Sample records for effectively inhibited cell

  1. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts.

    PubMed

    Tsang, Chi Man; Cheung, Yuk Chun; Lui, Vivian Wai-Yan; Yip, Yim Ling; Zhang, Guitao; Lin, Victor Weitao; Cheung, Kenneth Chat-Pan; Feng, Yibin; Tsao, Sai Wah

    2013-12-31

    Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activation, has also been documented. In this study, we have examined the effects of berberine on tumorigenicity and growth of nasopharyngeal carcinoma (NPC) cells and their relationship to STAT3 signaling using both in vivo and in vitro models. Berberine effectively inhibited the tumorigenicity and growth of an EBV-positive NPC cell line (C666-1) in athymic nude mice. Inhibition of tumorigenic growth of NPC cells in vivo was correlated with effective inhibition of STAT3 activation in NPC cells inside the tumor xenografts grown in nude mice. In vitro, berberine inhibited both constitutive and IL-6-induced STAT3 activation in NPC cells. Inhibition of STAT3 activation by berberine induced growth inhibition and apoptotic response in NPC cells. Tumor-associated fibroblasts were found to secret IL-6 and the conditioned medium harvested from the fibroblasts also induced STAT3 activation in NPC cells. Furthermore, STAT3 activation by conditioned medium of tumor-associated fibroblasts could be blocked by berberine or antibodies against IL-6 and IL-6R. Our observation that berberine effectively inhibited activation of STAT3 induced by tumor-associated fibroblasts suggests a role of berberine in modulating the effects of tumor stroma on the growth of NPC cells. The effective inhibition of STAT3 activation in NPC cells by berberine supports its potential use in the treatment of NPC.

  2. Suppression of autophagy augments the radiosensitizing effects of STAT3 inhibition on human glioma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Xiaopeng; Du, Jie; Hua, Song

    Radiotherapy is an essential component of the standard therapy for newly diagnosed glioblastoma. To increase the radiosensitivity of glioma cells is a feasible solution to improve the therapeutic effects. It has been suggested that inhibition of signal transducer and activator of transcription 3 (STAT3) can radiosensitize glioma cells, probably via the activation of mitochondrial apoptotic pathway. In this study, human malignant glioma cells, U251 and A172, were treated with an STAT3 inhibitor, WP1066, or a short hairpin RNA plasmid targeting STAT3 to suppress the activation of STAT3 signaling. The radiosensitizing effects of STAT3 inhibition were confirmed in glioma cells. Intriguingly,more » combination of ionizing radiation exposure and STAT3 inhibition triggered a pronounced increase of autophagy flux. To explore the role of autophagy, glioma cells were treated with 3-methyladenine or siRNA for autophagy-related gene 5, and it was demonstrated that inhibition of autophagy further strengthened the radiosensitizing effects of STAT3 inhibition. Accordingly, more apoptotic cells were induced by the dual inhibition of autophagy and STAT3 signaling. In conclusion, our data revealed a protective role of autophagy in the radiosensitizing effects of STAT3 inhibition, and inhibition of both autophagy and STAT3 might be a potential therapeutic strategy to increase the radiosensitivity of glioma cells. - Highlights: • Inactivation of STAT3 signaling radiosensitizes malignant glioma cells. • STAT3 inhibition triggers a significant increase of autophagy flux induced by ionizing radiation in glioma cells. • Suppression of autophagy further strengthens the radiosensitizing effects of STAT3 inhibition in glioma cells. • Dual inhibition of autophagy and STAT3 induce massive apoptotic cells upon exposure to ionizing radiation.« less

  3. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts

    PubMed Central

    2013-01-01

    Background Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activation, has also been documented. Methods In this study, we have examined the effects of berberine on tumorigenicity and growth of nasopharyngeal carcinoma (NPC) cells and their relationship to STAT3 signaling using both in vivo and in vitro models. Results Berberine effectively inhibited the tumorigenicity and growth of an EBV-positive NPC cell line (C666-1) in athymic nude mice. Inhibition of tumorigenic growth of NPC cells in vivo was correlated with effective inhibition of STAT3 activation in NPC cells inside the tumor xenografts grown in nude mice. In vitro, berberine inhibited both constitutive and IL-6-induced STAT3 activation in NPC cells. Inhibition of STAT3 activation by berberine induced growth inhibition and apoptotic response in NPC cells. Tumor-associated fibroblasts were found to secret IL-6 and the conditioned medium harvested from the fibroblasts also induced STAT3 activation in NPC cells. Furthermore, STAT3 activation by conditioned medium of tumor-associated fibroblasts could be blocked by berberine or antibodies against IL-6 and IL-6R. Conclusions Our observation that berberine effectively inhibited activation of STAT3 induced by tumor-associated fibroblasts suggests a role of berberine in modulating the effects of tumor stroma on the growth of NPC cells. The effective inhibition of STAT3 activation in NPC cells by berberine supports its potential use in the treatment of NPC. PMID:24380387

  4. Combined treatment with silibinin and either sorafenib or gefitinib enhances their growth-inhibiting effects in hepatocellular carcinoma cells

    PubMed Central

    Gu, Ha Ra; Choi, Su Jin; Lee, Jae Cheol; Kim, You Cheoul; Han, Chul Ju; Kim, Jin; Yang, Ki Young; Kim, Yeon Joo; Noh, Geum Youb; No, So Hyeon; Jeong, Jae-Hoon

    2015-01-01

    Background/Aims Silibinin, the main component of silymarin, is used as a hepatoprotectant and exhibits anticancer effects against various cancer cells. This study evaluated the effects of a combination of silibinin with either gefitinib or sorafenib on hepatocellular carcinoma (HCC) cells. Methods Several different human HCC cell lines were used to test the growth-inhibiting effects and cell toxicity of silibinin both alone and in combination with either gefitinib or sorafenib. The cell viability and growth inhibition were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, trypan blue staining, and a colony-forming assay. Furthermore, changes in epidermal growth factor receptor (EGFR)-related signals were evaluated by Western blot analysis. Results Gefitinib, sorafenib, and silibinin individually exhibited dose-dependent antiproliferative effects on HCC cells. Combined treatment with silibinin enhanced the gefitinib-induced growth-inhibiting effects in some HCC cell lines. The combination effect of gefitinib and silibinin was synergistic in the SNU761 cell line, but was only additive in the Huh-BAT cell line. The combination effect may be attributable to inhibition of EGFR-dependent Akt signaling. Enhanced growth-inhibiting effects were also observed in HCC cells treated with a combination of sorafenib and silibinin. Conclusions Combined treatment with silibinin enhanced the growth-inhibiting effects of both gefitinib and sorafenib. Therefore, the combination of silibinin with either sorafenib or gefitinib could be a useful treatment approach for HCC in the future. PMID:25834802

  5. Combined treatment with silibinin and either sorafenib or gefitinib enhances their growth-inhibiting effects in hepatocellular carcinoma cells.

    PubMed

    Gu, Ha Ra; Park, Su Cheol; Choi, Su Jin; Lee, Jae Cheol; Kim, You Cheoul; Han, Chul Ju; Kim, Jin; Yang, Ki Young; Kim, Yeon Joo; Noh, Geum Youb; No, So Hyeon; Jeong, Jae-Hoon

    2015-03-01

    Silibinin, the main component of silymarin, is used as a hepatoprotectant and exhibits anticancer effects against various cancer cells. This study evaluated the effects of a combination of silibinin with either gefitinib or sorafenib on hepatocellular carcinoma (HCC) cells. Several different human HCC cell lines were used to test the growth-inhibiting effects and cell toxicity of silibinin both alone and in combination with either gefitinib or sorafenib. The cell viability and growth inhibition were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, trypan blue staining, and a colony-forming assay. Furthermore, changes in epidermal growth factor receptor (EGFR)-related signals were evaluated by Western blot analysis. Gefitinib, sorafenib, and silibinin individually exhibited dose-dependent antiproliferative effects on HCC cells. Combined treatment with silibinin enhanced the gefitinib-induced growth-inhibiting effects in some HCC cell lines. The combination effect of gefitinib and silibinin was synergistic in the SNU761 cell line, but was only additive in the Huh-BAT cell line. The combination effect may be attributable to inhibition of EGFR-dependent Akt signaling. Enhanced growth-inhibiting effects were also observed in HCC cells treated with a combination of sorafenib and silibinin. Combined treatment with silibinin enhanced the growth-inhibiting effects of both gefitinib and sorafenib. Therefore, the combination of silibinin with either sorafenib or gefitinib could be a useful treatment approach for HCC in the future.

  6. Differences in antiproliferative effect of STAT3 inhibition in HCC cells with versus without HBV expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Yun; Zhou, Lin; Xie, Haiyang

    2015-06-05

    Chronic infection with hepatitis B virus (HBV) plays an important role in the etiology of hepatocellular carcinoma (HCC). Signal transducer and activator of transcription 3 (STAT3) inactivation could inhibit the tumor growth of HCC. In this study, differential antiproliferative effect of STAT3 inhibition was observed with HBV-related HCC cells being more resistant than non-HBV-related HCC cells. Resistance of HBV-related HCC cells to STAT3 inhibition was positively correlated to the expression of HBV. Enhanced ERK activation after STAT3 blockade was detected in HBV-related HCC cells but not in non-HBV-related HCC cells. Combined ERK and STAT3 inhibition eliminates the discrepancy between themore » two types of HCC cells. Moderate reduced HBV expression was found after STAT3 inhibition. These findings disclose a discrepancy in cellular response to STAT3 inhibition between non-HBV-related and HBV-related HCC cells and underscore the complexity of antiproliferative effect of STAT3 inactivation in HBV-related HCC cells. - Highlights: • HBV endows HCC cells with resistance to STAT3 inactivation on proliferation. • Abnormal ERK activation after STAT3 inhibition in HBV-related HCC cells. • Combined ERK and STAT3 inhibition eliminates the discrepancy. • STAT3 inhibition moderately reduces HBV expression.« less

  7. Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Hsieh-Hsun; Chang, Chi-Sen; Division of Gastroenterology, Taichung Veterans General Hospital, Taichung 402, Taiwan

    2013-01-01

    Our previous study demonstrated the therapeutic potential of gallic acid (GA) for controlling tumor metastasis through its inhibitory effect on the motility of AGS cells. A noteworthy finding in our previous experiment was increased RhoB expression in GA-treated cells. The aim of this study was to evaluate the role of RhoB expression on the inhibitory effects of GA on AGS cells. By applying the transfection of RhoB siRNA into AGS cells and an animal model, we tested the effect of GA on inhibition of tumor growth and RhoB expression. The results confirmed that RhoB-siRNA transfection induced GA to inhibit AGSmore » cells’ invasive growth involving blocking the AKT/small GTPase signals pathway and inhibition of NF-κB activity. Finally, we evaluated the effect of GA on AGS cell metastasis by colonization of tumor cells in nude mice. It showed GA inhibited tumor cells growth via the expression of RhoB. These data support the inhibitory effect of GA which was shown to inhibit gastric cancer cell metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity. Thus, GA might be a potential agent in treating gastric cancer. Highlights: ► GA could downregulate AKT signal via increased expression of RhoB. ► GA inhibits metastasis in vitro in gastric carcinoma. ► GA inhibits tumor growth in nude mice model.« less

  8. Zoledronic Acid Inhibits Aromatase Activity and Phosphorylation: Potential Mechanism for Additive Zoledronic Acid and Letrozole Drug Interaction

    PubMed Central

    Schech, Amanda J.; Nemieboka, Brandon E.; Brodie, Angela H.

    2012-01-01

    Zoledronic acid (ZA), a bisphosphonate originally indicated for use in osteoporosis, has been reported to exert a direct effect on breast cancer cells, although the mechanism of this effect is currently unknown. Data from the ABCSG-12 and ZO-FAST clinical trials suggest that treatment with the combination of ZA and aromatase inhibitors (AI) result in increased disease free survival in breast cancer patients over AI alone. To determine whether the mechanism of this combination involved inhibition of aromatase, AC-1 cells (MCF-7 human breast cancer cells transfected with an aromatase construct) were treated simultaneously with combinations of ZA and AI letrozole for 72 hours. This combination significantly increased inhibition of aromatase activity of AC-1 cells by compared to letrozole alone. Combination treatment of 1nM letrozole and 1μM and 10μM zoledronic acid resulted in an additive drug interaction on inhibiting cell viability, as measured by MTT assay. Treatment with ZA was found to inhibit phosphorylation of aromatase on serine 473. Zoledronic acid was also shown to be more effective in inhibiting cell viability in aromatase transfected AC-1 cells when compared to inhibition of cell viability observed in non-transfected MCF-7. Estradiol was able to partially rescue the effect of 1μM and 10μM ZA on cell viability following treatment for 72 hours, as shown by a shift to the right in the estradiol dose response curve. In conclusion, these results indicate that the combination of ZA and letrozole results in an additive inhibition of cell viability. Furthermore, ZA alone can inhibit aromatase activity through inhibition of serine phosphorylation events important for aromatase enzymatic activity and contributes to inhibition of cell viability. PMID:22659283

  9. [Effect of taspine derivatives on human liver cancer SMMC7721].

    PubMed

    Zhang, Yan-min; Wang, Nan; Dai, Bing-ling; He, Lang-chong

    2011-07-01

    To analyse the inhibition effect of taspine derivatives on human Liver cancer SMMC7721 cell and its mechanism. The effects of five taspine derivatives on SMMC7721 cell growth were determined by MTT. The flow cytometry was used to determine the cell cycle. The effects of Tas-D1 on the EGF and VEGF in SMMC7721 cell were determined by ELISA. The mRNA level of EGF and VEGF in SMMC7721 cell was determined by RT-PCR. The MTT assay demonstrated that the taspine derivative Tas-D1 significantly inhibited the growth of SMMC7721 cell in a dose-dependent manner. Cell was stopped at S phase by Tas-D1. Tas-D1 inhibited the expression of EGF and VEGF and their mRNA in a dose-dependent manner (P<0.05). The taspine derivative Tas-D1 can inhibit the growth of human Liver cancer SMMC7721 cell and change cell cycle, which may be related to the inhibition of EGF and VEGF expression.

  10. 3,3′-Diindolylmethane, but not indole-3-carbinol, inhibits histone deacetylase activity in prostate cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaver, Laura M., E-mail: beaverl@onid.orst.edu; School of Biological and Population Health Sciences, Oregon State University, 103 Milam Hall, Corvallis, OR 97331; Yu, Tian-Wei, E-mail: david.yu@oregonstate.edu

    2012-09-15

    Increased consumption of cruciferous vegetables is associated with a reduced risk of developing prostate cancer. Indole-3-carbinol (I3C) and 3,3′-diindolylmethane (DIM) are phytochemicals derived from cruciferous vegetables that have shown promise in inhibiting prostate cancer in experimental models. Histone deacetylase (HDAC) inhibition is an emerging target for cancer prevention and therapy. We sought to examine the effects of I3C and DIM on HDACs in human prostate cancer cell lines: androgen insensitive PC-3 cells and androgen sensitive LNCaP cells. I3C modestly inhibited HDAC activity in LNCaP cells by 25% but no inhibition of HDAC activity was detected in PC-3 cells. In contrast,more » DIM significantly inhibited HDAC activity in both cell lines by as much as 66%. Decreases in HDAC activity correlated with increased expression of p21, a known target of HDAC inhibitors. DIM treatment caused a significant decrease in the expression of HDAC2 protein in both cancer cell lines but no significant change in the protein levels of HDAC1, HDAC3, HDAC4, HDAC6 or HDAC8 was detected. Taken together, these results show that inhibition of HDAC activity by DIM may contribute to the phytochemicals' anti-proliferative effects in the prostate. The ability of DIM to target aberrant epigenetic patterns, in addition to its effects on detoxification of carcinogens, may make it an effective chemopreventive agent by targeting multiple stages of prostate carcinogenesis. -- Highlights: ► DIM inhibits HDAC activity and decreases HDAC2 expression in prostate cancer cells. ► DIM is significantly more effective than I3C at inhibiting HDAC activity. ► I3C has no effect on HDAC protein expression. ► Inhibition of HDAC activity by DIM is associated with increased p21 expression. ► HDAC inhibition may be a novel epigenetic mechanism for cancer prevention with DIM.« less

  11. [Study on the effect of phloretin on inhibiting malignant pheotype of BEL-7402 cells].

    PubMed

    Luo, Hui; Wang, Ya-Jun; Chen, Jie; Liu, Jiang-Qin

    2008-07-01

    To investigate the effect of phloretin on inhibiting BEL-7402 cells' growth, invasive, migration and adhesion ability and the rate of colony formation. BEL-7402 cells' growth, invasive, migration and adhesion ability and the rate of colony formation were examined with MIT method and Costar Transwell. Phloretin inhibited the growth, invasive, migration and adhesion ability of BEL-7402 cells and reduced the rate of colony formation in dose-dependent. Phloretin can inhibit BEL-7402 cells' malignant pheotype.

  12. Green tea extract and aged garlic extract inhibit anion transport and sickle cell dehydration in vitro.

    PubMed

    Ohnishi, S T; Ohnishi, T; Ogunmola, G B

    2001-01-01

    Both green tea extract (GTE or tea polyphenols) and aged garlic extract (AGE) effectively inhibited in vitro dehydration of sickle red blood cells induced by K-Cl cotransport or red cell storage. For K-Cl cotransport induced by 500 mM urea, 0.3 mg/ml EGCg (epigallocatechin gallate; a major component in GTE) almost completely inhibited dehydration, and 6 mg/ml AGE inhibited dehydration to 30% of the control level. Both vitamins E and C had no effect at the level of 2 mM. Different tea extracts had different degrees of inhibition, but the inhibitory activity increased when the number of hydroxyl groups in the compounds increased. With storage of sickle cells at 4 degrees C for 6 days, the cells started to undergo spontaneous dehydration when incubated at 37 degrees C. Neither inhibitors for Ca-induced K efflux nor K-Cl cotransport could inhibit cell dehydration of stored sickle cells, but both GTE and AGE effectively inhibited it. Chloride efflux measurements using a chloride electrode demonstrated that both GTE and AGE inhibited anion transport in red blood cells. The inhibitory mechanism of these compounds may be related to anion transport inhibition, although involvement of their antioxidant activities can not yet be ruled out. Copyright 2001 Academic Press.

  13. Osthole inhibits proliferation and induces apoptosis in human osteosarcoma cells.

    PubMed

    Ding, Yong; Lu, Xiongwei; Hu, Xiaopeng; Ma, Jie; Ding, Huan

    2014-02-01

    The purpose of this study was to investigate the effect of osthole on osteosarcoma cell proliferation and apoptosis. Cell counting Kit-8 assay was performed to establish the effects of osthole on osteosarcoma MG-63 cell proliferation. Annexin V-FITC/PI was performed to analyze the apoptotic rate of the cells. The inhibitory effects of osthole on the expression of BCL-2, BAX, and caspase-3 were detected by Western blotting. Osthole inhibited the growth of human osteosarcoma MG-63 cells by inhibiting cell proliferation and induced cell apoptosis. Western blotting demonstrated that osthole downregulated the expressions of BCL-2 and caspase-3 and upregulated the expression of BAX in human osteosarcoma cells. Osthole can inhibit osteosarcoma cell proliferation and induced apoptosis effectively in a dose-dependent manner through downregulating the expression of BCL-2 and caspase-3 proteins levels and upregulating the expression of BAX proteins levels.

  14. α-Lipoic acid inhibits the migration and invasion of breast cancer cells through inhibition of TGFβ signaling.

    PubMed

    Tripathy, Joytirmay; Tripathy, Anindita; Thangaraju, Muthusamy; Suar, Mrutyunjay; Elangovan, Selvakumar

    2018-05-23

    Invasion and metastasis are the main cause of mortality in breast cancer. Hence, novel therapeutic interventions with high specificity toward invasion and metastasis are necessary. α-Lipoic acid showed antiproliferative and cytotoxic effects on several cancers including breast cancer. However, the effect of lipoic acid on breast cancer metastasis remains unclear. In the present study, we examined the effects of lipoic acid on the migration and invasion of MDA-MB-231 and 4 T1 breast cancer cells. Our data showed that lipoic acid effectively inhibited the colony forming ability of highly invasive MDA-MB-231 and 4 T1 cells. Moreover, the nontoxic concentrations of lipoic acid significantly reduced the migration of breast cancer cells. Lipoic acid also inhibited the TGFβ-induced angiopoietin-like 4 (ANGPTL4) expression and reduced the activity of matrix metalloproteinase-9 (MMP-9), an enzyme involved in invasion and metastasis, in both the cell lines. The inhibition of cell migration by lipoic acid is accompanied by the downregulation of FAK, ERK1/2 and AKT phosphorylation, and inhibition of nuclear translocation of β-catenin. Our data demonstrated that lipoic acid inhibited the migration and invasion of metastatic breast cancer cells at least in part through inhibiting ERK1/2 and AKT signaling. Thus, our findings show that the inhibition of TGFβ signaling is a potential mechanism for the anti-invasive effects of lipoic acid. Copyright © 2017. Published by Elsevier Inc.

  15. Repurposing the anti-malarial drug dihydroartemisinin suppresses metastasis of non-small-cell lung cancer via inhibiting NF-κB/GLUT1 axis

    PubMed Central

    Jiang, Jie; Geng, Guojun; Yu, Xiuyi; Liu, Hongming; Gao, Jing; An, Hanxiang; Cai, Chengfu; Li, Ning; Shen, Dongyan; Wu, Xiaoqiang; Zheng, Lisheng; Mi, Yanjun; Yang, Shuyu

    2016-01-01

    Non-small-cell lung cancer (NSCLC) is an aggressive malignancy and long-term survival remains unsatisfactory for patients with metastatic and recurrent disease. Repurposing the anti-malarial drug dihydroartemisinin (DHA) has been proved to possess potent antitumor effect on various cancers. However, the effects of DHA in preventing the invasion of NSCLC cells have not been studied. In the present study, we determined the inhibitory effects of DHA on invasion and migration and the possible mechanisms involved using A549 and H1975 cells. DHA inhibited in vitro migration and invasion of NSCLC cells even in low concentration with little cytotoxicity. Additionally, low concentration DHA also inhibited Warburg effect in NSCLC cells. Mechanically, DHA negatively regulates NF-κB signaling to inhibit the GLUT1 translocation. Blocking the NF-κB signaling largely abolishes the inhibitory effects of DHA on the translocation of GLUT1 to the plasma membrane and the Warburg effect. Furthermore, GLUT1 knockdown significantly decreased the inhibition of invasion, and migration by DHA. Our results suggested that DHA can inhibit metastasis of NSCLC by targeting glucose metabolism via inhibiting NF-κB signaling pathway and DHA may deserve further investigation in NSCLC treatment. PMID:27895313

  16. Inhibitory effects of acetylcholine on neurones in the feline nucleus reticularis thalami.

    PubMed

    Ben-Ari, Y; Dingledine, R; Kanazawa, I; Kelly, J S

    1976-10-01

    1. Short iontophoretic pulses of acetylcholine (ACh) inhibited almost every spontaneously active cell encountered in the nucleus reticularis thalami of cats anaesthetized with a mixture of halothane, nitrous oxide and oxygen. On 200 cells the mean current needed to eject an effective inhibitory dose of ACh was 67 +/- 2 nA. When the ACh-evoked inhibition was mimicked by gamma-aminobutyric acid (GABA) or glycine on the same cell, the current required to release ACh was found to be approximately twice as great as that required to release an equally effective dose of GABA or glycine. 2. ACh inhibitions developed with a latency which was very much shorter than that for ACh excitation in cells of the ventrobasal complex. The latency of the ACh-evoked inhibition was as rapid as the onset and offset of the excitation of the same cells glutamate and their inhibition by GABA or glycine. 3. The firing pattern of ACh-inhibited neurones in the nucleus reticularis was characterized by periods of prolonged, high frequency bursts, and their mean firing frequency was 22 Hz. Raster dot displays and interspike interval histograms showed that whereas ACh suppressed the spikes that occurred between bursts much more readily than those that occurred during bursts, all spikes were equally sensitive to the depressant action of GABA and glycine. Large doses of ACh provoked or exaggerated burst activity. 4. ACh-evoked inhibition was extremely sensitive to blockade by short iontophoretic applications of atropine, which had no effect on the inhibitions evoked on the same cell equipotent doses of GABA or glycine. The ACh-evoked inhibitions were also antagonized by dihydro-beta-erythroidine released with slightly larger currents. When tested on the same cell, small iontophoretic applications of picrotoxin and bicuculline methoiodide blocked the inhibition evoked by GABA but had no effect on that evoked by ACh. Iontophoretic strychnine only rarely affected the inhibition evoked by ACh, while readily blocking the inhibition evoked on the same cell by an equipotent dose of glycine. In two cats, intravenous strychnine (1-2 mg/kg) had no effect on the ACh-evoked inhibition, while greatly reducing the sensitivity of the cell under study to glycine. 5. Only four out of forty-eight ACh-inhibted cells tested were inhibited by iontophoretic applications of either guanosine or adenosine 3':5'-phosphate. 6. Cells of the nucleus reticularis have been shown to have an inhibitory action on the thalamic relay cells, which are excited by ACh. It is suggested that the presence of both ACh excited and inhibited cells in different nuclei of the thalamus could be of considerable functional significance in gating sensory transmission through the thalamus.

  17. Capsiate Inhibits DNFB-Induced Atopic Dermatitis in NC/Nga Mice through Mast Cell and CD4+ T-Cell Inactivation.

    PubMed

    Lee, Ji H; Lee, Yun S; Lee, Eun-Jung; Lee, Ji H; Kim, Tae-Yoon

    2015-08-01

    Capsaicin has many biological effects, such as antioxidant, anticancer, and antiangiogenic effects, but it is rarely used because of its high pungency. Capsiate, a nonpungent capsaicin analog, also has multiple biological effects, similar to those of capsaicin, but does not cause irritation. However, the effect of capsiate on allergic responses and immune cells has not been well studied. In this study, we investigated the effect of capsiate on atopic dermatitis, mouse CD4+ T cells, and mast cell activation. Capsiate inhibited DNFB-induced atopic dermatitis in NC/Nga mice. Topical treatment with capsiate suppressed serum IgE levels and cytokine and chemokine expression in the skin of DNFB-treated NC/Nga mice. In addition, it suppressed the activation of CD4+ T cells and mast cells, which are implicated in allergic diseases. Capsiate inhibited the differentiation of naïve CD4+ T cells into T helper type 1 (Th1), Th2, and Th17 cells. Treatment with capsiate inhibited the expression of pro-inflammatory cytokines and degranulation from activated bone marrow-derived mast cells through the inhibition of extracellular signal-regulated kinase signal pathways. Consistent with these results, treatment with capsiate inhibited passive cutaneous anaphylaxis. Taken together, our results suggest that capsiate might be a good candidate molecule for the treatment of allergic diseases such as atopic dermatitis.

  18. Antitumor Effect of KX-01 through Inhibiting Src Family Kinases and Mitosis.

    PubMed

    Kim, Seongyeong; Min, Ahrum; Lee, Kyung-Hun; Yang, Yaewon; Kim, Tae-Yong; Lim, Jee Min; Park, So Jung; Nam, Hyun-Jin; Kim, Jung Eun; Song, Sang-Hyun; Han, Sae-Won; Oh, Do-Youn; Kim, Jee Hyun; Kim, Tae-You; Hangauer, David; Lau, Johnson Yiu-Nam; Im, Kyongok; Lee, Dong Soon; Bang, Yung-Jue; Im, Seock-Ah

    2017-07-01

    KX-01 is a novel dual inhibitor of Src and tubulin. Unlike previous Src inhibitors that failed to show clinical benefit during treatment of breast cancer, KX-01 can potentially overcome the therapeutic limitations of current Src inhibitors through inhibition of both Src and tubulin. The present study further evaluates the activity and mechanism of KX-01 in vitro and in vivo . The antitumor effect of KX-01 in triple negative breast cancer (TNBC) cell lines was determined by MTT assay. Wound healing and immunofluorescence assays were performed to evaluate the action mechanisms of KX-01. Changes in the cell cycle and molecular changes induced by KX-01 were also evaluated. A MDA-MB-231 mouse xenograft model was used to demonstrate the in vivo effects. KX-01 effectively inhibited the growth of breast cancer cell lines. The expression of phospho-Src and proliferative-signaling molecules were down-regulated in KX-01-sensitive TNBC cell lines. In addition, migration inhibition was observed by wound healing assay. KX-01-induced G2/M cell cycle arrest and increased the aneuploid cell population in KX-01-sensitive cell lines. Multi-nucleated cells were significantly increased after KX-01 treatment. Furthermore, KX-01 effectively delayed tumor growth in a MDA-MB-231 mouse xenograft model. KX-01 effectively inhibited cell growth and migration of TNBC cells. Moreover, this study demonstrated that KX-01 showed antitumor effects through the inhibition of Src signaling and the induction of mitotic catastrophe. The antitumor effects of KX-01 were also demonstrated in vivo using a mouse xenograft model.

  19. Deoxyschizandrin, Isolated from Schisandra Berries, Induces Cell Cycle Arrest in Ovarian Cancer Cells and Inhibits the Protumoural Activation of Tumour-Associated Macrophages.

    PubMed

    Lee, Kijun; Ahn, Ji-Hye; Lee, Kyung-Tae; Jang, Dae Sik; Choi, Jung-Hye

    2018-01-15

    Deoxyschizandrin, a major lignan of Schisandra berries, has been demonstrated to have various biological activities such as antioxidant, hepatoprotective, and antidiabetic effects. However, the anti-cancer effects of deoxyschizandrin are poorly characterized. In the present study, we investigated the anti-cancer effect of deoxyschizandrin on human ovarian cancer cell lines and tumour-associated macrophages (TAMs). Deoxyschizandrin induced G₀/G₁ phase cell cycle arrest and inhibited cyclin E expression in human ovarian cancer cells. Overexpression of cyclin E significantly reversed the deoxyschizandrin-induced cell growth inhibition. Interestingly, increased production of reactive oxygen species and decreased activation of Akt were observed in A2780 cells treated with deoxyschizandrin, and the antioxidant compromised the deoxyschizandrin-induced cell growth inhibition and Akt inactivation. Moreover, deoxyschizandrin-induced cell growth inhibition was markedly suppressed by Akt overexpression. In addition, deoxyschizandrin was found to inhibit the expression of the M2 phenotype markers CD163 and CD209 in TAMs, macrophages stimulated by the ovarian cancer cells. Moreover, expression and production of the tumour-promoting factors MMP-9, RANTES, and VEGF, which are highly enhanced in TAMs, was significantly suppressed by deoxyschizandrin treatment. Taken together, these data suggest that deoxyschizandrin exerts anti-cancer effects by inducing G₀/G₁ cell cycle arrest in ovarian cancer cells and reducing the protumoural phenotype of TAMs.

  20. Ganoderma lucidum exerts anti-tumor effects on ovarian cancer cells and enhances their sensitivity to cisplatin.

    PubMed

    Zhao, Sufen; Ye, Gang; Fu, Guodong; Cheng, Jian-Xin; Yang, Burton B; Peng, Chun

    2011-05-01

    Ganoderma lucidum is a herbal mushroom known to have many health benefits, including the inhibition of tumor cell growth. However, the effect of Ganoderma lucidum on epithelial ovarian cancer (EOC), the most fatal gynecological malignancy, has not yet been reported. In this study, we determined whether Ganoderma lucidum regulates EOC cell activity. Using several cell lines derived from EOC, we found that Ganoderma lucidum strongly decreased cell numbers in a dose-dependent manner. Ganoderma lucidum also inhibited colony formation, cell migration and spheroid formation. In particular, Ganoderma lucidum was effective in inhibiting cell growth in both chemosensitive and chemoresistant cells and the treatment with Ganoderma lucidum significantly enhanced the effect of cisplatin on EOC cells. Furthermore, Ganoderma lucidum induced cell cycle arrest at the G2/M phase and also induced apoptosis by activating caspase 3. Finally, Ganoderma lucidum increased p53 but inhibited Akt expression. Taken together, these findings suggest that Ganoderma lucidum exerts multiple anti-tumor effects on ovarian cancer cells and can enhance the sensitivity of EOC cells to cisplatin.

  1. Inhibition of PTEN and activation of Akt by menadione.

    PubMed

    Yoshikawa, Kyoko; Nigorikawa, Kiyomi; Tsukamoto, Mariko; Tamura, Namiko; Hazeki, Kaoru; Hazeki, Osamu

    2007-04-01

    Menadione (vitamin K(3)) has been shown to activate Erk in several cell lines. This effect has been shown to be due to the activation of EGF receptors (EGFR) as a result of inhibition of some protein tyrosine phosphatases. In the present study, we examined the effects of menadione on Akt in Chinese hamster ovary cells. The phosphorylation of Akt by menadione was not inhibited by AG1478, an inhibitor of EGFR. Menadione inhibited the lipid phosphatase activity of PTEN in a cell-free system. In an intact cell system, menadione inhibited the effect of transfected PTEN on Akt. Thus, one mechanism of its action was considered the accelerated activation of Akt through inhibition of PTEN. This was not the sole mechanism responsible for the EGFR-independent activation of Akt, because menadione attenuated the rate of Akt dephosphorylation even in PTEN-null PC3 cells. The decelerated inactivation of Akt, probably through inhibition of some tyrosine phosphatases, was considered another mechanism of its action.

  2. Combining radiation with autophagy inhibition enhances suppression of tumor growth and angiogenesis in esophageal cancer.

    PubMed

    Chen, Yongshun; Li, Xiaohong; Guo, Leiming; Wu, Xiaoyuan; He, Chunyu; Zhang, Song; Xiao, Yanjing; Yang, Yuanyuan; Hao, Daxuan

    2015-08-01

    Radiotherapy is an effective treatment for esophageal cancer; however, tumor resistance to radiation remains a major biological problem. The present study aimed to investigate whether inhibition of autophagy may decrease overall tumor resistance to radiation. The effects of the autophagy inhibitor 3-methyladenine (3-MA) on radiosensitivity were tested in the EC9706 human esophageal squamous cell carcinoma cell line by colony formation assay. Furthermore, the synergistic cytotoxic effects of 3-MA and radiation were assessed in a tumor xenograft model in nude mice. Mechanistic studies were performed using flow cytometry, immunohistochemistry and western blot analysis. The results of the present study demonstrated that radiation induced an accumulation of autophagosomes and 3-MA effectively inhibited radiation-induced autophagy. Inhibition of autophagy was shown to significantly increase the radiosensitivity of the tumors in vitro and in vivo. The enhancement ratio of sensitization in EC9706 cells was 1.76 when the cells were treated with 10 mM 3-MA, alongside ionizing radiation. In addition, autophagy inhibition increased apoptosis and reduced tumor cell proliferation. The combination of radiation and autophagy inhibition resulted in a significant reduction in tumor volume and vasculature in the murine model. The present study demonstrated in vitro and in vivo that radiation-induced autophagy has a protective effect against cell death, and inhibition of autophagy is able to enhance the radiosensitivity of esophageal squamous cell carcinoma.

  3. Combining radiation with autophagy inhibition enhances suppression of tumor growth and angiogenesis in esophageal cancer

    PubMed Central

    CHEN, YONGSHUN; LI, XIAOHONG; GUO, LEIMING; WU, XIAOYUAN; HE, CHUNYU; ZHANG, SONG; XIAO, YANJING; YANG, YUANYUAN; HAO, DAXUAN

    2015-01-01

    Radiotherapy is an effective treatment for esophageal cancer; however, tumor resistance to radiation remains a major biological problem. The present study aimed to investigate whether inhibition of autophagy may decrease overall tumor resistance to radiation. The effects of the autophagy inhibitor 3-methyladenine (3-MA) on radiosensitivity were tested in the EC9706 human esophageal squamous cell carcinoma cell line by colony formation assay. Furthermore, the synergistic cytotoxic effects of 3-MA and radiation were assessed in a tumor xenograft model in nude mice. Mechanistic studies were performed using flow cytometry, immunohistochemistry and western blot analysis. The results of the present study demonstrated that radiation induced an accumulation of autophagosomes and 3-MA effectively inhibited radiation-induced autophagy. Inhibition of autophagy was shown to significantly increase the radiosensitivity of the tumors in vitro and in vivo. The enhancement ratio of sensitization in EC9706 cells was 1.76 when the cells were treated with 10 mM 3-MA, alongside ionizing radiation. In addition, autophagy inhibition increased apoptosis and reduced tumor cell proliferation. The combination of radiation and autophagy inhibition resulted in a significant reduction in tumor volume and vasculature in the murine model. The present study demonstrated in vitro and in vivo that radiation-induced autophagy has a protective effect against cell death, and inhibition of autophagy is able to enhance the radiosensitivity of esophageal squamous cell carcinoma. PMID:25891159

  4. Inhibiting prenylation augments chemotherapy efficacy in renal cell carcinoma through dual inhibition on mitochondrial respiration and glycolysis.

    PubMed

    Huang, Jiangrong; Yang, Xiaoyu; Peng, Xiaochun; Huang, Wei

    2017-11-18

    Prenylation is a posttranslational lipid modification required for the proper functions of a number of proteins involved in cell regulation. Here, we show that prenylation inhibition is important for renal cell carcinoma (RCC) growth, survival and response to chemotherapy, and its underlying mechanism may be contributed to mitochondrial dysfunction. We first demonstrated that a HMG-CoA reductase inhibitor pitavastatin inhibited mevalonate pathway and thereby prenylation in RCC cells. In addition, pitavastatin is effective in inhibiting growth and inducing apoptosis in a panel of RCC cell lines. Combination of pitavastatin and paclitaxel is significantly more effective than pitavastatin or paclitaxel alone as shown by both in vitro cell culture system and in vivo RCC xenograft model. Importantly, pitavastatin treatment inhibits mitochondrial respiration via suppressing mitochondrial complex I and II enzyme activities. Interestingly, different from mitochondrial inhibitor phenformin that inhibits mitochondrial respiration but activates glycolytic rate in RCC cells, pitavastatin significantly decreases glycolytic rate. The dual inhibitory action of pitavastatin on mitochondrial respiration and glycolysis results in remarkable energy depletion and oxidative stress in RCC cells. In addition, inhibition of prenylation by depleting Isoprenylcysteine carboxylmethyltransferase (Icmt) also mimics the inhibitory effects of pitavastatin in RCC cells. Our work demonstrates the previously unappreciated association between prenylation inhibition and energy metabolism in RCC, which can be therapeutically exploited, likely in tumors that largely rely on energy metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. In vitro synergistic effect of farnesol and human gingival cells against Candida albicans.

    PubMed

    Saidi, Said; Luitaud, Cyril; Rouabhia, Mahmoud

    2006-07-15

    Farnesol prevents the germination of yeast cells into mycelia, a fact that may be useful in eliminating C. albicans pathogenicity. Given the clinical potential of farnesol, its impact on C. albicans and host cells merited further investigation. We thus studied the effect of farnesol on C. albicans growth and filamentation and on gingival epithelial cells and fibroblasts and the synergistic effect of both gingival cells and farnesol on C. albicans filamentation. Repeated additions of farnesol reduced the growth of C. albicans. Farnesol was also effective at reducing C. albicans germ tube formation. While farnesol inhibited germ tube formation under the conditions tested, it was most effective at inhibiting C. albicans filamentation when added to the culture medium at the same time as the serum. Farnesol also had an effect on gingival cells. In a serum-free medium, farnesol reduced fibroblast adhesion and proliferation, promoted epithelial cell differentiation and reduced proliferation up to 48 h post-treatment. These effects were not seen in the presence of serum. When C. albicans, farnesol and gingival cells were present in the same culture, significantly greater inhibition of the yeast-to-hyphal transition was observed than germ tube inhibition in cultures containing only C. albicans and farnesol, suggesting a synergistic effect between the gingival cells and farnesol in inhibiting the transition. Overall, the data suggest that farnesol is effective against C. albicans and may have an effect on host cells at certain concentrations.

  6. Inhibitory Effects of Culinary Herbs and Spices on the Growth of HCA-7 Colorectal Cancer Cells and Their COX-2 Expression.

    PubMed

    Jaksevicius, Andrius; Carew, Mark; Mistry, Calli; Modjtahedi, Helmout; Opara, Elizabeth I

    2017-09-21

    It is unclear if the anti-inflammatory properties of culinary herbs and spices (CHS) are linked to their ability to inhibit Colorectal cancer cell (CRC) growth. Furthermore, their therapeutic potential with regards to CRC is unknown. The aim of this study was to establish if the inhibition of HCA-7 CRC cell growth by a selection of culinary herbs and spices (CHS) is linked to the inhibition of the cells' cyclooxygenase-2 (COX-2 )expression, and to investigate their therapeutic potential. CHS inhibited the growth of Human colon adenocarcinoma-7 (HCA-7) cells; the order of potency was turmeric, bay leaf, ginger, sage, and rosemary; their combinations had a synergistic or additive effect on cell growth inhibition. CHS also inhibited COX-2 expression and activity; this action was comparable to that of the specific COX-2 inhibitor Celecoxib. Coincident with COX-2 inhibition was the accumulation of cells in the sub G1 phase of the HCA-7's cell cycle and, using bay leaf and turmeric, the cleavage of caspase 3 and poly (ADP-ribose) polymerase (PARP). This latter effect showed that the effect of these CHS on growth arrest was irreversible, and was comparable to that of the caspase activator Etoposide. This study provides evidence of a link between the inhibition of HCA-7 growth, and its COX-2 expression, by CHS, and their therapeutic potential.

  7. Quercetin Is More Effective than Cromolyn in Blocking Human Mast Cell Cytokine Release and Inhibits Contact Dermatitis and Photosensitivity in Humans

    PubMed Central

    Asadi, Shahrzad; Sismanopoulos, Nikolaos; Butcher, Alan; Fu, Xueyan; Katsarou-Katsari, Alexandra; Antoniou, Christina; Theoharides, Theoharis C.

    2012-01-01

    Mast cells are immune cells critical in the pathogenesis of allergic, but also inflammatory and autoimmune diseases through release of many pro-inflammatory cytokines such as IL-8 and TNF. Contact dermatitis and photosensitivity are skin conditions that involve non-immune triggers such as substance P (SP), and do not respond to conventional treatment. Inhibition of mast cell cytokine release could be effective therapy for such diseases. Unfortunately, disodium cromoglycate (cromolyn), the only compound marketed as a mast cell “stabilizer”, is not particularly effective in blocking human mast cells. Instead, flavonoids are potent anti-oxidant and anti-inflammatory compounds with mast cell inhibitory actions. Here, we first compared the flavonoid quercetin (Que) and cromolyn on cultured human mast cells. Que and cromolyn (100 µM) can effectively inhibit secretion of histamine and PGD2. Que and cromolyn also inhibit histamine, leukotrienes and PGD2 from primary human cord blood-derived cultured mast cells (hCBMCs) stimulated by IgE/Anti-IgE. However, Que is more effective than cromolyn in inhibiting IL-8 and TNF release from LAD2 mast cells stimulated by SP. Moreover, Que reduces IL-6 release from hCBMCs in a dose-dependent manner. Que inhibits cytosolic calcium level increase and NF-kappa B activation. Interestingly, Que is effective prophylactically, while cromolyn must be added together with the trigger or it rapidly loses its effect. In two pilot, open-label, clinical trials, Que significantly decreased contact dermatitis and photosensitivity, skin conditions that do not respond to conventional treatment. In summary, Que is a promising candidate as an effective mast cell inhibitor for allergic and inflammatory diseases, especially in formulations that permit more sufficient oral absorption. PMID:22470478

  8. Retinoids, retinoid analogs, and lactoferrin interact and differentially affect cell viability of 2 bovine mammary cell types in vitro.

    PubMed

    Wang, Y; Baumrucker, C R

    2010-07-01

    Two bovine mammary cell types (BME-UV1 and MeBo cells) were used to evaluate the effect of natural retinoids, retinoid analogs, and bovine lactoferrin (bLf) on cell viability in vitro. Experiments with Alamar Blue showed a linear relationship between fluorescence and cell viability index. The BME-UV1 cells exhibited twice the metabolic activity but required half the doubling time of the MeBo cells. The BME-UV1 cells were very sensitive to all-trans retinoic acid (atRA) inhibition of cell viability (P<0.05) and exhibited a dose-dependent inhibition with 9-cisRA (9cRA; P<0.05). The MeBo cells exhibited some inhibition with these natural ligands (P<0.05), but they were not as sensitive. The addition of bLf had similar inhibitory effects (P<0.05) on cell viability of the 2 mammary cell types. Applications of RA receptor (RAR) agonist indicated that the stimulation of the RAR in both mammary cell types was highly effective in inhibition of cell viability (P<0.05), whereas the application of an RAR antagonist stimulated MeBo cell viability (P<0.05) and inhibited BME-UV1 cell viability (P<0.05). Finally, the use of the RAR antagonist in conjunction with bLf indicated a rescue of the bLf effect in the MeBo cells, suggesting that bLf is acting through the RAR receptor. Conversely, bLf reverted inhibition of cell viability by 9cRA in the BME-UV1 cell type (P<0.05). We conclude that RAR interaction in bovine mammary cell types regulates cell viability in vitro; we hypothesize that the natural ligands mediate regulation of bovine mammary cell viability in vivo and that bLf can either enhance or reverse the retinoid-induced inhibition of cell viability, depending on the type of bovine mammary cell studied.

  9. 3,6-dihydroxyflavone suppresses the epithelial-mesenchymal transition in breast cancer cells by inhibiting the Notch signaling pathway.

    PubMed

    Chen, Junli; Chang, Hui; Peng, Xiaoli; Gu, Yeyun; Yi, Long; Zhang, Qianyong; Zhu, Jundong; Mi, Mantian

    2016-06-27

    The epithelial to mesenchymal transition (EMT) is a critical developmental program in cancer stem cell (CSC) maintenance and in cancer metastasis. Here, our study found that 3,6-DHF could effectively inhibit EMT in BC cells in vitro and in vivo. 3,6-DHF effectively inhibits the formation and proliferation of BCSCs, and consequently reduces the tumor-initiating capacity of tumor cells in NOD/SCID mice. Optical in vivo imaging of cancer metastasis showed that 3,6-DHF administration suppresses the lung metastasis of BC cells in vivo. Further studies indicated that 3,6-DHF down-regulates Notch1, NICD, Hes-1 and c-Myc, consequently decreasing the formation of the functional transcriptional unit of NICD-CSL-MAML, causing Notch signaling inactivation in BC cells. Over-expression of Notch1 or inhibition of miR-34a significantly reduced the inhibitory effects of 3,6-DHF on EMT, CSCs, as well as cells migration and invasion in BC cells. These data indicated that 3,6-DHF effectively inhibits EMT and CSCs, as well as cells migration and invasion in BC cells, in which miR-34a-mediated Notch1 down-regulation plays a crucial role.

  10. Osthole inhibits the invasive ability of human lung adenocarcinoma cells via suppression of NF-κB-mediated matrix metalloproteinase-9 expression.

    PubMed

    Kao, Shang-Jyh; Su, Jen-Liang; Chen, Chi-Kuan; Yu, Ming-Chih; Bai, Kuan-Jen; Chang, Jer-Hua; Bien, Mauo-Ying; Yang, Shun-Fa; Chien, Ming-Hsien

    2012-05-15

    The induction of matrix metalloproteinase (MMP)-9 is particularly important for the invasiveness of various cancer cells. Osthole, a natural coumarin derivative extracted from traditional Chinese medicines, is known to inhibit the proliferation of a variety of tumor cells, but the effect of osthole on the invasiveness of tumor cells is largely unknown. This study determines whether and by what mechanism osthole inhibits invasion in CL1-5 human lung adenocarcinoma cells. Herein, we found that osthole effectively inhibited the migratory and invasive abilities of CL1-5 cells. A zymographic assay showed that osthole inhibited the proteolytic activity of MMP-9 in CL1-5 cells. Inhibition of migration, invasion, and MMP2 and/or MMP-9 proteolytic activities was also observed in other lung adenocarcinoma cell lines (H1299 and A549). We further found that osthole inhibited MMP-9 expression at the messenger RNA and protein levels. Moreover, a chromatin immunoprecipitation assay showed that osthole inhibited the transcriptional activity of MMP-9 by suppressing the DNA binding activity of nuclear factor (NF)-κB in the MMP-9 promoter. Using reporter assays with point-mutated promoter constructs further confirmed that the inhibitory effect of osthole requires an NF-κB binding site on the MMP-9 promoter. Western blot and immunofluorescence assays demonstrated that osthole inhibited NF-κB activity by inhibiting IκB-α degradation and NF-κB p65 nuclear translocation. In conclusion, we demonstrated that osthole inhibits NF-κB-mediated MMP-9 expression, resulting in suppression of lung cancer cell invasion and migration, and osthole might be a potential agent for preventing the invasion and metastasis of lung cancer. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. The effect of lonidamine (LND) on radiation and thermal responses of human and rodent cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raaphorst, G.P.; Feeley, M.M.; Danjoux, C.E.

    1991-03-01

    Rodent and human cells were tested for response to Lonidamine (LND) (1-(2,4 dichlorobenzyl) 1-indazol-3-carboxylic acid) combined with radiation or hyperthermia. Lonidamine exposure before, during, and after irradiation caused varying degrees of inhibition of potentially lethal damage (PLD) repair which was cell line dependent. In human glioma, melanoma, squamous cell carcinoma, and fibroblasts, LND exposure did not inhibit or only partially inhibited repair of potentially lethal damage. LND up to 100 micrograms/ml produced only a low level of toxicity in these cells and only slightly inhibited glucose consumption at the maximum concentration. In human glioma cells, LND treatment alone did notmore » inhibit PLD repair, but when combined with hyperthermia treatment at moderate levels easily achievable in the clinic, there was complete inhibition of potentially lethal damage repair. These data suggest that LND effectiveness is cell type dependent. Combinations of LND, hyperthermia, and radiation may be effective in cancer therapy especially in tumors such as glioma in which repair of potentially lethal damage may be extensive.« less

  12. The opposing effects of calmodulin, adenosine 5 prime -triphosphate, and pertussis toxin on phorbol ester induced inhibition of atrial natriuretic factor stimulated guanylate cyclase in SK-NEP-1 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekiya, M.; Frohlich, E.D.; Cole, F.E.

    1991-01-01

    In the present study, we investigated the effects of calmodulin, adenosine 5{prime}-triphosphate (ATP) and pertussis toxin (PT) on phorbol ester (PMA) induced inhibition of ANF-stimulated cyclic GMP formation in cells from the human renal cell line, SK-NEP-1. PMA inhibited ANF-stimulated guanylate cyclase activity in particulate membranes by about 65%. Calmodulin reversed this inhibition in a dose dependent manner. ATP potentiated Mg++ but not Mn++ supported guanylate cyclase activity. In PMA treated membranes, ATP potentiating effects were abolished. PMA also inhibited ANF-stimulated cGMP accumulation, but pretreatment with PT prevented this PMA inhibition. PT did not affect basal or ANF-stimulated cGMP accumulation.more » In conclusion, these results demonstrated that PMA inhibited ANF stimulation of particulate guanylate cyclase in opposition to the activating effects of calmodulin or ATP in SK-NEP-1 cells. The protein kinase C inhibitory effects appeared to be mediated via a PT-sensitive G protein.« less

  13. Inhibition of IFN-γ-dependent antiviral airway epithelial defense by cigarette smoke

    PubMed Central

    2010-01-01

    Background Although individuals exposed to cigarette smoke are more susceptible to respiratory infection, the effects of cigarette smoke on lung defense are incompletely understood. Because airway epithelial cell responses to type II interferon (IFN) are critical in regulation of defense against many respiratory viral infections, we hypothesized that cigarette smoke has inhibitory effects on IFN-γ-dependent antiviral mechanisms in epithelial cells in the airway. Methods Primary human tracheobronchial epithelial cells were first treated with cigarette smoke extract (CSE) followed by exposure to both CSE and IFN-γ. Epithelial cell cytotoxicity and IFN-γ-induced signaling, gene expression, and antiviral effects against respiratory syncytial virus (RSV) were tested without and with CSE exposure. Results CSE inhibited IFN-γ-dependent gene expression in airway epithelial cells, and these effects were not due to cell loss or cytotoxicity. CSE markedly inhibited IFN-γ-induced Stat1 phosphorylation, indicating that CSE altered type II interferon signal transduction and providing a mechanism for CSE effects. A period of CSE exposure combined with an interval of epithelial cell exposure to both CSE and IFN-γ was required to inhibit IFN-γ-induced cell signaling. CSE also decreased the inhibitory effect of IFN-γ on RSV mRNA and protein expression, confirming effects on viral infection. CSE effects on IFN-γ-induced Stat1 activation, antiviral protein expression, and inhibition of RSV infection were decreased by glutathione augmentation of epithelial cells using N-acetylcysteine or glutathione monoethyl ester, providing one strategy to alter cigarette smoke effects. Conclusions The results indicate that CSE inhibits the antiviral effects of IFN-γ, thereby presenting one explanation for increased susceptibility to respiratory viral infection in individuals exposed to cigarette smoke. PMID:20504369

  14. Luteolin suppresses angiogenesis and vasculogenic mimicry formation through inhibiting Notch1-VEGF signaling in gastric cancer.

    PubMed

    Zang, Mingde; Hu, Lei; Zhang, Baogui; Zhu, Zhenglun; Li, Jianfang; Zhu, Zhenggang; Yan, Min; Liu, Bingya

    2017-08-26

    Gastric cancer is a great threat to the health of the people worldwide and lacks effective therapeutic regimens. Luteolin is one of Chinese herbs and presents in many fruits and green plants. In our previous study, we observed that luteolin inhibited cell migration and promoted cell apoptosis in gastric cancer. In the present study, luteolin significantly inhibited tube formation of human umbilical vein endothelial cells (HUVECs) through decreasing cell migration and proliferation of HUVECs in a dose-dependent manner. Vasculogenic mimicry (VM) tubes formed by gastric cancer cells were also inhibited with luteolin treatment. To explore how luteolin inhibited tubes formation, ELISA assay for VEGF was performed. Both of the VEGF secretion from Hs-746T cells and HUVECs were significantly decreased subsequent to luteolin treatment. In addition, cell migration was increased with the interaction between gastric cancer cells and HUVECs in co-culture assays. However, the promoting effects were abolished subsequent to luteolin treatment. Furthermore, luteolin inhibited VEGF secretion through suppressing Notch1 expression in gastric cancer. Overexpression of Notch1 in gastric cancer cells partially rescued the effects on cell migration, proliferation, HUVECs tube formation, and VM formation induced by luteolin treatment. In conclusion, luteolin inhibits angiogenesis and VM formation in gastric cancer through suppressing VEGF secretion dependent on Notch1 expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Dasatinib inhibits both osteoclast activation and prostate cancer PC-3-cell-induced osteoclast formation.

    PubMed

    Araujo, John C; Poblenz, Ann; Corn, Paul; Parikh, Nila U; Starbuck, Michael W; Thompson, Jerry T; Lee, Francis; Logothetis, Christopher J; Darnay, Bryant G

    2009-11-01

    Therapies to target prostate cancer bone metastases have only limited effects. New treatments are focused on the interaction between cancer cells, bone marrow cells and the bone matrix. Osteoclasts play an important role in the development of bone tumors caused by prostate cancer. Since Src kinase has been shown to be necessary for osteoclast function, we hypothesized that dasatinib, a Src family kinase inhibitor, would reduce osteoclast activity and prostate cancer (PC-3) cell-induced osteoclast formation. Dasatinib inhibited RANKL-induced osteoclast differentiation of bone marrow-derived monocytes with an EC(50) of 7.5 nM. PC-3 cells, a human prostate cancer cell line, were able to differentiate RAW 264.7 cells, a murine monocytic cell line, into osteoclasts, and dasatinib inhibited this differentiation. In addition, conditioned medium from PC-3 cell cultures was able to differentiate RAW 264.7 cells into osteoclasts and this too, was inhibited by dasatinib. Even the lowest concentration of dasatinib, 1.25 nmol, inhibited osteoclast differentiation by 29%. Moreover, dasatinib inhibited osteoclast activity by 58% as measured by collagen 1 release. We performed in vitro experiments utilizing the Src family kinase inhibitor dasatinib to target osteoclast activation as a means of inhibiting prostate cancer bone metastases. Dasatinib inhibits osteoclast differentiation of mouse primary bone marrow-derived monocytes and PC-3 cell-induced osteoclast differentiation. Dasatinib also inhibits osteoclast degradation activity. Inhibiting osteoclast differentiation and activity may be an effective targeted therapy in patients with prostate cancer bone metastases.

  16. 1,8-cineole inhibits both proliferation and elongation of BY-2 cultured tobacco cells.

    PubMed

    Yoshimura, Hiroko; Sawai, Yu; Tamotsu, Satoshi; Sakai, Atsushi

    2011-03-01

    Volatile monoterpenes such as 1,8-cineole inhibit the growth of Brassica campestris seedlings in a dose-dependent manner, and the growth-inhibitory effects are more severe for roots than hypocotyls. The preferential inhibition of root growth may be explained if the compounds inhibit cell proliferation more severely than cell elongation because root growth requires both elongation and proliferation of the constituent cells, whereas hypocotyl growth depends exclusively on elongation of existing cells. In order to examine this possibility, BY-2 suspension-cultured tobacco (Nicotiana tabacum) cells were treated with 1,8-cineole, and the inhibitory effects on cell proliferation and on cell elongation were assessed quantitatively. Treatment with 1,8-cineole lowered both the mitotic index and elongation of the cells in a dose-dependent manner, and the half-maximal inhibitory concentration (IC₅₀) for cell elongation was lower than that for cell proliferation. Moreover, 1,8-cineole also inhibited starch synthesis, with IC₅₀ lower than that for cell proliferation. Thus, the inhibitory effects of 1,8-cineole were not specific to cell proliferation; rather, 1,8-cineole seemed inhibitory to a variety of physiological activities when it was in direct contact with target cells. Based on these results, possible mechanisms for the mode of action of 1,8-cineole and for its preferential inhibition on root growth are discussed.

  17. Regulation of adhesion and growth of fibrosarcoma cells by NF-kappa B RelA involves transforming growth factor beta.

    PubMed Central

    Perez, J R; Higgins-Sochaski, K A; Maltese, J Y; Narayanan, R

    1994-01-01

    The NF-kappa B transcription factor is a pleiotropic activator that participates in the induction of a wide variety of cellular genes. Antisense oligomer inhibition of the RelA subunit of NF-kappa B results in a block of cellular adhesion and inhibition of tumor cell growth. Investigation of the molecular basis for these effects showed that in vitro inhibition of the growth of transformed fibroblasts by relA antisense oligonucleotides can be reversed by the parental-cell-conditioned medium. Cytokine profile analysis of these cells treated with relA antisense oligonucleotides revealed inhibition of transforming growth factor beta 1 (TGF-beta 1 to the transformed fibroblasts reversed the inhibitory effects of relA antisense oligomers on soft agar colony formation and cell adhesion to the substratum. Direct inhibition of TGF-beta 1 expression by antisense phosphorothioates to TGF-beta 1 mimicked the in vitro effects of blocking cell adhesion that are elicited by antisense relA oligomers. These results may explain the in vitro effects of relA antisense oligomers on fibrosarcoma cell growth and adhesion. Images PMID:8035811

  18. Phenytoin preferentially inhibits L-type calcium currents in whole-cell patch-clamped cardiac and skeletal muscle cells.

    PubMed

    Rivet, M; Bois, P; Cognard, C; Raymond, G

    1990-10-01

    The effect of the anticonvulsant diphenylhydantoin (phenytoin) was tested on the inward calcium currents of whole-cell patch-clamped cells from rat and human muscles and from frog atrium. A concentration of 10 microM phenytoin was required to obtain a threshold inhibitory effect and, even with high concentrations (100 microM), the inhibition was not complete. In skeletal muscle (rat and human cells in culture), phenytoin (30 microM) exerted a more potent effect on the high-threshold calcium current (ICa,L inhibition: 53 +/- 6% mean +/- SDn-1) rather than on the low-threshold one (ICa,T inhibition: 16 +/- 10%). Similar results were obtained on dissociated frog atrial cells. These data are to be contrasted with those previously reported on neuronal cells, where specific inhibition of ICa,T was reported. Thus, the action of phenytoin appears to be different in muscle and nerve so that phenytoin does not appear to be a specific inhibitor of ICa,T.

  19. [Effects of selenium compounds on proliferation, migration and adhesion of HeLa cells].

    PubMed

    Sun, Licui; Lu, Jiaxi; Wang, Qin; Liu, Yiqun; Han, Feng; Yang, Yanhua; Zhang, Hongkun; Huang, Zhenwu

    2015-03-01

    To explore the effects of methylseleninic acid (MeSeA), selenomethionine (SeMet) and methylselenocysteine (MeSeCys) on proliferation, migration and adhesion of HeLa cells. HeLa cells were cultured and treated with MeSeA, SeMet and MeSeCys for 12 - 72 h respectively. MTT assay, healing assay and in vitro cell Matrigel adhesion assay were used to detect the proliferation, migration and adhesion of HeLa cells. Compared to the control group, the proliferation of HeLa cells was remarkably inhibited by MeSeA (P <0. 01). The migration of HeLa cells in MeSeA group was inhibited by 34% (P < 0. 05) and 26% (P < 0. 05) in 4 h and 8 h, respectively. However, the migration of HeLa cells with inhibitions of 18% and 13% was in SeMet group in 4 h and 8 h. The inhibitions of HeLa cell migration in MeSeCys group was 28% (P < 0.05) and 5% in 4 h and 8 h, respectively. In addition, the adhesive function of HeLa cells in the MeSeA group, the SeMet group as well as the MeSeCys group were inhibited by 36% (P < 0. 01), 25% and 49% (P < 0. 01). The proliferation and migration of HeLa cell were effectively inhibited by MeSeA, while the adhesive function of HeLa cell was remarkably inhibited by MeSeCys.

  20. Inhibition of H3K9 methyltransferase G9a induces autophagy and apoptosis in oral squamous cell carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Aishu; Qiu, Yu; Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, 401147

    Objective: To explore whether inhibition of H3K9 Methyltransferase G9a could exert an antitumoral effect in oral squamous cell carcinoma (OSCC). Materials and methods: First we checked G9a expression in two OSCC cell lines Tca8113 and KB. Next we used a special G9a inhibitor BIX01294 (BIX) to explore the effect of inhibition of G9a on OSCC in vitro. Cell growth was tested by typlan blue staining, MTT assay and Brdu immunofluorescence staining. Cell autophagy was examined by monodansylcadaverine (MDC) staining, LC3-II immunofluorescence staining and LC3-II western blot assay. Cell apoptosis was checked by FITC Annexin-V and PI labeling, tunnel staining and caspasemore » 3 western blot assay. Finally, the effect of inhibition of G9a on clonogenesis and tumorigenesis capacity of OSCC was analyzed by soft agar growth and xenograft model. Results: Here we showed that G9a was expressed in both Tca8113 and KB cells. Inhibition of G9a using BIX significantly reduced cell growth and proliferation in Tca8113 and KB. Inhibition of G9a induced cell autophagy with conversion of LC3-I to LC3-II and cell apoptosis with the expression of cleaved caspase 3. We also found that inhibition of G9a reduced colony formation in soft agar and repressed tumor growth in mouse xenograph model. Conclusion: Our results suggested that G9a might be a potential epigenetic target for OSCC treatment. - Highlights: • Inhibition of G9a reduced cell growth and proliferation in OSCC cells. • Inhibition of G9a induces autophagy and apoptosis in OSCC cells. • Inhibition of G9a repressed tumor growth in mouse xenograph model.« less

  1. Inhibition of autophagy induced by proteasome inhibition increases cell death in human SHG-44 glioma cells.

    PubMed

    Ge, Peng-Fei; Zhang, Ji-Zhou; Wang, Xiao-Fei; Meng, Fan-Kai; Li, Wen-Chen; Luan, Yong-Xin; Ling, Feng; Luo, Yi-Nan

    2009-07-01

    The ubiquitin-proteasome system (UPS) and lysosome-dependent macroautophagy (autophagy) are two major intracellular pathways for protein degradation. Recent studies suggest that proteasome inhibitors may reduce tumor growth and activate autophagy. Due to the dual roles of autophagy in tumor cell survival and death, the effect of autophagy on the destiny of glioma cells remains unclear. In this study, we sought to investigate whether inhibition of the proteasome can induce autophagy and the effects of autophagy on the fate of human SHG-44 glioma cells. The proteasome inhibitor MG-132 was used to induce autophagy in SHG-44 glioma cells, and the effect of autophagy on the survival of SHG-44 glioma cells was investigated using an autophagy inhibitor 3-MA. Cell viability was measured by MTT assay. Apoptosis and cell cycle were detected by flow cytometry. The expression of autophagy related proteins was determined by Western blot. MG-132 inhibited cell proliferation, induced cell death and cell cycle arrest at G(2)/M phase, and activated autophagy in SHG-44 glioma cells. The expression of autophagy-related Beclin-1 and LC3-I was significantly up-regulated and part of LC3-I was converted into LC3-II. However, when SHG-44 glioma cells were co-treated with MG-132 and 3-MA, the cells became less viable, but cell death and cell numbers at G(2)/M phase increased. Moreover, the accumulation of acidic vesicular organelles was decreased, the expression of Beclin-1 and LC3 was significantly down-regulated and the conversion of LC3-II from LC3-I was also inhibited. Inhibition of the proteasome can induce autophagy in human SHG-44 glioma cells, and inhibition of autophagy increases cell death. This discovery may shed new light on the effect of autophagy on modulating the fate of SHG-44 glioma cells.Acta Pharmacologica Sinica (2009) 30: 1046-1052; doi: 10.1038/aps.2009.71.

  2. Resveratrol induces cellular senescence with attenuated mono-ubiquitination of histone H2B in glioma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhen; Xu, Michael S.; Barnett, Tamara L.

    2011-04-08

    Research highlights: {yields} Resveratrol induces cellular senescence in glioma cell. {yields} Resveratrol inhibits mono-ubiquitination of histone H2B at K120. {yields} Depletion of RNF20, phenocopies the inhibitory effects of resveratrol. {yields} Mono-ubiquitination of histone H2B at K120 is a novel target of resveratrol. {yields} RNF20 inhibits cellular senescence in proliferating glioma cells. -- Abstract: Resveratrol (3,4',5-trihydroxy-trans-stilbene), a polyphenol naturally occurring in grapes and other plants, has cancer chemo-preventive effects and therapeutic potential. Although resveratrol modulates multiple pathways in tumor cells, how resveratrol or its affected pathways converge on chromatin to mediate its effects is not known. Using glioma cells as amore » model, we showed here that resveratrol inhibited cell proliferation and induced cellular hypertrophy by transforming spindle-shaped cells to enlarged, irregular and flatten-shaped ones. We further showed that resveratrol-induced hypertrophic cells expressed senescence-associated-{beta}-galactosidase, suggesting that resveratrol-induced cellular senescence in glioma cells. Consistent with these observations, we demonstrated that resveratrol inhibited clonogenic efficiencies in vitro and tumor growth in a xenograft model. Furthermore, we found that acute treatment of resveratrol inhibited mono-ubiquitination of histone H2B at K120 (uH2B) in breast, prostate, pancreatic, lung, brain tumor cells as well as primary human cells. Chronic treatment with low doses of resveratrol also inhibited uH2B in the resveratrol-induced senescent glioma cells. Moreover, we showed that depletion of RNF20, a ubiquitin ligase of histone H2B, inhibited uH2B and induced cellular senescence in glioma cells in vitro, thereby recapitulated the effects of resveratrol. Taken together, our results suggest that uH2B is a novel direct or indirect chromatin target of resveratrol and RNF20 plays an important role in inhibiting cellular senescence programs that are intact in glioma cells.« less

  3. Inhibitory Effects of Culinary Herbs and Spices on the Growth of HCA-7 Colorectal Cancer Cells and Their COX-2 Expression

    PubMed Central

    Jaksevicius, Andrius; Carew, Mark; Mistry, Calli

    2017-01-01

    It is unclear if the anti-inflammatory properties of culinary herbs and spices (CHS) are linked to their ability to inhibit Colorectal cancer cell (CRC) growth. Furthermore, their therapeutic potential with regards to CRC is unknown. The aim of this study was to establish if the inhibition of HCA-7 CRC cell growth by a selection of culinary herbs and spices (CHS) is linked to the inhibition of the cells’ cyclooxygenase-2 (COX-2 )expression, and to investigate their therapeutic potential. CHS inhibited the growth of Human colon adenocarcinoma-7 (HCA-7) cells; the order of potency was turmeric, bay leaf, ginger, sage, and rosemary; their combinations had a synergistic or additive effect on cell growth inhibition. CHS also inhibited COX-2 expression and activity; this action was comparable to that of the specific COX-2 inhibitor Celecoxib. Coincident with COX-2 inhibition was the accumulation of cells in the sub G1 phase of the HCA-7’s cell cycle and, using bay leaf and turmeric, the cleavage of caspase 3 and poly (ADP-ribose) polymerase (PARP). This latter effect showed that the effect of these CHS on growth arrest was irreversible, and was comparable to that of the caspase activator Etoposide. This study provides evidence of a link between the inhibition of HCA-7 growth, and its COX-2 expression, by CHS, and their therapeutic potential. PMID:28934138

  4. Inhibition of Aurora-A kinase induces cell cycle arrest in epithelial ovarian cancer stem cells by affecting NFκB pathway

    PubMed Central

    Alvero, Ayesha B; Visintin, Irene

    2011-01-01

    Recurrent ovarian cancer is resistant to conventional chemotherapy. A sub-population of ovarian cancer cells, the epithelial ovarian cancer stem cells (EOC stem cells) have stemness properties, constitutive NFκB activity, and represent the chemoresistant population. Currently, there is no effective treatment that targets these cells. Aurora-A kinase (Aurora-A) is associated with tumor initiation and progression and is overexpressed in numerous malignancies. The aim of this study is to determine the effect of Aurora-A inhibition in EOC stem cells. EOC stem cells were treated with the Aurora-A inhibitor, MK-5108. Cell growth was monitored by Incucyte real-time imaging system, cell viability was measured using the Celltiter 96 assay and cytokine levels were quantified using xMAP technology. The intracellular changes associated with MK-5108 treatment are: (1) polyploidy and cell cycle arrest; (2) inhibition of NFκB activity; (3) decreased cytokine production; and (4) nuclear accumulation of IκBα. Thus, inhibition of Aurora-A decreases cell proliferation in the EOC stem cells by inducing cell cycle arrest and affecting the NFκB pathway. As EOC stem cells represent a source of recurrence and chemoresistance, these results suggest that Aurora-A inhibition may effectively target the cancer stem cell population in ovarian cancer. PMID:21623171

  5. Synthetic 8-hydroxydeoxyguanosine inhibited metastasis of pancreatic cancer through concerted inhibitions of ERM and Rho-GTPase.

    PubMed

    Park, Jong-Min; Han, Young-Min; Jeong, Migyeong; Chung, Myung Hee; Kwon, Chang Il; Ko, Kwang Hyun; Hahm, Ki Baik

    2017-09-01

    8-hydroxydeoxyguanosine (8-OHdG) is generated consequent to oxidative stress, but its paradoxical anti-oxidative, anti-inflammatory, and anti-mutagenic effects via Rho-GTPase inhibition were noted in various models of inflammation and cancer. Metastasis occurs through cell detachment, epithelial-mesenchymal transition (EMT), and cell migration; during these processes, changes in cell morphology are initiated through Rho-GTPase-dependent actin cytoskeleton polymerization. In this study, we explored the anti-metastatic mechanisms of 8-OHdG in Panc-1 pancreatic cancer cells. 8-OHdG inhibits cell migration by inactivating ERM and Rho-GTPase proteins, and inhibiting focal adhesion kinase (FAK) and matrix metalloproteinases (MMPs). At 15min, 8-OHdG significantly inactivated ERM (p < 0.05) and led to a significant retardation of wound healing; siERM and H1152 (ROCK inhibitor) had similar effects (p < 0.05). However, FAK inhibitor 14, DPI (NOX inhibitor), and NAC (antioxidant) significantly delayed wound healing without inhibiting ERM or CD44 (p < 0.05). In the experiments on cell migration, siERM, siCD44, DPI, and 8-OHdG significantly inhibited MMPs. 8-OHdG significantly decreased DCF-DA activation in Panc-1 pancreatic cancer cells and down-regulated NOXs (nox-1, nox-2, and nox-3). Finally, all of these anti-migration actions of 8-OHdG resulted in significant inhibition of EMT, as evidenced by the up-regulation of ZO-1 and claudin-1 and down-regulation of vimentin. We found significant inhibition of lung metastasis of Panc-1 cells by 8-OHdG. In conclusion, exogenous 8-OHdG had potent anti-metastasis effects mediated by either ERM or Rho GTPase inhibition in metastasis-prone pancreatic cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Flavagline analog FL3 induces cell cycle arrest in urothelial carcinoma cell of the bladder by inhibiting the Akt/PHB interaction to activate the GADD45α pathway.

    PubMed

    Yuan, Gangjun; Chen, Xin; Liu, Zhuowei; Wei, Wensu; Shu, Qinghai; Abou-Hamdan, Hussein; Jiang, Lijuan; Li, Xiangdong; Chen, Rixin; Désaubry, Laurent; Zhou, Fangjian; Xie, Dan

    2018-02-07

    Prohibitin 1 (PHB) is a potential target for the treatment of urothelial carcinoma of the bladder (UCB). FL3 is a newly synthesized agent that inhibits cancer cell proliferation by targeting the PHB protein; however, the effect of FL3 in UCB cells remains unexplored. FL3 was identified to be a potent inhibitor of UCB cell viability using CCK-8 (cell counting kit-8) assay. Then a series of in vitro and in vivo experiments were conducted to further demonstrate the inhibitory effect of FL3 on UCB cell proliferation and to determine the underlying mechanisms. FL3 inhibited UCB cell proliferation and growth both in vitro and in vivo. By targeting the PHB protein, FL3 inhibited the interaction of Akt and PHB as well as Akt-mediated PHB phosphorylation, which consequently decreases the localization of PHB in the mitochondria. In addition, FL3 treatment resulted in cell cycle arrest in the G2/M phase, and this inhibitory effect of FL3 could be mimicked by knockdown of PHB. Through the microarray analysis of mRNA expression after FL3 treatment and knockdown of PHB, we found that the mRNA expression of the growth arrest and DNA damage-inducible alpha (GADD45α) gene were significantly upregulated. When knocked down the expression of GADD45α, the inhibitory effect of FL3 on cell cycle was rescued, suggesting that FL3-induced cell cycle inhibition is GADD45α dependent. Our data provide that FL3 inhibits the interaction of Akt and PHB, which in turn activates the GADD45α-dependent cell cycle inhibition in the G2/M phase.

  7. Therapeutic effects of antibiotic drug tigecycline against cervical squamous cell carcinoma by inhibiting Wnt/β-catenin signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hui; Jiao, Shun; Li, Xin

    Aberrant activation of the Wnt/β-catenin signaling pathway is common in human cervical cancers and has great potential therapeutic value. We show that tigecycline, a FDA-approved antibiotic drug, targets cervical squamous cell carcinoma through inhibiting Wnt/β-catenin signaling pathway. Tigecycline is effective in inducing apoptosis, inhibiting proliferation and anchorage-independent colony formation of Hela cells. The inhibitory effects of tigecycline are further enhanced upon combination with paclitaxel, a most commonly used chemotherapeutic drug for cervical cancer. In a cervical xenograft model, tigecycline inhibits tumor growth as a single agent and its combination with paclitaxel significantly inhibits more tumor growth throughout the duration ofmore » treatment. We further show that tigecycline decreases level of both cytoplasmic and nuclear β-catenin and suppressed Wnt/β-catenin-mediated transcription through increasing levels of Axin 1 in Hela cells. In addition, stabilization or overexpression of β-catenin using pharmacological and genetic approaches abolished the effects of tigecycline in inhibiting proliferation and inducing apoptosis of Hela cells. Our study suggests that tigecycline is a useful addition to the treatment armamentarium for cervical cancer and targeting Wnt/β-catenin represents a potential therapeutic strategy in cervical cancer. - Highlights: • We repurposed the antibiotic drug tigecycline for cervical cancer treatment. • Tigecycline is effectively against cervical cancer cells in vitro and in vivo. • Combination of tigecycline and paclitaxel is synergistic in targeting Hela cells. • Tigecycline acts on Hela cells through inhibiting Wnt/β-catenin signaling.« less

  8. Inhibition of Regulatory Volume Decrease Enhances the Cytocidal Effect of Hypotonic Shock in Hepatocellular Carcinoma.

    PubMed

    Kudou, Michihiro; Shiozaki, Atsushi; Kosuga, Toshiyuki; Ichikawa, Daisuke; Konishi, Hirotaka; Morimura, Ryo; Komatsu, Shuhei; Ikoma, Hisashi; Fujiwara, Hitoshi; Okamoto, Kazuma; Hosogi, Shigekuni; Nakahari, Takashi; Marunaka, Yoshinori; Otsuji, Eigo

    2016-01-01

    Background : Hypotonic shock induces cytocidal effects through cell rupture, and cancer therapy based on this mechanism has been clinically administered to hepatocellular carcinoma patients. We herein investigated the effectiveness of hypotonic shock combined with the inhibition of regulatory volume decrease as cancer therapy for hepatocellular carcinoma. Methods : Morphological changes in human hepatocellular carcinoma cell lines were observed under a differential interference contrast microscope connected to a high-speed digital video camera. Cell volume changes under hypotonic shock with or without chloride, potassium, or water channel blockers were observed using a high-resolution flow cytometer. In order to investigate cytocidal effects, the number of surviving cells was compared after exposure to hypotonic solution with and without each channel blocker (re-incubation experiment). Results : Video recordings showed that cells exposed to distilled water rapidly swelled and then ruptured. Cell volume measurements revealed regulatory volume decrease under mild hypotonic shock, whereas severe hypotonic shock increased the number of broken fragments as a result of cell rupture. Moreover, regulatory volume decrease was inhibited in cells treated with each channel blocker. Re-incubation experiments showed the cytocidal effects of hypotonic shock in cells exposed to hypotonic solution, and additional treatments with each channel blocker enhanced these effects. Conclusion : The inhibition of regulatory volume decrease with chloride, potassium, or water channel blockers may enhance the cytocidal effects of hypotonic shock in hepatocellular carcinoma. Hypotonic shock combined with the inhibition of regulatory volume decrease was a more effective therapy than hypotonic shock alone.

  9. Inhibition of Regulatory Volume Decrease Enhances the Cytocidal Effect of Hypotonic Shock in Hepatocellular Carcinoma

    PubMed Central

    Kudou, Michihiro; Shiozaki, Atsushi; Kosuga, Toshiyuki; Ichikawa, Daisuke; Konishi, Hirotaka; Morimura, Ryo; Komatsu, Shuhei; Ikoma, Hisashi; Fujiwara, Hitoshi; Okamoto, Kazuma; Hosogi, Shigekuni; Nakahari, Takashi; Marunaka, Yoshinori; Otsuji, Eigo

    2016-01-01

    Background: Hypotonic shock induces cytocidal effects through cell rupture, and cancer therapy based on this mechanism has been clinically administered to hepatocellular carcinoma patients. We herein investigated the effectiveness of hypotonic shock combined with the inhibition of regulatory volume decrease as cancer therapy for hepatocellular carcinoma. Methods: Morphological changes in human hepatocellular carcinoma cell lines were observed under a differential interference contrast microscope connected to a high-speed digital video camera. Cell volume changes under hypotonic shock with or without chloride, potassium, or water channel blockers were observed using a high-resolution flow cytometer. In order to investigate cytocidal effects, the number of surviving cells was compared after exposure to hypotonic solution with and without each channel blocker (re-incubation experiment). Results: Video recordings showed that cells exposed to distilled water rapidly swelled and then ruptured. Cell volume measurements revealed regulatory volume decrease under mild hypotonic shock, whereas severe hypotonic shock increased the number of broken fragments as a result of cell rupture. Moreover, regulatory volume decrease was inhibited in cells treated with each channel blocker. Re-incubation experiments showed the cytocidal effects of hypotonic shock in cells exposed to hypotonic solution, and additional treatments with each channel blocker enhanced these effects. Conclusion: The inhibition of regulatory volume decrease with chloride, potassium, or water channel blockers may enhance the cytocidal effects of hypotonic shock in hepatocellular carcinoma. Hypotonic shock combined with the inhibition of regulatory volume decrease was a more effective therapy than hypotonic shock alone. PMID:27471568

  10. Regorafenib inhibited gastric cancer cells growth and invasion via CXCR4 activated Wnt pathway.

    PubMed

    Lin, Xiao-Lin; Xu, Qi; Tang, Lei; Sun, Li; Han, Ting; Wang, Li-Wei; Xiao, Xiu-Ying

    2017-01-01

    Regorafenib is an oral small-molecule multi kinase inhibitor. Recently, several clinical trials have revealed that regorafenib has an anti-tumor activity in gastric cancer. However, only part of patients benefit from regorafenib, and the mechanisms of regorafenib's anti-tumor effect need further demonstrating. In this study, we would assess the potential anti-tumor effects and the underlying mechanisms of regorafenib in gastric cancer cells, and explore novel biomarkers for patients selecting of regorafenib. The anti-tumor effects of regorafenib on gastric cancer cells were analyzed via cell proliferation and invasion. The underlying mechanisms were demonstrated using molecular biology techniques. We found that regorafenib inhibited cell proliferation and invasion at the concentration of 20μmol/L and in a dose dependent manner. The anti-tumor effects of regorafenib related to the decreased expression of CXCR4, and elevated expression and activation of CXCR4 could reverse the inhibition effect of regorafenib on gastric cancer cells. Further studies revealed that regorafenib reduced the transcriptional activity of Wnt/β-Catenin pathway and led to decreased expression of Wnt pathway target genes, while overexpression and activation of CXCR4 could attenuate the inhibition effect of regorafenib on Wnt/β-Catenin pathway. Our findings demonstrated that regorafenib effectively inhibited cell proliferation and invasion of gastric cancer cells via decreasing the expression of CXCR4 and further reducing the transcriptional activity of Wnt/β-Catenin pathway.

  11. Inhibition of HIV infection by caerin 1 antimicrobial peptides.

    PubMed

    VanCompernolle, Scott; Smith, Patricia B; Bowie, John H; Tyler, Michael J; Unutmaz, Derya; Rollins-Smith, Louise A

    2015-09-01

    The major mode of transmission of the human immunodeficiency virus (HIV) is by sexual intercourse. In the effort to halt the spread of HIV, one measure that holds great promise is the development of effective microbicides that can prevent transmission. Previously we showed that several amphibian antimicrobial peptides (AMPs) completely inhibit HIV infection of T cells while maintaining good viability of the T cell targets. These peptides also inhibited the transfer of HIV by dendritic cells (DCs) to T cells when added up to 8h after virus exposure. Here we report on the anti-HIV activity of 18 additional structurally related caerin 1 family peptides in comparison with our previous best candidate caerin 1.9. Nine peptides were equally effective or more effective in the inhibition of T cell infection and disruption of the HIV envelope as caerin 1.9. Of those nine peptides, three peptides (caerin 1.2, caerin 1.10, and caerin 1.20) exhibited excellent inhibition of HIV infectivity at low concentrations (12-25μM) and limited toxicity against target T cells and endocervical epithelial cells. There was a direct correlation between the effectiveness of the peptides in disruption of the viral envelope and their capacity to inhibit infection. Thus, several additional caerin 1 family peptides inhibit HIV infection have limited toxicity for vaginal epithelial cells, and would be good candidates for inclusion in microbicide formulations. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. The phosphoinositide 3-kinase α selective inhibitor BYL719 enhances the effect of the protein kinase C inhibitor AEB071 in GNAQ/GNA11-mutant uveal melanoma cells.

    PubMed

    Musi, Elgilda; Ambrosini, Grazia; de Stanchina, Elisa; Schwartz, Gary K

    2014-05-01

    G-protein mutations are one of the most common mutations occurring in uveal melanoma activating the protein kinase C (PKC)/mitogen-activated protein kinase and phosphoinositide 3-kinase (PI3K)/AKT pathways. In this study, we described the effect of dual pathway inhibition in uveal melanoma harboring GNAQ and GNA11 mutations via PKC inhibition with AEB071 (sotrastaurin) and PI3K/AKT inhibition with BYL719, a selective PI3Kα inhibitor. Growth inhibition was observed in GNAQ/GNA11-mutant cells with AEB071 versus no activity in wild-type cells. In the GNAQ-mutant cells, AEB071 decreased phosphorylation of myristoylated alanine-rich C-kinase substrate, a substrate of PKC, along with ERK1/2 and ribosomal S6, but persistent AKT activation was present. BYL719 had minimal antiproliferative activity in all uveal melanoma cell lines, and inhibited phosphorylation of AKT in most cell lines. In the GNA11-mutant cell line, similar effects were observed with ERK1/2 inhibition, mostly inhibited by BYL719. With the combination treatment, both GNAQ- and GNA11-mutant cell lines showed synergistic inhibition of cell proliferation and apoptotic cell death. In vivo studies correlated with in vitro findings showing reduced xenograft tumor growth with the combination therapy in a GNAQ-mutant model. These findings suggest a new therapy treatment option for G-protein-mutant uveal melanoma with a focus on specific targeting of multiple downstream pathways as part of combination therapy.

  13. The Phosphoinositide 3-Kinaseα Selective Inhibitor, BYL719, Enhances the Effect of the Protein Kinase C Inhibitor, AEB071, in GNAQ/GNA11 Mutant Uveal Melanoma Cells

    PubMed Central

    Musi, Elgilda; Ambrosini, Grazia; de Stanchina, Elisa; Schwartz, Gary K.

    2014-01-01

    G-protein mutations are one of the most common mutations occurring in uveal melanoma activating the protein kinase C (PKC)/mitogen-activated protein kinase (MAPK) and phosphoinositide 3-Kinase (PI3K)/AKT pathways. In this study, we described the effect of dual pathway inhibition in uveal melanoma harboring GNAQ and GNA11 mutations via PKC inhibition with AEB071 (Sotrastaurin) and PI3k/AKT inhibition with BYL719, a selective PI3Kα inhibitor. Growth inhibition was observed in GNAQ/GNA11 mutant cells with AEB071 versus no activity in WT cells. In the GNAQ-mutant cells, AEB071 decreased phosphorylation of MARCKS, a substrate of PKC, along with ERK1/2 and ribosomal S6, but persistent AKT activation was present. BYL719 had minimal anti-proliferative activity in all uveal melanoma cell lines, and inhibited phosphorylation of AKT in most cell lines. In the GNA11 mutant cell line, similar effects were observed with ERK1/2 inhibition, mostly inhibited by BYL719. With the combination treatment, both GNAQ and GNA11 mutant cell lines showed synergistic inhibition of cell proliferation and apoptotic cell death. In vivo studies correlated with in vitro findings showing reduced xenograft tumor growth with the combination therapy in a GNAQ mutant model. These findings suggest a new therapy treatment option for G-protein mutant uveal melanoma with a focus on specific targeting of multiple downstream pathways as part of combination therapy. PMID:24563540

  14. Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Israr; Muneer, Kashiff M.; Tamimi, Iman A.

    2013-07-01

    The inflammasome is a multi-protein complex which when activated regulates caspase-1 activation and IL-1β and IL-18 secretion. The NLRP3 (NACHT, LRR, and pyrin domain-containing protein 3) inflammasome is constitutively assembled and activated in human melanoma cells. We have examined the inhibitory effect of thymoquinone (2-isopropyl-5-methylbenzo-1,4-quinone), a major ingredient of black seed obtained from the plant Nigella sativa on metastatic human (A375) and mouse (B16F10) melanoma cell lines. We have assessed whether thymoquinone inhibits metastasis of melanoma cells by targeting NLRP3 subunit of inflammasomes. Using an in vitro cell migration assay, we found that thymoquinone inhibited the migration of both humanmore » and mouse melanoma cells. The inhibitory effect of thymoquinone on metastasis was also observed in vivo in B16F10 mouse melanoma model. The inhibition of migration of melanoma cells by thymoquinone was accompanied by a decrease in expression of NLRP3 inflammasome resulting in decrease in proteolytic cleavage of caspase-1. Inactivation of caspase-1 by thymoquinone resulted in inhibition of IL-1β and IL-18. Treatment of mouse melanoma cells with thymoquinone also inhibited NF-κB activity. Furthermore, inhibition of reactive oxygen species (ROS) by thymoquinone resulted in partial inactivation of NLRP3 inflammasome. Thus, thymoquinone exerts its inhibitory effect on migration of human and mouse melanoma cells by inhibition of NLRP3 inflammasome. Thus, our results indicate that thymoquinone can be a potential immunotherapeutic agent not only as an adjuvant therapy for melanoma, but also, in the control and prevention of metastatic melanoma. - Highlights: • Thymoquinone causes inhibition of migration of melanoma cells. • Thymoquinone causes inhibition of metastasis in vivo. • Thymoquinone causes inhibition of migration by activation of NLRP3 inflammasome.« less

  15. Inhibition of mTOR/eIF4E by anti-viral drug ribavirin effectively enhances the effects of paclitaxel in oral tongue squamous cell carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Dehua; Chen, Hujie; Tang, Jing

    Upregulation of eIF4E is associated with poor clinical outcome in many human cancers and represents a potential therapeutic target. However, the function of eIF4E remains unknown in oral tongue squamous cell carcinoma (OTSCC). In this work, we show that ribavirin, an anti-viral drug, effectively augments sensitivity of OTSCC cells to paclitaxel via inhibiting mTOR/eIF4E signaling pathway. Ribavirin dose-dependently inhibits proliferation and induces apoptosis in SCC-9 and CAL27 cells. Combination of ribavirin and paclitaxel are more effective in inhibiting proliferation and inducing apoptosis in OTSCC cells. Importantly, the in vivo efficacy of ribavirin and its synergism with paclitaxel is confirmed by two independentmore » OTSCC xenograft mouse models. Mechanistically, ribavirin significantly decreases mTOR/eIF4E signaling pathway in OTSCC cells via suppressing phosphorylation of Akt, mTOR, 4EBP1 and eIF4E. Overexpression of the phosphor-mimetic form of eIF4E (eIF4E S209D) but not the nonphosphorylatable form (eIF4E S209A) reverses the effects of ribavirin, confirming that eIF4E inhibition is the mechanism of action of ribavirin in OTSCC cells. In addition, eIF4E depletion significantly enhances the anti-proliferative and pro-apoptotic effects of paclitaxel, demonstrating the critical role of eIF4E in OTSCC cell response to paclitaxel. Our work is the first to demonstrate the efficacy of ribavirin as a single agent and synergism as combination with paclitaxel in OTSCC in vitro and in vivo. Our findings also demonstrate the therapeutic value of inhibiting eIF4E in OTSCC treatment. - Highlights: • Ribavirin effectively targets OTSCC in vitro and in vivo. • Ribavirin acts synergistically with paclitaxel in OTSCC cells. • Ribavirin inhibits Akt/mTOR/eIF4E signaling in OTSCC. • eIF4E inhibition sensitizes OTSCC cell response to paclitaxel.« less

  16. Dasatinib inhibits both osteoclast activation and prostate cancer PC-3 cell-induced osteoclast formation

    PubMed Central

    Araujo, John C.; Poblenz, Ann; Corn, Paul G.; Parikh, Nila U.; Starbuck, Michael W.; Thompson, Jerry T.; Lee, Francis; Logothetis, Christopher J.; Darnay, Bryant G.

    2013-01-01

    Purpose Therapies to target prostate cancer bone metastases have only limited effects. New treatments are focused on the interaction between cancer cells, bone marrow cells and the bone matrix. Osteoclasts play an important role in the development of bone tumors caused by prostate cancer. Since Src kinase has been shown to be necessary for osteoclast function, we hypothesized that dasatinib, a Src family kinase inhibitor, would reduce osteoclast activity and prostate cancer (PC-3) cell-induced osteoclast formation. Results Dasatinib inhibited RANKL-induced osteoclast differentiation of bone marrow-derived monocytes with an EC50 of 7.5 nM. PC-3 cells, a human prostate cancer cell line, were able to differentiate RAW 264.7 cells, a murine monocytic cell line, into osteoclasts and dasatinib inhibited this differentiation. In addition, conditioned medium from PC-3 cell cultures was able to differentiate RAW 264.7 cells into osteoclasts and this too, was inhibited by dasatinib. Even the lowest concentration of dasatinib, 1.25 nmol, inhibited osteoclast differentiation by 29%. Moreover, dasatinib inhibited osteoclast activity by 58% as measured by collagen 1 release. Experimental design We performed in vitro experiments utilizing the Src family kinase inhibitor dasatinib to target osteoclast activation as a means of inhibiting prostate cancer bone metastases. Conclusion Dasatinib inhibits osteoclast differentiation of mouse primary bone marrow-derived monocytes and PC-3 cell-induced osteoclast differentiation. Dasatinib also inhibits osteoclast degradation activity. Inhibiting osteoclast differentiation and activity may be an effective targeted therapy in patients with prostate cancer bone metastases. PMID:19855158

  17. Geraniol and beta-ionone inhibit proliferation, cell cycle progression, and cyclin-dependent kinase 2 activity in MCF-7 breast cancer cells independent of effects on HMG-CoA reductase activity.

    PubMed

    Duncan, Robin E; Lau, Dominic; El-Sohemy, Ahmed; Archer, Michael C

    2004-11-01

    3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase catalyzes the formation of mevalonate, a precursor of cholesterol that is also required for cell proliferation. Mevalonate depletion results in a G1 phase cell cycle arrest that is mediated in part by impaired activity of cyclin-dependent kinase (CDK) 2, and decreased expression of positive regulators of G1 to S phase progression. Inhibition of mevalonate synthesis may, therefore, be a useful strategy to impair the growth of malignant cells. Plant isoprenoids, including beta-ionone and geraniol, have previously been shown to inhibit rodent mammary tumor development, and rodent and avian hepatic HMG-CoA reductase activity. We hypothesized that the putative anti-proliferative and cell cycle inhibitory effects of beta-ionone and geraniol on MCF-7 human breast cancer cells in culture are mediated by mevalonate depletion resulting from inhibition of HMG-CoA reductase activity. Flow cytometric analysis showed a G1 arrest in isoprenoid-treated MCF-7 cells, and also a G2/M arrest at higher concentrations of isoprenoids. These compounds minimally affected the growth of MCF-10F normal breast epithelial cells. Both beta-ionone and geraniol inhibited CDK 2 activity and dose-dependently decreased the expression of cyclins D1, E, and A, and CDK 2 and 4, without changing the expression of p21cip1 or p27kip1. Although both beta-ionone and geraniol also inhibited MCF-7 proliferation, only geraniol inhibited HMG-CoA reductase activity. While these effects were significantly correlated (r2=0.89, P <0.01), they were not causally related, since exogenous mevalonate did not restore growth in geraniol-inhibited cells. These findings indicate that mechanisms other than impaired mevalonate synthesis mediate the anti-proliferative and cell cycle regulatory effects of beta-ionone and geraniol in human breast cancer cells.

  18. Inhibition of PDGFR by CP-673451 induces apoptosis and increases cisplatin cytotoxicity in NSCLC cells via inhibiting the Nrf2-mediated defense mechanism.

    PubMed

    Yang, Yang; Deng, Yanchao; Chen, Xiangcui; Zhang, Jiahao; Chen, Yueming; Li, Huachao; Wu, Qipeng; Yang, Zhicheng; Zhang, Luyong; Liu, Bing

    2018-05-29

    Platelet-derived growth factor receptors (PDGFRs) are abundantly expressed by stromal cells in the non-small cell lung cancer (NSCLC) microenvironment, and in a subset of cancer cells, usually with their overexpression and/or activating mutation. However, the effect of PDGFR inhibition on lung cancer cells themselves has been largely neglected. In this study, we investigated the anticancer activity of CP-673451, a potent and selective inhibitor of PDGFRβ, on NSCLC cell lines (A549 and H358) and the potential mechanism. The results showed that inhibition of PDGFRβ by CP-673451 induced a significant increase in cell apoptosis, accompanied by ROS accumulation. However, CP-673451 exerted less cytotoxicity in normal lung epithelial cell line BEAS-2B cells determined by MTT and apoptosis assay. Elimination of ROS by NAC reversed the CP-673451-induced apoptosis in NSCLC cells. Furthermore, CP-673451 down-regulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) probably through inhibition of PI3K/Akt pathway. Rescue of Nrf2 activity counteracted the effects of CP-673451 on cell apoptosis and ROS accumulation. Silencing PDGFRβ expression by PDGFRβ siRNA exerted similar effects with CP-673451 in A549 cells, and when PDGFRβ was knockdowned by PDGFRβ siRNA, CP-673451 produced no additional effects on cell viability, ROS and GSH production, Nrf2 expression as well as PI3K/Akt pathway activity. Specifically, Nrf2 plays an indispensable role in NSCLC cell sensitivity to platinum-based treatments and we found that combination of CP-673451 and cisplatin produced a synergistic anticancer effect and substantial ROS production in vitro. Therefore, these results clearly demonstrate the effectiveness of inhibition of PDGFRβ against NSCLC cells and strongly suggest that CP-673451 may be a promising adjuvant chemotherapeutic drug. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Curcumin directly inhibits the transport activity of GLUT1

    PubMed Central

    Gunnink, Leesha K.; Alabi, Ola D.; Kuiper, Benjamin D.; Gunnink, Stephen M.; Schuiteman, Sam J.; Strohbehn, Lauren E.; Hamilton, Kathryn E.; Wrobel, Kathryn E.; Louters, Larry L.

    2016-01-01

    Curcumin, a major ingredient in turmeric, has a long history of medicinal applications in a wide array of maladies including treatment for diabetes and cancer. Seemingly counterintuitive to the documented hypoglycemic effects of curcumin, however, a recent report indicates that curcumin directly inhibits glucose uptake in adipocytes. The major glucose transporter in adipocytes is GLUT4. Therefore, this study investigates the effects of curcumin in cell lines where the major transporter is GLUT1. We report that curcumin has an immediate inhibitory effect on basal glucose uptake in L929 fibroblast cells with a maximum inhibition of 80% achieved at 75 μM curcumin. Curcumin also blocks activation of glucose uptake by azide, glucose deprivation, hydroxylamine, or phenylarsine oxide. Inhibition does not increase with exposure time and the inhibitory effects reverse within an hour. Inhibition does not appear to involve a reaction between curcumin and the thiol side chain of a cysteine residue since neither prior treatment of cells with iodoacetamide nor curcumin with cysteine alters curcumin’s inhibitory effects. Curcumin is a mixed inhibitor reducing the Vmax of 2DG transport by about half with little effect on the Km. The inhibitory effects of curcumin are not additive to the effects of cytochalasin B and 75 μM curcumin actually reduces specific cytochalasin B binding by 80%. Taken together, the data suggest that curcumin binds directly to GLUT1 at a site that overlaps with the cytochalasin B binding site and thereby inhibits glucose transport. A direct inhibition of GLUT proteins in intestinal epithelial cells would likely reduce absorption of dietary glucose and contribute to a hypoglycemic effect of curcumin. Also, inhibition of GLUT1 activity might compromise cancer cells that overexpress GLUT1 and be another possible mechanism for the documented anticancer effects of curcumin. PMID:27039889

  20. Osthole inhibits the invasive ability of human lung adenocarcinoma cells via suppression of NF-κB-mediated matrix metalloproteinase-9 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kao, Shang-Jyh; School of Respiratory Therapy, Taipei Medical University, Taipei Taiwan; Su, Jen-Liang

    The induction of matrix metalloproteinase (MMP)-9 is particularly important for the invasiveness of various cancer cells. Osthole, a natural coumarin derivative extracted from traditional Chinese medicines, is known to inhibit the proliferation of a variety of tumor cells, but the effect of osthole on the invasiveness of tumor cells is largely unknown. This study determines whether and by what mechanism osthole inhibits invasion in CL1-5 human lung adenocarcinoma cells. Herein, we found that osthole effectively inhibited the migratory and invasive abilities of CL1-5 cells. A zymographic assay showed that osthole inhibited the proteolytic activity of MMP-9 in CL1-5 cells. Inhibitionmore » of migration, invasion, and MMP2 and/or MMP-9 proteolytic activities was also observed in other lung adenocarcinoma cell lines (H1299 and A549). We further found that osthole inhibited MMP-9 expression at the messenger RNA and protein levels. Moreover, a chromatin immunoprecipitation assay showed that osthole inhibited the transcriptional activity of MMP-9 by suppressing the DNA binding activity of nuclear factor (NF)-κB in the MMP-9 promoter. Using reporter assays with point-mutated promoter constructs further confirmed that the inhibitory effect of osthole requires an NF-κB binding site on the MMP-9 promoter. Western blot and immunofluorescence assays demonstrated that osthole inhibited NF-κB activity by inhibiting IκB-α degradation and NF-κB p65 nuclear translocation. In conclusion, we demonstrated that osthole inhibits NF-κB-mediated MMP-9 expression, resulting in suppression of lung cancer cell invasion and migration, and osthole might be a potential agent for preventing the invasion and metastasis of lung cancer. -- Highlights: ► Osthole treatment inhibits lung adenocarcinoma cells migration and invasion. ► Osthole reduces the expression and proteolytic activity of MMP-9. ► Osthole inhibits MMP-9 transcription via suppression of NF-κB binding activity. ► Osthole inhibits IκBα degradation and NF-κB nucleus translocation. ► Osthole suppresses EMT by repressing vimentin and inducing E-cadherin expression.« less

  1. Suppression of Calpain Expression by NSAIDs is Associated with Inhibition of Cell Migration in Rat Duodenum

    PubMed Central

    Silver, Kristopher; Littlejohn, A.; Thomas, Laurel; Bawa, Bhupinder; Lillich, James D.

    2017-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for the alleviation of pain and inflammation, but these drugs are also associated with a suite of negative side effects. Gastrointestinal (GI) toxicity is particularly concerning since it affects an estimated 70% of individuals taking NSAIDs routinely, and evidence suggests the majority of toxicity is occurring in the small intestine. Traditionally, NSAID-induced GI toxicity has been associated with indiscriminate inhibition of cyclooxygenase isoforms, but other mechanisms, including inhibition of cell migration, intestinal restitution, and wound healing, are likely to contribute to toxicity. Previous efforts demonstrated that treatment of cultured intestinal epithelial cells (IEC) with NSAIDs inhibits expression and activity of calpain proteases, but the effects of specific inhibition of calpain expression in vitro or the effects of NSAIDs on intestinal cell migration in vivo remain to be determined. Accordingly, we examined the effect of suppression of calpain protease expression with siRNA on cell migration in cultured IECs and evaluated the effects of NSAID treatment on epithelial cell migration and calpain protease expression in rat duodenum. Our results show that calpain siRNA inhibits protease expression and slows migration in cultured IECs. Additionally, NSAID treatment of rats slowed migration up the villus axis and suppressed calpain expression in duodenal epithelial cells. Our results are supportive of the hypothesis that suppression of calpain expression leading to slowing of cell migration is a potential mechanism through which NSAIDs cause GI toxicity. PMID:28342779

  2. miR-2861 as novel HDAC5 inhibitor in CHO cells enhances productivity while maintaining product quality.

    PubMed

    Fischer, Simon; Paul, Albert Jesuran; Wagner, Andreas; Mathias, Sven; Geiss, Melanie; Schandock, Franziska; Domnowski, Martin; Zimmermann, Jörg; Handrick, René; Hesse, Friedemann; Otte, Kerstin

    2015-10-01

    Histone deacetylase (HDAC) inhibitors have been exploited for years to improve recombinant protein expression in mammalian production cells. However, global HDAC inhibition is associated with negative effects on various cellular processes. microRNAs (miRNAs) have been shown to regulate gene expression in almost all eukaryotic cell types by controlling entire cellular pathways. Since miRNAs recently have gained much attention as next-generation cell engineering tool to improve Chinese hamster ovary (CHO) cell factories, we were interested if miRNAs are able to specifically repress HDAC expression in CHO cells to circumvent limitations of unspecific HDAC inhibition. We discovered a novel miRNA in CHO cells, miR-2861, which was shown to enhance productivity in various recombinant CHO cell lines. Furthermore, we demonstrate that miR-2861 might post-transcriptionally regulate HDAC5 in CHO cells. Intriguingly, siRNA-mediated HDAC5 suppression could be demonstrated to phenocopy pro-productive effects of miR-2861 in CHO cells. This supports the notion that miRNA-induced inhibition of HDAC5 may contribute to productivity enhancing effects of miR-2861. Furthermore, since product quality is fundamental to safety and functionality of biologics, we examined the effect of HDAC inhibition on critical product quality attributes. In contrast to unspecific HDAC inhibition using VPA, enforced expression of miR-2861 did not negatively influence antibody aggregation or N-glycosylation. Our findings highlight the superiority of miRNA-mediated inhibition of specific HDACs and present miR-2861 as novel cell engineering tool for improving CHO manufacturing cells. © 2015 Wiley Periodicals, Inc.

  3. Niclosamide suppresses acute myeloid leukemia cell proliferation through inhibition of CREB-dependent signaling pathways

    PubMed Central

    Chae, Hee-Don; Cox, Nick; Dahl, Gary V.; Lacayo, Norman J.; Davis, Kara L.; Capolicchio, Samanta; Smith, Mark; Sakamoto, Kathleen M.

    2018-01-01

    CREB (cAMP Response Element Binding protein) is a transcription factor that is overexpressed in primary acute myeloid leukemia (AML) cells and associated with a decreased event-free survival and increased risk of relapse. We recently reported a small molecule inhibitor of CREB, XX-650-23, which inhibits CREB activity in AML cells. Structure-activity relationship analysis for chemical compounds with structures similar to XX-650-23 led to the identification of the anthelminthic drug niclosamide as a potent anti-leukemic agent that suppresses cell viability of AML cell lines and primary AML cells without a significant decrease in colony forming activity of normal bone marrow cells. Niclosamide significantly inhibited CREB function and CREB-mediated gene expression in cells, leading to apoptosis and G1/S cell cycle arrest with reduced phosphorylated CREB levels. CREB knockdown protected cells from niclosamide treatment-mediated cytotoxic effects. Furthermore, treatment with a combination of niclosamide and CREB inhibitor XX-650-23 showed an additive anti-proliferative effect, consistent with the hypothesis that niclosamide and XX-650-23 regulate the same targets or pathways to inhibit proliferation and survival of AML cells. Niclosamide significantly inhibited the progression of disease in AML patient-derived xenograft (PDX) mice, and prolonged survival of PDX mice. Niclosamide also showed synergistic effects with chemotherapy drugs to inhibit AML cell proliferation. While chemotherapy antagonized the cytotoxic potential of niclosamide, pretreatment with niclosamide sensitized cells to chemotherapeutic drugs, cytarabine, daunorubicin, and vincristine. Therefore, our results demonstrate niclosamide as a potential drug to treat AML by inducing apoptosis and cell cycle arrest through inhibition of CREB-dependent pathways in AML cells. PMID:29435104

  4. Methadone but not morphine inhibits lubiprostone-stimulated Cl- currents in T84 intestinal cells and recombinant human ClC-2, but not CFTR Cl- currents.

    PubMed

    Cuppoletti, John; Chakrabarti, Jayati; Tewari, Kirti; Malinowska, Danuta H

    2013-05-01

    In clinical trials, methadone, but not morphine, appeared to prevent beneficial effects of lubiprostone, a ClC-2 Cl(-) channel activator, on opioid-induced constipation. Effects of methadone and morphine on lubiprostone-stimulated Cl(-) currents were measured by short circuit current (Isc) across T84 cells. Whole cell patch clamp of human ClC-2 (hClC-2) stably expressed in HEK293 cells and in a high expression cell line (HEK293EBNA) as well as human CFTR (hCFTR) stably expressed in HEK293 cells was used to study methadone and morphine effects on recombinant hClC-2 and hCFTR Cl(-) currents. Methadone but not morphine inhibited lubiprostone-stimulated Isc in T84 cells with half-maximal inhibition at 100 nM. Naloxone did not affect lubiprostone stimulation or methadone inhibition of Isc. Lubiprostone-stimulated Cl(-) currents in hClC-2/HEK293 cells, but not forskolin/IBMX-stimulated Cl(-) currents in hCFTR/HEK293 cells, were inhibited by methadone, but not morphine. HEK293EBNA cells expressing hClC-2 showed time-dependent, voltage-activated, CdCl2-inhibited Cl(-) currents in the absence (control) and the presence of lubiprostone. Methadone, but not morphine, inhibited control and lubiprostone-stimulated hClC-2 Cl(-) currents with half-maximal inhibition at 100 and 200-230 nM, respectively. Forskolin/IBMX-stimulated hClC-2 Cl(-) currents were also inhibited by methadone. Myristoylated protein kinase inhibitor (a specific PKA inhibitor) inhibited forskolin/IBMX- but not lubiprostone-stimulated hClC-2 Cl(-) currents. Methadone caused greater inhibition of lubiprostone-stimulated currents added before patching (66.1 %) compared with after patching (28.7 %). Methadone caused inhibition of lubiprostone-stimulated Cl(-) currents in T84 cells and control; lubiprostone- and forskolin/IBMX-stimulated recombinant hClC-2 Cl(-) currents may be the basis for reduced efficacy of lubiprostone in methadone-treated patients.

  5. Sulforaphane inhibits TGF-β-induced epithelial-mesenchymal transition of hepatocellular carcinoma cells via the reactive oxygen species-dependent pathway.

    PubMed

    Wu, Jinsheng; Han, Jingli; Hou, Benxin; Deng, Chengwei; Wu, Huanliang; Shen, Liangfang

    2016-05-01

    Sulforaphane is recognized as a safe antitumor agent derived from various cruciferous vegetables, including broccoli. It has been demonstrated that sulforaphase is a potent antitumor agent in diverse cancers. However, its effect on hepatocellular carcinoma remains largely unknown. Here, we show that sulforaphane inhibits TGF-β-induced epithelial-mesenchymal transition of hepatocellular carcinoma cell via the reactive oxygen species-dependent pathway. We found sulforaphane inhibited hepatocellular carcinoma cell proliferation in a dose- and time-dependent manner. Sulforaphane induced G0/G1 phase cell cycle arrest and promoted cell apoptosis. A set of experiments showed that sulforaphase inhibited hepatocellular carcinoma cell migration and invasion, inhibited the formation of fibroblast like mesenchymal cells and the expression of Vimentin, but increased the expression of E-cadherin, suggesting sulforaphane suppresses epithelial-mesenchymal transition (EMT) process. Cotreatment with N-acetyl-L-cysteine inhibited sulforaphane-inhibited invasion and upregulation of E-cadherin and almost completely abolished the sulforaphane-induced expression of Vimentin. The effect of sulforaphane on the growth of hepatocellular carcinoma cells was confirmed by a xenograft tumor growth model. All our finding indicated that sulforaphane is a promising and safe strategy for treating hepatocellular carcinoma.

  6. Sulforaphane inhibits hypoxia-induced HIF-1α and VEGF expression and migration of human colon cancer cells.

    PubMed

    Kim, Dong Hwan; Sung, Bokyung; Kang, Yong Jung; Hwang, Seong Yeon; Kim, Min Jeong; Yoon, Jeong-Hyun; Im, Eunok; Kim, Nam Deuk

    2015-12-01

    The effects of sulforaphane (a natural product commonly found in broccoli) was investigated on hypoxia inducible factor-1α (HIF-1α) expression in HCT116 human colon cancer cells and AGS human gastric cancer cells. We found that hypoxia-induced HIF-1α protein expression in HCT116 and AGS cells, while treatment with sulforaphane markedly and concentration-dependently inhibited HIF-1α expression in both cell lines. Treatment with sulforaphane inhibited hypoxia-induced vascular endothelial growth factor (VEGF) expression in HCT116 cells. Treatment with sulforaphane modulated the effect of hypoxia on HIF-1α stability. However, degradation of HIF-1α by sulforaphane was not mediated through the 26S proteasome pathway. We also found that the inhibition of HIF-1α by sulforaphane was not mediated through AKT and extracellular signal-regulated kinase phosphorylation under hypoxic conditions. Finally, hypoxia-induced HCT116 cell migration was inhibited by sulforaphane. These data suggest that sulforaphane may inhibit human colon cancer progression and cancer cell angiogenesis by inhibiting HIF-1α and VEGF expression. Taken together, these results indicate that sulforaphane is a new and potent chemopreventive drug candidate for treating patients with human colon cancer.

  7. Optimization of in vitro inhibition of HT-29 colon cancer cell cultures by Solanum tuberosum L. extracts.

    PubMed

    Zuber, T; Holm, D; Byrne, P; Ducreux, L; Taylor, M; Kaiser, M; Stushnoff, C

    2015-01-01

    Secondary metabolites in potato have been reported to possess bioactive properties, including growth inhibition of cancer cells. Because potatoes are widely consumed globally, potential health benefits may have broad application. Thus we investigated growth inhibition of HT-29 colon cancer cell cultures by extracts from 13 diverse genetic breeding clones. Extracts from three pigmented selections (CO97226-2R/R, CO97216-1P/P, CO04058-3RW/RW) inhibited growth of in vitro HT-29 cell cultures more effectively than other clones tested. While inhibition was highest from pigmented selections and pigmented tuber tissue sectors, not all pigmented breeding lines tested had appreciable inhibitory properties. Thus, inhibition was not uniquely linked to pigmentation. Immature tubers had the highest inhibitory properties, and in most cases mature tubers retained very low inhibition properties. Flowers and skins inhibited strongly at lower extract concentrations. An extract consisting of 7.2 mg mL⁻¹ cell culture medium was the lowest effective concentration. While raw tuber extracts inhibited most effectively, a few clones at higher concentrations retained inhibition after cooking. Heated whole tubers retained higher inhibition than heated aqueous extracts. While all aqueous extracts from the two tuber selections (CO97216-1P/P and CO97226-2R/R) inhibited HT-29 cell cultures, inhibition was significantly enhanced in purple pigmented tubers of CO97216-1P/P prepared cryogenically as liquid nitrogen powders compared to extracts from freeze dried samples. Upregulation of caspase-3 protease activity, indicative of apoptosis, was highest among the most inhibitory clone samples. The unique sectorial red pigment expressing selection (CO04058-3RW/RW) provided a model system that isolated expression in pigmented sectors, and thus eliminated developmental, environmental and genetic confounding.

  8. Tangeretin and its metabolite 4'-hydroxytetramethoxyflavone attenuate EGF-stimulated cell cycle progression in hepatocytes; role of inhibition at the level of mTOR/p70S6K.

    PubMed

    Cheng, Z; Surichan, S; Ruparelia, K; Arroo, R; Boarder, M R

    2011-04-01

    The mechanisms by which the dietary compound tangeretin has anticancer effects may include acting as a prodrug, forming an antiproliferative product in cancer cells. Here we show that tangeretin also inhibits cell cycle progression in hepatocytes and investigate the role of its primary metabolite 4'-hydroxy-5,6,7,8-tetramethoxyflavone (4'-OH-TMF) in this effect. We used epidermal growth factor (EGF)-stimulated rat hepatocytes, with [(3)H]-thymidine incorporation into DNA as an index of progression to S-phase of the cell cycle, and Western blots for phospho-proteins involved in the cell signalling cascade. Incubation of tangeretin with microsomes expressing CYP1A, or with hepatocytes, generated a primary product we identified as 4'-OH-TMF. Low micromolar concentrations of tangeretin or 4'-OH-TMF gave a concentration-dependent inhibition of EGF-stimulated progression to S-phase while having little effect on cell viability. To determine whether time for conversion of tangeretin to an active metabolite would enhance the inhibitory effect we used long pre-incubations; this reduced the inhibitory effect, in parallel with a reduction in the concentration of tangeretin. The EGF-stimulation of hepatocyte cell cycle progression requires signalling through Akt/mTOR/p70S6K kinase cascades. The tangeretin metabolite 4'-OH-TMF selectively inhibited S6K phosphorylation in the absence of significant inhibition of upstream Akt activity, suggesting an effect at the level of mTOR. Tangeretin and 4'-OH-TMF both inhibit cell cycle progression in primary hepatocytes. The inhibition of p70S6K phosphorylation by 4'-OH-TMF raises the possibility that inhibition of the mTOR pathway may contribute to the anticancer influence of a flavonoid-rich diet. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  9. Differential effects on cell motility, embryonic stem cell self-renewal and senescence by diverse Src kinase family inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamm, Christoffer, E-mail: christoffer.tamm@imbim.uu.se; Galito, Sara Pijuan, E-mail: sara.pijuan@imbim.uu.se; Anneren, Cecilia, E-mail: cecilia.anneren@imbim.uu.se

    2012-02-15

    The Src family of non-receptor tyrosine kinases (SFKs) has been shown to play an intricate role in embryonic stem (ES) cell maintenance. In the present study we have focused on the underlying molecular mechanisms responsible for the vastly different effects induced by various commonly used SFK inhibitors. We show that several diverse cell types, including fibroblasts completely lacking SFKs, cannot undergo mitosis in response to SU6656 and that this is caused by an unselective inhibition of Aurora kinases. In contrast, PP2 and PD173952 block motility immediately upon exposure and forces cells to grow in dense colonies. The subsequent halt inmore » proliferation of fibroblast and epithelial cells in the center of the colonies approximately 24 h post-treatment appears to be caused by cell-to-cell contact inhibition rather than a direct effect of SFK kinase inhibition. Interestingly, in addition to generating more homogenous and dense ES cell cultures, without any diverse effect on proliferation, PP2 and PD173652 also promote ES cell self-renewal by reducing the small amount of spontaneous differentiation typically observed under standard ES cell culture conditions. These effects could not be mirrored by the use of Gleevec, a potent inhibitor of c-Abl and PDGFR kinases that are also inhibited by PP2. -- Highlights: Black-Right-Pointing-Pointer SFK inhibitor SU6656 induces senescence in mouse ES cells. Black-Right-Pointing-Pointer SU6656 inhibits mitosis in a SFK-independent manner via cross-selectivity for Aurora kinases. Black-Right-Pointing-Pointer SFK inhibitor PP2 impairs cell motility in various cell lines, including mouse ES cells. Black-Right-Pointing-Pointer Ensuing impeded motility, PP2 inhibits proliferation of various cells lines except for mouse ES cells. Black-Right-Pointing-Pointer SFK inhibitors PP2 and PD173952 impede spontaneous differentiation in standard mouse ES culture maintenance.« less

  10. mTOR and MEK1/2 inhibition differentially modulate tumor growth and the immune microenvironment in syngeneic models of oral cavity cancer

    PubMed Central

    Cash, Harrison; Shah, Sujay; Moore, Ellen; Caruso, Andria; Uppaluri, Ravindra; Van Waes, Carter; Allen, Clint

    2015-01-01

    We investigated the effects of mTOR and MEK1/2 inhibition on tumor growth and the tumor microenvironment in immunogenic and poorly immunogenic models of murine oral cancer. In vitro, rapamycin and PD901 inhibited signaling through expected downstream targets, but only PD901 reduced viability and altered function of MOC cells. Following transplantation of MOC cells into immune-competent mice, effects on both cancer and infiltrating immune cells were characterized following rapamycin and/or PD901 treatment for 21 days. In vivo, both rapamycin and PD901 inhibition reduced primary growth of established MOC tumors on treatment. Following withdrawal of PD901, rapid rebound of tumor growth limited survival, whereas durable tumor control was observed following rapamycin treatment in immunogenic MOC1 tumors despite more robust inhibition of oncogenic signaling by PD901. Characterization of the immune microenvironment revealed diminished infiltration and activation of antigen-specific CD8+ T-cells and other immune cells following PD901 but not rapamycin in immunogenic tumors. Subsequent in vitro T-cell assays validated robust inhibition of T-cell expansion and activation following MEK inhibition compared to mTOR inhibition. CD8 cell depletion abrogated rapamycin-induced primary tumor growth inhibition in MOC1 mice. These data have critical implications in the design of combination targeted and immune therapies in oral cancer. PMID:26506415

  11. Decursin chemosensitizes human multiple myeloma cells through inhibition of STAT3 signaling pathway.

    PubMed

    Kim, Hyun Jung; Kim, Sung-Moo; Park, Kyung-Ran; Jang, Hyeung-Jin; Na, Young-Soon; Ahn, Kyoo Seok; Kim, Sung-Hoon; Ahn, Kwang Seok

    2011-02-01

    Recent reports have indicated that decursin can induce apoptosis, suppress tumor growth, and inhibit angiogenesis. In this experiment, we investigated how decursin could potentiate the cytotoxic effects of bortezomib in human multiple myeloma cells. We found that decursin inhibited cell viability in U266, MM.1S and ARH77 cells, but not in peripheral blood mononuclear cells (PBMC). Decursin-induced apoptosis through the activation of caspase-8, -9, and -3 in U266 cells. This correlated with the down-regulating of cyclin D1, bcl-2, bcl-xL, survivin, and the vascular endothelial growth factor (VEGF), which are all regulated by the activation of signal transducers and the activator of transcription 3 (STAT3). Indeed, decursin inhibited constitutive STAT3 activation through inhibition of the activation of Janus-activated kinase 2 (JAK2) in U266 cells. In addition, decursin inhibited interleukin-6-inducible STAT3 activation in a time-dependent manner in MM.1S cells. Interestingly, decursin significantly potentiated the apoptotic effects of bortezomib in U266 cells. These effects of decursin were correlated with the suppression of constitutive STAT3 activation in U266 cells. Overall, these results suggest that decursin is a novel blocker of STAT3 activation and it may be a potential candidate for overcoming chemo-resistance through suppression of this signaling. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  12. 1,25(OH)2D3 attenuates TGF-β1/β2-induced increased migration and invasion via inhibiting epithelial–mesenchymal transition in colon cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shanwen; Zhu, Jing; Zuo, Shuai

    1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) has been reported to inhibit proliferation and migration of multiple types of cancer cells. However, the mechanism underlying its anti-metastasis effect is not fully illustrated. In this study, the effect of 1,25(OH)2D3 on TGF-β1/β2-induced epithelial–mesenchymal transition (EMT) is tested in colon cancer cells. The results suggest that 1,25(OH)2D3 inhibited TGF-β1/β2-induced increased invasion and migration of in SW-480 and HT-29 cells. 1,25(OH)2D3 also inhibited the cadherin switch in SW-480 and HT-29 cells. TGF-β1/β2-induced increased expression of EMT-related transcription factors was also inhibited by 1,25(OH)2D3. 1,25(OH)2D3 also inhibited the secretion of MMP-2 and MMP-9 and increased expression of F-actinmore » induced by TGF-β1/β2 in SW-480 cells. Taken together, this study suggests that the suppression of EMT might be one of the mechanisms underlying the anti-metastasis effect of 1,25(OH)2D3 in colon cancer cells. - Highlights: • TGF-β1/β2-induced model of EMT was used in this study to test the effect of 1,25(OH)2D3 on EMT in colon cancer cells. • 1,25(OH)2D3 inhibited TGF-β1/β2-induced increased migration and invasion. • 1,25(OH)2D3 inhibited TGF-β1/β2-induced increased level of EMT-related transcription factors. • 1,25(OH)2D3 inhibited TGF-β1/β2-induced increased expression of F-actin in SW-480 cells.« less

  13. Naringin suppresses the development of glioblastoma by inhibiting FAK activity.

    PubMed

    Li, Jinjiang; Dong, Yushu; Hao, Guangzhi; Wang, Bao; Wang, Julei; Liang, Yong; Liu, Yangyang; Zhen, Endi; Feng, Dayun; Liang, Guobiao

    2017-01-01

    As the most common and lethal primary malignant brain cancer, glioblastoma is hard to timely diagnose and sensitive therapeutic monitoring. It is essential to develop new and effective drugs for glioblastoma multiform. Naringin belongs to citrus flavonoids and was found to display strong anti-inflammatory, antioxidant and antitumor activities. In this report, we found that naringin can specifically inhibit the kinase activity of FAK and suppress the FAK p-Try397 and its downstream pathway in glioblastoma cells. Our study showed out that naringin can inhibit cell proliferation by inhibiting FAK/cyclin D1 pathway, promote cell apoptosis through influencing FAK/bads pathway, at the same time, it can also inhibit cell invasion and metastasis by inhibiting the FAK/mmps pathway. All these showed that naringin exerts the anti-tumor effects in U87 MG by inhibiting the kinase activity of FAK.

  14. Antitumor and antimetastatic activities of grape skin polyphenols in a murine model of breast cancer.

    PubMed

    Sun, T; Chen, Q Y; Wu, L J; Yao, X M; Sun, X J

    2012-10-01

    Treatment modalities are not effective once breast cancer metastasis has occurred. Dietary botanicals may have a better protective effect. We therefore investigated the effects of grape skin polyphenols on a highly metastatic mouse mammary carcinoma cell line. In vitro treatment of 4T1 cells, with grape skin polyphenols resulted in inhibition of the migration and viability in a dose-dependent manner. The migration of 4T1 cells was significantly inhibited by grape skin polyphenols, even at a very low concentration (5 μg/ml), and was totally inhibited when the concentration was 20 μg/ml. However, 20 μg/ml of grape skin polyphenols inhibited cell viability by only 11.4%. The inhibition of migration is independent of decreased cell viability or apoptosis induction. Further analysis indicated that the inhibition of migration by grape skin polyphenols is involved in blocking the PI3k/Akt and MAPK pathways. The effects of dietary grape skin polyphenols were then examined using an in vivo model in which 4T1 cells were implanted subcutaneously in Balb/c mice. The metastasis of tumor cells to the lungs was inhibited significantly by dietary grape skin extracts (0.5 and 1.0 mg/ml in drinking water) and the survival of the mice enhanced. These data suggest that grape skin polyphenols possess chemotherapeutic efficacy against breast cancer with metastases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Thiol dependent NF-κB suppression and inhibition of T-cell mediated adaptive immune responses by a naturally occurring steroidal lactone Withaferin A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gambhir, Lokesh; Checker, Rahul; Sharma, Deepak

    Withaferin A (WA), a steroidal lactone isolated from ayurvedic medicinal plant Withania somnifera, was shown to inhibit tumor growth by inducing oxidative stress and suppressing NF-κB pathway. However, its effect on T-cell mediated adaptive immune responses and the underlying mechanism has not been investigated. Since both T-cell responses and NF-κB pathway are known to be redox sensitive, the present study was undertaken to elucidate the effect of WA on adaptive immune responses in vitro and in vivo. WA inhibited mitogen induced T-cell and B-cell proliferation in vitro without inducing any cell death. It inhibited upregulation of T-cell (CD25, CD69, CD71more » and CD54) and B-cell (CD80, CD86 and MHC-II) activation markers and secretion of Th1 and Th2 cytokines. WA induced oxidative stress by increasing the basal ROS levels and the immunosuppressive effects of WA were abrogated only by thiol anti-oxidants. The redox modulatory effects of WA in T-cells were attributed to its ability to directly interact with free thiols. WA inhibited NF-κB nuclear translocation in lymphocytes and prevented the direct binding of nuclear NF-κB to its consensus sequence. MALDI-TOF analysis using a synthetic NF-κB-p50 peptide containing Cys-62 residue suggested that WA can modify the cysteine residue of NF-κB. The pharmacokinetic studies for WA were also carried out and in vivo efficacy of WA was studied using mouse model of Graft-versus-host disease. In conclusion, WA is a potent inhibitor of T-cell responses and acts via a novel thiol dependent mechanism and inhibition of NF-κB pathway. - Highlights:: • Withaferin A (WA) inhibited T-cell and B-cell mediated immune responses. • WA increased basal ROS levels in lymphocytes. • WA directly interacted with GSH as studied using spectrophotometry and HPLC. • WA inhibited NF-κB nuclear translocation and binding of nuclear NF-κB to DNA. • WA inhibited induction of the graft-versus-host disease in mice.« less

  16. Effect of MPS1 Inhibition on Genotoxic Stress Responses in Murine Tumour Cells.

    PubMed

    Suzuki, Motofumi; Yamamori, Tohru; Yasui, Hironobu; Inanami, Osamu

    2016-06-01

    The monopolar spindle 1 (MPS1) is a serine/threonine kinase that plays an important role in spindle assembly checkpoint signaling. To determine the possible relationship between MPS1 inhibition and genotoxic stress responses, herein we examined whether MPS1 inhibition influences cellular susceptibility towards two genotoxic treatments, etoposide and ionizing radiation (IR). Two murine tumour cell lines, SCCVII and EMT6, were used. The effect of genotoxic treatments with or without two novel MPS1 inhibitors, NMS-P715 and AZ3146, on cellular survival, cell-cycle distribution, centrosome status and mitotic catastrophe (MC) was evaluated. MPS1 inhibition sensitized murine tumour cells to etoposide but not to IR. In addition, MPS1 inhibition altered cell-cycle progression and exacerbated centrosome abnormalities, resulting in enhanced MC induced by etoposide but not by IR. MPS1 inhibition promotes the etoposide-induced aberrant mitosis and, consequently, the induction of tumour cell death. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  17. Ajoene inhibits both primary tumor growth and metastasis of B16/BL6 melanoma cells in C57BL/6 mice.

    PubMed

    Taylor, Peter; Noriega, Raquel; Farah, Carla; Abad, María-Jesús; Arsenak, Miriam; Apitz, Rafael

    2006-08-08

    Ajoene is an organosulphur compound derived from garlic with important effects on several membrane-associated processes such as platelet aggregation, as well as being cytotoxic for tumor cell lines in vitro. In the present study, we investigated the effect of ajoene on different cell types in vitro, as well as its inhibitory effects on both primary tumors and metastasis in a mouse model. We found ajoene to inhibit tumor cell growth in vitro, but also to inhibit strongly metastasis to lung in the B16/BL6 melanoma tumor model in C57BL/6 mice. As far as we are aware, this is the first report of the anti-metastatic effect of ajoene. Ajoene also inhibited tumor-endothelial cell adhesion, as well as the in vivo TNF-alpha response to lipopolysaccharide. Possible mechanisms of its antitumoral activity are discussed in the light of these results.

  18. Checkpoint kinase 1 inhibition sensitises transformed cells to dihydroorotate dehydrogenase inhibition

    PubMed Central

    Arnould, Stéphanie; Rodier, Geneviève; Matar, Gisèle; Vincent, Charles; Pirot, Nelly; Delorme, Yoann; Berthet, Charlène; Buscail, Yoan; Noël, Jean Yohan; Lachambre, Simon; Jarlier, Marta; Bernex, Florence; Delpech, Hélène; Vidalain, Pierre Olivier; Janin, Yves L.; Theillet, Charles; Sardet, Claude

    2017-01-01

    Reduction in nucleotide pools through the inhibition of mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) has been demonstrated to effectively reduce cancer cell proliferation and tumour growth. The current study sought to investigate whether this antiproliferative effect could be enhanced by combining Chk1 kinase inhibition. The pharmacological activity of DHODH inhibitor teriflunomide was more selective towards transformed mouse embryonic fibroblasts than their primary or immortalised counterparts, and this effect was amplified when cells were subsequently exposed to PF477736 Chk1 inhibitor. Flow cytometry analyses revealed substantial accumulations of cells in S and G2/M phases, followed by increased cytotoxicity which was characterised by caspase 3-dependent induction of cell death. Associating PF477736 with teriflunomide also significantly sensitised SUM159 and HCC1937 human triple negative breast cancer cell lines to dihydroorotate dehydrogenase inhibition. The main characteristic of this effect was the sustained accumulation of teriflunomide-induced DNA damage as cells displayed increased phospho serine 139 H2AX (γH2AX) levels and concentration-dependent phosphorylation of Chk1 on serine 345 upon exposure to the combination as compared with either inhibitor alone. Importantly a similar significant increase in cell death was observed upon dual siRNA mediated depletion of Chk1 and DHODH in both murine and human cancer cell models. Altogether these results suggest that combining DHODH and Chk1 inhibitions may be a strategy worth considering as a potential alternative to conventional chemotherapies. PMID:29221122

  19. Effects of dexamethasone on palate mesenchymal cell phospholipase activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulleit, R.F.; Zimmerman, E.F.

    1984-09-15

    Corticosteroids will induce cleft palate in mice. One suggested mechanism for this effect is through inhibition of phospholipase activity. This hypothesis was tested by measuring the effects of dexamethasone, a synthetic corticosteroid, on phospholipase activity in cultures of palate mesenchymal cells. Palate mesenchymal cells were prelabeled with (3H)arachidonic acid. The cells were subsequently treated with various concentrations of dexamethasone. Concurrently, cultures of M-MSV-transformed 3T3 cells were prepared identically. After treatment, phospholipase activity was stimulated by the addition of serum or epidermal growth factor (EGF), and radioactivity released into the medium was taken as a measure of phospholipase activity. Dexamethasone (1more » X 10(-5) or 1 X 10(-4) M) could inhibit serum-stimulated phospholipase activity in transformed 3T3 cells after 1 to 24 hr of treatment. However, no inhibition of activity was measured in palate mesenchymal cells following this period of treatment. Not until 120 hr of treatment with dexamethasone (1 X 10(-4) M) was any significant inhibition of serum-stimulated phospholipase activity observed in palate mesenchymal cells. When EGF was used to stimulate phospholipase activity, dexamethasone (1 X 10(-5) M) caused an increase in phospholipase activity in palate mesenchymal cells. These observations suggested that phospholipase in transformed 3T3 cells was sensitive to inhibition by dexamethasone. However, palate mesenchymal cell phospholipase is only minimally sensitive to dexamethasone, and in certain instances can be enhanced. These results cannot support the hypothesis that corticosteroids mediate their teratogenic effect via inhibition of phospholipase activity.« less

  20. Effect of lipoic acid combined with paclitaxel on breast cancer cells.

    PubMed

    Li, B J; Hao, X Y; Ren, G H; Gong, Y

    2015-12-22

    Breast cancer is the most common gynecologic tumor globally that threatens women's health. Lipoic acid is a type of antioxidant that can alleviate oxidative stress damage. Studies showed that lipoic acid could inhibit the proliferation of tumor cells in cervical cancer and colon cancer. This paper intends to explore the combined effect of lipoic acid and paclitaxel on breast cancer cells. Breast cancer MCF-7 cells were divided into four groups: control group, lipoic acid group, paclitaxel group, and a combination group. MTT was applied to detect the drugs' influence on breast cancer cell proliferation. A colony formation test was used to determine the effects on breast cancer cell clone formation rate. Western blot was performed to detect the effects on nuclear factor (NF)-κB. Lipoic acid alone can inhibit tumor cell proliferation and clone formation with time dependence. Compared with the control, paclitaxel alone can significantly suppress tumor cell proliferation and clone formation (P < 0.05). Lipoic acid and paclitaxel in combination obviously strengthened their individual inhibitory effects on tumor cells (P < 0.05). Compared with the paclitaxel alone group, the combination group exhibited more remarkable inhibitory effect (P < 0.05). Lipoic acid alone or combined with paclitaxel can inhibit NF-κB expression and inhibit breast cancer cell proliferation.

  1. Curcumin (Diferuloylmethane) Inhibits Cell Proliferation, Induces Apoptosis, and Decreases Hormone Levels and Secretion in Pituitary Tumor Cells

    PubMed Central

    Miller, Matthew; Chen, Shenglin; Woodliff, Jeffrey; Kansra, Sanjay

    2008-01-01

    Prolactinomas are the most prevalent functional pituitary adenomas. Dopamine D2 receptor (D2R) agonists, such as bromocriptine are the first line of therapy; however, drug intolerance/resistance to D2R agonists exists. Apart from D2R agonists, there is no established medical therapy for prolactinomas; therefore, identifying novel therapeutics is warranted. Curcumin, a commonly used food additive in South Asian cooking, inhibits proliferation of several tumor cell lines; however, its effect on pituitary tumor cell proliferation has not been determined. Our objectives were to: 1) determine whether curcumin inhibits proliferation of pituitary tumor cell lines; 2) identify the signaling intermediaries that mediate the effect of curcumin; 3) examine whether curcumin inhibited pituitary hormone production and release; and 4) examine whether curcumin could enhance the growth-inhibitory effect of bromocriptine. Using rat lactotroph cell lines, GH3 and MMQ cells, we report that curcumin had a robust dose and time-dependent inhibitory effect on GH3 and MMQ cell proliferation. Inhibitory effects of curcumin persisted, even on removal of curcumin, and curcumin also blocked colony formation ability of pituitary tumor cells. The growth-inhibitory effect of curcumin was accompanied by decreased expression of cyclin D3 and ser 780 phosphorylation of retinoblastoma protein. In addition, curcumin also induced apoptosis in both GH3 and MMQ cells. Furthermore, curcumin suppresses intracellular levels and release of both prolactin and GH. Finally, we show that low concentrations of curcumin enhanced the growth-inhibitory effect of bromocriptine on MMQ cell proliferation. Taken together we demonstrate that curcumin inhibits pituitary tumor cell proliferation, induces apoptosis, and decreases hormone production and release, and thus, we propose developing curcumin as a novel therapeutic tool in the management of prolactinomas. PMID:18450960

  2. Curcumin (diferuloylmethane) inhibits cell proliferation, induces apoptosis, and decreases hormone levels and secretion in pituitary tumor cells.

    PubMed

    Miller, Matthew; Chen, Shenglin; Woodliff, Jeffrey; Kansra, Sanjay

    2008-08-01

    Prolactinomas are the most prevalent functional pituitary adenomas. Dopamine D2 receptor (D2R) agonists, such as bromocriptine are the first line of therapy; however, drug intolerance/resistance to D2R agonists exists. Apart from D2R agonists, there is no established medical therapy for prolactinomas; therefore, identifying novel therapeutics is warranted. Curcumin, a commonly used food additive in South Asian cooking, inhibits proliferation of several tumor cell lines; however, its effect on pituitary tumor cell proliferation has not been determined. Our objectives were to: 1) determine whether curcumin inhibits proliferation of pituitary tumor cell lines; 2) identify the signaling intermediaries that mediate the effect of curcumin; 3) examine whether curcumin inhibited pituitary hormone production and release; and 4) examine whether curcumin could enhance the growth-inhibitory effect of bromocriptine. Using rat lactotroph cell lines, GH3 and MMQ cells, we report that curcumin had a robust dose and time-dependent inhibitory effect on GH3 and MMQ cell proliferation. Inhibitory effects of curcumin persisted, even on removal of curcumin, and curcumin also blocked colony formation ability of pituitary tumor cells. The growth-inhibitory effect of curcumin was accompanied by decreased expression of cyclin D3 and ser 780 phosphorylation of retinoblastoma protein. In addition, curcumin also induced apoptosis in both GH3 and MMQ cells. Furthermore, curcumin suppresses intracellular levels and release of both prolactin and GH. Finally, we show that low concentrations of curcumin enhanced the growth-inhibitory effect of bromocriptine on MMQ cell proliferation. Taken together we demonstrate that curcumin inhibits pituitary tumor cell proliferation, induces apoptosis, and decreases hormone production and release, and thus, we propose developing curcumin as a novel therapeutic tool in the management of prolactinomas.

  3. Inhibitory effect of blue light emitting diode on migration and invasion of cancer cells.

    PubMed

    Oh, Phil-Sun; Kim, Hyun-Soo; Kim, Eun-Mi; Hwang, Hyosook; Ryu, Hyang Hwa; Lim, SeokTae; Sohn, Myung-Hee; Jeong, Hwan-Jeong

    2017-12-01

    The aim of this study was to determine the effects and molecular mechanism of blue light emitting diode (LED) in tumor cells. A migration and invasion assay for the metastatic behavior of mouse colon cancer CT-26 and human fibrosarcoma HT-1080 cells was performed. Cancer cell migration-related proteins were identified by obtaining a 2-dimensional gel electrophoresis (2-DE) in total cellular protein profile of blue LED-irradiated cancer cells, followed by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis of proteins. Protein levels were examined by immunoblotting. Irradiation with blue LED inhibited CT-26 and HT-1080 cell migration and invasion. The anti-metastatic effects of blue LED irradiation were associated with inhibition of matrix metalloproteinase (MMP)-2 and MMP-9 expression. P38 MAPK phosphorylation was increased in blue LED-irradiated CT-26 and HT-1080 cells, but was inhibited after pretreatment with SB203580, a specific inhibitor of p38 MAPK. Inhibition of p38 MAPK phosphorylation by SB203580 treatment increased number of migratory cancer cells in CT-26 and HT-1080 cells, indicating that blue LED irradiation inhibited cancer cell migration via phosphorylation of p38 MAPK. Additionally blue LED irradiation of mice injected with CT-26 cells expressing luciferase decreased early stage lung metastasis compared to untreated control mice. These results indicate that blue LED irradiation inhibits cancer cell migration and invasion in vitro and in vivo. © 2017 Wiley Periodicals, Inc.

  4. Eupatilin inhibits T-cell activation by modulation of intracellular calcium flux and NF-kappaB and NF-AT activity.

    PubMed

    Kim, Young-Dae; Choi, Suck-Chei; Oh, Tae-Young; Chun, Jang-Soo; Jun, Chang-Duk

    2009-09-01

    Eupatilin, one of the pharmacologically active ingredients of Artemisia princeps, exhibits a potent anti-ulcer activity, but its effects on T-cell immunity have not been investigated. Here, we show that eupatilin has a profound inhibitory effect on IL-2 production in Jurkat T cells as well as in human peripheral blood leukocytes. Eupatilin neither influenced clustering of CD3 and LFA-1 to the immunological synapse nor inhibited conjugate formation between T cells and B cells in the presence or absence of superantigen (SEE). Eupatilin also failed to inhibit T-cell receptor (TCR) internalization, thereby, suggesting that eupatilin does not interfere with TCR-mediated signals on the membrane proximal region. In unstimulated T cells, eupatilin significantly induced apoptotic cell death, as evidenced by an increased population of annexin V(+)/PI(+) cells and cleavage of caspase-3 and PARP. To our surprise, however, once cells were activated, eupatilin had little effect on apoptosis, and instead slightly protected cells from activation-induced cell death, suggesting that apoptosis also is not a mechanism for eupatilin-induced T-cell suppression. On the contrary, eupatilin dramatically inhibited I-kappaBalpha degradation and NF-AT dephosphorylation and, consequently, inhibited NF-kappaB and NF-AT promoter activities in PMA/A23187-stimulated T cells. Interestingly, intracellular calcium flux was significantly perturbed in cells pre-treated with eupatilin, suggesting that calcium-dependent cascades might be targets for eupatilin action. Collectively, our results provide evidence for dual regulatory functions of eupatilin: (1) a pro-apoptotic effect on resting T cells and (2) an immunosuppressive effect on activated T cells, presumably through modulation of Ca(2+) flux. (c) 2009 Wiley-Liss, Inc.

  5. Inhibition of Fatty Acid Metabolism Reduces Human Myeloma Cells Proliferation

    PubMed Central

    Tirado-Vélez, José Manuel; Joumady, Insaf; Sáez-Benito, Ana; Cózar-Castellano, Irene; Perdomo, Germán

    2012-01-01

    Multiple myeloma is a haematological malignancy characterized by the clonal proliferation of plasma cells. It has been proposed that targeting cancer cell metabolism would provide a new selective anticancer therapeutic strategy. In this work, we tested the hypothesis that inhibition of β-oxidation and de novo fatty acid synthesis would reduce cell proliferation in human myeloma cells. We evaluated the effect of etomoxir and orlistat on fatty acid metabolism, glucose metabolism, cell cycle distribution, proliferation, cell death and expression of G1/S phase regulatory proteins in myeloma cells. Etomoxir and orlistat inhibited β-oxidation and de novo fatty acid synthesis respectively in myeloma cells, without altering significantly glucose metabolism. These effects were associated with reduced cell viability and cell cycle arrest in G0/G1. Specifically, etomoxir and orlistat reduced by 40–70% myeloma cells proliferation. The combination of etomoxir and orlistat resulted in an additive inhibitory effect on cell proliferation. Orlistat induced apoptosis and sensitized RPMI-8226 cells to apoptosis induction by bortezomib, whereas apoptosis was not altered by etomoxir. Finally, the inhibitory effect of both drugs on cell proliferation was associated with reduced p21 protein levels and phosphorylation levels of retinoblastoma protein. In conclusion, inhibition of fatty acid metabolism represents a potential therapeutic approach to treat human multiple myeloma. PMID:23029529

  6. Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARα, β/δ, and γ

    PubMed Central

    Li, Andrew C.; Binder, Christoph J.; Gutierrez, Alejandra; Brown, Kathleen K.; Plotkin, Christine R.; Pattison, Jennifer W.; Valledor, Annabel F.; Davis, Roger A.; Willson, Timothy M.; Witztum, Joseph L.; Palinski, Wulf; Glass, Christopher K.

    2004-01-01

    PPARα, β/δ, and γ regulate genes involved in the control of lipid metabolism and inflammation and are expressed in all major cell types of atherosclerotic lesions. In vitro studies have suggested that PPARs exert antiatherogenic effects by inhibiting the expression of proinflammatory genes and enhancing cholesterol efflux via activation of the liver X receptor–ABCA1 (LXR-ABCA1) pathway. To investigate the potential importance of these activities in vivo, we performed a systematic analysis of the effects of PPARα, β, and γ agonists on foam-cell formation and atherosclerosis in male LDL receptor–deficient (LDLR–/–) mice. Like the PPARγ agonist, a PPARα-specific agonist strongly inhibited atherosclerosis, whereas a PPARβ-specific agonist failed to inhibit lesion formation. In concert with their effects on atherosclerosis, PPARα and PPARγ agonists, but not the PPARβ agonist, inhibited the formation of macrophage foam cells in the peritoneal cavity. Unexpectedly, PPARα and PPARγ agonists inhibited foam-cell formation in vivo through distinct ABCA1-independent pathways. While inhibition of foam-cell formation by PPARα required LXRs, activation of PPARγ reduced cholesterol esterification, induced expression of ABCG1, and stimulated HDL-dependent cholesterol efflux in an LXR-independent manner. In concert, these findings reveal receptor-specific mechanisms by which PPARs influence macrophage cholesterol homeostasis. In the future, these mechanisms may be exploited pharmacologically to inhibit the development of atherosclerosis. PMID:15578089

  7. Simultaneous Inhibition of EGFR and PI3K Enhances Radiosensitivity in Human Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Ping; Zhang Qing; Torossian, Artour

    2012-07-01

    Purpose: Mutations in the epidermal growth factor receptor (EGFR)/phosphoinositide 3-kinase (PI3K)/Akt signaling transduction pathway are common in cancer. This pathway is imperative to the radiosensitivity of cancer cells. We aimed to investigate the radiosensitizing effects of the simultaneous inhibition of EGFR and PI3K in breast cancer cells. Methods and Materials: MCF-7 cell lines with low expression of EGFR and wild-type PTEN and MDA-MB-468 cell lines with high expression of EGFR and mutant PTEN were used. The radiosensitizing effects by the inhibition of EGFR with AG1478 and/or PI3K with Ly294002 were determined by colony formation assay, Western blot was used tomore » investigate the effects on downstream signaling. Flow cytometry was used for apoptosis and cell cycle analysis. Mice-bearing xenografts of MDA-MB-468 breast cancer cells were also used to observe the radiosensitizing effect. Results: Simultaneous inhibition of EGFR and PI3K greatly enhanced radiosensitizing effect in MDA-MB-468 in terms of apoptosis and mitotic death, either inhibition of EGFR or PI3K alone could enhance radiosensitivity with a dose-modifying factor (DMF{sub SF2}) of 1.311 and 1.437, radiosensitizing effect was further enhanced by simultaneous inhibition of EGFR and PI3K with a DMF{sub SF2} at 2.698. DNA flow cytometric analysis indicated that dual inhibition combined with irradiation significantly induced G0/G1 phase arrest in MDA-MB-468 cells. The expression of phosphor-Akt and phosphor-Erk1/2 (induced by irradiation and PI3K inhibitor) were fully attenuated by simultaneous treatment with both inhibitors in combination with irradiation. In addition, dual inhibition combined with irradiation induced dramatic tumor growth delay in MDA-MB-468 xenografts. Conclusions: Our study indicated that simultaneous inhibition of EGFR and PI3K could further sensitize the cancer cells to irradiation compared to the single inhibitor with irradiation in vitro and in vivo. The approach may have important therapeutic implication in the treatment of a subset of breast cancer patients with high expression of EGFR and deficient function of PTEN.« less

  8. Branched-chain amino acids complex inhibits melanogenesis in B16F0 melanoma cells.

    PubMed

    Cha, Jae-Young; Yang, Hyun-Ju; Moon, Hyung-In; Cho, Young-Su

    2012-04-01

    Present study was investigated the effect of each or complex of three branched-chain amino acids (BCAAs; isoleucine, leucine, and valine) on melanin production in B16F0 melanoma cells treated with various concentrations (1-16 mM) for 72 h. Among the 20 amino acids, lysine and glycine showed the highest activities of DPPH radical scavenging and mushroom tyrosinase inhibition, respectively. Each and combination of BCAAs reduced melanogenesis in a concentration-dependent manner without any morphological changes and cell viability in melanoma cells. Present study was also investigated the inhibitory effects of each or complex of BCAAs at each 10 mM concentration on the 100 μM IBMX-mediated stimulation of melanogenesis in melanoma cells for 72 h and found that IBMX treatment was stimulated to enhance melanin synthesis and that the complex of BCAAs was the most effectively inhibited in the melanin amounts of cellular and extracellular and the whitening the cell pellet. When the inhibitory effect of BCAAs on tyrosinase was examined by intracellular tyrosinase assay, both isoleucine and valine exhibit slightly inhibition, but leucine and combination of BCAAs did not inhibit the cell-derived tyrosinase activity. Present study demonstrated that complex of BCAAs inhibited melanin production without changes intercellular tyrosinase activity. Thus, the complex of BCAAs may be used in development of safe potentially depigmenting agents.

  9. Agnus castus extracts inhibit prolactin secretion of rat pituitary cells.

    PubMed

    Sliutz, G; Speiser, P; Schultz, A M; Spona, J; Zeillinger, R

    1993-05-01

    In our studies on prolactin inhibition by plant extracts we focused on the effects of extracts of Vitex agnus castus and its preparations on rat pituitary cells under basal and stimulated conditions in primary cell culture. Both extracts from Vitex agnus castus as well as synthetic dopamine agonists (Lisuride) significantly inhibit basal as well as TRH-stimulated prolactin secretion of rat pituitary cells in vitro and as a consequence inhibition of prolactin secretion could be blocked by adding a dopamine receptor blocker. Therefore because of its dopaminergic effect Agnus castus could be considered as an efficient alternative phytotherapeutic drug in the treatment of slight hyperprolactinaemia.

  10. Inhibitory effect of Disulfiram/copper complex on non-small cell lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Lincan; Shen, Hongmei; Zhao, Guangqiang

    2014-04-18

    Highlights: • Disulfiram and copper synergistically inhibit lung cancer cell proliferation. • Lung cancer cell colony formation ability is inhibited by Disulfiram/copper. • Disulfiram/copper increases the sensitivity of cisplatin to lung cancer cells. • Lung cancer stem cells are specifically targeted by Disulfiram/copper complex. - Abstract: Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in both men and women worldwide. Recently, Disulfiram has been reported to be able to inhibit glioblastoma, prostate, or breast cancer cell proliferation. In this study, the synergistic effect of Disulfiram and copper on NSCLC cell growth was investigated. Inhibition ofmore » cancer cell proliferation was detected by 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) assay and cell cycle analysis. Liquid colony formation and tumor spheroid formation assays were used to evaluate their effect on cancer cell clonogenicity. Real-time PCR was performed to test the mRNA level of cancer stem cell related genes. We found that Disulfiram or copper alone did not potently inhibit NSCLC cell proliferation in vitro. However, the presence of copper significantly enhanced inhibitory effect of Disulfiram on NSCLC cell growth, indicating a synergistic effect between Disulfiram and copper. Cell cycle analysis showed that Disulfiram/copper complex caused NSCLC cell cycle arrest in G2/M phase. Furthermore, Disulfiram/copper significantly increased the sensitivity of cisplatin in NSCLC cells tested by MTT assay. Liquid colony formation assay revealed that copper dramatically increased the inhibitory effect of Disulfiram on NSCLC cell colony forming ability. Disulfiram combined with copper significantly attenuated NSCLC cell spheroid formation and recuded the mRNA expression of lung cancer stem cell related genes. Our data suggest that Disulfiram/copper complex alone or combined with other chemotherapy is a potential therapeutic strategy for NSCLC patients.« less

  11. N-acetylcysteine potentiates platelet inhibition by endothelium-derived relaxing factor.

    PubMed

    Stamler, J; Mendelsohn, M E; Amarante, P; Smick, D; Andon, N; Davies, P F; Cooke, J P; Loscalzo, J

    1989-09-01

    Recent evidence suggests that endothelium-derived relaxing factor exhibits properties of nitric oxide. Like nitric oxide, it inhibits platelet function and mediates its effects by elevating intracellular cyclic GMP. In this study we have investigated the role of reduced thiol in the mechanism of action of endothelium-derived relaxing factor on platelets. Bovine aortic endothelial cells were grown on microcarrier beads and pretreated with aspirin before use. Endothelial cells stimulated with bradykinin or exposed to stirred medium expressed a dose-dependent inhibition of platelet aggregation that was potentiated by the reduced thiol, N-acetylcysteine. Endothelial cell-mediated platelet inhibition was attenuated by methylene blue. Inhibition of platelet aggregation by endothelial cells was associated with a rise in platelet intracellular cyclic GMP, an effect that was enhanced by N-acetylcysteine. These data show that 1) the reduced thiol N-acetylcysteine potentiates platelet inhibition by endothelium-derived relaxing factor and 2) this effect is associated with increasing intracellular platelet cyclic GMP levels.

  12. ROCK activity affects IL-1-induced signaling possibly through MKK4 and p38 MAPK in Caco-2 cells.

    PubMed

    Banerjee, Sayantan; McGee, Dennis W

    2016-09-01

    Elevated levels of interleukin-1 (IL-1) accompany inflammatory bowel disease. IL-1-stimulated intestinal epithelial cells can secrete potent chemokines like CXCL8 to exacerbate inflammation. Previously, we found that inhibiting the Rho-associated kinase (ROCK) could inhibit IL-1- or TNF-α-induced CXCL8 secretion by the Caco-2 colonic epithelial cell line. This ROCK inhibition did not affect IκBα phosphorylation and degradation, but suppressed the phosphorylation of c-Jun N-terminal kinase (JNK). Therefore, ROCK must play an important role in epithelial cell CXCL8 responses through an effect on the JNK signaling pathway. Here, we extend these studies by showing that inhibiting ROCK suppressed the IL-1-induced phosphorylation of MKK4, a known activator of JNK, but not MKK7. Yet, ROCK inhibition had no significant effect on the IL-1-induced phosphorylation of extracellular-signal-regulated kinase (ERK) 1/2. Inhibiting ROCK also suppressed the phosphorylation of p38 MAPK after IL-1 stimulation, but this inhibition had no significant effect on the stability of CXCL8 messenger RNA (mRNA) after IL-1 stimulation. These results suggest that ROCK may be important in IL-1-induced signaling through MKK4 to JNK and the activation of p38 MAPK. Finally, inhibiting ROCK in IL-1 and TNF-α co-stimulated Caco-2 cells also resulted in a significant suppression of CXCL8 secretion and mRNA levels suggesting that inhibiting ROCK may be a mechanism to inhibit the overall response of epithelial cells to both cytokines. These studies indicate a novel signaling event, which could provide a target for suppressing intestinal epithelial cells (IEC) chemokine responses involved in mucosal inflammation.

  13. Inhibition of GRP78 abrogates radioresistance in oropharyngeal carcinoma cells after EGFR inhibition by cetuximab.

    PubMed

    Sun, Chaonan; Han, Chuyang; Jiang, Yuanjun; Han, Ning; Zhang, Miao; Li, Guang; Qiao, Qiao

    2017-01-01

    The EGFR-specific mAb cetuximab is one of the most effective treatments for oropharyngeal carcinoma, while patient responses to EGFR inhibitors given alone are modest. Combination treatment with radiation can improve the efficacy of treatment through increasing radiosensitivity, while resistance to radiation after administration of cetuximab limits its efficiency. Radiation and drugs can damage the endoplasmic reticulum (ER) homeostatic state and result in ER stress (ERS), subsequently causing resistance to radiation and drugs. Whether the ERS pathway is involved in radioresistance after administration of cetuximab has not been reported. Herein, we show that cetuximab could increase the radiosensitivity of FaDu cells but not Detroit562 cells. In addition, cetuximab inhibited the radiation-induced activation of the ERS signalling pathway IRE1α/ATF6-GRP78 in FaDu cells, while this effect was absent in Detroit562 cells. Silencing GRP78 increased the radiosensitivity of oropharyngeal carcinoma cells and inhibited radiation-induced DNA double-strand-break (DSB) repair and autophagy. More interestingly, silencing GRP78 abrogated resistance to cetuximab and radiation in Detroit562 cells and had a synergistic effect with cetuximab in increasing the radiosensitivity of FaDu cells. Immunohistochemistry showed that overexpression of both GRP78 and EGFR was associated with a poor prognosis in oropharyngeal carcinoma patients (P<0.05). Overall, the results of this study show that radioresistance after EGFR inhibition by cetuximab is mediated by the ERS signalling pathway IRE1α/ATF6-GRP78. This suppression was consequently unable to inhibit radiation-induced DSB repair and autophagy in oropharyngeal carcinoma cells, which conferred resistance to radiotherapy and cetuximab. These results suggest that the cooperative effects of radiotherapy and cetuximab could be further improved by inhibiting GRP78 in non-responsive oropharyngeal carcinoma patients.

  14. Dehydroeffusol effectively inhibits human gastric cancer cell-mediated vasculogenic mimicry with low toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenming; Meng, Mei; Zhang, Bin

    Accumulated data has shown that various vasculogenic tumor cells, including gastric cancer cells, are able to directly form tumor blood vessels via vasculogenic mimicry, supplying oxygen and nutrients to tumors, and facilitating progression and metastasis of malignant tumors. Therefore, tumor vasculogenic mimicry is a rational target for developing novel anticancer therapeutics. However, effective antitumor vasculogenic mimicry-targeting drugs are not clinically available. In this study, we purified 2,7-dihydroxyl-1-methyl-5-vinyl-phenanthrene, termed dehydroeffusol, from the traditional Chinese medicinal herb Juncus effusus L., and found that dehydroeffusol effectively inhibited gastric cancer cell-mediated vasculogenic mimicry in vitro and in vivo with very low toxicity. Dehydroeffusol significantlymore » suppressed gastric cancer cell adhesion, migration, and invasion. Molecular mechanistic studies revealed that dehydroeffusol markedly inhibited the expression of a vasculogenic mimicry master gene VE-cadherin and reduced adherent protein exposure on the cell surface by inhibiting gene promoter activity. In addition, dehydroeffusol significantly decreased the expression of a key vasculogenic gene matrix metalloproteinase 2 (MMP2) in gastric cancer cells, and diminished MMP2 protease activity. Together, our results showed that dehydroeffusol effectively inhibited gastric cancer cell-mediated vasculogenic mimicry with very low toxicity, suggesting that dehydroeffusol is a potential drug candidate for anti-gastric cancer neovascularization and anti-gastric cancer therapy. - Highlights: • Dehydroeffusol markedly inhibits gastric cancer cell-mediated vasculogenic mimicry. • Dehydroeffusol suppresses the expression of vasculogenic mimicry key gene VE-cadherin. • Dehydroeffusol decreases the MMP2 expression and activity in gastric cancer cells. • Dehydroeffusol is a potential anti-cancer drug candidate with very low toxicity.« less

  15. Ascomycin macrolactam derivative SDZ ASM 981 inhibits the release of granule-associated mediators and of newly synthesized cytokines in RBL 2H3 mast cells in an immunophilin-dependent manner.

    PubMed

    Hultsch, T; Müller, K D; Meingassner, J G; Grassberger, M; Schopf, R E; Knop, J

    1998-09-01

    Mast cells play an important role in the pathological development of many inflammatory and allergic diseases and inhibition of mast cell activation is a potential target for therapeutic intervention. Therefore, the effect of the novel ascomycin macrolactam derivative SDZ ASM 981 on Fc epsilonRI-mediated activation of rat basophilic leukemia (RBL) cells, as a model for mast cell activation, was investigated. First, the ability to inhibit different mast cell immunophilins in vitro was tested. Using recombinant macrophilin-12 (FKBP-12), inhibition of rotamase activity with an IC50 of approximately 6 nM was observed. The rotamase activity of cyclophilin A (18 kDa) was not affected. Secondly, the effect of SDZ ASM 981 on Fc epsilonRI-mediated mast cell activation was investigated in the RBL cell model. SDZ ASM 981 inhibited exocytosis of preformed mediators (e.g. serotonin) with an IC50 of approximately 30 nM. Transcription and release of newly synthesized mediators (e.g. TNF-alpha) was inhibited with an IC50 of approximately 100 nM. The inhibitory effect of SDZ ASM 981 was antagonized by rapamycin. We conclude that SDZ ASM 981 is a potent inhibitor of Fc epsilonRI-mediated activation of mast cells in vitro. The mechanism of action involves formation of (calcineurin) inhibitory complexes with macrophilins. We suggest that this inhibitory action on mast cells might contribute to the antiinflammatory effect of SDZ ASM 981 observed in vivo (e.g. in aptopic dermatitis and psoriasis).

  16. Inhibition of c-Jun N-terminal kinase sensitizes tumor cells to flavonoid-induced apoptosis through down-regulation of JunD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kook, Sung-Ho; Research Center of Bioactive Materials, Chonbuk National University, Chonju 561-756; Son, Young-Ok

    Reduction of susceptibility to apoptosis signals is a crucial step in carcinogenesis. Therefore, sensitization of tumor cells to apoptosis is a promising therapeutic strategy. c-Jun NH{sub 2}-terminal kinase (JNK) has been implicated in stress-induced apoptosis. However, many studies also emphasize the role of JNK on cell survival, although its mechanisms are not completely understood. Previously, we found that inhibition of JNK activity promotes flavonoid-mediated apoptosis of human osteosarcoma cells. We thus determined whether inhibition of JNK sensitizes tumor cells to a bioflavonoid-induced apoptosis, and whether this effect of JNK is a general effect. As the results, quercetin and genistein asmore » well as a flavonoid fraction induced apoptosis of tumor cells, which was further accelerated by specific JNK inhibitor, SP600125 or by small interfering RNA specific to JNK1/2. This effect was specific to types of cells because it was further apparent in tumorigenic cell lines. Inhibition of JNK by SP600125 also reduced flavonoid-stimulated nuclear induction of JunD which was known to have protective role in apoptosis, whereas JNK inhibition alone had little effect on apoptosis. The flavonoid-induced apoptosis of tumor cells was significantly enhanced by transfecting them with antisense JunD oligonucleotides. These results suggest that inhibition of JNK facilitates flavonoid-induced apoptosis through down-regulation of JunD, which is further sensitive to tumor cells. Therefore, combination with a specific JNK inhibitor further enhances the anti-cancer and chemopreventive potential of bio-flavonoids.« less

  17. Prostaglandin E1 inhibits endocytosis in the β-cell endocytosis.

    PubMed

    Zhao, Ying; Fang, Qinghua; Straub, Susanne G; Lindau, Manfred; Sharp, Geoffrey W G

    2016-06-01

    Prostaglandins inhibit insulin secretion in a manner similar to that of norepinephrine (NE) and somatostatin. As NE inhibits endocytosis as well as exocytosis, we have now examined the modulation of endocytosis by prostaglandin E1 (PGE1). Endocytosis following exocytosis was recorded by whole-cell patch clamp capacitance measurements in INS-832/13 cells. Prolonged depolarizing pulses producing a high level of Ca(2+) influx were used to stimulate maximal exocytosis and to deplete the readily releasable pool (RRP) of granules. This high Ca(2+) influx eliminates the inhibitory effect of PGE1 on exocytosis and allows specific characterization of the inhibitory effect of PGE1 on the subsequent compensatory endocytosis. After stimulating exocytosis, endocytosis was apparent under control conditions but was inhibited by PGE1 in a Pertussis toxin-sensitive (PTX)-insensitive manner. Dialyzing a synthetic peptide mimicking the C-terminus of the α-subunit of the heterotrimeric G-protein Gz into the cells blocked the inhibition of endocytosis by PGE1, whereas a control-randomized peptide was without effect. These results demonstrate that PGE1 inhibits endocytosis and Gz mediates the inhibition. © 2016 Society for Endocrinology.

  18. Inhibition of HSP27 alone or in combination with pAKT inhibition as therapeutic approaches to target SPARC-induced glioma cell survival

    PubMed Central

    2012-01-01

    Background The current treatment regimen for glioma patients is surgery, followed by radiation therapy plus temozolomide (TMZ), followed by 6 months of adjuvant TMZ. Despite this aggressive treatment regimen, the overall survival of all surgically treated GBM patients remains dismal, and additional or different therapies are required. Depending on the cancer type, SPARC has been proposed both as a therapeutic target and as a therapeutic agent. In glioma, SPARC promotes invasion via upregulation of the p38 MAPK/MAPKAPK2/HSP27 signaling pathway, and promotes tumor cell survival by upregulating pAKT. As HSP27 and AKT interact to regulate the activity of each other, we determined whether inhibition of HSP27 was better than targeting SPARC as a therapeutic approach to inhibit both SPARC-induced glioma cell invasion and survival. Results Our studies found the following. 1) SPARC increases the expression of tumor cell pro-survival and pro-death protein signaling in balance, and, as a net result, tumor cell survival remains unchanged. 2) Suppressing SPARC increases tumor cell survival, indicating it is not a good therapeutic target. 3) Suppressing HSP27 decreases tumor cell survival in all gliomas, but is more effective in SPARC-expressing tumor cells due to the removal of HSP27 inhibition of SPARC-induced pro-apoptotic signaling. 4) Suppressing total AKT1/2 paradoxically enhanced tumor cell survival, indicating that AKT1 or 2 are poor therapeutic targets. 5) However, inhibiting pAKT suppresses tumor cell survival. 6) Inhibiting both HSP27 and pAKT synergistically decreases tumor cell survival. 7) There appears to be a complex feedback system between SPARC, HSP27, and AKT. 8) This interaction is likely influenced by PTEN status. With respect to chemosensitization, we found the following. 1) SPARC enhances pro-apoptotic signaling in cells exposed to TMZ. 2) Despite this enhanced signaling, SPARC protects cells against TMZ. 3) This protection can be reduced by inhibiting pAKT. 4) Combined inhibition of HSP27 and pAKT is more effective than TMZ treatment alone. Conclusions We conclude that inhibition of HSP27 alone, or in combination with pAKT inhibitor IV, may be an effective therapeutic approach to inhibit SPARC-induced glioma cell invasion and survival in SPARC-positive/PTEN-wildtype and SPARC-positive/PTEN-null tumors, respectively. PMID:22480225

  19. Selective inhibition of KCa3.1 channels mediates adenosine regulation of the motility of human T cells.

    PubMed

    Chimote, Ameet A; Hajdu, Peter; Kucher, Vladimir; Boiko, Nina; Kuras, Zerrin; Szilagyi, Orsolya; Yun, Yeo-Heung; Conforti, Laura

    2013-12-15

    Adenosine, a purine nucleoside, is present at high concentrations in tumors, where it contributes to the failure of immune cells to eliminate cancer cells. The mechanisms responsible for the immunosuppressive properties of adenosine are not fully understood. We tested the hypothesis that adenosine's immunosuppressive functions in human T lymphocytes are in part mediated via modulation of ion channels. The activity of T lymphocytes relies on ion channels. KCa3.1 and Kv1.3 channels control cytokine release and, together with TRPM7, regulate T cell motility. Adenosine selectively inhibited KCa3.1, but not Kv1.3 and TRPM7, in activated human T cells. This effect of adenosine was mainly mediated by A2A receptors, as KCa3.1 inhibition was reversed by SCH58261 (selective A2A receptor antagonist), but not by MRS1754 (A2B receptor antagonist), and it was mimicked by the A2A receptor agonist CGS21680. Furthermore, it was mediated by the cAMP/protein kinase A isoform (PKAI) signaling pathway, as adenylyl-cyclase and PKAI inhibition prevented adenosine effect on KCa3.1. The functional implication of the effect of adenosine on KCa3.1 was determined by measuring T cell motility on ICAM-1 surfaces. Adenosine and CGS21680 inhibited T cell migration. Comparable effects were obtained by KCa3.1 blockade with TRAM-34. Furthermore, the effect of adenosine on cell migration was abolished by pre-exposure to TRAM-34. Additionally, adenosine suppresses IL-2 secretion via KCa3.1 inhibition. Our data indicate that adenosine inhibits KCa3.1 in human T cells via A2A receptor and PKAI, thereby resulting in decreased T cell motility and cytokine release. This mechanism is likely to contribute to decreased immune surveillance in solid tumors.

  20. The effects of erythropoietin signaling on telomerase regulation in non-erythroid malignant and non-malignant cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uziel, Orit, E-mail: Oritu@clalit.org.il; Kanfer, Gil; Dep. of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv

    Highlights: • We assumed that some of erythropoietin adverse effects may be mediated by telomerase activity. • EPO administration increased telomerase activity, cells proliferation and migration. • The inhibition of telomerase modestly repressed the proliferative effect of erythropoietin. • Telomere shortening caused by long term inhibition of the enzyme totally abolished that effect. • This effect was mediated via the Lyn–AKT axis and not by the canonical JAK2–STAT pathway. - Abstract: Treatment with erythropoietin (EPO) in several cancers is associated with decreased survival due to cancer progression. Due to the major importance of telomerase in cancer biology we hypothesized thatmore » some of these effects may be mediated through EPO effect on telomerase. For this aim we explored the possible effects of EPO on telomerase regulation, cell migration and chemosensitivity in non-erythroid malignant and non-malignant cells. Cell proliferation, telomerase activity (TA) and cell migration increased in response to EPO. EPO had no effect on cancer cells sensitivity to cisplatinum and on the cell cycle status. The inhibition of telomerase modestly repressed the proliferative effect of EPO. Telomere shortening caused by long term inhibition of the enzyme abolished the effect of EPO, suggesting that EPO effects on cancer cells are related to telomere dynamics. TA was correlated with the levels of Epo-R. The increase in TA was mediated post-translationally through the Lyn-Src and not the canonical JAK2 pathway.« less

  1. Suppression of calpain expression by NSAIDs is associated with inhibition of cell migration in rat duodenum.

    PubMed

    Silver, Kristopher; Littlejohn, A; Thomas, Laurel; Bawa, Bhupinder; Lillich, James D

    2017-05-15

    Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for the alleviation of pain and inflammation, but these drugs are also associated with a suite of negative side effects. Gastrointestinal (GI) toxicity is particularly concerning since it affects an estimated 70% of individuals taking NSAIDs routinely, and evidence suggests the majority of toxicity is occurring in the small intestine. Traditionally, NSAID-induced GI toxicity has been associated with indiscriminate inhibition of cyclooxygenase isoforms, but other mechanisms, including inhibition of cell migration, intestinal restitution, and wound healing, are likely to contribute to toxicity. Previous efforts demonstrated that treatment of cultured intestinal epithelial cells (IEC) with NSAIDs inhibits expression and activity of calpain proteases, but the effects of specific inhibition of calpain expression in vitro or the effects of NSAIDs on intestinal cell migration in vivo remain to be determined. Accordingly, we examined the effect of suppression of calpain protease expression with siRNA on cell migration in cultured IECs and evaluated the effects of NSAID treatment on epithelial cell migration and calpain protease expression in rat duodenum. Our results show that calpain siRNA inhibits protease expression and slows migration in cultured IECs. Additionally, NSAID treatment of rats slowed migration up the villus axis and suppressed calpain expression in duodenal epithelial cells. Our results are supportive of the hypothesis that suppression of calpain expression leading to slowing of cell migration is a potential mechanism through which NSAIDs cause GI toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Aspirin plus sorafenib potentiates cisplatin cytotoxicity in resistant head and neck cancer cells through xCT inhibition.

    PubMed

    Roh, Jong-Lyel; Kim, Eun Hye; Jang, Hyejin; Shin, Daiha

    2017-03-01

    The nonsteroidal anti-inflammatory drug aspirin and the multikinase inhibitor sorafenib have both shown experimental and clinical anticancer activities. The present study investigated whether aspirin and sorafenib synergize to potentiate cisplatin treatment in resistant head and neck cancer (HNC) cells. The effects of aspirin, sorafenib and cisplatin, and combinations thereof were assessed by measuring cell viability, death, glutathione (GSH) and reactive oxygen species (ROS) levels, protein and mRNA expression, genetic inhibition and overexpression of cystine-glutamate antiporter (xCT) and tumor xenograft mouse models. Even at low concentrations, aspirin plus sorafenib synergized to induce cell death of cisplatin-resistant HNC cells. The combination of aspirin and sorafenib induced xCT inhibition, GSH depletion, and ROS accumulation in cancer cells. Genetic and pharmacological inhibition of xCT potentiated the cytotoxic effects of aspirin plus sorafenib; this effect was diminished by xCT overexpression. Low-dose aspirin plus sorafenib enhanced the cytotoxicity of cisplatin in resistant HNC cells through xCT inhibition and oxidant and DNA damage. The in vivo effects of aspirin plus sorafenib on cisplatin therapy were also confirmed in resistant HNC xenograft models, in terms of growth inhibition, GSH depletion, and increased γH2AX formation and apoptosis in tumors. Aspirin and sorafenib synergize to potentiate the cytotoxicity of cisplatin in resistant HNC cells. This therapeutic strategy may help to eliminate resistant HNC. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Dual inhibition of mTORC1 and mTORC2 perturbs cytoskeletal organization and impairs endothelial cell elongation.

    PubMed

    Tsuji-Tamura, Kiyomi; Ogawa, Minetaro

    2018-02-26

    Elongation of endothelial cells is an important process in vascular formation and is expected to be a therapeutic target for inhibiting tumor angiogenesis. We have previously demonstrated that inhibition of mTORC1 and mTORC2 impaired endothelial cell elongation, although the mechanism has not been well defined. In this study, we analyzed the effects of the mTORC1-specific inhibitor everolimus and the mTORC1/mTORC2 dual inhibitor KU0063794 on the cytoskeletal organization and morphology of endothelial cell lines. While both inhibitors equally inhibited cell proliferation, KU0063794 specifically caused abnormal accumulation of F-actin and disordered distribution of microtubules, thereby markedly impairing endothelial cell elongation and tube formation. The effects of KU0063794 were phenocopied by paclitaxel treatment, suggesting that KU0063794 might impair endothelial cell morphology through over-stabilization of microtubules. Although mTORC1 is a key signaling molecule in cell proliferation and has been considered a target for preventing angiogenesis, mTORC1 inhibitors have not been sufficient to suppress angiogenesis. Our results suggest that mTORC1/mTORC2 dual inhibition is more effective for anti-angiogenic therapy, as it impairs not only endothelial cell proliferation, but also endothelial cell elongation. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Role of nuclear factor of activated T-cells and activator protein-1 in the inhibition of interleukin-2 gene transcription by cannabinol in EL4 T-cells.

    PubMed

    Yea, S S; Yang, K H; Kaminski, N E

    2000-02-01

    We previously reported that immunosuppressive cannabinoids inhibited interleukin (IL)-2 steady-state mRNA expression and secretion by phorbol-12-myristate-13-acetate plus ionomycin-activated mouse splenocytes and EL4 murine T-cells. Here we show that inhibition of IL-2 production by cannabinol, a modest central nervous system-active cannabinoid, is mediated through the inhibition of IL-2 gene transcription. Moreover, electrophoretic mobility shift assays demonstrated that cannabinol markedly inhibited the DNA binding activity of nuclear factor of activated T-cells (NF-AT) and activator protein-1 (AP-1) in a time- and concentration-dependent manner in activated EL4 cells. The inhibitory effects produced by cannabinol on AP-1 DNA binding were quite transient, showing partial recovery by 240 min after cell activation and no effect on the activity of a reporter gene under the control of AP-1. Conversely, cannabinol-mediated inhibition of NF-AT was robust and sustained as demonstrated by an NF-AT-regulated reporter gene. Collectively, these results suggest that decreased IL-2 production by cannabinol in EL4 cells is due to the inhibition of transcriptional activation of the IL-2 gene and is mediated, at least in part, through a transient inhibition of AP-1 and a sustained inhibition of NF-AT.

  5. The bisphosphonate zoledronic acid effectively targets lung cancer cells by inhibition of protein prenylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Fan; Li, Pengcheng; Gong, Jianhua

    Aberrant activation of oncoproteins such as members of the Ras family is common in human lung cancers. The proper function of Ras largely depends on a post-translational modification termed prenylation. Bisphosphonates have been shown to inhibit prenylation in cancer cells. In this study, we show that zoledronic acid, a third generation bisphosphonate, is effective in targeting lung cancer cells. This is achieved by the induction of apoptosis and inhibition of proliferation, through suppressing the activation of downstream Ras and EGFR signalling by zoledronic acid. The combination of zoledronic acid and paclitaxel or cisplatin (commonly used chemotherapeutic drugs for lung cancer)more » augmented the activity of either drug alone in in vitro lung cancer cellular system and in vivo lung xenograft mouse model. Importantly, zoledronic acid inhibits protein prenylation as shown by the increased levels of unprenylated Ras and Rap1A. In addition, the effects of zoledronic acid were reversed in the presence of geranylgeraniol and farnesol, further confirming that mechanism of zoledroinc acid's action in lung cancer cells is through prenylation inhibition. Since zoledronic acid is already available for clinic use, these results suggest that it may be an effective addition to the armamentarium of drugs for the treatment of lung cancer. - Highlights: • Zoledronic acid (ZA) is effectively against lung cancer cells in vitro and in vivo. • ZA acts on lung cancer cells through inhibition of protein prenylation. • ZA suppresses global downstream phosphorylation of Ras signalling. • ZA enhances the effects of chemotherapeutic drugs in lung cancer cells.« less

  6. Attenuation of Cisplatin-Induced Neurotoxicity by Cyanidin, a Natural Inhibitor of ROS-Mediated Apoptosis in PC12 Cells.

    PubMed

    Li, Da-wei; Sun, Jing-yi; Wang, Kun; Zhang, Shuai; Hou, Ya-jun; Yang, Ming-feng; Fu, Xiao-yan; Zhang, Zong-yong; Mao, Lei-lei; Yuan, Hui; Fang, Jie; Fan, Cun-dong; Zhu, Mei-jia; Sun, Bao-liang

    2015-10-01

    Cisplatin-based chemotherapy in clinic is severely limited by its adverse effect, including neurotoxicity. Oxidative damage contributes to cisplatin-induced neurotoxicity, but the mechanism remains unclearly. Cyanidin, a natural flavonoid compound, exhibits powerful antioxidant activity. Hence, we investigated the protective effects of cyanidin on PC12 cells against cisplatin-induced neurotoxicity and explored the underlying mechanisms. The results showed that cisplatin-induced cytotoxicity was completely reversed by cyanidin through inhibition of PC12 cell apoptosis, as proved by the attenuation of Sub-G1 peak, PARP cleavage, and caspases-3 activation. Mechanistically, cyanidin significantly inhibited reactive oxygen species (ROS)-induced DNA damage in cisplatin-treated PC12 cells. Our findings revealed that cyanidin as an apoptotic inhibitor effectively blocked cisplatin-induced neurotoxicity through inhibition of ROS-mediated DNA damage and apoptosis, predicating its therapeutic potential in prevention of chemotherapy-induced neurotoxicity. Cisplatin caused DNA damage, activated p53, and subsequently induced PC12 cells apoptosis by triggering ROS overproduction. However, cyanidin administration effectively inhibited DNA damage, attenuated p53 phosphorylation, and eventually reversed cisplatin-induced PC12 cell apoptosis through inhibition ROS accumulation.

  7. Glucose-dependent growth arrest of leukemia cells by MCT1 inhibition: Feeding Warburg's sweet tooth and blocking acid export as an anticancer strategy.

    PubMed

    Pivovarova, Aleksandra I; MacGregor, Gordon G

    2018-02-01

    This study aims to investigate the utilization of The Warburg Effect, cancer's "sweet tooth" and natural greed for glucose to enhance the effect of monocarboxylate transporter inhibition on cellular acidification. By simulating hyperglycemia with high glucose we may increase the effectiveness of inhibition of lactate and proton export on the dysregulation of cell pH homeostasis causing cell death or disruption of growth in cancer cells. MCT1 and MCT4 expression was determined in MCF7 and K562 cell lines using RT-PCR. Cell viability, growth, intracellular pH and cell cycle analysis was measured in the cell lines grown in 5 mM and 25 mM glucose containing media in the presence and absence of the MCT1 inhibitor AR-C155858 (1 μM) and the NHE1 inhibitor cariporide (10 μM). The MCT1 inhibitor, AR-C155858 had minimal effect on the viability, growth and intracellular pH of MCT4 expressing MCF7 cells. AR-C155858 had no effect on the viability of the MCT1 expressing K562 cells, but decreased intracellular pH and cell proliferation, by a glucose-dependent mechanism. Inhibition of NHE1 on its own had a no effect on cell growth, but together with AR-C155858 showed an additive effect on inhibition of cell growth. In cancer cells that only express MCT1, increased glucose concentrations in the presence of an MCT1 inhibitor decreased intracellular pH and reduced cell growth by G1 phase cell-cycle arrest. Thus we propose a transient hyperglycemic-clamp in combination with proton export inhibitors be evaluated as an adjunct to cancer treatment in clinical studies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Slow and sustained nitric oxide releasing compounds inhibit multipotent vascular stem cell proliferation and differentiation without causing cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, Brandon M.; Leix, Kyle Alexander; Ji, Yajing

    Highlights: • Multipotent vascular stem cells (MVSCs) proliferate and differentiate. • Nitric oxide inhibits proliferation of MVSCs. • Nitric oxide inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs). • Smooth muscle cells (SMCs) neither de-differentiate nor proliferate. - Abstract: Atherosclerosis is the leading cause of cerebral and myocardial infarction. It is believed that neointimal growth common in the later stages of atherosclerosis is a result of vascular smooth muscle cell (SMC) de-differentiation in response to endothelial injury. However, the claims of the SMC de-differentiation theory have not been substantiated by monitoring the fate of mature SMCs in response to suchmore » injuries. A recent study suggests that atherosclerosis is a consequence of multipotent vascular stem cell (MVSC) differentiation. Nitric oxide (NO) is a well-known mediator against atherosclerosis, in part because of its inhibitory effect on SMC proliferation. Using three different NO-donors, we have investigated the effects of NO on MVSC proliferation. Results indicate that NO inhibits MVSC proliferation in a concentration dependent manner. A slow and sustained delivery of NO proved to inhibit proliferation without causing cell death. On the other hand, larger, single-burst NO concentrations, inhibits proliferation, with concurrent significant cell death. Furthermore, our results indicate that endogenously produced NO inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs) and subsequently to SMC as well.« less

  9. Non-small cell lung carcinoma therapy using mTOR-siRNA.

    PubMed

    Matsubara, Hirochika; Sakakibara, Kenji; Kunimitsu, Tamo; Matsuoka, Hiroyasu; Kato, Kaori; Oyachi, Noboru; Dobashi, Yoh; Matsumoto, Masahiko

    2012-01-01

    Molecular targeting agents play important roles in non-small-cell lung cancer (NSCLC) therapy. Published studies have investigated new drugs categorized as molecular targeting agents that inhibit the mammalian target of rapamycin (mTOR). We focused on a small interfering RNA (siRNA) that specifically inhibits mTOR and has fewer side effects. To evaluate the antitumor effects of the siRNA, cell proliferation, apoptosis, and migration were assessed. In the study group, the siRNA was transfected into NSCLC cells. The number of cells present after 6 days of culture was counted to determine changes in cell proliferation. The level of apoptosis was evaluated by the detection of DNA-histone complexes in the cytoplasmic fraction using an absorption spectrometer. Changes in migration were evaluated by calculating the number of cells that passed through a specific filter using a commercial chemotaxis assay kit. mTOR-siRNA transfection inhibited cell proliferation as indicated by 37.3% (p = 0.034) decrease in the number of cells compared with the control cells. Analysis of the level of apoptosis in NSCLC cells revealed 16.7% (p = 0.016) increase following mTOR-siRNA transfection, and mTOR-siRNA transfection significantly inhibited cell migration by 39.2% (p = 0.0001). We confirmed that mTOR-siRNA induces apoptosis and inhibits the proliferation and migration of NSCLC cells in vitro. Further studies using mTOR-siRNA may aid in the development of an alternative therapy that maximizes the antineoplastic effect of mTOR inhibition.

  10. Non-small cell lung carcinoma therapy using mTOR-siRNA

    PubMed Central

    Matsubara, Hirochika; Sakakibara, Kenji; Kunimitsu, Tamo; Matsuoka, Hiroyasu; Kato, Kaori; Oyachi, Noboru; Dobashi, Yoh; Matsumoto, Masahiko

    2012-01-01

    Molecular targeting agents play important roles in non-small-cell lung cancer (NSCLC) therapy. Published studies have investigated new drugs categorized as molecular targeting agents that inhibit the mammalian target of rapamycin (mTOR). We focused on a small interfering RNA (siRNA) that specifically inhibits mTOR and has fewer side effects. To evaluate the antitumor effects of the siRNA, cell proliferation, apoptosis, and migration were assessed. In the study group, the siRNA was transfected into NSCLC cells. The number of cells present after 6 days of culture was counted to determine changes in cell proliferation. The level of apoptosis was evaluated by the detection of DNA-histone complexes in the cytoplasmic fraction using an absorption spectrometer. Changes in migration were evaluated by calculating the number of cells that passed through a specific filter using a commercial chemotaxis assay kit. mTOR-siRNA transfection inhibited cell proliferation as indicated by 37.3% (p = 0.034) decrease in the number of cells compared with the control cells. Analysis of the level of apoptosis in NSCLC cells revealed 16.7% (p = 0.016) increase following mTOR-siRNA transfection, and mTOR-siRNA transfection significantly inhibited cell migration by 39.2% (p = 0.0001). We confirmed that mTOR-siRNA induces apoptosis and inhibits the proliferation and migration of NSCLC cells in vitro. Further studies using mTOR-siRNA may aid in the development of an alternative therapy that maximizes the antineoplastic effect of mTOR inhibition. PMID:22400071

  11. Natural killer cells inhibit oxaliplatin-resistant colorectal cancer by repressing WBSCR22 via upregulating microRNA-146b-5p.

    PubMed

    Zhao, Haiyan; Su, Wuyun; Kang, Qingmei; Xing, Ze; Lin, Xue; Wu, Zhongjun

    2018-01-01

    Natural killer (NK) cells have exhibited promising efficacy in inhibiting cancer growth. We aimed to explorer the effect of NK cells on oxaliplatin-resistant colorectal cancer and the underlying molecular mechanism. Oxaliplatin-resistant colorectal cancer cell lines were co-cultured with NK cells to evaluate the effect on viability, proliferation, migration and invasion in vitro . Oxaliplatin-resistant colorectal cancer cells were also co-injected with NK cells into mice to establish xenograft tumor model, to assess the in vivo effect of NK cells on tumorigenesis of the oxaliplatin-resistant colorectal cancer cells. Expression of WBSCR22 gene was assessed in the oxaliplatin-resistant colorectal cancer cells following NK cell treatment to elucidate the mechanism. NK cell treatment significantly reduces growth of oxaliplatin-resistant colorectal cancer cells both in vitro and in vivo , as well as reduced WBSCR22 expression. MicroRNAs potentially targeting WBSCR22 were analyzed, and microRNA-146b-5p was found to be significantly upregulated following NK cell treatment. MicroRNA-146b-5p directly targeted WBSCR22 mRNA 3'-UTR to inhibit its expression, which was required for NK cell-induced inhibition of oxaliplatin-resistant colorectal cancer cell lines. NK cells inhibit oxaliplatin-resistant colorectal cancer by repressing WBSCR22 via upregulating microRNA-146b-5p, both of which could serve as candidates for targeted therapy against oxaliplatin-resistant colorectal cancer.

  12. [The effects of herb lithospermum extract on MCF-7 cell and estrogen and progestogen levels in mice].

    PubMed

    Wang, Wei; Li, Ping-ping

    2003-11-01

    To study the effects of lithospermum extract on MCF-7 cell and estrogen and progestogen levels in mice. Cell growth curve and Western Blotting were used to do animal experiment. Lithospermum extract could inhibit the growth of MCF-7 cell. It could also inhibit the expression of ER and increase the expression of PR with large dose. After the mice were bred with Lithospermum, their serum estrogen and progestogen levels reduced, their uterus weight index decresed and uterus ER and PR levels increased. It could also improve the hyperplasia of uterus caused by tamoxifen. Lithospermum extract can inhibit the growth of MCF-7 cell and inhibit the level of estrogen and progestogen in mice.

  13. Endotoxin Contamination of Apolipoprotein A-I: Effect on Macrophage Proliferation – A Cautionary Tale

    PubMed Central

    Jin, Xueting; Xu, Qing; Champion, Keith; Kruth, Howard S.

    2015-01-01

    This technical report addresses the problem of endotoxin contamination of apolipoprotein reagents. Using a bromodeoxyuridine incorporation cell proliferation assay, we observed that human plasma ApoA-I as low as 1 μg/ml resulted in a >90% inhibition in macrophage proliferation. However, not all ApoA-I from different sources showed this effect. We considered the possibility that endotoxin contamination of the apolipoproteins contributed to the differential inhibition of macrophage cell proliferation. Endotoxin alone very potently inhibited macrophage proliferation (0.1 ng/ml inhibited macrophage proliferation >90%). Measurement of endotoxin levels in the apolipoprotein products, including an analysis of free versus total endotoxin, the latter which included endotoxin that was masked due to binding to protein, suggested that free endotoxin mediated inhibition of macrophage proliferation. Despite the use of an advanced endotoxin removal procedure and agents commonly used to inhibit endotoxin action, the potency of endotoxin precluded successful elimination of endotoxin effect. Our findings show that endotoxin contamination can significantly influence apparent apolipoprotein-mediated cell effects (or effects of any other biological products), especially when these products are tested on highly endotoxin-sensitive cells, such as macrophages. PMID:25778625

  14. Endotoxin contamination of apolipoprotein A-I: effect on macrophage proliferation--a cautionary tale.

    PubMed

    Jin, Xueting; Xu, Qing; Champion, Keith; Kruth, Howard S

    2015-05-01

    This technical report addresses the problem of endotoxin contamination of apolipoprotein reagents. Using a bromodeoxyuridine incorporation cell proliferation assay, we observed that human plasma ApoA-I as low as 1 μg/ml resulted in a >90% inhibition in macrophage proliferation. However, not all ApoA-I from different sources showed this effect. We considered the possibility that endotoxin contamination of the apolipoproteins contributed to the differential inhibition of macrophage cell proliferation. Endotoxin alone very potently inhibited macrophage proliferation (0.1 ng/ml inhibited macrophage proliferation>90%). Measurement of endotoxin levels in the apolipoprotein products, including an analysis of free versus total endotoxin, the latter which included endotoxin that was masked due to binding to protein, suggested that free endotoxin mediated inhibition of macrophage proliferation. Despite the use of an advanced endotoxin removal procedure and agents commonly used to inhibit endotoxin action, the potency of endotoxin precluded successful elimination of endotoxin effect. Our findings show that endotoxin contamination can significantly influence apparent apolipoprotein-mediated cell effects (or effects of any other biological products), especially when these products are tested on highly endotoxin-sensitive cells, such as macrophages. Published by Elsevier Ireland Ltd.

  15. Differential effects of immunosuppressive drugs on T-cell motility.

    PubMed

    Datta, A; David, R; Glennie, S; Scott, D; Cernuda-Morollon, E; Lechler, R I; Ridley, A J; Marelli-Berg, F M

    2006-12-01

    The best-characterized mechanism of the action of immunosuppressive drugs is to prevent T-cell clonal expansion, thus containing the magnitude of the ensuing immune response. As T-cell recruitment to the inflammatory site is another key step in the development of T-cell-mediated inflammation, we analyzed and compared the effects of two commonly used immunosuppressants, cyclosporin A (CsA) and the rapamycin-related compound SDZ-RAD, on the motility of human CD4+ T cells. We show that CsA, but not SDZ-RAD, inhibits T-cell transendothelial migration in vitro. CsA selectively impaired chemokine-induced T-cell chemotaxis while integrin-mediated migration was unaffected. The inhibition of T-cell chemotaxis correlated with reduced AKT/PKB but not ERK activation following exposure to the chemokine CXCL-12/SDF-1. In addition, CsA, but not SDZ-RAD, prevents some T-cell receptor-mediated effects on T-cell motility. Finally, we show that CsA, but not SDZ-RAD inhibits tissue infiltration by T cells in vivo. Our data suggest a prominent antiinflammatory role for CsA in T-cell-mediated tissue damage, by inhibiting T-cell trafficking into tissues in addition to containing clonal expansion.

  16. Emodin: One Main Ingredient of Shufeng Jiedu Capsule Reverses Chemoresistance of Lung Cancer Cells Through Inhibition of EMT.

    PubMed

    Ying, Yuan; Qingwu, Liao; Mingming, Xue; Zhenju, Song; Chaoyang, Tong; Zhengang, Tao

    2017-01-01

    Chemoresistance has become a an important worldwide problem to cancer treatment. Understanding the mechanism of drug resistance is the key to solve this problem and improve the survival of the patient. Doxorubicin and its analogues are widely used as antitumor drugs but many doxorubicin resistant cases have been identified in recent years. Doxorubicin (Dox) resistance is a very serious phenomenon in lung cancer treatment. As we could show previously, Shufeng Jiedu Capsule (SFJDC) can effectively reverse H69AR cells resistance to Dox, thus, the present study was designed to explore the mechanism underlying the effects of the main ingredient Emodin on chemosensitivity of H69AR cells to Dox. First, the growth inhibition rate of lung cancer cells and normal bronchial epithelial cells (BECs) was determined by MTT. Then, the resistance-induced epithelial-mesenchymal transition (EMT) of H69AR cells was examined by western blot and the effect of Emodin on Twist, Snail or Slug was assayed by Real-time PCR and Western blot. The activation of NF-kappa B was assayed by Western blot. Proliferation, apoptosis, migration and invasion of H69AR cells induced by Twist, Snail and Slug were also assayed by flow cytometry and transwell chamber. The results showed that after administration of Dox (10µM) with different concentrations of Emodin, the cells exhibited a dose-dependent inhibition action to H69AR cells at 48 hours. H69AR induced the expression of Twist, Snail, and Slug when compared with Dox-sensitive H69 cells. The expression of Twist, Snail, and Slug can be effectively inhibited by combination of Dox and Emodin. The reversal of resistance was associated with the inhibition of NF-kappa B. Twist, Snail and Slug promoted proliferation, migration and invasion and inhibited apoptosis. Our data suggest that Emodin can effectively reverse the resistance of H69AR to Dox, an effect paralleled by inhibition of EMT, cell proliferation, apoptosis, migration and invasion. © 2017 The Author(s). Published by S. Karger AG, Basel.

  17. ATR Kinase Inhibition Protects Non-cycling Cells from the Lethal Effects of DNA Damage and Transcription Stress*

    PubMed Central

    Kemp, Michael G.; Sancar, Aziz

    2016-01-01

    ATR (ataxia telangiectasia and Rad-3-related) is a protein kinase that maintains genome stability and halts cell cycle phase transitions in response to DNA lesions that block DNA polymerase movement. These DNA replication-associated features of ATR function have led to the emergence of ATR kinase inhibitors as potential adjuvants for DNA-damaging cancer chemotherapeutics. However, whether ATR affects the genotoxic stress response in non-replicating, non-cycling cells is currently unknown. We therefore used chemical inhibition of ATR kinase activity to examine the role of ATR in quiescent human cells. Although ATR inhibition had no obvious effects on the viability of non-cycling cells, inhibition of ATR partially protected non-replicating cells from the lethal effects of UV and UV mimetics. Analyses of various DNA damage response signaling pathways demonstrated that ATR inhibition reduced the activation of apoptotic signaling by these agents in non-cycling cells. The pro-apoptosis/cell death function of ATR is likely due to transcription stress because the lethal effects of compounds that block RNA polymerase movement were reduced in the presence of an ATR inhibitor. These results therefore suggest that whereas DNA polymerase stalling at DNA lesions activates ATR to protect cell viability and prevent apoptosis, the stalling of RNA polymerases instead activates ATR to induce an apoptotic form of cell death in non-cycling cells. These results have important implications regarding the use of ATR inhibitors in cancer chemotherapy regimens. PMID:26940878

  18. Inhibition of human cancer cell line growth and human umbilical vein endothelial cell angiogenesis by artemisinin derivatives in vitro.

    PubMed

    Chen, Huan-Huan; Zhou, Hui-Jun; Fang, Xin

    2003-09-01

    Artemisinin derivatives artesunate (ART) and dihydroartemisinin are remarkable anti-malarial drugs with low toxicity to humans. In the present investigation, we find they also inhibited tumor cell growth and suppressed angiogenesis in vitro. The anti-cancer activity was demonstrated by inhibition (IC(50)) of four human cancer cell lines: cervical cancer Hela, uterus chorion cancer JAR, embryo transversal cancer RD and ovarian cancer HO-8910 cell lines growth by the MTT assay. IC(50) values ranged from 15.4 to 49.7 microM or from 8.5 to 32.9 microM after treatment with ART or dihydroartemisinin for 48 h, indicating that dihydroartemisinin was more effective than ART in inhibiting cancer cell lines. The anti-angiogenic activities were tested on in vitro models of angiogenesis, namely, proliferation, migration and tube formation of human umbilical vein endothelial (HUVE) cells. We investigated the inhibitory effects of ART and dihydroartemisinin on HUVE cells proliferation by cell counting, migration into the scratch wounded area in HUVE cell monolayers and microvessel tube-like formation on collagen gel. The results showed ART and dihydroartemisinin significantly inhibited angiogenisis in a dose-dependent form in range of 12.5-50 microM and 2.5-50 microM, respectively. They indicated that dihydroartemisinin was more effective than ART in inhibiting angiogenesis either. These results and the known low toxicity are clues that ART and dihydroartemisinin may be promising novel candidates for cancer chemotherapy.

  19. SGI-1776, an imidazo pyridazine compound, inhibits the proliferation of ovarian cancer cells by inactivating Pim-1.

    PubMed

    Xie, Jing; Bai, Jun

    2014-07-01

    To investigate the antitumor effect of SGI-1776 on human ovarian cancer HO-8910 cells and its molecular mechanism. HO-8910 cells were cultured in vitro, and the proliferation inhibitory effects of SGI- 1776 were determined by MTT assay and colony formation assay. The effect of SGI-1776 on the distribution of cell cycle phase was observed by flow cytometry with propidium iodide (PI) staining. The inhibition rate of migration and invasion were valued by transwell cell assay. Multiple molecular techniques, such as ELISA, Western blot, siRNA and cDNA transfection were used to explore the molecular mechanism. SGI-1776 presented dramatic anti-tumor activity against HO-8910 cells in vitro, inhibited the cells proliferation and colony formation, and attenuated the migration and invasion in a dosedependent manner, accompanied by cell cycle arrest in G1 phase. SGI-1776 caused the proliferation inhibition with concomitant decrease in Pim-1 kinase activity, down-regulated the expression of Pim-1 protein and and its downstream genes, such as CDK6, pCDK6, CDK4, pCDK4, CDK2 and pCDK2, and increased the expression of P21 and P27. Down-regulation expression of Pim-1 by siRNA followed SGI-1776 treatment resulted in enhanced cell proliferation inhibition rate and attenuated migration/invasion. Up-regulation of Pim-1 by cDNA transfection attenuated SGI- 1776-induced cell proliferation inhibition and its migration/invasion. Pim-1 mediates the biological effect of SGI-1776 in human ovarian cancer HO-8910 cells, suggesting Pim-1 might be a novel target for human ovarian cancer.

  20. Intravenous transplantation of mesenchymal stromal cells has therapeutic effects in a sepsis mouse model through inhibition of septic natural killer cells.

    PubMed

    Liu, Wenhua; Gao, Yang; Li, Haibo; Wang, Hongliang; Ye, Ming; Jiang, Guihua; Chen, Yongsheng; Liu, Yang; Kong, Junying; Liu, Wei; Sun, Meng; Hou, Meng; Yu, Kaijiang

    2016-10-01

    Transplantation of mesenchymal stromal cells is a promising strategy for treating sepsis. Natural killer cells are important in the development of sepsis, and their functions can be inhibited by mesenchymal stromal cells, we asked whether mesenchymal stromal cells exert their therapeutic effects through inhibiting the functions of natural killer cells in a septic mouse model generated with cecal ligation puncture method. Using co-cultures of cells, small interfering RNA, enzyme-linked immnuosorbent assays, fluorescence assays, western blotting, and pathological examination, we investigated the levels of inflammatory cytokines, proliferation of natural killer cells, inflammatory infiltration of important organs in mice, and activity of the Janus kinase/signal transducer and activator of transcription signaling pathway and found that mesenchymal stromal cells inhibited the function and proliferation of septic natural killer cells, increased interleukin-10 levels and increased the expression of components, such as Janus kinase 1, Janus kinase 2, and signal transducer and activator of transcription 3 in the Janus kinase/signal transducer and activator of transcription pathway both in vitro and in vivo. We conclude that mesenchymal stromal cells have their therapeutic effect in the septic mouse model through inhibiting the function and proliferation of septic natural killer cells. This biological process may involve interleukin-10 and suppressor of cytokine signaling 3 as well as other pathway components in the Janus kinase/signal transducer and activator of transcription pathway. Transplantation of mesenchymal stromal cells is an effective strategy to treat sepsis. Copyright © 2016. Published by Elsevier Ltd.

  1. [The anti-tumour effect of Wuxing soup and its mechanism in inducing apoptosis of tumour cells mediated by calcium].

    PubMed

    Mo, Fei; Hu, Jing-Ying; Gan, Yu; Zhao, Yang-Xing; Zhao, Xin-Tai

    2008-09-01

    To confirm the anti-cancer effect and mechanism of Wuxing soup. Inhibition of cellular growth under Wuxing soup treatment was observed by MTT; Apoptosis was detected by gel electrophoresis, transmission electron microscopy and FACS; The concentration of calcium was measured by fluorescence probe. After SGC-7901 cell being treated by Wuxing soup, it showed that: 1) Wuxing soup could specifically inhibit cancer cells proliferation in a time and dose dependent manner; 2) Typical apoptotic morphological changes and DNA ladder of SGC-7901 cells were observed; 3) calcium inhibitor Bapta AM could reduce the apoptotic rate and protect SGC-7901 cells in a dose dependent manner. Wuxing soup has an effective inhibition on cancer cells, and can induce SGC-7901 cells to apoptosis by calcium.

  2. Short-chain fatty acid receptors inhibit invasive phenotypes in breast cancer cells

    PubMed Central

    Thirunavukkarasan, Madhumathi; Wang, Chao; Rao, Angad; Hind, Tatsuma; Teo, Yuan Ru; Siddiquee, Abrar Al-Mahmood; Goghari, Mohamed Ally Ibrahim; Kumar, Alan Prem

    2017-01-01

    Short chain fatty acids (2 to 6 carbons in length) are ubiquitous lipids that are present in human plasma at micromolar concentrations. In addition to serving as metabolic precursors for lipid and carbohydrate synthesis, they also act as cognate ligands for two known G protein-coupled receptors (GPCRs), FFAR2 and FFAR3. While there is evidence that these receptors may inhibit the progression of colorectal cancer, their roles in breast cancer cells are largely unknown. We evaluated the effects of enforced overexpression of these receptors in two phenotypically distinct breast cancer cell lines: MCF7 and MDA-MD-231. Our results demonstrate that both receptors inhibit cell invasiveness, but through different signaling processes. In invasive, mesenchymal-like MDA-MB-231 cells, FFAR2 inhibits the Hippo-Yap pathway and increases expression of adhesion protein E-cadherin, while FFAR3 inhibits MAPK signaling. Both receptors have the net effect of reducing actin polymerization and invasion of cells through a Matrigel matrix. These effects were absent in the less invasive, epithelial-like MCF7 cells. Correspondingly, there is reduced expression of both receptors in invasive breast carcinoma and in aggressive triple-negative breast tumors, relative to normal breast tissue. Cumulatively, our data suggest that the activation of cognate receptors by short chain fatty acids drives breast cancer cells toward a non-invasive phenotype and therefore may inhibit metastasis. PMID:29049318

  3. N-ω-chloroacetyl-l-ornithine, a new competitive inhibitor of ornithine decarboxylase, induces selective growth inhibition and cytotoxicity on human cancer cells versus normal cells.

    PubMed

    Medina-Enríquez, Miriam Marlene; Alcántara-Farfán, Verónica; Aguilar-Faisal, Leopoldo; Trujillo-Ferrara, José Guadalupe; Rodríguez-Páez, Lorena; Vargas-Ramírez, Alba Laura

    2015-06-01

    Many cancer cells have high expression of ornithine decarboxylase (ODC) and there is a concerted effort to seek new inhibitors of this enzyme. The aim of the study was to initially characterize the inhibition properties, then to evaluate the cytotoxicity/antiproliferative cell based activity of N-ω-chloroacetyl-l-ornithine (NCAO) on three human cancer cell lines. Results showed NCAO to be a reversible competitive ODC inhibitor (Ki = 59 µM) with cytotoxic and antiproliferative effects, which were concentration- and time-dependent. The EC50,72h of NCAO was 15.8, 17.5 and 10.1 µM for HeLa, MCF-7 and HepG2 cells, respectively. NCAO at 500 µM completely inhibited growth of all cancer cells at 48 h treatment, with almost no effect on normal cells. Putrescine reversed NCAO effects on MCF-7 and HeLa cells, indicating that this antiproliferative activity is due to ODC inhibition.

  4. [Inhibition effects of black rice pericarp extracts on cell proliferation of PC-3 cells].

    PubMed

    Jiang, Weiwei; Yu, Xudong; Ren, Guofeng

    2013-05-01

    To observe the inhibitive effects of black rice pericarp extracts on cell proliferation of human prostate cancer cell PC-3 and to explore its effecting mechanism. The black rice pericarp extract was used to treat the PC-3 cells. The inhibitory effect of black rice pericarp extract on cells proliferation of PC-3 was tested by MTT method. Cell apoptosis rates and cell cycle were measured by flow cytometric assay (FCM). Western blot was used to study the protein expression levels of p38, p-p38, JNK, p-JNK. A dose-dependent and time-dependent proliferation inhibition of black rice pericarp extract was demonstrated in PC-3. The most prominent experiment condition was inhibitory concentration with 300microg/ml and treated for 72 h. The experiment result of flow cytometry analysis demonstrates that the apoptosis rate of PC-3 cells increased along with the increasing of black rice pericarp extract concentration, and a G1-S cell cycle arrest was induced in a dose-dependent manner. After PC-3 cell was treated with black rice pericarp extract for 72 h, the expressions of p-p38, p-JNK protein increased. Black rice pericarp extract could inhibit proliferation, change the cell cycle distributions and induce apoptosis in human prostatic cancer cell PC-3. Its inhibitory effect may be through promoting activation of the JNK, p38 signaling pathway. These results suggest that black rice pericarp extract maybe has an inhibitory effect on prostatic cancer.

  5. Role of peptidylarginine deiminase 2 (PAD2) in mammary carcinoma cell migration.

    PubMed

    Horibata, Sachi; Rogers, Katherine E; Sadegh, David; Anguish, Lynne J; McElwee, John L; Shah, Pragya; Thompson, Paul R; Coonrod, Scott A

    2017-05-26

    Penetration of the mammary gland basement membrane by cancer cells is a crucial first step in tumor invasion. Using a mouse model of ductal carcinoma in situ, we previously found that inhibition of peptidylarginine deiminase 2 (PAD2, aka PADI2) activity appears to maintain basement membrane integrity in xenograft tumors. The goal of this investigation was to gain insight into the mechanisms by which PAD2 mediates this process. For our study, we modulated PAD2 activity in mammary ductal carcinoma cells by lentiviral shRNA-mediated depletion, lentiviral-mediated PAD2 overexpression, or PAD inhibition and explored the effects of these treatments on changes in cell migration and cell morphology. We also used these PAD2-modulated cells to test whether PAD2 may be required for EGF-induced cell migration. To determine how PAD2 might promote tumor cell migration in vivo, we tested the effects of PAD2 inhibition on the expression of several cell migration mediators in MCF10DCIS.com xenograft tumors. In addition, we tested the effect of PAD2 inhibition on EGF-induced ductal invasion and elongation in primary mouse mammary organoids. Lastly, using a transgenic mouse model, we investigated the effects of PAD2 overexpression on mammary gland development. Our results indicate that PAD2 depletion or inhibition suppresses cell migration and alters the morphology of MCF10DCIS.com cells. In addition, we found that PAD2 depletion suppresses the expression of the cytoskeletal regulatory proteins RhoA, Rac1, and Cdc42 and also promotes a mesenchymal to epithelial-like transition in tumor cells with an associated increase in the cell adhesion marker, E-cadherin. Our mammary gland organoid study found that inhibition of PAD2 activity suppresses EGF-induced ductal invasion. In vivo, we found that PAD2 overexpression causes hyperbranching in the developing mammary gland. Together, these results suggest that PAD2 plays a critical role in breast cancer cell migration. Our findings that EGF treatment increases protein citrullination and that PAD2 inhibition blocks EGF-induced cell migration suggest that PAD2 likely functions within the EGF signaling pathway to mediate cell migration.

  6. Metformin selectively affects human glioblastoma tumor-initiating cell viability: A role for metformin-induced inhibition of Akt.

    PubMed

    Würth, Roberto; Pattarozzi, Alessandra; Gatti, Monica; Bajetto, Adirano; Corsaro, Alessandro; Parodi, Alessia; Sirito, Rodolfo; Massollo, Michela; Marini, Cecilia; Zona, Gianluigi; Fenoglio, Daniela; Sambuceti, Gianmario; Filaci, Gilberto; Daga, Antonio; Barbieri, Federica; Florio, Tullio

    2013-01-01

    Cancer stem cell theory postulates that a small population of tumor-initiating cells is responsible for the development, progression and recurrence of several malignancies, including glioblastoma. In this perspective, tumor-initiating cells represent the most relevant target to obtain effective cancer treatment. Metformin, a first-line drug for type II diabetes, was reported to possess anticancer properties affecting the survival of cancer stem cells in breast cancer models. We report that metformin treatment reduced the proliferation rate of tumor-initiating cell-enriched cultures isolated from four human glioblastomas. Metformin also impairs tumor-initiating cell spherogenesis, indicating a direct effect on self-renewal mechanisms. Interestingly, analyzing by FACS the antiproliferative effects of metformin on CD133-expressing subpopulation, a component of glioblastoma cancer stem cells, a higher reduction of proliferation was observed as compared with CD133-negative cells, suggesting a certain degree of cancer stem cell selectivity in its effects. In fact, glioblastoma cell differentiation strongly reduced sensitivity to metformin treatment. Metformin effects in tumor-initiating cell-enriched cultures were associated with a powerful inhibition of Akt-dependent cell survival pathway, while this pathway was not affected in differentiated cells. The specificity of metformin antiproliferative effects toward glioblastoma tumor-initiating cells was confirmed by the lack of significant inhibition of normal human stem cells (umbilical cord-derived mesenchymal stem cells) in vitro proliferation after metformin exposure. Altogether, these data clearly suggest that metformin exerts antiproliferative activity on glioblastoma cells, showing a higher specificity toward tumor-initiating cells, and that the inhibition of Akt pathway may represent a possible intracellular target of this effect.

  7. Inhibition of the biosynthesis of prostaglandin E2 by low dose aspirin: implications for adenocarcinoma metastasis

    PubMed Central

    Boutaud, Olivier; Sosa, I. Romina; Amin, Taneem; Oram, Denise; Adler, David; Hwang, Hyun S.; Crews, Brenda C.; Milne, Ginger; Harris, Bradford K.; Hoeksema, Megan; Knollmann, Bjorn C.; Lammers, Philip E.; Marnett, Lawrence J.; Massion, Pierre P.; Oates, John A.

    2016-01-01

    Meta-analyses have demonstrated that low dose aspirin reduces the risk of developing adenocarcinoma metastasis, and when colon cancer is detected during aspirin treatment, there is a remarkable 83% reduction in risk of metastasis. As platelets participate in the metastatic process, the anti-platelet action of low dose aspirin likely contributes to its anti-metastatic effect. Cycloxooxygenase-2 (COX-2)-derived prostaglandin E2 (PGE2) also contributes to metastasis, and we addressed the hypothesis that low dose aspirin also inhibits PGE2 biosynthesis. We show that low dose aspirin inhibits systemic PGE2 biosynthesis by 45% in healthy volunteers (p <0.0001). Aspirin is found to be more potent in colon adenocarcinoma cells than in the platelet, and in lung adenocarcinoma cells its inhibition is equivalent to that in the platelet. Inhibition of COX by aspirin in colon cancer cells is in the context of the metastasis of colon cancer primarily to the liver, the organ exposed to the same high concentrations of aspirin as the platelet. We find that the interaction of activated platelets with lung adenocarcinoma cells up-regulates COX-2 expression and PGE2 biosynthesis, and inhibition of platelet COX-1 by aspirin inhibits PGE2 production by the platelet-tumor cell aggregates. In conclusion, low dose aspirin has a significant effect on extraplatelet cyclooxygenase, and potently inhibits COX-2 in lung and colon adenocarcinoma cells. This supports a hypothesis that the remarkable prevention of metastasis from adenocarcinomas, and particularly from colon adenocarcinomas, by low dose aspirin results from its effect on platelet COX-1 combined with inhibition of PGE2 biosynthesis in metastasizing tumor cells. PMID:27554763

  8. [RITA combined with temozolomide inhibits the proliferation of human glioblastoma U87 cells].

    PubMed

    He, Xiao-Yan; Feng, Xiao-Li; Song, Xin-Pei; Zeng, Huan-Chao; Cao, Zhong-Xu; Xiao, Wei-Wei; Zhang, Bao; Wu, Qing-Hua

    2016-10-20

    To observe the effect of RITA, a small molecule that targets p53, combined with temozolomide (TMZ) on proliferation, colony formation and apoptosis of human glioblastoma U87 cells and explore the underlying mechanism. Cultured U87 cells were treated with RITA (1, 5, 10, 20 µmol/L), TMZ, or RITA+TMZ (half dose) for 24, 48 or 72 h. MTS assay were used to detect the cell proliferation, and the cell proliferation rate and inhibitory rate were calculated. The effect of combined treatments was evaluated by the q value. The expressions of p53, p21 and other apoptosis-associated genes were detected by qRT-PCR and Western blotting; cell apoptosis was assayed using flow cytometry with Annexin V/PI double staining; colony formation of the cells was detected with crystal violet staining. MTS assay showed that RITA at the 4 doses more potently inhibited U87 cell viability than TMZ at 72 h (P=0.000) with inhibitory rates of 25.94%-41.38% and 3.84%-8.20%, respectively. RITA combined with TMZ caused a more significant inhibition of U87 cells (29.21%-52.11%) than RITA (P<0.01) and TMZ (P=0.000) alone. At the doses above 5 µmol/L, the combined treatments with RITA+TMZ for 48 h resulted in q values exceeding 1.2 and showed an obvious synergistic effect of the drugs. Both RITA and TMZ, especially the latter, significantly increased the expressions of p53, p21, puma, and other apoptosis-associated genes to accelerate apoptosis and inhibit the growth and colony formation of U87 cells, and the effect was more obvious with a combined treatment. RITA inhibits the growth of human glioblastoma cells and enhance their sensitivity to TMZ by up-regulating p53 expression, and when combined, RITA and TMZ show a synergistic effect to cause a stronger cell inhibition.

  9. Synergistic growth inhibition in HL-60 cells by the combination of acyclic retinoid and vitamin K2.

    PubMed

    Kitagawa, Junichi; Hara, Takeshi; Tsurumi, Hisashi; Ninomiya, Soranobu; Ogawa, Kengo; Adachi, Seiji; Kanemura, Nobuhiro; Kasahara, Senji; Shimizu, Masahito; Moriwaki, Hisataka

    2011-05-01

    The aim of this study was to assess the effects of acyclic retinoid (ACR) and vitamin K(2) (VK(2)) in HL-60 cells. We used HL-60 cells, and the Trypan Blue dye exclusion method was used for cell proliferation assays. For detection of apoptosis, the Annexin V-binding capacity of treated cells was examined by flow cytometry. To evaluate the cell cycle, we used a FITC BrdU Flow KIT and flow cytometry. Total extracted and equivalent amounts of protein were examined by Western blotting using specific antibodies. ACR and VK(2) dose dependently inhibited the proliferation of HL-60 cells. These two agents in combination synergistically inhibited cell growth and induced apoptosis. VK(2) inhibited activation of the Ras/MAPK signaling pathway, and ACR plus VK(2) cooperatively inhibited phosphorylation of RXRα and the growth of HL-60 cells. Moreover, ACR and VK(2) induced increases in G0/G1 phase HL-60 cells, alone and synergistically in combination. The synergistic effects of ACR and VK(2) on HL-60 cells may provide a novel strategy for treating leukemia.

  10. Cytostatic inhibition of endothelial cell growth by the angiogenesis inhibitor TNP-470 (AGM-1470).

    PubMed Central

    Kusaka, M.; Sudo, K.; Matsutani, E.; Kozai, Y.; Marui, S.; Fujita, T.; Ingber, D.; Folkman, J.

    1994-01-01

    Recently, we reported the anti-angiogenic action along with anti-tumour activity of TNP-470 (AGM-1470). In this study, the effect of TNP-470 on the growth of human umbilical vein endothelial (HUVE) cells was examined. TNP-470 inhibited the growth of HUVE cells in a biphasic manner. The inhibition was cytostatic in the first phase (complete inhibition at 300 pg ml-1 to 3 micrograms ml-1 with an IC50 of 15 pg ml-1) and cytotoxic in the second phase (> or = 30 micrograms ml-1). The cytostatic inhibition of HUVE cell growth by TNP-470 was durable after washing out TNP-470 in culture. Incorporation of thymidine but not uridine and leucine by HUVE cells was inhibited in the first phase, while that of all three compounds was inhibited in the second phase. Human and rat endothelial cells among various types of cells were the most sensitive to the cytostatic inhibition, while differences in the cytotoxic inhibition were minimal. These results suggest that TNP-470 exerts its specific anti-angiogenic action by inhibiting cytostatically growth of endothelial cells in a relatively specific manner. PMID:8297716

  11. Caffeine inhibits homology-directed repair of I-SceI-induced DNA double-strand breaks.

    PubMed

    Wang, Huichen; Boecker, Wilfried; Wang, Hongyan; Wang, Xiang; Guan, Jun; Thompson, Larry H; Nickoloff, Jac A; Iliakis, George

    2004-01-22

    We recently reported that two Chinese hamster mutants deficient in the RAD51 paralogs XRCC2 and XRCC3 show reduced radiosensitization after treatment with caffeine, thus implicating homology-directed repair (HDR) of DNA double-strand breaks (DSBs) in the mechanism of caffeine radiosensitization. Here, we investigate directly the effect of caffeine on HDR initiated by DSBs induced by a rare cutting endonuclease (I-SceI) into one of two direct DNA repeats. The results demonstrate a strong inhibition by caffeine of HDR in wild-type cells, and a substantial reduction of this effect in HDR-deficient XRCC3 mutant cells. Inhibition of HDR and cell radiosensitization to killing shows similar dependence on caffeine concentration suggesting a cause-effect relationship between these effects. UCN-01, a kinase inhibitor that effectively abrogates checkpoint activation in irradiated cells, has only a small effect on HDR, indicating that similar to radiosensitization, inhibition of checkpoint signaling is not sufficient for HDR inhibition. Recombination events occurring during treatment with caffeine are characterized by rearrangements reminiscent to those previously reported for the XRCC3 mutant, and immunofluorescence microscopy demonstrates significantly reduced formation of IR-specific RAD51 foci after caffeine treatment. In summary, our results identify inhibition of HDR as a significant contributor to caffeine radiosensitization.

  12. Synergistic growth inhibition of squamous cell carcinoma of the head and neck by erlotinib and epigallocatechin-3-gallate: the role of p53-dependent inhibition of nuclear factor-kappaB.

    PubMed

    Amin, A R M Ruhul; Khuri, Fadlo R; Chen, Zhuo Georgia; Shin, Dong M

    2009-06-01

    We have previously reported that the green tea polyphenol epigallocatechin-3-gallate (EGCG) and the epidermal growth factor receptor-tyrosine kinase inhibitor erlotinib had synergistic growth-inhibitory effects in cell culture and a nude mouse xenograft model of squamous cell carcinoma of the head and neck. However, the mechanism of their antitumor synergism is not fully understood. In the current study, we investigate the mechanism of their synergistic growth-inhibitory effects. The treatment of squamous cell carcinoma of the head and neck cell lines with erlotinib time-dependently increased the expression of cell cycle regulatory proteins p21 and p27 and apoptosis regulatory protein Bim. EGCG alone had very little or no effect on the expression of these proteins among the cell lines. However, simultaneous treatment with EGCG and erlotinib strongly inhibited erlotinib-induced expression of p21 and p27 without affecting the expression of Bim. Moreover, erlotinib increased the expression of p53 protein, the ablation of which by short hairpin RNA strongly inhibited EGCG- and erlotinib-mediated growth inhibition and the expression of p21, p27, and Bim. In addition, combined treatment with erlotinib and EGCG inhibited the protein level of p65 subunit of nuclear factor-kappaB and its transcriptional target Bcl-2, but failed to do so in cells with ablated p53. Taken together, our results, for the first time, suggest that erlotinib treatment activates p53, which plays a critical role in synergistic growth inhibition by erlotinib and EGCG via inhibiting nuclear factor-kappaB signaling pathway. Characterizing the underlying mechanisms of EGCG and erlotinib synergism will provide an important rationale for chemoprevention or treatment trials using this combination.

  13. The addition of calcitriol or its synthetic analog EB1089 to lapatinib and neratinib treatment inhibits cell growth and promotes apoptosis in breast cancer cells.

    PubMed

    Segovia-Mendoza, Mariana; Díaz, Lorenza; Prado-Garcia, Heriberto; Reginato, Mauricio J; Larrea, Fernando; García-Becerra, Rocío

    2017-01-01

    In breast cancer the use of small molecule inhibitors of tyrosine kinase activity of the ERBB family members improves survival thus represents a valuable therapeutic strategy. The addition of calcitriol, the most active metabolite of vitamin D, or some of its analogs, to conventional anticancer drugs, including tyrosine kinase inhibitors (TKIs), has shown an increased effect on the inhibition of cancer cell growth. In this work, we have evaluated the effects and the mechanism of action of the combination of calcitriol or its analog EB1089 with lapatinib or neratinib on EGFR and/or HER2 positive breast cancer cell lines. Lapatinib, neratinib, calcitriol and EB1089 inhibited breast cancer cell proliferation in a concentration-dependent manner. Addition of calcitriol or EB1089 to TKIs treatment induced more effective inhibiting effect on cell growth and AKT and MAPK phosphorylation than all compounds alone. The combined treatments incremented also the expression of active caspase 3 and induced cell death in two and three-dimensional cell culture and significantly inhibited anchorage-independent colony formation. Our results suggest that the addition of calcitriol or its analog EB1089 to conventional targeted therapies, including lapatinib or neratinib might be of benefit to patients with breast cancer, particularly those with an EGFR and/or HER2 positive phenotype.

  14. The addition of calcitriol or its synthetic analog EB1089 to lapatinib and neratinib treatment inhibits cell growth and promotes apoptosis in breast cancer cells

    PubMed Central

    Segovia-Mendoza, Mariana; Díaz, Lorenza; Prado-Garcia, Heriberto; Reginato, Mauricio J; Larrea, Fernando; García-Becerra, Rocío

    2017-01-01

    In breast cancer the use of small molecule inhibitors of tyrosine kinase activity of the ERBB family members improves survival thus represents a valuable therapeutic strategy. The addition of calcitriol, the most active metabolite of vitamin D, or some of its analogs, to conventional anticancer drugs, including tyrosine kinase inhibitors (TKIs), has shown an increased effect on the inhibition of cancer cell growth. In this work, we have evaluated the effects and the mechanism of action of the combination of calcitriol or its analog EB1089 with lapatinib or neratinib on EGFR and/or HER2 positive breast cancer cell lines. Lapatinib, neratinib, calcitriol and EB1089 inhibited breast cancer cell proliferation in a concentration-dependent manner. Addition of calcitriol or EB1089 to TKIs treatment induced more effective inhibiting effect on cell growth and AKT and MAPK phosphorylation than all compounds alone. The combined treatments incremented also the expression of active caspase 3 and induced cell death in two and three-dimensional cell culture and significantly inhibited anchorage-independent colony formation. Our results suggest that the addition of calcitriol or its analog EB1089 to conventional targeted therapies, including lapatinib or neratinib might be of benefit to patients with breast cancer, particularly those with an EGFR and/or HER2 positive phenotype. PMID:28744399

  15. Ellagic acid inhibits the proliferation of human pancreatic carcinoma PANC-1 cells in vitro and in vivo.

    PubMed

    Cheng, Hao; Lu, Chenglin; Tang, Ribo; Pan, Yiming; Bao, Shanhua; Qiu, Yudong; Xie, Min

    2017-02-14

    Ellagic aicd (EA), a dietary polyphenolic compound found in plants and fruits, possesses various pharmacological activities. This study investigated the effect of EA on human pancreatic carcinoma PANC-1 cells both in vitro and in vivo; and defined the associated molecular mechanisms. In vitro, the cell growth and repairing ability were assessed by CCK-8 assay and wound healing assay. The cell migration and invasion activity was evaluated by Tanswell assay. In vivo, PANC-1 cell tumor-bearing mice were treated with different concentrations of EA. We found that EA significantly inhibited cell growth, cell repairing activity, and cell migration and invasion in a dose-dependent manner. Treatment of PANC-1 xenografted mice with EA resulted in significant inhibition in tumor growth and prolong mice survival rate. Furthermore, flow cytometric analysis showed that EA increased the percentage of cells in the G1 phase of cell cycle. Western blot analysis revealed that EA inhibited the expression of COX-2 and NF-κB. In addition, EA reversed epithelial to mesenchymal transition by up-regulating E-cadherin and down-regulating Vimentin. In summary, the present study demonstrated that EA inhibited cell growth, cell repairing activity, cell migration and invasion in a dose-dependent manner. EA also effectively inhibit human pancreatic cancer growth in mice. The anti-tumor effect of EA might be related to cell cycle arrest, down-regulating the expression of COX-2 and NF-κB, reversing epithelial to mesenchymal transition by up-regulating E-cadherin and down-regulating Vimentin. Our findings suggest that the use of EA would be beneficial for the management of pancreatic cancer.

  16. iNOS expression in CD4+ T cells limits Treg induction by repressing TGFβ1: combined iNOS inhibition and Treg depletion unmask endogenous antitumor immunity.

    PubMed

    Jayaraman, Padmini; Alfarano, Matthew G; Svider, Peter F; Parikh, Falguni; Lu, Geming; Kidwai, Sarah; Xiong, Huabao; Sikora, Andrew G

    2014-12-15

    Expression of inducible nitric oxide synthase (iNOS) in different cellular compartments may have divergent effects on immune function. We used a syngeneic tumor model to functionally characterize the role of iNOS in regulation of CD4(+)FOXP3(+) regulatory T cells (Treg), and optimize the beneficial effects of iNOS inhibition on antitumor immunity. Wild-type (WT) or iNOS knockout mice bearing established MT-RET-1 melanoma were treated with the small-molecule iNOS inhibitor L-NIL and/or cyclophosphamide alone or in combination. The effect of iNOS inhibition or knockout on induction of Treg from mouse and human CD4(+) T cells in ex vivo culture was determined in parallel in the presence or absence of TGFβ1-depleting antibodies, and TGFβ1 levels were assessed by ELISA. Whereas intratumoral myeloid-derived suppressor cells (MDSC) were suppressed by iNOS inhibition or knockout, systemic and intratumoral FOXP3(+) Treg levels increased in tumor-bearing mice. iNOS inhibition or knockout similarly enhanced induction of Treg from activated cultured mouse splenocytes or purified human or mouse CD4(+) T cells in a TGFβ1-dependent manner. Although either iNOS inhibition or Treg depletion with low-dose cyclophosphamide alone had little effect on growth of established MT-RET1 melanoma, combination treatment potently inhibited MDSC and Treg, boosted tumor-infiltrating CD8(+) T-cell levels, and arrested tumor growth in an immune-dependent fashion. iNOS expression in CD4(+) T cells suppresses Treg induction by inhibiting TGFβ1 production. Our data suggest that iNOS expression has divergent effects on induction of myeloid and lymphoid-derived regulatory populations, and strongly support development of combinatorial treatment approaches that target these populations simultaneously. ©2014 American Association for Cancer Research.

  17. Ganoderma lucidum suppresses angiogenesis through the inhibition of secretion of VEGF and TGF-{beta}1 from prostate cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, Gwenaelle; Harvey, Kevin; Slivova, Veronika

    2005-04-29

    Ganoderma lucidum (G. lucidum) is a popular medicinal mushroom that has been used as a home remedy for the general promotion of health and longevity in East Asia. The dried powder of G. lucidum, which was recommended as a cancer chemotherapy agent in traditional Chinese medicine, is currently popularly used worldwide in the form of dietary supplements. We have previously demonstrated that G. lucidum induces apoptosis, inhibits cell proliferation, and suppresses cell migration of highly invasive human prostate cancer cells PC-3. However, the molecular mechanism(s) responsible for the inhibitory effects of G. lucidum on the prostate cancer cells has notmore » been fully elucidated. In the present study, we examined the effect of G. lucidum on angiogenesis related to prostate cancer. We found that G. lucidum inhibits the early event in angiogenesis, capillary morphogenesis of the human aortic endothelial cells. These effects are caused by the inhibition of constitutively active AP-1 in prostate cancer cells, resulting in the down-regulation of secretion of VEGF and TGF-{beta}1 from PC-3 cells. Thus, G. lucidum modulates the phosphorylation of Erk1/2 and Akt kinases in PC-3 cells, which in turn inhibits the activity of AP-1. In summary, our results suggest that G. lucidum inhibits prostate cancer-dependent angiogenesis by modulating MAPK and Akt signaling and could have potential therapeutic use for the treatment of prostate cancer.« less

  18. Silibinin induces hepatic stellate cell cycle arrest via enhancing p53/p27 and inhibiting Akt downstream signaling protein expression.

    PubMed

    Ezhilarasan, Devaraj; Evraerts, Jonathan; Sid, Brice; Calderon, Pedro Buc; Karthikeyan, Sivanesan; Sokal, Etienne; Najimi, Mustapha

    2017-02-01

    Proliferation of hepatic stellate cells (HSCs) plays a pivotal role in the progression of liver fibrosis consequent to chronic liver injury. Silibinin, a flavonoid compound, has been shown to possess anti-fibrogenic effects in animal models of liver fibrosis. This was attributed to an inhibition of cell proliferation of activated HSCs. The present study was to gain insight into the molecular pathways involved in silibinin anti-fibrogenic effect. The study was conducted on LX-2 human stellate cells treated with three concentrations of silibinin (10, 50 and 100 μmol/L) for 24 and 96 hours. At the end of the treatment cell viability and proliferation were evaluated. Protein expression of p27, p21, p53, Akt and phosphorylated-Akt was evaluated by Western blotting analysis and Ki-67 protein expression was by immunocytochemistry. Sirtuin activity was evaluated by chemiluminescence based assay. Silibinin inhibits LX-2 cell proliferation in dose- and time-dependent manner; we showed that silibinin upregulated the protein expressions of p27 and p53. Such regulation was correlated to an inhibition of both downstream Akt and phosphorylated-Akt protein signaling and Ki-67 protein expression. Sirtuin activity also was correlated to silibinin-inhibited proliferation of LX-2 cells. The anti-proliferative effect of silibinin on LX-2 human stellate cells is via the inhibition of the expressions of various cell cycle targets including p27, Akt and sirtuin signaling.

  19. On the role of transforming growth factor-beta in the growth inhibitory effects of retinoic acid in human pancreatic cancer cells.

    PubMed

    Singh, Brahmchetna; Murphy, Richard F; Ding, Xian-Zhong; Roginsky, Alexandra B; Bell, Richard H; Adrian, Thomas E

    2007-12-24

    Retinoids are potent growth inhibitory and differentiating agents in a variety of cancer cell types. We have shown that retinoids induce growth arrest in all pancreatic cancer cell lines studied, regardless of their p53 and differentiation status. However, the mechanism of growth inhibition is not known. Since TGF-beta2 is markedly induced by retinoids in other cancers and mediates MUC4 expression in pancreatic cancer cells, we investigated the role of TGF-beta in retinoic acid-mediated growth inhibition in pancreatic cancer cells. Retinoic acid markedly inhibited proliferation of two cell lines (Capan-2 and Hs766T) in a concentration and time-dependent manner. Retinoic acid increased TGF-beta2 mRNA content and secretion of the active and latent forms of TGF-beta2 (measured by ELISA and bioassay). The concentrations of active and TGF-beta2 secreted in response to 0.1 - 10 muM retinoic acid were between 1-5 pM. TGF-beta2 concentrations within this range also inhibited proliferation. A TGF-beta neutralizing antibody blocked the growth inhibitory effects of retinoic acid in Capan-2 cells and partially inhibitory the effects in Hs766T cells. These findings indicate that TGF-beta can cause growth inhibition of pancreatic cancer cells, in a p53-independent manner. Furthermore, it demonstrates the fundamental role of TGF-beta in growth inhibition in response to retinoic acid treatment is preserved in vitro.

  20. Vitisin B, a resveratrol tetramer, inhibits migration through inhibition of PDGF signaling and enhancement of cell adhesiveness in cultured vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, Eng-Thaim; Hwang, Tsong-Long; Huang, Yu-Ling

    2011-10-15

    Vascular smooth muscle cells (VSMCs) play an important role in normal vessel formation and in the development and progression of cardiovascular diseases. Grape plants contain resveratrol monomer and oligomers and drinking of wine made from grape has been linked to 'French Paradox'. In this study we evaluated the effect of vitisin B, a resveratrol tetramer, on VSMC behaviors. Vitisin B inhibited basal and PDGF-induced VSMC migration. Strikingly, it did not inhibit VSMC proliferation but inversely enhanced cell cycle progression and proliferation. Among the tested resveratrol oligomers, vitisin B showed an excellent inhibitory activity and selectivity on PDGF signaling. The anti-migratorymore » effect by vitisin B was due to direct inhibition on PDGF signaling but was independent of interference with PDGF binding to VSMCs. Moreover, the enhanced VSMC adhesiveness to matrix contributed to the anti-migratory effect by vitisin B. Fluorescence microscopy revealed an enhanced reorganization of actin cytoskeleton and redistribution of activated focal adhesion proteins from cytosol to the peripheral edge of the cell membrane. This was confirmed by the observation that enhanced adhesiveness was repressed by the Src inhibitor. Finally, among the effects elicited by vitisin B, only the inhibitory effect toward basal migration was partially through estrogen receptor activation. We have demonstrated here that a resveratrol tetramer exhibited dual but opposite actions on VSMCs, one is to inhibit VSMC migration and the other is to promote VSMC proliferation. The anti-migratory effect was through a potent inhibition on PDGF signaling and novel enhancement on cell adhesion. - Highlights: > Several resveratrol oligomers from grape plants are examined on VSMC behaviors. > Tetraoligomer vitisin B shows excellent inhibitory activity and selectivity. > It exerts dual but opposing actions: anti-migratory and pro-proliferative effects. > The anti-migratory effect results from anti-PDGF signaling and pro-adhesiveness. > The more resveratrols oligomerize, the more potent effects they exert.« less

  1. Hyperforin, a bio-active compound of St. John's Wort, is a new inhibitor of angiogenesis targeting several key steps of the process.

    PubMed

    Martínez-Poveda, Beatriz; Quesada, Ana R; Medina, Miguel Angel

    2005-12-10

    Hyperforin, a phloroglucinol derivative found in St. John's wort related mainly to its antidepressant effects, has been reported recently to induce apoptosis in tumour cells and to inhibit cancer invasion and metastasis. We show that hyperforin inhibits angiogenesis in vitro in bovine aortic endothelial cells and in vivo in the chorioallantoic membrane assay. In a variety of experimental systems representing the sequential events of the angiogenic process, hyperforin treatment of endothelial cells resulted in strong inhibitory effects. Hyperforin inhibited the growth of endothelial cells in culture. Capillary tube formation on Matrigel was abrogated completely by addition of hypeforin at the low micromolar range. Hyperforin also exhibited a clear inhibitory effect on the invasive capabilities of endothelial cells. Zymographic assays showed that hyperforin treatment produced a complete inhibition of urokinase and a remarkable inhibition of matrix metalloproteinase 2. Our data indicates that hyperforin is a compound that interferes with key events in angiogenesis, confirming the recent and growing evidence about a potential role of this compound in cancer and metastasis inhibition and making it a promising drug for further evaluation in the treatment of angiogenesis-related pathologies. Copyright 2005 Wiley-Liss, Inc

  2. RIP1 Inhibition Rescues from LPS-Induced RIP3-Mediated Programmed Cell Death, Distributed Energy Metabolism and Spatial Memory Impairment.

    PubMed

    Nikseresht, Sara; Khodagholi, Fariba; Nategh, Mohsen; Dargahi, Leila

    2015-10-01

    Receptor interacting protein 1 (RIP1) has a critical role in initiation of programmed necrosis or necroptosis. RIP1 in a close collaboration with RIP3 not only mediates necroptosis but also is involved in apoptosis and inflammatory signaling. However, the interpretation of the distinct function of RIP1 and RIP3 is complicated. Herein, we demonstrated that RIP1 inhibition in the context of LPS-induced neuroinflammation decreases RIP3 expression. Concomitant administration of Nec-1, specific inhibitor of RIP1, with LPS also attenuated the activating effect of RIP3 on metabolic enzymes, glutamate-ammonia ligase and glutamate dehydrogenase as bioenergetic determinants, in hippocampal and cortical cells. RIP1 inhibition possessed an anti-inflammatory effect and improved the antioxidant capacity against LPS. Interestingly, and opposed to some reports that necroptosis inhibition sensitizes cells to apoptosis, our results showed that RIP1 inhibition attenuates apoptotic cell death in response to LPS. The survival of neuronal function was also confirmed by measuring spontaneous alternations of rats in Y-maze. In conclusion, effects of RIP1 inhibition on RIP3 and cell death provide new approaches to ameliorate neuroinflammation and relative disorders.

  3. Resveratrol suppresses TPA-induced matrix metalloproteinase-9 expression through the inhibition of MAPK pathways in oral cancer cells.

    PubMed

    Lin, Feng-Yan; Hsieh, Yi-Hsien; Yang, Shun-Fa; Chen, Chang-Tai; Tang, Chih-Hsin; Chou, Ming-Yung; Chuang, Yi-Ting; Lin, Chiao-Wen; Chen, Mu-Kuan

    2015-10-01

    Naturally occurring agents, such as resveratrol, have been determined to benefit health. Numerous studies have demonstrated that resveratrol has antioxidative, cardioprotective, and neuroprotective properties. However, the effect of resveratrol exerts on the metastasis of oral cancer cells remains unclear. In this study, we investigated the effect the anti-invasive activity of resveratrol on a human oral cancer cell line (SCC-9) in vitro and the underlying mechanisms. Cell viability was examined by MTT assay, whereas cell motility was measured by migration and wound-healing assays. Zymography, reverse-transcriptase polymerase chain reaction (PCR), and promoter assays confirmed the inhibitory effects of resveratrol on matrix metalloproteinase-9 (MMP-9) expression in oral cancer cells. We established that various concentrations (0-100 μM) of resveratrol inhibited the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced migration capacities of SCC-9 cells and caused no cytotoxic effects. Zymography and Western blot analyses suggested that resveratrol inhibited TPA-induced MMP-9 gelatinolytic activity and protein expression. In addition, the results indicated that resveratrol inhibited the phosphorylation of c-Jun N-terminal kinase (JNK)1/2 and extracellular-signal-regulated kinase (ERK)1/2 involved in downregulating protein expression and the transcription of MMP-9. In summary, resveratrol inhibited MMP-9 expression and oral cancer cell metastasis by downregulating JNK1/2 and ERK1/2 signals pathways and, thus, exerts beneficial effects in chemoprevention. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Combination of α-Tomatine and Curcumin Inhibits Growth and Induces Apoptosis in Human Prostate Cancer Cells

    PubMed Central

    Li, Dongli; He, Yan; Li, Yu; Du, Zhiyun; Zhang, Kun; DiPaola, Robert; Goodin, Susan; Zheng, Xi

    2015-01-01

    α-Tomatine is a glycoalkaloid found in tomatoes and curcumin is a major yellow pigment of turmeric. In the present study, the combined effect of these two compounds on prostate cancer cells was studied. Treatment of different prostate cancer cells with curcumin or α-tomatine alone resulted in growth inhibition and apoptosis in a concentration-dependent manner. Combinations of α-tomatine and curcumin synergistically inhibited the growth and induced apoptosis in prostate cancer PC-3 cells. Effects of the α-tomatine and curcumin combination were associated with synergistic inhibition of NF-κB activity and a potent decrease in the expression of its downstream gene Bcl-2 in the cells. Moreover, strong decreases in the levels of phospho-Akt and phosphor-ERK1/2 were found in PC-3 cells treated with α-tomatine and curcumin in combination. In animal experiment, SCID mice with PC-3 xenograft tumors were treated with α-tomatine and curcumin. Combination of α-tomatine and curcumin more potently inhibited the growth of PC-3 tumors than either agent alone. Results from the present study indicate that α-tomatine in combination with curcumin may be an effective strategy for inhibiting the growth of prostate cancer. PMID:26630272

  5. Iron Reverses Impermeable Chelator Inhibition of DNA Synthesis in CCl39 Cells

    NASA Astrophysics Data System (ADS)

    Alcain, Francisco J.; Low, Hans; Crane, Frederick L.

    1994-08-01

    Treatment of Chinese hamster lung fibro-blasts (CCl 39 cells) with the impermeable iron(II) chelator bathophenanthroline disulfonate (BPS) inhibits DNA synthesis when cell growth is initiated with growth factors including epidermal growth factor plus insulin, thrombin, or ceruloplasmin, but not with 10% fetal calf serum. The BPS treatment inhibits transplasma membrane electron transport. The treatment leads to release of iron from the cells as determined by BPS iron(II) complex formation over 90 min. Growth factor stimulation of DNA synthesis and electron transport are restored by addition of di- or trivalent iron to the cells in the form of ferric ammonium citrate, ferrous ammonium sulfate, or diferric transferrin. The effect with BPS differs from the inhibition of growth by hydroxyurea, which acts on the ribonucleotide reductase, or diethylenetriaminepentaacetic acid, which is another impermeable chelating agent, in that these agents inhibit growth in 10% fetal calf serum. The BPS effect is consistent with removal of iron from a site on the cell surface that controls DNA synthesis.

  6. Inhibitory effect of luteolin on estrogen biosynthesis in human ovarian granulosa cells by suppression of aromatase (CYP19).

    PubMed

    Lu, Dan-feng; Yang, Li-juan; Wang, Fei; Zhang, Guo-lin

    2012-08-29

    Inhibition of aromatase, the key enzyme in estrogen biosynthesis, is an important strategy in the treatment of breast cancer. Several dietary flavonoids show aromatase inhibitory activity, but their tissue specificity and mechanism remain unclear. This study found that the dietary flavonoid luteolin potently inhibited estrogen biosynthesis in a dose- and time-dependent manner in KGN cells derived from human ovarian granulosa cells, the major source of estrogens in premenopausal women. Luteolin decreased aromatase mRNA and protein expression in KGN cells. Luteolin also promoted aromatase protein degradation and inhibited estrogen biosynthesis in aromatase-expressing HEK293A cells, but had no effect on recombinant expressed aromatase. Estrogen biosynthesis in KGN cells was inhibited with differing potencies by extracts of onion and bird chili and by four other dietary flavonoids: kaempferol, quercetin, myricetin, and isorhamnetin. The present study suggests that luteolin inhibits estrogen biosynthesis by decreasing aromatase expression and destabilizing aromatase protein, and it warrants further investigation as a potential treatment for estrogen-dependent cancers.

  7. Shikonin induces apoptosis and inhibits migration of ovarian carcinoma cells by inhibiting the phosphorylation of Src and FAK

    PubMed Central

    HAO, ZHENFENG; QIAN, JING; YANG, JISHI

    2015-01-01

    The present study identified that shikonin, a naphthoquinone extracted from the roots of Lithospermum erythrorhizon, inhibits the migration of ovarian cancer cells and induces their apoptosis by impairing the phosphorylation of two kinases, proto-oncogene tyrosine protein kinase Src (Src) and focal adhesion kinase (FAK). Ovarian carcinoma SKOV-3 cells were treated with various concentrations of shikonin and analyzed for the effects on cell migration, invasion and apoptosis via Transwell assays and flow cytometry. In addition, the effects of shikonin administration on the expression and phosphorylation of Src and FAK in the SKOV-3 cells were analyzed by western blotting. Shikonin appeared to induce apoptosis and decrease cell migration in the SKOV-3 ovarian cells. Furthermore, the present study provides evidence that shikonin may exert these effects on human ovarian carcinoma cells via the inhibition of the protein tyrosine kinases, Src and FAK. Thus, shikonin should be considered for additional investigation as a candidate agent for the prevention and treatment of human ovarian cancer. PMID:25621031

  8. Jolkinolide A and Jolkinolide B Inhibit Proliferation of A549 Cells and Activity of Human Umbilical Vein Endothelial Cells.

    PubMed

    Shen, Lei; Zhang, Shan-Qiang; Liu, Lei; Sun, Yu; Wu, Yu-Xuan; Xie, Li-Ping; Liu, Ji-Cheng

    2017-01-14

    BACKGROUND Jolkinolide A (JA) and Jolkinolide B (JB) are diterpenoids extracted from the roots of Euphorbia fischeriana Steud and have been shown to have anti-tumor activity. However, their effects on the ability of tumor cells to invade blood vessels and metastasize remain largely unknown. Investigations into the effects of JA and JB on the angiogenesis of tumor tissues may facilitate the identification of new natural drugs with anti-tumor growth and metastasis activities. MATERIAL AND METHODS We used different concentrations of JA and JB (20 μg/ml, 40 μg/ml, 60 μg/ml, 80 μg/ml, and 100 μg/ml) to stimulate A549 cells and then studied the effects on the growth and metastasis of lung cancers. In addition, we used conditional media from A549 cells (A549-CM) stimulated by either JA or JB in different concentrations to culture human umbilical vein endothelial cells (HUVECs). RESULTS We found that both JA and JB significantly inhibited the Akt-STAT3-mTOR signaling pathway and reduced the expression of VEGF in A549 cells, but JB exhibited more significant inhibitory effects than JA. The JB-stimulated A549 cell conditional media had a greater inhibitory effect on the proliferation and migration of HUVECs than did the conditional media of JA-stimulated A549 cells. This effect gradually increased with increasing concentrations of either type of Jolkinolide. CONCLUSIONS Our results suggest that JA and JB inhibited VEGF expression in A549 cells through the inhibition of the Akt-STAT3-mTOR signaling pathway, and directly inhibited the proliferation and migration of HUVECs. These findings are of great significance for the development of new plant-derived chemotherapy agents for the treatment of cancer.

  9. Jolkinolide A and Jolkinolide B Inhibit Proliferation of A549 Cells and Activity of Human Umbilical Vein Endothelial Cells

    PubMed Central

    Shen, Lei; Zhang, Shan-Qiang; Liu, Lei; Sun, Yu; Wu, Yu-Xuan; Xie, Li-Ping; Liu, Ji-Cheng

    2017-01-01

    Background Jolkinolide A (JA) and Jolkinolide B (JB) are diterpenoids extracted from the roots of Euphorbia fischeriana Steud and have been shown to have anti-tumor activity. However, their effects on the ability of tumor cells to invade blood vessels and metastasize remain largely unknown. Investigations into the effects of JA and JB on the angiogenesis of tumor tissues may facilitate the identification of new natural drugs with anti-tumor growth and metastasis activities. Material/Methods We used different concentrations of JA and JB (20 μg/ml, 40 μg/ml, 60 μg/ml, 80 μg/ml, and 100 μg/ml) to stimulate A549 cells and then studied the effects on the growth and metastasis of lung cancers. In addition, we used conditional media from A549 cells (A549-CM) stimulated by either JA or JB in different concentrations to culture human umbilical vein endothelial cells (HUVECs). Results We found that both JA and JB significantly inhibited the Akt-STAT3-mTOR signaling pathway and reduced the expression of VEGF in A549 cells, but JB exhibited more significant inhibitory effects than JA. The JB-stimulated A549 cell conditional media had a greater inhibitory effect on the proliferation and migration of HUVECs than did the conditional media of JA-stimulated A549 cells. This effect gradually increased with increasing concentrations of either type of Jolkinolide. Conclusions Our results suggest that JA and JB inhibited VEGF expression in A549 cells through the inhibition of the Akt-STAT3-mTOR signaling pathway, and directly inhibited the proliferation and migration of HUVECs. These findings are of great significance for the development of new plant-derived chemotherapy agents for the treatment of cancer. PMID:28087861

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhengfu, He; Hu, Zhang; Huiwen, Miao

    The search for safe, effective and affordable therapeutics against non-small cell lung cancer (NSCLC) and other lung cancers is important. Here we explored the potential effect of 1-o-acetylbritannilactone (ABL), a novel extract from Inula britannica-F, on angiogenesis and lung cancer cell growth. We demonstrated that ABL dose-dependently inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, and capillary structure formation of cultured human umbilical vascular endothelial cells (HUVECs). In vivo, ABL administration suppressed VEGF-induced new vasculature formation in Matrigel plugs. For the mechanism investigations, we found that ABL largely inhibited VEGF-mediated activation of Src kinase and focal adhesion kinase (FAK) in HUVECs.more » Furthermore, treatment of A549 NSCLC cells with ABL resulted in cell growth inhibition and Src-FAK in-activation. Significantly, administration of a single dose of ABL (12 mg/kg/day) remarkably suppressed growth of A549 xenografts in nude mice. In vivo microvessels formation and Src activation were also significantly inhibited in ABL-treated xenograft tumors. Taken together, our findings suggest that ABL suppresses angiogenesis and lung cancer cell growth possibly via regulating the VEGFR-Src-FAK signaling. - Highlights: • 1-o-acetylbritannilactone (ABL) inhibits VEGF-induced angiogenesis in vivo. • ABL inhibits VEGF-induced HUVEC migration, proliferation, capillary tube formation. • ABL inhibits VEGF-mediated activation of Src and FAK in HUVECs. • ABL inhibits growth and Src-FAK activation in A549 cells. • ABL administration inhibits A549 tumor angiogenesis and growth in nude mice.« less

  11. Augmentation of Breast Cancer Growth and Metastasis by Chronic Stressor Exposure

    DTIC Science & Technology

    2012-07-01

    good model for examining NE effects on the tumor stromal cells in the absence of direct involvement of β-AR-expressing tumor cells . In that report...SHG+ fiber content also directly inhibit tumor metastasis, perhaps through direct effects on tumor cell motility, and that this inhibition is induced... effects in different cell types within a tumor that contribute to tumor progression. Nevertheless, the overall result is a protumorigenic signal that

  12. The histone deacetylase inhibitor butyrate inhibits melanoma cell invasion of Matrigel.

    PubMed

    Kuwajima, Akiko; Iwashita, Jun; Murata, Jun; Abe, Tatsuya

    2007-01-01

    Histone deacetylase (HDAC) inhibitors have anticancer effects. Their effects on expression of cell adhesion molecules might be related to their effects on tumor cell invasion. Murine B16-BL6 cells were treated with the HDAC inhibitors, butyrate or trichostatin A. Melanoma cell invasion of the artificial basement membrane, Matrigel, was examined by Transwell chamber assay. Butyrate as well as trichostatin A inhibited the cell growth mainly by arresting the cell cycle. The cell invasion of Matrigel was inhibited by butyrate and trichostatin A. The butyrate treatment increased the cell-cell aggregation, although neither E-cadherin nor N-cadherin mRNA were up-regulated. Both mRNA expression and protein levels of the immunoglobulin superfamily cell adhesion molecules, Mel-CAM and L1-CAM, were increased in the butyrate-treated cells. The HDAC inhibitor butyrate blocked the B16-BL6 melanoma cell invasion of Matrigel, although it increased the expression of Mel-CAM and L1-CAM which are important to the metastatic potential.

  13. Deoxyspergualin preferentially inhibits the growth and maturation of anti-CD40-activated surface IgD+ B lymphocytes.

    PubMed

    Morikawa, K; Nemoto, K; Miyawaki, T; Morikawa, S

    1998-06-01

    Deoxyspergualin (DSG), an analogue of spermidin, is a potent immunosuppressive drug with an action quite distinct from that of cyclosporin, rapamycin, or FK506. In this study we investigated the effect of DSG and methyldeoxyspergualin (MeDSG) on the proliferation and differentiation of human B cells stimulated with anti-CD40 MoAb. Highly purified B cells obtained from tonsillar samples were used as target cells. Both agents inhibited the proliferative response of anti-CD40-stimulated B cells in the absence and presence of IL-4, IL-2 or IL-10 in a dose-dependent manner. This inhibitory effect differed markedly among cell populations based on surface IgD expression: strong inhibition of sIgD+ B cells but little inhibition of sIgD- B cells. The drugs also suppressed the production of IgG, IgM and IgA by unfractionated B cells, which suggests that DSG acts against post-switch (sIgD-) B cells. Although the drugs suppressed immunoglobulin synthesis by both sIgD+ and sIgD- B cells, the effect was more marked in the sIgD+ B cells. Analysis of the subclass of IgG secreted by sIgD+ B cells revealed a decline in IgG1 and IgG3 in the presence of DSG. These results suggest that DSG preferentially inhibits the growth and maturation of sIgD+ naive B cells.

  14. Spider peptide toxin lycosin-I induces apoptosis and inhibits migration of prostate cancer cells.

    PubMed

    Shen, Hongwei; Xie, Yuan; Ye, Senlin; He, Kancheng; Yi, Lu; Cui, Rongrong

    2018-05-01

    Spider toxins are molecularly diverse and some display not only a strong antibacterial effect but also exhibit significant inhibition of tumor growth and promote tumor cell apoptosis. The aim of the present investigation was to explore different antitumor effects of the spider peptide toxin lycosin-I through different pathways at different concentrations. It was found that by inactivating STAT3 pathway, high concentrations of lycosin-I induce apoptosis in prostate cancer cells and low concentrations of lycosin-I inhibit the migration of prostate cancer cells. This finding provides favorable evidence for further study of the molecular diversity of spider toxins. Impact statement The spider peptide toxin has become an important research topic. These toxins are molecularly diverse and some display not only a strong antibacterial effect but also exhibit significant inhibition of tumor growth and promote tumor cell apoptosis. Inspired by previous studies, the present study aims to investigate the effects of different concentrations of lycosin-I on the invasiveness and apoptosis of human prostate cancer cells. The findings provide favorable evidence for further study of the molecular diversity of spider toxins.

  15. EF24 inhibits tumor growth and metastasis via suppressing NF-kappaB dependent pathways in human cholangiocarcinoma

    PubMed Central

    Yin, Da-long; Liang, Ying-jian; Zheng, Tong-sen; Song, Rui-peng; Wang, Jia-bei; Sun, Bo-shi; Pan, Shang-ha; Qu, Lian-dong; Liu, Jia-ren; Jiang, Hong-chi; Liu, Lian-xin

    2016-01-01

    A synthetic monoketone analog of curcumin, termed 3, 5-bis (2-flurobenzylidene) piperidin-4-one (EF24), has been reported to inhibit the growth of a variety of cancer cells both in vitro and in vivo. However, whether EF24 has anticancer effects on cholangiocarcinoma (CCA) cells and the mechanisms remain to be investigated. The aim of our study was to evaluate the molecular mechanisms underlying the anticancer effects of EF24 on CCA tumor growth and metastasis. Cell proliferation, apoptosis, migration, invasion, tumorigenesis and metastasis were examined. EF24 exhibited time- and dose-dependent inhibitory effects on HuCCT-1, TFK-1 and HuH28 human CCA cell lines. EF24 inhibited CCA cell proliferation, migration, and induced G2/M phase arrest. EF24 induced cell apoptosis along with negative regulation of NF-κB- X-linked inhibitor of apoptosis protein (XIAP) signaling pathway. XIAP inhibition by lentivirus mediated RNA interference enhanced EF24-induced apoptosis, while XIAP overexpression reduced it in CCA cells. In vivo, EF24 significantly suppressed the growth of CCA tumor xenografts and tumor metastasis while displaying low toxicity levels. Our findings indicate that EF24 is a potent antitumor agent that inhibits tumor growth and metastasis by inhibiting NF-κB dependent signaling pathways. EF24 may represent a novel approach for CCA treatment. PMID:27571770

  16. EF24 inhibits tumor growth and metastasis via suppressing NF-kappaB dependent pathways in human cholangiocarcinoma.

    PubMed

    Yin, Da-Long; Liang, Ying-Jian; Zheng, Tong-Sen; Song, Rui-Peng; Wang, Jia-Bei; Sun, Bo-Shi; Pan, Shang-Ha; Qu, Lian-Dong; Liu, Jia-Ren; Jiang, Hong-Chi; Liu, Lian-Xin

    2016-08-30

    A synthetic monoketone analog of curcumin, termed 3, 5-bis (2-flurobenzylidene) piperidin-4-one (EF24), has been reported to inhibit the growth of a variety of cancer cells both in vitro and in vivo. However, whether EF24 has anticancer effects on cholangiocarcinoma (CCA) cells and the mechanisms remain to be investigated. The aim of our study was to evaluate the molecular mechanisms underlying the anticancer effects of EF24 on CCA tumor growth and metastasis. Cell proliferation, apoptosis, migration, invasion, tumorigenesis and metastasis were examined. EF24 exhibited time- and dose-dependent inhibitory effects on HuCCT-1, TFK-1 and HuH28 human CCA cell lines. EF24 inhibited CCA cell proliferation, migration, and induced G2/M phase arrest. EF24 induced cell apoptosis along with negative regulation of NF-κB- X-linked inhibitor of apoptosis protein (XIAP) signaling pathway. XIAP inhibition by lentivirus mediated RNA interference enhanced EF24-induced apoptosis, while XIAP overexpression reduced it in CCA cells. In vivo, EF24 significantly suppressed the growth of CCA tumor xenografts and tumor metastasis while displaying low toxicity levels. Our findings indicate that EF24 is a potent antitumor agent that inhibits tumor growth and metastasis by inhibiting NF-κB dependent signaling pathways. EF24 may represent a novel approach for CCA treatment.

  17. Roxithromycin inhibits VEGF-induced human airway smooth muscle cell proliferation: Opportunities for the treatment of asthma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Qing-Mei, E-mail: 34713316@qq.com; Jiang, Ping, E-mail: jiangping@163.com; Yang, Min, E-mail: YangMin@163.com

    Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodelling, which is associated with increased airway smooth muscle (ASM) mass. Roxithromycin (RXM) has been widely used in asthma treatment; however, its mechanism of action is poorly understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodelling in patients with asthma, and shown to promote ASM cell proliferation. Here, we investigated the effect of RXM on VEGF-induced ASM cell proliferation and attempted to elucidate the underlying mechanisms of action. We tested the effect of RXM on proliferationmore » and cell cycle progression, as well as on the expression of phospho-VEGF receptor 2 (VEGFR2), phospho-extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-Akt, and caveolin-1 in VEGF-stimulated ASM cells. RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. Additionally, VEGF-induced ASM cell proliferation was suppressed by inhibiting the activity of ERK1/2, but not that of Akt. Furthermore, RXM treatment inhibits VEGF-induced activation of VEGFR2 and ERK and downregulation of caveolin-1 in a dose-dependent manner. RXM also inhibited TGF-β-induced VEGF secretion by ASM cells and BEAS-2B cells. Collectively, our findings suggest that RXM inhibits VEGF-induced ASM cell proliferation by suppression of VEGFR2 and ERK1/2 activation and caveolin-1 down-regulation, which may be involved in airway remodelling. Further elucidation of the mechanisms underlying these observations should enable the development of treatments for smooth muscle hyperplasia-associated diseases of the airway such as asthma. - Highlights: • RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. • VEGF-induced cell proliferation was suppressed by inhibiting the activity of ERK1/2. • RXM inhibits activation of VEGFR2 and ERK and downregulation of caveolin-1. • RXM inhibited TGF-β-induced VEGF secretion by ASM cells and BEAS-2B cells. • Our findings expand our knowledge of the role of RXM in airway remodelling.« less

  18. Effect of berberine on the yield of pyrimidine dimers in uv-irradiated DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimek, M.; Sevcikova, P.; Pidra, M.

    1973-01-01

    From international conference on the bases of the biological effects of ultraviolet radiation; Brno, Czechoslovakia (2 Oct The effect of berberine on the yield of thymine dimers produced by uv light in DNA isolated from mouse leukemic cells and in DNA within irradiated cells was investigated. In solutions of isolated DNA the complete inhibition of thynnine dimerization was found at the concentration of berberine equal to 2 x 10/sup -3M/. However, in the cells inhibition of dimerization by berberine was never complete. In L cells a pronounced decrease in the intensity of DNA synthesis was found in cells treated withmore » berberine, dependent on berberine concentration used. But despite the presence of berberine in cell nuclei, no inhibition of pyrimidine dimerization in uv irradiated cells could be established. (auth)« less

  19. The Role of Monocarboxylate Transporters and Their Chaperone CD147 in Lactate Efflux Inhibition and the Anticancer Effects of Terminalia chebula in Neuroblastoma Cell Line N2-A

    PubMed Central

    Messeha, S. S.; Zarmouh, N. O.; Taka, E.; Gendy, S. G.; Shokry, G. R.; Kolta, M. G.; Soliman, K. F. A.

    2016-01-01

    Aims In the presence of oxygen, most of the synthesized pyruvate during glycolysis in the cancer cell of solid tumors is released away from the mitochondria to form lactate (Warburg Effect). To maintain cell homeostasis, lactate is transported across the cell membrane by monocarboxylate transporters (MCTs). The major aim of the current investigation is to identify novel compounds that inhibit lactate efflux that may lead to identifying effective targets for cancer treatment. Study Design In this study, 900 ethanol plant extracts were screened for their lactate efflux inhibition using neuroblastoma (N2-A) cell line. Additionally, we investigated the mechanism of inhibition for the most potent plant extract regarding monocarboxylate transporters expression, and consequences effects on viability, growth, and apoptosis. Methodology The potency of lactate efflux inhibition of ethanol plant extracts was evaluated in N2-A cells by measuring extracellular lactate levels. Caspase 3- activity and acridine orange/ethidium bromide staining were performed to assess the apoptotic effect. The antiproliferative effect was measured using WST assay. Western blotting was performed to quantify protein expression of MCTs and their chaperone CD147 in treated cells lysates. Results Terminalia chebula plant extract was the most potent lactate efflux inhibitor in N2-A cells among the 900 - tested plant extracts. The results obtained show that extract of Terminalia chebula fruits (TCE) significantly (P = 0.05) reduced the expression of the MCT1, MCT3, MCT4 and the chaperone CD147. The plant extract was more potent (IC50 of 3.59 ± 0.26 μg/ml) than the MCT standard inhibitor phloretin (IC50 76.54 ± 3.19 μg/ml). The extract also showed more potency and selective cytotoxicity in cancer cells than DI-TNC1 primary cell line (IC50 7.37 ± 0.28 vs. 17.35 ± 0.19 μg/ml). Moreover, TCE Inhibited N2-A cell growth (IG50 = 5.20 ± 0.30 μg/ml) and induced apoptosis at the 7.5 μg/ml concentration. Conclusion Out of the 900 plant extracts screened, Terminalia chebula ethanol extract was found to be the most potent lactate efflux inhibitor with the ability to inhibit chaperone CD147 expression and impact the function of monocarboxylate transporters. Furthermore, TCE was found to have growth inhibition and apoptotic effects. The results obtained indicate that Terminalia chebula constituent(s) may contain promising compounds that can be useful in the management of neuroblastoma cancer. PMID:27158628

  20. Inhibitory effect of carotenoids on the degranulation of mast cells via suppression of antigen-induced aggregation of high affinity IgE receptors.

    PubMed

    Sakai, Shota; Sugawara, Tatsuya; Matsubara, Kiminori; Hirata, Takashi

    2009-10-09

    Carotenoids have been demonstrated to possess antioxidative and anti-inflammatory effects. However, there is no report that the effects of carotenoids on degranulation of mast cell is critical for type I allergy. In this study, we focused on the effect of carotenoids on antigen-induced degranulation of mast cells. Fucoxanthin, astaxanthin, zeaxanthin, and beta-carotene significantly inhibited the antigen-induced release of beta-hexosaminidase in rat basophilic leukemia 2H3 cells and mouse bone marrow-derived mast cells. Those carotenoids also inhibited antigen-induced aggregation of the high affinity IgE receptor (Fc epsilonRI), which is the most upstream of the degranulating signals of mast cells. Furthermore, carotenoids inhibited Fc epsilonRI-mediated intracellular signaling, such as phosphorylation of Lyn kinase and Fyn kinase. It suggests that the inhibitory effect of carotenoids on the degranulation of mast cells were mainly due to suppressing the aggregation of Fc epsilonRI followed by intracellular signaling. In addition, those carotenoids inhibited antigen-induced translocation of Fc epsilonRI to lipid rafts, which are known as platforms of the aggregation of Fc epsilonRI. We assume that carotenoids may modulate the function of lipid rafts and inhibit the translocation of Fc epsilonRI to lipid rafts. This is the first report that focused on the aggregation of Fc epsilonRI to investigate the mechanism of the inhibitory effects on the degranulation of mast cells and evaluated the functional activity of carotenoids associated with lipid rafts.

  1. Inhibitory Effect of Carotenoids on the Degranulation of Mast Cells via Suppression of Antigen-induced Aggregation of High Affinity IgE Receptors*

    PubMed Central

    Sakai, Shota; Sugawara, Tatsuya; Matsubara, Kiminori; Hirata, Takashi

    2009-01-01

    Carotenoids have been demonstrated to possess antioxidative and anti-inflammatory effects. However, there is no report that the effects of carotenoids on degranulation of mast cell is critical for type I allergy. In this study, we focused on the effect of carotenoids on antigen-induced degranulation of mast cells. Fucoxanthin, astaxanthin, zeaxanthin, and β-carotene significantly inhibited the antigen-induced release of β-hexosaminidase in rat basophilic leukemia 2H3 cells and mouse bone marrow-derived mast cells. Those carotenoids also inhibited antigen-induced aggregation of the high affinity IgE receptor (FcϵRI), which is the most upstream of the degranulating signals of mast cells. Furthermore, carotenoids inhibited FcϵRI-mediated intracellular signaling, such as phosphorylation of Lyn kinase and Fyn kinase. It suggests that the inhibitory effect of carotenoids on the degranulation of mast cells were mainly due to suppressing the aggregation of FcϵRI followed by intracellular signaling. In addition, those carotenoids inhibited antigen-induced translocation of FcϵRI to lipid rafts, which are known as platforms of the aggregation of FcϵRI. We assume that carotenoids may modulate the function of lipid rafts and inhibit the translocation of FcϵRI to lipid rafts. This is the first report that focused on the aggregation of FcϵRI to investigate the mechanism of the inhibitory effects on the degranulation of mast cells and evaluated the functional activity of carotenoids associated with lipid rafts. PMID:19700409

  2. Copper binding by tetrathiomolybdate attenuates angiogenesis and tumor cell proliferation through the inhibition of superoxide dismutase 1.

    PubMed

    Juarez, Jose C; Betancourt, Oscar; Pirie-Shepherd, Steven R; Guan, Xiaojun; Price, Melissa L; Shaw, David E; Mazar, Andrew P; Doñate, Fernando

    2006-08-15

    A second-generation tetrathiomolybdate analogue (ATN-224; choline tetrathiomolybdate), which selectively binds copper with high affinity, is currently completing two phase I clinical trials in patients with advanced solid and advanced hematologic malignancies. However, there is very little information about the mechanism of action of ATN-224 at the molecular level. The effects of ATN-224 on endothelial and tumor cell growth were evaluated in cell culture experiments in vitro. The antiangiogenic activity of ATN-224 was investigated using the Matrigel plug model of angiogenesis. ATN-224 inhibits superoxide dismutase 1 (SOD1) in tumor and endothelial cells. The inhibition of SOD1 leads to inhibition of endothelial cell proliferation in vitro and attenuation of angiogenesis in vivo. The inhibition of SOD1 activity in endothelial cells is dose and time dependent and leads to an increase in the steady-state levels of superoxide anions, resulting in the inhibition of extracellular signal-regulated kinase phosphorylation without apparent induction of apoptosis. In contrast, the inhibition of SOD1 in tumor cells leads to the induction of apoptosis. The effects of ATN-224 on endothelial and tumor cells could be substantially reversed using Mn(III)tetrakis(4-benzoic acid)porphyrin chloride, a catalytic small-molecule SOD mimetic. These data provide a distinct molecular target for the activity of ATN-224 and provide validation for SOD1 as a target for the inhibition of angiogenesis and tumor growth.

  3. Rapamycin enhances the anti-angiogenesis and anti-proliferation ability of YM155 in oral squamous cell carcinoma.

    PubMed

    Li, Kong-Liang; Wang, Yu-Fan; Qin, Jia-Ruo; Wang, Feng; Yang, Yong-Tao; Zheng, Li-Wu; Li, Ming-Hua; Kong, Jie; Zhang, Wei; Yang, Hong-Yu

    2017-06-01

    YM155, a small molecule inhibitor of survivin, has been studied in many tumors. It has been shown that YM155 inhibited oral squamous cell carcinoma through promoting apoptosis and autophagy and inhibiting proliferation. It was found that YM155 also inhibited the oral squamous cell carcinoma-mediated angiogenesis through the inactivation of the mammalian target of rapamycin pathway. Rapamycin, a mammalian target of rapamycin inhibitor, played an important role in the proliferation and angiogenesis of oral squamous cell carcinoma cell lines. In our study, cell proliferation assay, transwell assay, tube formation assay, and western blot assay were used to investigate the synergistic effect of rapamycin on YM155 in oral squamous cell carcinoma. Either in vitro or in vivo, rapamycin and YM155 exerted a synergistic effect on the inhibition of survivin and vascular endothelial growth factor through mammalian target of rapamycin pathway. Overall, our results revealed that low-dose rapamycin strongly promoted the sensitivity of oral squamous cell carcinoma cell lines to YM155.

  4. Growth regulators in connective tissue. Systemic administration of an aortic extract inhibits tumor growth in mice.

    PubMed Central

    Eisenstein, R.; Schumacher, B.; Meineke, C.; Matijevitch, B.; Kuettner, K. E.

    1978-01-01

    A low-molecular-weight fraction prepared from extracts of bovine aorta inhibits the growth of a transplantable mammary tumor and a fibrosarcoma in mice when injected systemically. It also inhibits the growth of the fibrosarcoma in cell culture. The effect on the fibrosarcoma is much more marked than on the mammary tumor. Since the extract is more effective against the fibrosarcoma and is known to inhibit the growth of endothelial cells, it appears that the enhanced effect on this tumor is due to its activity on the endothelial cells of the host and the tumor cells themselves. The material injected is enriched in an antiproteinase we have previously isolated, which has anticollagneolytic activity and is presumed to be the effector molecule. Images Figure 1 Figure 2 PMID:645813

  5. Differentiation of HL-60 cells distinguishes between cytostatic and cytotoxic effects of the alkylphospholipid ET-18-OCH3.

    PubMed

    Civoli, F; Pauig, S B; Daniel, L W

    1996-01-01

    The synthetic dialkylphospholipid 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (ET-18-OCH3) inhibits growth of the acute myelogenous leukemia cell line HL-60. Incubation of HL-60 cells with demethyl-sulfoxide causes the cells to differentiate to a granulocyte-like phenotype and become quiescent. Incubation of the DMSO-treated cells with ET-18-OCH3 results in a reduction in cell numbers due to cytotoxicity. In contrast, treatment of undifferentiated HL-60 cells with lower concentrations of ET-18-OCH3 leads to growth inhibition. These data indicate that the model of differentiated HL-60 cells currently used for the study of resistance to growth inhibition is inappropriate. HL-60 cells can be used to measure growth inhibition and at higher doses cytotoxicity. However, the differentiated, nonproliferative, cells can only be used to measure direct cytotoxicity. Therefore, the results of studies directly comparing the effects of ET-18-OCH3 in proliferative HL-60 cells and quiescent DMSO-treated HL-60 cells should be reevaluated. An evaluation of the effects of low concentrations of ET-18-OCH3 (0.5-1.5 microM) in proliferative HL-60 cells indicated that ET-18-OCH3 was an effective cytostatic agent at nontoxic concentrations. In summary, studies on the mechanism of action of ET-18-OCH3, or related ether lipids, should carefully investigate differences in the effects at cytostatic versus cytotoxic concentrations.

  6. The effect of the immunophilin ligands rapamycin and FK506 on proliferation of mast cells and other hematopoietic cell lines.

    PubMed Central

    Hultsch, T; Martin, R; Hohman, R J

    1992-01-01

    The immunosuppressive drugs FK506 and cyclosporin A have an identical spectrum of activities with respect to IgE receptor (Fc epsilon RI)-mediated exocytosis from mast cells and T cell receptor-mediated transcription of IL-2. These findings suggest a common step in receptor-mediated signal transduction leading to exocytosis and transcription and imply that immunosuppressive drugs target specific signal transduction pathways, rather than specific cell types. This hypothesis is supported by studies on the effect of rapamycin on IL-3 dependent proliferation of the rodent mast cell line PT18. Rapamycin inhibits proliferation of PT18 cells, achieving a plateau of 80% inhibition at 1 nM. This inhibition is prevented in a competitive manner by FK506, a structural analogue of rapamycin. Proliferation of rat basophilic leukemia cells and WEHI-3 cells was also inhibited, at doses comparable to those shown previously to inhibit IL-2-dependent proliferation of cytotoxic T lymphocyte line (CTLL) cells. In contrast, proliferation of A-431 cells, a epidermoid cell line, was not affected by rapamycin. DNA histograms indicate that complexes formed between the rapamycin-FK506-binding protein (FKBP) and rapamycin arrest-proliferating PT18 cells in the G0/G1-phase. It is concluded that FKBP-rapamycin complexes may inhibit proliferative signals emanating from IL-3 receptors, resulting in growth arrest of cytokine-dependent, hematopoietic cells. PMID:1384815

  7. Inhibition of intra-Golgi transport in vitro by mitotic kinase.

    PubMed

    Stuart, R A; Mackay, D; Adamczewski, J; Warren, G

    1993-02-25

    It has previously been shown that exocytic and endocytic membrane traffic are inhibited in mitotic mammalian cells. Here we have used a cell-free intra-Golgi transport assay supplemented with heterologous cytosols to mimic this effect in vitro. Cytosols with high histone kinase activity, made either from mitotic cells or by cyclin A treatment of interphase cells, inhibited intra-Golgi transport by up to 75%. Inhibition of transport was reversed by the kinase inhibitor staurosporine or by reduction in ATP levels leading to inactivation of histone kinase. The data indicate that cell cycle control of intra-Golgi transport is due to a reversible modification of cytosol, and this assay system may be used to study the molecular mechanism of mitotic transport inhibition in mammalian cells.

  8. Functional analysis of a novel glioma antigen, EFTUD1

    PubMed Central

    Saito, Katsuya; Iizuka, Yukihiko; Ohta, Shigeki; Takahashi, Satoshi; Nakamura, Kenta; Saya, Hideyuki; Yoshida, Kazunari; Kawakami, Yutaka; Toda, Masahiro

    2014-01-01

    Background A cDNA library made from 2 glioma cell lines, U87MG and T98G, was screened by serological identification of antigens by recombinant cDNA expression (SEREX) using serum from a glioblastoma patient. Elongation factor Tu GTP binding domain containing protein 1 (EFTUD1), which is required for ribosome biogenesis, was identified. A cancer microarray database showed overexpression of EFTUD1 in gliomas, suggesting that EFTUD1 is a candidate molecular target for gliomas. Methods EFTUD1 expression in glioma cell lines and glioma tissue was assessed by Western blot, quantitative PCR, and immunohistochemistry. The effect on ribosome biogenesis, cell growth, cell cycle, and induction of apoptosis and autophagy in glioma cells during the downregulation of EFTUD1 was investigated. To reveal the role of autophagy, the autophagy-blocker, chloroquine (CQ), was used in glioma cells downregulating EFTUD1. The effect of combining CQ with EFTUD1 inhibition in glioma cells was analyzed. Results EFTUD1 expression in glioma cell lines and tissue was higher than in normal brain tissue. Downregulating EFTUD1 induced G1 cell-cycle arrest and apoptosis, leading to reduced glioma cell proliferation. The mechanism underlying this antitumor effect was impaired ribosome biogenesis via EFTUD1 inhibition. Additionally, protective autophagy was induced by glioma cells as an adaptive response to EFTUD1 inhibition. The antitumor effect induced by the combined treatment was significantly higher than that of either EFTUD1 inhibition or CQ alone. Conclusion These results suggest that EFTUD1 represents a novel therapeutic target and that the combination of EFTUD1 inhibition with autophagy blockade may be effective in the treatment of gliomas. PMID:25015090

  9. Bestatin Inhibits Cell Growth, Cell Division, and Spore Cell Differentiation in Dictyostelium discoideum

    PubMed Central

    Poloz, Yekaterina; Catalano, Andrew

    2012-01-01

    Bestatin methyl ester (BME) is an inhibitor of Zn2+-binding aminopeptidases that inhibits cell proliferation and induces apoptosis in normal and cancer cells. We have used Dictyostelium as a model organism to study the effects of BME. Only two Zn2+-binding aminopeptidases have been identified in Dictyostelium to date, puromycin-sensitive aminopeptidase A and B (PsaA and PsaB). PSA from other organisms is known to regulate cell division and differentiation. Here we show that PsaA is differentially expressed throughout growth and development of Dictyostelium, and its expression is regulated by developmental morphogens. We present evidence that BME specifically interacts with PsaA and inhibits its aminopeptidase activity. Treatment of cells with BME inhibited the rate of cell growth and the frequency of cell division in growing cells and inhibited spore cell differentiation during late development. Overexpression of PsaA-GFP (where GFP is green fluorescent protein) also inhibited spore cell differentiation but did not affect growth. Using chimeras, we have identified that nuclear versus cytoplasmic localization of PsaA affects the choice between stalk or spore cell differentiation pathway. Cells that overexpressed PsaA-GFP (primarily nuclear) differentiated into stalk cells, while cells that overexpressed PsaAΔNLS2-GFP (cytoplasmic) differentiated into spores. In conclusion, we have identified that BME inhibits cell growth, division, and differentiation in Dictyostelium likely through inhibition of PsaA. PMID:22345351

  10. Enhanced antitumor effect of YM872 and AG1296 combination treatment on human glioblastoma xenograft models.

    PubMed

    Watanabe, Takashi; Ohtani, Toshiyuki; Aihara, Masanori; Ishiuchi, Shogo

    2013-04-01

    Blockade of Ca(++)-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR) inhibits the proliferation of human glioblastoma by inhibiting Akt phosphorylation, which is independent of the phosphatidylinositol 3-kinase pathway. Inhibiting platelet-derived growth factor receptor (PDGFR)-mediated phosphorylation causes growth inhibition in glioblastoma cells. The authors of this study investigated the effects of YM872 and AG1296, singly and in combination and targeting different pathways upstream of Akt, on Akt-mediated tumor growth in glioblastoma cells in vivo and in vitro. The expression of AMPAR, PDGFR, and c-kit in glioblastoma cells was analyzed via immunofluorescence. Glioblastoma cells, both in culture and in xenografts grown in mice, were treated with YM872 and AG1296, singly or in combination. Inhibition of tumor growth was observed after treatment in the xenograft model. Cell proliferation assays were performed using anti-Ki 67 antibody in vivo and in vitro. The CD34-positive tumor vessel counts within the vascular hot spots of tumor specimens were evaluated. Phosphorylation of Akt was studied using Western blot analysis. Combined administration of YM872 and AG1296 had a significant enhanced effect on the inhibition of cell proliferation and reduction of tumor vascularity in the xenograft model. These agents singly and in combination demonstrated a significant reduction of Akt phosphorylation at Ser473 and inhibition of tumor proliferation in vitro, although combined administration had no enhanced antitumor effects. The strongly enhanced antitumor effect of this combination therapy in vivo rather than in vitro may be attributable to disruption of the aberrant vascular niche. This combination therapy might provide substantial benefits to patients with glioblastoma.

  11. Effects of combined treatment with interferon and mezerein on melanogenesis and growth in human melanoma cells.

    PubMed

    Fisher, P B; Prignoli, D R; Hermo, H; Weinstein, I B; Pestka, S

    1985-01-01

    We have analyzed the effects of various human interferons produced in bacteria and the antileukemic compound mezerein (MEZ) on growth and melanogenesis in human melanoma cells. In four human melanoma cell lines, recombinant human fibroblast interferon (IFN-beta) was more active than recombinant human leukocyte interferons (IFN-alpha A, IFN-alpha D, or IFN-alpha A/D (Bgl] in inhibiting cellular proliferation. When monolayer cultures were exposed to 1000 IU/ml IFN-beta for four days the degree of growth inhibition in the different melanoma cell lines varied between 94 and 26%. Similarly, four days growth in medium containing 10 ng/ml MEZ resulted in either no inhibition of growth or as much as 53% inhibition of growth, depending on the specific melanoma cell line tested. MEZ induced dendrite-like processes, cytoplasmic projections morphologically similar to those normally found in neurons and melanocytes, in all four melanoma cell lines, whereas none of the interferons tested had this effect. The combination of interferon and MEZ resulted in a dramatic inhibition in cellular proliferation in all four melanoma cell lines. When cell extracts were assayed for melanin content, a marker of melanoma cell differentiation, the combination of IFN-beta and MEZ resulted in higher levels of melanin than with either agent alone. Dendrite-like formation was also prominent in the cultures treated with this combination. These results indicate that the antiproliferative effect of interferon toward human melanoma dells can be enhanced by treatment with MEZ and that this effect is associated with an enhancement of terminal differentiation.

  12. Curcumin inhibits oral squamous cell carcinoma SCC-9 cells proliferation by regulating miR-9 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Can; Department of Stomatology, The First Affiliated Hospital of Soochow University, Suzhou 215006; Wang, Lili

    Highlights: • miR-9 expression level was significantly decreased in OSCC tissues. • Curcumin significantly inhibited SCC-9 cells proliferation. • miR-9 mediates the inhibition of SCC-9 proliferation by curcumin. • Curcumin suppresses Wnt/β-catenin signaling in SCC-9 cells. • miR-9 mediates the suppression of Wnt/β-catenin signaling by curcumin. - Abstract: Curcumin, a phytochemical derived from the rhizome of Curcuma longa, has shown anticancer effects against a variety of tumors. In the present study, we investigated the effects of curcumin on the miR-9 expression in oral squamous cell carcinoma (OSCC) and explored the potential relationships between miR-9 and Wnt/β-catenin pathway in curcumin-mediated OSCCmore » inhibition in vitro. As the results shown, the expression levels of miR-9 were significantly lower in clinical OSCC specimens than those in the adjacent non-tumor tissues. Furthermore, our results indicated that curcumin inhibited OSCC cells (SCC-9 cells) proliferation through up-regulating miR-9 expression, and suppressing Wnt/β-catenin signaling by increasing the expression levels of the GSK-3β, phosphorylated GSK-3β and β-catenin, and decreasing the cyclin D1 level. Additionally, the up-regulation of miR-9 by curcumin in SCC-9 cells was significantly inhibited by delivering anti-miR-9 but not control oligonucleotides. Downregulation of miR-9 by anti-miR-9 not only attenuated the growth-suppressive effects of curcumin on SCC-9 cells, but also re-activated Wnt/β-catenin signaling that was inhibited by curcumin. Therefore, our findings would provide a new insight into the use of curcumin against OSCC in future.« less

  13. Doxycycline inhibits the cancer stem cell phenotype and epithelial-to-mesenchymal transition in breast cancer.

    PubMed

    Zhang, Le; Xu, Liang; Zhang, Fengchun; Vlashi, Erina

    2017-04-18

    Experimental evidence suggest that breast tumors originate from breast cancer stem cells (BCSCs), and that mitochondrial biogenesis is essential for the anchorage-independent clonal expansion and survival of CSCs, thus rendering mitochondria a significant target for novel treatment approaches. One of the recognized side effects of the FDA-approved drug, doxycycline is the inhibition of mitochondrial biogenesis. Here we investigate the mechanism by which doxycycline exerts its inhibitory effects on the properties of breast cancer cells and BCSCs, such as mammosphere forming efficiency, invasion, migration, apoptosis, the expression of stem cell markers and epithelial-to-mesenchymal transition (EMT) related markers of breast cancer cells. In addition, we explored whether autophagy plays a role in the inhibitory effect of doxycycline on breast cancer cells. We find that doxycyline can inhibit the viability and proliferation of breast cancer cells and BCSCs, decrease mammosphere forming efficiency, migration and invasion, and EMT of breast cancer cells. Expression of stem cell factors Oct4, Sox2, Nanog and CD44 were also significantly downregulated after doxycycline treatment. Moreover, doxycycline could down-regulate the expression of the autophagy marker LC-3BI and LC-3BII, suggesting that inhibiting autophagy may be responsible in part for the observed effects on proliferation, EMT and stem cell markers. The potent inhibition of EMT and cancer stem-like characteristics in breast cancer cells by doxycycline treatment suggests that this drug can be repurposed as an anti-cancer drug in the treatment of breast cancer patients in the clinic.

  14. Doxycycline inhibits the cancer stem cell phenotype and epithelial-to-mesenchymal transition in breast cancer

    PubMed Central

    Xu, Liang; Zhang, Fengchun; Vlashi, Erina

    2017-01-01

    ABSTRACT Experimental evidence suggest that breast tumors originate from breast cancer stem cells (BCSCs), and that mitochondrial biogenesis is essential for the anchorage-independent clonal expansion and survival of CSCs, thus rendering mitochondria a significant target for novel treatment approaches. One of the recognized side effects of the FDA-approved drug, doxycycline is the inhibition of mitochondrial biogenesis. Here we investigate the mechanism by which doxycycline exerts its inhibitory effects on the properties of breast cancer cells and BCSCs, such as mammosphere forming efficiency, invasion, migration, apoptosis, the expression of stem cell markers and epithelial-to-mesenchymal transition (EMT) related markers of breast cancer cells. In addition, we explored whether autophagy plays a role in the inhibitory effect of doxycycline on breast cancer cells. We find that doxycyline can inhibit the viability and proliferation of breast cancer cells and BCSCs, decrease mammosphere forming efficiency, migration and invasion, and EMT of breast cancer cells. Expression of stem cell factors Oct4, Sox2, Nanog and CD44 were also significantly downregulated after doxycycline treatment. Moreover, doxycycline could down-regulate the expression of the autophagy marker LC-3BI and LC-3BII, suggesting that inhibiting autophagy may be responsible in part for the observed effects on proliferation, EMT and stem cell markers. The potent inhibition of EMT and cancer stem-like characteristics in breast cancer cells by doxycycline treatment suggests that this drug can be repurposed as an anti-cancer drug in the treatment of breast cancer patients in the clinic. PMID:27753527

  15. Tangeretin and nobiletin induce G1 cell cycle arrest but not apoptosis in human breast and colon cancer cells.

    PubMed

    Morley, Karen L; Ferguson, Peter J; Koropatnick, James

    2007-06-18

    Tangeretin and nobiletin are citrus flavonoids that are among the most effective at inhibiting cancer cell growth in vitro and in vivo. The antiproliferative activity of tangeretin and nobiletin was investigated in human breast cancer cell lines MDA-MB-435 and MCF-7 and human colon cancer line HT-29. Both flavonoids inhibited proliferation in a dose- and time-dependent manner, and blocked cell cycle progression at G1 in all three cell lines. At concentrations that resulted in significant inhibition of proliferation and cell cycle arrest, neither flavonoid induced apoptosis or cell death in any of the tumor cell lines. To test the ability of arrested cells to recover, cells that were incubated with tangeretin and nobiletin for 4 days were then cultured in flavonoid-free medium for an additional 4 days. Cells resumed proliferation similar to untreated control within a day of flavonoid removal. Cell cycle distribution was similar to that of control within 4 days of flavonoid removal. These data indicate that, in these cell lines at concentrations that inhibit proliferation up to 80% over 4 days, tangeretin and nobiletin are cytostatic and significantly suppress proliferation by cell cycle arrest without apoptosis. Such an agent could be expected to spare normal tissues from toxic side effects. Thus, tangeretin and nobiletin could be effective cytostatic anticancer agents. Inhibition of proliferation of human cancers without inducing cell death may be advantageous in treating tumors as it would restrict proliferation in a manner less likely to induce cytotoxicity and death in normal, non-tumor tissues.

  16. Histaminergic regulation of interferon-gamma (IFN-γ) production by human natural killer (NK) cells

    PubMed Central

    ASEA, A; HANSSON, M; CZERKINSKY, C; HOUZE, T; HERMODSSON, S; STRANNEGÅRD, Ö; HELLSTRAND, K

    1996-01-01

    Monocytes, recovered from human peripheral blood by counter-current centrifugal elutriation, effectively inhibit the production of IFN-γ by CD3−/56+ NK cells in response to IL-2. This study aimed at defining the nature of the inhibitory signal, particularly the importance of monocyte-derived reactive metabolites of oxygen. It was found that monocytes recovered from patients with chronic granulomatous disease (CGD), a condition characterized by deficient NADPH-oxidase activity of phagocytes, did not inhibit IFN-γ production by NK cells. Further, catalase, a scavenger of hydrogen peroxide, completely reversed the inhibitory signal, whereas scavengers of the superoxide anion, hypohalous acids, the hydroxyl radical, or nitric oxide synthesis inhibitors such as L-NMMA were ineffective. Inhibition of IFN-γ production was operating on a pre-translational level, as indicated by the inability of enriched NK cells to accumulate IFN-γ mRNA in the presence of elutriated monocytes. Hydrogen peroxide, at micromolar concentrations, reconstituted the inhibition of IFN-γ production when added to enriched NK cells. Histamine, a biogenic amine which inhibits the generation of reactive oxygen metabolites in monocytes, abrogated the inhibition of IFN-γ production in NK cells; by this mechanism, histamine strongly synergized with IL-2 to induce IFN-γ in mixtures of NK cells and monocytes. The synergizing effect of histamine was specifically mediated by H2-type histamine receptors. We conclude that: (i) the induction of IFN-γ mRNA in NK cells is effectively down-regulated by products of the oxidative metabolism of monocytes; and (ii) histamine effectively enhances IFN-γ production by preventing monocyte-induced oxidative damage to NK cells. PMID:8706348

  17. Histaminergic regulation of interferon-gamma (IFN-gamma) production by human natural killer (NK) cells.

    PubMed

    Asea, A; Hansson, M; Czerkinsky, C; Houze, T; Hermodsson, S; Strannegård, O; Hellstrand, K

    1996-08-01

    Monocytes, recovered from human peripheral blood by counter-current centrifugal elutriation, effectively inhibit the production of IFN-gamma by CD3-/56+ NK cells in response to IL-2. This study aimed at defining the nature of the inhibitory signal, particularly the importance of monocyte-derived reactive metabolites of oxygen. It was found that monocytes recovered from patients with chronic granulomatous disease (CGD), a condition characterized by deficient NADPH-oxidase activity of phagocytes, did not inhibit IFN-gamma production by NK cells. Further, catalase, a scavenger of hydrogen peroxide, completely reversed the inhibitory signal whereas scavengers of the superoxide anion, hypohalous acids, the hydroxyl radical, or nitric oxide synthesis inhibitors such as L-NMMA were ineffective. Inhibition of IFN-gamma production was operating on a pretranslational level, as indicated by the inability of enriched NK cells to accumulate IFN-gamma mRNA in the presence of elutriated monocytes. Hydrogen peroxide, at micromolar concentrations, reconstituted the inhibition of IFN-gamma production when added to enriched NK cells. Histamine, a biogenic amine which inhibits the generation of reactive oxygen metabolites in monocytes, abrogated the inhibition of IFN-gamma production in NK cells; by this mechanism, histamine strongly synergized with IL-2 to induce IFN-gamma in mixtures of NK cells and monocytes. The synergizing effect of histamine was specifically mediated by H2-type histamine receptors. We conclude that: (i) the induction of IFN-gamma mRNA in NK cells is effectively down-regulated by products of the oxidative metabolism of monocytes; and (ii) histamine effectively enhances IFN-gamma production by preventing monocyte-induced oxidative damage to NK cells.

  18. Biochemical and pharmacological characterization of the thyrotropin releasing hormone (TRH) receptor from clonal GH sub 4 C sub 1 pituitary cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, W.J.

    1987-01-01

    The effect of drugs with anesthetic properties on the activity of the pituitary thyrotropin-releasing hormone (TRH) receptor was determined in the clonal GH{sub 4}C{sub 1} somatomammotropic cell line. Classic local anesthetics and other drugs with anesthetic activity inhibited binding of ({sup 3}H)methyl-TRH to cell receptors at concentrations known to produce anesthetic effects on the membrane. The inhibition of TRH receptor binding by tetracaine was competitive and temperature and pH dependent. Verapamil and tetracaine inhibited TRH-stimulated prolactin secretion at concentrations that inhibited peptide binding. TRH-stimulated prolactin secretion was equivalent with or without Ca{sup 2+} channel activity. Verapamil and tetracaine also inhibitedmore » basal prolactin and secretion stimulated by drugs that bypass membrane receptors, db-cAMP and TPA. These results indicate that inhibition of TRH binding and responses by diverse drugs results from an anesthetic effect on the cell membrane.« less

  19. Nitric oxide inhibits calpain-mediated proteolysis of talin in skeletal muscle cells

    NASA Technical Reports Server (NTRS)

    Koh, T. J.; Tidball, J. G.

    2000-01-01

    We tested the hypothesis that nitric oxide can inhibit cytoskeletal breakdown in skeletal muscle cells by inhibiting calpain cleavage of talin. The nitric oxide donor sodium nitroprusside prevented many of the effects of calcium ionophore on C(2)C(12) muscle cells, including preventing talin proteolysis and release into the cytosol and reducing loss of vinculin, cell detachment, and loss of cellular protein. These results indicate that nitric oxide inhibition of calpain protected the cells from ionophore-induced proteolysis. Calpain inhibitor I and a cell-permeable calpastatin peptide also protected the cells from proteolysis, confirming that ionophore-induced proteolysis was primarily calpain mediated. The activity of m-calpain in a casein zymogram was inhibited by sodium nitroprusside, and this inhibition was reversed by dithiothreitol. Previous incubation with the active site-targeted calpain inhibitor I prevented most of the sodium nitroprusside-induced inhibition of m-calpain activity. These data suggest that nitric oxide inhibited m-calpain activity via S-nitrosylation of the active site cysteine. The results of this study indicate that nitric oxide produced endogenously by skeletal muscle and other cell types has the potential to inhibit m-calpain activity and cytoskeletal proteolysis.

  20. Differential Impact of Adenosine Nucleotides Released by Osteocytes on Breast Cancer Growth and Bone Metastasis

    PubMed Central

    Zhou, Jade Z.; Riquelme, Manuel A.; Gao, Xiaoli; Ellies, Lesley G.; Sun, Lu-Zhe; Jiang, Jean X.

    2015-01-01

    Extracellular ATP has been shown to either inhibit or promote cancer growth and migration; however the mechanism underlying this discrepancy remained elusive. Here, we demonstrate the divergent roles of ATP and adenosine released by bone osteocytes in breast cancers. We showed that conditioned media (CM) collected from osteocytes treated with alendronate (AD), a bisphosphonate drug, inhibited the migration of human breast cancer MDA-MB-231 cells. Removal of the extracellular ATP by apyrase in CM abolished this effect, suggesting the involvement of ATP. ATP exerted its inhibitory effect through the activation of purinergic P2X receptor signaling in breast cancer cells evidenced by the attenuation of the inhibition by an antagonist, oxidized ATP, as well as knocking down P2X07 with siRNA, and the inhibition by an agonist, BzATP. Intriguingly, ATP had a biphasic effect on breast cancer cell behavior–lower dosage inhibited, but higher dosage promoted its migration. The stimulatory effect on migration was blocked by an adenosine receptor antagonist, MRS1754, ARL67156, an ecto-ATPase inhibitor, and A2A receptor siRNA, suggesting that in contrast to the action of ATP, adenosine, a metabolic product of ATP, promoted migration of breast cancer cells. Consistently, non-hydrolyzable ATP, ATPγS, only inhibited, but did not promote cancer cell migration. ATP also had a similar inhibitory effect on the Py8119 mouse mammary carcinoma cells; however, adenosine had no effect due to the absence of the A2A receptor. Consistent with the results of cancer cell migration, ATPγS inhibited, while adenosine promoted anchorage-independent growth of breast cancer cells. Our in vivo xenograft study showed a significant delay of tumor growth with the treatment of ATPγS. Moreover, the extent of bone metastasis in a mouse intratibial model was significantly reduced with the treatment of ATPγS. Together, our results suggest the distinct roles of ATP and adenosine released by osteocytes, and the activation of corresponding receptors P2X7 and A2A signaling on breast cancer cell growth, migration and bone metastasis. PMID:24837364

  1. Benzonatate inhibition of voltage-gated sodium currents.

    PubMed

    Evans, M Steven; Maglinger, G Benton; Fletcher, Anita M; Johnson, Stephen R

    2016-02-01

    Benzonatate was FDA-approved in 1958 as an antitussive. Its mechanism of action is thought to be anesthesia of vagal sensory nerve fibers that mediate cough. Vagal sensory neurons highly express the Nav1.7 subtype of voltage-gated sodium channels, and inhibition of this channel inhibits the cough reflex. Local anesthetics inhibit voltage-gated sodium channels, but there are no reports of whether benzonatate affects these channels. Our hypothesis is that benzonatate inhibits Nav1.7 voltage-gated sodium channels. We used whole cell voltage clamp recording to test the effects of benzonatate on voltage-gated sodium (Na(+)) currents in two murine cell lines, catecholamine A differentiated (CAD) cells, which express primarily Nav1.7, and N1E-115, which express primarily Nav1.3. We found that, like local anesthetics, benzonatate strongly and reversibly inhibits voltage-gated Na(+) channels. Benzonatate causes both tonic and phasic inhibition. It has greater effects on channel inactivation than on activation, and its potency is much greater at depolarized potentials, indicating inactivated-state-specific effects. Na(+) currents in CAD cells and N1E-115 cells are similarly affected, indicating that benzonatate is not Na(+) channel subtype-specific. Benzonatate is a mixture of polyethoxy esters of 4-(butylamino) benzoic acid having varying degrees of hydrophobicity. We found that Na(+) currents are inhibited most potently by a benzonatate fraction containing the 9-ethoxy component. Detectable effects of benzonatate occur at concentrations as low as 0.3 μM, which has been reported in humans. We conclude that benzonatate has local anesthetic-like effects on voltage-gated sodium channels, including Nav1.7, which is a possible mechanism for cough suppression by the drug. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Ferulic acid inhibits proliferation and promotes apoptosis via blockage of PI3K/Akt pathway in osteosarcoma cell.

    PubMed

    Wang, Ting; Gong, Xia; Jiang, Rong; Li, Hongzhong; Du, Weimin; Kuang, Ge

    2016-01-01

    Ferulic acid, a ubiquitous phenolic acid abundant in corn, wheat and flax, has potent anti-tumor effect in various cancer cell lines. However, the anti-tumor effect of ferulic acid on osteosarcoma remains unclear. Therefore, we conduct current study to examine the effect of ferulic acid on osteosarcoma cells and explore the underlying mechanisms. In present study, ferulic acid inhibited proliferation and induced apoptosis in both 143B and MG63 osteosarcoma cells dose-dependently, indicated by MTT assay and Annexin V-FITC apoptosis detection. Additionally, ferulic acid induced G0/G1 phase arrest and down-regulated the expression of cell cycle-related protein, CDK 2, CDK 4, CDK 6, confirmed by flow cytometry assay and western blotting. Moreover, ferulic acid upregulated Bax, downregulated Bcl-2, and subsequently enhanced caspase-3 activity. More importantly, ferulic acid dose-dependently inhibited PI3K/Akt activation. Using adenoviruses expressing active Akt, the anti-proliferation and pro-apoptosis of ferulic acid were reverted. Our results demonstrated that ferulic acid might inhibit proliferation and induce apoptosis via inhibiting PI3K/Akt pathway in osteosarcoma cells. Ferulic acid is a novel therapeutic agent for osteosarcoma.

  3. Ferulic acid inhibits proliferation and promotes apoptosis via blockage of PI3K/Akt pathway in osteosarcoma cell

    PubMed Central

    Wang, Ting; Gong, Xia; Jiang, Rong; Li, Hongzhong; Du, Weimin; Kuang, Ge

    2016-01-01

    Ferulic acid, a ubiquitous phenolic acid abundant in corn, wheat and flax, has potent anti-tumor effect in various cancer cell lines. However, the anti-tumor effect of ferulic acid on osteosarcoma remains unclear. Therefore, we conduct current study to examine the effect of ferulic acid on osteosarcoma cells and explore the underlying mechanisms. In present study, ferulic acid inhibited proliferation and induced apoptosis in both 143B and MG63 osteosarcoma cells dose-dependently, indicated by MTT assay and Annexin V-FITC apoptosis detection. Additionally, ferulic acid induced G0/G1 phase arrest and down-regulated the expression of cell cycle-related protein, CDK 2, CDK 4, CDK 6, confirmed by flow cytometry assay and western blotting. Moreover, ferulic acid upregulated Bax, downregulated Bcl-2, and subsequently enhanced caspase-3 activity. More importantly, ferulic acid dose-dependently inhibited PI3K/Akt activation. Using adenoviruses expressing active Akt, the anti-proliferation and pro-apoptosis of ferulic acid were reverted. Our results demonstrated that ferulic acid might inhibit proliferation and induce apoptosis via inhibiting PI3K/Akt pathway in osteosarcoma cells. Ferulic acid is a novel therapeutic agent for osteosarcoma. PMID:27158383

  4. Hinokitiol Inhibits Migration of A549 Lung Cancer Cells via Suppression of MMPs and Induction of Antioxidant Enzymes and Apoptosis.

    PubMed

    Jayakumar, Thanasekaran; Liu, Chao-Hong; Wu, Guan-Yi; Lee, Tzu-Yin; Manubolu, Manjunath; Hsieh, Cheng-Ying; Yang, Chih-Hao; Sheu, Joen-Rong

    2018-03-22

    Hinokitiol, a natural monoterpenoid from the heartwood of Calocedrus formosana , has been reported to have anticancer effects against various cancer cell lines. However, the detailed molecular mechanisms and the inhibiting roles of hinokitiol on adenocarcinoma A549 cells remain to be fully elucidated. Thus, the current study was designed to evaluate the effect of hinokitiol on the migration of human lung adenocarcinoma A549 cells in vitro. The data demonstrates that hinokitiol does not effectively inhibit the viability of A549 cells at up to a 10 µM concentration. When treated with non-toxic doses (1-5 µM) of hinokitiol, the cell migration is markedly suppressed at 5 µM. Hinokitiol significantly reduced p53 expression, followed by attenuation of Bax in A549 cells. A dose-dependent inhibition of activated caspase-9 and -3 was observed in the presence of hinokitiol. An observed increase in protein expression of matrix metalloproteinases (MMPs) -2/-9 in A549 cells was significantly inhibited by hinokitiol. Remarkably, when A549 cells were subjected to hinokitiol (1-5 µM), there was an increase in the activities of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) from the reduction in cells. In addition, the incubation of A549 cells with hinokitiol significantly activated the cytochrome c expression, which may be triggered by activation of caspase-9 followed by caspase-3. These observations indicate that hinokitiol inhibited the migration of lung cancer A549 cells through several mechanisms, including the activation of caspases-9 and -3, induction of p53/Bax and antioxidant CAT and SOD, and reduction of MMP-2 and -9 activities. It also induces cytochrome c expression. These findings demonstrate a new therapeutic potential for hinokitiol in lung cancer chemoprevention.

  5. The anti-esophageal cancer cell activity by a novel tyrosine/phosphoinositide kinase inhibitor PP121

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Yi; Zhou, Yajuan; Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan 430071

    Here we explored the potential effect of PP121, a novel dual inhibitor of tyrosine and phosphoinositide kinases, against human esophageal cancer cells. We showed that PP121 exerted potent cytotoxic effect in primary (patient-derived) and established (Eca-109, TE-1 and TE-3 lines) esophageal cancer cells, possibly through activating caspase-3-dependnent apoptosis. PP121 was, however, non-cytotoxic to the normal human esophageal epithelial cells (EECs). At the molecular level, we showed that PP121 blocked Akt-mTOR (mammalian target of rapamycin) activation in esophageal cancer cells, which was restored by introducing a constitutively-active Akt (CA-Akt). Yet, CA-Akt only partly inhibited cytotoxicity by PP121 in Eca-109 cells. Importantly, wemore » showed that PP121 inhibited nuclear factor kappa B (NFκB) signaling activation in esophageal cancer cells, which appeared independent of Akt-mTOR blockage. In vivo, oral administration of PP121 remarkably inhibited Eca-109 xenograft growth in nude mice, and significantly improved mice survival. Further, the immunohistochemistry (IHC) and Western blot assays analyzing xenografted tumors showed that PP121 inhibited Akt-mTOR and NFκB activations in vivo. Together, we demonstrate that PP121 potently inhibits esophageal cancer cells in vitro and in vivo, possibly through concurrently inhibiting Akt-mTOR and NFκB signalings. - Highlights: • PP121 is cytotoxic against primary and established esophageal cancer cells. • PP121 induces caspase-3-dependnent apoptosis in esophageal cancer cells. • PP121 blocks Akt-mTOR activation in esophageal cancer cells. • PP121 inhibits NFκB activation, independent of Akt-mTOR blockage. • PP121 inhibits Eca-109 xenograft growth and Akt-mTOR/NFκB activation in vivo.« less

  6. Inhibition of autophagy potentiates anticancer property of 20(S)-ginsenoside Rh2 by promoting mitochondria-dependent apoptosis in human acute lymphoblastic leukaemia cells.

    PubMed

    Xia, Ting; Wang, Jiancheng; Wang, Yingnan; Wang, Yuanyuan; Cai, Jianye; Wang, Min; Chen, Qidan; Song, Jia; Yu, Ziqi; Huang, Wei; Fang, Jianpei

    2016-05-10

    Acute lymphoblastic leukaemia (ALL) is the most prevalent childhood malignancy. Although most children with ALL are cured, there is still a group of patients for which therapy fails owing to severe toxicities and drug resistance. Ginsenoside Rh2 (GRh2), a major bioactive component isolated from Panax ginseng, has been shown to have a therapeutic effect on some tumors. However, the molecular mechanisms of cell death induced by 20(S)-GRh2 in ALL cells remains unclear. In this study, we showed that 20(S)-GRh2 inhibited the cell growth and induced mitochondria-dependent apoptosis and autophagy. But it has no cytotoxic effect on human normal blood cells. Furthermore, autophagy plays a protective role in 20(S)-GRh2-induced apoptosis in ALL cell lines and human primary ALL cells. We demonstrated that either genetic or pharmacologic inhibition of autophagy could be more effective in reducing viability and enhancing 20(S)-GRh2-induced toxicity than 20(S)-GRh2 treatment alone. In addition, inhibition of autophagy could aggravate mitochondrial ROS generation and mitochondrial damage, and then accelerate mitochondria-dependent apoptosis. Taken together, these results suggest that inhibition of autophagy can sensitize ALL cells towards 20(S)-GRh2. The appropriate inhibition of autophagy could provide a powerful strategy to increase the potency of 20(S)-GRh2 as a novel anticancer agent for ALL therapy.

  7. Melatonin inhibits proliferation and invasion via repression of miRNA-155 in glioma cells.

    PubMed

    Gu, Junyi; Lu, Zhongsheng; Ji, Chenghong; Chen, Yuchao; Liu, Yuzhao; Lei, Zhe; Wang, Longqiang; Zhang, Hong-Tao; Li, Xiangdong

    2017-09-01

    Melatonin, an indolamine mostly synthesized in the pineal gland, exerts the anti-cancer effect by various mechanisms in glioma cells. Our previous study showed that miR-155 promoted glioma cell proliferation and invasion. However, the question of whether melatonin may inhibit glioma by regulating miRNAs has not yet been addressed. In this study, we found that melatonin (100μM, 1μM and 1nM) significantly inhibited the expression of miR-155 in human glioma cell lines U87, U373 and U251. Especially, the lowest expression of miR-155 was detected in 1μM melatonin-treated glioma cells. Melatonin (1μM) inhibits cell proliferation of U87 by promoting cell apoptosis. Nevertheless, melatonin had no effect on cell cycle distribution of U87 cells. Moreover, U87 cells treated with 1μM melatonin presented significantly lower migration and invasion ability when compared with control cells. Importantly, melatonin inhibited c-MYB expression, and c-MYB knockdown reduced miR-155 expression and migration and invasion in U87 cells. Taken together, for the first time, our findings show that melatonin inhibits miR-155 expression and thereby represses glioma cell proliferation, migration and invasion, and suggest that melatonin may downregulate the expression of miR-155 via repression of c-MYB. This will provide a theoretical basis for revealing the anti-glioma mechanisms of melatonin. Copyright © 2017. Published by Elsevier Masson SAS.

  8. Inhibiting ice recrystallization and optimization of cell viability after cryopreservation.

    PubMed

    Chaytor, Jennifer L; Tokarew, Jacqueline M; Wu, Luke K; Leclère, Mathieu; Tam, Roger Y; Capicciotti, Chantelle J; Guolla, Louise; von Moos, Elisabeth; Findlay, C Scott; Allan, David S; Ben, Robert N

    2012-01-01

    The ice recrystallization inhibition activity of various mono- and disaccharides has been correlated with their ability to cryopreserve human cell lines at various concentrations. Cell viabilities after cryopreservation were compared with control experiments where cells were cryopreserved with dimethylsulfoxide (DMSO). The most potent inhibitors of ice recrystallization were 220 mM solutions of disaccharides; however, the best cell viability was obtained when a 200 mM d-galactose solution was utilized. This solution was minimally cytotoxic at physiological temperature and effectively preserved cells during freeze-thaw. In fact, this carbohydrate was just as effective as a 5% DMSO solution. Further studies indicated that the cryoprotective benefit of d-galactose was a result of its internalization and its ability to mitigate osmotic stress, prevent intracellular ice formation and/or inhibit ice recrystallization. This study supports the hypothesis that the ability of a cryoprotectant to inhibit ice recrystallization is an important property to enhance cell viability post-freeze-thaw. This cryoprotective benefit is observed in three different human cell lines. Furthermore, we demonstrated that the ability of a potential cryoprotectant to inhibit ice recrystallation may be used as a predictor of its ability to preserve cells at subzero temperatures.

  9. Berberine suppresses in vitro migration and invasion of human SCC-4 tongue squamous cancer cells through the inhibitions of FAK, IKK, NF-kappaB, u-PA and MMP-2 and -9.

    PubMed

    Ho, Yung-Tsuan; Yang, Jai-Sing; Li, Tsai-Chung; Lin, Jen-Jyh; Lin, Jaung-Geng; Lai, Kuang-Chi; Ma, Chia-Yu; Wood, W Gibson; Chung, Jing-Gung

    2009-07-08

    There is increasing evidence that urokinase-type plasminogen activator (u-PA) and matrix metalloproteinases (MMPs) play an important role in cancer metastasis and angiogenesis. Inhibition of u-PA and MMPs could suppress migration and invasion of cancer cells. Berberine, one of the main constituents of the plant Rhizoma coptidis, is a type of isoquinoline alkaloid, reported to have anti-cancer effects in different human cancer cell lines. There is however, no available information on effects of berberine on migration and invasion of human tongue cancer cells. Here, we report that berberine inhibited migration and invasion of human SCC-4 tongue squamous carcinoma cells. This action was mediated by the p-JNK, p-ERK, p-p38, IkappaK and NF-kappaB signaling pathways resulting in inhibition of MMP-2 and -9 in human SCC-4 tongue squamous carcinoma cells. Our Western blowing analysis also showed that berberine inhibited the levels of urokinase-plasminogen activator (u-PA). These results suggest that berberine down-regulates u-PA, MMP-2 and -9 expressions in SCC-4 cells through the FAK, IKK and NF-kappaB mediated pathways and a novel function of berberine is to inhibit the invasive capacity of malignant cells.

  10. Mechanistic Study of Inhibitory Effects of Metformin and Atorvastatin in Combination on Prostate Cancer Cells in Vitro and in Vivo.

    PubMed

    Wang, Zhen-Shi; Huang, Hua-Rong; Zhang, Lan-Yue; Kim, Seungkee; He, Yan; Li, Dong-Li; Farischon, Chelsea; Zhang, Kun; Zheng, Xi; Du, Zhi-Yun; Goodin, Susan

    2017-01-01

    Metformin is a commonly used drug for the treatment of type II diabetes and atorvastatin is the most prescribed cholesterol-lowering statin. The present study investigated the effects and mechanisms of metformin and atorvastatin in combination on human prostate cancer cells cultured in vitro and grown as xenograft tumor in vivo. Metformin in combination with atorvastatin had stronger effects on growth inhibition and apoptosis in PC-3 cells than either drug alone. The combination also potently inhibited cell migration and the formation of tumorspheres. Metformin and atorvastatin in combination had a potent inhibitory effect on nuclear factor-kappaB (NF-κB) activity and caused strong decreases in the expression of its downstream anti-apoptotic gene Survivin. Moreover, strong decreases in the levels of phospho-Akt and phosphor-extracellular signal-regulated kinase (Erk)1/2 were found in the cells treated with the combination. The in vivo study showed that treatment of severe combined immunodeficient (SCID) mice with metformin or atorvastatin alone resulted in moderate inhibition of tumor growth while the combination strongly inhibited the growth of the tumors. Results of the present study indicate the combination of metformin and atorvastatin may be an effective strategy for inhibiting the growth of prostate cancer and should be evaluated clinically.

  11. Brazilein from Caesalpinia sappan L. Antioxidant Inhibits Adipocyte Differentiation and Induces Apoptosis through Caspase-3 Activity and Anthelmintic Activities against Hymenolepis nana and Anisakis simplex

    PubMed Central

    Liang, Chia-Hua; Chan, Leong-Perng; Chou, Tzung-Han; Chiang, Feng-Yu; Yen, Chuan-Min; Chen, Pin-Ju; Ding, Hsiou-Yu

    2013-01-01

    Brazilein, a natural, biologically active compound from Caesalpinia sappan L., has been shown to exhibit anti-inflammatory and antioxidant properties and to inhibit the growth of several cancer cells. This study verifies the antioxidant and antitumor characteristics of brazilein in skin cancer cells and is the first time to elucidate the inhibition mechanism of adipocyte differentiation, cestocidal activities against Hymenolepis nana, and reduction of spontaneous movement in Anisakis simplex. Brazilein exhibits an antioxidant capacity as well as the ability to scavenge DPPH• and ABTS•+ free radicals and to inhibit lipid peroxidation. Brazilein inhibited intracellular lipid accumulation during adipocyte differentiation in 3T3-L1 cells and suppressed the induction of peroxisome proliferator-activated receptor γ (PPARγ), the master regulator of adipogenesis, suggesting that brazilein presents the antiobesity effects. The toxic effects of brazilein were evaluated in terms of cell viability, induction of apoptosis, and the activity of caspase-3 in BCC cells. The inhibition of the growth of skin cancer cells (A431, BCC, and SCC25) by brazilein is greater than that of human skin malignant melanoma (A375) cells, mouse leukemic monocyte macrophage (RAW 264.7 cells), and noncancerous cells (HaCaT and BNLCL2 cells). The anthelmintic activities of brazilein against Hymenolepis nana are better than those of Anisakis simplex. PMID:23554834

  12. Geraniol and simvastatin show a synergistic effect on a human hepatocarcinoma cell line.

    PubMed

    Polo, M P; Crespo, R; de Bravo, M G

    2011-08-01

    Simvastatin is a competitive inhibitor of 3-hydroxymethylglutaryl coenzyme A reductase activity, whereas geraniol is a monoterpene with multiple pharmacologic effects on mevalonate metabolism. Both of them inhibit growth and proliferation of many cell lines. The present study was designed to determine the action of geraniol, in combination with simvastatin, by assessing their effects in vitro on human hepatocarcinoma cell line (Hep G2). The treatment of Hep G2 cells with concentrations of simvastatin or geraniol that did not inhibit cell proliferation (5 µmol·l⁻¹ of simvastatin and 50 µmol·l⁻¹ of geraniol) resulted in a significant inhibition of cell proliferation. We also examined the effect of simvastatin, geraniol and the combination of both on the biosynthesis of lipids from [¹⁴C]-acetate. Our results demonstrate that the combination of simvastatin and geraniol synergistically inhibited cholesterol biosynthesis and proliferation of Hep G2 cell line, contributing to a better understanding of the action of a component of essential oils targeting a complex metabolic pathway, which would improve the use of drugs or their combination in the fight against cancer and/or cardiovascular diseases. Copyright © 2011 John Wiley & Sons, Ltd.

  13. Tamoxifen enhances therapeutic effects of gemcitabine on cholangiocarcinoma tumorigenesis.

    PubMed

    Jing, Gu; Yuan, Kaiyu; Turk, Amy N; Jhala, Nirag C; Arnoletti, Juan P; Zhang, Kui; McDonald, Jay M; Chen, Yabing

    2011-06-01

    Cholangiocarcinoma is a highly malignant tumor with limited therapeutic options. We have previously reported that tamoxifen (TMX) induces apoptosis of cholangiocarcinoma cells and reduces cholangiocarcinoma tumorigenesis in mice. In the present studies, we determined the effect of combination therapy of TMX and gemcitabine (GMT), another chemotherapeutical reagent for many cancers, on cholangiocarcinoma tumorigenesis and investigated the responsible mechanisms. GMT inhibited cell growth and induced apoptosis of cholangiocarcinoma cells in a concentration-dependent manner. TMX enhanced GMT-induced apoptosis of cholangiocarcinoma cells. Consistently, GMT (15 mg/kg) inhibited cholangiocarcinoma tumorigenesis in nude mice by 50%. TMX (15 mg/kg) enhanced the inhibitory effect of GMT on tumorigenesis by 33%. The inhibition of tumor growth correlated with enhanced apoptosis in tumor tissues. To elucidate the mechanisms underlying the additive effects of TMX on GMT-induced apoptosis, we determined the activation of caspases in cholangiocarcinoma cells exposed to GMT, TMX, or both. Activation of caspases 9 and 3, as well as cytochrome c release to the cytosol, was demonstrated in cells exposed to both reagents. In contrast, TMX activated caspase 2, whereas GMT had no effect. Inhibition of caspase 2 activation decreased TMX-, but not GMT-, induced activation of caspase 3 and apoptosis of cholangiocarcinoma cells. Similarly, activation of caspase 2 was found in tumors from TMX-treated mice, but not GMT-treated mice. Therefore, the enhanced effect of TMX on GMT-induced cholangiocarcinoma cell death is partially mediated by activation of caspase 2. TMX and GMT both induce apoptosis and inhibit cholangiocarcinoma tumorigenesis, which may be attributed to the activation of distinct apoptosis signals by TMX and GMT. Our studies provide in vivo evidence and molecular insight to support the use of TMX and GMT in combination as an effective therapy for cholangiocarcinoma.

  14. Osthole inhibits gastric cancer cell proliferation through regulation of PI3K/AKT

    PubMed Central

    Zhang, Yan

    2018-01-01

    Osthole is an active compound isolated from Chinese herb Cnidium monnieri (L.) Cusson, and had been reported to possess antitumor effect. However, the effect of osthole on the gastric cancer cells has not been investigated. In this study, the effects of osthole on the proliferation of human gastric cancer cells were tested. The data showed that osthole treatment significantly inhibited the proliferation of gastric cancer cells and resulted in the cell cycle arrest at G2/M phase in a dose-dependent manner. Western-blot study showed that the expression of cyclin B1 and cdc2 was markedly reduced by osthole. Moreover, expression of PI3K and pAKT was also significantly suppressed, and the results indicated that the inhibition of pAKT, cyclin B1, and cdc2 levels by osthole was notably enhanced by a PI3K inhibitor. These results demonstrate that osthole could inhibit gastric cancer cells proliferation via induction of cell cycle arrest at G2/M phase by the reduction of PI3K/AKT. PMID:29590128

  15. Osthole inhibits gastric cancer cell proliferation through regulation of PI3K/AKT.

    PubMed

    Xu, Xiaojun; Liu, Xiaoyuan; Zhang, Yan

    2018-01-01

    Osthole is an active compound isolated from Chinese herb Cnidium monnieri (L.) Cusson, and had been reported to possess antitumor effect. However, the effect of osthole on the gastric cancer cells has not been investigated. In this study, the effects of osthole on the proliferation of human gastric cancer cells were tested. The data showed that osthole treatment significantly inhibited the proliferation of gastric cancer cells and resulted in the cell cycle arrest at G2/M phase in a dose-dependent manner. Western-blot study showed that the expression of cyclin B1 and cdc2 was markedly reduced by osthole. Moreover, expression of PI3K and pAKT was also significantly suppressed, and the results indicated that the inhibition of pAKT, cyclin B1, and cdc2 levels by osthole was notably enhanced by a PI3K inhibitor. These results demonstrate that osthole could inhibit gastric cancer cells proliferation via induction of cell cycle arrest at G2/M phase by the reduction of PI3K/AKT.

  16. Lycopene inhibits the cell proliferation and invasion of human head and neck squamous cell carcinoma.

    PubMed

    Ye, Min; Wu, Qundan; Zhang, Min; Huang, Jinbei

    2016-10-01

    Lycopene has been shown to be associated with anticancer effects in numerous tumor types. However, the underlying mechanisms of lycopene in human head and neck squamous cell carcinoma (HNSCC) remain to be determined. The present study aimed to investigate the involvement of lycopene overload and the cytotoxic effects of lycopene on HNSCC cells, and to determine the possible mechanisms involved. Treatment with lycopene at a dose of >10 µM for >24 h inhibited the growth of FaDu and Cal27 cells in a time‑ and dose‑dependent manner. The clearest increase in growth inhibition was due to the apoptotic population being significantly increased. The invasion abilities decreased with 25 µM lycopene exerting significant inhibitory effects (P<0.01). Mechanistic studies revealed that lycopene induced the upregulation of the pro‑apoptotic protein, B‑cell lymphoma‑associated X protein, and therefore, resulted in the inhibition of the protein kinase B and mitogen‑activated protein kinase signaling pathway. These data provided insights into the antitumor activity of lycopene in HNSCC cells.

  17. Curcumin induces apoptosis and cell cycle arrest via the activation of reactive oxygen species-independent mitochondrial apoptotic pathway in Smad4 and p53 mutated colon adenocarcinoma HT29 cells.

    PubMed

    Agarwal, Ayushi; Kasinathan, Akiladdevi; Ganesan, Ramamoorthi; Balasubramanian, Akhila; Bhaskaran, Jahnavi; Suresh, Samyuktha; Srinivasan, Revanth; Aravind, K B; Sivalingam, Nageswaran

    2018-03-01

    Curcumin is a natural dietary polyphenol compound that has various pharmacological activities such as antiproliferative and cancer-preventive activities on tumor cells. Indeed, the role reactive oxygen species (ROS) generated by curcumin on cell death and cell proliferation inhibition in colon cancer is poorly understood. In the present study, we hypothesized that curcumin-induced ROS may promote apoptosis and cell cycle arrest in colon cancer. To test this hypothesis, the apoptosis-inducing potential and cell cycle inhibition effect of ROS induced by curcumin was investigated in Smd4 and p53 mutated HT-29 colon adenocarcinoma cells. We found that curcumin treatment significantly increased the level of ROS in HT-29 cells in a dose- and time-dependent manner. Furthermore, curcumin treatment markedly decreased the cell viability and proliferation potential of HT-29 cells in a dose- and time-dependent manner. Conversely, generation of ROS and inhibitory effect of curcumin on HT-29 cells were abrogated by N-acetylcysteine treatment. In addition, curcumin treatment did not show any cytotoxic effects on HT-29 cells. Furthermore, curcumin-induced ROS generation caused the DNA fragmentation, chromatin condensation, and cell nuclear shrinkage and significantly increased apoptotic cells in a dose- and time-dependent manner in HT-29 cells. However, pretreatment of N-acetylcysteine inhibited the apoptosis-triggering effect of curcumin-induced ROS in HT-29 cells. In addition, curcumin-induced ROS effectively mediated cell cycle inhibition in HT-29 cells. In conclusion, our data provide the first evidence that curcumin induces ROS independent apoptosis and cell cycle arrest in colon cancer cells that carry mutation on Smad4 and p53. Copyright © 2018. Published by Elsevier Inc.

  18. Combination Treatment with Apricoxib and IL-27 Enhances Inhibition of Epithelial-Mesenchymal Transition in Human Lung Cancer Cells through a STAT1 Dominant Pathway

    PubMed Central

    Lee, Mi-Heon; Kachroo, Puja; Pagano, Paul C; Yanagawa, Jane; Wang, Gerald; Walser, Tonya C; Krysan, Kostyantyn; Sharma, Sherven; John, Maie St.; Dubinett, Steven M; Lee, Jay M

    2015-01-01

    Background The cyclooxygenase 2 (COX-2) pathway has been implicated in the molecular pathogenesis of many malignancies, including lung cancer. Apricoxib, a selective COX-2 inhibitor, has been described to inhibit epithelial-mesenchymal transition (EMT) in human malignancies. The mechanism by which apricoxib may alter the tumor microenvironment by affecting EMT through other important signaling pathways is poorly defined. IL-27 has been shown to have anti-tumor activity and our recent study showed that IL-27 inhibited EMT through a STAT1 dominant pathway. Objective The purpose of this study is to investigate the role of apricoxib combined with IL-27 in inhibiting lung carcinogenesis by modulation of EMT through STAT signaling. Methods and Results Western blot analysis revealed that IL-27 stimulation of human non-small cell lung cancer (NSCLC) cell lines results in STAT1 and STAT3 activation, decreased Snail protein and mesenchymal markers (N-cadherin and vimentin) and a concomitant increase in expression of epithelial markers (E-cadherin, β-and γ-catenins), and inhibition of cell migration. The combination of apricoxib and IL-27 resulted in augmentation of STAT1 activation. However, IL-27 mediated STAT3 activation was decreased by the addition of apricoxib. STAT1 siRNA was used to determine the involvement of STAT1 pathway in the enhanced inhibition of EMT and cell migration by the combined IL-27 and apricoxib treatment. Pretreatment of cells with STAT1 siRNA inhibited the effect of combined IL-27 and apricoxib in the activation of STAT1 and STAT3. In addition, the augmented expression of epithelial markers, decreased expression mesenchymal markers, and inhibited cell migration by the combination treatment were also inhibited by STAT1 siRNA, suggesting that the STAT1 pathway is important in the enhanced effect from the combination treatment. Conclusion Combined apricoxib and IL-27 has an enhanced effect in inhibition of epithelial-mesenchymal transition and cell migration in human lung cancer cells through a STAT1 dominant pathway. PMID:26523208

  19. Effects of sub-lethal neurite outgrowth inhibitory concentrations of chlorpyrifos oxon on cytoskeletal proteins and acetylcholinesterase in differentiating N2a cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flaskos, J., E-mail: flaskos@vet.auth.gr; Nikolaidis, E.; Harris, W.

    2011-11-15

    Previous work in our laboratory has shown that sub-lethal concentrations (1-10 {mu}M) of chlorpyrifos (CPF), diazinon (DZ) and diazinon oxon (DZO) inhibit the outgrowth of axon-like neurites in differentiating mouse N2a neuroblastoma cells concomitant with altered levels and/or phosphorylation state of axonal cytoskeleton and growth-associated proteins. The aim of the present work was to determine whether chlorpyrifos oxon (CPO) was capable of inhibiting N2a cell differentiation in a similar manner. Using experimental conditions similar to our previous work, sub-lethal concentrations (1-10 {mu}M) of CPO were found to inhibit N2a cell differentiation. However, unlike previous studies with DZ and DZO, theremore » was a high level of sustained inhibition of acetylcholinesterase (AChE) in CPO treated cells. Impairment of neurite outgrowth was also associated with reduced levels of growth associated protein-43 and neurofilament heavy chain (NFH), and the distribution of NFH in cells stained by indirect immunofluorescence was disrupted. However, in contrast to previous findings for DZO, the absolute level of phosphorylated NFH was unaffected by CPO exposure. Taken together, the findings suggest that sub-lethal concentrations of CPO inhibit axon outgrowth in differentiating N2a cells and that this effect involves reduced levels of two proteins that play key roles in axon outgrowth and maintenance. Although the inhibition of neurite outgrowth is unlikely to involve AChE inhibition directly, further work will help to determine whether the persistent inhibition of AChE by CPO can account for the different effects induced by CPO and DZO on the levels of total and phosphorylated NFH. -- Highlights: Black-Right-Pointing-Pointer Sub-lethal levels of chlorpyrifos oxon inhibit neurite outgrowth in N2a cells Black-Right-Pointing-Pointer Acetylcholinesterase exhibits sustained inhibition throughout exposure Black-Right-Pointing-Pointer The levels of neurofilament heavy chain and GAP-43 protein are reduced Black-Right-Pointing-Pointer Neurofilament heavy chain forms aggregates in cell bodies Black-Right-Pointing-Pointer Thus at least two axon-associated cytoskeletal proteins are disrupted by this agent.« less

  20. Tumor cell death induced by the inhibition of mitochondrial electron transport: The effect of 3-hydroxybakuchiol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaña, Fabián; Faini, Francesca; Lapier, Michel

    Changes in mitochondrial ATP synthesis can affect the function of tumor cells due to the dependence of the first step of glycolysis on mitochondrial ATP. The oxidative phosphorylation (OXPHOS) system is responsible for the synthesis of approximately 90% of the ATP in normal cells and up to 50% in most glycolytic cancers; therefore, inhibition of the electron transport chain (ETC) emerges as an attractive therapeutic target. We studied the effect of a lipophilic isoprenylated catechol, 3-hydroxybakuchiol (3-OHbk), a putative ETC inhibitor isolated from Psoralea glandulosa. 3-OHbk exerted cytotoxic and anti-proliferative effects on the TA3/Ha mouse mammary adenocarcinoma cell line andmore » induced a decrease in the mitochondrial transmembrane potential, the activation of caspase-3, the opening of the mitochondrial permeability transport pore (MPTP) and nuclear DNA fragmentation. Additionally, 3-OHbk inhibited oxygen consumption, an effect that was completely reversed by succinate (an electron donor for Complex II) and duroquinol (electron donor for Complex III), suggesting that 3-OHbk disrupted the electron flow at the level of Complex I. The inhibition of OXPHOS did not increase the level of reactive oxygen species (ROS) but caused a large decrease in the intracellular ATP level. ETC inhibitors have been shown to induce cell death through necrosis and apoptosis by increasing ROS generation. Nevertheless, we demonstrated that 3-OHbk inhibited the ETC and induced apoptosis through an interaction with Complex I. By delivering electrons directly to Complex III with duroquinol, cell death was almost completely abrogated. These results suggest that 3-OHbk has antitumor activity resulting from interactions with the ETC, a system that is already deficient in cancer cells. - Highlights: • We studied the anticancer activity of a natural compound, 3-OHbk, on TA3/Ha cells. • 3-OHbk inhibited mitochondrial electron flow by interacting with Complex I. • Complex I inhibition did not induce ROS generation. • 3-OHbk induced apoptosis in tumor cells with no effect on mammary epithelial cells. • Mitochondrial bioenergetics is implicated in anticancer action of 3-OHbk.« less

  1. Role of TGF-β signaling in curcumin-mediated inhibition of tumorigenicity of human lung cancer cells

    PubMed Central

    Datta, Raktima; Halder, Sunil K.

    2014-01-01

    Purpose Curcumin has been shown to have potent anti-cancer activities like inhibition of cell proliferation, induction of apoptosis, and suppression of angiogenesis. Transforming growth factor-β (TGF-β) signaling plays a complex role in tumor suppression and promotion depending on the tumor type and stage. However, the effect of curcumin on TGF-β signaling in cancer cells and the role of TGF-β signaling in curcumin-induced anticancer activities have not been determined. Here, we investigate the role of curcumin on TGF-β signaling, and whether TGF-β signaling is involved in the antitumor activities of curcumin. Methods Human non-small cell lung cancer (NSCLC) cell lines, ACC-LC-176 (without TGF-β signaling), H358, and A549 (with TGF-β signaling) were treated with curcumin to determine cell growth, apoptosis, and tumorigenicity. Antitumor activities of curcumin were determined using these cell lines and an in vivo mouse model. We also tested the effect of curcumin on TGF-β/Smad signaling by western blotting and by luciferase assays. Results Curcumin inhibited cell growth and induced apoptosis of all three NSCLC cell lines in vitro and in vivo. It significantly reduced subcutaneous tumor growth by these three cell lines irrespective of TGF-β signaling status. Curcumin inhibited TGF-β-induced Smad2/3 phosphorylation and transcription in H358 and A549 cells, but not in ACC-LC-176 cells. Conclusions Curcumin reduces tumorigenicity of human lung cancer cells in vitro and in vivo by inhibiting cell proliferation and promoting apoptosis. These results suggest that TGF-β signaling is not directly involved in curcumin-mediated growth inhibition, induction of apoptosis, and inhibition of tumorigenicity. PMID:23224523

  2. Vitamin D inhibits growth of human airway smooth muscle cells through growth factor-induced phosphorylation of retinoblastoma protein and checkpoint kinase 1

    PubMed Central

    Damera, G; Fogle, HW; Lim, P; Goncharova, EA; Zhao, H; Banerjee, A; Tliba, O; Krymskaya, VP; Panettieri, RA

    2009-01-01

    Background and purpose: Airway remodelling in asthma is manifested, in part, as increased airway smooth muscle (ASM) mass, reflecting myocyte proliferation. We hypothesized that calcitriol, a secosteroidal vitamin D receptor (VDR) modulator, would inhibit growth factor-induced myocyte proliferation. Experimental approach: Human ASM cell cultures were derived from bronchial samples taken during surgery. ASM cells were treated with platelet-derived growth factor (PDGF) (10 ng·mL−1) for 24 h in the presence of calcitriol, dexamethasone or a checkpoint kinase 1 (Chk1) inhibitor (SB218078). The effects of calcitriol on PDGF-mediated cell proliferation were assessed by thymidine incorporation assay, propidium iodide-based cell cycle analysis, caspase-3 assay and immunoblotting for specific cell cycle modulators. Key results: Calcitriol, but not dexamethasone, inhibited PDGF-induced ASM DNA synthesis concentration dependently (IC50= 520 ± 52 nM). These effects were associated with VDR-mediated expression of cytochrome CYP24A1 with no effects on ASM apoptosis. Calcitriol substantially inhibited (P < 0.01) PDGF-stimulated cell growth in ASM derived from both normal (59 ± 8%) and asthmatic subjects (57 ± 9%). Calcitriol inhibited PDGF-induced phosphorylation of retinoblastoma protein (Rb) and Chk1, with no effects on PDGF-mediated activation of extracellular signal-regulated kinases 1/2, PI3-kinase and S6 kinase, or expression of p21Waf/Cip-1, p27Kip1, cyclin D and E2F-1. Consistent with these observations, SB218078 also inhibited (IC50= 450 ± 100 pM) PDGF-induced cell cycle progression. Conclusions and implications: Calcitriol decreased PDGF-induced ASM cell growth by inhibiting Rb and Chk1 phosphorylation. This Research Paper is the subject of a Commentary in this issue by Clifford and Knox (pp. 1426–1428). To view this article visit http://www3.interscience.wiley.com/journal/121548564/issueyear?year=2009 PMID:19814732

  3. [Apoptosis inducing effect of Hechanpian on human lung adenocarcinoma A549 cells].

    PubMed

    Xiong, Shao-Quan; Zhou, Dai-Han; Lin, Li-Zhu

    2010-06-01

    To study the apoptosis inducing effects of Hechanpian (HCP) on human lung adenocarcinoma A549 cells. HCP containing rat serum was prepared and applied on A549 cells. The cell growth inhibition rate was tested by MTT assay; the effect of HCP on cell apoptosis was observed with Propidium iodide (PI) staining and flow cytometry analysis; the mRNA expression of epidermal growth factor receptor (EGFR) was detected through RT-PCR. The growth of A549 cells was obviously inhibited after being treated by HCP containing serum, and the cells presented an apoptotic change. The cell apoptosis rate after treated by serum containing 10% and 20% HCP was 20.5% and 33.2%, respectively, significantly higher than that in the control (6.1% in cells didn't treated with HCP, P < 0.05). Compared with control, EGFR mRNA expression in HCP treated cells was significantly lower (P < 0.05). HCP has apoptosis inducing effect on A549 cell, and its molecular mechanism is probably correlated with the inhibition of EGFR gene transcription.

  4. Tanshinone IIA inhibits cervix carcinoma stem cells migration and invasion via inhibiting YAP transcriptional activity.

    PubMed

    Qin, Jinghao; Shi, Hongbing; Xu, Yanjie; Zhao, Fang; Wang, Qing

    2018-06-14

    This study aims to explore the effects and related mechanisms of Tanshinone IIA in cervix carcinoma (CC) stemness-like cells migration, invasion, stemness and chemotherapeutical sensitivity. Here, we found that Tanshinone IIA suppressed CC stemness-like cells migration and invasion in a concentration- and time-dependent manner. And consistent results were obtained in CC cells stemness characterized as the decrease of CC stemness markers expression and cells spheroid formation ability. Mechanistically, we found that Tanshinone IIA suppressed RNA binding protein HuR translocation from nuclear to cytoplasm, and thus reduced YAP mRNAs stability and transcriptional activity. Importantly, overexpression YAP-5SA rescued the inhibition of Tanshinone IIA on CC cells stemness. Furthermore, Tanshinone IIA enhanced adriamycin sensitivity in CC stemness-like cells, this effect was attenuated by YAP-5SA overexpression too. Therefore, Tanshinone IIA could suppress CC stemness-like cells migration and invasion by inhibiting YAP transcriptional activity. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Suppressive effects of chlorphenesin on lymphocyte function in mice and humans.

    PubMed

    Stites, D P; Brecher, G; Schmidt, L; Berger, F M

    1979-12-01

    The immunosuppressive action of chlorphenesin was investigated in a wide variety of in vitro assays for cellular immunity in humans and mice. Chlorphenesin, at doses of 20-50 micrograms/ml, inhibited mitogenic responses of both mouse and human B and T cells. These doses did not kill cells exposed to the drug for 72 hr. Mixed lymphocyte reactions in inbred strains of mice and in unrelated humans were also inhibited at concentrations of about 50 micrograms/ml. However, the generation of cytotoxic T cells in cell-mediated lympholysis assays was not inhibited to the same degree as proliferation in mixed lymphocyte reaction and the cytotoxic potential of presensitized mouse T cells for allogeneic targets was totally unaffected. These studies suggest that chlorphenesin may have a broad spectrum of suppressive effects both on T and B cells and that the predominant inhibition of proliferative responses in these cells may reduce the expansion of clones of immunocompetent cells in vivo.

  6. Anthothecol-encapsulated PLGA nanoparticles inhibit pancreatic cancer stem cell growth by modulating sonic hedgehog pathway.

    PubMed

    Verma, Raj Kumar; Yu, Wei; Singh, Surya Pratap; Shankar, Sharmila; Srivastava, Rakesh K

    2015-11-01

    Anthothecol, a limonoid isolated from plant Khaya anthotheca (Meliaceae), is an antimalarial compound. The objectives of this study were to examine the molecular mechanisms by which anthothecol-encapsulated PLGA-nanoparticles (Antho-NPs) regulate the behavior of pancreatic cancer stem cells (CSCs). Antho-NPs inhibited cell proliferation and colony formation, and induced apoptosis in pancreatic CSCs and cancer cell lines, but had no effects on human normal pancreatic ductal epithelial cells. Antho-NPs inhibited self-renewal capacity of pancreatic CSCs isolated from human and Kras(G12D) mice. Furthermore, antho-NPs suppressed cell motility, migration and invasion by up-regulating E-cadherin and inhibiting N-cadherin and Zeb1. In addition, Antho-NPs inhibited pluripotency maintaining factors and stem cell markers, suggesting their inhibitory role on CSC population. Anthothecol disrupted binding of Gli to DNA, and inhibited Gli transcription and Gli target genes. Our studies establish preclinical significance of Antho-NPs for the treatment and/or prevention of pancreatic cancer. Despite medical advances, the prognosis of pancreatic cancer remains poor. The search for an effective treatment has been under intensive research for some time. In this article, the authors investigated the efficacy and mechanism of anthothecol (an antimalarial compound), encapsulated by PLGA nanoparticles (Antho-NPs), against pancreatic cancer cell lines. It was found that Antho-NPs acted via the Sonic hedgehog signaling pathway and inhibited cancer stem cell growth. These results have provided important basis for further clinical trials. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. 4-Chlorotetrazolo[1,5-a]quinoxaline inhibits activation of Syk kinase to suppress mast cells in vitro and mast cell-mediated passive cutaneous anaphylaxis in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Kui Lea; Ko, Na Young; Lee, Jun Ho

    2011-12-15

    4-Chlorotetrazolo[1,5-a]quinoxaline is a quinoxaline derivative. We aimed to study the effects of 4-chlorotetrazolo[1,5-a]quinoxaline on activation of mast cells in vitro and in mice. 4-Chlorotetrazolo[1,5-a]quinoxaline reversibly inhibited degranulation of mast cells in a dose-dependent manner, and also suppressed the expression and secretion of TNF-{alpha} and IL-4 in mast cells. Mechanistically, 4-chlorotetrazolo[1,5-a]quinoxaline inhibited activating phosphorylation of Syk and LAT, which are crucial for early Fc{epsilon}RI-mediated signaling events, as well as Akt and MAP kinases, which play essential roles in the production of various pro-inflammatory cytokines in mast cells. Notably, although 4-chlorotetrazolo[1,5-a]quinoxaline inhibited the activation of Fyn and Syk, minimal inhibition was observedmore » in mast cells in the case of Lyn. Furthermore, consistent with its in vitro activity, 4-chlorotetrazolo[1,5-a]quinoxaline significantly suppressed mast cell-mediated passive cutaneous anaphylaxis in mice. In summary, the results from this study demonstrate that 4-chlorotetrazolo[1,5-a]quinoxaline shows an inhibitory effect on mast cells in vitro and in vivo, and that this is mediated by inhibiting the activation of Syk in mast cells. Therefore, 4-chlorotetrazolo[1,5-a]quinoxaline could be useful in the treatment of mast cell-mediated allergic diseases. -- Highlights: Black-Right-Pointing-Pointer 4-chlorotetrazolo[1,5-a]quinoxaline is a quinoxaline derivative. Black-Right-Pointing-Pointer The effect of 4-chlorotetrazolo[1,5-a]quinoxaline on mast cells was investigated. Black-Right-Pointing-Pointer 4-chlorotetrazolo[1,5-a]quinoxaline reversibly inhibited Syk activation. Black-Right-Pointing-Pointer 4-chlorotetrazolo[1,5-a]quinoxaline could be useful for IgE-mediated allergy.« less

  8. LRD-22, a novel dual dithiocarbamatic acid ester, inhibits Aurora-A kinase and induces apoptosis and cell cycle arrest in HepG2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Huiling; Li, Ridong; Li, Li

    In this study we investigated the antitumor activity of the novel dual dithiocarbamatic acid ester LRD-22 in vitro and in vivo. Several cancer cell lines were employed to determine the effect of LRD-22 on cell growth, and the MTT assay showed there was a significant decrease in viable tumor cell numbers in the presence of LRD-22, especially in the HepG2 cell line. Colony formation assay also showed LRD-22 strongly inhibits HepG2 cell growth. Evaluation of the mechanism involved showed that inhibitory effects of LRD-22 on cell growth are due to induction of apoptosis and G2/M arrest. LRD-22 inhibited Aurora-A phosphorylation at Thr{submore » 288} and subsequently impaired p53 phosphorylation at Ser{sub 315} which was associated with the proteasome degradation pathway. Tumor suppressor protein p53 is stabilized by this mechanism and accumulates through inhibition of Aurora-A kinase activity via treatment with LRD-22. In vivo study of HepG2 xenograft in nude mice also shows LRD-22 suppresses tumor growth at a concentration of 5 mg/kg without animals suffering loss of body weight. In conclusion, our results demonstrate LRD-22 acts as an Aurora-A kinase inhibitor to induce apoptosis and inhibit proliferation in HepG2 cells, and should be considered as a promising targeting agent for HCC therapy. - Highlights: • LRD-22 significantly inhibits cancer cell growth, especially in the HepG2 cell line. • The inhibitory effect of LRD-22 is due to induction of apoptosis and cell cycle arrest. • LRD-22 inhibits Aurora-A phosphorylation which results in subsequent impairment of the p53 pathway. • LRD-22 suppresses tumor growth in xenograft mice without body weight loss.« less

  9. The relative effect of citral on mitotic microtubules in wheat roots and BY2 cells.

    PubMed

    Chaimovitsh, D; Rogovoy Stelmakh, O; Altshuler, O; Belausov, E; Abu-Abied, M; Rubin, B; Sadot, E; Dudai, N

    2012-03-01

    The plant volatile monoterpene citral is a highly active compound with suggested allelopathic traits. Seed germination and seedling development are inhibited in the presence of citral, and it disrupts microtubules in both plant and animal cells in interphase. We addressed the following additional questions: can citral interfere with cell division; what is the relative effect of citral on mitotic microtubules compared to interphase cortical microtubules; what is its effect on newly formed cell plates; and how does it affect the association of microtubules with γ-tubulin? In wheat seedlings, citral led to inhibition of root elongation, curvature of newly formed cell walls and deformation of microtubule arrays. Citral's effect on microtubules was both dose- and time-dependent, with mitotic microtubules appearing to be more sensitive to citral than cortical microtubules. Association of γ-tubulin with microtubules was more sensitive to citral than were the microtubules themselves. To reveal the role of disrupted mitotic microtubules in dictating aberrations in cell plates in the presence of citral, we used tobacco BY2 cells expressing GFP-Tua6. Citral disrupted mitotic microtubules, inhibited the cell cycle and increased the frequency of asymmetric cell plates in these cells. The time scale of citral's effect in BY2 cells suggested a direct influence on cell plates during their formation. Taken together, we suggest that at lower concentrations, citral interferes with cell division by disrupting mitotic microtubules and cell plates, and at higher concentrations it inhibits cell elongation by disrupting cortical microtubules. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. [Lentivirus-mediated shRNA silencing of LAMP2A inhibits the proliferation of multiple myeloma cells].

    PubMed

    Li, Lixuan; Li, Jia

    2015-05-01

    To study the effects of lentivirus-mediated short hairpin RNA (shRNA) silencing of lysosome-associated membrane protein type 2A (LAMP2A) expression on the proliferation of multiple myeloma cells. The constructed shRNA lentiviral vector was applied to infect human multiple myeloma cell line MM.1S, and stable expression cell line was obtained by puromycin screening. Western blotting was used to verify the inhibitory effect on LAMP2A protein expression. MTT assay was conducted to detect the effect of knocked-down LAMP2A on MM.1S cell proliferation, and the anti-tumor potency of suberoylanilide hydroxamic acid (SAHA) against the obtained MM.1S LAMP2A(shRNA) stable cell line. Lactate assay was performed to observe the impact of low LAMP2A expression on cell glycolysis. The stable cell line with low LAMP2A expression were obtained with the constructed human LAMP2A-shRNA lentiviral vector. Down-regulation of LAMP2A expression significantly inhibited MM.1S cell proliferation and enhanced the anti-tumor activity of SAHA. Interestingly, decreased LAMP2A expression also inhibited MM.1S cell lactic acid secretion. Down-regulation of LAMP2A expression could inhibit cell proliferation in multiple myeloma cells.

  11. Aspirin, lysine, mifepristone and doxycycline combined can effectively and safely prevent and treat cancer metastasis: prevent seeds from gemmating on soil

    PubMed Central

    Xu, Huo; Ma, Ji; Zhu, Yewei; Lu, Yusheng; Wang, Jichuang; Zhang, Ting; Li, Tao; Xie, Jingjing; Xu, Bo; Xie, Fangwei; Gao, Yu; Shao, Jingwei; Tu, Xiaohuang; Jia, Lee

    2015-01-01

    Recent scientific advances have increased our understanding of the cancer metastatic complexities and provided further impetus for new combination therapies to prevent cancer metastasis. Here, we demonstrated that a combination (HAMPT) of aspirin, lysine, mifepristone and doxycycline can effectively and safely prevent cancer metastasis. The pharmaceutically-formulated HAMPT inhibited adhesion of cancer cells to either endothelial cells or extracellular matrix via down-regulating cell adhesion molecules ICAM-1 and α4-integrin. HAMPT inhibited the cloak effect by activated platelets on cancer cells, thereby interfering adhesion and invasion of cancer cells to the underlying stroma. At the effective concentration, HAMPT induced cancer cells into dormancy with minor inhibition on cell viability. Four-day pretreatment followed by 30-day oral administration of HAMPT (33.5-134 mg/kg) to the mice inoculated with cancer cells produced significant inhibition on cancer metastasis dose-dependently without marked side effects. Fifty-day rat toxicity study with HAMPT at doses (335-1340 mg/kg) 20-fold higher than its therapeutic dose produced no significant toxicity. Interestingly, the acute toxic death could not be reached at the maximum administrable dose (5 g/kg). This proof-of-concept study provides the first conceptual evidence that cancer metastasis can be controlled by using affordable old drugs to restrain circulating tumor cells from gemmating on the metastatic soil without the need for cytotoxicity. PMID:26459390

  12. Accelerated lipid catabolism and autophagy are cancer survival mechanisms under inhibited glutaminolysis.

    PubMed

    Halama, Anna; Kulinski, Michal; Dib, Shaima S; Zaghlool, Shaza B; Siveen, Kodappully S; Iskandarani, Ahmad; Zierer, Jonas; Prabhu, Kirti S; Satheesh, Noothan J; Bhagwat, Aditya M; Uddin, Shahab; Kastenmüller, Gabi; Elemento, Olivier; Gross, Steven S; Suhre, Karsten

    2018-08-28

    Suppressing glutaminolysis does not always induce cancer cell death in glutamine dependent tumors because cells may switch to alternative energy sources. To reveal compensatory metabolic pathways, we investigated the metabolome-wide cellular response to inhibited glutaminolysis in cancer cells. Glutaminolysis inhibition with C.968 suppressed cell proliferation but was insufficient to induce cancer cell death. We found that lipid catabolism was activated as a compensation for glutaminolysis inhibition. Accelerated lipid catabolism, together with oxidative stress induced by glutaminolysis inhibition, triggered autophagy. Simultaneously inhibiting glutaminolysis and either beta oxidation with trimetazidine or autophagy with chloroquine both induced cancer cell death. Here we identified metabolic escape mechanisms contributing to cancer cell survival under treatment and we suggest potentially translational strategy for combined cancer therapy, given that chloroquine is an FDA approved drug. Our findings are first to show efficiency of combined inhibition of glutaminolysis and beta oxidation as potential anti-cancer strategy as well as add to the evidence that combined inhibition of glutaminolysis and autophagy may be effective in glutamine-addicted cancers. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  13. Inhibition of Human Cytomegalovirus Replication by Artemisinins: Effects Mediated through Cell Cycle Modulation

    PubMed Central

    Roy, Sujayita; He, Ran; Kapoor, Arun; Forman, Michael; Mazzone, Jennifer R.; Posner, Gary H.

    2015-01-01

    Artemisinin-derived monomers and dimers inhibit human cytomegalovirus (CMV) replication in human foreskin fibroblasts (HFFs). The monomer artesunate (AS) inhibits CMV at micromolar concentrations, while dimers inhibit CMV replication at nanomolar concentrations, without increased toxicity in HFFs. We report on the variable anti-CMV activity of AS compared to the consistent and reproducible CMV inhibition by dimer 606 and ganciclovir (GCV). Investigation of this phenomenon revealed that the anti-CMV activity of AS correlated with HFFs synchronized to the G0/G1 stage of the cell cycle. In contact-inhibited serum-starved HFFs or cells arrested at early/late G1 with specific checkpoint regulators, AS and dimer 606 efficiently inhibited CMV replication. However, in cycling HFFs, in which CMV replication was productive, virus inhibition by AS was significantly reduced, but inhibition by dimer 606 and GCV was maintained. Cell cycle analysis in noninfected HFFs revealed that AS induced early G1 arrest, while dimer 606 partially blocked cell cycle progression. In infected HFFs, AS and dimer 606 prevented the progression of cell cycle toward the G1/S checkpoint. AS reduced the expression of cyclin-dependent kinases (CDK) 2, 4, and 6 in noninfected cycling HFFs, while the effect of dimer 606 on these CDKs was moderate. Neither compound affected CDK expression in noninfected contact-inhibited HFFs. In CMV-infected cells, AS activity correlated with reduced CDK2 levels. CMV inhibition by AS and dimer 606 also correlated with hypophosphorylation (activity) of the retinoblastoma protein (pRb). AS activity was strongly associated with pRb hypophosphorylation, while its reduced anti-CMV activity was marked by pRb phosphorylation. Roscovitine, a CDK2 inhibitor, antagonized the anti-CMV activities of AS and dimer 606. These data suggest that cell cycle modulation through CDKs and pRb might play a role in the anti-CMV activities of artemisinins. Proteins involved in this modulation may be identified and targeted for CMV inhibition. PMID:25870074

  14. Pleiotropic effects of bisphosphonates on osteosarcoma.

    PubMed

    Ohba, Tetsuro; Cates, Justin M M; Cole, Heather A; Slosky, David A; Haro, Hirotaka; Ichikawa, Jiro; Ando, Takashi; Schwartz, Herbert S; Schoenecker, Jonathan G

    2014-06-01

    Osteosarcoma is the most common primary malignant tumor of bone and accounts for half of all primary skeletal malignancies in children and teenagers. The prognosis for patients who fail or progress on first-line chemotherapy protocols is poor, therefore, additional adjuvant therapeutic strategies are needed. A recent feasibility study has demonstrated that the nitrogen-containing bisphosphonate zoledronic acid (ZOL) can be combined safely with conventional chemotherapy. However, the pharmacodynamics of bisphosphonate therapy is not well characterized. Osteosarcoma is a highly angiogenic tumor. Recent reports of the anti-angiogenic effects of bisphosphonates prompted us to determine whether nitrogen-containing bisphosphonate (ZOL and alendronate) treatment attenuates osteosarcoma growth by inhibition of osteoclast activity, tumor-mediated angiogenesis, or direct inhibitory effects on osteosarcoma. Here, we demonstrate that bisphosphonates directly inhibit VEGFR2 expression in endothelial cells, as well as endothelial cell proliferation and migration. Additionally, bisphosphonates also decrease VEGF-A expression in osteosarcoma (K7M3) cells, resulting in reduced stimulation of endothelial cell migration in co-culture assays. ZOL also decreases VEGFR1 expression in aggressive osteosarcoma cell lines (K7M3, 143B) and induces apoptosis of these cells, but has negligible effects on less aggressive osteosarcoma cell lines (K12 and TE85). In vivo ZOL treatment results in significant reduction in osteosarcoma-initiated angiogenesis and tumor growth in a murine model of osteosarcoma. In conclusion, bisphosphonates have diverse growth inhibitory effects on osteosarcoma through: (1) activation of apoptosis and inhibition of cell proliferation, (2) inhibition of VEGF-A and VEGFR1 expression by tumor cells, (3) inhibition of tumor-induced angiogenesis, and (4) direct inhibitory actions on endothelial cells. Published by Elsevier Inc.

  15. Inhibitory effect of maple syrup on the cell growth and invasion of human colorectal cancer cells.

    PubMed

    Yamamoto, Tetsushi; Uemura, Kentaro; Moriyama, Kaho; Mitamura, Kuniko; Taga, Atsushi

    2015-04-01

    Maple syrup is a natural sweetener consumed by individuals of all ages throughout the world. Maple syrup contains not only carbohydrates such as sucrose but also various components such as organic acids, amino acids, vitamins and phenolic compounds. Recent studies have shown that these phenolic compounds in maple syrup may possess various activities such as decreasing the blood glucose level and an anticancer effect. In this study, we examined the effect of three types of maple syrup, classified by color, on the cell proliferation, migration and invasion of colorectal cancer (CRC) cells in order to investigate whether the maple syrup is suitable as a phytomedicine for cancer treatment. CRC cells that were administered maple syrup showed significantly lower growth rates than cells that were administered sucrose. In addition, administration of maple syrup to CRC cells caused inhibition of cell invasion, while there was no effect on cell migration. Administration of maple syrup clearly inhibited AKT phosphorylation, while there was no effect on ERK phosphorylation. These data suggest that maple syrup might inhibit cell proliferation and invasion through suppression of AKT activation and be suitable as a phytomedicine for CRC treatment, with fewer adverse effects than traditional chemotherapy.

  16. Inhibitory effect of maple syrup on the cell growth and invasion of human colorectal cancer cells

    PubMed Central

    YAMAMOTO, TETSUSHI; UEMURA, KENTARO; MORIYAMA, KAHO; MITAMURA, KUNIKO; TAGA, ATSUSHI

    2015-01-01

    Maple syrup is a natural sweetener consumed by individuals of all ages throughout the world. Maple syrup contains not only carbohydrates such as sucrose but also various components such as organic acids, amino acids, vitamins and phenolic compounds. Recent studies have shown that these phenolic compounds in maple syrup may possess various activities such as decreasing the blood glucose level and an anticancer effect. In this study, we examined the effect of three types of maple syrup, classified by color, on the cell proliferation, migration and invasion of colorectal cancer (CRC) cells in order to investigate whether the maple syrup is suitable as a phytomedicine for cancer treatment. CRC cells that were administered maple syrup showed significantly lower growth rates than cells that were administered sucrose. In addition, administration of maple syrup to CRC cells caused inhibition of cell invasion, while there was no effect on cell migration. Administration of maple syrup clearly inhibited AKT phosphorylation, while there was no effect on ERK phosphorylation. These data suggest that maple syrup might inhibit cell proliferation and invasion through suppression of AKT activation and be suitable as a phytomedicine for CRC treatment, with fewer adverse effects than traditional chemotherapy. PMID:25647359

  17. Antiapoptotic and antigenotoxic effects of N-acetylcysteine in human cells of endothelial origin.

    PubMed

    Aluigi, M G; De Flora, S; D'Agostini, F; Albini, A; Fassina, G

    2000-01-01

    N-Acetylcysteine (NAC) is a drug bearing multiple preventive properties that can inhibit genotoxicity and carcinogenicity. NAC also inhibits invasion and metastasis of malignant cells, as well as tumor take. We recently demonstrated the effects of NAC on Kaposi's sarcoma cells supernatant-induced invasion in vitro and angiogenesis in vivo. Many anticancer agents act through cytotoxicity of rapidly proliferating cells and several antineoplastic drugs induce apoptosis of cancer cells. Since endothelial cells are the target for the inhibition of angiogenesis, we wanted to verify that NAC, while inhibiting tumor vascularization and endothelial cell invasion would not induce endothelial cell apoptosis. We tested the ability of NAC to modulate apoptosis and cytogenetic damage in vitro and to promote differentiation on a reconstituted basement membrane (matrigel) in two endothelial cell lines (EAhy926 and HUVE). Treatment with NAC protected endothelial cells from TGF-beta-induced apoptosis and paraquat-induced cytogenetic damage. Therefore, NAC acts as an antiangiogenic agent and, at the same time, appears to prevent apoptosis and oxygen-related genotoxicity in endothelial cells.

  18. Crocetin shifts autophagic cell survival to death of breast cancer cells in chemotherapy.

    PubMed

    Zhang, Ailian; Li, Jincheng

    2017-03-01

    The chemotherapy with fluorouracil is not always effective, in which some breast cancer cells may survive the fluorouracil treatment through enhanced autophagy. Crocetin is the major constituent of saffron, a Chinese traditional herb, which has recently found to have multiple pharmacological effects, including anticancer. However, the effects of Crocetin on the outcome of fluorouracil therapy for breast cancer have not been studied. Here, we showed that fluorouracil treatment inhibited the growth of breast cancer cells, in either a Cell Counting Kit-8 assay or an MTT assay. Inhibition of autophagy further suppressed breast cancer cell growth, suggesting that the breast cancer cells increased autophagic cell survival during fluorouracil treatment. However, Crocetin significantly increased the suppressive effects of fluorouracil on breast cancer cell growth, without affecting either cell apoptosis or autophagy. Inhibition of autophagy at the presence of Crocetin partially abolished the suppressive effects on breast cancer cell growth, suggesting that Crocetin may increase autophagic cell death in fluorouracil-treated breast cancer cells. Furthermore, Crocetin decreased Beclin-1 levels but increased ATG1 levels in fluorouracil-treated breast cancer cells. Together, these data suggest that Crocetin may shift autophagic cell survival to autophagic cell death in fluorouracil-treated breast cancer cells, possibly through modulation of the expression of ATG1 and Beclin-1.

  19. The phosphatase inhibitor menadione (vitamin K3) protects cells from EGFR inhibition by erlotinib and cetuximab.

    PubMed

    Perez-Soler, Roman; Zou, Yiyu; Li, Tianhong; Ling, Yi He

    2011-11-01

    Skin toxicity is the main side effect of epidermal growth factor receptor (EGFR) inhibitors, often leading to dose reduction or discontinuation. We hypothesized that phosphatase inhibition in the skin keratinocytes may prevent receptor dephosphorylation caused by EGFR inhibitors and be used as a new potential strategy for the prevention or treatment of this side effect. Menadione (Vitamin K3) was used as the prototype compound to test our hypothesis. HaCat human skin keratinocyte cells and A431 human squamous carcinoma cells were used. EGFR inhibition was measured by Western blotting and immunofluorescence. Phosphatase inhibition and reactive oxygen species (ROS) generation were measured by standard ELISA and fluorescence assays. Menadione caused significant and reversible EGFR activation in a dose-dependent manner starting at nontoxic concentrations. EGFR activation by menadione was associated with reversible protein tyrosine phosphatase inhibition, which seemed to be mediated by ROS generation as exposure to antioxidants prevented both menadione-induced ROS generation and phosphatase inhibition. Short-term coincubation of cells with nontoxic concentrations of menadione and the EGFR inhibitors erlotinib or cetuximab prevented EGFR dephosphorylation. Seventy-two-hour coincubation of cells with the highest nontoxic concentration of menadione and erlotinib provided for a fourfold cell growth inhibitory protection in HaCat human keratinocyte cells. Menadione at nontoxic concentrations causes EGFR activation and prevents EGFR dephosphorylation by erlotinib and cetuximab. This effect seems to be mediated by ROS generation and secondary phosphatase inhibition. Mild oxidative stress in skin keratinocytes by topical menadione may protect the skin from the toxicity secondary to EGFR inhibitors without causing cytotoxicity. ©2011 AACR

  20. Protein biosynthesis, a target of sorafenib, interferes with the unfolded protein response (UPR) and ferroptosis in hepatocellular carcinoma cells

    PubMed Central

    Sauzay, Chloé; Louandre, Christophe; Bodeau, Sandra; Anglade, Frédéric; Godin, Corinne; Saidak, Zuzana; Fontaine, Jean-Xavier; Usureau, Cédric; Martin, Nathalie; Molinie, Roland; Pascal, Julie; Mesnard, François; Pluquet, Olivier; Galmiche, Antoine

    2018-01-01

    Sorafenib is the first line treatment for advanced hepatocellular carcinoma (HCC). We explored its impact on the proteostasis of cancer cells, i.e. the processes that regulate the synthesis, maturation and turn-over of cellular proteins. We observed that sorafenib inhibits the production of the tumour marker alpha-foetoprotein (AFP) in two different HCC cell lines, an effect that correlated with a radical inhibition of protein biosynthesis. This effect was observed at clinically relevant concentrations of sorafenib and was not related to the effect of sorafenib on the transport of amino acids across the plasma membrane or the induction of the unfolded protein response (UPR). Instead, we observed that sorafenib inhibits translation initiation and the mechanistic target of rapamycin (mTOR) signaling cascade, as shown by the analysis of phosphorylation levels of the protein 4EBP1 (eukaryotic translation initiation factor 4E binding protein 1). We explored the consequences of this inhibition in HCC cells. We observed that overall sorafenib is a weak inducer of the UPR that can paradoxically prevent the UPR induced by tunicamycin. We also found no direct synergistic anticancer effect between sorafenib and various strategies that inhibit the UPR. In agreement with the possibility that translation inhibition might be an adaptive stress response in HCC cells, we noted that it protects cancer cell from ferroptosis, a form of oxidative necrosis. Our findings point to the modulation of protein biosynthesis and mTOR signaling as being important, yet complex determinants of the response of HCC cells to sorafenib. PMID:29492203

  1. Protein biosynthesis, a target of sorafenib, interferes with the unfolded protein response (UPR) and ferroptosis in hepatocellular carcinoma cells.

    PubMed

    Sauzay, Chloé; Louandre, Christophe; Bodeau, Sandra; Anglade, Frédéric; Godin, Corinne; Saidak, Zuzana; Fontaine, Jean-Xavier; Usureau, Cédric; Martin, Nathalie; Molinie, Roland; Pascal, Julie; Mesnard, François; Pluquet, Olivier; Galmiche, Antoine

    2018-02-02

    Sorafenib is the first line treatment for advanced hepatocellular carcinoma (HCC). We explored its impact on the proteostasis of cancer cells, i.e. the processes that regulate the synthesis, maturation and turn-over of cellular proteins. We observed that sorafenib inhibits the production of the tumour marker alpha-foetoprotein (AFP) in two different HCC cell lines, an effect that correlated with a radical inhibition of protein biosynthesis. This effect was observed at clinically relevant concentrations of sorafenib and was not related to the effect of sorafenib on the transport of amino acids across the plasma membrane or the induction of the unfolded protein response (UPR). Instead, we observed that sorafenib inhibits translation initiation and the mechanistic target of rapamycin (mTOR) signaling cascade, as shown by the analysis of phosphorylation levels of the protein 4EBP1 (eukaryotic translation initiation factor 4E binding protein 1). We explored the consequences of this inhibition in HCC cells. We observed that overall sorafenib is a weak inducer of the UPR that can paradoxically prevent the UPR induced by tunicamycin. We also found no direct synergistic anticancer effect between sorafenib and various strategies that inhibit the UPR. In agreement with the possibility that translation inhibition might be an adaptive stress response in HCC cells, we noted that it protects cancer cell from ferroptosis, a form of oxidative necrosis. Our findings point to the modulation of protein biosynthesis and mTOR signaling as being important, yet complex determinants of the response of HCC cells to sorafenib.

  2. Inhibition by Agrobacterium tumefaciens and Pseudomonas savastanoi of development of the hypersensitive response elicited by Pseudomonas syringae pv. phaseolicola.

    PubMed Central

    Robinette, D; Matthysse, A G

    1990-01-01

    Injection into tobacco leaves of biotype 1 Agrobacterium tumefaciens or of Pseudomonas savastanoi inhibited the development of a visible hypersensitive response to the subsequent injection at the same site of Pseudomonas syringae pv. phaseolicola. This interference with the hypersensitive response was not seen with injection of bacterial growth medium or Escherichia coli cells. Live A. tumefaciens cells were required for the inhibitory effect. Various mutants and strains of A. tumefaciens were examined to determine the genes involved. Known chromosomal mutations generally had no effect on the ability of A. tumefaciens to inhibit the hypersensitive response, except for chvB mutants which showed a reduced (but still significant) inhibition of the hypersensitive response. Ti plasmid genes appeared to be required for the inhibition of the hypersensitive response. The bacteria did not need to be virulent in order to inhibit the hypersensitive response. Deletion of the vir region from pTi had no effect on the inhibition. However, the T region of the Ti plasmid was required for inhibition. Studies of transposon mutants suggested that the tms but not tmr or ocs genes were required. These genes were not acting after transfer to plant cells since they were effective in strains lacking vir genes and thus unable to transfer DNA to plant cells. The results suggest that the expression of the tms genes in the bacteria may inhibit the development of the hypersensitive response by the plant. An examination of the genes required in P. savastanoi for the inhibition of the hypersensitive response suggested that bacterial production of auxin was also required for the inhibition of the hypersensitive response by these bacteria. Images PMID:2211508

  3. Juglans mandshurica Maxim extracts exhibit antitumor activity on HeLa cells in vitro.

    PubMed

    Xin, Nian; Hasan, Murtaza; Li, Wei; Li, Yan

    2014-04-01

    The present study examined the potential application of Juglans mandshurica Maxim extracts (HT) for cancer therapy by assessing their anti‑proliferative activity, reduction of telomerase activity, induction of apoptosis and cell cycle arrest in S phase in HeLa cells. From the perspective of using HT as a herbal medicine, photomicroscopy and florescent microscopy techniques were utilized to characterize the effect of the extracts on telomerase activity and cell morphology. Flow cytometry was employed to study apoptosis and cell cycle of HeLa cells, and DNA laddering was performed. The results showed that HT inhibited cell proliferation and telomerase activity, induced apoptosis and caused S phase arrest of HeLa cells in vitro. HT inhibited HeLa cell proliferation significantly, and the highest inhibition rate was 83.7%. A trap‑silver staining assay showed that HT was capable of markedly decreasing telomerase activity of HeLa cells and this inhibition was enhanced in a time‑ and dose‑dependent manner. Results of a Hoechst 33258 staining assay showed that HeLa cells treated by HT induced cell death. Through DNA agarose gel electrophoresis, DNA ladders of HeLa cells treated with HT were observed, indicating apoptosis. In conclusion, the present study demonstrated that HT exhibited anti‑tumor effects comprising the inhibition of growth and telomerase activity as well as apoptosis and cell cycle arrest in HeLa cells.

  4. Biochemical Characterization of Ferulic Acid and Caffeic Acid Which Effectively Inhibit Melanin Synthesis via Different Mechanisms in B16 Melanoma Cells.

    PubMed

    Maruyama, Hiroko; Kawakami, Fumitaka; Lwin, Thet-Thet; Imai, Motoki; Shamsa, Fazel

    2018-01-01

    In this study, we examined the inhibitory effects of ferulic acid and caffeic acid on melanin production using a murine B16 melanoma cell line. The mechanisms by which the two acids inhibit melanin production were investigated by evaluating their effects on the activity of tyrosinase, which is involved is the first step of melanin biosynthesis. Ferulic acid showed no toxicity against the melanoma cells at any dose, whereas caffeic acid exerted cellular toxicity at concentrations higher than 0.35 mM. Both ferulic and caffeic acids effectively inhibited melanin production in the B16 melanoma cells. Ferulic acid reduced tyrosinase activity by directly binding to the enzyme, whereas no binding was observed between caffeic acid and tyrosinase. Both ferulic acid and caffeic acid inhibited casein kinase 2 (CK2)-induced phosphorylation of tyrosinase in a dose-dependent manner in vitro. Ferulic acid was found to be a more effective inhibitor of melanin production than caffeic acid; this difference in the inhibitory efficacy between the two substances could be attributable to the difference in their tyrosine-binding activity. Our analysis revealed that both substances also inhibited the CK2-mediated phosphorylation of tyrosinase.

  5. α-Mangostin: a dietary antioxidant derived from the pericarp of Garcinia mangostana L. inhibits pancreatic tumor growth in xenograft mouse model.

    PubMed

    Hafeez, Bilal Bin; Mustafa, Ala; Fischer, Joseph W; Singh, Ashok; Zhong, Weixiong; Shekhani, Mohammed Ozair; Meske, Louise; Havighurst, Thomas; Kim, KyungMann; Verma, Ajit Kumar

    2014-08-10

    Pancreatic cancer (PC) is the most aggressive malignant disease, ranking as the fourth most leading cause of cancer-related death among men and women in the United States. In this study, we provide evidence of chemotherapeutic effects of α-mangostin, a dietary antioxidant isolated from the pericarp of Garcinia mangostana L. against human PC. The chemotherapeutic effect of α-mangostin was determined using four human PC cells (PL-45, PANC1, BxPC3, and ASPC1). α-Mangostin resulted in a significant inhibition of PC cells viability without having any effects on normal human pancreatic duct epithelial cells. α-Mangostin showed a dose-dependent increase of apoptosis in PC cells. Also, α-mangostin inhibited the expression levels of pNF-κB/p65Ser552, pStat3Ser727, and pStat3Tyr705. α-Mangostin inhibited DNA binding activity of nuclear factor kappa B (NF-κB) and signal transducer and activator 3 (Stat3). α-Mangostin inhibited the expression levels of matrix metallopeptidase 9 (MMP9), cyclin D1, and gp130; however, increased expression of tissue inhibitor of metalloproteinase 1 (TIMP1) was observed in PC cells. In addition, i.p. administration of α-mangostin (6 mg/kg body weight, 5 days a week) resulted in a significant inhibition of both primary (PL-45) and secondary (ASPC1) human PC cell-derived orthotopic and ectopic xenograft tumors in athymic nude mice. No sign of toxicity was observed in any of the mice administered with α-mangostin. α-Mangostin treatment inhibited the biomarkers of cell proliferation (Ki-67 and proliferating cell nuclear antigen [PCNA]) in the xenograft tumor tissues. We present, for the first time, that dietary antioxidant α-mangostin inhibits the growth of PC cells in vitro and in vivo. These results suggest the potential therapeutic efficacy of α-mangostin against human PC.

  6. Immune modulation of CD4+CD25+ regulatory T cells by zoledronic acid.

    PubMed

    Liu, Hsien; Wang, Shih-Han; Chen, Shin-Cheh; Chen, Ching-Ying; Lo, Jo-Lin; Lin, Tsun-Mei

    2016-11-25

    CD4 + CD25 + regulatory T (Treg) cells suppress tumor immunity by inhibiting immune cells. Manipulation of Treg cells represents a new strategy for cancer treatment. Zoledronic acid (ZA), a nitrogen-containing bisphosphonate, inhibits the expression of receptor activator of nuclear factor kappa-B ligand (RANKL) on osteoblasts to inhibit osteoclastogenesis. In a mouse model of bisphosphonate-related osteonecrosis of the jaw, administration of ZA suppressed Treg-cell activity and activated inflammatory Th17 cells. However, the interaction between ZA and Treg cells remained unclear. This study investigated the immune modulation of Treg cells by ZA. Flow cytometry was used to analyze the phenotypic and immunosuppressive characteristics of Treg cells treated with ZA. Chemotactic migration was evaluated using transwell assays. Quantitative real-time PCR (qRT-PCR) was used to investigate the effect of ZA on the expression of suppressive molecules by Treg cells. Proliferation of isolated Treg cells in culture was inhibited by ZA, although ZA did not induce apoptosis. qRT-PCR and flow cytometry showed that ZA significantly downregulated the expression of CCR4, CTLA4, PD-1 and RANKL on Treg cells. Chemotactic migration and immunosuppressive functions were also significantly attenuated in Treg cells pretreated with ZA, and these effects were dose-dependent. Co-culture with Treg cells significantly increased the migration rate of breast cancer cells, while pretreatment of Treg cells with ZA attenuated this effect. Our findings demonstrated that ZA acted as an immune modulator by significantly inhibiting the expansion, migration, immunosuppressive function and pro-metastatic ability of Treg cells. Immunomodulation of Treg cells by ZA represents a new strategy for cancer therapy.

  7. Xylitol induces cell death in lung cancer A549 cells by autophagy.

    PubMed

    Park, Eunjoo; Park, Mi Hee; Na, Hee Sam; Chung, Jin

    2015-05-01

    Xylitol is a widely used anti-caries agent that has anti-inflammatory effects. We have evaluated the potential of xylitol in cancer treatment. It's effects on cell proliferation and cytotoxicity were measured by MTT assay and LDH assay. Cell morphology and autophagy were examined by immunostaining and immunoblotting. Xylitol inhibited cell proliferation in a dose-dependent manner in these cancer cells: A549, Caki, NCI-H23, HCT-15, HL-60, K562, and SK MEL-2. The IC50 of xylitol in human gingival fibroblast cells was higher than in cancer cells, indicating that it is more specific for cancer cells. Moreover, xylitol induced autophagy in A549 cells that was inhibited by 3-methyladenine, an autophagy inhibitor. These results indicate that xylitol has potential in therapy against lung cancer by inhibiting cell proliferation and inducing autophagy of A549 cells.

  8. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Feng; Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030; Yang, Yong, E-mail: yyang@houstonmethodist.org

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocationmore » of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers.« less

  9. Fisetin suppresses ADAM9 expression and inhibits invasion of glioma cancer cells through increased phosphorylation of ERK1/2.

    PubMed

    Chen, Chien-Min; Hsieh, Yi-Hsien; Hwang, Jin-Ming; Jan, Hsun-Jin; Hsieh, Shu-Ching; Lin, Shin-Huey; Lai, Chung-Yu

    2015-05-01

    Fisetin (3,3',4',7-tetrahydroxyflavone) is a naturally occurring flavonoid which is widely distributed in plants. It has been reported to possess some anticancer and anti-invasive capabilities. We set out to explore the effects of fisetin on antimetastatic and its mechanism of action in GBM8401 cells. The results indicated that fisetin exhibited effective inhibition of cell migration and inhibited the invasion of GBM8401 cells under non-cytotoxic concentrations. To identify the potential targets of fisetin, human proteinase antibody array analysis was performed, and the results indicated that the fisetin treatment inhibited the expression of ADAM9 protein and mRNA, which are known to contribute to the progression of glioma cancer. Our results showed that fisetin phosphorylated ERK1/2 in a sustained way that contributed to the inhibited ADAM9 protein and mRNA expression determined by Western blot and RT-PCR. Moreover, inhibition of ERK1/2 by U0126 or transfection with the siERK plasmid significantly abolished the fisetin-inhibited migration and invasion through activation of the ERK1/2 pathway. In summary, our results suggest that fisetin might be a potential therapeutic agent against human glioma cells based on its capacity to activate ERK1/2 and to inhibit ADAM9 expression.

  10. Differential Reponses of Hematopoietic Stem and Progenitor Cells to mTOR Inhibition

    PubMed Central

    Yang, Aimin; Xiao, Xia; Zhao, Mingfeng; LaRue, Amanda C.; Schulte, Bradley A.; Wang, Gavin Y.

    2015-01-01

    Abnormal activation of the mammalian target of rapamycin (mTOR) signaling pathway has been observed in a variety of human cancers. Therefore, targeting of the mTOR pathway is an attractive strategy for cancer treatment and several mTOR inhibitors, including AZD8055 (AZD), a novel dual mTORC1/2 inhibitor, are currently in clinical trials. Although bone marrow (BM) suppression is one of the primary side effects of anticancer drugs, it is not known if pharmacological inhibition of dual mTORC1/2 affects BM hematopoietic stem and progenitor cells (HSPCs) function and plasticity. Here we report that dual inhibition of mTORC1/2 by AZD or its analogue (KU-63794) depletes mouse BM Lin−Sca-1+c-Kit+ cells in cultures via the induction of apoptotic cell death. Subsequent colony-forming unit (CFU) assays revealed that inhibition of mTORC1/2 suppresses the clonogenic function of hematopoietic progenitor cells (HPCs) in a dose-dependent manner. Surprisingly, we found that dual inhibition of mTORC1/2 markedly inhibits the growth of day-14 cobblestone area-forming cells (CAFCs) but enhances the generation of day-35 CAFCs. Given the fact that day-14 and day-35 CAFCs are functional surrogates of HPCs and hematopoietic stem cells (HSCs), respectively, these results suggest that dual inhibition of mTORC1/2 may have distinct effects on HPCs versus HSCs. PMID:26221145

  11. Traditional Chinese Medicine CFF-1 induced cell growth inhibition, autophagy, and apoptosis via inhibiting EGFR-related pathways in prostate cancer.

    PubMed

    Wu, Zhaomeng; Zhu, Qingyi; Yin, Yingying; Kang, Dan; Cao, Runyi; Tian, Qian; Zhang, Yu; Lu, Shan; Liu, Ping

    2018-04-01

    Traditional Chinese medicine (TCM) has a combined therapeutic result in cancer treatment by integrating holistic and local therapeutical effects, by which TCM can enhance the curative effect and reduce the side effect. In this study, we analyzed the effect of CFF-1 (alcohol extract from an anticancer compound Chinese medicine) on prostate cancer (PCa) cell lines and studied in detail the mechanism of cell death induced by CFF-1 in vitro and in vivo. From our data, we found for the first time that CFF-1 obviously arrested cell cycle in G1 phase, decreased cell viability and then increased nuclear rupture in a dose-dependent manner and finally resulted in apoptosis in prostate cancer cells. In molecular level, our data showed that CFF-1 induced inhibition of EGFR auto-phosphorylation and inactivation of EGFR. Disruption of EGFR activity in turn suppressed downstream PI3K/AKT and Raf/Erk signal pathways, resulted in the decrease of p-FOXO1 (Ser256) and regulated the expression of apoptosis-related and cycle-related genes. Moreover, CFF-1 markedly induced cell autophagy through inhibiting PI3K/AKT/mTOR pathway and then up-regulating Beclin-1 and LC-3II and down-regulating phosphorylation of p70S6K. In vivo, CFF-1-treated group exhibited a significant decrease in tumor volume compared with the negative control group in subcutaneous xenograft tumor in nude mice via inhibiting EGFR-related signal pathways. Thus, bio-functions of Chinese medicine CFF-1 in inducing PCa cell growth inhibition, autophagy, and apoptosis suggested that CFF-1 had the clinical potential to treat patients with prostate cancer. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  12. Recombinant cell lines expressing shRNA targeting herpes simplex virus 2 VP16 inhibit virus replication.

    PubMed

    Zhang, Rui; Wang, Yan; Song, Bo; Han, Zhi Qiang; Xu, Yu Ming

    2012-01-01

    To establish HSV2 VP16 targeting shRNA-expressing cell lines and investigate the antiviral effect of shRNA targeting HSV2 VP16. The cell lines Vero-shRNAs and negative-control Vero-shCON were established. Their inhibition effects on VP16 mRNA expression were tested by real-time fluorescent quantitative polymerase chain reaction (PCR) and their antiviral effects were evaluated by yield reduction assay. The influence of passage numbers on the inhibition ability of cell lines was researched. Vero-shRNA24 targeting the upper stream, Vero-shRNA642 targeting the lower stream and Vero-shCON were established. Vero-shRNA24, Vero-shRNA642 and Vero-shRNA24 + 642 could reduce the VP16 mRNA significantly. Vero-shRNA24 was the most efficient. The HSV2 titers in Vero and Vero-shCON were the highest at 72 h after infection, and started decreasing thereafter. The viral titers of the Vero-shRNA groups reached a peak after 84 h and the highest titers were lower than in the Vero group. The inhibiting effect on VP16 mRNA expression and viral replication of Vero-shRNA24 cell lines of passages 10 and 20 were not significantly different from the primary cell line. Although of no statistical significance, the passage 50 cell line showed decreased inhibiting ability. Recombinant cell lines expressing shRNA targeting HSV2 VP16 were established. They can stably inhibit HSV2 VP16 mRNA expression and viral replication within passage 50. Copyright © 2012 S. Karger AG, Basel.

  13. Ethanol inhibits B16-BL6 melanoma metastasis and cell phenotypes associated with metastasis.

    PubMed

    Kushiro, Kyoko; Núñez, Nomelí P

    2012-01-01

    Every year, approximately 68,000 new cases of malignant melanoma are diagnosed in the US. Ethanol consumption inhibits metastasis of melanoma in mice, but the mechanism is not well understood. C57BL/6J ob/+ mice, given either water or 20% ethanol, were injected intravenously with B16-BL6 melanoma cells to determine pulmonary metastasis. The effects of ethanol on cell phenotypes and markers of the epithelial-to-mesenchymal transition were determined in cell culture. In mice, ethanol consumption inhibited experimental pulmonary metastasis. This inhibition was associated with decreased body weight, and levels of systemic leptin, and insulin. In cell culture, ethanol inhibited B16-BL6 cell motility, invasion, and anchorage-independent growth. Additionally, ethanol reduced Snai1 expression and increased E-cadherin expression. Lastly, ethanol increased the expression of Kiss1 metastasis-suppressor and the metastasis suppressor Nm23/nucleoside diphosphate kinase. In both animal and in cell culture conditions, ethanol inhibited the metastatic ability of B16-BL6 melanoma cells.

  14. Disruption of Testis Cords by Cyclopamine or Forskolin Reveals Independent Cellular Pathways in Testis Organogenesis

    PubMed Central

    Yao, Humphrey Hung-Chang; Capel, Blanche

    2014-01-01

    Most studies to date indicate that the formation of testis cords is critical for proper Sertoli cell differentiation, inhibition of germ cell meiosis, and regulation of Leydig cell differentiation. However, the connections between these events are poorly understood. The objective of this study was to dissect the molecular and cellular relationships between these events in testis formation. We took advantage of the different effects of two hedgehog signaling inhibitors, cyclopamine and forskolin, on gonad explant cultures. Both hedgehog inhibitors phenocopied the disruptive effect of Dhh−/− on formation of testis cords without influencing Sertoli cell differentiation. However, they exhibited different effects on other cellular events during testis development. Treatment with cyclopamine did not affect inhibition of germ cell meiosis and mesonephric cell migration but caused defects in Leydig cell differentiation. In contrast, forskolin treatment induced germ cell meiosis, inhibited mesonephric cell migration, and had no effect on Leydig cell differentiation. By carefully contrasting the different effects of these two hedgehog inhibitors, we demonstrate that although formation of testis cords and development of other cell types normally take place in a tightly regulated sequence, each of these events can occur independent of the others. PMID:12051821

  15. Hsp90 Is a Novel Target Molecule of CDDO-Me in Inhibiting Proliferation of Ovarian Cancer Cells.

    PubMed

    Qin, Dong-Jun; Tang, Cai-Xia; Yang, Li; Lei, Hu; Wei, Wei; Wang, Ying-Ying; Ma, Chun-Min; Gao, Feng-Hou; Xu, Han-Zhang; Wu, Ying-Li

    2015-01-01

    Synthetic triterpenoid methyl-2-cyano-3, 12-dioxooleana-1, 9(11)-dien-28-oate (CDDO-Me) has been shown as a promising agent against ovarian cancer. However, the underlying mechanism is not well understood. Here, we demonstrate that CDDO-Me directly interacts with Hsp90 in cells by cellular thermal shift assay. CDDO-Me treatment leads to upregulation of Hsp70 and degradation of Hsp90 clients (ErbB2 and Akt), indicating the inhibition of Hsp90 by CDDO-Me in cells. Knockdown of Hsp90 significantly inhibits cell proliferation and enhances the anti-proliferation effect of CDDO-Me in H08910 ovarian cancer cells. Dithiothreitol inhibits the interaction of CDDO-Me with Hsp90 in cells and abrogates CDDO-Me induced upregulation of Hsp70, degradation of Akt and cell proliferation inhibition. This suggests the anti-ovarian cancer effect of CDDO-Me is possibly mediated by the formation of Michael adducts between CDDO-Me and reactive nucleophiles on Hsp90. This study identifies Hsp90 as a novel target protein of CDDO-Me, and provides a novel insight into the mechanism of action of CDDO-Me in ovarian cancer cells.

  16. Anti-cancer activity of withaferin A in B-cell lymphoma

    PubMed Central

    McKenna, MK; Gachuki, BW; Alhakeem, SS; Oben, KN; Rangnekar, VM; Gupta, RC; Bondada, S

    2015-01-01

    Withaferin A (WA), a withanolide from the plant, Ashwagandha (Withania somnifera) used in Ayurvedic medicine, has been found to be valuable in the treatment of several medical ailments. WA has been found to have anticancer activity against various solid tumors, but its effects on hematological malignancies have not been studied in detail. WA strongly inhibited the survival of several human and murine B cell lymphoma cell lines. Additionally, in vivo studies with syngeneic-graft lymphoma cells suggest that WA inhibits the growth of tumor but does not affect other proliferative tissues. We demonstrate that WA inhibits the efficiency of NF-κB nuclear translocation in diffuse large B cell lymphomas and found that WA treatment resulted in a significant decrease in protein levels involved in B cell receptor signaling and cell cycle regulation. WA inhibited the activity of heat shock protein (Hsp) 90 as reflected by a sharp increase in Hsp70 expression levels. Hence, we propose that the anti-cancer effects of WA in lymphomas are likely due to its ability to inhibit Hsp90 function and subsequent reduction of critical kinases and cell cycle regulators that are clients of Hsp90. PMID:26020511

  17. Anti-cancer activity of withaferin A in B-cell lymphoma.

    PubMed

    McKenna, M K; Gachuki, B W; Alhakeem, S S; Oben, K N; Rangnekar, V M; Gupta, R C; Bondada, S

    2015-01-01

    Withaferin A (WA), a withanolide from the plant, Ashwagandha (Withania somnifera) used in Ayurvedic medicine, has been found to be valuable in the treatment of several medical ailments. WA has been found to have anticancer activity against various solid tumors, but its effects on hematological malignancies have not been studied in detail. WA strongly inhibited the survival of several human and murine B cell lymphoma cell lines. Additionally, in vivo studies with syngeneic-graft lymphoma cells suggest that WA inhibits the growth of tumor but does not affect other proliferative tissues. We demonstrate that WA inhibits the efficiency of NF-κB nuclear translocation in diffuse large B cell lymphomas and found that WA treatment resulted in a significant decrease in protein levels involved in B cell receptor signaling and cell cycle regulation. WA inhibited the activity of heat shock protein (Hsp) 90 as reflected by a sharp increase in Hsp70 expression levels. Hence, we propose that the anti-cancer effects of WA in lymphomas are likely due to its ability to inhibit Hsp90 function and subsequent reduction of critical kinases and cell cycle regulators that are clients of Hsp90.

  18. G protein-coupled receptor 30 is critical for a progestin-induced growth inhibition in MCF-7 breast cancer cells.

    PubMed

    Ahola, Tytti M; Manninen, Tommi; Alkio, Niina; Ylikomi, Timo

    2002-09-01

    The issue of how progesterone affects mammary gland growth is controversial, and the mechanism governing the effects of the hormone remains mostly unknown. We have previously shown that G protein-coupled receptor 30 (GPR30) is a progestin target gene whose expression correlates with progestin-induced growth inhibition in breast cancer cells. In this study, we investigate the role of GPR30 in regulating cell proliferation and mediating progestin-induced growth inhibition. When progestin failed to inhibit the growth of MCF-7 cells and instead stimulated growth, GPR30 was down-regulated. In this way, the inhibitory or stimulatory affects that progestin has on proliferation correlated with the level of expression of GPR30. Transient expression of GPR30 resulted in a marked inhibition of cell proliferation independent of estrogen treatment. GPR30 antisense was used to evaluate the role of GPR30 expression in progestin-induced growth inhibition. A diminished GPR30 mRNA expression by the antisense stimulated growth. Interestingly, GPR30 antisense abrogated the growth inhibitory effect of progestin and progesterone. Indeed, progestin induced 1) a reduction in cell proliferation, 2) G1-phase arrest, and 3) down-regulation of cyclin D1 was diminished. These data suggest that the orphan receptor, GPR30, is important for the inhibitory effect of progestin on growth.

  19. Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK2/STAT3 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jo, Miran; Park, Mi Hee; Kollipara, Pushpa Saranya

    We investigated whether bee venom and melittin, a major component of bee venom, inhibit cell growth through enhancement of death receptor expressions in the human ovarian cancer cells, SKOV3 and PA-1. Bee venom (1–5 μg/ml) and melittin (0.5–2 μg/ml) inhibited the growth of SKOV3 and PA-1 ovarian cancer cells by the induction of apoptotic cell death in a dose dependent manner. Consistent with apoptotic cell death, expression of death receptor (DR) 3 and DR6 was increased in both cancer cells, but expression of DR4 was increased only in PA-1 cells. Expression of DR downstream pro-apoptotic proteins including caspase-3, 8, andmore » Bax was concomitantly increased, but the phosphorylation of JAK2 and STAT3 and the expression of Bcl-2 were inhibited by treatment with bee venom and melittin in SKOV3 and PA-1 cells. Expression of cleaved caspase-3 was increased in SKOV3, but cleaved caspase-8 was increased in PA-1 cells. Moreover, deletion of DR3, DR4, and DR6 by small interfering RNA significantly reversed bee venom and melittin-induced cell growth inhibitory effect as well as down regulation of STAT3 by bee venom and melittin in SKOV3 and PA-1 ovarian cancer cell. These results suggest that bee venom and melittin induce apoptotic cell death in ovarian cancer cells through enhancement of DR3, DR4, and DR6 expression and inhibition of STAT3 pathway. -- Highlights: ► Some studies have showed that bee venom and/or melittin have anti-cancer effects. ► We found that bee venom and melittin inhibited cell growth in ovarian cancer cells. ► Bee venom and melittin induce apoptosis in SKOV3 and PA-1.« less

  20. Elevated GnRH receptor expression plus GnRH agonist treatment inhibits the growth of a subset of papillomavirus 18-immortalized human prostate cells.

    PubMed

    Morgan, Kevin; Stavrou, Emmanouil; Leighton, Samuel P; Miller, Nicola; Sellar, Robin; Millar, Robert P

    2011-06-15

    Human metastatic prostate cancer cell growth can be inhibited by GnRH analogs but effects on virus-immortalized prostate cells have not been investigated. Virus-immortalized prostate cells were stably transfected with rat GnRH receptor cDNA and levels of GnRH binding were correlated with GnRH effects on signaling, cell cycle, growth, exosome production, and apoptosis. High levels of cell surface GnRH receptor occurred in transfected papillomavirus-immortalized WPE-1-NB26 epithelial cells but not in non-tumourigenic RWPE-1, myoepithelial WPMY-1 cells, or SV40-immortalized PNT1A. Endogenous cell surface GnRH receptor was undetectable in non-transfected cells or cancer cell lines LNCaP, PC3, and DU145. GnRH receptor levels correlated with induction of inositol phosphates, elevation of intracellular Ca(2+) , cytoskeletal actin reorganization, modulation of ERK activation and cell growth-inhibition with GnRH agonists. Hoechst 33342 DNA staining-cell sorting indicated accumulation of cells in G2 following agonist treatment. Release of exosomes from transfected WPE-1-NB26 was unaffected by agonists, unlike induction observed in HEK293([SCL60]) cells. Increased PARP cleavage and apoptotic body production were undetectable during growth-inhibition in WPE-1-NB26 cells, contrasting with HEK293([SCL60]) . EGF receptor activation inhibited GnRH-induced ERK activation in WPE-1-NB26 but growth-inhibition was not rescued by EGF or PKC inhibitor Ro320432. Growth of cells expressing low levels of GnRH receptor was not affected by agonists. Engineered high-level GnRH receptor activation inhibits growth of a subset of papillomavirus-immortalized prostate cells. Elucidating mechanisms leading to clone-specific differences in cell surface GnRH receptor levels is a valuable next step in developing strategies to exploit prostate cell anti-proliferation using GnRH agonists. Copyright © 2010 Wiley-Liss, Inc.

  1. Radiosensitizing effects of neem (Azadirachta indica) oil.

    PubMed

    Kumar, Ashok; Rao, A R; Kimura, H

    2002-02-01

    Radiosensitization by neem oil was studied using Balbc/3T3 cells and SCID cells. Neem oil enhanced the radiosensitivity of the cells when applied both during and after x-irradiation under aerobic conditions. Neem oil completely inhibited the repair of sublethal damage and potentially lethal damage repair in Balbc/3T3 cells. The cytofluorimeter data show that neem oil treatment before and after x-irradiation reduced the G(2) + M phase, thus inhibiting the expression of the radiation induced arrest of cells in the G(2) phase of the cell cycle. However, SCIK cells (derived from the SCID mouse), deficient in DSB repair, treated with neem oil did not show any enhancement in the radiosensitivity. There was no effect of neem oil on SLD repair or its inhibition in SCIK cells. These results suggest that neem oil enhanced the radiosensitivity of cells by interacting with residual damage after x-irradiation, thereby converting the sublethal damage or potentially lethal damage into lethal damage, inhibiting the double-strand break repair or reducing the G(2) phase of the cell cycle. Copyright 2002 John Wiley & Sons, Ltd.

  2. Fluoroquinolones inhibit human polyomavirus BK (BKV) replication in primary human kidney cells.

    PubMed

    Sharma, Biswa Nath; Li, Ruomei; Bernhoff, Eva; Gutteberg, Tore Jarl; Rinaldo, Christine Hanssen

    2011-10-01

    Reactivation of human polyomavirus BK (BKV) may cause polyomavirus-associated nephropathy or polyomavirus-associated hemorrhagic cystitis in renal- or bone marrow-transplant patients, respectively. Lack of treatment options has led to exploration of fluoroquinolones that inhibit topoisomerase II and IV in prokaryotes and possibly large T-antigen (LT-ag) helicase activity in polyomavirus. We characterized the effects of ofloxacin and levofloxacin on BKV replication in the natural host cells - primary human renal proximal tubular epithelial cells (RPTECs). Ofloxacin and levofloxacin inhibited BKV load in a dose-dependent manner yielding a ∼90% inhibition at 150 μg/ml. Ofloxacin at 150 μg/ml inhibited LT-ag mRNA and protein expression from 24h post infection (hpi). BKV genome replication was 77% reduced at 48 hpi and a similar reduction was found in VP1 and agnoprotein expression. At 72 hpi, the reduction in genome replication and protein expression was less pronounced. A dose-dependent cytostatic effect was noted. In infected cells, 150 μg/ml ofloxacin led to a 26% and 6% inhibition of cellular DNA replication and total metabolic activity, respectively while 150 μg/ml levofloxacin affected this slightly more, particularly in uninfected cells. Cell counting and xCELLigence results revealed that cell numbers were not reduced. In conclusion, ofloxacin and levofloxacin inhibit but do not eradicate BKV replication in RPTECs. At a concentration of ofloxacin giving ∼90% inhibition in BKV load, no significant cytotoxicity was observed. This concentration can be achieved in urine and possibly in the kidneys. Our results support a mechanism involving inhibition of LT-ag expression or functions but also suggest inhibition of cellular enzymes. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Effects of inhibition of ubiquitin-proteasome pathway on human primary leukemic cells.

    PubMed

    Lan, Yu; Zhang, Xuemin; Yang, Pingdi; Hu, Meiru; Yu, Ming; Yang, Yi; Shen, Beifen

    2002-12-01

    Though there were a lot of reports about the totally different responses to the inhibition of ubiquitin-proteasome pathway in different kinds of cell lines, much less has been known about the responses in primary human leukemic cells. In this study, the effects of inhibition of ubiquitin-proteasome pathway on human bone marrow (BM) mononuclear cells (MNCs) obtained from 10 normal persons and 8 leukemia patients were examined. The results showed that the responses obviously varied individually. Among them, BM MNCs in 3 cases of leukemic patients were extremely sensitive, demonstrated by that > 90% cells were induced to undergo apoptosis within 24 h, but MNCs in 10 cases of normal persons showed resistance to the inhibition and no apoptosis was observed. Furthermore, Western blots revealed that the Bcl-2 expression was relatively high in the sensitive primary leukemia cells, and especially the cleavage of 26 ku Bcl-2 into a 22 ku fragment occurred during the induction of apoptosis. In contrast, the Bcl-2 expression was either undetectable or detectable but no cleavage of that above was observed in the cells insensitive to the inhibition of the pathway (including BM MNCs in normal persons). Together with the observations on the leukemic cell lines, these findings suggested the correlation of the specific cleavage of Bcl-2 into a shortened fragment with the sensitivity of cells to the inhibition of ubiquitin-proteasome pathway, which provides clues to the further understanding of the mechanisms of that dramatically different responses existing in different kinds of cells to the inhibition of ubiquitin-proteasome pathway.

  4. Therapeutic Effects of S-Petasin on Disease Models of Asthma and Peritonitis

    PubMed Central

    Lee, Kyoung-Pil; Kang, Saeromi; Noh, Min-Soo; Park, Soo-Jin; Kim, Jung-Min; Chung, Hae Young; Je, Nam Kyung; Lee, Young-Geun; Choi, Young-Whan; Im, Dong-Soon

    2015-01-01

    To explore the anti-allergic and anti-inflammatory effects of extracts of Petasites genus, we studied the effects of s-petasin, a major sesquiterpene from Petasites formosanus (a butterbur species) on asthma and peritonitis models. In an ovalbumin-induced mouse asthma model, s-petasin significantly inhibited the accumulations of eosinophils, macrophages, and lymphocytes in bronchoalveolar fluids. S-petasin inhibited the antigen-induced degranulation of β-hexosamidase but did not inhibit intracellular Ca2+ increase in RBL-2H3 mast cells. S-petasin inhibited the LPS induction of iNOS at the RNA and protein levels in mouse peritoneal macrophages. Furthermore, s-petasin inhibited the production of NO (the product of iNOS) in a concentration-dependent manner in the macrophages. Furthermore, in an LPS-induced mouse model of peritonitis, s-petasin significantly inhibited the accumulation of polymorpho nuclear and mononuclear leukocytes in peritoneal cavity. This study shows that s-petasin in Petasites genus has therapeutic effects on allergic and inflammatory diseases, such as, asthma and peritonitis through degranulation inhibition in mast cells, suppression of iNOS induction and production of NO in macrophages, and suppression of inflammatory cell accumulation. PMID:25593643

  5. Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan, inhibits type I-IV allergic inflammation and pro-inflammatory enzymes.

    PubMed

    Lee, Ji Yun; Kim, Chang Jong

    2010-06-01

    We previously reported that arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan isolated from Forsythia koreana, exhibits anti-inflammatory, antioxidant, and analgesic effects in animal models. In addition, arctigenin inhibited eosinophil peroxidase and activated myeloperoxidase in inflamed tissues. In this study, we tested the effects of arctigenin on type I-IV allergic inflammation and pro-inflammatory enzymes in vitro and in vivo. Arctigenin significantly inhibited the heterologous passive cutaneous anaphylaxis induced by ovalbumin in mice at 15 mg/kg, p.o., and compound 48/80-induced histamine release from rat peritoneal mast cells at 10 microM. Arctigenin (15 mg/kg, p.o.) significantly inhibited reversed cutaneous anaphylaxis. Further, arctigenin (15 mg/kg, p.o.) significantly inhibited the Arthus reaction to sheep's red blood cells, decreasing the hemolysis titer, the hemagglutination titer, and the plaque-forming cell number for SRBCs. In addition, arctigenin significantly inhibited delayed type hypersensitivity at 15 mg/kg, p.o. and the formation of rosette-forming cells at 45 mg/kg, p.o. Contact dermatitis induced by picrylchloride and dinitrofluorobenzene was significantly (p < 0.05) inhibited by surface treatment with arctigenin (0.3 mg/ear). Furthermore, arctigenin dose-dependently inhibited pro-inflammatory enzymes, such as cyclooxygenase-1 and 2, 5-lipoxygenase, phospholipase A2, and phosphodiesterase. Our results show that arctigenin significantly inhibited B- and T-cell mediated allergic inflammation as well as pro-inflammatory enzymes.

  6. Chemical Strategy to Translate Genetic/epigenetic Mechanisms to Breast Cancer Therapeutics

    DTIC Science & Technology

    2012-07-01

    androgen-sensitive LNCaP cells. Early studies suggest that cardiac glycosides inhibit cell pro- liferation through the induction of apoptosis (24–26...We asked whether induced apoptosis was sufficient to account for the strong effect of Peruvoside on inhibiting cell proliferation. By monitoring...activated Caspases 3 and 7, we found that Peruvoside has a de- tectable degree of induced apoptosis on LNCaP cells, but no effect on LNCaP-abl cells (Fig

  7. Mifepristone sensitizing cisplatin for cervical adenocarcinoma HeLa cell sensitivity to chemotherapy and its mechanism.

    PubMed

    Li, Caihong; Ye, Hong

    2013-01-01

    The study was designed to investigate proliferation inhibition for cervical adenocarcinoma HeLa cell treated with cisplatin combined with mifepristone and access its possible mechanism. HeLa cell was processed by different concentrations of mifepristone, cisplatin, and their combination respectively. Cell's proliferation inhibition rate and induction apoptosis ability were detected by MTT assay, FCM; the expression of P53, survivin and HPV E6 protein were measured by Western Blot. The results showed that cisplatin inhibits proliferation of HeLa cells in different concentrations (p <0.01). Mifepristone had no effect on HeLa cell proliferation inhibition rate during 24 and 48 hours (p > 0.05). Mifepristone at low concentrations (< or = 10 micromol/l) combined with cisplatin can significantly enhance the inhibitory effect of cisplatin on HeLa cell line. Flow cytometry showed that mifepristone at low concentrations (< or = 10 micromol/l) combined with cisplatin can induce apparent apoptosis of HeLa cell line in concentration dependent manner. Western blotting demonstrated that the expression of P53 protein increased and the expression of HPV E6 survivin protein decreased in HeLa cells treated with MIF at low concentrations (< or = 10 micromol/l) combined with cisplatin. Mifepristone at low concentrations (< or = 10 micromol/1) can enhance chemosensitivity and capability of inducing apoptosis of cisplatin to HeLa cells. The strengthening effect of growth inhibition and chemosensitivity to cisplatin of mifepristone are associated with down-regulating HPV E6 survivin protein and upregulating p53 protein.

  8. Ulinastatin Reduces the Resistance of Liver Cancer Cells to Epirubicin by Inhibiting Autophagy

    PubMed Central

    Shao, Cheng Hao; Li, Gang; Liu, An An; Jing, Wei; Liu, Rui; Zhang, Yi-Jie; Zhou, Ying-Qi; Hu, Xian-Gui; Jin, Gang

    2015-01-01

    During chemotherapy, drug resistance caused by autophagy remains a major challenge to successful treatment of cancer patients. The purpose of this study is to show that ulinastatin (UTI), a trypsin inhibitor, could reduce the resistance of liver cancer cells to chemotherapeutic agent epirubicin (EPI). We achieved this conclusion by analyzing the effect of EPI alone or UTI plus EPI on SMMC-7721 and MHCC-LM3 liver cancer cells. We also generated an EPI-resistant liver cancer cell line (MHCC-LM3er cells), and found that UTI could sensitize the LM3er cells to EPI. Autophagy usually functions to protect cancer cells during chemotherapy. Our study showed that UTI inhibited the autophagy induced by EPI in liver cancer cells, which promoted apoptosis, and therefore, reduced the resistance of the cancer cells to EPI. Further studies showed that the UTI-mediated inhibition on autophagy was achieved by inhibiting transcriptional factor nuclear factor-κB (NF-κB) signaling pathway. To verify our results in vivo, we injected MHCC-LM3 liver cancer cells or EPI-resistant LM3er cells into mice, and found that EPI could only effectively inhibit the growth of tumor in MHCC-LM3 cell-injected mice, but not in LM3er cell-injected mice. However, when UTI was also administered, the growth of tumor was inhibited in the MHCC-LM3er cell-injected mice as well. Our results suggest that UTI may be used in combination with anti-cancer drugs, such as EPI, to improve the outcome of cancer therapy. PMID:25815885

  9. Picropodophyllin inhibits the growth of Ewing's sarcoma cells through the insulin‑like growth factor‑1 receptor/Akt signaling pathway.

    PubMed

    Wu, Yong-Tao; Wang, Bao-Jun; Miao, Sheng-Wu; Gao, Jian-Jun

    2015-11-01

    Ewing's sarcoma (ES) is the second most common type of pediatric bone tumor, and is associated with a poor prognosis. Picropodophyllin (PPP), a novel selective inhibitor of insulin‑like growth factor‑1 receptor (IGF‑1R), is able to strongly inhibit various types of cancers. However, the effect of IGF‑1R on ES remains unclear. Following treatment with various concentrations of PPP for various times, cell viability was determined using an MTT assay. In addition, cell proliferation and apoptosis was investigated separately by bromodeoxyuridine staining and flow cytometry, respectively. The PPP‑associated signaling pathway was also investigated. The results of the present study suggested that PPP inhibited cell proliferation and viability of A673 and SK‑ES‑1 human Ewing's sarcoma cells in a dose- and time‑dependent manner. In addition, cell apoptosis rates were increased following treatment with PPP. Further investigation of the underlying mechanism revealed that PPP inhibited Akt phosphorylation. Fumonisin B1, an Akt‑specific activator, reversed the inhibitory effects of PPP on cell growth. Furthermore, the results suggested that PPP decreased the expression levels of IGF‑1R, a common activator of Akt signaling. PPP inhibited the growth of human Ewing's sarcoma cells by targeting the IGF‑1R/Akt signaling pathway. Therefore, PPP may prove useful in the development of an effective strategy for the treatment of Ewing's sarcoma.

  10. MiR-188 Inhibits Glioma Cell Proliferation and Cell Cycle Progression through Targeting ß-catenin.

    PubMed

    Li, Nan; Shi, Hangyu; Zhang, Lu; Li, Xu; Gao, Lu; Zhang, Gang; Shi, Yongqiang; Guo, Shiwen

    2017-12-21

    MicroRNAs (miRNAs) play important roles in several human cancers. Although miR188 has been suggested to function as a tumor repressor in cancers, its precise role in glioma and the molecular mechanism remain unknown. In the present study, we investigated the effect of miR-188 on glioma and explored its relevant mechanisms. We found that the expression of miR-188 is dramatically downregulated in glioma tissues and cell lines. Subsequent investigation revealed that miR-188 expression was inversely correlated with ß-catenin expression in glioma tissue samples. Using a luciferase reporter assay, ß-catenin was determined to be a direct target of miR-188. Overexpression of miR-188 reduced ß-catenin expression at both the mRNA and protein levels, and inhibition of miR-188 increased ß-catenin expression. Moreover, we found that overexpression of miR-188 suppressed glioma cell proliferation and cell cycle G1-S transition, whereas inhibition of miR-188 promoted glioma cell proliferation. Importantly, silencing ß-catenin recapitulated the cellular and molecular effects seen upon miR-188 overexpression, which included inhibiting glioma cell proliferation and G1-S transition. Taken together, our results demonstrated that miR188 inhibits glioma cell proliferation by targeting ß-catenin, representing an effective therapeutic strategy for glioma.

  11. Effects of cell penetrating Notch inhibitory peptide conjugated to elastin-like polypeptide on glioblastoma cells.

    PubMed

    Opačak-Bernardi, Teuta; Ryu, Jung Su; Raucher, Drazen

    2017-07-01

    Notch pathway was found to be activated in most glioblastomas (GBMs), underlining the importance of Notch in formation and recurrence of GBM. In this study, a Notch inhibitory peptide, dominant negative MAML (dnMAML), was conjugated to elastin-like polypeptide (ELP) for tumor targeted delivery. ELP is a thermally responsive polypeptide that can be actively and passively targeted to the tumor site by localized application of hyperthermia. This complex was further modified with the addition of a cell penetrating peptide, SynB1, for improved cellular uptake and blood-brain barrier penetration. The SynB1-ELP1-dnMAML was examined for its cellular uptake, cytotoxicity, apoptosis, cell cycle inhibition and the inhibition of target genes' expression. SynB1-ELP1-dnMAML inhibited the growth of D54 and U251 cells by inducing apoptosis and cell cycle arrest, especially in the presence of hyperthermia. Hyperthermia increased overall uptake of the polypeptide by the cells and enhanced the resulting pharmacological effects of dnMAML, showing the inhibition of targets of Notch pathway such as Hes-1 and Hey-L. These results confirm that dnMAML is an effective Notch inhibitor and combination with ELP may allow thermal targeting of the SynB1-ELP1-dnMAML complex in cancer cells while avoiding the dangers of systemic Notch inhibition.

  12. Aspirin inhibits interleukin 1-induced prostaglandin H synthase expression in cultured endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, K.K.; Sanduja, R.; Tsai, A.L.

    Prostaglandin H (PGH) synthase is a key enzyme in the biosynthesis of prostaglandins, thromboxane, and prostacyclin. In cultured human umbilical vein endothelial cells, interleukin 1 (IL-1) is known to induce the synthesis of this enzyme, thereby raising the level of PGH synthase protein severalfold over the basal level. Pretreatment with aspirin at low concentrations inhibited more than 60% of the enzyme mass and also the cyclooxygenase activity in IL-1-induced cells with only minimal effects on the basal level of the synthase enzyme in cells without IL-1. Sodium salicylate exhibited a similar inhibitory action whereas indomethacin had no apparent effect. Similarlymore » low levels of aspirin inhibited the increased L-({sup 35}S)methionine incorporation into PGH synthase that was induced by IL0-1 and also suppressed expression of the 2.7-kilobase PGH synthase mRNA. These results suggest that in cultured endothelial cells a potent inhibition of eicosanoid biosynthetic capacity can be effected by aspirin or salicylate at the level of PGH synthase gene expression. The aspirin effect may well be due to degradation of salicylate.« less

  13. Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma

    PubMed Central

    Balakrishnan, Ilango; Harris, Peter; Birks, Diane K; Griesinger, Andrea; Amani, Vladimir; Cristiano, Brian; Remke, Marc; Taylor, Michael D; Handler, Michael; Foreman, Nicholas K; Vibhakar, Rajeev

    2014-01-01

    Medulloblastoma is a pediatric brain tumor with a variable prognosis due to clinical and genomic heterogeneity. Among the 4 major genomic sub-groups, patients with MYC amplified tumors have a particularly poor prognosis despite therapy with surgery, radiation and chemotherapy. Targeting the MYC oncogene has traditionally been problematic. Here we report that MYC driven medulloblastoma can be targeted by inhibition of the bromodomain protein BRD4. We show that bromodomain inhibition with JQ1 restricts c-MYC driven transcriptional programs in medulloblastoma, suppresses medulloblastoma cell growth and induces a cell cycle arrest. Importantly JQ1 suppresses stem cell associated signaling in medulloblastoma cells and inhibits medulloblastoma tumor cell self-renewal. Additionally JQ1 also promotes senescence in medulloblastoma cells by activating cell cycle kinase inhibitors and inhibiting activity of E2F1. Furthermore BRD4 inhibition displayed an anti-proliferative, pro-senescence effect in a medulloblastoma model in vivo. In clinical samples we found that transcriptional programs suppressed by JQ1 are associated with adverse risk in medulloblastoma patients. Our work indicates that BRD4 inhibition attenuates stem cell signaling in MYC driven medulloblastoma and demonstrates the feasibility BET domain inhibition as a therapeutic approach in vivo. PMID:24796395

  14. Acetyl-CoA carboxylase rewires cancer metabolism to allow cancer cells to survive inhibition of the Warburg effect by cetuximab

    PubMed Central

    Luo, Jingtao; Hong, Yun; Lu, Yang; Qiu, Songbo; Chaganty, Bharat K. R.; Zhang, Lun; Wang, Xudong; Li, Qiang; Fan, Zhen

    2016-01-01

    Cetuximab inhibits HIF-1-regulated glycolysis in cancer cells, thereby reversing the Warburg effect and leading to inhibition of cancer cell metabolism. AMP-activated protein kinase (AMPK) is activated after cetuximab treatment, and a sustained AMPK activity is a mechanism contributing to cetuximab resistance. Here, we investigated how acetyl-CoA carboxylase (ACC), a downstream target of AMPK, rewires cancer metabolism in response to cetuximab treatment. We found that introduction of experimental ACC mutants lacking the AMPK phosphorylation sites (ACC1_S79A and ACC2_S212A) into head and neck squamous cell carcinoma (HNSCC) cells protected HNSCC cells from cetuximab-induced growth inhibition. HNSCC cells with acquired cetuximab resistance contained not only high levels of T172-phosphorylated AMPK and S79-phosphorylated ACC1 but also an increased level of total ACC. These findings were corroborated in tumor specimens of HNSCC patients treated with cetuximab. Cetuximab plus TOFA (an allosteric inhibitor of ACC) achieved remarkable growth inhibition of cetuximab-resistant HNSCC xenografts. Our data suggest a novel paradigm in which cetuximab-mediated activation of AMPK and subsequent phosphorylation and inhibition of ACC is followed by a compensatory increase in total ACC, which rewires cancer metabolism from glycolysis-dependent to lipogenesis-dependent. PMID:27693630

  15. 3,3′Diindolylmethane Suppresses Vascular Smooth Muscle Cell Phenotypic Modulation and Inhibits Neointima Formation after Carotid Injury

    PubMed Central

    Guan, Hongjing; Zhu, Lihua; Fu, Mingyue; Yang, Da; Tian, Song; Guo, Yuanyuan; Cui, Changping; Wang, Lang; Jiang, Hong

    2012-01-01

    Background 3, 3′diindolylmethane (DIM), a natural phytochemical, has shown inhibitory effects on the growth and migration of a variety of cancer cells; however, whether DIM has similar effects on vascular smooth muscle cells (VSMCs) remains unknown. The purpose of this study was to assess the effects of DIM on the proliferation and migration of cultured VSMCs and neointima formation in a carotid injury model, as well as the related cell signaling mechanisms. Methodology/Principal Findings DIM dose-dependently inhibited the platelet-derived growth factor (PDGF)-BB-induced proliferation of VSMCs without cell cytotoxicity. This inhibition was caused by a G0/G1 phase cell cycle arrest demonstrated by fluorescence-activated cell-sorting analysis. We also showed that DIM-induced growth inhibition was associated with the inhibition of the expression of cyclin D1 and cyclin-dependent kinase (CDK) 4/6 as well as an increase in p27Kip1 levels in PDGF-stimulated VSMCs. Moreover, DIM was also found to modulate migration of VSMCs and smooth muscle-specific contractile marker expression. Mechanistically, DIM negatively modulated PDGF-BB-induced phosphorylation of PDGF-recptorβ (PDGF-Rβ) and the activities of downstream signaling molecules including Akt/glycogen synthase kinase(GSK)3β, extracellular signal-regulated kinase1/2 (ERK1/2), and signal transducers and activators of transcription 3 (STAT3). Our in vivo studies using a mouse carotid arterial injury model revealed that treatment with 150 mg/kg DIM resulted in significant reduction of the neointima/media ratio and proliferating cell nuclear antigen (PCNA)-positive cells, without affecting apoptosis of vascular cells and reendothelialization. Infiltration of inflammatory cells was also inhibited by DIM administration. Conclusion These results demonstrate that DIM can suppress the phenotypic modulation of VSMCs and neointima hyperplasia after vascular injury. These beneficial effects on VSMCs were at least partly mediated by the inhibition of PDGF-Rβ and the activities of downstream signaling pathways. The results suggest that DIM has the potential to be a candidate for the prevention of restenosis. PMID:22506059

  16. Oxidative Pentose Phosphate Pathway Inhibition Is A Key Determinant of Antimalarial Induced Cancer Cell Death

    PubMed Central

    Salas, Eduardo; Roy, Srirupa; Marsh, Timothy; Rubin, Brian; Debnath, Jayanta

    2015-01-01

    Despite immense interest in employing antimalarials as autophagy inhibitors to treat cancer, it remains unclear if these agents act predominantly via autophagy inhibition or whether other pathways direct their anti-cancer properties. By comparing the treatment effects of the antimalarials chloroquine (CQ) and quinacrine (Q) on KRAS mutant lung cancer cells, we demonstrate that inhibition of the oxidative arm of the pentose phosphate pathway (oxPPP) is required for antimalarial induced apoptosis. Despite inhibiting autophagy, neither CQ treatment nor RNAi against autophagy regulators (ATGs) promote cell death. In contrast, Q triggers high levels of apoptosis, both in vitro and in vivo, and this phenotype requires both autophagy inhibition and p53-dependent inhibition of the oxPPP. Simultaneous genetic targeting of the oxPPP and autophagy is sufficient to trigger apoptosis in lung cancer cells, including cells lacking p53. Thus, in addition to reduced autophagy, oxPPP inhibition serves as an important determinant of antimalarial cytotoxicity in cancer cells. PMID:26434592

  17. Doxycycline inhibits leukemic cell migration via inhibition of matrix metalloproteinases and phosphorylation of focal adhesion kinase

    PubMed Central

    WANG, CHUNHUAI; XIANG, RU; ZHANG, XIANGZHONG; CHEN, YUNXIAN

    2015-01-01

    Doxycycline, a tetracycline-based antibiotic, has been reported to attenuate melanoma cell migration through inhibiting the focal adhesion kinase (FAK) signaling pathway. However, it remains to be elucidated whether doxycycline exerts this effect on leukemia cell migration. The present study aimed to examine the role of doxycycline in leukemia cell migration. The invasion capacities of the human leukemia cell lines KG1a (acute myelogenous leukemia) and K562 (chronic myelogenous leukemia) were evaluated using Matrigel® matrix-coated Transwell® chamber assays; leukemic cell lines treated with doxycycline (1 µg/ml) or anti-β1-integrin antibodies were added to the upper chamber, while untreated cells were included as controls. Reverse transcription quantitative polymerase chain reaction was performed in order to further understand the influence of doxycycline treatment on the expression of FAK and gelatinases in the KG1a and K562 leukemic cell lines. In addition, FAK protein expression and phosphorylation were determined using western blot analysis in order to investigate the mechanism by which doxycycline inhibited leukemic cell migration. The results revealed that doxycycline treatment significantly attenuated the migration of KG1a and K562 cells, which was demonstrated to be associated with inhibition of the expression and phosphorylation of FAK. In addition, doxycycline treatment inhibited matrix metalloproteinase (MMP)-2 and MMP-9 expression. Furthermore, incubation with blocking anti-β1-integrin antibodies had an analogous inhibitory effect on leukemic cell migration to that of doxycycline. In conclusion, the results of the present study suggested that doxycycline attenuated leukemic cell migration through inhibiting the FAK signaling pathway. Therefore, doxycycline may have potential for use as a novel strategy for the treatment of leukemia. PMID:26004127

  18. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    PubMed

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. PPARbeta/delta agonist stimulates human lung carcinoma cell growth through inhibition of PTEN expression: the involvement of PI3K and NF-kappaB signals.

    PubMed

    Han, ShouWei; Ritzenthaler, Jeffrey D; Zheng, Ying; Roman, Jesse

    2008-06-01

    Recent studies suggest that activation of peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) promotes cancer cell survival. We previously demonstrated that a selective PPARbeta/delta agonist, GW501516, stimulated human non-small cell lung carcinoma (NSCLC) cell growth. Here, we explore the mechanisms responsible for this effect. We show that GW501516 decreased phosphate and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor known to decrease cell growth and induce apoptosis. Activation of PPARbeta/delta and phosphatidylinositol 3-kinase (PI3K)/Akt signaling was associated with inhibition of PTEN. GW501516 increased NF-kappaB DNA binding activity and p65 protein expression through activation of PPARbeta/delta and PI3K/Akt signals and enhanced the physical interactions between PPARbeta/delta and p65 protein. Conversely, inhibition of PI3K and silencing of p65 by small RNA interference (siRNA) blocked the effect of GW501516 on PTEN expression and on NSCLC cell proliferation. GW501516 also inhibited IKBalpha protein expression. Silencing of IKBalpha enhanced the effect of GW501516 on PTEN protein expression and on cell proliferation. It also augmented the GW501516-induced complex formation of PPARbeta/delta and p65 proteins. Overexpression of PTEN suppressed NSCLC cell growth and eliminated the effect of GW501516 on phosphorylation of Akt. Together, our observations suggest that GW501516 induces the proliferation of NSCLC cells by inhibiting the expression of PTEN through activation of PPARbeta/delta, which stimulates PI3K/Akt and NF-kappaB signaling. Overexpression of PTEN overcomes this effect and unveils PPARbeta/delta and PTEN as potential therapeutic targets in NSCLC.

  20. Overexpression of ERβ is sufficient to inhibit hypoxia-inducible factor-1 transactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Choa; Lee, YoungJoo, E-mail: yjlee@sejong.ac.kr

    2014-07-18

    Highlights: • We examined the effect of ERβ specific ligand on HIF-1 inhibition. • DPN down-regulates the ARNT protein levels in PC3 cells. • DPN did not show additional effect in ERβ transfected MCF-7 cells. • Our study shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression. - Abstract: Estrogen receptor (ER) β is predicted to play an important role in the prevention of breast cancer development and progression. We have previously shown that ERβ suppresses hypoxia inducible factor (HIF)-1-mediated transcription through aryl hydrocarbon receptor nuclear translocator (ARNT) degradation via ubiquitination processes. In this study, wemore » attempted to examine the effect of ERβ specific ligand on HIF-1 inhibition in ERβ positive PC3 cells and ERβ transfected MCF-7 cells. ERβ specific agonist diarylpropionitrile (DPN) stimulated estrogen response element (ERE)-luciferase activity in a similar fashion to estradiol in PC3 cells. We observed that DPN down-regulates the ARNT protein levels leading to an attenuation of hypoxia-induced hypoxia response element (HRE)-driven luciferase reporter gene activation in PC3 cells. Treatment of DPN reduced vascular endothelial growth factor (VEGF) expression and co-treatment with ERβ specific antagonist PHTPP abrogated the effect in PC3 cells. We then examined the effect of DPN in ERβ transfected MCF-7 cells. HIF-1 transcriptional activity repression by ERβ was not further reduced by DPN, as examined by HRE-driven luciferase assays. Expression of ERβ significantly decreased VEGF secretion and ARNT expression under hypoxic conditions. However, DPN did not additionally affect this suppression in MCF-7 cells transfected with ERβ. This result shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression.« less

  1. Cholesteryl butyrate solid lipid nanoparticles inhibit the adhesion and migration of colon cancer cells

    PubMed Central

    Minelli, R; Serpe, L; Pettazzoni, P; Minero, V; Barrera, G; Gigliotti, CL; Mesturini, R; Rosa, AC; Gasco, P; Vivenza, N; Muntoni, E; Fantozzi, R; Dianzani, U; Zara, GP; Dianzani, C

    2012-01-01

    BACKGROUND AND PURPOSE Cholesteryl butyrate solid lipid nanoparticles (cholbut SLN) provide a delivery system for the anti-cancer drug butyrate. These SLN inhibit the adhesion of polymorphonuclear cells to the endothelium and may act as anti-inflammatory agents. As cancer cell adhesion to endothelium is crucial for metastasis dissemination, here we have evaluated the effect of cholbut SLN on adhesion and migration of cancer cells. EXPERIMENTAL APPROACH Cholbut SLN was incubated with a number of cancer cell lines or human umbilical vein endothelial cells (HUVEC) and adhesion was quantified by a computerized micro-imaging system. Migration was detected by the scratch ‘wound-healing’ assay and the Boyden chamber invasion assay. Expression of ERK and p38 MAPK was analysed by Western blot. Expression of the mRNA for E-cadherin and claudin-1 was measured by RT-PCR. KEY RESULTS Cholbut SLN inhibited HUVEC adhesiveness to cancer cell lines derived from human colon–rectum, breast, prostate cancers and melanoma. The effect was concentration and time-dependent and exerted on both cancer cells and HUVEC. Moreover, these SLN inhibited migration of cancer cells and substantially down-modulated ERK and p38 phosphorylation. The anti-adhesive effect was additive to that induced by the triggering of B7h, which is another stimulus inhibiting both ERK and p38 phosphorylation, and cell adhesiveness. Furthermore, cholbut SLN induced E-cadherin and inhibited claudin-1 expression in HUVEC. CONCLUSION AND IMPLICATIONS These results suggest that cholbut SLN could act as an anti-metastastic agent and they add a new mechanism to the anti-tumour activity of this multifaceted preparation of butyrate. PMID:22049973

  2. Inhibition of brain tumor cell proliferation by alternating electric fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr

    2014-11-17

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields.

  3. Piper betle leaf extract enhances the cytotoxicity effect of 5-fluorouracil in inhibiting the growth of HT29 and HCT116 colon cancer cells.

    PubMed

    Ng, Pek Leng; Rajab, Nor Fadilah; Then, Sue Mian; Mohd Yusof, Yasmin Anum; Wan Ngah, Wan Zurinah; Pin, Kar Yong; Looi, Mee Lee

    2014-08-01

    The combination effect of Piper betle (PB) and 5-fluorouracil (5-FU) in enhancing the cytotoxic potential of 5-FU in inhibiting the growth of colon cancer cells was investigated. HT29 and HCT116 cells were subjected to 5-FU or PB treatment. 5-FU and PB were then combined and their effects on both cell lines were observed after 24 h of treatment. PB-5-FU interaction was elucidated by isobologram analysis. Apoptosis features of the treated cells were revealed by annexin V/PI stain. High-performance liquid chromatography (HPLC) was performed to exclude any possible chemical interaction between the compounds. In the presence of PB extract, the cytotoxicity of 5-FU was observed at a lower dose (IC50 12.5 µmol/L) and a shorter time (24 h) in both cell lines. Both cell lines treated with 5-FU or PB alone induced a greater apoptosis effect compared with the combination treatment. Isobologram analysis indicated that PB and 5-FU interacted synergistically and antagonistically in inhibiting the growth of HT29 and HCT116 cells, respectively. In the presence of PB, a lower dosage of 5-FU is required to achieve the maximum drug effect in inhibiting the growth of HT29 cells. However, PB did not significantly reduce 5-FU dosage in HCT116 cells. Our result showed that this interaction may not solely contribute to the apoptosis pathway.

  4. Estrogen attenuates glutamate-induced cell death by inhibiting Ca2+ influx through L-type voltage-gated Ca2+ channels

    PubMed Central

    Sribnick, Eric A.; Del Re, Angelo M.; Ray, Swapan K.; Woodward, John J.; Banik, Naren L.

    2009-01-01

    Estrogen-mediated neuroprotection is observed in neurodegenerative disease and neurotrauama models; however, determining a mechanism for these effects has been difficult. We propose that estrogen may limit cell death in the nervous system tissue by inhibiting increases in intracellular free Ca2+. Here, we present data using VSC 4.1 cell line, a ventral spinal motoneuron and neuroblastoma hybrid cell line. Treatment with 1 mM glutamate for 24 h induced apoptosis. When cells were pre-treated with 100 nM 17β-estradiol (estrogen) for 1 h and then co-treated with glutamate, apoptotic death was significantly attenuated. Estrogen also prevented glutamate-mediated changes in resting membrane potential and membrane capacitance. Treatment with either 17α-estradiol or cell impermeable estrogen did not mimic the findings seen with estrogen. Glutamate treatment significantly increased both intracellular free Ca2+ and the activities of downstream proteases such as calpain and caspase-3. Estrogen attenuated both the increases in intracellular free Ca2+ and protease activities. In order to determine the pathway responsible for estrogen-mediated inhibition of these increases in intracellular free Ca2+, cells were treated with several Ca2+ entry inhibitors, but only the L-type Ca2+ channel blocker nifedipine demonstrated cytoprotective effects comparable to estrogen. To expand these findings, cells were treated with the L-type Ca2+ channel agonist FPL 64176, which increased both cell death and intracellular free Ca2+, and estrogen inhibited both effects. From these observations, we conclude that estrogen limits glutamate-induced cell death in VSC 4.1 cells through effects on L-type Ca2+ channels, inhibiting Ca2+ influx as well as activation of the pro-apoptotic proteases calpain and caspase-3. PMID:19389388

  5. Lactate dehydrogenase downregulation mediates the inhibitory effect of diallyl trisulfide on proliferation, metastasis, and invasion in triple-negative breast cancer.

    PubMed

    Cheng, Shi-Yann; Yang, Yao-Chih; Ting, Kuan-Lun; Wen, Su-Ying; Viswanadha, Vijaya Padma; Huang, Chih-Yang; Kuo, Wei-Wen

    2017-04-01

    The Warburg effect plays a critical role in tumorigenesis, suggesting that specific agents targeting Warburg effect key proteins may be a promising strategy for cancer therapy. Previous studies have shown that diallyl trisulfide (DATS) inhibits proliferation of breast cancer cells by inducing apoptosis in vitro and in vivo. However, whether the Warburg effect is involved with the apoptosis-promoting action of DATS is unclear. Here, we show that the action of DATS is associated with downregulation of lactate dehydrogenase A (LDHA), an essential protein of the Warburg effect whose upregulation is closely related to tumorigenesis. Interestingly, inhibition of the Warburg effect by DATS in breast cancer cells did not greatly affect normal cells. Furthermore, DATS inhibited growth of breast cancer cells, particularly in MDA-MB-231, a triple-negative breast cancer (TNBC) cell, and reduced proliferation and migration; invasion was reversed by over-expression of LDHA. These data suggest that DATS inhibits breast cancer growth and aggressiveness through a novel pathway targeting the key enzyme of the Warburg effect. Our study shows that LDHA downregulation is involved in the apoptotic effect of DATS on TNBC. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1390-1398, 2017. © 2016 Wiley Periodicals, Inc.

  6. Thalidomide inhibits tumor necrosis factor-alpha production and antigen presentation by Langerhans cells.

    PubMed

    Deng, Liang; Ding, Wanhong; Granstein, Richard D

    2003-11-01

    Thalidomide is an effective treatment for several inflammatory and autoimmune disorders including erythema nodosum leprosum, Behcet's syndrome, discoid lupus erythematosus, and Crohn's disease. Thalidomide is believed to exert its anti-inflammatory effects, at least in part, by inhibiting tumor necrosis factor-alpha (TNF-alpha) production by monocytes. We studied the effects of thalidomide on epidermal Langerhans cells (LC). LCs are epidermal antigen-presenting dendritic cells that play important roles in skin immune responses. Using the murine epidermis-derived dendritic cell lines, XS106A from A/J mice and XS52 from BALB/c mice as surrogates for LC, we found that thalidomide inhibited TNF-alpha production in a concentration-dependent manner. Northern blot analysis revealed that thalidomide significantly decreased the peak-induced mRNA level of TNF-alpha in XS106A cells and XS52 cells. We then examined the effect of thalidomide on fresh LC enriched to approximately 98% using positive selection of Ia+ cells with antibodies conjugated to magnetic microspheres. TNF-alpha production was reduced by 67.7% at a thalidomide concentration of 200 microg per mL. Thalidomide also had a profound inhibitory effect on the ability of LC to present antigen to a responsive TH1 clone. Thalidomide inhibits TNF-alpha production and the antigen-presenting ability of epidermal LCs. These mechanisms may contribute to the therapeutic effects observed with this agent.

  7. Atorvastatin inhibits insulin synthesis by inhibiting the Ras/Raf/ERK/CREB pathway in INS-1 cells

    PubMed Central

    Sun, Hongxi; Li, Yu; Sun, Bei; Hou, Ningning; Yang, Juhong; Zheng, Miaoyan; Xu, Jie; Wang, Jingyu; Zhang, Yi; Zeng, Xianwei; Shan, Chunyan; Chang, Bai; Chen, Liming; Chang, Baocheng

    2016-01-01

    Abstract Backround: Type 2 diabetes has become a global epidemic disease. Atorvastatin has become a cornerstone in the prevention and treatment of atherosclerosis. However, increasing evidence showed that statins can dose-dependently increase the risk of diabetes mellitus. The mechanism is not clear. Objective: The Ras complex pathway (Ras/Raf/extracellular signal-regulated kinase [ERK]/cAMP response element-binding protein [CREB]) is the major pathway that regulates the gene transcription. Except for the inhibition of cholesterol synthesis by inhibiting the 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-COA) reductase, statins can also downregulate the phosphorylation of a series of downstream substrates including the key proteins of the Ras complex pathway, therefore may inhibit the insulin syntheses in pancreatic beta cells. In our study, we investigated the inhibitory effect and the underlying mechanism of atorvastatin on insulin synthesis in rat islets. Methods: Islets were isolated from Wistar rats and cultured in Roswell Park Memorial Institute (RPMI)-1640 medium. The insulin content in the medium was measured by radioimmunoassay before and after the treatment of 50 μM atorvastatin. Effect of atorvastatin on the expression of insulin message Ribonucleic acid (mRNA) in pancreatic islet beta cells was also detected using quantitative real-time polymerase chain reaction. Western blotting was used to explore the possible role of the Ras complex pathway (Ras/Raf/ERK/CREB) in atorvastatin-inhibited insulin synthesis. The effects of atorvastatin on the binding of nuclear transcription factor p-CREB with CRE in INS-1 cells were examined via chromatin immunoprecipitation assay. Results: Compared with the control group, the insulin level decreased by 27.1% at 24 hours after atorvastatin treatment. Atorvastatin inhibited insulin synthesis by decreasing insulin mRNA expression of pancreatic islet beta cells. The activities of Ras, Raf-1, and p-CREB in the Ras complex pathway were inhibited by 50 μM atorvastatin in INS-1 cells in vitro. Moreover, 50 μM atorvastatin reduced the binding of p-CREB with deoxyribonucleic acid (DNA) in INS-1 cells in vitro. Conclusion: Atorvastatin inhibits insulin synthesis in beta cells by inhibiting the activation of the Ras complex pathway. PMID:27684825

  8. Salicylate-based anti-inflammatory drugs inhibit the early lesion of diabetic retinopathy.

    PubMed

    Zheng, Ling; Howell, Scott J; Hatala, Denise A; Huang, Kun; Kern, Timothy S

    2007-02-01

    It has been previously reported that aspirin inhibited the development of diabetic retinopathy in diabetic animals, raising the possibility that anti-inflammatory drugs may have beneficial effects on diabetic retinopathy. To further explore this, we compared effects of oral consumption of three different salicylate-based drugs (aspirin, sodium salicylate, and sulfasalazine) on the development of early stages of diabetic retinopathy in rats. These three drugs differ in their ability to inhibit cyclooxygenase but share an ability to inhibit nuclear factor-kappaB (NF-kappaB). Diabetes of 9-10 months duration significantly increased the number of TUNEL (transferase-mediated dUTP nick-end labeling)-positive capillary cells and acellular (degenerate) capillaries in the retinal vasculature, and all three salicylate-based drugs inhibited this cell death and formation of acellular capillaries without altering the severity of hyperglycemia. In short-term diabetes (2-4 months), all three salicylates inhibited the diabetes-induced loss of neuronal cells from the ganglion cell layer. Oral aspirin (as a representative of the salicylate family) inhibited diabetes-induced increase in NF-kappaB DNA-binding affinity in electrophoretic mobility shift assay and transcription factor array in nuclear extract isolated from whole retina. All three salicylates inhibited the diabetes-induced translocation of p50 (a subunit of NF-kappaB) into nuclei of retinal vascular endothelial cells of the isolated retinal vasculature, as well as of p50 and p65 into nuclei of cells in the ganglion cell layer and inner nuclear layer on whole-retinal sections. Sulfasalazine (also as a representative of the salicylates) inhibited the diabetes-induced upregulation of several inflammatory gene products, which are regulated by NF-kappaB, including vascular cell adhesion molecule, intracellular adhesion molecule-1, inducible nitric oxide synthase, and cyclooxygenase-2 in whole-retinal lysate. Salicylates, in doses administrated in our experiments, inhibited NF-kappaB and perhaps other transcription factors in the retina, were well tolerated, and offered new tools to investigate and inhibit the development of diabetic retinopathy.

  9. Boric acid inhibits human prostate cancer cell proliferation.

    PubMed

    Barranco, Wade T; Eckhert, Curtis D

    2004-12-08

    The role of boron in biology includes coordinated regulation of gene expression in mixed bacterial populations and the growth and proliferation of higher plants and lower animals. Here we report that boric acid, the dominant form of boron in plasma, inhibits the proliferation of prostate cancer cell lines, DU-145 and LNCaP, in a dose-dependent manner. Non-tumorigenic prostate cell lines, PWR-1E and RWPE-1, and the cancer line PC-3 were also inhibited, but required concentrations higher than observed human blood levels. Studies using DU-145 cells showed that boric acid induced a cell death-independent proliferative inhibition, with little effect on cell cycle stage distribution and mitochondrial function.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Atsushi; Graduate School of Science and Engineering, Saitama University, Saitama 338-8570; Green Tea Laboratory, Saitama Prefectural Agriculture and Forestry Research Center, Saitama 358-0042

    Highlights: •EGCG reduced cell motility of highly metastatic human lung cancer cells. •EGCG increased cell stiffness of the cells, indicating the inhibition of phenotypes of EMT. •EGCG inhibited expression of vimentin and Slug in the cells at the leading edge of scratch. •Treatment of MβCD increased cell stiffness, and inhibited cell motility and vimentin expression. •Inhibition of EMT phenotypes with EGCG is a mechanism-based inhibition of cancer metastasis. -- Abstract: Cell motility and cell stiffness are closely related to metastatic activity of cancer cells. (−)-Epigallocatechin gallate (EGCG) has been shown to inhibit spontaneous metastasis of melanoma cell line into themore » lungs of mice, so we studied the effects of EGCG on cell motility, cell stiffness, and expression of vimentin and Slug, which are molecular phenotypes of epithelial–mesenchymal transition (EMT). Treatments of human non-small cell lung cancer cell lines H1299 and Lu99 with 50 and 100 μM EGCG reduced cell motility to 67.5% and 43.7% in H1299, and 71.7% and 31.5% in Lu99, respectively in in vitro wound healing assay. Studies on cell stiffness using atomic force microscope (AFM) revealed that treatment with 50 μM EGCG increased Young’s modulus of H1299 from 1.24 to 2.25 kPa and that of Lu99 from 1.29 to 2.28 kPa, showing a 2-fold increase in cell stiffness, i.e. rigid elasticity of cell membrane. Furthermore, treatment with 50 μM EGCG inhibited high expression of vimentin and Slug in the cells at a leading edge of scratch. Methyl-β-cyclodextrin, a reagent to deplete cholesterol in plasma membrane, showed inhibition of EMT phenotypes similar that by EGCG, suggesting that EGCG induces inhibition of EMT phenotypes by alteration of membrane organization.« less

  11. The Antiviral Drug Arbidol Inhibits Zika Virus.

    PubMed

    Fink, Susan L; Vojtech, Lucia; Wagoner, Jessica; Slivinski, Natalie S J; Jackson, Konner J; Wang, Ruofan; Khadka, Sudip; Luthra, Priya; Basler, Christopher F; Polyak, Stephen J

    2018-06-12

    There are many emerging and re-emerging globally prevalent viruses for which there are no licensed vaccines or antiviral medicines. Arbidol (ARB, umifenovir), used clinically for decades in several countries as an anti-influenza virus drug, inhibits many other viruses. In the current study, we show that ARB inhibits six different isolates of Zika virus (ZIKV), including African and Asian lineage viruses in multiple cell lines and primary human vaginal and cervical epithelial cells. ARB protects against ZIKV-induced cytopathic effects. Time of addition studies indicate that ARB is most effective at suppressing ZIKV when added to cells prior to infection. Moreover, ARB inhibits pseudoviruses expressing the ZIKV Envelope glycoprotein. Thus, ARB, a broadly acting anti-viral agent with a well-established safety profile, inhibits ZIKV, likely by blocking viral entry.

  12. Glycine inhibits melanogenesis in vitro and causes hypopigmentation in vivo.

    PubMed

    Ishikawa, Masago; Kawase, Ichiro; Ishii, Fumio

    2007-11-01

    The simplest amino acid, glycine, is important in protein composition and plays a significant role in numerous physiological events in mammals. Despite the inhibitory effect of glycine on spontaneous melanogenesis in B16F0 melanoma cells, the details of the underlying mechanisms remain unknown. The present study was conducted to investigate the further effects and the mechanisms of inhibitory effect of glycine on melanogenesis using B16F0 melanoma cells and hair follicle melanogenesis in C57BL/6J mice. Treatment with glycine (1-16 mM) for 72 h inhibited alpha-melanocyte stimulating hormone (alpha-MSH)-induced melanogenesis in a concentration-dependent manner without any effects on cell proliferation in B16F0 melanoma cells. Treatment with kojic acid (2.5 mM) for 72 h also inhibited alpha-MSH-induced melanogenesis in B16F0 melanoma cells. The highest dose of glycine inhibited the alpha-MSH-induced increment of tyrosinase protein levels in B16F0 melanoma cells. In hair follicle melanogenesis in C57BL/6J mice, treatment with glycine (1250 or 2500 mg/kg, i.p.) for 5 d prevented the decrement of L* and C* values and inhibited the increment of tyrosinase protein levels and melanin content within the skin. Treatment with hydroquinone (100 mg/kg, i.p.) for 5 d had a similar hypopigmenting effect to that of high dose glycine. These results suggest that glycine has an inhibitory effect on melanogenesis that is mediated by down-regulation of tyrosinase protein levels, leading to a hypopigmenting effect in C57BL/6J mice.

  13. Inhibition of ADAM-17 more effectively down-regulates the Notch pathway than that of γ-secretase in renal carcinoma.

    PubMed

    Guo, Zhen; Jin, Xunbo; Jia, Haiyan

    2013-05-09

    Our study is to research the effect of inhibited ADAM-17 expression through the Notch pathway in renal carcinoma. Immunohistochemistry and western blot were used to examine the expression of ADAM-17 protein in renal cancer tissues. Proliferation and cell invasion of 786-o cells, as well as OS-RC-2 cells, after treatment with two different inhibitors of the Notch pathway, were examined by CCK-8 assay and Transwell assay, respectively. 786-o cell apoptosis was measured using the FCM test. ADAM-17 was highly expressed in RCC tissues. Compared with blocking γ-secretase, a known mechanism of impairing Notch, blockade of ADAM-17 more effectively down-regulated the expressions of Notch1 and HES-1 proteins. Similarly, we found that the ADAM-17 inhibitor, Marimastat, could more efficiently reduce renal cell proliferation and invasive capacity in comparison with the γ-secretase inhibitor DAPT when used at the same dose. Similar results were obtained when apoptosis of 786-o was measured. Compared with γ-secretase, inhibition of ADAM-17 expression more effectively inhibits Notch pathway-mediated renal cancer cell proliferation and invasion. ADAM-17 may be a new target for future treatment of renal carcinoma.

  14. [Effects of sika pilose antler type collagen on ROS1728 cell and its molecular mechanism].

    PubMed

    Wang, Yan-Shuang; Luo, Su; Zhang, Da-Fang; Qu, Xiao-Bo; Li, Feng

    2016-09-01

    In this paper, effect and molecular mechanism of sika pilose antler type I collagen(SPC-I) of ROS1728 cell were explored. For the SPC-I provides the theory basis for the treatment of osteoporosis. The adherent method was used to cultivate rat osteosarcoma osteogenesis sample cell line ROS1728. The effect of SPC-I on ROS1728 cells proliferation was tested by CCK-8 method. Runx2, osernix, ALP, Coll-I, OC osteogenesis related genes expression was tested by RT-PCR, and Runx2 protein expression was tested by Western-bolt. Results showed that 5 g•L ⁻¹ SPC-I could inhibit ROS1728 cell proliferation, and significantly promote the expression of ROS1728 cell specific transcription factor Runx2 and osterix mRNA, Runx2 protein and marker gene ALP, Coll-I, OC mRNA expression(P<0.01). 2.5 g•L ⁻¹ and 10 g•L ⁻¹ SPC-I could significantly inhibit the ROS1728 cell proliferation(P<0.01), and inhibit the expression of related genes. In conclusion, 5 g•L ⁻¹ SPC-I could inhibit ROS1728 cell proliferation, obviously enhance ROS1728 cell function, promote ROS1728 cell differentiation, maturation. Copyright© by the Chinese Pharmaceutical Association.

  15. Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells

    PubMed Central

    Rhode, Jennifer; Fogoros, Sarah; Zick, Suzanna; Wahl, Heather; Griffith, Kent A; Huang, Jennifer; Liu, J Rebecca

    2007-01-01

    Background Ginger (Zingiber officinale Rosc) is a natural dietary component with antioxidant and anticarcinogenic properties. The ginger component [6]-gingerol has been shown to exert anti-inflammatory effects through mediation of NF-κB. NF-κB can be constitutively activated in epithelial ovarian cancer cells and may contribute towards increased transcription and translation of angiogenic factors. In the present study, we investigated the effect of ginger on tumor cell growth and modulation of angiogenic factors in ovarian cancer cells in vitro. Methods The effect of ginger and the major ginger components on cell growth was determined in a panel of epithelial ovarian cancer cell lines. Activation of NF-κB and and production of VEGF and IL-8 was determined in the presence or absence of ginger. Results Ginger treatment of cultured ovarian cancer cells induced profound growth inhibition in all cell lines tested. We found that in vitro, 6-shogaol is the most active of the individual ginger components tested. Ginger treatment resulted in inhibition of NF-kB activation as well as diminished secretion of VEGF and IL-8. Conclusion Ginger inhibits growth and modulates secretion of angiogenic factors in ovarian cancer cells. The use of dietary agents such as ginger may have potential in the treatment and prevention of ovarian cancer. PMID:18096028

  16. Antiproliferative and apoptosis-inducing effects of lipophilic vitamins on human melanoma A375 cells in vitro.

    PubMed

    Ishibashi, Mai; Arai, Mariko; Tanaka, Sachiko; Onda, Kenji; Hirano, Toshihiko

    2012-01-01

    The effects of six lipophilic vitamins: tretinoin (ATRA), vitamin D(3) (VD(3)), VE, VK(1), VK(3), and VK(5) on cell proliferation and apoptosis in human A375 melanoma cells were investigated. VD(3), VK(3), and VK(5) were found to inhibit cell proliferation significantly at concentration ranges of 10-100 μmol/L (p<0.01), while the other vitamins did not show inhibitory effects at 100 μmol/L. VK(3) and VK(5) showed the strongest effects with IC(50) values of less than 10 μmol/L. Dacarbazine slightly inhibited the proliferation of A375 cells at a concentration range of 25-100 μmol/L, but the effects were not statistically significant. VK(3) and VK(5) increased annexin-V positive apoptotic cells, as well as activating caspase-3, in A375 cells. Our findings showed that VD(3), VK(3,) and VK(5) inhibited the growth of dacarbazine resistant human melanoma cells, while ATRA, VE, and VK(1) had little effect on the cell growth. The effects of VK(3) and VK(5) were observed at concentrations lower than 10 μmol/L, which are suggested to have resulted from apoptosis-induction in the melanoma cells.

  17. EGFR‑associated pathways involved in traditional Chinese medicine (TCM)‑1‑induced cell growth inhibition, autophagy and apoptosis in prostate cancer.

    PubMed

    Wu, Zhaomeng; Zhu, Qingyi; Zhang, Yu; Yin, Yingying; Kang, Dan; Cao, Runyi; Tian, Qian; Lu, Shan; Liu, Ping

    2018-06-01

    Traditional Chinese medicine (TCM) has the synergistic effect of the combination of a single ingredient and a monomer, and systemic and local therapeutic effects in cancer treatment, through which TCM is able to enhance the curative effect and reduce the side effects. The present study analyzed the effect of TCM‑1 (an anti‑cancer TCM) on prostate cancer (PCa) cell lines, and studied in detail the mechanism of cell death induced by TCM‑1 in vitro and in vivo. From the present results, it was identified for the first time, to the best of our knowledge, that TCM‑1 arrested the cell cycle at the G1 phase, decreased cell viability and increased nuclear rupture in a dose‑dependent manner; these effects finally resulted in apoptosis in PCa cells. At the molecular level, the data demonstrated that TCM‑1 competitively acted on epidermal growth factor receptor (EGFR) with EGF, and suppressed the auto‑phosphorylation and activity of EGFR. Inhibition of EGFR further suppressed the downstream phosphatidylinositol 3‑kinase (PI3K)/RAC‑α serine/threonine‑protein kinase (AKT) and RAF proto‑oncogene serine/threonine‑protein kinase/extracellular signal regulated kinase signaling pathways and resulted in a decrease in the phosphorylated‑forkhead box protein O1 (at Ser256, Thr24 and Ser319) expression level, and induced cell growth inhibition and apoptosis by regulating the expression of apoptosis‑and cell cycle‑associated genes. In addition, TCM‑1 markedly inhibited the PI3K/AKT/serine/threonine‑protein kinase mTOR signaling pathway and induced cell autophagy by downregulating the phosphorylation of p70S6K and upregulating the levels of Beclin‑1 and microtubule‑associated protein light chain‑3II. In vivo, the TCM‑1‑treated group exhibited a significant decrease in tumor volume compared with the negative control group in subcutaneous xenograft nude mice by inhibiting EGFR‑associated signaling pathways. Therefore, the bio‑functions of Chinese medicine TCM‑1 in inducing PCa cell growth inhibition, autophagy and apoptosis suggested that TCM‑1 may have clinical potential for the treatment of patients with PCa.

  18. Benzylserine inhibits breast cancer cell growth by disrupting intracellular amino acid homeostasis and triggering amino acid response pathways.

    PubMed

    van Geldermalsen, Michelle; Quek, Lake-Ee; Turner, Nigel; Freidman, Natasha; Pang, Angel; Guan, Yi Fang; Krycer, James R; Ryan, Renae; Wang, Qian; Holst, Jeff

    2018-06-26

    Cancer cells require increased levels of nutrients such as amino acids to sustain their rapid growth. In particular, leucine and glutamine have been shown to be important for growth and proliferation of some breast cancers, and therefore targeting the primary cell-surface transporters that mediate their uptake, L-type amino acid transporter 1 (LAT1) and alanine, serine, cysteine-preferring transporter 2 (ASCT2), is a potential therapeutic strategy. The ASCT2 inhibitor, benzylserine (BenSer), is also able to block LAT1 activity, thus inhibiting both leucine and glutamine uptake. We therefore aimed to investigate the effects of BenSer in breast cancer cell lines to determine whether combined LAT1 and ASCT2 inhibition could inhibit cell growth and proliferation. BenSer treatment significantly inhibited both leucine and glutamine uptake in MCF-7, HCC1806 and MDA-MB-231 breast cancer cells, causing decreased cell viability and cell cycle progression. These effects were not primarily leucine-mediated, as BenSer was more cytostatic than the LAT family inhibitor, BCH. Oocyte uptake assays with ectopically expressed amino acid transporters identified four additional targets of BenSer, and gas chromatography-mass spectrometry (GCMS) analysis of intracellular amino acid concentrations revealed that this BenSer-mediated inhibition of amino acid uptake was sufficient to disrupt multiple pathways of amino acid metabolism, causing reduced lactate production and activation of an amino acid response (AAR) through activating transcription factor 4 (ATF4). Together these data showed that BenSer blockade inhibited breast cancer cell growth and viability through disruption of intracellular amino acid homeostasis and inhibition of downstream metabolic and growth pathways.

  19. Different glucocorticoids vary in their genomic and non-genomic mechanism of action in A549 cells

    PubMed Central

    Croxtall, Jamie D; van Hal, Peter Th W; Choudhury, Qam; Gilroy, Derek W; Flower, Rod J

    2002-01-01

    We have examined the effects of 12 glucocorticoids as inhibitors of A549 cell growth. Other than cortisone and prednisone, all the glucocorticoids inhibited cell growth and this was strongly correlated (r=0.91) with inhibition of prostaglandin (PG)E2 formation. The molecular mechanism by which the active steroids prevented PGE2 synthesis was examined and three groups were identified. Group A drugs did not inhibit arachidonic acid release but inhibited the induction of COX2. Group B drugs were not able to inhibit the induction of COX2 but inhibited arachidonic acid release through suppression of cPLA2 activation. Group C drugs were apparently able to bring about both effects. The inhibitory actions of all steroids was dependent upon glucocorticoid receptor occupation since RU486 reversed their effects. However, group A acted through the NF-κB pathway to inhibit COX2 as the response was blocked by the inhibitor geldanamycin which prevents dissociation of GR and the effect was blocked by APDC, the NF-κB inhibitor. On the other hand, the group B drugs were not inhibited by NF-κB inhibitors or geldanamycin but their effect was abolished by the src inhibitor PP2. Group C drugs depended on both pathways. In terms of PGE2 generation, there is clear evidence of two entirely separate mechanisms of glucocorticoid action, one of which correlates with NF-κB mediated genomic actions whilst the other, depends upon rapid effects on a cell signalling system which does not require dissociation of GR. The implications for these findings are discussed. PMID:11815387

  20. Effects of cytochalasin B, colchicine and vincristine on the metabolism of isolated fat-cells

    PubMed Central

    Loten, Ernest G.; Jeanrenaud, Bernard

    1974-01-01

    1. Colchicine and vincristine only slightly inhibit the metabolism of glucose to CO2 and lipids by isolated fat-cells. 2. Prolonged incubation with these agents causes no further inhibition. 3. Cytochalasin B, however, inhibits glucose metabolism to both CO2 and lipids in fat-cells. 4. However, at a concentration that causes a strong inhibition of glucose metabolism cytochalasin B is without effect on the metabolism of pyruvate, lactate or arginine to these end products. The uptake of labelled α-aminoisobutyrate is likewise not modified. Similarly it does not affect release of glycerol or free fatty acid, or the actions of adrenaline, insulin or caffeine on these parameters. At 10μg/ml it slightly lowers ATP concentrations, an effect that does not occur at 2μg/ml. 5. The transport of fructose into adipocytes by a specific fructose-transport system is also not affected by the agent, but the uptake of 2-deoxyglucose is strongly inhibited. It is concluded that cytochalasin B may specifically inhibit the glucose-transport system of isolated fat-cells. 6. Cytochalasin A has a much weaker action than cytochalasin B on glucose metabolism. PMID:4455189

  1. Pyridinylquinazolines Selectively Inhibit Human Methionine Aminopeptidase-1 in Cells

    PubMed Central

    Zhang, Feiran; Bhat, Shridhar; Gabelli, Sandra B.; Chen, Xiaochun; Miller, Michelle S.; Nacev, Benjamin A.; Cheng, Yim Ling; Meyers, David J.; Tenney, Karen; Shim, Joong Sup; Crews, Phillip; Amzel, L. Mario; Ma, Dawei; Liu, Jun O.

    2013-01-01

    Methionine aminopeptidases (MetAPs) which remove the initiator methionine from nascent peptides are essential in all organisms. While MetAP2 has been demonstrated to be a therapeutic target for inhibiting angiogenesis in mammals, MetAP1 seems to be vital for cell proliferation. Our earlier efforts identified two structural classes of human MetAP1 (HsMetAP1)-selective inhibitors (1–4). But all of them failed to inhibit cellular HsMetAP1. Using Mn(II) or Zn(II) to activate HsMetAP1, we found that 1–4 could only effectively inhibit purified HsMetAP1 in the presence of physiologically unachievable concentrations of Co(II). In an effort to seek Co(II)-independent inhibitors, a novel structural class containing a 2-(pyridin-2-yl)quinazoline core has been discovered. Many compounds in this class potently and selectively inhibited HsMetAP1 without Co(II). Subsequently, we demonstrated that 11j, an auxiliary metal-dependent inhibitor, effectively inhibited HsMetAP1 in primary cells. This is the first report that an HsMetAP1-selective inhibitor is effective against its target in cells. PMID:23634668

  2. The flavonoid, fisetin, inhibits UV radiation-induced oxidative stress and the activation of NF-kappaB and MAPK signaling in human lens epithelial cells.

    PubMed

    Yao, Ke; Zhang, Li; Zhang, Yidong; Ye, PanPan; Zhu, Ning

    2008-01-01

    Ultraviolet (UV) radiation-induced oxidative stress plays a significant role in the progression of cataracts. This study investigated the photoprotective effect of fisetin on UV radiation-induced oxidative stress in human lens epithelial cells and the possible molecular mechanism involved. SRA01/04 cells exposed to different doses of ultraviolet B (UVB) were cultured with various concentrations of fisetin and subsequently monitored for cell viability by the 4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT) assay. The effect of fisetin on the generation of reactive oxygen species (ROS) of SRA01/04 cells was determined by flow cytometry. Translocation of nuclear factor kappa-B (NF-kappaB) was examined by immunocytochemistry. Expression of NF-kappaB/P65, inhibiter kappa B (IkappaB), and mitogen activated protein kinase (MAPK) proteins were measured by western blot. Treatment of SRA01/04 cells with fisetin inhibited UVB-induced cell death and the generation of ROS. Fisetin inhibited UVB-induced activation and translocation of NF-kappaB/p65, which was mediated through an inhibition of the degradation and activation of IkappaB. Fisetin also inhibited UVB-induced phosphorylation of the p38 and c-Jun N-terminal kinase (JNK) proteins of the MAPK family at various time points studied. The flavonoid, fisetin, could be useful in attenuation of UV radiation-induced oxidative stress and the activation of NF-kappaB and MAPK signaling in human lens epithelial cells, which suggests that fisetin has a potential protective effect against cataractogenesis.

  3. Anticancer activity of Astragalus polysaccharide in human non-small cell lung cancer cells.

    PubMed

    Wu, Chao-Yan; Ke, Yuan; Zeng, Yi-Fei; Zhang, Ying-Wen; Yu, Hai-Jun

    2017-01-01

    We have reported that Chinese herbs Astragalus polysaccharide (APS) can inhibit nuclear factor kappaB (NF-κB) activity during the development of diabetic nephropathy in mice. NF-κB plays important roles in genesis, growth, development and metastasis of cancer. NF-κB is also involved in the development of treatment resistance in tumors. Here we investigated the antitumor activity of APS in human non-small cell lung cells (A549 and NCI-H358) and the related mechanisms of action. The dose-effect and time-effect of antitumor of APS were determined in human lung cancer cell line A549 and NCI-H358. The inhibition effect of APS on the P65 mRNA and protein was detected by reverse transcriptase-PCR (RT-PCR) and Western blot in A549 cells respectively. The inhibition effect of APS on the p50, CyclinD1 and Bcl-xL protein was detected by Western blot in A549 cells respectively. The effect of APS on NF-κB transcription activity was measured with NF-κB luciferase detection. Finally, the nude mice A549 xenograft was introduced to confirm the antitumor activity of APS in vivo. Cell viability detection results indicated that APS can inhibit the proliferation of human lung cancer cell line A549 and NCI-H358 in the concentration of 20 and 40 mg/mL. NF-κB activator Phorbol 12-myristate13-acetate (PMA) can attenuate the antitumor activity of APS in both cell lines, but NF-κB inhibitor BAY 11-7082 (Bay) can enhance the effect of APS in both cell lines. In vivo APS can delay the growth of A549 xenograft in BALB/C nude mice. APS can down-regulate the expression of P65 mRNA and protein of A549 cells and decrease the expression of p50, CyclinD1 and Bcl-xL protein. The luciferase detection showed that the APS could reduce the P65 transcription activity in A549 cells. PMA can partially alleviate the inhibition activity of P65 transcription activity of APS in A549 cells, and Bay can enhance the down-regulation of the P65 transcription activity induced by APS in A549 cells. APS has a significant antitumor activity in human lung cancer cells A549 and NCI-H358. NF-κB inhibition may mediate the antitumor effect.

  4. [Pseudolaric acid B induces G2/M arrest and inhibits invasion and migration in HepG2 hepatoma cells].

    PubMed

    Li, Shuai; Guo, Lianyi

    2018-01-01

    Objective To investigate the mechanisms of pseudolaric acid B (PAB) blocks cell cycle and inhibits invasion and migration in human hepatoma HepG2 cells. Methods The proliferation effect of PAB on HepG2 cells was evaluated by MTT assay. The effect of PAB on the cell cycle of HepG2 cells was analyzed by flow cytometry. Immunofluorescence cytochemical staining was applied to observe the effect of PAB on the α-tubulin polymerization and expression in HepG2 cells. Transwell TM chamber invasion assay and wound healing assay were performed to detect the influence of PAB on the migration and invasion ability of HepG2 cells. Western blotting was used to determine the expressions of α-tubulin, E-cadherin and MMP-9 in HepG2 cells after treated with PAB. Results PAB inhibited the proliferation of HepG2 cells in a dose-dependent manner and blocked the cell cycle in G2/M phase. PAB significantly changed the polymerization and decreased the expression of α-tubulin. The capacities of invasion and migration of HepG2 cells treated by PAB were significantly depressed. The protein levels of α-tubulin and MMP-9 decreased while the E-cadherin protein level increased. Conclusion PAB can inhibits the proliferation of HepG2 cells by down-regulating the expression of α-tubulin and influencing its polymerization, arresting HepG2 cells in G2/M phase. Meanwhile, PAB also can inhibit the invasion and migration of HepG2 cells by lowering cytoskeleton α-tubulin and MMP-9, and increasing E-cadherin.

  5. Curcumin enhances the effects of irinotecan on colorectal cancer cells through the generation of reactive oxygen species and activation of the endoplasmic reticulum stress pathway.

    PubMed

    Huang, Yan-Feng; Zhu, Da-Jian; Chen, Xiao-Wu; Chen, Qi-Kang; Luo, Zhen-Tao; Liu, Chang-Chun; Wang, Guo-Xin; Zhang, Wei-Jie; Liao, Nv-Zhu

    2017-06-20

    Although initially effective against metastatic colorectal cancer (CRC), irinotecan-based chemotherapy leads to resistance and adverse toxicity. Curcumin is well known for its anti-cancer effects in many cancers, including CRC. Here, we describe reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress as important mechanisms by which curcumin enhances irinotecan's effects on CRC cells. CRC cell lines were treated with curcumin and/or irinotecan for 24 h, and then evaluated using cell proliferation assays, cell apoptosis assays, cell cycle analysis, intracellular Ca2+ measurements, ROS measurements and immunoblotting for key ER stress-related proteins. We found that cell viability was inhibited and apoptosis was increased, accompanied by ROS generation and ER stress activation in CRC cells treated with curcumin alone or in combination with irinotecan. Blocking ROS production attenuated the expression of two markers of ER stress: binding of immunoglobulin protein (BIP) and CCAAT/enhancer-binding protein homologous protein (CHOP). Blocking CHOP expression using RNA interference also inhibited ROS generation. These results demonstrated that curcumin could enhance the effects of irinotecan on CRC cells by inhibiting cell viability and inducing cell cycle arrest and apoptosis, and that these effects may be mediated, in part, by ROS generation and activation of the ER stress pathway.

  6. ZD6474, a new treatment strategy for human osteosarcoma, and its potential synergistic effect with celecoxib

    PubMed Central

    Pan, Changchuan; Zhou, Yi; Du, Wuying; Chen, Jie-min; Zhu, Xiaofeng; Shen, Jingnan; Chen, Shuai; Liu, Ran-yi; Huang, Wenlin

    2015-01-01

    ZD6474, a small molecule VEGFR and EGFR tyrosine kinase inhibitor, has been considered as a promising tumor-targeted drug in various malignancies. EGFR and cyclooxygenase-2 (COX-2) were found overexpressed in osteosarcoma in previous reports, so here we tried to explore the anti-osteosarcoma effect of ZD6474 alone or combination with celecoxib, a COX-2 inhibitor. The data demonstrated that ZD6474 inhibited the growth of osteosarcoma cells, and promoted G1-phase cell cycle arrest and apoptosis by inhibiting the activity of EGFR tyrosine kinase, and consequently suppressing its downstream PI3k/Akt and MAPK/ERK pathway. Additionally, daily administration of ZD6474 produced a dose-dependent inhibition of tumor growth in nude mice. Celecoxib also significantly inhibited the growth of osteosarcoma cells in dose-dependent manner, while combination of ZD6474 and celecoxib displayed a synergistic or additive antitumor effect on osteosarcoma in vitro and in vivo. The possible molecular mechanisms to address the synergism are likely that ZD6474 induces the down-regulation of COX-2 expression through inhibiting ERK phosphorylation, while celecoxib promotes ZD6474-directed inhibition of ERK phosphorylation. In conclusion, ZD6474 exerts direct anti-proliferative effects on osteosarcoma cells, and the synergistic antitumor effect of the combination of ZD6474 with celecoxib may indicate a new strategy of the combinative treatment of human osteosarcoma. PMID:26050198

  7. Bacterial Cell Growth Inhibitors Targeting Undecaprenyl Diphosphate Synthase and Undecaprenyl Diphosphate Phosphatase.

    PubMed

    Wang, Yang; Desai, Janish; Zhang, Yonghui; Malwal, Satish R; Shin, Christopher J; Feng, Xinxin; Sun, Hong; Liu, Guizhi; Guo, Rey-Ting; Oldfield, Eric

    2016-10-19

    We synthesized a series of benzoic acids and phenylphosphonic acids and investigated their effects on the growth of Staphylococcus aureus and Bacillus subtilis. One of the most active compounds, 5-fluoro-2-(3-(octyloxy)benzamido)benzoic acid (7, ED 50 ∼0.15 μg mL -1 ) acted synergistically with seven antibiotics known to target bacterial cell-wall biosynthesis (a fractional inhibitory concentration index (FICI) of ∼0.35, on average) but had indifferent effects in combinations with six non-cell-wall biosynthesis inhibitors (average FICI∼1.45). The most active compounds were found to inhibit two enzymes involved in isoprenoid/bacterial cell-wall biosynthesis: undecaprenyl diphosphate synthase (UPPS) and undecaprenyl diphosphate phosphatase (UPPP), but not farnesyl diphosphate synthase, and there were good correlations between bacterial cell growth inhibition, UPPS inhibition, and UPPP inhibition. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Caffeic acid, a coffee-related organic acid, inhibits infection by severe fever with thrombocytopenia syndrome virus in vitro.

    PubMed

    Ogawa, Motohiko; Shirasago, Yoshitaka; Ando, Shuji; Shimojima, Masayuki; Saijo, Masayuki; Fukasawa, Masayoshi

    2018-04-05

    Severe fever with thrombocytopenia syndrome (SFTS) virus (SFTSV) causes tick-borne hemorrhagic fever in East Asia. The disease is characterized by high morbidity and mortality. Here, we evaluated the effects of caffeic acid (CA), a coffee-related organic acid with antiviral effects, against SFTSV infection. CA dose-dependently inhibited SFTSV infection in permissive human hepatoma Huh7.5.1-8 cells when SFTSV was added into the culture medium with CA. However, quinic acid (QA), another coffee-related organic acid, did not inhibit SFTSV infection. The 50% inhibitory concentration (IC 50 ) of CA against SFTSV was 0.048 mM, whereas its 50% cytotoxic concentration was 7.6 mM. The selectivity index (SI) was 158. Pre-incubation of SFTSV with CA for 4 h resulted in a greater inhibition of SFTSV infection (IC 50  = 0.019 mM; SI = 400). The pre-incubation substantially decreased viral attachment to the cells. CA treatment of the SFTSV-infected cells also inhibited the infection, albeit less effectively. CA activity after cell infection with SFTSV was more pronounced at a low multiplicity of infection (MOI) of 0.01 per cell (IC 50  = 0.18 mM) than at a high MOI of 1 per cell (IC 50  > 1 mM). Thus, CA inhibited virus spread by acting directly on the virus rather than on the infected cells. In conclusion, CA acted on SFTSV and inhibited viral infection and spread, mainly by inhibiting the binding of SFTSV to the cells. We therefore demonstrated CA to be a potential anti-SFTSV drug for preventing and treating SFTS. Copyright © 2018 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  9. A PTEN inhibitor displays preclinical activity against hepatocarcinoma cells

    PubMed Central

    Augello, Giuseppa; Puleio, Roberto; Emma, Maria Rita; Cusimano, Antonella; Loria, Guido R.; McCubrey, James A.; Montalto, Giuseppe; Cervello, Melchiorre

    2016-01-01

    ABSTRACT Phosphatase and tensin homolog (PTEN) gene is considered a tumor suppressor gene. However, PTEN mutations rarely occur in hepatocellular carcinoma (HCC), whereas heterozygosity of PTEN, resulting in reduced PTEN expression, has been observed in 32–44% of HCC patients. In the present study, we investigated the effects of the small molecule PTEN inhibitor VO-OHpic in HCC cells. VO-OHpic inhibited cell viability, cell proliferation and colony formation, and induced senescence-associated β-galactosidase activity in Hep3B (low PTEN expression) and to a lesser extent in PLC/PRF/5 (high PTEN expression) cells, but not in PTEN-negative SNU475 cells. VO-OHpic synergistically inhibited cell viability when combined with PI3K/mTOR and RAF/MEK/ERK pathway inhibitors, but only in Hep3B cells, and significantly inhibited tumor growth in nude mice bearing xenografts of Hep3B cells. Therefore, we demonstrated for the first time that VO-OHpic inhibited cell growth and induced senescence in HCC cells with low PTEN expression, and that the combination of VO-OHpic with PI3K/mTOR and RAF/MEK/ERK inhibitors resulted in a more effective tumor cell kill. Our findings, hence, provide proof-of-principle evidence that pharmacological inhibition of PTEN may represent a promising approach for HCC therapy in a subclass of patients with a low PTEN expression. PMID:26794644

  10. Quercetin sensitizes human glioblastoma cells to temozolomide in vitro via inhibition of Hsp27.

    PubMed

    Sang, Dong-Ping; Li, Ru-Jun; Lan, Qing

    2014-06-01

    Quercetin is an effective Hsp27 inhibitor and has been reported to facilitate tumor cell apoptosis. The aim of this study was to investigate whether quercetin could sensitize human glioblastoma cells to temozolomide (TMZ) in vitro. Both U251 and U87 human glioblastoma cells were treated with quercetin and/or TMZ for 48 h. Cell viability was detected using the MTT assay. Cell apoptosis was analyzed with caspase-3 activity kits and flow cytometry. Hsp27 expression and phosphorylation were examined using Western blot analysis. RNA interference using Hsp27 siRNA oligos was performed to knock down the gene expression of Hsp27. TMZ (200 or 400 μmol/L) alone effectively inhibited the viability of U251 and U87 cells. When combined with quercetin (30 μmol/L), TMZ (100 μmol/L) significantly inhibited the cell viability, and the inhibition of TMZ (200 and 400 μmol/L) was enhanced. TMZ or quercetin anole did not affect caspase-3 activity and cell apoptosis, while TMZ combined with quercetin significantly increased caspase-3 activity and induced cell apoptosis. TMZ anole significantly increased Hsp27 phosphorylation in U251 and U87 cells, while quercetin or Hsp27 siRNA oligos combined with TMZ attenuated TMZ-induced Hsp27 phosphorylation and significantly inhibited Hsp27 expression. Combined treatment with TMZ and quercetin efficiently suppressed human glioblastoma cell survival in vitro.

  11. TGF-beta3 is expressed in taste buds and inhibits proliferation of primary cultured taste epithelial cells.

    PubMed

    Nakamura, Shin-ichi; Kawai, Takayuki; Kamakura, Takashi; Ookura, Tetsuya

    2010-01-01

    Transforming growth factor-betas (TGF-betas), expressed in various tissues, play important roles in embryonic development and adult tissue homeostasis through their effects on cell proliferation, cell differentiation, cell death, and cell motility. However, expression of TGF-beta signaling components and their biological effect on taste epithelia has not been elucidated. We performed expression analysis of TGF-beta signaling components in taste epithelia and found that the TGF-beta3 mRNA was specifically expressed in taste buds. Type II TGF-betas receptor (TbetaR-II) mRNA was specifically expressed in the tongue epithelia including the taste epithelia. To elucidate the biological function of TGF-beta3 in taste epithelia, we performed proliferation assay with primary cultured taste epithelial cells. In the presence of TGF-beta3, percentage of BrdU-labeled cells decreased significantly, suggesting that the TGF-beta3 inhibited the proliferation of cultured taste epithelial cells through inhibiting cell-cycle entry into S phase. By quantitative reverse transcription-polymerase chain reaction assay, we found that the TGF-beta3 resulted in an increased level of expression of p15Ink4b and p21Cip1, suggesting that the TGF-beta3 inhibited the taste epithelial cell proliferation through inhibiting G1cyclin-Cdk complexes. Taken together, these results suggested that the TGF-beta3 may regulate taste epithelial cell homeostasis through controlling cell proliferation.

  12. Anti-inflammatory activity of dried flower extracts of Aegle marmelos in Wistar rats.

    PubMed

    Kumari, K D K P; Weerakoon, T C S; Handunnetti, S M; Samarasinghe, K; Suresh, T S

    2014-02-12

    Almost all part of the plant Aegle marmelos (Bael tree) has been used in the traditional medicine systems of Asian countries to treat various diseases over many centuries. The water extract of the dried flowers of Aegle marmelos is a commonly used beverage among Sri Lankan population in rural areas. Although extensive investigations done on many parts of the plant there are no experimental data available on the extracts of flowers. Anti-inflammatory effect of the water extract of dried flowers of Aegle marmelos (WEAM) was evaluated in the present study. The anti-inflammatory effect of the WEAM was evaluated by inhibition of the rat paw oedema, induced by carrageenan. The mechanism of the anti-inflammatory effect was assessed by the inhibition of production of nitric oxide (NO) by rat peritoneal cells, infiltration of rat peritoneal cells, anti-histamine effect, membrane stabilization activity, the antioxidant capacity and inhibition of lipid peroxidation by the WEAM. The maximum percentage inhibition of paw oedema was exhibited by the dose of 200 mg/kg at 2 h. The WEAM showed a significant increment of rat peritoneal cell infiltration, inhibition of NO production by rat peritoneal cells and inhibition of wheal formation on the skin of the rat after injection of histamine. The WEAM protected the erythrocyte membrane from heat-induced lysis in a dose-dependent manner and showed a significant anti-oxidant effect and lipid peroxidation inhibition activity. The WEAM possesses significant anti-inflammatory effect by multiple mechanisms in Wistar rats. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Effect of JNK inhibitor SP600125 on hair cell regeneration in zebrafish (Danio rerio) larvae

    PubMed Central

    Sun, Shaoyang; Wang, Xu; Li, Wenyan; Li, Huawei

    2016-01-01

    The c-Jun amino-terminal kinase (JNK) proteins are a subgroup of the mitogen-activated protein kinase family. They play a complex role in cell proliferation, survival, and apoptosis. Here, we report a novel role of JNK signalling in hair cell regeneration. We eliminated hair cells of 5-day post-fertilization zebrafish larvae using neomycin followed by JNK inhibition with SP600125. JNK inhibition strongly decreased the number of regenerated hair cells in response to neomycin damage. These changes were associated with reduced proliferation. JNK inhibition also increased cleaved caspase-3 activity and induced apoptosis in regenerating neuromasts. Finally, JNK inhibition with SP600125 decreased the expression of genes related to Wnt. Over-activation of the Wnt signalling pathway partly rescued the hair cell regeneration defects induced by JNK inhibition. Together, our findings provide novel insights into the function of JNK and show that JNK inhibition blocks hair cell regeneration by controlling the Wnt signalling pathway. PMID:27438150

  14. Somatostatin Receptor-1 Induces Cell Cycle Arrest and Inhibits Tumor Growth in Pancreatic Cancer

    PubMed Central

    Li, Min; Wang, Xiaochi; Li, Wei; Li, Fei; Yang, Hui; Wang, Hao; Brunicardi, F. Charles; Chen, Changyi; Yao, Qizhi; Fisher, William E.

    2010-01-01

    Functional somatostatin receptors (SSTRs) are lost in human pancreatic cancer. Transfection of SSTR-1 inhibited pancreatic cancer cell proliferation in vitro. We hypothesize that stable transfection of SSTR-1 may inhibit pancreatic cancer growth in vivo possibly through cell cycle arrest. In this study, we examined the expression of SSTR-1 mRNA in human pancreatic cancer tissue specimens, and investigated the effect of SSTR-1 overexpression on cell proliferation, cell cycle, and tumor growth in in a subcutaneous nude mouse model. We found that SSTR-1 mRNA was downregulated in the majority of pancreatic cancer tissue specimens. Transfection of SSTR-1 caused cell cycle arrest at the G0/G1 growth phase, with a corresponding decline of cells in the S (mitotic) phase. The overexpression of SSTR-1 significantly inhibited subcutaneous tumor size by 71% and 43% (n=5, p<0.05, t-test), and inhibited tumor weight by 69% and 47%, (n=5, p<0.05, t-test), in Panc-SSTR-1 and MIA-SSTR-1 groups, respectively, indicating the potent inhibitory effect of SSTR-1 on pancreatic cancer growth. Our data demonstrate that overexpression of SSTR-1 significantly inhibits pancreatic cancer growth possibly through cell cycle arrest. This study suggests that gene therapy with SSTR-1 may be a potential adjuvant treatment for pancreatic cancer. PMID:18823376

  15. TORC1 signaling inhibition by rapamycin and caffeine affect lifespan, global gene expression, and cell proliferation of fission yeast.

    PubMed

    Rallis, Charalampos; Codlin, Sandra; Bähler, Jürg

    2013-08-01

    Target of rapamycin complex 1 (TORC1) is implicated in growth control and aging from yeast to humans. Fission yeast is emerging as a popular model organism to study TOR signaling, although rapamycin has been thought to not affect cell growth in this organism. Here, we analyzed the effects of rapamycin and caffeine, singly and combined, on multiple cellular processes in fission yeast. The two drugs led to diverse and specific phenotypes that depended on TORC1 inhibition, including prolonged chronological lifespan, inhibition of global translation, inhibition of cell growth and division, and reprograming of global gene expression mimicking nitrogen starvation. Rapamycin and caffeine differentially affected these various TORC1-dependent processes. Combined drug treatment augmented most phenotypes and effectively blocked cell growth. Rapamycin showed a much more subtle effect on global translation than did caffeine, while both drugs were effective in prolonging chronological lifespan. Rapamycin and caffeine did not affect the lifespan via the pH of the growth media. Rapamycin prolonged the lifespan of nongrowing cells only when applied during the growth phase but not when applied after cells had stopped proliferation. The doses of rapamycin and caffeine strongly correlated with growth inhibition and with lifespan extension. This comprehensive analysis will inform future studies into TORC1 function and cellular aging in fission yeast and beyond. © 2013 The Authors. Aging Cell published by John Wiley & Sons Ltd and the Anatomical Society.

  16. Zoledronic acid inhibits vasculogenic mimicry in murine osteosarcoma cell line in vitro.

    PubMed

    Fu, Dehao; He, Xianfeng; Yang, Shuhua; Xu, Weihua; Lin, Tao; Feng, Xiaobo

    2011-06-30

    To study the effects of zoledronic acid (ZA) on the vasculogenic mimicry of osteosarcoma cells in vitro. A Three-dimensional culture of LM8 osteosarcoma cells on a type I collagen matrix was used to investigate whether osteosarcoma cells can develop vasculogenic mimicry, and to determine the effects of ZA on this process. In addition, the cellular ultrastructural changes were observed using scanning electron microscopy and laser confocal microscopy. The effects of ZA on the translocation of RhoA protein from the cytosol to the membrane in LM8 cells were measured via immunoblotting. ZA inhibited the development of vasculogenic mimicry by the LM8 osteosarcoma cells, decreased microvilli formation on the cell surface, and disrupted the F-actin cytoskeleton. ZA prevented translocation of RhoA protein from the cytosol to the membrane in LM8 cells. ZA can impair RhoA membrane localization in LM8 cells, causing obvious changes in the ultrastructure of osteosarcoma cells and induce cell apoptosis, which may be one of the underlying mechanisms by which the agent inhibits the development of vasculogenic mimicry by the LM8 cells.

  17. MiR-615 inhibits cell proliferation, migration and invasion by targeting EGFR in human glioblastoma.

    PubMed

    Ji, Yanwei; Sun, Qingshan; Zhang, Jianbin; Hu, Haoran

    2018-05-15

    MiR-615 and epidermal growth factor receptor (EGFR) are associated with a number of disease processes and pathogenesis. However, little is known about the mechanisms of miR-615 and EGFR in human glioblastoma multiforme (GBM). Here, we found that down-regulation of miR-615 expression occurred in GBM tissues and cells, and was inversely correlated with overall survival, relapse-free survival, WHO grade as well as EGFR expression. We further determined that miR-615 functions as a tumor suppressor by inhibiting GBM cell proliferation, cell cycle, migration and invasion, and promoting cell apoptosis. In-vivo assay validated the inhibition effect of miR-615 on tumor growth and EGFR expression. Luciferase reporter assays demonstrated that miR-615 targeted the 3'-untranslated region (3'-UTR) of EGFR. Besides, over-expression of EGFR reversed the inhibition effects of miR-615, while silencing of EGFR aggravated these inhibition effects. In conclusions, we identified that miR-615 plays a tumor suppressor role in GBM cell proliferation, migration and invasion by targeting EGFR expression, and miR-615 may act as a novel biomarker for early diagnosis or therapeutic targets of GBM. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Rosmarinic Acid Activates AMPK to Inhibit Metastasis of Colorectal Cancer

    PubMed Central

    Han, Yo-Han; Kee, Ji-Ye; Hong, Seung-Heon

    2018-01-01

    Rosmarinic acid (RA) has been used as an anti-inflammatory, anti-diabetic, and anti-cancer agent. Although RA has also been shown to exert an anti-metastatic effect, the mechanism of this effect has not been reported to be associated with AMP-activated protein kinase (AMPK). The aim of this study was to elucidate whether RA could inhibit the metastatic properties of colorectal cancer (CRC) cells via the phosphorylation of AMPK. RA inhibited the proliferation of CRC cells through the induction of cell cycle arrest and apoptosis. In several metastatic phenotypes of CRC cells, RA regulated epithelial–mesenchymal transition (EMT) through the upregulation of an epithelial marker, E-cadherin, and the downregulation of the mesenchymal markers, N-cadherin, snail, twist, vimentin, and slug. Invasion and migration of CRC cells were inhibited and expressions of matrix metalloproteinase (MMP)-2 and MMP-9 were decreased by RA treatment. Adhesion and adhesion molecules such as ICAM-1 and integrin β1 expressions were also reduced by RA treatment. In particular, the effects of RA on EMT and MMPs expressions were due to the activation of AMPK. Moreover, RA inhibited lung metastasis of CRC cells by activating AMPK in mouse model. Collectively, these results proved that RA could be potential therapeutic agent against metastasis of CRC. PMID:29459827

  19. mTOR inhibition of cardamonin on antiproliferation of A549 cells is involved in a FKBP12 independent fashion.

    PubMed

    Tang, Ying; Fang, Qi; Shi, Daohua; Niu, Peiguang; Chen, Yaoyao; Deng, Jie

    2014-03-18

    Cardamonin has previously demonstrated that it had an antiproliferative effect on vascular smooth muscle cells by inhibiting the activity of mammalian target of rapamycin (mTOR). The antiproliferative effect and the possible mechanism of combining with mTOR of cardamonin were investigated on A549 cells. Cell proliferation, cell cycle and apoptosis were measured by methyl thiazolyl tetrazolium (MTT) and flow cytometry, respectively. mTOR and 12 kDa FK506 binding protein (FKBP12) were transfected into A549 cells by Lipofectamine. Western blots were used to examine the mTOR expressions and its activities, and the expressions of 70 kDa ribosomal S6 kinase (p70S6K), FKBP12 and Interleukin-2 (IL-2), respectively. Treated with cardamonin, the proliferation of A549 cells was inhibited. Meanwhile, cell cycle was blocked and DNA synthesis was decreased whereas cell apoptosis was promoted, and the activation of mTOR and p70S6K was decreased by cardamonin. Transfected with mTOR or FKBP12, proliferation of A549 cells was increased. Rapamycin had a similar degree of effect on antiproliferation of both transfected cells. However, the antiproliferative effect of cardamonin on mTOR transfected cells was stronger than that on FKBP12 transfected cells. Both rapamycin and cardamonin decreased the phosphorylation of mTOR and p70S6K in two kinds of transfected cells. Cardamonin had no effect on the expression of FKBP12 and IL-2, whereas the expressions were decreased by rapamycin. Cardamonin inhibited proliferation and induced apoptosis of A549 cells via mTOR. It might directly interact with mTOR independently of binding with FKBP12. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Heparin (GAG-hed) inhibits LCR activity of human papillomavirus type 18 by decreasing AP1 binding.

    PubMed

    Villanueva, Rita; Morales-Peza, Néstor; Castelán-Sánchez, Irma; García-Villa, Enrique; Tapia, Rocio; Cid-Arregui, Angel; García-Carrancá, Alejandro; López-Bayghen, Esther; Gariglio, Patricio

    2006-08-31

    High risk HPVs are causative agents of anogenital cancers. Viral E6 and E7 genes are continuously expressed and are largely responsible for the oncogenic activity of these viruses. Transcription of the E6 and E7 genes is controlled by the viral Long Control Region (LCR), plus several cellular transcription factors including AP1 and the viral protein E2. Within the LCR, the binding and activity of the transcription factor AP1 represents a key regulatory event in maintaining E6/E7 gene expression and uncontrolled cell proliferation. Glycosaminoglycans (GAGs), such as heparin, can inhibit tumour growth; they have also shown antiviral effects and inhibition of AP1 transcriptional activity. The purpose of this study was to test the heparinoid GAG-hed, as a possible antiviral and antitumoral agent in an HPV18 positive HeLa cell line. Using in vivo and in vitro approaches we tested GAG-hed effects on HeLa tumour cell growth, cell proliferation and on the expression of HPV18 E6/E7 oncogenes. GAG-hed effects on AP1 binding to HPV18-LCR-DNA were tested by EMSA. We were able to record the antitumoral effect of GAG-hed in vivo by using as a model tumours induced by injection of HeLa cells into athymic female mice. The antiviral effect of GAG-hed resulted in the inhibition of LCR activity and, consequently, the inhibition of E6 and E7 transcription. A specific diminishing of cell proliferation rates was observed in HeLa but not in HPV-free colorectal adenocarcinoma cells. Treated HeLa cells did not undergo apoptosis but the percentage of cells in G2/M phase of the cell cycle was increased. We also detected that GAG-hed prevents the binding of the transcription factor AP1 to the LCR. Direct interaction of GAG-hed with the components of the AP1 complex and subsequent interference with its ability to correctly bind specific sites within the viral LCR may contribute to the inhibition of E6/E7 transcription and cell proliferation. Our data suggest that GAG-hed could have antitumoral and antiviral activity mainly by inhibiting AP1 binding to the HPV18-LCR.

  1. NF-κB is involved in the LPS-mediated proliferation and apoptosis of MAC-T epithelial cells as part of the subacute ruminal acidosis response in cows.

    PubMed

    Fan, Wen-Jie; Li, He-Ping; Zhu, He-Shui; Sui, Shi-Ping; Chen, Pei-Ge; Deng, Yue; Sui, Tong-Ming; Wang, Yue-Ying

    2016-11-01

    To determine the effect of NF-κB on cell proliferation and apoptosis, we investigate the expression of inflammation and apoptosis-related factors in the bovine mammary epithelial cell line, MAC-T. MAC-T cells were cultured in vitro and MTT and LDH assays used to determine the effects of lipopolysaccharide (LPS) on proliferation and cytotoxicity respectively. RT-PCR and western blotting were used to evaluate the effect of LPS and NF-κB inhibition [pyrrolidine dithiocarbamate (PDTC) treatment] on the expression of inflammation and apoptosis-related factors. LPS significantly inhibited MAC-T cell proliferation in a dose- and time-dependent manner. Furthermore, LPS promoted apoptosis while the NF-кB inhibitor PDTC attenuated this effect. After LPS treatment, the NF-кB signaling pathway was activated, and the expression of inflammation and apoptosis-related factors increased. When PDTC blocked NF-кB signaling, the expression of inflammation and apoptosis-related factors were decreased in MAC-T cells. LPS activates the TLR4/NF-κB signaling pathway, inhibits proliferation and promotes apoptosis in MAC-T cells. NF-кB inhibition attenuates MAC-T cell apoptosis and TLR4/NF-κB signaling pathway. NF-кB inhibitor alleviating MAC-T cell apoptosis is presumably modulated by NF-кB.

  2. [Effects of icotinib hydrochloride on the proliferation and apoptosis of human lung cancer cell lines].

    PubMed

    Ma, Li; Han, Xiao-hong; Wang, Shuai; Wang, Jian-fei; Shi, Yuan-kai

    2012-09-25

    To explore the effects of icotinib on the proliferation and apoptosis of various lung cancer cell lines. Human lung cancer cell lines HCC827, H1650, H1975, A549 and human epidermal cancer cell line A431 were treated in vitro with icotinib or gefitinib at a concentration gradient of 0 - 40 µmol/L. Their proliferation effects were analyzed by the thiazolyl blue (MTT) assay and the apoptotic effects detected by flow cytometer. The downstream signaling proteins were detected by Western blot. The median inhibitory concentrations (IC(50)) of icotinib for A431 and HCC827 cell lines were (0.04 ± 0.02) and (0.15 ± 0.06) µmol/L respectively. No significant differences existed between the inhibitions of gefitinib and icotinib on A431, HCC827, H1650, H1975 and A549 cell lines (all P > 0.05). Compared with H1650, H1975 and A549 cell lines, icotinib significantly inhibited A431 (P = 0.009, 0.005 and 0.000) and HCC827 (P = 0.001, 0.001 and 0.000) cell lines. And it lowered the expressions of p-AKT, p-ERK and survivin protein expression through the inhibited activity of p-EGFR protein. Icotinib can arrest the proliferation of lung adenocarcinoma cells with EGFR mutation or over-expression by inhibiting the signal pathways of AKT-ERK and survivin.

  3. Oxymatrine induces nasopharyngeal cancer cell death through inhibition of PI3K/AKT and NF‑κB pathways.

    PubMed

    Ni, Zhili; Yi, Jingmei

    2017-12-01

    Oxymatrine may inhibit tumor cell proliferation, induce cell cycle arrest, promote apoptosis, induce tumor cell differentiation and fight against tumor angiogenesis, as well as inhibit tumor invasion and metastasis. The present study aimed to investigate the anticancer effects of oxymatrine on nasopharyngeal cancer (NPC) cell death, and the underlying molecular mechanisms of these effects. NPC HK‑1 cells were incubated overnight and treated with oxymatrine (0, 2, 4, 6 and 8 mg/ml) for 1, 2 or 3 days. The results demonstrated that oxymatrine significantly inhibited NPC cell proliferation in a time‑ and dose‑dependent manner. Oxymatrine treatment also induced apoptosis, induced the activities of caspase‑3 and caspase‑9, promoted p53 and Bax protein expression, and suppressed cyclin D protein expression in these cells. The protein expression levels of phosphoinositide 3 kinase (PI3K), phosphorylated (p)‑AKT, p‑mammalian target of rapamycin, p‑p70 ribosomal protein S6 kinase and nuclear factor (NF)‑κB were significantly downregulated by oxymatrine treatment. In conclusion, results from the present study suggested that oxymatrine may induce NPC cell death through the inhibition of PI3K/AKT and NF‑κB signaling pathways.

  4. Osthole induces lung cancer cell apoptosis through inhibition of inhibitor of apoptosis family proteins

    PubMed Central

    Xu, Xiao-Man; Zhang, Man-Li; Zhang, Yi; Zhao, Li

    2016-01-01

    In the present study, we investigated the effects and mechanisms of Osthole on the apoptosis of non-small cell lung cancer (NSCLC) cells and its synergistic effect with Embelin. Our results revealed that treatment with both Osthole and Embelin inhibited cell proliferation. Notably, combination treatment of Osthole and Embelin inhibited cell proliferation more significantly compared with monotherapy. In addition, morphological analysis and Annexin V/propidium iodide analysis revealed that the combination of Osthole and Embelin enhanced their effect on cell apoptosis. We further examined the effect of Osthole on the expression of inhibitor of apoptosis protein (IAP) family proteins. That treatment of A549 lung cancer cells with various concentrations of Osthole was observed to decrease the protein expression of X-chromosome-encoded IAP, c-IAP1, c-IAP2 and Survivin, and increase Smac expression in a dose-dependent manner. Furthermore, it was noted that Osthole or Embelin alone increased the expression of BAX, caspase-3, caspase-9, cleaved caspase-3 and cleaved caspase-9, and decreased Bcl-2 levels following treatment. Osthole and Embelin combination treatment had a synergistic effect on the regulation of these proteins. In conclusion, our study demonstrated that Osthole inhibited proliferation and induced the apoptosis of lung cancer cells via IAP family proteins in a dose-dependent manner. Osthole enhances the antitumor effect of Embelin, indicating that combination of Osthole and Embelin has potential clinical significance in the treatment of NSCLC. PMID:27895730

  5. Inhibition of human lung cancer cell proliferation and survival by wine

    PubMed Central

    2014-01-01

    Background Compounds of plant origin and food components have attracted scientific attention for use as agents for cancer prevention and treatment. Wine contains polyphenols that were shown to have anti-cancer and other health benefits. The survival pathways of Akt and extracellular signal-regulated kinase (Erk), and the tumor suppressor p53 are key modulators of cancer cell growth and survival. In this study, we examined the effects of wine on proliferation and survival of human Non-small cell lung cancer (NSCLC) cells and its effects on signaling events. Methods Human NSCLC adenocarcinoma A549 and H1299 cells were used. Cell proliferation was assessed by thymidine incorporation. Clonogenic assays were used to assess cell survival. Immunoblotting was used to examine total and phosphorylated levels of Akt, Erk and p53. Results In A549 cells red wine inhibited cell proliferation and reduced clonogenic survival at doses as low as 0.02%. Red wine significantly reduced basal and EGF-stimulated Akt and Erk phosphorylation while it increased the levels of total and phosphorylated p53 (Ser15). Control experiments indicated that the anti-proliferative effects of wine were not mediated by the associated contents of ethanol or the polyphenol resveratrol and were independent of glucose transport into cancer cells. White wine also inhibited clonogenic survival, albeit at a higher doses (0.5-2%), and reduced Akt phosphorylation. The effects of both red and white wine on Akt phosphorylation were also verified in H1299 cells. Conclusions Red wine inhibits proliferation of lung cancer cells and blocks clonogenic survival at low concentrations. This is associated with inhibition of basal and EGF-stimulated Akt and Erk signals and enhancement of total and phosphorylated levels of p53. White wine mediates similar effects albeit at higher concentrations. Our data suggest that wine may have considerable anti-tumour and chemoprevention properties in lung cancer and deserves further systematic investigation in animal models of lung cancer. PMID:24456610

  6. Ganoderma lucidum (Reishi) suppresses proliferation and migration of breast cancer cells via inhibiting Wnt/β-catenin signaling.

    PubMed

    Zhang, Yu

    2017-07-08

    The medical mushroom Ganoderma lucidum (Reishi), a traditional Chinese medicine, has exhibited a promising anti-cancer effect. However, the molecular mechanism of its action on cancer cells remains unclear. Aberrant activation of Wnt/β-catenin signaling pathway is the cause of many types of cancer, including breast cancer. Here we investigated the effect of Reishi on Wnt/β-catenin signaling pathway and elucidated the molecular mechanism of its function in inhibiting breast cancer cells. We found that Reishi blocked Wnt/β-catenin signaling through inhibiting the phosphorylation of Wnt co-receptor LRP6. In human (MDA-MB-231) and mouse (4T1) breast cancer cell lines, Reishi significantly decreased the phosphorylation of LRP6 and suppressed Wnt3a-activated Wnt target gene Axin2 expression. Administration of Reishi inhibited Wnt-induced hyper-proliferation of breast cancer cells and MDA-MB-231 cell migration. Our results provide evidence that Reishi suppresses breast cancer cell growth and migration through inhibiting Wnt/β-catenin signaling, indicating that Reishi may be a potential natural inhibitor for breast cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Slow and sustained nitric oxide releasing compounds inhibit multipotent vascular stem cell proliferation and differentiation without causing cell death.

    PubMed

    Curtis, Brandon M; Leix, Kyle Alexander; Ji, Yajing; Glaves, Richard Samuel Elliot; Ash, David E; Mohanty, Dillip K

    2014-07-18

    Atherosclerosis is the leading cause of cerebral and myocardial infarction. It is believed that neointimal growth common in the later stages of atherosclerosis is a result of vascular smooth muscle cell (SMC) de-differentiation in response to endothelial injury. However, the claims of the SMC de-differentiation theory have not been substantiated by monitoring the fate of mature SMCs in response to such injuries. A recent study suggests that atherosclerosis is a consequence of multipotent vascular stem cell (MVSC) differentiation. Nitric oxide (NO) is a well-known mediator against atherosclerosis, in part because of its inhibitory effect on SMC proliferation. Using three different NO-donors, we have investigated the effects of NO on MVSC proliferation. Results indicate that NO inhibits MVSC proliferation in a concentration dependent manner. A slow and sustained delivery of NO proved to inhibit proliferation without causing cell death. On the other hand, larger, single-burst NO concentrations, inhibits proliferation, with concurrent significant cell death. Furthermore, our results indicate that endogenously produced NO inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs) and subsequently to SMC as well. Published by Elsevier Inc.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Jun-Ho; Ahn, Soon Kil; YOUAI Co., Ltd., Suwon-Si, Gyeonggi-Do 443-766

    Highlights: Black-Right-Pointing-Pointer We recently discovered a potent and selective B-Raf inhibitor, UI-152. Black-Right-Pointing-Pointer UI-152 displayed a selective cytotoxicity toward v-Ha-ras transformed cells. Black-Right-Pointing-Pointer UI-152-induced growth inhibition was largely meditated by autophagy. Black-Right-Pointing-Pointer UI-152 induced paradoxical activation of Raf-1. -- Abstract: In human cancers, B-Raf is the most frequently mutated protein kinase in the MAPK signaling cascade, making it an important therapeutic target. We recently discovered a potent and selective B-Raf inhibitor, UI-152, by using a structure-based drug design strategy. In this study, we examined whether B-Raf inhibition by UI-152 may be an effective therapeutic strategy for eliminating cancer cells transformedmore » with v-Ha-ras (Ras-NIH 3T3). UI-152 displayed selective cytotoxicity toward Ras-NIH 3T3 cells while having little to no effect on non-transformed NIH 3T3 cells. We found that treatment with UI-152 markedly increased autophagy and, to a lesser extent, apoptosis. However, inhibition of autophagy by addition of 3-MA failed to reverse the cytotoxic effects of UI-152 on Ras-NIH 3T3 cells, demonstrating that apoptosis and autophagy can act as cooperative partners to induce growth inhibition in Ras-NIH 3T3 cells treated with UI-152. Most interestingly, cell responses to UI-152 appear to be paradoxical. Here, we showed that although UI-152 inhibited ERK, it induced B-Raf binding to Raf-1 as well as Raf-1 activation. This paradoxical activation of Raf-1 by UI-152 is likely to be coupled with the inhibition of the mTOR pathway, an intracellular signaling pathway involved in autophagy. We also showed for the first time that, in multi-drug resistant cells, the combination of UI-152 with verapamil significantly decreased cell proliferation and increased autophagy. Thus, our findings suggest that the inhibition of autophagy, in combination with UI-152, offers a more effective therapeutic strategy for v-Ha-ras-transformed cells harboring wild-type B-Raf.« less

  9. Akt activation by Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) in ovarian cancer cells.

    PubMed

    Gocher, Angela M; Azabdaftari, Gissou; Euscher, Lindsey M; Dai, Shuhang; Karacosta, Loukia G; Franke, Thomas F; Edelman, Arthur M

    2017-08-25

    Hyperactivation of Akt is associated with oncogenic changes in the growth, survival, and chemoresistance of cancer cells. The PI3K/phosphoinositide-dependent kinase (PDK) 1 pathway represents the canonical mechanism for phosphorylation of Akt at its primary activation site, Thr-308. We observed that Ca 2+ /calmodulin (CaM)-dependent protein kinase kinase 2 (β) (CaMKK2) is highly expressed in high-grade serous ovarian cancer, and we investigated its role in Akt activation in ovarian cancer (OVCa) cell lines (OVCAR-3, SKOV-3, and Caov-3). Knockdown or pharmacological inhibition of CaMKK2 produced phenotypes expected of Akt inhibition, including reductions in cell growth and cell viability and in the regulation of Akt downstream targets involved in G 1 /S transition and apoptosis. CaMKK2 knockdown or inhibition decreased Akt phosphorylation at Thr-308 and Ser-473 to extents similar to those of PDK1 knockdown or PI3K inhibition. Combined CaMKK2 and PDK1 knockdown or CaMKK and PI3K inhibition, respectively, produced additive effects on p-Akt and cell growth, consistent with direct Akt phosphorylation by CaMKK2. This conclusion was supported by the absence of effects of CaMKK2 knockdown/inhibition on alternative means of activating Akt via p-Akt Thr-450, p-PDK1 Ser-241, or p-IRS1 Ser-636/639. Recombinant CaMKK2 directly activated recombinant Akt by phosphorylation at Thr-308 in a Ca 2+ /CaM-dependent manner. In OVCa cells, p-Akt Thr-308 was significantly inhibited by intracellular Ca 2+ i chelation or CaM inhibition. Ionomycin-induced Ca 2+ influx promoted p-Akt, an effect blocked by PDK1, and/or CaMKK2, siRNAs, and by PI3K and/or CaMKK inhibitors. CaMKK2 knockdown potentiated the effects of the chemotherapeutic drugs carboplatin and PX-866 to reduce proliferation and survival of OVCa cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Mechanism of gemcitabine-induced suppression of human cholangiocellular carcinoma cell growth.

    PubMed

    Toyota, Yuka; Iwama, Hisakazu; Kato, Kiyohito; Tani, Joji; Katsura, Akiko; Miyata, Miwa; Fujiwara, Shintaro; Fujita, Koji; Sakamoto, Teppei; Fujimori, Takayuki; Okura, Ryoichi; Kobayashi, Kiyoyuki; Tadokoro, Tomoko; Mimura, Shima; Nomura, Takako; Miyoshi, Hisaaki; Morishita, Asahiro; Kamada, Hideki; Yoneyama, Hirohito; Okano, Keiichi; Suzuki, Yasuyuki; Masaki, Tsutomu

    2015-10-01

    Although gemcitabine (2',2'-difluorocytidine monohydrochloride) is a common anticancer agent of cholangiocellular carcinoma (CCC), its growth inhibitory effects and gemcitabine resistance in CCC cells are poorly understood. Our aims were to uncover the mechanism underlying the antitumor effect of gemcitabine and to analyze the mechanism regulating in vitro CCC cell gemcitabine resistance. In addition, we sought to identify miRNAs associated with the antitumor effects of gemcitabine in CCCs. Using a cell proliferation assay and flow cytometry, we examined the ability of gemcitabine to inhibit cell proliferation in three types of human CCC cell lines (HuCCT-1, Huh28, TKKK). We also employed western blotting to investigate the effects of gemcitabine on cell cycle-related molecules in CCC cells. In addition, we used array chips to assess gemcitabine-mediated changes in angiogenic molecules and activated tyrosine kinase receptors in CCC cells. We used miRNA array chips to comprehensively analyze gemcitabine-induced miRNAs and examined clusters of differentially expressed miRNAs in cells with and without gemcitabine treatment. Gemcitabine inhibited cell proliferation in a dose- and time-dependent manner in HuCCT-1 cells, whereas cell proliferation was unchanged in Huh28 and TKKK cells. Gemcitabine inhibited cell cycle progression in HuCCT-1 cells from G0/G1 to S phase, resulting in G1 cell cycle arrest due to the reduction of cyclin D1 expression. In addition, gemcitabine upregulated the angiogenic molecules IL-6, IL-8, ENA-78 and MCP-1. In TKKK cells, by contrast, gemcitabine did not arrest the cell cycle or modify angiogenic molecules. Furthermore, in gemcitabine-sensitive HuCCT-1 cells, gemcitabine markedly altered miRNA expression. The miRNAs and angiogenic molecules altered by gemcitabine contribute to the inhibition of tumor growth in vitro.

  11. Plumbagin reduces osteopontin-induced invasion through inhibiting the Rho-associated kinase signaling pathway in A549 cells and suppresses osteopontin-induced lung metastasis in BalB/c mice.

    PubMed

    Kang, Chi Gu; Im, Eunji; Lee, Hyo-Jeong; Lee, Eun-Ok

    2017-05-01

    Lung cancer is the second most commonly diagnosed cancer and the leading cause of cancer deaths in both men and women in the United States. It has been recently demonstrated that osteopontin (OPN) effectively inhibits cofilin activity through the focal adhesion kinase (FAK)/AKT/Rho-associated kinase (ROCK) pathway to induce the invasion of human non-small cell lung cancer (NSCLC) cells. Plumbagin was isolated from the roots of the medicinal plant Plumbago zeylanica L. and has been reported to possess anticancer activities. However, the molecular mechanisms by which plumbagin inhibits the invasion of cancer cells is still unclear. In this study, the anti-invasive and anti-metastatic mechanisms of plumbagin were investigated in OPN-treated NSCLC A549 cells. OPN effectively induced the motility and invasion of NSCLC A549 cells and H1299 cells, which was strongly suppressed by plumbagin with no evidence of cytotoxicity. In addition, lamellipodia formation at the leading edge of cells by OPN was dramatically decreased in plumbagin-treated cells. Plumbagin caused an effective inhibition in OPN-induced the expression of ROCK1 as well as the phosphorylation of LIM kinase 1 and 2 (LIMK1/2), and cofilin. OPN-induced the phosphorylation of FAK and AKT was impaired without affecting their total forms by plumbagin treatment. OPN facilitated metastatic lung colonization, which was effectively suppressed in plumbagin-treated mice. Taken together, these results suggest that plumbagin reduces OPN-induced the invasion of NSCLC A549 cells, which resulted from inhibiting the ROCK pathway mediated by the FAK/AKT pathway and suppresses lung metastasis in vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Anthelmintic drug ivermectin inhibits angiogenesis, growth and survival of glioblastoma through inducing mitochondrial dysfunction and oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yingying; Fang, Shanshan; Sun, Qiushi

    Glioblastoma is one of the most vascular brain tumour and highly resistant to current therapy. Targeting both glioblastoma cells and angiogenesis may present an effective therapeutic strategy for glioblastoma. In our work, we show that an anthelmintic drug, ivermectin, is active against glioblastoma cells in vitro and in vivo, and also targets angiogenesis. Ivermectin significantly inhibits growth and anchorage-independent colony formation in U87 and T98G glioblastoma cells. It induces apoptosis in these cells through a caspase-dependent manner. Ivermectin significantly suppresses the growth of two independent glioblastoma xenograft mouse models. In addition, ivermectin effectively targets angiogenesis through inhibiting capillary network formation, proliferation andmore » survival in human brain microvascular endothelial cell (HBMEC). Mechanistically, ivermectin decreases mitochondrial respiration, membrane potential, ATP levels and increases mitochondrial superoxide in U87, T98G and HBMEC cells exposed to ivermectin. The inhibitory effects of ivermectin are significantly reversed in mitochondria-deficient cells or cells treated with antioxidants, further confirming that ivermectin acts through mitochondrial respiration inhibition and induction of oxidative stress. Importantly, we show that ivermectin suppresses phosphorylation of Akt, mTOR and ribosomal S6 in glioblastoma and HBMEC cells, suggesting its inhibitory role in deactivating Akt/mTOR pathway. Altogether, our work demonstrates that ivermectin is a useful addition to the treatment armamentarium for glioblastoma. Our work also highlights the therapeutic value of targeting mitochondrial metabolism in glioblastoma. - Highlights: • Ivermectin is effective in glioblastoma cells in vitro and in vivo. • Ivermectin inhibits angiogenesis. • Ivermectin induces mitochondrial dysfunction and oxidative stress. • Ivermectin deactivates Akt/mTOR signaling pathway.« less

  13. Panax notoginseng saponins (PNS) inhibits breast cancer metastasis.

    PubMed

    Wang, Peiwei; Cui, Jingang; Du, Xiaoye; Yang, Qinbo; Jia, Chenglin; Xiong, Minqi; Yu, Xintong; Li, Li; Wang, Wenjian; Chen, Yu; Zhang, Teng

    2014-07-03

    Panax notoginseng (Burkill) F.H. Chen (Araliaceae) has been extensively used as a therapeutic agent to treat a variety of diseases. Panax notoginseng saponins (PNS) consist of major therapeutically active components of Panax notoginseng. PNS inhibit the growth of a variety of tumor cells in vitro and in vivo. The aim of the study is to investigate the effects and underlying mechanisms of PNS on breast cancer metastasis. 4T1 cell, a highly metastatic mouse breast carcinoma cell line, was utilized for in vitro and in vivo assays. In vitro assays were first performed to examine the effects of PNS on 4T1 cell viability, migration and invasion, respectively. Real-time PCR analyses were also performed to examine the effects of PNS on the expression of genes associated with tumor metastasis. The effect of PNS on 4T1 tumor cell metastasis was further assessed in spontaneous and experimental metastasis models in vivo. PNS treatment exhibited a dose-dependent effect on impairing 4T1 cell viability in vitro. However, when examined at a lower dose that did not affect cell viability, the migration and invasion of 4T1 cell was remarkably inhibited in vitro. Meanwhile, PNS treatment led to upregulated expression of genes known to inhibit metastasis and downregulated expression of genes promoting metastasis in cultured 4T1 cells. These results suggested a selective effect of PNS on 4T1 migration and invasion. This hypothesis was further addressed in 4T1 metastasis models in vivo. The results showed that the lung metastasis was significantly inhibited by PNS treatment in both spontaneous and experimental metastasis models. Taken together, our results demonstrated an inhibitory effect of PNS on 4T1 tumor metastasis, warranting further evaluation of PNS as a therapeutic agent for treating breast cancer metastasis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Polydatin inhibits cell proliferation and induces apoptosis in laryngeal cancer and HeLa cells via suppression of the PDGF/AKT signaling pathway.

    PubMed

    Li, Haixia; Shi, Baoyuan; Li, Yanyun; Yin, Fengfang

    2017-07-01

    Polydatin (PD), a stilbene compound extracted from Polygonum cuspidatum, is suggested to possess anti-cancer activities, including inhibition of cell proliferation, cell cycle arrest, and induction of apoptosis. The platelet-derived growth factor (PDGF)/AKT signaling pathway plays complex roles in tumor suppression. However, the effect of PD on the PDGF/AKT signaling pathway in laryngeal cancer and HeLa cells has not been explored. MTT assay and flow cytometry showed that PD inhibited cell proliferation and induced apoptosis in Hep-2 and AMC-HN-8 cells. Western blot analysis indicated that PD inhibited the expression levels of PDGF-B and phosphorylated AKT (p-AKT) in both cells. Treatment of PDGF-B siRNA or PDGFR inhibitor found that after the PDGF signaling was inactivated, p-AKT expression was significantly decreased in Hep-2 cells. Tumor xenograft experiment in nude mice indicated PD significantly inhibited the growth of Hep-2 cells in vivo. In conclusion, PD inhibited cell proliferation and induced apoptosis in laryngeal cancer and HeLa cells via inactivation of the PDGF/AKT signaling pathway. © 2017 Wiley Periodicals, Inc.

  15. Effects of matrix metalloproteinase inhibitor doxycycline and CD147 antagonist peptide-9 on gallbladder carcinoma cell lines.

    PubMed

    Wang, Shihang; Liu, Chao; Liu, Xinjiang; He, Yanxin; Shen, Dongfang; Luo, Qiankun; Dong, Yuxi; Dong, Haifeng; Pang, Zhigang

    2017-10-01

    Gallbladder carcinoma is the most common and aggressive malignancy of the biliary tree and highly expresses CD147, which is closely related to disease prognosis in a variety of human cancers. Doxycycline exhibited anti-tumor properties in many cancer cells. CD147 antagonist peptide-9 is a polypeptide and can specifically bind to CD147. The effect of these two drugs on gallbladder cancer cells has not been studied. The aim of this study is to investigate the effect of doxycycline and antagonist peptide-9 on gallbladder carcinoma cells and the possible mechanism of inhibition on cancer cell of doxycycline. To investigate the effects of doxycycline and antagonist peptide-9 on gallbladder carcinoma cells (GBC-SD and SGC-996), cell proliferation, CD147 expression, and early-stage apoptosis rate were measured after treated with doxycycline. Matrix metalloproteinase-2 and matrix metalloproteinase-9 activities were measured after treated with different concentrations of doxycycline, antagonist peptide-9, and their combination. The results demonstrated that doxycycline inhibited cell proliferation, reduced CD147 expression level, and induced an early-stage apoptosis response in GBC-SD and SGC-996 cells. The matrix metalloproteinase-2 and matrix metalloproteinase-9 activities were inhibited by antagonist peptide-9 and doxycycline, and the inhibitory effects were enhanced by combined drugs in gallbladder carcinoma cell lines. Taken together, doxycycline showed inhibitory effects on gallbladder carcinoma cell lines and reduced the expression of CD147, and this may be the mechanism by which doxycycline inhibits cancer cells. This study provides new information and tries to implement the design of adjuvant therapy method for gallbladder carcinoma.

  16. Notch3-specific inhibition using siRNA knockdown or GSI sensitizes paclitaxel-resistant ovarian cancer cells.

    PubMed

    Kang, Haeyoun; Jeong, Ju-Yeon; Song, Ji-Ye; Kim, Tae Heon; Kim, Gwangil; Huh, Jin Hyung; Kwon, Ah-Young; Jung, Sang Geun; An, Hee Jung

    2016-07-01

    Notch signaling plays an important role in ovarian cancer chemoresistance, which is responsible for recurrence. Gamma-secretase inhibitor (GSI) is a broad-spectrum Notch inhibitor, but it has serious side effects. The efficacy of Notch3-specific inhibition in paclitaxel-resistant ovarian cancers was assessed in this study, which has not yet been evaluated relative to GSI. To analyze the effect of Notch3-specific inhibition on paclitaxel-resistant ovarian cancers, we compared cell viability, apoptosis, cell migration, angiogenesis, cell cycle, and spheroid formation after treatment with either Notch3 siRNA or GSI in paclitaxel-resistant SKpac cells and parental SKOV3 cells. Expression levels of survival, cell cycle, and apoptosis-related proteins were measured and compared between groups. Notch3 was significantly overexpressed in chemoresistant cancer tissues and cell lines relative to chemosensitive group. In paclitaxel-resistant cancer cells, Notch inhibition significantly reduced viability, migration, and angiogenesis and increased apoptosis, thereby boosting sensitivity to paclitaxel. Spheroid formation was also significantly reduced. Both Notch3 siRNA-treated cells and GSI-treated cells arrested in the G2/M phase of the cell cycle. Proteins of cell survival, cyclin D1 and cyclin D3 were reduced, whereas p21 and p27 were elevated. Both GSI and Notch3 siRNA treatment reduced expression of anti-apoptotic proteins (BCL-W, BCL2, and BCL-XL) and increased expression of pro-apoptotic proteins (Bad, Bak, Bim, Bid, and Bax). These results indicate that Notch3-specific inhibition sensitizes paclitaxel-resistant cancer cells to paclitaxel treatment, with an efficacy comparable to that of GSI. This approach would be likely to avoid the side effects of broad-spectrum GSI treatment. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  17. Dehydroeffusol inhibits viability and epithelial-mesenchymal transition through the Hedgehog and Akt/mTOR signaling pathways in neuroblastoma cells.

    PubMed

    He, Kang; Duan, Guoqing; Li, Yanyang

    2018-06-15

    Neuroblastoma (NB) is the most predominant extracranial solid tumor of infancy in the world. However, current chemotherapy has limited efficacy for more advanced stages of NB due to acquired chemoresistance or acute toxicity in NB patients. Therefore, effective novel anti-NB drugs are desperately needed. The present study aimed to investigate the effects of dehydroeffusol (DHE), a phenanthrene isolated from J. effuses, on NB cells and its underlying mechanism. The results showed that DHE treatment effectively inhibited NB cell viability in a dose-dependent manner. Moreover, DHE treatment suppressed the epithelial-mesenchymal transition (EMT) process in NB cells by promoting the expression of E-cadherin (E-cad) and restraining the expressions of N-cadherin (N-cad) and vimentin. Also, the invasive capacity and expression of MMP-2 and MMP-9 in NB cells were inhibited by DHE. Furthermore, DHE suppressed the hedgehog (Hh) and the protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathways in NB cells. In conclusion, DHE effectively inhibited the viability and EMT through inactivating the Hh and the Akt/mTOR signaling pathways in NB cells, providing a novel evidence that DHE may be a potential anti-NB drug candidate. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Effects of modulators of AMP-activated protein kinase on TASK-1/3 and intracellular Ca(2+) concentration in rat carotid body glomus cells.

    PubMed

    Kim, Donghee; Kang, Dawon; Martin, Elizabeth A; Kim, Insook; Carroll, John L

    2014-05-01

    Acute hypoxia depolarizes carotid body chemoreceptor (glomus) cells and elevates intracellular Ca(2+) concentration ([Ca(2+)]i). Recent studies suggest that AMP-activated protein kinase (AMPK) mediates these effects of hypoxia by inhibiting the background K(+) channels such as TASK. Here we studied the effects of modulators of AMPK on TASK activity in cell-attached patches. Activators of AMPK (1mM AICAR and 0.1-0.5mM A769662) did not inhibit TASK activity or cause depolarization during acute (10min) or prolonged (2-3h) exposure. Hypoxia inhibited TASK activity by ∼70% in cells pretreated with AICAR or A769662. Both AICAR and A769662 (15-40min) failed to increase [Ca(2+)]i in glomus cells. Compound C (40μM), an inhibitor of AMPK, showed no effect on hypoxia-induced inhibition of TASK. AICAR and A769662 phosphorylated AMPKα in PC12 cells, and Compound C blocked the phosphorylation. Our results suggest that AMPK does not affect TASK activity and is not involved in hypoxia-induced elevation of intracellular [Ca(2+)] in isolated rat carotid body glomus cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Bioenergetic properties of human sarcoma cells help define sensitivity to metabolic inhibitors

    PubMed Central

    Issaq, Sameer H; Teicher, Beverly A; Monks, Anne

    2014-01-01

    Sarcomas represent a diverse group of malignancies with distinct molecular and pathological features. A better understanding of the alterations associated with specific sarcoma subtypes is critically important to improve sarcoma treatment. Renewed interest in the metabolic properties of cancer cells has led to an exploration of targeting metabolic dependencies as a therapeutic strategy. In this study, we have characterized key bioenergetic properties of human sarcoma cells in order to identify metabolic vulnerabilities between sarcoma subtypes. We have also investigated the effects of compounds that inhibit glycolysis or mitochondrial respiration, either alone or in combination, and examined relationships between bioenergetic parameters and sensitivity to metabolic inhibitors. Using 2-deoxy-D-glucose (2-DG), a competitive inhibitor of glycolysis, oligomycin, an inhibitor of mitochondrial ATP synthase, and metformin, a widely used anti-diabetes drug and inhibitor of complex I of the mitochondrial respiratory chain, we evaluated the effects of metabolic inhibition on sarcoma cell growth and bioenergetic function. Inhibition of glycolysis by 2-DG effectively reduced the viability of alveolar rhabdomyosarcoma cells vs. embryonal rhabdomyosarcoma, osteosarcoma, and normal cells. Interestingly, inhibitors of mitochondrial respiration did not significantly affect viability, but were able to increase sensitivity of sarcomas to inhibition of glycolysis. Additionally, inhibition of glycolysis significantly reduced intracellular ATP levels, and sensitivity to 2-DG-induced growth inhibition was related to respiratory rates and glycolytic dependency. Our findings demonstrate novel relationships between sarcoma bioenergetics and sensitivity to metabolic inhibitors, and suggest that inhibition of metabolic pathways in sarcomas should be further investigated as a potential therapeutic strategy. PMID:24553119

  20. Synergistic growth inhibition by acyclic retinoid and vitamin K2 in human hepatocellular carcinoma cells.

    PubMed

    Kanamori, Toh; Shimizu, Masahito; Okuno, Masataka; Matsushima-Nishiwaki, Rie; Tsurumi, Hisashi; Kojima, Soichi; Moriwaki, Hisataka

    2007-03-01

    Hepatocellular carcinoma (HCC) is one of the most prevalent cancers worldwide. However, effective chemopreventive and chemotherapeutic agents for this cancer have not yet been developed. In clinical trials acyclic retinoid (ACR) and vitamin K(2) (VK(2)) decreased the recurrence rate of HCC. In the present study we examined the possible combined effects of ACR or another retinoid 9-cis retinoic acid (9cRA) plus VK(2) in the HuH7 human HCC cell line. We found that the combination of 1.0 microM ACR or 1.0 microM 9cRA plus 10 microM VK(2) synergistically inhibited the growth of HuH7 cells without affecting the growth of Hc normal human hepatocytes. The combined treatment with ACR plus VK(2) also acted synergistically to induce apoptosis in HuH7 cells. Treatment with VK(2) alone inhibited phosphorylation of the retinoid X receptor (RXR)alpha protein, which is regarded as a critical factor for liver carcinogenesis, through inhibition of Ras activation and extracellular signal-regulated kinase phosphorylation. Moreover, the inhibition of RXRalpha phosphorylation by VK(2) was enhanced when the cells were cotreated with ACR. The combination of retinoids plus VK(2) markedly increased both the retinoic acid receptor responsive element and retinoid X receptor responsive element promoter activities in HuH7 cells. Our results suggest that retinoids (especially ACR) and VK(2) cooperatively inhibit activation of the Ras/MAPK signaling pathway, subsequently inhibiting the phosphorylation of RXRalpha and the growth of HCC cells. This combination might therefore be effective for the chemoprevention and chemotherapy of HCC.

  1. Anthelminthic drug niclosamide sensitizes the responsiveness of cervical cancer cells to paclitaxel via oxidative stress-mediated mTOR inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Liping; Wang, Li; Shen, Haibin

    Drug repurposing represents an alternative therapeutic strategy to cancer treatment. The potent anti-cancer activities of a FDA-approved anthelminthic drug niclosamide have been demonstrated in various cancers. However, whether niclosamide is active against cervical cancer is unknown. In this study, we investigated the effects of niclosamide alone and its combination with paclitaxel in cervical cancer in vitro and in vivo. We found that niclosamide significantly inhibited proliferation and induced apoptosis of a panel of cervical cancer cell lines, regardless of their cellular origin and genetic pattern. Niclosamide also inhibited tumor growth in cervical cancer xenograft mouse model. Importantly, niclosamide significantly enhanced the responsivenessmore » of cervical cancer cell to paclitaxel. We further found that niclosamide induced mitochondrial dysfunctions via inhibiting mitochondrial respiration, complex I activity and ATP generation, which led to oxidative stress. ROS scavenge agent N-acetyl-L-cysteine (NAC) completely reversed the effects of niclosamide in increasing cellular ROS, inhibiting proliferation and inducing apoptosis, suggesting that oxidative stress induction is the mechanism of action of niclosamide in cervical cancer cells. In addition, niclosamide significantly inhibited mammalian target of rapamycin (mTOR) signaling pathway in cervical cancer cells and its inhibitory effect on mTOR is modulated by oxidative stress. Our work suggests that niclosamide is a useful addition to the treatment armamentarium for cervical cancer and induction of oxidative stress may be a potential therapeutic strategy in cervical cancer. - Highlights: • Niclosamide is active against cervical cancer cells in vitro and in vivo. • Niclosamide sensitizes cervical cancer cell response to paclitaxel. • Niclosamide induces mitochondrial dysfunction and oxidative damage. • Niclosamide inhibits mTOR signaling in an oxidative stress-dependent manner.« less

  2. Activation of muscarinic M3 receptors inhibits large-conductance voltage- and Ca2+-activated K+ channels in rat urinary bladder smooth muscle cells

    PubMed Central

    Parajuli, Shankar P.

    2013-01-01

    Large conductance voltage- and Ca2+-activated K+ (BK) channels are key regulators of detrusor smooth muscle (DSM) contraction and relaxation during urine voiding and storage. Here, we explored whether BK channels are regulated by muscarinic receptors (M-Rs) in native freshly isolated rat DSM cells under physiological conditions using the perforated whole cell patch-clamp technique and pharmacological inhibitors. M-R activation with carbachol (1 μM) initially evoked large transient outward BK currents, followed by inhibition of the spontaneous transient outward BK currents (STBKCs) in DSM cells. Carbachol (1 μM) also inhibited the amplitude and frequency of spontaneous transient hyperpolarizations (STHs) and depolarized the DSM cell membrane potential. Selective inhibition of the muscarinic M3 receptors (M3-Rs) with 4-diphenylacetoxy-N-methylpiperidine (4-DAMP; 0.1 μM), but not muscarinic M2 receptors with methoctramine (1 μM), blocked the carbachol inhibitory effects on STBKCs. Furthermore, blocking the inositol 1,4,5-triphosphate (IP3) receptors with xestospongin-C (1 μM) inhibited the carbachol-induced large transient outward BK currents without affecting carbachol inhibitory effects on STBKCs. Upon pharmacological inhibition of all known cellular sources of Ca2+ for BK channel activation, carbachol (1 μM) did not affect the voltage-step-induced steady-state BK currents, suggesting that the muscarinic effects in DSM cells are mediated by mobilization of intracellular Ca2+. In conclusion, our findings provide strong evidence that activation of M3-Rs leads to inhibition of the STBKCs, STHs, and depolarization of DSM cells. Collectively, the data suggest the existence of functional interactions between BK channels and M3-Rs at a cellular level in DSM. PMID:23703523

  3. Magnolol Inhibits the Growth of Non-Small Cell Lung Cancer via Inhibiting Microtubule Polymerization.

    PubMed

    Shen, Jia; Ma, Hailin; Zhang, Tiancheng; Liu, Hui; Yu, Linghua; Li, Guosheng; Li, Huishuang; Hu, Meichun

    2017-01-01

    The tubulin/microtubule system, which is an integral component of the cytoskeleton, plays an essential role in mitosis. Targeting mitotic progression by disturbing microtubule dynamics is a rational strategy for cancer treatment. Microtubule polymerization assay was performed to examine the effect of Magnolol (a novel natural phenolic compound isolated from Magnolia obovata) on cellular microtubule polymerization in human non-small cell lung cancer (NSCLC) cells. Cell cycle analysis, mitotic index assay, cell proliferation assay, colony formation assay, western blotting analysis of cell cycle regulators, Annexin V-FITC/PI staining, and live/dead viability staining were carried out to investigate the Magnolol's inhibitory effect on proliferation and viability of NSCLS cells in vitro. Xenograft model of human A549 NSCLC tumor was used to determine the Magnolol's efficacy in vivo. Magnolol treatment effectively inhibited cell proliferation and colony formation of NSCLC cells. Further study proved that Magnolol induced the mitotic phase arrest and inhibited G2/M progression in a dose-dependent manner, which were mechanistically associated with expression alteration of a series of cell cycle regulators. Furthermore, Magnolol treatment disrupted the cellular microtubule organization via inhibiting the polymerization of microtubule. We also found treatment with NSCLC cells with Magnolol resulted in apoptosis activation through a p53-independent pathway, and autophgy induction via down-regulation of the Akt/mTOR pathway. Finally, Magnolol treatment significantly suppressed the NSCLC tumor growth in mouse xenograft model in vivo. These findings identify Magnolol as a promising candidate with anti-microtubule polymerization activity for NSCLC treatment. © 2017 The Author(s). Published by S. Karger AG, Basel.

  4. Potential mechanisms for the effects of tea extracts on the attachment, biofilm formation and cell size of Streptococcus mutans.

    PubMed

    Wang, Yi; Lee, Sui M; Dykes, Gary A

    2013-01-01

    Tea can inhibit the attachment of Streptococcus mutans to surfaces and subsequent biofilm formation. Five commercial tea extracts were screened for their ability to inhibit attachment and biofilm formation by two strains of S. mutans on glass and hydroxyapatite surfaces. The mechanisms of these effects were investigated using scanning electron microscopy (SEM) and phytochemical screening. The results indicated that extracts of oolong tea most effectively inhibited attachment and extracts of pu-erh tea most effectively inhibited biofilm formation. SEM images showed that the S. mutans cells treated with extracts of oolong tea, or grown in medium containing extracts of pu-erh tea, were coated with tea components and were larger with more rounded shapes. The coatings on the cells consisted of flavonoids, tannins and indolic compounds. The ratio of tannins to simple phenolics in each of the coating samples was ∼3:1. This study suggests potential mechanisms by which tea components may inhibit the attachment and subsequent biofilm formation of S. mutans on tooth surfaces, such as modification of cell surface properties and blocking of the activity of proteins and the structures used by the bacteria to interact with surfaces.

  5. New Verapamil Analogs Inhibit Intracellular Mycobacteria without Affecting the Functions of Mycobacterium-Specific T Cells

    PubMed Central

    Ruminiski, Peter G.; Kumar, Malkeet; Singh, Kawaljit; Hamzabegovic, Fahreta; Hoft, Daniel F.; Eickhoff, Christopher S.; Selimovic, Asmir; Campbell, Mary; Chibale, Kelly

    2015-01-01

    There is a growing interest in repurposing mycobacterial efflux pump inhibitors, such as verapamil, for tuberculosis (TB) treatment. To aid in the design of better analogs, we studied the effects of verapamil on macrophages and Mycobacterium tuberculosis-specific T cells. Macrophage activation was evaluated by measuring levels of nitric oxide, tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and gamma interferon (IFN-γ). Since verapamil is a known autophagy inducer, the roles of autophagy induction in the antimycobacterial activities of verapamil and norverapamil were studied using bone marrow-derived macrophages from ATG5flox/flox (control) and ATG5flox/flox Lyz-Cre mice. Our results showed that despite the well-recognized effects of verapamil on calcium channels and autophagy, its action on intracellular M. tuberculosis does not involve macrophage activation or autophagy induction. Next, the effects of verapamil and norverapamil on M. tuberculosis-specific T cells were assessed using flow cytometry following the stimulation of peripheral blood mononuclear cells from TB-skin-test-positive donors with M. tuberculosis whole-cell lysate for 7 days in the presence or absence of drugs. We found that verapamil and norverapamil inhibit the expansion of M. tuberculosis-specific T cells. Additionally, three new verapamil analogs were found to inhibit intracellular Mycobacterium bovis BCG, and one of the three analogs (KSV21) inhibited intracellular M. tuberculosis replication at concentrations that did not inhibit M. tuberculosis-specific T cell expansion. KSV21 also inhibited mycobacterial efflux pumps to the same degree as verapamil. More interestingly, the new analog enhances the inhibitory activities of isoniazid and rifampin on intracellular M. tuberculosis. In conclusion, KSV21 is a promising verapamil analog on which to base structure-activity relationship studies aimed at identifying more effective analogs. PMID:26643325

  6. The triterpenoids of Hibiscus syriacus induce apoptosis and inhibit cell migration in breast cancer cells.

    PubMed

    Hsu, Ren-Jun; Hsu, Yao-Chin; Chen, Shu-Pin; Fu, Chia-Lynn; Yu, Jyh-Cherng; Chang, Fung-Wei; Chen, Ying-Hsin; Liu, Jui-Ming; Ho, Jar-Yi; Yu, Cheng-Ping

    2015-03-14

    Breast cancer-related mortality increases annually. The efficacy of current breast cancer treatments is limited, and they have numerous side effects and permit high recurrence. Patients with estrogen receptor (ER)-negative or triple-negative breast cancer are particularly difficult to treat. Treatment for this type of cancer is lacking, and its prognosis is poor, necessitating the search for alternative treatments. This study screened Chinese herb Hibiscus syriacus extracts and identified a novel anti-cancer drug for patients with ER-negative breast cancer. The inhibitory effects on cell viability and migration were evaluated for each compound, and the molecular regulatory effects were evaluated on both mRNA and protein levels. We found several triterpenoids including betulin (K02) and its derivatives (K03, K04, and K06) from H. syriacus inhibited human triple-negative breast cancer cell viability and migration but revealed smaller cytotoxic effects on normal mammalian epithelial cells. Betulin and its derivatives induced apoptosis by activating apoptosis-related genes. In addition, they activated p21 expression, which induced cell cycle arrest in breast cancer cells. Betulin (K02) and betulinic acid (K06) had stronger inhibitory effects on cell viability and migration than K03 and K04. H. syriacus extracts might inhibit breast cancer cell viability and induce apoptosis by activating p53 family regulated pathways and inhibiting AKT activation. H. syriacus extracts may provide important insight into the development of novel alternative therapies for breast cancer.

  7. Magnolol-induced H460 cells death via autophagy but not apoptosis.

    PubMed

    Li, Hai-Bo; Yi, Xin; Gao, Jian-Mei; Ying, Xi-Xiang; Guan, Hong-Quan; Li, Jian-Chun

    2007-12-01

    We have reported that the protective effect of Magnolol on TBHP-induced injury in human nonsmall lung cancer H460 cells is partially via a p53 dependent mechanism. In this study, we found that Magnolol displayed a stimulatory effect at low concentrations (< or = 20 microM) whilst inhibitory effect at high concentrations (> or = 40 microM) in H460 cells. To investigate the mechanism of inducing the biphasic effect in H460 cells with Magnolol, we showed that Magnolol stimulated DNA synthesis at low concentrations and displayed an inhibition effect at high concentrations in H460 cells. More importantly, the inhibition of DNA synthesis was accompanied by the S phase cell cycle arrest and the appearance of intense intracytoplasmic vacuoles. These vacuoles can be labeled by autophagic marker monodansylcadaverin (MDC), 3-methyladenine (3-MA), an inhibitor of autophagy, was able to inhibit the occurrence of autophagy. The results of the LDH activity assay and TUNEL assay also showed that Magnolol at high concentrations inhibiting H460 cell growth was not via apoptotic pathway. Furthermore, accompanied by the occurrence of autophagy, the expression of phospho-Akt was down-regulated but PTEN significantly was up-regulated. In conclusion, Magnolol induces H460 cells death by autophagy but not apoptotic pathway. Blockade of PI3K/PTEN/Akt pathway is maybe related to Magnolol-induced autophagy. Autophagic cells death induction by Magnolol underlines the potential utility of its induction as a new cancer treatment modality.

  8. Inhibition of cell proliferation by nobiletin, a dietary phytochemical, associated with apoptosis and characteristic gene expression, but lack of effect on early rat hepatocarcinogenesis in vivo.

    PubMed

    Ohnishi, Hiroyuki; Asamoto, Makoto; Tujimura, Kazunari; Hokaiwado, Naomi; Takahashi, Satoru; Ogawa, Kumiko; Kuribayashi, Masanori; Ogiso, Tadashi; Okuyama, Harumi; Shirai, Tomoyuki

    2004-12-01

    Dietary phytochemicals can inhibit the development of certain types of tumors. We here investigated the effects of nobiletin (Nob), garcinol (Gar), auraptene (Aur), beta-cryptoxanthin- and hesperidine-rich pulp (CHRP) and 1,1'-acetoxychavicol acetate (ACA) on hepatocarcinogenesis in a rat medium-term liver bioassay, and also examined their influence on cell proliferation, cell cycle kinetics, apoptosis and cell invasion of rat and human hepatocellular carcinoma (HCC) cells, MH1C1 and HepG2, respectively. While there were no obvious suppressive effects on the development of putative preneoplastic liver lesions, inhibition of hepatocarcinoma cell proliferation was evident in the Nob group. Nob also caused G2/M cell cycle arrest and apoptosis. Microarray analysis identified a set of genes specifically regulated by Nob, and these are likely to be involved in the observed growth suppression of HCC cells. These results suggest that phytochemicals might have chemopreventive potential in late stages of hepatocarcinogenesis.

  9. Inhibition of TNF-alpha-induced NF-kappaB activation and IL-8 release in A549 cells with the proteasome inhibitor MG-132.

    PubMed

    Fiedler, M A; Wernke-Dollries, K; Stark, J M

    1998-08-01

    The working hypothesis of the studies described herein was that inhibition of proteasome-mediated IkappaB degradation would inhibit TNF-alpha-induced nuclear factor-kappaB (NF-kappaB) activation, interleukin-8 (IL-8) gene transcription, and IL-8 protein release in A549 cells. Mutational analysis of the 5' flanking region of the IL-8 gene confirmed that an intact NF-kappaB site is necessary for TNF-alpha-induced IL-8 gene transcription. The addition of TNF-alpha to A549 cells resulted in rapid loss of IkappaB from the cytoplasm of cells, associated with a corresponding increase in NF-kappaB-binding activity in nuclear extracts from the cells. However, pretreatment of the cells with the proteasome inhibitor N-cbz-Leu-Leu-leucinal (MG-132, 10 microM) reversed the effects of TNF-alpha on IL-8 release from A549 cells (as determined with an enzyme-linked immunosorbent assay [ELISA]) and on IL-8 gene transcription (as determined with reporter-gene assays). MG-132 reversed the effects of TNF-alpha on IkappaB degradation as determined by Western blot analysis. IkappaB phosphorylation and ubiquination were not altered by MG-132, which implies that the effects of MG-132 were secondary to proteasome inhibition. MG-132 also reversed the increase in NF-kappaB binding in nuclear extracts from TNF-alpha-treated cells. These studies show that inhibition of proteasome-mediated IkappaB degradation results in inhibition of TNF-alpha induced IL-8 production in A549 cells by limiting NF-kappaB-mediated gene transcription.

  10. Relation of the antiproliferative action of methylglyoxal-bis(guanylhydrazone) to the natural polyamines.

    PubMed

    Seppänen, P; Alhonen-Hongisto, L; Jänne, J

    1980-09-01

    Enzymic determinations of intracellular concentrations of methylglyoxal-bis(guanylhydrazone), an anticancer drug which inhibits the synthesis of the polyamines spermidine and spermine, in cultured tumor cells revealed that the drug was remarkably effectively concentrated inside the cell. A concentration gradient across the cell membrane as great as 500--1000-fold was formed in cells exposed to the drug for 1-2 days. An exposure of cultured Ehrlich ascites carcinoma cells to increasing concentrations of the drug indicated that the cells could tolerate intracellular concentrations up to 1 mM with only slight changes in their proliferation rate. Micromolar concentrations of spermidine or spermine, but not putrescine, effectively blocked the uptake of methylglyoxal-bis(guanylhydrazone) and reduced the intracellular concentration of the drug below the levels required for growth inhibition. Analysis of cellular polyamine contents in Ehrlich ascites cells exposed to rising concentrations of methylglyoxal-bis(guanylhydrazone) gave little support to the view that the drug-induced growth inhibition was solely produced by an intracellular polyamine deprivation. Not only was the uptake of the drug inhibited in the presence of spermidine and spermine, but it was likewise washed out by polyamines from the cells that had been previously exposed to the drug and then transferred into drug-free medium in the presence of polyamines. For the inhibition of methylglyoxal-bis(guanylhydrazone) uptake by amines, three or more amino/imino groups were apparently required, since low concentrations of aliphatic diamines were either without any effect (short-chain diamines) or only marginally prevented (long-chain diamines) the uptake of the drug. High concentrations of Mg2+ ions, however, markedly inhibited the transport of the drug into Ehrlich ascites tumor cells.

  11. The Antiproliferative Effect of Cyclodipeptides from Pseudomonas aeruginosa PAO1 on HeLa Cells Involves Inhibition of Phosphorylation of Akt and S6k Kinases.

    PubMed

    Hernández-Padilla, Laura; Vázquez-Rivera, Dolores; Sánchez-Briones, Luis A; Díaz-Pérez, Alma L; Moreno-Rodríguez, José; Moreno-Eutimio, Mario A; Meza-Carmen, Victor; Cruz, Homero Reyes-De la; Campos-García, Jesús

    2017-06-20

    Pseudomonas aeruginosa PAO1, a potential pathogen of plants and animals, produces the cyclodipeptides cyclo(l-Pro-l-Tyr), cyclo(l-Pro-l-Phe), and cyclo(l-Pro-l-Val) (PAO1-CDPs), whose effects have been implicated in inhibition of human tumor cell line proliferation. Our purpose was to investigate in depth in the mechanisms of HeLa cell proliferation inhibition by the PAO1-CDPs. The results indicate that PAO1-CDPs, both purified individually and in mixtures, inhibited HeLa cell proliferation by arresting the cell cycle at the G0-G1 transition. The crude PAO1-CDPs mixture promoted cell death in HeLa cells in a dose-dependent manner, showing efficacy similar to that of isolated PAO1-CDPs (LD 50 of 60-250 µM) and inducing apoptosis with EC 50 between 0.6 and 3.0 µM. Moreover, PAO1-CDPs showed a higher proapoptotic activity (~10³-10⁵ fold) than their synthetic analogs did. Subsequently, the PAO1-CDPs affected mitochondrial membrane potential and induced apoptosis by caspase-9-dependent pathway. The mechanism of inhibition of cells proliferation in HeLa cells involves inhibition of phosphorylation of both Akt-S473 and S6k-T389 protein kinases, showing a cyclic behavior of their expression and phosphorylation in a time and concentration-dependent fashion. Taken together our findings indicate that PI3K-Akt-mTOR-S6k signaling pathway blockage is involved in the antiproliferative effect of the PAO1-CDPs.

  12. Targeting fibroblast growth factor receptor signaling inhibits prostate cancer progression.

    PubMed

    Feng, Shu; Shao, Longjiang; Yu, Wendong; Gavine, Paul; Ittmann, Michael

    2012-07-15

    Extensive correlative studies in human prostate cancer as well as studies in vitro and in mouse models indicate that fibroblast growth factor receptor (FGFR) signaling plays an important role in prostate cancer progression. In this study, we used a probe compound for an FGFR inhibitor, which potently inhibits FGFR-1-3 and significantly inhibits FGFR-4. The purpose of this study is to determine whether targeting FGFR signaling from all four FGFRs will have in vitro activities consistent with inhibition of tumor progression and will inhibit tumor progression in vivo. Effects of AZ8010 on FGFR signaling and invasion were analyzed using immortalized normal prostate epithelial (PNT1a) cells and PNT1a overexpressing FGFR-1 or FGFR-4. The effect of AZ8010 on invasion and proliferation in vitro was also evaluated in prostate cancer cell lines. Finally, the impact of AZ8010 on tumor progression in vivo was evaluated using a VCaP xenograft model. AZ8010 completely inhibits FGFR-1 and significantly inhibits FGFR-4 signaling at 100 nmol/L, which is an achievable in vivo concentration. This results in marked inhibition of extracellular signal-regulated kinase (ERK) phosphorylation and invasion in PNT1a cells expressing FGFR-1 and FGFR-4 and all prostate cancer cell lines tested. Treatment in vivo completely inhibited VCaP tumor growth and significantly inhibited angiogenesis and proliferation and increased cell death in treated tumors. This was associated with marked inhibition of ERK phosphorylation in treated tumors. Targeting FGFR signaling is a promising new approach to treating aggressive prostate cancer.

  13. Specific Effect of Guanidine in the Programming of Poliovirus Inhibition of Deoxyribonucleic Acid Synthesis

    PubMed Central

    Powers, C. D.; Miller, B. A.; Kurtz, H.; Ackermann, W. W.

    1969-01-01

    Inhibition of HeLa cell deoxyribonucleic acid (DNA) synthesis, which occurred by the 4th to 5th hr after infection with poliovirus, could be blocked completely by guanidine only when it was present before the 2nd hr. At the 2nd hr, there was no significant ribonucleic acid (RNA)-replicase activity, and addition of guanidine inhibited all production of virus but allowed 57% of maximal DNA inhibition to develop. Maximum DNA inhibition developed in cells infected for 4 hr in the presence of guanidine when the guanidine was removed for a 10-min interval. RNA-replicase activity was not enzymatically detectable and viral multiplication did not develop in these cells unless the interval without guanidine was extended to 60 min. The interpretation of the data was that the effect of guanidine on viral-induced inhibition of DNA synthesis was distinct and not a consequence of the inhibition of RNA-replicase. PMID:4305675

  14. Escin suppresses migration and invasion involving the alteration of CXCL16/CXCR6 axis in human gastric adenocarcinoma AGS cells.

    PubMed

    Lee, Hyun Sook; Hong, Ji Eun; Kim, Eun Ji; Kim, Sun Hyo

    2014-01-01

    Escin, a natural mixture of triterpene saponins isolated from horse chestnut, has been reported to possess anticancer activity in many human cancer cells. However, the effect of escin on the metastasis has not been studied. The present study examined the effect of escin on the migration and invasion of AGS human gastric cancer cells. To examine the effects of escin on metastatic capacities of gastric cancer cells, AGS cells were cultured in the presence of 0-4 μmol/L escin. Escin inhibited cell migration and invasion in AGS cells. However, escin did not affect the viability of these cells at these concentrations. The chemokine receptor and its ligands play an important role in cancer metastasis. Escin decreased the production of soluble C-X-C motif chemokine (CXCL)16 but increased the expression of trans-membranous CXCL16. The expression of C-X-C chemokine receptor (CXCR)6 was not affected by escin treatment. Exogenous CXCL16 reversed escin-induced migration inhibition. In addition, escin inhibited the phosphorylation of focal adhesion kinase and Akt. These results demonstrate that escin inhibited the migration and invasion of AGS cells, which is associated with altered CXCL16/CXCR6 axis. These findings suggest that escin has potential as an antimetastatic agent in gastric cancer.

  15. Curcumin Sensitizes Silymarin to Exert Synergistic Anticancer Activity in Colon Cancer Cells.

    PubMed

    Montgomery, Amanda; Adeyeni, Temitope; San, KayKay; Heuertz, Rita M; Ezekiel, Uthayashanker R

    2016-01-01

    We studied combinatorial interactions of two phytochemicals, curcumin and silymarin, in their action against cancer cell proliferation. Curcumin is the major component of the spice turmeric. Silymarin is a bioactive component of milk thistle used as a protective supplement against liver disease. We studied antiproliferative effects of curcumin alone, silymarin alone and combinations of curcumin and silymarin using colon cancer cell lines (DLD-1, HCT116, LoVo). Curcumin inhibited colon cancer cell proliferation in a concentration-dependent manner, whereas silymarin showed significant inhibition only at the highest concentrations assessed. We found synergistic effects when colon cancer cells were treated with curcumin and silymarin together. The combination treatment led to inhibition of colon cancer cell proliferation and increased apoptosis compared to single compound treated cells. Combination treated cells exhibited marked cell rounding and membrane blebbing of apoptotic cells. Curcumin treated cells showed 3-fold more caspase3/7 activity whereas combination treated cells showed 5-fold more activity compared to control and silymarin treated cells. When DLD-1 cells were pre-exposed to curcumin, followed by treatment with silymarin, the cells underwent a high amount of cell death. The pre-exposure studies indicated curcumin sensitization of silymarin effect. Our results indicate that combinatorial treatments using phytochemicals are effective against colorectal cancer.

  16. Fentanyl inhibits proliferation and invasion of colorectal cancer via β-catenin

    PubMed Central

    Zhang, Xiu-Lai; Chen, Min-Li; Zhou, Sheng-Li

    2015-01-01

    Background and aim: Fentanyl is widely used for relieving pain and narcotizing in cancer patients. However, there are few published reports regarding the effects of fentanyl on tumor control and treatment. Here we investigated the effects of fentanyl on tumor growth and cell invasion in the human colorectal carcinoma (HCT116) cells. Methods: Nude mice xenografts of HCT116 cells were established to assess the inhibition effect on tumor growth by fentanyl. MTT and Transwell were employed to determine the cell survival rate and cell invasion, respectively. MicroRNAs and mRNAs expression were quantified by real-time PCR. β-catenin and matrix metalloproteinases (MMP-2 and MMP-9) expression were assayed by western blotting. β-Catenin-specific small interfering RNA (Si-β-catenin) and miR-182 mimics were transfected in cells to investigate the mechanism underlying the effects of fentanyl on the colorectal tumor and HCT116 cells. Results: Treatment with fentanyl inhibited the tumor growth and HCT116 cells invasion. Fentanyl also downregulated the expression of β-catenin and miR-182 in both xenograft tumors and HCT116 cells, and decreased the protein level of MMP-9 in HCT116 cells. Downregulation of β-Catenin resulted in the decrease of miR-182 expression in colorectal cells. In addition, the overexpression of miR-182 reversed the effect of fentanyl on MMP-9 expression and cell invasion of HCT116 cells. Conclusions: The current study demonstrated that the inhibition of tumor growth and cell invasion in colorectal cancer by fentanyl is probably due to downregulation of miR-182 and MMP-9 expression by β-catenin. PMID:25755709

  17. Deregulated hedgehog pathway signaling is inhibited by the smoothened antagonist LDE225 (Sonidegib) in chronic phase chronic myeloid leukaemia

    PubMed Central

    Irvine, David A.; Zhang, Bin; Kinstrie, Ross; Tarafdar, Anuradha; Morrison, Heather; Campbell, Victoria L.; Moka, Hothri A.; Ho, Yinwei; Nixon, Colin; Manley, Paul W.; Wheadon, Helen; Goodlad, John R.; Holyoake, Tessa L.; Bhatia, Ravi; Copland, Mhairi

    2016-01-01

    Targeting the Hedgehog (Hh) pathway represents a potential leukaemia stem cell (LSC)-directed therapy which may compliment tyrosine kinase inhibitors (TKIs) to eradicate LSC in chronic phase (CP) chronic myeloid leukaemia (CML). We set out to elucidate the role of Hh signaling in CP-CML and determine if inhibition of Hh signaling, through inhibition of smoothened (SMO), was an effective strategy to target CP-CML LSC. Assessment of Hh pathway gene and protein expression demonstrated that the Hh pathway is activated in CD34+ CP-CML stem/progenitor cells. LDE225 (Sonidegib), a small molecule, clinically investigated SMO inhibitor, used alone and in combination with nilotinib, inhibited the Hh pathway in CD34+ CP-CML cells, reducing the number and self-renewal capacity of CML LSC in vitro. The combination had no effect on normal haemopoietic stem cells. When combined, LDE225 + nilotinib reduced CD34+ CP-CML cell engraftment in NSG mice and, upon administration to EGFP+ /SCLtTA/TRE-BCR-ABL mice, the combination enhanced survival with reduced leukaemia development in secondary transplant recipients. In conclusion, the Hh pathway is deregulated in CML stem and progenitor cells. We identify Hh pathway inhibition, in combination with nilotinib, as a potentially effective therapeutic strategy to improve responses in CP-CML by targeting both stem and progenitor cells. PMID:27157927

  18. Albendazole inhibits HIF-1α-dependent glycolysis and VEGF expression in non-small cell lung cancer cells.

    PubMed

    Zhou, Fang; Du, Jin; Wang, Jianjun

    2017-04-01

    Albendazole (ABZ) has an anti-tumor ability and inhibits HIF-1α activity. HIF-1α is associated with glycolysis and vascular endothelial cell growth factor (VEGF) expression, which plays an important role in cancer progression. These clues indicate that ABZ exerts an anti-cancer effect by regulating glycolysis and VEGF expression. The aim of this study is to clarify the effects of ABZ on non-small cell lung cancer (NSCLC) cells and explore the underlying molecular mechanisms. The expression levels of HIF-1α and VEGF were detected using western blot analysis, and the effect of ABZ on glycolysis was evaluated by measuring the relative activities of hexokinase (HK), pyruvate kinase (PK), and lactate dehydrogenase (LDH) and detecting the production of lactate in A549 and H1299 cells. The results showed that ABZ decreased the expression levels of HIF-1α and VEGF and suppressed glycolysis in under hypoxia, but not normoxic condition. Inhibiting HIF-1α also suppressed glycolysis and VEGF expression. Additionally, ABZ inhibited the volume and weight, decreased the relative activities of HK, PK, and LDH, and reduced the levels of HIF-1α and VEGF of A549 xenografts in mouse models. In conclusion, ABZ inhibited growth of NSCLC cells by suppressing HIF-1α-dependent glycolysis and VEGF expression.

  19. Omega 3 but not omega 6 fatty acids inhibit AP-1 activity and cell transformation in JB6 cells.

    PubMed

    Liu, G; Bibus, D M; Bode, A M; Ma, W Y; Holman, R T; Dong, Z

    2001-06-19

    Epidemiological and animal-based investigations have indicated that the development of skin cancer is in part associated with poor dietary practices. Lipid content and subsequently the derived fatty acid composition of the diet are believed to play a major role in the development of tumorigenesis. Omega 3 (omega3) fatty acids, including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), can effectively reduce the risk of skin cancer whereas omega 6 (omega6) fatty acids such as arachidonic acid (AA) reportedly promote risk. To investigate the effects of fatty acids on tumorigenesis, we performed experiments to examine the effects of the omega3 fatty acids EPA and DHA and of the omega6 fatty acid AA on phorbol 12-tetradecanoate 13-acetate (TPA)-induced or epidermal growth factor (EGF)-induced transcription activator protein 1 (AP-1) transactivation and on the subsequent cellular transformation in a mouse epidermal JB6 cell model. DHA treatment resulted in marked inhibition of TPA- and EGF-induced cell transformation by inhibiting AP-1 transactivation. EPA treatment also inhibited TPA-induced AP-1 transactivation and cell transformation but had no effect on EGF-induced transformation. AA treatment had no effect on either TPA- or EGF-induced AP-1 transactivation or transformation, but did abrogate the inhibitory effects of DHA on TPA- or EGF-induced AP-1 transactivation and cell transformation in a dose-dependent manner. The results of this study demonstrate that the inhibitory effects of omega3 fatty acids on tumorigenesis are more significant for DHA than for EPA and are related to an inhibition of AP-1. Similarly, because AA abrogates the beneficial effects of DHA, the dietary ratio of omega6 to omega3 fatty acids may be a significant factor in mediating tumor development.

  20. Involvement of Endoplasmic Reticulum Stress, Autophagy, and Apoptosis in Advanced Glycation End Products-Induced Glomerular Mesangial Cell Injury

    PubMed Central

    Chiang, Chih-Kang; Wang, Ching-Chia; Lu, Tien-Fong; Huang, Kuo-How; Sheu, Meei-Ling; Liu, Shing-Hwa; Hung, Kuan-Yu

    2016-01-01

    Advanced glycation end-products (AGEs)-induced mesangial cell death is one of major causes of glomerulus dysfunction in diabetic nephropathy. Both endoplasmic reticulum (ER) stress and autophagy are adaptive responses in cells under environmental stress and participate in the renal diseases. The role of ER stress and autophagy in AGEs-induced mesangial cell death is still unclear. Here, we investigated the effect and mechanism of AGEs on glomerular mesangial cells. AGEs dose-dependently decreased mesangial cell viability and induced cell apoptosis. AGEs also induced ER stress signals in a time- and dose-dependent manner. Inhibition of ER stress with 4-phenylbutyric acid effectively inhibited the activation of eIF2α and CHOP signals and reversed AGEs-induced cell apoptosis. AGEs also activated LC-3 cleavage, increased Atg5 expression, and decreased p62 expression, which indicated the autophagy induction in mesangial cells. Inhibition of autophagy by Atg5 siRNAs transfection aggravated AGEs-induced mesangial cell apoptosis. Moreover, ER stress inhibition by 4-phenylbutyric acid significantly reversed AGEs-induced autophagy, but autophagy inhibition did not influence the AGEs-induced ER stress-related signals activation. These results suggest that AGEs induce mesangial cell apoptosis via an ER stress-triggered signaling pathway. Atg5-dependent autophagy plays a protective role. These findings may offer a new strategy against AGEs toxicity in the kidney. PMID:27665710

  1. PTK6 inhibition promotes apoptosis of Lapatinib-resistant Her2(+) breast cancer cells by inducing Bim.

    PubMed

    Park, Sun Hee; Ito, Koichi; Olcott, William; Katsyv, Igor; Halstead-Nussloch, Gwyneth; Irie, Hanna Y

    2015-06-19

    Protein tyrosine kinase 6 (PTK6) is a non-receptor tyrosine kinase that is highly expressed in Human Epidermal Growth Factor 2(+) (Her2(+)) breast cancers. Overexpression of PTK6 enhances anchorage-independent survival, proliferation, and migration of breast cancer cells. We hypothesized that PTK6 inhibition is an effective strategy to inhibit growth and survival of Her2(+) breast cancer cells, including those that are relatively resistant to Lapatinib, a targeted therapy for Her2(+) breast cancer, either intrinsically or acquired after continuous drug exposure. To determine the effects of PTK6 inhibition on Lapatinib-resistant Her2(+) breast cancer cell lines (UACC893R1 and MDA-MB-453), we used short hairpin ribonucleic acid (shRNA) vectors to downregulate PTK6 expression. We determined the effects of PTK6 downregulation on growth and survival in vitro and in vivo, as well as the mechanisms responsible for these effects. Lapatinib treatment of "sensitive" Her2(+) cells induces apoptotic cell death and enhances transcript and protein levels of Bim, a pro-apoptotic Bcl2 family member. In contrast, treatment of relatively "resistant" Her2(+) cells fails to induce Bim or enhance levels of cleaved, poly-ADP ribose polymerase (PARP). Downregulation of PTK6 expression in these "resistant" cells enhances Bim expression, resulting in apoptotic cell death. PTK6 downregulation impairs growth of these cells in in vitro 3-D Matrigel(TM) cultures, and also inhibits growth of Her2(+) primary tumor xenografts. Bim expression is critical for apoptosis induced by PTK6 downregulation, as co-expression of Bim shRNA rescued these cells from PTK6 shRNA-induced death. The regulation of Bim by PTK6 is not via changes in Erk/MAPK or Akt signaling, two pathways known to regulate Bim expression. Rather, PTK6 downregulation activates p38, and pharmacological inhibition of p38 activity prevents PTK6 shRNA-induced Bim expression and partially rescues cells from apoptosis. PTK6 downregulation induces apoptosis of Lapatinib-resistant Her2(+) breast cancer cells by enhancing Bim expression via p38 activation. As Bim expression is a critical biomarker for response to many targeted therapies, PTK6 inhibition may offer a therapeutic approach to treating patients with Her2 targeted therapy-resistant breast cancers.

  2. Resveratrol induces autophagy by directly inhibiting mTOR through ATP competition

    PubMed Central

    Park, Dohyun; Jeong, Heeyoon; Lee, Mi Nam; Koh, Ara; Kwon, Ohman; Yang, Yong Ryoul; Noh, Jungeun; Suh, Pann-Ghill; Park, Hwangseo; Ryu, Sung Ho

    2016-01-01

    Resveratrol (RSV) is a natural polyphenol that has a beneficial effect on health, and resveratrol-induced autophagy has been suggested to be a key process in mediating many beneficial effects of resveratrol, such as reduction of inflammation and induction of cancer cell death. Although various resveratrol targets have been suggested, the molecule that mediates resveratrol-induced autophagy remains unknown. Here, we demonstrate that resveratrol induces autophagy by directly inhibiting the mTOR-ULK1 pathway. We found that inhibition of mTOR activity and presence of ULK1 are required for autophagy induction by resveratrol. In line with this mTOR dependency, we found that resveratrol suppresses the viability of MCF7 cells but not of SW620 cells, which are mTOR inhibitor sensitive and insensitive cancer cells, respectively. We also found that resveratrol-induced cancer cell suppression occurred ULK1 dependently. For the mechanism of action of resveratrol on mTOR inhibition, we demonstrate that resveratrol directly inhibits mTOR. We found that resveratrol inhibits mTOR by docking onto the ATP-binding pocket of mTOR (i.e., it competes with ATP). We propose mTOR as a novel direct target of resveratrol, and inhibition of mTOR is necessary for autophagy induction. PMID:26902888

  3. Effect of ethanol on hydrogen peroxide-induced AMPK phosphorylation.

    PubMed

    Liangpunsakul, Suthat; Wou, Sung-Eun; Zeng, Yan; Ross, Ruth A; Jayaram, Hiremagalur N; Crabb, David W

    2008-12-01

    AMP-activated protein kinase (AMPK) responds to oxidative stress. Previous work has shown that ethanol treatment of cultured hepatoma cells and of mice inhibited the activity of AMPK and reduced the amount of AMPK protein. Ethanol generates oxidative stress in the liver. Since AMPK is activated by reactive oxygen species, it seems paradoxical that ethanol would inhibit AMPK in the hepatoma cells. In an attempt to understand the mechanism whereby ethanol inhibits AMPK, we studied the effect of ethanol on AMPK activation by exogenous hydrogen peroxide. The effects of ethanol, hydrogen peroxide, and inhibitors of protein phosphatase 2A (PP2A) [either okadaic acid or PP2A small interference RNA (siRNA)] on AMPK phosphorylation and activity were examined in rat hepatoma cells (H4IIEC3) and HeLa cells. In H4IIEC3 cells, hydrogen peroxide (H(2)O(2), 1 mM) transiently increased the level of phospho-AMPK to 1.5-fold over control (P < 0.05). Similar findings were observed in HeLa cells, which do not express the upstream AMPK kinase, LKB1. H(2)O(2) markedly increased the phosphorylation of LKB1 in H4IIEC3 cells. Ethanol significantly inhibited the phosphorylation of PKC-zeta, LKB1, and AMPK caused by exposure to H(2)O(2). This inhibitory effect of ethanol required its metabolism. More importantly, the inhibitory effects of ethanol on H(2)O(2)-induced AMPK phosphorylation were attenuated by the presence of the PP2A inhibitor, okadaic acid, or PP2A siRNA. The inhibitory effect of ethanol on AMPK phosphorylation is exerted through the inhibition of PKC-zeta and LKB1 phosphorylation and the activation of PP2A.

  4. Apigenin inhibits NF-κB and snail signaling, EMT and metastasis in human hepatocellular carcinoma.

    PubMed

    Qin, Yuan; Zhao, Dong; Zhou, Hong-Gang; Wang, Xing-Hui; Zhong, Wei-Long; Chen, Shuang; Gu, Wen-Guang; Wang, Wei; Zhang, Chun-Hong; Liu, Yan-Rong; Liu, Hui-Juan; Zhang, Qiang; Guo, Yuan-Qiang; Sun, Tao; Yang, Cheng

    2016-07-05

    Apigenin is a naturally occurring compound with anti-inflammatory, antioxidant, and anticancer properties. In this study, we investigated the effects of apigenin on migration and metastasis in experimental human hepatocellular carcinoma (HCC) cell lines in vitro and in vivo. Apigenin dose-dependently inhibited proliferation, migration, and invasion by PLC and Bel-7402 human HCC cells. It also suppressed tumor growth in PLC cell xenografts without altering body weight, thereby prolonging survival. Apigenin reduced Snai1 and NF-κB expression, reversed increases in epithelial-mesenchymal transition (EMT) marker levels, increased cellular adhesion, regulated actin polymerization and cell migration, and inhibited invasion and migration by HCC cells. Apigenin may therefore inhibit EMT by inhibiting the NF-κB/Snail pathway in human HCC.

  5. Apigenin inhibits NF-κB and Snail signaling, EMT and metastasis in human hepatocellular carcinoma

    PubMed Central

    Zhong, Wei-long; Chen, Shuang; Gu, Wen-guang; Wang, Wei; Zhang, Chun-hong; Liu, Yan-rong; Liu, Hui-juan; Zhang, Qiang; Guo, Yuan-qiang; Sun, Tao; Yang, Cheng

    2016-01-01

    Apigenin is a naturally occurring compound with anti-inflammatory, antioxidant, and anticancer properties. In this study, we investigated the effects of apigenin on migration and metastasis in experimental human hepatocellular carcinoma (HCC) cell lines in vitro and in vivo. Apigenin dose-dependently inhibited proliferation, migration, and invasion by PLC and Bel-7402 human HCC cells. It also suppressed tumor growth in PLC cell xenografts without altering body weight, thereby prolonging survival. Apigenin reduced Snai1 and NF-κB expression, reversed increases in epithelial-mesenchymal transition (EMT) marker levels, increased cellular adhesion, regulated actin polymerization and cell migration, and inhibited invasion and migration by HCC cells. Apigenin may therefore inhibit EMT by inhibiting the NF-κB/Snail pathway in human HCC. PMID:27203387

  6. PI3K-Akt signaling activates mTOR-mediated epileptogenesis in organotypic hippocampal culture model of posttraumatic epilepsy

    PubMed Central

    Berdichevsky, Yevgeny; Dryer, Alexandra M.; Saponjian, Yero; Mahoney, Mark M.; Pimentel, Corrin A.; Lucini, Corrina A.; Usenovic, Marija; Staley, Kevin J.

    2013-01-01

    mTOR is activated in epilepsy, but the mechanisms of mTOR activation in post-traumatic epileptogenesis are unknown. It is also not clear whether mTOR inhibition has an antiepileptogenic, or merely anti-convulsive effect. The rat hippocampal organotypic culture model of post-traumatic epilepsy was used to study the effects of long term (four weeks) inhibition of signaling pathways that interact with mTOR. Ictal activity was quantified by measurement of lactate production and electrical recordings, and cell death was quantified with LDH release measurements and Nissl-stained neuron counts. Lactate and LDH measurements were well-correlated with electrographic activity and neuron counts, respectively. Inhibition of PI3K and Akt prevented activation of mTOR, and was as effective as inhibition of mTOR in reducing ictal activity and cell death. A dual inhibitor of PI3K and mTOR, NVP-BEZ235, was also effective. Inhibition of mTOR with rapamycin reduced axon sprouting. Late start of rapamycin treatment was effective in reducing epileptic activity and cell death, while early termination of rapamycin treatment did not result in increased epileptic activity or cell death. The conclusions of the study are: (1), the organotypic hippocampal culture model of posttraumatic epilepsy comprises a rapid assay of antiepileptogenic and neuroprotective activities and, in this model (2), mTOR activation depends on PI3K-Akt signaling, and (3) transient inhibition of mTOR has sustained effects on epilepsy. PMID:23699517

  7. Targeting of the Glutathione, Thioredoxin, and Nrf2 Antioxidant Systems in Head and Neck Cancer.

    PubMed

    Roh, Jong-Lyel; Jang, Hyejin; Kim, Eun Hye; Shin, Daiha

    2017-07-10

    The glutathione (GSH), thioredoxin (Trx), and Nrf2 systems represent a major defense against reactive oxygen species (ROS), the cellular imbalance of which in cancer promotes growth and therapeutic resistance. This study investigated whether targeting the GSH, Trx, and Nrf2 antioxidant systems effectively eliminated head and neck cancer (HNC). At high concentrations, auranofin, but not buthionine sulfoximine (BSO) alone, decreased the viability of HNC, whereas even at low concentrations, auranofin plus BSO synergized to kill HNC cells. Dual silencing of the genes for GCLM and TrxR1 induced GSH depletion, Trx activity inhibition, and ROS accumulation, synergistically killing HNC cells. Inhibition of the GSH and Trx systems resulted in activation of the Nrf2-antioxidant response element (ARE) pathway, which may result in suboptimal GSH and Trx inhibition where HNC is resistant. Genetic inhibition of Nrf2 and/or HO-1 or trigonelline enhanced growth suppression, ROS accumulation, and cell death from GSH and Trx inhibition. The in vivo effects of GSH, Trx, and Nrf2 system inhibition were confirmed in a mouse HNC xenograft model by achieving growth inhibition >60% compared with those of control. Innovations: This study is the first to show that triple inhibition of GSH, Trx, and Nrf2 pathways could be an effective method to overcome the resistance of HNC. Inhibition of the Nrf2-ARE pathway in addition to dual inhibition of the GSH and Trx antioxidant systems can effectively eliminate resistant HNC. Antioxid. Redox Signal. 27, 106-114.

  8. Cytoprotective dibenzoylmethane derivatives protect cells from oxidative stress-induced necrotic cell death.

    PubMed

    Hegedűs, Csaba; Lakatos, Petra; Kiss-Szikszai, Attila; Patonay, Tamás; Gergely, Szabolcs; Gregus, Andrea; Bai, Péter; Haskó, György; Szabó, Éva; Virág, László

    2013-06-01

    Screening of a small in-house library of 1863 compounds identified 29 compounds that protected Jurkat cells from hydrogen peroxide-induced cytotoxicity. From the cytoprotective compounds eleven proved to possess antioxidant activity (ABTS radical scavenger effect) and two were found to inhibit poly(ADP-ribosyl)ation (PARylation), a cytotoxic pathway operating in severely injured cells. Four cytoprotective dibenzoylmethane (DBM) derivatives were investigated in more detail as they did not scavenge hydrogen peroxide nor did they inhibit PARylation. These compounds protected cells from necrotic cell death while caspase activation, a parameter of apoptotic cell death was not affected. Hydrogen peroxide activated extracellular signal regulated kinase (ERK1/2) and p38 MAP kinases but not c-Jun N-terminal kinase (JNK). The cytoprotective DBMs suppressed the activation of Erk1/2 but not that of p38. Cytoprotection was confirmed in another cell type (A549 lung epithelial cells), indicating that the cytoprotective effect is not cell type specific. In conclusion we identified DBM analogs as a novel class of cytoprotective compounds inhibiting ERK1/2 kinase and protecting from necrotic cell death by a mechanism independent of poly(ADP-ribose) polymerase inhibition. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models

    PubMed Central

    Delvecchio, Rodrigo; Higa, Luiza M.; Pezzuto, Paula; Valadão, Ana Luiza; Garcez, Patrícia P.; Monteiro, Fábio L.; Loiola, Erick C.; Dias, André A.; Silva, Fábio J. M.; Aliota, Matthew T.; Caine, Elizabeth A.; Osorio, Jorge E.; Bellio, Maria; O’Connor, David H.; Rehen, Stevens; de Aguiar, Renato Santana; Savarino, Andrea; Campanati, Loraine; Tanuri, Amilcar

    2016-01-01

    Zika virus (ZIKV) infection in utero might lead to microcephaly and other congenital defects. Since no specific therapy is available thus far, there is an urgent need for the discovery of agents capable of inhibiting its viral replication and deleterious effects. Chloroquine is widely used as an antimalarial drug, anti-inflammatory agent, and it also shows antiviral activity against several viruses. Here we show that chloroquine exhibits antiviral activity against ZIKV in Vero cells, human brain microvascular endothelial cells, human neural stem cells, and mouse neurospheres. We demonstrate that chloroquine reduces the number of ZIKV-infected cells in vitro, and inhibits virus production and cell death promoted by ZIKV infection without cytotoxic effects. In addition, chloroquine treatment partially reveres morphological changes induced by ZIKV infection in mouse neurospheres. PMID:27916837

  10. Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models.

    PubMed

    Delvecchio, Rodrigo; Higa, Luiza M; Pezzuto, Paula; Valadão, Ana Luiza; Garcez, Patrícia P; Monteiro, Fábio L; Loiola, Erick C; Dias, André A; Silva, Fábio J M; Aliota, Matthew T; Caine, Elizabeth A; Osorio, Jorge E; Bellio, Maria; O'Connor, David H; Rehen, Stevens; de Aguiar, Renato Santana; Savarino, Andrea; Campanati, Loraine; Tanuri, Amilcar

    2016-11-29

    Zika virus (ZIKV) infection in utero might lead to microcephaly and other congenital defects. Since no specific therapy is available thus far, there is an urgent need for the discovery of agents capable of inhibiting its viral replication and deleterious effects. Chloroquine is widely used as an antimalarial drug, anti-inflammatory agent, and it also shows antiviral activity against several viruses. Here we show that chloroquine exhibits antiviral activity against ZIKV in Vero cells, human brain microvascular endothelial cells, human neural stem cells, and mouse neurospheres. We demonstrate that chloroquine reduces the number of ZIKV-infected cells in vitro, and inhibits virus production and cell death promoted by ZIKV infection without cytotoxic effects. In addition, chloroquine treatment partially reveres morphological changes induced by ZIKV infection in mouse neurospheres.

  11. Nanoparticles of Selaginella doederleinii leaf extract inhibit human lung cancer cells A549

    NASA Astrophysics Data System (ADS)

    Syaefudin; Juniarti, A.; Rosiyana, L.; Setyani, A.; Khodijah, S.

    2016-01-01

    The aim of the present study is to evaluate cytotoxicity effect of nanoparticles of Selaginella doederleinii (S. doederleinii) leaves extract. S. doederleinii was extracted by maceration method using 70%(v/v) ethanol as solvent. Phytochemical content was analyzed qualitatively by using Harborne and Thin Layer Chromatography (TLC) methods. Nanoparticle extract was prepared by ionic gelation using chitosan as encapsulant agent. Anticancer activity was performed by using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The results showed that S. doederleinii contains of flavonoids. Nanoparticle of S. doederleinii leaves extract greatly inhibited A549 cells growth (cancer cells), with IC50 of 3% or 1020 μg/ml. These nanoparticles extract also inhibited the growth of Chang cells (normal cells), with IC50 of 4% or 1442 μg/ml. The effective concentration of nanoparticles extract which inhibits cancer cells without harming the normal cells is 0.5% or 167 μg/ml. Further studies are needed to obtain the concentration of nanoparticles extract which can selectively suppress cancer cells.

  12. Icotinib inhibits the invasion of Tca8113 cells via downregulation of nuclear factor κB-mediated matrix metalloproteinase expression

    PubMed Central

    YANG, CAILING; YAN, JIANGUO; YUAN, GUOYAN; ZHANG, YINGHUA; LU, DERONG; REN, MINGXIN; CUI, WEIGANG

    2014-01-01

    Icotinib is an epidermal growth factor receptor tyrosine kinase inhibitor, which has been revealed to inhibit proliferation in tumor cells. However, the effect of icotinib on cancer cell metastasis remains to be explained. This study examines the effect of icotinib on the migration and invasion of squamous cells of tongue carcinoma (Tca8113 cells) in vitro. The results of the Boyden chamber invasion assay demonstrated that icotinib reduced cell invasion, suppressed the protein levels of matrix metalloproteinases (MMPs), MMP-2 and MMP-9, and increased the expression of tissue inhibitor of metalloproteinase-1. In addition, icotinib was found to significantly decrease the protein levels of nuclear factor κB (NF-κB) p65, which suggested that icotinib inhibits NF-κB activity. Furthermore, treatment with the NF-κB inhibitor, pyrrolidine dithiocarbamate, suppressed cell invasion and MMP-2 expression. These results suggested that icotinib inhibits the invasion of Tca8113 cells by downregulating MMP via the inactivation of the NF-κB signaling pathways. PMID:25120710

  13. Icotinib inhibits the invasion of Tca8113 cells via downregulation of nuclear factor κB-mediated matrix metalloproteinase expression.

    PubMed

    Yang, Cailing; Yan, Jianguo; Yuan, Guoyan; Zhang, Yinghua; Lu, Derong; Ren, Mingxin; Cui, Weigang

    2014-09-01

    Icotinib is an epidermal growth factor receptor tyrosine kinase inhibitor, which has been revealed to inhibit proliferation in tumor cells. However, the effect of icotinib on cancer cell metastasis remains to be explained. This study examines the effect of icotinib on the migration and invasion of squamous cells of tongue carcinoma (Tca8113 cells) in vitro . The results of the Boyden chamber invasion assay demonstrated that icotinib reduced cell invasion, suppressed the protein levels of matrix metalloproteinases (MMPs), MMP-2 and MMP-9, and increased the expression of tissue inhibitor of metalloproteinase-1. In addition, icotinib was found to significantly decrease the protein levels of nuclear factor κB (NF-κB) p65, which suggested that icotinib inhibits NF-κB activity. Furthermore, treatment with the NF-κB inhibitor, pyrrolidine dithiocarbamate, suppressed cell invasion and MMP-2 expression. These results suggested that icotinib inhibits the invasion of Tca8113 cells by downregulating MMP via the inactivation of the NF-κB signaling pathways.

  14. Inhibition of histamine and eicosanoid release from dispersed human lung cells in vitro by quinotolast.

    PubMed

    Okayama, Y; Hiroi, J; Lau, L C; Church, M K

    1995-12-01

    We have examined the effects of a new anti-allergic drug, quinotolast [sodium 5-(4-oxo-1-phenoxy-4H-quinolizine-3-carboxamido) yetrazolate monohydrate], in inhibiting the release of histamine and the generation of leukotriene (LT) C4 and prostaglandin (PG) D2 from dispersed human lung cells and compared this with those of its active metabolite in the rat, hydroxy quinotolast, and reference drugs, tranilast and sodium cromoglycate (SCG). Quinotolast in the concentration range of 1-100 micrograms/ml inhibited histamine and LTC4 release in a concentration-dependent manner. The inhibitory effect of quinotolast on histamine release from dispersed lung cells was largely independent of the preincubation period, no tachyphylaxis being observed. Hydroxy quinotolast and tranilast showed a weak inhibition of histamine release only when the drugs were added to the cells simultaneously with anti-IgE challenge. Quinotolast, 100 micrograms/ml, and SCG, 1 mM, significantly inhibited PGD2 and LTC4 release. Quinotolast inhibited PGD2 release by 100% and LTC4 release by 54%, whereas SCG inhibited PDG2 release by 33% and LTC4 release by 100%. No cross-tachyphylaxis between quinotolast and SCG was observed. The results demonstrated that quinotolast showed a significant inhibition of inflammatory mediators from human dispersed lung cells, suggesting that quinotolast is a good candidate for a clinical anti-allergic drug.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuster, Susanne, E-mail: Susanne.Schuster@medizin.uni-leipzig.de; Penke, Melanie; Gorski, Theresa

    Background: Nicotinamide phosphoribosyltransferase (NAMPT) is the key enzyme of the NAD salvage pathway starting from nicotinamide. Cancer cells have an increased demand for NAD due to their high proliferation and DNA repair rate. Consequently, NAMPT is considered as a putative target for anti-cancer therapies. There is evidence that AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) become dysregulated during the development of hepatocellular carcinoma (HCC). Here, we investigated the effects of NAMPT inhibition by its specific inhibitor FK866 on the viability of hepatocarcinoma cells and analyzed the effects of FK866 on the nutrient sensor AMPK and mTOR complex1more » (mTORC1) signaling. Results: FK866 markedly decreased NAMPT activity and NAD content in hepatocarcinoma cells (Huh7 cells, Hep3B cells) and led to delayed ATP reduction which was associated with increased cell death. These effects could be abrogated by administration of nicotinamide mononucleotide (NMN), the enzyme product of NAMPT. Our results demonstrated a dysregulation of the AMPK/mTOR pathway in hepatocarcinoma cells compared to non-cancerous hepatocytes with a higher expression of mTOR and a lower AMPKα activation in hepatocarcinoma cells. We found that NAMPT inhibition by FK866 significantly activated AMPKα and inhibited the activation of mTOR and its downstream targets p70S6 kinase and 4E-BP1 in hepatocarcinoma cells. Non-cancerous hepatocytes were less sensitive to FK866 and did not show changes in AMPK/mTOR signaling after FK866 treatment. Conclusion: Taken together, these findings reveal an important role of the NAMPT-mediated NAD salvage pathway in the energy homeostasis of hepatocarcinoma cells and suggest NAMPT inhibition as a potential treatment option for HCC. - Highlights: • FK866 increases cell death in p53-deficient hepatocarcinoma cells. • AMPK/mTOR signaling is dysregulated in hepatocarcinoma cells. • FK866-induced NAMPT inhibition activates AMPKα and downregulates mTOR signaling. • NMN abrogates the effects of FK866-induced NAMPT inhibition. • Non-cancerous human hepatocytes are less sensitive to FK866.« less

  16. Prion-like Nanofibrils of Small Molecules (PriSM) Selectively Inhibit Cancer Cells by Impeding Cytoskeleton Dynamics*

    PubMed Central

    Kuang, Yi; Long, Marcus J. C.; Zhou, Jie; Shi, Junfeng; Gao, Yuan; Xu, Chen; Hedstrom, Lizbeth; Xu, Bing

    2014-01-01

    Emerging evidence reveals that prion-like structures play important roles to maintain the well-being of cells. Although self-assembly of small molecules also affords prion-like nanofibrils (PriSM), little is known about the functions and mechanisms of PriSM. Previous works demonstrated that PriSM formed by a dipeptide derivative selectively inhibiting the growth of glioblastoma cells over neuronal cells and effectively inhibiting xenograft tumor in animal models. Here we examine the protein targets, the internalization, and the cytotoxicity pathway of the PriSM. The results show that the PriSM selectively accumulate in cancer cells via macropinocytosis to impede the dynamics of cytoskeletal filaments via promiscuous interactions with cytoskeletal proteins, thus inducing apoptosis. Intriguingly, Tau proteins are able to alleviate the effect of the PriSM, thus protecting neuronal cells. This work illustrates PriSM as a new paradigm for developing polypharmacological agents that promiscuously interact with multiple proteins yet result in a primary phenotype, such as cancer inhibition PMID:25157102

  17. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yang; Pang, Xiaoyan; Dong, Mei

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesitymore » has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients.« less

  18. Triptolide inhibits TGF-β1-induced cell proliferation in rat airway smooth muscle cells by suppressing Smad signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ming; Lv, Zhiqiang; Huang, Linjie

    Background: We have reported that triptolide can inhibit airway remodeling in a murine model of asthma via TGF-β1/Smad signaling. In the present study, we aimed to investigate the effect of triptolide on airway smooth muscle cells (ASMCs) proliferation and the possible mechanism. Methods: Rat airway smooth muscle cells were cultured and made synchronized, then pretreated with different concentration of triptolide before stimulated by TGF-β1. Cell proliferation was evaluated by MTT assay. Flow cytometry was used to study the influence of triptolide on cell cycle and apoptosis. Signal proteins (Smad2, Smad3 and Smad7) were detected by western blotting analysis. Results: Triptolidemore » significantly inhibited TGF-β1-induced ASMC proliferation (P<0.05). The cell cycle was blocked at G1/S-interphase by triptolide dose dependently. No pro-apoptotic effects were detected under the concentration of triptolide we used. Western blotting analysis showed TGF-β1 induced Smad2 and Smad3 phosphorylation was inhibited by triptolide pretreatment, and the level of Smad7 was increased by triptolide pretreatment. Conclusions: Triptolide may function as an inhibitor of asthma airway remodeling by suppressing ASMCs proliferation via negative regulation of Smad signaling pathway. - Highlights: • In this study, rat airway smooth muscle cells were cultured and made synchronized. • Triptolide inhibited TGF-β1-induced airway smooth muscle cells proliferation. • Triptolide inhibited ASMCs proliferation via negative regulation of Smad signaling pathway.« less

  19. Aged black garlic extract inhibits HT29 colon cancer cell growth via the PI3K/Akt signaling pathway

    PubMed Central

    DONG, MENGHUA; YANG, GUIQING; LIU, HANCHEN; LIU, XIAOXU; LIN, SIXIANG; SUN, DONGNING; WANG, YISHAN

    2014-01-01

    Accumulating evidence indicates that aged black garlic extract (ABGE) may prove beneficial in preventing or inhibiting oncogenesis; however, the underlying mechanisms have not been fully elucidated. The present study aimed to investigate the effects of ABGE on the proliferation and apoptosis of HT29 colon cancer cells. Our results demonstrated that ABGE inhibited HT29 cell growth via the induction of apoptosis and cell cycle arrest. We further investigated the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signal transduction pathway and the molecular mechanisms underlying the ABGE-induced inhibition of HT29 cell proliferation. We observed that ABGE may regulate the function of the PI3K/Akt pathway through upregulating PTEN and downregulating Akt and p-Akt expression, as well as suppressing its downstream target, 70-kDa ribosomal protein S6 kinase 1, at the mRNA and protein levels. In conclusion, these findings suggest that the PI3K/Akt signal transduction pathway is crucial for the development of colon cancer. ABGE inhibited the growth and induced apoptosis in HT29 cells through the inhibition of the PI3K/Akt pathway, suggesting that ABGE may be effective in the prevention and treatment of colon cancer in humans. PMID:24649105

  20. Squalene Inhibits ATM-Dependent Signaling in γIR-Induced DNA Damage Response through Induction of Wip1 Phosphatase.

    PubMed

    Tatewaki, Naoto; Konishi, Tetsuya; Nakajima, Yuki; Nishida, Miyako; Saito, Masafumi; Eitsuka, Takahiro; Sakamaki, Toshiyuki; Ikekawa, Nobuo; Nishida, Hiroshi

    2016-01-01

    Ataxia telangiectasia mutated (ATM) kinase plays a crucial role as a master controller in the cellular DNA damage response. Inhibition of ATM leads to inhibition of the checkpoint signaling pathway. Hence, addition of checkpoint inhibitors to anticancer therapies may be an effective targeting strategy. A recent study reported that Wip1, a protein phosphatase, de-phosphorylates serine 1981 of ATM during the DNA damage response. Squalene has been proposed to complement anticancer therapies such as chemotherapy and radiotherapy; however, there is little mechanistic information supporting this idea. Here, we report the inhibitory effect of squalene on ATM-dependent DNA damage signals. Squalene itself did not affect cell viability and the cell cycle of A549 cells, but it enhanced the cytotoxicity of gamma-irradiation (γIR). The in vitro kinase activity of ATM was not altered by squalene. However, squalene increased Wip1 expression in cells and suppressed ATM activation in γIR-treated cells. Consistent with the potential inhibition of ATM by squalene, IR-induced phosphorylation of ATM effectors such as p53 (Ser15) and Chk1 (Ser317) was inhibited by cell treatment with squalene. Thus, squalene inhibits the ATM-dependent signaling pathway following DNA damage through intracellular induction of Wip1 expression.

  1. Polarization of macrophages in the tumor microenvironment is influenced by EGFR signaling within colon cancer cells

    PubMed Central

    Zhang, Weina; Chen, Lechuang; Ma, Kai; Zhao, Yahui; Liu, Xianghe; Wang, Yu; Liu, Mei; Liang, Shufang; Zhu, Hongxia; Xu, Ningzhi

    2016-01-01

    Epidermal growth factor receptor (EGFR) is a target of colon cancer therapy, but the effects of this therapy on the tumor microenvironment remain poorly understood. Our in vivo studies showed that cetuximab, an anti-EGFR monoclonal antibody, effectively inhibited AOM/DSS-induced, colitis-associated tumorigenesis, downregulated M2-related markers, and decreased F4/80+/CD206+ macrophage populations. Treatment with conditioned medium of colon cancer cells increased macrophage expression of the M2-related markers arginase-1 (Arg1), CCL17, CCL22, IL-10 and IL-4. By contrast, conditioned medium of EGFR knockout colon cancer cells inhibited expression of these M2-related markers and induced macrophage expression of the M1-related markers inducible nitric oxide synthase (iNOS), IL-12, TNF-α and CCR7. EGFR knockout in colon cancer cells inhibited macrophage-induced promotion of xenograft tumor growth. Moreover, colon cancer-derived insulin-like growth factor-1 (IGF-1) increased Arg1 expression, and treatment with the IGF1R inhibitor AG1024 inhibited that increase. These results suggest that inhibition of EGFR signaling in colon cancer cells modulates cytokine secretion (e.g. IGF-1) and prevents M1-to-M2 macrophage polarization, thereby inhibiting cancer cell growth. PMID:27683110

  2. Phloretin differentially inhibits volume-sensitive and cyclic AMP-activated, but not Ca-activated, Cl− channels

    PubMed Central

    Fan, Hai-Tian; Morishima, Shigeru; Kida, Hajime; Okada, Yasunobu

    2001-01-01

    Some phenol derivatives are known to block volume-sensitive Cl− channels. However, effects on the channel of the bisphenol phloretin, which is a known blocker of glucose uniport and anion antiport, have not been examined. In the present study, we investigated the effects of phloretin on volume-sensitive Cl− channels in comparison with cyclic AMP-activated CFTR Cl− channels and Ca2+-activated Cl− channels using the whole-cell patch-clamp technique.Extracellular application of phloretin (over 10 μM) voltage-independently, and in a concentration-dependent manner (IC50 ∼30 μM), inhibited the Cl− current activated by a hypotonic challenge in human epithelial T84, Intestine 407 cells and mouse mammary C127/CFTR cells.In contrast, at 30 μM phloretin failed to inhibit cyclic AMP-activated Cl− currents in T84 and C127/CFTR cells. Higher concentrations (over 100 μM) of phloretin, however, partially inhibited the CFTR Cl− currents in a voltage-dependent manner.At 30 and 300 μM, phloretin showed no inhibitory effect on Ca2+-dependent Cl− currents induced by ionomycin in T84 cells.It is concluded that phloretin preferentially blocks volume-sensitive Cl− channels at low concentrations (below 100 μM) and also inhibits cyclic AMP-activated Cl− channels at higher concentrations, whereas phloretin does not inhibit Ca2+-activated Cl− channels in epithelial cells. PMID:11487521

  3. Caffeic Acid Phenethyl Ester Induces N-myc Downstream Regulated Gene 1 to Inhibit Cell Proliferation and Invasion of Human Nasopharyngeal Cancer Cells

    PubMed Central

    Chiang, Kun-Chun; Yang, Shih-Wei; Chang, Kai-Ping; Feng, Tsui-Hsia; Chang, Kang-Shuo; Tsui, Ke-Hung; Shin, Yi-Syuan; Chen, Chiu-Chun; Chao, Mei

    2018-01-01

    Caffeic acid phenethyl ester (CAPE), a bioactive component extracted from propolis, is widely studied due to its anti-cancer effect. Nasopharyngeal carcinoma (NPC) is distinct from other head and neck carcinomas and has a high risk of distant metastases. N-myc downstream regulated gene 1 (NDRG1) is demonstrated as a tumor suppressor gene in several cancers. Our result showed that CAPE treatment could repress NPC cell growth, through induction of S phase cell cycle arrest, and invasion. CAPE treatment stimulated NDRG1 expression in NPC cells. NDRG1 knockdown increased NPC cell proliferation and invasion and rendered NPC cells less responsive to CAPE growth-inhibiting effect, indicating CAPE repressed NPC cell growth partly through NDRG1indcution. CAPE treatment increased phosphorylation of ERK, JNK, and p38 in a dose- and time-dependent manner. Pre-treatments by inhibitors of ERK (PD0325901), JNK (SP600125), or p38 (SB201290), respectively, all could partly inhibit the CAPE effect on NDRG1 induction in NPC cells. Further, STAT3 activity was also repressed by CAPE in NPC cells. In summary, CAPE attenuates NPC cell proliferation and invasion by upregulating NDRG1 expression via MAPK pathway and by inhibiting phosphorylation of STAT3. Considering the poor prognosis of NPC patients with metastasis, CAPE could be a promising agent against NPC. PMID:29738439

  4. CD83 Antibody Inhibits Human B Cell Responses to Antigen as well as Dendritic Cell-Mediated CD4 T Cell Responses.

    PubMed

    Wong, Kuan Y; Baron, Rebecca; Seldon, Therese A; Jones, Martina L; Rice, Alison M; Munster, David J

    2018-05-15

    Anti-CD83 Ab capable of Ab-dependent cellular cytotoxicity can deplete activated CD83 + human dendritic cells, thereby inhibiting CD4 T cell-mediated acute graft-versus-host disease. As CD83 is also expressed on the surface of activated B lymphocytes, we hypothesized that anti-CD83 would also inhibit B cell responses to stimulation. We found that anti-CD83 inhibited total IgM and IgG production in vitro by allostimulated human PBMC. Also, Ag-specific Ab responses to immunization of SCID mice xenografted with human PBMC were inhibited by anti-CD83 treatment. This inhibition occurred without depletion of all human B cells because anti-CD83 lysed activated CD83 + B cells by Ab-dependent cellular cytotoxicity and spared resting (CD83 - ) B cells. In cultured human PBMC, anti-CD83 inhibited tetanus toxoid-stimulated B cell proliferation and concomitant dendritic cell-mediated CD4 T cell proliferation and expression of IFN-γ and IL-17A, with minimal losses of B cells (<20%). In contrast, the anti-CD20 mAb rituximab depleted >80% of B cells but had no effect on CD4 T cell proliferation and cytokine expression. By virtue of the ability of anti-CD83 to selectively deplete activated, but not resting, B cells and dendritic cells, with the latter reducing CD4 T cell responses, anti-CD83 may be clinically useful in autoimmunity and transplantation. Advantages might include inhibited expansion of autoantigen- or alloantigen-specific B cells and CD4 T cells, thus preventing further production of pathogenic Abs and inflammatory cytokines while preserving protective memory and regulatory cells. Copyright © 2018 by The American Association of Immunologists, Inc.

  5. Curcumin improves the efficacy of cisplatin by targeting cancer stem-like cells through p21 and cyclin D1-mediated tumour cell inhibition in non-small cell lung cancer cell lines

    PubMed Central

    BAHARUDDIN, PUTERI; SATAR, NAZILAH; FAKIRUDDIN, KAMAL SHAIK; ZAKARIA, NORASHIKIN; LIM, MOON NIAN; YUSOFF, NARAZAH MOHD; ZAKARIA, ZUBAIDAH; YAHAYA, BADRUL HISHAM

    2016-01-01

    Natural compounds such as curcumin have the ability to enhance the therapeutic effectiveness of common chemotherapy agents through cancer stem-like cell (CSC) sensitisation. In the present study, we showed that curcumin enhanced the sensitivity of the double-positive (CD166+/EpCAM+) CSC subpopulation in non-small cell lung cancer (NSCLC) cell lines (A549 and H2170) to cisplatin-induced apoptosis and inhibition of metastasis. Our results revealed that initial exposure of NSCLC cell lines to curcumin (10–40 µM) markedly reduced the percentage of viability to an average of ~51 and ~54% compared to treatment with low dose cisplatin (3 µM) with only 94 and 86% in both the A549 and H2170 cells. Moreover, sensitisation of NSCLC cell lines to curcumin through combined treatment enhanced the single effect induced by low dose cisplatin on the apoptosis of the double-positive CSC subpopulation by 18 and 20% in the A549 and H2170 cells, respectively. Furthermore, we found that curcumin enhanced the inhibitory effects of cisplatin on the highly migratory CD166+/EpCAM+ subpopulation, marked by a reduction in cell migration to 9 and 21% in the A549 and H2170 cells, respectively, indicating that curcumin may increase the sensitivity of CSCs to cisplatin-induced migratory inhibition. We also observed that the mRNA expression of cyclin D1 was downregulated, while a substantial increased in p21 expression was noted, followed by Apaf1 and caspase-9 activation in the double-positive (CD166+/EpCAM+) CSC subpopulation of A549 cells, suggested that the combined treatments induced cell cycle arrest, therefore triggering CSC growth inhibition via the intrinsic apoptotic pathway. In conclusion, we provided novel evidence of the previously unknown therapeutic effects of curcumin, either alone or in combination with cisplatin on the inhibition of the CD166+/EpCAM+ subpopulation of NSCLC cell lines. This finding demonstrated the potential therapeutic approach of using curcumin that may enhance the effects of cisplatin by targeting the CSC subpopulation in NSCLC. PMID:26531053

  6. Inhibition of X-linked inhibitor of apoptosis protein enhances anti-tumor potency of pure total flavonoids on the growth of leukemic cells

    PubMed Central

    Wu, Liqiang; Zhang, Xiuxia; Lin, Xiaojie; Wang, Bo; Huang, Chang; Qin, Yao; Lin, Shengyun

    2018-01-01

    Flavonoids, a vast group of polyphenols widely distributed in plants, are known to possess a range of biological activities and potential anti-tumor effects. X-linked inhibitor of apoptosis protein (XIAP) promotes the progression of leukemia by preventing tumor cells undergoing apoptosis. The present study investigated the potential effects and underlying mechanisms of pure total flavonoids from Citrus paradisi Macfad (PTFC) on human U937 cells, and explored the effects of short hairpin (sh)RNA-mediated XIAP knockdown on the anti-cancer effects of PTFC. Western blotting was used to determine level of apoptosis-associated effectors following PTFC treatment. A lentiviral vector of RNA interference of XIAP gene was constructed to downregulate XIAP expression. MTT assay and flow cytometry were used to determine the effects of PTFC separately or combined with XIAP-shRNA on inhibition and apoptosis of U937 cells, respectively. Treatment with PTFC effectively inhibited leukemic cell proliferation in a dose- and time-dependent manner. PTFC induced apoptosis of U937 cells in a dose-dependent manner, at a particular concentration range, by decreasing XIAP expression levels and activating caspases-3, −7 and −9. PTFC treatment combined with XIAP-shRNA additionally demonstrated a marked increase in cell apoptosis, compared with PTFC or XIAP-shRNA alone (P<0.05). Therefore, these findings suggest that PTFC inhibits growth and induces apoptosis in U937 cells in vitro. Furthermore, suppression of XIAP expression enhances these effects. PMID:29434799

  7. Down-Regulation of Protein Kinase C-ε by Prolonged Incubation with PMA Inhibits the Proliferation of Vascular Smooth Muscle Cells.

    PubMed

    Zhou, Huixuan; Wang, Yan; Zhou, Quanhong; Wu, Bin; Wang, Aizhong; Jiang, Wei; Wang, Li

    2016-01-01

    Phorbol myristate acetate (PMA) exerts a pleiotropic effect on the growth and differentiation of various cells. Protein kinase Cs (PKCs) plays a central role in mediating the effects of PMA on cells. The present study investigated whether the down-regulation of protein kinase C-ε (PKC-ε) is involved in the inhibition of vascular smooth muscle cell (VSMC) proliferation caused by prolonged PMA incubation. Using cell counting, Cell Counting Kit-8 (CCK-8) and EdU incorporation assay on VSMCs, we evaluated the inhibitory effects of prolonged incubation of PMA, of lentiviruses carrying the short-hairpin RNAs (shRNA) of PKC-ε and of the PKC-ε inhibitor peptide on the proliferation and viability of cells. The effect of PKC-ε down-regulation on growth of rat breast cancer SHZ-88 cells was also measured. The prolonged incubation of VSMCs with PMA for up to 72 hours resulted in attenuated cell growth rates in a time-dependent manner. The expression of PKC-ε, as assessed by Western blotting, was also decreased accordingly. Notably, the number of EdU-positive cells and the cell viability of VSMCs were decreased by shRNA of PKC-ε and the PKC-ε inhibitor peptide, respectively. The proliferation of rat breast cancer SHZ-88 cells was also attenuated by lentivirus-induced shRNA silencing of PKC-ε. Prolonged incubation of PMA can inhibit the expression of PKC-ε. The effect results in the inhibition of VSMC proliferation. PKC-ε silencing can also attenuate breast cancer cell growth, suggesting that PKC-ε may be a potential target for anti-cancer drugs. © 2016 The Author(s) Published by S. Karger AG, Basel.

  8. Mast cell degranulation and calcium influx are inhibited by an Echinacea purpurea extract and the alkylamide dodeca-2E,4E-dienoic acid isobutylamide.

    PubMed

    Gulledge, Travis V; Collette, Nicholas M; Mackey, Emily; Johnstone, Stephanie E; Moazami, Yasamin; Todd, Daniel A; Moeser, Adam J; Pierce, Joshua G; Cech, Nadja B; Laster, Scott M

    2018-02-15

    Native Americans used plants from the genus Echinacea to treat a variety of different inflammatory conditions including swollen gums, sore throats, skin inflammation, and gastrointestinal disorders. Today, various Echinacea spp. preparations are used primarily to treat upper respiratory infections. The goal of this study was to evaluate the effects of an ethanolic E. purpurea (L) Moench root extract and the alkylamide dodeca-2E,4E-dienoic acid isobutylamide (A15) on mast cells, which are important mediators of allergic and inflammatory responses. Inhibition of mast cell activation may help explain the traditional use of Echinacea. A15 was evaluated for its effects on degranulation, calcium influx, cytokine and lipid mediator production using bone marrow derived mast cells (BMMCs) and the transformed rat basophilic leukemia mast cell line RBL-2H3. Methods included enzymatic assays, fluorimetry, ELISAs, and microscopy. A root extract of E. purpurea, and low and high alkylamide-containing fractions prepared from this extract, were also tested for effects on mast cell function. Finally, we tested A15 for effects on calcium responses in RAW 264.7 macrophage and Jurkat T cell lines. A15 inhibited ß-hexosaminidase release from BMMCs and RBL-2H3 cells after treatment with the calcium ionophore A23187 by 83.5% and 48.4% at 100µM, respectively. Inhibition also occurred following stimulation with IgE anti-DNP/DNP-HSA. In addition, A15 inhibited 47% of histamine release from A23187-treated RBL-2H3 cells. A15 prevented the rapid rise in intracellular calcium following FcεRI crosslinking and A23187 treatment suggesting it acts on the signals controlling granule release. An E. purpurea root extract and a fraction with high alkylamide content derived from this extract also displayed these activities while fractions with little to no detectable amounts of alkylamide did not. A15 mediated inhibition of calcium influx was not limited to mast cells as A23187-stimulated calcium influx was blocked in both RAW 264.7 and Jurkat cell lines with 60.2% and 43.6% inhibition at 1min post-stimulation, respectively. A15 also inhibited the release of TNF-α, and PGE 2 to a lesser degree, following A23187 stimulation indicating its broad activity on mast cell mediator production. These findings suggest that Echinacea extracts and alkylamides may be useful for treating allergic and inflammatory responses mediated by mast cells. More broadly, since calcium is a critical second messenger, the inhibitory effects of alkylamides on calcium uptake would be predicted to dampen a variety of pathological responses, suggesting new uses for this plant and its constituents. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Inhibition of proteinase 3 (PR3) by suramin and fetal calf serum (FCS): effect of PR3 and suramin on Chinese hamster ovary cells (CHO-cells).

    PubMed

    Karam, Gholamreza Asadi; Rasaee, Mohammad Javad; Mahmoodi, Mehdi; Khaksari, Mohammad

    2005-07-01

    Proteinase 3 (PR3) is a lysosomal protease that is stored in azurophilic granules neutrophilic granulocytes and monocytes. A number of inhibitors for this proteinase are reported. Comprehensive studies on the inhibitory effect of suramin and heat treated fetal calf serum (deltaFCS) on PR3 have not been reported. It has been reported that PR3 is able to destroy the cytoskeletal integral proteins, but we have not find any reports which showed the effect of this protease on Chinese hamster ovary cells (CHO-cells) in culture medium. Suramin has proven to be useful as an antitumor drug, but there was not any report on the effect of suramin on CHO-cells. The effects of various concentrations of deltaFCS (from 0.5% up to 10%) and suramin (from 0.8 microM up to 100 microM) on PR3 and different concentrations of suramin (from 0.8 microM up to 1000 microM) on CHO-cells were investigated. Data analysis were performed by, Kolmogorov-Smirnov test, ANOVA test and Tukey HSD post tests. Results showed that deltaFCS and suramin have an inhibitory effect on PR3 and these effects increased with increasing the concentration significantly (p < 0.01). PR3 with the concentration of 2.2 Unit/ml has no effect on CHO-cells. Although suramin with the concentration of less than 125 microM cell growth retarded for only a few hours, but with the concentration of 125 to 250 microM inhibit the cell growth for a week, and after that cells gain normal growth gradually. Suramin with concentration of more than 500 microM inhibited the cell growth completely. Although suramin reversibly inhibit the PR3 activity but in concentration of less than 250 microM it had no long-term effect on CHO-cells. Therefore it can be used in the investigation of proteases. There were unknown components in deltaFCS, which cause the inhibition of PR3 activity. This finding is very important in PR3 production in culture medium. However CHO-cells are resistant to PR3 and suramin in low concentration.

  10. OP16, a novel ent-kaurene diterpenoid, potentiates the antitumor effect of rapamycin by inhibiting rapamycin-induced feedback activation of Akt signaling in esophageal squamous cell carcinoma.

    PubMed

    Peng, Ke-Zheng; Ke, Yu; Zhao, Qi; Tian, Fei; Liu, Hong-Min; Hou, Guiqin; Lu, Zhaoming

    2017-09-15

    Hyperactivation of mTOR signaling pathway has been viewed as a significant molecular pathogenesis of cancer. However, inhibition of mTOR by rapamycin and its analogs could induce numerous negative feedback loops to attenuate their therapeutic efficacy. As a traditional Chinese herbal medicine, Rabdosia rubescens has been used to treat esophageal squamous cell carcinoma (ESCC) for hundreds of years, and its major effective component is oridonin. Here we reported that OP16, a novel analog of oridonin, showed potent inhibition of cell proliferation and Akt phosphorylation in ESCC cells. The combination of OP16 and rapamycin possesses synergistic anti-proliferative and pro-apoptotic effects both in ESCC cells and ESCC xenografts, and no obvious adverse effect was observed in vivo. Mechanistic analysis revealed that OP16 could inhibit rapamycin-induced Akt activation through the p70S6K-mediated negative feedback loops, and the combination of OP16 and rapamycin was more effective in activating caspase-dependent apoptotic signaling cascade. This study supports the combined use of OP16 with rapamycin as a feasible and effective therapeutic approach for future treatment of ESCC. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. A cell-based fluorescent assay to detect the activity of AB toxins that inhibit protein synthesis

    USDA-ARS?s Scientific Manuscript database

    AB-type protein toxins, produced by numerous bacterial pathogens and some plants, elicit a cytotoxic effect involving the inhibition of protein synthesis. To develop an improved method to detect the inhibition of protein synthesis by AB-type toxins, the present study characterized a Vero cell line t...

  12. Aloe-emodin inhibits HER-2 expression through the downregulation of Y-box binding protein-1 in HER-2-overexpressing human breast cancer cells.

    PubMed

    Ma, Jui-Wen; Hung, Chao-Ming; Lin, Ying-Chao; Ho, Chi-Tang; Kao, Jung-Yie; Way, Tzong-Der

    2016-09-13

    Human epidermal growth factor receptor-2 (HER-2)-positive breast cancer tends to be aggressive, highly metastatic, and drug resistant and spreads rapidly. Studies have indicated that emodin inhibits HER-2 expression. This study compared the HER-2-inhibitory effects of two compounds extracted from rhubarb roots: aloe-emodin (AE) and rhein. Our results indicated that AE exerted the most potent inhibitory effect on HER-2 expression. Treatment of HER-2-overexpressing breast cancer cells with AE reduced tumor initiation, cell migration, and cell invasion. AE was able to suppress YB-1 expression, further suppressing downstream HER-2 expression. AE suppressed YB-1 expression through the inhibition of Twist in HER-2-overexpressing breast cancer cells. Our data also found that AE inhibited cancer metastasis and cancer stem cells through the inhibition of EMT. Interestingly, AE suppressed YB-1 expression through the downregulation of the intracellular integrin-linked kinase (ILK)/protein kinase B (Akt)/mTOR signaling pathway in HER-2-overexpressing breast cancer cells. In vivo study showed the positive result of antitumor activity of AE in nude mice injected with human HER-2-overexpressing breast cancer cells. These findings suggest the possible application of AE in the treatment of HER-2-positive breast cancer.

  13. Daucosterol inhibits cancer cell proliferation by inducing autophagy through reactive oxygen species-dependent manner.

    PubMed

    Zhao, Chuanke; She, Tiantian; Wang, Lixin; Su, Yahui; Qu, Like; Gao, Yujing; Xu, Shuo; Cai, Shaoqing; Shou, Chengchao

    2015-09-15

    This study aims to evaluate the anti-cancer effect of daucosterol and explore its possible mechanism. MTT and colony formation assay were performed to determine the effect of daucosterol on cancer cell proliferation in vitro. H22 allograft model was used for the assessment of its anti-cancer activity in vivo. Intracellular generation of reactive oxygen species (ROS) was measured using DCFH-DA probe with flow cytometry system and a laser scanning confocal microscope. LC3 (microtubule-associated protein 1 light chain 3)-II conversion was monitored with immunofluorescence and immunoblotting to demonstrate daucosterol-induced autophagy. We found that daucosterol inhibits the proliferation of human breast cancer cell line MCF-7 and gastric cancer cell lines MGC803, BGC823 and AGS in a dose-dependent manner. Furthermore, daucosterol inhibits murine hepatoma H22 cell growth in ICR mice. Daucosterol treatment induces intracellular ROS generation and autophagy, but not apoptotic cell death. Treatment with ROS scavenger GSH (reduced glutathione), NAC (N-acetyl-l-cysteine) or autophagy inhibitor 3-Methyladenine (3-MA) counteracted daucosterol-induced autophagy and growth inhibition in BGC823 and MCF-7 cancer cells. Daucosterol inhibits cancer cell proliferation by inducing autophagy through ROS-dependent manner and could be potentially developed as an anti-cancer agent. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Centchroman regulates breast cancer angiogenesis via inhibition of HIF-1α/VEGFR2 signalling axis.

    PubMed

    Dewangan, Jayant; Kaushik, Shweta; Rath, Srikanta Kumar; Balapure, Anil K

    2018-01-15

    Angiogenesis is a recognized hallmark of cancer which promotes cancer cell progression and metastasis. Inhibition of angiogenesis to attenuate cancer growth is becoming desirable strategy for breast cancer management. The present study is aimed to investigate the antiangiogenic efficacy of a novel selective estrogen receptor modulator Centchroman (CC) on human breast cancer cells. Effect of CC on cell viability was evaluated using Sulforhodamine B assay. Endothelial cell proliferation, wound healing, Boyden chamber cell invasion, tube formation and chorioallantoic membrane (CAM) assays were performed to assess the effect of CC on migration, invasion and angiogenesis. Apoptosis, reactive oxygen species generation, caspase-3/7 and intracellular calcium ion level were measured through flow cytometry. Expression levels of HIF-1α, VEGF, VEGFR2, AKT and ERK were assessed by western blot analysis. CC selectively induces apoptosis in human breast cancer cells without affecting non-tumorigenic breast epithelial cells MCF-10A. Moreover, it inhibits migratory, invasive and mammosphere forming potential of breast cancer. Furthermore, CC also inhibited VEGF-induced migration, invasion and tube formation of HUVECs in vitro. CC effectively inhibited neovasculature formation in chicken CAM. Western blot analysis demonstrated that CC inhibited expression of HIF-1α and its downstream target VEGF. Interestingly, CC also suppressed VEGFR2 phosphorylation and consequently attenuated AKT and ERK phosphorylation. Our findings suggest that CC downregulates VEGF-induced angiogenesis by modulating HIF-1α/VEGFR2 pathway and recommend it (CC) as a potential therapeutic drug for breast cancer treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Naturally occurring benzoic acid derivatives retard cancer cell growth by inhibiting histone deacetylases (HDAC)

    PubMed Central

    Anantharaju, Preethi G.; Reddy, Bandi Deepa; Padukudru, Mahesh A.; Kumari Chitturi, CH. M.; Vimalambike, Manjunath G.

    2017-01-01

    ABSTRACT Histone deacetylases (HDACs), which modulate the expression of genes, are potential therapeutic targets in several cancers. Targeted inhibition of HDAC prevents the expression of oncogenes thereby help in the treatment of cancers. Hence, several pharmaceutical companies developed inhibitors of HDAC and tested them in preclinical models and in clinical trials. SAHA (suberanilohydroxamic acid) is one such HDAC inhibitor developed for treating breast and colorectal carcinomas. However, due to poor efficacy in clinical trials the utility of SAHA for treating cancers was discouraged. Similarly another HDAC inhibitor Trichostatin-A (TSA) also showed promising results in clinical trials but exhibited severe adverse effects, which dampened the interest of using this molecule for cancer treatment. Therefore, search for developing a potent HDAC inhibitor with minimal side effects still continues. Hence, in this study we have screened benzoic acid and benzoic acid derivatives with hydroxylic (-OH) groups and methoxy (-OCH3) groups for their efficacy to bind to the TSA binding site of HDAC using molecular docking studies. Molecules that showed much stronger affinity (than TSA) to HDAC were tested for inhibiting HDAC expressing cultured cancer cells. DHBA but not Dimethoxy Benzoic Acid (DMBA) inhibited HDAC activity, leading to cancer cell growth inhibition through the induction of ROS and cellular apoptosis mediated by Caspase-3. In addition, DHBA arrested cells in G2/M phase of the cell cycle and elevated the levels of sub-G0-G1 cell population. In summary, results of this study report that DHBA could be a strong HDAC inhibitor and inhibit cancer cell growth more effectively. PMID:28506198

  16. Inhibition of Cell Survival by Curcumin Is Associated with Downregulation of Cell Division Cycle 20 (Cdc20) in Pancreatic Cancer Cells

    PubMed Central

    Zhang, Yu; Xue, Ying-bo; Li, Hang; Qiu, Dong; Wang, Zhi-wei; Tan, Shi-sheng

    2017-01-01

    Pancreatic cancer is one of the most aggressive human tumors in the United States. Curcumin, a polyphenol derived from the Curcuma longa plant, has been reported to exert its antitumor activity in pancreatic cancer. However, the molecular mechanisms of curcumin-mediated tumor suppressive function have not been fully elucidated. In the current study, we explore whether curcumin exhibits its anti-cancer function through inhibition of oncoprotein cell division cycle 20 (Cdc20) in pancreatic cancer cells. We found that curcumin inhibited cell growth, enhanced apoptosis, induced cell cycle arrest and retarded cell invasion in pancreatic cancer cells. Moreover, we observed that curcumin significantly inhibited the expression of Cdc20 in pancreatic cancer cells. Furthermore, our results demonstrated that overexpression of Cdc20 enhanced cell proliferation and invasion, and abrogated the cytotoxic effects induced by curcumin in pancreatic cancer cells. Consistently, downregulation of Cdc20 promoted curcumin-mediated anti-tumor activity. Therefore, our findings indicated that inhibition of Cdc20 by curcumin could be useful for the treatment of pancreatic cancer patients. PMID:28165402

  17. Inhibition of Cell Survival by Curcumin Is Associated with Downregulation of Cell Division Cycle 20 (Cdc20) in Pancreatic Cancer Cells.

    PubMed

    Zhang, Yu; Xue, Ying-Bo; Li, Hang; Qiu, Dong; Wang, Zhi-Wei; Tan, Shi-Sheng

    2017-02-04

    Pancreatic cancer is one of the most aggressive human tumors in the United States. Curcumin, a polyphenol derived from the Curcuma longa plant, has been reported to exert its antitumor activity in pancreatic cancer. However, the molecular mechanisms of curcumin-mediated tumor suppressive function have not been fully elucidated. In the current study, we explore whether curcumin exhibits its anti-cancer function through inhibition of oncoprotein cell division cycle 20 (Cdc20) in pancreatic cancer cells. We found that curcumin inhibited cell growth, enhanced apoptosis, induced cell cycle arrest and retarded cell invasion in pancreatic cancer cells. Moreover, we observed that curcumin significantly inhibited the expression of Cdc20 in pancreatic cancer cells. Furthermore, our results demonstrated that overexpression of Cdc20 enhanced cell proliferation and invasion, and abrogated the cytotoxic effects induced by curcumin in pancreatic cancer cells. Consistently, downregulation of Cdc20 promoted curcumin-mediated anti-tumor activity. Therefore, our findings indicated that inhibition of Cdc20 by curcumin could be useful for the treatment of pancreatic cancer patients.

  18. Hinokitiol Inhibits Migration of A549 Lung Cancer Cells via Suppression of MMPs and Induction of Antioxidant Enzymes and Apoptosis

    PubMed Central

    Jayakumar, Thanasekaran; Liu, Chao-Hong; Wu, Guan-Yi; Lee, Tzu-Yin; Manubolu, Manjunath; Hsieh, Cheng-Ying; Yang, Chih-Hao; Sheu, Joen-Rong

    2018-01-01

    Hinokitiol, a natural monoterpenoid from the heartwood of Calocedrus formosana, has been reported to have anticancer effects against various cancer cell lines. However, the detailed molecular mechanisms and the inhibiting roles of hinokitiol on adenocarcinoma A549 cells remain to be fully elucidated. Thus, the current study was designed to evaluate the effect of hinokitiol on the migration of human lung adenocarcinoma A549 cells in vitro. The data demonstrates that hinokitiol does not effectively inhibit the viability of A549 cells at up to a 10 µM concentration. When treated with non-toxic doses (1–5 µM) of hinokitiol, the cell migration is markedly suppressed at 5 µM. Hinokitiol significantly reduced p53 expression, followed by attenuation of Bax in A549 cells. A dose-dependent inhibition of activated caspase-9 and -3 was observed in the presence of hinokitiol. An observed increase in protein expression of matrix metalloproteinases (MMPs) -2/-9 in A549 cells was significantly inhibited by hinokitiol. Remarkably, when A549 cells were subjected to hinokitiol (1–5 µM), there was an increase in the activities of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) from the reduction in cells. In addition, the incubation of A549 cells with hinokitiol significantly activated the cytochrome c expression, which may be triggered by activation of caspase-9 followed by caspase-3. These observations indicate that hinokitiol inhibited the migration of lung cancer A549 cells through several mechanisms, including the activation of caspases-9 and -3, induction of p53/Bax and antioxidant CAT and SOD, and reduction of MMP-2 and -9 activities. It also induces cytochrome c expression. These findings demonstrate a new therapeutic potential for hinokitiol in lung cancer chemoprevention. PMID:29565268

  19. Construction of Expression Vector for Anti-Alpha-Fetoprotein Gene and Its Inhibition Effects on Alpha-Fetoprotein Positive Hepg2 Cells

    NASA Astrophysics Data System (ADS)

    Wang, Ze; Zhang, Hui

    As research previously demonstrated, suppression of AFP expression or its biological activities might inhibit the proliferation of AFP positive human hepatocellular carcinoma cells. In this study, we constructed an anti-AFP gene vector and transfected it to HepG2 cells. RT-PCR showed AFP gene expression in the transfected cells was reduced. MTT assay suggested the proliferation of the transfected cells was also inhibited comparing with the untransfected cells. This result provides a new insight into AFP as the target for preventing and treating hepatocellular carcinoma.

  20. Anti-tumor effects of differentiation-inducing factor-1 in malignant melanoma: GSK-3-mediated inhibition of cell proliferation and GSK-3-independent suppression of cell migration and invasion.

    PubMed

    Arioka, Masaki; Takahashi-Yanaga, Fumi; Kubo, Momoko; Igawa, Kazunobu; Tomooka, Katsuhiko; Sasaguri, Toshiyuki

    2017-08-15

    Differentiation-inducing factor-1 (DIF-1) isolated from Dictyostelium discoideum strongly inhibits the proliferation of various mammalian cells through the activation of glycogen synthase kinase-3 (GSK-3). To evaluate DIF-1 as a novel anti-cancer agent for malignant melanoma, we examined whether DIF-1 has anti-proliferative, anti-migratory, and anti-invasive effects on melanoma cells using in vitro and in vivo systems. DIF-1 reduced the expression levels of cyclin D1 and c-Myc by facilitating their degradation via GSK-3 in mouse (B16BL6) and human (A2058) malignant melanoma cells, and thereby strongly inhibited their proliferation. DIF-1 suppressed the canonical Wnt signaling pathway by lowering the expression levels of transcription factor 7-like 2 and β-catenin, key transcription factors in this pathway. DIF-1 also inhibited cell migration and invasion, reducing the expression of matrix metalloproteinase-2; however, this effect was not dependent on GSK-3 activity. In a mouse lung tumor formation model, repeated oral administrations of DIF-1 markedly reduced melanoma colony formation in the lung. These results suggest that DIF-1 inhibits cell proliferation by a GSK-3-dependent mechanism and suppresses cell migration and invasion by a GSK-3-independent mechanism. Therefore, DIF-1 may have a potential as a novel anti-cancer agent for the treatment of malignant melanoma. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Lycopene acts through inhibition of IκB kinase to suppress NF-κB signaling in human prostate and breast cancer cells.

    PubMed

    Assar, Emelia A; Vidalle, Magdalena Castellano; Chopra, Mridula; Hafizi, Sassan

    2016-07-01

    We studied the effect of the potent dietary antioxidant lycopene on multiple points along the nuclear factor kappa B (NF-κB) signaling pathway in prostate and breast cancer cells. Lycopene significantly inhibited prostate and breast cancer cell growth at physiologically relevant concentrations of ≥1.25 μM. Similar concentrations also caused a 30-40 % reduction in inhibitor of kappa B (IκB) phosphorylation in the cells, as determined by western blotting. Furthermore, the same degree of inhibition by lycopene was observed for NF-κB transcriptional activity, as determined by reporter gene assay. Concomitant with this, immunofluorescence staining of lycopene-treated cells showed a significant suppression (≥25 %) of TNF-induced NF-κB p65 subunit nuclear translocation. Further probing of lycopene's effects on upstream elements of the NF-κB pathway showed a 25 % inhibition of both activity of recombinant IκB kinase β (IKKβ) kinase in a cell-free in vitro assay, as well as activity of IKKβ immunoprecipitated from MDA-MB-231 cells treated with lycopene. In conclusion, the anticancer properties of lycopene may occur through inhibition of the NF-κB signaling pathway, beginning at the early stage of cytoplasmic IKK kinase activity, which then leads to reduced NF-κB-responsive gene regulation. Furthermore, these effects in cancer cells were observed at concentrations of lycopene that are relevant and achievable in vivo.

  2. Glycogen synthase kinase-3 inhibition sensitizes human induced pluripotent stem cells to thiol-containing antioxidants induced apoptosis.

    PubMed

    Tu, Chengyi; Xu, Robert; Koleti, Meghana; Zoldan, Janet

    2017-08-01

    Inhibition of glycogen synthase kinase 3 (GSK3) is an extensively used strategy to activate Wnt pathway for pluripotent stem cell (PSC) differentiation. However, the effects of such inhibition on PSCs, besides upregulating the Wnt pathway, have rarely been investigated despite that GSK3 is broadly involved in other cellular activities such as insulin signaling and cell growth/survival regulation. Here we describe a previously unknown synergistic effect between GSK3 inhibition (e.g., Chir99021 and LY2090314) and various normally non-toxic thiol-containing antioxidants (e.g., N-acetylcysteine, NAC) on the induction of apoptosis in human induced pluripotent stem cells (iPSCs). Neither Chir99021 nor the antioxidants individually induced significant apoptosis, whereas their combined treatment resulted in rapid and extensive apoptosis, with substantial caspase 3 activity observed within 3h and over 90% decrease in cell viability after 24h. We confirmed the generality of this phenomenon with multiple independent iPSCs lines, various thiol-based antioxidants and distinct GSK3 inhibitors. Mechanistically, we demonstrated that rapamycin treatment could substantially reduce cell death, suggesting the critical role of mammalian target of rapamycin (mTOR). Akt dysregulation was also found to partially contribute to cell apoptosis but was not the primary cause. Further, this coordinated proapoptotic effect was not detected in mouse ESCs but was present in another human cells line: a breast cancer cell line (MDA-MB-231). Given the wide use of GSK3 inhibition in biomedical research: from iPSC differentiation to cancer intervention and the treatment of neuronal diseases, researchers can potentially take advantage of or avoid this synergistic effect for improved experimental or clinical outcome. Copyright © 2017. Published by Elsevier B.V.

  3. Urokinase–urokinase receptor interaction mediates an inhibitory signal for HIV-1 replication

    PubMed Central

    Alfano, Massimo; Sidenius, Nicolai; Panzeri, Barbara; Blasi, Francesco; Poli, Guido

    2002-01-01

    Elevated levels of soluble urokinase-type plasminogen activator (uPA) receptor, CD87/u-PAR, predict survival in individuals infected with HIV-1. Here, we report that pro-uPA (or uPA) inhibits HIV-1 expression in U937-derived chronically infected promonocytic U1 cells stimulated with phorbol 12-myristate 13-acetate (PMA) or tumor necrosis factor-α (TNF-α). However, pro-uPA did not inhibit PMA or TNF-α-dependent activation of nuclear factor-kB or activation protein-1 in U1 cells. Cell-associated HIV protein synthesis also was not decreased by pro-uPA, although the release of virion-associated reverse transcriptase activity was substantially inhibited, suggesting a functional analogy between pro-uPA and the antiviral effects of IFNs. Indeed, cell disruption reversed the inhibitory effect of pro-uPA on activated U1 cells, and ultrastructural analysis confirmed that virions were preferentially retained within cell vacuoles in pro-uPA treated cells. Neither expression of endogenous IFNs nor activation of the IFN-inducible Janus kinase/signal transducer and activator of transcription pathway were induced by pro-uPA. Pro-uPA also inhibited acute HIV replication in monocyte-derived macrophages and activated peripheral blood mononuclear cells, although with great inter-donor variability. However, pro-uPA inhibited HIV replication in acutely infected promonocytic U937 cells and in ex vivo cultures of lymphoid tissue infected in vitro. Because these effects occurred at concentrations substantially lower than those affecting thrombolysis, pro-uPA may represent a previously uncharacterized class of antiviral agents mimicking IFNs in their inhibitory effects on HIV expression and replication. PMID:12084931

  4. α-lipoic acid inhibits high glucose-induced apoptosis in HIT-T15 cells.

    PubMed

    Yang, Yi; Wang, Weiping; Liu, Yinan; Guo, Ting; Chen, Ping; Ma, Kangtao; Zhou, Chunyan

    2012-06-01

    High blood glucose plays an important role in the pathogenesis of diabetes. α-lipoic acid (LA) has been used to prevent and treat diabetes, and is thought to act by increasing insulin sensitivity in many tissues. However, whether LA also has a cytoprotective effect on pancreatic islet beta cells remains unclear. In this study, we assessed whether LA could inhibit apoptosis in beta cells exposed to high glucose concentrations. HIT-T15 pancreatic beta cells were treated with 30 mmol/L glucose in the presence or absence of 0.5 mmol/L LA for 8 days. LA significantly reduced the numbers of apoptotic HIT-T15 cells and inhibited the cell overgrowth normally induced by high glucose treatment. Additionally, LA inhibited insulin expression and secretion in HIT-T15 cells induced by high glucose. Further study demonstrated that LA upregulated Pdx1 and Bcl2 gene expression, reduced Bax gene expression, and promoted phosphorylation of Akt in HIT-T15 cells treated with high glucose. Intriguingly, knockdown of Pdx1 expression partially offset the anti-apoptotic effect of LA. However, inhibition of Akt by PI3K/AKT antagonist LY294002 only slightly reversed the anti-apoptosis effect of LA and mildly decreased the gene expression level of Pdx1 (P > 0.05). Moreover, LA only slightly attenuated reactive oxygen species (ROS) production and augmented mitochondrial membrane potential. Therefore, our data suggest that α-lipoic acid can effectively attenuate high glucose-induced HIT-T15 cell apoptosis probably by increasing Pdx1 expression. These findings provide a new interpretation on the role of LA in the treatment of diabetes. © 2012 The Authors Development, Growth & Differentiation © 2012 Japanese Society of Developmental Biologists.

  5. Crosstalk between the IGF-1R/AKT/mTORC1 pathway and the tumor suppressors p53 and p27 determines cisplatin sensitivity and limits the effectiveness of an IGF-1R pathway inhibitor

    PubMed Central

    Davaadelger, Batzaya; Duan, Lei; Perez, Ricardo E.; Gitelis, Steven; Maki, Carl G.

    2016-01-01

    The insulin-like growth factor-1 receptor (IGF-1R) signaling pathway is aberrantly activated in multiple cancers and can promote proliferation and chemotherapy resistance. Multiple IGF-1R inhibitors have been developed as potential therapeutics. However, these inhibitors have failed to increase patient survival when given alone or in combination with chemotherapy agents. The reason(s) for the disappointing clinical effect of these inhibitors is not fully understood. Cisplatin (CP) activated the IGF-1R/AKT/mTORC1 pathway and stabilized p53 in osteosarcoma (OS) cells. p53 knockdown reduced IGF-1R/AKT/mTORC1 activation by CP, and IGF-1R inhibition reduced the accumulation of p53. These data demonstrate positive crosstalk between p53 and the IGF-1R/AKT/mTORC1 pathway in response to CP. Further studies showed the effect of IGF-1R inhibition on CP response is dependent on p53 status. In p53 wild-type cells treated with CP, IGF-1R inhibition increased p53s apoptotic function but reduced p53-dependent senescence, and had no effect on long term survival. In contrast, in p53-null/knockdown cells, IGF-1R inhibition reduced apoptosis in response to CP and increased long term survival. These effects were due to p27 since IGF-1R inhibition stabilized p27 in CP-treated cells, and p27 depletion restored apoptosis and reduced long term survival. Together, the results demonstrate 1) p53 expression determines the effect of IGF-1R inhibition on cancer cell CP response, and 2) crosstalk between the IGF-1R/AKT/mTORC1 pathway and p53 and p27 can reduce cancer cell responsiveness to chemotherapy and may ultimately limit the effectiveness of IGF-1R pathway inhibitors in the clinic. PMID:27050276

  6. Exogenous DKK-3/REIC inhibits Wnt/β-catenin signaling and cell proliferation in human kidney cancer KPK1.

    PubMed

    Xu, Jiaqi; Sadahira, Takuya; Kinoshita, Rie; Li, Shun-Ai; Huang, Peng; Wada, Koichiro; Araki, Motoo; Ochiai, Kazuhiko; Noguchi, Hirofumi; Sakaguchi, Masakiyo; Nasu, Yasutomo; Watanabe, Masami

    2017-11-01

    The third member of the Dickkopf family (DKK-3), also known as reduced expression in immortalized cells (REIC), is a tumor suppressor present in a variety of tumor cells. Regarding the regulation of the Wnt/β-catenin signaling pathway, exogenous DKK-1 and DKK-2 are reported to inhibit Wnt signaling by binding the associated effectors. However, whether exogenous DKK-3 inhibits Wnt signaling remains unclear. A recombinant protein of human full-length DKK-3 was used to investigate the exogenous effects of the protein in vitro in KPK1 human renal cell carcinoma cells. It was demonstrated that the expression of phosphorylated (p-)β-catenin (inactive form as the transcriptional factor) was increased in KPK1 cells treated with the exogenous DKK-3 protein. The levels of non-p-β-catenin (activated form of β-catenin) were consistently decreased. It was revealed that the expression of transcription factor (TCF) 1 and c-Myc, the downstream transcription factors of the Wnt/β-catenin signaling pathway, was inhibited following treatment with DKK-3. A cancer cell viability assay confirmed the anti-proliferative effects of exogenous DKK-3 protein, which was consistent with a suppressed Wnt/β-catenin signaling cascade. In addition, as low-density lipoprotein receptor-related protein 6 (LRP6) is a receptor of DKK-1 and DKK-2 and their interaction on the cell surface inhibits Wnt/β-catenin signaling, it was examined whether the exogenous DKK-3 protein affects LRP6-mediated Wnt/β-catenin signaling. The LRP6 gene was silenced and the effects of DKK-3 on the time course of the upregulation of p-β-catenin expression were subsequently analyzed. Notably, LRP6 depletion elevated the base level of p-β-catenin; however, there was no significant effect on its upregulation course or expression pattern. These findings indicate that exogenous DKK-3 upregulates p-β-catenin and inhibits Wnt/β-catenin signaling in an LRP6-independent manner. Therefore, exogenous DKK-3 protein may inhibit the proliferation of KPK1 cells via inactivating Wnt/β-catenin signaling.

  7. Estrogenic compounds inhibit gap junctional intercellular communication in mouse Leydig TM3 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwase, Yumiko; Fukata, Hideki; Mori, Chisato

    2006-05-01

    Some estrogenic compounds are reported to cause testicular disorders in humans and/or experimental animals by direct action on Leydig cells. In carcinogenesis and normal development, gap junctional intercellular communication (GJIC) plays an essential role in maintaining homeostasis. In this study, we examine the effects of diethylstilbestrol (DES, a synthetic estrogen), 17{beta}-estradiol (E{sub 2}, a natural estrogen), and genistein (GEN, a phytoestrogen) on GJIC between mouse Leydig TM3 cells using Lucifer yellow microinjection. The three compounds tested produced GJIC inhibition in the TM3 cells after 24 h. Gradually, 10 {mu}M DES began to inhibit GJIC for 24 h and this effectmore » was observed until 72 h. On the other hand, both 20 {mu}M E{sub 2} and 25 {mu}M GEN rapidly inhibited GJIC in 6 h and 2 h, respectively. The effects continued until 24 h, but weakened by 72 h. Furthermore, a combined effect at {mu}M level between DES and E{sub 2} on GJIC inhibition was observed, but not between GEN and E{sub 2}. DES and E{sub 2} showed GJIC inhibition at low dose levels (nearly physiological estrogen levels) after 72 h, but GEN did not. DES-induced GJIC inhibition at 10 pM and 10 {mu}M was completely counteracted by ICI 182,780 (ICl), an estrogen receptor antagonist. On the other hand, the inhibitory effects on GJIC with E{sub 2} (10 pM and 20 {mu}M) and GEN (25 {mu}M) were partially blocked by ICI or calphostin C, a protein kinase C (PKC) inhibitor, and were completely blocked by the combination of ICI and calphostin C. These results demonstrate that DES inhibits GJIC between Leydig cells via the estrogen receptor (ER), and that E{sub 2} and GEN inhibit GJIC via ER and PKC. These estrogenic compounds may have different individual nongenotoxic mechanism including PKC pathway on testicular carcinogenesis or development.« less

  8. 6-Shogaol, an active constituent of dietary ginger, induces autophagy by inhibiting the AKT/mTOR pathway in human non-small cell lung cancer A549 cells.

    PubMed

    Hung, Jen-Yu; Hsu, Ya-Ling; Li, Chien-Te; Ko, Ying-Chin; Ni, Wen-Chiu; Huang, Ming-Shyan; Kuo, Po-Lin

    2009-10-28

    This study is the first study to investigate the anticancer effect of 6-shogaol in human non-small cell lung cancer A549 cells. 6-Shogaol inhibited cell proliferation by inducing autophagic cell death, but not, predominantly, apoptosis. Pretreatment of cells with 3-methyladenine (3-MA), an autophagy inhibitor, suppressed 6-shogaol mediated antiproliferation activity, suggesting that induction of autophagy by 6-shogaol is conducive to cell death. We also found that 6-shogaol inhibited survival signaling through the AKT/mTOR signaling pathway by blocking the activation of AKT and downstream targets, including the mammalian target of rapamycin (mTOR), forkhead transcription factors (FKHR) and glycogen synthase kinase-3beta (GSK-3beta). Phosphorylation of both of mTOR's downstream targets, p70 ribosomal protein S6 kinase (p70S6 kinase) and 4E-BP1, was also diminished. Overexpression of AKT by AKT cDNA transfection decreased 6-shogaol mediated autophagic cell death, supporting inhibition of AKT beneficial to autophagy. Moreover, reduction of AKT expression by siRNA potentiated 6-shogaol's effect, also supporting inhibition of AKT beneficial to autophagy. Taken together, these findings suggest that 6-shogaol may be a promising chemopreventive agent against human non-small cell lung cancer.

  9. Acetyl-CoA carboxylase rewires cancer metabolism to allow cancer cells to survive inhibition of the Warburg effect by cetuximab.

    PubMed

    Luo, Jingtao; Hong, Yun; Lu, Yang; Qiu, Songbo; Chaganty, Bharat K R; Zhang, Lun; Wang, Xudong; Li, Qiang; Fan, Zhen

    2017-01-01

    Cetuximab inhibits HIF-1-regulated glycolysis in cancer cells, thereby reversing the Warburg effect and leading to inhibition of cancer cell metabolism. AMP-activated protein kinase (AMPK) is activated after cetuximab treatment, and a sustained AMPK activity is a mechanism contributing to cetuximab resistance. Here, we investigated how acetyl-CoA carboxylase (ACC), a downstream target of AMPK, rewires cancer metabolism in response to cetuximab treatment. We found that introduction of experimental ACC mutants lacking the AMPK phosphorylation sites (ACC1_S79A and ACC2_S212A) into head and neck squamous cell carcinoma (HNSCC) cells protected HNSCC cells from cetuximab-induced growth inhibition. HNSCC cells with acquired cetuximab resistance contained not only high levels of T172-phosphorylated AMPK and S79-phosphorylated ACC1 but also an increased level of total ACC. These findings were corroborated in tumor specimens of HNSCC patients treated with cetuximab. Cetuximab plus TOFA (an allosteric inhibitor of ACC) achieved remarkable growth inhibition of cetuximab-resistant HNSCC xenografts. Our data suggest a novel paradigm in which cetuximab-mediated activation of AMPK and subsequent phosphorylation and inhibition of ACC is followed by a compensatory increase in total ACC, which rewires cancer metabolism from glycolysis-dependent to lipogenesis-dependent. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. MicroRNA-1271 inhibits proliferation and promotes apoptosis of multiple myeloma cells through inhibiting smoothened-mediated Hedgehog signaling pathway.

    PubMed

    Xu, Zhengwei; Huang, Chen; Hao, Dingjun

    2017-02-01

    MicroRNAs (miRNAs) have emerged as important regulators in multiple myeloma (MM). miR-1271 is a tumor suppressor in many cancer types. However, the biological role of miR-1271 in MM remains unclear. In the present study, we elucidated the biological role of miR-1271 in MM. Results showed that miR-1271 was significantly decreased in primary MM cells from MM patients and MM cell lines. Overexpression of miR-1271 inhibited proliferation and promoted apoptosis of MM cells. Conversely, suppression of miR-1271 showed the opposite effect. Bioinformatics algorithm analysis predicted that smoothened (SMO), the activator of Hedgehog (HH) signaling pathway, was a direct target of miR-1271 that was experimentally verified by a dual-luciferase reporter assay. Furthermore, overexpression of miR-1271 inhibited SMO expression and HH signaling pathway. Conversely, the restoration of SMO expression markedly abolished the effect of miR-1271 overexpression on cell proliferation, apoptosis and HH signaling pathway in MM cells. Taken together, the present study suggests that miR-1271 functions as a tumor suppressor that inhibits proliferation and promotes apoptosis of MM cells through inhibiting SMO-mediated HH signaling pathway. This finding implies that miR-1271 is a potential therapeutic target for the treatment of MM.

  11. Inhibition of c-Met as a Therapeutic Strategy for Esophageal Adenocarcinoma

    PubMed Central

    Watson, Gregory A; Zhang, Xinglu; Stang, Michael T; Levy, Ryan M; Queiroz de Oliveira, Pierre E; Gooding, William E; Christensen, James G; Hughes, Steven J

    2006-01-01

    Abstract The hepatocyte growth factor (HGF) receptor c-Met is a tyrosine kinase receptor with established oncogenic properties. We have previously shown that c-Met is usually overexpressed in esophageal adenocarcinoma (EA), yet the implications of c-Met inhibition in EA remain unknown. Three c-Met-overexpressing EA cell lines (Seg-1, Bic-1, and Flo-1) were used to examine the effects of a c-Met-specific small molecule inhibitor (PHA665752) on cell viability, apoptosis, motility, invasion, and downstream signaling pathways. PHA665752 demonstrated dose-dependent inhibition of constitutive and/or HGF-induced phosphorylation of c-Met, which correlated with reduced cell viability and inhibition of extracellular regulated kinase 1/2 phosphorylation in all three EA cell lines. In contrast, PHA665752 induced apoptosis and reduced motility and invasion in only one EA cell line, Flo-1. Interestingly, Flo-1 was the only cell line in which phosphatidylinositol 3-kinase (PI3K)/Akt was induced following HGF stimulation. The PI3K inhibitor LY294002 produced effects equivalent to those of PHA665752 in these cells. We conclude that inhibition of c-Met may be a useful therapeutic strategy for EA. Factors other than receptor overexpression, such as c-Met-dependent PI3K/Akt signaling, may be predictive of an individual tumor's response to c-Met inhibition. PMID:17132227

  12. Myeloid-derived suppressor cells as a potential therapy for experimental autoimmune myasthenia gravis

    PubMed Central

    Li, Yan; Tu, Zhidan; Qian, Shiguang; Fung, John J.; Markowitz, Sanford D.; Kusner, Linda L.; Kaminski, Henry J.; Lu, Lina; Lin, Feng

    2016-01-01

    We recently demonstrated that hepatic stellate cells induce the differentiation of myeloid-derived suppressor cells (MDSCs) from myeloid progenitors. In this study, we found that adoptive transfer of these MDSCs effectively reversed disease progression in experimental autoimmune myasthenia gravis (EAMG), a T-cell-dependent and B-cell-mediated model for myasthenia gravis. In addition to ameliorated disease severity, MDSC-treated EAMG mice showed suppressed acetylcholine receptors (AChR)-specific T-cell responses, decreased levels of serum anti-AChR IgGs, and reduced complement activation at the neuromuscular junctions. Incubating MDSCs with B cells activated by anti-IgM or anti-CD40 antibodies inhibited the proliferation of these in vitro activated B cells. Administering MDSCs into mice immunized with a T-cell-independent antigen inhibited the antigen-specific antibody production in vivo. MDSCs directly inhibit B cells through multiple mechanisms including prostaglandin E2, inducible nitric oxide synthase and arginase. Interestingly, MDSC treatment in EMAG mice does not appear to significantly inhibit their immune response to a non-relevant antigen, ovalbumin. These results demonstrated that hepatic stellate cell-induced MDSCs concurrently suppress both T- and B- cell autoimmunity, leading to effective treatment of established EAMG; and that the MDSCs inhibit AChR-specific immune responses at least partially in an antigen-specific manner. These data suggest that MDSCs could be further developed as a novel approach to treating myasthenia gravis and, even more broadly, other diseases in which T and B cells are involved in pathogenesis. PMID:25057008

  13. Reactive oxygen species mediate N-(4-hydroxyphenyl)retinamide-induced cell death in malignant T cells and are inhibited by the HTLV-I oncoprotein Tax.

    PubMed

    Darwiche, N; Abou-Lteif, G; Bazarbachi, A

    2007-02-01

    N-(4-hydroxyphenyl)retinamide (HPR) is a synthetic retinoid that inhibits growth of many human tumor cells, including those resistant to natural retinoids. HPR is an effective chemopreventive agent for prostate, cervix, breast, bladder, skin and lung cancers, and has shown promise for the treatment of neuroblastomas. We have previously shown that HPR inhibits proliferation and induces apoptosis of human T-cell lymphotropic virus type I (HTLV-I)-associated adult T-cell leukemia (ATL) and HTLV-I-negative malignant T cells, whereas no effect is observed on normal lymphocytes. In this report, we identified HPR-induced reactive oxygen species (ROS) generation as the key mediator of cell cycle arrest and apoptosis of malignant T cells. HPR treatment of HTLV-I-negative malignant T cells was associated with a rapid and progressive ROS accumulation. Pre-treatment with the antioxidants vitamin C and dithiothreitol inhibited ROS generation, prevented HPR-induced ceramide accumulation, cell cycle arrest, cytochrome c release, caspase-activation and apoptosis. Therefore, anti-oxidants protected malignant T cells from HPR-induced growth inhibition. The expression of the HTLV-I oncoprotein Tax abrogated HPR-induced ROS accumulation in HTLV-I-infected cells, which explains their lower sensitivity to HPR. Defining the mechanism of free radical induction by HPR may support a potential therapeutic role for this synthetic retinoid in ATL and HTLV-I-negative T-cell lymphomas.

  14. HPW-RX40 restores anoikis sensitivity of human breast cancer cells by inhibiting integrin/FAK signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, I-Hua; Shih, Hsin-Chu; Hsieh, Pei-Wen

    Anoikis is defined as apoptosis, which is induced by inappropriate cell–matrix interactions. Cancer cells with anoikis resistance tend to undergo metastasis, and this phenomenon has been reported to be associated with integrin and FAK activity. HPW-RX40 is a derivative of 3,4-methylenedioxy-β-nitrostyrene, which is known to prevent platelet aggregation by inhibition of integrin. In the present study, we investigated the effect of HPW-RX40 on an anoikis-resistant human breast cancer cell line MDA-MB-231. HPW-RX40 inhibited cell aggregation and induced cell death in suspending MDA-MB-231 cells, but had only little effect on the monolayer growth of adherent cells. Analysis of caspase activation andmore » poly (ADP-ribose) polymerase (PARP) cleavage confirmed anoikis in HPW-RX40-treated suspending cancer cells. HPW-RX40 also affected the Bcl-2 family proteins in detached cancer cells. Furthermore, HPW-RX40 inhibited detachment-induced activation of FAK and the downstream phosphorylation of Src and paxillin, but did not affect this pathway in adherent cancer cells. We also found that the expression and activation of β1 integrin in MDA-MB-231 cells were reduced by HPW-RX40. The combination of HPW-RX40 with an EGFR inhibitor led to enhanced anoikis and inhibition of the FAK pathway in breast cancer cells. Taken together, our results suggest that HPW-RX40 restores the anoikis sensitivity in the metastatic breast cancer cells by inhibiting integrin and subsequent FAK activation, and reveal a potential strategy for prevention of tumor metastasis. - Highlights: • The β-nitrostyrene derivative, HPW-RX40, induces anoikis in human breast cancer cells. • HPW-RX40 inhibits the integrin/FAK signaling pathway. • The combination of HPW-RX40 with an EGFR inhibitor leads to enhanced anoikis. • HPW-RX40 may have a potential to prevent the spread of metastatic breast cancer.« less

  15. Piper betle leaf extract enhances the cytotoxicity effect of 5-fluorouracil in inhibiting the growth of HT29 and HCT116 colon cancer cells*

    PubMed Central

    Ng, Pek Leng; Rajab, Nor Fadilah; Then, Sue Mian; Mohd Yusof, Yasmin Anum; Wan Ngah, Wan Zurinah; Pin, Kar Yong; Looi, Mee Lee

    2014-01-01

    Objective: The combination effect of Piper betle (PB) and 5-fluorouracil (5-FU) in enhancing the cytotoxic potential of 5-FU in inhibiting the growth of colon cancer cells was investigated. Methods: HT29 and HCT116 cells were subjected to 5-FU or PB treatment. 5-FU and PB were then combined and their effects on both cell lines were observed after 24 h of treatment. PB-5-FU interaction was elucidated by isobologram analysis. Apoptosis features of the treated cells were revealed by annexin V/PI stain. High-performance liquid chromatography (HPLC) was performed to exclude any possible chemical interaction between the compounds. Results: In the presence of PB extract, the cytotoxicity of 5-FU was observed at a lower dose (IC50 12.5 μmol/L) and a shorter time (24 h) in both cell lines. Both cell lines treated with 5-FU or PB alone induced a greater apoptosis effect compared with the combination treatment. Isobologram analysis indicated that PB and 5-FU interacted synergistically and antagonistically in inhibiting the growth of HT29 and HCT116 cells, respectively. Conclusions: In the presence of PB, a lower dosage of 5-FU is required to achieve the maximum drug effect in inhibiting the growth of HT29 cells. However, PB did not significantly reduce 5-FU dosage in HCT116 cells. Our result showed that this interaction may not solely contribute to the apoptosis pathway. PMID:25091987

  16. High Glucose Inhibits Neural Stem Cell Differentiation Through Oxidative Stress and Endoplasmic Reticulum Stress.

    PubMed

    Chen, Xi; Shen, Wei-Bin; Yang, Penghua; Dong, Daoyin; Sun, Winny; Yang, Peixin

    2018-06-01

    Maternal diabetes induces neural tube defects by suppressing neurogenesis in the developing neuroepithelium. Our recent study further revealed that high glucose inhibited embryonic stem cell differentiation into neural lineage cells. However, the mechanism whereby high glucose suppresses neural differentiation is unclear. To investigate whether high glucose-induced oxidative stress and endoplasmic reticulum (ER) stress lead to the inhibition of neural differentiation, the effect of high glucose on neural stem cell (the C17.2 cell line) differentiation was examined. Neural stem cells were cultured in normal glucose (5 mM) or high glucose (25 mM) differentiation medium for 3, 5, and 7 days. High glucose suppressed neural stem cell differentiation by significantly decreasing the expression of the neuron marker Tuj1 and the glial cell marker GFAP and the numbers of Tuj1 + and GFAP + cells. The antioxidant enzyme superoxide dismutase mimetic Tempol reversed high glucose-decreased Tuj1 and GFAP expression and restored the numbers of neurons and glial cells differentiated from neural stem cells. Hydrogen peroxide treatment imitated the inhibitory effect of high glucose on neural stem cell differentiation. Both high glucose and hydrogen peroxide triggered ER stress, whereas Tempol blocked high glucose-induced ER stress. The ER stress inhibitor, 4-phenylbutyrate, abolished the inhibition of high glucose or hydrogen peroxide on neural stem cell differentiation. Thus, oxidative stress and its resultant ER stress mediate the inhibitory effect of high glucose on neural stem cell differentiation.

  17. Immunosuppressive Effects of Bryoria sp. (Lichen-Forming Fungus) Extracts via Inhibition of CD8+ T-Cell Proliferation and IL-2 Production in CD4+ T Cells.

    PubMed

    Hwang, Yun-Ho; Lee, Sung-Ju; Kang, Kyung-Yun; Hur, Jae-Seoun; Yee, Sung-Tae

    2017-06-28

    Lichen-forming fungi are known to have various biological activities, such as antioxidant, antimicrobial, antitumor, antiviral, anti-inflammation, and anti proliferative effects. However, the immunosuppressive effects of Bryoria sp. extract (BSE) have not previously been investigated. In this study, the inhibitory activity of BSE on the proliferation of CD8 + T cells and the mixed lymphocytes reaction (MLR) was evaluated in vitro. BSE was non-toxic in spleen cells and suppressed the growth of splenocytes induced by anti-CD3. The suppressed cell population in spleen cells consisted of CD8 + T cells and their proliferation was inhibited by the treatment with BSE. This extract significantly suppressed the IL-2 associated with T cell growth and IFN-γ as the CD8 + T cell marker. Furthermore, BSE reduced the expression of the IL-2 receptor alpha chain (IL-2Rα) on CD8 + T cells and CD86 on dendritic cells by acting as antigen-presenting cells. Finally, the MLR produced by the co-culture of C57BL/6 and MMC-treated BALB/c was suppressed by BSE. IL-2, IFN-γ, and CD69 on CD8 + T cells in MLR condition were inhibited by BSE. These results indicate that BSE inhibits the MLR via the suppression of IL-2Rα expression in CD8 + T cells. BSE has the potential to be developed as an anti-immunosuppression agent for organ transplants.

  18. Global Effects of DDX3 Inhibition on Cell Cycle Regulation Identified by a Combined Phosphoproteomics and Single Cell Tracking Approach.

    PubMed

    Heerma van Voss, Marise R; Kammers, Kai; Vesuna, Farhad; Brilliant, Justin; Bergman, Yehudit; Tantravedi, Saritha; Wu, Xinyan; Cole, Robert N; Holland, Andrew; van Diest, Paul J; Raman, Venu

    2018-06-01

    DDX3 is an RNA helicase with oncogenic properties. The small molecule inhibitor RK-33 is designed to fit into the ATP binding cleft of DDX3 and hereby block its activity. RK-33 has shown potent activity in preclinical cancer models. However, the mechanism behind the antineoplastic activity of RK-33 remains largely unknown. In this study we used a dual phosphoproteomic and single cell tracking approach to evaluate the effect of RK-33 on cancer cells. MDA-MB-435 cells were treated for 24 hours with RK-33 or vehicle control. Changes in phosphopeptide abundance were analyzed with quantitative mass spectrometry using isobaric mass tags (Tandem Mass Tags). At the proteome level we mainly observed changes in mitochondrial translation, cell division pathways and proteins related to cell cycle progression. Analysis of the phosphoproteome indicated decreased CDK1 activity after RK-33 treatment. To further evaluate the effect of DDX3 inhibition on cell cycle progression over time, we performed timelapse microscopy of Fluorescent Ubiquitin Cell Cycle Indicators labeled cells after RK-33 or siDDX3 exposure. Single cell tracking indicated that DDX3 inhibition resulted in a global delay in cell cycle progression in interphase and mitosis. In addition, we observed an increase in endoreduplication. Overall, we conclude that DDX3 inhibition affects cells in all phases and causes a global cell cycle progression delay. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Local anesthetic lidocaine inhibits TRPM7 current and TRPM7-mediated zinc toxicity.

    PubMed

    Leng, Tian-Dong; Lin, Jun; Sun, Hua-Wei; Zeng, Zhao; O'Bryant, Zaven; Inoue, Koichi; Xiong, Zhi-Gang

    2015-01-01

    Previous study demonstrated that overstimulation of TRPM7 substantially contributes to zinc-mediated neuronal toxicity. Inhibition of TRPM7 activity and TRPM7-mediated intracellular Zn(2+) accumulation may represent a promising strategy in the treatment of stroke. To investigate whether local anesthetics lidocaine could inhibit TRPM7 channel and TRPM7-mediated zinc toxicity. Whole-cell patch-clamp technique was used to investigate the effect of local anesthetics on TRPM7 currents in cultured mouse cortical neurons and TRPM7-overexpressed HEK293 cells. Fluorescent Zn(2+) imaging technique was used to study the effect of lidocaine on TRPM7-mediated intracellular Zn(2+) accumulation. TRPM7-mediated zinc toxicity in neurons was used to evaluate the neuroprotective effect of lidocaine. (1) Lidocaine dose dependently inhibits TRPM7-like currents, with an IC50 of 11.55 and 11.06 mM in cultured mouse cortical neurons and TRPM7-overexpressed HEK293 cells, respectively; (2) Lidocaine inhibits TRPM7 currents in a use/frequency-dependent manner; (3) Lidocaine inhibits TRPM7-mediated intracellular Zn(2+) accumulation in both cortical neurons and TRPM7-overexpressed HEK293 cells; (4) TRPM7-mediated Zn(2+) toxicity is ameliorated by lidocaine in cortical neurons; (5) QX-314 has a similar inhibitory effect as lidocaine on TRPM7 currents when applied extracellularly; (6) Procaine also shows potent inhibitory effect on the TRPM7 currents in cortical neurons. Our data provide the first evidence that local anesthetic lidocaine inhibits TRPM7 channel and TRPM7-mediated zinc toxicity. © 2014 John Wiley & Sons Ltd.

  20. Myostatin inhibits proliferation of human urethral rhabdosphincter satellite cells.

    PubMed

    Akita, Yasuyuki; Sumino, Yasuhiro; Mori, Ken-ichi; Nomura, Takeo; Sato, Fuminori; Mimata, Hiromitsu

    2013-05-01

    Myostatin, a member of the transforming growth factor-β superfamily, is a negative regulator of myogenesis in skeletal muscle. We examined the effect of myostatin and myostatin inhibition by an antagonistic agent, follistatin, on growth of human urethral rhabdosphincter satellite cells (muscle stem cells) to develop a new strategy for treatment of stress urinary incontinence. Rhabdosphincter satellite cells were cultured and selected by magnetic affinity cell sorting using an anti-neural cell adhesion molecule antibody. The cells were transfected with simian virus-40 antigen to extend their lifespan. A cell proliferation assay, a cell cycle analysis and an investigation of signal transduction were carried out. The autocrine action of endogenous myostatin by western blotting, real-time reverse transcription polymerase chain reaction and immunoneutralization using an anti-myostatin antibody was also evaluated. Selectively cultured cells expressed markers of striated muscles and successfully differentiated into myotubes. Myostatin inhibited proliferation of these cells through Smad2 phosphorylation and cell cycle arrest. Inhibitory effects of myostatin were reversed by addition of follistatin. However, rhabdosphincter satellite cells did not appear to use autocrine secretion of myostatin to regulate their proliferation. Inhibition of myostatin function might be a useful pathway in the development of novel strategies for stimulating rhabdosphincter cells regeneration to treat stress urinary incontinence. © 2012 The Japanese Urological Association.

  1. Synergism between arsenite and proteasome inhibitor MG132 over cell death in myeloid leukaemic cells U937 and the induction of low levels of intracellular superoxide anion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombardo, Tomás; Cavaliere, Victoria; Costantino, Susana N.

    Increased oxygen species production has often been cited as a mechanism determining synergism on cell death and growth inhibition effects of arsenic-combined drugs. However the net effect of drug combination may not be easily anticipated solely from available knowledge of drug-induced death mechanisms. We evaluated the combined effect of sodium arsenite with the proteasome inhibitor MG132, and the anti-leukaemic agent CAPE, on growth-inhibition and cell death effect in acute myeloid leukaemic cells U937 and Burkitt's lymphoma-derived Raji cells, by the Chou–Talalay method. In addition we explored the association of cytotoxic effect of drugs with changes in intracellular superoxide anion (O{submore » 2}{sup −}) levels. Our results showed that combined arsenite + MG132 produced low levels of O{sub 2}{sup −} at 6 h and 24 h after exposure and were synergic on cell death induction in U937 cells over the whole dose range, although the combination was antagonistic on growth inhibition effect. Exposure to a constant non-cytotoxic dose of 80 μM hydrogen peroxide together with arsenite + MG132 changed synergism on cell death to antagonism at all effect levels while increasing O{sub 2}{sup −} levels. Arsenite + hydrogen peroxide also resulted in antagonism with increased O{sub 2}{sup −} levels in U937 cells. In Raji cells, arsenite + MG132 also produced low levels of O{sub 2}{sup −} at 6 h and 24 h but resulted in antagonism on cell death and growth inhibition. By contrast, the combination arsenite + CAPE showed high levels of O{sub 2}{sup −} production at 6 h and 24 h post exposure but resulted in antagonism over cell death and growth inhibition effects in U937 and Raji cells. We conclude that synergism between arsenite and MG132 in U937 cells is negatively associated to O{sub 2}{sup −} levels at early time points after exposure. -- Highlights: ► Arsenic combined cytotoxic and anti-proliferative effects by Chou–Talalay method. ► Cytotoxic effect associated with superoxide levels as assessed by flow cytometry. ► Synergism between arsenite and MG132 in U937 leukemia cell line. ► Synergism turned into antagonism by low levels of hydrogen peroxide. ► Resistance to arsenic cytotoxicity linked to early superoxide anion increased levels.« less

  2. Metformin selectively affects human glioblastoma tumor-initiating cell viability

    PubMed Central

    Würth, Roberto; Pattarozzi, Alessandra; Gatti, Monica; Bajetto, Adirana; Corsaro, Alessandro; Parodi, Alessia; Sirito, Rodolfo; Massollo, Michela; Marini, Cecilia; Zona, Gianluigi; Fenoglio, Daniela; Sambuceti, Gianmario; Filaci, Gilberto; Daga, Antonio; Barbieri, Federica; Florio, Tullio

    2013-01-01

    Cancer stem cell theory postulates that a small population of tumor-initiating cells is responsible for the development, progression and recurrence of several malignancies, including glioblastoma. In this perspective, tumor-initiating cells represent the most relevant target to obtain effective cancer treatment. Metformin, a first-line drug for type II diabetes, was reported to possess anticancer properties affecting the survival of cancer stem cells in breast cancer models. We report that metformin treatment reduced the proliferation rate of tumor-initiating cell-enriched cultures isolated from four human glioblastomas. Metformin also impairs tumor-initiating cell spherogenesis, indicating a direct effect on self-renewal mechanisms. Interestingly, analyzing by FACS the antiproliferative effects of metformin on CD133-expressing subpopulation, a component of glioblastoma cancer stem cells, a higher reduction of proliferation was observed as compared with CD133-negative cells, suggesting a certain degree of cancer stem cell selectivity in its effects. In fact, glioblastoma cell differentiation strongly reduced sensitivity to metformin treatment. Metformin effects in tumor-initiating cell-enriched cultures were associated with a powerful inhibition of Akt-dependent cell survival pathway, while this pathway was not affected in differentiated cells. The specificity of metformin antiproliferative effects toward glioblastoma tumor-initiating cells was confirmed by the lack of significant inhibition of normal human stem cells (umbilical cord-derived mesenchymal stem cells) in vitro proliferation after metformin exposure. Altogether, these data clearly suggest that metformin exerts antiproliferative activity on glioblastoma cells, showing a higher specificity toward tumor-initiating cells, and that the inhibition of Akt pathway may represent a possible intracellular target of this effect. PMID:23255107

  3. Suppression of T cell-induced osteoclast formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karieb, Sahar; Fox, Simon W., E-mail: Simon.fox@plymouth.ac.uk

    2013-07-12

    Highlights: •Genistein and coumestrol prevent activated T cell induced osteoclast formation. •Anti-TNF neutralising antibodies prevent the pro-osteoclastic effect of activated T cells. •Phytoestrogens inhibit T cell derived TNF alpha and inflammatory cytokine production. •Phytoestrogens have a broader range of anti-osteoclastic actions than other anti-resorptives. -- Abstract: Inhibition of T cell derived cytokine production could help suppress osteoclast differentiation in inflammatory skeletal disorders. Bisphosphonates are typically prescribed to prevent inflammatory bone loss but are not tolerated by all patients and are associated with an increased risk of osteonecrosis of the jaw. In light of this other anti-resorptives such as phytoestrogens aremore » being considered. However the effect of phytoestrogens on T cell-induced osteoclast formation is unclear. The effect of genistein and coumestrol on activated T cell-induced osteoclastogenesis and cytokine production was therefore examined. Concentrations of genistein and coumestrol (10{sup −7} M) previously shown to directly inhibit osteoclast formation also suppressed the formation of TRAP positive osteoclast induced by con A activated T cells, which was dependent on inhibition of T cell derived TNF-α. While both reduced osteoclast formation their mechanism of action differed. The anti-osteoclastic effect of coumestrol was associated with a dual effect on con A induced T cell proliferation and activation; 10{sup −7} M coumestrol significantly reducing T cell number (0.36) and TNF-α (0.47), IL-1β (0.23) and IL-6 (0.35) expression, whereas genistein (10{sup −7} M) had no effect on T cell number but a more pronounced effect on T cell differentiation reducing expression of TNF-α (0.49), IL-1β (0.52), IL-6 (0.71) and RANKL (0.71). Phytoestrogens therefore prevent the pro-osteoclastic action of T cells suggesting they may have a role in the control of inflammatory bone loss.« less

  4. Overexpression of SKP2 Inhibits the Radiation-Induced Bystander Effects of Esophageal Carcinoma.

    PubMed

    Wang, Xiao-Chun; Zhang, Tie-Jun; Guo, Zi-Jian; Xiao, Chang-Yan; Ding, Xiao-Wen; Fang, Fang; Sheng, Wen-Tao; Shu, Xu; Li, Jue

    2017-02-06

    To investigate the effects of S-phase kinase protein 2 (SKP2) expression on the radiation induced bystander effect (RIBE) in esophageal cancer (EC) cells. Western blot was used to detect the levels of SKP2, Rad51, and Ku70 in EC cells. Positive transfection, RNAi, micronucleus (MN), and γ-H2AX focus formation assay were used to investigate the effects of SKP2 on RIBE induced by irradiated cells. We found a significant negative correlation between SKP2 expression and MN frequency ( p < 0.05) induced by RIBE. The results were further confirmed by positive transfection, RNAi, and rescue experiments.γ-H2AX focus formation assay results indicated that overexpression of SKP2 in the irradiated cells inhibited the DNA damage of RIBE cells. However, when SKP2 expression decreased in irradiated cells, the DNA damage of RIBE cells increased. Increased or decreased expression levels of SKP2 had effects on Rad51 expression under the conditions of RIBE. These results showed, for the first time, that SKP2 expression can inhibit RIBE of EC cells. The mechanism may function, at least partly, through the regulation of Rad51 in the ability to repair DNA damage.

  5. Effects of phenylpropanoid and energetic metabolism inhibition on faba bean resistance mechanisms to rust.

    PubMed

    Del Mar Rojas-Molina, María; Rubiales, Diego; Prats, Elena; Sillero, Josefina Carmen

    2007-01-01

    ABSTRACT Effects on penetration and hypersensitive resistance of the cinnamyl acid dehydrogenase (CAD) suicide inhibitor ([(2-hydroxyphenyl) amino] sulphinyl) acetic acid, 1.1 dimethyl ester, which suppresses phenylpro-panoid biosynthesis, and of D-mannose, which sequesters phosphate and reduces energy available in host cells, were studied in faba bean (Vicia faba) genotypes with differing resistance mechanisms to faba bean rust (Uromyces viciae-fabae). Inhibition of CAD reduced penetration resistance in lines 2N-34, 2N-52, V-1271, and V-1272, revealing an important role for phenylpropanoid biosynthesis in the resistance of these lines. Inhibition of CAD also inhibited hypersensitive cell death in these lines. D-mannose had little or no effect on resistance. By contrast, CAD inhibition did not affect penetration resistance of line BPL-261, which has a high degree of penetration resistance not associated with hypersensitive cell death. In BPL-261, D-mannose inhibited penetration resistance. The parallelism between the faba bean genotype responses to rust observed here and the response of barley genotypes with differing resistance mechanisms to powdery mildew after similar inhibitor treatments is analyzed and discussed.

  6. The inhibition of FGF receptor 1 activity mediates sorafenib antiproliferative effects in human malignant pleural mesothelioma tumor-initiating cells.

    PubMed

    Pattarozzi, Alessandra; Carra, Elisa; Favoni, Roberto E; Würth, Roberto; Marubbi, Daniela; Filiberti, Rosa Angela; Mutti, Luciano; Florio, Tullio; Barbieri, Federica; Daga, Antonio

    2017-05-25

    Malignant pleural mesothelioma is an aggressive cancer, characterized by rapid progression and high mortality. Persistence of tumor-initiating cells (TICs, or cancer stem cells) after cytotoxic drug treatment is responsible for tumor relapse, and represents one of the main reasons for the poor prognosis of mesothelioma. In fact, identification of the molecules affecting TIC viability is still a significant challenge. TIC-enriched cultures were obtained from 10 human malignant pleural mesotheliomas and cultured in vitro. Three fully characterized tumorigenic cultures, named MM1, MM3, and MM4, were selected and used to assess antiproliferative effects of the multi-kinase inhibitor sorafenib. Cell viability was investigated by MTT assay, and cell cycle analysis as well as induction of apoptosis were determined by flow cytometry. Western blotting was performed to reveal the modulation of protein expression and the phosphorylation status of pathways associated with sorafenib treatment. We analyzed the molecular mechanisms of the antiproliferative effects of sorafenib in mesothelioma TIC cultures. Sorafenib inhibited cell cycle progression in all cultures, but only in MM3 and MM4 cells was this effect associated with Mcl-1-dependent apoptosis. To investigate the mechanisms of sorafenib-mediated antiproliferative activity, TICs were treated with epidermal growth factor (EGF) or basic fibroblast growth factor (bFGF) causing, in MM3 and MM4 cells, MEK, ERK1/2, Akt, and STAT3 phosphorylation. These effects were abolished by sorafenib only in bFGF-treated cells, while a modest inhibition occurred after EGF stimulation, suggesting that sorafenib effects are mainly due to FGF receptor (FGFR) inhibition. Indeed, FGFR1 phosphorylation was inhibited by sorafenib. Moreover, in MM1 cells, which release high levels of bFGF and showed autocrine activation of FGFR1 and constitutive phosphorylation/activation of MEK-ERK1/2, sorafenib induced a more effective antiproliferative response, confirming that the main target of the drug is the inhibition of FGFR1 activity. These results suggest that, in malignant pleural mesothelioma TICs, bFGF signaling is the main target of the antiproliferative response of sorafenib, acting directly on the FGFR1 activation. Patients with constitutive FGFR1 activation via an autocrine loop may be more sensitive to sorafenib treatment and the analysis of this possibility warrants further clinical investigation.

  7. Cyclosporin a inhibits T cell-mediated augmentation of mouse natural killer activity.

    PubMed

    Yanagihara, R H; Adler, W H

    1982-06-01

    Cyclosporin A (CSA) in vitro inhibited the spontaneous cytotoxic activity of mouse spleen cells against YAC target cells in a 4 hr 51Cr release assay. While natural killer (NK) cells were inhibited directly by CSA, these suppressive effects were largely reversible by coculture of effector cells for an optimal period with polyinosinic-polycytidylic acid (Poly I:C) or lipopolysaccharide (LPS). In contrast concanavalin A (Con A), in the presence of CSA, was unable to augment NK activity. The supernatant, however, of mouse spleen cells cultured with Con A was fully able to augment the NK the activity by freshly cultured spleen cells in the presence of CSA. The results indicate that CSA inhibits NK activity by two distinct mechanisms: a) a direct inactivation of NK cells and b) a suppression of production or release of an NK-activating factor from T cells, but not B cells or macrophages.

  8. Natural killer (NK) cells inhibit systemic metastasis of glioblastoma cells and have therapeutic effects against glioblastomas in the brain.

    PubMed

    Lee, Se Jeong; Kang, Won Young; Yoon, Yeup; Jin, Ju Youn; Song, Hye Jin; Her, Jung Hyun; Kang, Sang Mi; Hwang, Yu Kyeong; Kang, Kyeong Jin; Joo, Kyeung Min; Nam, Do-Hyun

    2015-12-24

    Glioblastoma multiforme (GBM) is characterized by extensive local invasion, which is in contrast with extremely rare systemic metastasis of GBM. Molecular mechanisms inhibiting systemic metastasis of GBM would be a novel therapeutic candidate for GBM in the brain. Patient-derived GBM cells were primarily cultured from surgical samples of GBM patients and were inoculated into the brains of immune deficient BALB/c-nude or NOD-SCID IL2Rgamma(null) (NSG) mice. Human NK cells were isolated from peripheral blood mononucleated cells and expanded in vitro. Patient-derived GBM cells in the brains of NSG mice unexpectedly induced spontaneous lung metastasis although no metastasis was detected in BALB/c-nude mice. Based on the difference of the innate immunity between two mouse strains, NK cell activities of orthotopic GBM xenograft models based on BALB/c-nude mice were inhibited. NK cell inactivation induced spontaneous lung metastasis of GBM cells, which indicated that NK cells inhibit the systemic metastasis. In vitro cytotoxic activities of human NK cells against GBM cells indicated that cytotoxic activity of NK cells against GBM cells prevents systemic metastasis of GBM and that NK cells could be effective cell therapeutics against GBM. Accordingly, NK cells transplanted into orthotopic GBM xenograft models intravenously or intratumorally induced apoptosis of GBM cells in the brain and showed significant therapeutic effects. Our results suggest that innate NK immunity is responsible for rare systemic metastasis of GBM and that sufficient supplementation of NK cells could be a promising immunotherapeutic strategy for GBM in the brain.

  9. Inhibition of macrophage-derived foam cell formation by ezetimibe via the caveolin-1/MAPK pathway.

    PubMed

    Qin, Li; Yang, Yun-Bo; Yang, Yi-Xin; Zhu, Neng; Liu, Zheng; Ni, Ya-Guang; Li, Shun-Xiang; Zheng, Xi-Long; Liao, Duan-Fang

    2016-02-01

    Ezetimibe, a selective inhibitor of intestinal cholesterol absorption, effectively reduces plasma cholesterol, but its effect on atherosclerosis is unclear. Foam cell formation has been implicated as a key mediator during the development of atherosclerosis. The purpose of this study was to investigate the effects of ezetimibe on foam cell formation and explore the underlying mechanism. The results presented here show that ezetimibe reduces atherosclerotic lesions in apolipoprotein E deficient (apoE-/-) mice by lowering cholesterol levels. Treatment of macrophages with Chol:MβCD resulted in foam cell formation, which was concentration-dependently inhibited by the presence of ezetimibe. Mechanically, ezetimibe treatment downregulated the expression of CD36 and scavenger receptor class B1 (SR-B1), but upregulated the expression of apoE and caveolin-1 in macrophage-derived foam cells, which kept consistent with our microarray results. Moreover, treatment with ezetimibe abrogated the increase of phospho-extracellular signal regulated kinase (ERK) 1/2 and their nuclear accumulation in foam cells. Inhibition of the MAPK pathway by the MEK inhibitor PD98059 attenuated the inhibitory effect of ezetimibe on the expression of p-ERK1/2 and caveolin-1. Taken together, these results showed that ezetimibe suppressed foam cell formation via the caveolin-1/MAPK signalling pathway, suggesting that inhibition of foam cell formation might be a novel mechanism underlying the anti-atherosclerotic effect of ezetimibe. © 2016 John Wiley & Sons Australia, Ltd.

  10. Combined ALK and MDM2 inhibition increases antitumor activity and overcomes resistance in human ALK mutant neuroblastoma cell lines and xenograft models.

    PubMed

    Wang, Hui Qin; Halilovic, Ensar; Li, Xiaoyan; Liang, Jinsheng; Cao, Yichen; Rakiec, Daniel P; Ruddy, David A; Jeay, Sebastien; Wuerthner, Jens U; Timple, Noelito; Kasibhatla, Shailaja; Li, Nanxin; Williams, Juliet A; Sellers, William R; Huang, Alan; Li, Fang

    2017-04-20

    The efficacy of ALK inhibitors in patients with ALK -mutant neuroblastoma is limited, highlighting the need to improve their effectiveness in these patients. To this end, we sought to develop a combination strategy to enhance the antitumor activity of ALK inhibitor monotherapy in human neuroblastoma cell lines and xenograft models expressing activated ALK. Herein, we report that combined inhibition of ALK and MDM2 induced a complementary set of anti-proliferative and pro-apoptotic proteins. Consequently, this combination treatment synergistically inhibited proliferation of TP53 wild-type neuroblastoma cells harboring ALK amplification or mutations in vitro, and resulted in complete and durable responses in neuroblastoma xenografts derived from these cells. We further demonstrate that concurrent inhibition of MDM2 and ALK was able to overcome ceritinib resistance conferred by MYCN upregulation in vitro and in vivo. Together, combined inhibition of ALK and MDM2 may provide an effective treatment for TP53 wild-type neuroblastoma with ALK aberrations.

  11. Selective Effects of PD-1 on Akt and Ras Pathways Regulate Molecular Components of the Cell Cycle and Inhibit T Cell Proliferation

    PubMed Central

    Patsoukis, Nikolaos; Brown, Julia; Petkova, Victoria; Liu, Fang; Li, Lequn; Boussiotis, Vassiliki A.

    2017-01-01

    The receptor programmed death 1 (PD-1) inhibits T cell proliferation and plays a critical role in suppressing self-reactive T cells, and it also compromises antiviral and antitumor responses. To determine how PD-1 signaling inhibits T cell proliferation, we used human CD4+ T cells to examine the effects of PD-1 signaling on the molecular control of the cell cycle. The ubiquitin ligase SCFSkp2 degrades p27kip1, an inhibitor of cyclin-dependent kinases (Cdks), and PD-1 blocked cell cycle progression through the G1 phase by suppressing transcription of SKP2, which encodes a component of this ubiquitin ligase. Thus, in T cells stimulated through PD-1, Cdks were not activated, and two critical Cdk substrates were not phosphorylated. Activation of PD-1 inhibited phosphorylation of the retinoblastoma gene product, which suppressed expression of E2F target genes. PD-1 also inhibited phosphorylation of the transcription factor Smad3, which increased its activity. These events induced additional inhibitory checkpoints in the cell cycle by increasing the abundance of the G1 phase inhibitor p15INK4 and repressing the Cdk-activating phosphatase Cdc25A. PD-1 suppressed SKP2 transcription by inhibiting phosphoinositide 3-kinase–Akt and Ras–mitogen-activated and extracellular signal–regulated kinase kinase (MEK)–extracellular signal–regulated kinase (ERK) signaling. Exposure of cells to the proliferation-promoting cytokine interleukin-2 restored activation of MEK-ERK signaling, but not Akt signaling, and only partially restored SKP2 expression. Thus, PD-1 blocks cell cycle progression and proliferation of T lymphocytes by affecting multiple regulators of the cell cycle. PMID:22740686

  12. The in vivo antitumor effects of type I-interferon against hepatocellular carcinoma: the suppression of tumor cell growth and angiogenesis.

    PubMed

    Enomoto, Hirayuki; Tao, Lihua; Eguchi, Ryoji; Sato, Ayuko; Honda, Masao; Kaneko, Shuichi; Iwata, Yoshinori; Nishikawa, Hiroki; Imanishi, Hiroyasu; Iijima, Hiroko; Tsujimura, Tohru; Nishiguchi, Shuhei

    2017-09-22

    Type I-interferon (IFN) is considered to exert antitumor effects through the inhibition of cancer cell proliferation and angiogenesis. Based on the species-specific biological activity of IFN, we evaluated each antitumor mechanism separately. We further examined the antitumor effects of type I-IFN combined with sorafenib. Human IFN (hIFN) significantly inhibited the proliferation of human hepatocellular carcinoma (HCC) Hep3B cells and the tube formation of human umbilical vein endothelial cells (HUVECs) in vitro. Although mouse IFN (mIFN) did not inhibit the proliferation of Hep3B cells in vitro, mIFN, as well as hIFN, showed significant antitumor effects in mouse Hep3B cell-xenograft model. Furthermore, mIFN treatment amplified the antitumor effects of sorafenib in vivo with the suppression of angiogenesis. The DNA chip analysis showed that the mIFN treatment promoted the antitumor signal pathways of sorafenib, including anti-angiogenic effects. Unlike the effects observed in in vitro experiments, mIFN showed an antitumor effect in the mouse Hep3B cell-xenograft model, suggesting a role of the anti-angiogenic activity in the in vivo tumoricidal effects of type I-IFN. In addition, our findings suggested the clinical utility of combination therapy with type І-IFN and sorafenib for HCC.

  13. Effects of single- and multi-strain probiotics on biofilm formation and in vitro adhesion to bladder cells by urinary tract pathogens.

    PubMed

    Chapman, C M C; Gibson, G R; Rowland, I

    2014-06-01

    There is increasing evidence that probiotic bacteria can inhibit and/or prevent urinary tract infections. Possible mechanisms include prevention of adhesion of pathogens to the bladder epithelium and inhibition of biofilm formation. Currently there is interest in the comparative efficacy of single probiotics vs. strain mixtures. We have therefore tested the inhibitory activity of four single probiotics and four probiotic mixtures towards the urinary tract pathogens Escherichia coli NCTC 9001 and Enterococcus faecalis NCTC 00775. Inhibition of biofilm formation by cell-free supernatants was tested using the Crystal Violet assay, while prevention of pathogen adhesion to host cells was tested by using bladder cancer cells as a model for the human urinary tract. Under pH-controlled conditions, there was no significant inhibition of biofilm formation by any treatment. Without pH control, 5/8 treatments significantly inhibited biofilm production by E. coli, while 5/8 treatments inhibited production by E. faecalis. Using data from all Crystal Violet assays, there was no significant difference in the ability of single- and multi-strain probiotics to inhibit biofilm formation. In the cell culture assays, all treatments were able to significantly reduce numbers of pathogenic cells adhering to host cells by 2.5-3.5 logs. No significant difference was observed between the displacement caused by single strains and mixtures for either pathogen. Inhibition of biofilm seems to be a major mechanism of urinary tract pathogen exclusion, related to, and possibly dependent upon, the probiotic ability to reduce environmental pH. Exclusion via competition of binding sites is a possible in vivo mechanism for these probiotics. If an additive or synergistic effect exists between strains within a mixture, it does not manifest itself in a greater effect through these two inhibitory mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Effects of Angiotensin Inhibitor Valsartan on the Expression of the Angiotensin II 1 Receptor, Matrix Metalloproteinases -2 and -9 in Human Bladder Cancer Cell Lines.

    PubMed

    Yang, Delin; Huo, Qian; Luan, Ting; Wang, Jiansong; Tang, Zhaoran; Wang, Haifeng

    2016-08-01

    In order to investigate how valsartan-the angiotensin II 1 receptor (AT1R) antagonist-affects the expressions of AT1R antigen, matrix metalloproteinases (MMPs) -2 and -9 in carcinoma of urinary bladder (CUB) cell lines with different invasive abilities. Three cell lines, EJ-M3, EJ, and BIU-87, with different invasive abilities were cultured and treated with valsartan. Cell proliferation states were determined by the methyl thiazolyl tetrazolium (MTT) method. The expressions at protein level and gene level were determined by Western blot and real-time fluorescence reverse transcription polymerase chain reaction (RT-PCR), respectively. The invasive abilities and migratory abilities of the three cell lines were determined by Transwell in vitro cell invasion assay and wound healing assay, respectively. MTT results show that valsartan can inhibit the proliferation of CUB cells, and the inhibition effect is enhanced with the increase of concentration. AngII promotes the MMP2 and MMP9 expressions (both protein and gene levels) in CUB cells through AT1R, but their expressions can be effectively inhibited by valsartan, the AngII inhibitor. AngII inhibitor may become a novel drug that can inhibit CUB metastasis and prolong the survival of CUB patients.

  15. RITA plus 3-MA overcomes chemoresistance of head and neck cancer cells via dual inhibition of autophagy and antioxidant systems.

    PubMed

    Shin, Daiha; Kim, Eun Hye; Lee, Jaewang; Roh, Jong-Lyel

    2017-10-01

    Reactivation of p53 and induction of tumor cell apoptosis (RITA) is a small molecule that blocks p53-MDM2 interaction, thereby reactivating p53 in tumors. RITA can induce exclusive apoptosis in cancer cells independently of the p53 pathway; however, the resistance of cancer cells remains a major drawback. Here, we found a novel resistance mechanism of RITA treatment and an effective combined treatment to overcome RITA resistance in head and neck cancer (HNC) cells. The effects of RITA and 3-methyladenine (3-MA) were tested in different HNC cell lines, including cisplatin-resistant and acquired RITA-resistant HNC cells. The effects of each drug alone and in combination were assessed by measuring cell viability, apoptosis, cell cycle, glutathione, reactive oxygen species, protein expression, genetic inhibition of p62 and Nrf2, and a mouse xenograft model of cisplatin-resistant HNC. RITA induced apoptosis of HNC cells at different levels without significantly inhibiting normal cell viability. Following RITA treatment, RITA-resistant HNC cells exhibited a sustained expression of other autophagy-related proteins, overexpressed p62, and displayed activation of the Keap1-Nrf2 antioxidant pathway. The autophagy inhibitor 3-MA sensitized resistant HNC cells to RITA treatment via the dual inhibition of molecules related to the autophagy and antioxidant systems. Silencing of the p62 gene augmented the combined effects. The effective antitumor activity of RITA plus 3-MA was also confirmed in vivo in mouse xenograft models transplanted with resistant HNC cells, showing increased oxidative stress and DNA damage. The results indicate that RITA plus 3-MA can help overcome RITA resistance in HNC cells. This study revealed a novel RITA resistant mechanism associated with the sustained induction of autophagy, p62 overexpression, and Keap1-Nrf2 antioxidant system activation. The combined treatment of RITA with the autophagy inhibitor 3-methyladenine overcomes RITA resistance via dual inhibition of autophagy and antioxidant systems in vitro and in vivo. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Transport of 3-bromopyruvate across the human erythrocyte membrane.

    PubMed

    Sadowska-Bartosz, Izabela; Soszyński, Mirosław; Ułaszewski, Stanisław; Ko, Young; Bartosz, Grzegorz

    2014-06-01

    3-Bromopyruvic acid (3-BP) is a promising anticancer compound because it is a strong inhibitor of glycolytic enzymes, especially glyceraldehyde 3-phosphate dehydrogenase. The Warburg effect means that malignant cells are much more dependent on glycolysis than normal cells. Potential complications of anticancer therapy with 3-BP are side effects due to its interaction with normal cells, especially erythrocytes. Transport into cells is critical for 3-BP to have intracellular effects. The aim of our study was the kinetic characterization of 3-BP transport into human erythrocytes. 3-BP uptake by erythrocytes was linear within the first 3 min and pH-dependent. The transport rate decreased with increasing pH in the range of 6.0-8.0. The Km and Vm values for 3-BP transport were 0.89 mM and 0.94 mmol/(l cells x min), respectively. The transport was inhibited competitively by pyruvate and significantly inhibited by DIDS, SITS, and 1-cyano-4-hydroxycinnamic acid. Flavonoids also inhibited 3-BP transport: the most potent inhibition was found for luteolin and quercetin.

  17. The effects of type I interferon on glioblastoma cancer stem cells.

    PubMed

    Du, Ziyun; Cai, Chun; Sims, Michelle; Boop, Frederick A; Davidoff, Andrew M; Pfeffer, Lawrence M

    2017-09-16

    Glioblastomas (GBMs) are highly invasive brain tumors that are extremely deadly. The highly aggressive nature of GBM as well as its heterogeneity at the molecular and cellular levels has been attributed to a rare subpopulation of GBM stem-like cells (GSCs). Interferons (IFNs) are a family of endogenous antiviral proteins that have anticancer activity in vitro, and have been used clinically to treat GBM. IFN inhibits the proliferation of various established GBM cell lines, but the effects of IFNs on GSCs remain relatively unknown. The present study explored the effects of IFN on the proliferation and the differentiation capacity of GSCs isolated from GBM patient-derived xenolines (PDXs) grown as xenografts in immunocompromised mice. We show that IFN inhibits the proliferation of GSCs, inhibits the sphere forming capacity of GSCs that is a hallmark of cancer stem cells, and inhibits the ability of GSCs to differentiate into astrocytic cells. In addition, we show that IFN induces transient STAT3 activation in GSCs, while induction of astrocytic differentiation in GSCs results in sustained STAT3 activation. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Increased leukocyte adhesion to vascular endothelium in preeclampsia is inhibited by antioxidants.

    PubMed

    Ryu, Seongho; Huppmann, Alison R; Sambangi, Nirmala; Takacs, Peter; Kauma, Scott W

    2007-04-01

    To test the hypothesis that plasma from women with preeclampsia increases leukocyte adhesion to vascular endothelial cells and that antioxidants inhibit this effect. Plasma from 12 women with severe preeclampsia and 12 with normal pregnancy was tested in an in vitro leukocyte-endothelium adhesion assay in the presence or absence of vitamin E, vitamin C, or N-acetylcysteine. Preeclamptic plasma significantly increased monocyte (U937 cells) and T-cell (Jurkat) adhesion to human umbilical vein (HUVEC) and microvascular endothelial cells, compared with normal pregnant plasma. The antioxidants vitamin E, vitamin C, and N-acetylcysteine significantly inhibited monocyte adhesion to HUVEC in the presence of preeclamptic but not normal pregnant plasma. Increased adhesion in response to preeclamptic plasma was not mediated through a protein kinase C (PKC) mechanism, because the PKC inhibitor bisindolylmaleimide I had no effect on adhesion in the presence of preeclamptic plasma. Severe preeclampsia is associated with increased leukocyte-endothelium adhesion and clinically useful antioxidants can inhibit this effect.

  19. Inhibition of human megakaryocytopoiesis in vitro by platelet factor 4 (PF4) and a synthetic COOH-terminal PF4 peptide.

    PubMed Central

    Gewirtz, A M; Calabretta, B; Rucinski, B; Niewiarowski, S; Xu, W Y

    1989-01-01

    We report that highly purified human platelet factor 4 (PF4) inhibits human megakaryocytopoiesis in vitro. At greater than or equal to 25 micrograms/ml, PF4 inhibited megakaryocyte colony formation approximately 80% in unstimulated cultures, and approximately 58% in cultures containing recombinant human IL 3 and granulocyte-macrophage colony-stimulating factor. Because PF4 (25 micrograms/ml) had no effect on either myeloid or erythroid colony formation lineage specificity of this effect was suggested. A synthetic COOH-terminal PF4 peptide of 24, but not 13 residues, also inhibited megakaryocyte colony formation, whereas a synthetic 18-residue beta-thromboglobulin (beta-TG) peptide and native beta-TG had no such effect when assayed at similar concentrations. The mechanism of PF4-mediated inhibition was investigated. First, we enumerated total cell number, and examined cell maturation in control colonies (n = 200) and colonies (n = 100) that arose in PF4-containing cultures. Total cells per colony did not differ dramatically in the two groups (6.1 +/- 3.0 vs. 4.2 +/- 1.6, respectively), but the numbers of mature large cells per colony was significantly decreased in the presence of PF4 when compared with controls (1.6 +/- 1.5 vs. 3.9 +/- 2.3; P less than 0.001). Second, by using the human leukemia cell line HEL as a model for primitive megakaryocytic cells, we studied the effect of PF4 on cell doubling time, on the expression of both growth-regulated (H3, p53, c-myc,and c-myb), and non-growth-regulated (beta 2-microglobulin) genes. At high concentrations of native PF4 (50 micrograms/ml), no effect on cell doubling time, or H3 or p53 expression was discerned. In contrast, c-myc and c-myb were both upregulated. These results suggested the PF4 inhibited colony formation by impeding cell maturation, as opposed to cell proliferation, perhaps by inducing expression of c-myc and c-myb. The ability of PF4 to inhibit a normal cell maturation function was then tested. Megakaryocytes were incubated in synthetic PF4, or beta-TG peptides for 18 h and effect on Factor V steady-state mRNA levels was determined in 600 individual cells by in situ hybridization. beta-TG peptide had no effect on FV mRNA levels, whereas a approximately 60% decrease in expression of Factor V mRNA was found in megakaryocytes exposed to greater than or equal 100 ng/ml synthetic COOH-terminal PF4 peptide. Accordingly, PF4 modulates megakaryocyte maturation in vitro, and may function as a negative autocrine regulator of human megakaryocytopoiesis. Images PMID:2523411

  20. Centchroman inhibits proliferation of head and neck cancer cells through the modulation of PI3K/mTOR Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Vikas Kumar; Gara, Rishi Kumar; Bhatt, M.L.B.

    Research highlights: {yields} Centchroman (CC) inhibits cellular proliferation in HNSCC cells through the dual inhibition of PI3/mTOR pathway. {yields} CC treatment also inhibits STAT3 activation and alters expression of proteins involved in cell cycle regulation and DNA repair response in HNSCC cells. {yields} CC exhibits anti-proliferative activity in a variety of non-HNSCC cancer cell lines and is devoid of cytotoxicity to normal cell types of diverse origins. -- Abstract: Centchroman (CC; 67/20; INN: Ormeloxifene) is a non-steroidal antiestrogen extensively used as a female contraceptive in India. In the present study, we report the anti-proliferative effect of CC in head andmore » neck squamous cell carcinoma (HNSCC) cells. CC inhibited cell proliferation in a dose dependent manner at 24 h of treatment. Further studies showed that CC treatment induced apoptosis, inhibited Akt/mTOR and signal transducers and activators of transcription protein 3 (STAT3) signaling, altered proteins associated with cell cycle regulation and DNA damage and inhibited colony forming efficiency of HNSCC cells. In addition, CC displayed anti-proliferative activity against a variety of non-HNSCC cell lines of diverse origin. The ability of CC to serve as a dual-inhibitor of Akt/mTOR and STAT3 signaling warrants further studies into its role as a therapeutic strategy against HNSCC.« less

  1. Lithospermi radix extract inhibits histamine release and production of inflammatory cytokine in mast cells.

    PubMed

    Kim, Eun Kyoung; Kim, Eun-Young; Moon, Phil-Dong; Um, Jae-Young; Kim, Hyung-Min; Lee, Hyun-Sam; Sohn, Youngjoo; Park, Seong Kyu; Jung, Hyuk-Sang; Sohn, Nak-Won

    2007-12-01

    Lithospermi radix (LR, Borraginaceae, the root of Lithospermum erythrorhizon Siebold. et Zuccarinii) is used in herbal medicine to treat such conditions as eczema, skin burns and frostbite. This study investigates the effects of LR on the anti-allergy mechanism. LR inhibited the release of histamine from rat peritoneal mast cells by compound 48/80 in a dose-dependent manner. LR orally administered at 6.59 mg/100 g also inhibited the anti-DNP IgE-induced passive cutaneous anaphylaxis reaction. LR inhibited the PMA plus A23187-induced increase in IL-6, IL-8, and TNF-alpha expression in HMC-1 cells. In addition, LR also inhibited nuclear factor-kappa B (NF-kappaB) activation and I kappaB-alpha degradation. These results show that LR had an inhibitory effect on the atopic allergic reaction. Furthermore, the in vivo and in vitro anti-allergic effect of LR suggests possible therapeutic applications of this agent for inflammatory allergic diseases.

  2. Apigenin inhibits HGF-promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and {beta}4 integrin function in MDA-MB-231 breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, W.-J.; Chen, W.-K.; Wang, C.-J.

    2008-01-15

    Hepatocyte growth factor (HGF) and its receptor, Met, known to control invasive growth program have recently been shown to play crucial roles in the survival of breast cancer patients. The diet-derived flavonoids have been reported to possess anti-invasion properties; however, knowledge on the pharmacological and molecular mechanisms in suppressing HGF/Met-mediated tumor invasion and metastasis is poorly understood. In our preliminary study, we use HGF as an invasive inducer to investigate the effect of flavonoids including apigenin, naringenin, genistein and kaempferol on HGF-dependent invasive growth of MDA-MB-231 human breast cancer cells. Results show that apigenin presents the most potent anti-migration andmore » anti-invasion properties by Boyden chamber assay. Furthermore, apigenin represses the HGF-induced cell motility and scattering and inhibits the HGF-promoted cell migration and invasion in a dose-dependent manner. The effect of apigenin on HGF-induced signaling activation involving invasive growth was evaluated by immunoblotting analysis, it shows that apigenin blocks the HGF-induced Akt phosphorylation but not Met, ERK, and JNK phosphorylation. In addition to MDA-MB-231 cells, apigenin exhibits inhibitory effect on HGF-induced Akt phosphorylation in hepatoma SK-Hep1 cells and lung carcinoma A549 cells. By indirect immunofluorescence microscopy assay, apigenin inhibits the HGF-induced clustering of {beta}4 integrin at actin-rich adhesive site and lamellipodia through PI3K-dependent manner. Treatment of apigenin inhibited HGF-stimulated integrin {beta}4 function including cell-matrix adhesion and cell-endothelial cells adhesion in MDA-MB-231 cells. By Akt-siRNA transfection analysis, it confirmed that apigenin inhibited HGF-promoted invasive growth involving blocking PI3K/Akt pathway. Finally, we evaluated the effect of apigenin on HGF-promoted metastasis by lung colonization of tumor cells in nude mice and organ metastasis of tumor cells in chick embryo. By histological and gross examination of mouse lung and real-time PCR analysis of human alu in host tissues, it showed that apigenin, wortmannin, as well as anti-{beta}4 antibody all inhibit HGF-promoted metastasis. These data support the inhibitory effect of apigenin on HGF-promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and integrin {beta}4 function.« less

  3. Vinpocetine inhibits NF-kappaB-dependent inflammation via an IKK-dependent but PDE-independent mechanism.

    PubMed

    Jeon, Kye-Im; Xu, Xiangbin; Aizawa, Toru; Lim, Jae Hyang; Jono, Hirofumi; Kwon, Dong-Seok; Abe, Jun-Ichi; Berk, Bradford C; Li, Jian-Dong; Yan, Chen

    2010-05-25

    Inflammation is a hallmark of many diseases, such as atherosclerosis, chronic obstructive pulmonary disease, arthritis, infectious diseases, and cancer. Although steroids and cyclooxygenase inhibitors are effective antiinflammatory therapeutical agents, they may cause serious side effects. Therefore, developing unique antiinflammatory agents without significant adverse effects is urgently needed. Vinpocetine, a derivative of the alkaloid vincamine, has long been used for cerebrovascular disorders and cognitive impairment. Its role in inhibiting inflammation, however, remains unexplored. Here, we show that vinpocetine acts as an antiinflammatory agent in vitro and in vivo. In particular, vinpocetine inhibits TNF-alpha-induced NF-kappaB activation and the subsequent induction of proinflammatory mediators in multiple cell types, including vascular smooth muscle cells, endothelial cells, macrophages, and epithelial cells. We also show that vinpocetine inhibits monocyte adhesion and chemotaxis, which are critical processes during inflammation. Moreover, vinpocetine potently inhibits TNF-alpha- or LPS-induced up-regulation of proinflammatory mediators, including TNF-alpha, IL-1beta, and macrophage inflammatory protein-2, and decreases interstitial infiltration of polymorphonuclear leukocytes in a mouse model of TNF-alpha- or LPS-induced lung inflammation. Interestingly, vinpocetine inhibits NF-kappaB-dependent inflammatory responses by directly targeting IKK, independent of its well-known inhibitory effects on phosphodiesterase and Ca(2+) regulation. These studies thus identify vinpocetine as a unique antiinflammatory agent that may be repositioned for the treatment of many inflammatory diseases.

  4. Vinpocetine inhibits NF-κB–dependent inflammation via an IKK-dependent but PDE-independent mechanism

    PubMed Central

    Jeon, Kye-Im; Xu, Xiangbin; Aizawa, Toru; Lim, Jae Hyang; Jono, Hirofumi; Kwon, Dong-Seok; Berk, Bradford C.; Li, Jian-Dong; Yan, Chen

    2010-01-01

    Inflammation is a hallmark of many diseases, such as atherosclerosis, chronic obstructive pulmonary disease, arthritis, infectious diseases, and cancer. Although steroids and cyclooxygenase inhibitors are effective antiinflammatory therapeutical agents, they may cause serious side effects. Therefore, developing unique antiinflammatory agents without significant adverse effects is urgently needed. Vinpocetine, a derivative of the alkaloid vincamine, has long been used for cerebrovascular disorders and cognitive impairment. Its role in inhibiting inflammation, however, remains unexplored. Here, we show that vinpocetine acts as an antiinflammatory agent in vitro and in vivo. In particular, vinpocetine inhibits TNF-α–induced NF-κB activation and the subsequent induction of proinflammatory mediators in multiple cell types, including vascular smooth muscle cells, endothelial cells, macrophages, and epithelial cells. We also show that vinpocetine inhibits monocyte adhesion and chemotaxis, which are critical processes during inflammation. Moreover, vinpocetine potently inhibits TNF-α- or LPS-induced up-regulation of proinflammatory mediators, including TNF-α, IL-1β, and macrophage inflammatory protein-2, and decreases interstitial infiltration of polymorphonuclear leukocytes in a mouse model of TNF-α- or LPS-induced lung inflammation. Interestingly, vinpocetine inhibits NF-κB–dependent inflammatory responses by directly targeting IKK, independent of its well-known inhibitory effects on phosphodiesterase and Ca2+ regulation. These studies thus identify vinpocetine as a unique antiinflammatory agent that may be repositioned for the treatment of many inflammatory diseases. PMID:20448200

  5. Effect of Inhibition of Deoxyribonucleic Acid and Protein Synthesis on the Direction of Cell Wall Growth in Streptococcus faecalis

    PubMed Central

    Higgins, M. L.; Daneo-Moore, L.; Boothby, D.; Shockman, G. D.

    1974-01-01

    Selective inhibition of protein synthesis in Streptococcus faecalis (ATCC 9790) was accompanied by a rapid and severe inhibition of cell division and a reduction of enlargement of cellular surface area. Continued synthesis of cell wall polymers resulted in rapid thickening of the wall to an extent not seen in exponential-phase populations. Thus, the normal direction of wall growth was changed from a preferential feeding out of new wall surface to that of thickening existing cell surfaces. However, the overall manner in which the wall thickened, from nascent septa toward polar regions, was the same in both exponential-phase and inhibited populations. In contrast, selective inhibition of deoxyribonucleic acid (DNA) synthesis using mitomycin C was accompanied by an increase in cellular surface area and by division of about 80% of the cells in random populations. Little or no wall thickening was observed until the synthesis of macromolecules other than DNA was impaired and further cell division ceased. Concomitant inhibition of both DNA and protein synthesis inhibited cell division but permitted an increase in average cell volume. In such doubly inhibited cells, walls thickened less than in cells inhibited for protein synthesis only. On the basis of the results obtained, a model for cell surface enlargement and cell division is presented. The model proposes that: (i) each wall enlargement site is influenced by an individual chromosome replication cycle; (ii) during chromosome replication peripheral surface enlargement would be favored over thickening (or septation); (iii) a signal associated with chromosome termination would favor thickening (and septation) at the expense of surface enlargement; and (iv) a factor or signal related to protein synthesis would be required for one or more of the near terminal stages of cell division or cell separation, or both. Images PMID:4133352

  6. Inhibition effect of engineered silver nanoparticles to bloom forming cyanobacteria

    NASA Astrophysics Data System (ADS)

    Thuy Duong, Thi; Son Le, Thanh; Thu Huong Tran, Thi; Kien Nguyen, Trung; Ho, Cuong Tu; Hien Dao, Trong; Phuong Quynh Le, Thi; Chau Nguyen, Hoai; Dang, Dinh Kim; Thu Huong Le, Thi; Thu Ha, Phuong

    2016-09-01

    Silver nanoparticle (AgNP) has a wide range antibacterial effect and is extensively used in different aspects of medicine, food storage, household products, disinfectants, biomonitoring and environmental remediation etc. In the present study, we examined the growth inhibition effect of engineered silver nanoparticles against bloom forming cyanobacterial M. aeruginosa strain. AgNPs were synthesized by a chemical reduction method at room temperature and UV-Vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscope (TEM) showed that they presented a maximum absorption at 410 nm and size range between 10 and 18 nm. M. aeruginosa cells exposed during 10 d to AgNPs to a range of concentrations from 0 to 1 mg l-1. The changes in cell density and morphology were used to measure the responses of the M. aeruginosa to AgNPs. The control and treatment units had a significant difference in terms of cell density and growth inhibition (p < 0.05). Increasing the concentration of AgNPs, a reduction of the cell growths in all treatment was observed. The inhibition efficiency was reached 98.7% at higher concentration of AgNPs nanoparticles. The term half maximal effective concentration (EC50) based on the cell growth measured by absorbance at 680 nm (A680) was 0.0075 mg l-1. The inhibition efficiency was 98.7% at high concentration of AgNPs (1 mg l-1). Image of SEM and TEM reflected a shrunk and damaged cell wall indicating toxicity of silver nanoparticles toward M. aeruginosa.

  7. Raf Kinase Inhibitory Protein protects cells against locostatin-mediated inhibition of migration.

    PubMed

    Shemon, Anne N; Eves, Eva M; Clark, Matthew C; Heil, Gary; Granovsky, Alexey; Zeng, Lingchun; Imamoto, Akira; Koide, Shohei; Rosner, Marsha Rich

    2009-06-24

    Raf Kinase Inhibitory Protein (RKIP, also PEBP1), a member of the Phosphatidylethanolamine Binding Protein family, negatively regulates growth factor signaling by the Raf/MAP kinase pathway. Since an organic compound, locostatin, was reported to bind RKIP and inhibit cell migration by a Raf-dependent mechanism, we addressed the role of RKIP in locostatin function. We analyzed locostatin interaction with RKIP and examined the biological consequences of locostatin binding on RKIP function. NMR studies show that a locostatin precursor binds to the conserved phosphatidylethanolamine binding pocket of RKIP. However, drug binding to the pocket does not prevent RKIP association with its inhibitory target, Raf-1, nor affect RKIP phosphorylation by Protein Kinase C at a regulatory site. Similarly, exposure of wild type, RKIP-depleted HeLa cells or RKIP-deficient (RKIP(-/-)) mouse embryonic fibroblasts (MEFs) to locostatin has no effect on MAP kinase activation. Locostatin treatment of wild type MEFs causes inhibition of cell migration following wounding. RKIP deficiency impairs migration further, indicating that RKIP protects cells against locostatin-mediated inhibition of migration. Locostatin treatment of depleted or RKIP(-/-) MEFs reveals cytoskeletal disruption and microtubule abnormalities in the spindle. These results suggest that locostatin's effects on cytoskeletal structure and migration are caused through mechanisms independent of its binding to RKIP and Raf/MAP kinase signaling. The protective effect of RKIP against drug inhibition of migration suggests a new role for RKIP in potentially sequestering toxic compounds that may have deleterious effects on cells.

  8. Autophagy Induced by CX-4945, a Casein Kinase 2 Inhibitor, Enhances Apoptosis in Pancreatic Cancer Cell Lines.

    PubMed

    Hwang, Dae Wook; So, Kwang Sup; Kim, Song Cheol; Park, Kwang-Min; Lee, Young-Joo; Kim, Sun-Whe; Choi, Chang-Min; Rho, Jin Kyung; Choi, Yun Jung; Lee, Jae Cheol

    2017-04-01

    Pancreatic cancer is the most lethal malignancy with only a few effective chemotherapeutic drugs. Because the inhibition of casein kinase 2 (CK2) has been reported as a novel therapeutic strategy for many cancers, we investigated the effects of CK2 inhibitors in pancreatic cancer cell lines. The BxPC3, 8902, MIA PaCa-2 human pancreatic cancer cell lines, and CX-4945, a novel CK2 inhibitor, were used. Autophagy was analyzed by acridine orange staining, fluorescence microscope detection of punctuate patterns of GFP-tagged LC3 and immunoblotting for LC3. Cell survival, cell cycle, and apoptosis analysis was performed. CX-4945 induced significant inhibition of proliferation and triggered autophagy in pancreatic cancer cells. This suppression of proliferation was caused by the direct inhibition of CK2α, which was required for autophagy and apoptosis in pancreatic cancer cells. CX-4945 suppressed cell cycle progression in G2/M and induced apoptosis. The inhibition of CX-4945-induced autophagy was rescued by 3-methyladenine or small interfering RNA against Atg7, which attenuated apoptosis in pancreatic cancer cells. CX-4945, a potent and selective inhibitor of CK2, effectively induces autophagy and apoptosis in pancreatic cancer cells, indicating that the induction of autophagy by CX-4945 may have an important role in the treatment of pancreatic cancer.

  9. Phosphorylation of AKT induced by phosphorylated Hsp27 confers the apoptosis-resistance in t-AUCB-treated glioblastoma cells in vitro.

    PubMed

    Li, Rujun; Li, Junyang; Sang, Dongping; Lan, Qing

    2015-01-01

    The aim of this study is to determine whether phosphorylation of AKT could be effected by t-AUCB-induced p-Hsp27 and whether p-AKT inhibition sensitizes glioblastoma cells to t-AUCB, and to evaluate the effects of simultaneous inhibition of p-Hsp27 and p-AKT on t-AUCB treated glioblastoma cells. Cell growth was detected using CCK-8 assay; Caspase-3 activity assay kits and flow cytometry were used in apoptosis analysis; Western blot analysis was used to detect p-Hsp27 and p-AKT levels; RNA interference using the siRNA oligos of Hsp27 was performed to knockdown gene expression of Hsp27. All data were analyzed by the Student-Newman-Keul's test. We demonstrated that t-AUCB treatment induces AKT phosphorylation by activating Hsp27 in U251 and LN443 cell lines. Inhibition of AKT phosphorylation by AKT inhibitor IV sensitizes glioblastoma cells to t-AUCB, strengthens t-AUCB suppressing cell growth and inducing cell apoptosis. We also found inhibiting both p-Hsp27 and p-AKT synergistically strengthen t-AUCB suppressing cell growth. Thus, p-AKT induced by p-Hsp27 confers the apoptosis-resistance in t-AUCB-treated glioblastoma cells. Targeting p-Hsp27 and/or p-AKT may be a potential effective strategy for the treatment of glioblastoma.

  10. α-Mangostin: A Dietary Antioxidant Derived from the Pericarp of Garcinia mangostana L. Inhibits Pancreatic Tumor Growth in Xenograft Mouse Model

    PubMed Central

    Mustafa, Ala; Fischer, Joseph W.; Singh, Ashok; Zhong, Weixiong; Shekhani, Mohammed Ozair; Meske, Louise; Havighurst, Thomas; Kim, KyungMann; Verma, Ajit Kumar

    2014-01-01

    Abstract Aims: Pancreatic cancer (PC) is the most aggressive malignant disease, ranking as the fourth most leading cause of cancer-related death among men and women in the United States. In this study, we provide evidence of chemotherapeutic effects of α-mangostin, a dietary antioxidant isolated from the pericarp of Garcinia mangostana L. against human PC. Results: The chemotherapeutic effect of α-mangostin was determined using four human PC cells (PL-45, PANC1, BxPC3, and ASPC1). α-Mangostin resulted in a significant inhibition of PC cells viability without having any effects on normal human pancreatic duct epithelial cells. α-Mangostin showed a dose-dependent increase of apoptosis in PC cells. Also, α-mangostin inhibited the expression levels of pNF-κB/p65Ser552, pStat3Ser727, and pStat3Tyr705. α-Mangostin inhibited DNA binding activity of nuclear factor kappa B (NF-κB) and signal transducer and activator 3 (Stat3). α-Mangostin inhibited the expression levels of matrix metallopeptidase 9 (MMP9), cyclin D1, and gp130; however, increased expression of tissue inhibitor of metalloproteinase 1 (TIMP1) was observed in PC cells. In addition, i.p. administration of α-mangostin (6 mg/kg body weight, 5 days a week) resulted in a significant inhibition of both primary (PL-45) and secondary (ASPC1) human PC cell-derived orthotopic and ectopic xenograft tumors in athymic nude mice. No sign of toxicity was observed in any of the mice administered with α-mangostin. α-Mangostin treatment inhibited the biomarkers of cell proliferation (Ki-67 and proliferating cell nuclear antigen [PCNA]) in the xenograft tumor tissues. Innovation: We present, for the first time, that dietary antioxidant α-mangostin inhibits the growth of PC cells in vitro and in vivo. Conclusion: These results suggest the potential therapeutic efficacy of α-mangostin against human PC. Antioxid. Redox Signal. 21, 682–699. PMID:24295217

  11. Leptin reverses corticosterone-induced inhibition of neural stem cell proliferation through activating the NR2B subunits of NMDA receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Wen-Zhu; Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing 100853; Miao, Yu-Liang

    Highlights: • Leptin promotes the proliferation of neural stem cells isolated from embryonic mouse hippocampus. • Leptin reverses corticosterone-induced inhibition of neural stem cell proliferation. • The effects of leptin are partially mediated by upregulating NR2B subunits. - Abstract: Corticosterone inhibits the proliferation of hippocampal neural stem cells (NSCs). The removal of corticosterone-induced inhibition of NSCs proliferation has been reported to contribute to neural regeneration. Leptin has been shown to regulate brain development, improve angiogenesis, and promote neural regeneration; however, its effects on corticosterone-induced inhibition of NSCs proliferation remain unclear. Here we reported that leptin significantly promoted the proliferation ofmore » hippocampal NSCs in a concentration-dependent pattern. Also, leptin efficiently reversed the inhibition of NSCs proliferation induced by corticosterone. Interestingly, pre-treatment with non-specific NMDA antagonist MK-801, specific NR2B antagonist Ro 25-6981, or small interfering RNA (siRNA) targeting NR2B, significantly blocked the effect of leptin on corticosterone-induced inhibition of NSCs proliferation. Furthermore, corticosterone significantly reduced the protein expression of NR2B, whereas pre-treatment with leptin greatly reversed the attenuation of NR2B expression caused by corticosterone in cultured hippocampal NSCs. Our findings demonstrate that leptin reverses the corticosterone-induced inhibition of NSCs proliferation. This process is, at least partially mediated by increased expression of NR2B subunits of NMDA receptors.« less

  12. Bauhinia forficata lectin (BfL) induces cell death and inhibits integrin-mediated adhesion on MCF7 human breast cancer cells.

    PubMed

    Silva, Mariana C C; de Paula, Cláudia A A; Ferreira, Joana G; Paredes-Gamero, Edgar J; Vaz, Angela M S F; Sampaio, Misako U; Correia, Maria Tereza S; Oliva, Maria Luiza V

    2014-07-01

    Plant lectins have attracted great interest in cancer studies due to their antitumor activities. These proteins or glycoproteins specifically and reversibly bind to different types of carbohydrates or glycoproteins. Breast cancer, which presents altered glycosylation of cell surface glycoproteins, is one of the most frequent malignant diseases in women. In this work, we describe the effect of the lectin Bauhinia forficata lectin (BfL), which was purified from B. forficata Link subsp. forficata seeds, on the MCF7 human breast cancer cellular line, investigating the mechanisms involved in its antiproliferative activity. MCF7 cells were treated with BfL. Viability and adhesion alterations were evaluated using flow cytometry and western blotting. BfL inhibited the viability of the MCF7 cell line but was ineffective on MDA-MB-231 and MCF 10A cells. It inhibits MCF7 adhesion on laminin, collagen I and fibronectin, decreases α1, α6 and β1 integrin subunit expression, and increases α5 subunit expression. BfL triggers necrosis and secondary necrosis, with caspase-9 inhibition. It also causes deoxyribonucleic acid (DNA) fragmentation, which leads to cell cycle arrest in the G2/M phase and a decrease in the expression of the regulatory proteins pRb and p21. BfL shows selective cytotoxic effect and adhesion inhibition on MCF7 breast cancer cells. Cell death induction and inhibition of cell adhesion may contribute to understanding the action of lectins in breast cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. HSPA6 augments garlic extract-induced inhibition of proliferation, migration, and invasion of bladder cancer EJ cells; Implication for cell cycle dysregulation, signaling pathway alteration, and transcription factor-associated MMP-9 regulation

    PubMed Central

    Hwang, Byungdoo; Noh, Dae-Hwa; Park, Sung Lyea; Kim, Won Tae; Park, Sung-Soo; Kim, Wun-Jae; Moon, Sung-Kwon

    2017-01-01

    Although recent studies have demonstrated the anti-tumor effects of garlic extract (GE), the exact molecular mechanism is still unclear. In this study, we investigated the molecular mechanism associated with the inhibitory action of GE against bladder cancer EJ cell responses. Treatment with GE significantly inhibited proliferation of EJ cells dose-dependently through G2/M-phase cell cycle arrest. This G2/M-phase cell cycle arrest by GE was due to the activation of ATM and CHK2, which appears to inhibit phosphorylation of Cdc25C (Ser216) and Cdc2 (Thr14/Tyr15), this in turn was accompanied by down-regulation of cyclin B1 and up-regulation of p21WAF1. Furthermore, GE treatment was also found to induce phosphorylation of MAPK (ERK1/2, p38MAPK, and JNK) and AKT. In addition, GE impeded the migration and invasion of EJ cells via inhibition of MMP-9 expression followed by decreased binding activities of AP-1, Sp-1, and NF-κB motifs. Based on microarray datasets, we selected Heat shock protein A6 (HSPA6) as the most up-regulated gene responsible for the inhibitory effects of GE. Interestingly, overexpression of HSPA6 gene resulted in an augmentation effect with GE inhibiting proliferation, migration, and invasion of EJ cells. The augmentation effect of HSPA6 was verified by enhancing the induction of G2/M-phase-mediated ATM-CHK2-Cdc25C-p21WAF1-Cdc2 cascade, phosphorylation of MAPK and AKT signaling, and suppression of transcription factor-associated MMP-9 regulation in response to GE in EJ cells. Overall, our novel results indicate that HSPA6 reinforces the GE-mediated inhibitory effects of proliferation, migration, and invasion of EJ cells and may provide a new approach for therapeutic treatment of malignancies. PMID:28187175

  14. Pirfenidone Inhibits T Cell Activation, Proliferation, Cytokine and Chemokine Production, and Host Alloresponses

    PubMed Central

    Visner, Gary A.; Liu, Fengzhi; Bizargity, Peyman; Liu, Hanzhong; Liu, Kaifeng; Yang, Jun; Wang, Liqing; Hancock, Wayne W.

    2009-01-01

    Background We previously showed that pirfenidone, an anti-fibrotic agent, reduces lung allograft injury/rejection. In this study, we tested the hypothesis that pirfenidone has immune modulating activities and evaluated its effects on the function of T cell subsets, which play important roles in allograft rejection. Method We first evaluated whether pirfenidone alters T cell proliferation and cytokine release in response to T cell receptor (TCR) activation, and whether pirfenidone alters regulatory T cells (CD4+CD25+) suppressive effects using an in vitro assay. Additionally, pirfenidone effects on alloantigen-induced T cell proliferation in vivo were assessed by adoptive transfer of CFSE-labeled T cells across a parent->F1 MHC mismatch, as well as using a murine heterotopic cardiac allograft model (BALB/c->C57BL/6). Results Pirfenidone was found to inhibit the responder frequency of TCR-stimulated CD4+ cell total proliferation in vitro and in vivo, whereas both CD4 and CD8 proliferation index were reduced by pirfenidone. Additionally, pirfenidone inhibited TCR-induced production of multiple pro-inflammatory cytokines and chemokines. Interestingly, there was no change on TGF-β production by purified T cells, and pirfenidone had no effect on the suppressive properties of naturally occurring regulatory T cells. Pirfenidone alone showed a small but significant (p < 0.05) effect on the in vivo allogeneic response while the combination of pirfenidone and low dose rapamycin had more remarkable effect in reducing the alloantigen response with prolonged graft survival. Conclusion Pirfenidone may be an important new agent in transplantation, with particular relevance to combating chronic rejection by inhibiting both fibroproliferative and alloimmune responses. PMID:19667934

  15. STAT3 as a potential therapeutic target in ALDH+ and CD44+/CD24+ stem cell-like pancreatic cancer cells.

    PubMed

    Lin, Li; Jou, David; Wang, Yina; Ma, Haiyan; Liu, Tianshu; Fuchs, James; Li, Pui-Kai; Lü, Jiagao; Li, Chenglong; Lin, Jiayuh

    2016-12-01

    Persistent activation of signal transducers and activators of transcription 3 (STAT3) is commonly detected in many types of cancer including pancreatic cancer. Whether STAT3 is activated in stem cell-like pancreatic cancer cells and the effect of STAT3 inhibition, is still unknown. Flow cytometry was used to isolate pancreatic cancer stem-like cells which are identified by both aldehyde dehydrogenase (ALDH)-positive (ALDH+) as well as cluster of differentiation (CD) 44-positive/CD24-positive subpopulations (CD44+/CD24+). STAT3 activation and the effects of STAT3 inhibition by STAT3 inhibitors, LLL12, FLLL32, and Stattic in ALDH+ and CD44+/CD24+ cells were examined. Our results showed that ALDH+ and CD44+/CD24+ pancreatic cancer stem-like cells expressed higher levels of phosphorylated STAT3, an active form of STAT3, compared to ALDH-negative (ALDH-) and CD44-negative/CD24-negative (CD44-/CD24-) pancreatic cancer cells, suggesting that STAT3 is activated in pancreatic cancer stem-like cells. Small molecular STAT3 inhibitors inhibited STAT3 phosphorylation, STAT3 downstream target gene expression, cell viability, and tumorsphere formation in ALDH+ and CD44+/CD24+ cells. Our results indicate that STAT3 is a novel therapeutic target in pancreatic cancer stem-like cells and inhibition of activated STAT3 in these cells by STAT3 inhibitors may offer an effective treatment for pancreatic cancer.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Haruo, E-mail: hal.kato@gunma-u.ac.jp; Sekine, Yoshitaka; Furuya, Yosuke

    Metformin is a biguanide drug that is widely used for the treatment of type 2 diabetes. Recent studies have shown that metformin inhibits cancer cell proliferation and tumor growth both in vitro and in vivo. The anti-tumor mechanisms of metformin include activation of the AMP-activated protein kinase/mTOR pathway and direct inhibition of insulin/insulin-like growth factor (IGF)-mediated cellular proliferation. However, the anti-tumor mechanism in prostate cancer remains unclear. Because activation of the IGF-1 receptor (IGF-1R) is required for prostate cell proliferation, IGF-1R inhibitors may be of therapeutic value. Accordingly, we examined the effects of metformin on IGF-1R signaling in prostate cancer cells. Metforminmore » significantly inhibited PC-3 cell proliferation, migration, and invasion. IGF-1R mRNA expression decreased significantly after 48 h of treatment, and IGF-1R protein expression decreased in a similar manner. IGF-1R knockdown by siRNA transfection led to inhibited proliferation, migration and invasion of PC-3 cells. IGF-1 activated both ERK1/2 and Akt, but these effects were attenuated by metformin treatment. In addition, intraperitoneal treatment with metformin significantly reduced tumor growth and IGF-1R mRNA expression in PC-3 xenografts. Our results suggest that metformin is a potent inhibitor of the IGF-1/IGF-1R system and may be beneficial in prostate cancer treatment. - Highlights: • Metformin inhibited PC-3 cell proliferation, migration, and invasion. • Metformin decreased IGF-1R mRNA and protein expressions in PC-3 cells. • Metformin inhibited IGF-1 induced ERK and Akt phosphorylations in PC-3 cells. • Metformin treatment inhibited PC-3 cell growth and IGF-1R expression in vivo. • Metformin may be a potent inhibitor of the IGF-1/IGF-1R signaling.« less

  17. Irisin suppresses the migration, proliferation, and invasion of lung cancer cells via inhibition of epithelial-to-mesenchymal transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Lei; Jinan Central Hospital Affiliated to Shandong University, Jinan, 250012; Li, Huanjie

    Irisin is involved in promoting metabolism, immune regulation, and affects chronic inflammation in many systemic diseases, including gastric cancer. However, the role of irisin in lung cancer is not well characterized. To determine whether irisin has a protective effect against lung cancer, we cultured A549 and NCI-H446 lung cancer cells and treated them with irisin. We detected the proliferation by MTT assay, and assessed the migration and invasion of the cells by scratch wound healing assay and Tran-swell assay. The expression levels of epithelial-to-mesenchymal transition (EMT) markers and the related signaling pathways were detected by western blot analysis. Meanwhile, anmore » inhibitor of PI3K was used to investigate the effect of irsin. Finally, the expression of Snail was detected. We demonstrated that irisin inhibits the proliferation, migration, and invasion of lung cancer cells, and has a novel role in mediating the PI3K/AKT pathway in the cells. Irisin can reverse the activity of EMT and inhibit the expression of Snail via mediating the PI3K/AKT pathway, which is a key regulator of Snail. These results revealed that irisin inhibited EMT and reduced the invasion of lung cancer cells via the PI3K/AKT/Snail pathway. - Highlights: • Irisin inhibits the proliferation of lung cancer cells. • Irisin inhibits the migration and invasion of lung cancer cells. • Irisin affects the expression of EMT markers via inhibiting the PI3K/AKT pathway in lung cancer cells. • Irisin induces Snail downregulation via PI3K/AKT pathway activation.« less

  18. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, Lee-Chuan C.; Ford, Jeffery J.; Lee, John C.

    Highlights: • Palmitate inhibits osteoblast differentiation. • Fatty acid synthase. • PPARγ. • Acetyl Co-A carboxylase inhibitor TOFA. • Fetal rat calvarial cell culture. - Abstract: Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibitedmore » the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl CoA carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPARγ in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects.« less

  19. Inhibitory effects of OK-432 (Picibanil) on cellular proliferation and adhesive capacity of breast carcinoma cells.

    PubMed

    Horii, Yoshio; Iino, Yuichi; Maemura, Michio; Horiguchi, Jun; Morishita, Yasuo

    2005-02-01

    We investigated the potent inhibitory effects of OK-432 (Picibanil) on both cellular adhesion and cell proliferation of estrogen-dependent (MCF-7) or estrogen-independent (MDA-MB-231) breast carcinoma cells. Cellular proliferation of both MCF-7 and MDA-MB-231 cells was markedly inhibited in a dose-dependent manner, when the carcinoma cells were exposed to OK-432. Cell attachment assay demonstrated that incubation with OK-432 for 24 h reduced integrin-mediated cellular adhesion of both cell types. However, fluorescence activated cell sorter (FACS) analysis revealed that incubation with OK-432 for 24 h did not decrease the cell surface expressions of any integrins. These results suggest that the binding avidity of integrins is reduced by OK-432 without alteration of the integrin expression. We conclude that OK-432 inhibits integrin-mediated cellular adhesion as well as cell proliferation of breast carcinoma cells regardless of estrogen-dependence, and that these actions of OK-432 contribute to prevention or inhibition of breast carcinoma invasion and metastasis.

  20. HTB140 melanoma cells under proton irradiation and/or alkylating agents

    NASA Astrophysics Data System (ADS)

    Korićanac, L.; Petrović, I.; Privitera, G.; Cuttone, G.; Ristić-Fira, A.

    2007-09-01

    Chemoresistance is a major problem in the treatment of malignant melanoma. The mainstay of treatment for melanoma is the DNA-alkylating agent dacarbazine (DTIC). Fotemustine (FM), a member of the chloroethylnitrosourea group of alkylating agents, has also demonstrated significant antitumor effects in malignant melanoma. However, the intrinsic and acquired resistance of melanoma limits the clinical application of these drugs. Melanomas are also extremely radioresistant. With the objective of enhancing growth inhibition of melanoma cells, combined treatments of FM or DTIC with proton irradiation have been investigated. These effects were studied on HTB140 melanoma cell viability and proliferation. Cells exposed to treatment with FM and protons have shown inhibition of cell growth and significant reduction of proliferation capacity compared to single irradiation or drug treatment. Treatment with DTIC and protons has shown improved growth inhibition compared to appropriate single drug treatment, while the effects of single proton irradiation have been the most pronounced.

  1. Vasoactive Intestinal Peptide Inhibits Human Small-Cell Lung Cancer Proliferation in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Maruno, Kaname; Absood, Afaf; Said, Sami I.

    1998-11-01

    Small-cell lung carcinoma (SCLC) is an aggressive, rapidly growing and metastasizing, and highly fatal neoplasm. We report that vasoactive intestinal peptide inhibits the proliferation of SCLC cells in culture and dramatically suppresses the growth of SCLC tumor-cell implants in athymic nude mice. In both cases, the inhibition was mediated apparently by a cAMP-dependent mechanism, because the inhibition was enhanced by the adenylate cyclase activator forskolin and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine in proportion to increases in intracellular cAMP levels, and the inhibition was abolished by selective inhibition of cAMP-dependent protein kinase. If confirmed in clinical trials, this antiproliferative action of vasoactive intestinal peptide may offer a new and promising means of suppressing SCLC in human subjects, without the toxic side effects of chemotherapeutic agents.

  2. PRL-3 siRNA Inhibits the Metastasis of B16-BL6 Mouse Melanoma Cells In Vitro and In Vivo

    PubMed Central

    Qian, Feng; Li, Yu-Pei; Sheng, Xia; Zhang, Zi-Chao; Song, Ran; Dong, Wei; Cao, Shao-Xian; Hua, Zi-Chun; Xu, Qiang

    2007-01-01

    Phosphatase of regenerating liver-3 (PRL-3) has been proposed to promote the invasion of tumor cells to metastasis sites. However, the effect of PRL-3 on spontaneous metastasis has not been clearly demonstrated, and whether PRL-3 could become a new therapeutic target in malignant tumor is still unknown. In this study, we used PRL-3 siRNA as a molecular medicine to specifically reduce the expression of PRL-3 in B16-BL6 cells, a highly metastatic melanoma cell line. In vitro, PRL-3 siRNA significantly inhibited cell adhesion and migration, but had no effect on cell proliferation. In the spontaneous metastatic tumor model in vivo, PRL-3 siRNA treatment remarkably inhibited the proliferation of primary tumor, prevented tumor cells from invading the draining lymph nodes, and prolonged the life span of mice. Therefore, our results indicate that PRL-3 plays a critical role in promoting the whole process of spontaneous metastasis and tumor growth initiation, and that inhibiting PRL-3 will improve malignant tumor therapy. PMID:17592549

  3. PRL-3 siRNA inhibits the metastasis of B16-BL6 mouse melanoma cells in vitro and in vivo.

    PubMed

    Qian, Feng; Li, Yu-Pei; Sheng, Xia; Zhang, Zi-Chao; Song, Ran; Dong, Wei; Cao, Shao-Xian; Hua, Zi-Chun; Xu, Qiang

    2007-01-01

    Phosphatase of regenerating liver-3 (PRL-3) has been proposed to promote the invasion of tumor cells to metastasis sites. However, the effect of PRL-3 on spontaneous metastasis has not been clearly demonstrated, and whether PRL-3 could become a new therapeutic target in malignant tumor is still unknown. In this study, we used PRL-3 siRNA as a molecular medicine to specifically reduce the expression of PRL-3 in B16-BL6 cells, a highly metastatic melanoma cell line. In vitro, PRL-3 siRNA significantly inhibited cell adhesion and migration, but had no effect on cell proliferation. In the spontaneous metastatic tumor model in vivo, PRL-3 siRNA treatment remarkably inhibited the proliferation of primary tumor, prevented tumor cells from invading the draining lymph nodes, and prolonged the life span of mice. Therefore, our results indicate that PRL-3 plays a critical role in promoting the whole process of spontaneous metastasis and tumor growth initiation, and that inhibiting PRL-3 will improve malignant tumor therapy.

  4. Anti-tumor angiogenesis effect of aminopeptidase inhibitor bestatin against B16-BL6 melanoma cells orthotopically implanted into syngeneic mice.

    PubMed

    Aozuka, Yasushi; Koizumi, Keiichi; Saitoh, Yurika; Ueda, Yasuji; Sakurai, Hiroaki; Saiki, Ikuo

    2004-12-08

    We investigated the effect of bestatin, an inhibitor of aminopeptidase N (APN)/CD13 and aminopeptidase B, on the angiogenesis induced by B16-BL6 melanoma cells. Oral administration of bestatin (100-200 mg/kg/day) was found to significantly inhibit the melanoma cell-induced angiogenesis in a mouse dorsal air sac assay. Additionally, anti-APN/CD13 mAb (WM15), which neutralizes the aminopeptidase activity in tumor cells, as well as bestatin inhibited the tube-like formation of human umbilical vein endothelial cells (HUVECs) in vitro. Furthermore, the intraperitoneal administration of bestatin (50-100 mg/kg/day) after the orthotopic implantation of B16-BL6 melanoma cells into mice reduced the number of vessels oriented towards the established primary tumor mass on the dorsal side of mice. These findings suggest that bestatin is an active anti-angiogenic agent that may inhibit tumor angiogenesis in vivo and tube-like formation of endothelial cells in vitro through its inhibition of APN/CD13 activity.

  5. A Vitex agnus-castus extract inhibits cell growth and induces apoptosis in prostate epithelial cell lines.

    PubMed

    Weisskopf, M; Schaffner, W; Jundt, G; Sulser, T; Wyler, S; Tullberg-Reinert, H

    2005-10-01

    Extracts of Vitex agnus-castus fruits (VACF) are described to have beneficial effects on disorders related to hyperprolactinemia (cycle disorders, premenstrual syndrome). A VACF extract has recently been shown to exhibit antitumor activities in different human cancer cell lines. In the present study, we explored the antiproliferative effects of a VACF extract with a particular focus on apoptosis-inducing and potential cytotoxic effects. Three different human prostate epithelial cell lines (BPH-1, LNCaP, PC-3) representing different disease stages and androgen responsiveness were chosen. The action of VACF on cell viability was assessed using the WST-8-tetrazolium assay. Cell proliferation in cells receiving VACF alone or in combination with a pan-caspase inhibitor (Z-VAD-fmk) was quantified using a Crystal Violet assay. Flow cytometric cell cycle analysis and measurement of DNA fragmentation using an ELISA method were used for studying the induction of apoptosis. Lactate dehydrogenase (LDH) activity was determined as a marker of cytotoxicity. The extract inhibited proliferation of all three cell lines in a concentration-dependent manner with IC (50) values below 10 microg/mL after treatment for 48 h. Cell cycle analysis and DNA fragmentation assays suggest that part of the cells were undergoing apoptosis. The VACF-induced decrease in cell number was partially inhibited by Z-VAD-fmk, indicating a caspase-dependent apoptotic cell death. However, the concentration-dependent LDH activity of VACF treated cells indicated cytotoxic effects as well. These data suggest that VACF contains components that inhibit proliferation and induce apoptosis in human prostate epithelial cell lines. The extract may be useful for the prevention and/or treatment not only of benign prostatic hyperplasia but also of human prostate cancer.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakaeda, Yoshiichi; Hiroi, Miki; Shimojima, Takahiro

    Sulindac, a non-steroidal anti-inflammatory drug, has been shown to exert an anti-tumor effect on several types of cancer. To determine the effect of sulindac on intracellular signaling pathways in host immune cells such as macrophages, we investigated the effect of the drug on interferon gamma (IFN{gamma})-induced expression of signal transducer and activator of transcription 1 (STAT1) and other genes in mouse macrophage-like cell line RAW264.7 cells. Sulindac, but not aspirin or sodium salicylate, inhibited IFN{gamma}-induced expression of the CXC ligand 9 (CXCL9) mRNA, a chemokine for activated T cells, whereas the interferon-induced expression of CXCL10 or IFN regulatory factor-1 wasmore » not affected by sulindac. Luciferase reporter assay demonstrated that sulindac inhibited IFN{gamma}-induced promoter activity of the CXCL9 gene. Surprisingly, sulindac had no inhibitory effect on IFN{gamma}-induced STAT1 activation; however, constitutive nuclear factor {kappa}B activity was suppressed by the drug. These results indicate that sulindac selectively inhibited IFN{gamma}-inducible gene expression without inhibiting STAT1 activation.« less

  7. Resveratrol protects vascular endothelial cells from high glucose-induced apoptosis through inhibition of NADPH oxidase activation-driven oxidative stress.

    PubMed

    Chen, Feng; Qian, Li-Hua; Deng, Bo; Liu, Zhi-Min; Zhao, Ying; Le, Ying-Ying

    2013-09-01

    Hyperglycemia-induced oxidative stress has been implicated in diabetic vascular complications in which NADPH oxidase is a major source of reactive oxygen species (ROS) generation. Resveratrol is a naturally occurring polyphenol, which has vasoprotective effects in diabetic animal models and inhibits high glucose (HG)-induced oxidative stress in endothelial cells. We aimed to examine whether HG-induced NADPH oxidase activation and ROS production contribute to glucotoxicity to endothelial cells and the effect of resveratrol on glucotoxicity. Using a murine brain microvascular endothelial cell line bEnd3, we found that NADPH oxidase inhibitor (apocynin) and resveratrol both inhibited HG-induced endothelial cell apoptosis. HG-induced elevation of NADPH oxidase activity and production of ROS were inhibited by apocynin, suggesting that HG induces endothelial cell apoptosis through NADPH oxidase-mediated ROS production. Mechanistic studies revealed that HG upregulated NADPH oxidase subunit Nox1 but not Nox2, Nox4, and p22(phox) expression through NF-κB activation, which resulted in elevation of NADPH oxidase activity and consequent ROS production. Resveratrol prevented HG-induced endothelial cell apoptosis through inhibiting HG-induced NF-κB activation, NADPH oxidase activity elevation, and ROS production. HG induces endothelial cell apoptosis through NF-κB/NADPH oxidase/ROS pathway, which was inhibited by resveratrol. Our findings provide new potential therapeutic targets against brain vascular complications of diabetes. © 2013 John Wiley & Sons Ltd.

  8. Effects of murine natural killer cells on Cryptococcus neoformans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nabavi Nouri, N.

    Previous data generated by Murphy and McDaniel indicate that normal murine nylon wool nonadherent splenic cells, with the characteristics of natural killer (NK) cells, effectively inhibit the in vitro growth of Cryptococcus neoformans, a yeast-like pathogen. Nylon wood nonadherent cells from spleens of 7-8 week old mice were further fractionated on discontinuous Percoll gradients. The enrichment of NK cells in Percoll fractions 1 and 2 was confirmed by morphological examination, immunofluorescent staining, and by assessing the cytolytic activity of each Percoll cell fraction against YAC-1 targets in the 4 h /sup 51/Cr release assay. Cells isolated from each Percoll fractionmore » were tested for growth inhibitory activity against C neoformans, using an in vitro 18 h growth inhibition assay. The results showed that NK cell enrichment was concomitant with the enrichment of anti-cryptococcal activity the Percoll fractions 1 and 2. An immunolabeling method combined with scanning electron microscopy was used to demonstrate that the effector cells attached to C. neoformans were asialo GM/sub 1/ positive and, therefore, had NK cell characteristics. NK cells have Fc receptors on their surfaces , and are capable of antibody-dependent cell-mediated cytotoxicity (ADCC) against IgG-coated target cells. The author examined the effects of the IgG fraction of rabbit anti-cryptococcal antibody on the NK cell-mediated growth inhibition of C. neoformans. The data indicated that the effector cells involved in antibody-dependent growth inhibition of cryptococci are either NK cells or copurify and coexist in the same population with NK cells.« less

  9. Somatostatin receptors 1, 2, and 5 cooperate in the somatostatin inhibition of C6 glioma cell proliferation in vitro via a phosphotyrosine phosphatase-eta-dependent inhibition of extracellularly regulated kinase-1/2.

    PubMed

    Barbieri, Federica; Pattarozzi, Alessandra; Gatti, Monica; Porcile, Carola; Bajetto, Adriana; Ferrari, Angelo; Culler, Michael D; Florio, Tullio

    2008-09-01

    Somatostatin inhibits cell proliferation through the activation of five receptors (SSTR1-5) expressed in normal and cancer cells. We analyzed the role of individual SSTRs in the antiproliferative activity of somatostatin in C6 rat glioma cells. Somatostatin dose-dependently inhibited C6 proliferation, an effect mimicked, with different efficacy or potency, by BIM-23745, BIM-23120, BIM-23206 (agonists for SSTR1, -2, and -5) and octreotide. The activation of SSTR3 was ineffective, although all SSTRs are functionally active, as demonstrated by the inhibition of cAMP production. All SSTRs induced cytostatic effects through the activation of the phosphotyrosine phosphatase PTPeta and the inhibition of ERK1/2. For possible synergism between SSTR subtypes, we tested the effects of the combined treatment with two agonists (SSTR1+2 or SSTR2+5) or bifunctional compounds. The simultaneous activation of SSTR1 and SSTR2 slightly increased the efficacy of the individual compounds with an IC50 in between the single receptor activation. SSTR2+5 activation displayed a pattern of response superimposable to that of the SSTR5 agonist alone (low potency and higher efficacy, as compared with BIM-23120). The simultaneous activation of SSTR1, -2, and -5 resulted in a response similar to somatostatin. In conclusion, the cytostatic effects of somatostatin in C6 cells are mediated by the SSTR1, -2, and -5 through the same intracellular pathway: activation of PTPeta and inhibition of ERK1/2 activity. Somatostatin is more effective than the individual agonists. The combined activation of SSTR1 and -2 shows a partial synergism as far as antiproliferative activity, whereas SSTR2 and -5 activation results in a response resembling the SSTR5 effects.

  10. OPB-31121, a novel small molecular inhibitor, disrupts the JAK2/STAT3 pathway and exhibits an antitumor activity in gastric cancer cells.

    PubMed

    Kim, Mi-Jung; Nam, Hyun-Jin; Kim, Hwang-Phill; Han, Sae-Won; Im, Seock-Ah; Kim, Tae-You; Oh, Do-Youn; Bang, Yung-Jue

    2013-07-10

    We investigated the mechanisms of action and antitumor effects of OPB-31121, a novel STAT3 inhibitor, in gastric cancer cells. OPB-31121 downregulated JAK2 and gp130 expression and inhibited JAK2 phosphorylation which leads to inhibition of STAT3 phosphorylation. OPB-31121 inhibited constitutively activated and IL-6-induced JAK/STAT signaling pathway. OPB-31121 decreased cell proliferation in both gastric cancer cells and in a xenograft model, induced the apoptosis of gastric cancer cells, inhibited the expression of antiapoptotic proteins, and showed synergism with 5-fluorouracil and cisplatin. Taken together, our study suggests that STAT3 inhibition with OPB-31121 can be tested in patients with gastric cancer. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Nicotine inhibits collagen synthesis and alkaline phosphatase activity, but stimulates DNA synthesis in osteoblast-like cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramp, W.K.; Lenz, L.G.; Galvin, R.J.

    1991-05-01

    Use of smokeless tobacco is associated with various oral lesions including periodontal damage and alveolar bone loss. This study was performed to test the effects of nicotine on bone-forming cells at concentrations that occur in the saliva of smokeless tobacco users. Confluent cultures of osteoblast-like cells isolated from chick embryo calvariae were incubated for 2 days with nicotine added to the culture medium (25-600 micrograms/ml). Nicotine inhibited alkaline phosphatase in the cell layer and released to the medium, whereas glycolysis (as indexed by lactate production) was unaffected or slightly elevated. The effects on medium and cell layer alkaline phosphatase weremore » concentration dependent with maximal inhibition occurring at 600 micrograms nicotine/ml. Nicotine essentially did not affect the noncollagenous protein content of the cell layer, but did inhibit collagen synthesis (hydroxylation of ({sup 3}H)proline and collagenase-digestible protein) at 100, 300, and 600 micrograms/ml. Release of ({sup 3}H)hydroxyproline to the medium was also decreased in a dose-dependent manner, as was the collagenase-digestible protein for both the medium and cell layer. In contrast, DNA synthesis (incorporation of ({sup 3}H)thymidine) was more than doubled by the alkaloid, whereas total DNA content was slightly inhibited at 600 micrograms/ml, suggesting stimulated cell turnover. Morphologic changes occurred in nicotine-treated cells including rounding up, detachment, and the occurrence of numerous large vacuoles. These results suggest that steps to reduce the salivary concentration of nicotine in smokeless tobacco users might diminish damaging effects of this product on alveolar bone.« less

  12. Retinol induces morphological alterations and proliferative focus formation through free radical-mediated activation of multiple signaling pathways.

    PubMed

    Gelain, Daniel Pens; Pasquali, Matheus Augusto de Bittencourt; Caregnato, Fernanda Freitas; Castro, Mauro Antonio Alves; Moreira, José Claudio Fonseca

    2012-04-01

    Toxicity of retinol (vitamin A) has been previously associated with apoptosis and/or cell malignant transformation. Thus, we investigated the pathways involved in the induction of proliferation, deformation and proliferative focus formation by retinol in cultured Sertoli cells of rats. Sertoli cells were isolated from immature rats and cultured. The cells were subjected to a 24-h treatment with different concentrations of retinol. Parameters of oxidative stress and cytotoxicity were analyzed. The effects of the p38 inhibitor SB203580 (10 μmol/L), the JNK inhibitor SP600125 (10 μmol/L), the Akt inhibitor LY294002 (10 μmol/L), the ERK inhibitor U0126 (10 μmol/L) the pan-PKC inhibitor Gö6983 (10 μmol/L) and the PKA inhibitor H89 (1 μmol/L) on morphological and proliferative/transformation-associated modifications were studied. Retinol (7 and 14 μmol/L) significantly increases the reactive species production in Sertoli cells. Inhibition of p38, JNK, ERK1/2, Akt, and PKA suppressed retinol-induced [(3)H]dT incorporation into the cells, while PKC inhibition had no effect. ERK1/2 and p38 inhibition also blocked retinol-induced proliferative focus formation in the cells, while Akt and JNK inhibition partially decreased focus formation. ERK1/2 and p38 inhibition hindered transformation-associated deformation in retinol-treated cells, while other treatments had no effect. Our results suggest that activation of multiple kinases is responsible for morphological and proliferative changes associated to malignancy development in Sertoli cells by retinol at the concentrations higher than physiological level.

  13. Pan-RAF and MEK vertical inhibition enhances therapeutic response in non-V600 BRAF mutant cells.

    PubMed

    Molnár, Eszter; Rittler, Dominika; Baranyi, Marcell; Grusch, Michael; Berger, Walter; Döme, Balázs; Tóvári, József; Aigner, Clemens; Tímár, József; Garay, Tamás; Hegedűs, Balázs

    2018-05-08

    Currently, there are no available targeted therapy options for non-V600 BRAF mutated tumors. The aim of this study was to investigate the effects of RAF and MEK concurrent inhibition on tumor growth, migration, signaling and apoptosis induction in preclinical models of non-V600 BRAF mutant tumor cell lines. Six BRAF mutated human tumor cell lines CRL5885 (G466 V), WM3629 (D594G), WM3670 (G469E), MDAMB231 (G464 V), CRL5922 (L597 V) and A375 (V600E as control) were investigated. Pan-RAF inhibitor (sorafenib or AZ628) and MEK inhibitor (selumetinib) or their combination were used in in vitro viability, video microscopy, immunoblot, cell cycle and TUNEL assays. The in vivo effects of the drugs were assessed in an orthotopic NSG mouse breast cancer model. All cell lines showed a significant growth inhibition with synergism in the sorafenib/AZ628 and selumetinib combination. Combination treatment resulted in higher Erk1/2 inhibition and in increased induction of apoptosis when compared to single agent treatments. However, single selumetinib treatment could cause adverse therapeutic effects, like increased cell migration in certain cells, selumetinib and sorafenib combination treatment lowered migratory capacity in all the cell lines. Importantly, combination resulted in significantly increased tumor growth inhibition in orthotropic xenografts of MDAMB231 cells when compared to sorafenib - but not to selumetinib - treatment. Our data suggests that combined blocking of RAF and MEK may achieve increased therapeutic response in non-V600 BRAF mutant tumors.

  14. Antitumor Effects of Flavopiridol on Human Uterine Leiomyoma In Vitro and in a Xenograft Model

    PubMed Central

    Lee, Hyun-Gyo; Baek, Jong-Woo; Shin, So-Jin; Kwon, Sang-Hoon; Cha, Soon-Do; Park, Won-Jin; Chung, Rosa; Choi, Eun-Som; Lee, Gun-Ho

    2014-01-01

    Dysregulated cyclin-dependent kinases (CDKs) are considered a potential target for cancer therapy. Flavopiridol is a potent CDK inhibitor. In this study, the antiproliferative effect of the flavonoid compound flavopiridol and its mechanism in human uterine leiomyoma cells were investigated. The present study focused on the effect of flavopiridol in cell proliferation and cell cycle progression in primary cultured human uterine leiomyoma cells. Cell viability and cell proliferation assays were conducted. Flow cytometry was performed to determine the effect of flavopiridol on cell cycle. The expression of cell cycle regulatory-related proteins was evaluated by Western blotting. Cell viability and proliferation of uterine leiomyoma cells were significantly reduced by flavopiridol treatment in a dose-dependent manner. Flow cytometry results showed that flavopiridol induced G1 phase arrest. Flavopiridol-induced growth inhibition in uterine leiomyoma cells was associated with increased expression of p21cip/wafl and p27kip1 in a dose-dependent manner. Downregulation of CDK2/4 and Cyclin A with a concomitant increase in dephosphorylation of retinoblastoma was observed. This study demonstrates that flavopiridol inhibits cell proliferation by initiating G1 cell cycle arrest in human uterine leiomyoma. We also found that flavopiridol is effective in inhibiting xenografted human uterine leiomyoma growth. These results indicate that flavopiridol could prove to be a promising chemopreventive and therapeutic agent for human uterine leiomyoma. PMID:24572052

  15. Butyrate inhibits cancerous HCT116 cell proliferation but to a lesser extent in noncancerous NCM460 colon cells

    USDA-ARS?s Scientific Manuscript database

    Butyrate, an intestinal microbiota metabolite of dietary fiber, exhibits chemoprevention effects on colon cancer development. However, the mechanistic action of butyrate at the cellular level remains to be determined. We hypothesize that butyrate inhibits cancerous cell proliferation but to a lesser...

  16. [Enhanced growth inhibition by combined two pathway inhibitors on K-ras mutated non-small cell lung cancer cells].

    PubMed

    Yang, Zhenli; Li, Zhanwen; Feng, Hailiang; Bian, Xiaocui; Liu, Yanyan; Liu, Yuqin

    2014-09-01

    To evaluate the effect of combined targeting of MEK and PI3K signaling pathways on K-ras mutated non-small cell lung cancer cell line A549 cells and the relevant mechanisms. A549 cells were treated with different concentrations of two inhibitors. Growth inhibition was determined by MTT assay. According to the results of MTT test, the cells were divided into four groups: the control group, PI3K inhibitor group (GDC-0941,0.5 and 5.0 µmol/L), combination group I (0.5 µmol/L AZD6244+0.5 µmol/L GDC-0941) and combination group II (5.0 µmol/L AZD6244+5.0 µmol/L GDC-0941). The cell cycle and apoptosis were analyzed by flow cytometry. The expression of proteins related to apoptosis was tested with Western blot. Both GDC-0941 and AZD6244 inhibited the cell proliferation. The combination group II led to a stronger growth inhibition. The combination group I showed an antagonistic effect and combination group II showed an additive or synergistic effect. Compared with the control group, the combination group I led to reduced apoptotic rate [(20.70 ± 0.99)% vs. (18.65 ± 0.92 )%, P > 0.05]; Combination group II exhibited enhanced apoptotic rate [(37.85 ± 3.18)% vs. (52.27 ± 4.36)%, P < 0.01]. In addition, in the combination group II, more A549 cells were arrested in G0/G1 phase and decreased S phase (P < 0.01), due to the reduced expressions of CyclinD1 and Cyclin B1, the increased cleaved PARP and the diminished ratio of Bcl-2/Bax. For single K-ras mutated NSCLC cell line A549 cells, combination of RAS/MEK/ERK and PI3K/AKT/mTOR inhibition showed synergistic effects depending on the drug doses. Double pathways targeted therapy may be beneficial for these patients.

  17. Inhibition of glucose turnover by 3-bromopyruvate counteracts pancreatic cancer stem cell features and sensitizes cells to gemcitabine

    PubMed Central

    Bauer, Nathalie; Liu, Li; Fan, Pei; Zhang, Yiyao; Gladkich, Jury; Nwaeburu, Clifford C.; Mattern, Jürgen; Mollenhauer, Martin; Rückert, Felix; Zach, Sebastian; Haberkorn, Uwe; Gross, Wolfgang; Schönsiegel, Frank; Bazhin, Alexandr V.; Herr, Ingrid

    2014-01-01

    According to the cancer stem cell (CSC) hypothesis, the aggressive growth and early metastasis of pancreatic ductal adenocarcinoma (PDA) is due to the activity of CSCs, which are not targeted by current therapies. Otto Warburg suggested that the growth of cancer cells is driven by a high glucose metabolism. Here, we investigated whether glycolysis inhibition targets CSCs and thus may enhance therapeutic efficacy. Four established and 3 primary PDA cell lines, non-malignant cells, and 3 patient-tumor-derived CSC-enriched spheroidal cultures were analyzed by glucose turnover measurements, MTT and ATP assays, flow cytometry of ALDH1 activity and annexin positivity, colony and spheroid formation, western blotting, electrophoretic mobility shift assay, xenotransplantation, and immunohistochemistry. The effect of siRNA-mediated inhibition of LDH-A and LDH-B was also investigated. The PDA cells exhibited a high glucose metabolism, and glucose withdrawal or LDH inhibition by siRNA prevented growth and colony formation. Treatment with the anti-glycolytic agent 3-bromopyruvate almost completely blocked cell viability, self-renewal potential, NF-κB binding activity, and stem cell-related signaling and reverted gemcitabine resistance. 3-bromopyruvate was less effective in weakly malignant PDA cells and did not affect non-malignant cells, predicting minimal side effects. 3-bromopyruvate inhibited in vivo tumor engraftment and growth on chicken eggs and mice and enhanced the efficacy of gemcitabine by influencing the expression of markers of proliferation, apoptosis, self-renewal, and metastasis. Most importantly, primary CSC-enriched spheroidal cultures were eliminated by 3-bromopyruvate. These findings propose that CSCs may be specifically dependent on a high glucose turnover and suggest 3-bromopyruvate for therapeutic intervention. PMID:25015789

  18. Inhibition of glucose turnover by 3-bromopyruvate counteracts pancreatic cancer stem cell features and sensitizes cells to gemcitabine.

    PubMed

    Isayev, Orkhan; Rausch, Vanessa; Bauer, Nathalie; Liu, Li; Fan, Pei; Zhang, Yiyao; Gladkich, Jury; Nwaeburu, Clifford C; Mattern, Jürgen; Mollenhauer, Martin; Rückert, Felix; Zach, Sebastian; Haberkorn, Uwe; Gross, Wolfgang; Schönsiegel, Frank; Bazhin, Alexandr V; Herr, Ingrid

    2014-07-15

    According to the cancer stem cell (CSC) hypothesis, the aggressive growth and early metastasis of pancreatic ductal adenocarcinoma (PDA) is due to the activity of CSCs, which are not targeted by current therapies. Otto Warburg suggested that the growth of cancer cells is driven by a high glucose metabolism. Here, we investigated whether glycolysis inhibition targets CSCs and thus may enhance therapeutic efficacy. Four established and 3 primary PDA cell lines, non-malignant cells, and 3 patient-tumor-derived CSC-enriched spheroidal cultures were analyzed by glucose turnover measurements, MTT and ATP assays, flow cytometry of ALDH1 activity and annexin positivity, colony and spheroid formation, western blotting, electrophoretic mobility shift assay, xenotransplantation, and immunohistochemistry. The effect of siRNA-mediated inhibition of LDH-A and LDH-B was also investigated. The PDA cells exhibited a high glucose metabolism, and glucose withdrawal or LDH inhibition by siRNA prevented growth and colony formation. Treatment with the anti-glycolytic agent 3-bromopyruvate almost completely blocked cell viability, self-renewal potential, NF-κB binding activity, and stem cell-related signaling and reverted gemcitabine resistance. 3-bromopyruvate was less effective in weakly malignant PDA cells and did not affect non-malignant cells, predicting minimal side effects. 3-bromopyruvate inhibited in vivo tumor engraftment and growth on chicken eggs and mice and enhanced the efficacy of gemcitabine by influencing the expression of markers of proliferation, apoptosis, self-renewal, and metastasis. Most importantly, primary CSC-enriched spheroidal cultures were eliminated by 3-bromopyruvate. These findings propose that CSCs may be specifically dependent on a high glucose turnover and suggest 3-bromopyruvate for therapeutic intervention.

  19. Citrus limonoids and curcumin additively inhibit human colon cancer cells.

    PubMed

    Chidambara Murthy, Kotamballi N; Jayaprakasha, G K; Patil, Bhimanagouda S

    2013-04-30

    In the current study, we examined the ability of limonoids, including limonin, limonin glucoside (LG) and curcumin, to inhibit proliferation of human colon cancer (SW480) cells. Additionally, we studied the effect of combining these two classes of natural compounds on inhibition of proliferation and the possible mode of cytotoxicity. The SW480 cells were treated with compounds individually and in combination to understand the effect on cell death, DNA fragmentation, caspase-3 activity and the expression of Bax, Bcl-2 and caspase-3 proteins. Results of cell proliferation assays suggest that combinations of limonoids with curcumin at three different ratios (1 : 3, 1 : 1 and 3 : 1) to a final concentration of 50 ppm demonstrated up to 96% inhibition of cell proliferation. The MTT assay results were also confirmed by counting viable cells. Further, incubation of cells with combinations of limonoids and curcumin resulted in elevation of total cellular caspase-3 activity by 3.5-4.0 fold along with a 2- to 4-fold increase in the Bax/Bcl-2 ratio. The expression of pro-caspase-3 and its cleaved products in cells treated with curcumin (individually or combination) indicates higher potency of the combination to induce apoptosis. For the first time, this study provides compelling evidence of the pharmacodynamic additive effect of limonoids and curcumin in inhibiting human colon cancer cells. The above results were also confirmed by fluorescence microscopy of SW480 cells treated with limonoids, curcumin and combination, after tagging with fluorescent probes. These results suggest that consumption of curcumin and limonoids together may offer greater protection against colon cancer.

  20. Individual and combined tumoricidal effects of dexamethasone and interferons on human leukocyte cell lines.

    PubMed

    Pan, L Y; Guyre, P M

    1988-02-01

    We investigated the influence of glucocorticoids on two effects of interferons (IFNs) which are thought to relate to their antitumor actions: cytotoxic activity and induction of HLA antigen expression. We treated human myeloid cell lines (U-937, HL-60, THP-1, K-562, and KG-1a), and T-(MOLT-4) and B- (Daudi) lymphoblastic cell lines with concentrations of IFN-alpha, IFN-gamma, and dexamethasone (Dex) which are commonly achieved in the circulation following therapeutic administration. The results show that for every cell line except Daudi, the greatest inhibition of cell growth occurred when IFN-gamma and Dex treatments were combined. The advantage of combined IFN-gamma and Dex treatment over treatment with either agent alone was most dramatic for the three cell lines (U-937, HL-60, and THP-1) which have monocytoid characteristics. There was also more growth inhibition by the combination of IFN-alpha and Dex than by either agent alone for all seven cell lines tested. The induction of HLA antigen expression by IFN-alpha and IFN-gamma, an effect which could increase recognition of the tumor cells by the immune system, was as great or greater in the presence of Dex as in its absence. These results demonstrate that glucocorticoids do not inhibit, and in some cases enhance, two effects of IFNs that appear to be related to their antitumor actions: inhibition of tumor cell proliferation and enhancement of HLA antigen expression.

  1. Inhibition of COP9-signalosome (CSN) deneddylating activity and tumor growth of diffuse large B-cell lymphomas by doxycycline

    PubMed Central

    Pulvino, Mary; Chen, Luojing; Oleksyn, David; Li, Jing; Compitello, George; Rossi, Randy; Spence, Stephen; Balakrishnan, Vijaya; Jordan, Craig; Poligone, Brian; Casulo, Carla; Burack, Richard; Shapiro, Joel L.; Bernstein, Steven; Friedberg, Jonathan W.; Deshaies, Raymond J.; Land, Hartmut; Zhao, Jiyong

    2015-01-01

    In searching for small-molecule compounds that inhibit proliferation and survival of diffuse large B-cell lymphoma (DLBCL) cells and may, therefore, be exploited as potential therapeutic agents for this disease, we identified the commonly used and well-tolerated antibiotic doxycycline as a strong candidate. Here, we demonstrate that doxycycline inhibits the growth of DLBCL cells both in vitro and in mouse xenograft models. In addition, we show that doxycycline accumulates in DLBCL cells to high concentrations and affects multiple signaling pathways that are crucial for lymphomagenesis. Our data reveal the deneddylating activity of COP-9 signalosome (CSN) as a novel target of doxycycline and suggest that doxycycline may exert its effects in DLBCL cells in part through a CSN5-HSP90 pathway. Consistently, knockdown of CSN5 exhibited similar effects as doxycycline treatment on DLBCL cell survival and HSP90 chaperone function. In addition to DLBCL cells, doxycycline inhibited growth of several other types of non-Hodgkin lymphoma cells in vitro. Together, our results suggest that doxycycline may represent a promising therapeutic agent for DLBCL and other non-Hodgkin lymphomas subtypes. PMID:26142707

  2. Pirfenidone Inhibits Proliferation and Promotes Apoptosis of Hepatocellular Carcinoma Cells by Inhibiting the Wnt/β-Catenin Signaling Pathway.

    PubMed

    Zou, Wei-Jie; Huang, Zhi; Jiang, Tian-Peng; Shen, Ya-Ping; Zhao, An-Su; Zhou, Shi; Zhang, Shuai

    2017-12-25

    BACKGROUND Hepatocellular carcinoma (HCC) is the most important cause of cancer-related deaths worldwide. Pirfenidone is an orally available small molecule with therapeutic potential for fibrotic diseases. MATERIAL AND METHODS In this study, we analyzed the effects of different pirfenidone concentrations on the proliferation of HepG2 HCC cells using Cell Counting Kit-8 (CCK-8) and colony formation assays. Flow cytometry was performed to measure the apoptotic effects of pirfenidone on HepG2 cells. Western blot analysis was performed to detect the expression of β-catenin and p-β-catenin. RESULTS Pirfenidone inhibited proliferation and promoted HepG2 cell apoptosis. In addition, Western blot results indicated that pirfenidone suppressed b-catenin expression in HepG2 cells. To assess the mechanism, we treated HepG2 cells with pirfenidone, and pirfenidone plus the β-catenin activator, SB-216763. The results revealed that SB-216763 accelerated proliferation and inhibited apoptosis in HepG2 cells treated with pirfenidone. Western blot results showed that SB-216763 upregulated β-catenin expression in HepG2 cells treated with pirfenidone. CONCLUSIONS In conclusions, pirfenidone may be a potential drug for HCC treatment.

  3. Immunoregulatory cytokines in mouse placental extracts inhibit in vitro osteoclast differentiation of murine macrophages.

    PubMed

    Canellada, A; Custidiano, A; Abraham, F; Rey, E; Gentile, T

    2013-03-01

    Previous studies showed that placental extracts (PE) alleviates arthritic symptoms in animal models of arthritis. To evaluate whether murine PEs obtained at embryonic days 7.5 (PE7) and 17.5 (PE18) regulate RANKL-induced osteoclast differentiation, RAW 264.7 cells were cultured with RANKL and MCSF in presence or not of PEs. Tartrate-resistant acid phosphatase (TRAP) was stained and multinucleated TRAP positive cells were visualized under a light microscope. Cathepsin K and metalloprotease expression was assessed by RT-PCR and gelatin zymography respectively. NFATc1 expression was determined by immunoblot. To analyze NFAT-dependent transcription, macrophages were transfected with a luciferase reporter plasmid. Cytokines were determined in PEs by ELISA and immunoblot. Transforming growth factor (TGF)- beta and Interleukin (IL)-10 receptor were inhibited in cell cultures with specific antibodies. PE7 and PE18 inhibited RANKL-induced multinucleated TRAP positive cells, Cathepsin K expression and metalloprotease activity, as well as NFATc1 expression and activity, thereby inhibiting osteoclast differentiation of RAW cells. Inflammatory/Regulatory cytokine ratio was higher in PE7 than in PE18. Blocking TGF-beta abolished the effect of both, PE7 and PE18, on multinucleated TRAP positive cells and metalloprotease expression, whereas blocking IL-10 receptor reverted the effect of PE18 but not of PE7. Inhibition of osteoclast differentiation by PEs was not unexpected, since cytokines detected in extracts were previously found to regulate osteoclast differentiation. PEs inhibited osteoclast differentiation of macrophages in vitro. Downregulation of NFATc1 might be involved in this effect. Regulatory/Th2 cytokines play a role in the effect of PEs on osteoclast differentiation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Exposure to a specific time-varying electromagnetic field inhibits cell proliferation via cAMP and ERK signaling in cancer cells.

    PubMed

    Buckner, Carly A; Buckner, Alison L; Koren, Stan A; Persinger, Michael A; Lafrenie, Robert M

    2018-04-01

    Exposure to specific electromagnetic field (EMF) patterns can affect a variety of biological systems. We have shown that exposure to Thomas-EMF, a low-intensity, frequency-modulated (25-6 Hz) EMF pattern, inhibited growth and altered cell signaling in malignant cells. Exposure to Thomas-EMF for 1 h/day inhibited the growth of malignant cells including B16-BL6 mouse melanoma cells, MDA-MB-231, MDA-MB-468, BT-20, and MCF-7 human breast cancer and HeLa cervical cancer cells but did not affect non-malignant cells. The Thomas-EMF-dependent changes in cell proliferation were mediated by adenosine 3',5'-cyclic monophosphate (cAMP) and extracellular-signal-regulated kinase (ERK) signaling pathways. Exposure of malignant cells to Thomas-EMF transiently changed the level of cellular cAMP and promoted ERK phosphorylation. Pharmacologic inhibitors (SQ22536) and activators (forskolin) of cAMP production both blocked the ability of Thomas-EMF to inhibit cell proliferation, and an inhibitor of the MAP kinase pathway (PD98059) was able to partially block Thomas-EMF-dependent inhibition of cell proliferation. Genetic modulation of protein kinase A (PKA) in B16-BL6 cells also altered the effect of Thomas-EMF on cell proliferation. Cells transfected with the constitutively active form of PKA (PKA-CA), which interfered with ERK phosphorylation, also interfered with the Thomas-EMF effect on cell proliferation. The non-malignant cells did not show any EMF-dependent changes in cAMP levels, ERK phosphorylation, or cell growth. These data indicate that exposure to the specific Thomas-EMF pattern can inhibit the growth of malignant cells in a manner dependent on contributions from the cAMP and MAP kinase pathways. Bioelectromagnetics. 39;217-230, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Inhibitory effect of mast cell-mediated immediate-type allergic reactions in rats by spirulina.

    PubMed

    Kim, H M; Lee, E H; Cho, H H; Moon, Y H

    1998-04-01

    We investigated the effect of spirulina on mast cell-mediated immediate-type allergic reactions. Spirulina dose-dependently inhibited the systemic allergic reaction induced by compound 48/80 in rats. Spirulina inhibited compound 48/80-induced allergic reaction 100% with doses of 100-1000 microg/g body weight, i.p. Spirulina (10-1000 microg/g body weight, i.p.) also significantly inhibited local allergic reaction activated by anti-dinitrophenyl (DNP) IgE. When rats were pretreated with spirulina at a concentration ranging from 0.01 to 1000 microg/g body weight, i.p., the serum histamine levels were reduced in a dose-dependent manner. Spirulina (0.001 to 10 microg/mL) dose-dependently inhibited histamine release from rat peritoneal mast cells (RPMC) activated by compound 48/80 or anti-DNP IgE. The level of cyclic AMP in RPMC, when spirulina (10 microg/mL) was added, transiently and significantly increased about 70-fold at 10 sec compared with that of control cells. Moreover, spirulina (10 microg/mL) had a significant inhibitory effect on anti-DNP IgE-induced tumor necrosis factor-alpha production. These results indicate that spirulina inhibits mast cell-mediated immediate-type allergic reactions in vivo and in vitro.

  6. Effects of menadione, a reactive oxygen generator, on leukotriene secretion from RBL-2H3 cells.

    PubMed

    Kawamura, Fumio; Nakanishi, Mamoru; Hirashima, Naohide

    2010-01-01

    Reactive oxygen species (ROS) are produced in various cells and affect many biological processes. We previously reported that 2-methyl-1,4-naphtoquinone (menadione) inhibited Ca(2+) influx from the extracellular medium and exocytosis evoked by antigen stimulation in the mast cell line, RBL-2H3. Mast cells release various inflammatory mediators such as leukotrienes (LTs) and cytokines in addition to the exocytotic secretion of histamine. In this study, we investigated the effects of menadione on LT release in RBL-2H3. Treatment of RBL cells with menadione inhibited LTC(4) secretion induced by antigen stimulation. To elucidate the mechanism of this inhibition, we examined the effects of menadione on the activation process of 5-lipoxygenase that is responsible for the synthesis of LTs from arachidonic acid. Menadione did not affect the phosophorylation of mitogen activated protein (MAP) kinases, extracellular signal-regulated kinase (ERK) and p38, which regulates phosphorylation of 5-lipoxygenase. However, menadione inhibited the translocation of 5-lipoxygenase from the cytoplasm to the nuclear membrane. Together with the result that LT secretion was severely impaired in the absence of extracellular Ca2(2+), it is suggested that ROS produced by menadione inhibited LT secretion through impaired Ca2(2+) influx and 5-lipoxygenase translocation to the nuclear membrane.

  7. Curcumin inhibits the proliferation and invasion of human osteosarcoma cell line MG-63 by regulating miR-138.

    PubMed

    Yu, Dazhi; An, Fengmei; He, Xu; Cao, Xuecheng

    2015-01-01

    In this study, we screened the different human osteosarcoma cell line MG-63 miRNAs after the treatment of curcumin and explored the effects of curcumin on MG-63 cells and its mechanism. Affemitrix miRNA chip was used to detect the changes of miRNA expression profile in MG-63 cells before and after curcumin treatment, and screen different expression of miRNAs. The target gene of miRNA was analyzed by bioinformatics. The expression levels of miRNA-138 target genes Smad4, NFκB p65 and cyclin D3 were detected. MTT and Transwell Cell invasion assays were used to observe the effects of curcumin on MG-63 cells. Curcumin could significantly inhibit the proliferation of MG-63 cells and the expression levels of miRNA-138 target genes Smad4, NFκB p65 and cyclin D3 in MG-63 cells (P<0.05); overexpression of hsa-miR-138 down-regulated the expression levels of Smad4, NFκB p65 and cyclin D3 compared with the treatment of curcumin, while inhibition of hsa-miR-138 up-regulated the expression levels of Smad4, NFκB p65 and cyclin D3. Curcumin could increase the expression of hsa-miR-138, hsa-miR-138 inhibited cell proliferation and invasive ability by inhibition of its target genes.

  8. Dioscin Inhibits HSC-T6 Cell Migration via Adjusting SDC-4 Expression: Insights from iTRAQ-Based Quantitative Proteomics.

    PubMed

    Yin, Lianhong; Qi, Yan; Xu, Youwei; Xu, Lina; Han, Xu; Tao, Xufeng; Song, Shasha; Peng, Jinyong

    2017-01-01

    Hepatic stellate cells (HSCs) migration, an important bioprocess, contributes to the development of liver fibrosis. Our previous studies have found the potent activity of dioscin against liver fibrosis by inhibiting HSCs proliferation, triggering the senescence and inducing apoptosis of activated HSCs, but the molecular mechanisms associated with cell migration were not clarified. In this work, iTRAQ (isobaric tags for relative and absolution quantitation)-based quantitative proteomics study was carried out, and a total of 1566 differentially expressed proteins with fold change ≥2.0 and p < 0.05 were identified in HSC-T6 cells treated by dioscin (5.0 μg/mL). Based on Gene Ontology classification, String and KEGG pathway assays, the effects of dioscin to inhibit cell migration via regulating SDC-4 were carried out. The results of wound-healing, cell migration and western blotting assays indicated that dioscin significantly inhibit HSC-T6 cell migration through SDC-4-dependent signal pathway by affecting the expression levels of Fn, PKCα, Src, FAK, and ERK1/2. Specific SDC-4 knockdown by shRNA also blocked HSC-T6 cell migration, and dioscin slightly enhanced the inhibiting effect. Taken together, the present work showed that SDC-4 played a crucial role on HSC-T6 cell adhesion and migration of dioscin against liver fibrosis, which may be one potent therapeutic target for fibrotic diseases.

  9. Anti-inflammatory effect of intravenous immunoglobulin in comparison with dexamethasone in vitro: implication for treatment of Kawasaki disease.

    PubMed

    Makata, Haruyuki; Ichiyama, Takashi; Uchi, Ryutaro; Takekawa, Tsuyoshi; Matsubara, Tomoyo; Furukawa, Susumu

    2006-08-01

    High-dose intravenous immunoglobulin (IVIG) is a well-established standard therapy for Kawasaki disease (KD) that reduces the risk of developing coronary artery aneurysms. On the other hand, some reports have recommended an alternative therapy with steroids for KD patients. In this study we investigated the anti-inflammatory effect of IVIG in comparison with dexamethasone at clinical doses in vitro. High-dose IVIG inhibited tumor necrosis factor-alpha (TNF-alpha)-induced activation of nuclear factor-kappaB (NF-kappaB) to a greater degree than dexamethasone in human monocytic U937 cells and human coronary arterial endothelial cells (HCAEC), but not in human T lymphocytic Jurkat cells. IVIG was more potent than dexamethasone in reducing the expression of CD16 (FcgammaRIII) in human monocytic THP-1 cells stimulated with lipopolysaccharide and in Jurkat cells stimulated with dimethyl sulfoxide. In HCAEC exposed to TNF-alpha, IVIG and dexamethasone inhibited interleukin-6 production to a similar degree, whereas the expression of E-selectin was inhibited more strongly by IVIG. Our results show that high-dose IVIG inhibits the activation of monocytes/macrophages and coronary arterial endothelial cells more strongly than that of T cells, whereas dexamethasone inhibits the activation of all three cell types. These findings suggest that IVIG or dexamethasone therapy should be chosen to match the types of cells that are activated during acute KD.

  10. Phloretin inhibits interleukin-1β-induced COX-2 and ICAM-1 expression through inhibition of MAPK, Akt, and NF-κB signaling in human lung epithelial cells.

    PubMed

    Huang, Wen-Chung; Wu, Shu-Ju; Tu, Rong-Syuan; Lai, You-Rong; Liou, Chian-Jiun

    2015-06-01

    Phloretin, a flavonoid isolated from the apple tree, is reported to have anti-inflammatory, anti-oxidant, and anti-adiposity effects. In this study, we evaluated the suppressive effects of phloretin on intercellular adhesion molecule 1 (ICAM-1) and cyclooxygenase (COX)-2 expression in IL-1β-stimulated human lung epithelial A549 cells. The cells were pretreated with various concentrations of phloretin (3-100 μM), followed by induced inflammation by IL-1β. Phloretin inhibited levels of prostaglandin E2, decreased COX-2 expression, and suppressed IL-8, monocyte chemotactic protein 1, and IL-6 production. It also decreased ICAM-1 gene and protein expression and suppressed monocyte adhesion to inflammatory A549 cells. Phloretin also significantly inhibited Akt and mitogen-activated protein kinase (MAPK) phosphorylation and decreased nuclear transcription factor kappa-B (NF-κB) subunit p65 protein translocation into the nucleus. In addition, ICAM-1 and COX-2 expression was suppressed by pretreatment with both MAPK inhibitors and phloretin in inflammatory A549 cells. However, phlorizin, a derivative of phloretin, did not suppress the inflammatory response in IL-1β-stimulated A549 cells. These results suggest that phloretin might have an anti-inflammatory effect by inhibiting proinflammatory cytokine, COX-2, and ICAM-1 expression via blocked NF-κB and MAPK signaling pathways.

  11. OPC-13013, a cyclic nucleotide phosphodiesterase type III, inhibitor, inhibits cell proliferation and transdifferentiation of cultured rat hepatic stellate cells.

    PubMed

    Shimizu, E; Kobayashi, Y; Oki, Y; Kawasaki, T; Yoshimi, T; Nakamura, H

    1999-01-01

    Activated hepatic stellate cells (HSC; lipocytes; Ito cells) proliferate and are responsible for extracellular matrix synthesis during hepatic fibrogenesis. During activation, HSC undergo transdifferentiation into myofibroblasts expressing alpha-smooth muscle actin (alpha-SMA). Adenosine 3', 5'-cyclic monophosphate (cyclic AMP) is an ubiquitous intracellular signaling molecule, and is upregulated by the activation of adenylate cyclase and downregulated via hydrolysis by cyclic nucleotide phosphodiesterases (PDEs). Recently, increased intracellular cyclic AMP has been shown to inhibit HSC activation. The aim of the current study was to determine the effects of inhibition of PDEs on cell proliferation and transdifferentiation in cultured rat HSC. Cell proliferation was determined by [3H]thymidine incorporation, and Western blot analysis was performed for detection of alpha-SMA, a phenotypic marker of transdifferentiation into myofibroblast. When the cells were exposed to 3-isobutyl-1-methylxanthine (IBMX; 50-1000 microM), a nonselective PDE inhibitor, serum-stimulated [3H]thymidine incorporation was suppressed in a dose-dependent manner with a maximum inhibition of 66% at a concentration of 500 microM OPC-13013 (1-60 microM), a selective PDE III isoenzyme inhibitor, induced a dose-dependent inhibitory effect on serum-stimulated DNA synthesis that reached a maximum inhibition of 95% at a concentration of 60 microM, while neither 8-methoxymethyl-3-isobutyl-1-methylxanthine (8-MMX), a PDE I isoenzyme inhibitor, nor Ro-20-1724, a PDE IV isoenzyme inhibitor, had an inhibitory effect. Western blot analysis revealed that IBMX or OPC-13013 decreased alpha-SMA expression, while other selective PDE isoenzyme inhibitors did not have a suppressive effect. IBMX, OPC-13013 or Ro-20-1724, but not 8-MMX augmented forskolin-induced increase in intracellular cyclic AMP levels although cyclic AMP levels were not affected by treatment with any of these PDE inhibitors alone. These data indicate that inhibition of PDEs, especially PDE III isoenzyme, can produce an inhibitory effect on HSC activation. The PDE III isoenzyme may contribute to the regulation of HSC activation during fibrogenesis. In addition, OPC-13013 may have the potential to inhibit initiation and progression of hepatic fibrosis by interfering with HSC activation.

  12. Phycocyanin Inhibits Tumorigenic Potential of Pancreatic Cancer Cells: Role of Apoptosis and Autophagy

    PubMed Central

    Liao, Gaoyong; Gao, Bing; Gao, Yingnv; Yang, Xuegan; Cheng, Xiaodong; Ou, Yu

    2016-01-01

    Pancreatic adenocarcinoma (PDA) is one of the most lethal human malignancies, and unresponsive to current chemotherapies. Here we investigate the therapeutic potential of phycocyanin as an anti-PDA agent in vivo and in vitro. Phycocyanin, a natural product purified from Spirulina, effectively inhibits the pancreatic cancer cell proliferation in vitro and xenograft tumor growth in vivo. Phycocyanin induces G2/M cell cycle arrest, apoptotic and autophagic cell death in PANC-1 cells. Inhibition of autophagy by targeting Beclin 1 using siRNA significantly suppresses cell growth inhibition and death induced by phycocyanin, whereas inhibition of both autophagy and apoptosis rescues phycocyanin-mediated cell death. Mechanistically, cell death induced by phycocyanin is the result of cross-talk among the MAPK, Akt/mTOR/p70S6K and NF-κB pathways. Phycocyanin is able to induce apoptosis of PANC-1 cell by activating p38 and JNK signaling pathways while inhibiting Erk pathway. On the other hand, phycocyanin promotes autophagic cell death by inhibiting PI3/Akt/mTOR signaling pathways. Furthermore, phycocyanin promotes the activation and nuclear translocation of NF-κB, which plays an important role in balancing phycocyanin-mediated apoptosis and autosis. In conclusion, our studies demonstrate that phycocyanin exerts anti-pancreatic cancer activity by inducing apoptotic and autophagic cell death, thereby identifying phycocyanin as a promising anti-pancreatic cancer agent. PMID:27694919

  13. Inhibitory effects of low molecular weight heparin on mediator release by mast cells: preferential inhibition of cytokine production and mast cell-dependent cutaneous inflammation

    PubMed Central

    BARAM, D; RASHKOVSKY, M; HERSHKOVIZ, R; DRUCKER, I; RESHEF, T; BEN-SHITRIT, S; MEKORI, Y A

    1997-01-01

    There has been substantial evidence that suggests that heparin may modulate various aspects of immune function and inflammation in addition to its well known anticoagulant activity. In this regard heparin was found to suppress cell-mediated immune responses or asthmatic reactions to allergen challenge. In the present study we analyse the effects of low molecular weight heparin (LMWH) on mast cell degranulation and cytokine production in vitro and on the elicitation of IgE-mediated mast cell-dependent late cutaneous allergic inflammation in vivo. We have established that LMWH preferentially inhibited tumour necrosis factor-alpha (TNF-α) and IL-4 production without having any significant effect on mast cell degranulation. These effects have been observed in mast cells derived from three different origins that were activated by either immunological or non-immunological stimuli. We have shown that there is inhibition of TNF-α production (and not neutralization of activity), as elimination of the drug after a short preincubation and addition of LMWH to rTNF-α had no effect on TNF-α-mediated cytotoxic activity. These results were also confirmed by ELISA. In vivo, s.c. injection of the LMWH inhibited the leucocyte infiltration associated with the late cutaneous response which followed passive cutaneous anaphylaxis (PCA) reaction, without affecting mast cell numbers or degranulation. These data suggest that LMWH may have an inhibitory role in mast cell-mediated allergic inflammation, and thus might be considered as a possible therapeutic modality. PMID:9409655

  14. Glucocorticoid receptor activation inhibits p53-induced apoptosis of MCF10Amyc cells via induction of protein kinase Cε.

    PubMed

    Aziz, Moammir H; Shen, Hong; Maki, Carl G

    2012-08-24

    Glucocorticoid receptor (GR) is a ligand-dependent transcription factor that can promote apoptosis or survival in a cell-specific manner. Activated GR has been reported to inhibit apoptosis in mammary epithelial cells and breast cancer cells by increasing pro-survival gene expression. In this study, activated GR inhibited p53-dependent apoptosis in MCF10A cells and human mammary epithelial cells that overexpress the MYC oncogene. Specifically, GR agonists hydrocortisone or dexamethasone inhibited p53-dependent apoptosis induced by cisplatin, ionizing radiation, or the MDM2 antagonist Nutlin-3. In contrast, the GR antagonist RU486 sensitized the cells to apoptosis by these agents. Apoptosis inhibition was associated with maintenance of mitochondrial membrane potential, diminished caspase-3 and -7 activation, and increased expression at both the mRNA and protein level of the anti-apoptotic PKC family member PKCε. Knockdown of PKCε via siRNA targeting reversed the protective effect of dexamethasone and restored apoptosis sensitivity. These data provide evidence that activated GR can inhibit p53-dependent apoptosis through induction of the anti-apoptotic factor PKCε.

  15. Thymoquinone chemosensitizes colon cancer cells through inhibition of NF-κB.

    PubMed

    Zhang, Lida; Bai, Yangqiu; Yang, Yuxiu

    2016-10-01

    In the present study, the effects and molecular mechanisms of thymoquinone (TQ) on colon cancer cells were investigated. Cell viability was determined using a Cell Counting Kit-8 assay, and the results revealed that treatment with TQ significantly decreased cell viability in COLO205 and HCT116 cells in a dose-dependent manner. TQ treatment additionally sensitized COLO205 and HCT116 cells to cisplatin therapy in a concentration-dependent manner. To investigate the molecular mechanisms of TQ action, western blot analysis was used to determine the levels of phosphorylated p65 and nuclear factor-κB (NF-κB)-regulated gene products vascular endothelial growth factor (VEGF), c-Myc and B-cell lymphoma 2 (Bcl-2). The results indicated that TQ treatment significantly decreased the level of phosphorylated p65 in the nucleus, which indicated the inhibition of NF-κB activation by TQ treatment. Treatment with TQ also decreased the expression levels of VEGF, c-Myc and Bcl-2. In addition, the inhibition of NF-κB activation with a specific inhibitor, pyrrolidine dithiocarbamate, potentiated the induction of cell death and caused a chemosensitization effect of TQ in colon cancer cells. Overall, the results of the present study suggested that TQ induced cell death and chemosensitized colon cancer cells by inhibiting NF-κB signaling.

  16. Thymoquinone chemosensitizes colon cancer cells through inhibition of NF-κB

    PubMed Central

    Zhang, Lida; Bai, Yangqiu; Yang, Yuxiu

    2016-01-01

    In the present study, the effects and molecular mechanisms of thymoquinone (TQ) on colon cancer cells were investigated. Cell viability was determined using a Cell Counting Kit-8 assay, and the results revealed that treatment with TQ significantly decreased cell viability in COLO205 and HCT116 cells in a dose-dependent manner. TQ treatment additionally sensitized COLO205 and HCT116 cells to cisplatin therapy in a concentration-dependent manner. To investigate the molecular mechanisms of TQ action, western blot analysis was used to determine the levels of phosphorylated p65 and nuclear factor-κB (NF-κB)-regulated gene products vascular endothelial growth factor (VEGF), c-Myc and B-cell lymphoma 2 (Bcl-2). The results indicated that TQ treatment significantly decreased the level of phosphorylated p65 in the nucleus, which indicated the inhibition of NF-κB activation by TQ treatment. Treatment with TQ also decreased the expression levels of VEGF, c-Myc and Bcl-2. In addition, the inhibition of NF-κB activation with a specific inhibitor, pyrrolidine dithiocarbamate, potentiated the induction of cell death and caused a chemosensitization effect of TQ in colon cancer cells. Overall, the results of the present study suggested that TQ induced cell death and chemosensitized colon cancer cells by inhibiting NF-κB signaling. PMID:27698868

  17. Strychnine, but not PMBA, inhibits neuronal nicotinic acetylcholine receptors expressed by rabbit retinal ganglion cells.

    PubMed

    Renna, J M; Strang, C E; Amthor, F R; Keyser, K T

    2007-01-01

    Strychnine is considered a selective competitive antagonist of glycine gated Cl- channels (Saitoh et al., 1994) and studies have used strychnine at low micromolar concentrations to study the role of glycine in rabbit retina (Linn, 1998; Protti et al., 2005). However, other studies have shown that strychnine, in the concentrations commonly used, is also a potent competitive antagonist of alpha7 nicotinic acetylcholine receptors (nAChRs; Matsubayashi et al., 1998). We tested the effects of low micromolar concentrations of strychnine and 3-[2'-phosphonomethyl[1,1'-biphenyl]-3-yl] alanine (PMBA), a specific glycine receptor blocker (Saitoh et al., 1994; Hosie et al., 1999) on the activation of both alpha7 nAChRs on retinal ganglion cells and on ganglion cell responses to a light flash. Extracellular recordings were obtained from ganglion cells in an isolated retina/choroid preparation and 500 microM choline was used as an alpha7 agonist (Alkondon et al., 1997). We recorded from brisk sustained and brisk transient OFF cells, many of which have been previously shown to have alpha7 receptors (Strang et al., 2005). Further, we tested the effect of strychnine, PMBA and alpha-bungarotoxin on the binding of tetramethylrhodamine alpha-bungarotoxin in the inner plexiform layer. Our data indicates that strychnine, at doses as low as 1.0 microM, can inhibit the alpha7 nAChR-mediated response to choline, but PMBA at concentrations as high as 0.4 microM does not. Binding studies show strychnine and alpha-bungarotoxin inhibit binding of labeled alpha-bungarotoxin in the IPL. Thus, the effects of strychnine application may be to inhibit glycine receptors expressed by ganglion cell or to inhibit amacrine cell alpha7 nAChRs, both of which would result in an increase in the ganglion cell responses. Further research will be required to disentangle the effects of strychnine previously believed to be caused by a single mechanism of glycine receptor inhibition.

  18. Pirfenidone inhibits TGF-β1-induced over-expression of collagen type I and heat shock protein 47 in A549 cells

    PubMed Central

    2012-01-01

    Background Pirfenidone is a novel anti-fibrotic and anti-inflammatory agent that inhibits the progression of fibrosis in animal models and in patients with idiopathic pulmonary fibrosis (IPF). We previously showed that pirfenidone inhibits the over-expression of collagen type I and of heat shock protein (HSP) 47, a collagen-specific molecular chaperone, in human lung fibroblasts stimulated with transforming growth factor (TGF)-β1 in vitro. The increased numbers of HSP47-positive type II pneumocytes as well as fibroblasts were also diminished by pirfenidone in an animal model of pulmonary fibrosis induced by bleomycin. The present study evaluates the effects of pirfenidone on collagen type I and HSP47 expression in the human alveolar epithelial cell line, A549 cells in vitro. Methods The expression of collagen type I, HSP47 and E-cadherin mRNAs in A549 cells stimulated with TGF-β1 was evaluated by Northern blotting or real-time PCR. The expression of collagen type I, HSP47 and fibronectin proteins was assessed by immunocytochemical staining. Results TGF-β1 stimulated collagen type I and HSP47 mRNA and protein expression in A549 cells, and pirfenidone significantly inhibited this process. Pirfenidone also inhibited over-expression of the fibroblast phenotypic marker fibronectin in A549 cells induced by TGF-β1. Conclusion We concluded that the anti-fibrotic effects of pirfenidone might be mediated not only through the direct inhibition of collagen type I expression but also through the inhibition of HSP47 expression in alveolar epithelial cells, which results in reduced collagen synthesis in lung fibrosis. Furthermore, pirfenidone might partially inhibit the epithelial-mesenchymal transition. PMID:22694981

  19. PKI 166 induced redox signalling and apoptosis through activation of p53, MAP kinase and caspase pathway in epidermoid carcinoma.

    PubMed

    Das, Subhasis; Dey, Kaushik Kumar; Bharti, Rashmi; MaitiChoudhury, Sujata; Maiti, Sukumar; Mandal, Mahitosh

    2012-01-01

    Cellular redox changes have emerged as a pivotal and proximal event in cancer. PKI 166 is used to determine the effects of redox sensitive inhibition of EGFR, metastasis and apoptosis in epidermoid carcinoma. Cytotoxicity study of PKI 166 (IC50 1.0 microM) treated A431 cells were performed by MTT assay for 48 and 72 hrs. Morphological analysis of PKI 166 treated A431 cells for 48 hrs. revealed the cell shrinkage, loss of filopodia and lamellipodia by phase contrast and SEM images in dose dependent manner. It has cytotoxic effects through inhibiting cellular proliferation, leads to the induction of apoptosis, as increased fraction of sub-G1 phase of the cell cycle, chromatin condensation and DNA ladder. It inhibited cyclin-D1 and cyclin-E expression and induced p53, p21 expression in dose dependent manner. Consequently, an imbalance of Bax/Bcl-2 ratio triggered caspase cascade and subsequent cleavage of PARP, thereby shifting the balance in favour of apoptosis. PKI 166 treatment actively stimulated reactive oxygen species (ROS) and mitochondrial membrane depolarization. It inhibited some metastatic properties of A431 cells supressing colony formation by soft agar assay and inhibition of MMP 9 activity by gelatin zymography and western blot analysis. PKI 166 inhibited growth factor induced phosphorylation of EGFR, Akt, MAPK, JNK and colony formation in A431 cells. Thus the inhibition of proliferation was associated with redox regulation of the caspase cascade, EGFR, Akt/PI3K, MAPK/ ERK and JNK pathway. On the other hand, increased antioxidant activity leads to decreased ROS generation inhibit the anti-proliferative and apoptotic properties of PKI 166 in A431 cells. These observations indicated PKI 166 induced redox signalling dependent inhibition of cell proliferation, metastatic properties and induction of apoptotic potential in epidermoid carcinoma.

  20. Protective effects of Korean red ginseng against radiation-induced apoptosis in human HaCaT keratinocytes

    PubMed Central

    Chang, Jae Won; Park, Keun Hyung; HWANG, Hye Sook; Shin, Yoo Seob; Oh, Young-Taek; Kim, Chul-Ho

    2014-01-01

    Radiation-induced oral mucositis is a dose-limiting toxic side effect for patients with head and neck cancer. Numerous attempts at improving radiation-induced oral mucositis have not produced a qualified treatment. Ginseng polysaccharide has multiple immunoprotective effects. Our aim was to investigate the effectiveness of Korean red ginseng (KRG) on radiation-induced damage in the human keratinocyte cell line HaCaT and in an in vivo zebrafish model. Radiation inhibited HaCaT cell proliferation and migration in a cell viability assay and wound healing assay, respectively. KRG protected against these effects. KRG attenuated the radiation-induced embryotoxicity in the zebrafish model. Irradiation of HaCaT cells caused apoptosis and changes in mitochondrial membrane potential (MMP). KRG inhibited the radiation-induced apoptosis and intracellular generation of reactive oxygen species (ROS), and stabilized the radiation-induced loss of MMP. Western blots revealed KRG-mediated reduced expression of ataxia telangiectasia mutated protein (ATM), p53, c-Jun N-terminal kinase (JNK), p38 and cleaved caspase-3, compared with their significant increase after radiation treatment. The collective results suggest that KRG protects HaCaT cells by blocking ROS generation, inhibiting changes in MMP, and inhibiting the caspase, ATM, p38 and JNK pathways. PMID:24078877

  1. Protective effects of Korean red ginseng against radiation-induced apoptosis in human HaCaT keratinocytes.

    PubMed

    Chang, Jae Won; Park, Keun Hyung; Hwang, Hye Sook; Shin, Yoo Seob; Oh, Young-Taek; Kim, Chul-Ho

    2014-03-01

    Radiation-induced oral mucositis is a dose-limiting toxic side effect for patients with head and neck cancer. Numerous attempts at improving radiation-induced oral mucositis have not produced a qualified treatment. Ginseng polysaccharide has multiple immunoprotective effects. Our aim was to investigate the effectiveness of Korean red ginseng (KRG) on radiation-induced damage in the human keratinocyte cell line HaCaT and in an in vivo zebrafish model. Radiation inhibited HaCaT cell proliferation and migration in a cell viability assay and wound healing assay, respectively. KRG protected against these effects. KRG attenuated the radiation-induced embryotoxicity in the zebrafish model. Irradiation of HaCaT cells caused apoptosis and changes in mitochondrial membrane potential (MMP). KRG inhibited the radiation-induced apoptosis and intracellular generation of reactive oxygen species (ROS), and stabilized the radiation-induced loss of MMP. Western blots revealed KRG-mediated reduced expression of ataxia telangiectasia mutated protein (ATM), p53, c-Jun N-terminal kinase (JNK), p38 and cleaved caspase-3, compared with their significant increase after radiation treatment. The collective results suggest that KRG protects HaCaT cells by blocking ROS generation, inhibiting changes in MMP, and inhibiting the caspase, ATM, p38 and JNK pathways.

  2. Formononetin sensitizes glioma cells to doxorubicin through preventing EMT via inhibition of histone deacetylase 5.

    PubMed

    Liu, Quan; Sun, Yan; Zheng, Jie-Min; Yan, Xian-Lei; Chen, Hong-Mou; Chen, Jia-Kang; Huang, He-Qing

    2015-01-01

    Chemoresistance is a major obstacle to successful chemotherapy for glioma. Formononetin is a novel herbal isoflavonoid isolated from Astragalus membranaceus and possesses antitumorigenic properties. In the present study, we investigated the anti-proliferative effects of formononetin on human glioma cells, and further elucidated the molecular mechanism underlying the anti-tumor property. We found that formononetin enhanced doxorubicin cytotoxicity in glioma cells. Combined treatment with formononetin reversed the doxorubicin-induced epithelial-mesenchymal transition (EMT) in tumor cells. Moreover, we found that formononetin treatment significantly decreased the expression of HDAC5. Overexpression of HDAC5 diminished the suppressive effects of formononetin on glioma cell viability. Furthermore, knockdown of HDAC5 by siRNA inhibited the doxorubicin-induced EMT in glioma cells. Taken together, these results demonstrated that formononetin-combined therapy may enhance the therapeutic efficacy of doxorubicin in glioma cells by preventing EMT through inhibition of HDAC5.

  3. Formononetin sensitizes glioma cells to doxorubicin through preventing EMT via inhibition of histone deacetylase 5

    PubMed Central

    Liu, Quan; Sun, Yan; Zheng, Jie-Min; Yan, Xian-Lei; Chen, Hong-Mou; Chen, Jia-Kang; Huang, He-Qing

    2015-01-01

    Chemoresistance is a major obstacle to successful chemotherapy for glioma. Formononetin is a novel herbal isoflavonoid isolated from Astragalus membranaceus and possesses antitumorigenic properties. In the present study, we investigated the anti-proliferative effects of formononetin on human glioma cells, and further elucidated the molecular mechanism underlying the anti-tumor property. We found that formononetin enhanced doxorubicin cytotoxicity in glioma cells. Combined treatment with formononetin reversed the doxorubicin-induced epithelial-mesenchymal transition (EMT) in tumor cells. Moreover, we found that formononetin treatment significantly decreased the expression of HDAC5. Overexpression of HDAC5 diminished the suppressive effects of formononetin on glioma cell viability. Furthermore, knockdown of HDAC5 by siRNA inhibited the doxorubicin-induced EMT in glioma cells. Taken together, these results demonstrated that formononetin-combined therapy may enhance the therapeutic efficacy of doxorubicin in glioma cells by preventing EMT through inhibition of HDAC5. PMID:26261519

  4. An Investigation of the Growth Inhibitory Capacity of Several Medicinal Plants From Iran on Tumor Cell Lines

    PubMed Central

    Esmaeilbeig, Maryam; Kouhpayeh, Seyed Amin; Amirghofran, Zahra

    2015-01-01

    Background: Traditional herbal medicine is a valuable resource that provides new drugs for cancer treatment. Objectives: In this study we aim to screen and investigate the in vitro anti-tumor activities of ten species of plants commonly grown in Southern Iran. Materials and Methods: We used the MTT colorimetric assay to evaluate the cytotoxic activities of the methanol extracts of these plants on various tumor cell lines. The IC50 was calculated as a scale for this evaluation. Results: Satureja bachtiarica, Satureja hortensis, Thymus vulgaris, Thymus daenensis and Mentha lonigfolia showed the inhibitoriest effects on Jurkat cells with > 80% inhibition at 200 µg/mL. Satureja hortensis (IC50: 66.7 µg/mL) was the most effective. These plants also strongly inhibited K562 cell growth; Satureja bachtiarica (IC50: 28.3 µg/mL), Satureja hortensis (IC50: 52 µg/mL) and Thymus vulgaris (IC50: 87 µg/mL) were the most effective extracts. Cichorium intybus, Rheum ribes, Alhagi pseudalhagi and Glycyrrihza glabra also showed notable effects on the leukemia cell lines. The Raji cell line was mostly inhibited by Satureja bachtiarica and Thymus vulgaris with approximately 40% inhibition at 200µg/ml. The influence of these extracts on solid tumor cell lines was not strong. Fen cells were mostly affected by Glycyrrihza glabra (IC50: 182 µg/mL) and HeLa cells by Satureja hortensis (31.6% growth inhibitory effect at 200 µg/mL). Conclusions: Leukemic cell lines were more sensitive to the extracts than the solid tumor cell lines; Satureja hortensis, Satureja bachtiarica, Thymus vulgaris, Thymus daenensis and Mentha lonigfolia showed remarkable inhibitory potential. PMID:26634114

  5. Cell growth inhibition and apoptotic effects of a specific anti-RTFscFv antibody on prostate cancer, but not glioblastoma, cells

    PubMed Central

    Nejatollahi, Foroogh; Bayat, Payam; Moazen, Bahareh

    2017-01-01

    Background: Single chain antibody (scFv) has shown interesting results in cancer immunotargeting approaches, due to its advantages over monoclonal antibodies. Regeneration and tolerance factor (RTF) is one of the most important regulators of extracellular and intracellular pH in eukaryotic cells. In this study, the inhibitory effects of a specific anti-RTF scFv were investigated and compared between three types of prostate cancer and two types of glioblastoma cells.  Methods: A phage antibody display library of scFv was used to select specific scFvs against RTF using panning process. The reactivity of a selected scFv was assessed by phage ELISA. The anti-proliferative and apoptotic effects of the antibody on prostate cancer (PC-3, Du-145 and LNCaP) and glioblastoma (U-87 MG and A-172) cell lines were investigated by MTT and Annexin V/PI assays.  Results: A specific scFv with frequency 35% was selected against RTF epitope. This significantly inhibited the proliferation of the prostate cells after 24 h. The percentages of cell viability (using 1000 scFv/cell) were 52, 61 and 73% for PC-3, Du-145 and LNCaP cells, respectively, compared to untreated cells. The antibody (1000 scFv/cell) induced apoptosis at 50, 40 and 25% in PC-3, Du-145 and LNCaP cells, respectively. No growth inhibition and apoptotic induction was detected for U-87 and A172 glioblastoma cells.  Conclusions: Anti-RTFscFv significantly reduced the proliferation of the prostate cancer cells. The inhibition of cell growth and apoptotic induction effects in PC-3 cells were greater than Du-145 and LNCaP cells. This might be due to higher expression of RTF antigen in PC-3 cells and/or better accessibility of RTF to scFv antibody. The resistance of glioblastoma cells to anti-RTF scFv offers the existence of mechanism(s) that abrogate the inhibitory effect(s) of the antibody to RTF. The results suggest that the selected anti-RTF scFv antibody could be an effective new alternative for prostate cancer immunotherapy. PMID:28491282

  6. [Inhibitive effect of LAK cells induced by dendritic cells on implanted lung cancer in nude mice].

    PubMed

    Gao, Qiu; Li, Jintian; Wang, Siyu; Chen, Shiping; Liu, Wei; Wu, Yilong

    2004-10-20

    To study the inhibitive effect of LAK cells induced by dendritic cells (DCs) on implanted lung adenocarcinoma in nude mice. The lung adenocarcinoma model was constructed in nude mice using the resected samples of lung cancer patient. The lung cancer cell lysate was obtained by free-zing and thrawing cycles. Peripheral blood mononuclear cells (PBMNC) were obtained from venous blood of the same patient, in which the adherent PBMNC fraction was cultured with DCGF, and the non-adherent PBMNC fraction was cultured with rhIL-2. DCs were pulsed with lung cancer cell lysates. And then mature DCs were incubated with LAK cells and the mixed cells were named DC-LAK cells. DC-LAK cells were injected into lung cancer-bearing nude mice to observe the inhibitive effect. The lung adenocarcinoma mo-del was successfully constructed. The average tumor weights of DC-LAK, LAK, DC and saline control groups were 0.47, 1.05, 1.30 and 1.58 g respectively, and the inhibitive rates of DC-LAK, LAK and DC were 70.3%, 33.5% and 17.9% respectively. The antitumor activity of DC-LAK cells was significantly stronger than that of LAK cells (P < 0.05). The results of in vivo experiment show that the antitumor activity of DC-LAK cells is stronger than that of LAK cells, so DC-LAK cells treatment may be a more efficient approach of lung cancer biological therapy. This experiment may provide a foundation for clinical application of DC vaccine.

  7. Effects of emodin on the demethylation of tumor-suppressor genes in pancreatic cancer PANC-1 cells.

    PubMed

    Zhang, Hao; Chen, Liang; Bu, He-Qi; Yu, Qing-Jiang; Jiang, Dan-Dan; Pan, Feng-Ping; Wang, Yu; Liu, Dian-Lei; Lin, Sheng-Zhang

    2015-06-01

    Emodin, a natural anthraquinone derivative isolated from Rheum palmatum, has been reported to inhibit the growth of pancreatic cancer cells through different modes of action; yet, the detailed mechanism remains unclear. In the present study, we hypothesized that emodin exerts its antitumor effect by participating in the regulation of the DNA methylation level. Our research showed that emodin inhibited the growth of pancreatic cancer PANC-1 cells in a dose- and time-dependent manner. Dot-blot results showed that 40 µM emodin significantly inhibited genomic 5 mC expression in the PANC-1 cells, and mRNA-Seq showed that different concentrations of emodin could alter the gene expression profile in the PANC-1 cells. BSP confirmed that the methylation levels of P16, RASSF1A and ppENK were decreased, while concomitantly the unmethylated status was increased. RT-PCR and western blotting results confirmed that the low expression or absence of expression of mRNA and protein in the PANC-1 cells was re-expressed following treatment with emodin. In conclusion, our study for the first time suggests that emodin inhibits pancreatic cancer cell growth, which may be related to the demethylation of tumor-suppressor genes. The related mechanism may be through the inhibition of methyltransferase expression.

  8. Dacarbazine inhibits proliferation of melanoma FEMX-1 cells by up-regulating expression of miRNA-200.

    PubMed

    Chen, Y-N

    2017-03-01

    Melanoma is a highly aggressive tumour, and treatment efficacy depends on the stage of the tumour. Early stage cutaneous melanoma is efficiently treated by surgical excision. In contrast, late-stage melanoma requires chemotherapy with dacarbazine (DTIC). Unfortunately, advanced melanoma can often be resistant to DTIC. The mechanisms of anti-melanoma effects of DTIC are still poorly understood, which hinders development of more potent therapies. In this study, we examined the effects of DTIC on growth inhibition of FEMX-1 melanoma cell line, expression of apoptosis-related proteins, and expression of micro (mi)RNA-200 (miRNA-200a, miRNA-200b, miRNA-200c, and miRNA-141). DTIC was used at 50 (low dose) or 100 (high dose) mg/ml. Cell growth inhibition was documented by MTT assay. Cell apoptosis was quantified by propidium iodide staining and caspase 3-8 activity assay. Expression of apoptosis-related proteins Bim, Bak, BAX, and Bad were documented by Western blot analysis, while expression of miRNA-200 by PCR. DTIC dose-dependently inhibited growth of FEMX-1 melanoma cell line, induced cell apoptosis, modulated the levels of apoptosis-related proteins, and up-regulated expression of miRNA-200 family members. DTIC inhibits the growth of melanoma cells by up-regulating expression of miRNA-200.

  9. Tumor necrosis factor-alpha inhibits stem cell factor-induced proliferation of human bone marrow progenitor cells in vitro. Role of p55 and p75 tumor necrosis factor receptors.

    PubMed Central

    Rusten, L S; Smeland, E B; Jacobsen, F W; Lien, E; Lesslauer, W; Loetscher, H; Dubois, C M; Jacobsen, S E

    1994-01-01

    Stem cell factor (SCF), a key regulator of hematopoiesis, potently synergizes with a number of hematopoietic growth factors. However, little is known about growth factors capable of inhibiting the actions of SCF. TNF-alpha has been shown to act as a bidirectional regulator of myeloid cell proliferation and differentiation. This study was designed to examine interactions between TNF-alpha and SCF. Here, we demonstrate that TNF-alpha potently and directly inhibits SCF-stimulated proliferation of CD34+ hematopoietic progenitor cells. Furthermore, TNF-alpha blocked all colony formation stimulated by SCF in combination with granulocyte colony-stimulating factor (CSF) or CSF-1. The synergistic effect of SCF observed in combination with GM-CSF or IL-3 was also inhibited by TNF-alpha, resulting in colony numbers similar to those obtained in the absence of SCF. These effects of TNF-alpha were mediated through the p55 TNF receptor, whereas little or no inhibition was signaled through the p75 TNF receptor. Finally, TNF-alpha downregulated c-kit cell-surface expression on CD34+ bone marrow cells, and this was predominantly a p55 TNF receptor-mediated event as well. Images PMID:7518828

  10. Cyclin D1 in ASM Cells from Asthmatics Is Insensitive to Corticosteroid Inhibition.

    PubMed

    Allen, Jodi C; Seidel, Petra; Schlosser, Tobias; Ramsay, Emma E; Ge, Qi; Ammit, Alaina J

    2012-01-01

    Hyperplasia of airway smooth muscle (ASM) is a feature of the remodelled airway in asthmatics. We examined the antiproliferative effectiveness of the corticosteroid dexamethasone on expression of the key regulator of G(1) cell cycle progression-cyclin D1-in ASM cells from nonasthmatics and asthmatics stimulated with the mitogen platelet-derived growth factor BB. While cyclin D1 mRNA and protein expression were repressed in cells from nonasthmatics in contrast, cyclin D1 expression in asthmatics was resistant to inhibition by dexamethasone. This was independent of a repressive effect on glucocorticoid receptor translocation. Our results corroborate evidence demonstrating that corticosteroids inhibit mitogen-induced proliferation only in ASM cells from subjects without asthma and suggest that there are corticosteroid-insensitive proliferative pathways in asthmatics.

  11. Celecoxib-Induced Cytotoxic Effect Is Potentiated by Inhibition of Autophagy in Human Urothelial Carcinoma Cells

    PubMed Central

    Ho, I-Lin; Chang, Hong-Chiang; Chuang, Yuan-Ting; Lin, Wei-Chou; Lee, Ping-Yi; Chang, Shih-Chen; Chiang, Chih-Kang; Pu, Yeong-Shiau; Chou, Chien-Tso; Hsu, Chen-Hsun; Liu, Shing-Hwa

    2013-01-01

    Celecoxib, a cyclooxygenase-2 (COX-2) inhibitor, can elicit anti-tumor effects in various malignancies. Here, we sought to clarify the role of autophagy in celecoxib-induced cytotoxicity in human urothelial carcinoma (UC) cells. The results shows celecoxib induced cellular stress response such as endoplasmic reticulum (ER) stress, phosopho-SAPK/JNK, and phosopho-c-Jun as well as autophagosome formation in UC cells. Inhibition of autophagy by 3-methyladenine (3-MA), bafilomycin A1 or ATG7 knockdown potentiated celecoxib-induced apoptosis. Up-regulation of autophagy by rapamycin or GFP-LC3B-transfection alleviated celecoxib-induced cytotoxicity in UC cells. Taken together, the inhibition of autophagy enhances therapeutic efficacy of celecoxib in UC cells, suggesting a novel therapeutic strategy against UC. PMID:24349176

  12. The Broad Spectrum Receptor Tyrosine Kinase Inhibitor Dovitinib Suppresses Growth of BRAF Mutant Melanoma Cells in Combination with Other Signaling Pathway Inhibitors

    PubMed Central

    Langdon, Casey G.; Held, Matthew A.; Platt, James T.; Meeth, Katrina; Iyidogan, Pinar; Mamillapalli, Ramanaiah; Koo, Andrew B.; Klein, Michael; Liu, Zongzhi; Bosenberg, Marcus W.; Stern, David F.

    2016-01-01

    Summary BRAF inhibitors have revolutionized treatment of mutant BRAF metastatic melanomas. However, resistance develops rapidly following BRAF inhibitor treatment. We have found that BRAF-mutant melanoma cell lines are more sensitive than wild-type BRAF cells to the small molecule tyrosine kinase inhibitor dovitinib. Sensitivity is associated with inhibition of a series of known dovitinib targets. Dovitinib in combination with several agents inhibits growth more effectively than either agent alone. These combinations inhibit BRAF-mutant melanoma and colorectal carcinoma cell lines, including cell lines with intrinsic or selected BRAF inhibitor resistance. Hence, combinations of dovitinib with second agents are potentially effective therapies for BRAF-mutant melanomas, regardless of their sensitivity to BRAF inhibitors. PMID:25854919

  13. Ethyl acetate extract from Panax ginseng C.A. Meyer and its main constituents inhibit α-melanocyte-stimulating hormone-induced melanogenesis by suppressing oxidative stress in B16 mouse melanoma cells.

    PubMed

    Jiang, Rui; Xu, Xiao-Hao; Wang, Ke; Yang, Xin-Zhao; Bi, Ying-Fei; Yan, Yao; Liu, Jian-Zeng; Chen, Xue-Nan; Wang, Zhen-Zhong; Guo, Xiao-Li; Zhao, Da-Qing; Sun, Li-Wei

    2017-08-17

    Hyperpigmentation disease involves darkening of the skin color due to melanin overproduction. Panax ginseng C.A. Meyer is a well-known traditional Chinese medicine and has a long history of use as a skin lightener to inhibit melanin formation in China, Korea and some other Asian countries. However, the constituents and the molecular mechanisms by which they affect melanogenesis are not fully clear. The purpose of this study was to identify the active ingredient in Panax ginseng C.A. Meyer extract that inhibits mushroom tyrosinase activity and to investigate the antioxidative capacity and molecular mechanisms of the effective extract on melanogenesis in B16 mouse melanoma cells. Aqueous extracts of Panax ginseng C.A. Meyer were successively fractionated with an equal volume of chloroform, ethyl acetate, and n-butyl alcohol to determine the effects by examining the activity of mushroom tyrosinase. The effective fraction was analyzed using HPLC and LC-MS. The antioxidative capacity and the inhibitory effects on melanin content, cell intracellular tyrosinase activity, and melanogenesis protein levels were determined in α-melanocyte-stimulating hormone (α-MSH)-treated B16 mouse melanoma cells. The ethyl acetate extract from Panax ginseng C.A. Meyer (PG-2) had the highest inhibiting effect on mushroom tyrosinase, mainly contained phenolic acids, including protocatechuic acid, vanillic acid, p-coumaric acid, salicylic acid, and caffeic acid, and exhibited apparent antioxidant activity in vitro. PG-2 and its main constituents significantly decreased melanin content, suppressed cellular tyrosinase activity, and reduced expression of tyrosinase protein to inhibit B16 cells melanogenesis induced by α-MSH, and no cytotoxic effects were observed. They also inhibited cellular reactive oxygen species (ROS) generation, increased superoxide dismutase (SOD) activity and glutathione (GSH) level in α-MSH-treated B16 cells effectively. And those activities of its main constituents could reach more than 80% of PG-2. The ROS scavengers N-acetyl-L-cysteine (NAC) had a similar inhibitory effect on melanogenesis. These results suggest that ethyl acetate extract from Panax ginseng C.A. Meyer has the highest effect on inhibiting melanogenesis, and that its main components are polyphenolic compounds, which may inhibit melanogenesis by suppressing oxidative stress. This work provides new insight into the active constituents and molecular mechanisms underlying skin-lightening effect of Panax ginseng C.A. Meyer. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  14. Effects of neratinib and combination with irradiation and chemotherapy in head and neck cancer cells.

    PubMed

    Schneider, S; Thurnher, D; Kadletz, L; Seemann, R; Brunner, M; Kotowski, U; Schmid, R; Lill, C; Heiduschka, G

    2016-11-01

    Prognosis of patients with head and neck squamous cell carcinoma (HNSCC) is still poor. Novel therapeutic approaches are of great interest to improve the effects of radiochemotherapy. We evaluated the effects of tyrosine kinase inhibitor neratinib on HNSCC cell lines CAL27, SCC25 and FaDu as a single agent and in combination with irradiation and chemotherapy. Effects of neratinib were evaluated in HNSCC cell lines CAL27, SCC25 and FaDu. Effect on cell viability of neratinib and combination with cisplatin and irradiation was measured using CCK-8 assays and clonogenic assays. Western blot analysis was performed to distinguish the effect on epithelial growth factor receptor and HER2 expression. Apoptosis was evaluated by flow cytometry analysis. Growth inhibition was achieved in all cell lines, whereas combination of cisplatin and neratinib showed greater inhibition than each agent alone. Apoptosis was induced in all cell lines. Combination of neratinib with irradiation or cisplatin showed significantly increased apoptosis. In clonogenic assays, significant growth inhibition was observed in all investigated cell lines. Neratinib, as a single agent or in combination with chemo-irradiation, may be a promising treatment option for patients with head and neck cancer. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Annatto Tocotrienol Induces a Cytotoxic Effect on Human Prostate Cancer PC3 Cells via the Simultaneous Inhibition of Src and Stat3.

    PubMed

    Sugahara, Ryosuke; Sato, Ayami; Uchida, Asuka; Shiozawa, Shinya; Sato, Chiaki; Virgona, Nantiga; Yano, Tomohiro

    2015-01-01

    Prostate cancer is one of the most frequently occurring cancers and often acquires the potential of androgen-independent growth as a malignant phenotype. Androgen-independent prostate cancer has severe chemoresistance towards conventional chemotherapeutic agents, so a new treatment approach is required for curing such prostate cancer. In this context, the present study was undertaken to check if annatto tocotrienol (main component δ-tocotrienol) could suppress cell growth in human prostate cancer (PC3, androgen-independent type) cells via the inhibition of Src and Stat3. The tocotrienol showed cytotoxic effects on PC3 cells in a dose-dependent manner, and the effect depended on G1 arrest in the cell cycle and subsequent induction of apoptosis. In a cytotoxic dose, the tocotrienol suppressed cellular growth via the simultaneous inhibition of Src and Stat3. Similarly, the treatment combination of both Src and Stat3 inhibitors induced cytotoxic effects in PC3 cells in an additive manner compared to each by itself. With respect to cell cycle regulation and the induction of apoptosis, the combination treatment showed a similar effect to that of the tocotrienol treatment. These results suggest that annatto tocotrienol effectively induces cytotoxicity in androgen-independent prostate cancer cells via the suppression of Src and Stat3.

  16. Sidedness of Carbamazepine Accessibility to Voltage-Gated Sodium Channels

    PubMed Central

    Jo, Sooyeon

    2014-01-01

    Voltage-gated sodium channels are inhibited by many local anesthetics, antiarrhythmics, and antiepileptic drugs. The local anesthetic lidocaine appears to be able to access its binding site in the sodium channel only from the membrane phase or from the internal face of the channel. In contrast, the antiepileptic drug carbamazepine was found to inhibit voltage-gated sodium channels only with external, but not internal, application, implying a major difference. We investigated this point using both whole-cell and inside-out patch recordings from human Nav1.7 channels in a stable cell line. In the whole-cell configuration, carbamazepine inhibited sodium current within seconds when applied externally, but had little or no effect when applied internally for up to 15 minutes, confirming previous results. However, carbamazepine inhibited sodium channels effectively and rapidly when applied to the internal face of the membrane using inside-out patch recording. We found that lidocaine also has little or no effect when applied intracellularly in whole-cell recording, but blocks effectively and rapidly when applied to the internal surface using inside-out patches. In contrast, the cationic lidocaine derivative QX-314 (N-ethyl-lidocaine) blocks effectively when applied internally with whole-cell dialysis, as well as when applied to inside-out patches. We conclude that carbamazepine and lidocaine access the sodium channel in similar ways and hypothesize that their lack of effect with internal dialysis in whole-cell recording reflects rapid exit through membrane near the pipette recording site. This effect likely limits the ability of any compound with significant membrane permeability to be applied intracellularly by whole-cell dialysis. PMID:24319110

  17. Protection against cerebral infarction by Withaferin A involves inhibition of neuronal apoptosis, activation of PI3K/Akt signaling pathway, and reduced intimal hyperplasia via inhibition of VSMC migration and matrix metalloproteinases.

    PubMed

    Zhang, Qi-Zhi; Guo, Yu-Dong; Li, Hao-Mei; Wang, Rui-Zheng; Guo, Shou-Gang; Du, Yi-Feng

    2017-03-01

    Stroke is a major public health concern with high rates of morbidity and mortality worldwide. Cerebral ischemia and infarction are commonly associated with stroke. Currently used medications, though effective, are also associated with adverse effects. Development of effective neuroprotective agents with fewer side effects would be of clinical value. We evaluated the effects of Withaferin A (WA), a steroidal lactone derived from the plant Withania somnifera, on experimentally induced cerebral infarction. The ability of WA to inhibit neuroapoptosis and modulate vascular smooth muscle cell (VSMC) migration and PI3K/Akt signaling was assessed. Separate groups of Sprague Dawley rats were subjected to cerebral occlusion and reperfused for 24h. WA treatment (25, 50 or 100mg/kg bodyweight) significantly reduced the infarct area in a carotid ligation model; WA reduced intimal hyperplasia and proliferating cell nuclear antigen (PCNA)-positive cell counts. Western blotting analysis revealed significantly suppressed PI3K/Akt signaling following cerebral ischemia/reperfusion injury. WA supplementation was found to downregulate apoptotic pathway proteins. WA suppressed PTEN and enhanced p-Akt and GSK-3β levels and elevated mTORc1, cyclinD1 and NF-κB p65 expression, suggesting activation of the PI3K/Akt pathway. In vitro studies with PDGF-stimulated A7r5 cells revealed that WA exposure severely downregulated matrix metalloproteinases (MMP)-2 and -9 and inhibited migration of A7r5 cells. Additionally, WA reduced the proliferation of A7r5 cells significantly. WA exerted neuroprotective effects by activating the PI3K/Akt pathway, modulating the expression of MMPs, and inhibiting the migration of VSMCs. Copyright © 2017. Published by Elsevier B.V.

  18. Mangiferin inhibits endoplasmic reticulum stress-associated thioredoxin-interacting protein/NLRP3 inflammasome activation with regulation of AMPK in endothelial cells.

    PubMed

    Song, Junna; Li, Jia; Hou, Fangjie; Wang, Xiaona; Liu, Baolin

    2015-03-01

    Endothelial dysfunction is tightly associated with cardiovascular complications in diabetic patients. This study aims to investigate the effects of mangiferin on the regulation of endothelial homeostasis under endoplasmic reticulum stress (ER stress) conditions. High glucose (25 mmol/L) exposure induced ER stress and promoted ROS production in endothelial cells. Mangiferin effectively inhibited ER stress-associated oxidative stress by attenuating IRE1α phosphorylation and reducing ROS production. In response to ER stress, thioredoxin-interacting protein (TXNIP) expression increased, followed by NLRP3 inflammasome activation and increased IL-1β secretion. Mangiferin treatment attenuated the expressions of TXNIP and NLRP3 and reduced IL-1β and IL-6 production, demonstrating its inhibitory effects on TXNIP/NLRP3 inflammasome activation. NLRP3 inflammasome activation is responsible for mitochondrial cell death. Mangiferin restored the loss of the mitochondrial membrane potential (Δψm) and inhibited caspase-3 activity, and thereby protected cells from high glucose-induced apoptosis. Moreover, mangiferin inhibited ET-1 secretion and restored the loss of NO production when cells were exposed to high glucose. Mangiferin enhanced AMPK phosphorylation and AMPK inhibitor compound C diminished its beneficial effects, indicating the potential role of AMPK in its action. Our work showed the beneficial effects of mangiferin on the improvement of endothelial homeostasis and elucidated the molecular pathway through which mangiferin ameliorated endothelial dysfunction by inhibition of ER stress-associated TXNIP/NLRP3 inflammasome activation in endothelial cells. These findings demonstrated the beneficial effects of mangiferin on the regulation of endothelial homeostasis and indicated its potential application in the management of diabetic cardiovascular complications. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Differential Sensitivities of Fast- and Slow-Cycling Cancer Cells to Inosine Monophosphate Dehydrogenase 2 Inhibition by Mycophenolic Acid

    PubMed Central

    Chen, Kan; Cao, Wanlu; Li, Juan; Sprengers, Dave; Hernanda, Pratika Y; Kong, Xiangdong; van der Laan, Luc JW; Man, Kwan; Kwekkeboom, Jaap; Metselaar, Herold J; Peppelenbosch, Maikel P; Pan, Qiuwei

    2015-01-01

    As uncontrolled cell proliferation requires nucleotide biosynthesis, inhibiting enzymes that mediate nucleotide biosynthesis constitutes a rational approach to the management of oncological diseases. In practice, however, results of this strategy are mixed and thus elucidation of the mechanisms by which cancer cells evade the effect of nucleotide biosynthesis restriction is urgently needed. Here we explored the notion that intrinsic differences in cancer cell cycle velocity are important in the resistance toward inhibition of inosine monophosphate dehydrogenase (IMPDH) by mycophenolic acid (MPA). In short-term experiments, MPA treatment of fast-growing cancer cells effectively elicited G0/G1 arrest and provoked apoptosis, thus inhibiting cell proliferation and colony formation. Forced expression of a mutated IMPDH2, lacking a binding site for MPA but retaining enzymatic activity, resulted in complete resistance of cancer cells to MPA. In nude mice subcutaneously engrafted with HeLa cells, MPA moderately delayed tumor formation by inhibiting cell proliferation and inducing apoptosis. Importantly, we developed a lentiviral vector–based Tet-on label-retaining system that enables to identify, isolate and functionally characterize slow-cycling or so-called label-retaining cells (LRCs) in vitro and in vivo. We surprisingly found the presence of LRCs in fast-growing tumors. LRCs were superior in colony formation, tumor initiation and resistance to MPA as compared with fast-cycling cells. Thus, the slow-cycling compartment of cancer seems predominantly responsible for resistance to MPA. PMID:26467706

  20. Targeting the yin and the yang: combined inhibition of the tyrosine kinase c-Src and the tyrosine phosphatase SHP-2 disrupts pancreatic cancer signaling and biology in vitro and tumor formation in vivo.

    PubMed

    Gomes, Evan G; Connelly, Sarah F; Summy, Justin M

    2013-07-01

    Although c-Src (Src) has emerged as a potential pancreatic cancer target in preclinical studies, Src inhibitors have not demonstrated a significant therapeutic benefit in clinical trials. The objective of these studies was to examine the effects of combining Src inhibition with inhibition of the protein tyrosine phosphatase SHP-2 in pancreatic cancer cells in vitro and in vivo. SHP-2 and Src functions were inhibited by siRNA or small molecule inhibitors. The effects of dual Src/SHP-2 functional inhibition were evaluated by Western blot analysis of downstream signaling pathways; cell biology assays to examine caspase activity, viability, adhesion, migration, and invasion in vitro; and an orthotopic nude mouse model to observe pancreatic tumor formation in vivo. Dual targeting of Src and SHP-2 induces an additive or supra-additive loss of phosphorylation of Akt and ERK-1/2 and corresponding increases in expression of apoptotic markers, relative to targeting either protein individually. Combinatorial inhibition of Src and SHP-2 significantly reduces viability, adhesion, migration, and invasion of pancreatic cancer cells in vitro and tumor formation in vivo, relative to individual Src/SHP-2 inhibition. These data suggest that the antitumor effects of Src inhibition in pancreatic cancer may be enhanced through simultaneous inhibition of SHP-2.

Top