aeronautics Research Mission Directorate (ARMD) Seedling Phase II effort was to build on the promising temperature-sensing characteristics of the ultrabright thermographic phosphor Cr-doped gadolinium aluminum perovskite (Cr:GAP) demonstrated in Phase I by transitioning towards an engine environment implementation. The strategy adopted was to take advantage of the unprecedented retention of ultra-bright luminescence from Cr:GAP at temperatures over 1000 C to enable fast 2D temperature mapping of actual component surfaces as well as to utilize inexpensive low-power laser-diode excitation suitable for on-wing diagnostics. A special emphasis was placed on establishing Cr:GAP luminescence-based surface temperature mapping as a new tool for evaluating engine component surface cooling effectiveness.

  7. Correlations between Cassini VIMS spectra and RADAR SAR images: Implications for Titan's surface composition and the character of the Huygens Probe Landing Site

    USGS Publications Warehouse

    Soderblom, L.A.; Kirk, R.L.; Lunine, J.I.; Anderson, J.A.; Baines, K.H.; Barnes, J.W.; Barrett, J.M.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Cruikshank, D.P.; Elachi, C.; Janssen, M.A.; Jaumann, R.; Karkoschka, E.; Le Mouélic, Stéphane; Lopes, R.M.; Lorenz, R.D.; McCord, T.B.; Nicholson, P.D.; Radebaugh, J.; Rizk, B.; Sotin, Christophe; Stofan, E.R.; Sucharski, T.L.; Tomasko, M.G.; Wall, S.D.

    2007-01-01

    Titan's vast equatorial fields of RADAR-dark longitudinal dunes seen in Cassini RADAR synthetic aperture images correlate with one of two dark surface units discriminated as "brown" and "blue" in Visible and Infrared Mapping Spectrometer (VIMS) color composites of short-wavelength infrared spectral cubes (RGB as 2.0, 1.6, 1.3 ??m). In such composites bluer materials exhibit higher reflectance at 1.3 ??m and lower at 1.6 and 2.0 ??m. The dark brown unit is highly correlated with the RADAR-dark dunes. The dark brown unit shows less evidence of water ice suggesting that the saltating grains of the dunes are largely composed of hydrocarbons and/or nitriles. In general, the bright units also show less evidence of absorption due to water ice and are inferred to consist of deposits of bright fine precipitating tholin aerosol dust. Some set of chemical/mechanical processes may be converting the bright fine-grained aerosol deposits into the dark saltating hydrocarbon and/or nitrile grains. Alternatively the dark dune materials may be derived from a different type of air aerosol photochemical product than are the bright materials. In our model, both the bright aerosol and dark hydrocarbon dune deposits mantle the VIMS dark blue water ice-rich substrate. We postulate that the bright mantles are effectively invisible (transparent) in RADAR synthetic aperture radar (SAR) images leading to lack of correlation in the RADAR images with optically bright mantling units. RADAR images mostly show only dark dunes and the water ice substrate that varies in roughness, fracturing, and porosity. If the rate of deposition of bright aerosol is 0.001-0.01 ??m/yr, the surface would be coated (to optical instruments) in hundreds-to-thousands of years unless cleansing processes are active. The dark dunes must be mobile on this very short timescale to prevent the accumulation of bright coatings. Huygens landed in a region of the VIMS bright and dark blue materials and about 30 km south of the nearest occurrence of dunes visible in the RADAR SAR images. Fluvial/pluvial processes, every few centuries or millennia, must be cleansing the dark floors of the incised channels and scouring the dark plains at the Huygens landing site both imaged by Descent Imager/Spectral Radiometer (DISR). ?? 2007 Elsevier Ltd. All rights reserved.

  8. Erratum - the Lowest Surface Brightness Disc Galaxy Known

    NASA Astrophysics Data System (ADS)

    Davies, J. I.; Phillipps, S.; Disney, M. J.

    1988-11-01

    The paper "The lowest surface brightness disc galaxy known' by J.I. Davies, S. Phillipps and M.J. Disney was published in Mon. Not. R. astr. Soc. (1988), 231, 69p. The declination of the object given in section 2 of the paper is incorrect and should be changed to +19^deg^48'23". Thus the object cannot be identified with GP 1444 as in the original paper. To minimize confusion we propose to refer to the low surface brightness galaxy as GP 1444A.

  9. RESOLVE: A new algorithm for aperture synthesis imaging of extended emission in radio astronomy

    NASA Astrophysics Data System (ADS)

    Junklewitz, H.; Bell, M. R.; Selig, M.; Enßlin, T. A.

    2016-02-01

    We present resolve, a new algorithm for radio aperture synthesis imaging of extended and diffuse emission in total intensity. The algorithm is derived using Bayesian statistical inference techniques, estimating the surface brightness in the sky assuming a priori log-normal statistics. resolve estimates the measured sky brightness in total intensity, and the spatial correlation structure in the sky, which is used to guide the algorithm to an optimal reconstruction of extended and diffuse sources. During this process, the algorithm succeeds in deconvolving the effects of the radio interferometric point spread function. Additionally, resolve provides a map with an uncertainty estimate of the reconstructed surface brightness. Furthermore, with resolve we introduce a new, optimal visibility weighting scheme that can be viewed as an extension to robust weighting. In tests using simulated observations, the algorithm shows improved performance against two standard imaging approaches for extended sources, Multiscale-CLEAN and the Maximum Entropy Method.

  10. Lunar and Venusian radar bright rings

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.; Saunders, R. S.; Weissman, D. E.

    1986-01-01

    Twenty-one lunar craters have radar bright ring appearances which are analogous to eleven complete ring features in the earth-based 12.5 cm observations of Venus. Radar ring diameters and widths for the lunar and Venusian features overlap for sizes from 45 to 100 km. Radar bright areas for the lunar craters are associated with the slopes of the inner and outer rim walls, while level crater floors and level ejecta fields beyond the raised portion of the rim have average radar backscatter. It is proposed that the radar bright areas of the Venusian rings are also associated with the slopes on the rims of craters. The lunar craters have evolved to radar bright rings via mass wasting of crater rim walls and via post-impact flooding of crater floors. Aeolian deposits of fine-grained material on Venusian crater floors may produce radar scattering effects similar to lunar crater floor flooding. These Venusian aeolian deposits may preferentially cover blocky crater floors producing a radar bright ring appearance. It is proposed that the Venusian features with complete bright ring appearances and sizes less than 100 km are impact craters. They have the same sizes as lunar craters and could have evolved to radar bright rings via analogous surface processes.

  11. Brightness checkerboard lattice method for the calibration of the coaxial reverse Hartmann test

    NASA Astrophysics Data System (ADS)

    Li, Xinji; Hui, Mei; Li, Ning; Hu, Shinan; Liu, Ming; Kong, Lingqin; Dong, Liquan; Zhao, Yuejin

    2018-01-01

    The coaxial reverse Hartmann test (RHT) is widely used in the measurement of large aspheric surfaces as an auxiliary method for interference measurement, because of its large dynamic range, highly flexible test with low frequency of surface errors, and low cost. And the accuracy of the coaxial RHT depends on the calibration. However, the calibration process remains inefficient, and the signal-to-noise ratio limits the accuracy of the calibration. In this paper, brightness checkerboard lattices were used to replace the traditional dot matrix. The brightness checkerboard method can reduce the number of dot matrix projections in the calibration process, thus improving efficiency. An LCD screen displayed a brightness checkerboard lattice, in which the brighter checkerboard and the darker checkerboard alternately arranged. Based on the image on the detector, the relationship between the rays at certain angles and the photosensitive positions of the detector coordinates can be obtained. And a differential de-noising method can effectively reduce the impact of noise on the measurement results. Simulation and experimentation proved the feasibility of the method. Theoretical analysis and experimental results show that the efficiency of the brightness checkerboard lattices is about four times that of the traditional dot matrix, and the signal-to-noise ratio of the calibration is significantly improved.

  12. Suppression of cooling by strong magnetic fields in white dwarf stars.

    PubMed

    Valyavin, G; Shulyak, D; Wade, G A; Antonyuk, K; Zharikov, S V; Galazutdinov, G A; Plachinda, S; Bagnulo, S; Machado, L Fox; Alvarez, M; Clark, D M; Lopez, J M; Hiriart, D; Han, Inwoo; Jeon, Young-Beom; Zurita, C; Mujica, R; Burlakova, T; Szeifert, T; Burenkov, A

    2014-11-06

    Isolated cool white dwarf stars more often have strong magnetic fields than young, hotter white dwarfs, which has been a puzzle because magnetic fields are expected to decay with time but a cool surface suggests that the star is old. In addition, some white dwarfs with strong fields vary in brightness as they rotate, which has been variously attributed to surface brightness inhomogeneities similar to sunspots, chemical inhomogeneities and other magneto-optical effects. Here we describe optical observations of the brightness and magnetic field of the cool white dwarf WD 1953-011 taken over about eight years, and the results of an analysis of its surface temperature and magnetic field distribution. We find that the magnetic field suppresses atmospheric convection, leading to dark spots in the most magnetized areas. We also find that strong fields are sufficient to suppress convection over the entire surface in cool magnetic white dwarfs, which inhibits their cooling evolution relative to weakly magnetic and non-magnetic white dwarfs, making them appear younger than they truly are. This explains the long-standing mystery of why magnetic fields are more common amongst cool white dwarfs, and implies that the currently accepted ages of strongly magnetic white dwarfs are systematically too young.

  13. The Tolman Surface Brightness Test for the Reality of the Expansion. III. Hubble Space Telescope Profile and Surface Brightness Data for Early-Type Galaxies in Three High-Redshift Clusters

    NASA Astrophysics Data System (ADS)

    Lubin, Lori M.; Sandage, Allan

    2001-09-01

    Photometric data for 34 early-type galaxies in the three high-redshift clusters Cl 1324+3011 (z=0.76), Cl 1604+4304 (z=0.90), and Cl 1604+4321 (z=0.92), observed with the Hubble Space Telescope (HST) and with the Keck 10 m telescopes by Oke, Postman, & Lubin, are analyzed to obtain the photometric parameters of mean surface brightness, magnitudes for the growth curves, and angular radii at various Petrosian η radii. The angular radii at η=1.3 mag for the program galaxies are all larger than 0.24". All the galaxies are well resolved at this angular size using HST, whose point-spread function is 0.05", half-width at half-maximum. The data for each of the program galaxies are listed at η=1.0, 1.3, 1.5, 1.7, and 2.0 mag. They are corrected by color equations and K-terms for the effects of redshift to the rest-frame Cape/Cousins I for Cl 1324+3011 and Cl 1604+4304 and R for Cl 1604+4321. The K-corrections are calculated from synthetic spectral energy distributions derived from evolving stellar population models of Bruzual & Charlot, that have been fitted to the observed broadband (BVRI) AB magnitudes of each program galaxy. The listed photometric data are independent of all cosmological parameters. They are the source data for the Tolman surface brightness test made in Paper IV.

  14. Hunting Faint Dwarf Galaxies in the Field Using Integrated Light Surveys

    NASA Astrophysics Data System (ADS)

    Danieli, Shany; van Dokkum, Pieter; Conroy, Charlie

    2018-03-01

    We discuss the approach of searching the lowest mass dwarf galaxies, ≲ {10}6 {M}ȯ , in the general field, using integrated light surveys. By exploring the limiting surface brightness-spatial resolution (μ eff,lim‑θ) parameter space, we suggest that faint field dwarfs in the Local Volume, between 3 and 10 Mpc, are expected to be detected very effectively and in large numbers using integrated light photometric surveys, complementary to the classical star counts method. We use a sample of dwarf galaxies in the Local Group to construct relations between their photometric and structural parameters, M *–μ eff,V and M *–R eff. We use these relations, along with assumed functional forms for the halo mass function and the stellar mass–halo mass (SMHM) relation, to calculate the lowest detectable stellar masses in the Local Volume and the expected number of galaxies as a function of the limiting surface brightness and spatial resolution. The number of detected galaxies depends mostly on the limiting surface brightness for distances >3 Mpc, while spatial resolution starts to play a role for galaxies at distances >8 Mpc. Surveys with μ eff,lim ∼ 30 mag arcsec‑2 should be able to detect galaxies with stellar masses down to ∼104 M ⊙ in the Local Volume. Depending on the form of the SMHM relation, the expected number of dwarf galaxies with distances between 3 and 10 Mpc is 0.04–0.35 per square degree, assuming a limiting surface brightness of ∼29–30 mag arcsec‑2 and a spatial resolution <4″. We plan to search for a population of low-mass dwarf galaxies in the field by performing a blank wide field photometric survey with the Dragonfly Telephoto Array, an imaging system optimized for the detection of extended ultra low surface brightness structures.

  15. Infrared photometric behavior and opposition effect of Mars

    NASA Technical Reports Server (NTRS)

    Erard, S.; Bibring, J-P.; Drossart, P.

    1992-01-01

    Although the instrument wasn't designed for this purpose, data from the imaging spectrometer ISM may be used for studying photometric variations of Mars reflectance, that are related to the surface materials and aerosols physical properties. ISM flew aboard the Phobos-2 spacecraft which orbited Mars from January to March, 1989. About 40,000 spectra were acquired in 128 channels ranging from 0.76 to 3.16 micro-m, with a spatial resolution of 25 km and a signal-to-noise ratio ranging up to 1000. Analysis of the results leads to the following conclusions: width variations of the opposition surge can be related to differences in porosity or grain size distribution on the various domains, with little or no effect from suspended dust. As the biggest effects are observed on dark and bright materials, intermediate behaviors on average-bright regions cannot result from a mixing process, but are more likely to come from either cementation processes or modification of the grain size distribution under the influence of wind, which under Martian conditions preferentially removes the biggest particles. Thus, a surface dust consisting in big bright and small dark grains could explain the observations.

  16. Chemical abundances in low surface brightness galaxies: Implications for their evolution

    NASA Technical Reports Server (NTRS)

    Mcgaugh, S. S.; Bothun, G. D.

    1993-01-01

    Low Surface Brightness (LSB) galaxies are an important but often neglected part of the galaxy content of the universe. Their importance stems both from the selection effects which cause them to be under-represented in galaxy catalogs, and from what they can tell us about the physical processes of galaxy evolution that has resulted in something other than the traditional Hubble sequence of spirals. An important constraint for any evolutionary model is the present day chemical abundances of LSB disks. Towards this end, spectra for a sample of 75 H 2 regions distributed in 20 LSB disks galaxies were obtained. Structurally, this sample is defined as having B(0) fainter than 23.0 mag arcsec(sup -2) and scale lengths that cluster either around 3 kpc or 10 kpc. In fact, structurally, these galaxies are very similar to the high surface brightness spirals which define the Hubble sequence. Thus, our sample galaxies are not dwarf galaxies but instead have masses comparable to or in excess of the Milky Way. The basic results from these observations are summarized.

  17. Titan's surface from the Cassini RADAR radiometry data during SAR mode

    USGS Publications Warehouse

    Paganelli, F.; Janssen, M.A.; Lopes, R.M.; Stofan, E.; Wall, S.D.; Lorenz, R.D.; Lunine, J.I.; Kirk, R.L.; Roth, L.; Elachi, C.

    2008-01-01

    We present initial results on the calibration and interpretation of the high-resolution radiometry data acquired during the Synthetic Aperture Radar (SAR) mode (SAR-radiometry) of the Cassini Radar Mapper during its first five flybys of Saturn's moon Titan. We construct maps of the brightness temperature at the 2-cm wavelength coincident with SAR swath imaging. A preliminary radiometry calibration shows that brightness temperature in these maps varies from 64 to 89 K. Surface features and physical properties derived from the SAR-radiometry maps and SAR imaging are strongly correlated; in general, we find that surface features with high radar reflectivity are associated with radiometrically cold regions, while surface features with low radar reflectivity correlate with radiometrically warm regions. We examined scatterplots of the normalized radar cross-section ??0 versus brightness temperature, outlining signatures that characterize various terrains and surface features. The results indicate that volume scattering is important in many areas of Titan's surface, particularly Xanadu, while other areas exhibit complex brightness temperature variations consistent with variable slopes or surface material and compositional properties. ?? 2007.

  18. Planetary science: A 5-micron-bright spot on Titan: Evidence for surface diversity

    USGS Publications Warehouse

    Barnes, J.W.; Brown, R.H.; Turtle, E.P.; McEwen, A.S.; Lorenz, R.D.; Janssen, M.; Schaller, E.L.; Brown, M.E.; Buratti, B.J.; Sotin, Christophe; Griffith, C.; Clark, R.; Perry, J.; Fussner, S.; Barbara, J.; West, R.; Elachi, C.; Bouchez, A.H.; Roe, H.G.; Baines, K.H.; Bellucci, G.; Bibring, J.-P.; Capaccioni, F.; Cerroni, P.; Combes, M.; Coradini, A.; Cruikshank, D.P.; Drossart, P.; Formisano, V.; Jaumann, R.; Langevin, Y.; Matson, D.L.; McCord, T.B.; Nicholson, P.D.; Sicardy, B.

    2005-01-01

    Observations from the Cassini Visual and Infrared Mapping Spectrometer show an anomalously bright spot on Titan located at 80??W and 20??S. This area is bright in reflected tight at all observed wavelengths, but is most noticeable at 5 microns. The spot is associated with a surface albedo feature identified in images taken by the Cassini Imaging Science Subsystem. We discuss various hypotheses about the source of the spot, reaching the conclusion that the spot is probably due to variation in surface composition, perhaps associated with recent geophysical phenomena.

  19. A 5-micron-bright spot on Titan: evidence for surface diversity.

    PubMed

    Barnes, Jason W; Brown, Robert H; Turtle, Elizabeth P; McEwen, Alfred S; Lorenz, Ralph D; Janssen, Michael; Schaller, Emily L; Brown, Michael E; Buratti, Bonnie J; Sotin, Christophe; Griffith, Caitlin; Clark, Roger; Perry, Jason; Fussner, Stephanie; Barbara, John; West, Richard; Elachi, Charles; Bouchez, Antonin H; Roe, Henry G; Baines, Kevin H; Bellucci, Giancarlo; Bibring, Jean-Pierre; Capaccioni, Fabrizio; Cerroni, Priscilla; Combes, Michel; Coradini, Angioletta; Cruikshank, Dale P; Drossart, Pierre; Formisano, Vittorio; Jaumann, Ralf; Langevin, Yves; Matson, Dennis L; McCord, Thomas B; Nicholson, Phillip D; Sicardy, Bruno

    2005-10-07

    Observations from the Cassini Visual and Infrared Mapping Spectrometer show an anomalously bright spot on Titan located at 80 degrees W and 20 degrees S. This area is bright in reflected light at all observed wavelengths, but is most noticeable at 5 microns. The spot is associated with a surface albedo feature identified in images taken by the Cassini Imaging Science Subsystem. We discuss various hypotheses about the source of the spot, reaching the conclusion that the spot is probably due to variation in surface composition, perhaps associated with recent geophysical phenomena.

  20. A semiempirical model for interpreting microwave emission from semiarid land surfaces as seen from space

    NASA Technical Reports Server (NTRS)

    Kerr, Yann H.; Njoku, Eni G.

    1990-01-01

    A radiative-transfer model for simulating microwave brightness temperatures over land surfaces is described. The model takes into account sensor viewing conditions (spacecraft altitude, viewing angle, frequency, and polarization) and atmospheric parameters over a soil surface characterized by its moisture, roughness, and temperature and covered with a layer of vegetation characterized by its temperature, water content, single scattering albedo, structure, and percent coverage. In order to reduce the influence of atmospheric and surface temperature effects, the brightness temperatures are expressed as polarization ratios that depend primarily on the soil moisture and roughness, canopy water content, and percentage of cover. The sensitivity of the polarization ratio to these parameters is investigated. Simulation of the temporal evolution of the microwave signal over semiarid areas in the African Sahel is presented and compared to actual satellite data from the SMMR instrument on Nimbus-7.

  1. Visible Color and Photometry of Bright Materials on Vesta

    NASA Technical Reports Server (NTRS)

    Schroder, S. E.; Li, J. Y.; Mittlefehldt, D. W.; Pieters, C. M.; De Sanctis, M. C.; Hiesinger, H.; Blewett, D. T.; Russell, C. T.; Raymond, C. A.; Keller, H. U.

    2012-01-01

    The Dawn Framing Camera (FC) collected images of the surface of Vesta at a pixel scale of 70 m in the High Altitude Mapping Orbit (HAMO) phase through its clear and seven color filters spanning from 430 nm to 980 nm. The surface of Vesta displays a large diversity in its brightness and colors, evidently related to the diverse geology [1] and mineralogy [2]. Here we report a detailed investigation of the visible colors and photometric properties of the apparently bright materials on Vesta in order to study their origin. The global distribution and the spectroscopy of bright materials are discussed in companion papers [3, 4], and the synthesis results about the origin of Vestan bright materials are reported in [5].

  2. Titan's surface from Cassini RADAR SAR and high resolution radiometry data of the first five flybys

    USGS Publications Warehouse

    Paganelli, F.; Janssen, M.A.; Stiles, B.; West, R.; Lorenz, R.D.; Lunine, J.I.; Wall, S.D.; Callahan, P.; Lopes, R.M.; Stofan, E.; Kirk, R.L.; Johnson, W.T.K.; Roth, L.; Elachi, C.; ,

    2007-01-01

    The first five Titan flybys with Cassini's Synthetic Aperture RADAR (SAR) and radiometer are examined with emphasis on the calibration and interpretation of the high-resolution radiometry data acquired during the SAR mode (SAR-radiometry). Maps of the 2-cm wavelength brightness temperature are obtained coincident with the SAR swath imaging, with spatial resolution approaching 6 km. A preliminary calibration shows that brightness temperature in these maps varies from 64 to 89 K. Surface features and physical properties derived from the SAR-radiometry maps and SAR imaging are strongly correlated; in general, we find that surface features with high radar reflectivity are associated with radiometrically cold regions, while surface features with low radar reflectivity correlate with radiometrically warm regions. We examined scatterplots of the normalized radar cross-section ??0 versus brightness temperature, finding differing signatures that characterize various terrains and surface features. Implications for the physical and compositional properties of these features are discussed. The results indicate that volume scattering is important in many areas of Titan's surface, particularly Xanadu, while other areas exhibit complex brightness temperature variations consistent with variable slopes or surface material and compositional properties. ?? 2007 Elsevier Inc.

  3. Refinement in black chrome for use as a solar selective coating

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E.

    1974-01-01

    Black chrome is significant as a solar selective coating because the current extensive use of black chrome in the electroplating industry as a durable decorative finish makes black chrome widely available on a commercial scale and potentially low in cost as a solar selective coating. Black-chrome deposits were modified by underplating with dull nickel or by being plated on rough surfaces. Both of these procedures increased the visible absorptance. There was no change in the infrared reflectance for the dull-nickel - black-chrome combination from that reported for the bright-nickel - black-chrome combination. However, the bright-nickel - black-chrome coating plated on rough surfaces indicated a slight decrease in infrared reflectance. As integrated over the solar spectrum for air mass 2, the reflectance of the dull-nickel - black-chrome coating was 0.077, of the bright-nickel - black-chrome coating plated on a 0.75-micron (30-microinch) surface was 0.070, of the bright-nickel - black-chrome coating plated on a 2.5 micron (100-microinch) surface was 0.064. The corresponding values for the bright-nickel - black-chrome coating on a 0.0125-micron (0.5-microinch) surface, two samples of black nickel, and two samples of Nextrel black paint were 0.132, 0.123, 0.133, and 0.033, respectively.

  4. SPIDERMAN: Fast code to simulate secondary transits and phase curves

    NASA Astrophysics Data System (ADS)

    Louden, Tom; Kreidberg, Laura

    2017-11-01

    SPIDERMAN calculates exoplanet phase curves and secondary eclipses with arbitrary surface brightness distributions in two dimensions. The code uses a geometrical algorithm to solve exactly the area of sections of the disc of the planet that are occulted by the star. Approximately 1000 models can be generated per second in typical use, which makes making Markov Chain Monte Carlo analyses practicable. The code is modular and allows comparison of the effect of multiple different brightness distributions for a dataset.

  5. Apparent Brightness and Topography Images of Vibidia Crater

    NASA Image and Video Library

    2012-03-09

    The left-hand image from NASA Dawn spacecraft shows the apparent brightness of asteroid Vesta surface. The right-hand image is based on this apparent brightness image, with a color-coded height representation of the topography overlain onto it.

  6. Thermal measurements of dark and bright surface features on Vesta as derived from Dawn/VIR

    USGS Publications Warehouse

    Tosi, Federico; Capria, Maria Teresa; De Sanctis, M.C.; Combe, J.-Ph.; Zambon, F.; Nathues, A.; Schröder, S.E.; Li, J.-Y.; Palomba, E.; Longobardo, A.; Blewett, D.T.; Denevi, B.W.; Palmer, E.; Capaccioni, F.; Ammannito, E.; Titus, Timothy N.; Mittlefehldt, D.W.; Sunshine, J.M.; Russell, C.T.; Raymond, C.A.; Dawn/VIR Team,

    2014-01-01

    Remote sensing data acquired during Dawn’s orbital mission at Vesta showed several local concentrations of high-albedo (bright) and low-albedo (dark) material units, in addition to spectrally distinct meteorite impact ejecta. The thermal behavior of such areas seen at local scale (1-10 km) is related to physical properties that can provide information about the origin of those materials. We use Dawn’s Visible and InfraRed (VIR) mapping spectrometer hyperspectral data to retrieve surface temperatures and emissivities, with high accuracy as long as temperatures are greater than 220 K. Some of the dark and bright features were observed multiple times by VIR in the various mission phases at variable spatial resolution, illumination and observation angles, local solar time, and heliocentric distance. This work presents the first temperature maps and spectral emissivities of several kilometer-scale dark and bright material units on Vesta. Results retrieved from the infrared data acquired by VIR show that bright regions generally correspond to regions with lower temperature, while dark regions correspond to areas with higher temperature. During maximum daily insolation and in the range of heliocentric distances explored by Dawn, i.e. 2.23-2.54 AU, the warmest dark unit found on Vesta rises to a temperature of 273 K, while bright units observed under comparable conditions do not exceed 266 K. Similarly, dark units appear to have higher emissivity on average compared to bright units. Dark-material units show a weak anticorrelation between temperature and albedo, whereas the relation is stronger for bright material units observed under the same conditions. Individual features may show either evanescent or distinct margins in the thermal images, as a consequence of the cohesion of the surface material. Finally, for the two categories of dark and bright materials, we were able to highlight the influence of heliocentric distance on surface temperatures, and estimate an average temperature rate change of 1% following a variation of 0.04 AU in the solar distance.

  7. An analytic treatment of gravitational microlensing for sources of finite size at large optical depths

    NASA Technical Reports Server (NTRS)

    Deguchi, Shuji; Watson, William D.

    1988-01-01

    Statistical methods are developed for gravitational lensing in order to obtain analytic expressions for the average surface brightness that include the effects of microlensing by stellar (or other compact) masses within the lensing galaxy. The primary advance here is in utilizing a Markoff technique to obtain expressions that are valid for sources of finite size when the surface density of mass in the lensing galaxy is large. The finite size of the source is probably the key consideration for the occurrence of microlensing by individual stars. For the intensity from a particular location, the parameter which governs the importance of microlensing is determined. Statistical methods are also formulated to assess the time variation of the surface brightness due to the random motion of the masses that cause the microlensing.

  8. LRO Diviner Nonlinear Response and Opposition Effect Corrections

    NASA Astrophysics Data System (ADS)

    Gyalay, S.; Aye, K. M.; Paige, D. A.

    2016-12-01

    Aboard the Lunar Reconnaissance Orbiter, the Diviner Lunar Radiometer Experiment measures thermal radiation to determine the brightness temperature of the lunar surface. As with the Mars Climate Sounder (upon which Diviner is based), we use pre-flight calibration data to correct for the nonlinear response in Diviner's detectors, which in-turn accounts for much of the detector non-uniformity within channels. Furthermore, channels 8 and 9 exhibit unexpectedly high brightness temperatures close to the equator around midday, with even higher brightness temperatures when observing lunar highlands as opposed to maria. Unexpectedly high brightness temperatures around midday at the equator is reminiscent of the opposition effect known to exist on the Moon at low phase angles in Visual to Near Infra-Red (VNIR) wavelengths. Diviner channel 2 data (which detects solar radiation reflected by the Moon) shows this opposition effect, which is more pronounced in the highlands than the maria. We interpret a correlation we observe between channel 2 detected radiance and channel 8 and 9 brightness temperature as due to incomplete blocking of reflected solar radiation. This leads us to an opposition effect correction for Diviner channels 8 and 9 dependent on Diviner's solar channel data. Whether this is a direct leak of VNIR light upon the detectors, or solar heating of blocking filters, which then radiate infrared radiation upon the detectors, is yet to be determined. We can use the nonlinearity and opposition effect corrections to recharacterize the spectral emissivity of the lunar regolith, which we can then compare to laboratory spectra.

  9. VEGAS-SSS: A VST Programme to Study the Satellite Stellar Systems around Bright Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Cantiello, M.; Capaccioli, M.; Napolitano, N.; Grado, A.; Limatola, L.; Paolillo, M.; Iodice, E.; Romanowsky, A. J.; Forbes, D. A.; Raimondo, G.; Spavone, M.; La Barbera, F.; Puzia, T. H.; Schipani, P.

    2015-03-01

    The VEGAS-SSS programme is devoted to studying the properties of small stellar systems (SSSs) in and around bright galaxies, built on the VLT Survey Telescope early-type galaxy survey (VEGAS), an ongoing guaranteed time imaging survey distributed over many semesters (Principal Investigator: Capaccioli). On completion, the VEGAS survey will have collected detailed photometric information of ~ 100 bright early-type galaxies to study the properties of diffuse light (surface brightness, colours, surface brightness fluctuations, etc.) and the distribution of clustered light (compact ''small'' stellar systems) out to previously unreached projected galactocentric radii. VEGAS-SSS will define an accurate and homogeneous dataset that will have an important legacy value for studies of the evolution and transformation processes taking place in galaxies through the fossil information provided by SSSs.

  10. Correction of WindScat Scatterometric Measurements by Combining with AMSR Radiometric Data

    NASA Technical Reports Server (NTRS)

    Song, S.; Moore, R. K.

    1996-01-01

    The Seawinds scatterometer on the advanced Earth observing satellite-2 (ADEOS-2) will determine surface wind vectors by measuring the radar cross section. Multiple measurements will be made at different points in a wind-vector cell. When dense clouds and rain are present, the signal will be attenuated, thereby giving erroneous results for the wind. This report describes algorithms to use with the advanced mechanically scanned radiometer (AMSR) scanning radiometer on ADEOS-2 to correct for the attenuation. One can determine attenuation from a radiometer measurement based on the excess brightness temperature measured. This is the difference between the total measured brightness temperature and the contribution from surface emission. A major problem that the algorithm must address is determining the surface contribution. Two basic approaches were developed for this, one using the scattering coefficient measured along with the brightness temperature, and the other using the brightness temperature alone. For both methods, best results will occur if the wind from the preceding wind-vector cell can be used as an input to the algorithm. In the method based on the scattering coefficient, we need the wind direction from the preceding cell. In the method using brightness temperature alone, we need the wind speed from the preceding cell. If neither is available, the algorithm can work, but the corrections will be less accurate. Both correction methods require iterative solutions. Simulations show that the algorithms make significant improvements in the measured scattering coefficient and thus is the retrieved wind vector. For stratiform rains, the errors without correction can be quite large, so the correction makes a major improvement. For systems of separated convective cells, the initial error is smaller and the correction, although about the same percentage, has a smaller effect.

  11. Sea Surface Salinity and Wind Retrieval Algorithm Using Combined Passive-Active L-Band Microwave Data

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Chaubell, Mario J.

    2011-01-01

    Aquarius is a combined passive/active L-band microwave instrument developed to map the salinity field at the surface of the ocean from space. The data will support studies of the coupling between ocean circulation, the global water cycle, and climate. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean with a spatial resolution of 150 kilometers and a retrieval accuracy of 0.2 practical salinity units globally on a monthly basis. The measurement principle is based on the response of the L-band (1.413 gigahertz) sea surface brightness temperatures (T (sub B)) to sea surface salinity. To achieve the required 0.2 practical salinity units accuracy, the impact of sea surface roughness (e.g. wind-generated ripples and waves) along with several factors on the observed brightness temperature has to be corrected to better than a few tenths of a degree Kelvin. To the end, Aquarius includes a scatterometer to help correct for this surface roughness effect.

  12. Use of Skylab EREP data in a sea-surface temperature experiment. [Monroe Reservoir and Key West, Fla.

    NASA Technical Reports Server (NTRS)

    Anding, D. C. (Principal Investigator); Walker, J. P.

    1975-01-01

    The author has identified the following significant results. A sea surface temperature experiment was studied, demonstrating the feasibility of a procedure for the remote measurement of sea surface temperature which inherently corrects for the effect of the intervening atmosphere without recourse to climatological data. The procedure was applied to Skylab EREP S191 spectrometer data, and it is demonstrated that atmospheric effects on the observed brightness temperature can be reduced to less than 1.0 K.

  13. Stellar populations of bulges in galaxies with a low surface-brightness disc

    NASA Astrophysics Data System (ADS)

    Morelli, L.; Corsini, E. M.; Pizzella, A.; Dalla Bontà, E.; Coccato, L.; Méndez-Abreu, J.

    2015-03-01

    The radial profiles of the Hβ, Mg, and Fe line-strength indices are presented for a sample of eight spiral galaxies with a low surface-brightness stellar disc and a bulge. The correlations between the central values of the line-strength indices and velocity dispersion are consistent to those known for early-type galaxies and bulges of high surface-brightness galaxies. The age, metallicity, and α/Fe enhancement of the stellar populations in the bulge-dominated region are obtained using stellar population models with variable element abundance ratios. Almost all the sample bulges are characterized by a young stellar population, on-going star formation, and a solar α/Fe enhancement. Their metallicity spans from high to sub-solar values. No significant gradient in age and α/Fe enhancement is measured, whereas only in a few cases a negative metallicity gradient is found. These properties suggest that a pure dissipative collapse is not able to explain formation of all the sample bulges and that other phenomena, like mergers or acquisition events, need to be invoked. Such a picture is also supported by the lack of a correlation between the central value and gradient of the metallicity in bulges with very low metallicity. The stellar populations of the bulges hosted by low surface-brightness discs share many properties with those of high surface-brightness galaxies. Therefore, they are likely to have common formation scenarios and evolution histories. A strong interplay between bulges and discs is ruled out by the fact that in spite of being hosted by discs with extremely different properties, the bulges of low and high surface-brightness discs are remarkably similar.

  14. Extracting Galaxy Cluster Gas Inhomogeneity from X-Ray Surface Brightness: A Statistical Approach and Application to Abell 3667

    NASA Astrophysics Data System (ADS)

    Kawahara, Hajime; Reese, Erik D.; Kitayama, Tetsu; Sasaki, Shin; Suto, Yasushi

    2008-11-01

    Our previous analysis indicates that small-scale fluctuations in the intracluster medium (ICM) from cosmological hydrodynamic simulations follow the lognormal probability density function. In order to test the lognormal nature of the ICM directly against X-ray observations of galaxy clusters, we develop a method of extracting statistical information about the three-dimensional properties of the fluctuations from the two-dimensional X-ray surface brightness. We first create a set of synthetic clusters with lognormal fluctuations around their mean profile given by spherical isothermal β-models, later considering polytropic temperature profiles as well. Performing mock observations of these synthetic clusters, we find that the resulting X-ray surface brightness fluctuations also follow the lognormal distribution fairly well. Systematic analysis of the synthetic clusters provides an empirical relation between the three-dimensional density fluctuations and the two-dimensional X-ray surface brightness. We analyze Chandra observations of the galaxy cluster Abell 3667, and find that its X-ray surface brightness fluctuations follow the lognormal distribution. While the lognormal model was originally motivated by cosmological hydrodynamic simulations, this is the first observational confirmation of the lognormal signature in a real cluster. Finally we check the synthetic cluster results against clusters from cosmological hydrodynamic simulations. As a result of the complex structure exhibited by simulated clusters, the empirical relation between the two- and three-dimensional fluctuation properties calibrated with synthetic clusters when applied to simulated clusters shows large scatter. Nevertheless we are able to reproduce the true value of the fluctuation amplitude of simulated clusters within a factor of 2 from their two-dimensional X-ray surface brightness alone. Our current methodology combined with existing observational data is useful in describing and inferring the statistical properties of the three-dimensional inhomogeneity in galaxy clusters.

  15. Automated detection of very Low Surface Brightness galaxies in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Prole, D. J.; Davies, J. I.; Keenan, O. C.; Davies, L. J. M.

    2018-04-01

    We report the automatic detection of a new sample of very low surface brightness (LSB) galaxies, likely members of the Virgo cluster. We introduce our new software, DeepScan, that has been designed specifically to detect extended LSB features automatically using the DBSCAN algorithm. We demonstrate the technique by applying it over a 5 degree2 portion of the Next-Generation Virgo Survey (NGVS) data to reveal 53 low surface brightness galaxies that are candidate cluster members based on their sizes and colours. 30 of these sources are new detections despite the region being searched specifically for LSB galaxies previously. Our final sample contains galaxies with 26.0 ≤ ⟨μe⟩ ≤ 28.5 and 19 ≤ mg ≤ 21, making them some of the faintest known in Virgo. The majority of them have colours consistent with the red sequence, and have a mean stellar mass of 106.3 ± 0.5M⊙ assuming cluster membership. After using ProFit to fit Sérsic profiles to our detections, none of the new sources have effective radii larger than 1.5 Kpc and do not meet the criteria for ultra-diffuse galaxy (UDG) classification, so we classify them as ultra-faint dwarfs.

  16. High β effects on cosmic ray streaming in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Wiener, Joshua; Zweibel, Ellen G.; Oh, S. Peng

    2018-01-01

    Diffuse, extended radio emission in galaxy clusters, commonly referred to as radio haloes, indicate the presence of high energy cosmic ray (CR) electrons and cluster-wide magnetic fields. We can predict from theory the expected surface brightness of a radio halo, given magnetic field and CR density profiles. Previous studies have shown that the nature of CR transport can radically effect the expected radio halo emission from clusters (Wiener, Oh & Guo 2013). Reasonable levels of magnetohydrodynamic (MHD) wave damping can lead to significant CR streaming speeds. But a careful treatment of MHD waves in a high β plasma, as expected in cluster environments, reveals damping rates may be enhanced by a factor of β1/2. This leads to faster CR streaming and lower surface brightnesses than without this effect. In this work, we re-examine the simplified, 1D Coma cluster simulations (with radial magnetic fields) of Wiener et al. (2013) and discuss observable consequences of this high β damping. Future work is required to study this effect in more realistic simulations.

  17. Little Bright Spot

    NASA Image and Video Library

    2015-01-12

    A bright spot can be seen on the left side of Rhea in this image. The spot is the crater Inktomi, named for a Lakota spider spirit. Inktomi is believed to be the youngest feature on Rhea (949 miles or 1527 kilometers across). The relative youth of the feature is evident by its brightness. Material that is newly excavated from below the moon's surface and tossed across the surface by a cratering event, appears bright. But as the newly exposed surface is subjected to the harsh space environment, it darkens. This is one technique scientists use to date features on surfaces. This view looks toward the trailing hemisphere of Rhea. North on Rhea is up and rotated 21 degrees to the left. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on July 29, 2013. The view was obtained at a distance of approximately 1.0 million miles (1.6 million kilometers) fro http://photojournal.jpl.nasa.gov/catalog/PIA18300

  18. Adjusting the tasseled cap brightness and greenness factors for atmospheric path radiance and absorption on a pixel by pixel basis

    NASA Technical Reports Server (NTRS)

    Jackson, R. D.; Slater, P. N.; Pinter, P. J. (Principal Investigator)

    1982-01-01

    A radiative transfer model was used to convert ground measured reflectances into the radiance at the top of the atmosphere, for several levels of atmospheric path radiance. The radiance in MSS7 (0.8 to 1.1 m) was multiplied by the transmission fraction for atmospheres having different levels of precipitable water. The radiance values were converted to simulated LANDSAT digital counts for four path radiance levels and four levels of precipitable water. These values were used to calculate the Kauth-Thomas brightness, greenness, yellowness, and nonsuch factors. Brightness was affected by surface conditions and path radiance. Greenness was affected by surface conditions, path radiance, and precipitable water. Yellowness was affected by path radiance and nonsuch by precipitable water, and both factors changed only slightly with surface conditions. Yellowness and nonsuch were used to adjust brightness and greenness to produce factors that were affected only by surface conditions such as soils and vegetation, and not by path radiance and precipitable water.

  19. Giant Low Surface Brightness Galaxies

    NASA Astrophysics Data System (ADS)

    Mishra, Alka; Kantharia, Nimisha G.; Das, Mousumi

    2018-04-01

    In this paper, we present radio observations of the giant low surface brightness (LSB) galaxies made using the Giant Metrewave Radio Telescope (GMRT). LSB galaxies are generally large, dark matter dominated spirals that have low star formation efficiencies and large HI gas disks. Their properties suggest that they are less evolved compared to high surface brightness galaxies. We present GMRT emission maps of LSB galaxies with an optically-identified active nucleus. Using our radio data and archival near-infrared (2MASS) and near-ultraviolet (GALEX) data, we studied morphology and star formation efficiencies in these galaxies. All the galaxies show radio continuum emission mostly associated with the centre of the galaxy.

  20. Jovian ultraviolet auroral activity, 1981-1991

    NASA Technical Reports Server (NTRS)

    Livengood, T. A.; Moos, H. W.; Ballester, G. E.; Prange, R. M.

    1992-01-01

    IUE observations of H2 UV emissions for the 1981-1991 period are presently used to investigate the auroral brightness distribution on the surface of Jupiter. The brightness, which is diagnostic of energy input to the atmosphere as well as of magnetospheric processes, is determined by comparing model-predicted brightnesses against empirical ones. The north and south aurorae appear to be correlated in brightness and in variations of the longitude of peak brightness. There are strong fluctuations in all the parameters of the brightness distribution on much shorter time scales than those of solar maximum-minimum.

  1. Near-infrared scattering as a dust diagnostic

    NASA Astrophysics Data System (ADS)

    Saajasto, Mika; Juvela, Mika; Malinen, Johanna

    2018-06-01

    Context. Regarding the evolution of dust grains from diffuse regions of space to dense molecular cloud cores, many questions remain open. Scattering at near-infrared wavelengths, or "cloudshine", can provide information on cloud structure, dust properties, and the radiation field that is complementary to mid-infrared "coreshine" and observations of dust emission at longer wavelengths. Aims: We examine the possibility of using near-infrared scattering to constrain the local radiation field and the dust properties, the scattering and absorption efficiency, the size distribution of the grains, and the maximum grain size. Methods: We use radiative transfer modelling to examine the constraints provided by the J, H, and K bands in combination with mid-infrared surface brightness at 3.6 μm. We use spherical one-dimensional and elliptical three-dimensional cloud models to study the observable effects of different grain size distributions with varying absorption and scattering properties. As an example, we analyse observations of a molecular cloud in Taurus, TMC-1N. Results: The observed surface brightness ratios of the bands change when the dust properties are changed. However, even a change of ±10% in the surface brightness of one band changes the estimated power-law exponent of the size distribution γ by up to 30% and the estimated strength of the radiation field KISRF by up to 60%. The maximum grain size Amax and γ are always strongly anti-correlated. For example, overestimating the surface brightness by 10% changes the estimated radiation field strength by 20% and the exponent of the size distribution by 15%. The analysis of our synthetic observations indicates that the relative uncertainty of the parameter distributions are on average Amax, γ 25%, and the deviation between the estimated and correct values ΔQ < 15%. For the TMC-1N observations, a maximum grain size Amax > 1.5μm and a size distribution with γ > 4.0 have high probability. The mass weighted average grain size is ⟨am⟩ = 0.113μm. Conclusions: We show that scattered infrared light can be used to derive meaningful limits for the dust parameters. However, errors in the surface brightness data can result in considerable uncertainties on the derived parameters.

  2. Directional Emissivity Effects on Martian Surface Brightness Temperatures

    NASA Astrophysics Data System (ADS)

    Pitman, K. M.; Wolff, M. J.; Bandfield, J. L.; Clancy, R. T.; Clayton, G. C.

    2001-11-01

    The angular dependence of thermal emission from the surface of Mars has not been well characterized. Although nadir sequences constitute most of the MGS/TES Martian surface observations [1,2], a significant number scans of Martian surfaces at multiple emission angles (emission phase function (EPF) sequences) also exist. Such data can provide insight into surface structures, thermal inertias, and non-isotropic corrections to thermal emission measurements [3]. The availability of abundant EPF data as well as the added utility of such observations for atmospheric characterization provide the impetus for examining the phenomenon of directional emissivity. We present examples of directional emissivity effects on brightness temperature spectra for a variety of typical Martian surfaces. We examine the theoretical development by Hapke (1993, 1996) [4,5] and compare his algorithm to that of Mishchenko et al. (1999) [6]. These results are then compared to relevant TES EPF data. This work is supported through NASA grant NAGS-9820 (MJW) and JPL contract no. 961471 (RTC). [1] Smith et al. (1998), AAS-DPS meeting # 30, # 11.P07. [2] Kieffer, Mullins, & Titus (1998), EOS, 79, 533. [3] Jakosky, Finiol, & Henderson (1990), JGR, 17, 985--988. [4] Hapke, B. (1993), Theory of Reflectance & Emittance Spectroscopy, Cambridge Univ. Press, NY. [5] Hapke, B. (1996), JGR, 101, E7, 16817--16831. [6] Mishchenko et al. (1999), JQSRT, 63, 409--432.

  3. A catalog of low surface brightness galaxies - List II

    NASA Technical Reports Server (NTRS)

    Schombert, James M.; Bothun, Gregory D.; Schneider, Stephen E.; Mcgaugh, Stacy S.

    1992-01-01

    A list of galaxies characterized by low surface brightness (LSB) is presented which facilitates the recognition of galaxies with brightnesses close to that of the sky. A total of 198 objects and 140 objects are listed in the primary and secondary catalogs respectively, and LSB galaxies are examined by means of H I redshift distributions. LSB disk galaxies are shown to have similar sizes and masses as the high-surface-brightness counterparts, and ellipticals and SOs are rarely encountered. Many LSB spirals have stellarlike nuclei, and most of the galaxies in the present catalog are late-type galaxies in the Sc, Sm, and Im classes. The LSB region of observational parameter space is shown to encompass a spectrum of types as full as that of the Hubble sequence. It is suggested that studies of LSB galaxies can provide important data regarding the formation and star-formation history of all galaxies.

  4. Kinetic Effect on the Freezing of Ammonium-Sodium-Carbonate-Chloride Brines and Implications for Origin of Ceres' Bright Spots

    NASA Astrophysics Data System (ADS)

    Hodyss, R. P.; Thomas, E. C.; Vu, T. H.; Johnson, P. V.; Choukroun, M.

    2017-12-01

    Subsurface brines on Ceres containing natrite (Na2CO3) and smaller amounts of NH4Cl or NH4HCO3 have been proposed to reach the dwarf planet's surface from an internal reservoir, where the brines freeze and result in bright spots across Ceres. Kinetically frozen solutions containing the likely constituents of Ceres' subsurface brines (ammonium, sodium, carbonate, and chloride ions) were studied via infrared and micro-Raman spectroscopy, where the flash-frozen mixtures were found to preferentially form ammonium chloride and ammonium bicarbonate, even in sodium-dominated solutions. Additionally, sodium chloride only formed when sodium or chloride (or both) were present in excess in the brine solutions. Raman spectroscopy was further employed to analyze the effect of vacuum exposure on these frozen brines over longer periods of time to simulate the surface conditions of Ceres.

  5. Extragalactic background light: a measurement at 400 nm using dark cloud shadow*†- I. Low surface brightness spectrophotometry in the area of Lynds 1642

    NASA Astrophysics Data System (ADS)

    Mattila, K.; Lehtinen, K.; Väisänen, P.; von Appen-Schnur, G.; Leinert, Ch.

    2017-09-01

    We present the method and observations for the measurement of the Extragalactic Background Light (EBL) utilizing the shadowing effect of a dark cloud. We measure the surface brightness difference between the opaque cloud core and its unobscured surroundings. In the difference the large atmospheric and Zodiacal light components are eliminated and the only remaining foreground component is the scattered starlight from the cloud itself. Although much smaller, its separation is the key problem in the method. For its separation we use spectroscopy. While the scattered starlight has the characteristic Fraunhofer lines and 400 nm discontinuity, the EBL spectrum is smooth and without these features. Medium resolution spectrophotometry at λ = 380-580 nm was performed with VLT/FORS at ESO of the surface brightness in and around the high-galactic-latitude dark cloud Lynds 1642. Besides the spectrum for the core with AV ≳ 15 mag, further spectra were obtained for intermediate-opacity cloud positions. They are used as proxy for the spectrum of the impinging starlight spectrum and to facilitate the separation of the scattered starlight (cf. Paper II; Mattila et al.). Our spectra reach a precision of ≲ 0.5 × 10-9 erg cm-2 s-1 sr-1 Å-1 as required to measure an EBL intensity in range of ˜1 to a few times 10-9 erg cm-2 s-1 sr-1 Å-1. Because all surface brightness components are measured using the same equipment, the method does not require unusually high absolute calibration accuracy, a condition that has been a problem for some previous EBL projects.

  6. Classification of sea ice types with single-band (33.6 GHz) airborne passive microwave imagery

    NASA Astrophysics Data System (ADS)

    Eppler, Duane T.; Farmer, L. Dennis; Lohanick, Alan W.; Hoover, Mervyn

    1986-09-01

    During March 1983 extensive high-quality airborne passive Ka band (33.6 GHz) microwave imagery and coincident high-resolution aerial photography were obtained of ice along a 378-km flight line in the Beaufort Sea. Analysis of these data suggests that four classes of winter surfaces can be distinguished solely on the basis of 33.6-GHz brightness temperature: open water, frazil, old ice, and young/first-year ice. New ice (excluding frazil) and nilas display brightness temperatures that overlap the range of temperatures characteristic of old ice and, to a lesser extent, young/first-year ice. Scenes in which a new ice or nilas are present in appreciable amounts are subject to substantial errors in classification if static measures of Ka band radiometric brightness temperature alone are considered. Textural characteristics of nilas and new ice, however, differ significantly from textural features characteristic of other ice types and probably can be used with brightness temperature data to classify ice type in high-resolution single-band microwave images. In any case, open water is radiometrically the coldest surface observed in any scene. Lack of overlap between brightness temperatures characteristic of other surfaces indicates that estimates of the areal extent of open water based on only 33.6-GHz brightness temperatures are accurate.

  7. Metre-size bright spots at the surface of comet 67P/Churyumov-Gerasimenko: Interpretation of OSIRIS data using laboratory experiments

    NASA Astrophysics Data System (ADS)

    Pommerol, Antoine; Thomas, Nicolas; Antonella Barucci, M.; Bertaux, Jean-Loup; Davidsson, Björn; Ramy El-Maarry, Mohamed; La Forgia, Fiorengela; Fornasier, Sonia; Gracia, Antonio; Groussin, Olivier; Jost, Bernhard; Keller, Horst Uwe; Kuehrt, Ekkehard; Marschall, Raphael; Massironi, Matteo; Motolla, Stefano; Naletto, Giampiero; Oklay, Nilda; Pajola, Maurizio; Poch, Olivier

    2015-04-01

    Since the beginning of Rosetta's orbital observations, over a hundred small bright spots have been identified in images returned by its OSIRIS NAC camera, in all types of morphological regions on the nucleus. Bright spots are found as clusters of several tens of individuals in the vicinity of cliffs, or isolated without clear structural relation to the surrounding terrain. They are however mostly observed in the areas of the nucleus currently receiving the lowest amount of insolation and some of the best examples appear completely surrounded by shadows. Their typical sizes are of the order of a few metres and they are often observed at the surfaces of boulders of larger dimension. The brightness of these spots is up to ten times the average brightness of the surrounding terrain and multi-spectral analyses show a significantly bluer spectrum over the 0.3-1µm range. Comparisons of images taken in September and November 2014 under similar illumination conditions do not show any significant change of these features. Analysis of the results of past and present laboratory experiments with H2O-ice/dust mixtures provide interesting insights about the nature and origin of the bright spots. In particular, recent sublimation experiments conducted at the University of Bern reproduce the spectro-photometric variability observed at the surface of the nucleus by sequences of formation and ejection of a mantle of refractory organic-rich dust at the surface of the icy material. The formation of hardened layers of ice by sintering/re-condensation below the uppermost dust layer can also have strong implications for both the photometric and mechanical properties of the subsurface layer. Based on the comparison between OSIRIS observations and laboratory results, our favoured interpretation of the observed features is that the bright spots are exposures of water ice, resulting from the removal of the uppermost layer of refractory dust that covers the rest of the nucleus. Some of the observations of clusters of bright spots are very indicative of a formation process, which involves the breakage and collapse of brittle layers of ice to form fields of large boulders, some of them showing bright spots on part of their surface. Some of the isolated spots observed elsewhere on the nucleus might as well have been formed by similar processes and then have been transported over large distances by multiple bounces. These surface exposures of water ice must be more recent than the last passage at perihelion, as they would rapidly sublimate at short heliocentric distance. The hypothesis formulated here will thus easily be tested as the comet approaches the Sun, by checking if and how fast the bright spots vanish and disappear.

  8. A case study on large-scale dynamical influence on bright band using cloud radar during the Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Jha, Ambuj K.; Kalapureddy, M. C. R.; Devisetty, Hari Krishna; Deshpande, Sachin M.; Pandithurai, G.

    2018-02-01

    The present study is a first of its kind attempt in exploring the physical features (e.g., height, width, intensity, duration) of tropical Indian bright band using a Ka-band cloud radar under the influence of large-scale cyclonic circulation and attempts to explain the abrupt changes in bright band features, viz., rise in the bright band height by 430 m and deepening of the bright band by about 300 m observed at around 14:00 UTC on Sep 14, 2016, synoptically as well as locally. The study extends the utility of cloud radar to understand how the bright band features are associated with light precipitation, ranging from 0 to 1.5 mm/h. Our analysis of the precipitation event of Sep 14-15, 2016 shows that the bright band above (below) 3.7 km, thickness less (more) than 300 m can potentially lead to light drizzle of 0-0.25 mm/h (drizzle/light rain) at the surface. It is also seen that the cloud radar may be suitable for bright band study within light drizzle limits than under higher rain conditions. Further, the study illustrates that the bright band features can be determined using the polarimetric capability of the cloud radar. It is shown that an LDR value of - 22 dB can be associated with the top height of bright band in the Ka-band observations which is useful in the extraction of the bright band top height and its width. This study is useful for understanding the bright band phenomenon and could be potentially useful in establishing the bright band-surface rain relationship through the perspective of a cloud radar, which would be helpful to enhance the cloud radar-based quantitative estimates of precipitation.

  9. L Band Brightness Temperature Observations over a Corn Canopy during the Entire Growth Cycle

    PubMed Central

    Joseph, Alicia T.; van der Velde, Rogier; O’Neill, Peggy E.; Choudhury, Bhaskar J.; Lang, Roger H.; Kim, Edward J.; Gish, Timothy

    2010-01-01

    During a field campaign covering the 2002 corn growing season, a dual polarized tower mounted L-band (1.4 GHz) radiometer (LRAD) provided brightness temperature (TB) measurements at preset intervals, incidence and azimuth angles. These radiometer measurements were supported by an extensive characterization of land surface variables including soil moisture, soil temperature, vegetation biomass, and surface roughness. In the period May 22 to August 30, ten days of radiometer and ground measurements are available for a corn canopy with a vegetation water content (W) range of 0.0 to 4.3 kg m−2. Using this data set, the effects of corn vegetation on surface emissions are investigated by means of a semi-empirical radiative transfer model. Additionally, the impact of roughness on the surface emission is quantified using TB measurements over bare soil conditions. Subsequently, the estimated roughness parameters, ground measurements and horizontally (H)-polarized TB are employed to invert the H-polarized transmissivity (γh) for the monitored corn growing season. PMID:22163585

  10. L Band Brightness Temperature Observations Over a Corn Canopy During the Entire Growth Cycle

    NASA Technical Reports Server (NTRS)

    Joseph, Alicia T.; O'Neill, Peggy E.; Choudhury, Bhaskar J.; vanderVelde, Rogier; Lang, Roger H.; Gish, Timothy

    2011-01-01

    During a field campaign covering the 2002 corn growing season, a dual polarized tower mounted L-band (1.4 GHz) radiometer (LRAD) provided brightness temperature (T(sub B)) measurements at preset intervals, incidence and azimuth angles. These radiometer measurements were supported by an extensive characterization of land surface variables including soil moisture, soil temperature, vegetation biomass, and surface roughness. During the period from May 22, 2002 to August 30, 2002 a range of vegetation water content (W) of 0.0 to 4.3 kg/square m, ten days of radiometer and ground measurements were available. Using this data set, the effects of corn vegetation on surface emissions are investigated by means of a semi-empirical radiative transfer model. Additionally, the impact of roughness on the surface emission is quantified using T(sub B) measurements over bare soil conditions. Subsequently, the estimated roughness parameters, ground measurements and horizontally (H)-polarized T(sub B) are employed to invert the H-polarized transmissivity (gamma-h) for the monitored corn growing season.

  11. Three-dimensional spatial grouping affects estimates of the illuminant

    NASA Astrophysics Data System (ADS)

    Perkins, Kenneth R.; Schirillo, James A.

    2003-12-01

    The brightnesses (i.e., perceived luminance) of surfaces within a three-dimensional scene are contingent on both the luminances and the spatial arrangement of the surfaces. Observers viewed a CRT through a haploscope that presented simulated achromatic surfaces in three dimensions. They set a test patch to be ~33% more intense than a comparison patch to match the comparison patch in brightness, which is consistent with viewing a real scene with a simple lightning interpretation from which to estimate a different level of illumination in each depth plane. Randomly positioning each surface in either depth plane minimized any simple lighting interpretation, concomitantly reducing brightness differences to ~8.5%, although the immediate surrounds of the test and comparison patches continued to differ by a 5:1 luminance ratio.

  12. Luminosity and surface brightness distribution of K-band galaxies from the UKIDSS Large Area Survey

    NASA Astrophysics Data System (ADS)

    Smith, Anthony J.; Loveday, Jon; Cross, Nicholas J. G.

    2009-08-01

    We present luminosity and surface-brightness distributions of 40111 galaxies with K-band photometry from the United Kingdom Infrared Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS), Data Release 3 and optical photometry from Data Release 5 of the Sloan Digital Sky Survey (SDSS). Various features and limitations of the new UKIDSS data are examined, such as a problem affecting Petrosian magnitudes of extended sources. Selection limits in K- and r-band magnitude, K-band surface brightness and K-band radius are included explicitly in the 1/Vmax estimate of the space density and luminosity function. The bivariate brightness distribution in K-band absolute magnitude and surface brightness is presented and found to display a clear luminosity-surface brightness correlation that flattens at high luminosity and broadens at low luminosity, consistent with similar analyses at optical wavelengths. Best-fitting Schechter function parameters for the K-band luminosity function are found to be M* - 5 logh = -23.19 +/- 0.04,α = -0.81 +/- 0.04 and φ* = (0.0166 +/- 0.0008)h3Mpc-3, although the Schechter function provides a poor fit to the data at high and low luminosity, while the luminosity density in the K band is found to be j = (6.305 +/- 0.067) × 108LsolarhMpc-3. However, we caution that there are various known sources of incompleteness and uncertainty in our results. Using mass-to-light ratios determined from the optical colours, we estimate the stellar mass function, finding good agreement with previous results. Possible improvements are discussed that could be implemented when extending this analysis to the full LAS.

  13. Star-dust geometries in galaxies: The effect of interstellar matter distributions on optical and infrared properties of late-type galaxies

    NASA Technical Reports Server (NTRS)

    Capuano, J. M., Jr.; Thronson, H. A., Jr.; Witt, A. N.

    1993-01-01

    The presence of substantial amounts of interstellar dust in late-type galaxies affects observable parameters such as the optical surface brightness, the color, and the ratio of far-infrared to optical luminosity of these galaxies. We conducted radiative transfer calculations for late-type galaxy environments to examine two different scenarios: (1) the effects of increasing amounts of dust in two fixed geometries with different star distributions; and (2) the effects of an evolving dust-star geometry in which the total amount of dust is held constant, for three different star distributions. The calculations were done for ten photometric bands, ranging from the far-ultraviolet to the near-infrared (K), and scattered light was included in the galactic surface brightness at each wavelength. The energy absorbed throughout these ten photometric bands was assumed to re-emerge in the far-infrared as thermal dust emission. We also considered the evolutionary contraction of a constant amount of dust relative to pre-existing star distributions.

  14. Asteroidal companions in the visible: HST data

    NASA Astrophysics Data System (ADS)

    Storrs, Alex; Vilas, Faith; Landis, Rob; Gaffey, Michael J.; Makhoul, Khaldoun; Davis, MIke; Richmond, Mike

    2016-01-01

    We present a reanalysis of HST images of five asteroids with known companions (45 Eugenia, 87 Sylvia, 93 Minerva, 107 Camilla, 121 Hermione). It is remarkable that all of these companion bodies are much redder in the visible region than their primary bodies. Storrs et al. (2009, BAAS vol. 41, no. 4, p 189) attributed this to space weathering, however, all of these bodies belong to dark C- or X-type groups. Current modeling of space weathering effects are limited to bright asteroids (e.g. Cloutis et al., Icarus 252, pp. 39-82, 2015) and show little change on the scale reported here. We suggest that the interaction of dark, possibly organic-rich surfaces with the solar wind produces reddening on a much greater scale than is observed in bright, silica-rich surfaces, and that this effect is easily reset by collisions. Thus, while both the parent and companion object accumulate the effects, the parent is much more likely to be "reset" by small collisions than the companion, due to the differences in their cross-sections.

  15. Evaluations of carbon nanotube field emitters for electron microscopy

    NASA Astrophysics Data System (ADS)

    Nakahara, Hitoshi; Kusano, Yoshikazu; Kono, Takumi; Saito, Yahachi

    2009-11-01

    Brightness of carbon nanotube (CNT) emitters was already reported elsewhere. However, brightness of electron emitter is affected by a virtual source size of the emitter, which strongly depends on electron optical configuration around the emitter. In this work, I- V characteristics and brightness of a CNT emitter are measured under a practical field emission electron gun (e-gun) configuration to investigate availability of CNT for electron microscopy. As a result, it is obtained that an emission area of MWNT is smaller than its tip surface area, and the emission area corresponds to a five-membered-ring with 2nd nearest six-membered-rings on the MWNT cap surface. Reduced brightness of MWNT is measured as at least 2.6×109 A/m 2 sr V. It is concluded that even a thick MWNT has enough brightness under a practical e-gun electrode configuration and suitable for electron microscopy.

  16. Determination of cloud liquid water content using the SSM/I

    NASA Technical Reports Server (NTRS)

    Alishouse, John C.; Snider, Jack B.; Westwater, Ed R.; Swift, Calvin T.; Ruf, Christopher S.

    1990-01-01

    As part of a calibration/validation effort for the special sensor microwave/imager (SSM/I), coincident observations of SSM/I brightness temperatures and surface-based observations of cloud liquid water were obtained. These observations were used to validate initial algorithms and to derive an improved algorithm. The initial algorithms were divided into latitudinal-, seasonal-, and surface-type zones. It was found that these initial algorithms, which were of the D-matrix type, did not yield sufficiently accurate results. The surface-based measurements of channels were investigated; however, the 85V channel was excluded because of excessive noise. It was found that there is no significant correlation between the SSM/I brightness temperatures and the surface-based cloud liquid water determination when the background surface is land or snow. A high correlation was found between brightness temperatures and ground-based measurements over the ocean.

  17. Imaging the spotty surface of Betelgeuse in the H band

    NASA Astrophysics Data System (ADS)

    Haubois, X.; Perrin, G.; Lacour, S.; Verhoelst, T.; Meimon, S.; Mugnier, L.; Thiébaut, E.; Berger, J. P.; Ridgway, S. T.; Monnier, J. D.; Millan-Gabet, R.; Traub, W.

    2009-12-01

    Aims. This paper reports on H-band interferometric observations of Betelgeuse made at the three-telescope interferometer IOTA. We image Betelgeuse and its asymmetries to understand the spatial variation of the photosphere, including its diameter, limb darkening, effective temperature, surrounding brightness, and bright (or dark) star spots. Methods: We used different theoretical simulations of the photosphere and dusty environment to model the visibility data. We made images with parametric modeling and two image reconstruction algorithms: MIRA and WISARD. Results: We measure an average limb-darkened diameter of 44.28 ± 0.15 mas with linear and quadratic models and a Rosseland diameter of 45.03 ± 0.12 mas with a MARCS model. These measurements lead us to derive an updated effective temperature of 3600 ± 66 K. We detect a fully-resolved environment to which the silicate dust shell is likely to contribute. By using two imaging reconstruction algorithms, we unveiled two bright spots on the surface of Betelgeuse. One spot has a diameter of about 11 mas and accounts for about 8.5% of the total flux. The second one is unresolved (diameter < 9 mas) with 4.5% of the total flux. Conclusions: Resolved images of Betelgeuse in the H band are asymmetric at the level of a few percent. The MOLsphere is not detected in this wavelength range. The amount of measured limb-darkening is in good agreement with model predictions. The two spots imaged at the surface of the star are potential signatures of convective cells.

  18. In-depth Analysis of Land Surface Emissivity using Microwave Polarization Difference Index to Improve Satellite QPE

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Kirstetter, P. E.; Hong, Y.; Wen, Y.; Turk, J.; Gourley, J. J.

    2015-12-01

    One of primary uncertainties in satellite overland quantitative precipitation estimates (QPE) from passive sensors such as radiometers is the impact on the brightness temperatures by the surface land emissivity. The complexity of surface land emissivity is linked to its temporal variations (diurnal and seasonal) and spatial variations (subsurface vertical profiles of soil moisture, vegetation structure and surface temperature) translating into sub-pixel heterogeneity within the satellite field of view (FOV). To better extract the useful signal from hydrometeors, surface land emissivity needs to be determined and filtered from the satellite-measured brightness temperatures. Based on the dielectric properties of surface land cover constitutes, Microwave Polarization Differential index (MPDI) is expected to carry the composite effect of surface land properties on land surface emissivity, with a higher MPDI indicating a lower emissivity. This study analyses the dependence of MPDI to soil moisture, vegetation and surface skin temperature over 9 different land surface types. Such analysis is performed using the normalized difference vegetation index (NDVI) from MODIS, the near surface air temperature from the RAP model and ante-precedent precipitation accumulation from the Multi-Radar Multi-Sensor as surrogates for the vegetation, surface skin temperature and shallow layer soil moisture, respectively. This paper provides 1) evaluations of brightness temperature-based MPDI from the TRMM and GPM Microwave Imagers in both raining and non-raining conditions to test the dependence of MPDI to precipitation; 2) comparisons of MPDI categorized into instantly before, during and immediately after selected precipitation events to examine the impact of modest-to-heavy precipitation on the spatial pattern of MPDI; 3) inspections of relationship between MPDI versus rain fraction and rain rate within the satellite sensors FOV to investigate the behaviors of MPDI in varying precipitation conditions; 4) analysis of discrepancies of MPDI over 10.65, 19.35, 37 and 85.8 GHz to identify the sensitivity of MPDS to microwave wavelengths.

  19. First microwave map of the Moon with Chang'E-1 data: The role of local time in global imaging

    NASA Astrophysics Data System (ADS)

    Zheng, Y. C.; Tsang, K. T.; Chan, K. L.; Zou, Y. L.; Zhang, F.; Ouyang, Z. Y.

    2012-05-01

    Among recent lunar orbiters, only the Chinese Chang'E-1 (CE-1) was equipped with a passive microwave radiometer (MRM) to measure the natural microwave emission from the lunar surface. The microwave emission, characterized by a frequency-dependent brightness temperature (TB), is related to the physical temperature and dielectric properties of the lunar surface. By measuring the brightness temperature at different frequencies, detailed thermal behavior and properties of the lunar surface can be retrieved. Using CE-1's microwave data, we present here a set of microwave maps of the Moon constructed through a rescaling of TB to noontime or midnight. The adopted processing technique helps to reduce the effect of mixing up the temporal and spatial variations introduced by the satellite's localized measurements which cover different locations of the globe at different lunar local times. The resulting maps show fine structures unseen in previous microwave maps that disregarded the local time effect. We discussed the new features revealed and their possible connections with the lunar geology.

  20. Seasonal Changes in Titan's Surface Temperatures

    NASA Technical Reports Server (NTRS)

    Jennins, Donald E.; Cottini, V.; Nixon, C. A.; Flasar, F. M.; Kunde, V. G.; Samuelson, R. E.; Romani, P. N.; Hesman, B. E.; Carlson, R. C.; Gorius, N. J. P.; hide

    2011-01-01

    Seasonal changes in Titan's surface brightness temperatures have been observed by Cassini in the thermal infrared. The Composite Infrared Spectrometer (CIRS) measured surface radiances at 19 micron in two time periods: one in late northern winter (Ls = 335d eg) and another centered on northern spring equinox (Ls = 0 deg). In both periods we constructed pole-to-pole maps of zonally averaged brightness temperatures corrected for effects of the atmosphere. Between late northern winter and northern spring equinox a shift occurred in the temperature distribution, characterized by a warming of approximately 0.5 K in the north and a cooling by about the same amount in the south. At equinox the polar surface temperatures were both near 91 K and the equator was 93.4 K. We measured a seasonal lag of delta Ls approximately 9 in the meridional surface temperature distribution, consistent with the post-equinox results of Voyager 1 as well as with predictions from general circulation modeling. A slightly elevated temperature is observed at 65 deg S in the relatively cloud-free zone between the mid-latitude and southern cloud regions.

  1. Simulated X-ray galaxy clusters at the virial radius: Slopes of the gas density, temperature and surface brightness profiles

    NASA Astrophysics Data System (ADS)

    Roncarelli, M.; Ettori, S.; Dolag, K.; Moscardini, L.; Borgani, S.; Murante, G.

    2006-12-01

    Using a set of hydrodynamical simulations of nine galaxy clusters with masses in the range 1.5 × 1014 < Mvir < 3.4 × 1015Msolar, we have studied the density, temperature and X-ray surface brightness profiles of the intracluster medium in the regions around the virial radius. We have analysed the profiles in the radial range well above the cluster core, the physics of which are still unclear and matter of tension between simulated and observed properties, and up to the virial radius and beyond, where present observations are unable to provide any constraints. We have modelled the radial profiles between 0.3R200 and 3R200 with power laws with one index, two indexes and a rolling index. The simulated temperature and [0.5-2] keV surface brightness profiles well reproduce the observed behaviours outside the core. The shape of all these profiles in the radial range considered depends mainly on the activity of the gravitational collapse, with no significant difference among models including extraphysics. The profiles steepen in the outskirts, with the slope of the power-law fit that changes from -2.5 to -3.4 in the gas density, from -0.5 to -1.8 in the gas temperature and from -3.5 to -5.0 in the X-ray soft surface brightness. We predict that the gas density, temperature and [0.5-2] keV surface brightness values at R200 are, on average, 0.05, 0.60, 0.008 times the measured values at 0.3R200. At 2R200, these values decrease by an order of magnitude in the gas density and surface brightness, by a factor of 2 in the temperature, putting stringent limits on the detectable properties of the intracluster-medium (ICM) in the virial regions.

  2. A population of faint low surface brightness galaxies in the Perseus cluster core

    NASA Astrophysics Data System (ADS)

    Wittmann, Carolin; Lisker, Thorsten; Ambachew Tilahun, Liyualem; Grebel, Eva K.; Conselice, Christopher J.; Penny, Samantha; Janz, Joachim; Gallagher, John S.; Kotulla, Ralf; McCormac, James

    2017-09-01

    We present the detection of 89 low surface brightness (LSB), and thus low stellar density galaxy candidates in the Perseus cluster core, of the kind named 'ultra-diffuse galaxies', with mean effective V-band surface brightnesses 24.8-27.1 mag arcsec-2, total V-band magnitudes -11.8 to -15.5 mag, and half-light radii 0.7-4.1 kpc. The candidates have been identified in a deep mosaic covering 0.3 deg2, based on wide-field imaging data obtained with the William Herschel Telescope. We find that the LSB galaxy population is depleted in the cluster centre and only very few LSB candidates have half-light radii larger than 3 kpc. This appears consistent with an estimate of their tidal radius, which does not reach beyond the stellar extent even if we assume a high dark matter content (M/L = 100). In fact, three of our candidates seem to be associated with tidal streams, which points to their current disruption. Given that published data on faint LSB candidates in the Coma cluster - with its comparable central density to Perseus - show the same dearth of large objects in the core region, we conclude that these cannot survive the strong tides in the centres of massive clusters.

  3. Optical Properties of CdSe/ZnS Nanocrystals

    PubMed Central

    Gaigalas, Adolfas K; DeRose, Paul; Wang, Lili; Zhang, Yu-Zhong

    2014-01-01

    Measurements are presented of the absorbance, fluorescence emission, fluorescence quantum yield, and fluorescence lifetime of CdSe/ZnS nanocrystals, also known as quantum dots (QDs). The study included three groups of nanocrystals whose surfaces were either passivated with organic molecules, modified further with carboxyl groups, or conjugated with CD14 mouse anti-human antibodies. The surface modifications had observable effects on the optical properties of the nanocrystals. The oscillator strength (OS) of the band edge transition was about 1.0 for the nanocrystals emitting at 565 nm, 605 nm, and 655 nm. The OS could not be determined for QDs with emission at 700 nm and 800 nm. The fluorescence lifetimes varied from 26 ns for nanocrystals emitting near 600 nm to 150 ns for nanocrystals emitting near 800 nm. The quantum yield ranged between 0.4 and 0.9 for the nanocrystals in this study. A brightness index (BI) was used to evaluate the suitability of the nanocrystal labels for flow cytometer measurements. Most QD labels are at least as bright as fluorescein for applications in flow cytometer assays with 488 nm excitation. For optimal brightness the QDs should be excited with 405 nm light. We observed a strong dependence of the QD absorbance at 250 nm on the surface modification of the QD. PMID:26601047

  4. Biobleaching of wheat straw-rich soda pulp with alkalophilic laccase from gamma-proteobacterium JB: optimization of process parameters using response surface methodology.

    PubMed

    Singh, Gursharan; Ahuja, Naveen; Batish, Mona; Capalash, Neena; Sharma, Prince

    2008-11-01

    An alkalophilic laccase from gamma-proteobacterium JB was applied to wheat straw-rich soda pulp to check its bleaching potential by using response surface methodology based on central composite design. The design was employed by selecting laccase units, ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) concentration and pH as model factors. The results of second order factorial design experiments showed that all three independent variables had significant effect on brightness and kappa number of laccase-treated pulp. Optimum conditions for biobleaching of pulp with laccase preparation (specific activity, 65 nkat mg(-1) protein) were 20 nkat g(-1) of pulp, 2mM ABTS and pH 8.0 which enhanced brightness by 5.89% and reduced kappa number by 21.1% within 4h of incubation at 55 degrees C, without further alkaline extraction of pulp. Tear index (8%) and burst index (18%) also improved for laccase-treated pulp as compared to control raw pulp. Treatment of chemically (CEH1H2) bleached pulp with laccase showed significant effect on release of chromophores, hydrophobic and reducing compounds. Laccase-prebleaching of raw pulp reduced the use of hypochlorite by 10% to achieve brightness of resultant hand sheets similar to the fully chemically bleached pulp.

  5. Self-deflection of a bright soliton in a separate bright-dark spatial soliton pair based on a higher-order space charge field

    NASA Astrophysics Data System (ADS)

    Liu, Jin-Song; Hao, Zhong-Hua

    2003-10-01

    The self-deflection of a bright solitary beam can be controlled by a dark solitary beam via a parametric coupling effect between the bright and dark solitary beams in a separate bright-dark spatial soliton pair supported by an unbiased series photorefractive crystal circuit. The spatial shift of the bright solitary beam centre as a function of the input intensity of the dark solitary beam (hat rho) is investigated by taking into account the higher-order space charge field in the dynamics of the bright solitary beam via both numerical and perturbation methods under steady-state conditions. The deflection amount (Deltas0), defined as the value of the spatial shift at the output surface of the crystal, is a monotonic and nonlinear function of hat rho. When hat rho is weak or strong enough, Deltas0 is, in fact, unchanged with hat rho, whereas Deltas0 increases or decreases monotonically with hat rho in a middle range of hat rho. The corresponding variation range (deltas) depends strongly on the value of the input intensity of the bright solitary beam (r). There are some peak and valley values in the curve of deltas versus r under some conditions. When hat rho increases, the bright solitary beam can scan toward both the direction same as and opposite to the crystal's c-axis. Whether the direction is the same as or opposite to the c-axis depends on the parameter values and configuration of the crystal circuit, as well as the value of r. Some potential applications are discussed.

  6. Correlations among the properties of galaxies found in a blind HI survey, which also have SDSS optical data

    NASA Astrophysics Data System (ADS)

    Garcia-Appadoo, D. A.; West, A. A.; Dalcanton, J. J.; Cortese, L.; Disney, M. J.

    2009-03-01

    We have used the Parkes Multibeam system and the Sloan Digital Sky Survey to assemble a sample of 195 galaxies selected originally from their HI signature to avoid biases against unevolved or low surface brightness objects. For each source nine intrinsic properties are measured homogeneously, as well as inclination and an optical spectrum. The sample, which should be almost entirely free of either misidentification or confusion, includes a wide diversity of galaxies ranging from inchoate, low surface brightness dwarfs to giant spirals. Despite this diversity there are five clear correlations among their properties. They include a common dynamical mass-to-light ratio within their optical radii, a correlation between surface brightness and luminosity and a common HI surface density. Such correlation should provide strong constrains on models of galaxy formation and evolution.

  7. Morphologic examination of CD3-CD4(bright) cells in rat liver.

    PubMed

    Yamamoto, Satoshi; Sato, Yosinobu; Abo, Toru; Hatakeyama, Katsuyosi

    2002-01-01

    Recently, we found CD3-CD4(bright) cells with comparative specificity for normal rat liver. In the current study, we investigated the type and form of both CD3-CD4(bright) cells and CD3-CD4(dull) cells in the rat liver. The surface phenotype of hepatic mononuclear cells in Lewis rats was identified by using monoclonal antibodies including anti-CD4, anti-CD3, and antimacrophage in conjunction with two- or three-color immunofluorescence analysis. CD3-CD4(bright) cells and CD3-CD4(dull) cells were examined morphologically using May-Giemsa staining and scanning electron microscopy. The distribution of CD3-CD4(bright) cells and CD3-CD4(dull) cells 48 hours after intravenous administration of liposome-encapsulated dichloromethylene diphosphate was also investigated. In comparison to CD3-CD4(dull) cells, CD3-CD4(bright) cells were slightly larger macrophages with abundant cytoplasmic granules, being present with comparative specificity for normal rat liver and showing negligible effects by intravenous liposome-encapsulated dichloromethylene diphosphate administration. These data suggest that in normal young rat liver these CD3-CD4(dull) and CD3-CD4(bright) cells may be dendritic cells and Kupffer cells that shift from the liver to the spleen or vice versa. These cells may also be able to locally proliferate in liver or spleen due to changes in the developing liver.

  8. Thin Sea-Ice Thickness as Inferred from Passive Microwave and In Situ Observations

    NASA Technical Reports Server (NTRS)

    Naoki, Kazuhiro; Ukita, Jinro; Nishio, Fumihiko; Nakayama, Masashige; Comiso, Josefino C.; Gasiewski, Al

    2007-01-01

    Since microwave radiometric signals from sea-ice strongly reflect physical conditions of a layer near the ice surface, a relationship of brightness temperature with thickness is possible especially during the early stages of ice growth. Sea ice is most saline during formation stage and as the salinity decreases with time while at the same time the thickness of the sea ice increases, a corresponding change in the dielectric properties and hence the brightness temperature may occur. This study examines the extent to which the relationships of thickness with brightness temperature (and with emissivity) hold for thin sea-ice, approximately less than 0.2 -0.3 m, using near concurrent measurements of sea-ice thickness in the Sea of Okhotsk from a ship and passive microwave brightness temperature data from an over-flying aircraft. The results show that the brightness temperature and emissivity increase with ice thickness for the frequency range of 10-37 GHz. The relationship is more pronounced at lower frequencies and at the horizontal polarization. We also established an empirical relationship between ice thickness and salinity in the layer near the ice surface from a field experiment, which qualitatively support the idea that changes in the near-surface brine characteristics contribute to the observed thickness-brightness temperature/emissivity relationship. Our results suggest that for thin ice, passive microwave radiometric signals contain, ice thickness information which can be utilized in polar process studies.

  9. 49 CFR 213.113 - Defective rails.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... smooth, bright, or dark, round or oval surface substantially at a right angle to the length of the rail... in the head of the rail as a smooth, bright, or dark surface progressing until substantially at a... head, and extending into or through it. A crack or rust streak may show under the head close to the web...

  10. 49 CFR 213.113 - Defective rails.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... smooth, bright, or dark, round or oval surface substantially at a right angle to the length of the rail... in the head of the rail as a smooth, bright, or dark surface progressing until substantially at a... head, and extending into or through it. A crack or rust streak may show under the head close to the web...

  11. 49 CFR 213.113 - Defective rails.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... smooth, bright, or dark, round or oval surface substantially at a right angle to the length of the rail... in the head of the rail as a smooth, bright, or dark surface progressing until substantially at a... head, and extending into or through it. A crack or rust streak may show under the head close to the web...

  12. 49 CFR 213.113 - Defective rails.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... smooth, bright, or dark, round or oval surface substantially at a right angle to the length of the rail... in the head of the rail as a smooth, bright, or dark surface progressing until substantially at a... head, and extending into or through it. A crack or rust streak may show under the head close to the web...

  13. The spatial distribution of dwarf galaxies in the CfA slice of the universe

    NASA Technical Reports Server (NTRS)

    Thuan, Trinh X.; Gott, J. Richard, III; Schneider, Stephen E.

    1987-01-01

    A complete (with the the exception of one) redshift sample of 58 galaxies in the Nilson catalog classified as dwarf, irregular, or Magellanic irregular is used to investigate the large-scale clustering properties of these low-surface brightness galaxies in the CfA slice of the universe (alpha in the range of 8-17 h, delta in the range of 26.5-32.5 deg). It is found that the low-surface brightness dwarf galaxies also lie on the structures delineated by the high-surface brightness normal galaxies and that they do not fill in the voids. This is inconsistent with a class of biased galaxy formation theories which predict that dwarf galaxies should be present everywhere, including the voids.

  14. Death of Darkness: Artificial Sky Brightness in the Anthropocene

    NASA Astrophysics Data System (ADS)

    Zender, C. S.

    2016-12-01

    Many species (including ours) need darkness to survive and thrive yet light pollution in the anthropocene has received scant attention in Earth System Models (ESMs). Anthropogenic aerosols can brighten background sky brightness and reduce the contrast between skylight and starlight. These are both aesthetic and health-related issues due to their accompanying disruption of circadian rhythms. We quantify aerosol contributions to light pollution using a single-column night sky model, NiteLite, suitable for implementation in ESMs. NiteLite accounts for physiologcal (photopic and scotopic vision, retinal diameter/age), anthropogenic (light and aerosol pollution properties), and natural (surface albedo, trace gases) effects on background brightness and threshold visibility. We find that stratospheric aerosol injection contemplated as a stop-gap measure to counter global warming would increase night-sky brightness by about 25%, and thus eliminate last pristine dark sky areas on Earth. Our results suggest that ESMs incorporate light pollution so that associated societal impacts can be better quantified and included in policy deliberations.

  15. Ultraviolet Imaging Telescope images of the reflection nebula NGC 7023 - Derivation of ultraviolet scattering properties of dust grains

    NASA Technical Reports Server (NTRS)

    Witt, Adolf N.; Petersohn, Jens K.; Bohlin, Ralph C.; O'Connell, Robert W.; Roberts, Morton S.; Smith, Andrew M.; Stecher, Theodore P.

    1992-01-01

    The Ultraviolet Imaging Telescope as part of the Astro-1 mission, was used to obtain high-resolution surface brightness distribution data in six ultraviolet wavelength bands for the bright reflection nebula NGC 7023. From the quantitative comparison of the measured surface brightness gradients ratios of nebular to stellar flux, and detail radial surface brightness profiles with corresponding data from the visible, two major conclusions results: (1) the scattering in the near- and far-ultraviolet in this nebula is more strongly forward-directed than in the visible; (2) the dust albedo in the ultraviolet for wavelengths not less than 140 nm is identical to that in the visible, with the exception of the 220 nm bump in the extinction curve. In the wavelengths region of the bump, the albedo is reduced by 25 to 30 percent in comparison with wavelengths regions both shorter and longer. This lower albedo is expected, if the bump is a pure absorption feature.

  16. Rutgers zodiacal light experiment on OSO-6

    NASA Technical Reports Server (NTRS)

    Carroll, B.

    1975-01-01

    A detector was placed in a slowly spinning wheel on OSO-6 whose axis was perpendicular to the line drawn to the sun, to measure the surface brightness and polarization at all elongations from the immediate neighborhood of the sun to the anti-solar point. Different wavelength settings and polarizations were calculated from the known order of magnitude brightness of the zodiacal light. The measuring sequence was arranged to give longer integration times for the regions of lower surface brightness. Three types of analysis to which the data on OSO-6 were subjected are outlined; (1) photometry, (2) colorimetry and (3) polarimetry.

  17. SOAP 2.0: Spot Oscillation And Planet 2.0

    NASA Astrophysics Data System (ADS)

    Dumusque, Xavier; Boisse, I.; Santos, N. C.

    2015-04-01

    SOAP (Spot Oscillation And Planet) 2.0 simulates the effects of dark spots and bright plages on the surface of a rotating star, computing their expected radial velocity and photometric signatures. It includes the convective blueshift and its inhibition in active regions.

  18. Retrieval and Validation of aerosol optical properties from AHI measurements: impact of surface reflectance assumption

    NASA Astrophysics Data System (ADS)

    Lim, H.; Choi, M.; Kim, J.; Go, S.; Chan, P.; Kasai, Y.

    2017-12-01

    This study attempts to retrieve the aerosol optical properties (AOPs) based on the spectral matching method, with using three visible and one near infrared channels (470, 510, 640, 860nm). This method requires the preparation of look-up table (LUT) approach based on the radiative transfer modeling. Cloud detection is one of the most important processes for guaranteed quality of AOPs. Since the AHI has several infrared channels, which are very advantageous for cloud detection, clouds can be removed by using brightness temperature difference (BTD) and spatial variability test. The Yonsei Aerosol Retrieval (YAER) algorithm is basically utilized on a dark surface, therefore a bright surface (e.g., desert, snow) should be removed first. Then we consider the characteristics of the reflectance of land and ocean surface using three visible channels. The known surface reflectivity problem in high latitude area can be solved in this algorithm by selecting appropriate channels through improving tests. On the other hand, we retrieved the AOPs by obtaining the visible surface reflectance using NIR to normalized difference vegetation index short wave infrared (NDVIswir) relationship. ESR tends to underestimate urban and cropland area, we improved the visible surface reflectance considering urban effect. In this version, ocean surface reflectance is using the new cox and munk method which considers ocean bidirectional reflectance distribution function (BRDF). Input of this method has wind speed, chlorophyll, salinity and so on. Based on validation results with the sun-photometer measurement in AErosol Robotic NETwork (AERONET), we confirm that the quality of Aerosol Optical Depth (AOD) from the YAER algorithm is comparable to the product from the Japan Aerospace Exploration Agency (JAXA) retrieval algorithm. Our future update includes a consideration of improvement land surface reflectance by hybrid approach, and non-spherical aerosols. This will improve the quality of YAER algorithm more, particularly retrieval for the dust particle over the bright surface in East Asia.

  19. Surface Relief of Mapping

    NASA Astrophysics Data System (ADS)

    Costa, Manuel F.; Almeida, Jose B.

    1989-02-01

    We will describe in this communication a noncont act method of measuring surface profile, it does not require any surface preparation, and it can be used with a very large range of surfaces from highly reflecting to non reflecting ones and as complex as textile surfaces. This method is reasonably immune to dispersion and diffraction, which usually make very difficult the application of non contact profilometry methods to a wide range of materials and situations, namely on quality control systems in industrial production lines. The method is based on the horizontal shift of the bright spot on a horizontal surface when this is illuminated with an oblique beam and moved vertically. in order to make the profilometry the sample is swept by an oblique light beam and the bright spot position is compared with a reference position. The bright spot must be as small as possible, particularly in very irregular surfaces; so the light beam diameter must be as small as possible and the incidence angle must not be too small. The sensivity of a system based on this method will be given, mostly, by the reception optical system.

  20. Error sources in the retrieval of aerosol information over bright surfaces from satellite measurements in the oxygen A band

    NASA Astrophysics Data System (ADS)

    Nanda, Swadhin; de Graaf, Martin; Sneep, Maarten; de Haan, Johan F.; Stammes, Piet; Sanders, Abram F. J.; Tuinder, Olaf; Pepijn Veefkind, J.; Levelt, Pieternel F.

    2018-01-01

    Retrieving aerosol optical thickness and aerosol layer height over a bright surface from measured top-of-atmosphere reflectance spectrum in the oxygen A band is known to be challenging, often resulting in large errors. In certain atmospheric conditions and viewing geometries, a loss of sensitivity to aerosol optical thickness has been reported in the literature. This loss of sensitivity has been attributed to a phenomenon known as critical surface albedo regime, which is a range of surface albedos for which the top-of-atmosphere reflectance has minimal sensitivity to aerosol optical thickness. This paper extends the concept of critical surface albedo for aerosol layer height retrievals in the oxygen A band, and discusses its implications. The underlying physics are introduced by analysing the top-of-atmosphere reflectance spectrum as a sum of atmospheric path contribution and surface contribution, obtained using a radiative transfer model. Furthermore, error analysis of an aerosol layer height retrieval algorithm is conducted over dark and bright surfaces to show the dependence on surface reflectance. The analysis shows that the derivative with respect to aerosol layer height of the atmospheric path contribution to the top-of-atmosphere reflectance is opposite in sign to that of the surface contribution - an increase in surface brightness results in a decrease in information content. In the case of aerosol optical thickness, these derivatives are anti-correlated, leading to large retrieval errors in high surface albedo regimes. The consequence of this anti-correlation is demonstrated with measured spectra in the oxygen A band from the GOME-2 instrument on board the Metop-A satellite over the 2010 Russian wildfires incident.

  1. Discovery of Diffuse Dwarf Galaxy Candidates around M101

    NASA Astrophysics Data System (ADS)

    Bennet, P.; Sand, D. J.; Crnojević, D.; Spekkens, K.; Zaritsky, D.; Karunakaran, A.

    2017-11-01

    We have conducted a search of a 9 deg2 region of the Canada-France-Hawaii-Telescope Legacy Survey around the Milky Way analog M101 (D ˜ 7 Mpc), in order to look for previously unknown low-surface-brightness galaxies. This search has uncovered 38 new low-surface-brightness dwarf candidates, and confirmed 11 previously reported galaxies, all with central surface brightness μ(g, 0) > 23 mag arcsec-2, potentially extending the satellite luminosity function for the M101 group by ˜1.2 mag. The search was conducted using an algorithm that nearly automates the detection of diffuse dwarf galaxies. The candidates’ small sizes and low surface brightnesses mean that the faintest of these objects would likely be missed by traditional visual or computer detection techniques. The dwarf galaxy candidates span a range of -7.1 ≥ M g ≥ -10.2 and half-light radii of 118-540 pc at the distance of M101, and they are well fit by simple Sérsic surface brightness profiles. These properties are consistent with dwarfs in the Local Group, and to match the Local Group luminosity function, ˜10-20 of these candidates should be satellites of M101. Association with a massive host is supported by the lack of detected star formation and the overdensity of candidates around M101 compared to the field. The spatial distribution of the dwarf candidates is highly asymmetric, and concentrated to the northeast of M101, therefore distance measurements will be required to determine if these are genuine members of the M101 group.

  2. Spot distribution and fast surface evolution on Vega

    NASA Astrophysics Data System (ADS)

    Petit, P.; Hébrard, E. M.; Böhm, T.; Folsom, C. P.; Lignières, F.

    2017-11-01

    Spectral signatures of surface spots were recently discovered from high cadence observations of the A star Vega. We aim at constraining the surface distribution of these photospheric inhomogeneities and investigating a possible short-term evolution of the spot pattern. Using data collected over five consecutive nights, we employ the Doppler imaging method to reconstruct three different maps of the stellar surface, from three consecutive subsets of the whole time series. The surface maps display a complex distribution of dark and bright spots, covering most of the visible fraction of the stellar surface. A number of surface features are consistently recovered in all three maps, but other features seem to evolve over the time span of observations, suggesting that fast changes can affect the surface of Vega within a few days at most. The short-term evolution is observed as emergence or disappearance of individual spots, and may also show up as zonal flows, with low- and high-latitude belts rotating faster than intermediate latitudes. It is tempting to relate the surface brightness activity to the complex magnetic field topology previously reconstructed for Vega, although strictly simultaneous brightness and magnetic maps will be necessary to assess this potential link.

  3. Evidence of Titan's climate history from evaporite distribution

    NASA Astrophysics Data System (ADS)

    MacKenzie, Shannon M.; Barnes, Jason W.; Sotin, Christophe; Soderblom, Jason M.; Le Mouélic, Stéphane; Rodriguez, Sebastien; Baines, Kevin H.; Buratti, Bonnie J.; Clark, Roger N.; Nicholson, Phillip D.; McCord, Thomas B.

    2014-11-01

    Water-ice-poor, 5-μm-bright material on Saturn's moon Titan has previously been geomorphologically identified as evaporitic. Here we present a global distribution of the occurrences of the 5-μm-bright spectral unit, identified with Cassini's Visual Infrared Mapping Spectrometer (VIMS) and examined with RADAR when possible. We explore the possibility that each of these occurrences are evaporite deposits. The 5-μm-bright material covers 1% of Titan's surface and is not limited to the poles (the only regions with extensive, long-lived surface liquid). We find the greatest areal concentration to be in the equatorial basins Tui Regio and Hotei Regio. Our interpretations, based on the correlation between 5-μm-bright material and lakebeds, imply that there was enough liquid present at some time to create the observed 5-μm-bright material. We address the climate implications surrounding a lack of evaporitic material at the south polar basins: if the south pole basins were filled at some point in the past, then where is the evaporite?

  4. Evaluating the Effects of Surface Properties on Methane Detection with the Airborne Visible/Infrared Imaging Spectrometer Next Generation (AVIRIS-NG)

    NASA Astrophysics Data System (ADS)

    Ayasse, A.; Thorpe, A. K.; Roberts, D. A.; Aubrey, A. D.; Dennison, P. E.; Thompson, D. R.; Frankenberg, C.

    2016-12-01

    Atmospheric methane has been increasing since the industrial revolution and is thought to be responsible for about 25% of global radiative forcing (Hofman et al., 2006; Montzka et al., 2011). Given the importance of methane to global climate, it is essential that we identify methane sources to better understand the proportion of emissions coming from various sectors. Recently the Airborne Visible-Infrared Imaging Spectrometer Next Generation (AVIRIS-NG) has proven to be a valuable instrument for mapping methane plumes (Frankenberg et al., 2016; Thorpe et al., 2016; Thompson et al., 2015). However, it is important to determine how land cover and albedo affect the ability of AVIRIS-NG to detect methane. This study aims to quantify the effect these surface properties have on detection. To do so we are using a synthetic AVIRIS-NG image that has multiple land cover types, albedos, and methane concentrations and applying the Cluster Tunes Matched Filter (CTMF) algorithm (Funk et al. 2001, Thorpe et al., 2013) to detect methane enhancements within the image. CTMF results are compared to the surface properties to characterize how different surface properties affect detection. We will also evaluate the effect of surface properties with examples of methane plumes observed from oil fields and manure ponds in the San Joaquin Valley of California, two important methane sources (Figure 1). Initial results suggest that darker surfaces, such as water absent sun glint, will make detecting the methane signal challenging, while bright surfaces such as dry soils produce a much clearer signal. Characterizing the effect of surface properties on methane detection is of increasing importance given the application of this technology will likely expand to map methane across a diverse range of emission sources. Figure 1. AVIRIS-NG image acquired Apr. 29, 2015. True color image with a superimposed methane plume from a manure pond. Bright surfaces, such as the dirt road, provide a better surface for retrievals than dark surfaces, such as the vegetation.

  5. The night sky brightness at McDonald Observatory

    NASA Technical Reports Server (NTRS)

    Kalinowski, J. K.; Roosen, R. G.; Brandt, J. C.

    1975-01-01

    Baseline observations of the night sky brightness in B and V are presented for McDonald Observatory. In agreement with earlier work by Elvey and Rudnick (1937) and Elvey (1943), significant night-to-night and same-night variations in sky brightness are found. Possible causes for these variations are discussed. The largest variation in sky brightness found during a single night is approximately a factor of two, a value which corresponds to a factor-of-four variation in airglow brightness. The data are used to comment on the accuracy of previously published surface photometry of M 81.

  6. The effect of surface anisotropy on the accuracy of total ozone estimates from satellite observations

    NASA Technical Reports Server (NTRS)

    Fraser, R. S.; Ahmad, Z.

    1978-01-01

    The total amount of ozone in a vertical column of the earth's atmosphere is being derived from satellite measurements of the intensity of ultraviolet sunlight scattered by the earth-atmosphere system. The algorithm for deriving the ozone amount utilizes the assumption that the earth's surface reflects the incident light isotropically according to Lambert's law. Natural surface reflection deviates more or less from this law. Two extreme examples of anisotropic reflection from dark ocean and from bright snow are analyzed by means of models for their effects on the derived values of ozone.

  7. PN G068.1+11.0: A young pre-cataclysmic variable with an extremely hot primary

    NASA Astrophysics Data System (ADS)

    Mitrofanova, A. A.; Shimansky, V. V.; Borisov, N. V.; Spiridonova, O. I.; Gabdeev, M. M.

    2016-02-01

    An analysis of spectroscopic and photometric data for the young pre-cataclysmic variable (PCV) PN G068.1+11.0, which passed through its common-envelope stage relatively recently, is presented. The spectroscopic and photometric data were obtained with the 6-m telescope and Zeiss-1000 telescope of the Special Astrophysical Observatory. The light curves show sinusoidal brightness variations with the orbital-period time scale and brightness-variation amplitudes of Δ m = 1. m41, 1. m62, and 1. m57 in the B, V, and R bands, respectively. The system's spectrum exhibits weak HI (H β-H δ) andHeII λλ4541, 4686, 5411 Å absorption lines during the phases of minimum brightness, as well as HI, HeII, CIII, CIV, NIII, and OII emission lines whose intensity variations are synchronized with variations of the integrated brightness of the system. The emission-line formation in the spectra can be fully explained by the effects of fluorescence of the ultraviolet light from the primary at the surface of the cool star. All the characteristics of the optical light of PN G068.1+11.0 confirm that it is a young PCV containing sdO subdwarf. The radial velocities were measured from a blend of lines of moderately light elements, CIII+NIII λ4640 Å, which is formed at the surface of the secondary due to reflection effects. The ephemeris of the system has been improved through a joint analysis of the radial-velocity curves and light curves of pre-cataclysmic variable, using modelling of the reflection effects. The fundamental parameters of PN G068.1+11.0 have been determined using two evolutionary tracks for planetary-nebula nuclei of different masses (0.7 M ⊙and 0.78 M ⊙). The model spectra for the system and a comparison with the observations demonstrate the possibility of refining the components' effective temperatures if the quality of the spectra used is improved.

  8. Remote Sensing of Liquid Water and Ice Cloud Optical Thickness and Effective Radius in the Arctic: Application of Airborne Multispectral MAS Data

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, Steven; Yang, Ping; Arnold, G. Thomas; Gray, Mark A.; Riedi, Jerome C.; Ackerman, Steven A.; Liou, Kuo-Nan

    2003-01-01

    A multispectral scanning spectrometer was used to obtain measurements of the reflection function and brightness temperature of clouds, sea ice, snow, and tundra surfaces at 50 discrete wavelengths between 0.47 and 14.0 microns. These observations were obtained from the NASA ER-2 aircraft as part of the FIRE Arctic Clouds Experiment, conducted over a 1600 x 500 km region of the north slope of Alaska and surrounding Beaufort and Chukchi Seas between 18 May and 6 June 1998. Multispectral images of the reflection function and brightness temperature in 11 distinct bands of the MODIS Airborne Simulator (MAS) were used to derive a confidence in clear sky (or alternatively the probability of cloud), shadow, and heavy aerosol over five different ecosystems. Based on the results of individual tests run as part of the cloud mask, an algorithm was developed to estimate the phase of the clouds (water, ice, or undetermined phase). Finally, the cloud optical thickness and effective radius were derived for both water and ice clouds that were detected during one flight line on 4 June. This analysis shows that the cloud mask developed for operational use on MODIS, and tested using MAS data in Alaska, is quite capable of distinguishing clouds from bright sea ice surfaces during daytime conditions in the high Arctic. Results of individual tests, however, make it difficult to distinguish ice clouds over snow and sea ice surfaces, so additional tests were added to enhance the confidence in the thermodynamic phase of clouds over the Beaufort Sea. The cloud optical thickness and effective radius retrievals used 3 distinct bands of the MAS, with the newly developed 1.62 and 2.13 micron bands being used quite successfully over snow and sea ice surfaces. These results are contrasted with a MODIS-based algorithm that relies on spectral reflectance at 0.87 and 2.13 micron.

  9. Studying the effects of laccase treatment in a softwood dissolving pulp: cellulose reactivity and crystallinity.

    PubMed

    Quintana, Elisabet; Valls, Cristina; Barneto, Agustín G; Vidal, Teresa; Ariza, José; Roncero, M Blanca

    2015-03-30

    An enzymatic biobleaching sequence (LVAQPO) using a laccase from Trametes villosa in combination with violuric acid (VA) and then followed by a pressurized hydrogen peroxide treatment (PO) was developed and found to give high bleaching properties and meet dissolving pulp requirements: high brightness, low content of hemicellulose, satisfactory pulp reactivity, no significant cellulose degradation manifested by α-cellulose and HPLC, and brightness stability against moist heat ageing. The incorporation of a laccase-mediator system (LMS) to bleach sulphite pulps can be a good alternative to traditional bleaching processes since thermogravimetric analysis (TGA) showed that the laccase treatment prevented the adverse effect of hydrogen peroxide on fibre surface as observed during a conventional hydrogen peroxide bleaching treatment (PO). Although VA exhibited the best results in terms of bleaching properties, the performance of natural mediators, such as p-coumaric acid and syringaldehyde, was discussed in relation to changes in cellulose surface detected by TGA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Model development for MODIS thermal band electronic cross-talk

    NASA Astrophysics Data System (ADS)

    Chang, Tiejun; Wu, Aisheng; Geng, Xu; Li, Yonghong; Brinkmann, Jake; Keller, Graziela; Xiong, Xiaoxiong (Jack)

    2016-10-01

    MODerate-resolution Imaging Spectroradiometer (MODIS) has 36 bands. Among them, 16 thermal emissive bands covering a wavelength range from 3.8 to 14.4 μm. After 16 years on-orbit operation, the electronic crosstalk of a few Terra MODIS thermal emissive bands develop substantial issues which cause biases in the EV brightness temperature measurements and surface feature contamination. The crosstalk effects on band 27 with center wavelength at 6.7 μm and band 29 at 8.5 μm increased significantly in recent years, affecting downstream products such as water vapor and cloud mask. The crosstalk issue can be observed from nearly monthly scheduled lunar measurements, from which the crosstalk coefficients can be derived. Most of MODIS thermal bands are saturated at moon surface temperatures and the development of an alternative approach is very helpful for verification. In this work, a physical model was developed to assess the crosstalk impact on calibration as well as in Earth view brightness temperature retrieval. This model was applied to Terra MODIS band 29 empirically for correction of Earth brightness temperature measurements. In the model development, the detector nonlinear response is considered. The impacts of the electronic crosstalk are assessed in two steps. The first step consists of determining the impact on calibration using the on-board blackbody (BB). Due to the detector nonlinear response and large background signal, both linear and nonlinear coefficients are affected by the crosstalk from sending bands. The crosstalk impact on calibration coefficients was calculated. The second step is to calculate the effects on the Earth view brightness temperature retrieval. The effects include those from affected calibration coefficients and the contamination of Earth view measurements. This model links the measurement bias with crosstalk coefficients, detector nonlinearity, and the ratio of Earth measurements between the sending and receiving bands. The correction of the electronic crosstalk can be implemented empirically from the processed bias at different brightness temperature. The implementation can be done through two approaches. As routine calibration assessment for thermal infrared bands, the trending over select Earth scenes is processed for all the detectors in a band and the band averaged bias is derived for certain time. In this case, the correction of an affected band can be made using the regression of the model with band averaged bias and then corrections of detector differences are applied. The second approach requires the trending for individual detectors and the bias for each detector is used for regression with the model. A test using the first approach was made for Terra MODIS band 29 with the biases derived from long-term trending of sea surface temperature and Dome-C surface temperature.

  11. Space-based Coronagraphic Imaging Polarimetry of the TW Hydrae Disk: Shedding New Light on Self-shadowing Effects

    NASA Astrophysics Data System (ADS)

    Poteet, Charles A.; Chen, Christine H.; Hines, Dean C.; Perrin, Marshall D.; Debes, John H.; Pueyo, Laurent; Schneider, Glenn; Mazoyer, Johan; Kolokolova, Ludmilla

    2018-06-01

    We present Hubble Space Telescope Near-Infrared Camera and Multi-Object Spectrometer coronagraphic imaging polarimetry of the TW Hydrae protoplanetary disk. These observations simultaneously measure the total and polarized intensity, allowing direct measurement of the polarization fraction across the disk. In accord with the self-shadowing hypothesis recently proposed by Debes et al., we find that the total and polarized intensity of the disk exhibits strong azimuthal asymmetries at projected distances consistent with the previously reported bright and dark ring-shaped structures (∼45–99 au). The sinusoidal-like variations possess a maximum brightness at position angles near ∼268°–300° and are up to ∼28% stronger in total intensity. Furthermore, significant radial and azimuthal variations are also detected in the polarization fraction of the disk. In particular, we find that regions of lower polarization fraction are associated with annuli of increased surface brightness, suggesting that the relative proportion of multiple-to-single scattering is greater along the ring and gap structures. Moreover, we find strong (∼20%) azimuthal variation in the polarization fraction along the shadowed region of the disk. Further investigation reveals that the azimuthal variation is not the result of disk flaring effects, but is instead from a decrease in the relative contribution of multiple-to-single scattering within the shadowed region. Employing a two-layer scattering surface, we hypothesize that the diminished contribution in multiple scattering may result from shadowing by an inclined inner disk, which prevents direct stellar light from reaching the optically thick underlying surface component.

  12. FORTY-SEVEN MILKY WAY-SIZED, EXTREMELY DIFFUSE GALAXIES IN THE COMA CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Dokkum, Pieter G.; Merritt, Allison; Geha, Marla

    2015-01-10

    We report the discovery of 47 low surface brightness objects in deep images of a 3° × 3° field centered on the Coma cluster, obtained with the Dragonfly Telephoto Array. The objects have central surface brightness μ(g, 0) ranging from 24-26 mag arcsec{sup –2} and effective radii r {sub eff} = 3''-10'', as measured from archival Canada-France-Hawaii Telescope images. From their spatial distribution we infer that most or all of the objects are galaxies in the Coma cluster. This relatively large distance is surprising as it implies that the galaxies are very large: with r {sub eff} = 1.5-4.6 kpcmore » their sizes are similar to those of L {sub *} galaxies even though their median stellar mass is only ∼6 × 10{sup 7} M {sub ☉}. The galaxies are relatively red and round, with (g – i) = 0.8 and (b/a) = 0.74. One of the 47 galaxies is fortuitously covered by a deep Hubble Space Telescope Advanced Camera for Surveys (ACS) observation. The ACS imaging shows a large spheroidal object with a central surface brightness μ{sub 475} = 25.8 mag arcsec{sup –2}, a Sérsic index n = 0.6, and an effective radius of 7'', corresponding to 3.4 kpc at the distance of Coma. The galaxy is not resolved into stars, consistent with expectations for a Coma cluster object. We speculate that these ''ultra-diffuse galaxies'' may have lost their gas supply at early times, possibly resulting in very high dark matter fractions.« less

  13. Black hole mass measurement using molecular gas kinematics: what ALMA can do

    NASA Astrophysics Data System (ADS)

    Yoon, Ilsang

    2017-04-01

    We study the limits of the spatial and velocity resolution of radio interferometry to infer the mass of supermassive black holes (SMBHs) in galactic centres using the kinematics of circum-nuclear molecular gas, by considering the shapes of the galaxy surface brightness profile, signal-to-noise ratios (S/Ns) of the position-velocity diagram (PVD) and systematic errors due to the spatial and velocity structure of the molecular gas. We argue that for fixed galaxy stellar mass and SMBH mass, the spatial and velocity scales that need to be resolved increase and decrease, respectively, with decreasing Sérsic index of the galaxy surface brightness profile. We validate our arguments using simulated PVDs for varying beam size and velocity channel width. Furthermore, we consider the systematic effects on the inference of the SMBH mass by simulating PVDs including the spatial and velocity structure of the molecular gas, which demonstrates that their impacts are not significant for a PVD with good S/N unless the spatial and velocity scale associated with the systematic effects are comparable to or larger than the angular resolution and velocity channel width of the PVD from pure circular motion. Also, we caution that a bias in a galaxy surface brightness profile owing to the poor resolution of a galaxy photometric image can largely bias the SMBH mass by an order of magnitude. This study shows the promise and the limits of ALMA observations for measuring SMBH mass using molecular gas kinematics and provides a useful technical justification for an ALMA proposal with the science goal of measuring SMBH mass.

  14. Geologic Structures in Crater Walls on Vesta

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Beck, A. W.; Ammannito, E.; Carsenty, U.; DeSanctis, M. C.; LeCorre, L.; McCoy, T. J.; Reddy, V.; Schroeder, S. E.

    2012-01-01

    The Framing Camera (FC) on the Dawn spacecraft has imaged most of the illuminated surface of Vesta with a resolution of apporpx. 20 m/pixel through different wavelength filters that allow for identification of lithologic units. The Visible and Infrared Mapping Spectrometer (VIR) has imaged the surface at lower spatial resolution but high spectral resolution from 0.25 to 5 micron that allows for detailed mineralogical interpretation. The FC has imaged geologic structures in the walls of fresh craters and on scarps on the margin of the Rheasilvia basin that consist of cliff-forming, competent units, either as blocks or semi-continuous layers, hundreds of m to km below the rims. Different units have different albedos, FC color ratios and VIR spectral characteristics, and different units can be juxtaposed in individual craters. We will describe different examples of these competent units and present preliminary interpretations of the structures. A common occurrence is of blocks several hundred m in size of high albedo (bright) and low albedo (dark) materials protruding from crater walls. In many examples, dark material deposits lie below coherent bright material blocks. In FC Clementine color ratios, bright material is green indicating deeper 1 m pyroxene absorption band. VIR spectra show these to have deeper and wider 1 and 2 micron pyroxene absorption bands than the average vestan surface. The associated dark material has subdued pyroxene absorption features compared to the average vestan surface. Some dark material deposits are consistent with mixtures of HED materials with carbonaceous chondrites. This would indicate that some dark material deposits in crater walls are megabreccia blocks. The same would hold for bright material blocks found above them. Thus, these are not intact crustal units. Marcia crater is atypical in that the dark material forms a semi-continuous, thin layer immediately below bright material. Bright material occurs as one or more layers. In one region, there is an apparent angular unconformity between the bright material and the dark material where bright material layers appear to be truncated against the underlying dark layer. One crater within the Rheasilvia basin contains two distinct types of bright materials outcropping on its walls, one like that found elsewhere on Vesta and the other an anomalous block 200 m across. This material has the highest albedo; almost twice that of the vestan average. Unlike all other bright materials, this block has a subdued 1 micron pyroxene absorption band in FC color ratios. These data indicate that this block represents a distinct vestan lithology that is rarely exposed.

  15. Theoretical colours and isochrones for some Hubble Space Telescope colour systems. II

    NASA Technical Reports Server (NTRS)

    Paltoglou, G.; Bell, R. A.

    1991-01-01

    A grid of synthetic surface brightness magnitudes for 14 bandpasses of the Hubble Space Telescope Faint Object Camera is presented, as well as a grid of UBV, uvby, and Faint Object Camera surface brightness magnitudes derived from the Gunn-Stryker spectrophotometric atlas. The synthetic colors are used to examine the transformations between the ground-based Johnson UBV and Stromgren uvby systems and the Faint Object Camera UBV and uvby. Two new four-color systems, similar to the Stromgren system, are proposed for the determination of abundance, temperature, and surface gravity. The synthetic colors are also used to calculate color-magnitude isochrones from the list of theoretical tracks provided by VandenBerg and Bell (1990). It is shown that by using the appropriate filters it is possible to minimize the dependence of this color difference on metallicity. The effects of interstellar reddening on various Faint Object Camera colors are analyzed as well as the observational requirements for obtaining data of a given signal-to-noise for each of the 14 bandpasses.

  16. Dark Lakes on a Bright Landscape

    NASA Image and Video Library

    2013-10-23

    Ultracold hydrocarbon lakes and seas dark shapes near the north pole of Saturn moon Titan can be seen embedded in some kind of bright surface material in this infrared mosaic from NASA Cassini mission.

  17. A statistical examination of Nimbus 7 SMMR data and remote sensing of sea surface temperature, liquid water content in the atmosphere and surfaces wind speed

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Wang, I.; Chang, A. T. C.; Gloersen, P.

    1982-01-01

    Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR) brightness temperature measurements over the global oceans have been examined with the help of statistical and empirical techniques. Such analyses show that zonal averages of brightness temperature measured by SMMR, over the oceans, on a large scale are primarily influenced by the water vapor in the atmosphere. Liquid water in the clouds and rain, which has a much smaller spatial and temporal scale, contributes substantially to the variability of the SMMR measurements within the latitudinal zones. The surface wind not only increases the surface emissivity but through its interactions with the atmosphere produces correlations, in the SMMR brightness temperature data, that have significant meteorological implications. It is found that a simple meteorological model can explain the general characteristics of the SMMR data. With the help of this model methods to infer over the global oceans, the surface temperature, liquid water content in the atmosphere, and surface wind speed are developed. Monthly mean estimates of the sea surface temperature and surface winds are compared with the ship measurements. Estimates of liquid water content in the atmosphere are consistent with earlier satellite measurements.

  18. Titan Surface Temperatures as Measured by Cassini CIRS

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Flasar, F.M.; Kunde, V.G.; Nixon, C.A.; Romani, P.N.; Samuelson, R.E.; Coustenis, A.; Courtin, R.

    2009-01-01

    Thermal radiation from the surface of Titan reaches space through a spectral window of low opacity at 19-microns wavelength. This radiance gives a measure of the brightness temperature of the surface. Composite Infrared Spectrometer' (CIRS) observations from Cassini during its first four years at Saturn have permitted latitude mapping of zonally averaged surface temperatures. The measurements are corrected for atmospheric opacity using the dependence of radiance on emission angle. With the more complete latitude coverage and much larger dataset of CIRS we have improved upon the original results from Voyager IRIS. CIRS measures the equatorial surface brightness temperature to be 93.7+/-0.6 K, the same as the temperature measured at the Huygens landing site. The surface brightness temperature decreases by 2 K toward the south pole and by 3 K toward the north pole. The drop in surface temperature between equator and north pole implies a 50% decrease in methane saturation vapor pressure and relative humidity; this may help explain the large northern lakes. The H2 mole fraction is derived as a by-product of our analysis and agrees with previous results. Evidence of seasonal variation in surface and atmospheric temperatures is emerging from CIRS measurements over the Cassini mission.

  19. Effect of soil texture on the microwave emission from soils

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.

    1980-01-01

    The intensity brightness temperature of the microwave emission from the soil is determined primarily by its dielectric properties. The large difference between the dielectric constant of water and that of dry soil produces a strong dependence of the soil's dielectric constant on its moisture content. This dependence is effected by the texture of the soil because the water molecules close to the particle surface are tightly bound and do not contribute significantly to the dielectric properties. Since this surface area is a function of the particle size distribution (soil texture), being larger for clay soils with small particles, and smaller for sandy soils with larger particles; the dielectric properties will depend on soil texture. Laboratory measurements of the dielectric constant for soils are summarized. The dependence of the microwave emission on texture is demonstrated by measurements of brightness temperature from an aircraft platform for a wide range of soil textures. It is concluded that the effect of soil texture differences on the observed values can be normalized by expressing the soil moisture values as a percent field capacity for the soil.

  20. Simulating galaxies in the reionization era with FIRE-2: morphologies and sizes

    NASA Astrophysics Data System (ADS)

    Ma, Xiangcheng; Hopkins, Philip F.; Boylan-Kolchin, Michael; Faucher-Giguère, Claude-André; Quataert, Eliot; Feldmann, Robert; Garrison-Kimmel, Shea; Hayward, Christopher C.; Kereš, Dušan; Wetzel, Andrew

    2018-06-01

    We study the morphologies and sizes of galaxies at z ≥ 5 using high-resolution cosmological zoom-in simulations from the Feedback In Realistic Environments project. The galaxies show a variety of morphologies, from compact to clumpy to irregular. The simulated galaxies have more extended morphologies and larger sizes when measured using rest-frame optical B-band light than rest-frame UV light; sizes measured from stellar mass surface density are even larger. The UV morphologies are usually dominated by several small, bright young stellar clumps that are not always associated with significant stellar mass. The B-band light traces stellar mass better than the UV, but it can also be biased by the bright clumps. At all redshifts, galaxy size correlates with stellar mass/luminosity with large scatter. The half-light radii range from 0.01 to 0.2 arcsec (0.05-1 kpc physical) at fixed magnitude. At z ≥ 5, the size of galaxies at fixed stellar mass/luminosity evolves as (1 + z)-m, with m ˜ 1-2. For galaxies less massive than M* ˜ 108 M⊙, the ratio of the half-mass radius to the halo virial radius is ˜ 10 per cent and does not evolve significantly at z = 5-10; this ratio is typically 1-5 per cent for more massive galaxies. A galaxy's `observed' size decreases dramatically at shallower surface brightness limits. This effect may account for the extremely small sizes of z ≥ 5 galaxies measured in the Hubble Frontier Fields. We provide predictions for the cumulative light distribution as a function of surface brightness for typical galaxies at z = 6.

  1. The mond external field effect on the dynamics of the globular clusters: general considerations and application to NGC 2419

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derakhshani, Kamran, E-mail: kderakhshani@iasbs.ac.ir

    2014-03-01

    In this paper, we investigate the external field effect in the context of the MOdified Newtonian Dynamics (MOND) on the surface brightness and velocity dispersion profiles of globular clusters (GCs). Using N-MODY, which is an N-body simulation code with a MOND potential solver, we show that the general effect of the external field for diffuse clusters, which obey MOND in most of their parts, is that it pushes the dynamics toward the Newtonian regime. On the other hand, for more compact clusters, which are essentially Newtonian in their inner parts, the external field is effective mainly in the outer partsmore » of compact clusters. As a case study, we then choose the remote Galactic GC NGC 2419. By varying the cluster mass, half-light radius, and mass-to-light ratio, we aim to find a model that will reproduce the observational data most effectively, using N-MODY. We find that even if we take the Galactic external field into account, a Newtonian Plummer sphere represents the observational data better than MOND to an order of magnitude in terms of the total χ{sup 2} of surface brightness and velocity dispersion.« less

  2. The MOND External Field Effect on the Dynamics of the Globular Clusters: General Considerations and Application to NGC 2419

    NASA Astrophysics Data System (ADS)

    Derakhshani, Kamran

    2014-03-01

    In this paper, we investigate the external field effect in the context of the MOdified Newtonian Dynamics (MOND) on the surface brightness and velocity dispersion profiles of globular clusters (GCs). Using N-MODY, which is an N-body simulation code with a MOND potential solver, we show that the general effect of the external field for diffuse clusters, which obey MOND in most of their parts, is that it pushes the dynamics toward the Newtonian regime. On the other hand, for more compact clusters, which are essentially Newtonian in their inner parts, the external field is effective mainly in the outer parts of compact clusters. As a case study, we then choose the remote Galactic GC NGC 2419. By varying the cluster mass, half-light radius, and mass-to-light ratio, we aim to find a model that will reproduce the observational data most effectively, using N-MODY. We find that even if we take the Galactic external field into account, a Newtonian Plummer sphere represents the observational data better than MOND to an order of magnitude in terms of the total χ2 of surface brightness and velocity dispersion.

  3. Optical image of a cometary nucleus: 1980 flyby of Comet Encke

    NASA Technical Reports Server (NTRS)

    Wells, W. C.; Benson, R. S.; Anderson, A. D.; Gal, G.

    1974-01-01

    The feasibility was investigated of obtaining optical images of a cometary nucleus via a flyby of Comet Encke. A physical model of the dust cloud surrounding the nucleus was developed by using available physical data and theoretical knowledge of cometary physics. Using this model and a Mie scattering code, calculations were made of the absolute surface brightness of the dust in the line of sight of the on-board camera and the relative surface brightness of the dust compared to the nucleus. The brightness was calculated as a function of heliocentric distance and for different phase angles (sun-comet-spacecraft angle).

  4. High-Resolution Radar Imagery of Mars

    NASA Astrophysics Data System (ADS)

    Harmon, John K.; Nolan, M. C.

    2009-09-01

    We present high-resolution radar images of Mars obtained during the 2005 and 2007 oppositions. The images were constructed from long-code delay-Doppler observations made with the Arecibo S-band (13-cm) radar. The average image resolution of 3 km represented a better than order-of-magnitude improvement over pre-upgrade Arecibo imagery of the planet. Images of depolarized reflectivity (an indicator primarily of wavelength-scale surface roughness) show the same bright volcanic flow features seen in earlier imagery, but with much finer detail. A new image of the Elysium region shows fine detail in the radar-bright channels of Athabasca Vallis, Marte Vallis, and Grjota Vallis. The new images of Tharsis and Olympus Mons also show a complex array of radar-bright and radar-dark features. Southern Amazonis exhibits some of the most complex and puzzling radar-bright structure on the planet. Another curiosity is the Chryse/Xanthe/Channels region, where we find some radar-bright features in or adjacent to fluvial chaos structures. Chryse/Xanthe is also the only region of Mars showing radar-bright craters (which are rare on Mars but common on the Moon and Mercury). We also obtained the first delay-Doppler image showing the enhanced backscatter from the residual south polar ice cap. In addition to the depolarized imagery, we were able to make the first delay-Doppler images of the circular polarization ratio (an important diagnostic for surface roughness texture). We find that vast areas of the radar-bright volcanic regions have polarization ratios close to unity. Such high ratios are rare for terrestrial lava flows and only seen for extremely blocky surfaces giving high levels of multiple scattering.

  5. Characterization and Correction of Aquarius Long Term Calibration Drift Using On-Earth Brightness Temperature Refernces

    NASA Technical Reports Server (NTRS)

    Brown, Shannon; Misra, Sidharth

    2013-01-01

    The Aquarius/SAC-D mission was launched on June 10, 2011 from Vandenberg Air Force Base. Aquarius consists of an L-band radiometer and scatterometer intended to provide global maps of sea surface salinity. One of the main mission objectives is to provide monthly global salinity maps for climate studies of ocean circulation, surface evaporation and precipitation, air/sea interactions and other processes. Therefore, it is critical that any spatial or temporal systematic biases be characterized and corrected. One of the main mission requirements is to measure salinity with an accuracy of 0.2 psu on montly time scales which requires a brightness temperature stability of about 0.1K, which is a challenging requirement for the radiometer. A secondary use of the Aquarius data is for soil moisture applications, which requires brightness temperature stability at the warmer end of the brightness temperature dynamic range. Soon after launch, time variable drifts were observed in the Aquarius data compared to in-situ data from ARGO and models for the ocean surface salinity. These drifts could arise from a number of sources, including the various components of the retrieval algorithm, such as the correction for direct and reflected galactic emission, or from the instrument brightness temperature calibration. If arising from the brightness temperature calibration, they could have gain and offset components. It is critical that the nature of the drifts be understood before a suitable correction can be implemented. This paper describes the approach that was used to detect and characterize the components of the drift that were in the brightness temperature calibration using on-Earth reference targets that were independent of the ocean model.

  6. On The Missing Dwarf Problem In Clusters And Around The Nearby Galaxy M33

    NASA Astrophysics Data System (ADS)

    Keenan, Olivia Charlotte

    2017-08-01

    This thesis explores possible solutions to the dwarf galaxy problem. This is a discrepancy between the number of dwarf galaxies we observe, and the number predicted from cosmological computer simulations. Simulations predict around ten times more dwarf galaxy satellites than are currently observed. I have investigated two possible solutions: dark galaxies and the low surface brightness universe. Dark galaxies are dark matter halos which contain gas, but few or no stars, hence are optically dark. As part of the Arecibo Galaxy Environment Survey I surveyed the neutral hydrogen gas around the nearby galaxy M33. I found 32 gas clouds, 11 of which are new detections. Amongst these there was one particularly interesting cloud. AGESM33-32 is ring shaped and larger than M33 itself, if at the same distance. It has a velocity width which is similar to the velocity dispersion of gas in a disk galaxy, as well as having a clear velocity gradient across it which may be due to rotation. The fact that it also currently has no observed associated stars means it is a dark galaxy candidate. Optically, dwarf galaxies may be out there, but too faint for us to detect. This means that with newer, deeper, images we may be able to unveil a large, low surface brightness, population of dwarf galaxies. However, the question remains as to how these can be distinguished from background galaxies. I have used Next Generation Virgo Survey (NGVS) data to carry out photometry on 852 Virgo galaxies in four bands. I also measured the photometric properties of galaxies on a background (non-cluster) NGVS frame. I discovered that a combination of colour, magnitude and surface brightness information could be used to identify cluster dwarf galaxies from background field galaxies. The most effective method is to use the surface brightness-magnitude relation.

  7. Modeling the non-grey-body thermal emission from the full moon

    NASA Technical Reports Server (NTRS)

    Vogler, Karl J.; Johnson, Paul E.; Shorthill, Richard W.

    1991-01-01

    The present series of thermophysical computer models for solid-surfaced planetary bodies whose surface roughness is modeled as paraboloidal craters of specified depth/diameter ratio attempts to characterize the nongrey-body brightness temperature spectra of the moon and of the Galilean satellites. This modeling, in which nondiffuse radiation properties and surface roughness are included for rigorous analysis of scattered and reemitted radiation within a crater, explains to first order the behavior of both limb-scans and disk-integrated IR brightness temperature spectra for the full moon. Only negative surface relief can explain lunar thermal emissions' deviation from smooth Lambert-surface expectations.

  8. Illuminating Low Surface Brightness Galaxies with the Hyper Suprime-Cam Survey

    NASA Astrophysics Data System (ADS)

    Greco, Johnny P.; Greene, Jenny E.; Strauss, Michael A.; Macarthur, Lauren A.; Flowers, Xzavier; Goulding, Andy D.; Huang, Song; Kim, Ji Hoon; Komiyama, Yutaka; Leauthaud, Alexie; Leisman, Lukas; Lupton, Robert H.; Sifón, Cristóbal; Wang, Shiang-Yu

    2018-04-01

    We present a catalog of extended low surface brightness galaxies (LSBGs) identified in the Wide layer of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). Using the first ∼200 deg2 of the survey, we have uncovered 781 LSBGs, spanning red (g ‑ i ≥ 0.64) and blue (g ‑ i < 0.64) colors and a wide range of morphologies. Since we focus on extended galaxies (r eff = 2.″5–14″), our sample is likely dominated by low-redshift objects. We define LSBGs to have mean surface brightnesses {\\bar{μ }}eff}(g)> 24.3 mag arcsec‑2, which allows nucleated galaxies into our sample. As a result, the central surface brightness distribution spans a wide range of μ 0(g) = 18–27.4 mag arcsec‑2, with 50% and 95% of galaxies fainter than 24.3 and 22 mag arcsec‑2, respectively. Furthermore, the surface brightness distribution is a strong function of color, with the red distribution being much broader and generally fainter than that of the blue LSBGs, and this trend shows a clear correlation with galaxy morphology. Red LSBGs typically have smooth light profiles that are well characterized by single-component Sérsic functions. In contrast, blue LSBGs tend to have irregular morphologies and show evidence for ongoing star formation. We cross-match our sample with existing optical, H I, and ultraviolet catalogs to gain insight into the physical nature of the LSBGs. We find that our sample is diverse, ranging from dwarf spheroidals and ultradiffuse galaxies in nearby groups to gas-rich irregulars to giant LSB spirals, demonstrating the potential of the HSC-SSP to provide a truly unprecedented view of the LSBG population.

  9. Iapetus: Major discoveries from the Cassini imaging experiment

    NASA Astrophysics Data System (ADS)

    Denk, T.; Neukum, G.; Schmedemann, N.; Roatsch, Th.; Thomas, P. C.; Helfenstein, P.; Turtle, E. P.; Porco, C. C.

    2008-09-01

    Over the course of more than three years orbiting Saturn, the Imaging Subsystem (ISS) [1] of the Cassini spacecraft has acquired high-resolution images of the Saturnian moon Iapetus during a number of flybys. The most recent and only targeted Iapetus flyby occured on 10 September 2007, and allowed a >50x closer look at the surface than any previous observation. The surface of Iapetus is heavily cratered down to the resolution limit of ~10 meters per pixel. The crater size-frequency distribution shows no measurable difference between the leading and the trailing hemisphere, arguing for planetocentric projectiles as the main impactor source. The equatorial ridge can now be clearly tracked along half of Iapetus's circumference, from ~50°W to ~245°W; it is mainly absent on the other hemisphere. However, we argue that it presumably spanned the full globe shortly after formation. Very small bright-ray and bright-rim craters have been detected deep within the dark hemisphere, suggestive for a dark blanket with a thickness in the order of decimeters to meters only. On the trailing side at low and mid-latitudes, very dark terrain is located immediately adjacent to bright terrain, with almost no gray shading in between. In many cases, crater walls facing towards the equator are dark, while poleward-facing walls and slopes are bright. This effect vanishes at both north and south high latitudes. We interpret these observations to indicate that thermal segregation of water ice is responsible for these complex small-scale dark-bright patterns. On the trailing side, a bright polar cap has been observed at high latitudes on both hemispheres (north and south). A global color dichotomy has been detected in addition to the long-known global brightness dichotomy, with the leading side showing a significantly redder color than the trailing side. Unlike the more ellipsoidal-shaped brightness dichotomy, the color dichotomy is quite well separated into two different hemispheres, with the sub-Saturn (~0°W) and anti-Saturn (~180°W) meridians as the approximate boundaries [2]. This global pattern indicates an exogenic origin. Earlier hypotheses for the origin of the brightness dichotomy, like the infall of dust from retrograde outer moons, might actually offer a better explanation for the color dichotomy than for the brightness dichotomy. We propose that this so far unknown process forming the color dichotomy has also reddened and somewhat darkened Hyperion, another moon of Saturn. The color dichotomy also provides a key element to the explanation of the brightness dichotomy in the model of Spencer et al. [3]. References [1] Porco, C.C. et al. (2004) Space Sci. Rev.115, 363. [2] Denk, T. et al. (2006) EGU06-A-08352. [3] Spencer, J.R. et al. (2005) 37th DPS, abstract 39.08.

  10. Optical transparency of graphene layers grown on metal surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rut’kov, E. V.; Lavrovskaya, N. P.; Sheshenya, E. S., E-mail: sheshenayket@gmail.ru

    It is shown that, in contradiction with the fundamental results obtained for free graphene, graphene films grown on the Rh(111) surface to thicknesses from one to ~(12–15) single layers do not absorb visible electromagnetic radiation emitted from the surface and influence neither the brightness nor true temperature of the sample. At larger thicknesses, such absorption occurs. This effect is observed for the surfaces of other metals, specifically, Pt(111), Re(1010), and Ni(111) and, thus, can be considered as being universal. It is thought that the effect is due to changes in the electronic properties of thin graphene layers because of electronmore » transfer between graphene and the metal substrate.« less

  11. Titan's Surface Brightness Temperatures and H2 Mole Fraction from Cassini CIRS

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Flasar, F. M.; Kunde, V. G.; Samuelson, R. E.; Pearl, J. C.; Nixon, C. A.; Carlson, R. C.; Mamoutkine, A. A.; Brasunas, J. C.; Guandique, E.; hide

    2008-01-01

    The atmosphere of Titan has a spectral window of low opacity around 530/cm in the thermal infrared where radiation from the surface can be detected from space. The Composite Infrared spectrometer1 (CIRS) uses this window to measure the surface brightness temperature of Titan. By combining all observations from the Cassini tour it is possible to go beyond previous Voyager IRIS studies in latitude mapping of surface temperature. CIRS finds an average equatorial surface brightness temperature of 93.7+/-0.6 K, which is close to the 93.65+/-0.25 K value measured at the surface by Huygens HASi. The temperature decreases toward the poles, reaching 91.6+/-0.7 K at 90 S and 90.0+/-1.0 K at 87 N. The temperature distribution is centered in latitude at approximately 12 S, consistent with Titan's season of late northern winter. Near the equator the temperature varies with longitude and is higher in the trailing hemisphere, where the lower albedo may lead to relatively greater surface heating5. Modeling of radiances at 590/cm constrains the atmospheric H2 mole fraction to 0.12+/-0.06 %, in agreement with results from Voyager iris.

  12. Morphologic and thermophysical characteristics of lava flows southwest of Arsia Mons, Mars

    NASA Astrophysics Data System (ADS)

    Crown, David A.; Ramsey, Michael S.

    2017-08-01

    The morphologic and thermophysical characteristics of part of the extensive lava flow fields southwest of Arsia Mons (22.5-27.5°S, 120-130°W) have been examined using a combination of orbital VNIR and TIR datasets. THEMIS images provide context for the regional geology and record diurnal temperature variability that is diverse and unusual for flow surfaces in such close proximity. CTX images were used to distinguish dominant flow types and assess local age relationships between individual lava flows. CTX and HiRISE images provide detailed information on flow surface textures and document aeolian effects as they reveal fine-grained deposits in many low-lying areas of the flow surfaces as well as small patches of transverse aeolian ridges. Although this region is generally dust-covered and has a lower overall thermal inertia, the THEMIS data indicate subtle spectral variations within the population of lava flows studied. These variations could be due to compositional differences among the flows or related to mixing of flow and aeolian materials. Specific results regarding flow morphology include: a) Two main lava flow types (bright, rugged and dark, smooth as observed in CTX images) dominate the southwest Arsia Mons/NE Daedalia Planum region; b) the bright, rugged flows have knobby, ridged, and/or platy surface textures, commonly have medial channel/levee systems, and may have broad distal lobes; c) the dark, smooth flows extend from distributary systems that consist of combinations of lava channels, lava tubes, and/or sinuous ridges and plateaus; and d) steep-sided, terraced margins, digitate breakout lobes, and smooth-surfaced plateaus along lava channel/tube systems are interpreted as signatures of flow inflation within the dark, smooth flow type. These flows exhibit smoother upper surfaces, are thinner, and have more numerous, smaller lobes, which, along with their the channel-/tube-fed nature, indicate a lower viscosity lava than for the bright, rugged flows. Flow patterns and local interfingering and overlapping relationships are delineated in CTX images and allow reconstruction of the complex flow field surfaces. Darker channel-/tube-fed flows are generally younger than adjacent thicker, bright, rugged flows; however, the diversity and complexity of temporal relationships observed, along with the thermophysical variability, suggests that lava sources with different eruptive styles and magnitudes and/or lavas that experienced different local emplacement conditions were active contemporaneously.

  13. Ultra-bright γ-ray flashes and dense attosecond positron bunches from two counter-propagating laser pulses irradiating a micro-wire target.

    PubMed

    Li, Han-Zhen; Yu, Tong-Pu; Hu, Li-Xiang; Yin, Yan; Zou, De-Bin; Liu, Jian-Xun; Wang, Wei-Quan; Hu, Shun; Shao, Fu-Qiu

    2017-09-04

    We propose a novel scheme to generate ultra-bright ultra-short γ-ray flashes and high-energy-density attosecond positron bunches by using multi-dimensional particle-in-cell simulations with quantum electrodynamics effects incorporated. By irradiating a 10 PW laser pulse with an intensity of 10 23 W/cm 2 onto a micro-wire target, surface electrons are dragged-out of the micro-wire and are effectively accelerated to several GeV energies by the laser ponderomotive force, forming relativistic attosecond electron bunches. When these electrons interact with the probe pulse from the other side, ultra-short γ-ray flashes are emitted with an ultra-high peak brightness of 1.8 × 10 24 photons s -1 mm -2 mrad -2 per 0.1%BW at 24 MeV. These photons propagate with a low divergence and collide with the probe pulse, triggering the Breit-Wheeler process. Dense attosecond e - e + pair bunches are produced with the positron energy density as high as 10 17 J/m 3 and number of 10 9 . Such ultra-bright ultra-short γ-ray flashes and secondary positron beams may have potential applications in fundamental physics, high-energy-density physics, applied science and laboratory astrophysics.

  14. Inferring Land Surface Model Parameters for the Assimilation of Satellite-Based L-Band Brightness Temperature Observations into a Soil Moisture Analysis System

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.

    2012-01-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite mission provides global measurements of L-band brightness temperatures at horizontal and vertical polarization and a variety of incidence angles that are sensitive to moisture and temperature conditions in the top few centimeters of the soil. These L-band observations can therefore be assimilated into a land surface model to obtain surface and root zone soil moisture estimates. As part of the observation operator, such an assimilation system requires a radiative transfer model (RTM) that converts geophysical fields (including soil moisture and soil temperature) into modeled L-band brightness temperatures. At the global scale, the RTM parameters and the climatological soil moisture conditions are still poorly known. Using look-up tables from the literature to estimate the RTM parameters usually results in modeled L-band brightness temperatures that are strongly biased against the SMOS observations, with biases varying regionally and seasonally. Such biases must be addressed within the land data assimilation system. In this presentation, the estimation of the RTM parameters is discussed for the NASA GEOS-5 land data assimilation system, which is based on the ensemble Kalman filter (EnKF) and the Catchment land surface model. In the GEOS-5 land data assimilation system, soil moisture and brightness temperature biases are addressed in three stages. First, the global soil properties and soil hydraulic parameters that are used in the Catchment model were revised to minimize the bias in the modeled soil moisture, as verified against available in situ soil moisture measurements. Second, key parameters of the "tau-omega" RTM were calibrated prior to data assimilation using an objective function that minimizes the climatological differences between the modeled L-band brightness temperatures and the corresponding SMOS observations. Calibrated parameters include soil roughness parameters, vegetation structure parameters, and the single scattering albedo. After this climatological calibration, the modeling system can provide L-band brightness temperatures with a global mean absolute bias of less than 10K against SMOS observations, across multiple incidence angles and for horizontal and vertical polarization. Third, seasonal and regional variations in the residual biases are addressed by estimating the vegetation optical depth through state augmentation during the assimilation of the L-band brightness temperatures. This strategy, tested here with SMOS data, is part of the baseline approach for the Level 4 Surface and Root Zone Soil Moisture data product from the planned Soil Moisture Active Passive (SMAP) satellite mission.

  15. Space Weathering Effects at UV Wavelengths: Asteroids and the Moon

    NASA Astrophysics Data System (ADS)

    Hendrix, Amanda; Vilas, F.

    2006-09-01

    Space weathering, the bombardment of airless bodies by micrometeoroids and irradiation by solar wind particles, affects spectra of solar system bodies at visible/near IR (VNIR) wavelengths by darkening and reddening their surface materials, as well as degrading absorption features. We present new results detailing space weathering effects at ultraviolet wavelengths. We focus on new spectral modeling results, and also present spacecraft data of asteroids and the Moon, along with new UV measurements of asteroid families from HST, to demonstrate the effects of varying degrees of weathering and the outcome of weathering on surfaces of different compositions. Weathered surfaces are relatively bright and spectrally blue in the UV; these UV effects can be more obvious than the VNIR effects. The cause of these weathering effects is likely vapor deposition of submicroscopic iron (SMFe), through solar wind irradiation and micrometeoroid bombardment of the bodies' surfaces. In silicate minerals, the NUV region is dominated by a decrease in reflectance with wavelength - the "UV absorption edge.” In contrast to silicates, iron is opaque and relatively bright in the UV, so the addition of SMFe to a silicate grains has the effect of making the UV region brighter; this is in opposition to the situation at longer wavelengths, where the addition of SMFe decreases the albedo. Our spectral modeling results show that the addition of SMFe decreases the steepness of the UV dropoff, in effect making the UV spectrum bluer. This can explain the difference in UV spectral behavior seen between S-class asteroids and less-weathered ordinary chondrite meteorites, and between lunar rocks and more weathered lunar soils. This work is funded in part by Hubble Space Telescope Grant #10557.

  16. Proof of Concept for a Simple Smartphone Sky Monitor

    NASA Astrophysics Data System (ADS)

    Kantamneni, Abhilash; Nemiroff, R. J.; Brisbois, C.

    2013-01-01

    We present a novel approach of obtaining a cloud and bright sky monitor by using a standard smartphone with a downloadable app. The addition of an inexpensive fisheye lens can extend the angular range to the entire sky visible above the device. A preliminary proof of concept image shows an optical limit of about visual magnitude 5 for a 70-second exposure. Support science objectives include cloud monitoring in a manner similar to the more expensive cloud monitors in use at most major astronomical observatories, making expensive observing time at these observatories more efficient. Primary science objectives include bright meteor tracking, bright comet tracking, and monitoring the variability of bright stars. Citizen science objectives include crowd sourcing of many networked sky monitoring smartphones typically in broader support of many of the primary science goals. The deployment of a citizen smartphone array in an active science mode could leverage the sky monitoring data infrastructure to track other non-visual science opportunities, including monitoring the Earth's magnetic field for the effects of solar flares and exhaustive surface coverage for strong seismic events.

  17. Atmospheric correction for retrieving ground brightness temperature at commonly-used passive microwave frequencies.

    PubMed

    Han, Xiao-Jing; Duan, Si-Bo; Li, Zhao-Liang

    2017-02-20

    An analysis of the atmospheric impact on ground brightness temperature (Tg) is performed for numerous land surface types at commonly-used frequencies (i.e., 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz and 89.0 GHz). The results indicate that the atmosphere has a negligible impact on Tg at 1.4 GHz for land surfaces with emissivities greater than 0.7, at 6.93 GHz for land surfaces with emissivities greater than 0.8, and at 10.65 GHz for land surfaces with emissivities greater than 0.9 if a root mean square error (RMSE) less than 1 K is desired. To remove the atmospheric effect on Tg, a generalized atmospheric correction method is proposed by parameterizing the atmospheric transmittance τ and upwelling atmospheric brightness temperature Tba↑. Better accuracies with Tg RMSEs less than 1 K are achieved at 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz and 36.5 GHz, and worse accuracies with RMSEs of 1.34 K and 4.35 K are obtained at 23.8 GHz and 89.0 GHz, respectively. Additionally, a simplified atmospheric correction method is developed when lacking sufficient input data to perform the generalized atmospheric correction method, and an emissivity-based atmospheric correction method is presented when the emissivity is known. Consequently, an appropriate atmospheric correction method can be selected based on the available data, frequency and required accuracy. Furthermore, this study provides a method to estimate τ and Tba↑ of different frequencies using the atmospheric parameters (total water vapor content in observation direction Lwv, total cloud liquid water content Lclw and mean temperature of cloud Tclw), which is important for simultaneously determining the land surface parameters using multi-frequency passive microwave satellite data.

  18. The Andromeda Optical and Infrared Disk Survey

    NASA Astrophysics Data System (ADS)

    Sick, J.; Courteau, S.; Cuillandre, J.-C.

    2014-03-01

    The Andromeda Optical and Infrared Disk Survey has mapped M31 in u* g' r' i' JKs wavelengths out to R = 40 kpc using the MegaCam and WIRCam wide-field cameras on the Canada-France-Hawaii Telescope. Our survey is uniquely designed to simultaneously resolve stars while also carefully reproducing the surface brightness of M31, allowing us to study M31's global structure in the context of both resolved stellar populations and spectral energy distributions. We use the Elixir-LSB method to calibrate the optical u* g' r' i' images by building real-time maps of the sky background with sky-target nodding. These maps are stable to μg ≲ 28.5 mag arcsec-2 and reveal warps in the outer M31 disk in surface brightness. The equivalent WIRCam mapping in the near-infrared uses a combination of sky-target nodding and image-to-image sky offset optimization to produce stable surface brightnesses. This study enables a detailed analysis of the systematics of spectral energy distribution fitting with near-infrared bands where asymptotic giant branch stars impose a significant, but ill-constrained, contribution to the near-infrared light of a galaxy. Here we present panchromatic surface brightness maps and initial results from our near-infrared resolved stellar catalog.

  19. Pulsar and CV Observations

    NASA Astrophysics Data System (ADS)

    Malina, R. F.

    PSR_0656+14: Measurement of surface thermal emission from neutron stars (NS) is essential to theories regarding the condensed matter state equation, the thermal evolution of NS, and of NS atmospheres. We propose to conduct 50 Ang band FUV photometric observations of PSR B0656+14, an X-ray, SXR and EUV bright isolated NS with an optical counterpart. FUV photometry will provide critical characterization of the NS's surface thermal radiation. Higher energy observations may be effected by poorly established effects including magnetized atmospheres, chemical compositions, temperature gradients and gravitational effects. Optical observations may be subject to non-thermal effects. V3885 Sgr: V3885 Sgr is one of the brightest nonmagnetic cataclysmic variables. We propose to observe V3885 Sgr for 5 to 6 contiguous FUSE orbits, achieving a S/N of about 12 at full resolution even at the troughs of the source's O VI absorption lines in each spectrum (assuming 2000 sec visibility per orbit). The primary purpose of the observations is to use the source as a bright continuum against which to study local interstellar absorption lines. Although observed on Malina's Co-I Program, the data will be analyzed in collaboration with members of the O VI Project.

  20. Microwave brightness temperature of a windblown sea

    NASA Technical Reports Server (NTRS)

    Hall, F. G.

    1972-01-01

    A mathematical model is developed for the apparent temperature of the sea at all microwave frequencies. The model is a numerical model in which both the clear water structure and white water are accounted for as a function of wind speed. The model produces results similar to Stogryn's model at 19.35 GHz for wind speeds less than 8 m/sec; it can use radiosonde data to calculate atmospheric effects and can incorporate an empirically determined antenna gain pattern. The corresponding computer program is of modular design and the logic of the main program is capable of treating a horizontally inhomogeneous surface or atmosphere. It is shown that a variation of microwave brightness temperature with zenith angle is necessary to produce the wind sensitivity of the horizontally polarized brightness temperature; the variation of sky temperature with frequency is sufficient to produce a frequency dependent wind sensitivity.

  1. Skylab experiment SO73: Gegenschein/zodiacal light. [electrophotometry of surface brightness and polarization

    NASA Technical Reports Server (NTRS)

    Weinberg, J. L.

    1976-01-01

    A 10 color photoelectric polarimeter was used to measure the surface brightness and polarization associated with zodiacal light, background starlight, and spacecraft corona during each of the Skylab missions. Fixed position and sky scanning observations were obtained during Skylab missions SL-2 and SL-3 at 10 wavelenghts between 4000A and 8200A. Initial results from the fixed-position data are presented on the spacecraft corona and on the polarized brightness of the zodiacal light. Included among the fixed position regions that were observed are the north celestial pole, south ecliptic pole, two regions near the north galactic pole, and 90 deg from the sun in the ecliptic. The polarized brightness of the zodiacal light was found to have the color of the sun at each of these positions. Because previous observations found the total brightness to have the color of the sun from the near ultraviolet out to 2.4 micrometers, the degree of polarization of the zodiacal light is independent of wavelength from 4000A to 8200A.

  2. Performance of the K+ ion diode in the 2 MV injector for heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Bieniosek, F. M.; Henestroza, E.; Kwan, J. W.

    2002-02-01

    Heavy ion beam inertial fusion driver concepts depend on the availability and performance of high-brightness high-current ion sources. Surface ionization sources have relatively low current density but high brightness because of the low temperature of the emitted ions. We have measured the beam profiles at the exit of the injector diode, and compared the measured profiles with EGUN and WARP-3D predictions. Spherical aberrations are significant in this large aspect ratio diode. We discuss the measured and calculated beam size and beam profiles, the effect of aberrations, quality of vacuum, and secondary electron distributions on the beam profile.

  3. Focusing metasurface quantum-cascade laser with a near diffraction-limited beam

    DOE PAGES

    Xu, Luyao; Chen, Daguan; Itoh, Tatsuo; ...

    2016-10-17

    A terahertz vertical-external-cavity surface-emitting-laser (VECSEL) is demonstrated using an active focusing reflectarray metasurface based on quantum-cascade gain material. The focusing effect enables a hemispherical cavity with flat optics, which exhibits higher geometric stability than a plano-plano cavity and a directive and circular near-diffraction limited Gaussian beam with M 2 beam parameter as low as 1.3 and brightness of 1.86 × 10 6 Wsr –1m –2. As a result, this work initiates the potential of leveraging inhomogeneous metasurface and reflectarray designs to achieve high-power and high-brightness terahertz quantum-cascade VECSELs.

  4. Modeling of Diamond Field-Emitter-Arrays for high brightness photocathode applications

    NASA Astrophysics Data System (ADS)

    Kwan, Thomas; Huang, Chengkun; Piryatinski, Andrei; Lewellen, John; Nichols, Kimberly; Choi, Bo; Pavlenko, Vitaly; Shchegolkov, Dmitry; Nguyen, Dinh; Andrews, Heather; Simakov, Evgenya

    2017-10-01

    We propose to employ Diamond Field-Emitter-Arrays (DFEAs) as high-current-density ultra-low-emittance photocathodes for compact laser-driven dielectric accelerators capable of generating ultra-high brightness electron beams for advanced applications. We develop a semi-classical Monte-Carlo photoemission model for DFEAs that includes carriers' transport to the emitter surface and tunneling through the surface under external fields. The model accounts for the electronic structure size quantization affecting the transport and tunneling process within the sharp diamond tips. We compare this first principle model with other field emission models, such as the Child-Langmuir and Murphy-Good models. By further including effects of carrier photoexcitation, we perform simulations of the DFEAs' photoemission quantum yield and the emitted electron beam. Details of the theoretical model and validation against preliminary experimental data will be presented. Work ssupported by LDRD program at LANL.

  5. Identification and Classification of Transient Signatures in Over-Land SSM/I Imagery

    NASA Technical Reports Server (NTRS)

    Petty, Grant W.; Conner, Mark D.

    1994-01-01

    Two distinct yet related factors make it difficult to reliably detect precipitation over land with passive microwave techniques, such as those developed during recent years for the Special Sensor Microwave/Imager (SSM/I). The first factor is the general lack of contrast between radiances from the strongly emitting land background and that from a non-scattering atmosphere. Indeed. for certain common combinations of surface emissivity and temperature (both surface and atmospheric), significant changes in atmospheric opacity due to liquid water may have a negligible effect on satellite observed brightness temperatures. and whatever minor change occurs may be of either positive or negative sign. For this reason it is generally necessary for some degree of volume scattering by precipitation-size ice particles to be present in order to reduce the brightness temperature of the atmosphere relative to the warm background. by which process the precipitation may be observed.

  6. The bright-bright and bright-dark mode coupling-based planar metamaterial for plasmonic EIT-like effect

    NASA Astrophysics Data System (ADS)

    Yu, Wei; Meng, Hongyun; Chen, Zhangjie; Li, Xianping; Zhang, Xing; Wang, Faqiang; Wei, Zhongchao; Tan, Chunhua; Huang, Xuguang; Li, Shuti

    2018-05-01

    In this paper, we propose a novel planar metamaterial structure for the electromagnetically induced transparency (EIT)-like effect, which consists of a split-ring resonator (SRR) and a pair of metal strips. The simulated results indicate that a single transparency window can be realized in the symmetry situation, which originates from the bright-bright mode coupling. Further, a dual-band EIT-like effect can be achieved in the asymmetry situation, which is due to the bright-bright mode coupling and bright-dark mode coupling, respectively. Different EIT-like effect can be simultaneously achieved in the proposed structure with the different situations. It is of certain significance for the study of EIT-like effect.

  7. Comparative Analysis of Aerosol Retrievals from MODIS, OMI and MISR Over Sahara Region

    NASA Technical Reports Server (NTRS)

    Lyapustin, A.; Wang, Y.; Hsu, C.; Terres, O.; Leptoukh, G.; Kalashnikova, O.; Korkin, S.

    2011-01-01

    MODIS is a wide field-of-view sensor providing daily global observations of the Earth. Currently, global MODIS aerosol retrievals over land are performed with the main Dark Target algorithm complimented with the Deep Blue (DB) Algorithm over bright deserts. The Dark Target algorithm relies on surface parameterization which relates reflectance in MODIS visible bands with the 2.1 micrometer region, whereas the Deep Blue algorithm uses an ancillary angular distribution model of surface reflectance developed from the time series of clear-sky MODIS observations. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm has been developed for MODIS. MAIAC uses a time series and an image based processing to perform simultaneous retrievals of aerosol properties and surface bidirectional reflectance. It is a generic algorithm which works over both dark vegetative surfaces and bright deserts and performs retrievals at 1 km resolution. In this work, we will provide a comparative analysis of DB, MAIAC, MISR and OMI aerosol products over bright deserts of northern Africa.

  8. Analyses of tomato fruit brightness mutants uncover both cutin-deficient and cutin-abundant mutants and a new hypomorphic allele of GDSL lipase.

    PubMed

    Petit, Johann; Bres, Cécile; Just, Daniel; Garcia, Virginie; Mauxion, Jean-Philippe; Marion, Didier; Bakan, Bénédicte; Joubès, Jérôme; Domergue, Frédéric; Rothan, Christophe

    2014-02-01

    The cuticle is a protective layer synthesized by epidermal cells of the plants and consisting of cutin covered and filled by waxes. In tomato (Solanum lycopersicum) fruit, the thick cuticle embedding epidermal cells has crucial roles in the control of pathogens, water loss, cracking, postharvest shelf-life, and brightness. To identify tomato mutants with modified cuticle composition and architecture and to further decipher the relationships between fruit brightness and cuticle in tomato, we screened an ethyl methanesulfonate mutant collection in the miniature tomato cultivar Micro-Tom for mutants with altered fruit brightness. Our screen resulted in the isolation of 16 glossy and 8 dull mutants displaying changes in the amount and/or composition of wax and cutin, cuticle thickness, and surface aspect of the fruit as characterized by optical and environmental scanning electron microscopy. The main conclusions on the relationships between fruit brightness and cuticle features were as follows: (1) screening for fruit brightness is an effective way to identify tomato cuticle mutants; (2) fruit brightness is independent from wax load variations; (3) glossy mutants show either reduced or increased cutin load; and (4) dull mutants display alterations in epidermal cell number and shape. Cuticle composition analyses further allowed the identification of groups of mutants displaying remarkable cuticle changes, such as mutants with increased dicarboxylic acids in cutin. Using genetic mapping of a strong cutin-deficient mutation, we discovered a novel hypomorphic allele of GDSL lipase carrying a splice junction mutation, thus highlighting the potential of tomato brightness mutants for advancing our understanding of cuticle formation in plants.

  9. Analyses of Tomato Fruit Brightness Mutants Uncover Both Cutin-Deficient and Cutin-Abundant Mutants and a New Hypomorphic Allele of GDSL Lipase[C][W][OPEN

    PubMed Central

    Petit, Johann; Bres, Cécile; Just, Daniel; Garcia, Virginie; Mauxion, Jean-Philippe; Marion, Didier; Bakan, Bénédicte; Joubès, Jérôme; Domergue, Frédéric; Rothan, Christophe

    2014-01-01

    The cuticle is a protective layer synthesized by epidermal cells of the plants and consisting of cutin covered and filled by waxes. In tomato (Solanum lycopersicum) fruit, the thick cuticle embedding epidermal cells has crucial roles in the control of pathogens, water loss, cracking, postharvest shelf-life, and brightness. To identify tomato mutants with modified cuticle composition and architecture and to further decipher the relationships between fruit brightness and cuticle in tomato, we screened an ethyl methanesulfonate mutant collection in the miniature tomato cultivar Micro-Tom for mutants with altered fruit brightness. Our screen resulted in the isolation of 16 glossy and 8 dull mutants displaying changes in the amount and/or composition of wax and cutin, cuticle thickness, and surface aspect of the fruit as characterized by optical and environmental scanning electron microscopy. The main conclusions on the relationships between fruit brightness and cuticle features were as follows: (1) screening for fruit brightness is an effective way to identify tomato cuticle mutants; (2) fruit brightness is independent from wax load variations; (3) glossy mutants show either reduced or increased cutin load; and (4) dull mutants display alterations in epidermal cell number and shape. Cuticle composition analyses further allowed the identification of groups of mutants displaying remarkable cuticle changes, such as mutants with increased dicarboxylic acids in cutin. Using genetic mapping of a strong cutin-deficient mutation, we discovered a novel hypomorphic allele of GDSL lipase carrying a splice junction mutation, thus highlighting the potential of tomato brightness mutants for advancing our understanding of cuticle formation in plants. PMID:24357602

  10. How visual illusions illuminate complementary brain processes: illusory depth from brightness and apparent motion of illusory contours

    PubMed Central

    Grossberg, Stephen

    2014-01-01

    Neural models of perception clarify how visual illusions arise from adaptive neural processes. Illusions also provide important insights into how adaptive neural processes work. This article focuses on two illusions that illustrate a fundamental property of global brain organization; namely, that advanced brains are organized into parallel cortical processing streams with computationally complementary properties. That is, in order to process certain combinations of properties, each cortical stream cannot process complementary properties. Interactions between these streams, across multiple processing stages, overcome their complementary deficiencies to compute effective representations of the world, and to thereby achieve the property of complementary consistency. The two illusions concern how illusory depth can vary with brightness, and how apparent motion of illusory contours can occur. Illusory depth from brightness arises from the complementary properties of boundary and surface processes, notably boundary completion and surface-filling in, within the parvocellular form processing cortical stream. This illusion depends upon how surface contour signals from the V2 thin stripes to the V2 interstripes ensure complementary consistency of a unified boundary/surface percept. Apparent motion of illusory contours arises from the complementary properties of form and motion processes across the parvocellular and magnocellular cortical processing streams. This illusion depends upon how illusory contours help to complete boundary representations for object recognition, how apparent motion signals can help to form continuous trajectories for target tracking and prediction, and how formotion interactions from V2-to-MT enable completed object representations to be continuously tracked even when they move behind intermittently occluding objects through time. PMID:25389399

  11. Precursor state of oxygen molecules on the Si(001) surface during the initial room-temperature adsorption

    NASA Astrophysics Data System (ADS)

    Hwang, Eunkyung; Chang, Yun Hee; Kim, Yong-Sung; Koo, Ja-Yong; Kim, Hanchul

    2012-10-01

    The initial adsorption of oxygen molecules on Si(001) is investigated at room temperature. The scanning tunneling microscopy images reveal a unique bright O2-induced feature. The very initial sticking coefficient of O2 below 0.04 Langmuir is measured to be ˜0.16. Upon thermal annealing at 250-600 °C, the bright O2-induced feature is destroyed, and the Si(001) surface is covered with dark depressions that seem to be oxidized structures with -Si-O-Si- bonds. This suggests that the observed bright O2-induced feature is an intermediate precursor state that may be either a silanone species or a molecular adsorption structure.

  12. SPARC: MASS MODELS FOR 175 DISK GALAXIES WITH SPITZER PHOTOMETRY AND ACCURATE ROTATION CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lelli, Federico; McGaugh, Stacy S.; Schombert, James M., E-mail: federico.lelli@case.edu

    2016-12-01

    We introduce SPARC ( Spitzer Photometry and Accurate Rotation Curves): a sample of 175 nearby galaxies with new surface photometry at 3.6  μ m and high-quality rotation curves from previous H i/H α studies. SPARC spans a broad range of morphologies (S0 to Irr), luminosities (∼5 dex), and surface brightnesses (∼4 dex). We derive [3.6] surface photometry and study structural relations of stellar and gas disks. We find that both the stellar mass–H i mass relation and the stellar radius–H i radius relation have significant intrinsic scatter, while the H i   mass–radius relation is extremely tight. We build detailedmore » mass models and quantify the ratio of baryonic to observed velocity ( V {sub bar}/ V {sub obs}) for different characteristic radii and values of the stellar mass-to-light ratio (ϒ{sub ⋆}) at [3.6]. Assuming ϒ{sub ⋆} ≃ 0.5 M {sub ⊙}/ L {sub ⊙} (as suggested by stellar population models), we find that (i) the gas fraction linearly correlates with total luminosity; (ii) the transition from star-dominated to gas-dominated galaxies roughly corresponds to the transition from spiral galaxies to dwarf irregulars, in line with density wave theory; and (iii)  V {sub bar}/ V {sub obs} varies with luminosity and surface brightness: high-mass, high-surface-brightness galaxies are nearly maximal, while low-mass, low-surface-brightness galaxies are submaximal. These basic properties are lost for low values of ϒ{sub ⋆} ≃ 0.2 M {sub ⊙}/ L {sub ⊙} as suggested by the DiskMass survey. The mean maximum-disk limit in bright galaxies is ϒ{sub ⋆} ≃ 0.7 M {sub ⊙}/ L {sub ⊙} at [3.6]. The SPARC data are publicly available and represent an ideal test bed for models of galaxy formation.« less

  13. ARC-1979-A79-7020

    NASA Image and Video Library

    1979-02-28

    Range : 7 million kilometers (5 million miles) Callisto is Jupiter's outermost Galilean satellites and darkest of the four(but almost twice as bright as Earth's Moon). Mottled appearance from bright and dark patches. Bright spots seem like rayed or bright halved craters seen on our Moon. This face is always turned toward Jupiter. Photo taken through violet filter. Ganymede is slightly larger than Mercury but much less dense (twice the density of water). Its surface brightness is 4 times of Earth's Moon. Mare regions (dark features) are like the Moon's but have twice the brightness, and believed to be unlikely of rock or lava as the Moon's are. It's north pole seems covered with brighter material and may be water frost. Scattered brighter spots may be related to impact craters or source of fresh ice.

  14. Syrtis Major

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 1 May 2002) The Science This image is from the region of Syrtis Major, which is dominated by a low-relief shield volcano. This area is believed to be an area of vigorous aeolian activity with strong winds in the east-west direction. The effects of these winds are observed as relatively bright streaks across the image, extending from topographic features such as craters. The brighter surface material probably indicates a smaller relative particle size in these areas, as finer particles have a higher albedo. The bright streaks seen off of craters are believed to have formed during dust storms. A raised crater rim can cause a reduction in the wind velocity directly behind it, which results in finer particles being preferentially deposited in this location. In the top half of the image, there is a large bright streak that crosses the entire image. There is no obvious topographic obstacle, therefore it is unclear whether it was formed in the same manner as described above. This image is located northwest of Nili Patera, a large caldera in Syrtis Major. Different flows from the caldera eruptions can be recognized as raised ridges, representing the edge of a flow lobe. The Story In the 17th century, Holland was in its Golden Age, a time of cultural greatness and immense political and economic influence in the world. In that time, lived a inquisitive person named Christian Huygens. As a boy, he loved to draw and to figure out problems in mathematics. As a man, he used these talents to make the first detailed drawings of the Martian surface - - only 50 years or so after Galileo first turned his telescope on Mars. Mars suddenly became something other than a small red dot in the sky. One of the drawings Huygens made was of a dark marking on the red planet's surface named Syrtis Major. Almost 350 years later, here we are with an orbiter that can show us this place in detail. Exploration lives! It's great we can study this area up close. In earlier periods of history, scientists were fascinated with Syrtis Major because this dark region varied so much through the seasons and years. Some people thought it might be a changing sea, and others thought it might be vegetation. Early spacecraft like Mariner and Viking revealed for the first time that the changes were caused by the wind blowing dust and sand across the surface. What we can see in this image is exactly that: evidence of a lot of wind action. Bright dust patches streak across this image, formed through wind interference from craters and other landforms. These wispy, bright streaks are spread on the surface by a vigorous, east-west wind that kicked up huge dust storms, scattering the fine particles of sand and dust in an almost etherial pattern. The bright streaks in the top part of the image might have formed in a slightly different way, because there is no landform standing in the wind's way. Beneath the bright surface dust are raised ridges that mark the edges of earlier lava flows from Nili Patera, a Martian 'caldera.' A caldera is a collapsed, bowl-shaped depression at the top of a volcano cone. Can you imagine how Christian Huygens would feel if he lived today and could see all of this knowledge unfold? Or how it would feel to be the first person to stand in this dark volcanic and cratered region, knowing how many discovers had paved the way to that moment? Yes, exploration lives!

  15. A MegaCam Survey of Outer Halo Satellites. III. Photometric and Structural Parameters

    NASA Astrophysics Data System (ADS)

    Muñoz, Ricardo R.; Côté, Patrick; Santana, Felipe A.; Geha, Marla; Simon, Joshua D.; Oyarzún, Grecco A.; Stetson, Peter B.; Djorgovski, S. G.

    2018-06-01

    We present structural parameters from a wide-field homogeneous imaging survey of Milky Way satellites carried out with the MegaCam imagers on the 3.6 m Canada–France–Hawaii Telescope and 6.5 m Magellan-Clay telescope. Our survey targets an unbiased sample of “outer halo” satellites (i.e., substructures having galactocentric distances greater than 25 kpc) and includes classical dSph galaxies, ultra-faint dwarfs, and remote globular clusters. We combine deep, panoramic gr imaging for 44 satellites and archival gr imaging for 14 additional objects (primarily obtained with the DECam instrument as part of the Dark Energy Survey) to measure photometric and structural parameters for 58 outer halo satellites. This is the largest and most uniform analysis of Milky Way satellites undertaken to date and represents roughly three-quarters (58/81 ≃ 72%) of all known outer halo satellites. We use a maximum-likelihood method to fit four density laws to each object in our survey: exponential, Plummer, King, and Sérsic models. We systematically examine the isodensity contour maps and color–magnitude diagrams for each of our program objects, present a comparison with previous results, and tabulate our best-fit photometric and structural parameters, including ellipticities, position angles, effective radii, Sérsic indices, absolute magnitudes, and surface brightness measurements. We investigate the distribution of outer halo satellites in the size–magnitude diagram and show that the current sample of outer halo substructures spans a wide range in effective radius, luminosity, and surface brightness, with little evidence for a clean separation into star cluster and galaxy populations at the faintest luminosities and surface brightnesses.

  16. Is the zodiacal light intensity steady. [cloud surface brightness and polarization from OSO-5 data

    NASA Technical Reports Server (NTRS)

    Burnett, G. B.; Sparrow, J. G.; Ney, E. P.

    1974-01-01

    It is pointed out that conclusions reported by Sparrow and Ney (1972, 1973) could be confirmed in an investigation involving the refinement of OSO-5 data on zodiacal light. It had been found by Sparrow and Ney that the absolute value of both the surface brightness and polarization of the zodiacal cloud varied by less than 10% over the 4-yr period from January 1969 to January 1973.

  17. Measurements of the dielectric properties of sea water at 1.43 GHz

    NASA Technical Reports Server (NTRS)

    Ho, W. W.; Love, A. W.; Vanmelle, M. J.

    1974-01-01

    Salinity and temperature of water surfaces of estuaries and bay regions are determined to accuracies of 1 ppt salinity and 0.3 kelvin surface temperature. L-band and S-band radiometers are used in combination as brightness temperature detectors. The determination of the brightness temperature versus salinity, with the water surface temperature as a parameter for 1.4 GHz, is performed with a capillary tube inserted into a resonance cavity. Detailed analysis of the results indicates that the measured values are accurate to better than 0.2 percent in the electric property epsilon' and 0.4 percent in epsilon''. The calculated brightness temperature as a function of temperature and salinity is better than 0.2 kelvin. Thus it is possible to reduce the measured data obtained with the two-frequency radiometer system with 1 ppt accuracy to values in the salinity range 5 to 40 ppt.

  18. Low-temperature transonic cooling flows in galaxy clusters

    NASA Technical Reports Server (NTRS)

    Sulkanen, Martin E.; Burns, Jack O.; Norman, Michael L.

    1989-01-01

    Calculations are presented which demonstrate that cooling flow models with large sonic radii may be consistent with observed cluster gas properties. It is found that plausible cluster parameters and cooling flow mass accretion rates can produce sonic radii of 10-20 kpc for sonic point temperatures of 1-3 x 10 to the 6th K. The numerical calculations match these cooling flows to hydrostatic atmosphere solutions for the cluster gas beyond the cooling flow region. The cooling flows produce no appreciable 'holes' in the surface brightness toward the cluster center, and the model can be made to match the observed X-ray surface brightness of three clusters in which cooling flows had been believed to be absent. It is suggested that clusters with low velocity dispersion may be the natural location for such 'cool' cooling flows, and fits of these models to the X-ray surface brightness profiles for three clusters are presented.

  19. Microwave Remote Sensing Modeling of Ocean Surface Salinity and Winds Using an Empirical Sea Surface Spectrum

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.

    2004-01-01

    Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.

  20. The Origin of Regional Dust Deposits on Mars

    NASA Technical Reports Server (NTRS)

    Christensen, P. R.

    1985-01-01

    Recently, additional evidence was derived from the Viking Infrared Thermal Mapper observations that allows a more complete model for the formation of Low Thermal inertia-high Albedo regions to be proposed. The first observation is that dust appears to be currently accumulating in the low thermal inertia regions. Following each global dust storm a thin layer of dust is deposited globally, as evidenced by an increase in surface albedo seen from orbit and from the Viking Lander sites. During the period following the storm, the bright dust fallout is subsequently removed from low albedo regions, as indicated by the post-storm darkening of these surfaces and by an increase in the atmospheric dust content over dark regions relative to the bright, low thermal inertia regions. Thus, the fine dust storm material is removed from dark regions but not from the bright regions, resulting in a net accumulation within the bright, low thermal inertia regions. Once deposition has begun, the covering of exposed rocks and sand and the accumulation of fine material on the surface make removal of material increasingly difficult, thereby enhancing the likelihood that material will accumulate within the low thermal inertia regions.

  1. Colors and Photometry of Bright Materials on Vesta as Seen by the Dawn Framing Camera

    NASA Technical Reports Server (NTRS)

    Schroeder, S. E.; Li, J.-Y.; Mittlefehldt, D. W.; Pieters, C. M.; De Sanctis, M. C.; Hiesinger, H.; Blewett, D. T.; Russell, C. T.; Raymond, C. A.; Keller, H. U.; hide

    2012-01-01

    The Dawn spacecraft has been in orbit around the asteroid Vesta since July, 2011. The on-board Framing Camera has acquired thousands of high-resolution images of the regolith-covered surface through one clear and seven narrow-band filters in the visible and near-IR wavelength range. It has observed bright and dark materials that have a range of reflectance that is unusually wide for an asteroid. Material brighter than average is predominantly found on crater walls, and in ejecta surrounding caters in the southern hemisphere. Most likely, the brightest material identified on the Vesta surface so far is located on the inside of a crater at 64.27deg S, 1.54deg . The apparent brightness of a regolith is influenced by factors such as particle size, mineralogical composition, and viewing geometry. As such, the presence of bright material can indicate differences in lithology and/or degree of space weathering. We retrieve the spectral and photometric properties of various bright terrains from false-color images acquired in the High Altitude Mapping Orbit (HAMO). We find that most bright material has a deeper 1-m pyroxene band than average. However, the aforementioned brightest material appears to have a 1-m band that is actually less deep, a result that awaits confirmation by the on-board VIR spectrometer. This site may harbor a class of material unique for Vesta. We discuss the implications of our spectral findings for the origin of bright materials.

  2. Effect of Surface Chemistry on the Fluorescence of Detonation Nanodiamonds.

    PubMed

    Reineck, Philipp; Lau, Desmond W M; Wilson, Emma R; Fox, Kate; Field, Matthew R; Deeleepojananan, Cholaphan; Mochalin, Vadym N; Gibson, Brant C

    2017-11-28

    Detonation nanodiamonds (DNDs) have unique physical and chemical properties that make them invaluable in many applications. However, DNDs are generally assumed to show weak fluorescence, if any, unless chemically modified with organic molecules. We demonstrate that detonation nanodiamonds exhibit significant and excitation-wavelength-dependent fluorescence from the visible to the near-infrared spectral region above 800 nm, even without the engraftment of organic molecules to their surfaces. We show that this fluorescence depends on the surface functionality of the DND particles. The investigated functionalized DNDs, produced from the same purified DND as well as the as-received polyfunctional starting material, are hydrogen, hydroxyl, carboxyl, ethylenediamine, and octadecylamine-terminated. All DNDs are investigated in solution and on a silicon wafer substrate and compared to fluorescent high-pressure high-temperature nanodiamonds. The brightest fluorescence is observed from octadecylamine-functionalized particles and is more than 100 times brighter than the least fluorescent particles, carboxylated DNDs. The majority of photons emitted by all particle types likely originates from non-diamond carbon. However, we locally find bright and photostable fluorescence from nitrogen-vacancy centers in diamond in hydrogenated, hydroxylated, and carboxylated detonation nanodiamonds. Our results contribute to understanding the effects of surface chemistry on the fluorescence of DNDs and enable the exploration of the fluorescent properties of DNDs for applications in theranostics as nontoxic fluorescent labels, sensors, nanoscale tracers, and many others where chemically stable and brightly fluorescent nanoparticles with tailorable surface chemistry are needed.

  3. IRAC Imaging of LSB Galaxies

    NASA Astrophysics Data System (ADS)

    Schombert, James; McGaugh, Stacy; Lelli, Federico

    2017-04-01

    We propose a program to observe a large sample of Low Surface Brightness (LSB) galaxies. Large galaxy surveys conducted with Spitzer suffer from the unavoidable selection bias against LSB systems (e.g., the S4G survey). Even those programs thathave specifically targeted LSB galaxies have usually been restricted objects of intermediate surface brightness (between 22 and 23 B mag/ []). Our sample is selected to be of a more extreme LSB nature (with central surface brightness fainter than 23 Bmag/[]). Even warm, Spitzer is the ideal instrument to image these low contrast targets in the near infrared: our sample goes a considerable way towards remedying this hole in the Spitzer legacy archive, also increasing coverage in terms of stellar mass, gas mass, and SFR. The sample will be used to address the newly discovered radial acceleration relation (RAR) in disk galaxies. While issues involving the connection between baryons and dark matter have been known since the development of the global baryonic Tully-Fisher (bTF) relation, it is only in the last six months that the particle physics and theoretical communities have recognized and responded to the local coupling between dark and baryonic matter represented by the RAR. This important new correlation is effectively a new natural law for galaxies. Spitzer photometry has been at the forefront of resolving the stellar mass component in galaxies that make-up the RAR and is the primary reason for the discovery of this new kinematic law.

  4. Chasms on Dione

    NASA Image and Video Library

    2015-08-17

    While not bursting with activity like its sister satellite Enceladus, the surface of Dione is definitely not boring. Some parts of the surface are covered by linear features, called chasmata, which provide dramatic contrast to the round impact craters that typically cover moons. The bright network of fractures on Dione (698 miles or 1123 kilometers across) was seen originally at poor resolution in Voyager images and was labeled as "wispy terrain." The nature of this terrain was unclear until Cassini showed that they weren't surface deposits of frost, as some had suspected, but rather a pattern of bright icy cliffs among myriad fractures. One possibility is that this stress pattern may be related to Dione's orbital evolution and the effect of tidal stresses over time. This view looks toward the trailing hemisphere of Dione. North on Dione is up. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on April 11, 2015. The view was acquired at a distance of approximately 68,000 miles (110,000 kilometers) from Dione. Image scale is 2,200 feet (660 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18327

  5. Photographer : JPL Range : 7 million kilometers (5 million miles) Callisto is Jupiter's outermost

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Photographer : JPL Range : 7 million kilometers (5 million miles) Callisto is Jupiter's outermost Galilean satellites and darkest of the four(but almost twice as bright as Earth's Moon). Mottled appearance from bright and dark patches. Bright spots seem like rayed or bright halved craters seen on our Moon. This face is always turned toward Jupiter. Photo taken through violet filter. Ganymede is slightly larger than Mercury but much less dense (twice the density of water). Its surface brightness is 4 times of Earth's Moon. Mare regions (dark features) are like the Moon's but have twice the brightness, and believed to be unlikely of rock or lava as the Moon's are. It's north pole seems covered with brighter material and may be water frost. Scattered brighter spots may be related to impact craters or source of fresh ice.

  6. Results of soil moisture flights during April 1974

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Blanchard, B. J.; Burke, W. J.; Paris, J. F.; Swang, J. R.

    1976-01-01

    The results presented here are derived from measurements made during the April 5 and 6, 1974 flights of the NASA P-3A aircraft over the Phoenix, Arizona agricultural test site. The purpose of the mission was to study the use of microwave techniques for the remote sensing of soil moisture. These results include infrared (10-to 12 micrometers) 2.8-cm and 21-cm brightness temperatures for approximately 90 bare fields. These brightness temperatures are compared with surface measurements of the soil moisture made at the time of the overflights. These data indicate that the combination of the sum and difference of the vertically and the horizontally polarized brightness temperatures yield information on both the soil moisture and surface roughness conditions.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zemcov, M.; Cooray, A.; Bock, J.

    We have observed four massive galaxy clusters with the SPIRE instrument on the Herschel Space Observatory and measure a deficit of surface brightness within their central region after removing detected sources. We simulate the effects of instrumental sensitivity and resolution, the source population, and the lensing effect of the clusters to estimate the shape and amplitude of the deficit. The amplitude of the central deficit is a strong function of the surface density and flux distribution of the background sources. We find that for the current best fitting faint end number counts, and excellent lensing models, the most likely amplitudemore » of the central deficit is the full intensity of the cosmic infrared background (CIB). Our measurement leads to a lower limit to the integrated total intensity of the CIB of I{sub 250{mu}m}>0.69{sub -0.03}{sup +0.03}(stat.){sub -0.06}{sup +0.11}(sys.) MJy sr{sup -1}, with more CIB possible from both low-redshift sources and from sources within the target clusters. It should be possible to observe this effect in existing high angular resolution data at other wavelengths where the CIB is bright, which would allow tests of models of the faint source component of the CIB.« less

  8. Retrieval of Aerosol Microphysical Properties Based on the Optimal Estimation Method: Information Content Analysis for Satellite Polarimetric Remote Sensing Measurements

    NASA Astrophysics Data System (ADS)

    Hou, W. Z.; Li, Z. Q.; Zheng, F. X.; Qie, L. L.

    2018-04-01

    This paper evaluates the information content for the retrieval of key aerosol microphysical and surface properties for multispectral single-viewing satellite polarimetric measurements cantered at 410, 443, 555, 670, 865, 1610 and 2250 nm over bright land. To conduct the information content analysis, the synthetic data are simulated by the Unified Linearized Vector Radiative Transfer Model (UNLVTM) with the intensity and polarization together over bare soil surface for various scenarios. Following the optimal estimation theory, a principal component analysis method is employed to reconstruct the multispectral surface reflectance from 410 nm to 2250 nm, and then integrated with a linear one-parametric BPDF model to represent the contribution of polarized surface reflectance, thus further to decouple the surface-atmosphere contribution from the TOA measurements. Focusing on two different aerosol models with the aerosol optical depth equal to 0.8 at 550 nm, the total DFS and DFS component of each retrieval aerosol and surface parameter are analysed. The DFS results show that the key aerosol microphysical properties, such as the fine- and coarse-mode columnar volume concentration, the effective radius and the real part of complex refractive index at 550 nm, could be well retrieved with the surface parameters simultaneously over bare soil surface type. The findings of this study can provide the guidance to the inversion algorithm development over bright surface land by taking full use of the single-viewing satellite polarimetric measurements.

  9. Keck/NIRC2 Imaging of the Warped, Asymmetric Debris Disk Around HD 32297

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Rodigas, Timothy J.; Debes, John; Plavchan, Peter; Kuchner, Marc; Jang-Condell, Hannah; Wilner, David; Andrews, Sean; Kraus, Adam; Dahm, Scott; hide

    2012-01-01

    We present Keck/NIRC2 Ks band high-contrast coronagraphic imaging of the luminous debris disk around the nearby, young A star HD 32297 resolved at a projected separation of r = 0.3-2.5 arcse (approx 35-280 AU). The disk is highly warped to the north and exhibits a complex, "wavy" surface brightness profile interior to r approx 110 AU, where the peaks/plateaus in the profiles are shifted between the NE and SW disk lobes. The SW side of the disk is 50 - 100% brighter at r = 35 - 80 AU, and the location of its peak brightness roughly coincides with the disk's mm emission peak. Spectral energy distribution modeling suggests that HD 32297 has at least two dust populations that may originate from two separate belts likely at different locations, possibly at distances coinciding with the surface brightness peaks. A disk model for a single dust belt including a phase function with two components and a 5-10 AU pericenter offset explains the disk's warped structure and reproduces some of the surface brightness profile's shape (e.g. the overall "wavy" profile, the SB peak/plateau shifts) but more poorly reproduces the disk's brightness asymmetry. Although there may be alternate explanations, agreement between the SW disk brightness peak and disk's peak mm emission is consistent with an overdensity of very small, sub-blowout-sized dust and large, 0.1-1 mm-sized grains at approx 45 AU tracing the same parent population of planetesimals. New near-IR and submm observations may be able to clarify whether even more complex grain scattering properties or dynamical sculpting by an unseen planet are required to explain HD 32297's disk structure.

  10. Keck/NIRC2 Imaging of the Warped, Asymmetric Debris Disk Around HD 32297

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Rodigas, Timothy J.; Debes, John; Plavchan, Peter; Kuchner, Marc; Jang, Condell, Hannah; Wilner, David; Andrews, Sean; Dahm, Scott; Robitaille,Thomas

    2012-01-01

    We present Keck/NIRC2 K(sub s) band high-contrast coronagraphic imaging of the luminous debris disk around the nearby, young A star HD 32297 resolved at a projected separation of r = 0.3 - 2.5" (approx equals 35 - 280 AU). The disk is highly warped to the north and exhibits a complex, "wavy" surface brightness profile interior to r approx equals 110 AU, where the peaks/plateaus in the profiles are shifted between the NE and SW disk lobes. The SW side of the disk is 50 - 100% brighter at r = 35 - 80 AU, and the location of its peak brightness roughly coincides with the disk's mm emission peak. Spectral energy distribution modeling suggests that HD 32297 has at least two dust populations that may originate from two separate belts likely at different locations, possibly at distances coinciding with the surface brightness peaks. A disk model fur a single dust belt including a phase function with two components and a 5 - 10 AU pericenter offset explains the disk's warped structure and reproduces some of the surface brightness profile's shape (e.g. the overall "wavy" profile, the SB peak/plateau shifts) but more poorly reproduces the disk's brightness asymmetry and the profile at wider separations (r > 110 AU). Although there may be a1ternate explanations, agreement between the SW disk brightness peak and disk's peak rom emission is consistent with an overdensity of very small, sub-blowout-sized dust and large, 0.1 - 1 mm-sized grains at approx equal 45 AU tracing the same parent population of planetesimals. New near-IR and submm observations may be able to clarify whether even more complex grain scattering properties or dynamical sculpting by an unseen planet are required to explain HD 32297's disk structure.

  11. The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Implications for Spectral Line Intensity Mapping at Millimeter Wavelengths and CMB Spectral Distortions

    NASA Astrophysics Data System (ADS)

    Carilli, C. L.; Chluba, J.; Decarli, R.; Walter, F.; Aravena, M.; Wagg, J.; Popping, G.; Cortes, P.; Hodge, J.; Weiss, A.; Bertoldi, F.; Riechers, D.

    2016-12-01

    We present direct estimates of the mean sky brightness temperature in observing bands around 99 and 242 GHz due to line emission from distant galaxies. These values are calculated from the summed line emission observed in a blind, deep survey for spectral line emission from high redshift galaxies using ALMA (the ALMA spectral deep field observations “ASPECS” survey). In the 99 GHz band, the mean brightness will be dominated by rotational transitions of CO from intermediate and high redshift galaxies. In the 242 GHz band, the emission could be a combination of higher order CO lines, and possibly [C II] 158 μm line emission from very high redshift galaxies (z ˜ 6-7). The mean line surface brightness is a quantity that is relevant to measurements of spectral distortions of the cosmic microwave background, and as a potential tool for studying large-scale structures in the early universe using intensity mapping. While the cosmic volume and the number of detections are admittedly small, this pilot survey provides a direct measure of the mean line surface brightness, independent of conversion factors, excitation, or other galaxy formation model assumptions. The mean surface brightness in the 99 GHZ band is: T B = 0.94 ± 0.09 μK. In the 242 GHz band, the mean brightness is: T B = 0.55 ± 0.033 μK. These should be interpreted as lower limits on the average sky signal, since we only include lines detected individually in the blind survey, while in a low resolution intensity mapping experiment, there will also be the summed contribution from lower luminosity galaxies that cannot be detected individually in the current blind survey.

  12. Interferometric Constraints on Surface Brightness Asymmetries in Long-Period Variable Stars: A Threat to Accurate Gaia Parallaxes

    NASA Astrophysics Data System (ADS)

    Sacuto, S.; Jorissen, A.; Cruzalèbes, P.; Pasquato, E.; Chiavassa, A.; Spang, A.; Rabbia, Y.; Chesneau, O.

    2011-09-01

    A monitoring of surface brightness asymmetries in evolved giants and supergiants is necessary to estimate the threat that they represent to accurate Gaia parallaxes. Closure-phase measurements obtained with AMBER/VISA in a 3-telescope configuration are fitted by a simple model to constrain the photocenter displacement. The results for the C-type star TX Psc show a large deviation of the photocenter displacement that could bias the Gaia parallax.

  13. Evaluation and Analysis of Seasat a Scanning Multichannel Microwave Radiometer (SMMR) Antenna Pattern Correction (APC) Algorithm

    NASA Technical Reports Server (NTRS)

    Kitzis, S. N.; Kitzis, J. L.

    1979-01-01

    The accuracy of the SEASAT-A SMMR antenna pattern correction (APC) algorithm was assessed. Interim APC brightness temperature measurements for the SMMR 6.6 GHz channels are compared with surface truth derived sea surface temperatures. Plots and associated statistics are presented for SEASAT-A SMMR data acquired for the Gulf of Alaska experiment. The cross-track gradients observed in the 6.6 GHz brightness temperature data are discussed.

  14. Simulating a slow bar in the low surface brightness galaxy UGC 628

    NASA Astrophysics Data System (ADS)

    Chequers, Matthew H.; Spekkens, Kristine; Widrow, Lawrence M.; Gilhuly, Colleen

    2016-12-01

    We present a disc-halo N-body model of the low surface brightness galaxy UGC 628, one of the few systems that harbours a `slow' bar with a ratio of corotation radius to bar length of R ≡ R_c/a_b ˜ 2. We select our initial conditions using SDSS DR10 photometry, a physically motivated radially variable mass-to-light ratio profile, and rotation curve data from the literature. A global bar instability grows in our submaximal disc model, and the disc morphology and dynamics agree broadly with the photometry and kinematics of UGC 628 at times between peak bar strength and the onset of buckling. Prior to bar formation, the disc and halo contribute roughly equally to the potential in the galaxy's inner region, giving the disc enough self-gravity for bar modes to grow. After bar formation, there is significant mass redistribution, creating a baryon-dominated inner and dark matter-dominated outer disc. This implies that, unlike most other low surface brightness galaxies, UGC 628 is not dark matter dominated everywhere. Our model nonetheless implies that UGC 628 falls on the same relationship between dark matter fraction and rotation velocity found for high surface brightness galaxies, and lends credence to the argument that the disc mass fraction measured at the location where its contribution to the potential peaks is not a reliable indicator of its dynamical importance at all radii.

  15. The Chandra M10l Megasecond: Diffuse Emission

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Snowden, S. L.

    2009-01-01

    Because MIOl is nearly face-on, it provides an excellent laboratory in which to study the distribution of X-ray emitting gas in a typical late-type spiral galaxy. We obtained a Chandra observation with a cumulative exposure of roughly 1 Ms to study the diffuse X-ray emission in MlOl. The bulk of the X-ray emission is correlated with the star formation traced by the FUV emission. The global FUV/Xray correlation is non-linear (the X-ray surface brightness is roughly proportional to the square root of the FUV surface brightness) and the small-scale correlation is poor, probably due to the delay between the FUV emission and the X-ray production ill star-forming regions. The X-ray emission contains only minor contributions from unresolved stars (approximates less than 3%), unresolved X-ray point sources (approximates less than 4%), and individual supernova remnants (approximates 3%). The global spectrum of the diffuse emission can be reasonably well fitted with a three component thermal model, but the fitted temperatures are not unique; many distributions of emission measure can produce the same temperatures when observed with the current CCD energy resolution. The spectrum of the diffuse emission depends on the environment; regions with higher X-ray surface brightnesses have relatively stronger hard components, but there is no significant evidence that the temperatures of the emitting components increase with surface brightness.

  16. The distribution of star formation and metals in the low surface brightness galaxy UGC 628

    NASA Astrophysics Data System (ADS)

    Young, J. E.; Kuzio de Naray, Rachel; Wang, Sharon X.

    2015-09-01

    We introduce the MUSCEL Programme (MUltiwavelength observations of the Structure, Chemistry and Evolution of LSB galaxies), a project aimed at determining the star-formation histories of low surface brightness galaxies. MUSCEL utilizes ground-based optical spectra and space-based UV and IR photometry to fully constrain the star-formation histories of our targets with the aim of shedding light on the processes that led low surface brightness galaxies down a different evolutionary path from that followed by high surface brightness galaxies, such as our Milky Way. Here we present the spatially resolved optical spectra of UGC 628, observed with the VIRUS-P IFU at the 2.7-m Harlen J. Smith Telescope at the McDonald Observatory, and utilize emission-line diagnostics to determine the rate and distribution of star formation as well as the gas-phase metallicity and metallicity gradient. We find highly clustered star formation throughout UGC 628, excluding the core regions, and a log(O/H) metallicity around -4.2, with more metal-rich regions near the edges of the galactic disc. Based on the emission-line diagnostics alone, the current mode of star formation, slow and concentrated in the outer disc, appears to have dominated for quite some time, although there are clear signs of a much older stellar population formed in a more standard inside-out fashion.

  17. Fish with red fluorescent eyes forage more efficiently under dim, blue-green light conditions.

    PubMed

    Harant, Ulrike Katharina; Michiels, Nicolaas Karel

    2017-04-20

    Natural red fluorescence is particularly conspicuous in the eyes of some small, benthic, predatory fishes. Fluorescence also increases in relative efficiency with increasing depth, which has generated speculation about its possible function as a "light organ" to detect cryptic organisms under bluish light. Here we investigate whether foraging success is improved under ambient conditions that make red fluorescence stand out more, using the triplefin Tripterygion delaisi as a model system. We repeatedly presented 10 copepods to individual fish (n = 40) kept under a narrow blue-green spectrum and compared their performance with that under a broad spectrum with the same overall brightness. The experiment was repeated for two levels of brightness, a shaded one representing 0.4% of the light present at the surface and a heavily shaded one with about 0.01% of the surface brightness. Fish were 7% more successful at catching copepods under the narrow, fluorescence-friendly spectrum than under the broad spectrum. However, this effect was significant under the heavily shaded light treatment only. This outcome corroborates previous predictions that fluorescence may be an adaptation to blue-green, heavily shaded environments, which coincides with the opportunistic biology of this species that lives in the transition zone between exposed and heavily shaded microhabitats.

  18. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination

    NASA Astrophysics Data System (ADS)

    Li, Xiyan; Zhao, Yong-Biao; Fan, Fengjia; Levina, Larissa; Liu, Min; Quintero-Bermudez, Rafael; Gong, Xiwen; Quan, Li Na; Fan, James; Yang, Zhenyu; Hoogland, Sjoerd; Voznyy, Oleksandr; Lu, Zheng-Hong; Sargent, Edward H.

    2018-03-01

    The external quantum efficiencies of state-of-the-art colloidal quantum dot light-emitting diodes (QLEDs) are now approaching the limit set by the out-coupling efficiency. However, the brightness of these devices is constrained by the use of poorly conducting emitting layers, a consequence of the present-day reliance on long-chain organic capping ligands. Here, we report how conductive and passivating halides can be implemented in Zn chalcogenide-shelled colloidal quantum dots to enable high-brightness green QLEDs. We use a surface management reagent, thionyl chloride (SOCl2), to chlorinate the carboxylic group of oleic acid and graft the surfaces of the colloidal quantum dots with passivating chloride anions. This results in devices with an improved mobility that retain high external quantum efficiencies in the high-injection-current region and also feature a reduced turn-on voltage of 2.5 V. The treated QLEDs operate with a brightness of 460,000 cd m-2, significantly exceeding that of all previously reported solution-processed LEDs.

  19. A radar image of Venus.

    NASA Technical Reports Server (NTRS)

    Goldstein, R. M.; Rumsey, H. C.

    1972-01-01

    Radar scans of Venus have yielded a brightness map of a large portion of the surface. The bright area in the south (alpha) and the twin such areas in the north (beta and delta) were first discovered by spectral analysis of radar echos. When range-gating is also applied, their shapes are revealed, and they are seen to be roundish and about 1000 km across. Although radar brightness can be the result of either intrinsic reflectivity or surface roughness, polarization studies show these features to be rough (to the scale of the wavelength, 12.5 cm). Dark, circular areas can also be seen, many with bright central spots. The dark areas are probably smooth. The blurring of the equatorial strip is an artifact of the range-Doppler geometry; all resolution disappears at the equator. Another artifact of the method is the 'ghost', in the south, of the images of beta and delta. Such ghosts appear only at the eastern and western extremes of the map.

  20. First direct visualization of spillover species emitted from pt nanoparticles.

    PubMed

    Takakusagi, Satoru; Fukui, Ken-ichi; Tero, Ryugo; Asakura, Kiyotaka; Iwasawa, Yasuhiro

    2010-11-02

    We studied the methanol adsorption behavior of Pt nanoparticles that were vacuum-deposited on a TiO(2)(110) surface at room temperature by using an ultrahigh vacuum (UHV) scanning tunneling microscope (STM). A large number of bright spots were observed on fivefold-coordinated Ti (Ti(5c)) rows of the TiO(2)(110) surface after exposure of the Pt/TiO(2)(110) to methanol vapor. We assigned the bright spots to methoxy species. These were mobile and were found to hop along the Ti(5c) rows. In situ time-resolved STM observations of the formation and migration of the bright spots on the Pt/TiO(2)(110) were carried out in the presence of methanol. The bright spots were produced at the periphery of the Pt nanoparticles and migrated to the substrate Ti(5c) rows. We discuss the spillover process and behavior of the methoxy species on the Pt/TiO(2)(110).

  1. CD94 surface density identifies a functional intermediary between the CD56bright and CD56dim human NK-cell subsets

    PubMed Central

    Mao, Hsiaoyin C.; Wei, Min; Hughes, Tiffany; Zhang, Jianying; Park, Il-kyoo; Liu, Shujun; McClory, Susan; Marcucci, Guido; Trotta, Rossana

    2010-01-01

    Human CD56bright natural killer (NK) cells possess little or no killer immunoglobulin-like receptors (KIRs), high interferon-γ (IFN-γ) production, but little cytotoxicity. CD56dim NK cells have high KIR expression, produce little IFN-γ, yet display high cytotoxicity. We hypothesized that, if human NK maturation progresses from a CD56bright to a CD56dim phenotype, an intermediary NK cell must exist, which demonstrates more functional overlap than these 2 subsets, and we used CD94 expression to test our hypothesis. CD94highCD56dim NK cells express CD62L, CD2, and KIR at levels between CD56bright and CD94lowCD56dim NK cells. CD94highCD56dim NK cells produce less monokine-induced IFN-γ than CD56bright NK cells but much more than CD94lowCD56dim NK cells because of differential interleukin-12–mediated STAT4 phosphorylation. CD94highCD56dim NK cells possess a higher level of granzyme B and perforin expression and CD94-mediated redirected killing than CD56bright NK cells but lower than CD94lowCD56dim NK cells. Collectively, our data suggest that the density of CD94 surface expression on CD56dim NK cells identifies a functional and likely developmental intermediary between CD56bright and CD94lowCD56dim NK cells. This supports the notion that, in vivo, human CD56bright NK cells progress through a continuum of differentiation that ends with a CD94lowCD56dim phenotype. PMID:19897577

  2. CD94 surface density identifies a functional intermediary between the CD56bright and CD56dim human NK-cell subsets.

    PubMed

    Yu, Jianhua; Mao, Hsiaoyin C; Wei, Min; Hughes, Tiffany; Zhang, Jianying; Park, Il-kyoo; Liu, Shujun; McClory, Susan; Marcucci, Guido; Trotta, Rossana; Caligiuri, Michael A

    2010-01-14

    Human CD56(bright) natural killer (NK) cells possess little or no killer immunoglobulin-like receptors (KIRs), high interferon-gamma (IFN-gamma) production, but little cytotoxicity. CD56(dim) NK cells have high KIR expression, produce little IFN-gamma, yet display high cytotoxicity. We hypothesized that, if human NK maturation progresses from a CD56(bright) to a CD56(dim) phenotype, an intermediary NK cell must exist, which demonstrates more functional overlap than these 2 subsets, and we used CD94 expression to test our hypothesis. CD94(high)CD56(dim) NK cells express CD62L, CD2, and KIR at levels between CD56(bright) and CD94(low)CD56(dim) NK cells. CD94(high)CD56(dim) NK cells produce less monokine-induced IFN-gamma than CD56(bright) NK cells but much more than CD94(low)CD56(dim) NK cells because of differential interleukin-12-mediated STAT4 phosphorylation. CD94(high)CD56(dim) NK cells possess a higher level of granzyme B and perforin expression and CD94-mediated redirected killing than CD56(bright) NK cells but lower than CD94(low)CD56(dim) NK cells. Collectively, our data suggest that the density of CD94 surface expression on CD56(dim) NK cells identifies a functional and likely developmental intermediary between CD56(bright) and CD94(low)CD56(dim) NK cells. This supports the notion that, in vivo, human CD56(bright) NK cells progress through a continuum of differentiation that ends with a CD94(low)CD56(dim) phenotype.

  3. Generation of dark and bright spin wave envelope soliton trains through self-modulational instability in magnetic films.

    PubMed

    Wu, Mingzhong; Kalinikos, Boris A; Patton, Carl E

    2004-10-08

    The generation of dark spin wave envelope soliton trains from a continuous wave input signal due to spontaneous modulational instability has been observed for the first time. The dark soliton trains were formed from high dispersion dipole-exchange spin waves propagated in a thin yttrium iron garnet film with pinned surface spins at frequencies situated near the dipole gaps in the dipole-exchange spin wave spectrum. Dark and bright soliton trains were generated for one and the same film through placement of the input carrier frequency in regions of negative and positive dispersion, respectively. Two unreported effects in soliton dynamics, hysteresis and period doubling, were also observed.

  4. Radiative transfer in multilayered random medium with laminar structure - Green's function approach

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.

    1986-01-01

    For a multilayered random medium with a laminar structure a Green's function approach is introduced to obtain the emitted intensity due to an arbitrary point source. It is then shown that the approach is applicable to both active and passive remote sensing. In active remote sensing, the computed radar backscattering cross section for the multilayered medium includes the effects of both volume multiple scattering and surface multiple scattering at the layer boundaries. In passive remote sensing, the brightness temperature is obtained for arbitrary temperature profiles in the layers. As an illustration the brightness temperature and reflectivity are calculated for a bounded layer and compared with results in the literature.

  5. Surface-plasmon resonance-enhanced multiphoton emission of high-brightness electron beams from a nanostructured copper cathode.

    PubMed

    Li, R K; To, H; Andonian, G; Feng, J; Polyakov, A; Scoby, C M; Thompson, K; Wan, W; Padmore, H A; Musumeci, P

    2013-02-15

    We experimentally investigate surface-plasmon assisted photoemission to enhance the efficiency of metallic photocathodes for high-brightness electron sources. A nanohole array-based copper surface was designed to exhibit a plasmonic response at 800 nm, fabricated using the focused ion beam milling technique, optically characterized and tested as a photocathode in a high power radio frequency photoinjector. Because of the larger absorption and localization of the optical field intensity, the charge yield observed under ultrashort laser pulse illumination is increased by more than 100 times compared to a flat surface. We also present the first beam characterization results (intrinsic emittance and bunch length) from a nanostructured photocathode.

  6. Extending the Deep Blue aerosol record from SeaWiFS and MODIS to NPP-VIIRS

    NASA Technical Reports Server (NTRS)

    Sayer, Andrew M.; Hsu, Nai-Yung Christina; Bettenhausen, Corey; Lee, Jaehwa

    2015-01-01

    Deep Blue expands AOD coverage to deserts and other bright surfaces. Using multiple similar satellite sensors enables us to obtain a long data record. The Deep Blue family consists of three separate aerosol optical depth (AOD) retrieval algorithms: 1. Bright Land: Surface reflectance database, BRDF correction. AOD retrieved separately at each of 412, 470/490, (650) nm. SSA retrieved for heavy dust events. 2. Dark Land: Spectral/directional surface reflectance relationship. AOD retrieved separately at 470/490 and 650 nm. 3. Water: Surface BRDF including glint, foam, underlight. Multispectral inversion (Not present in MODISdataset) All report the AOD at 550 nm, and Ångström exponent (AE).

  7. The estimation of the propagation delay through the troposphere from microwave radiometer data. [very long base interferometry

    NASA Technical Reports Server (NTRS)

    Moran, J. M.; Rosen, B. R.

    1980-01-01

    The uncertainity in propagation delay estimates is due primarily to tropospheric water, the total amount and vertical distribution of which is variable. Because water vapor both delays and attenuates microwave signals, the propagation delay, or wet path length, can be estimated from the microwave brightness temperature near the 22.235 GHz transition of water vapor. The data from a total of 240 radiosonde launches taken simultaneously were analyzed. Estimates of brightness temperature at 19 and 22 GHz and wet path length were made from these data. The wet path length in the zenith direction could be estimated from the surface water vapor density to an accuracy of 5 cm for the summer data and 2 cm for winter data. Using the brightness temperatures, the wet path could be estimated to an accuracy of 0.3 cm. Two dual frequency radiometers were refurbished in order to test these techniques. These radiometers were capable of measuring the difference in the brightness temperature at 30 deg elevation angle and at the zenith to an accuracy of about 1 K. In August 1975, 45 radiosondes were launched over an 11 day period. Brightness temperature measurements were made simultaneously at 19 and 22 GHz with the radiometers. The rms error for the estimation of wet path length from surface meteorological parameters was 3.2 cm, and from the radiometer brightness temperatures, 1.5 cm.

  8. Forward-Looking Infrared Cameras for Micrometeorological Applications within Vineyards

    PubMed Central

    Katurji, Marwan; Zawar-Reza, Peyman

    2016-01-01

    We apply the principles of atmospheric surface layer dynamics within a vineyard canopy to demonstrate the use of forward-looking infrared cameras measuring surface brightness temperature (spectrum bandwidth of 7.5 to 14 μm) at a relatively high temporal rate of 10 s. The temporal surface brightness signal over a few hours of the stable nighttime boundary layer, intermittently interrupted by periods of turbulent heat flux surges, was shown to be related to the observed meteorological measurements by an in situ eddy-covariance system, and reflected the above-canopy wind variability. The infrared raster images were collected and the resultant self-organized spatial cluster provided the meteorological context when compared to in situ data. The spatial brightness temperature pattern was explained in terms of the presence or absence of nighttime cloud cover and down-welling of long-wave radiation and the canopy turbulent heat flux. Time sequential thermography as demonstrated in this research provides positive evidence behind the application of thermal infrared cameras in the domain of micrometeorology, and to enhance our spatial understanding of turbulent eddy interactions with the surface. PMID:27649208

  9. Combined enzymatic and physical deinking methodology for efficient eco-friendly recycling of old newsprint.

    PubMed

    Virk, Antar Puneet; Puri, Minakshi; Gupta, Vijaya; Capalash, Neena; Sharma, Prince

    2013-01-01

    The development in the deinking process has made recycled fiber a major part of the raw material for pulp and paper industry. Enzymes have revolutionized the deinking process obtaining brightness levels surpassing conventional deinking processes. This study explores the deinking efficiencies of bacterial alkalophilic laccase (L) and xylanase (X) enzymes along with physical deinking methods of microwaving (MW) and sonication (S) for recycling of old newsprint (ONP). The operational parameters viz. enzyme dose, pH and treatment time for X and L deinking were optimized statistically using Response Surface Methodology. Laccase did not require any mediator supplementation for deinking. Deinking of ONP pulp with a combination of xylanase and laccase enzymes was investigated, and fiber surface composition and morphological changes were studied using X-ray diffraction, fourier transform infrared spectroscopy and scanning electron microscopy. Compared to the pulp deinked with xylanase (47.9%) or laccase (62.2%) individually, the percentage reduction of effective residual ink concentration (ERIC) was higher for the combined xylanase/laccase-deinked pulp (65.8%). An increase in brightness (21.6%), breaking length (16.5%), burst factor (4.2%) tear factor (6.9%), viscosity (13%) and cellulose crystallinity (10.3%) along with decrease in kappa number (22%) and chemical consumption (50%) were also observed. Surface appeared more fibrillar along with changes in surface functional groups. A combination of physical and enzymatic processes (S-MW-XL) for deinking further improved brightness (28.8%) and decreased ERIC (73.9%) substantially. This is the first report on deinking of ONP with laccase without any mediator supplementation. XL pretreatment resulted in marked improvement in paper quality and a new sequence being reported for deinking (S-MW-XL) will contribute further in decreasing chemical consumption and making the process commercially feasible.

  10. Combined Enzymatic and Physical Deinking Methodology for Efficient Eco-Friendly Recycling of Old Newsprint

    PubMed Central

    Virk, Antar Puneet; Puri, Minakshi; Gupta, Vijaya; Capalash, Neena; Sharma, Prince

    2013-01-01

    Background The development in the deinking process has made recycled fiber a major part of the raw material for pulp and paper industry. Enzymes have revolutionized the deinking process obtaining brightness levels surpassing conventional deinking processes. This study explores the deinking efficiencies of bacterial alkalophilic laccase (L) and xylanase (X) enzymes along with physical deinking methods of microwaving (MW) and sonication (S) for recycling of old newsprint (ONP). Methods and Results The operational parameters viz. enzyme dose, pH and treatment time for X and L deinking were optimized statistically using Response Surface Methodology. Laccase did not require any mediator supplementation for deinking. Deinking of ONP pulp with a combination of xylanase and laccase enzymes was investigated, and fiber surface composition and morphological changes were studied using X-ray diffraction, fourier transform infrared spectroscopy and scanning electron microscopy. Compared to the pulp deinked with xylanase (47.9%) or laccase (62.2%) individually, the percentage reduction of effective residual ink concentration (ERIC) was higher for the combined xylanase/laccase-deinked pulp (65.8%). An increase in brightness (21.6%), breaking length (16.5%), burst factor (4.2%) tear factor (6.9%), viscosity (13%) and cellulose crystallinity (10.3%) along with decrease in kappa number (22%) and chemical consumption (50%) were also observed. Surface appeared more fibrillar along with changes in surface functional groups. A combination of physical and enzymatic processes (S-MW-XL) for deinking further improved brightness (28.8%) and decreased ERIC (73.9%) substantially. Conclusion This is the first report on deinking of ONP with laccase without any mediator supplementation. XL pretreatment resulted in marked improvement in paper quality and a new sequence being reported for deinking (S-MW-XL) will contribute further in decreasing chemical consumption and making the process commercially feasible. PMID:23977287

  11. An enhanced VIIRS aerosol optical thickness (AOT) retrieval algorithm over land using a global surface reflectance ratio database

    NASA Astrophysics Data System (ADS)

    Zhang, Hai; Kondragunta, Shobha; Laszlo, Istvan; Liu, Hongqing; Remer, Lorraine A.; Huang, Jingfeng; Superczynski, Stephen; Ciren, Pubu

    2016-09-01

    The Visible/Infrared Imager Radiometer Suite (VIIRS) on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite has been retrieving aerosol optical thickness (AOT), operationally and globally, over ocean and land since shortly after S-NPP launch in 2011. However, the current operational VIIRS AOT retrieval algorithm over land has two limitations in its assumptions for land surfaces: (1) it only retrieves AOT over the dark surfaces and (2) it assumes that the global surface reflectance ratios between VIIRS bands are constants. In this work, we develop a surface reflectance ratio database over land with a spatial resolution 0.1° × 0.1° using 2 years of VIIRS top of atmosphere reflectances. We enhance the current operational VIIRS AOT retrieval algorithm by applying the surface reflectance ratio database in the algorithm. The enhanced algorithm is able to retrieve AOT over both dark and bright surfaces. Over bright surfaces, the VIIRS AOT retrievals from the enhanced algorithm have a correlation of 0.79, mean bias of -0.008, and standard deviation (STD) of error of 0.139 when compared against the ground-based observations at the global AERONET (Aerosol Robotic Network) sites. Over dark surfaces, the VIIRS AOT retrievals using the surface reflectance ratio database improve the root-mean-square error from 0.150 to 0.123. The use of the surface reflectance ratio database also increases the data coverage of more than 20% over dark surfaces. The AOT retrievals over bright surfaces are comparable to MODIS Deep Blue AOT retrievals.

  12. Near-Surface Geologic Units Exposed Along Ares Vallis and in Adjacent Areas: A Potential Source of Sediment at the Mars Pathfinder Landing Site

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.

    1997-01-01

    A sequence of layers, bright and dark, is exposed on the walls of canyons, impact craters and mesas throughout the Ares Vallis region, Chryse Planitia, and Xanthe Terra, Mars. Four layers can be seen: two pairs of alternating dark and bright albedo. The upper dark layer forms the top surface of many walls and mesas. The upper dark-bright pair was stripped as a unit from many streamlined mesas and from the walls of Ares Valles, leaving a bench at the top of the lower dark layer, approximately 250 m below the highland surface on streamlined islands and on the walls of Ares Vallis itself. Along Ares Vallis, the scarp between the highlands surface and this bench is commonly angular in plan view (not smoothly curving), suggesting that erosion of the upper dark-bright pair of layers controlled by planes of weakness, like fractures or joints. These near-surface layers in the Ares Vallis area have similar thicknesses, colors, and resistances to erosion to layers exposed near the tops of walls in Valles Marineris (Treiman et al.) and may represent the same pedogenic hardpan units. From this correlation, and from analogies with hardpans on Earth, the light-color layers may be cemented by calcite or gypsum. The dark layers are likely cemented by an iron-bearing mineral. Mars Pathfinder instruments should permit recognition and useful analyses of hardpan fragments, provided that clean uncoated surfaces are accessible. Even in hardpan-cemented materials, it should be possible to determine the broad types of lithologies in the Martian highlands. However, detailed geochemical modeling of highland rocks and soils may be compromised by the presence of hardpan cement minerals.

  13. A Bright Lunar Impact Flash Linked to the Virginid Meteor Complex

    NASA Technical Reports Server (NTRS)

    Moser, D. E.; Suggs, R. M.; Suggs, R. J.

    2015-01-01

    On 17 March 2013 at 03:50:54 UTC, NASA detected a bright impact flash on the Moon caused by a meteoroid impacting the lunar surface. There was meteor activity in Earth's atmosphere the same night from the Virginid Meteor Complex. The impact crater associated with the impact flash was found and imaged by Lunar Reconnaissance Orbiter (LRO). Goal: Monitor the Moon for impact flashes produced by meteoroids striking the lunar surface. Determine meteoroid flux in the 10's gram to kilogram size range.

  14. ARC-1979-AC79-7090

    NASA Image and Video Library

    1979-07-10

    P-21762 C This color picture of Ganymede in the region 30° S 180° W shows features as small as 6 kilometers (3.7 miles) across. Shown is a bright halo impact crater that shows the fresh material thrown out of the crater. In the background is bright grooved terrain that may be the result of shearing of the surface materials along fault planes. The dark background material is the ancient heavily cratered terrain--the oldest material preserved on the Ganymede surface.

  15. Simple Forest Canopy Thermal Exitance Model

    NASA Technical Reports Server (NTRS)

    Smith J. A.; Goltz, S. M.

    1999-01-01

    We describe a model to calculate brightness temperature and surface energy balance for a forest canopy system. The model is an extension of an earlier vegetation only model by inclusion of a simple soil layer. The root mean square error in brightness temperature for a dense forest canopy was 2.5 C. Surface energy balance predictions were also in good agreement. The corresponding root mean square errors for net radiation, latent, and sensible heat were 38.9, 30.7, and 41.4 W/sq m respectively.

  16. IL15 Infusion of Cancer Patients Expands the Subpopulation of Cytotoxic CD56bright NK Cells and Increases NK-Cell Cytokine Release Capabilities.

    PubMed

    Dubois, Sigrid; Conlon, Kevin C; Müller, Jürgen R; Hsu-Albert, Jennifer; Beltran, Nancy; Bryant, Bonita R; Waldmann, Thomas A

    2017-10-01

    The cytokine IL15 is required for survival and activation of natural killer (NK) cells as well as expansion of NK-cell populations. Here, we compare the effects of continuous IL15 infusions on NK-cell subpopulations in cancer patients. Infusions affected the CD56 bright NK-cell subpopulation in that the expansion rates exceeded those of CD56 dim NK-cell populations with a 350-fold increase in their total cell numbers compared with 20-fold expansion for the CD56 dim subset. CD56 bright NK cells responded with increased cytokine release to various stimuli, as expected given their immunoregulatory functions. Moreover, CD56 bright NK cells gained the ability to kill various target cells at levels that are typical for CD56 dim NK cells. Some increased cytotoxic activities were also observed for CD56 dim NK cells. IL15 infusions induced expression changes on the surface of both NK-cell subsets, resulting in a previously undescribed and similar phenotype. These data suggest that IL15 infusions expand and arm CD56 bright NK cells that alone or in combination with tumor-targeting antibodies may be useful in the treatment of cancer. Cancer Immunol Res; 5(10); 929-38. ©2017 AACR . ©2017 American Association for Cancer Research.

  17. Modeling Illumination Conditions on the Moon: Applications to LRO-LAMP

    NASA Astrophysics Data System (ADS)

    Byron, B. D.; Mazarico, E. M.; Retherford, K. D.; Mandt, K. E.; Greathouse, T.; Gladstone, R.

    2017-12-01

    LRO-LAMP is a UV spectrograph which uses illumination from Lyman-α sky glow along with UV light from bright stars to image the dark, permanently shadowed regions (PSRs) of the lunar surface. Accurate modeling of this UV illumination is essential to creating albedo maps of the lunar surface, which can shed light on lunar regolith processes and help to constrain the distribution of water ice in polar PSRs. In this study, the variation in reflected intensity received by the LAMP detector was modeled for South Pole crater Amundsen using the illumination program IllumNG. Amundsen was chosen for study due to the PSR in its Northern side and its highly illuminated equator-facing slopes on the Southern wall. The model works by tracing a ray from each LAMP detector pixel along its boresight until the point where it intersects the lunar surface, and calculating the percentage of the total source flux visible above the horizon. In this study, the three main illumination sources used are the Sun, Interplanetary Lyman-α sky glow, and bright UV starlight in the On Band (130-155 nm) and Off Band (155-190 nm) wavelength ranges. The model also has the capability to calculate incident flux received at the surface, as well as intensity reflected from the surface and received by the LAMP detector along each boresight. The study found a noticeable variation in received intensity between six month stretches for the year of 2010. Over the period of January through July, about 6% more IPM Lyman-α flux was reflected from the surface of Amundsen than for July through December. For stellar flux in the On Band, a 13% difference in flux was reflected between the six month periods. In comparing the monthly intensity maps created by the model with LAMP measured monthly brightness maps, similar crater features are apparent. Though the model brightness is generally higher than the LAMP brightness, after accounting for albedo ( 0.05 for the South Pole region) the values are in closer agreement. In the future, inclusion of the model results during pipeline processing could enable better calibration and analysis of LAMP data.

  18. Flattening and surface-brightness of the fast-rotating star δ Persei with the visible VEGA/CHARA interferometer

    NASA Astrophysics Data System (ADS)

    Challouf, M.; Nardetto, N.; Domiciano de Souza, A.; Mourard, D.; Tallon-Bosc, I.; Aroui, H.; Farrington, C.; Ligi, R.; Meilland, A.; Mouelhi, M.

    2017-08-01

    Context. Rapid rotation is a common feature for massive stars, with important consequences on their physical structure, flux distribution and evolution. Fast-rotating stars are flattened and show gravity darkening (non-uniform surface intensity distribution). Another important and less studied impact of fast-rotation in early-type stars is its influence on the surface brightness colour relation (hereafter SBCR), which could be used to derive the distance of eclipsing binaries. Aims: The purpose of this paper is to determine the flattening of the fast-rotating B-type star δ Per using visible long-baseline interferometry. A second goal is to evaluate the impact of rotation and gravity darkening on the V - K colour and surface brightness of the star. Methods: The B-type star δ Per was observed with the VEGA/CHARA interferometer, which can measure spatial resolutions down to 0.3 mas and spectral resolving power of 5000 in the visible. We first used a toy model to derive the position angle of the rotation axis of the star in the plane of the sky. Then we used a code of stellar rotation, CHARRON, in order to derive the physical parameters of the star. Finally, by considering two cases, a static reference star and our best model of δ Per, we can quantify the impact of fast rotation on the surface brightness colour relation (SBCR). Results: We find a position angle of 23 ± 6 degrees. The polar axis angular diameter of δ Per is θp = 0.544 ± 0.007 mas, and the derived flatness is r = 1.121 ± 0.013. We derive an inclination angle for the star of I = 85+ 5-20 degrees and a projected rotation velocity Vsini = 175+ 8-11 km s-1 (or 57% of the critical velocity). We find also that the rotation and inclination angle of δ Per keeps the V - K colour unchanged while it decreasing its surface-brightness by about 0.05 mag. Conclusions: Correcting the impact of rotation on the SBCR of early-type stars appears feasible using visible interferometry and dedicated models.

  19. Potential of fish scales as a filling material in surface coating of cellulosic paper.

    PubMed

    Ural, Elif; Kandirmaz, Emine A

    2018-01-01

    Paper is one of the important inputs for the printing industry, and the most important leading parameter in the printing process is its brightness. Brightness can be brought to paper using coatings and sizing. Desired surface properties and, most importantly, surface roughness can be achieved by changing the contents of the coating and sizing of the materials it contains. The use of biomaterials is becoming more important in the paper industry, as they represent substances with a lower carbon footprint. Fish scales are already used as a filling material, cosmetic material and fish food, as well as for determining the age of fish. Fish scales were brought to different sizes by a milling process. Paper formulations including different amounts of fish scales were prepared with fish scales, and coatings on raw paper were subjected to test printings in IGT-C1, with formulations and physical characteristics of coatings such as brightness, lightfastness, strength, adhesion etc. being determined. Regarding the value of yellowness, mixtures of 2.5%-10% can be used. The maximum value of brightness was obtained from a mixture of 10%. Aging visibly changed the colors. The coatings obtained were brighter than the initial coating compositions. The top quality formulation was the coating with 5% medium-sized fish scale particles.

  20. Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres

    NASA Astrophysics Data System (ADS)

    de Sanctis, M. C.; Raponi, A.; Ammannito, E.; Ciarniello, M.; Toplis, M. J.; McSween, H. Y.; Castillo-Rogez, J. C.; Ehlmann, B. L.; Carrozzo, F. G.; Marchi, S.; Tosi, F.; Zambon, F.; Capaccioni, F.; Capria, M. T.; Fonte, S.; Formisano, M.; Frigeri, A.; Giardino, M.; Longobardo, A.; Magni, G.; Palomba, E.; McFadden, L. A.; Pieters, C. M.; Jaumann, R.; Schenk, P.; Mugnuolo, R.; Raymond, C. A.; Russell, C. T.

    2016-08-01

    The typically dark surface of the dwarf planet Ceres is punctuated by areas of much higher albedo, most prominently in the Occator crater. These small bright areas have been tentatively interpreted as containing a large amount of hydrated magnesium sulfate, in contrast to the average surface, which is a mixture of low-albedo materials and magnesium phyllosilicates, ammoniated phyllosilicates and carbonates. Here we report high spatial and spectral resolution near-infrared observations of the bright areas in the Occator crater on Ceres. Spectra of these bright areas are consistent with a large amount of sodium carbonate, constituting the most concentrated known extraterrestrial occurrence of carbonate on kilometre-wide scales in the Solar System. The carbonates are mixed with a dark component and small amounts of phyllosilicates, as well as ammonium carbonate or ammonium chloride. Some of these compounds have also been detected in the plume of Saturn’s sixth-largest moon Enceladus. The compounds are endogenous and we propose that they are the solid residue of crystallization of brines and entrained altered solids that reached the surface from below. The heat source may have been transient (triggered by impact heating). Alternatively, internal temperatures may be above the eutectic temperature of subsurface brines, in which case fluids may exist at depth on Ceres today.

  1. An interpretation of photometric parameters of bright desert regions of Mars and their dependence on wave length

    NASA Technical Reports Server (NTRS)

    Weaver, W. R.; Meador, W. E.

    1977-01-01

    Photometric data from the bright desert areas of Mars were used to determine the dependence of the three photometric parameters of the photometric function on wavelength and to provide qualitative predictions about the physical properties of the surface. Knowledge of the parameters allowed the brightness of these areas of Mars to be determined for any scattering geometry in the wavelength range of 0.45 to 0.70 micron. The changes that occur in the photometric parameters due to changes in wavelength were shown to be consistent with their physical interpretations, and the predictions of surface properties were shown to be consistent with conditions expected to exist in these regions of Mars. The photometric function was shown to have potential as a diagnostic tool for the qualitative determination of surface properties, and the consistency of the behavior of the photometric parameters was considered to be support for the validity of the photometric function.

  2. Unveiling the Low Surface Brightness Stellar Peripheries of Galaxies

    NASA Astrophysics Data System (ADS)

    Ferguson, Annette M. N.

    2018-01-01

    The low surface brightness peripheral regions of galaxies contain a gold mine of information about how minor mergers and accretions have influenced their evolution over cosmic time. Enormous stellar envelopes and copious amounts of faint tidal debris are natural outcomes of the hierarchical assembly process and the search for and study of these features, albeit highly challenging, offers the potential for unrivalled insight into the mechanisms of galaxy growth. Over the last two decades, there has been burgeoning interest in probing galaxy outskirts using resolved stellar populations. Wide-field surveys have uncovered vast tidal debris features and new populations of very remote globular clusters, while deep Hubble Space Telescope photometry has provided exquisite star formation histories back to the earliest epochs. I will highlight some recent results from studies within and beyond the Local Group and conclude by briefly discussing the great potential of future facilities, such as JWST, Euclid, LSST and WFIRST, for major breakthroughs in low surface brightness galaxy periphery science.

  3. The MESSIER surveyor: unveiling the ultra-low surface brightness universe

    NASA Astrophysics Data System (ADS)

    Valls-Gabaud, David; MESSIER Collaboration

    2017-03-01

    The MESSIER surveyor is a small mission designed at exploring the very low surface brightness universe. The satellite will drift-scan the entire sky in 6 filters covering the 200-1000 nm range, reaching unprecedented surface brightness levels of 34 and 37 mag arcsec-2 in the optical and UV, respectively. These levels are required to achieve the two main science goals of the mission: to critically test the ΛCDM paradigm of structure formation through (1) the detection and characterisation of ultra-faint dwarf galaxies, which are predicted to be extremely abundant around normal galaxies, but which remain elusive; and (2) tracing the cosmic web, which feeds dark matter and baryons into galactic haloes, and which may contain the reservoir of missing baryons at low redshifts. A large number of science cases, ranging from stellar mass loss episodes to intracluster light through fluctuations in the cosmological UV-optical background radiation are free by-products of the full-sky maps produced.

  4. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: On the possibility of studying the temporal evolution of a surface relief directly during exposure to high-power radiation

    NASA Astrophysics Data System (ADS)

    Abramov, D. V.; Arakelyan, S. M.; Galkin, A. F.; Klimovskii, Ivan I.; Kucherik, A. O.; Prokoshev, V. G.

    2006-06-01

    The video image of the graphite surface exposed to focused laser radiation is obtained with the help of a laser monitor. A bright ring moving over the heated surface was observed. A method for reconstructing the surface relief from the video image is proposed and realised. The method is based on the measurement of the angular distribution of the light intensity scattered by the graphite sample surface. The surface relief of the graphite sample changing in time is reconstructed. The relative change in the relief height during laser excitation is measured. The statistical characteristics of the reconstructed graphite surface shape and their variation during laser irradiation are studied. It is found that a circular convexity appears within the bright ring. The formation mechanism of this convexity requires further investigations.

  5. Silicon and germanium nanoparticles with tailored surface chemistry as novel inorganic fiber brightening agents.

    PubMed

    Deb-Choudhury, Santanu; Prabakar, Sujay; Krsinic, Gail; Dyer, Jolon M; Tilley, Richard D

    2013-07-31

    Low-molecular-weight organic molecules, such as coumarins and stilbenes, are used commercially as fluorescent whitening agents (FWAs) to mask photoyellowing and to brighten colors in fabrics. FWAs achieve this by radiating extra blue light, thus changing the hue and also adding to the brightness. However, organic FWAs can rapidly photodegrade in the presence of ultraviolet (UV) radiation, exacerbating the yellowing process through a reaction involving singlet oxygen species. Inorganic nanoparticles, on the other hand, can provide a similar brightening effect with the added advantage of photostability. We report a targeted approach in designing new inorganic silicon- and germanium-based nanoparticles, functionalized with hydrophilic (amine) surface terminations as novel inorganic FWAs. When applied on wool, by incorporation in a sol-gel Si matrix, the inorganic FWAs improved brightness properties, demonstrated enhanced photostability toward UV radiation, especially the germanium nanoparticles, and also generated considerably lower levels of reactive oxygen species compared to a commercial stilbene-based organic FWA, Uvitex NFW.

  6. Beyond 31 mag arcsec-2: The Frontier of Low Surface Brightness Imaging with the Largest Optical Telescopes

    NASA Astrophysics Data System (ADS)

    Trujillo, Ignacio; Fliri, Jüergen

    2016-06-01

    The detection of structures in the sky with optical surface brightnesses fainter than 30 mag arcsec-2 (3σ in 10 × 10 arcsec boxes; r-band) has remained elusive in current photometric deep surveys. Here we show how present-day telescopes of 10 m class can provide broadband imaging 1.5-2 mag deeper than most previous results within a reasonable amount of time (I.e., <10 hr on-source integration). In particular, we illustrate the ability of the 10.4 m Gran Telescopio de Canarias telescope to produce imaging with a limiting surface brightness of 31.5 mag arcsec-2 (3σ in 10 × 10 arcsec boxes; r-band) using 8.1 hr on source. We apply this power to explore the stellar halo of the galaxy UGC 00180, a galaxy analogous to M31 located at ˜150 Mpc, by obtaining a radial profile of surface brightness down to μ r ˜ 33 mag arcsec-2. This depth is similar to that obtained using the star-counts techniques for Local Group galaxies, but is achieved at a distance where this technique is unfeasible. We find that the mass of the stellar halo of this galaxy is ˜4 × 109 M ⊙, I.e., (3 ± 1)% of the total stellar mass of the whole system. This amount of mass in the stellar halo is in agreement with current theoretical expectations for galaxies of this kind.

  7. Bright Ray Craters in Ganymede's Northern Hemisphere

    NASA Technical Reports Server (NTRS)

    1979-01-01

    GANYMEDE COLOR PHOTOS: This color picture as acquired by Voyager 1 during its approach to Ganymede on Monday afternoon (the 5th of March). At ranges between about 230 to 250 thousand km. The images show detail on the surface with a resolution of four and a half km. This picture is of a region in the northern hemisphere near the terminator. It shows a variety of impact structures, including both razed and unrazed craters, and the odd, groove-like structures discovered by Voyager in the lighter regions. The most striking features are the bright ray craters which have a distinctly 'bluer' color appearing white against the redder background. Ganymede's surface is known to contain large amounts of surface ice and it appears that these relatively young craters have spread bright fresh ice materials over the surface. Likewise, the lighter color and reflectivity of the grooved areas suggests that here, too, there is cleaner ice. We see ray craters with all sizes of ray patterns, ranging from extensive systems of the crater in the southern part of this picture, which has rays at least 300-500 kilometers long, down to craters which have only faint remnants of bright ejects patterns (such as several of the craters in the southern half of PIA01516; P21262). This variation suggests that, as on the Moon, there are processes which act to darken ray material, probably 'gardening' by micrometeoroid impact. JPL manages and controls the Voyager project for NASA's Office of Space Science.

  8. Detection of moisture and moisture related phenomena from Skylab. [correlation of brightness and antenna temperature with soil moisture for Texas and Kansas test sites

    NASA Technical Reports Server (NTRS)

    Eagleman, J. R.; Pogge, E. C.; Moore, R. K. (Principal Investigator); Hardy, N.; Lin, W.; League, L.

    1974-01-01

    The author has identified the following significant results. Skylab 2 data for June 5, 1973 (Texas site) relates favorably with previously calculated aircraft data when correlating brightness temperature to soil moisture. However, more detailed work is needed to determine the corrected surface temperature. In addition, correlations between the S194 antenna temperature and soil moisture have been obtained for five sets of Skylab data. The best correlations were obtained for the surface to one inch depth in four cases and for surface to two inches depth for the fifth case. Correlation coefficients for the surface to one inch depth were -0.98, -0.95, -0.90, -0.82, and -0.80.

  9. Edge Modeling by Two Blur Parameters in Varying Contrasts.

    PubMed

    Seo, Suyoung

    2018-06-01

    This paper presents a method of modeling edge profiles with two blur parameters, and estimating and predicting those edge parameters with varying brightness combinations and camera-to-object distances (COD). First, the validity of the edge model is proven mathematically. Then, it is proven experimentally with edges from a set of images captured for specifically designed target sheets and with edges from natural images. Estimation of the two blur parameters for each observed edge profile is performed with a brute-force method to find parameters that produce global minimum errors. Then, using the estimated blur parameters, actual blur parameters of edges with arbitrary brightness combinations are predicted using a surface interpolation method (i.e., kriging). The predicted surfaces show that the two blur parameters of the proposed edge model depend on both dark-side edge brightness and light-side edge brightness following a certain global trend. This is similar across varying CODs. The proposed edge model is compared with a one-blur parameter edge model using experiments of the root mean squared error for fitting the edge models to each observed edge profile. The comparison results suggest that the proposed edge model has superiority over the one-blur parameter edge model in most cases where edges have varying brightness combinations.

  10. HST observations of globular clusters in M 31. 1: Surface photometry of 13 objects

    NASA Technical Reports Server (NTRS)

    Pecci, F. Fusi; Battistini, P.; Bendinelli, O.; Bonoli, F.; Cacciari, C.; Djorgovski, S.; Federici, L.; Ferraro, F. R.; Parmeggiani, G.; Weir, N.

    1994-01-01

    We present the initial results of a study of globular clusters in M 31, using the Faint Object Camera (FOC) on the Hubble Space Telescope (HST). The sample of objects consists of 13 clusters spanning a range of properties. Three independent image deconvolution techniques were used in order to compensate for the optical problems of the HST, leading to mutually fully consistent results. We present detailed tests and comparisons to determine the reliability and limits of these deconvolution methods, and conclude that high-quality surface photometry of M 31 globulars is possible with the HST data. Surface brightness profiles have been extracted, and core radii, half-light radii, and central surface brightness values have been measured for all of the clusters in the sample. Their comparison with the values from ground-based observations indicates the later to be systematically and strongly biased by the seeing effects, as it may be expected. A comparison of the structural parameters with those of the Galactic globulars shows that the structural properties of the M 31 globulars are very similar to those of their Galactic counterparts. A candidate for a post-core-collapse cluster, Bo 343 = G 105, has been already identified from these data; this is the first such detection in the M 31 globular cluster system.

  11. Spatiotemporal analysis of brightness induction

    PubMed Central

    McCourt, Mark E.

    2011-01-01

    Brightness induction refers to a class of visual illusions in which the perceived intensity of a region of space is influenced by the luminance of surrounding regions. These illusions are significant because they provide insight into the neural organization of the visual system. A novel quadrature-phase motion cancelation technique was developed to measure the magnitude of the grating induction brightness illusion across a wide range of spatial frequencies, temporal frequencies and test field heights. Canceling contrast is greatest at low frequencies and declines with increasing frequency in both dimensions, and with increasing test field height. Canceling contrast scales as the product of inducing grating spatial frequency and test field height (the number of inducing grating cycles per test field height). When plotted using a spatial axis which indexes this product, the spatiotemporal induction surfaces for four test field heights can be described as four partially overlapping sections of a single larger surface. These properties of brightness induction are explained in the context of multiscale spatial filtering. The present study is the first to measure the magnitude of grating induction as a function of temporal frequency. Taken in conjunction with several other studies (Blakeslee & McCourt, 2008; Robinson & de Sa, 2008; Magnussen & Glad, 1975) the results of this study illustrate that at least one form of brightness induction is very much faster than that reported by DeValois et al. (1986) and Rossi and Paradiso (1996), and are inconsistent with the proposition that brightness induction results from a slow “filling in” process. PMID:21763339

  12. Ultraviolet Spectroscopy of the Surfaces of the Inner Icy Saturnian Satellites

    NASA Astrophysics Data System (ADS)

    Hendrix, A. R.; Hansen, C. J.

    2008-12-01

    The Cassini mission has provided a unique opportunity to make high-resolution, multi-spectral measurements of Saturn's icy moons, to investigate their surface compositions, processes and evolution. Here we present results from the Ultraviolet Imaing Spectrograph (UVIS). This instrument allows for the first measurements of the icy satellites in the extreme ultraviolet (EUV) to far-ultraviolet (FUV) wavelength range. The icy satellites of the Saturn system exhibit a remarkable amount of variability: Dark, battered Phoebe orbiting at a distant 200 RS, black-and-white Iapetus, the wispy streaks of Dione, cratered Rhea and Mimas, bright Tethys and geologically active Enceladus. Phoebe, Iapetus and Hyperion all orbit largely outside Saturn's magnetosphere, while the inner icy satellites Mimas, Enceladus, Dione Tethys and Rhea all orbit within the magnetosphere. Furthermore, the inner icy satellites all orbit within the E-ring - so the extent of exogenic effects on these icy satellites is wide-ranging. We present an overview of UVIS results from Tethys, Dione, Mimas, Enceladus and Rhea, focusing on surface investigations. We expect that the UV signatures of these icy satellites are strongly influenced not only by their water ice composition, but by external effects and magnetospheric environments. We study the FUV reflectance spectra to learn about the surface composition, map out water ice grain size variations, investigate effects of coating by E-ring grains, examine disk-resolved and hemispheric compositional and brightness variations, and investigate the presence of radiation products. This is new work: FUV spectra of surfaces have not been well-studied in the past. Spectra of the inner icy moons have been used to better develop spectral models, to further understand existing lab data of water ice and to help with understanding instrument performance. Analysis is challenged by a lack of laboratory data in this wavelength region, but intriguing results are being found. We find that the FUV albedo is a critical tie- point to understand the composition of these moons -- important absorptions occur in the NUV-visible region. We present disk-integrated hemispherical reflectance spectra, and show that while Tethys and Dione exhibit strong UV leading-trailing differences, Mimas, Enceladus and Rhea do not. In the UV, Mimas is nearly as bright as Enceladus. Tethys is surprisingly dark in the UV. The visible-wavelength leading-trailing hemisphere albedo differences can be attributed to coating by E-ring grains; in the UV, a process appears to darken the trailing hemisphere of Tethys. We also investigate disk-resolved Enceladus spectra to understand spectral differences between the south polar tiger stripe region and elsewhere on the surface.

  13. Anticorrelation of X-ray bright points with sunspot number, 1970-1978

    NASA Technical Reports Server (NTRS)

    Golub, L.; Davis, J. M.; Krieger, A. S.

    1979-01-01

    Soft X-ray observations of the solar corona over the period 1970-1978 show that the number of small short-lived bipolar magnetic features (X-ray bright points) varies inversely with the sunspot index. During the entire period from 1973 to 1978 most of the magnetic flux emerging at the solar surface appeared in the form of bright points. In 1970, near the peak of solar cycle 20, the contributions from bright points and from active regions appear to be approximately equal. These observations strongly support an earlier suggestion that the solar cycle may be characterized as an oscillator in wave-number space with relatively little variation in the average total rate of flux emergence.

  14. The bidirectional congruency effect of brightness-valence metaphoric association in the Stroop-like and priming paradigms.

    PubMed

    Huang, Yanli; Tse, Chi-Shing; Xie, Jiushu

    2017-11-04

    The conceptual metaphor theory (Lakoff & Johnson, 1980, 1999) postulates a unidirectional metaphoric association between abstract and concrete concepts: sensorimotor experience activated by concrete concepts facilitates the processing of abstract concepts, but not the other way around. However, this unidirectional view has been challenged by studies that reported a bidirectional metaphoric association. In three experiments, we tested the directionality of the brightness-valence metaphoric association, using Stroop-like paradigm, priming paradigm, and Stroop-like paradigm with a go/no-go manipulation. Both mean and vincentile analyses of reaction time data were performed. We showed that the directionality of brightness-valence metaphoric congruency effect could be modulated by the activation level of the brightness/valence information. Both brightness-to-valence and valence-to-brightness metaphoric congruency effects occurred in the priming paradigm, which could be attributed to the presentation of prime that pre-activated the brightness or valence information. However, in the Stroop-like paradigm the metaphoric congruency effect was only observed in the brightness-to-valence direction, but not in the valence-to-brightness direction. When the go/no-go manipulation was used to boost the activation of word meaning in the Stroop-like paradigm, the valence-to-brightness metaphoric congruency effect was observed. Vincentile analyses further revealed that valence-to-brightness metaphoric congruency effect approached significance in the Stroop-like paradigm when participants' reaction times were slower (at around 490ms). The implications of the current findings on the conceptual metaphor theory and embodied cognition are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Study on hexagonal super-lattice pattern with surface discharges in dielectric barrier discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ying; Dong, Lifang, E-mail: donglfhbu@163.com; Niu, Xuejiao

    2015-10-15

    The hexagonal super-lattice pattern with surface discharges (SDs) in dielectric barrier discharge is investigated by intensified charge-coupled device. The pattern is composed of the bright spot and the dim spot which is located at the centroid of surrounding other three bright spots. The phase diagram of the pattern as a function of the gas pressure and the argon concentration is given. The instantaneous images indicate that the bright spot emerging at the front of the current pulse is formed by the volume discharge (VD), and dim spot occurring at the tail of the current pulse is formed by the SD.more » The above result shows that the SD is induced by the VD. The simulation of the electric fields of wall charges accumulated by VDs confirms that the dim spot is formed by the confluences of the SDs of surrounding other three bright spots. By using optical emission spectrum method, both the molecule vibration temperature and electron density of the SD are larger than that of the VD.« less

  16. A high brightness source for nano-probe secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Smith, N. S.; Tesch, P. P.; Martin, N. P.; Kinion, D. E.

    2008-12-01

    The two most prevalent ion source technologies in the field of surface analysis and surface machining are the Duoplasmatron and the liquid metal ion source (LMIS). There have been many efforts in this area of research to develop an alternative source [ S.K. Guharay, J. Orloff, M. Wada, IEEE Trans. Plasma Sci. 33 (6) (2005) 1911; N.S. Smith, W.P. Skoczylas, S.M. Kellogg, D.E. Kinion, P.P. Tesch, O. Sutherland, A. Aanesland, R.W. Boswell, J. Vac. Sci. Technol. B 24 (6) (2006) 2902-2906] with the brightness of a LMIS and yet the ability to produce secondary ion yield enhancing species such as oxygen. However, to date a viable alternative has not been realized. The high brightness and small virtual source size of the LMIS are advantageous for forming high resolution probes but a significant disadvantage when beam currents in excess of 100 nA are required, due to the effects of spherical aberration from the optical column. At these higher currents a source with a high angular intensity is optimal and in fact the relatively moderate brightness of today's plasma ion sources prevail in this operating regime. Both the LMIS and Duoplasmatron suffer from a large axial energy spread resulting in further limitations when forming focused beams at the chromatic limit where the figure-of-merit is inversely proportional to the square of the energy spread. Also, both of these ion sources operate with a very limited range of ion species. This article reviews some of the latest developments and some future potential in this area of instrument development. Here we present an approach to source development that could lead to oxygen ion beam SIMS imaging with 10 nm resolution, using a 'broad area' RF gas phase ion source.

  17. Bright Feature Appears in Titan Kraken Mare

    NASA Image and Video Library

    2014-11-10

    Two Synthetic Aperture Radar (SAR) images from the radar experiment on NASA's Cassini spacecraft show that, between May 2013 and August 2014, a bright feature appeared in Kraken Mare, the largest hydrocarbon sea on Saturn's moon Titan. Researchers think the bright feature is likely representative of something on the hydrocarbon sea's surface, such as waves or floating debris. A similar feature appeared in Ligea Mare, another Titan sea, and was seen to evolve in appearance between 2013 and 2014 (see PIA18430). The image at left was taken on May 23, 2013 at an incidence angle of 56 degrees; the image at right was taken on August 21, 2014 at an incidence angle of 5 degrees. Incidence angle refers to the angle at which the radar beam strikes the surface. http://photojournal.jpl.nasa.gov/catalog/PIA19047

  18. Detection of radio emission from optically identified supernova remnants in M31

    NASA Technical Reports Server (NTRS)

    Dickel, J. R.; Dodorico, S.; Felli, M.; Dopita, M.

    1982-01-01

    The Very Large Array was used to conduct a radio search at a wavelength of 20 cm for ten optically identified supernova remnants (SNRs) in M31. Five SNRs were detected, and for the other objects, upper limits to the emission were determined. On the average, the surface brightness of an SNR in M31 appears to be fainter than that of an SNR in the Galaxy. It is suggested that the median surface brightness at a given diameter is higher in late-type spirals than in Sb systems.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oohama, N.; Okamura, S.; Fukugita, M.

    A bulge-disk decomposition is made for 737 spiral and lenticular galaxies drawn from a Sloan Digital Sky Survey galaxy sample for which morphological types are estimated. We carry out the bulge-disk decomposition using the growth curve fitting method. It is found that bulge properties, effective radius, effective surface brightness, and also absolute magnitude, change systematically with the morphological sequence; from early to late types, the size becomes somewhat larger, and surface brightness and luminosity fainter. In contrast, disks are nearly universal, their properties remaining similar among disk galaxies irrespective of detailed morphologies from S0 to Sc. While these tendencies weremore » often discussed in previous studies, the present study confirms them based on a large homogeneous magnitude-limited field galaxy sample with morphological types estimated. The systematic change of bulge-to-total luminosity ratio, B/T, along the morphological sequence is therefore not caused by disks but mostly by bulges. It is also shown that elliptical galaxies and bulges of spiral galaxies are unlikely to be in a single sequence. We infer the stellar mass density (in units of the critical mass density) to be OMEGA = 0.0021 for spheroids, i.e., elliptical galaxies plus bulges of spiral galaxies, and OMEGA = 0.00081 for disks.« less

  20. Retrieval of surface temperature by remote sensing. [of earth surface using brightness temperature of air pollutants

    NASA Technical Reports Server (NTRS)

    Gupta, S. K.; Tiwari, S. N.

    1976-01-01

    A simple procedure and computer program were developed for retrieving the surface temperature from the measurement of upwelling infrared radiance in a single spectral region in the atmosphere. The program evaluates the total upwelling radiance at any altitude in the region of the CO fundamental band (2070-2220 1/cm) for several values of surface temperature. Actual surface temperature is inferred by interpolation of the measured upwelling radiance between the computed values of radiance for the same altitude. Sensitivity calculations were made to determine the effect of uncertainty in various surface, atmospheric and experimental parameters on the inferred value of surface temperature. It is found that the uncertainties in water vapor concentration and surface emittance are the most important factors affecting the accuracy of the inferred value of surface temperature.

  1. Ganymede's Equatorial Region

    NASA Technical Reports Server (NTRS)

    1979-01-01

    GANYMEDE COLOR PHOTOS: This color picture as acquired by Voyager 1 during its approach to Ganymede on Monday afternoon (the 5th of March). At ranges between about 230 to 250 thousand km. The images show detail on the surface with a resolution of four and a half km. This picture is south of PIA01516 (P21262) near the equator of Ganymede, and has relatively subdued colors in the visible part of the spectrum (later, scientists will analyze Voyager pictures taken in UV). The most striking features are the bright ray craters which have a distinctly 'bluer' color appearing white against the redder background. Ganymede's surface is known to contain large amounts of surface ice and it appears that these relatively young craters have spread bright fresh ice materials over the surface. Likewise, the lighter color and reflectivity of the grooved areas suggest that here, too, there is cleaner ice. We see ray craters with all sizes of ray patterns, ranging from extensive systems, down to craters which have only faint remnants of bright ejecta patterns. This variation suggests that, as on the Moon, there are processes which act to darken ray material, probably 'gardening' by micrometeoroid impact. JPL manages and controls the Voyager project for NASA's Office of Space Science.

  2. Low-Latitude Ethane Rain on Titan

    NASA Technical Reports Server (NTRS)

    Dalba, Paul A.; Buratti, Bonnie J.; Brown, R. H.; Barnes, J. W.; Baines, K. H.; Sotin, C.; Clark, R. N.; Lawrence, K. J.; Nicholson, P. D.

    2012-01-01

    Cassini ISS observed multiple widespread changes in surface brightness in Titan's equatorial regions over the past three years. These brightness variations are attributed to rainfall from cloud systems that appear to form seasonally. Determining the composition of this rainfall is an important step in understanding the "methanological" cycle on Titan. I use data from Cassini VIMS to complete a spectroscopic investigation of multiple rain-wetted areas. I compute "before-and-after" spectral ratios of any areas that show either deposition or evaporation of rain. By comparing these spectral ratios to a model of liquid ethane, I find that the rain is most likely composed of liquid ethane. The spectrum of liquid ethane contains multiple absorption features that fall within the 2-micron and 5-micron spectral windows in Titan's atmosphere. I show that these features are visible in the spectra taken of Titan's surface and that they are characteristically different than those in the spectrum of liquid methane. Furthermore, just as ISS saw the surface brightness reverting to its original state after a period of time, I show that VIMS observations of later flybys show the surface composition in different stages of returning to its initial form.

  3. Atmospheric effects on the remote determination of thermal inertia on Mars

    NASA Technical Reports Server (NTRS)

    Haberle, Robert M.; Jakosky, Bruce M.

    1991-01-01

    Measurements of the IR brightness temperature at the Martian surface at many different times of day are presently compared with temperatures predicted by thermal models which allow sunlight to reach the surface unattenuated, in order to determine the thermal inertia of the uppermost 1-10 cm of the Martian surface. The consequences of the assumptions made are assessed in view of results from a different thermal model which invokes radiation-transfer through a dusty CO2 atmosphere, as well as sensible heat-exchange with the surface. Smaller thermal inertias imply smaller particle sizes; the results obtained suggest that low thermal-inertia regions consist of 5-micron, rather than 50-micron, particle sizes.

  4. Circadian Phase-Shifting Effects of Bright Light, Exercise, and Bright Light + Exercise.

    PubMed

    Youngstedt, Shawn D; Kline, Christopher E; Elliott, Jeffrey A; Zielinski, Mark R; Devlin, Tina M; Moore, Teresa A

    2016-02-26

    Limited research has compared the circadian phase-shifting effects of bright light and exercise and additive effects of these stimuli. The aim of this study was to compare the phase-delaying effects of late night bright light, late night exercise, and late evening bright light followed by early morning exercise. In a within-subjects, counterbalanced design, 6 young adults completed each of three 2.5-day protocols. Participants followed a 3-h ultra-short sleep-wake cycle, involving wakefulness in dim light for 2h, followed by attempted sleep in darkness for 1 h, repeated throughout each protocol. On night 2 of each protocol, participants received either (1) bright light alone (5,000 lux) from 2210-2340 h, (2) treadmill exercise alone from 2210-2340 h, or (3) bright light (2210-2340 h) followed by exercise from 0410-0540 h. Urine was collected every 90 min. Shifts in the 6-sulphatoxymelatonin (aMT6s) cosine acrophase from baseline to post-treatment were compared between treatments. Analyses revealed a significant additive phase-delaying effect of bright light + exercise (80.8 ± 11.6 [SD] min) compared with exercise alone (47.3 ± 21.6 min), and a similar phase delay following bright light alone (56.6 ± 15.2 min) and exercise alone administered for the same duration and at the same time of night. Thus, the data suggest that late night bright light followed by early morning exercise can have an additive circadian phase-shifting effect.

  5. Dynamically hot galaxies. I - Structural properties

    NASA Technical Reports Server (NTRS)

    Bender, Ralf; Burstein, David; Faber, S. M.

    1992-01-01

    Results are reported from an analysis of the structural properties of dynamically hot galaxies which combines central velocity dispersion, effective surface brightness, and effective radius into a new 3-space (k), in which the axes are parameters that are physically meaningful. Hot galaxies are found to divide into groups in k-space that closely parallel conventional morphological classifications, namely, luminous ellipticals, compacts, bulges, bright dwarfs, and dwarf spheroidals. A major sequence is defined by luminous ellipticals, bulges, and most compacts, which together constitute a smooth continuum in k-space. Several properties vary smoothly with mass along this continuum, including bulge-to-disk ratio, radio properties, rotation, degree of velocity anisotropy, and 'unrelaxed'. A second major sequence is comprised of dwarf ellipticals and dwarf spheroidals. It is suggested that mass loss is a major factor in hot dwarf galaxies, but the dwarf sequence cannot be simply a mass-loss sequence, as it has the wrong direction in k-space.

  6. THE ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: IMPLICATIONS FOR SPECTRAL LINE INTENSITY MAPPING AT MILLIMETER WAVELENGTHS AND CMB SPECTRAL DISTORTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carilli, C. L.; Walter, F.; Chluba, J.

    We present direct estimates of the mean sky brightness temperature in observing bands around 99 and 242 GHz due to line emission from distant galaxies. These values are calculated from the summed line emission observed in a blind, deep survey for spectral line emission from high redshift galaxies using ALMA (the ALMA spectral deep field observations “ASPECS” survey). In the 99 GHz band, the mean brightness will be dominated by rotational transitions of CO from intermediate and high redshift galaxies. In the 242 GHz band, the emission could be a combination of higher order CO lines, and possibly [C ii]more » 158 μ m line emission from very high redshift galaxies ( z  ∼ 6–7). The mean line surface brightness is a quantity that is relevant to measurements of spectral distortions of the cosmic microwave background, and as a potential tool for studying large-scale structures in the early universe using intensity mapping. While the cosmic volume and the number of detections are admittedly small, this pilot survey provides a direct measure of the mean line surface brightness, independent of conversion factors, excitation, or other galaxy formation model assumptions. The mean surface brightness in the 99 GHZ band is: T{sub B}  = 0.94 ± 0.09 μ K. In the 242 GHz band, the mean brightness is: T{sub B}  = 0.55 ± 0.033 μ K. These should be interpreted as lower limits on the average sky signal, since we only include lines detected individually in the blind survey, while in a low resolution intensity mapping experiment, there will also be the summed contribution from lower luminosity galaxies that cannot be detected individually in the current blind survey.« less

  7. Energy-exchange collisions of dark-bright-bright vector solitons.

    PubMed

    Radhakrishnan, R; Manikandan, N; Aravinthan, K

    2015-12-01

    We find a dark component guiding the practically interesting bright-bright vector one-soliton to two different parametric domains giving rise to different physical situations by constructing a more general form of three-component dark-bright-bright mixed vector one-soliton solution of the generalized Manakov model with nine free real parameters. Moreover our main investigation of the collision dynamics of such mixed vector solitons by constructing the multisoliton solution of the generalized Manakov model with the help of Hirota technique reveals that the dark-bright-bright vector two-soliton supports energy-exchange collision dynamics. In particular the dark component preserves its initial form and the energy-exchange collision property of the bright-bright vector two-soliton solution of the Manakov model during collision. In addition the interactions between bound state dark-bright-bright vector solitons reveal oscillations in their amplitudes. A similar kind of breathing effect was also experimentally observed in the Bose-Einstein condensates. Some possible ways are theoretically suggested not only to control this breathing effect but also to manage the beating, bouncing, jumping, and attraction effects in the collision dynamics of dark-bright-bright vector solitons. The role of multiple free parameters in our solution is examined to define polarization vector, envelope speed, envelope width, envelope amplitude, grayness, and complex modulation of our solution. It is interesting to note that the polarization vector of our mixed vector one-soliton evolves in sphere or hyperboloid depending upon the initial parametric choices.

  8. Global Monitoring of Martian Surface Albedo Changes from Orbital Observations

    NASA Astrophysics Data System (ADS)

    Geissler, P.; Enga, M.; Mukherjee, P.

    2013-12-01

    Martian surface changes were first observed from orbit during the Mariner 9 and Viking Orbiter missions. They were found to be caused by eolian processes, produced by deposition of dust during regional and global dust storms and subsequent darkening of the surface through erosion and transportation of dust and sand. The albedo changes accumulated in the 20 years between Viking and Mars Global Surveyor were sufficient to alter the global circulation of winds and the climate of Mars according to model calculations (Fenton et al., Nature 2007), but little was known about the timing or frequency of the changes. Since 1999, we have had the benefit of continuous monitoring by a series of orbiting spacecraft that continues today with Mars Reconnaissance Orbiter, Mars Odyssey, and Mars Express. Daily synoptic observations enable us to determine whether the surface albedo changes are gradual or episodic in nature and to record the seasons that the changes take place. High resolution images of surface morphology and atmospheric phenomena help identify the physical mechanisms responsible for the changes. From these data, we hope to learn the combinations of atmospheric conditions and sediment properties that produce surface changes on Mars and possibly predict when they will take place in the future. Martian surface changes are particularly conspicuous in low albedo terrain, where even a thin layer of bright dust brightens the surface drastically. Equatorial dark areas are repeatedly coated and recoated by dust, which is later shed from the surface by a variety of mechanisms. An example is Syrtis Major, suddenly buried in bright dust by the global dust storm of 2001. Persistent easterly winds blew much of the dust cover away over the course of the next Martian year, but episodic changes continue today, particularly during southern summer when regional dust storms are rife. Another such region is Solis Planum, south of the Valles Marineris, where changes take place relentlessly in all seasons as bright dust and dark sand battle to dominate the landscape. Elsewhere, gradual processes steadily shift albedo boundaries between bright and dark terrain. Dark terrain near the Spirit rover landing site is gradually spreading to the north, driven by seasonal southerly winds. A bright fringe of newly deposited dust appears ahead of the moving boundary, populated by wind streaks and dust avalanches. Dark terrain at higher latitudes gradually creeps towards the equator by the dust cleaning action of dust devils, for example at Nilosytis (43°N, 85°E). Much less obvious is the deposition and erosion of dust on already bright, dust-covered terrain. Changes in the distribution of fresh dust take place frequently in the region surrounding the Tharsis Montes. Dust in this high altitude zone is constantly on the move as faint dark streaks mark the removal of recently deposited dust that is only slightly brighter than the dust already settled on the surface. Dramatic deposition of dust onto dusty terrain took place at much lower elevations in northwestern Amazonis between 2002 and 2005. Since then, the dust has been energetically eroded by towering dust devils that cluster here each summer.

  9. A Comparison of Young Star Properties with Local Galactic Environment for LEGUS/LITTLE THINGS Dwarf Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Hunter, Deidre A.; Adamo, Angela; Elmegreen, Bruce G.; Gallardo, Samavarti; Lee, Janice C.; Cook, David O.; Thilker, David; Kayitesi, Bridget; Kim, Hwihyun; Kahre, Lauren; Ubeda, Leonardo; Bright, Stacey N.; Ryon, Jenna E.; Calzetti, Daniela; Tosi, Monica; Grasha, Kathryn; Messa, Matteo; Fumagalli, Michele; Dale, Daniel A.; Sabbi, Elena; Cignoni, Michele; Smith, Linda J.; Gouliermis, Dimitrios M.; Grebel, Eva K.; Aloisi, Alessandra; Whitmore, Bradley C.; Chandar, Rupali; Johnson, Kelsey E.

    2018-07-01

    We have explored the role environmental factors play in determining characteristics of young stellar objects in nearby dwarf irregular and blue compact dwarf galaxies. Star clusters are characterized by concentrations, masses, and formation rates; OB associations by mass and mass surface density; O stars by their numbers and near-ultraviolet absolute magnitudes; and H II regions by Hα surface brightnesses. These characteristics are compared to surrounding galactic pressure, stellar mass density, H I surface density, and star formation rate (SFR) surface density. We find no trend of cluster characteristics with environmental properties, implying that larger-scale effects are more important in determining cluster characteristics or that rapid dynamical evolution erases any memory of the initial conditions. On the other hand, the most massive OB associations are found at higher pressure and H I surface density, and there is a trend of higher H II region Hα surface brightness with higher pressure, suggesting that a higher concentration of massive stars and gas is found preferentially in regions of higher pressure. At low pressures we find massive stars but not bound clusters and OB associations. We do not find evidence for an increase of cluster formation efficiency as a function of SFR density. However, there is an increase in the ratio of the number of clusters to the number of O stars with increasing pressure, perhaps reflecting an increase in clustering properties with SFR.

  10. Effect of evening exposure to bright or dim light after daytime bright light on absorption of dietary carbohydrates the following morning.

    PubMed

    Hirota, Naoko; Sone, Yoshiaki; Tokura, Hiromi

    2010-01-01

    We had previously reported on the effect of exposure to light on the human digestive system: daytime bright light exposure has a positive effect, whereas, evening bright light exposure has a negative effect on the efficiency of dietary carbohydrate absorption from the evening meal. These results prompted us to examine whether the light intensity to which subjects are exposed in the evening affects the efficiency of dietary carbohydrate absorption the following morning. In this study, subjects were exposed to either 50 lux (dim light conditions) or 2,000 lux (bright light conditions) in the evening for 9 h (from 15:00 to 24:00) after staying under bright light in the daytime (under 2,000 lux from 07:00 to 15:00). We measured unabsorbed dietary carbohydrates using the breath-hydrogen test the morning after exposure to either bright light or dim light the previous evening. Results showed that there was no significant difference between the two conditions in the amount of breath hydrogen. This indicates that evening exposure to bright or dim light after bright light exposure in the daytime has no varying effect on digestion or absorption of dietary carbohydrates in the following morning's breakfast.

  11. The AU Mic debris ring: density profile and dynamics of the dust

    NASA Astrophysics Data System (ADS)

    Augereau, Jean-Charles; Beust, Herve

    2005-10-01

    AU Mic is an M-type star surrounded by a debris disk that is viewed almost perfectly edge-on. This disk shares many common observational properties with the well-known disk orbiting Beta Pictoris but the properties of the AU Mic disk as well as the dynamics of the dust grains have not been studied in detail yet. Using a standard deprojection technique, we derive the surface density profile of the AU Mic disk from near-IR scattered light observations. We show that irrespective of the asymmetry parameter of the phase function, most of the dust emission arises from a ring-like region that extends from 30 to 45 AU. We estimate that the mean collision time-scale at these distances is of the order of a few 10000 years. Therefore, collisional evolution can happen. A striking common feature between AU Mic and Beta Pic is the surface brightness profile. In both cases, the surface brightness falls off as r^{-5} further away than 120 AU in the case of Beta Pic and 35 AU in the case of AU Mic. In the case of Beta Pic, this profile is well explained by the combined effect of collisions and radiation pressure on the smallest dust particules (e.g. Augereau et al. 2001). But this model does not apply to AU Mic because of its low luminosity (thus generating a too low radiation pressure). Conversely, we show that a standard, solar-like stellar wind generates a drag force onto dust particles that behaves much like a radiation pressure. This wind pressure appears stronger than the radiation pressure itself and this effect is considerably enhanced by the recurrent stellar flares of AU Mic. This greatly contributes to populating the extended debris disk of AU Mic and explains the similarity between the Beta Pic and AU Mic brightness profiles.

  12. Triton - Scattering models and surface/atmosphere constraints

    NASA Technical Reports Server (NTRS)

    Thompson, W. Reid

    1989-01-01

    Modeling of Triton's spectrum indicates a bright scattering layer of optical depth tau about 3 overlying an optically deep layer of CH4 with high absorption and little scattering. UV absorption in the spectrum indicates tau about 0.3 of red-yellow haze, although some color may also arise from complex organics partially visible on the surface. An analysis of this and other (spectro)photometric evidence indicates that Triton most likely has a bright surface, which was partially visible in 1977-1980. Geometric albedo p = 0.62 + 0.18 or - 0.12 radius r = 1480 + or - 180 km, and temperature T = 48 + or - 6 K. With scattering optical depths of 0.3-3 and about 1-10 mb of N2, a Mars-like atmospheric density and surface visibility pertain.

  13. Venus - 3D Perspective View of Latona Corona and Dali Chasma

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This computer-generated perspective view of Latona Corona and Dali Chasma on Venus shows Magellan radar data superimposed on topography. The view is from the northeast and vertical exaggeration is 10 times. Exaggeration of relief is a common tool scientists use to detect relationships between structure (i.e. faults and fractures) and topography. Latona Corona, a circular feature approximately 1,000 kilometers (620 miles) in diameter whose eastern half is shown at the left of the image, has a relatively smooth, radar-bright raised rim. Bright lines or fractures within the corona appear to radiate away from its center toward the rim. The rest of the bright fractures in the area are associated with the relatively deep (approximately 3 kilometers or 1.9 miles) troughs of Dali Chasma. The Dali and Diana Chasma system consist of deep troughs that extend for 7,400 kilometers (4,588 miles) and are very distinct features on Venus. Those chasma connect the Ovda and Thetis highlands with the large volcanoes at Atla Regio and thus are considered to be the 'Scorpion Tail' of Aphrodite Terra. The broad, curving scarp resembles some of Earth's subduction zones where crustal plates are pushed over each other. The radar-bright surface at the highest elevation along the scarp is similar to surfaces in other elevated regions where some metallic mineral such as pyrite (fool's gold) may occur on the surface.

  14. Studying Titan's surface photometry in the 5 microns atmospheric window with the Cassini/VIMS instrument

    NASA Astrophysics Data System (ADS)

    Cornet, T.; Altobelli, N.; Sotin, C.; Le Mouelic, S.; Rodriguez, S.; Philippe, S.; Brown, R. H.; Barnes, J. W.; Buratti, B. J.; Baines, K. H.; Clark, R. N.; Nicholson, P. D.

    2014-12-01

    Due to the influence of methane gas and a thick aerosols haze in the atmosphere, Titan's surface is only visible in 7 spectral atmospheric windows centered at 0.93, 1.08, 1.27, 1.59, 2.01, 2.7-2.8 and 5 microns with the Cassini Visual and Infrared Mapping Spectrometer (VIMS). The 5 microns atmospheric window constitutes the only one being almost insensitive to the haze scattering and which presents only a reduced atmospheric absorption contribution to the signal recorded by the instrument. Despite these advantages leading to the almost direct view of the surface, the 5 microns window is also the noisiest spectral window of the entire VIMS spectrum (an effect highly dependent on the time exposure used for the observations), and it is not totally free from atmospheric contributions, enough to keep "artefacts" in mosaics of several thousands of cubes due to atmospheric and surface photometric effects amplified by the very heterogeneous viewing conditions between each Titan flyby. At first order, a lambertian surface photometry at 5 microns has been used as an initial parameter in order to estimate atmospheric opacity and surface photometry in all VIMS atmospheric windows and to determine the albedo of the surface, yet unknown, both using radiative transfer codes on single cubes or empirical techniques on global hyperspectral mosaics. Other studies suggested that Titan's surface photometry would not be uniquely lambertian but would also contain anisotropic lunar-like contributions. In the present work, we aim at constraining accurately the surface photometry of Titan and residual atmospheric absorption effects in this 5 microns window using a comprehensive study of relevant sites located at various latitudes. Those include bright and dark (dunes) terrains, 5-microns bright terrains (Hotei Regio and Tui Regio), the Huygens Landing Site and high latitudes polar lakes and seas. The VIMS 2004 to 2014 database, composed of more than 40,000 hyperspectral cubes acquired on Titan, has been decomposed into a MySQL relational database in order to perform the present study looking at both spatial and temporal (seasonal) aspects.

  15. From 20 cm - 1 micron: Measuring the Gas and Dust in Massive Low Surface Brightness Galaxies

    NASA Astrophysics Data System (ADS)

    Kearsley, E.; O'Neil, K.

    2005-12-01

    Archival data from the IRAS, 2MASS, NVSS, and FIRST catalogs, supplemented with new measurements of HI, are used to analyze the relationship between the relative mass of the various components of galaxies (stars, atomic hydrogen, dust, and molecular gas) using a small sample of nearby (z<0.1), massive low surface brightness galaxies. The sample is compared to three sets of published data: a large collection of radio sources from the UGC having a radio continuum intensity >2.5 mJy (Condon, Cotton, & Broderick 2002 AJ 124, 675) ; a smaller sample of low surface brightness galaxies (Galaz, et al 2002 2002 AJ 124, 1360); and a collection of NIR low surface brightness galaxies (Monnier-Ragaigne, et al 2002 Ap&SS 281, 145). Overall, our sample properties are similar to the comparison samples in regard to NIR color, gas, stellar, and dynamic mass ratios, etc. Based off the galaxies' q-value (determined from the FIR/1.4 GHz ratio), it appears likely that at least two of the 28 galaxies studied harbor AGN. Notably, we also find that if we naively assume the ratio of the dust and molecular gas mass relative to the mass of HI is a constant we are unable to predict the observed ratio of stellar mass to HI mass, indicating that the HI mass ratio is a poor indicator of the total baryonic mass in the studied galaxies. HI measurements obtained during this study using the Green Bank Telescope also provide a correction to the velocity of UGC 11068.

  16. BEYOND 31 mag arcsec{sup −2}: THE FRONTIER OF LOW SURFACE BRIGHTNESS IMAGING WITH THE LARGEST OPTICAL TELESCOPES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trujillo, Ignacio; Fliri, Jüergen, E-mail: trujillo@iac.es; Departamento de Astrofísica, Universidad de La Laguna, E-38206, La Laguna, Tenerife

    2016-06-01

    The detection of structures in the sky with optical surface brightnesses fainter than 30 mag arcsec{sup −2} (3 σ in 10 × 10 arcsec boxes; r -band) has remained elusive in current photometric deep surveys. Here we show how present-day telescopes of 10 m class can provide broadband imaging 1.5–2 mag deeper than most previous results within a reasonable amount of time (i.e., <10 hr on-source integration). In particular, we illustrate the ability of the 10.4 m Gran Telescopio de Canarias telescope to produce imaging with a limiting surface brightness of 31.5 mag arcsec{sup −2} (3 σ in 10 ×more » 10 arcsec boxes; r -band) using 8.1 hr on source. We apply this power to explore the stellar halo of the galaxy UGC 00180, a galaxy analogous to M31 located at ∼150 Mpc, by obtaining a radial profile of surface brightness down to μ{sub r} ∼ 33 mag arcsec{sup −2}. This depth is similar to that obtained using the star-counts techniques for Local Group galaxies, but is achieved at a distance where this technique is unfeasible. We find that the mass of the stellar halo of this galaxy is ∼4 × 10{sup 9} M {sub ⊙}, i.e., (3 ± 1)% of the total stellar mass of the whole system. This amount of mass in the stellar halo is in agreement with current theoretical expectations for galaxies of this kind.« less

  17. Meteoroid rotation and fireball flickering: a case study of the Innisfree fireball

    NASA Astrophysics Data System (ADS)

    Beech, Martin

    2001-09-01

    Some 5 per cent of bright meteors show rapid, quasi-periodic brightness variations. It is argued that this effect, observationally known as flickering, is a manifestation of the rotational modulation of surface mass loss through ablation of a non-spherical meteoroid. We develop a set of time-dependent, single-body ablation equations that include the effect of cross-section area modulation. We present a discussion of the effects that the rotation of a non-spherical meteoroid has on the resultant meteor light curve, and we look in depth at the data related to the fireball associated with the fall of the Innisfree meteorite. We find that the parent object to the Innisfree meteorite was spinning at a rotation frequency of 2.5Hz when it encountered the Earth's upper atmosphere. We also find that the Innisfree parent body had an initial mass of about 20kg and that the ratio of its semiminor and semimajor axes was about 0.5.

  18. Azimuthal Signature of Coincidental Brightness Temperature and Normalized Radar Cross-Section Obtained Using Airborne PALS Instrument

    NASA Technical Reports Server (NTRS)

    Colliander, Andreas; Kim, Seungbum; Yueh, Simon; Cosh, Mike; Jackson, Tom; Njoku, Eni

    2010-01-01

    Coincidental airborne brightness temperature (TB) and normalized radar-cross section (NRCS) measurements were carried out with the PALS (Passive and Active L- and S-band) instrument in the SMAPVEX08 (SMAP Validation Experiment 2008) field campaign. This paper describes results obtained from a set of flights which measured a field in 45(sup o) steps over the azimuth angle. The field contained mature soy beans with distinct row structure. The measurement shows that both TB and NRCS experience modulation effects over the azimuth as expected based on the theory. The result is useful in development and validation of land surface parameter forward models and retrieval algorithms, such as the soil moisture algorithm for NASA's SMAP (Soil Moisture Active and Passive) mission. Although the footprint of the SMAP will not be sensitive to the small resolution scale effects as the one presented in this paper, it is nevertheless important to understand the effects at smaller scale.

  19. 49 CFR 213.337 - Defective rails.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... crystalline center or nucleus inside the head from which it spreads outward as a smooth, bright, or dark... a smooth, bright, or dark surface progressing until substantially at a right angle to the length of... through it. A crack or rust streak may show under the head close to the web or pieces may be split off the...

  20. 49 CFR 213.337 - Defective rails.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... crystalline center or nucleus inside the head from which it spreads outward as a smooth, bright, or dark... a smooth, bright, or dark surface progressing until substantially at a right angle to the length of... through it. A crack or rust streak may show under the head close to the web or pieces may be split off the...

  1. 49 CFR 213.337 - Defective rails.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... crystalline center or nucleus inside the head from which it spreads outward as a smooth, bright, or dark... a smooth, bright, or dark surface progressing until substantially at a right angle to the length of... through it. A crack or rust streak may show under the head close to the web or pieces may be split off the...

  2. 49 CFR 213.337 - Defective rails.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... crystalline center or nucleus inside the head from which it spreads outward as a smooth, bright, or dark... a smooth, bright, or dark surface progressing until substantially at a right angle to the length of... through it. A crack or rust streak may show under the head close to the web or pieces may be split off the...

  3. 49 CFR 213.337 - Defective rails.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... crystalline center or nucleus inside the head from which it spreads outward as a smooth, bright, or dark... a smooth, bright, or dark surface progressing until substantially at a right angle to the length of... through it. A crack or rust streak may show under the head close to the web or pieces may be split off the...

  4. Stellar systems in the direction of the Hickson Compact Group 44. I. Low surface brightness galaxies

    NASA Astrophysics Data System (ADS)

    Smith Castelli, A. V.; Faifer, F. R.; Escudero, C. G.

    2016-11-01

    Context. In spite of the numerous studies of low-luminosity galaxies in different environments, there is still no consensus about their formation scenario. In particular, a large number of galaxies displaying extremely low-surface brightnesses have been detected in the last year, and the nature of these objects is under discussion. Aims: In this paper we report the detection of two extended low-surface brightness (LSB) objects (μeffg' ≃ 27 mag) found, in projection, next to NGC 3193 and in the zone of the Hickson Compact Group (HCG) 44, respectively. Methods: We analyzed deep, high-quality, GEMINI-GMOS images with ELLIPSE within IRAF in order to obtain their brightness profiles and structural parameters. We also searched for the presence of globular clusters (GC) in these fields. Results: We have found that, if these LSB galaxies were at the distances of NGC 3193 and HCG 44, they would show sizes and luminosities similar to those of the ultra-diffuse galaxies (UDGs) found in the Coma cluster and other associations. In that case, their sizes would be rather larger than those displayed by the Local Group dwarf spheroidal (dSph) galaxies. We have detected a few unresolved sources in the sky zone occupied by these galaxies showing colors and brightnesses typical of blue globular clusters. Conclusions: From the comparison of the properties of the galaxies presented in this work with those of similar objects reported in the literature, we have found that LSB galaxies display sizes covering a quite extended continous range (reff 0.3-4.5 kpc), in contrast to "normal" early-type galaxies, which show reff 1.0 kpc with a low dispersion. This fact might point to different formation processes for both types of galaxies.

  5. Atmospheric transformation of solar radiation reflected from the ocean

    NASA Technical Reports Server (NTRS)

    Malkevich, M. S.; Istomina, L. G.; Hovis, W. A., Jr.

    1977-01-01

    Airborne measurements of the brightness spectrum of the Atlantic Ocean in the wavelength region from 0.4 to 0.7 micron are analyzed. These measurements were made over a tropical region of the Atlantic from an aircraft at heights of 0.3 and 10.5 km during the TROPEX-72 experiment. The results are used to estimate the contribution of the atmosphere to the overall brightness of the ocean-atmosphere system. It is concluded that: (1) the atmosphere decreases the absolute brightness of the ocean by a factor of 5 to 10 and also strongly affects the spectral behavior of solar radiation reflected from the ocean surface; (2) the atmospheric contribution to overall brightness may vary considerably under real conditions; (3) finely dispersed particles and Rayleigh scattering affect the spectral distribution of solar radiation; and (4) the spectral composition of ocean-atmosphere brightness may be completely governed by the atmosphere.

  6. Circadian Phase-Shifting Effects of Bright Light, Exercise, and Bright Light + Exercise

    PubMed Central

    Kline, Christopher E.; Elliott, Jeffrey A.; Zielinski, Mark R.; Devlin, Tina M.; Moore, Teresa A.

    2016-01-01

    Limited research has compared the circadian phase-shifting effects of bright light and exercise and additive effects of these stimuli. The aim of this study was to compare the phase-delaying effects of late night bright light, late night exercise, and late evening bright light followed by early morning exercise. In a within-subjects, counterbalanced design, 6 young adults completed each of three 2.5-day protocols. Participants followed a 3-h ultra-short sleep-wake cycle, involving wakefulness in dim light for 2h, followed by attempted sleep in darkness for 1 h, repeated throughout each protocol. On night 2 of each protocol, participants received either (1) bright light alone (5,000 lux) from 2210–2340 h, (2) treadmill exercise alone from 2210–2340 h, or (3) bright light (2210–2340 h) followed by exercise from 0410–0540 h. Urine was collected every 90 min. Shifts in the 6-sulphatoxymelatonin (aMT6s) cosine acrophase from baseline to post-treatment were compared between treatments. Analyses revealed a significant additive phase-delaying effect of bright light + exercise (80.8 ± 11.6 [SD] min) compared with exercise alone (47.3 ± 21.6 min), and a similar phase delay following bright light alone (56.6 ± 15.2 min) and exercise alone administered for the same duration and at the same time of night. Thus, the data suggest that late night bright light followed by early morning exercise can have an additive circadian phase-shifting effect. PMID:27103935

  7. Ceres During Opposition Surge.

    NASA Image and Video Library

    2017-05-16

    NASA's Dawn spacecraft successfully observed Ceres at opposition on April 29, 2017, taking images from a position exactly between the sun and Ceres' surface. Mission specialists had carefully maneuvered Dawn into a special orbit so that the spacecraft could view Occator Crater, which contains the brightest area of Ceres, from this new perspective. A movie shows these opposition images, with contrast enhanced to highlight brightness differences. The bright spots of Occator stand out particularly well on an otherwise relatively bland surface. Dawn took these images from an altitude of about 12,000 miles (20,000 kilometers). Based on data from ground-based telescopes and spacecraft that have previously viewed planetary bodies at opposition, scientists predicted that Ceres would appear brighter from this opposition configuration. This increase in brightness, or "surge," relates the size of the grains of material on the surface, as well as how porous those materials are. The science motivation for performing these observations is further explained in the March 2017 issue of the Dawn Journal blog. A movie can be viewed at https://photojournal.jpl.nasa.gov/catalog/PIA21405

  8. Assimilation of SMOS brightness temperatures in the ECMWF EKF for the analysis of soil moisture

    NASA Astrophysics Data System (ADS)

    Munoz-Sabater, Joaquin

    2012-07-01

    Since November 2nd 2009, the European Centre for Medium-Range Weather Forecasts (ECMWF) has being monitoring, in Near Real Time (NRT), L-band brightness temperatures measured by the Soil Moisture and Ocean Salinity (SMOS) satellite mission of the European Space Agency (ESA). The main objective of the monitoring suite for SMOS data is to systematically monitor the difference between SMOS observed brightness temperatures and the corresponding model equivalent simulated by the Community Microwave Emission Model (CMEM), the so-called first guess departures. This is a crucial step, as first guess departures is the quantity used in the analysis. The ultimate goal is to investigate how the assimilation of SMOS brightness temperatures over land improves the weather forecast skill, through a more accurate initialization of the global soil moisture state. In this presentation, some significant results from the activities preparing for the assimilation of SMOS data are shown. Among these activities, an effective data thinning strategy, a practical approach to reduce noise from the observed brightness temperatures and a bias correction scheme are of special interest. Firstly, SMOS data needs to be significantly thinned as the data volume delivered for a single orbit is too large for the current operational capabilities in any Numerical Weather Prediction system. Different thinning strategies have been analysed and tested. The most suitable one is the assimilation of SMOS brightness temperatures which match the ECMWF T511 (~40 km) reduced Gaussian Grid. Secondly, SMOS observational noise is reduced significantly by averaging the data in angular bins. In addition, this methodology contributes to further thinning of the SMOS data before the analysis. Finally, a bias correction scheme based on a CDF matching is applied to the observations to ensure an unbiased dataset ready for assimilation in the ECMWF surface analysis system. The current ECMWF operational soil moisture analysis system is based on a point-wise Extended Kalman Filter (EKF). This system assimilates proxy surface observations, i.e., 2 m air temperature and relative humidity to analyse the soil moisture state. Recent developments have also made it possible to assimilate remote sensing data coming from active and passive instruments. In particular, the ECMWF EKF can also assimilate data from the Advanced Scatterometer (ASCAT) onboard METOP-A and, more recently, from SMOS brightness temperatures observations. The first preliminary assimilation results will be shown. The analysis fields will be evaluated through comparison to in-situ data from different regions.

  9. Bright Stuff on Ceres = Sulfates and Carbonates on CI Chondrites

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael; Chan, Queenie H. S.; Gounelle, Matthieu; Fries, Marc

    2016-01-01

    Recent reports of the DAWN spacecraft's observations of the surface of Ceres indicate that there are bright areas, which can be explained by large amounts of the Mg sulfate hexahydrate (MgSO4•6(H2O)), although the identification appears tenuous. There are preliminary indications that water is being evolved from these bright areas, and some have inferred that these might be sites of contemporary hydro-volcanism. A heat source for such modern activity is not obvious, given the small size of Ceres, lack of any tidal forces from nearby giant planets, probable age and presumed bulk composition. We contend that observations of chondritic materials in the lab shed light on the nature of the bright spots on Ceres

  10. Rosette globulettes and shells in the infrared

    NASA Astrophysics Data System (ADS)

    Mäkelä, M. M.; Haikala, L. K.; Gahm, G. F.

    2014-07-01

    Context. Giant galactic H ii regions surrounding central young clusters show compressed molecular shells, which have broken up into clumps, filaments, and elephant trunks interacting with UV light from central OB stars. Tiny, dense clumps of subsolar mass, called globulettes, form in this environment. Aims: We observe and explore the nature and origin of the infrared emission and extinction in these cool, dusty shell features and globulettes in one H ii region, the Rosette nebula, and search for associated newborn stars. Methods: We imaged the northwestern quadrant of the Rosette nebula in the near-infrared (NIR) through wideband JHKs filters and narrowband H2 1-0 S(1) and Pβ plus continuum filters using the Son of Isaac (SOFI) instrument at the New Technology Telescope (NTT) at European Southern Observatory (ESO). We used the NIR images to study the surface brightness of the globulettes and associated bright rims. We used the NIR JHKs photometry to create a visual extinction map and to search for objects with NIR excess emission. In addition, archival images from Spitzer Infrared Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS) 24 μm and Herschel Photoconductor Array Camera and Spectrometer (PACS) observations, covering several bands in the mid-infrared and far-infrared, were used to further analyze the stellar population, to examine the structure of the trunks and other shell structures and to study this Rosette nebula photon-dominated region in more detail. Results: The globulettes and elephant trunks have bright rims in the Ks band, which are unresolved in our images, on the sides facing the central cluster. An analysis of 21 globulettes, where surface brightness in the H2 1-0 S(1) line at 2.12 μm is detected, shows that approximately a third of the surface brightness observed in the Ks filter is due to this line: the observed average of the H2/Ks surface brightness is 0.26 ± 0.02 in the globulettes' cores and 0.30 ± 0.01 in the rims. The estimated H2 1-0 S(1) surface brightness of the rims is ˜3-8 × 10-8 Wm-2 sr-1μm-1. The ratio of the surface brightnesses support fluorescence instead of shocks as the H2 excitation mechanism. The globulettes have number densities of n(H2) ˜ 10-4 cm-3 or higher. We estimated masses of individual globulettes and compared them to the results from previous optical and radio molecular line surveys. We confirm that the larger globulettes contain very dense cores, that the density is also high farther out from the core, and that their mass is subsolar. Two NIR protostellar objects were found in an elephant trunk and one was found in the most massive globulette in our study. Based on observations done at the European Southern Observatory, La Silla, Chile (ESO programmes 084.C-0299 and 088.C-0630).Appendix A is only available in electronic form at http://www.aanda.orgTables 5 and 6 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/567/A108

  11. On the Response of the Special Sensor Microwave/Imager to the Marine Environment: Implications for Atmospheric Parameter Retrievals. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Petty, Grant W.

    1990-01-01

    A reasonably rigorous basis for understanding and extracting the physical information content of Special Sensor Microwave/Imager (SSM/I) satellite images of the marine environment is provided. To this end, a comprehensive algebraic parameterization is developed for the response of the SSM/I to a set of nine atmospheric and ocean surface parameters. The brightness temperature model includes a closed-form approximation to microwave radiative transfer in a non-scattering atmosphere and fitted models for surface emission and scattering based on geometric optics calculations for the roughened sea surface. The combined model is empirically tuned using suitable sets of SSM/I data and coincident surface observations. The brightness temperature model is then used to examine the sensitivity of the SSM/I to realistic variations in the scene being observed and to evaluate the theoretical maximum precision of global SSM/I retrievals of integrated water vapor, integrated cloud liquid water, and surface wind speed. A general minimum-variance method for optimally retrieving geophysical parameters from multichannel brightness temperature measurements is outlined, and several global statistical constraints of the type required by this method are computed. Finally, a unified set of efficient statistical and semi-physical algorithms is presented for obtaining fields of surface wind speed, integrated water vapor, cloud liquid water, and precipitation from SSM/I brightness temperature data. Features include: a semi-physical method for retrieving integrated cloud liquid water at 15 km resolution and with rms errors as small as approximately 0.02 kg/sq m; a 3-channel statistical algorithm for integrated water vapor which was constructed so as to have improved linear response to water vapor and reduced sensitivity to precipitation; and two complementary indices of precipitation activity (based on 37 GHz attenuation and 85 GHz scattering, respectively), each of which are relatively insensitive to variations in other environmental parameters.

  12. Intermittent episodes of bright light suppress myopia in the chicken more than continuous bright light.

    PubMed

    Lan, Weizhong; Feldkaemper, Marita; Schaeffel, Frank

    2014-01-01

    Bright light has been shown a powerful inhibitor of myopia development in animal models. We studied which temporal patterns of bright light are the most potent in suppressing deprivation myopia in chickens. Eight-day-old chickens wore diffusers over one eye to induce deprivation myopia. A reference group (n = 8) was kept under office-like illuminance (500 lux) at a 10:14 light:dark cycle. Episodes of bright light (15 000 lux) were super-imposed on this background as follows. Paradigm I: exposure to constant bright light for either 1 hour (n = 5), 2 hours (n = 5), 5 hours (n = 4) or 10 hours (n = 4). Paradigm II: exposure to repeated cycles of bright light with 50% duty cycle and either 60 minutes (n = 7), 30 minutes (n = 8), 15 minutes (n = 6), 7 minutes (n = 7) or 1 minute (n = 7) periods, provided for 10 hours. Refraction and axial length were measured prior to and immediately after the 5-day experiment. Relative changes were analyzed by paired t-tests, and differences among groups were tested by one-way ANOVA. Compared with the reference group, exposure to continuous bright light for 1 or 2 hours every day had no significant protective effect against deprivation myopia. Inhibition of myopia became significant after 5 hours of bright light exposure but extending the duration to 10 hours did not offer an additional benefit. In comparison, repeated cycles of 1:1 or 7:7 minutes of bright light enhanced the protective effect against myopia and could fully suppress its development. The protective effect of bright light depends on the exposure duration and, to the intermittent form, the frequency cycle. Compared to the saturation effect of continuous bright light, low frequency cycles of bright light (1:1 min) provided the strongest inhibition effect. However, our quantitative results probably might not be directly translated into humans, but rather need further amendments in clinical studies.

  13. A medium-bright quasar sample - New quasar surface densities in the magnitude range from 16.4 to 17.65 for B

    NASA Technical Reports Server (NTRS)

    Mitchell, K. J.; Warnock, A., III; Usher, P. D.

    1984-01-01

    A new medium-bright quasar sample (MBQS) is constructed from spectroscopic observations of 140 bright objects selected for varying degrees of blue and ultraviolet excess (B-UVX) in five Palomar 1.2 m Schmidt fields. The MBQS contains 32 quasars with B less than 17.65 mag. The new integral surface densities in the B range from 16.45 to 17.65 mag are approximately 40 percent (or more) higher than expected. The MBQS and its redshift distribution increase the area of the Hubble diagram covered by complete samples of quasars. The general spectroscopic results indicate that the three-color classification process used to catalog the spectroscopic candidates (1) has efficiently separated the intrinsically B-UVX stellar objects from the Population II subdwarfs and (2) has produced samples of B-UVX objects which are more complete than samples selected by (U - B) color alone.

  14. Clusters in Formation - The Case of 3C61.1 and A Luminous AGN in a Merging Cluster

    NASA Astrophysics Data System (ADS)

    Kraft, Ralph

    2017-09-01

    We propose a Chandra investigation of the serendipitously detected cluster, X-CLASS 1835, that hosts the classical FRII radio source 3C61.1 as well as a radiatively efficient, X-ray bright AGN. The cluster exhibits a prominent surface brightness edge which suggests a merger and/or a major AGN outburst. The radio emission from 3C61.1 shows interaction with the hot cluster plasma. We will characterize the merger/outburst by measuring the properties of the surface brightness edge, study the interaction of the FRII radio source (its hotspots, jet, and cocoon) with the ICM, measure spectra of 3C61.1 (nucleus and hotspots) and the AGN to explore their physical properties, and measure the PV work from any detected cavities around 3C61.1 to compare to the radio power.

  15. The nature of solar brightness variations

    NASA Astrophysics Data System (ADS)

    Shapiro, A. I.; Solanki, S. K.; Krivova, N. A.; Cameron, R. H.; Yeo, K. L.; Schmutz, W. K.

    2017-09-01

    Determining the sources of solar brightness variations1,2, often referred to as solar noise3, is important because solar noise limits the detection of solar oscillations3, is one of the drivers of the Earth's climate system4,5 and is a prototype of stellar variability6,7—an important limiting factor for the detection of extrasolar planets. Here, we model the magnetic contribution to solar brightness variability using high-cadence8,9 observations from the Solar Dynamics Observatory (SDO) and the Spectral And Total Irradiance REconstruction (SATIRE)10,11 model. The brightness variations caused by the constantly evolving cellular granulation pattern on the solar surface were computed with the Max Planck Institute for Solar System Research (MPS)/University of Chicago Radiative Magnetohydrodynamics (MURaM)12 code. We found that the surface magnetic field and granulation can together precisely explain solar noise (that is, solar variability excluding oscillations) on timescales from minutes to decades, accounting for all timescales that have so far been resolved or covered by irradiance measurements. We demonstrate that no other sources of variability are required to explain the data. Recent measurements of Sun-like stars by the COnvection ROtation and planetary Transits (CoRoT)13 and Kepler14 missions uncovered brightness variations similar to that of the Sun, but with a much wider variety of patterns15. Our finding that solar brightness variations can be replicated in detail with just two well-known sources will greatly simplify future modelling of existing CoRoT and Kepler as well as anticipated Transiting Exoplanet Survey Satellite16 and PLAnetary Transits and Oscillations of stars (PLATO)17 data.

  16. An analysis of source structure effects in radio interferometry measurements

    NASA Technical Reports Server (NTRS)

    Thomas, J. B.

    1980-01-01

    To begin a study of structure effects, this report presents a theoretical framework, proposes an effective position approach to structure corrections based on brightness distribution measurements, and analyzes examples of analytical and measured brightness distributions. Other topics include the effect of the frequency dependence of a brightness distribution on bandwidth synthesis (BWS) delay, the determination of the absolute location of a measured brightness distribution, and structure effects in dual frequency calibration of charged particle delays. For the 10 measured distributions analyzed, it was found that the structure effect in BWS delay at X-band (3.6 cm) can reach 30 cm, but typically falls in the range of 0 to 5 cm. A trial limit equation that is dependent on visibility was successfully tested against the 10 measured brightness distributions (seven sources). If the validity of this particular equation for an upper limit can be established for nearly all sources, the structure effect in BWS delay could be greatly reduced without supplementary measurements of brightness distributions.

  17. Local stability of galactic discs in modified dynamics

    NASA Astrophysics Data System (ADS)

    Shenavar, Hossein; Ghafourian, Neda

    2018-04-01

    The local stability of stellar and fluid discs, under a new modified dynamical model, is surveyed by using WKB approximation. The exact form of the modified Toomre criterion is derived for both types of systems and it is shown that the new model is, in all situations, more locally stable than Newtonian model. In addition, it has been proved that the central surface density of the galaxies plays an important role in the local stability in the sense that low surface brightness (LSB) galaxies are more stable than high surface brightness (HSBs). Furthermore, the growth rate in the new model is found to be lower than the Newtonian one. We found that, according to this model, the local instability is related to the ratio of surface density of the disc to a critical surface density Σcrit. We provide observational evidence to support this result based on star formation rate in HSBs and LSBs.

  18. Ground and satellite-based remote sensing of mineral dust using AERI spectra and MODIS thermal infrared window brightness temperatures

    NASA Astrophysics Data System (ADS)

    Hansell, Richard Allen, Jr.

    The radiative effects of dust aerosol on our climate system have yet to be fully understood and remain a topic of contemporary research. To investigate these effects, detection/retrieval methods for dust events over major dust outbreak and transport areas have been developed using satellite and ground-based approaches. To this end, both the shortwave and longwave surface radiative forcing of dust aerosol were investigated. The ground-based remote sensing approach uses the Atmospheric Emitted Radiance Interferometer brightness temperature spectra to detect mineral dust events and to retrieve their properties. Taking advantage of the high spectral resolution of the AERI instrument, absorptive differences in prescribed thermal IR window sub-band channels were exploited to differentiate dust from cirrus clouds. AERI data collected during the UAE2 at Al-Ain UAE was employed for dust retrieval. Assuming a specified dust composition model a priori and using the light scattering programs of T-matrix and the finite difference time domain methods for oblate spheroids and hexagonal plates, respectively, dust optical depths have been retrieved and compared to those inferred from a collocated and coincident AERONET sun-photometer dataset. The retrieved optical depths were then used to determine the dust longwave surface forcing during the UAE2. Likewise, dust shortwave surface forcing is investigated employing a differential technique from previous field studies. The satellite-based approach uses MODIS thermal infrared brightness temperature window data for the simultaneous detection/separation of mineral dust and cirrus clouds. Based on the spectral variability of dust emissivity at the 3.75, 8.6, 11 and 12 mum wavelengths, the D*-parameter, BTD-slope and BTD3-11 tests are combined to identify dust and cirrus. MODIS data for the three dust-laden scenes have been analyzed to demonstrate the effectiveness of this detection/separation method. Detected daytime dust and cloud coverage for the Persian Gulf case compare reasonably well to those from the "Deep Blue" algorithm developed at NASA-GSFC. The nighttime dust/cloud detection for the cases surrounding Cape Verde and Niger, West Africa has been validated by comparing to coincident and collocated ground-based micro-pulse lidar measurements.

  19. Sulfur "Bergs" and Sulfur Pools: Loki and Tupan Patera on Io

    NASA Astrophysics Data System (ADS)

    Howell, R. R.; Lopes, R. M.; Landis, C. E.; Allen, D. R.

    2012-12-01

    Loki and Tupan Patera on Io show numerous features related to the presence of volatiles. There are both striking similarities and distinct differences in the way the volatiles have acted at these two sites. At Loki numerous small bright features, colloquially known as sulfur "bergs", are distributed across the dark patera surface. We map their spatial distribution and spectral properties (Landis et al., this conference) and model sulfur vapor transport processes (Allen et al. this conference) to determine if those bright features are consistent with sulfur fumarole deposits. Alternatively, the "bergs" may represent topographic highs (kipukas) left un-resurfaced by the recurrent activity at Loki. To test this we examine Voyager, Galileo, and New Horizons images to determine if any changes in their spatial distribution have occurred over the 1979 through 2007 period. We also discuss further a statistical analysis of their size and spectral reflectance. Tupan shows an overall morphology similar to Loki, with a central island and one straight margin. It also shows linear features extending across the island. However instead of the dark eastern portion of the patera containing a myriad of small bright features like the Loki "bergs" which avoid the margins, Tupan shows higher albedo deposits concentrated at the margins. And in the higher albedo western portion of Tupan Patera numerous low albedo features can be interpreted as dark silicates erupting or eating through a volatile rich crust. Unlike Loki, these intra-patera features at Tupan clearly have sharply defined edges, indicating surface flow processes rather than possible vapor effects. However both outside the main Tupan Patera walls and on the island there are more diffuse patterns consistent with vapor transport. A detailed comparison of reflectance at violet through very near infrared wavelengths helps elucidate these effects. As also found at Loki, a low violet reflectance indicates that sulfur is abundant on many of the surfaces within the patera. That detailed comparison also helps highlight the vapor effects mentioned above. We discuss the insights into volatile processes gained from a detailed comparison of the Loki and Tupan images, and the implications those have for volcanism on Io.

  20. Extreme Brightness Temperatures and Refractive Substructure in 3C273 with RadioAstron

    NASA Astrophysics Data System (ADS)

    Johnson, Michael D.; Kovalev, Yuri Y.; Gwinn, Carl R.; Gurvits, Leonid I.; Narayan, Ramesh; Macquart, Jean-Pierre; Jauncey, David L.; Voitsik, Peter A.; Anderson, James M.; Sokolovsky, Kirill V.; Lisakov, Mikhail M.

    2016-03-01

    Earth-space interferometry with RadioAstron provides the highest direct angular resolution ever achieved in astronomy at any wavelength. RadioAstron detections of the classic quasar 3C 273 on interferometric baselines up to 171,000 km suggest brightness temperatures exceeding expected limits from the “inverse-Compton catastrophe” by two orders of magnitude. We show that at 18 cm, these estimates most likely arise from refractive substructure introduced by scattering in the interstellar medium. We use the scattering properties to estimate an intrinsic brightness temperature of 7× {10}12 {{K}}, which is consistent with expected theoretical limits, but which is ˜15 times lower than estimates that neglect substructure. At 6.2 cm, the substructure influences the measured values appreciably but gives an estimated brightness temperature that is comparable to models that do not account for the substructure. At 1.35 {{cm}}, the substructure does not affect the extremely high inferred brightness temperatures, in excess of {10}13 {{K}}. We also demonstrate that for a source having a Gaussian surface brightness profile, a single long-baseline estimate of refractive substructure determines an absolute minimum brightness temperature, if the scattering properties along a given line of sight are known, and that this minimum accurately approximates the apparent brightness temperature over a wide range of total flux densities.

  1. Bolivia

    Atmospheric Science Data Center

    2013-04-18

    ... in brightness between them. Varying degrees of surface moisture around the two playas are illustrated by the different display ... angular composites contain information relating to surface moisture and/or texture characteristics that are not apparent with a single ...

  2. The formation of giant low surface brightness galaxies

    NASA Technical Reports Server (NTRS)

    Hoffman, Yehuda; Silk, Joseph; Wyse, Rosemary F. G.

    1992-01-01

    It is demonstrated that the initial structure of galaxies can be strongly affected by their large-scale environments. In particular, rare (about 3 sigma) massive galaxies in voids will have normal bulges, but unevolved, extended disks; it is proposed that the low surface brightness objects Malin I and Malin II are prototypes of this class of object. The model predicts that searches for more examples of 'crouching giants' should be fruitful, but that such galaxies do not provide a substantial fraction of mass in the universe. The identification of dwarf galaxies is relatively unaffected by their environment.

  3. K-band observations of boxy bulges - I. Morphology and surface brightness profiles

    NASA Astrophysics Data System (ADS)

    Bureau, M.; Aronica, G.; Athanassoula, E.; Dettmar, R.-J.; Bosma, A.; Freeman, K. C.

    2006-08-01

    In this first paper of a series on the structure of boxy and peanut-shaped (B/PS) bulges, Kn-band observations of a sample of 30 edge-on spiral galaxies are described and discussed. Kn-band observations best trace the dominant luminous galactic mass and are minimally affected by dust. Images, unsharp-masked images, as well as major-axis and vertically summed surface brightness profiles are presented and discussed. Galaxies with a B/PS bulge tend to have a more complex morphology than galaxies with other bulge types, more often showing centred or off-centred X structures, secondary maxima along the major-axis and spiral-like structures. While probably not uniquely related to bars, those features are observed in three-dimensional N-body simulations of barred discs and may trace the main bar orbit families. The surface brightness profiles of galaxies with a B/PS bulge are also more complex, typically containing three or more clearly separated regions, including a shallow or flat intermediate region (Freeman Type II profiles). The breaks in the profiles offer evidence for bar-driven transfer of angular momentum and radial redistribution of material. The profiles further suggest a rapid variation of the scaleheight of the disc material, contrary to conventional wisdom but again as expected from the vertical resonances and instabilities present in barred discs. Interestingly, the steep inner region of the surface brightness profiles is often shorter than the isophotally thick part of the galaxies, itself always shorter than the flat intermediate region of the profiles. The steep inner region is also much more prominent along the major-axis than in the vertically summed profiles. Similarly to other recent work but contrary to the standard `bulge + disc' model (where the bulge is both thick and steep), we thus propose that galaxies with a B/PS bulge are composed of a thin concentrated disc (a disc-like bulge) contained within a partially thick bar (the B/PS bulge), itself contained within a thin outer disc. The inner disc likely formed secularly through bar-driven processes and is responsible for the steep inner region of the surface brightness profiles, traditionally associated with a classic bulge, while the bar is responsible for the flat intermediate region of the surface brightness profiles and the thick complex morphological structures observed. Those components are strongly coupled dynamically and are formed mostly of the same (disc) material, shaped by the weak but relentless action of the bar resonances. Any competing formation scenario for galaxies with a B/PS bulge, which represent at least 45 per cent of the local disc galaxy population, must explain equally well and self-consistently the above morphological and photometric properties, the complex gas and stellar kinematics observed, and the correlations between them.

  4. Simultaneous Multi-band Detection of Low Surface Brightness Galaxies with Markovian Modeling

    NASA Astrophysics Data System (ADS)

    Vollmer, B.; Perret, B.; Petremand, M.; Lavigne, F.; Collet, Ch.; van Driel, W.; Bonnarel, F.; Louys, M.; Sabatini, S.; MacArthur, L. A.

    2013-02-01

    We present to the astronomical community an algorithm for the detection of low surface brightness (LSB) galaxies in images, called MARSIAA (MARkovian Software for Image Analysis in Astronomy), which is based on multi-scale Markovian modeling. MARSIAA can be applied simultaneously to different bands. It segments an image into a user-defined number of classes, according to their surface brightness and surroundings—typically, one or two classes contain the LSB structures. We have developed an algorithm, called DetectLSB, which allows the efficient identification of LSB galaxies from among the candidate sources selected by MARSIAA. The application of the method to two and three bands simultaneously was tested on simulated images. Based on our tests, we are confident that we can detect LSB galaxies down to a central surface brightness level of only 1.5 times the standard deviation from the mean pixel value in the image background. To assess the robustness of our method, the method was applied to a set of 18 B- and I-band images (covering 1.3 deg2 in total) of the Virgo Cluster to which Sabatini et al. previously applied a matched-filter dwarf LSB galaxy search algorithm. We have detected all 20 objects from the Sabatini et al. catalog which we could classify by eye as bona fide LSB galaxies. Our method has also detected four additional Virgo Cluster LSB galaxy candidates undetected by Sabatini et al. To further assess the completeness of the results of our method, both MARSIAA, SExtractor, and DetectLSB were applied to search for (1) mock Virgo LSB galaxies inserted into a set of deep Next Generation Virgo Survey (NGVS) gri-band subimages and (2) Virgo LSB galaxies identified by eye in a full set of NGVS square degree gri images. MARSIAA/DetectLSB recovered ~20% more mock LSB galaxies and ~40% more LSB galaxies identified by eye than SExtractor/DetectLSB. With a 90% fraction of false positives from an entirely unsupervised pipeline, a completeness of 90% is reached for sources with r e > 3'' at a mean surface brightness level of μg = 27.7 mag arcsec-2 and a central surface brightness of μ0 g = 26.7 mag arcsec-2. About 10% of the false positives are artifacts, the rest being background galaxies. We have found our proposed Markovian LSB galaxy detection method to be complementary to the application of matched filters and an optimized use of SExtractor, and to have the following advantages: it is scale free, can be applied simultaneously to several bands, and is well adapted for crowded regions on the sky. .

  5. Variations in Surface Texture of the North Polar Residual Cap of Mars

    NASA Technical Reports Server (NTRS)

    Milkovich, S. M.; Byrne, S.; Russell, P. S.

    2011-01-01

    The northern polar residual cap (NPRC) of Mars is a water ice deposit with a rough surface made up of pits, knobs, and linear depressions on scales of tens of meters. This roughness manifests as a series of bright mounds and dark hollows in visible images; these bright and dark patches have a characteristic wavelength and orientation. Spectral data indicate that the surface of the NPRC is composed of large-grained (and therefore old) water ice. Due to the presence of this old ice, it is thought that the NPRC is in a current state of net loss of material a result potentially at odds with impact crater statistics, which suggest ongoing deposition over the past 10-20 Kyr.

  6. Radarclinometry

    USGS Publications Warehouse

    Wildey, R.L.

    1986-01-01

    A mathematical theory and a corresponding algorithm have been developed to derive topographic maps from radar images as photometric arrays. Thus, as radargrammetry is to photogrammetry, so radarclinometry is to photoclinometry. Photoclinometry is endowed with a fundamental indeterminacy principle even for terrain homogeneous in normal albedo. This arises from the fact that the geometric locus of orientations of the local surface normal that is consistent with a given reflected specific-intensity of radiation is more complicated than a fixed line in space. For a radar image, the locus is a cone whose half-angle is the incidence angle and whose axis contains the radar. The indeterminacy is removed throughout a region if one possesses a control profile as a boundary-condition. In the absence of such ground-truth, a point-boundary-condition will suffice only in conjunction with a heuristic assumption, such as that the strike-line runs perpendicularly to the line-of-sight. In the present study I have implemented a more reasonable assumption which I call 'the hypothesis of local cylindricity'. Firstly, a general theory is derived, based solely on the implicit mathematical determinacy. This theory would be directly indicative of procedure if images were completely devoid of systematic error and noise. The theory produces topography by an area integration of radar brightness, starting from a control profile, without need of additional idealistic assumptions. But we have also theorized separately a method of forming this control profile, which method does require an additional assumption about the terrain. That assumption is that the curvature properties of the terrain are locally those of a cylinder of inferable orientation, within a second-order mathematical neighborhood of every point of the terrain. While local strike-and-dip completely determine the radar brightness itself, the terrain curvature determines the brightness-gradient in the radar image. Therefore, the control profile is formed as a line integration of brightness and its local gradient starting from a single point of the terrain where the local orientation of the strike-line is estimated by eye. Secondly, and independently, the calibration curve for pixel brightness versus incidence-angle is produced. I assume that an applicable curve can be found from the literature or elsewhere so that our problem is condensed to that of properly scaling the brightness-axis of the calibration curve. A first estimate is found by equating the average image brightness to the point on the brightness axis corresponding to the complement of the effective radar depression-angle, an angle assumed given. A statistical analysis is then used to correct, on the one hand, for the fact that the average brightness is not the brightness that corresponds to the average incidence angle, as a result of the non-linearity of the calibration curve; and on the other hand, we correct for the fact that the average incidence angle is not the same for a rough surface as it is for a flat surface (and therefore not the complement of the depression angle). Lastly, the practical modifications that were interactively evolved to produce an operational algorithm for treating real data are developed. They are by no means considered optimized at present. Such a possibility is thus far precluded by excessive computer-time. Most noteworthy in this respect is the abandonment of area integration away from a control profile. Instead, the topography is produced as a set of independent line integrations down each of the parallel range lines of the image, using the theory for control-profile formation. An adaptive technique, which now appears excessive, was also employed so that SEASAT images of sand dunes could be processed. In this, the radiometric calibration was iterated to force the endpoints of each profile to zero elevation. A secondary algorithm then employed line-averages of appropriate quantities to adjust the mean t

  7. The influence of thermal inertia on temperatures and frost stability on Triton

    NASA Technical Reports Server (NTRS)

    Spencer, John R.; Moore, Jeffrey M.

    1992-01-01

    It is presently argued, in view of (1) a thermal inertia model for the surface of Triton which (like previous ones) predicts a monotonic recession of permanent N2 deposits toward the poles and very little seasonal N2 frost in the southern hemisphere, and (2) new spectroscopic evidence for nonvolatile CO2 on Triton's bright southern hemisphere, that much of that bright southern material is not N2. Such bright southern hemisphere volatiles may allow the formation of seasonal frosts, thereby helping to explain the observed spectroscopic changes of Triton during the last decade.

  8. Contrast in the Photoelectric Effect of Organic and Biochemical Surfaces

    PubMed Central

    Birrell, G. B.; Burke, C.; Dehlinger, P.; Griffith, O. H.

    1973-01-01

    The photoelectric effect can provide the physical basis for a new method of mapping organic and biological surfaces. The technique, photoelectron microscopy, is similar to fluorescence microscopy using incident ultraviolet light except that photoejected electrons form the image of the specimen surface. In this work the minimum wavelengths of incident light required to produce an image were determined for the molecules 3,6-bis(dimethylamino)acridine (acridine orange) (I), benzo[a]pyrene (II), N,N,N′,N′-tetraphenylbenzidine (III), and copper phthalocyanine (IV). The photoelectron image thresholds for these compounds are 220 (I), 215 (II), 220 (III), and 240 nm (IV), all ±5 nm. Contrast of I-IV with respect to typical protein, lipid, nucleic acid, and polysaccharide surfaces was examined over the wavelength range 240-180 nm. The low magnification micrographs exhibited bright areas corresponding to I-IV but dark regions for the biochemical surfaces. The high contrast suggests the feasibility of performing extrinsic photoelectron microscopy experiments through selective labeling of sites on biological surfaces. ImagesFIGURE 3 PMID:4704486

  9. Adaptive focusing of laser radiation onto a rough reflecting surface through the turbulent and nonlinear atmosphere

    NASA Astrophysics Data System (ADS)

    Vorontsov, Mikhail A.; Kolosov, Valeriy V.

    2004-12-01

    Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related with maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing outgoing wave propagation, and the equation describing evolution of the mutual coherence function (MCF) for the backscattered (returned) wave. The resulting evolution equation for the MCF is further simplified by the use of the smooth refractive index approximation. This approximation enables derivation of the transport equation for the returned wave brightness function, analyzed here using method characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wavefront sensors that perform sensing of speckle-averaged characteristics of the wavefront phase (TIL sensors). Analysis of the wavefront phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric turbulence-related phase aberrations. We also show that wavefront sensing results depend on the extended target shape, surface roughness, and the outgoing beam intensity distribution on the target surface.

  10. The Dragonfly Nearby Galaxies Survey. IV. A Giant Stellar Disk in NGC 2841

    NASA Astrophysics Data System (ADS)

    Zhang, Jielai; Abraham, Roberto; van Dokkum, Pieter; Merritt, Allison; Janssens, Steven

    2018-03-01

    Neutral gas is commonly believed to dominate over stars in the outskirts of galaxies, and investigations of the disk-halo interface are generally considered to be in the domain of radio astronomy. This may simply be a consequence of the fact that deep H I observations typically probe to a lower-mass surface density than visible wavelength data. This paper presents low-surface-brightness, optimized visible wavelength observations of the extreme outskirts of the nearby spiral galaxy NGC 2841. We report the discovery of an enormous low-surface brightness stellar disk in this object. When azimuthally averaged, the stellar disk can be traced out to a radius of ∼70 kpc (5 R 25 or 23 inner disk scale lengths). The structure in the stellar disk traces the morphology of H I emission and extended UV emission. Contrary to expectations, the stellar mass surface density does not fall below that of the gas mass surface density at any radius. In fact, at all radii greater than ∼20 kpc, the ratio of the stellar mass to gas mass surface density is a constant 3:1. Beyond ∼30 kpc, the low-surface-brightness stellar disk begins to warp, which may be an indication of a physical connection between the outskirts of the galaxy and infall from the circumgalactic medium. A combination of stellar migration, accretion, and in situ star formation might be responsible for building up the outer stellar disk, but whatever mechanisms formed the outer disk must also explain the constant ratio between stellar and gas mass in the outskirts of this galaxy.

  11. The effect of row structure on soil moisture retrieval accuracy from passive microwave data.

    PubMed

    Xingming, Zheng; Kai, Zhao; Yangyang, Li; Jianhua, Ren; Yanling, Ding

    2014-01-01

    Row structure causes the anisotropy of microwave brightness temperature (TB) of soil surface, and it also can affect soil moisture retrieval accuracy when its influence is ignored in the inversion model. To study the effect of typical row structure on the retrieved soil moisture and evaluate if there is a need to introduce this effect into the inversion model, two ground-based experiments were carried out in 2011. Based on the observed C-band TB, field soil and vegetation parameters, row structure rough surface assumption (Q p model and discrete model), including the effect of row structure, and flat rough surface assumption (Q p model), ignoring the effect of row structure, are used to model microwave TB of soil surface. Then, soil moisture can be retrieved, respectively, by minimizing the difference of the measured and modeled TB. The results show that soil moisture retrieval accuracy based on the row structure rough surface assumption is approximately 0.02 cm(3)/cm(3) better than the flat rough surface assumption for vegetated soil, as well as 0.015 cm(3)/cm(3) better for bare and wet soil. This result indicates that the effect of row structure cannot be ignored for accurately retrieving soil moisture of farmland surface when C-band is used.

  12. Numerical reproduction and explanation of road surface mirages under grazing-angle scattering.

    PubMed

    Lu, Jia; Zhou, Huaichun

    2017-07-01

    The mirror-like reflection image of the road surface under grazing-angle scattering can be easily observed in daily life. It was suggested that road surface mirages may occur due to a light-enhancing effect of the rough surface under grazing-angle scattering. The main purpose of this work is to explain the light-enhancing mechanism of rough surfaces under grazing-angle scattering. The off-specular reflection from a random rough magnesium oxide ceramic surface is analyzed by using the geometric optics approximation method. Then, the geometric optics approximation method is employed to develop a theoretical model to predict the observation effect of the grazing-angle scattering phenomenon of the road surface. The rough surface is assumed to consist of small-scale rough surface facets. The road surface mirage is reproduced from a large number of small-scale rough surface facets within the eye's resolution limit at grazing scattering angles, as the average bidirectional reflectance distribution function value at the bright location is about twice that of the surface in front of the mirage. It is suggested that the light-enhancing effect of the rough surface under grazing-angle scattering is not proper to be termed as "off-specular reflection," since it has nothing to do with the "specular" direction with respect to the incident direction.

  13. Surface brightness profiles and structural parameters for 53 rich stellar clusters in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Mackey, A. D.; Gilmore, G. F.

    2003-01-01

    We have compiled a pseudo-snapshot data set of two-colour observations from the Hubble Space Telescope archive for a sample of 53 rich LMC clusters with ages of 106-1010 yr. We present surface brightness profiles for the entire sample, and derive structural parameters for each cluster, including core radii, and luminosity and mass estimates. Because we expect the results presented here to form the basis for several further projects, we describe in detail the data reduction and surface brightness profile construction processes, and compare our results with those of previous ground-based studies. The surface brightness profiles show a large amount of detail, including irregularities in the profiles of young clusters (such as bumps, dips and sharp shoulders), and evidence for both double clusters and post-core-collapse (PCC) clusters. In particular, we find power-law profiles in the inner regions of several candidate PCC clusters, with slopes of approximately -0.7, but showing considerable variation. We estimate that 20 +/- 7 per cent of the old cluster population of the Large Magellanic Cloud (LMC) has entered PCC evolution, a similar fraction to that for the Galactic globular cluster system. In addition, we examine the profile of R136 in detail and show that it is probably not a PCC cluster. We also observe a trend in core radius with age that has been discovered and discussed in several previous publications by different authors. Our diagram has better resolution, however, and appears to show a bifurcation at several hundred Myr. We argue that this observed relationship reflects true physical evolution in LMC clusters, with some experiencing small-scale core expansion owing to mass loss, and others large-scale expansion owing to some unidentified characteristic or physical process.

  14. Oxygen abundance distributions in six late-type galaxies based on SALT spectra of H II regions

    NASA Astrophysics Data System (ADS)

    Zinchenko, I. A.; Kniazev, A. Y.; Grebel, E. K.; Pilyugin, L. S.

    2015-10-01

    Spectra of 34 H ii regions in the late-type galaxies NGC 1087, NGC 2967, NGC 3023, NGC 4030, NGC 4123, and NGC 4517A were observed with the South African Large Telescope (SALT). In all 34 H ii regions, oxygen abundances were determined through the "counterpart" method (C method). Additionally, in two H ii regions in which we detected auroral lines, we measured oxygen abundances with the classic Te method. We also estimated the abundances in our H ii regions using the O3N2 and N2 calibrations and compared those with the C-based abundances. With these data, we examined the radial abundance distributions in the disks of our target galaxies. We derived surface-brightness profiles and other characteristics of the disks (the surface brightness at the disk center and the disk scale length) in three photometric bands for each galaxy using publicly available photometric imaging data. The radial distributions of the oxygen abundances predicted by the relation between abundance and disk surface brightness in the W1 band obtained for spiral galaxies in our previous study are close to the radial distributions of the oxygen abundances determined from the analysis of the emission line spectra for four galaxies where this relation is applicable. Hence, when the surface-brightness profile of a late-type galaxy is known, this parametric relation can be used to estimate the likely present-day oxygen abundance in the disk of the galaxy. Based on observations made with the Southern African Large Telescope, programs 2012-1-RSA_OTH-001, 2012-2-RSA_OTH-003 and 2013-1-RSA_OTH-005.

  15. The merger remnant NGC 3610 and its globular cluster system: a large-scale study

    NASA Astrophysics Data System (ADS)

    Bassino, Lilia P.; Caso, Juan P.

    2017-04-01

    We present a photometric study of the prototype merger remnant NGC 3610 and its globular cluster (GC) system, based on new Gemini/GMOS and Advanced Camera for Surveys/Hubble Space Telescope archival images. Thanks to the large field of view of our GMOS data, larger than previous studies, we are able to detect a 'classical' bimodal GC colour distribution, corresponding to metal-poor and metal-rich GCs, at intermediate radii and a small subsample of likely young clusters of intermediate colours, mainly located in the outskirts. The extent of the whole GC system is settled as about 40 kpc. The GC population is quite poor, about 500 ± 110 members that corresponds to a low total specific frequency SN ˜ 0.8. The effective radii of a cluster sample are determined, including those of two spectroscopically confirmed young and metal-rich clusters, that are in the limit between GC and UCD sizes and brightness. The large-scale galaxy surface-brightness profile can be decomposed as an inner embedded disc and an outer spheroid, determining for both larger extents than earlier research (10 and 30 kpc, respectively). We detect boxy isophotes, expected in merger remnants, and show a wealth of fine-structure in the surface-brightness distribution with unprecedented detail, coincident with the outer spheroid. The lack of symmetry in the galaxy colour map adds a new piece of evidence to the recent merger scenario of NGC 3610.

  16. Galaxy And Mass Assembly (GAMA): detection of low-surface-brightness galaxies from SDSS data

    NASA Astrophysics Data System (ADS)

    Williams, Richard P.; Baldry, I. K.; Kelvin, L. S.; James, P. A.; Driver, S. P.; Prescott, M.; Brough, S.; Brown, M. J. I.; Davies, L. J. M.; Holwerda, B. W.; Liske, J.; Norberg, P.; Moffett, A. J.; Wright, A. H.

    2016-12-01

    We report on a search for new low-surface-brightness galaxies (LSBGs) using Sloan Digital Sky Survey (SDSS) data within the Galaxy And Mass Assembly (GAMA) equatorial fields. The search method consisted of masking objects detected with SDSS PHOTO, combining gri images weighted to maximize the expected signal-to-noise ratio, and smoothing the images. The processed images were then run through a detection algorithm that finds all pixels above a set threshold and groups them based on their proximity to one another. The list of detections was cleaned of contaminants such as diffraction spikes and the faint wings of masked objects. From these, selecting potentially the brightest in terms of total flux, a list of 343 LSBGs was produced having been confirmed using VISTA Kilo-degree Infrared Galaxy Survey (VIKING) imaging. The photometry of this sample was refined using the deeper VIKING Z band as the aperture-defining band. Measuring their g - I and J - K colours shows that most are consistent with being at redshifts less than 0.2. The photometry is carried out using an AUTO aperture for each detection giving surface brightnesses of μr ≳ 25 mag arcsec-2 and magnitudes of r > 19.8 mag. None of these galaxies are bright enough to be within the GAMA main survey limit but could be part of future deeper surveys to measure the low-mass end of the galaxy stellar mass function.

  17. Analysis of aircraft microwave measurements of the ocean surface

    NASA Technical Reports Server (NTRS)

    Willand, J. H.; Fowler, M. G.; Reifenstein, E. C., III; Chang, D. T.

    1973-01-01

    A data system was developed to process, from calibrated brightness temperature to computation of estimated parameters, the microwave measurements obtained by the NASA CV-990 aircraft during the 1972 Meteorological Expedition. A primary objective of the study was the implementation of an integrated software system at the computing facility of NASA/GSFC, and its application to the 1972 data. A single test case involving measurements away from and over a heavy rain cell was chosen to examine the effect of clouds upon the ability to infer ocean surface parameters. The results indicate substantial agreement with those of the theoretical study; namely, that the values obtained for the surface properties are consistent with available ground-truth information, and are reproducible except within the heaviest portions of the rain cell, at which nonlinear (or saturation) effects become apparent. Finally, it is seen that uncorrected instrumental effects introduce systematic errors which may limit the accuracy of the method.

  18. Lomonosov Crater, Day and Night

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 16 June 2004 This pair of images shows part of Lomonosov Crater.

    Day/Night Infrared Pairs

    The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top.

    Infrared image interpretation

    Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark.

    Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images.

    Image information: IR instrument. Latitude 64.9, Longitude 350.7 East (9.3 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  19. Arsia Mons by Day and Night

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 22 June 2004 This pair of images shows part of Arsia Mons.

    Day/Night Infrared Pairs

    The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top.

    Infrared image interpretation

    Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark.

    Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images.

    Image information: IR instrument. Latitude -19.6, Longitude 241.9 East (118.1 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. Albor Tholus by Day and Night

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 21 June 2004 This pair of images shows part of Albor Tholus.

    Day/Night Infrared Pairs

    The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top.

    Infrared image interpretation

    Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark.

    Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images.

    Image information: IR instrument. Latitude 17.6, Longitude 150.3 East (209.7 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  1. Ares Valles: Night and Day

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 15 June 2004 This pair of images shows part of the Ares Valles region.

    Day/Night Infrared Pairs

    The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top.

    Infrared image interpretation

    Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark.

    Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images.

    Image information: IR instrument. Latitude 3.6, Longitude 339.9 East (20.1 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  2. Channel by Day and Night

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 17 June 2004 This pair of images shows part of a small channel.

    Day/Night Infrared Pairs

    The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top.

    Infrared image interpretation

    Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark.

    Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images.

    Image information: IR instrument. Latitude 19.8, Longitude 141.5 East (218.5 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. Noctus Labyrinthus by Day and Night

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 25 June 2004 This pair of images shows part of Noctus Labyrinthus.

    Day/Night Infrared Pairs

    The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top.

    Infrared image interpretation

    Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark.

    Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images.

    Image information: IR instrument. Latitude -9.6, Longitude 264.5 East (95.5 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Ius Chasma by Day and Night

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 18 June 2004 This pair of images shows part of Ius Chasma.

    Day/Night Infrared Pairs

    The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top.

    Infrared image interpretation

    Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark.

    Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images.

    Image information: IR instrument. Latitude -1, Longitude 276 East (84 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  5. Crater Ejecta by Day and Night

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 24 June 2004 This pair of images shows a crater and its ejecta.

    Day/Night Infrared Pairs

    The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top.

    Infrared image interpretation

    Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark.

    Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images.

    Image information: IR instrument. Latitude -9, Longitude 164.2 East (195.8 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. Gusev Crater by Day and Night

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 23 June 2004 This pair of images shows part of Gusev Crater.

    Day/Night Infrared Pairs

    The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top.

    Infrared image interpretation

    Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark.

    Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images.

    Image information: IR instrument. Latitude -14.5, Longitude 175.5 East (184.5 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. Meridiani Crater in Day and Night

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 14 June 2004 This pair of images shows crater ejecta in the Terra Meridiani region.

    Day/Night Infrared Pairs

    The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top.

    Infrared image interpretation

    Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark.

    Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images.

    Image information: IR instrument. Latitude -1.6, Longitude 4.1 East (355.9 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. Day And Night In Terra Meridiani

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 11 June 2004 This pair of images shows part of the Terra Meridiani region.

    Day/Night Infrared Pairs

    The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top.

    Infrared image interpretation

    Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark.

    Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images.

    Image information: IR instrument. Latitude 1.3, Longitude 0.5 East (359.5 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. Intermittent Episodes of Bright Light Suppress Myopia in the Chicken More than Continuous Bright Light

    PubMed Central

    Lan, Weizhong; Feldkaemper, Marita; Schaeffel, Frank

    2014-01-01

    Purpose Bright light has been shown a powerful inhibitor of myopia development in animal models. We studied which temporal patterns of bright light are the most potent in suppressing deprivation myopia in chickens. Methods Eight-day-old chickens wore diffusers over one eye to induce deprivation myopia. A reference group (n = 8) was kept under office-like illuminance (500 lux) at a 10∶14 light∶dark cycle. Episodes of bright light (15 000 lux) were super-imposed on this background as follows. Paradigm I: exposure to constant bright light for either 1 hour (n = 5), 2 hours (n = 5), 5 hours (n = 4) or 10 hours (n = 4). Paradigm II: exposure to repeated cycles of bright light with 50% duty cycle and either 60 minutes (n = 7), 30 minutes (n = 8), 15 minutes (n = 6), 7 minutes (n = 7) or 1 minute (n = 7) periods, provided for 10 hours. Refraction and axial length were measured prior to and immediately after the 5-day experiment. Relative changes were analyzed by paired t-tests, and differences among groups were tested by one-way ANOVA. Results Compared with the reference group, exposure to continuous bright light for 1 or 2 hours every day had no significant protective effect against deprivation myopia. Inhibition of myopia became significant after 5 hours of bright light exposure but extending the duration to 10 hours did not offer an additional benefit. In comparison, repeated cycles of 1∶1 or 7∶7 minutes of bright light enhanced the protective effect against myopia and could fully suppress its development. Conclusions The protective effect of bright light depends on the exposure duration and, to the intermittent form, the frequency cycle. Compared to the saturation effect of continuous bright light, low frequency cycles of bright light (1∶1 min) provided the strongest inhibition effect. However, our quantitative results probably might not be directly translated into humans, but rather need further amendments in clinical studies. PMID:25360635

  10. Observations of NEA 1998 QE2 with the SMA and VLA

    NASA Astrophysics Data System (ADS)

    Butler, Bryan J.; Gurwell, M. A.; Moullet, A.

    2013-10-01

    Long wavelength (submm to cm) observations of NEAs are an important tool in their physical characterization. Such observations offer a unique probe into the subsurfaces of these bodies, to depths of 10's of cm, and reveal the surface and near-surface temperatures. These temperatures are critical in constraining the magnitude of the Yarkovsky effect, which is important for these small bodies in the inner solar system as it forces orbital drift [1]. Such observations also probe the physical state of the material in the upper layer of the NEAs; notably the thermal inertia. This is a strong indicator of bulk surface properties and can be utilized to distinguish rocky from porous surfaces. Very low thermal inertia may also indicate "rubble pile" type internal structure in NEAs [2]. Asteroid 1998 QE2 approached to within 0.04 AU on June 1, 2013; its closest approach in two centuries. With a diameter of ~2.5 km [3], it was a relatively bright target for radio wavelength observations, even given the weakness of the emission at those wavelengths (10's of microJy in the cm to 100's of milliJy in the submm). We used the SubMillimeter Array (SMA) and Very Large Array (VLA) to observe the asteroid from wavelengths of 1 mm to 7 cm. We will present the observed brightness temperatures as a function of wavelength, and implications for temperature and physical state of the surface and near-surface. [1] Delbo et al. 2007, Icarus, 190, 236. [2] Muller et al. 2007, IAUS 236, 261. [3] Trilling et al. 2010, AJ, 140, 770.

  11. The Influence of a Sandy Substrate, Seagrass, or Highly Turbid Water on Albedo and Surface Heat Flux

    NASA Astrophysics Data System (ADS)

    Fogarty, M. C.; Fewings, M. R.; Paget, A. C.; Dierssen, H. M.

    2018-01-01

    Sea-surface albedo is a combination of surface-reflected and water-leaving irradiance, but water-leaving irradiance typically contributes less than 15% of the total albedo in open-ocean conditions. In coastal systems, however, the bottom substrate or suspended particulate matter can increase the amount of backscattered light, thereby increasing albedo and decreasing net shortwave surface heat flux. Here a sensitivity analysis using observations and models predicts the effect of light scattering on albedo and the net shortwave heat flux for three test cases: a bright sand bottom, a seagrass canopy, and turbid water. After scaling to the full solar shortwave spectrum, daytime average albedo for the test cases is up to 0.20 and exceeds the value of 0.05 predicted using a commonly applied parameterization. Daytime net shortwave heat flux into the water is significantly reduced, particularly for waters with bright sediments, dense horizontal seagrass canopies < 0.25 m from the sea surface, or highly turbid waters with suspended particulate matter concentration ≥ 50 g m-3. Observations of a more vertical seagrass canopy within 0.2 and 1 m of the surface indicate the increase in albedo compared to the common parameterization is negligible. Therefore, we suggest that the commonly applied albedo lookup table can be used in coastal heat flux estimates in water as shallow as 1 m unless the bottom substrate is highly reflective or the water is highly turbid. Our model results provide guidance to researchers who need to determine albedo in highly reflective or highly turbid conditions but have no direct observations.

  12. Surface and Atmospheric Contributions to Passive Microwave Brightness Temperatures for Falling Snow Events

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Johnson, Benjamin T.

    2011-01-01

    Physically based passive microwave precipitation retrieval algorithms require a set of relationships between satellite -observed brightness temperatures (TBs) and the physical state of the underlying atmosphere and surface. These relationships are nonlinear, such that inversions are ill ]posed especially over variable land surfaces. In order to elucidate these relationships, this work presents a theoretical analysis using TB weighting functions to quantify the percentage influence of the TB resulting from absorption, emission, and/or reflection from the surface, as well as from frozen hydrometeors in clouds, from atmospheric water vapor, and from other contributors. The percentage analysis was also compared to Jacobians. The results are presented for frequencies from 10 to 874 GHz, for individual snow profiles, and for averages over three cloud-resolving model simulations of falling snow. The bulk structure (e.g., ice water path and cloud depth) of the underlying cloud scene was found to affect the resultant TB and percentages, producing different values for blizzard, lake effect, and synoptic snow events. The slant path at a 53 viewing angle increases the hydrometeor contributions relative to nadir viewing channels. Jacobians provide the magnitude and direction of change in the TB values due to a change in the underlying scene; however, the percentage analysis provides detailed information on how that change affected contributions to the TB from the surface, hydrometeors, and water vapor. The TB percentage information presented in this paper provides information about the relative contributions to the TB and supplies key pieces of information required to develop and improve precipitation retrievals over land surfaces.

  13. Baring high-albedo soils by overgrazing - A hypothesized desertification mechanism

    NASA Technical Reports Server (NTRS)

    Otterman, J.

    1974-01-01

    Observations are reported of high-albedo soils denuded by overgrazing which appear bright, in high contrast to regions covered by natural vegetation. Measurements and modeling show that the denuded surfaces are cooler, when compared under sunlit conditions. This observed 'thermal depression' effect should, on theoretical grounds, result in a decreased lifting of air necessary for cloud formation and precipitation, and thus lead to regional climatic desertification.

  14. Performance and efficiency of old newspaper deinking by combining cellulase/hemicellulase with laccase-violuric acid system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Qinghua; Fu Yingjuan; Gao Yang

    2009-05-15

    Performance and efficiency of old newspaper (ONP) deinking by combining cellulase/hemicellulase with laccase-violuric acid system (LVS) were investigated in this study. Brightness, effective residual ink concentration (ERIC) and physical properties were evaluated for the deinked pulp. Fiber length, coarseness, specific surface area and specific volume were also tested. The changes of dissolved lignin during the deinking processes were measured with UV spectroscopy. The fiber morphology was observed with environmental scanning electronic microscopy (ESEM). Experimental results showed that, compared to the pulp deinked with each individual enzyme, ERIC was lower for the cellulase/hemicellulase-LVS-deinked pulp. This indicated that a synergy existed inmore » ONP deinking using a combination of enzymes. After being bleached by H{sub 2}O{sub 2}, enzyme-combining deinked pulp gave higher brightness and better strength properties. Compared with individual enzyme deinked pulp, average fiber length and coarseness decreased a little for the enzyme-combining deinked pulps. A higher specific surface area and specific volume of the pulp fibers were achieved. UV analysis proved that more lignin was released during the enzyme-combining deinking process. ESEM images showed that more fibrillation was observed on the fiber surface due to synergistic treatment.« less

  15. Botswana water and surface energy balance research program. Part 2: Large scale moisture and passive microwaves

    NASA Technical Reports Server (NTRS)

    Vandegriend, A. A.; Owe, M.; Chang, A. T. C.

    1992-01-01

    The Botswana water and surface energy balance research program was developed to study and evaluate the integrated use of multispectral satellite remote sensing for monitoring the hydrological status of the Earth's surface. The research program consisted of two major, mutually related components: a surface energy balance modeling component, built around an extensive field campaign; and a passive microwave research component which consisted of a retrospective study of large scale moisture conditions and Nimbus scanning multichannel microwave radiometer microwave signatures. The integrated approach of both components are explained in general and activities performed within the passive microwave research component are summarized. The microwave theory is discussed taking into account: soil dielectric constant, emissivity, soil roughness effects, vegetation effects, optical depth, single scattering albedo, and wavelength effects. The study site is described. The soil moisture data and its processing are considered. The relation between observed large scale soil moisture and normalized brightness temperatures is discussed. Vegetation characteristics and inverse modeling of soil emissivity is considered.

  16. Automated Adaptive Brightness in Wireless Capsule Endoscopy Using Image Segmentation and Sigmoid Function.

    PubMed

    Shrestha, Ravi; Mohammed, Shahed K; Hasan, Md Mehedi; Zhang, Xuechao; Wahid, Khan A

    2016-08-01

    Wireless capsule endoscopy (WCE) plays an important role in the diagnosis of gastrointestinal (GI) diseases by capturing images of human small intestine. Accurate diagnosis of endoscopic images depends heavily on the quality of captured images. Along with image and frame rate, brightness of the image is an important parameter that influences the image quality which leads to the design of an efficient illumination system. Such design involves the choice and placement of proper light source and its ability to illuminate GI surface with proper brightness. Light emitting diodes (LEDs) are normally used as sources where modulated pulses are used to control LED's brightness. In practice, instances like under- and over-illumination are very common in WCE, where the former provides dark images and the later provides bright images with high power consumption. In this paper, we propose a low-power and efficient illumination system that is based on an automated brightness algorithm. The scheme is adaptive in nature, i.e., the brightness level is controlled automatically in real-time while the images are being captured. The captured images are segmented into four equal regions and the brightness level of each region is calculated. Then an adaptive sigmoid function is used to find the optimized brightness level and accordingly a new value of duty cycle of the modulated pulse is generated to capture future images. The algorithm is fully implemented in a capsule prototype and tested with endoscopic images. Commercial capsules like Pillcam and Mirocam were also used in the experiment. The results show that the proposed algorithm works well in controlling the brightness level accordingly to the environmental condition, and as a result, good quality images are captured with an average of 40% brightness level that saves power consumption of the capsule.

  17. Evolution of the anti-truncated stellar profiles of S0 galaxies since z = 0.6 in the SHARDS survey. I. Sample and methods

    NASA Astrophysics Data System (ADS)

    Borlaff, Alejandro; Eliche-Moral, M. Carmen; Beckman, John E.; Ciambur, Bogdan C.; Pérez-González, Pablo G.; Barro, Guillermo; Cava, Antonio; Cardiel, Nicolas

    2017-08-01

    Context. The controversy about the origin of the structure of early-type S0-E/S0 galaxies may be due to the difficulty of comparing surface brightness profiles with different depths, photometric corrections and point spread function (PSF) effects (which are almost always ignored). Aims: We aim to quantify the properties of Type-III (anti-truncated) discs in a sample of S0 galaxies at 0.2

  18. FIRST RESULTS FROM THE DRAGONFLY TELEPHOTO ARRAY: THE APPARENT LACK OF A STELLAR HALO IN THE MASSIVE SPIRAL GALAXY M101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Dokkum, Pieter G.; Merritt, Allison; Abraham, Roberto

    2014-02-20

    We use a new telescope concept, the Dragonfly Telephoto Array, to study the low surface brightness outskirts of the spiral galaxy M101. The radial surface brightness profile is measured down to μ {sub g} ∼ 32 mag arcsec{sup –2}, a depth that approaches the sensitivity of star count studies in the Local Group. We convert surface brightness to surface mass density using the radial g – r color profile. The mass density profile shows no significant upturn at large radius and is well-approximated by a simple bulge + disk model out to R = 70 kpc, corresponding to 18 diskmore » scale lengths. Fitting a bulge + disk + halo model we find that the best-fitting halo mass M{sub halo}=1.7{sub −1.7}{sup +3.4}×10{sup 8} M {sub ☉}. The total stellar mass of M101 is M{sub tot,∗}=5.3{sub −1.3}{sup +1.7}×10{sup 10} M {sub ☉}, and we infer that the halo mass fraction f{sub halo}=M{sub halo}/M{sub tot,∗}=0.003{sub −0.003}{sup +0.006}. This mass fraction is lower than that of the Milky Way (f {sub halo} ∼ 0.02) and M31 (f {sub halo} ∼ 0.04). All three galaxies fall below the f {sub halo}-M {sub tot,} {sub *} relation predicted by recent cosmological simulations that trace the light of disrupted satellites, with M101's halo mass a factor of ∼10 below the median expectation. However, the predicted scatter in this relation is large, and more galaxies are needed to better quantify this possible tension with galaxy formation models. Dragonfly is well suited for this project: as integrated-light surface brightness is independent of distance, large numbers of galaxies can be studied in a uniform way.« less

  19. Comparison of measured brightness temperatures from SMOS with modelled ones from ORCHIDEE and H-TESSEL over the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Barella-Ortiz, Anaïs; Polcher, Jan; de Rosnay, Patricia; Piles, Maria; Gelati, Emiliano

    2017-01-01

    L-band radiometry is considered to be one of the most suitable techniques to estimate surface soil moisture (SSM) by means of remote sensing. Brightness temperatures are key in this process, as they are the main input in the retrieval algorithm which yields SSM estimates. The work exposed compares brightness temperatures measured by the SMOS mission to two different sets of modelled ones, over the Iberian Peninsula from 2010 to 2012. The two modelled sets were estimated using a radiative transfer model and state variables from two land-surface models: (i) ORCHIDEE and (ii) H-TESSEL. The radiative transfer model used is the CMEM. Measured and modelled brightness temperatures show a good agreement in their temporal evolution, but their spatial structures are not consistent. An empirical orthogonal function analysis of the brightness temperature's error identifies a dominant structure over the south-west of the Iberian Peninsula which evolves during the year and is maximum in autumn and winter. Hypotheses concerning forcing-induced biases and assumptions made in the radiative transfer model are analysed to explain this inconsistency, but no candidate is found to be responsible for the weak spatial correlations at the moment. Further hypotheses are proposed and will be explored in a forthcoming paper. The analysis of spatial inconsistencies between modelled and measured TBs is important, as these can affect the estimation of geophysical variables and TB assimilation in operational models, as well as result in misleading validation studies.

  20. Brightness perception of unrelated self-luminous colors.

    PubMed

    Withouck, Martijn; Smet, Kevin A G; Ryckaert, Wouter R; Pointer, Michael R; Deconinck, Geert; Koenderink, Jan; Hanselaer, Peter

    2013-06-01

    The perception of brightness of unrelated self-luminous colored stimuli of the same luminance has been investigated. The Helmholtz-Kohlrausch (H-K) effect, i.e., an increase in brightness perception due to an increase in saturation, is clearly observed. This brightness perception is compared with the calculated brightness according to six existing vision models, color appearance models, and models based on the concept of equivalent luminance. Although these models included the H-K effect and half of them were developed to work with unrelated colors, none of the models seemed to be able to fully predict the perceived brightness. A tentative solution to increase the prediction accuracy of the color appearance model CAM97u, developed by Hunt, is presented.

  1. A new, bright and hard aluminum surface produced by anodization

    NASA Astrophysics Data System (ADS)

    Hou, Fengyan; Hu, Bo; Tay, See Leng; Wang, Yuxin; Xiong, Chao; Gao, Wei

    2017-07-01

    Anodized aluminum (Al) and Al alloys have a wide range of applications. However, certain anodized finishings have relatively low hardness, dull appearance and/or poor corrosion resistance, which limited their applications. In this research, Al was first electropolished in a phosphoric acid-based solution, then anodized in a sulfuric acid-based solution under controlled processing parameters. The anodized specimen was then sealed by two-step sealing method. A systematic study including microstructure, surface morphology, hardness and corrosion resistance of these anodized films has been conducted. Results show that the hardness of this new anodized film was increased by a factor of 10 compared with the pure Al metal. Salt spray corrosion testing also demonstrated the greatly improved corrosion resistance. Unlike the traditional hard anodized Al which presents a dull-colored surface, this newly developed anodized Al alloy possesses a very bright and shiny surface with good hardness and corrosion resistance.

  2. Color and emotion: effects of hue, saturation, and brightness.

    PubMed

    Wilms, Lisa; Oberfeld, Daniel

    2017-06-13

    Previous studies on emotional effects of color often failed to control all the three perceptual dimensions of color: hue, saturation, and brightness. Here, we presented a three-dimensional space of chromatic colors by independently varying hue (blue, green, red), saturation (low, medium, high), and brightness (dark, medium, bright) in a factorial design. The 27 chromatic colors, plus 3 brightness-matched achromatic colors, were presented via an LED display. Participants (N = 62) viewed each color for 30 s and then rated their current emotional state (valence and arousal). Skin conductance and heart rate were measured continuously. The emotion ratings showed that saturated and bright colors were associated with higher arousal. The hue also had a significant effect on arousal, which increased from blue and green to red. The ratings of valence were the highest for saturated and bright colors, and also depended on the hue. Several interaction effects of the three color dimensions were observed for both arousal and valence. For instance, the valence ratings were higher for blue than for the remaining hues, but only for highly saturated colors. Saturated and bright colors caused significantly stronger skin conductance responses. Achromatic colors resulted in a short-term deceleration in the heart rate, while chromatic colors caused an acceleration. The results confirm that color stimuli have effects on the emotional state of the observer. These effects are not only determined by the hue of a color, as is often assumed, but by all the three color dimensions as well as their interactions.

  3. Surface brightness profiles of 10 comets

    NASA Astrophysics Data System (ADS)

    Jewitt, D. C.; Meech, K. J.

    1987-06-01

    CCD photometric observations of the comae of 10 comets, obtained at the 4-m and 2.1-m telescopes at KPNO during 1985-1986 using filters centered at 700.5, 650.0, or 546.0 nm, are reported. The data are presented in extensive tables and graphs and characterized in detail. The radial surface brightness profiles are shown to be steeper than predicted by an idealized spherically symmetric steady-state comet model, the steepness increasing with the projected distance from the nucleus. These profiles are attributed, on the basis of Monte Carlo simulations, to imperfect coupling between the sublimated gas and the optically dominant grains of the coma.

  4. Rayleigh beacon for measuring the surface profile of a radio telescope.

    PubMed

    Padin, S

    2014-12-01

    Millimeter-wavelength Rayleigh scattering from water droplets in a cloud is proposed as a means of generating a bright beacon for measuring the surface profile of a radio telescope. A λ=3  mm transmitter, with an output power of a few watts, illuminating a stratiform cloud, can generate a beacon with the same flux as Mars in 10 GHz bandwidth, but the beacon has a narrow line width, so it is extremely bright. The key advantage of the beacon is that it can be used at any time, and positioned anywhere in the sky, as long as there are clouds.

  5. Planetary camera observations of the double nucleus of M31

    NASA Technical Reports Server (NTRS)

    Lauer, Tod R.; Faber, S. M.; Groth, Edward J.; Shaya, Edward J.; Campbell, Bel; Code, Arthur; Currie, Douglas G.; Baum, William A.; Ewald, S. P.; Hester, J. J.

    1993-01-01

    HST Planetary Camera images obtained in the V and I band for M31 show its inner nucleus to consist of two components that are separated by 0.49 arcsec. The nuclear component with lower surface brightness closely coincides with the bulge photocenter and is argued to be at the kinematic center of the galaxy. It is surmised that, if dust absorption generates the asymmetric nuclear morphology observed, the dust grain size must either be exceptionally large, or the dust optical depth must be extremely high; the higher surface-brightness and off-center nuclear component may alternatively be a separate stellar system.

  6. OH+ emission from cometary knots in planetary nebulae

    NASA Astrophysics Data System (ADS)

    Priestley, F. D.; Barlow, M. J.

    2018-05-01

    We model the molecular emission from cometary knots in planetary nebulae (PNe) using a combination of photoionization and photodissociation region (PDR) codes, for a range of central star properties and gas densities. Without the inclusion of ionizing extreme ultraviolet (EUV) radiation, our models require central star temperatures T* to be near the upper limit of the range investigated in order to match observed H2 and OH+ surface brightnesses consistent with observations - with the addition of EUV flux, our models reproduce observed OH+ surface brightnesses for T* ≥ 100 kK. For T* < 80 kK, the predicted OH+ surface brightness is much lower, consistent with the non-detection of this molecule in PNe with such central star temperatures. Our predicted level of H2 emission is somewhat weaker than commonly observed in PNe, which may be resolved by the inclusion of shock heating or fluorescence due to UV photons. Some of our models also predict ArH+ and HeH+ rotational line emission above detection thresholds, despite neither molecule having been detected in PNe, although the inclusion of photodissociation by EUV photons, which is neglected by our models, would be expected to reduce their detectability.

  7. Compact Groups analysis using weak gravitational lensing II: CFHT Stripe 82 data

    NASA Astrophysics Data System (ADS)

    Chalela, Martín; Gonzalez, Elizabeth Johana; Makler, Martín; Lambas, Diego García; Pereira, Maria E. S.; O'mill, Ana; Shan, HuanYuan

    2018-06-01

    In this work we present a lensing study of Compact Groups (CGs) using data obtained from the high quality Canada-France-Hawaii Telescope Stripe 82 Survey. Using stacking techniques we obtain the average density contrast profile. We analyse the lensing signal dependence on the groups surface brightness and morphological content, for CGs in the redshift range z = 0.2 - 0.4. We obtain a larger lensing signal for CGs with higher surface brightness, probably due to their lower contamination by interlopers. Also, we find a strong dependence of the lensing signal on the group concentration parameter, with the most concentrated quintile showing a significant lensing signal, consistent with an isothermal sphere with σV = 336 ± 28 km/s and a NFW profile with R200 = 0.60 ± 0.05 h_{70}^{-1}Mpc. We also compare lensing results with dynamical estimates finding a good agreement with lensing determinations for CGs with higher surface brightness and higher concentration indexes. On the other hand, CGs that are more contaminated by interlopers show larger dynamical dispersions, since interlopers bias dynamical estimates to larger values, although the lensing signal is weakened.

  8. Exponential Stellar Disks in Low Surface Brightness Galaxies: A Critical Test of Viscous Evolution

    NASA Astrophysics Data System (ADS)

    Bell, Eric F.

    2002-12-01

    Viscous redistribution of mass in Milky Way-type galactic disks is an appealing way of generating an exponential stellar profile over many scale lengths, almost independent of initial conditions, requiring only that the viscous timescale and star formation timescale are approximately equal. However, galaxies with solid-body rotation curves cannot undergo viscous evolution. Low surface brightness (LSB) galaxies have exponential surface brightness profiles, yet have slowly rising, nearly solid-body rotation curves. Because of this, viscous evolution may be inefficient in LSB galaxies: the exponential profiles, instead, would give important insight into initial conditions for galaxy disk formation. Using star formation laws from the literature and tuning the efficiency of viscous processes to reproduce an exponential stellar profile in Milky Way-type galaxies, I test the role of viscous evolution in LSB galaxies. Under the conservative and not unreasonable condition that LSB galaxies are gravitationally unstable for at least a part of their lives, I find that it is impossible to rule out a significant role for viscous evolution. This type of model still offers an attractive way of producing exponential disks, even in LSB galaxies with slowly rising rotation curves.

  9. Giant Lyman-alpha Nebulae in the Illustris Simulation

    NASA Astrophysics Data System (ADS)

    Gronke, Max; Bird, Simeon

    2017-02-01

    Several “giant” Lyα nebulae with an extent ≳300 kpc and observed Lyα luminosity of ≳1044 erg s-1 cm-2 arcsec-2 have recently been detected, and it has been speculated that their presence hints at a substantial cold gas reservoir in small cool clumps not resolved in modern hydrodynamical simulations. We use the Illustris simulation to predict the Lyα emission emerging from large halos (M > 1011.5 M⊙) at z ˜ 2 and thus test this model. We consider both active galactic nucleus (AGN) and star driven ionization, and compare the simulated surface brightness maps, profiles, and Lyα spectra to a model where most gas is clumped below the simulation resolution scale. We find that with Illustris, no additional clumping is necessary to explain the extents, luminosities, and surface brightness profiles of the “giant Lyα nebulae” observed. Furthermore, the maximal extents of the objects show a wide spread for a given luminosity and do not correlate significantly with any halo properties. We also show how the detected size depends strongly on the employed surface brightness cutoff, and predict that further examples of such objects will be found in the near future.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann, Kimberly A.; Hunter, Deidre A.; Elmegreen, Bruce G., E-mail: kah259@psu.edu, E-mail: dah@lowell.edu, E-mail: bge@us.ibm.com

    In this second paper of a series, we explore the B  −  V , U  −  B , and FUV−NUV radial color trends from a multi-wavelength sample of 141 dwarf disk galaxies. Like spirals, dwarf galaxies have three types of radial surface brightness profiles: (I) single exponential throughout the observed extent (the minority), (II) down-bending (the majority), and (III) up-bending. We find that the colors of (1) Type I dwarfs generally become redder with increasing radius, unlike spirals which have a blueing trend that flattens beyond ∼1.5 disk scale lengths, (2) Type II dwarfs come in six different “flavors,” one of whichmore » mimics the “U” shape of spirals, and (3) Type III dwarfs have a stretched “S” shape where the central colors are flattish, become steeply redder toward the surface brightness break, then remain roughly constant beyond, which is similar to spiral Type III color profiles, but without the central outward bluing. Faint (−9 >  M{sub B}  > −14) Type II dwarfs tend to have continuously red or “U” shaped colors and steeper color slopes than bright (−14 >  M{sub B}  > −19) Type II dwarfs, which additionally have colors that become bluer or remain constant with increasing radius. Sm dwarfs and BCDs tend to have at least some blue and red radial color trend, respectively. Additionally, we determine stellar surface mass density (Σ) profiles and use them to show that the break in Σ generally remains in Type II dwarfs (unlike Type II spirals) but generally disappears in Type III dwarfs (unlike Type III spirals). Moreover, the break in Σ is strong, intermediate, and weak in faint dwarfs, bright dwarfs, and spirals, respectively, indicating that Σ may straighten with increasing galaxy mass. Finally, the average stellar surface mass density at the surface brightness break is roughly 1−2  M {sub ⊙} pc{sup −2} for Type II dwarfs but higher at 5.9  M {sub ⊙} pc{sup −2} or 27  M {sub ⊙} pc{sup −2} for Type III BCDs and dIms, respectively.« less

  11. Surface temperatures and retention of H2O frost on Ganymede and Callisto

    NASA Technical Reports Server (NTRS)

    Squyres, S. W.

    1980-01-01

    Surface temperatures and ice evaporation rates are calculated for Ganymede and Callisto as functions of latitude, time of day, and albedo, according to a model that uses surface thermal properties determined by eclipse radiometry and albedos determined from photometrically decalibrated Voyager images. The difference in temperature between Ganymede and Callisto is not great enough to account for the lack of bright polar caps on Callisto, which seems instead to reflect a real deficiency in the amount of available water frost relative to Ganymede. The temperature difference between Ganymede's grooved and cratered terrains also cannot account for the high concentration of bright ray craters in the former, suggesting that an internal geologic process has enriched the grooved terrain in ice content relative to the cratered terrain.

  12. Coherent Backscattering and Opposition Effects Observed in Some Atmosphereless Bodies of the Solar System

    NASA Technical Reports Server (NTRS)

    Dlugach, Zh. M.; Mishchenko, M. I.

    2013-01-01

    The results of photometric and polarimetric observations carried out for some bright atmosphere-less bodies of the Solar system near the zero phase angle reveal the simultaneous existence of two spectacular optical phenomena, the so-called brightness and polarization opposition effects. In a number of studies, these phenomena were explained by the influence of coherent backscattering. However, in general, the interference concept of coherent backscattering can be used only in the case where the particles are in the far-field zones of each other, i.e., when the scattering medium is rather rarefied. Because of this, it is important to prove rigorously and to demonstrate that the coherent backscattering effect may also exist in densely packed scattering media like regolith surface layers of celestial bodies. From the results of the computer modeling performed with the use of numerically exact solutions of the macroscopic Maxwell equations for discrete random media with different packing densities of particles, we studied the origin and evolution of all the opposition phenomena predicted by the coherent backscattering theory for low-packing-density media. It has been shown that the predictions of this theory remain valid for rather high-packing densities of particles that are typical, in particular, of regolith surfaces of the Solar system bodies. The results allow us to conclude that both opposition effects observed simultaneously in some high-albedo atmosphereless bodies of the Solar system are caused precisely by coherent backscattering of solar light in the regolith layers composed of microscopic particles.

  13. Synthesizing SMOS Zero-Baselines with Aquarius Brightness Temperature Simulator

    NASA Technical Reports Server (NTRS)

    Colliander, A.; Dinnat, E.; Le Vine, D.; Kainulainen, J.

    2012-01-01

    SMOS [1] and Aquarius [2] are ESA and NASA missions, respectively, to make L-band measurements from the Low Earth Orbit. SMOS makes passive measurements whereas Aquarius measures both passive and active. SMOS was launched in November 2009 and Aquarius in June 2011.The scientific objectives of the missions are overlapping: both missions aim at mapping the global Sea Surface Salinity (SSS). Additionally, SMOS mission produces soil moisture product (however, Aquarius data will eventually be used for retrieving soil moisture too). The consistency of the brightness temperature observations made by the two instruments is essential for long-term studies of SSS and soil moisture. For resolving the consistency, the calibration of the instruments is the key. The basis of the SMOS brightness temperature level is the measurements performed with the so-called zero-baselines [3]; SMOS employs an interferometric measurement technique which forms a brightness temperature image from several baselines constructed by combination of multiple receivers in an array; zero-length baseline defines the overall brightness temperature level. The basis of the Aquarius brightness temperature level is resolved from the brightness temperature simulator combined with ancillary data such as antenna patterns and environmental models [4]. Consistency between the SMOS zero-baseline measurements and the simulator output would provide a robust basis for establishing the overall comparability of the missions.

  14. VEGAS-SSS: A VST Early-Type GAlaxy Survey: Analysis of Small Stellar System

    NASA Astrophysics Data System (ADS)

    Cantiello, M.

    VEGAS-SSS is a program devoted to study the properties of small stellar systems (SSSs) around bright galaxies, built on the VEGAS survey. At completion, the survey will have collected detailed photometric information of ˜ 100 bright early-type galaxies to study the properties of diffuse light (surface brightness, colours, SBF, etc.) and the clustered light (compact stellar systems) out to previously unreached projected galactocentric radii. VEGAS-SSS will define an accurate and homogeneous dataset that will have an important legacy value for studies of the evolution and transformation processes taking place in galaxies through the fossil information provided by SSSs.

  15. Photometric study of fine structure of a sunspot penumbra (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, R.

    1973-10-01

    The microphotometric analysis of the fime structure of a sunspot penumbra, photographed in white hight with the 38 cm refractor of the Pic du Midi Observatory with a resolution very close to 0.3'', allows to give from it, at lambda 5280, the following picture: the penumbra appears to consist of bright grains, lined up in the form of filaments, with am average brightness I/sub beta //I = 0.95 of average width 0.36''(270 km) and which cover 43% of its surface, show-ing up a dark background of brightness I/sub beta //I = 0.6 nearly uniform. (auth)

  16. Model Development for MODIS Thermal Band Electronic Crosstalk

    NASA Technical Reports Server (NTRS)

    Chang, Tiejun; Wu, Aisheng; Geng, Xu; Li, Yonghonh; Brinkman, Jake; Keller, Graziela; Xiong, Xiaoxiong

    2016-01-01

    MODerate-resolution Imaging Spectroradiometer (MODIS) has 36 bands. Among them, 16 thermal emissive bands covering a wavelength range from 3.8 to 14.4 m. After 16 years on-orbit operation, the electronic crosstalk of a few Terra MODIS thermal emissive bands developed substantial issues that cause biases in the EV brightness temperature measurements and surface feature contamination. The crosstalk effects on band 27 with center wavelength at 6.7 m and band 29 at 8.5 m increased significantly in recent years, affecting downstream products such as water vapor and cloud mask. The crosstalk effect is evident in the near-monthly scheduled lunar measurements, from which the crosstalk coefficients can be derived. The development of an alternative approach is very helpful for independent verification.In this work, a physical model was developed to assess the crosstalk impact on calibration as well as in Earth view brightness temperature retrieval. This model was applied to Terra MODIS band 29 empirically to correct the Earth brightness temperature measurements. In the model development, the detectors nonlinear response is considered. The impact of the electronic crosstalk is assessed in two steps. The first step consists of determining the impact on calibration using the on-board blackbody (BB). Due to the detectors nonlinear response and large background signal, both linear and nonlinear coefficients are affected by the crosstalk from sending bands. The second step is to calculate the effects on the Earth view brightness temperature retrieval. The effects include those from affected calibration coefficients and the contamination of Earth view measurements. This model links the measurement bias with crosstalk coefficients, detector non-linearity, and the ratio of Earth measurements between the sending and receiving bands. The correction of the electronic cross talk can be implemented empirically from the processed bias at different brightness temperature. The implementation can be done through two approaches. As routine calibration assessment for thermal infrared bands, the trending over select Earth scenes is processed for all the detectors in a band and the band averaged bias is derived at a certain time. In this case, the correction of an affected band can be made using the regression of the model with band averaged bias and then corrections of detector differences are applied. The second approach requires the trending for individual detectors and the bias for each detector is used for regression with the model. A test using the first approach was made for Terra MODIS band 29 with the biases derived from long-term trending of brightness temperature over ocean and Dome-C.

  17. IRAS surface brightness maps of reflection nebulae in the Pleiades

    NASA Technical Reports Server (NTRS)

    Castelaz, Michael W.; Werner, M. W.; Sellgren, K.

    1987-01-01

    Surface brightness maps at 12, 25, 60, and 100 microns were made of a 2.5 deg x 2.5 deg area of the reflection nebulae in the Pleiades by coadding IRAS scans of this region. Emission is seen surrounding 17 Tau, 20 Tau, 23 Tau, and 25 Tau in all four bands, coextensive with the visible reflection nebulosity, and extending as far as 30 arcminutes from the illuminating stars. The infrared energy distributions of the nebulae peak in the 100 micron band, but up to 40 percent of the total infrared power lies in the 12 and 25 micron bands. The brightness of the 12 and 25 micron emission and the absence of temperature gradients at these wavelengths are inconsistent with the predictions of equilibrium thermal emission models. The emission at these wavelengths appears to be the result of micron nonequilibrium emission from very small grains, or from molecules consisting of 10-100 carbon atoms, which have been excited by ultraviolet radiation from the illuminating stars.

  18. Application of photometric models to asteroids

    NASA Technical Reports Server (NTRS)

    Bowell, Edward; Hapke, Bruce; Domingue, Deborah; Lumme, Kari; Peltoniemi, Jouni; Harris, Alan W.

    1989-01-01

    The way an asteroid or other atmosphereless solar system body varies in brightness in response to changing illumination and viewing geometry depends in a very complicated way on the physical and optical properties of its surface and on its overall shape. This paper summarizes the formulation and application of recent photometric models by Hapke (1981, 1984, 1986) and by Lumme and Bowell (1981). In both models, the brightness of a rough and porous surface is parameterized in terms of the optical properties of individual particles, by shadowing between particles, and by the way in which light is scattered among collections of particles. Both models succeed in their goal of fitting the observed photometric behavior of a wide variety of bodies, but neither has led to a very complete understanding of the properties of asteroid regoliths, primarily because, in most cases, the parameters in the present models cannot be adequately constrained by observations of integral brightness alone over a restricted range of phase angles.

  19. A Methodology for Surface Soil Moisture and Vegetation Optical Depth Retrieval Using the Microwave Polarization Difference Index

    NASA Technical Reports Server (NTRS)

    Owe, Manfred; deJeu, Richard; Walker, Jeffrey; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    A methodology for retrieving surface soil moisture and vegetation optical depth from satellite microwave radiometer data is presented. The procedure is tested with historical 6.6 GHz brightness temperature observations from the Scanning Multichannel Microwave Radiometer over several test sites in Illinois. Results using only nighttime data are presented at this time, due to the greater stability of nighttime surface temperature estimation. The methodology uses a radiative transfer model to solve for surface soil moisture and vegetation optical depth simultaneously using a non-linear iterative optimization procedure. It assumes known constant values for the scattering albedo and roughness. Surface temperature is derived by a procedure using high frequency vertically polarized brightness temperatures. The methodology does not require any field observations of soil moisture or canopy biophysical properties for calibration purposes and is totally independent of wavelength. Results compare well with field observations of soil moisture and satellite-derived vegetation index data from optical sensors.

  20. Global Albedo

    Atmospheric Science Data Center

    2013-04-19

    ... the albedo. Bright surfaces have albedo near unity, and dark surfaces have albedo near zero. The DHR refers to the amount of spectral ... Atmospheric Science Data Center's  MISR Level 3 Imagery web site . The Multi-angle Imaging SpectroRadiometer observes the daylit ...

  1. A Physical Model to Determine Snowfall over Land by Microwave Radiometry

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, G.; Kim, M.-J.; Weinman, J. A.; Chang, D.-E.

    2003-01-01

    Because microwave brightness temperatures emitted by snow covered surfaces are highly variable, snowfall above such surfaces is difficult to observe using window channels that occur at low frequencies (v less than 100 GHz). Furthermore, at frequencies v less than or equal to 37 GHz, sensitivity to liquid hydrometeors is dominant. These problems are mitigated at high frequencies (v greater than 100 GHz) where water vapor screens the surface emission and sensitivity to frozen hydrometeors is significant. However the scattering effect of snowfall in the atmosphere at those higher frequencies is also impacted by water vapor in the upper atmosphere. This work describes the methodology and results of physically-based retrievals of snow falling over land surfaces. The theory of scattering by randomly oriented dry snow particles at high microwave frequencies appears to be better described by regarding snow as a concatenation of equivalent ice spheres rather than as a sphere with the effective dielectric constant of an air-ice mixture. An equivalent sphere snow scattering model was validated against high frequency attenuation measurements. Satellite-based high frequency observations from an Advanced Microwave Sounding Unit (AMSU-B) instrument during the March 5-6, 2001 New England blizzard were used to retrieve snowfall over land. Vertical distributions of snow, temperature and relative humidity profiles were derived from the Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) fifth-generation Mesoscale Model (MM5). Those data were applied and modified in a radiative transfer model that derived brightness temperatures consistent with the AMSU-B observations. The retrieved snowfall distribution was validated with radar reflectivity measurements obtained from the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) ground-based radar network.

  2. ARC-1969-AC79-0164-2

    NASA Image and Video Library

    1979-02-05

    Photo by Voyager 1 (JPL) Jupiter, its Great Red Spot and three of its four largest satellites are visible in this photo taken Feb 5, 1979 by Voyager 1. The spacecraft was 28.4 million kilomters (17.5 million miles) from the planet at the time. The inner-most large satellite, Io, can be seen against Jupiter's disk. Io is distinguished by its bright, brown-yellow surface. To the right of Jupiter is the satellite Europa, also very bright but with fainter surface markings. The darkest satellite, Callisto (still nearly twice as bright as Earth's Moon), is barely visible at the bottom left of the picture. Callisto shows a bright patch in its northern hemisphere. All tThree orbit Jupiter in the equatorial plane, and appear in their present position because Voyageris above the plane. All three satellites show the same face to Jupiter always -- just as Earth's Moon always shows us the same face. In this photo we see the sides of the satellites that always face away from the planet. Jupiter's colorfully banded atmosphere displays complex patterns highlighted by the Great Red Spot, a large, circulating atmospheric disturbance. This photo was assembled from three black and white negatives by the Image Processing Lab at Jet Propulsion Laboratory. JPL manages and controls the Voyage Project for NASA's Office of Space Science. (ref: P-21083)

  3. VizieR Online Data Catalog: Reference Catalogue of Bright Galaxies (RC1; de Vaucouleurs+ 1964)

    NASA Astrophysics Data System (ADS)

    de Vaucouleurs, G.; de Vaucouleurs, A.

    1995-11-01

    The Reference Catalogue of Bright Galaxies lists for each entry the following information: NGC number, IC number, or A number; A, B, or C designation; B1950.0 positions, position at 100 year precession; galactic and supergalactic positions; revised morphological type and source; type and color class in Yerkes list 1 and 2; Hubble-Sandage type; revised Hubble type according to Holmberg; logarithm of mean major diameter (log D) and ratio of major to minor diameter (log R) and their weights; logarithm of major diameter; sources of the diameters; David Dunlap Observatory type and luminosity class; Harvard photographic apparent magnitude; weight of V, B-V(0), U-B(0); integrated magnitude B(0) and its weight in the B system; mean surface brightness in magnitude per square minute of arc and sources for the B magnitude; mean B surface brightness derived from corrected Harvard magnitude; the integrated color index in the standard B-V system; "intrinsic" color index; sources of B-V and/or U-B; integrated color in the standard U-B system; observed radial velocity in km/sec; radial velocity corrected for solar motion in km/sec; sources of radial velocities; solar motion correction; and direct photographic source. The catalog was created by concatenating four files side by side. (1 data file).

  4. Evidence of Titan's Climate History from Evaporite Distribution

    NASA Astrophysics Data System (ADS)

    MacKenzie, Shannon; Barnes, J. W.; Brown, R.; Sotin, C.; Buratti, B. J.; Clark, R.; Baines, K. H.; Nicholson, P. D.; Le Mouelic, S.; Rodriguez, S.

    2013-10-01

    5-μm bright material on the surface of Titan has been positively correlated with the shores of RADAR-dark (liquid-filled) and the bottoms of RADAR-bright (empty) lakebeds in the region just south of Ligea Mare by Barnes et al. (2011). This water ice-poor spectral unit was thus proposed to be evaporite, the formerly-dissolved solute deposits left behind when the solvent (here presumably a methane/ethane mixture) evaporates. Because evaporite forms under specific conditions—solute and solvent at or near saturation, no outlets or other means of affecting the solution balance, etc.—the presence of evaporite can shed light on Titan's climate history. Adding to the previously identified cases, we use the breadth of available Cassini VIMS data to comprehensively map new instances of evaporite. In particular, we found new instances of evaporite in the north polar region and the midlatitudes. Our map of the global distribution of Titan's 5-μm-bright deposits can be used to constrain the historical evolution of Titan's surface volatile inventory and may bear on the question of the time variation of the methane concentration in Titan's atmosphere. Furthermore, we explore the implications of the idea that the 5-$\\mu$m-bright areas are indeed mostly evaporitic in nature with respect to the relationship between the regional and global volatile cycles.

  5. Colour analysis of the equine endometrium: comparison of spectrophotometry and computer-assisted analysis of photographs within the L*a*b* colour space system.

    PubMed

    Neuhauser, S; Handler, J

    2013-09-01

    The aims of this study were to compare two different methods of quantifying the colour of the luminal surface of the equine endometrium and to relate the results to histopathological evidence of inflammation and fibrosis. The mucosal surfaces of 17 equine uteri obtained from an abattoir were assessed using a spectrophotometer and by computer-assisted analysis of photographs. Values were converted into L(*)a(*)b(*) colour space. Although there was significant correlation between the two methods of quantification, variations in 'brightness', 'red' and 'yellow' values were noted. Within a given uterus, measurements using the spectrophotometer did not differ significantly. Using photographic analysis, brightness differed between horns, although no differences in chromaticity were found. Histopathological classification of changes within endometria corresponded to measured differences in colour. Extensive fibrosis was associated with increased brightness and decreased chromaticity using both methods. Inflammation correlated with reduced chromaticity, when measured by spectrophotometry, and with reduced brightness and yellow values, when assessed photographically. For this technique to gain wider acceptance as a diagnostic tool, e.g. for the endoscopic evaluation of uterine mucosae in vivo, standardised illumination techniques will be required so that colours can be compared and interpreted accurately. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. VizieR Online Data Catalog: Face-on disk galaxies photometry. I. (de Jong+, 1994)

    NASA Astrophysics Data System (ADS)

    de Jong, R. S.; van der Kruit, P. C.

    1995-07-01

    We present accurate surface photometry in the B, V, R, I, H and K passbands of 86 spiral galaxies. The galaxies in this statistically complete sample of undisturbed spirals were selected from the UGC to have minimum diameters of 2' and minor over major axis ratios larger than 0.625. This sample has been selected in such a way that it can be used to represent a volume limited sample. The observation and reduction techniques are described in detail, especially the not often used driftscan technique for CCDs and the relatively new techniques using near-infrared (near-IR) arrays. For each galaxy we present radial profiles of surface brightness. Using these profiles we calculated the integrated magnitudes of the galaxies in the different passbands. We performed internal and external consistency checks for the magnitudes as well as the luminosity profiles. The internal consistency is well within the estimated errors. Comparisons with other authors indicate that measurements from photographic plates can show large deviations in the zero-point magnitude. Our surface brightness profiles agree within the errors with other CCD measurements. The comparison of integrated magnitudes shows a large scatter, but a consistent zero-point. These measurements will be used in a series of forthcoming papers to discuss central surface brightnesses, scalelengths, colors and color gradients of disks of spiral galaxies. (9 data files).

  7. Cratering and Grooved Terrain on Ganymede

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This color picture as acquired by Voyager 1 during its approach to Ganymede on Monday afternoon (the 5th of March). At ranges between about 230 to 250 thousand km. The image shows detail on the surface with a resolution of four and a half km. This picture is just south of PIA001515 (P21161) and shows more craters. It also shows the two distinctive types of terrain found by Voyager, the darker ungrooved regions and the lighter areas which show the grooves or fractures in abundance. The most striking features are the bright ray craters which havE a distinctly 'bluer' color appearing white against the redder background. Ganymede's surface is known to contain large amounts of surface ice and it appears that these relatively young craters have spread bright fresh ice materials over the surface. Likewise, the lighter color and reflectivity of the grooved areas suggests that here too, there is cleaner ice. We see ray craters with all sizes of ray patterns, ranging from extensive systems of the crater in the northern part of this picture, which has rays at least 300-500 kilometers long, down to craters which have only faint remnants of bright ejecta patterns. This variation suggests that, as on the Moon, there are processes which act to darken ray material, probably 'gardening' by micrometeoroid impact. JPL manages and controls the Voyager project for NASA's Office of Space Science.

  8. Spectrophotometry of the Khonsu region on the comet 67P/Churyumov-Gerasimenko in the context of OSIRIS images

    NASA Astrophysics Data System (ADS)

    Prasanna Deshapriya, Jasinghege Don; Barucci, Maria Antonieta; Fornasier, Sonia; Feller, Clement; Hasselmann, Pedro Henrique; Sierks, Holger; Ramy El-Maarry, Mohammed; OSIRIS Team

    2016-10-01

    Since the Rosetta spacecraft rendezvoused with the comet 67P/Churyumov-Gerasimenko in August 2014, OSIRIS (Optical,Spectroscopic and Infrared Remote Imaging System) has been instrumental in characterising and studying both the nucleus as well as the coma of the comet. OSIRIS has thus far contributed to a plethora of scientific results. OSIRIS observations have revealed a bilobate nucleus accreted from a pair of cometesimals each having an irregular shape and a size, populated with numerous geomorphological features. Among the well defined 26 regions of the comet, Khonsu region inherits a heterogeneous terrain composed of smooth areas, scarps, outcroppings, large boulders, an intriguing 'pancake' feature, both transient and long-lived bright patches plus many other geological features.Our work focuses on the spectrophotometric analysis of some selected terrain and bright patches in the Khonsu region. Despite the variety of geological features, their spectrophotometric properties appear to share a similar composition. It is noticeable also that the smooth areas in Khonsu possess similar spectrophotometric behaviour to some other regions of the comet. By comparing the spectrophotometric characteristics of observed bright patches on Khonsu with those described and attributed to the presence of H2O ice on the comet by Barucci et al. (2016) utilising infrared data, we suggest that the bright patches we present could plausibly be derived from H2O ice. One of the studied bright patches has been observed to exist on the surface for more than 4 months without a major diminution of its size, which implies the existence of potential subsurface icy layers. The location of this feature is strongly correlated with a cometary outburst during the perihelion passage of the comet in August 2015, and we interpret it to have triggered the surface modifications necessary to unearth the stratified icy layers beneath the surface.

  9. The Fornax Deep Survey with VST. III. Low surface brightness dwarfs and ultra diffuse galaxies in the center of the Fornax cluster

    NASA Astrophysics Data System (ADS)

    Venhola, Aku; Peletier, Reynier; Laurikainen, Eija; Salo, Heikki; Lisker, Thorsten; Iodice, Enrichetta; Capaccioli, Massimo; Kleijn, Gijs Verdoes; Valentijn, Edwin; Mieske, Steffen; Hilker, Michael; Wittmann, Carolin; van de Ven, Glenn; Grado, Aniello; Spavone, Marilena; Cantiello, Michele; Napolitano, Nicola; Paolillo, Maurizio; Falcón-Barroso, Jesús

    2017-12-01

    Context. Studies of low surface brightness (LSB) galaxies in nearby clusters have revealed a sub-population of extremely diffuse galaxies with central surface brightness of μ0,g' > 24 mag arcsec-2, total luminosity Mg' fainter than -16 mag and effective radius between 1.5 kpc 23 mag arcsec-2. We classified the objects based on their appearance into galaxies and tidal structures, and perform 2D Sérsic model fitting with GALFIT to measure the properties of those classified as galaxies. We analyzed their radial distribution and orientations with respect of the cluster center, and with respect to the other galaxies in our sample. We also studied their colors and compare the LSB galaxies in Fornax with those in other environments. Results: Our final sample complete in the parameter space of the previously known UDGs, consists of 205 galaxies of which 196 are LSB dwarfs (with Re < 1.5 kpc) and nine are UDGs (Re > 1.5 kpc). We show that the UDGs have (1) g'-r' colors similar to those of LSB dwarfs of the same luminosity; (2) the largest UDGs (Re > 3 kpc) in our sample appear different from the other LSB galaxies, in that they are significantly more elongated and extended; whereas (3) the smaller UDGs differ from the LSB dwarfs only by having slightly larger effective radii; (4) we do not find clear differences between the structural parameters of the UDGs in our sample and those of UDGs in other galaxy environments; (5) we find that the dwarf LSB galaxies in our sample are less concentrated in the cluster center than the galaxies with higher surface brightness, and that their number density drops within 180 kpc from the cluster center. We also compare the LSB dwarfs in Fornax with the LSB dwarfs in the Centaurus group, where data of similar quality to ours is available. (6) We find the smallest LSB dwarfs to have similar colors, sizes and Sérsic profiles regardless of their environment. However, in the Centaurus group the colors become bluer with increasing galaxy magnitudes, an effect which is probably due to smaller mass and hence weaker environmental influence of the Centaurus group. Conclusions: Our findings are consistent with the small UDGs forming the tail of a continuous distribution of less extended LSB galaxies. However, the elongated and distorted shapes of the large UDGs could imply that they are tidally disturbed galaxies. Due to limitations of the automatic detection methods and uncertainty in the classification the objects, it is yet unclear what is the total contribution of the tidally disrupted galaxies in the UDG population.

  10. The effects of cloud inhomogeneities upon radiative fluxes, and the supply of a cloud truth validation dataset

    NASA Technical Reports Server (NTRS)

    Welch, Ronald M.

    1993-01-01

    A series of cloud and sea ice retrieval algorithms are being developed in support of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Science Team objectives. These retrievals include the following: cloud fractional area, cloud optical thickness, cloud phase (water or ice), cloud particle effective radius, cloud top heights, cloud base height, cloud top temperature, cloud emissivity, cloud 3-D structure, cloud field scales of organization, sea ice fractional area, sea ice temperature, sea ice albedo, and sea surface temperature. Due to the problems of accurately retrieving cloud properties over bright surfaces, an advanced cloud classification method was developed which is based upon spectral and textural features and artificial intelligence classifiers.

  11. Assessment of the broca-sulzer phenomenon via inter- and intra-modality matching procedures : studies of signal-light brightness.

    DOT National Transportation Integrated Search

    1968-10-01

    Signal lights are presented to an observer as flashes with finite duration; thus, the effect of flash duration on the apparent brightness of the signal is important. The relation of effective signal brightness to flash duration and luminance finds ex...

  12. Effect of bright light at night on core temperature, subjective alertness and performance as a function of exposure time.

    PubMed

    Foret, J; Daurat, A; Tirilly, G

    1998-01-01

    This simulated night shift study measured the effects of moderate bright light (a 4-hour pulse starting at 2000 or 0400) during the exposure night and subsequent night (dim light). Eight young males remained confined with little physical activity to a laboratory in groups of 4. After a night of reference, they were active for 24 hours; then after a morning recovery sleep, they were active again for 16 hours. Continuously measured rectal temperature proved to be immediately sensitive to 4 hours of bright light, particularly when given at the end of the night. Self-assessed alertness and also performance on a task with a high requirement for short-term memory were improved by the exposure to bright light. During the subsequent night the subjects were exposed only to dim light. Core temperature, subjective alertness and performance continued to show a time course depending on the preceding bright light exposure. Probably because evening exposure to bright light and morning sleep both had a phase-delaying effect, the effects on the circadian pacemaker were more pronounced. Thus, for practical applications in long night shifts, bright light can be considered to improve mood and alertness immediately but the possibility of modifying the circadian "clock" during subsequent nights should be taken into consideration, in particular after exposure to bright light in the evening.

  13. Volcanism on Io: New insights from global geologic mapping

    USGS Publications Warehouse

    Williams, D.A.; Keszthelyi, L.P.; Crown, D.A.; Yff, J.A.; Jaeger, W.L.; Schenk, P.M.; Geissler, P.E.; Becker, T.L.

    2011-01-01

    We produced the first complete, 1:15M-scale global geologic map of Jupiter's moon Io, based on a set of monochrome and color Galileo-Voyager image mosaics produced at a spatial resolution of 1km/pixel. The surface of Io was mapped into 19 units based on albedo, color and surface morphology, and is subdivided as follows: plains (65.8% of surface), lava flow fields (28.5%), mountains (3.2%), and patera floors (2.5%). Diffuse deposits (DD) that mantle the other units cover ???18% of Io's surface, and are distributed as follows: red (8.6% of surface), white (6.9%), yellow (2.1%), black (0.6%), and green (???0.01%). Analyses of the geographical and areal distribution of these units yield a number of results, summarized below. (1) The distribution of plains units of different colors is generally geographically constrained: Red-brown plains occur >??30?? latitude, and are thought to result from enhanced alteration of other units induced by radiation coming in from the poles. White plains (possibly dominated by SO2+contaminants) occur mostly in the equatorial antijovian region (??30??, 90-230??W), possibly indicative of a regional cold trap. Outliers of white, yellow, and red-brown plains in other regions may result from long-term accumulation of white, yellow, and red diffuse deposits, respectively. (2) Bright (possibly sulfur-rich) flow fields make up 30% more lava flow fields than dark (presumably silicate) flows (56.5% vs. 43.5%), and only 18% of bright flow fields occur within 10km of dark flow fields. These results suggest that secondary sulfurous volcanism (where a bright-dark association is expected) could be responsible for only a fraction of Io's recent bright flows, and that primary sulfur-rich effusions could be an important component of Io's recent volcanism. An unusual concentration of bright flows at ???45-75??N, ???60-120??W could be indicative of more extensive primary sulfurous volcanism in the recent past. However, it remains unclear whether most bright flows are bright because they are sulfur flows, or because they are cold silicate flows covered in sulfur-rich particles from plume fallout. (3) We mapped 425 paterae (volcano-tectonic depressions), up from 417 previously identified by Radebaugh et al. (Radebaugh, J., Keszthelyi, L.P., McEwen, A.S., Turtle, E.P., Jaeger, W., Milazzo, M. [2001]. J. Geophys. Res. 106, 33005-33020). Although these features cover only 2.5% of Io's surface, they correspond to 64% of all detected hot spots; 45% of all hot spots are associated with the freshest dark patera floors, reflecting the importance of active silicate volcanism to Io's heat flow. (4) Mountains cover only ???3% of the surface, although the transition from mountains to plains is gradational with the available imagery. 49% of all mountains are lineated and presumably layered, showing evidence of linear structures supportive of a tectonic origin. In contrast, only 6% of visible mountains are mottled (showing hummocks indicative of mass wasting) and 4% are tholi (domes or shields), consistent with a volcanic origin. (5) Initial analyses of the geographic distributions of map units show no significant longitudinal variation in the quantity of Io's mountains or paterae, in contrast to earlier studies. This is because we use the area of mountain and patera materials as opposed to the number of structures, and our result suggests that the previously proposed anti-correlation of mountains and paterae (Schenk, P., Hargitai, H., Wilson, R., McEwen, A., Thomas, P. [2001]. J. Geophys. Res. 106, 33201-33222; Kirchoff, M.R., McKinnon, W.B., Schenk, P.M. [2011]. Earth Planet. Sci. Lett. 301, 22-30) is more complex than previously thought. There is also a slight decrease in surface area of lava flows toward the poles of Io, perhaps indicative of variations in volcanic activity. (6) The freshest bright and dark flows make up about 29% of all of Io's flow fields, suggesting active emplacement is occurring in less than a third of Io's

  14. High frequency thermal emission from the lunar surface and near surface temperature of the Moon from Chang’E-2 microwave radiometer

    NASA Astrophysics Data System (ADS)

    Fang, Tuo; Fa, Wenzhe

    2014-04-01

    Near surface temperature of the Moon and thermal behaviors of the lunar regolith can provide important information for constraining thermal and magmatic evolution models of the Moon and engineering constrains for in situ lunar exploration system. In this study, China’s Chang’E-2 (CE-2) microwave radiometer (MRM) data at high frequency channels are used to investigate near surface temperature of the Moon given the penetration ability of microwave into the desiccated and porous lunar regolith. Factors that affect high frequency brightness temperature (TB), such as surface slope, solar albedo and dielectric constant, are analyzed first using a revised Racca’s temperature model. Radiative transfer theory is then used to model thermal emission from a semi-infinite regolith medium, with considering dielectric constant and temperature profiles within the regolith layer. To decouple the effect of diurnal temperature variation in the uppermost lunar surface, diurnal averaged brightness temperatures at high frequency channels are used to invert mean diurnal surface and subsurface temperatures based on their bilinear profiles within the regolith layer. Our results show that, at the scale of the spatial resolution of CE-2 MRM, surface slope of crater wall varies typically from about 20° to 30°, and this causes a variation in TB about 10-15 K. Solar albedo can give rise to a TB difference of about 5-10 K between maria and highlands, whereas a ∼2-8 K difference can be compensated by the dielectric constant on the other hand. Inversion results indicate that latitude (ϕ) variations of the mean diurnal surface and subsurface temperatures follow simple rules as cos0.30ϕ and cos0.36ϕ, respectively. The inverted mean diurnal temperature profiles at the Apollo 15 and 17 landing sites are also compared with the Apollo heat flow experiment data, showing an inversion uncertainty <4 K for surface temperature and <1 K for subsurface temperature.

  15. Crop moisture estimation over the southern Great Plains with dual polarization 1.66 centimeter passive microwave data from Nimbus 7

    NASA Technical Reports Server (NTRS)

    Mcfarland, M. J.; Harder, P. H., II; Wilke, G. D.; Huebner, G. L., Jr.

    1984-01-01

    Moisture content of snow-free, unfrozen soil is inferred using passive microwave brightness temperatures from the scanning multichannel microwave radiometer (SMMR) on Nimbus-7. Investigation is restricted to the two polarizations of the 1.66 cm wavelength sensor. Passive microwave estimates of soil moisture are of two basic categories; those based upon soil emissivity and those based upon the polarization of soil emission. The two methods are compared and contrasted through the investigation of 54 potential functions of polarized brightness temperatures and, in some cases, ground-based temperature measurements. Of these indices, three are selected for the estimated emissivity, the difference between polarized brightness temperatures, and the normalized polarization difference. Each of these indices is about equally effective for monitoring soil moisture. Using an antecedent precipitation index (API) as ground control data, temporal and spatial analyses show that emissivity data consistently give slightly better soil moisture estimates than depolarization data. The difference, however, is not statistically significant. It is concluded that polarization data alone can provide estimates of soil moisture in areas where the emissivity cannot be inferred due to nonavailability of surface temperature data.

  16. Venus - Possible Remnants of a Meteoroid in Lakshmi Region

    NASA Image and Video Library

    1996-11-26

    This full resolution mosaiced image covers an area of approximately 100 kilometers by 120 kilometers (62 by 74 miles) and is located in the Lakshmi region of Venus at 47 degrees north latitude and 334 east longitude. Due to the dense Venusian atmosphere, primary impact craters of less than a 3 kilometer (2 mile) diameter are nonexistent. The dark circular region and associated central bright feature in this image are thought to be the remnants of a meteoroid smaller than the size necessary to create an impact crater entering the atmosphere at a low velocity (approximately 350 meters/second.) The central bright feature appears to be a cluster of small secondary impacts, ejecta and debris from the original meteor that broke up in the atmosphere. Even though most of the meteorite did not hit the surface, the atmospheric shock wave could be great enough to modify the surrounding region. One explanation for this radar dark circular formation, called dark margins, could be that the shock wave was energetic enough to pulverize the surface (smooth surfaces generally appear radar dark.) Another explanation is that the surface could be blanketed by a fine material that was formed by the original meteor's breakup through the atmosphere. More than half of the impact craters on Venus have associated dark margins, and most of these are prominently located left of center of the crater. This is another effect which could be caused by the dense atmosphere of Venus. http://photojournal.jpl.nasa.gov/catalog/PIA00477

  17. Venus - Possible Remnants of a Meteoroid in Lakshmi Region

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This full resolution mosaiced image covers an area of approximately 100 kilometers by 120 kilometers (62 by 74 miles) and is located in the Lakshmi region of Venus at 47 degrees north latitude and 334 east longitude. Due to the dense Venusian atmosphere, primary impact craters of less than a 3 kilometer (2 mile) diameter are nonexistent. The dark circular region and associated central bright feature in this image are thought to be the remnants of a meteoroid smaller than the size necessary to create an impact crater entering the atmosphere at a low velocity (approximately 350 meters/second.) The central bright feature appears to be a cluster of small secondary impacts, ejecta and debris from the original meteor that broke up in the atmosphere. Even though most of the meteorite did not hit the surface, the atmospheric shock wave could be great enough to modify the surrounding region. One explanation for this radar dark circular formation, called dark margins, could be that the shock wave was energetic enough to pulverize the surface (smooth surfaces generally appear radar dark.) Another explanation is that the surface could be blanketed by a fine material that was formed by the original meteor's breakup through the atmosphere. More than half of the impact craters on Venus have associated dark margins, and most of these are prominently located left of center of the crater. This is another effect which could be caused by the dense atmosphere of Venus.

  18. Ordered polymer nanofibers enhance output brightness in bilayer light-emitting field-effect transistors.

    PubMed

    Hsu, Ben B Y; Seifter, Jason; Takacs, Christopher J; Zhong, Chengmei; Tseng, Hsin-Rong; Samuel, Ifor D W; Namdas, Ebinazar B; Bazan, Guillermo C; Huang, Fei; Cao, Yong; Heeger, Alan J

    2013-03-26

    Polymer light emitting field effect transistors are a class of light emitting devices that reveal interesting device physics. Device performance can be directly correlated to the most fundamental polymer science. Control over surface properties of the transistor dielectric can dramatically change the polymer morphology, introducing ordered phase. Electronic properties such as carrier mobility and injection efficiency on the interface can be promoted by ordered nanofibers in the polymer. Moreover, by controlling space charge in the polymer interface, the recombination zone can be spatially extended and thereby enhance the optical output.

  19. Naturally together: pitch-height and brightness as coupled factors for eliciting the SMARC effect in non-musicians.

    PubMed

    Pitteri, Marco; Marchetti, Mauro; Priftis, Konstantinos; Grassi, Massimo

    2017-01-01

    Pitch-height is often labeled spatially (i.e., low or high) as a function of the fundamental frequency of the tone. This correspondence is highlighted by the so-called Spatial-Musical Association of Response Codes (SMARC) effect. However, the literature suggests that the brightness of the tone's timbre might contribute to this spatial association. We investigated the SMARC effect in a group of non-musicians by disentangling the role of pitch-height and the role of tone-brightness. In three experimental conditions, participants were asked to judge whether the tone they were listening to was (or was not) modulated in amplitude (i.e., vibrato). Participants were required to make their response in both the horizontal and the vertical axes. In a first condition, tones varied coherently in pitch (i.e., manipulation of the tone's F0) and brightness (i.e., manipulation of the tone's spectral centroid); in a second condition, pitch-height varied whereas brightness was fixed; in a third condition, pitch-height was fixed whereas brightness varied. We found the SMARC effect only in the first condition and only in the vertical axis. In contrast, we did not observe the effect in any of the remaining conditions. The present results suggest that, in non-musicians, the SMARC effect is not due to the manipulation of the pitch-height alone, but arises because of a coherent change of pitch-height and brightness; this effect emerges along the vertical axis only.

  20. Oxidation of dissolved iron under warmer, wetter conditions on Mars: Transitions to present-day arid environments

    NASA Technical Reports Server (NTRS)

    Burns, R. G.

    1993-01-01

    The copious deposits of ferric-iron assemblages littering the surface of bright regions of Mars indicate that efficient oxidative weathering reactions have taken place during the evolution of the planet. Because the kinetics of atmosphere-surface (gas-solid) reactions are considerably slower than chemical weathering reactions involving an aqueous medium, most of the oxidation products now present in the martian regolith probably formed when groundwater flowed near the surface. This paper examines how chemical weathering reactions were effected by climatic variations when warm, wet environments became arid on Mars. Analogies are drawn with hydrogeochemical and weathering environments on the Australian continent where present-day oxidation of iron is occurring in acidic ground water under arid conditions.

  1. ARC-1979-AC79-7104

    NASA Image and Video Library

    1979-07-07

    Range : 1,094,666 km (677,000 mi.) This false color picture of Callisto was taken by Voyager 2 and is centered on 11 degrees N and 171 degrees W. This rendition uses an ultraviolet image for the blue component. Because the surface displays regional contrast in UV, variations in surface materials are apparent. Notice in particular the dark blue haloes which surround bright craters in the eastern hemisphere. The surface of Callisto is the most heavily cratered of the Galilean satellites and resembles ancient heavily cratered terrains on the moon, Mercury and Mars. The bright areas are ejecta thrown out by relatively young impact craters. A large ringed structure, probably an impact basin, is shown in the upper left part of the picture. The color version of this picture was constructed by compositing black and white images taken through the ultraviolet, clear and orange filters.

  2. Spectral characteristics of the microwave emission from a wind-driven foam-covered sea

    NASA Technical Reports Server (NTRS)

    Webster, W. J., Jr.; Wilheit, T. T.; Gloersen, P.; Ross, D. B.

    1976-01-01

    Aircraft observations of the microwave emission from the wind-driven foam-covered Bering Sea substantiate earlier results and show that the combination of surface roughness and white water yields a significant microwave brightness temperature dependence on wind speed over a wide range of microwave wavelengths, with a decreasing dependence for wavelengths above 6 cm. The spectral characteristic of brightness temperature as a function of wind speed is consistent with a foam model in which the bubbles give rise to a cusped surface between the foam and the sea. In the fetch-limited situation the contribution of the wave structure at the surface appears to increase as the foam coverage decreases. Although the data show that the thin streaks are the most important part of the white water signature, there is some evidence for the contribution of whitecaps.

  3. Surface modification of graphene using HBC-6ImBr in solution-processed OLEDs

    NASA Astrophysics Data System (ADS)

    Cheng, Tsung-Chin; Ku, Ting-An; Huang, Kuo-You; Chou, Ang-Sheng; Chang, Po-Han; Chang, Chao-Chen; Yue, Cheng-Feng; Liu, Chia-Wei; Wang, Po-Han; Wong, Ken-Tsung; Wu, Chih-I.

    2018-01-01

    In this work, we report a simple method for solution-processed organic light emitting devices (OLEDs), where single-layer graphene acts as the anode and the hexa-peri-hexabenzocoronene exfoliating agent (HBC-6ImBr) provides surface modification. In SEM images, the PEDOT:PSS solution fully covered the graphene electrode after coating with HBC-6ImBr. The fabricated solution-processed OLEDs with a single-layer graphene anode showed outstanding brightness at 3182 cd/m2 and current efficiency up to 6 cd/A which is comparable to that of indium tin oxide films, and the OLED device brightness performance increases six times compared to tri-layer graphene treated with UV-Ozone at the same driving voltage. This method can be used in a wide variety of solution-processed organic optoelectronics on surface-modified graphene anodes.

  4. The modulation of delta responses in the interaction of brightness and emotion.

    PubMed

    Kurt, Pınar; Eroğlu, Kübra; Bayram Kuzgun, Tubanur; Güntekin, Bahar

    2017-02-01

    The modulation of delta oscillations (0.5-3.5Hz) by emotional stimuli is reported. Physical attributes such as color, brightness and spatial frequency of emotional visual stimuli have crucial effect on the perception of complex scene. Brightness is intimately related with emotional valence. Here we explored the effect of brightness on delta oscillatory responses upon presentation of pleasant, unpleasant and neutral pictures. We found that bright unpleasant pictures elicited lower amplitude of delta response than original unpleasant pictures. The electrophysiological finding of the study was in accordance with behavioral data. These results denoted the importance of delta responses on the examination of the association between perceptual and conceptual processes while in the question of brightness and emotion. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Calibrating the Type Ia Supernova Distance Scale Using Surface Brightness Fluctuations

    NASA Astrophysics Data System (ADS)

    Potter, Cicely; Jensen, Joseph B.; Blakeslee, John; Milne, Peter; Garnavich, Peter M.; Brown, Peter

    2018-06-01

    We have observed 20 supernova host galaxies with HST WFC3/IR in the F110W filter, and prepared the data for Surface Brightness Fluctuation (SBF) distance measurements. The purpose of this study is to determine if there are any discrepancies between the SBF distance scale and the type-Ia SN distance scale, for which local calibrators are scarce. We have now measured SBF magnitudes to all early-type galaxies that have hosted SN Ia within 80 Mpc for which SBF measurements are possible. SBF is the only distance measurement technique with statistical uncertainties comparable to SN Ia that can be applied to galaxies out to 80 Mpc.

  6. Bright Summer Afternoon on the Mars Utopian Planitia

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A UTOPIAN BRIGHT SUMMER AFTERNOON ON MARS--Looking south from Viking 2 on September 6, the orange-red surface of the nearly level plain upon which the spacecraft sits is seen strewn with rocks as large as three feet across. Many of these rocks are porous and sponge-like, similar to some of Earth's volcanic rocks. Other rocks are coarse-grained such as the large rock at lower left. Between the rocks, the surface is blanketed with fine-grained material that, in places, is piled into small drifts and banked against some of the larger blocks. The cylindrical mast with the orange cable is the low-gain antenna used to receive commands from Earth.

  7. Studies of the Virgo Cluster. I - Photometry of 109 galaxies near the cluster center to serve as standards

    NASA Technical Reports Server (NTRS)

    Sandage, A.; Tarenghi, M.; Binggeli, B.

    1984-01-01

    Attention is given to the technical aspects of photometric measurements of 109 galaxies near the center of the Virgo Cluster, noting various types of radii and surface brightness for about 50 E and dE galaxies in the sample that range in absolute magnitude from -20 to -12. These data are combined with data from the literature for giant E and dwarf E galaxies in the Local Group to study the systematic properties of E galaxies over a range of one million luminosities. The radial intensity profiles derived are fitted to the manifold of King (1978) models to derive model-dependent central surface brightness, core radii, and cutoff radii.

  8. Investigating the surface brightness profiles, ejected mass and speed from the outburst events of comet 67P/Churyumov-Gerasmenko

    NASA Astrophysics Data System (ADS)

    Lin, Zhong-Yi; Vincent, Jean-Baptiste; A'Hearn, Mike; Lara, Luisa; Knollenberg, Joerg; Ip, Wing-Huen; Osiris Team

    2016-04-01

    The OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) WAC and NAC camera onboard the ESA Rosetta spacecraft orbiting 67P/Churyumov-Gersimenko has captured a lot of outbursts since July, 2015. Most of their source regions were located at southern hemisphere of comet C-G. Including the March- and perihelion-outbursts, the detected events show a variety of morphological features (i.e. broad fan, collimated jet and so on). In this work, we investigate these events and characterize the physical properties, including the surface brightness profiles, ejected mass and speed if there were two or more images acquired by the same filter during the outburst timeframe.

  9. Surface brightness and color distributions in blue compact dwarf galaxies. I - Haro 2, an extreme example of a star-forming young elliptical galaxy

    NASA Technical Reports Server (NTRS)

    Loose, Hans-Hermann; Thuan, Trinh X.

    1986-01-01

    The first results of a large-scale program to study the morphology and structure of blue compact dwarf galaxies from CCD observations are presented. The observations and reduction procedures are described, and surface brightness and color profiles are shown. The results are used to discuss the morphological type of Haro 2 and its stellar populations. It is found that Haro 2 appears to be an extreme example of an elliptical galaxy undergoing intense star formation in its central regions, and that the oldest stars it contains were made only about four million yr ago. The 'missing' mass problem of Haro 2 is also discussed.

  10. Satellite microwave and in situ observations of the Weddell Sea ice cover and its marginal ice zone

    NASA Technical Reports Server (NTRS)

    Comiso, J. C.; Sullivan, C. W.

    1986-01-01

    The radiative and physical characteristics of the Weddell Sea ice cover and its marginal ice zone are analyzed using multichannel satellite passive microwave data and ship and helicopter observations obtained during the 1983 Antarctic Marine Ecosystem Research. Winter and spring brightness temperatures are examined; spatial variability in the brightness temperatures of consolidated ice in winter and spring cyclic increases and decrease in brightness temperatures of consolidated ice with an amplitude of 50 K at 37 GHz and 20 K at 18 GHz are observed. The roles of variations in air temperature and surface characteristics in the variability of spring brightness temperatures are investigated. Ice concentrations are derived using the frequency and polarization techniques, and the data are compared with the helicopter and ship observations. Temporal changes in the ice margin structure and the mass balance of fresh water and of biological features of the marginal ice zone are studied.

  11. Dark Material at the Surface of Polar Crater Deposits on Mercury

    NASA Technical Reports Server (NTRS)

    Neumann, Gregory A.; Cavanaugh, John F.; Sun, Xiaoli; Mazarico, Erwan; Smith, David E.; Zuber, Maria T.; Solomon, Sean C.; Paige, Daid A.

    2012-01-01

    Earth-based radar measurements [1-3] have yielded images of radar-bright material at the poles of Mercury postulated to be near-surface water ice residing in cold traps on the permanently shadowed floors of polar impact craters. The Mercury Laser Altimeter (MLA) on board the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft has now mapped much of the north polar region of Mercury [4] (Fig. 1). Radar-bright zones lie within polar craters or along poleward-facing scarps lying mainly in shadow. Calculations of illumination with respect to solid-body motion [5] show that at least 0.5% of the surface area north of 75deg N lies in permanent shadow, and that most such permanently shadowed regions (PSRs) coincide with radar-bright regions. MLA transmits a 1064-nm-wavelength laser pulse at 8 Hz, timing the leading and trailing edges of the return pulse. MLA can in some cases infer energy and thereby surface reflectance at the laser wavelength from the returned pulses. Surficial exposures of water ice would be optically brighter than the surroundings, but persistent surface water ice would require temperatures over all seasons to remain extremely low (<110 K). Thermal models [6,7] incorporating direct and scattered radiation, Mercury s eccentric orbit, 3:2 spin-orbit resonance, and near-zero obliquity generally do not support such conditions in all permanently shadowed craters but suggest that water ice buried near the surface (<0.5 m depth) could survive for > 1 Gy. We describe measurements of reflectivity derived from MLA pulse returns. These reflectivity data show that surface materials in the shadowed regions are darker than their surroundings, enough to strongly attenuate or extinguish laser returns. Such measurements appear to rule out widespread surface exposures of water ice. We consider explanations for the apparent low reflectivity of these regions involving other types of volatile deposit.

  12. Theoretical colours and isochrones for some Hubble Space Telescope colour systems

    NASA Technical Reports Server (NTRS)

    Edvardsson, B.; Bell, R. A.

    1989-01-01

    Synthetic spectra for effective temperatures of 4000-7250 K, logarithmic surface gravities typical of dwarfs and subgiants, and metallicities from solar values to 0.001 of the solar metallicity were used to derive a grid of synthetic surface brightness magnitudes for 21 of the Hubble Space Telescope Wide Field Camera (WFC) band passes. The absolute magnitudes of these 21 band passes are also obtained for a set of globular cluster isochrones with different helium abundances, metallicities, oxygen abundances, and ages. The usefulness and efficiency of different sets of broad and intermediate bandwidth WFC colors for determining ages and metallicities for globular clusters are evaluated.

  13. A surface brightness correlation between carbon monoxide and nonthermal radio continuum emission in the galaxy

    NASA Technical Reports Server (NTRS)

    Allen, R. J.

    1992-01-01

    The relation between the projected face-on velocity-integrated CO (1-0) brightness ICO and the 20 cm nonthermal radio continuum brightness T20 is examined as a function of radius in the Galactic disk. Averaged in 1 kpc annuli, the ratio ICO/T20 is nearly constant with a mean value of 1.51 +/- 0.34 km/s from 2 to 10 kpc. The manner in which ICO and T20 are derived for the Galaxy is different in several significant respects from the more direct observational determinations possible in nearby galaxies. The fact that the Galaxy also follows this correlation further strengthens the generality of the result.

  14. Effects of the Antenna Aperture on Remote Sensing of Sea Surface Salinity at L-Band

    NASA Technical Reports Server (NTRS)

    Dinnat, Emmanuel P.; LeVine, David M.

    2006-01-01

    Remote sensing of sea surface salinity with sufficient accuracy to meet the needs of global oceanography is a challenging task. The global variability of the salinity signal in the open ocean is only a few Kelvin even at L-band and an accuracy on the order of 0.1K is desired to study the influence of salinity on ocean circulation and energy exchange with the atmosphere. On the other hand, resolution is not an issue for understanding the dynamics of the open ocean where scales of hundreds of km are not uncommon. This permits remote sensing with large antenna footprints and spatial averaging to reduce noise. However, antennas with large footprints introduce other problems. For example, the angle of incidence and hence the brightness temperature varies over the footprint. Similarly, the polarization of brightness temperature relative to the antenna ports changes. Studies have been conducted using antenna patterns representative of the antenna that will be flown on the Aquarius mission to examine these effects. Aquarius is a pushbroom style radiometer with three beams looking across track away from the sun. The beams are at incidences angles (at the spacecraft) of about 26.5, 34 and 40 degrees each with a half-power beam width of about 5.8 degrees. It is shown that the measured brightness temperature is biased relative to the value at boresight because of changes across the field of view. The bias can be as much as 4K and positive or negative depending on polarization. Polarization mixing because of the variations of the local plane of incidence across the footprint also occur and can result in biased polarimetric measurements. A bias in the third Stokes parameter of as much as 0.4K is possible. Such effects may affect algorithms that use the third Stokes parameter to correct for Faraday rotation. Another issue associated with the antenna is sun glint. This is an issue determined by surface roughness and antenna sidelobes. Examples will be given for the random component (glint) for the case of the Aquarius antenna beams. Fortunately, the Aquarius beams mostly look to the dark side of the day-night termination, but during some portions of the year they will see sun-lighted ocean. In this case, glint could be an issue for the inner-most beam.

  15. Automated detectionof very low surface brightness galaxiesin the Virgo cluster

    NASA Astrophysics Data System (ADS)

    Prole, D. J.; Davies, J. I.; Keenan, O. C.; Davies, L. J. M.

    2018-07-01

    We report the automatic detection of a new sample of very low surface brightness (LSB) galaxies, likely members of the Virgo cluster. We introduce our new software, DeepScan, that has been designed specifically to detect extended LSB features automatically using the DBSCAN algorithm. We demonstrate the technique by applying it over a 5 deg2 portion of the Next Generation Virgo Survey (NGVS) data to reveal 53 LSB galaxies that are candidate cluster members based on their sizes and colours. 30 of these sources are new detections despite the region being searched specifically for LSB galaxies previously. Our final sample contains galaxies with 26.0 ≤ ⟨μe⟩ ≤ 28.5 and 19 ≤ mg ≤ 21, making them some of the faintest known in Virgo. The majority of them have colours consistent with the red sequence, and have a mean stellar mass of 106.3 ± 0.5 M⊙ assuming cluster membership. After using ProFit to fit Sérsic profiles to our detections, none of the new sources have effective radii larger than 1.5 Kpc and do not meet the criteria for ultra-diffuse galaxy (UDG) classification, so we classify them as ultra-faint dwarfs.

  16. STELLAR ENCOUNTER RATE IN GALACTIC GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahramian, Arash; Heinke, Craig O.; Sivakoff, Gregory R.

    2013-04-01

    The high stellar densities in the cores of globular clusters cause significant stellar interactions. These stellar interactions can produce close binary mass-transferring systems involving compact objects and their progeny, such as X-ray binaries and radio millisecond pulsars. Comparing the numbers of these systems and interaction rates in different clusters drives our understanding of how cluster parameters affect the production of close binaries. In this paper we estimate stellar encounter rates ({Gamma}) for 124 Galactic globular clusters based on observational data as opposed to the methods previously employed, which assumed 'King-model' profiles for all clusters. By deprojecting cluster surface brightness profilesmore » to estimate luminosity density profiles, we treat 'King-model' and 'core-collapsed' clusters in the same way. In addition, we use Monte Carlo simulations to investigate the effects of uncertainties in various observational parameters (distance, reddening, surface brightness) on {Gamma}, producing the first catalog of globular cluster stellar encounter rates with estimated errors. Comparing our results with published observations of likely products of stellar interactions (numbers of X-ray binaries, numbers of radio millisecond pulsars, and {gamma}-ray luminosity) we find both clear correlations and some differences with published results.« less

  17. SMOS/SMAP Synergy for SMAP Level 2 Soil Moisture Algorithm Evaluation

    NASA Technical Reports Server (NTRS)

    Bindlish, Rajat; Jackson, Thomas J.; Zhao, Tianjie; Cosh, Michael; Chan, Steven; O'Neill, Peggy; Njoku, Eni; Colliander, Andreas; Kerr, Yann

    2011-01-01

    Soil Moisture Active Passive (SMAP) satellite has been proposed to provide global measurements of soil moisture and land freeze/thaw state at 10 km and 3 km resolutions, respectively. SMAP would also provide a radiometer-only soil moisture product at 40-km spatial resolution. This product and the supporting brightness temperature observations are common to both SMAP and European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission. As a result, there are opportunities for synergies between the two missions. These include exploiting the data for calibration and validation and establishing longer term L-band brightness temperature and derived soil moisture products. In this investigation we will be using SMOS brightness temperature, ancillary data, and soil moisture products to develop and evaluate a candidate SMAP L2 passive soil moisture retrieval algorithm. This work will begin with evaluations based on the SMOS product grids and ancillary data sets and transition to those that will be used by SMAP. An important step in this analysis is reprocessing the multiple incidence angle observations provided by SMOS to a global brightness temperature product that simulates the constant 40 degree incidence angle observations that SMAP will provide. The reprocessed brightness temperature data provide a basis for evaluating different SMAP algorithm alternatives. Several algorithms are being considered for the SMAP radiometer-only soil moisture retrieval. In this first phase, we utilized only the Single Channel Algorithm (SCA), which is based on the radiative transfer equation and uses the channel that is most sensitive to soil moisture (H-pol). Brightness temperature is corrected sequentially for the effects of temperature, vegetation, roughness (dynamic ancillary data sets) and soil texture (static ancillary data set). European Centre for Medium-Range Weather Forecasts (ECMWF) estimates of soil temperature for the top layer (as provided as part of the SMOS ancillary data) were used to correct for surface temperature effects and to derive microwave emissivity. ECMWF data were also used for precipitation forecasts, presence of snow, and frozen ground. Vegetation options are described below. One year of soil moisture observations from a set of four watersheds in the U.S. were used to evaluate four different retrieval methodologies: (1) SMOS soil moisture estimates (version 400), (2) SeA soil moisture estimates using the SMOS/SMAP data with SMOS estimated vegetation optical depth, which is part of the SMOS level 2 product, (3) SeA soil moisture estimates using the SMOS/SMAP data and the MODIS-based vegetation climatology data, and (4) SeA soil moisture estimates using the SMOS/SMAP data and actual MODIS observations. The use of SMOS real-world global microwave observations and the analyses described here will help in the development and selection of different land surface parameters and ancillary observations needed for the SMAP soil moisture algorithms. These investigations will greatly improve the quality and reliability of this SMAP product at launch.

  18. The new world atlas of artificial night sky brightness

    PubMed Central

    Falchi, Fabio; Cinzano, Pierantonio; Duriscoe, Dan; Kyba, Christopher C. M.; Elvidge, Christopher D.; Baugh, Kimberly; Portnov, Boris A.; Rybnikova, Nataliya A.; Furgoni, Riccardo

    2016-01-01

    Artificial lights raise night sky luminance, creating the most visible effect of light pollution—artificial skyglow. Despite the increasing interest among scientists in fields such as ecology, astronomy, health care, and land-use planning, light pollution lacks a current quantification of its magnitude on a global scale. To overcome this, we present the world atlas of artificial sky luminance, computed with our light pollution propagation software using new high-resolution satellite data and new precision sky brightness measurements. This atlas shows that more than 80% of the world and more than 99% of the U.S. and European populations live under light-polluted skies. The Milky Way is hidden from more than one-third of humanity, including 60% of Europeans and nearly 80% of North Americans. Moreover, 23% of the world’s land surfaces between 75°N and 60°S, 88% of Europe, and almost half of the United States experience light-polluted nights. PMID:27386582

  19. The new world atlas of artificial night sky brightness.

    PubMed

    Falchi, Fabio; Cinzano, Pierantonio; Duriscoe, Dan; Kyba, Christopher C M; Elvidge, Christopher D; Baugh, Kimberly; Portnov, Boris A; Rybnikova, Nataliya A; Furgoni, Riccardo

    2016-06-01

    Artificial lights raise night sky luminance, creating the most visible effect of light pollution-artificial skyglow. Despite the increasing interest among scientists in fields such as ecology, astronomy, health care, and land-use planning, light pollution lacks a current quantification of its magnitude on a global scale. To overcome this, we present the world atlas of artificial sky luminance, computed with our light pollution propagation software using new high-resolution satellite data and new precision sky brightness measurements. This atlas shows that more than 80% of the world and more than 99% of the U.S. and European populations live under light-polluted skies. The Milky Way is hidden from more than one-third of humanity, including 60% of Europeans and nearly 80% of North Americans. Moreover, 23% of the world's land surfaces between 75°N and 60°S, 88% of Europe, and almost half of the United States experience light-polluted nights.

  20. The use of stereoscopic satellite observation in the determination of the emissivity of cirrus

    NASA Astrophysics Data System (ADS)

    Szejwach, G.; Sletten, T. N.; Hasler, A. F.

    The feasibility of determining cirrus ``emissivity'' from combined stereoscopic and infrared satellite observations in conjunction with radiosounding data is investigated for a particular case study. Simultaneous visible images obtained during SESAME-1979 from two geosynchronous GOES meteorological satellites were processed on the NASA/Goddard interactive system (AOIPS) and were used to determine the stereo cloud top height ZC as described by Hasler [1]. Iso-contours of radiances were outlined on the corresponding infrared image. Total brightness temperature TB and ground surface brightness temperature TS were inferred from the radiances. The special SESAME network of radiosoundings was used to determine the cloud top temperature TCLD at the level defined by ZC. The ``effective cirrus emissivity'' NE where N is the fractional cirrus cloudiness and E is the emissivity in a GOES infrared picture element of about 10 km × 10 km is then computed from TB, TS and TCLD.

  1. An Investigation of Intracluster Light Evolution Using Cosmological Hydrodynamical Simulations

    NASA Astrophysics Data System (ADS)

    Tang, Lin; Lin, Weipeng; Cui, Weiguang; Kang, Xi; Wang, Yang; Contini, E.; Yu, Yu

    2018-06-01

    Intracluster light (ICL) in observations is usually identified through the surface brightness limit (SBL) method. In this paper, for the first time we produce mock images of galaxy groups and clusters, using a cosmological hydrodynamical simulation to investigate the ICL fraction and focus on its dependence on observational parameters, e.g., the SBL, the effects of cosmological redshift-dimming, point-spread function (PSF), and CCD pixel size. Detailed analyses suggest that the width of the PSF has a significant effect on the measured ICL fraction, while the relatively small pixel size shows almost no influence. It is found that the measured ICL fraction depends strongly on the SBL. At a fixed SBL and redshift, the measured ICL fraction decreases with increasing halo mass, while with a much fainter SBL, it does not depend on halo mass at low redshifts. In our work, the measured ICL fraction shows a clear dependence on the cosmological redshift-dimming effect. It is found that there is more mass locked in the ICL component than light, suggesting that the use of a constant mass-to-light ratio at high surface brightness levels will lead to an underestimate of ICL mass. Furthermore, it is found that the radial profile of ICL shows a characteristic radius that is almost independent of halo mass. The current measurement of ICL from observations has a large dispersion due to different methods, and we emphasize the importance of using the same definition when observational results are compared with theoretical predictions.

  2. Music for a Brighter World: Brightness Judgment Bias by Musical Emotion.

    PubMed

    Bhattacharya, Joydeep; Lindsen, Job P

    2016-01-01

    A prevalent conceptual metaphor is the association of the concepts of good and evil with brightness and darkness, respectively. Music cognition, like metaphor, is possibly embodied, yet no study has addressed the question whether musical emotion can modulate brightness judgment in a metaphor consistent fashion. In three separate experiments, participants judged the brightness of a grey square that was presented after a short excerpt of emotional music. The results of Experiment 1 showed that short musical excerpts are effective emotional primes that cross-modally influence brightness judgment of visual stimuli. Grey squares were consistently judged as brighter after listening to music with a positive valence, as compared to music with a negative valence. The results of Experiment 2 revealed that the bias in brightness judgment does not require an active evaluation of the emotional content of the music. By applying a different experimental procedure in Experiment 3, we showed that this brightness judgment bias is indeed a robust effect. Altogether, our findings demonstrate a powerful role of musical emotion in biasing brightness judgment and that this bias is aligned with the metaphor viewpoint.

  3. Music for a Brighter World: Brightness Judgment Bias by Musical Emotion

    PubMed Central

    2016-01-01

    A prevalent conceptual metaphor is the association of the concepts of good and evil with brightness and darkness, respectively. Music cognition, like metaphor, is possibly embodied, yet no study has addressed the question whether musical emotion can modulate brightness judgment in a metaphor consistent fashion. In three separate experiments, participants judged the brightness of a grey square that was presented after a short excerpt of emotional music. The results of Experiment 1 showed that short musical excerpts are effective emotional primes that cross-modally influence brightness judgment of visual stimuli. Grey squares were consistently judged as brighter after listening to music with a positive valence, as compared to music with a negative valence. The results of Experiment 2 revealed that the bias in brightness judgment does not require an active evaluation of the emotional content of the music. By applying a different experimental procedure in Experiment 3, we showed that this brightness judgment bias is indeed a robust effect. Altogether, our findings demonstrate a powerful role of musical emotion in biasing brightness judgment and that this bias is aligned with the metaphor viewpoint. PMID:26863420

  4. Bright and Dark Slopes on Ganymede

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Ridges on the edge of Ganymede's north polar cap show bright east-facing slopes and dark west-facing slopes with troughs of darker material below the larger ridges. North is to the top. The bright slopes may be due to grain size differences, differences in composition between the original surface and the underlying material, frost deposition, or illumination effects. The large 2.4 kilometer (1.5 mile) diameter crater in this image shows frost deposits located on the north-facing rim slope, away from the sun. A smaller 675 meter (2200 foot) diameter crater in the center of the image is surrounded by a bright deposit which may be ejecta from the impact. Ejecta deposits such as this are uncommon for small craters on Ganymede. This image measures 18 by 19 kilometers (11 by 12 miles) and has a resolution of 45 meters (148 feet) per pixel. NASA's Galileo spacecraft obtained this image on September 6, 1996 during its second orbit around Jupiter.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  5. Dynamic resetting of the human circadian pacemaker by intermittent bright light

    NASA Technical Reports Server (NTRS)

    Rimmer, D. W.; Boivin, D. B.; Shanahan, T. L.; Kronauer, R. E.; Duffy, J. F.; Czeisler, C. A.

    2000-01-01

    In humans, experimental studies of circadian resetting typically have been limited to lengthy episodes of exposure to continuous bright light. To evaluate the time course of the human endogenous circadian pacemaker's resetting response to brief episodes of intermittent bright light, we studied 16 subjects assigned to one of two intermittent lighting conditions in which the subjects were presented with intermittent episodes of bright-light exposure at 25- or 90-min intervals. The effective duration of bright-light exposure was 31% or 63% compared with a continuous 5-h bright-light stimulus. Exposure to intermittent bright light elicited almost as great a resetting response compared with 5 h of continuous bright light. We conclude that exposure to intermittent bright light produces robust phase shifts of the endogenous circadian pacemaker. Furthermore, these results demonstrate that humans, like other species, exhibit an enhanced sensitivity to the initial minutes of bright-light exposure.

  6. Giant Ly α Nebulae in the Illustris Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gronke, Max; Bird, Simeon, E-mail: maxbg@astro.uio.no

    2017-02-01

    Several “giant” Ly α nebulae with an extent ≳300 kpc and observed Ly α luminosity of ≳10{sup 44} erg s{sup −1} cm{sup −2} arcsec{sup −2} have recently been detected, and it has been speculated that their presence hints at a substantial cold gas reservoir in small cool clumps not resolved in modern hydrodynamical simulations. We use the Illustris simulation to predict the Ly α emission emerging from large halos ( M > 10{sup 11.5} M {sub ⊙}) at z ∼ 2 and thus test this model. We consider both active galactic nucleus (AGN) and star driven ionization, and compare themore » simulated surface brightness maps, profiles, and Ly α spectra to a model where most gas is clumped below the simulation resolution scale. We find that with Illustris, no additional clumping is necessary to explain the extents, luminosities, and surface brightness profiles of the “giant Ly α nebulae” observed. Furthermore, the maximal extents of the objects show a wide spread for a given luminosity and do not correlate significantly with any halo properties. We also show how the detected size depends strongly on the employed surface brightness cutoff, and predict that further examples of such objects will be found in the near future.« less

  7. Analysis of wave propagation and wavefront sensing in target-in-the-loop beam control systems

    NASA Astrophysics Data System (ADS)

    Vorontsov, Mikhail A.; Kolosov, Valeri V.

    2004-10-01

    Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related with maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing outgoing wave propagation, and the equation describing evolution of the mutual intensity function (MIF) for the backscattered (returned) wave. The resulting evolution equation for the MIF is further simplified by the use of the smooth refractive index approximation. This approximation enables derivation of the transport equation for the returned wave brightness function, analyzed here using method characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wavefront sensors that perform sensing of speckle-averaged characteristics of the wavefront phase (TIL sensors). Analysis of the wavefront phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric turbulence-related phase aberrations. We also show that wavefront sensing results depend on the extended target shape, surface roughness, and the outgoing beam intensity distribution on the target surface.

  8. Investigating the Origin of Bright Materials on Vesta: Synthesis, Conclusions, and Implications

    NASA Technical Reports Server (NTRS)

    Li, Jian-Yang; Mittlefehldt, D. W.; Pieters, C. M.; De Sanctis, M. C.; Schroder, S. E.; Hiesinger, H.; Blewett, D. T.; Russell, C. T.; Raymond, C. A.; Keller, H. U.

    2012-01-01

    The Dawn spacecraft started orbiting the second largest asteroid (4) Vesta in August 2011, revealing the details of its surface at an unprecedented pixel scale as small as approx.70 m in Framing Camera (FC) clear and color filter images and approx.180 m in the Visible and Infrared Spectrometer (VIR) data in its first two science orbits, the Survey Orbit and the High Altitude Mapping Orbit (HAMO) [1]. The surface of Vesta displays the greatest diversity in terms of geology and mineralogy of all asteroids studied in detail [2, 3]. While the albedo of Vesta of approx.0.38 in the visible wavelengths [4, 5] is one of the highest among all asteroids, the surface of Vesta shows the largest variation of albedos found on a single asteroid, with geometric albedos ranging at least from approx.0.10 to approx.0.67 in HAMO images [5]. There are many distinctively bright and dark areas observed on Vesta, associated with various geological features and showing remarkably different forms. Here we report our initial attempt to understand the origin of the areas that are distinctively brighter than their surroundings. The dark materials on Vesta clearly are different in origin from bright materials and are reported in a companion paper [6].

  9. Spectral identification of geological units on the surface of Mars related to the presence of silicates from Earth-based near-infrared telescopic charge-coupled device imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinet, P.; Chevrel, S.

    1990-08-30

    During the September 1988 Mars opposition, the authors obtained new high spatial (100-150 km) and spectral ({Delta}{lambda}/{lambda} = 1%) resolution near-IR telescopic charge-coupled device images of Mars from Pic-du-Midi Observatory. These images allow the association of spectral units with morphologic surface units on Mars, especially within the dark regions which exhibit much greater variability than the bright regions. Mineralogical interpretation of the data leads to a global description of the surface state of alteration consistent with the spatial distribution of bright and dark regions, with the bright regions being more altered than the dark. Within the less altered regions, Fe{supmore » 2+} crystal field absorption bands are detected, indicative of the presence of mafic minerals (Opx, Cpx, O1) in agreement with a likely crustal basaltic composition. The most conspicuous Fe{sup 2+} absorption features are clearly related to the volcanic regions of the Syrtis Major Shield and Hesperia Planum unit. The strongest observed absorptions due to olivine and clinopyroxene are spatially associated with the restricted central caldera complex of Nili-Meroe Paterae (within Syrtis Major) and the Tyrrhena Patera unit (within Hesperia Planum) and indicate an ultramafic composition.« less

  10. Cerberus Wind Streaks

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 6 May 2002) The Science Cerberus is a dark region on Mars that has shrunk down from a continuous length of about 1000 km to roughly three discontinuous spots a few 100 kms in length in less than 20 years. There are two competing processes at work in the Cerberus region that produce the bright and dark features seen in this THEMIS image. Bright dust settles out of the atmosphere, especially after global dust storms, depositing a layer just thick enough to brighten the dark surfaces. Deposition occurs preferentially in the low wind 'shadow zones' within craters and downwind of crater rims, producing the bright streaks. The direction of the streaks clearly indicates that the dominant winds come from the northeast. Dust deposition would completely blot out the dark areas if it were not for the action of wind-blown sand grains scouring the surface and lifting the dust back into the atmosphere. Again, the shadow zones are protected from the blowing sand, preserving the bright layer of dust. Also visible in this image are lava flow features extending from the flanks of the huge Elysium volcanoes to the northwest. Two shallow channels and a raised flow lobe are just barely discernable. The lava channel in the middle of the image crosses the boundary of the bright and dark surfaces without any obvious change in its morphology. This demonstrates that the bright dust layer is very thin in this location, perhaps as little as a few millimeters. The Story Mars is an ever-changing land of spectacular contrasts. This THEMIS image shows the Cerberus region of Mars, a dark area located near the Elysium volcanoes and fittingly named after the three-headed, dragon-tailed dog who guards the door of the underworld. Two opposing processes are at work here: a thin layer of dust falling from the atmosphere and/or dust storms creating brighter surface areas (e.g. the top left portion of this image) and dust being scoured away by the action of the Martian wind disturbing the sand grains and freeing the lighter dust to fly away once more (the darker portions of this image). There are, however, some darker areas that are somewhat shielded and protected from the wind that have yielded bright, dusty crater floors and wind streaks that trail out behind the craters. These wind streaks tell a story all their own as to the prevailing wind direction coming from the northeast. This, added to the fact that this dark region was once 1000 km in length and has dwindled to just a few isolated dark splotches of 100 kilometers in the past 20 years, help us to see that the Martian environment is still quite dynamic and capable of changing. Finally, this being a volcanic region, a lobe of a lava flow from the immense Elysium volcanoes to the northwest is visible stretching across the bottom one-quarter of the image.

  11. A unified account of gloss and lightness perception in terms of gamut relativity.

    PubMed

    Vladusich, Tony

    2013-08-01

    A recently introduced computational theory of visual surface representation, termed gamut relativity, overturns the classical assumption that brightness, lightness, and transparency constitute perceptual dimensions corresponding to the physical dimensions of luminance, diffuse reflectance, and transmittance, respectively. Here I extend the theory to show how surface gloss and lightness can be understood in a unified manner in terms of the vector computation of "layered representations" of surface and illumination properties, rather than as perceptual dimensions corresponding to diffuse and specular reflectance, respectively. The theory simulates the effects of image histogram skewness on surface gloss/lightness and lightness constancy as a function of specular highlight intensity. More generally, gamut relativity clarifies, unifies, and generalizes a wide body of previous theoretical and experimental work aimed at understanding how the visual system parses the retinal image into layered representations of surface and illumination properties.

  12. Surface Temperature Measurements from a Stator Vane Doublet in a Turbine Engine Afterburner Flame using Ultra-Bright Cr-Doped GdAlO3 Thermographic Phosphor

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Jenkins, Thomas P.; Allison, Stephen W.; Wolfe, Douglas E.; Howard, Robert P.

    2013-01-01

    Luminescence-based surface temperature measurements from an ultra-bright Cr-doped GdAlO3 perovskite (GAP:Cr) coating were successfully conducted on an air-film-cooled stator vane doublet exposed to the afterburner flame of a J85 test engine at University of Tennessee Space Institute (UTSI). The objective of the testing at UTSI was to demonstrate that reliable thermal barrier coating (TBC) surface temperatures based on luminescence decay of a thermographic phosphor could be obtained from the surface of an actual engine component in an aggressive afterburner flame environment and to address the challenges of a highly radiant background and high velocity gases. A high-pressure turbine vane doublet from a Honeywell TECH7000 turbine engine was coated with a standard electron-beam physical vapor deposited (EB-PVD) 200-m-thick TBC composed of yttria-stabilized zirconia (YSZ) onto which a 25-m-thick GAP:Cr thermographic phosphor layer was deposited by EB-PVD. The ultra-bright broadband luminescence from the GAP:Cr thermographic phosphor is shown to offer the advantage of over an order-of-magnitude greater emission intensity compared to rare-earth-doped phosphors in the engine test environment. This higher emission intensity was shown to be very desirable for overcoming the necessarily restricted probe light collection solid angle and for achieving high signal-to-background levels. Luminescence-decay-based surface temperature measurements varied from 500 to over 1000C depending on engine operating conditions and level of air film cooling.

  13. The Dragonfly Nearby Galaxies Survey. II. Ultra-Diffuse Galaxies near the Elliptical Galaxy NGC 5485

    NASA Astrophysics Data System (ADS)

    Merritt, Allison; van Dokkum, Pieter; Danieli, Shany; Abraham, Roberto; Zhang, Jielai; Karachentsev, I. D.; Makarova, L. N.

    2016-12-01

    We present the unexpected discovery of four ultra-diffuse galaxies (UDGs) in a group environment. We recently identified seven extremely low surface brightness galaxies in the vicinity of the spiral galaxy M101, using data from the Dragonfly Telephoto Array. The galaxies have effective radii of 10″-38″ and central surface brightnesses of 25.6-27.7 mag arcsec-2 in the g-band. We subsequently obtained follow-up observations with HST to constrain the distances to these galaxies. Four remain persistently unresolved even with the spatial resolution of HST/ACS, which implies distances of D\\gt 17.5 Mpc. We show that the galaxies are most likely associated with a background group at ˜27 Mpc containing the massive ellipticals NGC 5485 and NGC 5473. At this distance, the galaxies have sizes of 2.6-4.9 kpc, and are classified as UDGs, similar to the populations that have been revealed in clusters such as Coma, Virgo, and Fornax, yet even more diffuse. The discovery of four UDGs in a galaxy group demonstrates that the UDG phenomenon is not exclusive to cluster environments. Furthermore, their morphologies seem less regular than those of the cluster populations, which may suggest a different formation mechanism or be indicative of a threshold in surface density below which UDGs are unable to maintain stability.

  14. Viscous relaxation as a prerequisite for tectonic resurfacing on Ganymede: Insights from numerical models of lithospheric extension

    USGS Publications Warehouse

    Bland, Michael T.; McKinnon, William B.

    2018-01-01

    Ganymede’s bright terrain formed during a near-global resurfacing event (or events) that produced both heavily tectonized and relatively smooth terrains. The mechanism(s) by which resurfacing occurred on Ganymede (e.g., cryovolcanic or tectonic), and the relationship between the older, dark and the younger, bright terrain are fundamental to understanding the geological evolution of the satellite. Using a two-dimensional numerical model of lithospheric extension that has previously been used to successfully simulate surface deformation consistent with grooved terrain morphologies, we investigate whether large-amplitude preexisting topography can be resurfaced (erased) by extension (i.e., tectonic resurfacing). Using synthetically produced initial topography, we show that when the total relief of the initial topography is larger than 25–50 m, periodic groove-like structures fail to form. Instead, extension is localized in a few individual, isolated troughs. These results pose a challenge to the tectonic resurfacing hypothesis. We further investigate the effects of preexisting topography by performing suites of simulations initialized with topography derived from digital terrain models of Ganymede’s surface. These include dark terrain, fresh (relatively deep) impact craters, smooth bright terrain, and a viscously relaxed impact crater. The simulations using dark terrain and fresh impact craters are consistent with our simulations using synthetic topography: periodic groove-like deformation fails to form. In contrast, when simulations were initialized with bright smooth terrain topography, groove-like deformation results from a wide variety of heat flow and surface temperature conditions. Similarly, when a viscously relaxed impact crater was used, groove-like structures were able to form during extension. These results suggest that tectonic resurfacing may require that the amplitude of the initial topography be reduced before extension begins. We emphasize that viscous relaxation may be the key to enabling tectonic resurfacing, as the heat fluxes associated with groove terrain formation are also capable of reducing crater topography through viscous relaxation. For long-wavelength topography (large craters) viscous relaxation is unavoidable. We propose that the resurfacing of Ganymede occurred through a combination of viscous relaxation, tectonic resurfacing, cryovolcanism and, at least in a few cases, band formation. Variations in heat flow and strain magnitudes across Ganymede likely produced the complex variety of terrain types currently observed.

  15. Viscous relaxation as a prerequisite for tectonic resurfacing on Ganymede: Insights from numerical models of lithospheric extension

    NASA Astrophysics Data System (ADS)

    Bland, Michael T.; McKinnon, William B.

    2018-05-01

    Ganymede's bright terrain formed during a near-global resurfacing event (or events) that produced both heavily tectonized and relatively smooth terrains. The mechanism(s) by which resurfacing occurred on Ganymede (e.g., cryovolcanic or tectonic), and the relationship between the older, dark and the younger, bright terrain are fundamental to understanding the geological evolution of the satellite. Using a two-dimensional numerical model of lithospheric extension that has previously been used to successfully simulate surface deformation consistent with grooved terrain morphologies, we investigate whether large-amplitude preexisting topography can be resurfaced (erased) by extension (i.e., tectonic resurfacing). Using synthetically produced initial topography, we show that when the total relief of the initial topography is larger than 25-50 m, periodic groove-like structures fail to form. Instead, extension is localized in a few individual, isolated troughs. These results pose a challenge to the tectonic resurfacing hypothesis. We further investigate the effects of preexisting topography by performing suites of simulations initialized with topography derived from digital terrain models of Ganymede's surface. These include dark terrain, fresh (relatively deep) impact craters, smooth bright terrain, and a viscously relaxed impact crater. The simulations using dark terrain and fresh impact craters are consistent with our simulations using synthetic topography: periodic groove-like deformation fails to form. In contrast, when simulations were initialized with bright smooth terrain topography, groove-like deformation results from a wide variety of heat flow and surface temperature conditions. Similarly, when a viscously relaxed impact crater was used, groove-like structures were able to form during extension. These results suggest that tectonic resurfacing may require that the amplitude of the initial topography be reduced before extension begins. We emphasize that viscous relaxation may be the key to enabling tectonic resurfacing, as the heat fluxes associated with groove terrain formation are also capable of reducing crater topography through viscous relaxation. For long-wavelength topography (large craters) viscous relaxation is unavoidable. We propose that the resurfacing of Ganymede occurred through a combination of viscous relaxation, tectonic resurfacing, cryovolcanism and, at least in a few cases, band formation. Variations in heat flow and strain magnitudes across Ganymede likely produced the complex variety of terrain types currently observed.

  16. Assembly of Functional Porous Solids in Complex Hybrid Composites

    DTIC Science & Technology

    2004-03-19

    synthesis … 30 7.1.2 Grafting … 34 7.2 Surface functionalization of 3DOM oxide supports with polyelectrolytes and nanoparticles of another oxide … 34...incorporating hydrothermally prepared rutile/anatase nanoparticles (᝿ nm) within the walls of 3DOM silica, varying the titania content from ca. 0.5-20 wt... nanoparticles showing the bright colors that can be obtained and varied through synthesis parameters. 5.7 Effects of 3DOM particle sizes on optical

  17. Shape-from-shading using Landsat 8 and airborne laser altimetry over ice sheets: toward new regional DEMs of Greenland and Antarctica

    NASA Astrophysics Data System (ADS)

    Moussavi, M. S.; Scambos, T.; Haran, T. M.; Klinger, M. J.; Abdalati, W.

    2015-12-01

    We investigate the capability of Landsat 8's Operational Land Imager (OLI) instrument to quantify subtle ice sheet topography of Greenland and Antarctica. We use photoclinometry, or 'shape-from-shading', a method of deriving surface topography from local variations in image brightness due to varying surface slope. Photoclinomeetry is applicable over ice sheet areas with highly uniform albedo such as regions covered by recent snowfall. OLI imagery is available from both ascending and descending passes near the summer solstice period for both ice sheets. This provides two views of the surface features from two distinct solar azimuth illumination directions. Airborne laser altimetry data from the Airborne Topographic Mapper (ATM) instrument (flying on the Operation Ice Bridge program) are used to quantitatively convert the image brightness variations of surface undulations to surface slope. To validate the new DEM products, we use additional laser altimetry profiles collected over independent sites from Ice Bridge and ICESat, and high-resolution WorldView-2 DEMs. The photoclinometry-derived DEM products will be useful for studying surface elevation changes, enhancing bedrock elevation maps through inversion of surface topography, and inferring local variations in snow accumulation rates.

  18. The local metallicity-surface brightness relationship in galactic disks

    NASA Technical Reports Server (NTRS)

    Ryder, Stuart D.

    1995-01-01

    We present the results of a first attempt to employ multiaperture masks to obtain spectrophotometry of H II regions in nearby galaxies. A total of 97 H II regions in six southern spiral galaxies were observed using a combination of multiaperture masks and conventional long-slit spectrophotometry. The oxygen abundances derived from the multiaperture mask observations using the empirical abundance diagnostic R(sub 23) are shown to be consistent with those from long-slit spectra and generally show better reproducibility and object definition. Although the number of objects that can be observed simultaneously with this particular system is still quite limited compared with either imaging spectrophotometry or fiber-fed spectrographs, the spectral resolution offered and high throughput in the blue help make multiaperture spectrophotometry a competitive technique for increasing the sampling of H II regions in both radial distance and luminosity. There is still no clear trend of abundance gradient with either the galaxy's luminosity or its Hubble type, although the extrapolated central abundance does appear to correlate with galaxy luminosity/mass. In order to avoid difficulty in choosing an appropriate normalizing radius, we instead plot the oxygen abundance against the underlying I-band surface brightness at the radial distance of the H II region and confirm the existence of a local metallicity-surface brightness reltaionship within the disks of spiral galaxies. Although the simple closed-boc model of galaxy evolution predicts almost the right form of this relationship, a more realistic multizone model employing expnentially decreasing gas infall provides a more satisfactory fit to the observational data, provided the expected enriched gas return from dying low-mass stars shedding their envelopes at late epochs is properly taken into account. This same model, with a star formation law based upon self-regulating star formation in a three-dimensional disk (Dopita & Ryder 1994), is equally capable of accounting for the observed relationship between recent massive star formation and stellar surface brightness (Ryder & Dopita 1994).

  19. Two- and 4-hour bright-light exposures differentially effect sleepiness and performance the subsequent night.

    PubMed

    Thessing, V C; Anch, A M; Muehlbach, M J; Schweitzer, P K; Walsh, J K

    1994-03-01

    The effect of two durations of bright light upon sleepiness and performance during typical night shift hours was assessed. Thirty normal, healthy young adults participated in a 2-night protocol. On the 1st night subjects were exposed to bright or dim light beginning at 2400 hours, under one of the following three conditions: bright light for 4 hours, dim light for 2 hours followed by bright light for 2 hours or dim light for 4 hours. Following light exposure, subjects remained awake until 0800 hours in a dimly lit room and slept in the laboratory between 0800 and 1600 hours, during which time sleep was estimated with actigraphy. Throughout the 2nd night, the multiple sleep latency test (MSLT), simulated assembly line task (SALT) performance, and subjective sleepiness were recorded. The single, 4-hour exposure to bright light was found to significantly increase MSLT scores and improve SALT performance during the early morning hours on the night following bright-light exposure. No significant effects were noted with a 2-hour exposure. The most likely explanation for these findings is a phase delay in the circadian rhythm of sleepiness-alertness.

  20. Recombination Line versus Forbidden Line Abundances in Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Robertson-Tessi, Mark; Garnett, Donald R.

    2005-04-01

    Recombination lines (RLs) of C II, N II, and O II in planetary nebulae (PNs) have been found to give abundances that are much larger in some cases than abundances from collisionally excited forbidden lines (CELs). The origins of this abundance discrepancy are highly debated. We present new spectroscopic observations of O II and C II recombination lines for six planetary nebulae. With these data we compare the abundances derived from the optical recombination lines with those determined from collisionally excited lines. Combining our new data with published results on RLs in other PNs, we examine the discrepancy in abundances derived from RLs and CELs. We find that there is a wide range in the measured abundance discrepancy Δ(O+2)=logO+2(RL)-logO+2(CEL), ranging from approximately 0.1 dex (within the 1 σ measurement errors) up to 1.4 dex. This tends to rule out errors in the recombination coefficients as a source of the discrepancy. Most RLs yield similar abundances, with the notable exception of O II multiplet V15, known to arise primarily from dielectronic recombination, which gives abundances averaging 0.6 dex higher than other O II RLs. We compare Δ(O+2) against a variety of physical properties of the PNs to look for clues as to the mechanism responsible for the abundance discrepancy. The strongest correlations are found with the nebula diameter and the Balmer surface brightness; high surface brightness, compact PNs show small values of Δ(O+2), while large low surface brightness PNs show the largest discrepancies. An inverse correlation of Δ(O+2) with nebular density is also seen. A marginal correlation of Δ(O+2) is found with expansion velocity. No correlations are seen with electron temperature, He+2/He+, central star effective temperature and luminosity, stellar mass-loss rate, or nebular morphology. Similar results are found for carbon in comparing C II RL abundances with ultraviolet measurements of C III].

  1. Prospects for Near Ultraviolet Astronomical Observations from the Lunar Surface — LUCI

    NASA Astrophysics Data System (ADS)

    Mathew, J.; Kumar, B.; Sarpotdar, M.; Suresh, A.; Nirmal, K.; Sreejith, A. G.; Safonova, M.; Murthy, J.; Brosch, N.

    2018-04-01

    We have explored the prospects for UV observations from the lunar surface and developed a UV telescope (LUCI-Lunar Ultraviolet Cosmic Imager) to put on the Moon, with the aim to detect bright UV transients such as SNe, novae, TDE, etc.

  2. Atmospheric effects on SMMR and SSM/I 37 GHz polarization difference over the Sahel

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Major, E. R.; Smith, E. A.; Becker, F.

    1992-01-01

    The atmospheric effects on the difference of vertically and horizontally polarized brightness temperatures, Delta(T) observed at 37 GHz frequency of the SMMR on board the Nimbus-7 satellite and SSM/I on board the DMSP-F8 satellite are studied over two 2.5 by 2.5 deg regions within the Sahel and Sudan zones of Africa from January 1985 to December 1986 through radiative transfer analysis using surface temperature, atmospheric water vapor, and cloud optical thickness. It is found that atmospheric effects alone cannot explain the observed temporal variation of Delta(T), although the atmosphere introduces important modulations on the observed seasonal variations of Delta(T) due to rather significant seasonal variation of precipitable water vapor. These Delta(T) data should be corrected for atmospheric effects before any quantitative analysis of land surface change over the Sahel and Sudan zones.

  3. The effectiveness of strong afterglow phosphor powder in the detection of fingermarks.

    PubMed

    Liu, Li; Zhang, Zhongliang; Zhang, Limei; Zhai, Yuchun

    2009-01-10

    There are numerous types of fluorescent fingermark powders or reagents used with the visualization of latent fingermarks deposited on multicolored substrate surfaces that can present a contrast problem if developed with regular fingermark powders. The developed fingermarks can show bright fluorescence upon exposure to laser, ultraviolet light and other light sources. These kinds of methods share a common concern, where surfaces and other substrates may fluoresce also. To overcome this concern, we have developed a phosphor powder which offers a strong afterglow effect which aid in the establishment of better fingermark detection. With the advent of a phosphor powder no special devices are required and the results obtained from fresh or a few days aged latent fingermarks left on: non-porous; semi-porous and also on some porous surfaces have been good. The strong afterglow effect offered by phosphor powder is also applicable for cyanoacrylate fumed fingermarks. Lift off and photography procedures of the developed fingermarks are incorporated in this paper.

  4. Roter Kamm Impact Crater in Namibia

    NASA Image and Video Library

    1996-11-13

    This space radar image shows the Roter Kamm impact crater in southwest Namibia. The crater rim is seen in the lower center of the image as a radar-bright, circular feature. Geologists believe the crater was formed by a meteorite that collided with Earth approximately 5 million years ago. The data were acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) instrument onboard space shuttle Endeavour on April 14, 1994. The area is located at 27.8 degrees south latitude and 16.2 degrees east longitude in southern Africa. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); and blue represents the C-band (horizontally transmitted and vertically received). The area shown is approximately 25.5 kilometers (15.8 miles) by 36.4 kilometers (22.5 miles), with north toward the lower right. The bright white irregular feature in the lower left corner is a small hill of exposed rock outcrop. Roter Kamm is a moderate sized impact crater, 2.5 kilometers (1.5 miles) in diameter rim to rim, and is 130 meters (400 feet) deep. However, its original floor is covered by sand deposits at least 100 meters (300 feet) thick. In a conventional aerial photograph, the brightly colored surfaces immediately surrounding the crater cannot be seen because they are covered by sand. The faint blue surfaces adjacent to the rim may indicate the presence of a layer of rocks ejected from the crater during the impact. The darkest areas are thick windblown sand deposits which form dunes and sand sheets. The sand surface is smooth relative to the surrounding granite and limestone rock outcrops and appears dark in radar image. The green tones are related primarily to larger vegetation growing on sand soil, and the reddish tones are associated with thinly mantled limestone outcrops. Studies of impact craters on the surface of the Earth help geologists understand the role of the impact process in the Earth's evolution, including effects on the atmosphere and on biological evolution. http://photojournal.jpl.nasa.gov/catalog/PIA00503

  5. LARGER PLANET RADII INFERRED FROM STELLAR ''FLICKER'' BRIGHTNESS VARIATIONS OF BRIGHT PLANET-HOST STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bastien, Fabienne A.; Stassun, Keivan G.; Pepper, Joshua

    2014-06-10

    Most extrasolar planets have been detected by their influence on their parent star, typically either gravitationally (the Doppler method) or by the small dip in brightness as the planet blocks a portion of the star (the transit method). Therefore, the accuracy with which we know the masses and radii of extrasolar planets depends directly on how well we know those of the stars, the latter usually determined from the measured stellar surface gravity, log g. Recent work has demonstrated that the short-timescale brightness variations ({sup f}licker{sup )} of stars can be used to measure log g to a high accuracymore » of ∼0.1-0.2 dex. Here, we use flicker measurements of 289 bright (Kepmag < 13) candidate planet-hosting stars with T {sub eff} = 4500-6650 K to re-assess the stellar parameters and determine the resulting impact on derived planet properties. This re-assessment reveals that for the brightest planet-host stars, Malmquist bias contaminates the stellar sample with evolved stars: nearly 50% of the bright planet-host stars are subgiants. As a result, the stellar radii, and hence the radii of the planets orbiting these stars, are on average 20%-30% larger than previous measurements had suggested.« less

  6. Thermal inertia mapping of Mars from 60°S to 60°N

    USGS Publications Warehouse

    Palluconi, Frank Don; Kieffer, Hugh H.

    1981-01-01

    Twenty-micrometer brightness temperatures are used to derive the thermal inertia for 81% of the Martian surface between latitudes ±60°. These data were acquired by the two Viking Infrared Thermal Mappers in 1977 and 1978 following the two global dust storms of 1977. The spatial resolution used is 2° in latitude by 2° in longitude and the total range in derived inertia is . The distribution of thermal inertia is strongly bimodal with all values of thermal inertia less than  being associated with three disjoint bright regions mostly in the northern hemisphere. Sufficient dust is raised in global storms to provide fine material adequate to produce these low-inertia areas but the specific deposition mechanism has not been defined. At the low resolution used, no complete exposures of clean rock were found. There is some tendency for darker material to be associated with higher thermal inertia, although the trend is far from one to one. The distribution of high- and low-inertia areas is sufficiently nonrandom to produce a variation in whole-disk brightness temperature with central meridian longitude. This variation and the change in surface kinetic temperature associated with dust storms are factors in establishing the whole-disk brightness temperature at radio and infrared wavelengths and will be important for those who use Mars as a calibration source.

  7. Morphology and Dynamics of Jets of Comet 67P Churyumov-Gerasimenko: Early Phase Development

    NASA Astrophysics Data System (ADS)

    Lin, Zhong-Yi; Ip, Wing-Huen; Lai, Ian-Lin; Lee, Jui-Chi; Pajola, Maurizio; Lara, Luisa; Gutierrez, Pedro; Rodrigo, Rafael; Bodewits, Dennis; A'Hearn, Mike; Vincent, Jean-Baptiste; Agarwal, Jessica; Keller, Uwe; Mottola, Stefano; Bertini, Ivano; Lowry, Stephen; Rozek, Agata; Liao, Ying; Rosetta Osiris Coi Team

    2015-04-01

    The scientific camera, OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System), onboard the Rosetta spacecraft comprises a Narrow Angle Camera (NAC) for nucleus surface and dust studies and a Wide Angle Camera (WAC) for the wide field of dust and gas coma investigations. The dynamical behavior of jets in the dust coma continuously monitored by using dust filters from the arrival at the comet (August 2014) throughout the mapping phase (Oct. 2014) is described here. The analysis will cover the study of the time variability of jets, the source regions of these jets, the excess brightness of jets relative to the averaged coma brightness, and the brightness distribution of dust jets along the projected distance. The jets detected between August and September originated mostly from the neck region (Hapi). Morphological changes appeared over a time scale of several days in September. The brightness slope of the dust jets is much steeper than the background coma. This might be related to the sublimation or fragmentation of the emitted dust grains. Inter-comparison with results from other experiments will be necessary to understand the difference between the dust emitted from Hapi and those from the head and the body of the nucleus surface. The physical properties of the Hapi jets will be compared to dust jets (and their source regions) to emerge as comet 67P moves around the perihelion.

  8. Using Simplistic Shape/Surface Models to Predict Brightness in Estimation Filters

    NASA Astrophysics Data System (ADS)

    Wetterer, C.; Sheppard, D.; Hunt, B.

    The prerequisite for using brightness (radiometric flux intensity) measurements in an estimation filter is to have a measurement function that accurately predicts a space objects brightness for variations in the parameters of interest. These parameters include changes in attitude and articulations of particular components (e.g. solar panel east-west offsets to direct sun-tracking). Typically, shape models and bidirectional reflectance distribution functions are combined to provide this forward light curve modeling capability. To achieve precise orbit predictions with the inclusion of shape/surface dependent forces such as radiation pressure, relatively complex and sophisticated modeling is required. Unfortunately, increasing the complexity of the models makes it difficult to estimate all those parameters simultaneously because changes in light curve features can now be explained by variations in a number of different properties. The classic example of this is the connection between the albedo and the area of a surface. If, however, the desire is to extract information about a single and specific parameter or feature from the light curve, a simple shape/surface model could be used. This paper details an example of this where a complex model is used to create simulated light curves, and then a simple model is used in an estimation filter to extract out a particular feature of interest. In order for this to be successful, however, the simple model must be first constructed using training data where the feature of interest is known or at least known to be constant.

  9. Two-Dimensional Synthetic Aperture Radiometry over Land Surface During Soil Moisture Experiment in 2003 (SMEX03)

    NASA Technical Reports Server (NTRS)

    Ryu, Dongryeol; Jackson, Thomas J.; Bindlish, Rajat; Le Vine, David M.; Haken, Michael

    2007-01-01

    Microwave radiometry at low frequencies (L-band, approx. 1.4 GHz) has been known as an optimal solution for remote sensing of soil moisture. However, the antenna size required to achieve an appropriate resolution from space has limited the development of spaceborne L-band radiometers. This problem can be addressed by interferometric technology called aperture synthesis. The Soil Moisture and Ocean Salinity (SMOS) mission will apply this technique to monitor global-scale surface parameters in the near future. The first airborne experiment using an aircraft prototype of this approach, the Two-Dimensional Synthetic Aperture Radiometer (2D-STAR), was performed in the Soil Moisture Experiment in 2003 (SMEX03). The L-band brightness temperature data acquired in Alabama by the 2DSTAR was compared with ground-based measurements of soil moisture and with C-band data collected by the Polarimetric Scanning Radiometer (PSR). Our results demonstrate a good response of the 2D-STAR brightness temperature to changes in surface wetness, both in agricultural and forest lands. The behavior of the horizontally polarized brightness temperature data with increasing view-angle over the forest area was noticeably different than over bare soil. The results from the comparison of 2D-STAR and PSR indicate a better response of the 2D-STAR to the surface wetness under both wet and dry conditions. Our results have important implications for the performance of the future SMOS mission.

  10. Fusion of Terra-MODIS and Landsat TM data for geothermal sites investigation in Jiangsu Province, China

    NASA Astrophysics Data System (ADS)

    Chen, Shengbo

    2006-01-01

    Geothermal resources are generally confined to areas of the Earth's crust where heat flow higher than in surrounding areas heats the water contained in permeable rocks (reservoirs) at depth. It is becoming one of attractive solutions for clean and sustainable energy future for the world. The geothermal fields commonly occurs at the boundaries of plates, and only occasionally in the middle of a plate. The study area, Jiangsu Province, as an example, located in the east of China, is a potential area of geothermal energy. In this study, Landsat thematic Mapper (TM) data were georeferenced to position spatially the geothermal energy in the study area. Multi-spectral infrared data of Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra platform were georeferenced to Landsat TM images. Based on the Wien Displacement Law, these infrared data indicate the surface emitted radiance under the same atmospheric condition, and stand for surface bright temperature respectively. Thus, different surface bright temperature data from Terra-MODIS band 20 or band 31 (R), together with Landsat TM band 4 (G) and band 3 (B) separately, were made up false color composite images (RGB) to generate the distribution maps of surface bright temperatures. Combing with geologic environment and geophysical anomalies, the potential area of geothermal energy with different geo-temperature were mapped respectively. Specially, one geothermal spot in Qinhu Lake Scenery Area in Taizhou city was validated by drilling, and its groundwater temperature is up to some 51°.

  11. Size Dependence of Dust Distribution around the Earth Orbit

    NASA Astrophysics Data System (ADS)

    Ueda, Takahiro; Kobayashi, Hiroshi; Takeuchi, Taku; Ishihara, Daisuke; Kondo, Toru; Kaneda, Hidehiro

    2017-05-01

    In the solar system, interplanetary dust particles (IDPs) originating mainly from asteroid collisions and cometary activities drift to Earth orbit due to Poynting-Robertson drag. We analyzed the thermal emission from IDPs that was observed by the first Japanese infrared astronomical satellite, AKARI. The observed surface brightness in the trailing direction of the Earth orbit is 3.7% greater than that in the leading direction in the 9 μm band and 3.0% in the 18 μm band. In order to reveal dust properties causing leading-trailing surface brightness asymmetry, we numerically integrated orbits of the Sun, the Earth, and a dust particle as a restricted three-body problem including radiation from the Sun. The initial orbits of particles are determined according to the orbits of main-belt asteroids or Jupiter-family comets. Orbital trapping in mean motion resonances results in a significant leading-trailing asymmetry so that intermediate sized dust (˜10-100 μm) produces a greater asymmetry than zodiacal light. The leading-trailing surface brightness difference integrated over the size distribution of the asteroidal dust is obtained to be 27.7% and 25.3% in the 9 μm and 18 μm bands, respectively. In contrast, the brightness difference for cometary dust is calculated as 3.6% and 3.1% in the 9 μm and 18 μm bands, respectively, if the maximum dust radius is set to be s max = 3000 μm. Taking into account these values and their errors, we conclude that the contribution of asteroidal dust to the zodiacal infrared emission is less than ˜10%, while cometary dust of the order of 1 mm mainly accounts for the zodiacal light in infrared.

  12. BRITE-Constellation high-precision time-dependent photometry of the early O-type supergiant ζ Puppis unveils the photospheric drivers of its small- and large-scale wind structures

    NASA Astrophysics Data System (ADS)

    Ramiaramanantsoa, Tahina; Moffat, Anthony F. J.; Harmon, Robert; Ignace, Richard; St-Louis, Nicole; Vanbeveren, Dany; Shenar, Tomer; Pablo, Herbert; Richardson, Noel D.; Howarth, Ian D.; Stevens, Ian R.; Piaulet, Caroline; St-Jean, Lucas; Eversberg, Thomas; Pigulski, Andrzej; Popowicz, Adam; Kuschnig, Rainer; Zocłońska, Elżbieta; Buysschaert, Bram; Handler, Gerald; Weiss, Werner W.; Wade, Gregg A.; Rucinski, Slavek M.; Zwintz, Konstanze; Luckas, Paul; Heathcote, Bernard; Cacella, Paulo; Powles, Jonathan; Locke, Malcolm; Bohlsen, Terry; Chené, André-Nicolas; Miszalski, Brent; Waldron, Wayne L.; Kotze, Marissa M.; Kotze, Enrico J.; Böhm, Torsten

    2018-02-01

    From 5.5 months of dual-band optical photometric monitoring at the 1 mmag level, BRITE-Constellation has revealed two simultaneous types of variability in the O4I(n)fp star ζ Puppis: one single periodic non-sinusoidal component superimposed on a stochastic component. The monoperiodic component is the 1.78-d signal previously detected by Coriolis/Solar Mass Ejection Imager, but this time along with a prominent first harmonic. The shape of this signal changes over time, a behaviour that is incompatible with stellar oscillations but consistent with rotational modulation arising from evolving bright surface inhomogeneities. By means of a constrained non-linear light-curve inversion algorithm, we mapped the locations of the bright surface spots and traced their evolution. Our simultaneous ground-based multisite spectroscopic monitoring of the star unveiled cyclical modulation of its He II λ4686 wind emission line with the 1.78-d rotation period, showing signatures of corotating interaction regions that turn out to be driven by the bright photospheric spots observed by BRITE. Traces of wind clumps are also observed in the He II λ4686 line and are correlated with the amplitudes of the stochastic component of the light variations probed by BRITE at the photosphere, suggesting that the BRITE observations additionally unveiled the photospheric drivers of wind clumps in ζ Pup and that the clumping phenomenon starts at the very base of the wind. The origins of both the bright surface inhomogeneities and the stochastic light variations remain unknown, but a subsurface convective zone might play an important role in the generation of these two types of photospheric variability.

  13. Size Dependence of Dust Distribution around the Earth Orbit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueda, Takahiro; Takeuchi, Taku; Kobayashi, Hiroshi

    In the solar system, interplanetary dust particles (IDPs) originating mainly from asteroid collisions and cometary activities drift to Earth orbit due to Poynting–Robertson drag. We analyzed the thermal emission from IDPs that was observed by the first Japanese infrared astronomical satellite, AKARI . The observed surface brightness in the trailing direction of the Earth orbit is 3.7% greater than that in the leading direction in the 9 μ m band and 3.0% in the 18 μ m band. In order to reveal dust properties causing leading–trailing surface brightness asymmetry, we numerically integrated orbits of the Sun, the Earth, and amore » dust particle as a restricted three-body problem including radiation from the Sun. The initial orbits of particles are determined according to the orbits of main-belt asteroids or Jupiter-family comets. Orbital trapping in mean motion resonances results in a significant leading–trailing asymmetry so that intermediate sized dust (∼10–100 μ m) produces a greater asymmetry than zodiacal light. The leading–trailing surface brightness difference integrated over the size distribution of the asteroidal dust is obtained to be 27.7% and 25.3% in the 9 μ m and 18 μ m bands, respectively. In contrast, the brightness difference for cometary dust is calculated as 3.6% and 3.1% in the 9 μ m and 18 μ m bands, respectively, if the maximum dust radius is set to be s {sub max} = 3000 μ m. Taking into account these values and their errors, we conclude that the contribution of asteroidal dust to the zodiacal infrared emission is less than ∼10%, while cometary dust of the order of 1 mm mainly accounts for the zodiacal light in infrared.« less

  14. Space Radar Image of Altona, Manitoba, Canada

    NASA Image and Video Library

    1999-05-01

    This is an X-band seasonal image of the Altona test site in Manitoba, Canada, about 80 kilometers (50 miles) south of Winnipeg. The image is centered at approximately 49 degrees north latitude and 97.5 degrees west longitude. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 11, 1994, during the first flight of the radar system, and on October 2, 1994, during the second flight of SIR-C/X-SAR. The image channels have the following color assignments: red represents data acquired on April 11, 1994; green represents data acquired on October 2, 1994; blue represents the ratio of the two data sets. The test site is located in the Red River Basin and is characterized by rich farmland where a variety of crops are grown, including wheat, barley, canola, corn, sunflowers and sugar beets. This SIR-C/X-SAR research site is applying radar remote sensing to study the characteristics of vegetation and soil moisture. The seasonal comparison between the April and October 1994 data show the dramatic differences between surface conditions on the two dates. At the time of the April acquisition, almost all agricultural fields were bare and soil moisture levels were high. In October, however, soils were drier and while most crops had been harvested, some standing vegetation was still present. The areas which are cyan in color are dark in April and bright in October. These represent fields of standing biomass (amount of vegetation in a specified area) and the differences in brightness within these cyan fields represent differences in vegetation type. The very bright fields in October represent standing broadleaf crops such as corn, which had not yet been harvested. Other standing vegetation which has less biomass, such as hay and grain fields, are less bright. The magenta indicates bare soil surfaces which were wetter (brighter) in April than in October. The variations in brightness of the magenta indicate differences in the degree of soil moisture change and differences in surface roughness. This seasonal composite demonstrates the sensitivity of radar to changes in agricultural surface conditions such as soil moisture, tillage, cropping and harvesting. http://photojournal.jpl.nasa.gov/catalog/PIA01742

  15. Synthesis of SrAl2O4:Eu2+ phosphors co-doped with Dy3+, Tb3+, Si4+ and optimization of co-doping amount by response surface method

    NASA Astrophysics Data System (ADS)

    Wang, Huan; Liang, Xiaoping; Liu, Kai; Zhou, Qianqian; Chen, Peng; Wang, Jun; Li, Jianxin

    2016-03-01

    Dy3+ doped SrAl2O4:Eu2+ phosphors were synthesized by high temperature solid phase method in a weak reducing atmosphere (5% H2 + 95% N2). The relationship between the crushed granularity and the phosphors brightness was studied. The effect of co-doping amount of Dy3+, Tb3+ and Si4+ on the structure and properties of SrAl2O4:Eu2+ via response surface method was investigated. Photoluminescence measurement results showed that the initial afterglow brightness of 0.002 mol% Dy3+ doped SrAl2O4:Eu2+0.002 phosphors decreased after first increased within the sintering temperature range from 1150 to 1400 °C, which created the highest value of 12,101 mcd/m2 at 1300 °C. Numerous coarse particles in the powder ought to be crushed for the practical application, however, the brightness became lower accompanied by the decrease of the granularity. The luminescence property of SrAl2O4:Eu2+ sintered at 1200 °C improved by co-doping Dy3+-Tb3+-Si4+. The results of response surface method showed that the influence extent on the luminescence property was Dy3+ > Tb3+ > Si4+. When the co-doping amount in SrAl2O4:Eu2+0.002 phosphors of Dy3+, Tb3+ and Si4+ was 0.001 mol%, 0.0005 mol% and 0.002 mol%, respectively, the initial afterglow brightness of SrAl2O4 was up to the highest value of 12,231 mcd/m2, which was in good agreement on the predicted maximum value of 12,519 mcd/m2 with the optimum co-doping amount of 0.0015 mol% Dy3+, 0.0005 mol% Tb3+ and 0.0017 mol% Si4+. The brightness of co-doped phosphors not only increased by 56.79% than that of SrAl2O4:Eu2+0.002, Dy3+0.002 sintered at 1200 °C, but also was above that of 1300 °C. The emission spectra results showed that, compared with 0.001 mol% Dy3+ doped phosphor, the emission peak of 0.001 mol% Dy3+-0.001 mol% Tb3+ co-doped phosphor generated red shift and increased by 9.3% in emission intensity; 0.001 mol% Dy3+-0.004 mol% Si4+ and 0.001 mol% Dy3+-0.001 mol% Tb3+-0.004 mol% Si4+ co-doped SrAl2O4:Eu2+0.002 emission peak created blue shift and increased by 37.2% and 47.6% in emission intensity, respectively.

  16. ALMA Discovery of Solar Umbral Brightness Enhancement at λ = 3 mm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwai, Kazumasa; Loukitcheva, Maria; Shimojo, Masumi

    We report the discovery of a brightness enhancement in the center of a large sunspot umbra at a wavelength of 3 mm using the Atacama Large Millimeter/sub-millimeter Array (ALMA). Sunspots are among the most prominent features on the solar surface, but many of their aspects are surprisingly poorly understood. We analyzed a λ = 3 mm (100 GHz) mosaic image obtained by ALMA that includes a large sunspot within the active region AR12470, on 2015 December 16. The 3 mm map has a 300″ × 300″ field of view and 4.″9 × 2.″2 spatial resolution, which is the highest spatialmore » resolution map of an entire sunspot in this frequency range. We find a gradient of 3 mm brightness from a high value in the outer penumbra to a low value in the inner penumbra/outer umbra. Within the inner umbra, there is a marked increase in 3 mm brightness temperature, which we call an umbral brightness enhancement. This enhanced emission corresponds to a temperature excess of 800 K relative to the surrounding inner penumbral region and coincides with excess brightness in the 1330 and 1400 Å slit-jaw images of the Interface Region Imaging Spectrograph ( IRIS ), adjacent to a partial lightbridge. This λ = 3 mm brightness enhancement may be an intrinsic feature of the sunspot umbra at chromospheric heights, such as a manifestation of umbral flashes, or it could be related to a coronal plume, since the brightness enhancement was coincident with the footpoint of a coronal loop observed at 171 Å.« less

  17. ALMA Discovery of Solar Umbral Brightness Enhancement at λ = 3 mm

    NASA Astrophysics Data System (ADS)

    Iwai, K.; Loukitcheva, M.; Shimojo, M.; Solanki, S. K.; White, S. M.

    2017-12-01

    We report the discovery of a brightness enhancement in the center of a large sunspot umbra at a wavelength of 3 mm using the Atacama Large Millimeter/sub-millimeter Array (ALMA). Sunspots are among the most prominent features on the solar surface, but many of their aspects are surprisingly poorly understood. We analyzed a λ = 3 mm (100 GHz) mosaic image obtained by ALMA that includes a large sunspot within the active region AR12470, on 2015 December 16. The 3 mm map has a 300''×300'' field of view and 4.9''×2.2'' spatial resolution, which is the highest spatial resolution map of an entire sunspot in this frequency range. We find a gradient of 3 mm brightness from a high value in the outer penumbra to a low value in the inner penumbra/outer umbra. Within the inner umbra, there is a marked increase in 3 mm brightness temperature, which we call an umbral brightness enhancement. This enhanced emission corresponds to a temperature excess of 800 K relative to the surrounding inner penumbral region and coincides with excess brightness in the 1330 and 1400 Å slit-jaw images of the Interface Region Imaging Spectrograph (IRIS), adjacent to a partial lightbridge. This λ = 3 mm brightness enhancement may be an intrinsic feature of the sunspot umbra at chromospheric heights, such as a manifestation of umbral flashes, or it could be related to a coronal plume, since the brightness enhancement was coincident with the footpoint of a coronal loop observed at 171 Å.

  18. ARC-1986-AC86-7018

    NASA Image and Video Library

    1986-01-25

    P-29502C Range: 1.04 million kilometers (650,000 miles) This color photo of Umbriel, the darkest of Uranus' five large moons was synthesized from frames exposed with the Voyager narrow-angle camera's violet and clear filters and has a resolution of 19 km (12 mi.). Umbriel is characterized by the darkest surface and smallest brightness variations of any of the large satellites of Uranus. As seen here, the surface is also generally gray and colorless. Nevertheless, at this resolution, considerable topographic detail is revealed, showing that Umbriel's surface is covered by impact craters. The brightest spot (shown at top near the equator at approxiamately 270 ° longitude) appears as a bright ring. Its geological significance is not yet understood. Umbriel has a diameter of about 1,200 km (750 miles) and orbits 267,000 km (166,000 mi) from Uranus' center. The satellite's name, from Alexander Pope's 'Rape of the Lock,' means 'dark angel'.

  19. Callisto False Color

    NASA Image and Video Library

    1996-09-26

    This false color picture of Callisto was taken by NASA's Voyager 2 on July 7, 1979 at a range of 1,094,666 kilometers (677,000 miles) and is centered on 11 degrees N and 171 degrees W. This rendition uses an ultraviolet image for the blue component. Because the surface displays regional contrast in UV, variations in surface materials are apparent. Notice in particular the dark blue haloes which surround bright craters in the eastern hemisphere. The surface of Callisto is the most heavily cratered of the Galilean satellites and resembles ancient heavily cratered terrains on the moon, Mercury and Mars. The bright areas are ejecta thrown out by relatively young impact craters. A large ringed structure, probably an impact basin, is shown in the upper left part of the picture. The color version of this picture was constructed by compositing black and white images taken through the ultraviolet, clear and orange filters. http://photojournal.jpl.nasa.gov/catalog/PIA00457

  20. Topographic Ceres Map With Crater Names

    NASA Image and Video Library

    2015-07-28

    This color-coded map from NASA Dawn mission shows the highs and lows of topography on the surface of dwarf planet Ceres. It is labeled with names of features approved by the International Astronomical Union. Occator, the mysterious crater containing Ceres' mysterious bright spots, is named after the Roman agriculture deity of harrowing, a method of leveling soil. They retain their bright appearance in this map, although they are color-coded in the same green elevation of the crater floor in which they sit. The color scale extends about 5 miles (7.5 kilometers) below the surface in indigo to 5 miles (7.5 kilometers) above the surface in white. The topographic map was constructed from analyzing images from Dawn's framing camera taken from varying sun and viewing angles. The map was combined with an image mosaic of Ceres and projected as an simple cylindrical projection. http://photojournal.jpl.nasa.gov/catalog/PIA19606

  1. Extraction of topographic and material contrasts on surfaces from SEM images obtained by energy filtering detection with low-energy primary electrons.

    PubMed

    Nagoshi, Masayasu; Aoyama, Tomohiro; Sato, Kaoru

    2013-01-01

    Secondary electron microscope (SEM) images have been obtained for practical materials using low primary electron energies and an in-lens type annular detector with changing negative bias voltage supplied to a grid placed in front of the detector. The kinetic-energy distribution of the detected electrons was evaluated by the gradient of the bias-energy dependence of the brightness of the images. This is divided into mainly two parts at about 500 V, high and low brightness in the low- and high-energy regions, respectively and shows difference among the surface regions having different composition and topography. The combination of the negative grid bias and the pixel-by-pixel image subtraction provides the band-pass filtered images and extracts the material and topographic information of the specimen surfaces. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. The wavelength dependence and an interpretation of the photometric parameters of Mars

    NASA Technical Reports Server (NTRS)

    Weaver, W. R.; Meador, W. E.

    1976-01-01

    The photometric function developed by Meador and Weaver has been used with photometric data from the bright desert areas of Mars to determine the wavelength dependence of the three photometric parameters of that function and to provide some predictions about the physical properties of the surface. Knowledge of the parameters permits the brightness of these areas of Mars to be determined for scattering geometry over the wavelength range of 0.45 to 0.70 micrometer. The changes in the photometric parameters with wavelength are shown to be consistent with qualitative theoretical predictions, and the predictions of surface properties are shown to be consistent with conditions that might exist in these regions of Mars. The photometric function is shown to have good potential as a diagnostic tool for the determination of surface properties, and the consistency of the behavior of the photometric parameters is shown to be good support for the validity of the photometric function.

  3. Development of Yellow Sand Image Products Using Infrared Brightness Temperature Difference Method

    NASA Astrophysics Data System (ADS)

    Ha, J.; Kim, J.; Kwak, M.; Ha, K.

    2007-12-01

    A technique for detection of airborne yellow sand dust using meteorological satellite has been developed from various bands from ultraviolet to infrared channels. Among them, Infrared (IR) channels have an advantage of detecting aerosols over high reflecting surface as well as during nighttime. There had been suggestion of using brightness temperature difference (BTD) between 11 and 12¥ìm. We have found that the technique is highly depends on surface temperature, emissivity, and zenith angle, which results in changing the threshold of BTD. In order to overcome these problems, we have constructed the background brightness temperature threshold of BTD and then aerosol index (AI) has been determined from subtracting the background threshold from BTD of our interested scene. Along with this, we utilized high temporal coverage of geostationary satellite, MTSAT, to improve the reliability of the determined AI signal. The products have been evaluated by comparing the forecasted wind field with the movement fiend of AI. The statistical score test illustrates that this newly developed algorithm produces a promising result for detecting mineral dust by reducing the errors with respect to the current BTD method.

  4. An empirical study of the nuclear explosion-induced lightning seen on IVY-MIKE

    NASA Astrophysics Data System (ADS)

    Colvin, J. D.; Mitchell, C. K.; Greig, J. R.; Murphy, D. P.; Pechacek, R. E.; Raleigh, M.

    1987-05-01

    We report the results of a unique study of the lightninglike phenomena that were seen to accompany the MIKE shot of operation IVY on October 31 1952. MIKE was a thermonuclear surface burst yielding 10.4 MT, which took place on Enewetak Atoll. During the period of approximately 10 ms after detonation, five discrete luminous channels were seen to start from the ground or sea surface at a distance of approximately 1 km from the burst point and to grow up into the clouds. We have reexamined the original photographic records of IVY-MIKE, obtaining effective brightnesses (optical powers per unit length) for the luminous channels at different altitudes as functions of time. The absolute calibration for the MIKE records was deduced by comparison with the photographic records of other events of that era, laboratory measurements of film sensitivity, and use of atmospheric transmission data taken just prior to the MIKE event. Errors in this analysis lead to an uncertainty of a factor of ˜2 in the brightnesses of the luminous channels. In the laboratory we have used laser-guided electric discharges to create long (100 cm), arclike plasma channels to simulate the observed luminous channels and to allow determination of an empirical relation between the brightness of the channel and the electric current flowing in the channel. These laboratory discharges had peak currents up to 100 kA and periods of ˜2 ms. Spectroscopic analysis showed that the luminous channels consisted primarily of normal air plasma with typical ground-level contaminants. Photographic studies showed that these long-duration discharges are unstable to the m = 1 magnetohydrodynamic (MHD) instability and become severely distorted in less than 1 ms. By direct comparison of the luminous channels seen at MIKE and the laboratory discharges, we deduce: (1) the peak current in the prominent (brightest) channel at MIKE was between 200 and 600 kA. Here the most likely value of the peak current was 250±50 kA, but potential systematic errors in the film calibration and the comparison of MIKE and laboratory data make higher currents possible. (2) The rapid decline in the brightness of the luminous channels seen at MIKE is caused by a combination of the effects of the MHD instability, which eventually leads to a broadening of the current-carrying channel, and channel cooling by turbulent convective mixing.

  5. The abundance of ultra-diffuse galaxies from groups to clusters. UDGs are relatively more common in more massive haloes

    NASA Astrophysics Data System (ADS)

    van der Burg, Remco F. J.; Hoekstra, Henk; Muzzin, Adam; Sifón, Cristóbal; Viola, Massimo; Bremer, Malcolm N.; Brough, Sarah; Driver, Simon P.; Erben, Thomas; Heymans, Catherine; Hildebrandt, Hendrik; Holwerda, Benne W.; Klaes, Dominik; Kuijken, Konrad; McGee, Sean; Nakajima, Reiko; Napolitano, Nicola; Norberg, Peder; Taylor, Edward N.; Valentijn, Edwin

    2017-11-01

    In recent years, many studies have reported substantial populations of large galaxies with low surface brightness in local galaxy clusters. Various theories that aim to explain the presence of such ultra-diffuse galaxies (UDGs) have since been proposed. A key question that will help to distinguish between models is whether UDGs have counterparts in host haloes with lower masses, and if so, what their abundance as a function of halo mass is. We here extend our previous study of UDGs in galaxy clusters to galaxy groups. We measure the abundance of UDGs in 325 spectroscopically selected groups from the Galaxy And Mass Assembly (GAMA) survey. We make use of the overlapping imaging from the ESO Kilo-Degree Survey (KiDS), from which we can identify galaxies with mean surface brightnesses within their effective radii down to 25.5 mag arcsec-2 in the r band. We are able to measure a significant overdensity of UDGs (with sizes reff ≥ 1.5 kpc) in galaxy groups down to M200 = 1012 M⊙, a regime where approximately only one in ten groups contains a UDG that we can detect. We combine measurements of the abundance of UDGs in haloes that cover three orders of magnitude in halo mass, finding that their numbers scale quite steeply with halo mass: NUDG(R < R200) ∝ M2001.11±0.07. To better interpret this, we also measure the mass-richness relation for brighter galaxies down to Mr* + 2.5 in the same GAMA groups, and find a much shallower relation of NBright(R < R200) ∝ M2000.78±0.05. This shows that compared to bright galaxies, UDGs are relatively more abundant in massive clusters than in groups. We discuss the implications, but it is still unclear whether this difference is related to a higher destruction rate of UDGs in groups or if massive haloes have a positive effect on UDG formation.

  6. Greenhouse models of the atmosphere of Titan.

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.

    1973-01-01

    The greenhouse effect is calculated for a series of Titanian atmosphere models with different proportions of methane, hydrogen, helium, and ammonia. A computer program is used in temperature-structure calculations based on radiative-convective thermal transfer considerations. A brightness temperature spectrum is derived for Titan and is compared with available observational data. It is concluded that the greenhouse effect on Titan is generated by pressure-induced transitions of methane and hydrogen. The helium-to-hydrogen ratio is found to have a maximum of about 1.5. The surface pressure is estimated to be at least 0.4 atm, with a daytime temperature of about 155 K at the surface. The presence of methane clouds in the upper troposphere is indicated. The clouds have a significant optical depth in the visible, but not in the thermal, infrared.

  7. Proposal for Research on High-Brightness Cathodes for High-Power Free-Electron Lasers (FEL)

    DTIC Science & Technology

    2013-05-09

    recent experiments involving single crystal diamond amplifier cathodes (DAC) at Brookhaven National Laboratory ( BNL ). While the emission surface of our...diamond grain in the entire structure, both surface and interior, is passivated with hydrogen. The aforementioned studies at BNL found that

  8. A spectral k-means approach to bright-field cell image segmentation.

    PubMed

    Bradbury, Laura; Wan, Justin W L

    2010-01-01

    Automatic segmentation of bright-field cell images is important to cell biologists, but difficult to complete due to the complex nature of the cells in bright-field images (poor contrast, broken halo, missing boundaries). Standard approaches such as level set segmentation and active contours work well for fluorescent images where cells appear as round shape, but become less effective when optical artifacts such as halo exist in bright-field images. In this paper, we present a robust segmentation method which combines the spectral and k-means clustering techniques to locate cells in bright-field images. This approach models an image as a matrix graph and segment different regions of the image by computing the appropriate eigenvectors of the matrix graph and using the k-means algorithm. We illustrate the effectiveness of the method by segmentation results of C2C12 (muscle) cells in bright-field images.

  9. The universal and automatic association between brightness and positivity.

    PubMed

    Specker, Eva; Leder, Helmut; Rosenberg, Raphael; Hegelmaier, Lisa Mira; Brinkmann, Hanna; Mikuni, Jan; Kawabata, Hideaki

    2018-05-01

    The present study investigates the hypothesis that brightness of colors is associated with positivity, postulating that this is an automatic and universal effect. The Implicit Association Test (IAT; Greenwald, McGhee, & Schwartz, 1998) was used in all studies. Study 1 used color patches varying on brightness, Study 2 used achromatic stimuli to eliminate the potential confounding effects of hue and saturation. Study 3 replicated Study 2 in a different cultural context (Japan vs. Austria), both studies also included a measure of explicit association. All studies confirmed the hypothesis that brightness is associated with positivity, at a significance level of p < .001 and Cohen's D varying from 0.90 to 3.99. Study 1-3 provided support for the notion that this is an automatic effect. Additionally, Study 2 and Study 3 showed that people also have an explicit association of brightness with positivity. However, as expected, our results also show that the implicit association was stronger than the explicit association. Study 3 shows clear support for the universality of our effects. In sum, our results support the idea that brightness is associated with positivity and that these associations are automatic and universal. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. The Effects of Surface Roughness on the Apparent Thermal and Optical Properties of the Moon

    NASA Astrophysics Data System (ADS)

    Rubanenko, L.; Hayne, P. O.; Paige, D. A.

    2017-12-01

    The thermal inertia and albedo of airless planetary bodies such as the Moon can be inferred by measuring the surface temperatures and solar reflectance. However, roughness below the instrument resolution can affect these measured parameters. Scattering and IR emission from warm slopes onto colder slopes change the surface cooling rate, while shadowing and directional scattering change the reflectance. The importance of these effects grows with increasing solar incidence and emission angles, and during solar eclipses during which the insolation decreases rapidly. The high-quality data gathered by the Lunar Reconnaissance Orbiter (LRO) mission during the last seven years provides us with a unique opportunity to study these effects. Previous works have either adopted a simplified roughness model composed of a single slope, or an illumination model that does not account for subsurface conduction. Our approach incorporates data with simulations conducted using a coupled thermal and illumination model. First, we model the surface temperature distribution below the instrument resolution, considering two realizations: a cratered surface and a Gaussian random surface. Then, we fit the rough surface brightness temperature distribution to that of a flat surface with effective thermal and optical properties to find they differ from the original properties by up to 20% due to the added surface roughness. In the future, this will help to better constrain the intrinsic physical properties of the surface on both the Moon and Mercury and also other airless bodies such as asteroids.

  11. Exploring the Surface Brightness Breaks and Star Formation in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Malko, Bradley Ann; Hunter, Deidre Ann

    2018-06-01

    Stellar surface brightness profiles of both spirals and dwarf irregular galaxies often show breaks in which the exponential fall-off abruptly changes slope. Most often the profile is down-bending (Type II) in the outer disk, but sometimes it is up-bending (Type III). Stellar disks extend a long ways beyond the profile breaks, but we do not understand what happens physically at the breaks. To explore this we are examining the star formation activity, as traced with FUV emission, interior to the break compared to that exterior to the break in both dwarf irregulars and spiral galaxies. We present the results for the spiral galaxy NGC 2500 and compare it to the LITTLE THINGS dwarf irregular galaxies.

  12. Printing quality control automation

    NASA Astrophysics Data System (ADS)

    Trapeznikova, O. V.

    2018-04-01

    One of the most important problems in the concept of standardizing the process of offset printing is the control the quality rating of printing and its automation. To solve the problem, a software has been developed taking into account the specifics of printing system components and the behavior in printing process. In order to characterize the distribution of ink layer on the printed substrate the so-called deviation of the ink layer thickness on the sheet from nominal surface is suggested. The geometric data construction the surface projections of the color gamut bodies allows to visualize the color reproduction gamut of printing systems in brightness ranges and specific color sectors, that provides a qualitative comparison of the system by the reproduction of individual colors in a varying ranges of brightness.

  13. The Potential of Multicolor Photometry for Pulsating Subdwarf B Stars

    NASA Astrophysics Data System (ADS)

    Randall, S. K.; Fontaine, G.; Brassard, P.; Bergeron, P.

    2005-12-01

    We investigate the potential of multicolor photometry for partial mode identification in both long- and short-period variable subdwarf B stars. The technique presented is based on the fact that the frequency dependence of an oscillation's amplitude and phase bears the signature of the mode's degree index l, among other things. Unknown contributing factors can be eliminated through the evaluation of the amplitude ratios and phase differences arising from the brightness variation in different wavebands, theoretically enabling the inference of the degree index from observations in two or more bandpasses. Employing a designated model atmosphere code, we calculate the brightness variation expected across the visible disk during a pulsation cycle in terms of temperature, radius, and surface gravity perturbations to the emergent flux for representative EC 14026 and PG 1716 star models. Nonadiabatic effects are considered in detail and found to be significant from nonadiabatic pulsation calculations applied to our state-of-the-art models of subdwarf B stars. Our results indicate that the brightness variations observed in subdwarf B stars are caused primarily by changes in temperature and radius, with surface gravity perturbations playing a small role. For PG 1716 stars, temperature effects dominate in the limit of long periods with the result that the oscillatory amplitudes and phases lose their period dependence and nonadiabatic effects become unimportant. Outside this regime, however, their values are strongly influenced by both factors. We find that the phase shifts between brightness variations in different wavebands are generally small but may lie above the experimental detection threshold in certain cases. The prospect of mode discrimination seems much more promising on the basis of the corresponding amplitude ratios. While in EC 14026 stars the amplitude ratios predicted are very similar for modes with l=0, 1, or 2, they are well separated from those of modes with l=3, l=5, and l=4 or 6, each of which form a distinct group. For the case of the PG 1716 stars it should be possible to discriminate between modes with l=1, 2, 4, or 6 and those of degree indices l=3 and l=5. Identifying modes within a given group is challenging for both types of pulsator and requires multicolor photometry of extremely high quality. Nevertheless, we demonstrate that it is feasible using the example of the largest amplitude peak detected for the fast pulsator KPD 2109+4401 by Jeffery et al. Predicted color-amplitude ratios for a series of representative EC 14026 and PG 1716 stars are available upon request. Interested collaborators please contact S. K. Randall or G. Fontaine.

  14. Bright-light effects on cognitive performance in elderly persons working simulated night shifts: psychological well-being as a mediator?

    PubMed

    Kretschmer, Veronika; Schmidt, Klaus-Helmut; Griefahn, Barbara

    2013-11-01

    The present study examined whether the relationship between light exposure and cognitive functioning is mediated by psychological well-being in elderly persons working night shifts. The role of psychological well-being has been neglected so far in the relationship between bright light and cognitive performance. Sleepiness and mood were applied as indicators of psychological well-being. Cognitive functioning was examined in terms of concentration, working memory, and divided attention. A total of thirty-two test persons worked in three consecutive simulated night shifts, 16 under bright light (3,000 lux) and 16 under room light (300 lux). Concentration, working memory, and divided attention were measured by computerised tasks. The hypothesised mediators were recorded by questionnaires. Mediation analyses were conducted for estimating direct, total, and indirect effects in simple mediation models. Results indicate that sleepiness and mood did not function as mediators in the prediction of concentration, working memory, and/or divided attention by light exposure. Sleepiness led to an underestimation of the positive bright-light effect on concentration performance. Mood showed only a random effect due to the positive bright-light effect on working memory. Sleepiness and mood could completely be excluded as mediators in the relationship between light exposure and cognitive functioning. This study underlines that psychological well-being of elderly persons is not a critical component in the treatment of bright light on cognitive performance in the night shift workplace. In summary, it becomes evident that bright light has a strong direct and independent effect on cognitive performance, particularly on working memory and concentration.

  15. Effect of bright light on EEG activities and subjective sleepiness to mental task during nocturnal sleep deprivation.

    PubMed

    Yokoi, Mari; Aoki, Ken; Shimomura, Yoshihiro; Iwanaga, Koichi; Katsuura, Tetsuo; Shiomura, Yoshihiro

    2003-11-01

    The purpose of this study was to investigate the effect of the exposure to bright light on EEG activity and subjective sleepiness at rest and at the mental task during nocturnal sleep deprivation. Eight male subjects lay awake in semi-supine in a reclining seat from 21:00 to 04:30 under the bright (BL; >2500 lux) or the dim (DL; <150 lux) light conditions. During the sleep deprivation, the mental task (Stroop color-word conflict test: CWT) was performed each 15 min in one hour. EEG, subjective sleepiness, rectal and mean skin temperatures and urinary melatonin concentrations were measured. The subjective sleepiness increased with time of sleep deprivation during both rest and CWT under the DL condition. The exposure to bright light delayed for 2 hours the increase in subjective sleepiness at rest and suppressed the increase in that during CWT. The bright light exposure also delayed the increase in the theta and alpha wave activities in EEG at rest. In contrast, the effect of the bright light exposure on the theta and alpha wave activities disappeared by CWT. Additionally, under the BL condition, the entire theta activity during CWT throughout nocturnal sleep deprivation increased significantly from that in a rest condition. Our results suggest that the exposure to bright light throughout nocturnal sleep deprivation influences the subjective sleepiness during the mental task and the EEG activity, as well as the subjective sleepiness at rest. However, the effect of the bright light exposure on the EEG activity at the mental task diminishes throughout nocturnal sleep deprivation.

  16. Properties of an H I-selected galaxy sample

    NASA Technical Reports Server (NTRS)

    Szomoru, Arpad; Guhathakurta, Puragra; Van Gorkom, Jacqueline H.; Knapen, Johan H.; Weinberg, David H.; Fruchter, Andrew S.

    1994-01-01

    We analyze the properties of a sample of galaxies identified in a 21cm, H I-line survey of selected areas in the Perseus-Pisces supercluster and its foreground void. Twelve fields were observed in the supercluster, five of them (target fields) centered on optically bright galaxies, and the other seven (blank fields) selected to contain no bright galaxies within 45 min. of their centers. We detected nine previously uncatalogued, gas-rich galaxies, six of them in the target fields. We also detected H I from seven previously catalogued galaxies in these fields. Observations in the void covered the same volume as the 12 supercluster fields at the same H I-mass sensitivity, but no objects were detected. Combining out H I data with optical broadband and H alpha imaging, we conclude that the properties of H I-selected galaxies do not differ substantially from those of late-type galaxies found in optical surveys. In particular, the galaxies in our sample do not appear to be unusually faint for their H I mass, or for their circular velocity. We find tentative evidence for a connection between optical surface brightness and degree of isolation, in the sense that low surface brightness galaxies tend to be more isolated. The previously catalogued, optically bright galaxies in our survey volume dominate the total H I mass density and cross section; the uncatalogued galaxies contribute only approximately 19 percent of the mass and approximately 12 percent of the cross section. Thus, existing estimates of the density and cross section of neutral hydrogen, most of which are based on optically selected galaxy samples, are probably accurate. Such estimates can be used to compare the nearby universe to the high-redshift universe probed by quasar absorption lines.

  17. Topography and geomorphology of the Huygens landing site on Titan

    USGS Publications Warehouse

    Soderblom, L.A.; Tomasko, M.G.; Archinal, B.A.; Becker, T.L.; Bushroe, M.W.; Cook, D.A.; Doose, L.R.; Galuszka, D.M.; Hare, T.M.; Howington-Kraus, E.; Karkoschka, E.; Kirk, R.L.; Lunine, J.I.; McFarlane, E.A.; Redding, B.L.; Rizk, B.; Rosiek, M.R.; See, C.; Smith, P.H.

    2007-01-01

    The Descent Imager/Spectral Radiometer (DISR) aboard the Huygens Probe took several hundred visible-light images with its three cameras on approach to the surface of Titan. Several sets of stereo image pairs were collected during the descent. The digital terrain models constructed from those images show rugged topography, in places approaching the angle of repose, adjacent to flatter darker plains. Brighter regions north of the landing site display two styles of drainage patterns: (1) bright highlands with rough topography and deeply incised branching dendritic drainage networks (up to fourth order) with dark-floored valleys that are suggestive of erosion by methane rainfall and (2) short, stubby low-order drainages that follow linear fault patterns forming canyon-like features suggestive of methane spring-sapping. The topographic data show that the bright highland terrains are extremely rugged; slopes of order of 30?? appear common. These systems drain into adjacent relatively flat, dark lowland terrains. A stereo model for part of the dark plains region to the east of the landing site suggests surface scour across this plain flowing from west to east leaving ???100-m-high bright ridges. Tectonic patterns are evident in (1) controlling the rectilinear, low-order, stubby drainages and (2) the "coastline" at the highland-lowland boundary with numerous straight and angular margins. In addition to flow from the highlands drainages, the lowland area shows evidence for more prolific flow parallel to the highland-lowland boundary leaving bright outliers resembling terrestrial sandbars. This implies major west to east floods across the plains where the probe landed with flow parallel to the highland-lowland boundary; the primary source of these flows is evidently not the dendritic channels in the bright highlands to the north. ?? 2007 Elsevier Ltd. All rights reserved.

  18. Modeling Self-subtraction in Angular Differential Imaging: Application to the HD 32297 Debris Disk

    NASA Astrophysics Data System (ADS)

    Esposito, Thomas M.; Fitzgerald, Michael P.; Graham, James R.; Kalas, Paul

    2014-01-01

    We present a new technique for forward-modeling self-subtraction of spatially extended emission in observations processed with angular differential imaging (ADI) algorithms. High-contrast direct imaging of circumstellar disks is limited by quasi-static speckle noise, and ADI is commonly used to suppress those speckles. However, the application of ADI can result in self-subtraction of the disk signal due to the disk's finite spatial extent. This signal attenuation varies with radial separation and biases measurements of the disk's surface brightness, thereby compromising inferences regarding the physical processes responsible for the dust distribution. To compensate for this attenuation, we forward model the disk structure and compute the form of the self-subtraction function at each separation. As a proof of concept, we apply our method to 1.6 and 2.2 μm Keck adaptive optics NIRC2 scattered-light observations of the HD 32297 debris disk reduced using a variant of the "locally optimized combination of images" algorithm. We are able to recover disk surface brightness that was otherwise lost to self-subtraction and produce simplified models of the brightness distribution as it appears with and without self-subtraction. From the latter models, we extract radial profiles for the disk's brightness, width, midplane position, and color that are unbiased by self-subtraction. Our analysis of these measurements indicates a break in the brightness profile power law at r ≈ 110 AU and a disk width that increases with separation from the star. We also verify disk curvature that displaces the midplane by up to 30 AU toward the northwest relative to a straight fiducial midplane.

  19. Reconstructed images of 4 Vesta.

    NASA Astrophysics Data System (ADS)

    Drummond, J.; Eckart, A.; Hege, E. K.

    The first glimpses of an asteroid's surface have been obtained from images of 4 Vesta reconstructed from speckle interferometric observations made with Harvard's PAPA camera coupled to Steward Observatory's 2.3 m telescope. Vesta is found to have a "normal" triaxial ellipsoid shape of 566(±15)×532(±15)×466(±15) km. Its rotational pole lies within 4° of ecliptic long. 327°, lat. = +55°. Reconstructed images obtained with the power spectra and Knox-Thompson cross-spectra reveal dark and bright patterns, reminiscent of the Moon. Three bright and three dark areas are visible, and when combined with an inferred seventh bright region not visible during the rotational phases covered during the authors' run, lead to lightcurves that match Vesta's lightcurve history.

  20. Photographer : JPL Callisto , The outermost Galilean Satellite , or Moon , of Jupiter, as taken by

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Photographer : JPL Callisto , The outermost Galilean Satellite , or Moon , of Jupiter, as taken by Voyager I . Range : About 7 Million km (5 Million miles) . Callisto, the darkest of the Galilean Satellites, still nearly twice as bright as the Earth's Moon, is seen here from the face that always faces Jupiter. All of the Galilean Satellites always show the same face to Jupiter, as the Earth's moon does to Earth. The Surface shows a mottled appearance of bright and dark patches. The former reminds scientists of rayed or bright haloed craters, similiar to those seen on earth's Moon. This color photo is assembled from 3 black and wite images taken though violet, orange, & green filters

  1. Photic effects on sustained performance

    NASA Technical Reports Server (NTRS)

    French, J.; Whitmore, J.; Hannon, P. J.; Brainard, G.; Schiflett, S.

    1992-01-01

    Research is described which evaluates manipulating environmental light intensity as a means to attenuate fatigue. A counter balanced, within-subjects design was used to compare nine male subjects exposed to dim (100 lux) and bright (3000 lux) light conditions. Oral temperature values were greater for the bright light group over the dim light condition. Melatonin levels were suppressed by bright light treatment. Also, the frequency of eye blink rate was less for subjects during bright over dim light exposure. Light exposure was without effect on subjective fatigue. However, irrespective of light condition, significant effects on confusion, fatigue, and vigor mood dimensions were found as a result of 30 hour sleep deprivation. The findings suggest that bright lights may be used to help sustain nocturnal activity otherwise susceptible to fatigue. Such findings may have implications for the lighting arrangements on space flights during the subjective night for astronauts.

  2. Resolution Enhancement of Spaceborne Radiometer Images

    NASA Technical Reports Server (NTRS)

    Krim, Hamid

    2001-01-01

    Our progress over the last year has been along several dimensions: 1. Exploration and understanding of Earth Observatory System (EOS) mission with available data from NASA. 2. Comprehensive review of state of the art techniques and uncovering of limitations to be investigated (e.g. computational, algorithmic ...). and 3. Preliminary development of resolution enhancement algorithms. With the advent of well-collaborated satellite microwave radiometers, it is now possible to obtain long time series of geophysical parameters that are important for studying the global hydrologic cycle and earth radiation budget. Over the world's ocean, these radiometers simultaneously measure profiles of air temperature and the three phases of atmospheric water (vapor, liquid, and ice). In addition, surface parameters such as the near surface wind speed, the sea surface temperature, and the sea ice type and concentration can be retrieved. The special sensor microwaves imager SSM/I has wide application in atmospheric remote sensing over the ocean and provide essential inputs to numerical weather-prediction models. SSM/I data has also been used for land and ice studies, including snow cover classification measurements of soil and plant moisture contents, atmospheric moisture over land, land surface temperature and mapping polar ice. The brightness temperature observed by SSM/I is function of the effective brightness temperature of the earth's surface and the emission scattering and attenuation of the atmosphere. Advanced Microwave Scanning Radiometer (AMSR) is a new instrument that will measure the earth radiation over the spectral range from 7 to 90 GHz. Over the world's ocean, it will be possible to retrieve the four important geographical parameters SST, wind speed, vertically integrated water vapor, vertically integrated cloud liquid water L.

  3. Impact of Conifer Forest Litter on Microwave Emission at L-Band

    NASA Technical Reports Server (NTRS)

    Kurum, Mehmet; O'Neill, Peggy E.; Lang, Roger H.; Cosh, Michael H.; Joseph, Alicia T.; Jackson, Thomas J.

    2011-01-01

    This study reports on the utilization of microwave modeling, together with ground truth, and L-band (1.4-GHz) brightness temperatures to investigate the passive microwave characteristics of a conifer forest floor. The microwave data were acquired over a natural Virginia Pine forest in Maryland by a ground-based microwave active/passive instrument system in 2008/2009. Ground measurements of the tree biophysical parameters and forest floor characteristics were obtained during the field campaign. The test site consisted of medium-sized evergreen conifers with an average height of 12 m and average diameters at breast height of 12.6 cm. The site is a typical pine forest site in that there is a surface layer of loose debris/needles and an organic transition layer above the mineral soil. In an effort to characterize and model the impact of the surface litter layer, an experiment was conducted on a day with wet soil conditions, which involved removal of the surface litter layer from one half of the test site while keeping the other half undisturbed. The observations showed detectable decrease in emissivity for both polarizations after the surface litter layer was removed. A first-order radiative transfer model of the forest stands including the multilayer nature of the forest floor in conjunction with the ground truth data are used to compute forest emission. The model calculations reproduced the major features of the experimental data over the entire duration, which included the effects of surface litter and ground moisture content on overall emission. Both theory and experimental results confirm that the litter layer increases the observed canopy brightness temperature and obscure the soil emission.

  4. The effect of bright light on sleepiness among rapid-rotating 12-hour shift workers.

    PubMed

    Sadeghniiat-Haghighi, Khosro; Yazdi, Zohreh; Jahanihashemi, Hassan; Aminian, Omid

    2011-01-01

    About 20% of workers in industrialized countries are shift workers and more than half of them work on night or rotating shifts. Most night workers complain of sleepiness due to lack of adjustment of the circadian rhythm. In simulated night-work experiments, scheduled exposure to bright light has been shown to reduce these complaints. Our study assessed the effects of bright light exposure on sleepiness during night work in an industrial setting. In a cross-over design, 94 workers at a ceramic factory were exposed to either bright (2500 lux) or normal light (300 lux) during breaks on night shifts. We initiated 20-minute breaks between 24.00 and 02.00 hours. Sleepiness ratings were determined using the Stanford Sleepiness Scale at 22.00, 24.00, 02.00 and 04.00 hours. Under normal light conditions, sleepiness peaked at 02:00 hours. A significant reduction (22% compared to normal light conditions) in sleepiness was observed after workers were exposed to bright light. Exposure to bright light may be effective in reducing sleepiness among night workers.

  5. Venus: estimates of the surface temperature and pressure from radio and radar measurements.

    PubMed

    Wood, A T; Wattson, R B; Pollack, J B

    1968-10-04

    The radio brightness temperature and radar cross section spectra of Venus are in much better accord with surface boundary conditions deduced from a combination of the Mariner V results and the radar radius than those obtained by the Venera 4 space probe. The average surface temperature and pressure are approximately 750 degrees K and 90 atmospheres.

  6. Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture Product Using In Situ Measurements

    USDA-ARS?s Scientific Manuscript database

    The Soil Moisture Active Passive (SMAP) mission Level-4 Surface and Root-Zone Soil Moisture (L4_SM) data product is generated by assimilating SMAP L-band brightness temperature observations into the NASA Catchment land surface model. The L4_SM product is available from 31 March 2015 to present (with...

  7. Springtime microwave emissivity changes in the southern Kara Sea

    NASA Technical Reports Server (NTRS)

    Crane, Robert G.; Anderson, Mark R.

    1994-01-01

    Springtime microwave brightness temperatures over first-year ice are examined for the southern Kara Sea. Snow emissivity changes are revealed by episodic drops in the 37- to 18-GHz brightness temperature gradient ratio measured by the Nimbus 7 scanning multichannel microwave radiometer. We suggest that the negative gradient ratios in spring 1982 result from increased scatter at 37 GHz due to the formation of a near-surface hoar layer. This interpretation is supported by the results of a surface radiation balance model that shows the melt signature occurring at below freezing temperatures but under clear-sky conditions with increased solar input to the surface. Published observations from the Greenland ice cap show a surface hoar layer forming under similar atmospheric conditions owing to the increased penetration and absorption of solar radiation just below the surface layer. In spring/early summer 1984 similar gradient ratio signatures occur. They appear to be due to several days of freeze-thaw cycling following the movement of a low-pressure system through the region. These changes in surface emissivity represent the transition from winter to summer conditions (as defined by the microwave response) and are shown to be regional in extent and to vary with the synoptic circulations.

  8. Atmospheric effects on radiometry from zenith of a plane with dark vertical protrusions

    NASA Technical Reports Server (NTRS)

    Otterman, J.

    1983-01-01

    Effects of an optically thin plane-parallel scattering atmosphere on radiometric imaging from the zenith of a specific surface-type are analyzed. The surface model was previously developed to describe arid steppe, where the sparse vegetation forms dark vertical protrusions from the bright soil-plane. The analysis is in terms of the surface reflectivity to the zenith r sub p for the direct beam, which is formulated as r sub p = r sub i exp (-s tan theta sub 0), where v sub i is the Lambert law reflectivity of the soil, the protrusions parameters s is the projection on a vertical plane of protrusions per unit area and theta sub 0 is the zenith angle. The surface reflectivity r sub p is approximately equal to that for the global irradiance (which is directly measured in the field) only for a narrow range of the solar zenith angles. The effects of the atmosphere when imaging large uniform areas of this type are comparable to those in imaging a Lambert surface with a reflectivity r sub p. Thus, the effects can be approximated by those in the case of a dark Lambert surface (analyzed previously), inasmuch as r sub p is smaller than the soil reflectivity r sub i for any off-zenith illumination. The surface becomes effectively darker with increasing solar zenith angle. Adjacency effects of a reflection from one area and scattering in the instantaneous field of view (object pixel) are analyzed as cross radiance and cross irradiance.

  9. Oil Slicks, Gulf of Aden

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In this view of the Gulf of Aden, and the coast of north Yemen (13.5N, 48.0E) the sunglint pattern clearly delineates oil on the water surface as bright streaks relative to the surrounding water. The oil is most likely the result of oil tanker ships flushing their tanks as they transit the gulf. Once formed, the oil slicks are pushed around by the combined effects of wind and currents as can be seen in the deformations of the long offshore oil streak.

  10. Galaxy populations in the Antlia cluster - III. Properties of faint early-type galaxies

    NASA Astrophysics Data System (ADS)

    Smith Castelli, Analía. V.; Cellone, Sergio A.; Faifer, Favio R.; Bassino, Lilia P.; Richtler, Tom; Romero, Gisela A.; Calderón, Juan Pablo; Caso, Juan Pablo

    2012-01-01

    We present a new analysis of the early-type galaxy population in the central region of the Antlia cluster, focusing on the faint systems such as dwarf ellipticals (dEs) and dwarf spheroidals (dSphs). The colour-magnitude relation (CMR) and the relation between luminosity and mean effective surface brightness for galaxies in the central region of Antlia have been previously studied in Paper I of the present series. Now we confirm 22 early-type galaxies as Antlia members, using Gemini-GMOS and Magellan-MIKE spectra. Among them, 15 are dEs from the FS90 Antlia Group catalogue, two belong to the rare type of compact ellipticals (cEs) and five are new faint dwarfs that had never been catalogued before. In addition, we present 16 newly identified low-surface-brightness galaxy candidates, almost half of them displaying morphologies consistent with being Antlia's counterparts of Local Group dSphs, which extend the faint luminosity limit of our study down to MB=-10.1(BT= 22.6) mag. With these new data, we built an improved CMR in the Washington photometric system, i.e. integrated T1 magnitudes versus (C-T1) colours, which extends ˜4 mag faintwards the limit of spectroscopically confirmed Antlia members. When only confirmed early-type members are considered, this relation extends over 10 mag in luminosity with no apparent change in slope or increase in colour dispersion towards its faint end. The intrinsic colour scatter of the relation is compared with those reported for other clusters of galaxies; we argue that it is likely that the large scatter of the CMR, usually reported at faint magnitudes, is mostly due to photometric errors along with an improper membership/morphological classification. The distinct behaviour of the luminosity versus mean effective surface brightness relation at the bright and faint ends is analysed, while it is confirmed that dE galaxies on the same relation present a very similar effective radius, regardless of their colour. The projected spatial distribution of the member sample confirms the existence of two groups in Antlia, each one dominated by a giant elliptical galaxy and with one cE located close to each giant. Size and position, with respect to massive galaxies, of the dSph candidates are estimated and compared to Local Group counterparts. Based on observations carried out at the Cerro Tololo Inter-American Observatory (Chile), at Las Campanas Observatory (Chile) and at the European Southern Observatory, Paranal (Chile). Also based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  11. Surface plasmon resonance based selective and sensitive colorimetric determination of azithromycin using unmodified silver nanoparticles in pharmaceuticals and human plasma

    NASA Astrophysics Data System (ADS)

    Chavada, Vijay D.; Bhatt, Nejal M.; Sanyal, Mallika; Shrivastav, Pranav S.

    2017-01-01

    In this article we report a novel method for colorimetric sensing and selective determination of a non-chromophoric drug-azithromycin, which lacks native absorbance in the UV-Visible region using unmodified silver nanoparticles (AgNPs). The citrate-capped AgNps dispersed in water afforded a bright yellow colour owing to the electrostatic repulsion between the particles due to the presence of negatively charged surface and showed surface plasmon resonance (SPR) band at 394 nm. Addition of positively charged azithromycin at a concentration as low as 0.2 μM induced rapid aggregation of AgNPs by neutralizing the negative charge on the particle surface. This phenomenon resulted in the colour change from bright yellow to purple which could be easily observed by the naked eye. This provided a simple platform for rapid determination of azithromycin based on colorimetric measurements. The factors affecting the colorimetric response like pH, volume of AgNPs suspension and incubation time were suitably optimized. The validated method was found to work efficiently in the established concentration range of 0.2-100.0 μM using two different calibration models. The selectivity of the method was also evaluated by analysis of nanoparticles-aggregation response upon addition of several anions, cations and some commonly prescribed antibiotics. The method was successfully applied for the analysis of azithromycin in pharmaceuticals and spiked human plasma samples with good accuracy and precision. The simplicity, efficiency and cost-effectiveness of the method hold tremendous potential for the analysis of such non-chromophoric pharmaceuticals.

  12. ARC-1979-A79-7103

    NASA Image and Video Library

    1979-07-04

    Range : 4.2 million km. ( 2.6 million miles ) Jupiter's moon Europa, the size of earth's moon, is apparently covered by water ice, as indicated by ground spectrometers and its brightness. In this view, global scale dark sreaks discovered by Voyager 1 that criss-cross the the satelite are becoming visible. Bright rayed impact craters, which are abundant on Ganymede and Callisto, would be easily visible at this range, suggesting that Europa's surface is young and that the streaks are reflections of currently active internal dynamic processes.

  13. Seasonal variation of the radial brightness contrast of Saturn's rings viewed in mid-infrared by Subaru/COMICS

    NASA Astrophysics Data System (ADS)

    Fujiwara, Hideaki; Morishima, Ryuji; Fujiyoshi, Takuya; Yamashita, Takuya

    2017-03-01

    Aims: This paper investigates the mid-infrared (MIR) characteristics of Saturn's rings. Methods: We collected and analyzed MIR high spatial resolution images of Saturn's rings obtained in January 2008 and April 2005 with the COoled Mid-Infrared Camera and Spectrometer (COMICS) mounted on the Subaru Telescope, and investigated the spatial variation in the surface brightness of the rings in multiple bands in the MIR. We also composed the spectral energy distributions (SEDs) of the C, B, and A rings and the Cassini Division, and estimated the temperatures of the rings from the SEDs assuming the optical depths. Results: We found that the C ring and the Cassini Division were warmer than the B and A rings in 2008, which could be accounted for by their lower albedos, lower optical depths, and smaller self-shadowing effect. We also fonud that the C ring and the Cassini Division were considerably brighter than the B and A rings in the MIR in 2008 and the radial contrast of the ring brightness is the inverse of that in 2005, which is interpreted as a result of a seasonal effect with changing elevations of the Sun and observer above the ring plane. The reduced images (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A29

  14. Simultaneous Assimilation of AMSR-E Brightness Temperature and MODIS LST to Improve Soil Moisture with Dual Ensemble Kalman Smoother

    NASA Astrophysics Data System (ADS)

    Huang, Chunlin; Chen, Weijin; Wang, Weizhen; Gu, Juan

    2017-04-01

    Uncertainties in model parameters can easily cause systematic differences between model states and observations from ground or satellites, which significantly affect the accuracy of soil moisture estimation in data assimilation systems. In this paper, a novel soil moisture assimilation scheme is developed to simultaneously assimilate AMSR-E brightness temperature (TB) and MODIS Land Surface Temperature (LST), which can correct model bias by simultaneously updating model states and parameters with dual ensemble Kalman filter (DEnKS). The Common Land Model (CoLM) and a Q-h Radiative Transfer Model (RTM) are adopted as model operator and observation operator, respectively. The assimilation experiment is conducted in Naqu, Tibet Plateau, from May 31 to September 27, 2011. Compared with in-situ measurements, the accuracy of soil moisture estimation is tremendously improved in terms of a variety of scales. The updated soil temperature by assimilating MODIS LST as input of RTM can reduce the differences between the simulated and observed brightness temperatures to a certain degree, which helps to improve the estimation of soil moisture and model parameters. The updated parameters show large discrepancy with the default ones and the former effectively reduces the states bias of CoLM. Results demonstrate the potential of assimilating both microwave TB and MODIS LST to improve the estimation of soil moisture and related parameters. Furthermore, this study also indicates that the developed scheme is an effective soil moisture downscaling approach for coarse-scale microwave TB.

  15. Constraining the Depth of Polar Ice Deposits and Evolution of Cold Traps on Mercury with Small Craters in Permanently Shadowed Regions

    NASA Technical Reports Server (NTRS)

    Deutsch, Ariel N.; Head, James W.; Neumann, Gregory A.; Chabot, Nancy L.

    2017-01-01

    Earth-based radar observations revealed highly reflective deposits at the poles of Mercury [e.g., 1], which collocate with permanently shadowed regions (PSRs) detected from both imagery and altimetry by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft [e.g., 2]. MESSENGER also measured higher hydrogen concentrations at the north polar region, consistent with models for these deposits to be composed primarily of water ice [3]. Enigmatic to the characterization of ice deposits on Mercury is the thickness of these radar-bright features. A current minimum bound of several meters exists from the radar measurements, which show no drop in the radar cross section between 13- and 70-cm wavelength observations [4, 5]. A maximum thickness of 300 m is based on the lack of any statistically significant difference between the height of craters that host radar-bright deposits and those that do not [6]. More recently, this upper limit on the depth of a typical ice deposit has been lowered to approximately 150 m, in a study that found a mean excess thickness of 50 +/- 35 m of radar-bright deposits for 6 craters [7]. Refining such a constraint permits the derivation of a volumetric estimate of the total polar ice on Mercury, thus providing insight into possible sources of water ice on the planet. Here, we take a different approach to constrain the thickness of water-ice deposits. Permanently shadowed surfaces have been resolved in images acquired with the broadband filter on MESSENGER's wide-angle camera (WAC) using low levels of light scattered by crater walls and other topography [8]. These surfaces are not featureless and often host small craters (less than a few km in diameter). Here we utilize the presence of these small simple craters to constrain the thickness of the radar-bright ice deposits on Mercury. Specifically, we compare estimated depths made from depth-to-diameter ratios and depths from individual Mercury Laser Altimeter (MLA) tracks to constrain the fill of material of small craters that lie within the permanently shadowed, radar bright deposits of 7 north polar craters.

  16. Cassini ISS observations of Iapetus: Results from the primary mission

    NASA Astrophysics Data System (ADS)

    Denk, Tilmann; Schmedemann, Nico; Wagner, Roland; Giese, Bernd; Perry, Jason; Helfenstein, Paul; Turtle, Elizabeth; Neukum, Gerhard; Roatsch, Thomas; Porco, Carolyn

    Cassini ISS images obtained over the past 4 years in orbit around Saturn provide new insights about the surface features, properties, processes and history of Iapetus, the outermost regular Saturnian moon. Particularly valuable are the non-targeted flyby on New-Year's Eve 2005 with a good view on the leading side, and the targeted flyby in September 2007 where especially the trailing side was seen in particularly fine detail. There are many questions about Iapetus to which imaging might contribute solutions: What is the reason for the unique global brightness dichotomy that has already been discovered in 1672 by G.D. Cassini? How is the global color dichotomy, which was detected by the Cassini spacecraft, related to the brightness dichotomy? How did the (also unique) equatorial ridge form, and what is its detailed morphology? What is the distribution of the craters and large basins on the surface, and how old is the surface? What geologic processes (besides cratering) took place on Iapetus? Why is there a very distinct patchy segregation of dark and bright material at local scales? What is the thickness of the dark blanket? Why are there no large bright craters within the dark hemisphere? What is the time scale for a fresh bright crater in the dark terrain to fade back to the darkness of the surrounding terrain? Attempts to answer these questions will be given in the presentation. Selected references: Buratti B.J. et al. (2002) Icarus 155, 375-381, doi:10.1006/icar.2001.6730. Castillo-Rogez J.C. et al. (2007) Icarus 190, 179-202, doi:10.1016/j.icarus.2007.02.018. Denk T. et al. (2006) EGU, abstract EGU06-A-08352. Denk T. et al. (2008) LPSC XXXIX, abstract #2533. Giese B. et al. (2008) Icarus 193, 359-371, doi:10.1016/j.icarus.2007.06.005. Porco C.C. et al. (2005) Science 307, 1243-1247. Schmedemann N. et al. (2008) LPSC XXXIX, abstract #2070. Spencer J.R. et al. (2005) 37th DPS, abstract 39.08.

  17. Compact radio sources in the starburst galaxy M82 and the Sigma-D relation for supernova remnants

    NASA Technical Reports Server (NTRS)

    Huang, Z. P.; Thuan, T. X.; Chevalier, R. A.; Condon, J. J.; Yin, Q. F.

    1994-01-01

    We have obtained an 8.4 GHz Very Large Array (VLA) A-array map of the starburst galaxy M82 with a resolution Full Width at Half Maximum (FWHM) approximately 0.182 sec. About 50 compact radio sources in the central region of M82 were detected with a peak surface brightness approximately greater than 10(exp -17) W/Hz/sq m/sr. Comparison with previous observations shows that most sources are declining in flux. Three previously visible sources have faded into the background of our map (approximately less than 0.2 mJy/beam), while a few sources, including the second and third brightest radio sources in M82, may have increased slightly in flux over the last decade. No new radio supernova was found. The birth rate of the compact radio sources is estimated to be 0.11 + or - 0.05/yr. We attribute the population of such bright, small supernova remnants (SNRs) in M82 to the high pressure in the central region that can truncate the mass loss during a red supergiant phase or allow dense ionized clouds to be present. The compact radio sources obey a Sigma(radio surface brightness) - D(diameter) relation which is remarkably similar to that followed by supernova remnants in the Galaxy and the Magellanic Clouds and by two of the strongest known extragalactic radio supernovae: SN 1986J and SN 1979C. A least-squares fit to the SNR data gives: Sigma(sub 8.4 GHz) (W/Hz/sq m/sr) = 4.4 x 10(exp -16) D(sub pc)(exp -3.5 +/- 0.1) covering seven orders of magnitude in Sigma. Possible selection effects are discussed and a theoretical discussion of the correlation is presented.

  18. Coal lithotypes before and after saturation with CO2; insights from micro- and mesoporosity, fluidity, and functional group distribution

    USGS Publications Warehouse

    Mastalerz, Maria; Drobniak, A.; Walker, R.; Morse, D.

    2010-01-01

    Four lithotypes, vitrain, bright clarain, clarain, and fusain, were hand-picked from the core of the Pennsylvanian Springfield Coal Member (Petersburg Formation) in Illinois. These lithotypes were analyzed petrographically and for meso- and micropore characteristics, functional group distribution using FTIR techniques, and fluidity. High-pressure CO2 adsorption isotherm analyses of these lithotypes were performed and, subsequently, all samples were reanalyzed in order to investigate the effects of CO2. After the high-pressure adsorption isotherm analysis was conducted and the samples were reanalyzed, there was a decrease in BET surface area for vitrain from 31.5m2/g in the original sample to 28.5m2/g, as determined by low-pressure nitrogen adsorption. Bright clarain and clarain recorded a minimal decrease in BET surface area, whereas for fusain there was an increase from 6.6m2/g to 7.9m2/g. Using low-pressure CO2 adsorption techniques, a small decrease in the quantity of the adsorbed CO2 is recorded for vitrain and bright clarain, no difference is observed for clarain, and there is an increase in the quantity of the adsorbed CO2 for fusain. Comparison of the FTIR spectra before and after CO2 injection for all lithotypes showed no differences with respect to functional group distribution, testifying against chemical nature of CO2 adsorption. Gieseler plastometry shows that: 1) softening temperature is higher for the post-CO2 sample (389.5??C vs. 386??C); 2) solidification temperature is lower for the post-CO2 sample (443.5??C vs. 451??C); and 3) the maximum fluidity is significantly lower for the post-CO2 sample (4 ddpm vs. 14 ddpm). ?? 2010 Elsevier B.V.

  19. Geologic Mapping of the Chaac-Camaxtli Region of Io from Galileo Imaging Data

    NASA Technical Reports Server (NTRS)

    Williams, David A.; Radebaugh, Jani; Keszthelyi, Laszlo P.; McEwen, Alfred S.; Lopes, Rosaly M. C.; Doute, Sylvain; Greekely, Ronald

    2003-01-01

    We produced a geologic/geomorphologic map of the Chaac-Camaxtli region of Io's leading anti-Jovian hemisphere using regional resolution ( 186 m/pixel) Galileo imaging data collected during orbit I27 (February 2000) integrated with lower resolution (1.4 km/pixel) color data, along with other Galileo imaging and spectral data. This is the first regional map of Io made from Galileo data. Nine color and geomorphologic units have been mapped, and the close proximity of dark and various colored bright materials suggests that there is an intimate interaction between (presumably) silicate magmas and sulfur-bearing volatile materials that produced a variety of explosive and effusive deposits in the recent geologic past. This region of Io is dominated by 11 volcanic centers, most of which are paterae that are analogous in morphology to terrestrial calderas but larger in size. Mapping of structural features indicates that most of the active regions occur in topographic lows, and less active or inactive paterae are associated with topographic highs. This indicates that crustal thickness variations influence magma access to the surface. Surface changes in this region since the Voyager flybys are relatively minor (additional bright and dark flows, color changes), although several active vents have migrated within paterae. This observation, along with the identification of the relatively regular spacing of paterae (approx. 100 - 150 km) along a line, may indicate there are multiple interlacing fractures in the crust that serve as magma conduits from the interior. This connection between volcanism and tectonism may have implications for tidal heating mechanisms and their effect on Io's lithosphere. Some inactive patera floors may be evolving into bright plains material, which, if composed of silicates, might explain the strength of Io's crust to support steep patera walls and tall mountains.

  20. Geologic Mapping of the Chaac-Camaxtli Region of Io from Galileo Imaging Data

    NASA Technical Reports Server (NTRS)

    Williams, David A.; Radebaugh, Jani; Keszthelyi, Laszlo P.; McEwen, Alfred S.; Lopes, Rosaly M. C.; Doute, Sylvain; Greeley, Ronald

    2002-01-01

    We produced a geologic/geomorphologic map of the Chaac-Camaxtli region of Io's leading anti-Jovian hemisphere using regional resolution (186 m/pixel) Galileo imaging data collected during orbit I27 (February 2000) integrated with lower resolution (1.4 km/pixel) color data, along with other Galileo imaging and spectral data. This is the first regional map of Io made from Galileo data. Nine color and geomorphologic units have been mapped, and the close proximity of dark and various colored bright materials suggests that there is an intimate interaction between (presumably) silicate magmas and sulfur-bearing volatile materials that produced a variety of explosive and effusive deposits in the recent geologic past. This region of Io is dominated by 11 volcanic centers, most of which are paterae that are analogous in morphology to terrestrial calderas but larger in size. Mapping of structural features indicates that most of the active regions occur in topographic lows, and less active or inactive paterae are associated with topographic highs. This indicates that crustal thickness variations influence magma access to the surface. Surface changes in this region since the Voyager flybys (1979) are relatively minor (additional bright and dark flows, color changes), although several active vents have migrated within paterae. This observation, along with the identification of the relatively regular spacing of paterae (approx. 100- 150 km) along a line, may indicate there are multiple interlacing fractures in the crust that serve as magma conduits from the interior. This connection between volcanism and tectonism may have implications for tidal heating mechanisms and their effect on Io's lithosphere. Some inactive patera floors may be evolving into bright plains material, which, if composed of silicates, might explain the strength of Io's crust to support steep patera walls and tall mountains.

  1. Precise on-machine extraction of the surface normal vector using an eddy current sensor array

    NASA Astrophysics Data System (ADS)

    Wang, Yongqing; Lian, Meng; Liu, Haibo; Ying, Yangwei; Sheng, Xianjun

    2016-11-01

    To satisfy the requirements of on-machine measurement of the surface normal during complex surface manufacturing, a highly robust normal vector extraction method using an Eddy current (EC) displacement sensor array is developed, the output of which is almost unaffected by surface brightness, machining coolant and environmental noise. A precise normal vector extraction model based on a triangular-distributed EC sensor array is first established. Calibration of the effects of object surface inclination and coupling interference on measurement results, and the relative position of EC sensors, is involved. A novel apparatus employing three EC sensors and a force transducer was designed, which can be easily integrated into the computer numerical control (CNC) machine tool spindle and/or robot terminal execution. Finally, to test the validity and practicability of the proposed method, typical experiments were conducted with specified testing pieces using the developed approach and system, such as an inclined plane and cylindrical and spherical surfaces.

  2. Probing Pluto's underworld: Ice temperatures from microwave radiometry decoupled from surface conditions

    NASA Astrophysics Data System (ADS)

    Leyrat, Cedric; Lorenz, Ralph D.; Le Gall, Alice

    2016-04-01

    Present models admit a wide range of 2015 surface conditions at Pluto and Charon, where the atmospheric pressure may undergo dramatic seasonal variation and for which measurements are imminent from the New Horizons mission. One anticipated observation is the microwave brightness temperature, heretofore anticipated as indicating surface conditions relevant to surface-atmosphere equilibrium. However, drawing on recent experience with Cassini observations at Iapetus and Titan, we call attention to the large electrical skin depth of outer Solar System materials such as methane, nitrogen or water ice, such that this observation may indicate temperatures averaged over depths of several or tens of meters beneath the surface. Using a seasonally-forced thermal model to determine microwave emission we predict that the southern hemisphere observations (in polar night) of New Horizons in July 2015 will suggest effective temperatures of ∼40 K, reflecting deep heat buried over the last century of summer, even if the atmospheric pressure suggests that the surface nitrogen frost point may be much lower.

  3. Optimum Image Formation for Spaceborne Microwave Radiometer Products.

    PubMed

    Long, David G; Brodzik, Mary J

    2016-05-01

    This paper considers some of the issues of radiometer brightness image formation and reconstruction for use in the NASA-sponsored Calibrated Passive Microwave Daily Equal-Area Scalable Earth Grid 2.0 Brightness Temperature Earth System Data Record project, which generates a multisensor multidecadal time series of high-resolution radiometer products designed to support climate studies. Two primary reconstruction algorithms are considered: the Backus-Gilbert approach and the radiometer form of the scatterometer image reconstruction (SIR) algorithm. These are compared with the conventional drop-in-the-bucket (DIB) gridded image formation approach. Tradeoff study results for the various algorithm options are presented to select optimum values for the grid resolution, the number of SIR iterations, and the BG gamma parameter. We find that although both approaches are effective in improving the spatial resolution of the surface brightness temperature estimates compared to DIB, SIR requires significantly less computation. The sensitivity of the reconstruction to the accuracy of the measurement spatial response function (MRF) is explored. The partial reconstruction of the methods can tolerate errors in the description of the sensor measurement response function, which simplifies the processing of historic sensor data for which the MRF is not known as well as modern sensors. Simulation tradeoff results are confirmed using actual data.

  4. Striation and convection in penumbral filaments

    NASA Astrophysics Data System (ADS)

    Spruit, H. C.; Scharmer, G. B.; Löfdahl, M. G.

    2010-10-01

    Observations with the 1-m Swedish Solar Telescope of the flows seen in penumbral filaments are presented. Time sequences of bright filaments show overturning motions strikingly similar to those seen along the walls of small isolated structures in the active regions. The filaments show outward propagating striations with inclination angles suggesting that they are aligned with the local magnetic field. We interpret it as the equivalent of the striations seen in the walls of small isolated magnetic structures. Their origin is then a corrugation of the boundary between an overturning convective flow inside the filament and the magnetic field wrapping around it. The outward propagation is a combination of a pattern motion due to the downflow observed along the sides of bright filaments, and the Evershed flow. The observed short wavelength of the striation argues against the existence of a dynamically significant horizontal field inside the bright filaments. Its intensity contrast is explained by the same physical effect that causes the dark cores of filaments, light bridges and “canals”. In this way striation represents an important clue to the physics of penumbral structure and its relation with other magnetic structures on the solar surface. We put this in perspective with results from the recent 3-D radiative hydrodynamic simulations. 4 movies are only available in electronic form at http://www.aanda.org

  5. Vela X: A plerion or part of a shell?

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    1998-03-01

    An analysis of the radio, optical, and X-ray observations of the supernova remnant (SNR) in Vela has led us to conclude that the radio source Vela X is part of the SNR shell. The high brightness of this radio source is assumed to be a result of the interaction of dome-shaped deformations (bubbles) on the SNR shell, which gives rise to bright radio filaments. The deformations could be produced by Richtmaier-Meshkov's instability, which develops during the impulsive acceleration of a shell of gas (swept up from the interstellar medium by the wind from a presupernova) by a shock wave (generated by a supernova explosion). The brightest radio filament and the X-ray jet extending along it are shown to be located in the region of interaction of two prominent bubbles on the SNR shell. We conclude that the X-ray jet, like Vela X, is part of the shell, and that it has its origin in the Mach reflection of two semispherical shock waves. Our estimate of the plasma temperature behind the front of the Mach wave matches the jet temperature. We also show that the large spread in the estimates of the spectral index for Vela X could be caused by the instrumental effect which arises during observations of extended radio sources with a nonuniform surface-brightness distribution.

  6. Numerical Simulations of Supernova Remnant Evolution in a Cloudy Interstellar Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slavin, Jonathan D.; Smith, Randall K.; Foster, Adam

    The mixed morphology class of supernova remnants has centrally peaked X-ray emission along with a shell-like morphology in radio emission. White and Long proposed that these remnants are evolving in a cloudy medium wherein the clouds are evaporated via thermal conduction once being overrun by the expanding shock. Their analytical model made detailed predictions regarding temperature, density, and emission profiles as well as shock evolution. We present numerical hydrodynamical models in 2D and 3D including thermal conduction, testing the White and Long model and presenting results for the evolution and emission from remnants evolving in a cloudy medium. We findmore » that, while certain general results of the White and Long model hold, such as the way the remnants expand and the flattening of the X-ray surface brightness distribution, in detail there are substantial differences. In particular we find that the X-ray luminosity is dominated by emission from shocked cloud gas early on, leading to a bright peak, which then declines and flattens as evaporation becomes more important. In addition, the effects of thermal conduction on the intercloud gas, which is not included in the White and Long model, are important and lead to further flattening of the X-ray brightness profile as well as lower X-ray emission temperatures.« less

  7. Posterior uncertainty of GEOS-5 L-band radiative transfer model parameters and brightness temperatures after calibration with SMOS observations

    NASA Astrophysics Data System (ADS)

    De Lannoy, G. J.; Reichle, R. H.; Vrugt, J. A.

    2012-12-01

    Simulated L-band (1.4 GHz) brightness temperatures are very sensitive to the values of the parameters in the radiative transfer model (RTM). We assess the optimum RTM parameter values and their (posterior) uncertainty in the Goddard Earth Observing System (GEOS-5) land surface model using observations of multi-angular brightness temperature over North America from the Soil Moisture Ocean Salinity (SMOS) mission. Two different parameter estimation methods are being compared: (i) a particle swarm optimization (PSO) approach, and (ii) an MCMC simulation procedure using the differential evolution adaptive Metropolis (DREAM) algorithm. Our results demonstrate that both methods provide similar "optimal" parameter values. Yet, DREAM exhibits better convergence properties, resulting in a reduced spread of the posterior ensemble. The posterior parameter distributions derived with both methods are used for predictive uncertainty estimation of brightness temperature. This presentation will highlight our model-data synthesis framework and summarize our initial findings.

  8. Sand dune ridge alignment effects on surface BRF over the Libya-4 CEOS calibration site.

    PubMed

    Govaerts, Yves M

    2015-02-03

    The Libya-4 desert area, located in the Great Sand Sea, is one of the most important bright desert CEOS pseudo-invariant calibration sites by its size and radiometric stability. This site is intensively used for radiometer drift monitoring, sensor intercalibration and as an absolute calibration reference based on simulated radiances traceable to the SI standard. The Libya-4 morphology is composed of oriented sand dunes shaped by dominant winds. The effects of sand dune spatial organization on the surface bidirectional reflectance factor is analyzed in this paper using Raytran, a 3D radiative transfer model. The topography is characterized with the 30 m resolution ASTER digital elevation model. Four different regions-of-interest sizes, ranging from 10 km up to 100 km, are analyzed. Results show that sand dunes generate more backscattering than forward scattering at the surface. The mean surface reflectance averaged over different viewing and illumination angles is pretty much independent of the size of the selected area, though the standard deviation differs. Sun azimuth position has an effect on the surface reflectance field, which is more pronounced for high Sun zenith angles. Such 3D azimuthal effects should be taken into account to decrease the simulated radiance uncertainty over Libya-4 below 3% for wavelengths larger than 600 nm.

  9. Surface evolution of two-component stone/ice bodies in the Jupiter region

    NASA Astrophysics Data System (ADS)

    Hartmann, W. K.

    1980-11-01

    Observational and theoretical data converge on the conclusion that planetesimals in Jupiter's region of the solar nebula were initially composed predominantly of a mixture of roughly 39-70% H2O ice by volume, and 30-61% dark stony material resembling carbonaceous chondrites. Recent observations emphasize a division of most asteroid and satellite surfaces in this region into two distinct groups: bright icy material and dark stony material. The present model accounts for these by two main processes: an impact-induced buildup of a dark stony regolith in the absence of surface thermal disturbance, and thermal-disturbance-induced eruption of 'water magmas' that create icy surfaces. 'Thermal disturbances' include tidal and radiative effects caused by nearness of a planet. A correlation of crater density and albedo, Ganymede's dark-ray craters, and other observed phenomena (listed in the summary) appear consistent with the model discussed here.

  10. Statics and dynamics of atomic dark-bright solitons in the presence of impurities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achilleos, V.; Frantzeskakis, D. J.; Kevrekidis, P. G.

    2011-11-15

    Adopting a mean-field description for a two-component atomic Bose-Einstein condensate, we study the statics and dynamics of dark-bright solitons in the presence of localized impurities. We use adiabatic perturbation theory to derive an equation of motion for the dark-bright soliton center. We show that, counterintuitively, an attractive (repulsive) delta-like impurity, acting solely on the bright-soliton component, induces an effective localized barrier (well) in the effective potential felt by the soliton; this way, dark-bright solitons are reflected from (transmitted through) attractive (repulsive) impurities. Our analytical results for the small-amplitude oscillations of solitons are found to be in good agreement with resultsmore » obtained via a Bogoliubov-de Gennes analysis and direct numerical simulations.« less

  11. Randomized placebo-controlled field study of the effects of bright light and melatonin in adaptation to night work.

    PubMed

    Bjorvatn, Bjørn; Stangenes, Kristine; Oyane, Nicolas; Forberg, Knut; Lowden, Arne; Holsten, Fred; Akerstedt, Torbjørn

    2007-06-01

    This study evaluated the effects of bright light and melatonin on adaptation to night work on an oil rig in the North Sea. Seventeen persons working a schedule of 2 weeks on a 12-hour shift, with the first week on night shift and the second week on day shift (ie, the swing shift schedule) participated. In a randomized controlled crossover design, the shift workers received a placebo, melatonin (3 mg, 1 hour before bedtime), or bright light (30-minute exposure, individually scheduled) during the first 4 days on the night shift and during the first 4 days on the day shift. Subjective and objective measures of sleepiness (Karolinska Sleepiness Scale and a simple serial reaction-time test) and sleep (diary and actigraphy) were recorded. Subjective measures indicated that melatonin modestly reduced sleepiness at work during the day shift and increased sleep by 15-20 minutes per day. Bright light gave values in between those of melatonin and the placebo, but with few significant results. According to the objective measures, bright light improved sleep to a minor degree during the night shift. Hardly any side-effects were reported. Melatonin and bright light modestly improved sleep and sleepiness in this field study. In well-controlled simulated nightwork studies, both melatonin and bright light are more effective in alleviating sleepiness and sleep problems. The less effect in this field study may be due to competing or conflicting factors present in real life or to an inoptimal timing and duration of the treatments.

  12. A Search for Low Surface Brightness Galaxies in the Ultraviolet with GALEX

    NASA Astrophysics Data System (ADS)

    Wyder, Ted K.; GALEX Science Team

    2006-12-01

    Low surface brightness (LSB) galaxies have traditionally been difficult to detect at visible wavelengths due to their low contrast with the night sky and their low numbers per deg2. We describe a new search for LSB galaxies using UV images from the Galaxy Evolution Explorer (GALEX) satellite. The images are from the GALEX Medium Imaging Survey targeting mainly areas of the sky within the Sloan Digital Sky Survey (SDSS) footprint. Due to the UV sky background at high Galactic latitudes reaching levels of only approximately 28 mag arcsec-2 as well as the relatively large sky coverage from GALEX, we can potentially search for LSB galaxies that would be difficult to detect optically.After first convolving the images with a suitable kernel, we select a diameter limited set of objects which we then inspect manually in order to remove image artifacts and other spurious detections. Red galaxies that have high optical surface brightness can be identified using either the ratio of far-UV to near-UV flux or via comparison to SDSS images. We quantify our selection limits using a set of artificial galaxy tests. Our goal is to find blue, ultra-LSB galaxies that would be virtually undetectable in large optical imaging surveys. GALEX is a NASA Small Explorer, launched in April 2003. We gratefully acknowledge NASA's support for construction, operation, and science analysis for the GALEX mission.

  13. Stellar Surface Brightness Profiles of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Herrmann, Kimberly A.; LITTLE THINGS Team

    2012-01-01

    Radial stellar surface brightness profiles of spiral galaxies can be classified into three types: (I) single exponential, (II) truncated: the light falls off with one exponential out to a break radius and then falls off more steeply, and (III) anti-truncated: the light falls off with one exponential out to a break radius and then falls off less steeply. Stellar surface brightness profile breaks are also found in dwarf disk galaxies, but with an additional category: (FI) flat-inside: the light is roughly constant or increasing and then falls off beyond a break. We have been re-examining the multi-wavelength stellar disk profiles of 141 dwarf galaxies, primarily from Hunter & Elmegreen (2006, 2004). Each dwarf has data in up to 11 wavelength bands: FUV and NUV from GALEX, UBVJHK and H-alpha from ground-based observations, and 3.6 and 4.5 microns from Spitzer. In this talk, I will highlight results from a semi-automatic fitting of this data set, including: (1) statistics of break locations and other properties as a function of wavelength and profile type, (2) color trends and radial mass distribution as a function of profile type, and (3) the relationship of the break radius to the kinematics and density profiles of atomic hydrogen gas in the 41 dwarfs of the LITTLE THINGS subsample. We gratefully acknowledge funding for this research from the National Science Foundation (AST-0707563).

  14. Acute Effects of Morning Light on Plasma Glucose and Triglycerides in Healthy Men and Men with Type 2 Diabetes.

    PubMed

    Versteeg, Ruth I; Stenvers, Dirk J; Visintainer, Dana; Linnenbank, Andre; Tanck, Michael W; Zwanenburg, Gooitzen; Smilde, Age K; Fliers, Eric; Kalsbeek, Andries; Serlie, Mireille J; la Fleur, Susanne E; Bisschop, Peter H

    2017-04-01

    Ambient light intensity is signaled directly to hypothalamic areas that regulate energy metabolism. Observational studies have shown associations between ambient light intensity and plasma glucose and lipid levels, but human data on the acute metabolic effects of light are scarce. Since light is the main signal indicating the onset of the diurnal phase of physical activity and food intake in humans, we hypothesized that bright light would affect glucose and lipid metabolism. Therefore, we determined the acute effects of bright light on plasma glucose and lipid concentrations in 2 randomized crossover trials: (1) in 8 healthy lean men and (2) in 8 obese men with type 2 diabetes. From 0730 h, subjects were exposed to either bright light (4000 lux) or dim light (10 lux) for 5 h. After 1 h of light exposure, subjects consumed a 600-kcal mixed meal. Primary endpoints were fasting and postprandial plasma glucose levels. In healthy men, bright light did not affect fasting or postprandial plasma glucose levels. However, bright light increased fasting and postprandial plasma triglycerides. In men with type 2 diabetes, bright light increased fasting and postprandial glucose levels. In men with type 2 diabetes, bright light did not affect fasting triglyceride levels but increased postprandial triglyceride levels. We show that ambient light intensity acutely affects human plasma glucose and triglyceride levels. Our findings warrant further research into the consequences of the metabolic effects of light for the diagnosis and prevention of hyperglycemia and dyslipidemia.

  15. Detailed mapping of surface units on Mars with HRSC color data

    NASA Astrophysics Data System (ADS)

    Combe, J.-Ph.; Wendt, L.; McCord, T. B.; Neukum, G.

    2008-09-01

    Introduction: Making use of HRSC color data Mapping outcrops of clays, sulfates and ferric oxides are basis information to derive the climatic, tectonic and volcanic evolution of Mars, especially the episodes related to the presence of liquid water. The challenge is to resolve spatially the outcrops and to distinguish these components from the globally-driven deposits like the iron oxide-rich bright red dust and the basaltic dark sands. The High Resolution Stereo Camera (HRSC) onboard Mars-Express has five color filters in the visible and near infrared that are designed for visual interpretation and mapping various surface units [1]. It provides also information on the topography at scale smaller than a pixel (roughness) thanks to the different geometry of observation for each color channel. The HRSC dataset is the only one that combines global coverage, 200 m/pixel spatial resolution or better and filtering colors of light. The present abstract is a work in progress (to be submitted to Planetary and Space Science) that shows the potential and limitations of HRSC color data as visual support and as multispectral images. Various methods are described from the most simple to more complex ones in order to demonstrate how to make use of the spectra, because of the specific steps of processing they require [2-4]. The objective is to broaden the popularity of HRSC color data, as they could be used more widely by the scientific community. Results prove that imaging spectrometry and HRSC color data complement each other for mapping outcrops types. Example regions of interest HRSC is theoretically sensitive to materials with absorption features in the visible and near-infrared up to 1 μm. Therefore, oxide-rich red dust and basalts (pyroxenes) can be mapped, as well as very bright components like water ice [5, 6]. Possible detection of other materials still has to be demonstrated. We first explore regions where unusual mineralogy appears clearly from spectral data. Hematite at Aram Chaos or Terra Meridiani [7-9] is a candidate. Bright deposits have potentially spectral signatures different to the red dust in the visible: sulfates in Juventae Chasma or Aram Chaos [9, 10] and phyllosilicates in Mawrth Vallis [11] or Nili Fossae [12] are of interest. This abstract is focused on Marwth Vallis only. HRSC spectral data: geometry and color filters The spectral data are image mosaics of five broadband spectral channels centered respectively at 440, 530, 650 and 750 nm for covering the visible range of wavelengths and 970 nm for sensitivity to the electronic absorptions of minerals present in minerals (pyroxenes, olivine). The third channel (nadir image) has a typical pixel size of 12.5 m, 25 m or 50 m. The other channels have a usual pixel size of 50 m, 100 m or 200 m that determines the spatial sampling of the spectral dataset. These data are acquired by five individual cameras oriented with a specific angle to the normal to the surface (-3°, +3°, 0° (nadir), -16° and +16° respectively). Those tilts optimize the use of a single telescope for all cameras in the available room. Thus, a given spectrum results from different proportions of shade at each wavelength. Indeed, subpixel topographic slopes that are oriented toward the instrument represent a higher proportion in the signal. This implies that shade affects the shape of HRSC spectra on a different way from pixel to pixel. This contribution has to be considered when performing spectral analysis. Level-4 color images in Digital Numbers (DNs) are registered adequately and are available to the public through the HRSCview website (http://hrscview.fu-berlin.de). A linear function converts the DNs into radiance factor (I/F). Visual interpretation Color composites Red-Green-blue (RGB) color composites of DNs images contain usable geological information. Dark basaltic sands and bright red dust appear always obvious. Materials generated from interaction of liquid water, like sulfates and phyllosilicates form generally bright outcrops with complex contour lines that allow visual discrimination, even if this bright color is similar to well-illuminated bright red dust. When the surface is spectrally diverse like Marwth Vallis, contrast enhancement may be sufficient to reveal subtle color differences that correspond to different types of materials (Fig. 1a). However, those remain faint color variations as all the bands are highly correlated. Principal Component Analysis (PCA) PCA is a tool for decorrelation and noise removal that maximizes color unit differences. On Marwth Vallis, PCA highlights the diversity of the surface on a spectacular way (Fig. 1b). Those images may be compared to the maps of mineral composition obtained by [11] from spectral analysis imaging spectrometer data. Part of the information in Fig. 1b is likely related to surface roughness because of the complex geometry of observation of the instrument. Furthermore, only an extremely clear atmosphere and low-compressed datasets allow obtaining such sharp results. Consequently, the meaning of the colors varies from image-to-image and is qualitative only. More quantitative and comparable results require spectral analysis, either to remove or to normalize atmospheric and geometric effects. Spectral analysis on HRSC data For this application the surface units to be distinguished have to possess linear independent color vectors in the five-dimensional color space of HRSC data. It has been shown by [2-5] that on the global scale, only four spectral endmembers representing red, iron oxide-rich material, dark, basaltic material, and ice plus a shade component containing effects of observation and illumination geometry, are sufficient to explain most of the colors present in HRSC color imagery. We assess this at our test areas contain a maximum of surface mineralogy diversity by applying refined methods to model (and remove) the shade contribution in order to test if a further surface component can be unambiguously detected in the HRSC color dataset. Error! Reference source not found.a shows that Spectral Mixing Analysis (SMA) performed by the Multiple-Endmember Linear Spectral Unmixing Model (MELSUM) [9] is able to separate bright red dust and bright outcrops known as hydrous materials. Root-Mean Square (RMS) model residuals mostly contain effects due to topography. Perspectives We will continue to investigate HRSC color data to map surface units and consider material diversity, atmospheric opacity, illumination and observation geometry, and calibration. Coming results will determine in which cases visual interpretation is sufficient, how spectral analysis can be performed to map surface units, and how take the advantage of imaging spectrometry. References [1] Neukum G. et al. (2004), ESA-SP 1240. [2] Combe J.-Ph. et al. (2007) 38th LPSC 2367. [3] Combe J.-Ph. et al. (2008) 39th LPSC 2381. [4] Wendt L. et al. (2008) 39th LPSC 1242. [5] McCord T. B. et al. (2007) JGR 112. [6] McCord T. B. et al. (2006) LPSC 1757. [7] Christensen P. et al. (2001), JGR 106 E10. [8] Glotch, T. D. et al. (2005), JGR, 110, E9. [9] Combe J.-Ph. et al. (2008), PSS 56. [10] Gendrin A. et al.(2005) Science 307. [11] Loizeau D. et al. (2007) JGR 112. [12] Mangold, N, et al. (2007), JGR, 112, E08S04. Acknowledgements First and third authors acknowledge NASA for contract with the Mars-Express mission. Second and Fourth authors acknowledge the German Space Agency (DLR Bonn) for their financial support of this study.

  16. Daytime exposure to bright light, as compared to dim light, decreases sleepiness and improves psychomotor vigilance performance.

    PubMed

    Phipps-Nelson, Jo; Redman, Jennifer R; Dijk, Derk-Jan; Rajaratnam, Shantha M W

    2003-09-01

    This study examined the effects of bright light exposure, as compared to dim light, on daytime subjective sleepiness, incidences of slow eye movements (SEMs), and psychomotor vigilance task (PVT) performance following 2 nights of sleep restriction. The study had a mixed factorial design with 2 independent variables: light condition (bright light, 1,000 lux; dim light, < 5 lux) and time of day. The dependent variables were subjective sleepiness, PVT performance, incidences of SEMs, and salivary melatonin levels. Sleep research laboratory at Monash University. Sixteen healthy adults (10 women and 6 men) aged 18 to 35 years (mean age 25 years, 3 months). Following 2 nights of sleep restriction (5 hours each night), participants were exposed to modified constant routine conditions. Eight participants were exposed to bright light from noon until 5:00 pm. Outside the bright light exposure period (9:00 am to noon, 5:00 pm to 9:00 pm) light levels were maintained at less than 5 lux. A second group of 8 participants served as controls for the bright light exposure and were exposed to dim light throughout the entire protocol. Bright light exposure reduced subjective sleepiness, decreased SEMs, and improved PVT performance compared to dim light. Bright lights had no effect on salivary melatonin. A significant positive correlation between PVT reaction times and subjective sleepiness was observed for both groups. Changes in SEMs did not correlate significantly with either subjective sleepiness or PVT performance. Daytime bright light exposure can reduce the impact of sleep loss on sleepiness levels and performance, as compared to dim light. These effects appear to be mediated by mechanisms that are separate from melatonin suppression. The results may assist in the development of treatments for daytime sleepiness.

  17. The Acute Effects of Intermittent Light Exposure in the Evening on Alertness and Subsequent Sleep Architecture.

    PubMed

    Yang, Minqi; Ma, Ning; Zhu, Yingying; Su, Ying-Chu; Chen, Qingwei; Hsiao, Fan-Chi; Ji, Yanran; Yang, Chien-Ming; Zhou, Guofu

    2018-03-15

    Exposure to bright light is typically intermittent in our daily life. However, the acute effects of intermittent light on alertness and sleep have seldom been explored. To investigate this issue, we employed within-subject design and compared the effects of three light conditions: intermittent bright light (30-min pulse of blue-enriched bright light (~1000 lux, ~6000 K) alternating with 30-min dim normal light (~5 lux, ~3600 K) three times); continuous bright light; and continuous dim light on subjective and objective alertness and subsequent sleep structure. Each light exposure was conducted during the three hours before bedtime. Fifteen healthy volunteers (20 ± 3.4 years; seven males) were scheduled to stay in the sleep laboratory for four separated nights (one for adaptation and the others for the light exposures) with a period of at least one week between nights. The results showed that when compared with dim light, both intermittent light and continuous bright light significantly increased subjective alertness and decreased sleep efficiency (SE) and total sleep time (TST). Intermittent light significantly increased objective alertness than dim light did during the second half of the light-exposure period. Our results suggested that intermittent light was as effective as continuous bright light in their acute effects in enhancing subjective and objective alertness and in negatively impacting subsequent sleep.

  18. Arecibo radar imagery of Mars: The major volcanic provinces

    NASA Astrophysics Data System (ADS)

    Harmon, John K.; Nolan, Michael C.; Husmann, Diana I.; Campbell, Bruce A.

    2012-08-01

    We present Earth-based radar images of Mars obtained with the upgraded Arecibo S-band (λ = 12.6 cm) radar during the 2005-2012 oppositions. The imaging was done using the same long-code delay-Doppler technique as for the earlier (pre-upgrade) imaging but at a much higher resolution (˜3 km) and, for some regions, a more favorable sub-Earth latitude. This has enabled us to make a more detailed and complete mapping of depolarized radar reflectivity (a proxy for small-scale surface roughness) over the major volcanic provinces of Tharsis, Elysium, and Amazonis. We find that vast portions of these regions are covered by radar-bright lava flows exhibiting circular polarization ratios close to unity, a characteristic that is uncommon for terrestrial lavas and that is a likely indicator of multiple scattering from extremely blocky or otherwise highly disrupted flow surfaces. All of the major volcanoes have radar-bright features on their shields, although the brightness distribution on Olympus Mons is very patchy and the summit plateau of Pavonis Mons is entirely radar-dark. The older minor shields (paterae and tholi) are largely or entirely radar-dark, which is consistent with mantling by dust or pyroclastic material. Other prominent radar-dark features include: the "fan-shaped deposits", possibly glacial, associated with the three major Tharsis Montes shields; various units of the Medusae Fossae Formation; a region south and west of Biblis Patera where "Stealth" deposits appear to obscure Tharsis flows; and a number of "dark-halo craters" with radar-absorbing ejecta blankets deposited atop surrounding bright flows. Several major bright features in Tharsis are associated with off-shield lava flows; these include the Olympus Mons basal plains, volcanic fields east and south of Pavonis Mons, the Daedalia Planum flows south of Arsia Mons, and a broad expanse of flows extending east from the Tharsis Montes to Echus Chasma. The radar-bright lava plains in Elysium are concentrated mainly in Cerberus and include the fluvio-volcanic channels of Athabasca Valles, Grjotá Valles, and Marte Valles, as well as an enigmatic region at the southern tip of the Cerberus basin. Some of the Cerberus bright features correspond to the distinctive "platy-ridged" flows identified in orbiter images. The radar-bright terrain in Amazonis Planitia comprises two distinct but contiguous sections: a northern section formed of lavas and sediments debouched from Marte Valles and a southern section whose volcanics may derive, in part, from local sources. This South Amazonis region shows perhaps the most complex radar-bright structure on Mars and includes features that correspond to platy-ridged flows similar to those in Cerberus.

  19. Dynamic interaction of CO/H 2O mixtures with gold nanocrystals: Real-time imaging and local chemical probing

    NASA Astrophysics Data System (ADS)

    Visart de Bocarmé, Thierry; Chau, Thoi-Dai; Kruse, Norbert

    2006-09-01

    The dynamic interaction of pure gold nanocrystals ("tips") with H 2O/CO gas mixtures was studied by means of video-field ion microscopy (FIM). While imaging with nano-scale resolution selected areas of the equivalent of ˜200 atomic Au sites were analysed for their chemical composition using short field pulses and injecting respective ions into a time-of-flight mass spectrometer (pulsed field desorption mass spectrometry, PFDMS). At room temperature the exposure of a clean Au sample to water gas at 10 -4 Pa, in the presence of an electric field of ˜10 V/nm, led to water adsorption and formation of bright patterns in FIM. Additional exposure to CO gas at 5 × 10 -3 Pa led to the removal of the water layer. This was associated with the occurrence of bright wave fronts which ignited simultaneously in several regions of the Au surface with no preference for a certain crystallographic surface plane. In some cases wave fronts were seen to collide resulting in more complicated patterns such as concentric rings. Surface areas free of water appeared with low brightness. The phenomena were completely reversible. PFDMS demonstrated water ions to be responsible for image formation. Surface hydroxyl was also detected mass spectrometrically and respective ion intensities decreased during the titration with CO. The results suggest that gold nanocrystals, in the absence of oxidic support materials, may be active in the reaction between water and CO at temperatures as low as 300 K and in the presence of an electric field of ˜10 V/nm.

  20. Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing

    NASA Astrophysics Data System (ADS)

    Vorontsov, Mikhail A.; Kolosov, Valeriy

    2005-01-01

    Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related to maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive-index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing coherent outgoing-wave propagation, and the equation describing evolution of the mutual correlation function (MCF) for the backscattered wave (return wave). The resulting evolution equation for the MCF is further simplified by use of the smooth-refractive-index approximation. This approximation permits derivation of the transport equation for the return-wave brightness function, analyzed here by the method of characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wave-front sensors that perform sensing of speckle-averaged characteristics of the wave-front phase (TIL sensors). Analysis of the wave-front phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric-turbulence-related phase aberrations. We also show that wave-front sensing results depend on the extended target shape, surface roughness, and outgoing-beam intensity distribution on the target surface. For targets with smooth surfaces and nonflat shapes, the target-induced phase can contain aberrations. The presence of target-induced aberrations in the conjugated phase may result in a deterioration of adaptive system performance.

  1. Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing.

    PubMed

    Vorontsov, Mikhail A; Kolosov, Valeriy

    2005-01-01

    Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related to maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive-index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing coherent outgoing-wave propagation, and the equation describing evolution of the mutual correlation function (MCF) for the backscattered wave (return wave). The resulting evolution equation for the MCF is further simplified by use of the smooth-refractive-index approximation. This approximation permits derivation of the transport equation for the return-wave brightness function, analyzed here by the method of characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wave-front sensors that perform sensing of speckle-averaged characteristics of the wave-front phase (TIL sensors). Analysis of the wave-front phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric-turbulence-related phase aberrations. We also show that wave-front sensing results depend on the extended target shape, surface roughness, and outgoing-beam intensity distribution on the target surface. For targets with smooth surfaces and nonflat shapes, the target-induced phase can contain aberrations. The presence of target-induced aberrations in the conjugated phase may result in a deterioration of adaptive system performance.

  2. Chirped bright and dark solitons of (3 + 1)-dimensional coupled nonlinear Schrödinger equations in negative-index metamaterials with both electric and magnetic nonlinearity of Kerr type

    NASA Astrophysics Data System (ADS)

    Dai, Chao-Qing; Fan, Yan; Wang, Yue-Yue; Zheng, Jun

    2018-02-01

    The (3 + 1)-dimensional generalized coupled nonlinear Schrödinger equation with electric and magnetic nonlinearities of Kerr type and self-steepening effects is studied, and bright and dark soliton solutions are derived. Based on these analytical solutions, dynamical behaviors of bright and dark solitons are discussed. The amplitudes, widths and velocities of bright and dark solitons are all constants determined by the self-steepening effect parameters SE, SH. The phase chirp of a bright soliton diminishes in the pulse front of y-direction, however, it increases in the pulse back edge of y-direction. On the contrary, the phase chirp of a dark soliton increases in the pulse front of y-direction, however, it diminishes in the pulse back edge of y-direction. The phase chirps of a bright and dark soliton both shift along positive y -axis as time goes on. Moreover, the stability of the solutions is discussed.

  3. Effects of evening bright light exposure on melatonin, body temperature and sleep.

    PubMed

    Bunnell; Treiber; Phillips; Berger

    1992-03-01

    Five male subjects were exposed to a single 2-h period of bright (2500 lux) or dim (<100 lux) light prior to sleep on two consecutive nights. The two conditions were repeated the following week in opposite order. Bright light significantly suppressed salivary melatonin and raised rectal temperature 0.3 degrees C (which remained elevated during the first 1.5 h of sleep), without affecting tympanic temperature. Bright light also increased REM latency, NREM period length, EEG spectral power in low frequency, 0.75-8 Hz and sigma, 12-14 Hz (sleep spindle) bandwidths during the first hour of sleep, and power of all frequency bands (0.5-32 Hz) within the first NREMP. Potentiation of EEG slow wave activity (0.5-4.0 Hz) by bright light persisted through the end of the second NREMP. The enhanced low-frequency power and delayed REM sleep after bright light exposure could represent a circadian phase-shift and/or the effect of an elevated rectal temperature, possibly mediated by the suppression of melatonin.

  4. Photometric Lambert Correction for Global Mosaicking of HRSC Data

    NASA Astrophysics Data System (ADS)

    Walter, Sebastian; Michael, Greg; van Gasselt, Stephan; Kneissl, Thomas

    2015-04-01

    The High Resolution Stereo Camera (HRSC) is a push-broom image sensor onboard Mars Express recording the Martian surface in 3D and color. Being in orbit since 2004, the camera has obtained over 3,600 panchromatic image sequences covering about 70% of the planet's surface at 10-20 m/pixel. The composition of an homogenous global mosaic is a major challenge due to the strong elliptical and highly irregular orbit of the spacecraft, which often results in large variations of illumination and atmospheric conditions between individual images. For the purpose of a global mosaic in the full Nadir resolution of 12.5 m per pixel we present a first-order systematic photometric correction for the individual image sequences based on a Lambertian reflection model. During the radiometric calibration of the HRSC data, values for the reflectance scaling factor and the reflectance offset are added to the individual image labels. These parameters can be used for a linear transformation from the original DN values into spectral reflectance values. The spectral reflectance varies with the solar incidence angle, topography (changing the local incidence angle and therefore adding an exta geometry factor for each ground pixel), the bi-directional reflectance distribution function (BRDF) of the surface, and atmospheric effects. Mosaicking the spectral values together as images sometimes shows large brightness differences. One major contributor to the brightness differences between two images is the differing solar geometry due to the varying time of day when the individual images were obtained. This variation causes two images of the same or adjacent areas to have different image brightnesses. As a first-order correction for the varying illumination conditions and resulting brightness variations, the images are corrected for the solar incidence angle by assuming an ideal diffusely reflecting behaviour of the surface. This correction requires the calculation of the solar geometry for each image pixel by an image-to-ground function. For the calculations we are using the VICAR framework and the SPICE library. Under the Lambertian assumption, the reflectance diminishment resulting from an inclined Sun angle can be corrected by dividing the measured reflectance by the cosine of the illumination angle. After rectification of the corrected images, the individual images are mosaicked together. The overall visual impression shows a much better integration of the individual image sequences. The correction resolves the direct correlation between the reflectance and the incidence angles from the data. It does not account for topographic, atmospheric or BRDF influences to the measurements. Since the main purpose of the global HRSC image mosaic is the application for geomorphologic studies with a good visual impression of the albedo variations and the topography, the remaining distortions at the image seams can be equalized by non-reversible image matching techniques.

  5. Large-scale clustering of Lymanα emission intensity from SDSS/BOSS

    DOE PAGES

    Croft, Rupert A. C.; Miralda-Escudé, Jordi; Zheng, Zheng; ...

    2016-01-27

    Here we present a tentative detection of the large-scale structure of Ly α emission in the Universe at redshifts z = 2–3.5 by measuring the cross-correlation of Ly α surface brightness with quasars in Sloan Digital Sky Survey/Baryon Oscillation Spectroscopic Survey. We use a million spectra targeting luminous red galaxies at z < 0.8, after subtracting a best-fitting model galaxy spectrum from each one, as an estimate of the high-redshift Ly α surface brightness. The quasar–Ly α emission cross-correlation is detected on scales 1 ~ 15h ₋1 Mpc, with shape consistent with a ΛCDM model with Ω m =0.30± 0.10more » 0.07. The predicted amplitude of this cross- correlation is proportional to the product of the mean Lyα surface brightness, {μ α}, the amplitude of mass density fluctuations, and the quasar and Lyα emission bias factors. Using published cosmological observations to constrain the amplitude of mass fluctuations and the quasar bias factor, we infer the value of the product {μ α} (b α /3) = (3.9±0.9)×10 ₋21 erg s ₋1 cm ₋2 °A ₋1 arcsec ₋2, where b α is the Lyα emission linear bias factor. If the dominant sources of Lyα emission we measure are star forming galaxies, we infer a total mean star formation rate density of ρSFR = (0.28 ± 0.07)(3/b α ) yr ₋1 Mpc ₋3 at z = 2 ₋ 3.5. For b α = 3, this value is a factor of 21 ₋ 35 above previous estimates relying on individually detected Lyα emitters, although it is consistent with the total star-formation density derived from dust-corrected, continuum UV surveys. Our observations therefore imply that 97% of the Lyα emission in the Universe at these redshifts is undetected in previous surveys of Lyα emitters. Our detected Lyα emission is also much greater, by at least an order of magnitude, than that measured from stacking analyses of faint halos surrounding previously detected Lyα emitters, but we speculate that it arises from similar low surface brightness Lyα halos surrounding all luminous star-forming galaxies. We also detect a redshift space anisotropy of the quasar-Lyα emission cross-correlation, finding evidence at the 3.0σ level that it is radially elongated, contrary to the prediction for linear gravitational evolution, but consistent with distortions caused by radiative-transfer effects, as predicted by Zheng et al. (2011). Lastly, our measurements represent the first application of the intensity mapping technique to optical observations.« less

  6. Deep g'r'i'z' GMOS Imaging of the Dwarf Irregular Galaxy Kar 50

    NASA Astrophysics Data System (ADS)

    Davidge, T. J.

    2002-11-01

    Images obtained with the Gemini Multi-Object Spectrograph (GMOS) are used to investigate the stellar content and distance of the dwarf irregular galaxy Kar 50. The brightest object is an H II region, and the bright stellar content is dominated by stars with g'-r'<0. The tips of the main sequence and the red giant branch (RGB) are tentatively identified near r'=24.9 and i'=25.5, respectively. The galaxy has a blue integrated color and no significant color gradient, and we conclude that Kar 50 has experienced a recent galaxy-wide episode of star formation. The distance estimated from the brightest blue stars indicates that Kar 50 is behind the M81 group, and this is consistent with the tentative RGB-tip brightness. Kar 50 has a remarkably flat central surface brightness profile, even at wavelengths approaching 1 μm, although there is no evidence of a bar. In the absence of another large star-forming episode, Kar 50 will evolve into a very low surface brightness galaxy. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council of Canada (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and CONICET (Argentina).

  7. IPC two-color analysis of x ray galaxy clusters

    NASA Technical Reports Server (NTRS)

    White, Raymond E., III

    1990-01-01

    The mass distributions were determined of several clusters of galaxies by using X ray surface brightness data from the Einstein Observatory Imaging Proportional Counter (IPC). Determining cluster mass distributions is important for constraining the nature of the dark matter which dominates the mass of galaxies, galaxy clusters, and the Universe. Galaxy clusters are permeated with hot gas in hydrostatic equilibrium with the gravitational potentials of the clusters. Cluster mass distributions can be determined from x ray observations of cluster gas by using the equation of hydrostatic equilibrium and knowledge of the density and temperature structure of the gas. The x ray surface brightness at some distance from the cluster is the result of the volume x ray emissivity being integrated along the line of sight in the cluster.

  8. Descartes region - Evidence for Copernican-age volcanism.

    NASA Technical Reports Server (NTRS)

    Head, J. W., III; Goetz, A. F. H.

    1972-01-01

    A model that suggests that the high-albedo central region of the Descartes Formation was formed by Copernican-age volcanism was developed from Orbiter photography, Apollo 12 multispectral photography, earth-based spectrophotometry, and thermal IR and radar data. The bright surface either is abundant in centimeter-sized rocks or is formed from an insulating debris layer overlying a surface with an abundance of rocks in the 1- to 20-cm size range. On the basis of these data, the bright unit is thought to be a young pyroclastic deposit mantling older volcanic units of the Descartes Formation. Since the Apollo 16 target point is only 50 km NW of the central part of this unit, evidence for material associated with this unique highland formation should be searched for in returned soil and rock samples.

  9. Discovery of interaction signatures in the Hickson Compact Group 88

    NASA Astrophysics Data System (ADS)

    Brosch, Noah

    2015-08-01

    I describe new observations of the Hickson Compact Group 88 (HCG88) obtained during the commissioning of a new telescope at the Wise Observatory. The observations that reach low surface brightness levels reveal a diffuse, ~20-kpc long low-surface-brightness tail emerging from the brightest component (NGC 6878) to the NW, and possibly a morphological abnormally in component B (NGC 6977). The N6878 tail could explain the asymmetry in this galaxy’s optical rotation curve. These findings show that significant interactions, including possible galactic cannibalism, have taken place in at least two galaxies of this group, contrary to previous claims that HCG88 is in a very early stage of interaction. This work emphasizes the surprisingly interesting results that can be obtained from deep imaging of interesting targets.

  10. The surface brightness of reflection nebulae. Ph.D. Thesis, Dec. 1972

    NASA Technical Reports Server (NTRS)

    Rush, W. F.

    1974-01-01

    Hubble's equation relating the maximum apparent angular extent of a reflection nebula to the apparent magnitude of the illuminating star has been reconsidered under a set of less restrictive assumptions. A computational technique is developed which permits the use of fits to observed m, log a values to determine the albedo of the particles composing reflection nebulae, providing only that one assumes a particular phase function. Despite the fact that all orders of scattering, anisotropic phase functions, and illumination by the general stellar field are considered, the albedo which is determined for reflection nebulae by this method appears larger than that for interstellar particles in general. The possibility that the higher surface brightness might be due to a continuous fluorescence mechanism is considered both theoretically and observationally.

  11. Strange doings on Io. [Jupiter radio emission modification, sodium cloud, ionized sulfur and extreme brightness

    NASA Technical Reports Server (NTRS)

    Goody, R.

    1978-01-01

    Some unusual properties of Io are discussed, and possible explanations for these are considered. The properties discussed include Io's ability to modify radio waves emitted by Jupiter in the decametric band, the satellite's ionosphere and sodium cloud, its extraordinary brightness, and the presence of ionized sulfur just inside the satellite's orbit. Io's ability to modulate Jovian decametric radio emission is explained on the basis of the hypothesis that the satellite conducts electricity and interacts with Jupiter's magnetic field. Characteristics of the sodium cloud are reviewed, and the probable mechanism responsible for this cloud is outlined. It is concluded that the only plausible explanation for the brightness of Io is the presence of cat's-eye-type reflectors, possibly composed of crystalline deposits, on the satellite's surface.

  12. Earth Observations taken by the Expedition 23 Crew

    NASA Image and Video Library

    2010-04-28

    ISS023-E-029061 (28 April 2010) --- City lights at night along the France-Italy border, Europe are featured in this image photographed by an Expedition 23 crew member on the International Space Station (ISS). The brightly lit metropolitan areas of Torino (Italy), Lyon, and Marseille (both in France) stand out amidst numerous smaller urban areas in this dramatic photograph. The image captures the night time appearance of the France-Italy border area between the mountainous Alps to the north (not shown) and the island of Corsica in the Ligurian Sea to the south (top). The full moon reflects brightly on the water surface and also illuminates the tops of low patchy clouds over the border (center). This image was taken by an ISS crew member at approximately 11:55 p.m. local time when the station was located over the France-Belgium border near Luxembourg. Crew members orbiting Earth frequently collect images that include sunglint, or sunlight that reflects off a water surface at such an angle that it travels directly back towards the observer. Sunglint typically lends a mirror-like appearance to the water surface. During clear sky conditions reflected light from the moon can produce the same effect (moon glint) as illustrated in this view. The observer was looking towards the southeast at an oblique viewing angle at the time the image was taken; in other words, looking outwards from the ISS, not straight down towards Earth.

  13. A microbeam slit system for high beam currents

    NASA Astrophysics Data System (ADS)

    Vallentin, T.; Moser, M.; Eschbaumer, S.; Greubel, C.; Haase, T.; Reichart, P.; Rösch, T.; Dollinger, G.

    2015-04-01

    A new microbeam slit system for high beam currents of 10 μA was built up to improve the brightness transport of a proton beam with a kinetic energy of up to 25 MeV into the microprobe SNAKE. The new slit system features a position accuracy of less than 1 μm under normal operating conditions and less than 2 μm if the beam is switched on and off. The thermal management with a powerful watercooling and potential-free thermocouple feedback controlled heating cables is optimized for constant slit aperture at thermal power input of up to 250 W. The transparent zone is optimized to 0.7 μm due to the use of tungsten formed to a cylindrical surface with a radius r = 100 mm and mechanically lapped surface to minimize small angle scattering effects and to minimize the number of ions passing the slits with low energy loss. Electrical isolation of the slit tip enables slit current monitoring, e.g. for tandem accelerator feedback control. With the ability to transport up to 10 μA of protons with the new microslit system, the brightness Bexp transported into the microprobe was increased by a factor of 2 compared to low current injection using the old slit system.

  14. Colloidal motion under the action of a thermophoretic force.

    PubMed

    Burelbach, Jerome; Zupkauskas, Mykolas; Lamboll, Robin; Lan, Yang; Eiser, Erika

    2017-09-07

    We present thermophoretic measurements in aqueous suspensions of three different polystyrene (PS) particles of varying negative charge, size, and surface coating. Our measurement technique is based on the observation of the colloidal steady-state distribution using conventional bright-field microscopy, which avoids undesirable effects such as laser-induced convection or local heating. We find that the colloids with the weakest zeta potential exhibit the strongest thermophoretic effect, suggesting that the Soret coefficient has a more intricate dependence on surface functionality than predicted by existing theoretical approaches. We also study the relaxation of the colloids to steady-state and propose a model to quantify the relaxation speed, based on the time evolution of the colloidal center of mass. Our observations are well described by this model and show that the relaxation speed tends to increase with the magnitude of the thermophoretic force.

  15. Colloidal motion under the action of a thermophoretic force

    NASA Astrophysics Data System (ADS)

    Burelbach, Jerome; Zupkauskas, Mykolas; Lamboll, Robin; Lan, Yang; Eiser, Erika

    2017-09-01

    We present thermophoretic measurements in aqueous suspensions of three different polystyrene (PS) particles of varying negative charge, size, and surface coating. Our measurement technique is based on the observation of the colloidal steady-state distribution using conventional bright-field microscopy, which avoids undesirable effects such as laser-induced convection or local heating. We find that the colloids with the weakest zeta potential exhibit the strongest thermophoretic effect, suggesting that the Soret coefficient has a more intricate dependence on surface functionality than predicted by existing theoretical approaches. We also study the relaxation of the colloids to steady-state and propose a model to quantify the relaxation speed, based on the time evolution of the colloidal center of mass. Our observations are well described by this model and show that the relaxation speed tends to increase with the magnitude of the thermophoretic force.

  16. Laboratory Reflectance Spectra in the Middle-infrared: Effects of Grain Size on Spectral Features

    NASA Astrophysics Data System (ADS)

    Le Bras, A.; Erard, S.; Fulchignoni, M.

    2000-10-01

    Since spectral mineral features are sensitive to surface parameters, interpretation of remote-sensing asteroids spectra in terms of mineral composition is not easy nor unique, and laboratory spectra are needed in order to understand the influence of each parameter. We developped an experimental program at IAS, using the 2.5-120 microns interferometer spectrometer, to study the influence of surface parameters on mineral features. We present here the results obtained variing the grain size. We studied grain size effects with two types of terrestrial rocks: anorthosite (bright) and basalte (dark) in the 2-40 microns range. We observed variations of the spectral contrast with grain size, shifts in wavelengths and variations of the intensity of some characteristic spectral features, and appearence of transparency features at wavelengths longer than 8 microns.

  17. KDG218, a nearby ultra-diffuse galaxy

    NASA Astrophysics Data System (ADS)

    Karachentsev, I. D.; Makarova, L. N.; Sharina, M. E.; Karachentseva, V. E.

    2017-10-01

    We present properties of the low-surface-brightness galaxy KDG218 observed with the HST/ACS. The galaxy has a half-light (effective) diameter of a e = 47″ and a central surface brightness of SB V (0) = 24.m4/□″. The galaxy remains unresolved with the HST/ACS, which implies its distance of D > 13.1 Mpc and linear effective diameter of A e > 3.0 kpc. We notice that KDG218 is most likely associated with a galaxy group around the massive lenticular NGC4958 galaxy at approximately 22 Mpc, or with the Virgo Southern Extension filament at approximately 16.5 Mpc. At these distances, the galaxy is classified as an ultra-diffuse galaxy (UDG) similar to those found in the Virgo, Fornax, and Coma clusters. We also present a sample of 15 UDG candidates in the Local Volume. These sample galaxies have the following mean parameters: 〈 D〉 = 5.1 Mpc, 〈 A e 〉 = 4.8 kpc, and 〈 SB B ( e)〉 = 27.m4/□″. All the local UDG candidates reside near massive galaxies located in the regions with the mean stellar mass density (within 1 Mpc) about 50 times greater than the average cosmic density. The local fraction of UDGs does not exceed 1.5% of the Local Volume population. We notice that the presented sample of local UDGs is a heterogeneous one containing irregular, transition, and tidal types, as well as objects consisting of an old stellar population.

  18. Microwave emission measurements of sea surface roughness, soil moisture, and sea ice structure

    NASA Technical Reports Server (NTRS)

    Gloersen, P.; Wilheit, T. T.; Schmugge, T. J.

    1972-01-01

    In order to demonstrate the feasibility of the microwave radiometers to be carried aboard the Nimbus 5 and 6 satellites and proposed for one of the earth observatory satellites, remote measurements of microwave radiation at wavelengths ranging from 0.8 to 21 cm have been made of a variety of the earth's surfaces from the NASA CV-990 A/C. Brightness temperatures of sea water surfaces of varying roughness, of terrain with varying soil moisture, and of sea ice of varying structure were observed. In each case, around truth information was available for correlation with the microwave brightness temperature. The utility of passive microwave radiometry in determining ocean surface wind speeds, at least for values higher than 7 meters/second has been demonstrated. In addition, it was shown that radiometric signatures can be used to determine soil moisture in unvegetated terrain to within five percentage points by weight. Finally, it was demonstrated that first year thick, multi-year, and first year thin sea ice can be distinguished by observing their differing microwave emissivities at various wavelengths.

  19. Non-magnetic photospheric bright points in 3D simulations of the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Calvo, F.; Steiner, O.; Freytag, B.

    2016-11-01

    Context. Small-scale bright features in the photosphere of the Sun, such as faculae or G-band bright points, appear in connection with small-scale magnetic flux concentrations. Aims: Here we report on a new class of photospheric bright points that are free of magnetic fields. So far, these are visible in numerical simulations only. We explore conditions required for their observational detection. Methods: Numerical radiation (magneto-)hydrodynamic simulations of the near-surface layers of the Sun were carried out. The magnetic field-free simulations show tiny bright points, reminiscent of magnetic bright points, only smaller. A simple toy model for these non-magnetic bright points (nMBPs) was established that serves as a base for the development of an algorithm for their automatic detection. Basic physical properties of 357 detected nMBPs were extracted and statistically evaluated. We produced synthetic intensity maps that mimic observations with various solar telescopes to obtain hints on their detectability. Results: The nMBPs of the simulations show a mean bolometric intensity contrast with respect to their intergranular surroundings of approximately 20%, a size of 60-80 km, and the isosurface of optical depth unity is at their location depressed by 80-100 km. They are caused by swirling downdrafts that provide, by means of the centripetal force, the necessary pressure gradient for the formation of a funnel of reduced mass density that reaches from the subsurface layers into the photosphere. Similar, frequently occurring funnels that do not reach into the photosphere, do not produce bright points. Conclusions: Non-magnetic bright points are the observable manifestation of vertically extending vortices (vortex tubes) in the photosphere. The resolving power of 4-m-class telescopes, such as the DKIST, is needed for an unambiguous detection of them. The movie associated to Fig. 1 is available at http://www.aanda.org

  20. The Stacked LYα Emission Profile from the Circum-Galactic Medium of z ˜ 2 Quasars

    NASA Astrophysics Data System (ADS)

    Arrigoni Battaia, Fabrizio; Hennawi, Joseph F.; Cantalupo, Sebastiano; Prochaska, J. Xavier

    2016-09-01

    In the context of the FLASHLIGHT survey, we obtained deep narrowband images of 15 z ˜ 2 quasars with the Gemini Multi-object Spectrograph on Gemini South in an effort to measure Lyα emission from circum- and intergalactic gas on scales of hundreds of kpc from the central quasar. We do not detect bright giant Lyα nebulae (SB ˜ 10-17 erg s-1 cm-2 arcsec-2 at distances >50 kpc) around any of our sources, although we routinely (≃47%) detect smaller-scale <50 kpc Lyα emission at this surface brightness level emerging from either the extended narrow emission line regions powered by the quasars or by star formation in their host galaxies. We stack our 15 deep images to study the average extended Lyα surface brightness profile around z ˜ 2 quasars, carefully PSF-subtracting the unresolved emission component and paying close attention to sources of systematic error. Our analysis, which achieves an unprecedented depth, reveals a surface brightness of SBLyα ˜ 10-19 erg s-1 cm-2 arcsec-2 at ˜200 kpc, with a 2.3σ detection of Lyα emission at SB {}{Lyα }=(5.5+/- 3.1)× {10}-20 erg s-1 cm-2 arcsec-2 within an annulus spanning 50 kpc < R < 500 kpc from the quasars. Assuming that this Lyα emission is powered by fluorescence from highly ionized gas illuminated by the bright central quasar, we deduce an average volume density of n H = 0.6 × 10-2 cm-3 on these large scales. Our results are in broad agreement with the densities suggested by cosmological hydrodynamical simulations of massive (M ≃ 1012.5 M ⊙) quasar hosts; however, they indicate that the typical quasars at these redshifts are surrounded by gas that is a factor of ˜100 times less dense than the (˜1 cm-3) gas responsible for the giant bright Lyα nebulae around quasars recently discovered by our group. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

Top